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Preface

The previous edition of this manual was about using the software package called gretl to do
various econometric tasks required in a typical two course undergraduate or masters level econo-
metrics sequence. This version tries to do the same, but several enhancements have been made
that will interest those teaching more advanced courses. I have come to appreciate the power and
usefulness of gretl’s powerful scripting language, now called hansl. Hansl is powerful enough to
do some serious computing, but simple enough for novices to learn. In this version of the book,
you will find more information about writing functions and using loops to obtain basic results. The
programs have been generalized in many instances so that they could be adapted for other uses
if desired. As I learn more about hansl specifically and programming in general, I will no doubt
revise some of the code contained here. Stay tuned for further developments.

As with the last edition, the book is written specifically to be used with a particular textbook,
Principles of Econometrics, 4th edition (POE4 ) by Hill, Griffiths, and Lim. It could be used
with many other introductory texts. The data for all of the examples used herein are available
as a package from my website at http://www.learneconometrics.com/gretl.html. If you are
unfamiliar with gretl and are interested in using it in class, Mixon Jr. and Smith (2006) and
Adkins (2011a) have written a brief review of gretl and how it can be used in an undergraduate
course that you may persuade you to give it a try.

The chapters are arranged in the order that they appear in Principles of Econometrics. Each
chapter contains a brief description of the basic models to be estimated and then gives you the
specific instructions or gretl code to reproduce (nearly) all of the examples in the book. Where
appropriate, I’ve added a bit of pedagogical material that complements what you’ll find in the text.
I’ve tried to keep this to a minimum since this is not supposed to serve as a substitute for your
text book. The best part about this manual is that it, like gretl, is free. It is being distributed in
Adobe’s pdf format and I will make corrections to the text as I find errors.

Gretl’s ability to process user written functions greatly expands the usefulness of the appli-
cation. In several of the chapters functions are used to estimate models, select models, and to
compute various statistics. The scripting language, continues to evolve in useful ways, becoming
more transparent in use and more functional. Though not explored in this boo, the ability to
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give function writers access to the basic GUI and to package things into bundles is s very exciting
development.

Functions can be shared and imported easily through gretl, especially if you are connected to
the internet. If gretl doesn’t do what you want it to now, stay tuned. It soon may. If recent
activity is any indication, I am confident that the the gretl team will continue to improve this
already very useful application. I hope that this manual is similarly useful to those using Principles
of Econometrics.

There are some significant changes in the 4th edition of POE and that means there are some
changes in this book from the previous edition. As in the previous edition of this e-book, I have
attempted to provide gretl instructions for each and every example in the book. My solutions are
not necessarily the most elegant. In some cases elegance gives way to simplicity of programming,
especially with respect to the types of students who are likely to be using this book. I have made
an effort to generalize some of the script so that it will be easier to adapt to new needs. I’ve also
made liberal uses of loops and functions. These are powerful tools and a thorough understanding
of them can take your gretl and econometric skills to the next level. Feel free to send suggestions.

Another change in this version of the book is that I’ve made some effort to generalize some of
the scripts. Although that should make it easier to generalize them to a new use, it does mean that
they have become a little more complicated. A heavy reliance on user written functions is evident.
I invite users to take the time to work through these in order to advance your programming and
econometric skills.

To make things easier to find in the book, I have added an index. In the pdf, you can click on
the page number listed in the index and be taken to the relevant spot in the text. Also, the figure
numbers, equation numbers, and citations are also ‘hot’ and can be used in this fashion as well.
Since some may prefer to print the manual out rather than work from the .pdf, I opted to make
the ‘hot’ links black in color, which disguises their functionality.

Once again, I want to thank the gretl team of Allin Cottrell and Riccardo “Jack” Lucchetti for
putting so much effort into gretl. It is a wonderful program for teaching and doing econometrics.
It has many capabilities beyond the ones I discuss in this book and other functions are added
regularly. Also, Jack has kindly provided me with suggestions and programs that have made this
much better than it would have been otherwise. Any remaining errors are mine alone.

I also want to thank my good friend and colleague Carter Hill for suggesting I write this and
Oklahoma State University and our College of Business for continuing to pay me while I work on
it.

Copyright c© 2007, 2008, 2009, 2011 Lee C. Adkins.
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Chapter 1
Introduction

In this chapter you will be introduced to some of the basic features of gretl. You’ll learn how
to install it, how to get around the various windows in gretl, and how to import data. At the end
of the chapter, you’ll be introduced to gretl’s powerful language.

1.1 What is Gretl?

Gretl is an acronym for Gnu Regression, Econometrics and Time-series Library. It is a software
package for doing econometrics that is easy to use and powerful. It features a very user-friendly
interface that makes it snap to use in classroom. Its flexibility, extensibility, and accuracy make it
well-suited for research as well. Gretl is distributed as free software that can be downloaded from
http://gretl.sourceforge.net and installed on your personal computer. Unlike software sold
by commercial vendors (SAS, Eviews, Shazam to name a few) you can redistribute and/or modify
gretl under the terms of the GNU General Public License (GPL) as published by the Free Software
Foundation. That means that you are free to patch or extend gretl as you see fit.

Gretl comes with many sample data files and its internet capabilities give you access to several
very useful databases served by Wake Forest University. From the gretl web site, you can download
and install sample data sets from many of the leading textbooks in econometrics, including the one
that this book is based on, Principles of Econometrics by Hill et al. (2011).

Gretl offers a full range of least-squares based estimators, either for single equations and for
systems, including vector autoregressions and vector error correction models. Several specific max-
imum likelihood estimators (e.g. probit, ARIMA, GARCH) are also provided natively; more ad-
vanced estimation methods can be implemented by the user via generic maximum likelihood or
nonlinear GMM. Gretl uses a separate Gnu program called gnuplot to generate graphs and is
capable of generating output in LATEX format. Gretl is under constant development so you can
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probably expect some bugs, but in my experience it is quite stable to use with my Windows and
Ubuntu Linux systems. The main developers, Allin Cottrell and Jack Lucchetti, participate daily
in discussions on the gretl forums and quickly sort out any bugs that are reported.

Which brings me to the final plug for gretl, which is inspired by its openness. As seen with
a lot of the better quality open source software, a community of developers and users are woven
together via active user and developer forums. The input from their many participants helps to
make gretl quite dynamic. If gretl will not estimate what you want today, tune-in tomorrow and
someone may have written the code to estimate your econometric problem.

Furthermore, gretl is enhancing its scripting language to facilitate sophisticated add-ons to its
basic functionality. In short, gretl is quickly becoming software worth getting to know for research
as well as for pedagogical uses.

1.1.1 Installing Gretl

To install gretl on your system, you will need to download the appropriate executable file
for the computer platform you are using. For Microsoft Windows users the appropriate site is
http://gretl.sourceforge.net/win32/. One of the nice things about gretl is that Mac OS
X and Linux versions are also available. If you are using some other computer system, you can
download the source code and compile it on whatever platform you’d like. This is not something
you can do with any commercial software package.

Gretl depends on some other (free) programs to perform some of its magic. If you install gretl
on your Mac or Windows based machine using the appropriate executable file provided on gretl’s
download page then everything you need to make gretl work should be installed as part of the
package. If, on the other hand, you are going to build your own gretl using the source files, you
may need to install some of the supporting packages yourself. I assume that if you are savvy enough
to compile your own version of gretl then you probably know what to do. For most, just install the
self-extracting executable, gretl install.exe, available at the download site. Gretl comes with
an Adobe pdf manual that will guide you through installation and introduce you to the interface.
I suggest that you start with it, paying particular attention to the first 3 chapters, which discuss
installation in more detail and some basics on how to use the interface.

Since this manual is based on the examples from Principles of Econometrics, 4th edition (POE4 )
by Hill et al. (2011), you should also download and install the accompanying data files that go with
this book. The file is available at

http://www.learneconometrics.com/gretl/POE4data.exe.

This is a self-extracting windows file that will install the POE4 data sets onto the c:\Program
Files (x86)\gretl\data directory of your computer’s harddrive.1 If you have installed gretl

1My system is 64-bit. If your copy of Windows is 32-bit then your directory structure is likely to be different from
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in any place other than c:\Program Files (x86)\gretl then you are given the opportunity to
specify a new location in which to install the program during setup.

1.1.2 Gretl Basics

There are several different ways to work in gretl. Until you learn to use gretl’s rather simple
and intuitive language syntax, the easiest way to use the program is through its built-in graphical
user interface (GUI). The graphical interface should be familiar to most of you. Basically, you use
your computer’s mouse to open dialog boxes. Fill in the desired options and execute the commands
by clicking on the OK button. Gretl is using your input from the dialogs, delivered by mouse
clicks and a few keystrokes, to generate computer code that is executed in the background.

Of course, you can generate your own programs directly, either by using a command line version
or by using the GUI via the gretl console or through scripts.

Gretl’s command line version is a separate executable that gives you access to gretl commands
directly from your computer’s command prompt. This bypasses the GUI altogether.

To open the command line version of gretl in Windows, open a command window and type
gretlcli. In Windows 7 choose Start>Run to open the dialog shown in figure 1.1. In the box, use

Figure 1.1: Opening the command line interface version of gretl using Start>Run

Browse button to locate the directory in which gretl is installed. On my machine it is installed
on the "C:\Program Files (x86)\gretl\gretlcli.exe" drive. Click OK and the command line
version shown in figure 1.2 opens. There are a couple of messages that certain entries could not
be found in the Windows registry, which in this case means that these programs are not installed
or registered on my particular machine. If you receive these, don’t be alarmed. Gretl will still
operate. The question mark (?) is the command prompt. To open one of the data sets that
installs with gretl, type open engel at the prompt. The gretl data set engel.gdt opens and some

mins.
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Figure 1.2: The command line version of gretl

information about how much data and which variables it contains are printed to the screen. From
here one can issue gretl commands or run scripts. To close the window, type exit.

If you are in fact using the Microsoft Windows operating system, then you probably won’t be
using gretl from the command line very often anyway. This version of the program is probably
the most useful for Linux users wishing to run gretl from a terminal window. If you are using a
machine that is resource constrained, the command line interface is one way to free resources that
would otherwise be used to operate the graphical interface. We won’t be using the command line
version in this manual.

A better way to execute single gretl commands is through the gretl console. In normal
practice, the console is a lot easier to use than the gretlcli.exe. It offers some editing features
and immediate access to other ways of using gretl that aren’t available in the straight command
line version of the program. The console and its use is discussed in section 1.3.1.

If you want to execute a series of commands, you do this using scripts. One of the great things
about gretl is that it accumulates commands executed singly from the console into a command
log that can be run in its entirety at another time. This topic can be found in section 1.3.2. So,
if you have completed an analysis that involves many sequential steps, the steps can be saved to a
script file which can later be opened and run in one step to get the result.

You can use the script environment to conduct Monte Carlo studies in econometrics. Monte
Carlo studies use computer simulation (sometimes referred to as experiments) to study the prop-
erties of a particular technique. This is especially useful when the mathematical properties of
your technique are particularly difficult to ascertain. In the exercises below, you will learn a little
about doing these kinds of experiments in econometrics. Also, you can consult a separate paper of
mine Adkins (2011b) which can be found at http://www.learneconometrics.com/pdf/MCgretl/
index.htm.

In Figure 1.3 you will find the main window in gretl.
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Figure 1.3: The main window for gretl’s GUI

Across the top of the window you find the menu bar. From here you import and manipulate
data, analyze data, and manage output. At the bottom of the window is the gretl toolbar. This
contains a number of useful utilities that can be launched from within gretl. Among other things,
you can get to the gretl web site from here, open the pdf version of the manual, or open the MS
Windows calculator (very handy!). More will be said about these functions later.

1.1.3 Common Conventions

In the beginning, I will illustrate the examples using a number of figures (an excessive number
to be sure). These figures are screen captures of gretl’s windows as they appear when summoned
from the pull-down menus. As you become familiar with gretl the frequency of these figures will
diminish and I will direct you to the proper commands that can be executed in the console or as a
script using words only. More complex series of commands may require you to use the gretl script
facilities which basically allow you to write simple programs in their entirety, store them in a file,
and then execute all of the commands in a single batch. The convention used will be to refer to
menu items as A>B>C which indicates that you are to click on option A on the menu bar, then select
B from the pull-down menu and further select option C from B’s pull-down menu. All of this is
fairly standard practice, but if you don’t know what this means, ask your instructor now.

There are a few tricks used in this manual to make scripts work on various platforms without
much modification. Gretl contains special macros for the location of commonly used files. There is
a working directory that gretl reads and writes to. This location can be defined by the user using
the file menu. To refer to this location generically, use the @workdir macro. The gretl installation
director is referenced by @gretldir, and temporary storage can be accessed via @dotdir. If any of
these directories have spaces in their names, then be sure to enclose the command in double quotes.
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For example, on my Windows 7 system, gretl is installed in the "C:\Program\;Files(x86)\gretl"
directory. The data sets for POE4 are in "@gretldir\data\poe\". To refer to this location I can
simply use "@gretldir\data\poe".

1.2 Importing Data

Obtaining data in econometrics and getting it into a format that can be used by your software
can be challenging. There are dozens of different pieces of software and many use proprietary data
formats that make transferring data between applications difficult. You’ll notice that the authors
of your book have provided data in several formats for your convenience. In this chapter, we will
explore some of the data handling features of gretl and show you (1) how to access the data sets
that accompany your textbook (2) how to bring one of those data sets into gretl (3) how to list the
variables in the data set and (4) how to modify and save your data. Gretl offers great functionality
in this regard. Through gretl you have access to a very large number of high quality data sets from
other textbooks as well as from sources in industry and government. Furthermore, once opened in
gretl these data sets can be exported to a number of other software formats.

First, we will load the food expenditure data used in chapter 2 of POE4. The data set contains
two variables named x and y. The variable y is weekly expenditures on food in a household and x
is weekly income measured in $100 increments.

Open the main gretl window and click on File>Open data>Sample file as shown in Figure
1.4.

Figure 1.4: Opening sample data files from gretl’s main window

Alternately, you could click on the open dataset button on the toolbar. The button looks like
a folder and is on the far right-hand side of the toolbar. This will open another window (Figure
1.5) that contains tabs for each of the data compilations that you have installed in the gretl/data
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directory of your program. If you installed the data sets that accompany this book using the self
extracting windows program then a tab will appear like the one shown in Figure 1.5.

Figure 1.5: This is gretl’s data files window. Notice that in addition to POE, data sets from
Ramanathan (2002), Greene (2003), Stock and Watson (2006), and others are installed on my
system.

Click on the POE 4th ed. tab and scroll down to find the data set called ‘food’, highlight

it using the cursor, and open it using the ‘open’ button at the top of the window. This will
bring the variables of the food expenditure data set into gretl. At this point, select Data on the
menu bar and then Display values as shown in Figure 1.6.

Figure 1.6: Use the cursor to highlight all of the variables. Then click Data>Display values to
list the data set.

From the this pull-down menu a lot can be accomplished. You can edit, add observations, and
impose a structure of your dataset. The structure of your dataset is important. You can choose
between time-series, cross sections, or panel data structures. The options Gretl gives you depend
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on this structure. For instance, if your data are structured as a time-series, gretl will allow you
to take lags and differences of the variables. Certain procedures that can be used for time-series
analysis will only be available to you if your dataset has been structured structured for it. If a
gretl command is not available from the defined dataset structure, then it will be greyed out in
the pull-down menus.

Notice in Figure 1.4 that gretl gives you the opportunity to import data. Expanding this
(File>Open data>Import) gives you access to several other formats, including Stata, Excel, Eviews,
SPSS, and SAS (if installed). For instance, simply dragging a Stata dataset onto the main gretl
window will bring the data into gretl.

Also, from the File pull-down menu you can export a data set to another format. The export
feature is particularly useful for getting data into R.

If you click on File>Databases>On database server (Figure 1.4) you will be taken to a web
site (provided your computer is connected to the internet) that contains a number of high quality
data sets. You can pull any of these data sets into gretl in the same manner as that described
above for the POE4 data sets. If you are required to write a term paper in one of your classes,
these data sets may provide you with all the data that you need. The database server is discussed
in more detail below.

1.3 Using the gretl Language

The gretl GUI is certainly easy to use. However, you can get results even faster by using gretl’s
language. The language can be used from the console or by collecting several lines of programming
code into a file and executing them all at once in a script. Gretl now has a name for its scripting
language, hansl. Hansl is a recursive acronym for hansl’s a neat scripting language (or handy
scripting language), and it is certainly that. There are many things you can do using this powerful
tool. Hansl’s syntax is particularly easy to use, in my opinion, and I strongly recommend that you
learn to use it.

An important fact to keep in mind when using gretl is that its language is case sensitive. This
means that lower case and capital letters have different meanings in gretl. The practical implication
of this is that you need to be very careful when using the language. Since gretl considers x to be
different from X, it is easy to make programming errors. If gretl gives you a programming error
statement that you can’t quite decipher, make sure that the variable or command you are using is
in the proper case.

1.3.1 Console

Gretl’s console provides you a way to execute programs interactively. A console window opens
and from the prompt (?) you can execute gretl commands one line at a time. You can open the
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gretl console from the Tools pull-down menu or by a left mouse click on the “Gretl console”

button on the toolbar. This button is the third one on the left side of the toolbar in Figure
1.3. From the console you execute commands, one by one by typing gretl code after the command
prompt. Each command that you type in is held in memory so that you can accumulate what
amounts to a “command history.” To reuse a command, simply use the up arrow key to scroll
through the commands you’ve typed in until you get to the one you want. You can edit the
command to fix any syntax errors or to make any changes you desire before hitting the enter key
to execute the statement.

From the command prompt, ‘?’ you can type in commands from the gretl language. For
instance, to estimate the food expenditure model in section 2.4 using least squares type

? ols y const x

The results will be output to the console window. You can use the window’s scroll bar on the right
hand side to scroll up if you need to.

Remember, (almost) anything that can be done with the pull-down menus can also be done
through the console. Of course, using the console requires you to use the correct language syntax,
which can be found in the gretl command reference. The command reference can be accessed from
the toolbar by clicking the button that looks like a lifesaver. It’s the fourth one from the right hand
side of the toolbar.

.

Figure 1.7: The toolbar appears at the bottom of the main menu.

The Command Reference is also accessible from the menu bar through Help. The option
marked plain text F1 actually brings up all of the commands in a hypertext format. Clicking
on anything in blue will take you to the desired information for that command. Obviously, the
keyboard shortcut F1 will also bring up the command reference (Figure 1.8). You’ll also notice
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that .pdf versions of the Command and Function references can also be retrieved from the Help
drop-down menu.

Figure 1.8: The command reference can be accessed in a number of ways: The ‘life-saver’ icon on
the toolbar, Help>Command reference from the pull-down menu, or keyboard shortcut F1.

Notice that you can also search for commands by topic from the command syntax window. On
the left side is a panel headed as Index (see Figure 1.9). Choose the desired category from the list
and then select the command you want help with (e.g., Estimation>arch). The words indicated
in blue text are links to related commands. For instance, clicking on garch will take you to the
reference entry for garch modeling.

The function reference is a relatively new addition to gretl that will help you to locate the
names gretl uses to temporarily store results (called accessors), to transform variables, and to
write your own programs. To access the function reference, click Help>Function reference from
the pull-down menu as shown in Figure 1.10.

1.3.2 Scripts

Gretl commands can be collected and put into a file that can be executed at once and
saved to be used again. This is accomplished by opening a new command script from the
file menu. The command File>Script files>New script from the pull-down menu opens the
command script editor shown in Figure 1.11. Type the commands you want to execute in the
box using one line for each command. Notice that in the first line of the script, "I:\Program
Files\gretl\data\poe\food.gdt", the complete file and path name are enclosed in double quotes,

10



Figure 1.9: Finding help on the arch command using the Command Reference

" ". This is necessary because the Program Files directory in the pathname includes a space. If
you have gretl installed in a location that does not include a space, then these can be omitted.

If you have a very long command that exceeds one line, use the backslash (\) as a continuation
command. Then, to save the file, use the “save” button at the top of the box (first one from the
left). If this is a new file, you’ll be prompted to provide a name for it.

To run the program, click your mouse on the “gear” button. In the figure shown, the food.gdt
gretl data file is opened. The series commands are used to take the logarithm of y and x, and
the ols command discussed in section 2.4 is used to estimate a simple linear regression model that
has ln(y) as its dependent variable and ln(x) as the independent variable. Note, the model also
includes constant.

A new script file can also be opened from the toolbar by mouse clicking on the “new script”

button or by using the keyboard command, Ctrl+N.2

One of the handy features of the command script window is how the help function operates.

At the top of the window there is an icon that looks like a lifesaver . Click on the help button
and the cursor changes into a question mark. Move the question mark over the command you want
help with and click. Voila! You either get an error message or you are taken to the topic from the
command reference. Slick!

2“Ctrl+N” means press the “Ctrl” key and, while holding it down, press “N”.
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1.3.3 Sessions

Gretl also has a “session” concept that allows you to save models, graphs, and data files into
a common “iconic” space. The session window appears below in Figure 1.12. The session window
is very handy. It contains icons that give you immediate access to information about the data set,
that opens the edit data window, that display any scalars you have computed, summary statistics,
correlations and any notes you may want to make.

Objects are represented as icons and these objects can be saved for later use. When you save
your session, the objects you have added should be available again when you re-open the session.
To add a model to your session, use the File>Save to session as icon option from the model’s
pull-down menu. To add a graph, right click on the graph and choose the option save to session

as icon. If you want to save the results in your session, don’t forget to do so; right click on the
session window and choose Save session or from the main gretl window, select File>Session

files>Save session as shown below in Figure 1.13.

Once a model or graph is added, its icon will appear in the session icon view window. Double-
clicking on the icon displays the object, while right-clicking brings up a menu which lets you display
or delete the object. You can browse the dataset, look at summary statistics and correlations, and
save and revisit estimation results (Models) and graphs.

The model table is a way of combining several estimated models into a single table. This is very
useful for model comparison. From the gretl manual ((Cottrell and Lucchetti, 2011, pp. 16-17)):

In econometric research it is common to estimate several models with a common depen-
dent variable the models contain different independent variables or are estimated using
different estimators. In this situation it is convenient to present the regression results
in the form of a table, where each column contains the results (coefficient estimates
and standard errors) for a given model, and each row contains the estimates for a given
variable across the models.

In the Icon view window gretl provides a means of constructing such a table (and
copying it in plain text, LATEX or Rich Text Format). Here is how to do it:

1. Estimate a model which you wish to include in the table, and in the model display
window, under the File menu, select Save to session as icon or Save as icon

and close.

2. Repeat step 1 for the other models to be included in the table (up to a total of six
models).

3. When you are done estimating the models, open the icon view of your gretl session,
by selecting Icon view under the View menu in the main gretl window, or by
clicking the session icon view icon on the gretl toolbar.

4. In the Icon view, there is an icon labeled Model table. Decide which model you
wish to appear in the left-most column of the model table and add it to the table,
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either by dragging its icon onto the Model table icon, or by right-clicking on the
model icon and selecting Add to model table from the pop-up menu.

5. Repeat step 4 for the other models you wish to include in the table. The second
model selected will appear in the second column from the left, and so on.

6. When you are finished composing the model table, display it by double-clicking on
its icon. Under the Edit menu in the window which appears, you have the option
of copying the table to the clipboard in various formats.

7. If the ordering of the models in the table is not what you wanted, right-click on
the model table icon and select Clear table. Then go back to step 4 above and
try again.

In section 6.4 you’ll find an example that uses the model table and a Figure (6.13) that illustrates
the result.

1.3.4 Generating New Variables

In this manual, we will be generating new variables, computing statistics based on gretl out-
put, and performing matrix calculations using gretl’s scripting language. That means we will be
generating series, scalars, matrices, lists, and even strings. How does gretl handle these?

Gretl is actually very forgiving in the generation of new results. The ‘mother’ command for
doing this is genr. The genr command pretty much does it all. In the appropriate context, series,
scalar and matrix are synonyms for this command.

So, to create a new scalar result, say create a constant c that is equal to 3, you could use scalar
c = 3 or genr c = 3. The scalar and genr commands let gretl know that you are calculating
something and calling it c.

To create a new variable, you can use the series command or genr. Suppose you have a variable
in your dataset called food exp. You want to create a new variable as the natural logarithm of
food exp. This can be done using series or genr (e.g., series l food exp = ln(food exp)). In
the context of a genr or series formula, variables must be referenced by their names, not their ID
numbers. The formula should be a well-formed combination of variable names, constants, operators
and functions. Further details on some aspects of this command can be found in the Gretl Users
Guide.

As you have seen, a genr command may yield either a series or a scalar result. For example,
the formula x2 = x * 2 naturally yields a series if the variable x is a series and a scalar if x is
a scalar. The formulae x = 0 and mx = mean(x) naturally return scalars. The genr command
handles both cases seamlessly.

Under some circumstances you may want to have a scalar result expanded into a series or vector.
You can do this by using series as an “alias” for the genr command. For example, series x =
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0 produces a series all of whose values are set to 0. You can also use genr as an alias for scalar.
It is not possible to coerce a vector result into a scalar, but use of this keyword indicates that the
result should be a scalar: if it is not, an error occurs.

In many cases, you can even omit the genr, series, scalar, or matrix statements and gretl
will figure out what to compute based on what is on the right-hand side of your equation. This is
dangerous though, because you may inadvertently be trying to compute objects with incompatible
dimensions or of incompatible types.

In this book, I may at times use genr instead of the preferred series command to create new
variables. I am told by members of the gretl team that it is better practice to call things what they
are and so series, scalar, and matrix are better than the generic (but equally effective) genr.
One of the amazing things about the gretl language is that omitting these commands altogether
usually works anyway. Still, I think there are good reasons to get started on the right foot by
adopting good programming practices.3 There are at least three commands that demand the use of
genr, rather than series. These involve creating a time index (genr time) and dummy variables
(genr unitdum and genr dummy). These cases will be pointed out when we get to them.

One of the advantages of using descriptive prefixes to series, scalars, and matrices occurs when
you write functions. Gretl functions are a very powerful way to extend gretl’s capabilities. They
are finicky though. The inputs must be identified by type as does any output. Type mismatches
are a common source of error. So, the more thought that goes into daily use will pay dividends
later should you decide to start writing your own gretl functions.

1.4 GNUPLOT

At the end of each chapter that follows you will find listings of the entire gretl script used to
generate the results that are contained in it. When a graph is generated using gnuplotin a script
or from the console, the output is written to a file that is placed in the working directory of gretl.
If you are not sure where that is, click File>Working directory in the main gretl window to
find or change this location. The location of the file will also be echoed to the screen so locating it
should be fairly easy.

To view the graph and to edit it requires you to open the gnuplot program. In Windows, the
easiest way to do this is to open the gretl console and type:

launch wgnuplot

This will look like

3Astute programmers will note that my own programming leaves much to be desired. Adopting better practices
when learning to program would have made doing econometrics much easier.
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.

This opens gnuplot in a new window. Now, navigate to the gnuplot window and at the gnuplot
command prompt type

load ’C:\Temp\gpttmp01.plt’

The path and filename inside the single quotes locates the file on your harddrive. Gretl places
these plots into your working directory, which can be set using File>Working directory from the
main gretl window. Figure 1.14 shows what this looks like.

Another way to do this is to open a command window (Figure 1.1) and type "C:\Program
Files (x86)\gretl\wgnuplot" at the command prompt. The double quotes are necessary since
the folder name has a space in it. This will open the gnuplot program shown in Figure 1.14, from
which you can search for and open graphs that are written to the harddrive. This implementation
is a bit clumsy and is not very well documented in the gretl Users Guide at this point, but as with
most things gretl it is a work in progress. By the time you read this, the situation could be much
improved.

Although scripts are given to generate graphs in this text, the best way to do it is by using the
GUI or from the console. Graphs generated via GUI or the console open to the screen. Once the
graph is generated and visible on screen, a right-click of the mouse allows you to edit the graph
and to save it in a variety of useful formats. That is what I have done in a number of graphs that
follow to make them easier to read from the .pdf. Using gnuplot manually is really only necessary
if your graphs are being generated in a script as some of the ones in this text are.

You do not have to accept gretl’s default graph name. You can assign one yourself using the
--output=filename , which sends your output to the specified filename .

Finally, there are a number of other types of plots you can do in gretl. These include boxplots,
histograms, qqplots, and range/mean plots. The underlying engine that generates these is gnuplot
, but gretl gives you easy access to their generation. You can also access gnuplot by script through
File>Script files>New script>gnuplot script from the main menu.
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Figure 1.10: The function reference can be accessed by Help>Function reference from the pull-
down menu.
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Figure 1.11: The Command Script editor is used to collect a series of commands into what gretl
calls a script. The script can be executed as a block, saved, and rerun at a later time.

Figure 1.12: The session window
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Figure 1.13: Saving a session

Figure 1.14: The GNUPLOT program window. This is opened from within gretl by typing launch

wgnuplot from the console. Type load ’filename’ to load ’filename’, which should include the
correct path. In this case the file to load is ’C:\Temp\gpttmp01.plt’.
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Chapter 2
Simple Linear Regression

In this chapter you are introduced to the simple linear regression model, which is estimated
using the principle of least squares.

2.1 Simple Linear Regression Model

The simple linear regression model is

food expt = β1 + β2incomet + et t = 1, 2, . . . , T (2.1)

where food expt is your dependent variable, incomet is the independent variable, et is random
error, and β1 and β2 are the parameters you want to estimate. The errors of the model, et,
have an average value of zero for each value of incomet; each has the same variance, σ2, and
are uncorrelated with one another. The independent variable, incomet, has to take on at least two
different values in your dataset. If not, you won’t be able to estimate a slope! The error assumptions
can be summarized as et|incomet iid N(0, σ2). The expression iid stands for independently and
identically distributed and means that the errors are statistically independent from one another
(and therefore uncorrelated) and that each has the same probability distribution. Taking a random
sample from a single population accomplishes this.

2.2 Retrieve the Data

The first step is to load the food expenditure and income data into gretl. The data file is
included in your gretl sample files–provided that you have installed the Principles of Econometrics
data supplement that is available from our website. See section 1.1.1 for details.

19



Figure 2.1: The main gretl window. The food expenditure data is loaded from food.gdt using
File>Open data>sample file and choosing the food dataset from the sample files that accompany
POE4.

Load the data from the data file food.gdt. Recall, this is accomplished by the commands
File>Open data>Sample file from the menu bar.1 Choose food from the list. When you bring
the file containing the data into gretl your window will look like the one in Figure 2.1. Notice that
in the Descriptive label column contains some information about the variables in the program’s
memory. For some of the datasets included with this book, it may be blank. These descriptions,
when they exist, are used by the graphing program to label your output and to help you keep track
of variables that are available for use. Before you graph your output or generate results for a report
or paper you may want to label your variables to make the output easier to understand. This can
be accomplished by editing the attributes of the variables.

Figure 2.2: Highlight the desired variable and right-click to bring up the pull-down menu shown
here. You can also use F2 or keyboard shortcut ‘CTRL+e’ to bring up the dialog.

1Alternately, you could click on the open data button on the toolbar. It’s the one that looks like a folder on the
far right-hand side.
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To do this, first highlight the variable whose attributes you want to edit, right-click and the
menu shown in (see Figure 2.2) appears. Select Edit attributes to open a dialog box (Figure
2.3) where you can change the variable’s name, assign variable descriptions and display names.
Describe and label the variable food exp as ‘Food Expenditure’ and income as ‘Weekly Income
($100).’ The dialog can also be opened using F2 from the main gretl window or using the keyboard

Figure 2.3: Variable edit dialog box

shortcut, ‘E.’ Finally, the setinfo command can be used to set the description and the label used

Figure 2.4: Use the dialog to plot of the food expenditure against Weekly Income

in graphs.

In the following example a script is generated that opens the food.gdt dataset, and adds variable
descriptions, and assigns a label to be used in subsequent graphs.
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open "@gretldir\data\poe\food.gdt"

setinfo food_exp -d "household food expenditure per week" \

-n "Food Expenditure"

setinfo income -d "weekly household income" -n "Weekly Income"

labels

The -d flag is given followed by a string in double quotes. It is used to set the descriptive label.
The -n flag is used similarly to set the variable’s name in graphs. Notice that in the first and
last uses of setinfo in the example that I have issued the continuation command (\) since these
commands are too long to fit on a single line. If you issue the labels command, gretl will respond
by printing the descriptions to the screen.

2.3 Graph the Data

To generate a graph of the food expenditure data that resembles the one in Figure 2.6 of POE,

you can use the button on the gretl toolbar (third button from the right). Clicking this button
brings up a dialog to plot the two variables against one another. Figure 2.4 shows this dialog where
x is placed on the x-axis and y on the y-axis. The result appears in Figure 2.5. Notice that the
labels applied above now appear on the axes of the graph.

Figure 2.5: XY plot of the food expenditure data
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Figure 2.5 plots food expenditures on the y axis and Weekly Income on the x. Gretl, by default,
also plots the fitted regression line. The benefits of assigning labels to the variables becomes more
obvious. Both X- and Y-axes are informatively labeled and the graph title is changed as well. More
on this later.

Figure 2.6: From the menu bar, select Model>Ordinary Least Squares to open the least squares
dialog box

Figure 2.7: The Specify Model dialog box opens when you select Model>Ordinary least squares

2.4 Estimate the Food Expenditure Relationship

Now you are ready to use gretl to estimate the parameters of the food expenditure equation.

food expt = β1 + β2incomet + et t = 1, 2, . . . , T (2.2)

From the menu bar, select Model>Ordinary Least Squares from the pull-down menu (see Figure
2.6) to open the dialog box shown in Figure 2.7. From this dialog you’ll need to tell gretl which
variable to use as the dependent variable and which is the independent variable. Notice that by
default, gretl assumes that you want to estimate an intercept (β1) and includes a constant as
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an independent variable by placing the variable const in the list by default. To include x as an
independent variable, highlight it with the cursor and click the ‘Add->’ button.

The gretl console (see section 1.3.1) provides an easy way to run a regression. The gretl

console is opened by clicking the console button on the toolbar, . The resulting console window
is shown in Figure 2.8.

Figure 2.8: The Gretl console window. From this window you can type in gretl commands directly
and perform analyses very quickly–if you know the proper gretl commands.

At the question mark in the console simply type

ols y const x

to estimate your regression function. The syntax is very simple, ols tells gretl that you want
to estimate a linear function using ordinary least squares. The first variable listed will be your
dependent variable and any that follow, the independent variables. These names must match the
ones used in your data set. Since ours in the food expenditure example are named, y and x,
respectively, these are the names used here. Don’t forget to estimate an intercept by adding a
constant (const) to the list of regressors. Also, don’t forget that gretl is case sensitive so that x

and X are different entities.

This yields window shown in Figure 2.9 below. The results are summarized in Table 2.1.

An equivalent way to present results, especially in very small models like the simple linear
regression, is to use equation form. In this format, the gretl results are:

̂food exp = 83.4160
(43.410)

+ 10.2096
(2.0933)

income

T = 40 R̄2 = 0.3688 F (1, 38) = 23.789 σ̂ = 89.517

(standard errors in parentheses)

Finally, notice in the main gretl window (Figure 1.3) that the first column has a heading called
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Table 2.1: OLS estimates using the 40 observations 1–40.

OLS, using observations 1–40
Dependent variable: food exp

Coefficient Std. Error t-ratio p-value

const 83.4160 43.4102 1.9216 0.0622
income 10.2096 2.09326 4.8774 0.0000

Mean dependent var 283.5735 S.D. dependent var 112.6752
Sum squared resid 304505.2 S.E. of regression 89.51700
R2 0.385002 Adjusted R2 0.368818
F (1, 38) 23.78884 P-value(F ) 0.000019
Log-likelihood −235.5088 Akaike criterion 475.0176
Schwarz criterion 478.3954 Hannan–Quinn 476.2389

ID #. An ID # is assigned to each variable in memory and you can use the ID # instead of its
variable name in your programs. For instance, the following two lines yield identical results:

1 ols food_exp const income

2 ols 1 0 2

One (1) is the ID number for food exp and two (2) is the ID number of income. The constant has
ID zero (0). If you tend to use long and descriptive variable names (recommended, by the way),
using the ID number can save you a lot of typing (and some mistakes).

2.4.1 Elasticity

Elasticity is an important concept in economics. It measures how responsiveness one variable
is to changes in another. Mathematically, the concept of elasticity is fairly simple:

ε =
percentage change in y

percentage change in x
=

∆y/y

∆x/x
(2.3)

In terms of the regression function, we are interested in the elasticity of average food expenditures
with respect to changes in income:

ε =
∆E(y)/E(y)

∆x/x
= β2

x

E(y)
. (2.4)

E(y) and x are usually replaced by their sample means and β2 by its estimate. The mean of
food exp and income can be obtained by using the cursor to highlight both variables, use the
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View>Summary statistics from the menu bar as shown in Figure 2.10, and the computation can
be done by hand. However, you can make this even easier by using the gretl language to do all of
the computations–no calculator needed! Simply open up a new script and type in:

1 ols food_exp const income --quiet

2 scalar elast=$coeff(income)*mean(income)/mean(food_exp)

This yields the output shown in figure 2.11.

Following a least squares regression, Gretl stores the least squares estimates of the constant and
the slope in variables called $coeff(const) and $coeff(income), respectively. In addition, it uses
mean(income) and mean(food exp)to compute the mean of the variables income and food exp.
The --quiet option is convenient when you don’t want or need the output from the regression
printed to the screen. The result from this computation appears below in Figure 2.12.

2.4.2 Prediction

Similarly, gretl can be used to produce predictions. The predicted food expenditure of an
average household having weekly income of $2000 is:

̂food expt = 83.42 + 10.21incomet = 83.42 + 10.21(20) = 287.61 (2.5)

Remember, income is measured in $100, so 20 in the above expression represents 20*$100=$2,000.
The gretl script is:

scalar yhat = $coeff(const) + $coeff(income)*20

which yields the desired result.

2.4.3 Estimating Variance

In section 2.7 of POE4, you are given expressions for the variances of the least squares estimators
of the intercept and slope as well as their covariance. These estimators require that you estimate
the overall variance of the model’s errors, σ2. Gretl does not explicitly report the estimator, σ̂2,
but rather, its square root, σ̂. Gretl calls this “S.E. of regression” which you can see from the
output is 89.517. Thus, 89.5172 = 8013.29. Gretl also reports the sum of squared residuals, equal
to 304505.2, from which you can calculate the estimate. Dividing the sum of squared residuals by
the estimator’s degrees of freedom yields σ̂2 = 304505/38 = 8013.29.
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The estimated variances and covariance of the least squares estimator can be obtained once the
model is estimated by least squares by selecting the Analysis>Coefficient covariance matrix

command from the pull-down menu of the model window as shown in Figure 2.13. The result is:

Covariance matrix of regression coefficients:

const income

1884.44 -85.9032 const

4.38175 income

So, estimated variances of the least squares estimator of the intercept and slope are 1884.44 and
4.38175, respectively. The least squares standard errors are simply the square roots of these num-
bers. The estimated covariance between the slope and intercept −85.9032.

You can also obtain the variance-covariance matrix by specifying the --vcv option when esti-
mating a regression model. For the food expenditure example use:

ols food_exp const income --vcv

to estimate the model using least squares and to print the variance covariance matrix to the results
window.

2.5 Repeated Sampling

Perhaps the best way to illustrate the sampling properties of least squares is through an exper-
iment. In section 2.4.3 of your book you are presented with results from 10 different regressions
(POE4 Table 2.2). These were obtained using the dataset table2-2.gdt which is included in the
gretl datasets that accompany this manual. To reproduce the results in this table you could
estimate 10 separate regressions

open "@gretldir\data\poe\table2_2.gdt"

ols y1 const x

ols y2 const x

.

.

.

ols y10 const x

The ten regressions can be estimated more compactly using one of gretl’s loop constructs. The
first step is to create a list that contains the variable names for the dependent variables as in line
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1 of the script below. The statement list ylist is used to put data series into a collection called
ylist; each of the series, y1, y2, ..., y10 are included. Such named lists can be used to make your
scripts less verbose and repetitious, and easier to modify. Since lists are in fact lists of series ID
numbers they can be used only when a dataset is in place. The foreach loop in line 2 uses an
index variable, i, to index a specified list of strings. The loop is executed once for each string in
the list. The numerical value of the index starts at 1 and is incremented by 1 at each iteration. To
refer to elements of the list, use the syntax listname.$i. Be sure to close the loop using endloop.

1 open "@gretldir\data\poe\table2_2.gdt"

2 list ylist = y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

3 loop foreach i ylist

4 ols ylist.$i 0 1

5 endloop

In the gretl GUI, named lists can be inspected and edited under the Data menu in the main
window, via the item Define or edit list. This dialog is shown in Figure 2.14

You can also generate your own random samples and conduct a Monte Carlo experiment using
gretl. In this exercise you will generate 100 samples of data from the food expenditure data,
estimate the slope and intercept parameters with each data set, and then study how the least
squares estimator performed over those 100 different samples. What will become clear is this, the
outcome from any single sample is a poor indicator of the true value of the parameters. Keep this
humbling thought in mind whenever you estimate a model with what is invariably only 1 sample
or instance of the true (but always unknown) data generation process.

We start with the food expenditure model:

food expt = β1 + β2incomet + et (2.6)

where food expt is total food expenditure for the given time period and incomet is income. Suppose
further that we know how much income each of 40 households earns in a week. Additionally, we
know that on average a household spends at least $80 on food whether it has income or not and
that an average household will spend ten cents of each new dollar of income on additional food. In
terms of the regression this translates into parameter values of β1 = 80 and β2 = 10.

Our knowledge of any particular household is considerably less. We don’t know how much
it actually spends on food in any given week and, other than differences based on income, we
don’t know how its food expenditures might otherwise differ. Food expenditures are sure to vary
for reasons other than differences in family income. Some families are larger than others, tastes
and preferences differ, and some may travel more often or farther making food consumption more
costly. For whatever reasons, it is impossible for us to know beforehand exactly how much any
household will spend on food, even if we know how much income it earns. All of this uncertainty
is captured by the error term in the model. For the sake of experimentation, suppose we also know
that et ∼ N(0, 882).
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With this knowledge, we can study the properties of the least squares estimator by generating
samples of size 40 using the known data generation mechanism. We generate 100 samples using the
known parameter values, estimate the model for each using least squares, and then use summary
statistics to determine whether least squares, on average anyway, is either very accurate or precise.
So in this instance, we know how much each household earns, how much the average household
spends on food that is not related to income (β1 = 80), and how much that expenditure rises on
average as income rises. What we do not know is how any particular household’s expenditures
responds to income or how much is autonomous.

A single sample can be generated in the following way. The systematic component of food
expenditure for the tth household is 80 + 10 ∗ incomet. This differs from its actual food expenditure
by a random amount that varies according to a normal distribution having zero mean and standard
deviation equal to 88. So, we use computer generated random numbers to generate a random
error, et, from that particular distribution. We repeat this for the remaining 39 individuals. The
generates one Monte Carlo sample and it is then used to estimate the parameters of the model.
The results are saved and then another Monte Carlo sample is generated and used to estimate the
model and so on.

In this way, we can generate as many different samples of size 40 as we desire. Furthermore,
since we know what the underlying parameters are for these samples, we can later see how close
our estimators get to revealing these true values.

Now, computer generated sequences of random numbers are not actually random in the true
sense of the word; they can be replicated exactly if you know the mathematical formula used to
generate them and the ‘key’ that initiates the sequence. In most cases, these numbers behave as if
they randomly generated by a physical process.

To conduct an experiment using least squares in gretl use the script found in below:

2 open "@gretldir\data\poe\food.gdt"

3 set seed 3213789

4 loop 100 --progressive --quiet

5 series u = normal(0,88)

6 series y1= 80+10*income+u

7 ols y1 const income

8 endloop

Let’s look at what each line accomplishes. The first line opens the food expenditure data set
that resides in the poe folder of the data directory. The next line, which is actually not necessary
to do the experiments, initiates the pseudo-random numbers at a specific point. This is useful,
since it will allow you to get the same results each time you run the script.

In Monte Carlo experiments loops are used to estimate a model using many different samples
that the experimenter generates and to collect the results. The simplest loop construct in gretl
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begins with the command loop NMC --progressive --quiet and ends with endloop. This is
called a count loop. NMC in this case is the number of Monte Carlo samples you want to use and
the option --progressive is a command that suppresses the individual output at each iteration
from being printed; the --quiet option will suppress some printing to the screen as well.

Optionally you could add a couple of additional commands. The print command collects
(scalar) statistics that you have computed and finds their averages and standard deviations. The
store command allows you to store these in a gretl data file. These are discussed further below.

Within the loop itself, you tell gretl how to generate each sample and state how you want that
sample to be used. The series command is used to generate new variables. In the first line u
is generated using the gretl command normal(), which when used without arguments produces
a computer generated standard normal random variable. In this case, the function contains two
arguments (e.g., series u = normal(0,88)). The normal function takes an ordered pair as inputs
(commonly referred to as ‘arguments’), the first of which is the desired mean of the random normal
and the second is the standard deviation. The next line adds this random element to the systematic
portion of the model to generate a new sample for food expenditures (using the known values of
income from the dataset).

Next, the model is estimated using least squares. After executing the script, gretl prints out
some summary statistics to the screen. These appear as a result of using the --progressive loop
option. The result appears in Figure 2.15. Note that the average value of the intercept is about
88.147. This is getting close to the truth. The average value of the slope is 9.55972, also reasonably
close to the true value. If you were to repeat the experiments with larger numbers of Monte Carlo
iterations, you will find that these averages get closer to the values of the parameters used to
generate the data. This is what it means to be unbiased. Unbiasedness only has meaning within
the context of repeated sampling. In your experiments, you generated many samples and averaged
results over those samples to get close to finding the truth. In actual practice, you do not have
this luxury; you have one sample and the proximity of your estimates to the true values of the
parameters is always unknown.

In section 2.8 and in the script at the end of this chapter, you will find another example of
Monte Carlo that is discussed in POE4. In this example, a sample of regressors is generated using
a simple loop and the properties of least squares is examined using 1000 samples. The use of the
print and store commands will be examined in section 2.8 as well.

2.6 Estimating Nonlinear Relationships

Since economic relationships are often not linear, we often need to allow for the possibility that
the independent and dependent variable are nonlinearly related. Consider the following simple
regression

price = β1 + β2sqft + e (2.7)
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The parameter, β2 measures the expected change in price given an additional square foot of living
space in the home. As specified, this marginal effect is the same for homes of every size. It might
make more sense to allow the size of this marginal effect to depend on the size of the house. Larger
houses also tend to be more luxurious and therefore another square foot of living area might add
more to the average home price. This can be modeled by using a quadratic term in the model.

price = α1 + α2sqft2 + e (2.8)

The marginal effect of another square foot is now ∂price/∂sqft = 2α2sqft. The estimated elasticity
is equal to

ε̂ = ŝlope× sqft

price
= (2α̂2)× sqft

price
(2.9)

Obviously, the slope and elasticity depend on the size and price of the home. Thus, the user must
select values at which these are to be evaluated. This is done in the script below where sloped
for houses of size 2000, 4000, and 6000 square feet are computed. The elasticities are computed
for prices of $117461.77, $302517.39, and $610943.42. The scalar and series that are used are
not strictly necessary in gretl. I’ve used them here to make things more clear and it is a good
programming practice in general.

1 open "@gretldir\data\poe\br.gdt"

2 series sqft2 = sqft^2

3 ols price const sqft2

4 scalar slope_2000 = 2*$coeff(sqft2)*2000

5 scalar slope_4000 = 2*$coeff(sqft2)*4000

6 scalar slope_6000 = 2*$coeff(sqft2)*6000

7 scalar elast_2000 = slope_2000*2000/117461.77

8 scalar elast_4000 = slope_4000*4000/302517.39

9 scalar elast_6000 = slope_6000*6000/610943.42

The output from the regression is

p̂rice = 55776.6
(2890.4)

+ 0.0154213
(0.00031310)

sqft2

T = 1080 R̄2 = 0.6921 F (1, 1078) = 2426.0 σ̂ = 68207.

(standard errors in parentheses)

and the graph of home price against size is shown in Figure 2.16.

Another way to estimate a nonlinear relationship between price and sqft is to alter the functional
form of the model. A log-linear model uses the logarithm of a variable as the dependent variable,
and the untransformed value of regressor as the independent variable. In the simple home price
model this is

ln price = γ1 + γ2sqft + e (2.10)

The logarithmic transformation is often used on data that come from a heavily skewed distribution
that has a long-tail to the right. Taking a look at the histograms for price and it natural logarithm
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shown in Figure 2.17 reveals just this sort of data and how the natural log can ‘regularize’ the series.
These graphs were produced by first taking the natural log and then using the freq function to
generate the graphs. The code is

1 series l_price = ln(price)

2 freq price

3 freq l_price

2.7 Regression with an Indicator Variable

An indicator variable is a variable that can be equal to one of two possible values. Commonly,
this an indicator variable can be a 1 or a 0. So for instance, if a house is located in the University
Town subdivision the variable is given the value of 1 and if not it is equal to 0.

utown =

{
1 if house is in University Town

0 if not
(2.11)

The regression model becomes
price = β1 + β2utown + e (2.12)

As pointed out in POE4, taking the expected value of a regression is very useful when it contains
an indicator variable. This will reveal how to interpret its coefficient. In this model

E(pri CE) = β1 + β2utown =

{
β1 + β2 if utown = 1

β1 if utown = 0
(2.13)

So, estimating the model using the utown.gdt data yields

p̂rice = 215.732
(1.3181)

+ 61.5091
(1.8296)

utown

T = 1000 R̄2 = 0.5306 F (1, 998) = 1130.2 σ̂ = 28.907

(standard errors in parentheses)

This implies that the average home price (in $1000) in University Town is 215.7325 + 61.5091 =
277.2416 and the average price elsewhere is 215.7325.

The script that produces the same result is straightforward:

1 open "@gretldir\data\poe\utown.gdt"

2 ols price const utown --quiet

3 scalar ut = $coeff(const)+$coeff(utown)

4 scalar other = $coeff(const)

5 printf "\nThe average in Utown is %.4f and the average elsewhere is %.4f\n",ut,other
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2.8 Monte Carlo Simulation

The first step in a Monte Carlo exercise is to model the data generation process. This requires
what Davidson and MacKinnon (2004) refer to as a fully specified statistical model. A fully
specified parametric model “is one for which it is possible to simulate the dependent variable
once the values of the parameters are known” (Davidson and MacKinnon, 2004, p. 19). First you’ll
need a regression function, for instance:

E(yt|Ωt) = β1 + β2xt (2.14)

where yt is your dependent variable, xt the dependent variable, Ωt the current information set,
and β1 and β2 the parameters of interest. The information set Ωt contains xt as well as other
potential explanatory variables that determine the average of yt. The conditional mean of yt given
the information set could represent a linear regression model or a discrete choice model. However,
equation (2.14) is not complete; it requires some description of how the unobserved or excluded
factors affect yt|Ωt.

To complete the the specification we need to specify an “unambiguous recipe” for simulating the
model on a computer (Davidson and MacKinnon, 2004, p. 17). This means we’ll need to specify a
probability distribution for the unobserved components of the model and then use a pseudo-random
number generator to generate samples of the desired size.

In this example the data generation process will be as follows. We will let N = 40 and consider
a linear model of the form

yi = β1 + β2xi + ei i = 1, 2, · · · , 40. (2.15)

The errors of the model will iid N(0, 88). The parameters β1 = 100 and β2 = 10. Finally, let
x1, x2, · · · , x20 = 10 and let x21, x22, · · · , x40 = 20. This gives us enough information to simulate
samples of yi from the model. The hansl script (hansl is an acronym for hansl’s a neat scripting
language is:

1 nulldata 40

2 # Generate X

3 series x = (index>20) ? 20 : 10

4

5 # Generate systematic portion of model

6 series ys = 100 + 10*x

7

8 loop 1000 --progressive --quiet

9 y = ys + normal(0,50)

10 ols y const x

11 scalar b1 = $coeff(const)

12 scalar b2 = $coeff(x)

13 scalar sig2 = $sigma^2

14 print b1 b2 sig2
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15 store "@workdir\coef.gdt" b1 b2 sig2

16 endloop

17

18 open "@workdir\coef.gdt"

19 summary

20 freq b2 --normal

The first line creates an empty dataset that has room for 40 observations. Line 3 contains a
ternary conditional assignment operator.2 Here is how it works. A series x is being created.
The statement in parentheses is checked. The question mark (?) is the conditional assignment. If
the statement in parentheses is true, then x is assigned the value to the left of the colon. If false
it gets the value to the right. So, when index (a gretl default way of identifying the observation
number) is greater than 20, x is set to 20, if index is less than or equal to 20 it is set to 10.

Next, the systematic portion of the model is created. For this we need x and the known values of
the parameters (100, 10). Then we loop from 1 to 1000 in increments of 1. Normal random variates
are added to the model, it is estimated by ols, and several statistics from that computation are
retrieved, printed, and stored in a specified location.

The normal(0,50) statement generates normal random variables with mean of 0 and a variance
of 50. The print statement used in this context actually tells gretl to accumulate the things that
are listed and to print out summary statistics from their computation inside the loop. The store

command tells gretl to output b1, b2, and sig2 to an external file. The --progressive option
to the loop command alters the print and store commands a bit, and you can consult the Gretl
Users Guide for more information about how.

Here is the output from the Monte Carlo. First, the output from the progressive loop:

In a progressive loop, gretl will print out the mean and standard deviation from the series of
estimates. It works with all single equation estimators in gretl and is quite useful for Monte Carlo
analysis. From this you can see that the average value of the constant in 1000 samples is 100.491.
The average slope was 9.962. The third column gives the mean of the standard error calculation

2A ternary operator has three parts. In this case, the parts give us a fancy way of creating if/else statements. The
first part, a, lies to the left of ?, the second, b, falls between the question mark and the colon and the last, c, is to
the right of the colon, e.g., a?b:c. If a is true, then b if not, then c.
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from the simulation. If the standard errors are being estimated consistently, then these should be
fairly close to the standard deviation of estimated coefficients to their left. The outcome from the
print command is:

When the print command is issued, it will compute and print to the screen the ‘mean’ and
‘std. dev.’ of the estimated scalar. Notice that b1 and b2 match the output produced by the
--progressive option. The print command is useful for studying the behavior of various statistics
(like tests, confidence intervals, etc) and other estimators that cannot be handled properly within
a progressive loop (e.g., mle, gmm, and system estimation commands).

The store statement works behind the scenes, but yields this informative piece of information:

This tells you where gretl wrote the dataset that contains the listed scalars, and that is was written
properly. Now you are ready to open it up and perform additional analysis. In this example, we
have used the @workdir macro. This basically tells gretl to go to the working directory to write
the file. You could write files to gretl’s temporary directory using @dotdir\coef.gdt.

The data set is opened and the summary statistics generated (again, if needed)

1 open "@workdir\coef.gdt"

2 summary

3 freq b2 --normal

From here you can plot frequency distribution and test to see whether the least squares estimator
of slope is normally distributed.
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The histogram certainly appears to be normally distributed compared to the line plot of the normal.
Also, the hypothesis test of the normality null against nonnormality cannot be rejected at any
reasonable level of significance.

2.9 Script

The script for chapter 2 is found below. These scripts can also be found at my website http:

//www.learneconometrics.com/gretl.

1 set echo off

2 open "@gretldir\data\poe\food.gdt"

3 setinfo food_exp -d "household food expenditure per week" \

4 -n "Food Expenditure"

5 setinfo income -d "weekly household income" -n "Weekly Income"

6 labels

7

8 #Least squares

9 ols food_exp const income --vcv

10 ols 1 0 2

11

12 #Summary Statistics

13 summary food_exp income

14
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15 #Plot the Data

16 gnuplot food_exp income

17

18 #List the Data

19 print food_exp income --byobs

20

21 #Elasticity

22 ols food_exp const income --quiet

23 scalar elast=$coeff(income)*mean(income)/mean(food_exp)

24

25 #Prediction

26 scalar yhat = $coeff(const) + $coeff(income)*20

27

28 #Table 2.2

29 open "@gretldir\data\poe\table2_2.gdt"

30 list ylist = y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

31 loop foreach i ylist

32 ols ylist.$i const x

33 endloop

34

35 # slopes and elasticities at different points

36 open "@gretldir\data\poe\br.gdt"

37 series sqft2 = sqft^2

38 ols price const sqft2

39 scalar slope_2000 = 2*$coeff(sqft2)*2000

40 scalar slope_4000 = 2*$coeff(sqft2)*4000

41 scalar slope_6000 = 2*$coeff(sqft2)*6000

42 scalar elast_2000 = slope_2000*2000/117461.77

43 scalar elast_4000 = slope_4000*4000/302517.39

44 scalar elast_6000 = slope_6000*6000/610943.42

45

46 # histogram for price and log(price)

47 series l_price = ln(price)

48 freq price

49 freq l_price

50

51 # regression using indicator variables

52 open "@gretldir\data\poe\utown.gdt"

53 ols price const utown --quiet

54 scalar ut = $coeff(const)+$coeff(utown)

55 scalar other = $coeff(const)

56 printf "\nThe average in Utown is %.4f and the \

57 average elsewhere is %.4f\n",ut,other

58

59 # Monte Carlo simulation

60 open "@gretldir\data\poe\food.gdt"

61 set seed 3213789

62 loop 100 --progressive --quiet

63 series u = normal(0,88)

64 series y1= 80+10*income+u

65 ols y1 const income
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66 endloop

67

68 # Monte Carlo simulation #2

69 # Generate systematic portion of model

70 nulldata 40

71 # Generate X

72 series x = (index>20) ? 20 : 10

73

74 # Generate systematic portion of model

75 series ys = 100 + 10*x

76

77 loop 1000 --progressive --quiet

78 series y = ys + normal(0,50)

79 ols y const x

80 scalar b1 = $coeff(const)

81 scalar b2 = $coeff(x)

82 scalar sig2 = $sigma^2

83 print b1 b2 sig2

84 store "@workdir\coef.gdt" b1 b2 sig2

85 endloop

86

87 open "@workdir\coef.gdt"

88 summary

89 freq b2 --normal
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Figure 2.9: The model window appears with the regression results. From here you can conduct
subsequent operations (graphs, tests, analysis, etc.) on the estimated model.

Figure 2.10: Using the pull-down menus to obtain summary statistics. Highlight the desired vari-
ables and use View>Summary statistics from the pull-down menu.

Figure 2.11: Summary statistics

39



Figure 2.12: Results from the script to compute an elasticity based on a linear regression.

Figure 2.13: Obtain the matrix that contains the least squares estimates of variance and covariance
from the pull-down menu of your estimated model.
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Figure 2.14: Choose Data>Define or edit list from the gretl menu bar

Figure 2.15: The summary results from 100 random samples of the Monte Carlo experiment.
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Figure 2.16: Price versus size from the quadratic model.

Figure 2.17: Price and its natural logarithm.
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Chapter 3
Interval Estimation and Hypothesis Testing

In this chapter, I will discuss how to generate confidence intervals and test hypotheses using
gretl. Gretl includes several handy utilities that will help you obtain critical values and p-values
from several important probability distributions. As usual, you can use the dialog boxes or hansl
– gretl’s programming language – to do this.

3.1 Confidence Intervals

It is important to know how precise your knowledge of the parameters is. One way of doing
this is to look at the least squares parameter estimate along with a measure of its precision, i.e.,
its estimated standard error. The confidence interval serves a similar purpose, though it is much
more straightforward to interpret because it gives you upper and lower bounds between which the
unknown parameter will lie with a given probability.1

In gretl you can obtain confidence intervals either through a dialog or by manually building
them using saved regression results. In the ‘manual’ method one can use the genr or scalar

commands to generate upper and lower bounds based on regression results that are saved in gretl’s
memory, letting gretl do the arithmetic. You can either look up the appropriate critical value from
a table or use the gretl’s critical function. Both are demonstrated below.

1This is probability in the frequency sense. Some authors fuss over the exact interpretation of a confidence interval
(unnecessarily I think). You are often given stern warnings not to interpret a confidence interval as containing the
unknown parameter with the given probability. However, the frequency definition of probability refers to the long
run relative frequency with which some event occurs. If this is what probability is, then saying that a parameter
falls within an interval with given probability means that intervals so constructed will contain the parameter that
proportion of the time.
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Consider the equation of a confidence interval from POE4

P [bk − tcse(bk) ≤ βk ≤ bk + tcse(bk)] = 1− α (3.1)

Recall that bk is the least squares estimator of βk, and that se(bk) is its estimated standard error.
The constant tc is the α/2 critical value from the t-distribution and α is the total desired probability
associated with the “rejection” area (the area outside of the confidence interval).

You’ll need to know the critical value tc, which can be obtained from a statistical table,
the Tools>Statistical tables dialog contained in the program, or using the gretl command
critical. First, try using the dialog box shown in Figure 3.1. Pick the tab for the t distribution
and tell gretl how much weight to put into the right-tail of the probability distribution and how
many degrees of freedom your t-statistic has, in our case, 38. Once you do, click on OK. You’ll get
the result shown in Figure 3.2. It shows that for the t(38) with α/2 right-tail probability of 0.025
and α = 0.05, the critical value is 2.02439.2 Then generate the lower and upper bounds (using

Figure 3.1: Obtaining critical values using the Tools>Statistical tables dialog box.

Figure 3.2: The critical value obtained from Tools>Statistical tables dialog box.

the gretl console) with the commands:

2You can also get the α level critical values from the console or in a script by issuing the command scalar c =

critical(t,38,α). Here α is the desired area in the right-tail of the t-distribution.

44



1 open "@gretldir\data\poe\food.gdt"

2 ols food_exp const income

3 scalar lb = $coeff(income) - 2.024 * $stderr(income)

4 scalar ub = $coeff(income) + 2.024 * $stderr(income)

5 print lb ub

The first line opens the dataset. The second line (ols) solves for the estimates that minimize
the sum of squared errors in a linear model that has food exp as the dependent variable with a
constant and income as independent variables. The next two lines generate the lower and upper
bounds for the 95% confidence interval for the slope parameter β2. The last line prints the results
of the computation.

The gretl language syntax needs a little explanation. When gretl makes a computation, it will
save certain results like coefficient estimates, their standard errors, sum of squared errors and so
on in memory. These results can then be used to compute other statistics, provided you know the
accessor’s name that gretl uses to store and recall the computation. These so-called accessors

carry $ prefixes and a list of what can be accessed after estimation can be found in the function
reference. Lines 3 and 4 use accessors for the coefficients ($coeff(income)) and standard errors
($stderr(income)) of the variable in parentheses. The list of accessors is actually growing quite
rapidly in response to user requests, so a trip to the function reference may be worth your while to
see what is available.

In the above example, gretl uses the least squares estimates and their estimated standard errors
to compute confidence intervals. Following the ols command, least squares estimates are stored in
$coeff(variable name ). Since β2 is estimated using the variable income, its coefficient estimate
is saved in $coeff(income). The corresponding standard error is saved in $stderr(income). Also,
don’t forget that the function reference (Figure 1.10) includes a list of accessors.

Equivalently, you could use gretl’s built-in critical function to obtain the desired critical
value. The general syntax for the function depends on the desired probability distribution. This
follows since different distributions contain different numbers of parameters (e.g., the t-distribution
has a single degrees of freedom parameter while the standard normal has none!). This example
uses the t-distribution and the script becomes:

1 open "@gretldir\data\poe\food.gdt"

2 ols food_exp const income

3 scalar lb = $coeff(income) - critical(t,$df,0.025) * $stderr(income)

4 scalar ub = $coeff(income) + critical(t,$df,0.025) * $stderr(income)

5 print lb ub

The syntax for the t-distribution is critical(t,degrees of freedom,α/2). The degrees of
freedom from the preceding regression are saved as $df and for a 1− α = 95% confidence interval,
α/2 = 0.025.
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The example found in section 3.1.3 of POE4 computes a 95% confidence interval for the income
parameter in the food expenditure example. The gretl commands above were used to produce the
output found in Figure 3.3.

Figure 3.3: Obtaining the 95% confidence interval for the income coefficient in the food expenditure
example.

To use the dialogs to get confidence intervals is easy as well. First estimate the model using
least squares in the usual way. Choose Model>Ordinary least squares from the main pull-
down menu, fill in the dependent and independent variables in the ols dialog box and click OK.
The results appear in the model window. Now choose Analysis>Confidence intervals for

coefficients from the model window’s pull-down menu (seen in Figure 4.1). This generates the
result shown in Figure 3.4. The circled α icon can be used to change the size of the confidence

Figure 3.4: The 95% confidence interval for the income coefficient in the food expenditure example
using the dialog.

interval, which can be set to any (integer) percentage level you desire.

3.2 Repeated Sampling

In this section, the ten samples in table2 2.gdt are used to produce ten sets of 95% confidence
intervals. To make the program simpler, the loop construct introduced in chapter 2 is employed.
The script to estimate these in the loop is:

1 open "@gretldir\data\poe\table2_2.gdt"

2 list ylist = y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

3 loop foreach i ylist --progressive --quiet
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4 ols ylist.$i const x

5 scalar b1 = $coeff(const) # in gretl you can use genr or scalar

6 scalar b2 = $coeff(x)

7 scalar s1 = $stderr(const)

8 scalar s2 = $stderr(x)

9

10 # 2.024 is the .025 critical value from the t(38) distribution

11 scalar c1L = b1 - critical(t,$df,.025)*s1

12 scalar c1R = b1 + critical(t,$df,.025)*s1

13 scalar c2L = b2 - critical(t,$df,.025)*s2

14 scalar c2R = b2 + critical(t,$df,.025)*s2

15

16 scalar sigma2 = $sigma^2

17 store @workdir\coeff.gdt b1 b2 s1 s2 c1L c1R c2L c2R sigma2

18 endloop

As in chapter 2, the dataset is opened and a list is created that contains each of the ten samples of
the dependent variable. The foreach loop is initiated in line 3 and the --progressive and --quiet

options are chosen. The model is estimated using least squares and the coefficients, standard errors,
lower and upper confidence limits and variance are generated and stored in the dataset coeff.gdt,
which is placed in c:\temp on the harddrive.

As if that is not easy enough, there is an even simpler syntax that will accomplish the same
thing. It uses the fact that the dependent variables all begin with the letter ‘y’ and have number
suffixes. In this case the foreach loop can be simplified by replacing lines 2-4 with:

loop foreach i y1..y10

ols $i const x

Once this is executed, one can open coeff.gdt and perform further analysis. In this case, I will print
the upper and lower confidence bounds as Hill et al. have done in their Table 3.2 of POE4.

open @workdir\coeff.gdt

print c1L c1R c2L c2R --byobs

The --byobs option is used with the print command, otherwise each of the series will be printed
out separately. The result appears below in Figure 3.5. Recall that the true value of β2 = 10 and
each of the estimated intervals contains it. The actual value of the intercept is 80, and β1 falls also
falls within the estimated boundaries in each of the samples. In a large number of samples, we
would expect about 5% of the intervals would not contian the true value of the parameters. This
is explored in the next section.
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Figure 3.5: Confidence intervals for 10 samples.

3.3 Monte Carlo Experiment

Once again, the consequences of repeated sampling can be explored using a simple Monte Carlo
study. In this case, we will generate 100 samples and count the number of times the confidence
interval includes the true value of the parameter. The simulation will be based on the food.gdt
dataset.

The new script looks like this:

1 open "@gretldir\data\poe\food.gdt"

2 set seed 3213798

3 loop 100 --progressive --quiet

4 series u = normal(0,88)

5 series y = 80 + 10*income + u

6 ols y const income

7

8 scalar c1L = $coeff(const) - critical(t,$df,.025)*$stderr(const)

9 scalar c1R = $coeff(const) + critical(t,$df,.025)*$stderr(const)

10 scalar c2L = $coeff(income) - critical(t,$df,.025)*$stderr(income)

11 scalar c2R = $coeff(income) + critical(t,$df,.025)*$stderr(income)

12

13 # Compute the coverage probabilities of the Confidence Intervals

14 scalar p1 = (80>c1L && 80<c1R)

15 scalar p2 = (10>c2L && 10<c2R)

16

17 print p1 p2
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18 store @workdir\cicoeff.gdt c1L c1R c2L c2R

19 endloop

The results are stored in the gretl data set cicoeff.gdt. Opening this data set (open @workdir\

cicoeff.gdt) and examining the data will reveal interval estimates that vary much like those in
Tables 3.1 and 3.2 of POE4. In line 4 of this script pseudo-random normals are drawn using the
normal(mean,sd) command, and the mean has been set to 0 and the standard deviation to 88. The
samples of y are generated linearly (80+10*food exp) to which the random component is added in
line 5. Then, the upper and lower bounds are computed. In lines 14 and 15 gretl’s “and” logical
operator, &&, is used to determine whether the coefficient (80 or 10) falls within the computed
bounds. The operator && actually yields the intersection of two sets so that if 80 is greater than
the lower bound and smaller than the upper p1, then the condition is true and p1 is equal to 1. If
the statement is false, it is equal to zero. Averaging p1 and p2 gives you the proportion of times
in the Monte Carlo that the condition is true, which amounts to the empirical coverage rate of the
computed interval.

With this seed, I get the following (Figure 3.6) result: You can see that the intercept falls within

Figure 3.6: The empirical coverage rates of nominal 95% confidence intervals from 100 random
samples.

the estimated interval 93 out of 100 times and the slope within its interval 92% of the time.

3.4 Hypothesis Tests

Hypothesis testing allows us to confront any prior notions we may have about the model with
what we actually observe. Thus, if before drawing a sample, I believe that autonomous weekly food
expenditure is no less than $40, then once the sample is drawn I can determine via a hypothesis
test whether experience is actually consistent with this belief.
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In section 3.4 of your textbook the authors test several hypotheses about β2. In 3.4.1a the null
hypothesis is that β2 = 0 against the alternative that it is positive (i.e., β2 > 0). The test statistic
is:

t = (b2 − 0)/se(b2) ∼ t38 (3.2)

provided that β2 = 0 (the null hypothesis is true). Select α = 0.05 which makes the critical value
for the one sided alternative (β2 > 0) equal to 1.686. The decision rule is to reject H0 in favor
of the alternative if the computed value of your t-statistic falls within the rejection region of your
test; that is if it is larger than 1.686.

The information you need to compute t is contained in the least squares estimation results
produced by gretl:

Model 1: OLS, using observations 1–40
Dependent variable: food exp

Coefficient Std. Error t-ratio p-value

const 83.4160 43.4102 1.9216 0.0622
income 10.2096 2.09326 4.8774 0.0000

Mean dependent var 283.5735 S.D. dependent var 112.6752
Sum squared resid 304505.2 S.E. of regression 89.51700
R2 0.385002 Adjusted R2 0.368818
F (1, 38) 23.78884 P-value(F ) 0.000019
Log-likelihood −235.5088 Akaike criterion 475.0176
Schwarz criterion 478.3954 Hannan–Quinn 476.2389

The computations
t = (b2 − 0)/se(b2) = (10.21− 0)/2.09 = 4.88 (3.3)

Since this value falls within the rejection region, then there is enough evidence at the 5% level of
significance to convince us that the null hypothesis is incorrect; the null hypothesis rejected at this
level of significance.

Figure 3.7: The dialog box for obtaining p-values using the built in statistical tables in gretl.
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We can use gretl to get the p-value for this test using the Tools pull-down menu. In this
dialog, you have to fill in the degrees of freedom for your t-distribution (38), the value of b2 (10.21),
its value under the null hypothesis–something gretl refers to as ‘mean’ (0), and the estimated
standard error from your printout (2.09). This will yield the information:

t(38): area to the right of 4.88 = 9.65032e-006

(two-tailed value = 1.93006e-005; complement = 0.999981)

This indicates that the area in one tail is almost zero. The p-value is well below the usual level of
significance, α = .05, and the hypothesis is rejected.

Gretl also includes a programming command that will compute p-values from several distri-
butions. The pvalue function works similarly to the critical function discussed in the preceding
section. The syntax is:

scalar p = pvalue(distribution, parameters, xval)

The pvalue function computes the area to the right of xval in the specified distribution. Choices
include z for Gaussian, t for Student’s t, X for chi-square, F for F , G for gamma, B for binomial,
P for Poisson, W for Weibull, or E for generalized error. The argument parameters refers to the
distribution’s known parameters, as in its degrees of freedom. So, for this example try

1 open "@gretldir\data\poe\food.gdt"

2 ols food_exp const income

3 scalar t2 = ($coeff(income)-0)/$stderr(income)

4 scalar p2 = pvalue(t,$df,t2)

The result is 9.72931e-006, which is very close to the value produced by the dialog box. This values
differ because the value in the dialog box was rounded to 4.88 whereas the computed value here
has many more significant digits to use in the computation.

In the next example, the authors of POE4 test the hypothesis that β2 = 5.5 against the
alternative that β2 > 5.5. The computations

t = (b2 − 5.5)/se(b2) = (10.21− 5.5)/2.09 = 2.25 (3.4)

The significance level in this case is chosen to be 0.01 and the corresponding critical value can be
found using a tool found in gretl. The Tools>Statistical tables pull-down menu bring up the
dialog found in Figure 3.1.

This result is found in Figure 3.8. The 0.01 one-sided critical value is 2.42857. Since 2.25 is less
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Figure 3.8: The results from the dialog box for obtaining critical values using the built in statistical
tables in gretl.

than this, we cannot reject the null hypothesis at the 1% level of significance.

In section 3.4.2 of POE4, the authors conduct a one-sided test where the rejection region falls
within the left tail of the t-distribution. The null hypothesis is β2 = 15 and the alternative is
β2 < 15. The test statistic and distribution is

t = (b2 − 15)/se(b2) ∼ t38 (3.5)

provided that β2 = 15. The computation is

t = (b2 − 15)/se(b2) = (10.21− 15)/2.09 = −2.29 (3.6)

Based on the desired level of significance, α = 0.05, we would reject the null in favor of the one-sided
alternative if t < −1.686. It is and therefore we conclude that the coefficient is less than 15 at this
level of significance.

In section 3.4.3 of POE4 examples of two-tailed tests are found. In the first example the
economic hypothesis that households will spend $7.50 of each additional $100 of income on food.
So, H0 : β2 = 7.50 and the alternative is H1 : β2 6= 7.50. The statistic is t = (b2 − 7.5)/se(b2) ∼ t38

if H0 is true which is computed t = (b2 − 7.5)/se(b2) = (10.21 − 7.5)/2.09 = 1.29. The two-sided,
α = 0.05 critical value is 2.024. This means that you reject H0 if either t < −2.024 or if t > 2.024.
The computed statistic is neither, and hence we do not reject the hypothesis that β2 is $7.50. There
simply isn’t enough information in the sample to convince us otherwise.

You can draw the same conclusions from using a confidence interval that you can from this
two-sided t-test. The 100(1− α)% confidence interval for β2 is

b2 − tcse(b2) ≤ β2 ≤ b2 + tcse(b2) (3.7)

In terms of the example the compute interval is

10.21− 2.024(2.09) ≤ β2 ≤ 10.21 + 2.024(2.09) (3.8)

which as we saw earlier in the manual is 5.97 ≤ β2 ≤ 14.45. From a hypothesis testing standpoint,
you would not be able to reject the hypothesis that β2 is different from 7.5 at the 5% level of
significance because 7.5 falls within this interval.
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In the next example a test of the overall significance of β2 is conducted. As a matter of routine,
you always want to test to see if your slope parameter is different from zero. If not, then the
variable associated with it may not belong in your model. So, H0 : β2 = 0 and the alternative
is H1 : β2 6= 0. The statistic is t = (b2 − 0)/se(b2) ∼ t38, if H0 is true, and this is computed
t = (b2 − 0)/se(b2) = (10.21 − 0)/2.09 = 4.88. Once again, the two-sided, α = 0.05 critical value
is 2.024 and 4.88 falls squarely within the 5% rejection region of this test. These numbers should
look familiar since this is the test that is conducted by default whenever you run a regression in
gretl.

As we saw earlier, gretl also makes obtaining one- or two-sided p-values for the test statistics
you compute very easy. Simply use p-value finder dialog box available from the Tools pull-down
menu (see Figure 3.8) to obtain one or two sided p-values.

3.5 Script for t-values and p-values

One thing we’ve shown in this chapter is that many of the results obtained using the pull-down
menus (often referred to as the GUI) in gretl can be obtained using hansl from the console or
in a script. In fact, the gretl’s GUI is merely a front-end to its programming language.3 In this
chapter we used the pvalue and critical functions to get p-values or critical values of statistics.
The following script accumulates what we’ve covered and completes the examples in the text.

1 open "@gretldir\data\poe\food.gdt"

2 ols food_exp const income

3

4 #One sided test (Ha: b2 > zero)

5 scalar tratio1 = ($coeff(income) - 0)/ $stderr(income)

6 scalar c1 = critical(t,$df,.05)

7 scalar p1 = pvalue(t,$df,tratio1)

8 printf "The statistic = %.4f, 5%% critical value = %.4f and\

9 pvalue = %.4f\n",tratio1, c1,p1

10

11 #One sided test (Ha: b2>5.5)

12 scalar tratio2 = ($coeff(income) - 5.5)/ $stderr(income)

13 scalar c2 = critical(t,$df,.05)

14 scalar p2 = pvalue(t,$df,tratio2)

15 printf "The statistic = %.4f, 5%% critical value = %.4f and\

16 pvalue = %.4f\n",tratio2, c2,p2

17

18 #One sided test (Ha: b2<15)

19 scalar tratio3 = ($coeff(income) - 15)/ $stderr(income)

20 scalar c3 = -1*critical(t,$df,.05)

21 scalar p3 = pvalue(t,$df,abs(tratio3))

22 printf "The statistic = %.4f, 5%% critical value = %.4f and\

3This is true in Stata as well.
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23 pvalue = %.4f\n",tratio3, c3,p3

24

25 #Two sided test (Ha: b2 not equal 7.5)

26 scalar tratio4 = ($coeff(income) - 7.5)/ $stderr(income)

27 scalar c4 = critical(t,$df,.025)

28 scalar p4 = 2*pvalue(t,$df,abs(tratio4))

29 printf "The statistic = %.4f, 5%% critical value = %.4f and\

30 pvalue = %.4f\n",tratio4, c4,p4

31

32 #Confidence interval

33 scalar lb = $coeff(income) - critical(t,$df,0.025) * $stderr(income)

34 scalar ub = $coeff(income) + critical(t,$df,0.025) * $stderr(income)

35 printf "The 95%% confidence interval is (%.4f, %.4f)\n",lb,ub

36

37 #Two sided test (Ha: b2 not equal zero)

38 scalar tratio5 = ($coeff(income) - 0)/ $stderr(income)

39 scalar c5 = critical(t,$df,.025)

40 scalar p5 = 2*pvalue(t,$df,abs(tratio5))

41 printf "The statistic = %.4f, 5%% critical value = %.4f and\

42 pvalue = %.4f\n",tratio5, c5,p5

The pvalue function in gretl measures the area of the probability distribution that lies to the
right of the computed statistic. If the computed t-ratio is positive and your alternative is two-
sided, multiply the result by 2 to measure the area to the left of its negative; this can be seen in
lines 28 and 40. The other function used here is printf. This function is a fancy way of printing
your results to the screen and its use is explained in detail in section 5.2.2. Because the lines are
long, the continuation command (\) discussed in chapter 1 was also used. This tells gretl that the
current line continues to the next.

If the t-ratio is negative, gretl won’t compute the area (and you wouldn’t want it to, anyway).
This is what happened for tratio3 in the script and I used the absolute value function, abs( ),
in line 21 to get its positive value. The area to the right of the positive value is equivalent to the
area left of the negative value. Hence, the computation is correct.

Basically, proper use of the pvalue in one-sided tests of a single hypothesis requires a little
thought. Too much thought, in my opinion. I would avoid it unless you are comfortable with its
use. In other hypothesis testing contexts (e.g., χ2 and F -tests) p-values are much easier to use
correctly. I use them freely in those cases. With t-tests or z -tests (normal distribution), it is just
easier conduct a test by comparing the computed value of your statistic to the correct critical value.

The output from the script is nice and neat, thanks to the use of printf and the use of set echo

off. This appears in Figure 3.9 below. The set echo off command used at the beginning of the
chapter ending scripts reduces what is printed to the screen when the script is executed. Ordinarily,
gretl will write (echo) each command executed back to the screen before it produces the requested
output. This is useful in most cases, but when running a longer script, it is bothersome. The set

echo off turns the default echoing of commands off. To turn it back on, use set echo on.
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Figure 3.9: The results produced by the script to test hypotheses in the simple regression.

3.6 Linear Combination of Parameters

Since gretl stores and gives access to the estimated values of the coefficients and the variance-
covariance matrix, testing hypotheses about linear combinations of parameters is very simple.
Suppose you want an estimate of the average weekly food expenditure for a family earning $2000
per week. The average for any level of income is modeled using linear regression:

E(food exp|income) = β1 + β2income (3.9)

It can easily be shown that E(c1X + c2Y + c3) = c1E(X) + c2E(Y ) + c3 where c1, c2, and c3 are
constants. If least squares is unbiased for the intercept and slope then E(b1) = β1 and E(b2) = β2.
Hence, an estimate of the food expenditure for a family earning $2000 per week iŝfood exp = b1 + b220 = 83.416 + 10.2096× 20 = 287.6089 (3.10)

The hypothesis that the average is statistically greater than $250 can be formally tested as:

H0 : β1 + β2 ≤ 0 H1 : β1 + 20β2 > 250 (3.11)

The statistic

t =
b1 + 20b2 − 250

se(b1 + 20b2 − 250)
∼ tN−2 under H0 (3.12)

Taking the variance of a linear combination is only slightly more complicated than finding the
mean since in the variance calculation any covariance between X and Y needs to be accounted for.
In general, var(c1X + c2Y + c3) = c2

1var(X) + c2
2var(Y ) + 2c1c2cov(X,Y ). Notice that adding a

constant to a linear combination of random variables has no effect on its variance–only its mean.
For a regression model, the elements needed to make this computation are found in the variance-
covariance matrix.

The precision of least squares (and other estimators) is summarized by the variance-covariance
matrix, which includes a measurement of the variance of the intercept and the slope, and covari-
ance between the two. The variances of the least squares estimator fall on the diagonal of this
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square matrix and the covariance is on the off-diagonal.

cov(b1, b2) =

[
var(b1) cov(b1, b2)
cov(b1, b2) var(b2)

]
(3.13)

All of these elements have to be estimated from the data. To print an estimate of the variance-
covariance matrix following a regression use the --vcv option with your regression in gretl:

ols food_exp const income --vcv

In terms of the hypothesis, var(b1 + 20b2 − 250) = 12var(b1) + 202var(b2) + 2(1)(20)cov(b1, b2).
The covariance matrix printed by this option is:

Covariance matrix of regression coefficients:

const income

1884.44 -85.9032 const

4.38175 income

The arithmetic for variance is var(b1 + 20b2 − 250) = 1884.44 + (400)(4.38175) + (40)(−85.9032) =
201.017. The square root of this is the standard error, i.e., 14.178.

Of course, once you know the estimated standard error, you could just as well estimate an
interval for the average food expenditure. The script to do just that is found below. Using hansl
to do the arithmetic makes things a lot easier.

1 scalar vc = $vcv[1,1]+20^2*$vcv[2,2]+2*20*$vcv[2,1]

2 scalar se = sqrt(vc)

3 scalar tval = ($coeff(const)+20*$coeff(income)-250)/se

4 scalar p = pvalue(t,$df,tval)

5

6 scalar avg_food_20 = $coeff(const)+20*$coeff(income)

7 scalar lb = avg_food_20-critical(t,$df,0.025)*se

8 scalar ub = avg_food_20+critical(t,$df,0.025)*se

9

10 print vc se tval p avg_food_20 lb ub

In the first line, the accessor $vcv is used. In it is the variance-covariance from the previously
estimated model. (The square brackets contain the row and column location of the desired element.
That is, the estimated variance of b1 is the element located in the first row and first column, hence
$vcv[1,1]. The covariance between b1 and b2 can be found either in the first row, second column
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or the second row, first column. So, $vcv[1,2]=$vcv[2,1]. The script also produces the p-value
associated with a 5% one sided test.

In line 6 the average food expenditure is computed at income = 20, which corresponds to
$2000/week (income is measured in $100). The lower and upper 95% confidence intervals are
computed in lines 7 and 8.

? print vc se tval p avg_food_20 lb ub

vc = 201.01688

se = 14.178042

tval = 2.6526132

p = 0.0057953880

avg_food_20 = 287.60886

lb = 258.90692

ub = 316.31081

You can see that the manual calculation and that from gretl are the same. The p-value is less
than 0.05 and we would reject H0 in favor of the alternative in this case. The average food
expenditure for a family earning $2000/week is $287. The 95% confidence interval for the average
is ($258.907, $316.311).

3.7 Script

1 set echo off

2 # confidence intervals

3 open "@gretldir\data\poe\food.gdt"

4 ols food_exp const income

5 scalar lb = $coeff(income) - 2.024 * $stderr(income)

6 scalar ub = $coeff(income) + 2.024 * $stderr(income)

7 print lb ub

8

9 # using the critical function to get critical values

10 scalar lb = $coeff(income) - critical(t,$df,0.025) * $stderr(income)

11 scalar ub = $coeff(income) + critical(t,$df,0.025) * $stderr(income)

12 print lb ub

13

14 # t-ratio

15 open "@gretldir\data\poe\food.gdt"

16 ols food_exp const income

17

18 #One sided test (Ha: b2 > zero)

19 scalar tratio1 = ($coeff(income) - 0)/ $stderr(income)

20 scalar c1 = critical(t,$df,.05)

21 scalar p1 = pvalue(t,$df,tratio1)
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22 printf "The statistic = %.4f, 5%% critical value = %.4f and\

23 pvalue = %.4f\n",tratio1, c1,p1

24

25 #One sided test (Ha: b2>5.5)

26 scalar tratio2 = ($coeff(income) - 5.5)/ $stderr(income)

27 scalar c2 = critical(t,$df,.05)

28 scalar p2 = pvalue(t,$df,tratio2)

29 printf "The statistic = %.4f, 5%% critical value = %.4f and\

30 pvalue = %.4f\n",tratio2, c2,p2

31

32 #One sided test (Ha: b2<15)

33 scalar tratio3 = ($coeff(income) - 15)/ $stderr(income)

34 scalar c3 = -1*critical(t,$df,.05)

35 scalar p3 = pvalue(t,$df,abs(tratio3))

36 printf "The statistic = %.4f, 5%% critical value = %.4f and\

37 pvalue = %.4f\n",tratio3, c3,p3

38

39 #Two sided test (Ha: b2 not equal 7.5)

40 scalar tratio4 = ($coeff(income) - 7.5)/ $stderr(income)

41 scalar c4 = critical(t,$df,.025)

42 scalar p4 = 2*pvalue(t,$df,tratio4)

43 printf "The statistic = %.4f, 5%% critical value = %.4f and\

44 pvalue = %.4f\n",tratio4, c4,p4

45

46 #Confidence interval

47 scalar lb = $coeff(income) - critical(t,$df,0.025) * $stderr(income)

48 scalar ub = $coeff(income) + critical(t,$df,0.025) * $stderr(income)

49 printf "The 95%% confidence interval is (%.4f, %.4f)\n",lb,ub

50

51 #Two sided test (Ha: b2 not equal zero)

52 scalar tratio5 = ($coeff(income) - 0)/ $stderr(income)

53 scalar c5 = critical(t,$df,.025)

54 scalar p5 = 2*pvalue(t,$df,tratio5)

55 printf "The statistic = %.4f, 5%% critical value = %.4f and\

56 pvalue = %.4f\n",tratio5, c5,p5

57

58 # linear combinations of coefficients

59 open "@gretldir\data\poe\food.gdt"

60 ols food_exp const income --vcv

61 scalar vc = $vcv[1,1]+20^2*$vcv[2,2]+2*20*$vcv[2,1]

62 scalar se = sqrt(vc)

63 scalar tval = ($coeff(const)+20*$coeff(income)-250)/se

64 scalar p = pvalue(t,$df,tval)

65

66 scalar avg_food_20 = $coeff(const)+20*$coeff(income)

67 scalar lb = avg_food_20-critical(t,$df,0.025)*se

68 scalar ub = avg_food_20+critical(t,$df,0.025)*se

69

70 print vc se tval p avg_food_20 lb ub

58



And for the repeated sampling exercise, the script is:

1 set echo off

2 open "@gretldir\data\poe\table2_2.gdt"

3 list ylist = y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

4 loop foreach i ylist --progressive --quiet

5 ols ylist.$i const x

6 scalar b1 = $coeff(const)

7 scalar b2 = $coeff(x)

8 scalar s1 = $stderr(const)

9 scalar s2 = $stderr(x)

10

11 # 2.024 is the .025 critical value from the t(38) distribution

12 scalar c1L = b1 - critical(t,$df,.025)*s1

13 scalar c1R = b1 + critical(t,$df,.025)*s1

14 scalar c2L = b2 - critical(t,$df,.025)*s2

15 scalar c2R = b2 + critical(t,$df,.025)*s2

16

17 scalar sigma2 = $sigma^2

18 store @workdir\coeff.gdt b1 b2 s1 s2 c1L c1R c2L c2R sigma2

19 endloop

20

21 open @workdir\coeff.gdt

22 print c1L c1R c2L c2R --byobs

Monte Carlo to measure coverage probabilities of confidence intervals

1 set echo off

2 open "@gretldir\data\poe\food.gdt"

3 set seed 3213798

4 loop 100 --progressive --quiet

5 series u = normal(0,88)

6 series y = 80 + 10*income + u

7 ols y const income

8 # 2.024 is the .025 critical value from the t(38) distribution

9 scalar c1L = $coeff(const) - critical(t,$df,.025)*$stderr(const)

10 scalar c1R = $coeff(const) + critical(t,$df,.025)*$stderr(const)

11 scalar c2L = $coeff(income) - critical(t,$df,.025)*$stderr(income)

12 scalar c2R = $coeff(income) + critical(t,$df,.025)*$stderr(income)

13

14 # Compute the coverage probabilities of the Confidence Intervals

15 scalar p1 = (80>c1L && 80<c1R)

16 scalar p2 = (10>c2L && 10<c2R)

17

18 print p1 p2

19 store @workdir\cicoeff.gdt c1L c1R c2L c2R

20 endloop
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Chapter 4
Prediction, Goodness-of-Fit, and Modeling
Issues

Several extensions of the simple linear regression model are now considered. First, conditional
predictions are generated using results saved by gretl. Then, a commonly used measure of the
quality of the linear fit provided by the regression is discussed. We then take a brief detour to
discuss how gretl can be used to provide professional looking output that can be used in your
research.

The choice of functional form for a linear regression is important and the RESET test of the
adequacy of your choice is examined. Finally, the residuals are tested for normality. Normality of
the model’s errors is a useful property in that, when it exists, it improves the the performance of
least squares and the related tests and confidence intervals we’ve considered when sample sizes are
small (finite).

4.1 Prediction in the Food Expenditure Model

Generating predicted values of food expenditure for a person with a given income is very simple
in gretl. After estimating the model with least squares, you can use the genr or series to get
predicted values for all the observations or use scalar to get a prediction at a specific point. In the
example, a household having incomeo = $2000 of weekly income is predicted to spend approximately
$287.61 on food. Recalling that income is measured in hundreds of dollars in the data, the gretl
commands to compute this from the console are:

1 open "@gretldir\data\poe\food.gdt"

2 ols food_exp const income
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3 scalar yhat0 = $coeff(const) + $coeff(income)*20

This yields ̂food exp0 = 287.609. We could have used genr rather than scalar (or nothing at all
before yhat0) and the correct result would be computed. Using scalar makes it clear to someone
else reading the program that you intend this to compute a single number, not a series.

Obtaining the 95% confidence interval is slightly harder in that there are no internal commands
in gretl that will do this. The information needed is readily available, however. The formula is:

v̂ar(f) = σ̂2 +
σ̂2

T
+ (incomeo − income)2v̂ar(b2) (4.1)

In section 2.4 we estimated σ̂2 = 8013.29 and v̂ar(b2) = 4.3818. The mean value of income is found
by highlighting the variable income in the main gretl window and the selecting View>Summary

Statistics from the pull-down menu. This yields income = 19.6047.1 The t38 5% critical value is
2.0244 and the computation2

v̂ar(f) = 8013.2941 +
8013.2941

40
+ (20− 19.6047)2 ∗ 4.3818 = 8214.31 (4.2)

Then, the confidence interval is:

̂food exp0 ± tcse(f) = 287.6069± 2.0244
√

8214.31 = [104.132, 471.086] (4.3)

The complete script to produce the computed results in gretl is:

1 ols food_exp const income

2 scalar yhat0 = $coeff(const) + $coeff(income)*20

3 scalar f=8013.2941+(8013.2941/40)+4.3818*(20-19.6047)^2

4 scalar ub=yhat0+2.0244*sqrt(f)

5 scalar lb=yhat0-2.0244*sqrt(f)

At this point, you may be wondering if there is some way to use the internal functions of gretl
to produce the same result? As we’ve seen, gretl saves many of the results we need internally and
these can in turn be called into service in subsequent computations using their accessors.

For instance, the sum of squared errors from the least squares regression can be accessed using
$ess. The degrees of freedom and number of observations are saved as $df and $nobs, respectively.
Also, you can use an internal gretl function to compute income, mean(income), and the critical

function discussed in the preceding chapter to get the desired critical value. Hence, the prediction
interval can be automated and made more precise by using the following script.

1Your result may vary a little depending on how many digits are carried out to the right of the decimal.
2You can compute this easily using the gretl console by typing in: scalar f = 8013.2941 + (8013.2941/40) +

4.3818*(20-19.6047)**2
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1 ols food_exp const income

2 scalar yhat0=$coeff(const)+20*$coeff(income)

3 scalar sig2 = $ess/$df

4 scalar f = sig2 + sig2/$nobs + ((20-mean(income))^2)*($stderr(income)^2)

5 scalar lb = yhat0-critical(t,$df,0.025)*sqrt(f)

6 scalar ub = yhat0+critical(t,$df,0.025)*sqrt(f)

7 print yhat0 sig2 f lb ub

This produces

yhat0 = 287.60886

sig2 = 8013.2941

f = 8214.3110

lb = 104.13228

ub = 471.08545

which are the values we expect.

4.2 Coefficient of Determination

One use of regression analysis is to “explain” variation in dependent variable as a function of
the independent variable. A summary statistic that is used for this purpose is the coefficient of
determination, also known as R2.

There are a number of different ways of obtaining R2 in gretl. The simplest way to get R2 is
to read it directly off of gretl’s regression output. This is shown in Figure 4.3. Another way, and
probably the most difficult, is to compute it manually using the analysis of variance (ANOVA)
table. The ANOVA table can be produced after a regression by choosing Analysis>ANOVA from
the model window’s pull-down menu as shown in Figure 4.1. Or, one can simply use the --anova

option to ols to produce the table from the console of as part of a script.

ols income const income --anova

The result appears in Figure 4.2.

In the ANOVA table featured in Figure 4.2 the SSR, SSE, and SST can be found. Gretl also
does the R2 computation for you as shown at the bottom of the output. If you want to verify
gretl’s computation, then

SST = SSR + SSE = 190627 + 304505 = 495132 (4.4)

62



Figure 4.1: After estimating the regression, select Analysis>ANOVA from the model window’s pull-
down menu.

Figure 4.2: The ANOVA table

and
SSR

SST
= 1− SSE

SST
=

190627

495132
= .385 (4.5)

Different authors refer to regression sum of squares, residual sum of squares and total sum of squares
by different acronyms. So, it pays to be careful when computing R2 manually. POE4 refers to the
regression sum of squares as SSR and the residual sum of squares as SSE (sum of squared errors).

Finally, you can think of R2 is as the squared correlation between your observations on your
dependent variable, food exp, and the predicted values based on your estimated model, ̂food exp. A
gretl script to compute this version of the statistic is is found below in section 4.5.4.

To use the GUI you can follow the steps listed here. Estimate the model (equation 2.1) using

least squares and add the predicted values from the estimated model, ̂food exp, to your data set.
Then use the gretl correlation matrix to obtain the correlation between food exp and ̂food exp.

Adding the fitted values to the data set from the pull-down menu in the model window is
illustrated in Figure 4.4 below. Highlight the variables food exp, income, and yhat1 by holding
the control key down and mouse-clicking on each variable in the main gretl window as seen in
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Figure 4.3: In addition to some other summary statistics, Gretl computes the unadjusted R2 from
the linear regression.

Figure 4.4: Using the pull-down menu in the Model window to add fitted values to your data set.

Figure 4.5 below. Then, View>Correlation Matrix will produce all the pairwise correlations
between each variable you’ve chosen. These are arranged in a matrix as shown in Figure 4.6.
Notice that the correlation between food exp and income is the same as that between food exp and̂food exp (i.e., 0.6205). As shown in your text, this is no coincidence in the simple linear regression
model. Also, squaring this number equals R2 from your regression, 0.62052 = .385.

You can generate pairwise correlations from the console using

c1 = corr(food_exp,$yhat)

In yet another example of the ease of using gretl, the usual scalar or genr is not used before
c1. Gretl identifies correctly that the result is a scalar and you can safely omit the command. In
longer scripts, however, its generally a good idea to tell gretl what you intend to compute and if
the result doesn’t match you’ll get an error message.
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4.3 Choosing a Functional Form

There is no reason to think that the relationship between food exp and income is a linear one.
In fact, it is likely to be nonlinear. A low wage earner might spend nearly all of an additional dollar
on food whereas a high income earner might spend very little. The linear model above implies that
rich and poor spend the same amount of an additional dollar of income. As seen in the previous
chapters, nonlinearities can be modeled by transforming the dependent or independent variable.
This complicates interpretation a bit, but some simple differential calculus can quickly sort things
out.

Linear regression is considerably more flexible than its name implies. There are many relation-
ships in economics that are known to be nonlinear. The relationship between production inputs
and output is governed in the short-run by the law of diminishing returns, suggesting that a convex
curve is a more appropriate function to use. Fortunately, a simple transformation of the variables
(x, y, or both) can yield a model that is linear in the parameters (but not necessarily in the
variables).

The important point to remember is, the functional form that you choose should be consistent
with how the data are actually being generated. If you choose an inappropriate form, then your
estimated model may at best not be very useful and at worst be downright misleading.

In gretl you are given some very useful commands for transforming variables. From the main
gretl window the Add pull-down menu gives you access to a number of transformations; selecting
one of these here will automatically add the transformed variable to your data set as well as its
description.

Figure 4.7 shows the available selections from this pull-down menu. In the upper part of the
panel two options appear in black, the others are greyed out because they are only available is you
have defined the dataset structure to consist of time-series observations. The available options
can be used to add the natural logarithm or the squared values of any highlighted variable to your
data set. If neither of these options suits you, then the next to last option Define new variable

can be selected. This dialog uses the scalar command and the large number of built in functions
to transform variables in different ways. Just a few of the possibilities include square roots (sqrt),

Figure 4.5: Hold the control key and click on food exp, income, and ̂food exp = yhat2 from the food
expenditure regression to select them.
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Figure 4.6: The correlation matrix for food exp, income, and ̂food exp = yhat2 is produced by
selecting View>Correlation matrix from the pull-down menu.

sine (sin), cosine (cos), absolute value (abs), exponential (exp), minimum (min), maximum (max),
and so on. Later in the book, we’ll discuss changing the dataset’s structure to enable some of the
other variable transformation options.

4.3.1 Linear-Log Specification

The linear-log specification of the food expenditure model uses the natural logarithm of income
as the independent variable:

food exp = β1 + β2 ln (income) + e (4.6)

Taking the logarithm of income and estimating the model

1 series l_income = ln(income)

2 ols food_exp const l_income

There is a short-cut that enables you to take the natural logs of several variables at a time. The
logs function could be use do create ln(income) as

logs income

This command produces a new variable called l income and adds it to the variables list.

Estimation of the model yieldŝfood exp = −97.1864
(84.237)

+ 132.166
(28.805)

l income

T = 40 R̄2 = 0.3396 F (1, 38) = 21.053 σ̂ = 91.567

(standard errors in parentheses)
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Figure 4.7: The variable pull-down menu is used to add new variables to gretl

In Figure 4.6 of POE4 the authors plot food exp against ̂food exp. A positive (nonlinear)
relationship between the two is expected since the the model was estimated using the natural
logarithm of income. To produce this plot, estimate the regression to open the model window.
Add the predicted values of from the regression to the dataset using Save>Fitted values from
the model window’s pull-down menu. Name the fitted value, yhat2 and click OK. Now, return to
the main window, use the mouse to highlight the three variables (food exp, yhat2, and income),3

then select View>Graph specified vars>X-Y scatter from the pull-down menu.4 This opens the
define graph dialog box. Choose yhat2 and food exp as the Y-axis variables and income as the
X-axis variable and click OK. A graph appears that looks similar to Figure 4.8

A simpler approach is to open a console or a new script window and use the following commands:
To save the predicted values and plot them against the actual observations add

1 ols food_exp const l_income

2 series yhat2 = $yhat

3 gnuplot yhat2 food_exp income

The first line estimates the regression. The predicted values are held in the accessor, $yhat, and are
assigned to a new variable called yhat2 using the series command. Then, call gnuplot with the
predicted values, yhat2, as the first variable and the actual values of food expenditure, food exp,

3Remember, press and hold Ctrl, then click on each variable
4You can also right-click the mouse once the variables are selected to gain access to the scatter plot. If you choose

this method, gretl will prompt you to specify which of the selected variables is to be used for the X-axis.
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Figure 4.8: Graphing the linear-log model

as the second.

Finally, if you execute these commands using a script, the graph is written to a file on your
computer rather than opened in a window. For this reason, I recommend executing these commands
from the console rather than from the script file that appears at the end of this chapter.

4.3.2 Residual Plots

Inadvertently choosing an inappropriate functional form can lead to some serious problems
when it comes to using your results for decision-making. There are a number of formal tests that
one can do to diagnose problems of specification, but researchers often start by looking at residual
plots to get a quick idea if there are any problems.

If the assumptions of the classical normal linear regression model hold (ensuring that least
squares is minimum variance unbiased) then residuals should look like those found in ch4sim1.gdt
shown in Figure 4.9 below.

open "@gretldir\data\poe\ch4sim1.gdt"

gnuplot e x
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Figure 4.9: Random residuals from ch4sim1.gdt

If there is no apparent pattern, then chances are the assumptions required for the Gauss-Markov
theorem to hold may be satisfied and the least squares estimator will be efficient among linear
estimators and have the usual desirable properties.

The next plot is of the least squares residuals from the linear-log food expenditure model (Figure
4.10). These do not appear to be strictly random. Rather, they are heteroskedastic, which means
that for some levels of income, food expenditure varies more than for others (more variance for
high incomes). Least squares may be unbiased in this case, but it is not efficient. The validity of
hypothesis tests and intervals is affected and some care must be taken to ensure proper statistical
inferences are made. This is discussed at more length in chapter 8.

Finally, the ch4sim2.gdt dataset contains least squares residuals from a linear regression fit to
quadratic data. To treat the relationship as linear would be like trying to fit a line through a
parabola! This appears in Figure 4.11. The script to generate this is:

1 open "@gretldir\data\poe\ch4sim2.gdt"

2 ols y const x

3 series ehat = $uhat

4 gnuplot ehat x

Notice that another accessor has been used to store the residuals into a new variable. The residuals
from the preceding regression are stored and can be accessed via $uhat. In line 3 these were
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Figure 4.10: Heteroskedastic residuals from the linear-log model of food expenditures.

accessed and assigned to the variable ehat. Then, they can be plotted using gnuplot.

Looking at the plot in Figure 4.11, there is an obvious problem with model specification. The
errors are supposed to look like a random scatter around zero. There are clearly parabolic and the
model is NOT correctly specified.

4.3.3 Testing for Normality

Your book, Principles of Econometrics, discusses the Jarque-Bera test for normality which is
computed using the skewness and kurtosis of the least squares residuals. To compute the Jarque-
Bera statistic, you’ll first need to estimate your model using least squares and then save the residuals
to the data set.

From the gretl console

1 ols food_exp const income

2 series uhat1 = $uhat

3 summary uhat1

The first line is the regression. The next accesses the least squares redsiduals, $uhat, and places
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Figure 4.11: Correlated residuals from estimating a quadratic relationship using a line.

them into a new series called uhat1.5 You could also use the point-and-click method to add the
residuals to the data set. This is accomplished from the regression’s output window. Simply choose
Save>Residuals from the model pull-down menu to add the estimated residuals to the dataset.
The last line of the script produces the summary statistics for the residuals and yields the output
in Figure 4.12. One thing to note, gretl reports excess kurtosis rather than kurtosis. The excess

Summary Statistics, using the observations 1 - 40

for the variable ’uhat1’ (40 valid observations)

Mean 0.00000

Median -6.3245

Minimum -223.03

Maximum 212.04

Standard deviation 88.362

C.V. 2.4147E+015

Skewness -0.097319

Ex. kurtosis -0.010966

Figure 4.12: The summary statistics for the least squares residuals.

kurtosis is measured relative to that of the normal distribution which has kurtosis of three. Hence,
your computation is

JB =
T

6

(
Skewness2 +

(Excess Kurtosis)2

4

)
(4.7)

5You can’t use uhat instead of uhat1 because that name is reserved by gretl.
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Which is

JB =
40

6

(
−0.0972 +

−0.0112

4

)
= .063 (4.8)

Normal random variables have no skewness nor any excess kurtosis. The JB statistic is zero in this
case. It gets larger the higher the skewness and the greater the degree of excess kurtosis displayed
by the data. In section C.1 hansl is used to compute skewness and excess kurtosis and you could
use these computations to compute your own JB test. Fortunately, there is no need to compute
your own because gretl will compute the Jarque-Bera test for you. After saving the residuals into
$uhat1 issue the command

ols food_exp const income

series uhat1 = $uhat

normtest uhat1 --jbera

normtest uhat1 --all

This yields a value of Jarque-Bera test = 0.0633401, with p-value 0.968826, which is exactly what
the manual calculation yields. Gretl performs other tests for the normality of residuals including
one by Doornik and Hansen (2008). Computationally, it is more complex than the Jarque-Bera
test. The Doornik-Hansen test has a χ2 distribution if the null hypothesis of normality is true. It
can be produced from normtest along with several others using the --all option. Output from
normtest --all is shown in Figure 4.13. Obviously, one of the advantages of using normtest is

Figure 4.13: Using normtest residual --all tests the variable residual for normality after running
a linear regression.

that you can test for the normality of any series, not just residuals.

Another possibility is to use the modtest function after estimating a model using least squares.

ols food_exp const income

modtest --normality

The modtest command is actually is a generic function that allows you to test a number of different
hypotheses regarding the specification of your model. This function operates on the residuals of
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the last model estimated. Using it after a regression with the --normality option produces the
following output

Frequency distribution for uhat2, obs 1-40

number of bins = 7, mean = -2.45137e-014, sd = 89.517

interval midpt frequency rel. cum.

< -186.77 -223.03 1 2.50% 2.50%

-186.77 - -114.26 -150.51 3 7.50% 10.00% **

-114.26 - -41.747 -78.002 8 20.00% 30.00% *******

-41.747 - 30.765 -5.4907 14 35.00% 65.00% ************

30.765 - 103.28 67.021 8 20.00% 85.00% *******

103.28 - 175.79 139.53 5 12.50% 97.50% ****

>= 175.79 212.04 1 2.50% 100.00%

Test for null hypothesis of normal distribution:

Chi-square(2) = 0.694 with p-value 0.70684

The distribution of the residuals is collected and plotted in a basic graph and the results for the
DH test are given. If modtest is executed from GUI using Tests>Normality of residuals in
the model results window, a gnuplot histogram of the errors is generated with a normal density
overlaid. The results of the DH test are again printed on the graph.

4.4 Reporting Results

In case you think gretl is just a toy, the program includes a very capable utility that enables it
to produce professional looking output. LATEX, usually pronounced “Lay-tek”, is a typesetting pro-
gram used by mathematicians and scientists to produce professional looking technical documents.
It is widely used by econometricians to prepare manuscripts for wider distribution. In fact, this
book is produced using LATEX.

Although LATEX is free and produces very professional looking documents, it is not widely used
by undergraduate and masters students because 1) most degree programs don’t require you to write
a lot of technical papers and 2) it’s a computer language and therefore it takes some time to learn
its intricacies and to appreciate its nuances. Heck, I’ve been using it for years and still scratch my
head when I try to put tables and Figures in the places I’d like them to be!

In any event, gretl includes a facility for producing output that can be pasted directly into
LATEX documents. For users of LATEX, this makes generating regression output in proper format a
breeze. If you don’t already use LATEX, then this will not concern you. On the other hand, if you
already use it, gretl can be very handy in this respect.

In Figure 4.3 you will notice that on the far right hand side of the menu bar is a pull-down menu
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for LATEX. From here, you click LaTeX on the menu bar and a number of options are revealed as
shown in Figure 4.14. You can view, copy, or save the regression output in either tabular form or

Figure 4.14: Several options for defining the output of LATEX are available.

in equation form. You can tell gretl whether you want standard errors or t-ratios in parentheses
below parameter estimates, and you can define the number of decimal places to be used of output.
Nice indeed. Examples of tabular and equation forms of output are found in Tables 4.1 and 4.2,
respectively.

OLS, using observations 1–40
Dependent variable: food exp

Coefficient Std. Error t-ratio p-value

const 83.4160 43.4102 1.9216 0.0622
income 10.2096 2.09326 4.8774 0.0000

Mean dependent var 283.5735 S.D. dependent var 112.6752
Sum squared resid 304505.2 S.E. of regression 89.51700
R2 0.385002 Adjusted R2 0.368818
F (1, 38) 23.78884 P-value(F ) 0.000019
Log-likelihood −235.5088 Akaike criterion 475.0176
Schwarz criterion 478.3954 Hannan–Quinn 476.2389

Table 4.1: This is an example of LATEX output in tabular form.

̂food exp = 83.4160
(43.410)

+ 10.2096
(2.0933)

income

T = 40 R̄2 = 0.3688 F (1, 38) = 23.789 σ̂ = 89.517

(standard errors in parentheses)

Table 4.2: Example of LATEX output in equation form
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4.5 Polynomial Models

Using polynomials to capture nonlinearity in regression is quite easy and often effective. Stu-
dents of economics are quite used to seeing U-shaped cost curves and S-Shaped production functions
and these shapes are simply expressed using quadratic and cubic polynomials, respectively. Since
the focus so far has been on simple regression, i.e., regression models with only one independent
variable, the discussion in POE4 is simplified to include only a single squared or cubed value of
the independent variable.

The general form of a quadratic equation y = a0 +a1x+a2x
2 includes a constant, the level of x

and its square. The latter two terms are multiplied times coefficients, a1 and a2 that determine the
actual shape of the parabola. A cubic equation adds a cubed term, y = a0 +a1x+a2x

2 +a3x
3. The

simple regressions considered in this section include only the constant, a0 and either the squared
term in a quadratic model or the cubed term in the cubic model.

The simple quadratic regression has already been considered. The regression and its slope are

y = β1 + β2x
2

dy/dx = 2β2x

From this you can see that the function’s slope depends on the parameter β as well as the value of
the variable x.

The cubic model and its slope are

y = β1 + β2x
3

dy/dx = 3β2x
2

Since x is squared in the slope, the algebraic sign of β2 determines whether the slope is positive or
negative. Both of these models are considered using examples below.

4.5.1 Wheat Yield

Figure 4.15 plots the average wheat yield in Greenough Shire over time (in tonnes per hectare–
we’re in OZ!) using the data in wa wheat.gdt. The results from the example in section 4.4 of your
textbook is easily produced in gretl. Start by loading the data and estimating the effect of time,
time on yield greenough using least squares. The following script will load the data file, estimate the
model using least squares, and generate a graph of the actual and fitted values of yield (greenough)
from the model.

1 open "@gretldir\data\poe\wa-wheat.gdt"

2 ols greenough const time

3 gnuplot greenough time
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The resulting plot appears below in Figure 4.15. The fitted line can be added. Right-clicking on

Figure 4.15: The plot of the actual yield in Greenough Shire over time

the graph brings up a menu of choices. Choose Edit and the plot controls dialog box appears as
shown in Figure 4.16. There is a pull-down menu in the box called fitted line from which you can
choose to fit a line, a quadratic, or a cubic equation. I chose line and the result appears in the
figure. From the lines tab a few of the defaults; the legend for the series is changed to Actual
Yield and the line style was changed to line/points. The X-axis tab was used to change the axis
label to ‘Year.’

The simple gnuplot command works well enough. However, I took advantage of having declared
the dataset structure to be time-series to improve the look. I also added a description and label to
be used in the graph using the -d and -n switches for setinfo. The commands are

1 setinfo greenough -d "Wheat yield in tonnes" -n "Yield in tonnes"

2 gnuplot greenough --with-lines --time-series --linear-fit

There are three options listed after the plot. The first (--with-lines) tells gnuplot to connect
the points using lines. The second option (--time-series) tells gnuplot that the graph is of time-
series. In this case, the dataset’s defined time variable will be used to locate each point’s position
on the X-axis. The final option plots the least squares fit of a line. To make the graph look like
Figure 4.15 some further manipulation was done using the plot controls.

To explore the behavior of yield further, create a new variable using the series command from
t3 = time3/1, 000, 000 as shown below. This rescaling of time cubed merely changes the scale of
the coefficient by a corresponding amount and has no effect on the shape or fit of the model. It

76



Figure 4.16: The graph dialog box can be used to change characteristics of your graphs. Use the
Main tab to give the graph a new name and colors; use the X- and Y-axes tabs to refine the behavior
of the axes and to provide better descriptions of the variables graphed.

is particularly useful for long time-series since cubing large integers may exceed your computer’s
capacity to yield accurate results (i.e., numerical overflow). The new plot appears in Figure 4.17.

1 series t3=time^3/1000000

2 ols greenough const t3

3 gnuplot greenough --with-lines --time-series

4.5.2 Growth Model

Below you will find a script that reproduces the results from the growth model example in
section 4.5.1 of POE4. If yield grows at a constant rate of g, then yield at time t = 1 will be
yield1 = yield0(1 + g). For constant growth rates, repeated substitution produces

yieldt = yield0(1 + g)t (4.9)

Taking the natural log

ln(yieldt) = ln(yield0) + t ln(1 + g) = β1 + β2t (4.10)

add an error and you have a regression model. The parameter, β2 = ln(1 + g). This is an example
of a log-linear model where the independent variable is time. The slope coefficient in such a model
measures the approximate annual growth rate in the dependent variable.
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Figure 4.17: The plot of the residuals from a linear model. There is some visual evidence of serial
correlation, suggesting that the linear model is misspecified.

1 open "@gretldir\data\poe\wa-wheat.gdt"

2 series lyield = log(greenough)

3 ols lyield const time

This produces

̂l greenough = −0.343366
(0.058404)

+ 0.0178439
(0.0020751)

time

T = 48 R̄2 = 0.6082 F (1, 46) = 73.945 σ̂ = 0.19916

(standard errors in parentheses)

The estimated coefficient b2 = ln(1 + g) = 0.0178. This implies that the growth rate in wheat yield
is approximately 1.78% annually over the course of the sample.6

4.5.3 Wage Equation

Below you will find a script that reproduces the results from the wage equation example in
section 4.5.2 of POE4. In this example the log-linear model is used to measure the approximate

6For small g, ln(1 + g) ∼= g.
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Figure 4.18: The plot of the residuals from a linear model. There is some visual evidence of serial
correlation, suggesting that the linear model is misspecified.

return to another year of education. The example uses a thousand observations from the CPS
monthly survey from 2008.

1 open "@gretldir\data\poe\cps4_small.gdt"

2 series l_wage = log(wage)

3 ols l_wage const educ

4 scalar lb = $coeff(educ) - 1.96 * $stderr(educ)

5 scalar ub = $coeff(educ) + 1.96 * $stderr(educ)

6 print lb ub

The regression results are:

̂l wage = 1.60944
(0.086423)

+ 0.0904082
(0.0061456)

educ

T = 1000 R̄2 = 0.1774 F (1, 998) = 216.41 σ̂ = 0.52661

(standard errors in parentheses)

and the 95% confidence intervals for the slope is

Variable Coefficient 95% confidence interval

educ 0.0904082 0.0783484 0.102468
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That is, an additional year of education is worth between 7.8% and 10.2% wage increases annually.
Sign me up!

4.5.4 Generalized R2

A generalized version of the goodness-of-fit statistic R2 can be obtained by taking the squared
correlation between the actual values of the dependent variable and those predicted by the regres-
sion. The following script reproduces the results from section 4.4.4 of your textbook.

1 open "@gretldir\data\poe\cps4_small.gdt"

2 logs wage

3 ols l_wage const educ

4 series y = exp($yhat)

5 scalar corr1 = corr(y, wage)

6 scalar Rsquare = corr1^2

7 print corr1 Rsquare

This yields an estimated correlation of 0.4312 and a squared correlation of 0.1859.

4.5.5 Predictions in the Log-linear Model

In this example, you use the regression to make predictions about the log wage and the level
of the wage for a person having 12 years of schooling. The naive prediction of wage merely takes
the antilog of the predicted ln(wage). This can be improved upon by using properties of log-
normal random variables. It can be shown that if ln(w) ∼ N(µ, σ2) then E(w) = eµ+σ2/2 and
var(w) = e2µ+σ2

(eσ
2 − 1).

That means that the corrected prediction is ŷc = exp (b1 + b2x+ σ̂2/2) = e(b1+b2x)eσ̂
2/2. The

script to generate these is given below.

1 open "@gretldir\data\poe\cps4_small.gdt"

2 logs wage

3 ols l_wage const educ

4 scalar l_wage_12 = $coeff(const)+$coeff(educ)*12

5 scalar nat_pred = exp(l_wage_12)

6 scalar corrected_pred = nat_pred*exp($sigma^2/2)

7 print l_wage_12 nat_pred corrected_pred

The results from the script are
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l_wage_12 = 2.6943434

nat_pred = 14.795801

corrected_pred = 16.996428

That means that for a worker with 12 years of schooling the predicted wage is $14.80/hour using the
natural predictor and $17.00/hour using the corrected one. In large samples we would expect the
corrected predictor to be a bit better. Among the 1000 individuals in the sample, 328 of them have
12 years of schooling. Among those, the average wage is $15.99. Hence the corrected prediction
overshoots by about a dollar/hour. Still, it is closer than the uncorrected figure.

To get the average wage for those with 12 years of schooling, we can restrict the sample using
the script below:

smpl educ=12 --restrict

summary wage

smpl full

The syntax is relatively straightforward. The smpl command instructs gretl that something is
being done to the sample. The second statement educ=12 is a condition that gretl looks for within
the sample. The --restrict option tells gretl what to do for those observations that satisfy the
condition. The summary wage statement produces

Summary Statistics, using the observations 1–328
for the variable wage (328 valid observations)

Mean Median Minimum Maximum

15.9933 14.2050 2.50000 72.1300

Std. Dev. C.V. Skewness Ex. kurtosis

8.84371 0.552963 2.31394 9.08474

which shows that the mean for the 328 observations is almost $16.00. The last line smpl full

restores the full sample.

4.5.6 Prediction Interval

To generate a complete confidence interval for every year of schooling between 1 and 21 years,
you can use the following script. The result looks very similar to Figure 4.15 in POE4.
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1 open "@gretldir\data\poe\cps4_small.gdt"

2 logs wage

3 ols l_wage const educ

4 scalar sig2 = $ess/$df

5 matrix sem = zeros(21,5)

6 loop for i = 1..21 --quiet

7 scalar yh = ($coeff(const) + $coeff(educ)*i)

8 scalar f = sig2 + sig2/$nobs + ((i-mean(educ))^2)*($stderr(educ)^2)

9 sem[i,1]=i

10 sem[i,2]= yh

11 sem[i,3]=sqrt(f)

12 sem[i,4]=exp(yh-critical(t,$df,0.025)*sqrt(f))

13 sem[i,5]=exp(yh+critical(t,$df,.025)*sqrt(f))

14 endloop

15 print sem

16

17 nulldata 21 --preserve

18 series ed = sem[,1]

19 series wage = exp(sem[,2])

20 series lb = sem[,4]

21 series ub = sem[,5]

Although there are probably more elegant ways to do this, this script works. It will take a bit
of explanation, however. In lines 1-4 the dataset is opened, log wage is created, the regression is
estimated as is the overall variance of the model.

In line 5 a matrix of zeros is created that will be used to store results created in a loop. The loop
starts at i=1 and iterates, by one, to 21. These are the possible years of schooling that individuals
have in our dataset. For each number of years the forecast and its forecast variance are estimated
(lines 7 and 8). Notice that these will have different values at each iteration of the loop thanks to
their dependence on the index, i. In line 9 the matrix sem gets i placed on the ith row of the first
column. The next line puts the prediction in the second column. In the third column I’ve placed
the forecast standard error and in the next two the lower and upper boundaries for the interval.
The loop ends at i=21, at which point the matrix sem is full; then it is printed.

Although you can plot the columns of matrices, I find it easier to put the columns into a dataset
and use the regular gretl commands to make plots. First, create an empty dataset using nulldata

21. The 21 puts 21 observations into the dataset. The --preserve option is required because
without it the contents of the matrix sem would be emptied–definitely not what we want. In the
next lines the series command is used to put each column of the matrix into a data series. Once
this is done, the variables will show up in the data window and you can graph them as usual. Below
in Figure 4.19 is the graph that I created (with a little editing).
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Figure 4.19: This is a plot generated using a loop to estimate forecast standard errors.

4.5.7 Log-Log Model

Finally, a log-log model is used. This functional form is often used to estimate demand equations
as it implies a constant price elasticity for the commodity in question. This example uses the
newbroiler.gdt which is adapted from Epple and McCallum (2006). The variable Q is per capita
consumption of chicken, in pounds and P is the real price in dollars. The sample is from 1950-2001.
The estimated log-log model is

l̂ q = 3.71694
(0.022359)

− 1.12136
(0.048756)

l p

T = 52 R̄2 = 0.9119 F (1, 50) = 528.96 σ̂ = 0.11799

(standard errors in parentheses)

The coefficient on logarithm of P is 1.121 which means that a 1% increase in the real price of
chicken will decrease quantity demanded by 1.121%.

Once again, the predictor of quantity needs to be corrected since the model is estimated in

logarithms. Q̂c = exp (b1 + b2 ln(x) + σ̂2/2) = e
̂ln(Q)eσ̂

2/2. The R2 statistic can be computed as the
squared correlation between Q and Q̂. The script for this exercise is:
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1 open "@gretldir\data\poe\newbroiler.gdt"

2 logs q p

3 ols l_q const l_p

4 series yht=$yhat

5 series pred = exp(yht)

6 series corrected_pred=pred*exp($sigma^2/2)

7 scalar r2= corr(corrected_pred,q)^2

8 gnuplot corrected_pred q p

The results are

? scalar r2= corr(corrected_pred,q)^2

Generated scalar r2 = 0.881776

and the corresponding graph is found in Figure 4.20.

Figure 4.20: This is a plot generated from a log-log model of chicken demand.

The figure looks good. The nonlinear relationship between weight and price is quite evident
and the fit is reasonable good.

4.6 Script
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1 set echo off

2 # estimate model by LS and predict food_exp

3 open "@gretldir\data\poe\food.gdt"

4 ols food_exp const income

5 scalar yhat0 = $coeff(const) + $coeff(income)*20

6

7 # prediction interval

8 ols food_exp const income

9 scalar yhat0 = $coeff(const) + $coeff(income)*20

10 scalar f=8013.2941+(8013.2941/40)+4.3818*(20-19.6047)^2

11 scalar ub=yhat0+2.0244*sqrt(f)

12 scalar lb=yhat0-2.0244*sqrt(f)

13

14 # prediction interval using accessors

15 ols food_exp const income

16 scalar yhat0=$coeff(const)+20*$coeff(income)

17 scalar sig2 = $ess/$df

18 scalar f = sig2 + sig2/$nobs + ((20-mean(income))^2)*($stderr(income)^2)

19 scalar lb = yhat0-critical(t,$df,0.025)*sqrt(f)

20 scalar ub = yhat0+critical(t,$df,0.025)*sqrt(f)

21

22 # correlations

23 ols food_exp const income --anova

24 c1 = corr(food_exp,$yhat)

25

26 # linear-log model

27 series l_income = ln(income)

28 ols food_exp const l_income

29 series yhat2 = $yhat

30 gnuplot yhat2 food_exp income

31

32 # simple data plot

33 open "@gretldir\data\poe\ch4sim1.gdt"

34 gnuplot e x

35

36 # residual plot

37 open "@gretldir\data\poe\ch4sim2.gdt"

38 ols y const x

39 series ehat = $uhat

40 gnuplot ehat x

41

42 # normality tests

43 open "@gretldir\data\poe\food.gdt"

44 ols food_exp const income

45 series uhat1 = $uhat

46 summary uhat1

47 normtest uhat1 --jbera

48 normtest uhat1 --all

49 modtest --normality

50

51 # polynomial
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52 open "@gretldir\data\poe\wa-wheat.gdt"

53 ols greenough const time

54 gnuplot greenough time

55

56 setinfo greenough -d "Wheat yield in tonnes" -n "Yield in tonnes"

57 gnuplot greenough --with-lines --time-series

58

59 series t3=time^3/1000000

60 ols greenough const t3

61 gnuplot greenough --with-lines --time-series

62

63 open "@gretldir\data\poe\wa-wheat.gdt"

64 series lyield = log(greenough)

65 ols lyield const time

66

67 # log-linear model

68 open "@gretldir\data\poe\cps4_small.gdt"

69 logs wage

70 ols l_wage const educ

71 scalar lb = $coeff(educ) - 1.96 * $stderr(educ)

72 scalar ub = $coeff(educ) + 1.96 * $stderr(educ)

73 print lb ub

74

75 open "@gretldir\data\poe\cps4_small.gdt"

76 logs wage

77 ols l_wage const educ

78 series y = exp($yhat)

79 scalar corr1 = corr(y, wage)

80 scalar Rsquare = corr1^2

81 print corr1 Rsquare

82

83 # simple prediction in log-linear model

84 open "@gretldir\data\poe\cps4_small.gdt"

85 logs wage

86 ols l_wage const educ

87 scalar l_wage_12 = $coeff(const)+$coeff(educ)*12

88 scalar nat_pred = exp(l_wage_12)

89 scalar corrected_pred = nat_pred*exp($sigma^2/2)

90 print l_wage_12 nat_pred corrected_pred

91

92 smpl educ=12 --restrict

93 summary wage

94 smpl full

95

96 # prediction intervals using a loop

97 open "@gretldir\data\poe\cps4_small.gdt"

98 logs wage

99 ols l_wage const educ

100 scalar sig2 = $ess/$df

101 matrix sem = zeros(21,5)

102 loop for i = 1..21 --quiet
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103 scalar yh = ($coeff(const) + $coeff(educ)*i)

104 scalar f = sig2 + sig2/$nobs + ((i-mean(educ))^2)*($stderr(educ)^2)

105 sem[i,1]=i

106 sem[i,2]= yh

107 sem[i,3]=sqrt(f)

108 sem[i,4]=exp(yh-critical(t,$df,0.025)*sqrt(f))

109 sem[i,5]=exp(yh+critical(t,$df,.025)*sqrt(f))

110 endloop

111 print sem

112

113 nulldata 21 --preserve

114 series ed=sem[,1]

115 series wage=exp(sem[,2])

116 series lb=sem[,4]

117 series ub=sem[,5]

118

119 # corrected predictions in log-linear model

120 open "@gretldir\data\poe\newbroiler.gdt"

121 logs q p

122 ols l_q const l_p

123 series yht=$yhat

124 series pred = exp(yht)

125 series corrected_pred=pred*exp($sigma^2/2)

126 scalar r2= corr(corrected_pred,q)^2

127 gnuplot corrected_pred q p
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Chapter 5
Multiple Regression Model

The multiple regression model is an extension of the simple model discussed in chapter 2. The
main difference is that the multiple linear regression model contains more than one explanatory vari-
able. This changes the interpretation of the coefficients slightly and requires another assumption.
The general form of the model is shown in equation (5.1) below.

yi = β1 + β2xi2 + · · ·+ βKxiK + ei i = 1, 2, . . . , N (5.1)

where yi is your dependent variable, xik is the ith observation on the kth independent variable,
k = 2, 3, . . . ,K, ei is random error, and β1, β2, . . . , βK are the parameters you want to estimate.
Just as in the simple linear regression model, each error, ei, has an average value of zero for each
value of the independent variables; each has the same variance, σ2, and are uncorrelated with any
of the other errors. In order to be able to estimate each of the βs, none of the independent variables
can be an exact linear combination of the others. This serves the same purpose as the assumption
that each independent variable of the simple linear regression take on at least two different values
in your dataset. The error assumptions can be summarized as ei|xi2, xi3, . . . xiK iid (0, σ2). Recall
from chapter 2 that expression iid means that the errors are statistically independent from one
another (and therefore uncorrelated) and each has the same probability distribution. Taking a
random sample from a single population accomplishes this.

The parameters β2, β3, . . . , βK are referred to as slopes and each slope measures the effect of a
1 unit change in xik on the average value of yi, holding all other variables in the equation constant.
The conditional interpretation of the coefficient is important to remember when using multiple
linear regression.

The example used in this chapter models the sales for Big Andy’s Burger Barn. The model
includes two explanatory variables and a constant.

salesi = β1 + β2pricei + β3adverti + ei i = 1, 2, . . . , N (5.2)

where salesi is monthly sales in a given city and is measured in $1,000 increments, pricei is price
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of a hamburger measured in dollars, and adverti is the advertising expenditure also measured in
thousands of dollars.

5.1 Linear Regression

The parameters of the model are estimated using least squares which can be done using the pull-
down menus and dialog boxes (GUI) or by using gretl’s handy scripting language (affectionately
called hansl). Both of these will be demonstrated below. The GUI makes it easy to estimate this
model using least squares. There are actually two ways to open the dialog box. The first is to
use the pull-down menu. Select Model>Ordinary Least Squares from the main gretl window as
shown below in Figure 5.1. This brings up the dialog box shown in Figure 5.2. As in chapter 2

Figure 5.1: Using the pull-down menu to open the ordinary least squares dialog box.

Figure 5.2: The specify model dialog box for ordinary least squares (OLS)

you need to put the dependent variable (sales) and the independent variables (const, price, and
advert) in the appropriate boxes. Click OK and the model is estimated. The results appear in
Table 5.1 below.
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There is a shortcut to get to the specify model dialog box. On the toolbar located at the bottom
of the main gretl window is a button labeled β̂. Clicking on this button as shown in Figure 5.3
will open the OLS specify model dialog box in Figure 5.2.

Figure 5.3: The OLS shortcut button on the toolbar.

5.2 Big Andy’s Burger Barn

Hansl is used to estimate the model for Big Andy’s. The following two lines are typed into a
script file, which is executed by clicking your mouse on the “gear” button of the script window.

1 open "@gretldir\data\poe\andy.gdt"

2 ols sales const price advert

3 scalar S_hat = $coeff(const) + $coeff(price)*5.5 + $coeff(advert)*1.2

This assumes that the gretl data set andy.gdt is installed at c:\ProgramFiles(x86)\gretl\data\
poe. The results, in tabular form, are in Table 5.1 and match those in POE4.

In addition to providing information about how average sales change when price or advertising
changes, the estimated equation can be used for prediction. To predict sales revenue for a price of
$5.50 and an advertising expenditure of $1,200 we can use genr or scalar to do the computations.
From the console,

Generated scalar S_hat (ID 4) = 77.6555

which also matches the result in POE4.
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Model 1: OLS, using observations 1–75
Dependent variable: sales

Coefficient Std. Error t-ratio p-value

const 118.914 6.35164 18.7217 0.0000
price −7.90785 1.09599 −7.2152 0.0000
advert 1.86258 0.683195 2.7263 0.0080

Mean dependent var 77.37467 S.D. dependent var 6.488537
Sum squared resid 1718.943 S.E. of regression 4.886124
R2 0.448258 Adjusted R2 0.432932
F (2, 72) 29.24786 P-value(F ) 5.04e–10
Log-likelihood −223.8695 Akaike criterion 453.7390
Schwarz criterion 460.6915 Hannan–Quinn 456.5151

Table 5.1: The regression results from Big Andy’s Burger Barn

5.2.1 Variances and Covariances of Least Squares

The variances and covariances of the least squares estimator give us information about how
precise our knowledge of the parameters is from estimating them. Smaller standard errors mean
that our knowledge is more precise.

The precision of least squares (LS) depends on a number of factors.

1. Smaller variation in the dependent variable about its mean, σ2, makes LS more precise.

2. Larger samples, N , improve LS precision.

3. More variation in the independent variables about their respective means makes LS more
precise.

4. Less correlation between the least squares estimates, corr(b2, b3), also improves LS precision.

The precision of least squares (and other estimators) is summarized by the variance-covariance
matrix, which includes a measurement of the variance of the intercept, each slope, and covariance
between each pair. The variances of the least squares estimator fall on the diagonal of this square
matrix and the covariances in the off-diagonal elements.

cov(b1, b2, b3) =

 var(b1) cov(b1, b2) cov(b1, b3)
cov(b1, b2) var(b2) cov(b2, b3)
cov(b1, b3) cov(b2, b3) var(b2)

 (5.3)

All of these have to be estimated from the data, and generally depends on your estimate of the
overall variance of the model, σ̂2 and correlations among the independent variables. To print an
estimate of the variance-covariance matrix following a regression use the --vcv option with your
regression in gretl :
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ols sales const price advert --vcv

The result is

Coefficient covariance matrix

const price advert
40.343 −6.7951 −0.74842 const

1.2012 −0.01974 price
0.46676 advert

For instance, the estimated variance of b1–the intercept–is 40.343 and the estimated covariance
between the LS estimated slopes b2 and b3 is −0.01974.

A (estimated) standard error of a coefficient is the square root of its (estimated) variance,
ŝe(b2) =

√
v̂ar(b2). These are printed in the output table along with the least squares estimates,

t-ratios, and their p-values.

5.2.2 Confidence Intervals

Confidence intervals are obtained using the scalar command in the same way as in chapter 3.
A 95% confidence interval for β2, the coefficient of the price variable is generated:

1 ols sales const price advert --vcv

2 scalar bL = $coeff(price) - critical(t,$df,0.025) * $stderr(price)

3 scalar bU = $coeff(price) + critical(t,$df,0.025) * $stderr(price)

4 printf "\nThe lower = %.2f and upper = %.2f confidence limits\n", bL, bU

The output from the script is:

The lower = -10.09 and upper = -5.72 confidence limits

This nifty piece of output uses the function called, printf. printf stands for print format and
it is used to gain additional control over how results are printed to the screen. In this instance
we’ve combined descriptive text and numerical results. The syntax is a bit tricky, so I will explain
a little about it. I will be using it extensively in the rest of this book so that you get the used to
it. Once you use it, its mystery quickly evaporates–the syntax is really quite elegant.

The printf function is divided into two parts. The first part consists of what you want to write
to the screen, and the second contains the numbers from your output that you want placed within
the first part.
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Dressing up printed output with printf
printf "\nThe lower = %.2f and upper = %.2f confidence limits\n", bL, bU

The first part, called the format string, is enclosed in double quotes. The \n command stands for
‘new line’ and it basically tells gretl to issue a line feed (in old computer lingo, that means go to a
new line). It is used at the beginning and the end of the format string and is not strictly necessary.
In this case, a line feed is given before and after the format string to give a little more white space
to your printed output. If you want line feeds, be sure to put these inside the double quotes that
enclose the format string.

Within this ‘sentence’ or ‘format string’ are two format commands. A format command tells
gretl how the numerical results are to be printed. A format command begins with the % symbol
and is followed by instructions about how many digits of the numerical result you want it to print.
These formats are basically adopted from the C programming language. %f a fixed point format
and the number that falls between the %. and f indicates how many decimal places to print. So,
%.2f tells gretl to print only two numbers to the right of the decimal.

Recognized numeric formats are %s, %e, %E, %f, %g, %G and %d1, in each case with the various
modifiers available in C. Examples: the format %.10g prints a value to 10 significant figures; %12.6f
prints a value to 6 decimal places, with a width of 12 characters. The format %s should be used
for strings.

The second part of the printf command contains the values to be printed at the each of the
format commands. There has to be one result for each format command. These are separated by
commas. Since there are two format commands, gretl is expecting two results to be listed. The
result computed and stored in bL will be printed at the first format command, %.2f, and the one
in bU will be printed at the second %.2f. The values to be printed must follow the format string,
separated by commas. These values should take the form of either (a) the names of variables, (b)
expressions that are valid for the genr command, or (c) the special functions varname() or date().

Remember, you can also summon the 95% confidence intervals from the model window us-
ing the pull-down menu by choosing Analysis>Confidence intervals for coefficients. The
confidence interval for β2 is shown below in Figure 5.4.

You can also estimate intervals for linear combinations of parameters as we did in chapter
4. Suppose Big Andy wants to increase sales next week by lowering price and spending more on
advertising. If he increases advertising by $800 and lowers price by 40 cents the change in expected
sales would be

λ = E(sales1)− E(sales0) = −0.4β2 + 0.8β3 (5.4)

The estimate of λ is obtained by replacing the unknown parameters with the least squares estimates.
The standard error of this linear combination can be calculated in the same fashion as discussed in
section 3.6. A 90% interval is constructed using the script:

1%e is for scientific notation with lower case e, %E is scientific upper case, %g picks the shorter of %e or %f, and %G

picks the shorter of %E or %f. The format command %d is for a signed decimal integer.
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Figure 5.4: The confidence intervals produced from the GUI through the model window. In the
model window, choose Analysis>Confidence intervals for coefficients

1 scalar chg = -0.4*$coeff(price)+0.8*$coeff(advert)

2 scalar se_chg=sqrt((-0.4)^2*$vcv[2,2]+(0.8^2)*$vcv[3,3]+2*(-0.4)*(0.8)*$vcv[2,3])

3 scalar lb = chg-critical(t,$df,.05)*se_chg

4 scalar ub = chg+critical(t,$df,.05)*se_chg

5 printf "\nExpected Change = %.4f and SE = %.4f\n",chg,se_chg

6 printf "\nThe 90%% confidence interval is [%.3f, %.3f]\n",lb,ub

This produces the expected result:

Expected Change = 4.6532 and SE = 0.7096

The 90% confidence interval is [3.471, 5.836]

The only trick here is to get the percent % symbol into the print statement; to do so it must be
preceded by another percent symbol, %; hence, 90%% appears in line 6 to print 90%.

5.2.3 t-Tests, Critical Values, and p-values

In section 3.4 the GUI was used to obtain test statistics, critical values and p-values. However,
it is often much easier to use the the genr or scalar commands from either the console or as a
script to compute these. In this section, the scripts will be used to test various hypotheses about
the sales model for Big Andy.

Significance Tests

Multiple regression models includes several independent variables because one believes that
each as an independent effect on the mean of the dependent variable. To confirm this belief it is
customary to perform tests of individual parameter significance. If the parameter is zero, then the
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variable does not belong in the model. In gretl the t-ratio associated with the null hypothesis that
βk = 0 against the alternative βk 6= 0 is printed in the regression results along side the associated
p-value. For the sake of completeness, these can be computed manually using a script as found
below. For t-ratios and one- and two-sided hypothesis tests the appropriate commands are:

1 ols sales const price advert

2 scalar t1 = ($coeff(price)-0)/$stderr(price)

3 scalar t2 = ($coeff(advert)-0)/$stderr(advert)

4 printf "\n The t-ratio for H0: b2=0 is = %.3f.\n\

5 The t-ratio for H0: b3=0 is = %.3f.\n", t1, t2

The results shown in Figure 5.5 As you can see, the automatic results and the manually generated

Figure 5.5: Notice that the usual model estimation results produced by gretl prints the t-ratios
needed for parameter significance by default. These match the manual computation.

ones match perfectly.

One of the advantages of doing t-tests manually is that you can test hypotheses other than
parameter significance. You can test hypothesis that the parameter is different from values other
than zero, test a one-sided hypotheses, or test a hypotheses involving a linear combinations of
parameters.
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One-tail Alternatives

If a decrease in price increases sales revenue then we can conclude that demand is elastic. So,
if β2 ≥ 0 demand is elastic and if β2 < 0 it is inelastic. To test H0 : β2 ≥ 0 versus H1 : β < 0, the
test statistic is the usual t-ratio.

1 scalar t1 = ($coeff(price)-0)/$stderr(price)

2 pvalue t $df t1

The rejection region for this test lies to the left of −tc, which is the α level critical value from the
distribution of t. This is a perfect opportunity to use the pvalue function. The result is:

t(72): area to the right of -7.21524 =~ 1

(to the left: 2.212e-010)

(two-tailed value = 4.424e-010; complement = 1)

You can see that the area to the left of −7.21524 is close to zero. That is less than 5% nominal
level of the test and therefore we reject that β2 is non-negative.

A test of whether a dollar of additional advertising will generate at least a dollar’s worth of
sales is expressed parametrically as H0 : β3 ≤ 1 versus H1 : β3 > 1. This requires a new t-ratio and
again we use the pvalue function to conduct the test.

1 scalar t3 = ($coeff(advert)-1)/$stderr(advert)

2 pvalue t $df t3

The results are

t(72): area to the right of 1.26257 = 0.105408

(two-tailed value = 0.210817; complement = 0.789183)

The rejection region for this alternative hypothesis lies to the right of the computed t-ratio. That
implies that the p-value is 0.105. At 5% level of significance, this null hypothesis cannot be rejected.

Linear Combinations of Parameters

Big Andy’s advertiser claims that dropping the price by 20 cents will increase sales more than
spending an extra $500 on advertising. This can be translated into a parametric hypothesis that
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can be tested using the sample. If the advertiser is correct then −0.2β2 > 0.5β3. The hypothesis
to be tested is:

HO :− 0.2β2 − 0.5β3 ≤ 0

H1 :− 0.2β2 − 0.5β3 > 0

The test statistic is

t =
−0.2b2 − 0.5b3

se(−0.2b2 − 0.5b3)
∼ t72 (5.5)

provided the null hypothesis is true. The script is

1 ols sales const price advert --vcv

2 scalar chg = -0.2*$coeff(price)-0.5*$coeff(advert)

3 scalar se_chg=sqrt((-0.2)^2*$vcv[2,2]+((-0.5)^2)*$vcv[3,3]\

4 +2*(-0.2)*(-0.5)*$vcv[2,3])

5 scalar t_ratio = chg/se_chg

6 pvalue t $df t_ratio

which generates the needed information to perform the one-sided test.

t(72): area to the right of 1.62171 = 0.0546189

(two-tailed value = 0.109238; complement = 0.890762)

The p-value is P (t72 > 1.62171) = 0.0546189. At 5% we cannot reject the null (but we could at
10%).

5.3 Polynomials

One way to allow for nonlinear relationships between independent and dependent variables is
to introduce polynomials of the regressors into the model. In this example the marginal effect of
an additional dollar of advertising is expected to diminish as more advertising is used. The model
becomes:

salesi = β1 + β2pricei + β3adverti + β4advert2 + ei i = 1, 2, . . . , N (5.6)

To estimate the parameters of this model, one creates the new variable, advert2, adds it to the
model, and uses least squares.

1 series a2 = advert^2

2 ols sales price advert a2
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which produces

OLS, using observations 1–75
Dependent variable: sales

Coefficient Std. Error t-ratio p-value

const 109.719 6.79905 16.1374 0.0000
price −7.64000 1.04594 −7.3044 0.0000
advert 12.1512 3.55616 3.4170 0.0011
a2 −2.76796 0.940624 −2.9427 0.0044

Mean dependent var 77.37467 S.D. dependent var 6.488537
Sum squared resid 1532.084 S.E. of regression 4.645283
R2 0.508235 Adjusted R2 0.487456
F (3, 71) 24.45932 P-value(F ) 5.60e–11
Log-likelihood −219.5540 Akaike criterion 447.1080
Schwarz criterion 456.3780 Hannan–Quinn 450.8094

The variable a2, which is created by squaring advert, is a simple example of what is sometimes
referred to as an interaction variable. The simplest way to think about an interaction variable
is that you believe that its effect on the dependent variable depends on another variable–the two
variables interact to determine the average value of the dependent variable. In this example, the
effect of advertising on average sales depends on the level of advertising itself.

Another way to square variables is to use the square command

square advert

This creates a variable sq advert and adds it to the variable list. Notice that gretl just adds the
sq prefix to the existing variable name. You can square multiple variables at a time by just by
adding them to the square command’s list.

5.3.1 Marginal Effects

When variables interact, the marginal effect of one variable on the mean of another has to be
computed manually based on calculus. Taking the partial derivative of average sales with respect
to advertising yields produces the marginal effect on average sales of an increase in advertising;

∂E(sales)

∂advert
= β3 + 2β4advert (5.7)
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The magnitude of the marginal effect depends on the parameters as well as on the level of adver-
tising. In the example marginal effect is evaluated at two points, advert=.5 and advert=2. The
code is:

1 scalar me1 = $coeff(advert)+2*(0.5)*$coeff(a2)

2 scalar me2 = $coeff(advert)+2*2*$coeff(a2)

3 printf "\nThe marginal effect at $500 (advert=.5) is \

4 %.3f and at $2000 (advert=2) is %.3f\n",me1,me2

and the result is:

The marginal effect at $500 (advert=.5) is 9.383 and at $2000 (advert=2) is 1.079

5.3.2 Optimal Advertising: Nonlinear Combinations of Parameters

The optimal level of advertising, adverto, is defined in this example to be the amount that
maximizes net sales. Andy will advertise up to the point where another dollar of expenditure adds
at least one dollar of additional sales-and no more. At this point the marginal effect is equal to
one,

β3 + 2β4adverto = 1 (5.8)

Solving advert in terms of the parameters

λ = adverto =
1− β3

2β4
(5.9)

which is nonlinear in the parameters of the model. A consistent estimate of the optimal level of
advertising can be obtained by substituting the least squares estimates for the parameters on the
right-hand side. Estimating the standard error via the Delta method requires some calculus, but
it is quite straightforward to do in gretl.

The Delta method is based on a first-order Taylor’s series expansion of a function that involves
the parameters of the model. It relies on the asymptotic normality of the estimator you are using.
Let β be a 2×1 vector of parameters; an intercept and slope. Consider a possibly nonlinear function
of a parameters g(β). Also, let’s say that we estimate a set of parameters β using an estimator
called b and that b

a∼ N(β, V ). So far, we’ve described the least squares estimator of the simple
regression. Then, by the Delta theorem, the nonlinear function evaluated at the estimates has the
following approximate distribution:

g(b)
a∼ N(g(β), G(β)V G(β)T ) (5.10)

where G(β) = ∂g(β)/∂βT . In order to use the Delta Method, you have to take the partial deriva-
tives of the function, which in our example is a hypothesis, with respect to each parameter in the
model. That is, you need the Jacobian.
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In the example, g(β) = 1− β3/2β4. Taking the derivatives with respect to each of the parame-
ters, β1, β2, β3, and β4 yields:

d1 =
∂adverto
∂β1

= 0

d2 =
∂adverto
∂β2

= 0

d3 =
∂adverto
∂β3

= − 1

2β4
(5.11)

d4 =
∂adverto
∂β4

= −1− β3

2β2
4

(5.12)

Note that the derivatives with respect to β1 and β2 are 0. To use the Delta method, simply replace
the unknown parameters in equation (5.9) with least squares estimates. Then to get the estimated
standard error of λ̂, substituted estimates into the derivatives d3 and d4, and compute

var(λ̂) =
(
0 0 d̂3 d̂4

)
[ĉov(b1, b2, b3, b4)]


0
0

d̂3

d̂4

 (5.13)

This looks harder to do than it actually is. The gretl script to compute the variance and standard
error is:

1 ols sales const price advert a2 --vcv

2 matrix b = $coeff

3 matrix cov = $vcv

4 scalar lambda = (1-b[3])/(2*b[4])

5 scalar d3 = -1/(2*b[4])

6 scalar d4 = -1*(1-b[3])/(2*b[4]^2)

7 matrix d = { 0, 0, d3, d4}

8 scalar v = d*cov*d’

9 scalar se = sqrt(v)

10 scalar lb = lambda - critical(t,$df,.025)*se

11 scalar ub = lambda + critical(t,$df,.025)*se

12 printf "\nThe estimated optimal level of advertising is $%.2f.\n",1000*lambda

13 printf "\nThe 95%% confidence interval is ($%.2f, $%.2f).\n",1000*lb,1000*ub

The first line estimates the model using least sqaures and the --vcv option is used to print the
covariance matrix. In line 2 the entire set of coefficents is saved into a vector (a one row matrix
in this case) called b. This will make the syntax that follows easier since each coefficient can
be referred to by its position in the vector, e.g., the third coefficient in b is b[3]. In line 3 the
covariance matrix is saved as cov. In line 4 the least squares estimates are substituted for the
unknown parameters. In lines 5 and 6 the analytical derivatives are evaluated at the estimates.
The matrix d is 1 × 4 and contains the derivatives of the hypothesis with respect to each of the
parameters. The next line computes variance in equation (5.13). Finally, the square root is taken
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to get the standard error and the confidence bounds are computed in lines 10 and 11 and printed
in 12 and 13.

The estimated optimal level of advertising is $2014.34.

The 95% confidence interval is ($1757.67, $2271.01).

According to this estimate the optimal level of advertising is $2014.34 and the 95% confidence
interval is ($1758, $2271).

5.4 Interactions

Interaction among variables was introduced in the preceding section for creating polynomial
terms. The concept is very general can be applied to any situation where the effect of a change in
one variable on the mean of the dependent variable depends on another variable.

5.4.1 Basic Interactions of Continuous Variables

The basic model considered is

pizza = β1 + β2age + β3income + e (5.14)

It is proposed that as a person grows older, his or her marginal propensity to spend on pizza
declines-this implies that the coefficient β3 depends on a person’s age.

β3 = β4 + β5age (5.15)

Substituting this into the model produces

pizza = β1 + β2age + β3income + β4(income× age) + e (5.16)

This introduces a new variable, income× age, which is an interaction variable. The marginal effect
of unit increase in age in this model depends on income and the marginal effect of an increase in
income depends on age.

The interaction could be created in gretl using the genr or series command. The data for
the following example are found in the pizza4.gdt dataset.

1 open "@gretldir\data\poe\pizza4.gdt"

2 genr inc_age = income*age

3 ols pizza const age income inc_age
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The result is

Model 1: OLS, using observations 1–40
Dependent variable: pizza

Coefficient Std. Error t-ratio p-value

const 161.465 120.663 1.3381 0.1892
age −2.97742 3.35210 −0.8882 0.3803
income 6.97991 2.82277 2.4727 0.0183
inc age −0.123239 0.0667187 −1.8471 0.0730

Mean dependent var 191.5500 S.D. dependent var 155.8806
Sum squared resid 580608.7 S.E. of regression 126.9961
R2 0.387319 Adjusted R2 0.336262
F (3, 36) 7.586038 P-value(F ) 0.000468
Log-likelihood −248.4166 Akaike criterion 504.8332
Schwarz criterion 511.5887 Hannan–Quinn 507.2758

The marginal effect of age on pizza expenditure can be found by taking the partial derivative of
the regression function with respect to age

∂E(pizza)

age
= β2 + β4income (5.17)

Comparing the marginal effect of another year on average expenditures for two individuals, one
with $25,000 in income

= b2 + b4 × 25 = −2.977 + (−0.1232)25 = −6.06. (5.18)

To carry this out in a script with income at $25,000 and $90,000

1 open "@gretldir\data\poe\pizza4.gdt"

2 series inc_age=income*age

3 ols pizza const age income inc_age

4 scalar me1 = $coeff(age)+$coeff(inc_age)*25

5 scalar me2 = $coeff(age)+$coeff(inc_age)*90

6 printf "\nThe marginal effect of age for one \

7 with $25,000/year income is %.2f.\n",me1

8 printf "\nThe marginal effect of age for one \

9 with $90,000/year income is %.2f.\n",me2

This yields:

The marginal effect of age for one with $25,000/year income is -6.06.

The marginal effect of age for one with $90,000/year income is -14.07.
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5.4.2 Log-Linear Model

In this example the simple regression first considered in chapter 4 is modified to include more
variables and an interaction. The model adds experience to the model

ln(wage) = β1 + β2educ + β3exper + e (5.19)

In this model suppose that the marginal effect of another year of schooling depends on how much
experience the worker has. This requires adding an interaction

ln(wage) = β1 + β2educ + β3exper + β4(educ× exper) + e (5.20)

The marginal effect of another year of experience is

∂E[ln(wage)]

exper
|educ fixed = β3 + β4educ (5.21)

In percentage terms the marginal effect of another year of experience is 100(β3 + β4educ). The
model can be estimated and the marginal effect computed easily with hansl

1 open "@gretldir\data\poe\cps4_small.gdt"

2 logs wage

3 series ed_exp=educ*exper

4 ols l_wage const educ exper ed_exp

5 scalar me8 = $coeff(exper)+8*$coeff(ed_exp)

6 scalar me16 = $coeff(exper)+16*$coeff(ed_exp)

7 printf "\nThe marginal effect of exper for one \

8 with 8 years of schooling is %.3f%%\n",100*me8

9 printf "\nThe marginal effect of exper for one \

10 with 16 years of schooling is %.3f%%.\n",100*me16

The result is

The marginal effect of exper for one with 8 years of schooling is 0.604%.

The marginal effect of exper for one with 16 years of schooling is 0.575%.

5.5 Goodness-of-Fit

Other important output is included in Table 5.1. For instance, you’ll find the sum of squared
errors (SSE ) which gretl refers to as “Sum squared resid.” In this model SSE = 1718.94. To obtain
the estimated variance, σ̂2, divide SSE by the available degrees of freedom to obtain

σ̂2 =
SSE

N −K
=

1718.94

75− 3
= 23.874 (5.22)

103



The square root of this number is referred to by gretl as the “S.E. of regression” and is reported
to be 4.88612. Gretl also reports R2 in this table. If you want to compute your own versions of
these statistics using the total sum of squares from the model, you’ll have to use Analysis>ANOVA

from the model’s pull-down menu to generate the ANOVA table. Refer to section 4.2 for details.

To compute your own from the standard gretl output recall that

σ̂y =

√
SST

N − 1
(5.23)

The statistic σ̂y is printed by gretl and referred to as “S.D. of dependent variable” which is reported
to be 6.48854. A little algebra reveals

SST = (N − 1)σ̂2
y = 74 ∗ 6.48854 = 3115.485 (5.24)

Then,

R2 = 1− SSE

SST
= 1− 1718.94

3115.485
= 0.448 (5.25)

Otherwise, the goodness-of-fit statistics printed in the gretl regression output or the ANOVA table
are perfectly acceptable.

Gretl also reports the adjusted R2 in the standard regression output. The adjusted R2 imposes
a small penalty to the usual R2 when a variable is added to the model. Adding a variable with
any correlation to y always reduces SSE and increases the size of the usual R2. With the adjusted
version, the improvement in fit may be outweighed by the penalty and adjusted R2 could become
smaller as variables are added. The formula is:

R̄2 = 1− SSE/(N −K)

SST/(N − 1)
(5.26)

This sometimes referred to as “R-bar squared,” (i.e., R̄2 ) although in gretl it is called “adjusted
R-squared.” For Big Andy’s Burger Barn the adjusted R-squared is equal to 0.4329.

Once again the the printf command gives us some additional control over the format of the
output. At the end of line 3 you’ll find an extra \. This is gretl’s line continuation command.
It tells gretl to continue reading the next line. It basically joins lines 3 and 4. The continuation
command makes programs easier to print on a page. It looks slightly odd here since it immediately
follows the line feed \n, but \n\ actually consists of two commands: a line feed and a continuation.

In this the critical values for the t72 and the p-values for the two statistics can be easily obtained
using the command

1 scalar c=critical(t,$df,0.025)

2 pvalue t $df t1

3 pvalue t $df t2

These last three commands produce the output shown below:
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Generated scalar c (ID 8) = 1.99346

t(72): area to the right of -7.21524 =~ 1

(to the left: 2.212e-010)

(two-tailed value = 4.424e-010; complement = 1)

t(72): area to the right of 1.26257 = 0.105408

(two-tailed value = 0.210817; complement = 0.789183)

It is interesting to note that when a negative t-ratio is used in the pvalue function, gretl returns
both the area to its right, the area to its left and the sum of the two areas. So, for the alternative
hypothesis that the coefficient on price is less than zero (against the null that it is zero), the
p-value is the area to the left of the computed statistic, which in this example is essentially zero.

The pvalue command can also be used as a function to return a scalar that can be stored by
gretl.

1 scalar c=critical(t,$df,0.025)

2 scalar p1=pvalue(t, $df, t1)

3

4 scalar p2=pvalue(t, $df, t2)

5 printf "\nThe .025 critical value from the t with %d degrees of freedom \

6 is %.3f.\n The pvalue from HO: b2=0 is %.3f and \

7 from HO: b3=1 is %.3f.\n",$df,c,p1,p2

This prints the following to the screen:

The .025 critical value from the t with 72 degrees of freedom is 1.993.

The pvalue from HO: b2=0 is 1.000 and from HO: b3=1 is 0.105
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5.6 Script

1 set echo off

2 open "@gretldir\data\poe\andy.gdt"

3 #Change the descriptive labels and graph labels

4 setinfo sales -d "Monthly Sales revenue ($1000)" -n "Monthly Sales ($1000)"

5 setinfo price -d "$ Price" -n "Price"

6 setinfo advert -d "Monthy Advertising Expenditure ($1000)" -n \

7 "Monthly Advertising ($1000)

8

9 # print the new labels to the screen

10 labels

11

12 # summary statistics

13 summary sales price advert

14

15 # confidence intervals

16 ols sales const price advert --vcv

17 scalar bL = $coeff(price) - critical(t,$df,0.025) * $stderr(price)

18 scalar bU = $coeff(price) + critical(t,$df,0.025) * $stderr(price)

19 printf "The lower = %.2f and upper = %.2f confidence limits", bL, bU

20

21 # linear combination of parameters

22 ols sales const price advert --vcv

23 scalar chg = -0.4*$coeff(price)+0.8*$coeff(advert)

24 scalar se_chg=sqrt((-0.4)^2*$vcv[2,2]+(0.8^2)*$vcv[3,3]\

25 +2*(-0.4)*(0.8)*$vcv[2,3])

26 scalar lb = chg-critical(t,$df,.05)*se_chg

27 scalar ub = chg+critical(t,$df,.05)*se_chg

28 printf "\nExpected Change = %.4f and SE = %.4f\n",chg,se_chg

29 printf "\nThe 90%% confidence interval is [%.3f,%.3f]\n",lb,ub

30

31 # significance tests

32 ols sales const price advert

33 scalar t1 = ($coeff(price)-0)/$stderr(price)

34 scalar t2 = ($coeff(advert)-0)/$stderr(advert)

35 printf "\n The t-ratio for H0: b2=0 is = %.3f.\n\

36 The t-ratio for H0: b3=0 is = %.3f.\n", t1, t2

37

38 pvalue t $df t1

39 scalar t3 = ($coeff(advert)-1)/$stderr(advert)

40 pvalue t $df t3

41

42 # t-test of linear combination

43 ols sales const price advert --vcv

44 scalar chg = -0.2*$coeff(price)-0.5*$coeff(advert)

45 scalar se_chg=sqrt((-0.2)^2*$vcv[2,2]+((-0.5)^2)*$vcv[3,3]\

46 +2*(-0.2)*(-0.5)*$vcv[2,3])

47 scalar t_ratio = chg/se_chg

48 pvalue t $df t_ratio
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49

50 # interaction creates nonlinearity

51 series a2 = advert*advert

52 ols sales const price advert a2 --vcv

53 scalar me1 = $coeff(advert)+2*(0.5)*$coeff(a2)

54 scalar me2 = $coeff(advert)+2*2*$coeff(a2)

55 printf "\nThe marginal effect at \$500 (advert=.5) is %.3f \

56 and at \$2000 is %.3f\n",me1,me2

57

58 # delta method for nonlinear hypotheses

59 ols sales const price advert a2 --vcv

60 matrix b = $coeff

61 matrix cov = $vcv

62 scalar lambda = (1-b[3])/(2*b[4])

63 scalar d3 = -1/(2*b[4])

64 scalar d4 = -1*(1-b[3])/(2*b[4]^2)

65 matrix d = { 0, 0, d3, d4}

66 scalar v = d*cov*d’

67 scalar se = sqrt(v)

68 scalar lb = lambda - critical(t,$df,.025)*se

69 scalar ub = lambda + critical(t,$df,.025)*se

70 printf "\nThe estimated optimal level of advertising is $%.2f.\n",1000*lambda

71 printf "\nThe 95%% confidence interval is ($%.2f, $%.2f).\n",1000*lb,1000*ub

72

73 # interaction and marginal effects

74 open "@gretldir\data\poe\pizza4.gdt"

75 series inc_age=income*age

76 ols pizza const age income inc_age

77 scalar me1 = $coeff(age)+$coeff(inc_age)*25

78 scalar me2 = $coeff(age)+$coeff(inc_age)*90

79 printf "\nThe marginal effect of age for someone\

80 with $25,000/year income is %.2f.\n",me1

81 printf "\nThe marginal effect of age for someone\

82 with $90,000/year income is %.2f.\n",me2

83

84 open "@gretldir\data\poe\cps4_small.gdt"

85 logs wage

86 series ed_exp=educ*exper

87 ols l_wage const educ exper ed_exp

88 scalar me8 = $coeff(exper)+8*$coeff(ed_exp)

89 scalar me16 = $coeff(exper)+16*$coeff(ed_exp)

90 printf "\nThe marginal effect of exper for someone\

91 with 8 years of schooling is %.3f%%.\n",100*me8

92 printf "\nThe marginal effect of exper for someone\

93 with 16 years of schooling is %.3f%%.\n",100*me16
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Chapter 6
Further Inference in the Multiple Regression
Model

In this chapter several extensions of the multiple linear regression model are considered. First,
we test joint hypotheses about parameters in a model and then learn how to impose linear restric-
tions on the parameters. A condition called collinearity is also explored.

6.1 F -test

An F -statistic can be used to test multiple hypotheses in a linear regression model. In linear
regression there are several different ways to derive and compute this statistic, but each yields the
same result. The one used here compares the sum of squared errors (SSE ) in a regression model
estimated under the null hypothesis (H0) to the SSE of a model under the alternative (H1). If the
sum of squared errors from the two models are similar, then there is not enough evidence to reject
the restrictions. On the other hand, if imposing restrictions implied by H0 alter SSE substantially,
then the restrictions it implies don’t fit the data and we reject them.

In the Big Andy’s Burger Barn example we estimated the model

salesi = β1 + β2price + β3advert + β4advert2 + e (6.1)

Suppose we wish to test the hypothesis that advertising has no effect on average sales against the
alternative that it does. Thus, H0 : β3 = β4 = 0 and H1 : β3 6= 0 or β4 6= 0. Another way to
express this is in terms of the models each hypothesis implies.

H0 :β1 + β2price + e

H1 :β1 + β2price + β3advert + β4advert2 + e
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The model under H0 is restricted compared to the model under H1 since in it β3 = 0 and β4 = 0.
The F -statistic used to test H0 versus H1 estimates each model by least squares and compares
their respective sum of squared errors using the statistic:

F =
(SSEr − SSEu)/J

SSEu/(N −K)
∼ FJ,N−K if H0 is true (6.2)

The sum of squared errors from the unrestricted model (H1) is denoted SSEu and that of the
restricted model (H0) is SSEr. The numerator is divided by the number of hypotheses being
tested, J . In this case that is 2 since there are two restrictions implied by H0. The denominator
is divided by the total number of degrees of freedom in the unrestricted regression, N −K. N is
the sample size and K is the number of parameters in the unrestricted regression. When the errors
of your model are (1) independently and identically distributed (iid) normals with zero mean and
constant variance (et iid N(0, σ2)) and (2) H0 is true, then this statistic has an F distribution with
J numerator and N −K denominator degrees of freedom. Choose a significance level and compute
this statistic. Then compare its value to the appropriate critical value from the F table or compare
its p-value to the chosen significance level.

The script to estimate the models under H0 and H1 and to compute the test statistic is given
below.

1 open "@gretldir\data\poe\andy.gdt"

2 square advert

3 ols sales const price advert sq_advert

4 scalar sseu = $ess

5 scalar unrest_df = $df

6 ols sales const price

7 scalar sser = $ess

8 scalar Fstat=((sser-sseu)/2)/(sseu/(unrest_df))

9 pvalue F 2 unrest_df Fstat

The first thing to notice is that a gretl function is used to create advert2. In line 2 the square

command will square any variable or variables that follow. In doing so, the string sq is appended
as a prefix to the original variable name, so that squared advertising (advert2) becomes sq advert.

Gretl refers to the sum of squared residuals (SSE ) as the “error sum of squares” and it is
retrieved from the regression results using the accessor $ess (i.e., in line 3 scalar sseu = $ess.
In this case, the accessor $ess points to the error sum of squares computed in the regression that
precedes it. You’ll also want to save the degrees of freedom in the unrestricted model so that you
can use it in the computation of the p-value for the F -statistic. In this case, the F -statistic has 2
known parameters (J=1 and N−K=unrest df) that are used as arguments in the pvalue function.

There are a number of other ways within gretl to do this test. These are available through
scripts, but it may be useful to demonstrate how to access them through the GUI. First, you’ll
want to estimate the model using least squares. From the pull-down menu (see Figure 5.1) se-
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lect Model>Ordinary Least Squares, specify the unrestricted model (Figure 5.2), and run the
regression. This yields the result shown in Figure 6.1.

Figure 6.1: The model results from least squares regression using the pull-down menu

You’ll notice that along the menu bar at the top of this window there are a number of options
that are available to you. Choose Tests and the pull-down menu shown in Figure 6.2 will be
revealed. The first four options in 6.2 are highlighted and these are the ones that are most pertinent

Figure 6.2: Choosing Tests from the pull-down menu of the model window reveals several testing
options

to the discussion here. This menu provides you an easy way to omit variables from the model, add
variables to the model, test a sum of your coefficients, or to test arbitrary linear restrictions on the
parameters of your model.

Since this test involves imposing a zero restriction on the coefficient of the variable price, we can
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use the Omit variables option. This brings up the dialog box shown in Figure 6.3. Notice the two
radio buttons at the bottom of the window. The first is labeled Estimate reduced model and this
is the one you want to use to compute equation 6.2. If you select the other, no harm is done. It is
computed in a different way, but produces the same answer in a linear model. The only advantage
of the Wald test (second option) is that the restricted model does not have to be estimated in
order to perform the test. Consequently, when you use the --wald option, the restricted model is
not estimated and the unrestricted model remains in gretl’s memory where its statistics can be
accessed.

Figure 6.3: The Omit variables dialog box available from the Tests pull-down menu in the model
window.

Select the variable P and click OK to reveal the result shown in Figure 6.4. The interesting
thing about this option is that it mimics your manual calculation of the F statistic from the script.
It computes the sum of squared errors in the unrestricted and restricted models and computes
equation (6.2) based on those regressions. Most pieces of software choose the alternative method
(Wald) to compute the test, but you get the same result.1

You can also use the linear restrictions option from the pull-down menu shown in Figure
6.2. This produces a large dialog box that requires a bit of explanation. The box appears in Figure
6.5. The restrictions you want to impose (or test) are entered here. Each restriction in the set should
be expressed as an equation, with a linear combination of parameters on the left and a numeric
value to the right of the equals sign. Parameters are referenced in the form b[variable number],
where variable number represents the position of the regressor in the equation, which starts with
1. This means that β3 is equivalent to b[3]. Restricting β3 = 0 is done by issuing b[3]=0 and
setting β4 = 0 by b[4]=0 in this dialog. Sometimes you’ll want to use a restriction that involves a

1Of course, if you had used the --robust option with ols, then a Wald calculation is done. This is discussed in
chapter 8.
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Figure 6.4: The results using the Omit variables dialog box to test zero restrictions on the
parameters of a linear model.

multiple of a parameter e.g., 3β3 = 2. The basic principle is to place the multiplier first, then the
parameter, using * to multiply. So, in this case the restriction in gretl becomes 3*b[3] = 2.

When you use the console or a script instead of the pull-down menu to impose restrictions,
you’ll have to tell gretl where the restrictions start and end. The restrictions start with a restrict

statement and end with end restrict. The statement will look like this:

open "@gretldir\data\poe\andy.gdt"

ols sales const price advert sq_advert

restrict

b[3] = 0

b[4] = 0

end restrict

Put each restriction on its own line. Here is another example of a set of restrictions from a gretl
script:

restrict

b[1] = 0

b[2] - b[3] = 0

b[4] + 2*b[5] = 1

end restrict

If you use the pull-down menu to impose these you can omit the restrict and end restrict
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Figure 6.5: The linear restriction dialog box obtained using the Linear restrictions option in
the Tests pull-down menu.

statements. The results you get from using the restrict statements appear in Figure 6.6. The
test statistic and its p-value are highlighted in green. Notice also that the restricted estimates are
printed; the coefficients on advert and sq advert are zero.

Figure 6.6: The results obtained from using the restrict dialog box.

6.2 Regression Significance

To statistically determine whether the regression is actually a model of the average behavior
of your dependent variable, you can use the F -statistic. In this case, H0 is the proposition that y
does not depend on any of the independent variables, and H1 is that it does.

Ho : β1 + ei

H1 : β1 + β2xi2 + . . .+ βkxik + ei

The null hypothesis can alternately be expressed as β2, β3, . . . , βK = 0, a set of K − 1 linear
restrictions. In Big Andy’s Burger Barn the script is
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1 open "@gretldir\data\poe\andy.gdt"

2 square advert

3 ols sales const price advert sq_advert

4 restrict

5 b[2] = 0

6 b[3] = 0

7 b[4] = 0

8 end restrict

In lines 3-8 the model is estimated and the three slopes are restricted to be zero. The test result
is shown in Figure 6.7 below. You can see that the F -statistic for this test is equal to 24.4593.

Figure 6.7: The results obtained from using the restrict statements via the dialog box to conduct
the overall F -test of regression significance.

You should also notice that the same number appears in the regression results as F (3, 71). This
is not coincidental. The test of regression significance is important enough that it appears on the
default output of every linear regression estimated using gretl. The statistic and its p-value are
highlighted in Figure 6.7. Since the p-value is less than = 0.05, we reject the null hypothesis that
the model is insignificant at the five percent level.

This is also a good opportunity to use the omit statement and to show the effect of the --wald

option. Consider the script
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1 open "@gretldir\data\poe\andy.gdt"

2 square advert

3 list xvars = price advert sq_advert

4 ols sales const xvars --quiet

5 omit xvars --wald

6 omit xvars

The regressors that carry slopes are collected into the list called xvars. Then, the overall F -test
can be performed by simply omitting the xvars from the model. This tests the hypothesis that
each coefficient is zero against the alternative that at least one is not. The --wald option will
perform the test without imposing the restrictions. The chi-square form is actually very similar to
the F -form; divide the chi-square form by its degrees of freedom and you will get the F. Their are
slight differences in the χ2

J/J and the FJ,N−K distributions, which accounts for the small difference
in the reported p-values.

The second omit xvars statement will then repeat the test, this time imposing the restrictions
on the model. The output is shown if Figure 6.8. You can see that the F -form in the top portion

Figure 6.8: The results obtained from using the omit statements to conduct the overall F -test of
regression significance.

of the output and the test statistic at the bottom match each other as well as the one obtained
using restrict. No regression output follows the first version because of the --wald option. In
the second instance, the model is restricted and the estimate of the constant (the series mean in
this case) is given before printing the test result.
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One can also perform the test manually using saved results from the estimated model. The
script to do so is:

1 ols sales const price advert sq_advert

2 scalar sseu = $ess

3 scalar unrest_df = $df

4 ols sales const

5 scalar sser = $ess

6 scalar rest_df = $df

7

8 scalar J = rest_df - unrest_df

9 scalar Fstat=((sser-sseu)/J)/(sseu/(unrest_df))

10 pvalue F J unrest_df Fstat

Since there are three hypotheses to test jointly the numerator degrees of freedom for the F -statistic
is J = K − 1 = 3. The saved residual degrees of freedom from the restricted model can be used
to obtain the number of restrictions imposed. Each unique restriction in a linear model reduces
the number of parameters in the model by one. So, imposing one restriction on a three parameter
unrestricted model (e.g., Big Andy’s), reduces the number of parameters in the restricted model
to two. Let Kr be the number of regressors in the restricted model and Ku the number in the
unrestricted model. Subtracting the degrees of freedom in the unrestricted model (N −Ku) from
those of the restricted model (N −Kr) will yield the number of restrictions you’ve imposed, i.e.,
(N −Kr)− (N −Ku) = (Ku −Kr) = J .

6.2.1 Relationship Between t- and F -tests

You can certainly use an F -test to test the significance of individual variables in a regression.
Consider once again the model for Big Andy

salesi = β1 + β2price + β3advert + β4advert2 + e (6.3)

and suppose we want to test whether price affects sales. Using the omit command produces the
F -test

1 ols sales const price advert sq_advert

2 omit price

The output window is shown in Figure 6.7. The F(1, 71) statistic is equal to 53.3549 and has a
p-value that is much smaller than 0.05; the coefficient is significant at the 5% level. Notice also that
in the unrestricted model (Model 6 in the output) that the usual t-ratio is -7.304, also significant
at 5%. The t-ratio has a t71 distribution if the coefficient is zero. Squaring (−7.304)2 = 53.3549,
suggesting that there is a relationship between these two statistics. In fact, t2n is equivalent to
F (1, n). This hold for any degrees of freedom parameter, n.
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6.2.2 Optimal Level of Advertising

The optimal level of advertising is that amount where the last dollar spent on advertising results
in only 1 dollar of additional sales (we are assuming here that the marginal cost of producing and
selling another burger is zero!). Find the level of level of advertising, adverto, that solves:

∂E[sales]

∂advert
= β3 + 2β4adverto = $1 (6.4)

Plugging in the least squares estimates from the model and solving for adverto can be done in gretl.
A little algebra yields

adverto =
$1− β3

2β4
(6.5)

The script in gretl to compute this follows.

open "@gretldir\data\poe\andy.gdt"

square advert

ols sales const price advert sq_advert

scalar Ao =(1-$coeff(advert))/(2*$coeff(sq_advert))

which generates the result:

? scalar Ao =(1-$coeff(advert))/(2*$coeff(sq_advert))

Generated scalar Ao (ID 7) = 2.01434

This implies that the optimal level of advertising is estimated to be approximately $2014.

To test the hypothesis that $1900 is optimal (remember, advert is measured in $1000)

Ho : β3 + 2β41.9 = 1

H1 : β3 + 2β41.9 6= 1

you can use a t-test or an F -test. Following the regression, use

restrict

b[3] + 3.8*b[4]=1

end restrict

Remember that b[3] refers to the coefficient of the third variable in the regression (A) and b[4]

to the fourth. The output from the script is shown in Figure 6.9. The F -statistic is =0.936 and
has a p-value of 0.33. We cannot reject the hypothesis that $1900 is optimal at the 5% level.
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Figure 6.9: Testing whether $1900 in advertising is optimal using the restrict statement.

A one-tailed test would be a better option in this case. Andy decides he wants to test whether
the optimal amount is greater than $1900.

H0 : β3 + 3.8β4 ≤ 1

H1 : β3 + 3.8β4 > 1

A one-sided alternative has to be tested using a t-ratio rather than the F -test. The script below
computes such a test statistic much in the same way that we did in chapter 5.

1 # One-sided t-test

2 ols sales const price advert sq_advert --vcv

3 scalar r = $coeff(advert)+3.8*$coeff(sq_advert)-1

4 scalar v = $vcv[3,3]+((3.8)^2)*$vcv[4,4]+2*(3.8)*$vcv[3,4]

5 scalar t = r/sqrt(v)

6 pvalue t $df t

Notice that in line 3 we had to compute the variance of a linear combination of parameters. This
was easily done in the script. The results are:

t(71): area to the right of 0.967572 = 0.168271

(two-tailed value = 0.336543; complement = 0.663457)

The t-ratio is .9676 and the area to the right is 0.168. Once again, this is larger than 5% and the
hypothesis cannot be rejected at that level.

Finally, Big Andy makes another conjecture about sales. He is planning to charge $6 and use
$1900 in advertising and expects sales to be $80,000. Combined with the optimality of $1900 in
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advertising leads to the following joint test:

H0 :β3 + 3.8β4 = 1 and β1 + 6β2 + 1.9β3 + 1.92β4 = 80

H1 : not H0

The model is estimated and the hypotheses tested:

1 ols sales const price advert sq_advert

2 restrict

3 b[3]+3.8*b[4]=1

4 b[1]+6*b[2]+1.9*b[3]+3.61*b[4]=80

5 end restrict

The result is shown in Figure 6.10 below. Andy is disappointed with this outcome. The null

Figure 6.10: Andy muses about whether $1900 in advertising is optimal and whether this will
generate $80000 in sales given price is $6. It is not supported by the data.

hypothesis is rejected since the p-value associated with the test is 0.0049 < .05. Sorry Andy!

6.3 Nonsample Information

In this section we’ll estimate a beer demand model. The data are in beer.gdt and are in level
form. The model to be estimated is

ln(q) = β1 + β2 ln(pb) + β3 ln(pl) + β4 ln(pr) + β5 ln(i) + e (6.6)

The first thing to do is to convert each of the variables into natural logs. Gretl has a built in
function for this that is very slick. From the main window, highlight the variables you want to
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transform with the cursor. Then go to Add>Logs of selected variables from the pull-down
menu as shown in Figure 6.11. This can also be done is a script or from the console using the

Figure 6.11: Use the pull-down menu to add the natural logs of each variable

command logs q pb pl pr i. The natural log of each of the variables is obtained and the result
stored in a new variable with the prefix l (“el” underscore). An even easier way to add the logs
is to highlight the variables and right-click the mouse. A pop-up menu appears and the Add logs

option is available.

A no money illusion restriction can be parameterized in this model as β2 + β3 + β4 + β5 = 0. This
is easily estimated within gretl using the restrict dialog or a script as shown below.

1 open "@gretldir\data\poe\beer.gdt"

2 logs q pb pl pr i

3 ols l_q const l_pb l_pl l_pr l_i --quiet

4 restrict

5 b2+b3+b4+b5=0

6 end restrict
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Restriction:

b[l_pb] + b[l_pl] + b[l_pr] + b[l_i] = 0

Test statistic: F(1, 25) = 2.49693, with p-value = 0.126639

Restricted estimates:

Restricted estimates:

coefficient std. error t-ratio p-value

--------------------------------------------------------

const -4.79780 3.71390 -1.292 0.2078

l_pb -1.29939 0.165738 -7.840 2.58e-08 ***

l_pl 0.186816 0.284383 0.6569 0.5170

l_pr 0.166742 0.0770752 2.163 0.0399 **

l_i 0.945829 0.427047 2.215 0.0357 **

Standard error of the regression = 0.0616756

Figure 6.12: gretl output for the beer demand

The syntax for the restrictions is new. Instead of using b[2]+b[3]+b[4]+b[5]=0, a simpler form
is used. This is undocumented in the gretl version I am using (1.9.5cvs) and I am uncertain of
whether this will continue to work. It does for now and I’ve shown it here. Apparently gretl is
able to correctly parse the variable number from the variable name without relying on the brackets.
The output from the gretl script output window appears in Figure 6.12.

6.4 Model Specification

There are several issues of model specification explored here. First, it is possible to omit relevant
independent variables from your model. A relevant independent variable is one that affects the
mean of the dependent variable. When you omit a relevant variable that happens to be correlated
with any of the other included regressors, least squares suffers from omitted variable bias.

The other possibility is to include irrelevant variables in the model. In this case, you include
extra regressors that either don’t affect y or, if they do, they are not correlated with any of the
other regressors. Including irrelevant variables in the model makes least squares less precise than
it otherwise would be–this increases standard errors, reduces the power of your hypothesis tests,
and increases the size of your confidence intervals.

The example used in the text uses the dataset edu inc.gdt. The first regression

faminc = β1 + β2he + β3we + β4kl6 + β5xi5 + β6xi6 + ei (6.7)

where faminc is family income, he is husband’s years of schooling, we is woman’s years of schooling,
and kl6 are the number of children in the household under age 6. Several variations of this model are
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estimated. The first includes only he, another only he and we, and one includes the two irrelevant
variables, x5 and x6. The gretl script to estimate these models and test the implied hypothesis
restrictions follows. If you type this in yourself, omit the line numbers.

1 list all_x = const he we kl6 xtra_x5 xtra_x6

2 ols faminc all_x

3 modeltab add

4 omit xtra_x5 xtra_x6

5 modeltab add

6 omit kl6

7 modeltab add

8 omit we

9 modeltab add

10 modeltab show

The models can be estimated and saved as icons (File>Save to session as icon) within gretl.
Once they’ve all been estimated and saved as icons, open a session window (Figure 1.12) and
drag each model onto the model table icon. Click on the model table icon to reveal the output
shown in Figure 6.13.

In the above script, we have used the modeltab function after each estimated model to add it
to the model table. The final line tells gretl to display (show) the resulting model table.

One word of caution is in order about the given script and its interpretation. The omit statement
tests the implied restriction (the coefficient on the omitted variable is zero) versus the estimated
model that immediately precedes it. Thus, when we test that the coefficient on kl6 is zero in
line 6, the alternative model is the restricted model from line 4, which already excludes xtra x5,
and xtra x6. Thus, only one restriction is being tested. If your intention is to test all of the
restrictions (omit xtra x5, xtra x6 and kl6) versus the the completely unrestricted model in line
2 that includes all of the variables, you’ll need to modify your code. I’ll leave this an an exercise.

6.5 Model Selection: Introduction to gretl Functions

Choosing an appropriate model is part art and part science. Omitting relevant variables that are
correlated with regressors causes least squares to be biased and inconsistent. Including irrelevant
variables reduces the precision of least squares. So, from a purely technical point, it is important
to estimate a model that has all of the necessary relevant variables and none that are irrelevant.
It is also important to use a suitable functional form. There is no set of mechanical rules that one
can follow to ensure that the model is correctly specified, but there are a few things you can do to
increase your chances of having a suitable model to use for decision-making.

Here are a few rules of thumb:
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Figure 6.13: Save each model as an icon. Open the session window and drag each model to the
model table icon. Click on the model table icon to reveal this output.

1. Use whatever economic theory you have to select a functional form. For instance, if you
are estimating a short-run production function then economic theory suggests that marginal
returns to factors of production diminish. That means you should choose a functional form
that permits this (e.g., log-log).

2. If the estimated coefficients have the wrong signs or unreasonable magnitudes, then you
probably want to reevaluate either the functional form or whether relevant variables are
omitted.

3. You can perform joint hypothesis tests to detect the inclusion of irrelevant sets of variables.
Testing is not fool-proof since there is always positive probability that type 1 or type 2 error
is being committed.

4. You can use model selection rules to find sets of regressors that are ‘optimal’ in terms of an
estimated bias/precision trade-off.

5. Use a RESET test to detect possible misspecification of functional form.

In this section, I will give you some gretl commands to help with the last two: model selection
and RESET.
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In this section we consider three model selection rules: R̄2, AIC, and SC. I’m not necessarily
recommending that these be used, since there are plenty of statistical problems caused by using
the sample to both specify, estimate, and then test hypotheses in a model, but sometimes you have
little other choice. Lag selection discussed later in this book is a reasonable application for these.

6.5.1 Adjusted R2

The adjusted R2 was introduced in chapter 5. The usual R2 is ‘adjusted’ to impose a small
penalty when a variable is added to the model. Adding a variable with any correlation to y always
reduces SSE and increases the size of the usual R2. With the adjusted version, the improvement
in fit may be outweighed by the penalty and it could become smaller as variables are added. The
formula is:

R̄2 = 1− SSE/(N −K)

SST/(N − 1)
(6.8)

This sometimes referred to as “R-bar squared,” (i.e., R̄2 ) although in gretl it is called “adjusted
R-squared.” The biggest drawback of using R̄2 as a model selection rule is that the penalty it
imposes for adding regressors is too small on average. It tends to lead to models that contain
irrelevant variables. There are other model selection rules that impose larger penalties for adding
regressors and two of these are considered below.

6.5.2 Information Criteria

The two model selection rules considered here are the Akaike Information Criterion (AIC ) and
the Schwarz Criterion (SC ). The SC is sometimes called the Bayesian Information Criterion (BIC ).
Both are computed by default in gretl and included in the standard regression output. The values
that gretl reports are based on maximizing a log-likelihood function (normal errors). There are
other variants of these that have been suggested for use in linear regression and these are presented
in the equations below:

AIC = ln(SSE/N) + 2K/N (6.9)

BIC = SC = ln(SSE/N) +K ln(N)/N (6.10)

The rule is, compute AIC or SC for each model under consideration and choose the model that
minimizes the desired criterion. The models should be evaluated using the same number of obser-
vations, i.e., for the same value of N . You can convert the ones gretl reports to the ones in (6.9)
using a simple transformation; add (1 + ln(2π)) and then multiply everything by N . Since sample
size should be held constant when using model selection rules, you can see that the two different
computations will lead to exactly the same model choice.

Since the functions have to be evaluated for each model estimated, it is worth writing a function
in gretl that can be reused. The use of functions to perform repetitive computations makes
programs shorter and reduced errors (unless your function is wrong, in which case every computation
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is incorrect!) In the next section, I will introduce you to gretl functions and offer one that will
compute the three model selection rules discussed above.

6.5.3 A gretl Function to Produce Model Selection Rules

Gretl offers a mechanism for defining functions, which may be called via the command line,
in the context of a script, or (if packaged appropriately via the programs graphical interface. The
syntax for defining a function looks like this:

function return-type function-name (parameters)

function body

end function

The opening line of a function definition contains these elements, in strict order:

1. The keyword function.

2. return-type, which states the type of value returned by the function, if any. This must be
one of void (if the function does not return anything), scalar, series, matrix, list or string.

3. function-name, the unique identifier for the function. Names must start with a letter. They
have a maximum length of 31 characters; if you type a longer name it will be truncated.
Function names cannot contain spaces. You will get an error if you try to define a function
having the same name as an existing gretl command. Also, be careful not to give any of your
variables (scalars, matrices, etc.) the same name as one of your functions.

4. The functionss parameters, in the form of a comma-separated list enclosed in parentheses.
This may be run into the function name, or separated by white space as shown.

The model selection function is designed to do two things. First, we want it to print values of
the model selection rules for R̄2, AIC and SC. While we are at it we should also print how many
regressors the model has (and their names) and the sample size. The second thing we want is to be
able to send the computed statistics to a matrix. This will allow us to collect results from several
candidates into a single table.

The basic structure of the model selection function is

function matrix modelsel (series y, list xvars)

[some computations]

[print results]

[return results]

end function
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As required, it starts with the keyword function. The next word, matrix, tells the function that a
matrix will be returned as output. The next word is modelsel, which is the name that we are giving
to our function. The modelsel function has two arguments that will be used as inputs. The first is
a data series that we will refer to inside the body of the function as y. The second is a list that
will be referred to as xvars. The inputs are separated by a comma and there are spaces between
the list of inputs. Essentially what we are going to do is feed the function a dependent variable
and a list of the independent variables as inputs. Inside the function a regression is estimated,
the criteria are computed based on it, the statistics are printed to the screen, and collected into
a matrix that will be returned. The resulting matrix is then available for further manipulation
outside of the function.

1 function matrix modelsel (series y, list xvars)

2 ols y xvars --quiet

3 scalar sse = $ess

4 scalar N = $nobs

5 scalar K = nelem(xvars)

6 scalar aic = ln(sse/N)+2*K/N

7 scalar bic = ln(sse/N)+K*N/N

8 scalar rbar2 = 1-((1-$rsq)*(N-1)/$df)

9 matrix A = { K, N, aic, bic, rbar2 }

10 printf "\nRegressors: %s\n",varname(xvars)

11 printf "K = %d, N = %d, AIC = %.4f, SC = %.4f, and\

12 Adjusted R2 = %.4f\n", K, N, aic, bic, rbar2

13 return A

14 end function

In line 2 the function inputs y and the list xvars are used to estimate a linear model by least
squares. The --quiet option is used to suppress the least squares output. In lines 3-5 the sum
of squared errors, SSE, the number of observations, N, and the number of regressors, K, are put
into scalars. In lines 6-8 the three criteria are computed. Line 9 puts various scalars into a matrix
called A. Lines 10 and 11 sends the names of the regressors to the screen. Line 11 sends formatted
output to the screen. Line 12 sends the matrix A as a return from the function. The last line closes
the function.2

At this point, the function can be highlighted and run.

To use the function create a list that will include the desired independent variables (called x

in this case). Then to use the function you will create a matrix called a that will include the output
from modelsel.

1 list x = const he we xtra_x5 xtra_x6

2 matrix a = modelsel(faminc,x)

2To get the gretl value of AIC: scalar aic g = (1+ln(2*pi)+aic)*N
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The output is:

Regressors: const,he,we,kl6,xtra_x5,xtra_x6

K = 6, N = 428, AIC = 21.2191, SC = 27.1911, and Adjusted R2 = 0.1681

You can see that each of the regressor names is printed out on the first line of output. This is
followed by the values of K, N, AIC, SC, and R̄2.

To put the function to use, consider the following script where we create four sets of variables
and use the model selection rules to pick the desired model.

1 list x1 = const he

2 list x2 = const he we

3 list x3 = const he we kl6

4 list x4 = const he we xtra_x5 xtra_x6

5 matrix a = modelsel(faminc,x1)

6 matrix b = modelsel(faminc,x2)

7 matrix c = modelsel(faminc,x3)

8 matrix d = modelsel(faminc,x4)

9 matrix MS = a|b|c|d

10 colnames(MS,"K N AIC SC Adj_R2" )

11 printf "%10.5g",MS

12 function modelsel clear

In this example the model selection rules will be computed for four different models. Lines 1-4
construct the variable list for each of these. The next four lines run the model selection function
for each set of variables. Each set of results is saved in a separate matrix (a, b, c, d). The
colnames function is used to give each column of the matrix a meaningful name. Then, the printf

statement prints the matrix. The last line removes the modelsel function from memory. This is
not strictly necessary. If you make changes to your function, just recompile it. The biggest problem
with function proliferation is that you may inadvertently try to give a variable the same name as
one of your functions that is already in memory. If that occurs, clear the function or rename the
variable.

The first part of the output prints the results from the individual calls to modelsel.

Regressors: const,he

K = 2, N = 428, AIC = 21.2618, SC = 21.2807, and Adjusted R2 = 0.1237

Regressors: const,he,we

K = 3, N = 428, AIC = 21.2250, SC = 21.2534, and Adjusted R2 = 0.1574

Regressors: const,he,we,kl6

K = 4, N = 428, AIC = 21.2106, SC = 21.2485, and Adjusted R2 = 0.1714
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Regressors: const,he,we,xtra_x5,xtra_x6

K = 5, N = 428, AIC = 21.2331, SC = 21.2805, and Adjusted R2 = 0.1544

The last part prints the matrix MS.

K N AIC SC Adj_R2

2 428 21.262 21.281 0.12375

3 428 21.225 21.253 0.15735

4 428 21.211 21.248 0.17135

5 428 21.233 21.281 0.15443

In this example all three criteria select the same model: K = 4 and the regressors are const, he,
we, kl6. This model minimized AIC and SC and maximizes the adjusted R2.

Later in the book, this model selection function will be refined to make it more general.

6.5.4 RESET

The RESET test is used to assess the adequacy of your functional form. The null hypothesis is
that your functional form is adequate. The alternative is that it is not. The test involves running
a couple of regressions and computing an F -statistic.

Consider the model
yi = β1 + β2xi2 + β3xi3 + ei (6.11)

and the hypothesis

H0 : E[y|xi2, xi3] = β1 + β2xi2 + β3xi3

H1 : not H0

Rejection of H0 implies that the functional form is not supported by the data. To test this, first
estimate (6.11) using least squares and save the predicted values, ŷi. Then square and cube ŷ and
add them back to the model as shown below:

yi = β1 + β2xi2 + β3xi3 + γ1ŷ
2
i + ei

yi = β1 + β2xi2 + β3xi3 + γ1ŷ
2
i + γ2ŷ

3
i + ei

The null hypotheses to test (against alternative, ‘not H0’) are:

H0 : γ1 = 0

H0 : γ1 = γ2 = 0

Estimate the auxiliary models using least squares and test the significance of the parameters of ŷ2

and/or ŷ3. This is accomplished through the following script. Note, the reset command issued
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after the first regression computes the test associated with H0 : γ1 = γ2 = 0. It is included here so
that you can compare the ‘canned’ result with the one you compute using the two step procedure
suggested above. The two results should match.

1 ols faminc x3 --quiet

2 reset --quiet

3 reset --quiet --squares-only

The results of the RESET for the family income equation is

RESET test for specification (squares and cubes)

Test statistic: F = 3.122581,

with p-value = P(F(2,422) > 3.12258) = 0.0451

RESET test for specification (squares only)

Test statistic: F = 5.690471,

with p-value = P(F(1,423) > 5.69047) = 0.0175

The adequacy of the functional form is rejected at the 5% level for both tests. It’s back to the
drawing board!

6.6 Cars Example

The data set cars.gdt is included in package of datasets that are distributed with this manual.
In most cases it is a good idea to print summary statistics of any new dataset that you work
with. This serves several purposes. First, if there is some problem with the dataset, the summary
statistics may give you some indication. Is the sample size as expected? Are the means, minimums
and maximums reasonable? If not, you’ll need to do some investigative work. The other reason is
important as well. By looking at the summary statistics you’ll gain an idea of how the variables
have been scaled. This is vitally important when it comes to making economic sense out of the
results. Do the magnitudes of the coefficients make sense? It also puts you on the lookout for
discrete variables, which also require some care in interpreting.

The summary command is used to get summary statistics. These include mean, minimum,
maximum, standard deviation, the coefficient of variation, skewness and excess kurtosis. The corr

command computes the simple correlations among your variables. These can be helpful in gaining
an initial understanding of whether variables are highly collinear or not. Other measures are more
useful, but it never hurts to look at the correlations. Either of these commands can be used with
a variable list afterwards to limit the list of variables summarized of correlated.

Consider the cars example from POE4. The script is
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1 open "c:\Program Files\gretl\data\poe\cars.gdt"

2 summary

3 corr

4 ols mpg const cyl eng wgt

5 vif

The summary statistics appear below:

Summary Statistics, using the observations 1–392

Variable Mean Median Minimum Maximum

mpg 23.4459 22.7500 9.00000 46.6000
cyl 5.47194 4.00000 3.00000 8.00000
eng 194.412 151.000 68.0000 455.000
wgt 2977.58 2803.50 1613.00 5140.00

Variable Std. Dev. C.V. Skewness Ex. kurtosis

mpg 7.80501 0.332894 0.455341 −0.524703
cyl 1.70578 0.311733 0.506163 −1.39570
eng 104.644 0.538259 0.698981 −0.783692
wgt 849.403 0.285266 0.517595 −0.814241

and the correlation matrix

Correlation coefficients, using the observations 1–392
5% critical value (two-tailed) = 0.0991 for n = 392

mpg cyl eng wgt
1.0000 −0.7776 −0.8051 −0.8322 mpg

1.0000 0.9508 0.8975 cyl
1.0000 0.9330 eng

1.0000 wgt

The variables are quite highly correlated in the sample. For instance the correlation between weight
and engine displacement is 0.933. Cars with big engines are heavy. What a surprise!

The regression results are:

OLS, using observations 1–392
Dependent variable: mpg
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Coefficient Std. Error t-ratio p-value

const 44.3710 1.48069 29.9665 0.0000
cyl −0.267797 0.413067 −0.6483 0.5172
eng −0.0126740 0.00825007 −1.5362 0.1253
wgt −0.00570788 0.000713919 −7.9951 0.0000

Mean dependent var 23.44592 S.D. dependent var 7.805007
Sum squared resid 7162.549 S.E. of regression 4.296531
R2 0.699293 Adjusted R2 0.696967
F (3, 388) 300.7635 P-value(F ) 7.6e–101
Log-likelihood −1125.674 Akaike criterion 2259.349
Schwarz criterion 2275.234 Hannan–Quinn 2265.644

The test of the individual significance of cyl and eng can be read from the table of regression
results. Neither are significant at the 5% level. The joint test of their significance is performed
using the omit statement. The F -statistic is 4.298 and has a p-value of 0.0142. The null hypothesis
is rejected in favor of their joint significance.

The new statement that requires explanation is vif. vif stands for variance inflation factor
and it is used as a collinearity diagnostic by many programs, including gretl. The vif is closely
related to the statistic suggested by Hill et al. (2011) who suggest using the R2 from auxiliary
regressions to determine the extent to which each explanatory variable can be explained as linear
functions of the others. They suggest regressing xj on all of the other independent variables and
comparing the R2

j from this auxiliary regression to 10. If the R2
j exceeds 10, then there is evidence

of a collinearity problem.

The vifj actually reports the same information, but in a less straightforward way. The vif

associated with the jth regressor is computed

vifj =
1

1−R2
j

(6.12)

which is, as you can see, simply a function of the R2
j from the jth regressor. Notice that when

R2
j > .80, the vifj > 10. Thus, the rule of thumb for the two rules is actually the same. A vifj

greater than 10 is equivalent to an R2 greater than .8 from the auxiliary regression.

The output from gretl is shown below:

Variance Inflation Factors

Minimum possible value = 1.0

Values > 10.0 may indicate a collinearity problem

cyl 10.516

eng 15.786

131



wgt 7.789

VIF(j) = 1/(1 - R(j)^2), where R(j) is the multiple correlation coefficient

between variable j and the other independent variables

Properties of matrix X’X:

1-norm = 4.0249836e+009

Determinant = 6.6348526e+018

Reciprocal condition number = 1.7766482e-009

Once again, the gretl output is very informative. It gives you the threshold for high collinearity
(vifj) > 10) and the relationship between vifj and R2

j . Clearly, these data are highly collinear. Two
variance inflation factors above the threshold and the one associated with wgt is fairly large as well.

The variance inflation factors can be produced from the dialogs as well. Estimate your model
then, in the model window, select Tests>Collinearity and the results will appear in gretl’s
output.

6.7 Script

1 set echo off

2 # f-test

3 open "@gretldir\data\poe\andy.gdt"

4 square advert

5 ols sales const price advert sq_advert

6 scalar sseu = $ess

7 scalar unrest_df = $df

8 ols sales const price

9 scalar sser = $ess

10 scalar Fstat=((sser-sseu)/2)/(sseu/(unrest_df))

11 pvalue F 2 unrest_df Fstat

12

13 # f-test using omit

14 ols sales const price advert sq_advert

15 omit advert sq_advert

16

17 # f-test using restrict

18 ols sales const price advert sq_advert

19 restrict

20 b[3]=0

21 b[4]=0

22 end restrict

23

24 # overall f

25 open "@gretldir\data\poe\andy.gdt"
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26 square advert

27 ols sales const price advert sq_advert

28 restrict

29 b[2] = 0

30 b[3] = 0

31 b[4] = 0

32 end restrict

33

34 ols sales const price advert sq_advert

35 scalar sseu = $ess

36 scalar unrest_df = $df

37 ols sales const

38 scalar sser = $ess

39 scalar rest_df = $df

40

41 scalar J = rest_df - unrest_df

42 scalar Fstat=((sser-sseu)/J)/(sseu/(unrest_df))

43 pvalue F J unrest_df Fstat

44

45 # t-test

46 ols sales const price advert sq_advert

47 omit price

48

49 # optimal advertising

50 open "@gretldir\data\poe\andy.gdt"

51 square advert

52 ols sales const price advert sq_advert

53 scalar Ao =(1-$coeff(advert))/(2*$coeff(sq_advert))

54 # test of optimal advertising

55 restrict

56 b[3]+3.8*b[4]=1

57 end restrict

58

59 open "@gretldir\data\poe\andy.gdt"

60 square advert

61 ols sales const price advert sq_advert

62 scalar Ao =(1-$coeff(advert))/(2*$coeff(sq_advert))

63

64 # One-sided t-test

65 ols sales const price advert sq_advert --vcv

66 scalar r = $coeff(advert)+3.8*$coeff(sq_advert)-1

67 scalar v = $vcv[3,3]+((3.8)^2)*$vcv[4,4]+2*(3.8)*$vcv[3,4]

68 scalar t = r/sqrt(v)

69 pvalue t $df t

70

71 # joint test

72 ols sales const price advert sq_advert

73 restrict

74 b[3]+3.8*b[4]=1

75 b[1]+6*b[2]+1.9*b[3]+3.61*b[4]=80

76 end restrict
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77

78 # restricted estimation

79 open "@gretldir\data\poe\beer.gdt"

80 logs q pb pl pr i

81 ols l_q const l_pb l_pl l_pr l_i --quiet

82 restrict

83 b2+b3+b4+b5=0

84 end restrict

85 restrict

86 b[2]+b[3]+b[4]+b[5]=0

87 end restrict

88

89 # model specification -- relevant and irrelevant vars

90 open "@gretldir\data\poe\edu_inc.gdt"

91 ols faminc const he we

92 omit we

93

94 corr

95

96 list all_x = const he we kl6 xtra_x5 xtra_x6

97 ols faminc all_x

98

99 # reset test

100 ols faminc const he we kl6

101 reset --quiet --squares-only

102 reset --quiet

103

104 # model selection rules and a function

105 function matrix modelsel (series y, list xvars)

106 ols y xvars --quiet

107 scalar sse = $ess

108 scalar N = $nobs

109 scalar K = nelem(xvars)

110 scalar aic = ln(sse/N)+2*K/N

111 scalar bic = ln(sse/N)+K*ln(N)/N

112 scalar rbar2 = 1-((1-$rsq)*(N-1)/$df)

113 matrix A = { K, N, aic, bic, rbar2}

114 printf "\nRegressors: %s\n",varname(xvars)

115 printf "K = %d, N = %d, AIC = %.4f, SC = %.4f, and\

116 Adjusted R2 = %.4f\n", K, N, aic, bic, rbar2

117 return A

118 end function

119

120 list x1 = const he

121 list x2 = const he we

122 list x3 = const he we kl6

123 list x4 = const he we xtra_x5 xtra_x6

124 matrix a = modelsel(faminc,x1)

125 matrix b = modelsel(faminc,x2)

126 matrix c = modelsel(faminc,x3)

127 matrix d = modelsel(faminc,x4)
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128

129 matrix MS = a|b|c|d

130 colnames(MS,"K N AIC SC Adj_R2" )

131 printf "%10.5g",MS

132 function modelsel clear

133

134 ols faminc all_x

135 modeltab add

136 omit xtra_x5 xtra_x6

137 modeltab add

138 omit kl6

139 modeltab add

140 omit we

141 modeltab add

142 modeltab show

143

144

145 ols faminc x3 --quiet

146 reset

147

148 # collinearity

149 open "@gretldir\data\poe\cars.gdt"

150 summary

151 corr

152

153 ols mpg const cyl

154 ols mpg const cyl eng wgt --quiet

155 omit cyl

156 ols mpg const cyl eng wgt --quiet

157 omit eng

158 ols mpg const cyl eng wgt --quiet

159 omit eng cyl

160

161 # Auxiliary regressions for collinearity

162 # Check: r2 >.8 means severe collinearity

163 ols cyl const eng wgt

164 scalar r1 = $rsq

165 ols eng const wgt cyl

166 scalar r2 = $rsq

167 ols wgt const eng cyl

168 scalar r3 = $rsq

169 printf "R-squares for the auxillary regresions\nDependent Variable:\

170 \n cylinders %3.3g\n engine displacement %3.3g\n weight %3.3g\n", r1, r2, r3

171

172 ols mpg const cyl eng wgt

173 vif
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Chapter 7
Using Indicator Variables

In this chapter we will explore the use of indicator variables in regression analysis. The discussion
will include how to create them, estimate models using them, and how to interpret results that
include them in the model. Several applications will be discussed as well. These include using them
to create interactions, regional indicators, and to perform Chow tests of regression equivalence
across different categories. Finally, their use in linear probability estimation is discussed and their
use in evaluating treatment effects and the differences-in-difference estimators that are used in their
estimation.

7.1 Indicator Variables

Indicator variables allow us to construct models in which some or all of the parameters of a
model can change for subsets of the sample. As discussed in chapter 2, an indicator variable
basically indicates whether a certain condition is met. If it does the variable is equal to 1 and if
not, it is 0. They are often referred to as dummy variables, and gretl uses this term in a utility
that is used to create indicator variables.

The example used in this section is again based on the utown.gdt real estate data. First we will
open the dataset and examine the data.

1 open "@gretldir\data\poe\utown.gdt"

2 smpl 1 8

3 print price sqft age utown pool fplace --byobs

4 smpl full

5 summary
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The sample is limited to the first 8 observations in line 2. The two numbers that follow the smpl

command indicate where the subsample begins and where it ends. Logical statements can be used
as well to restrict the sample. Examples of this will be given later. In the current case, eight
observations are enough to see that price and sqft are continuous, that age is discrete, and that
utown, pool, and fplace are likely to be indicator variables. The print statement is used with
the --byobs option so that the listed variables are printed in columns.

price sqft age utown pool fplace

1 205.452 23.46 6 0 0 1

2 185.328 20.03 5 0 0 1

3 248.422 27.77 6 0 0 0

4 154.690 20.17 1 0 0 0

5 221.801 26.45 0 0 0 1

6 199.119 21.56 6 0 0 1

7 272.134 29.91 9 0 0 1

8 250.631 27.98 0 0 0 1

The sample is restored to completeness, and the summary statistics are printed. These give an
idea of the range and variability of price, sqft and age. The means tell us about the proportions
of homes that are near the University and that have pools or fireplaces.

Summary Statistics, using the observations 1–1000

Variable Mean Median Minimum Maximum

price 247.656 245.833 134.316 345.197
sqft 25.2097 25.3600 20.0300 30.0000
age 9.39200 6.00000 0.000000 60.0000
utown 0.519000 1.00000 0.000000 1.00000
pool 0.204000 0.000000 0.000000 1.00000
fplace 0.518000 1.00000 0.000000 1.00000

Variable Std. Dev. C.V. Skewness Ex. kurtosis

price 42.1927 0.170368 0.0905617 −0.667432
sqft 2.91848 0.115768 −0.0928347 −1.18500
age 9.42673 1.00370 1.64752 3.01458
utown 0.499889 0.963177 −0.0760549 −1.99422
pool 0.403171 1.97633 1.46910 0.158242
fplace 0.499926 0.965108 −0.0720467 −1.99481

You can see that half of the houses in the sample are near the University (519/1000). It is also
pretty clear that prices are measured in units of $1000 and square feet in units of 100. The oldest
house is 60 years old and there are some new ones in the sample (age=0). Minimums and maximums
of 0 and 1, respectively usually mean that you have indicator variables. This confirms what we
concluded by looking at the first few observations in the sample.
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7.1.1 Creating indicator variables

It is easy to create indicator variables in gretl . Suppose that we want to create a dummy
variable to indicate that a house is large. Large in this case means one that is larger than 2500
square feet.

1 series ld = (sqft>25)

2 discrete ld

3 print ld sqft --byobs

The first line generates a variable called ld that takes the value 1 if the condition in parentheses
is satisfied. It will be zero otherwise. The next line declares the variable to be discrete. Often this
is unnecessary. “Gretl uses a simple heuristic to judge whether a given variable should be treated
as discrete, but you also have the option of explicitly marking a variable as discrete, in which case
the heuristic check is bypassed.” (Cottrell and Lucchetti, 2011, p. 53) That is what we did here.
Also from the Gretl Users Guide:

To mark a variable as discrete you have two options.

1. From the graphical interface, select “Variable, Edit Attributes” from the menu. A
dialog box will appear and, if the variable seems suitable, you will see a tick box
labeled “Treat this variable as discrete”. This dialog box [see Figure 7.1 below]
can also be invoked via the context menu (right-click on a variable and choose Edit
attributes) or by pressing the F2 key.

2. From the command-line interface, via the discrete command. The command
takes one or more arguments, which can be either variables or list of variables.

So, the discrete declaration for ld in line 2 is not strictly necessary. Printing the indicator and
square feet by observation reveals that the homes where sqft > 25 in fact are the same as those
where ld = 1.

ld sqft

1 0 23.46

2 0 20.03

3 1 27.77

4 0 20.17

5 1 26.45

6 0 21.56
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Figure 7.1: From the main gretl window, F2 brings up the variable attributes dialog. From here
you can declare a variable to be discrete. The keyboard shortcut CRTL+e also initiates this dialog.

7.1.2 Estimating a Regression

The regression is also based on the University town real estate data. The regression is:

price = β1 + δ1utown + β2sqft + γ(sqft× utown)

+β3age + δ2pool + δ3fplace + e

The estimated model is

OLS, using observations 1–1000
Dependent variable: price

Coefficient Std. Error t-ratio p-value

const 24.5000 6.19172 3.9569 0.0001
utown 27.4530 8.42258 3.2594 0.0012
sqft 7.61218 0.245176 31.0477 0.0000
sqft utown 1.29940 0.332048 3.9133 0.0001
age −0.190086 0.0512046 −3.7123 0.0002
pool 4.37716 1.19669 3.6577 0.0003
fplace 1.64918 0.971957 1.6968 0.0901

Mean dependent var 247.6557 S.D. dependent var 42.19273
Sum squared resid 230184.4 S.E. of regression 15.22521
R2 0.870570 Adjusted R2 0.869788
F (6, 993) 1113.183 P-value(F ) 0.000000
Log-likelihood −4138.379 Akaike criterion 8290.758
Schwarz criterion 8325.112 Hannan–Quinn 8303.815
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The coefficient on the slope indicator variable sqft × utown is significantly different from zero at
the 5% level. This means that size of a home near the university has a different impact on average
home price. Based on the estimated model, the following conclusions are drawn:

• The location premium for lots near the university is $27,453

• The change in expected price per additional square foot is $89.12 near the university and
$76.12 elsewhere

• Homes depreciate $190.10/year

• A pool is worth $4,377.30

• A fireplace is worth $1649.20

The script that generates these is:

1 scalar premium = $coeff(utown)*1000

2 scalar sq_u = 10*($coeff(sqft)+$coeff(sqft_utown))

3 scalar sq_other = 10*$coeff(sqft)

4 scalar depr = 1000*$coeff(age)

5 scalar sp = 1000*$coeff(pool)

6 scalar firep = 1000*$coeff(fplace)

7 printf "\n University Premium = $%8.7g\n\

8 Marginal effect of sqft near University = $%7.6g\n\

9 Marginal effect of sqft elsewhere = $%7.6g\n\

10 Depreciation Rate = $%7.2f\n\

11 Pool = $%7.2f\n\

12 Fireplace = $%7.2f\n",premium,sq_u,sq_other,depr,sp,firep

Notice that most of the coefficients was multiplied by 1000 since home prices are measured in
$1000 increments. Square feet are measured in increments of 100, therefore its marginal effect is
multiplied by 1000/100 = 10. It is very important to know the units in which the variables are
recorded. This is the only way you can make ecnomic sense from your results.

7.2 Applying Indicator Variables

In this section a number of examples will be given about estimation and interpretation of
regressions that include indicator variables.
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7.2.1 Interactions

Consider the simple wage equation

wage = β1 + β2educ + δ1black + δ2female

+γ(female× black) + e

where black and female are indicator variables. Taking the expected value of ln(wage) reveals each
of the cases considered in the regression

E[wage] =


β1 + β2educ White, Males

β1 + δ1 + β2educ Black, Males

β1 + δ2 + β2educ White, Females

β1 + δ1 + δ2 + γ + β2educ Black, Females

(7.1)

The reference group is the one where all indicator variables are zero, i.e., white males. The
parameter δ1 measures the effect of being black, relative to the reference group; δ2 measures the
effect of being female relative to the reference group, and γ measures the effect of being both black
and female.

The model is estimated using the cps4 small.gdt data which is from 2008. The results appear
below:

Model 3: OLS, using observations 1–1000
Dependent variable: wage

Coefficient Std. Error t-ratio p-value

const −5.28116 1.90047 −2.7789 0.0056
educ 2.07039 0.134878 15.3501 0.0000
black −4.16908 1.77471 −2.3492 0.0190
female −4.78461 0.773414 −6.1863 0.0000
blk fem 3.84429 2.32765 1.6516 0.0989

Mean dependent var 20.61566 S.D. dependent var 12.83472
Sum squared resid 130194.7 S.E. of regression 11.43892
R2 0.208858 Adjusted R2 0.205677
F (4, 995) 65.66879 P-value(F ) 2.53e–49
Log-likelihood −3853.454 Akaike criterion 7716.908
Schwarz criterion 7741.447 Hannan–Quinn 7726.234

Holding the years of schooling constant, black males earn $4.17/hour less than white males. For
the same schooling, white females earn $4.78 less, and black females earn $5.15 less. The coefficient
on the interaction term is not significant at the 5% level however.

A joint test of the hypothesis that δ1 = δ2 = γ = 0 is performed via the script
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1 open "@gretldir\data\poe\cps4_small.gdt"

2 series blk_fem = black*female

3 ols wage const educ black female blk_fem

4 restrict

5 b[3]=0

6 b[4]=0

7 b[5]=0

8 end restrict

and the result is

Restriction set

1: b[black] = 0

2: b[female] = 0

3: b[blk_fem] = 0

Test statistic: F(3, 995) = 14.2059, with p-value = 4.53097e-009

Restricted estimates:

coefficient std. error t-ratio p-value

----------------------------------------------------------

const -6.71033 1.91416 -3.506 0.0005 ***

educ 1.98029 0.136117 14.55 1.25e-043 ***

black 0.000000 0.000000 NA NA

female 0.000000 0.000000 NA NA

blk_fem 0.000000 0.000000 NA NA

Standard error of the regression = 11.6638

The F -statistic is 14.21 and has a p-value less than 5%. The null hypothesis is rejected. At least
one of the coefficients is nonzero. The test could be done even more easily using the omit statement
after the regression since each of the coefficients in the linear restrictions is equal to zero.

7.2.2 Regional indicators

In this example a set of regional indicator variables is added to the model. There are four
mutually exclusive regions to consider. A reference group must be chosen, in this case for the
northeast. The model becomes:

wage = β1 + β2educ + δ1south + δ2midwest + δ3west + e
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where black and female are indicator variables. Taking the expected value of ln(wage) reveals each
of the cases considered in the regression

E[wage] =


β1 + β2educ Northeast

β1 + δ1 + β2educ South

β1 + δ2 + β2educ Midwest

β1 + δ3 + β2educ West

(7.2)

Once again, the omitted case (Northeast) becomes the reference group.

The regional dummy variables are added to the wage model for black females and is estimated
by least squares. The regional indicator variables are tested jointly for significance using the omit

statement.

1 ols wage const educ black female blk_fem south midwest west

2 omit south midwest west

3 series sser = $ess

The results appear below:

Model 4: OLS, using observations 1–1000
Dependent variable: wage

Coefficient Std. Error t-ratio p-value

const −5.28116 1.90047 −2.7789 0.0056
educ 2.07039 0.134878 15.3501 0.0000
black −4.16908 1.77471 −2.3492 0.0190
female −4.78461 0.773414 −6.1863 0.0000
blk fem 3.84429 2.32765 1.6516 0.0989

Mean dependent var 20.61566 S.D. dependent var 12.83472
Sum squared resid 130194.7 S.E. of regression 11.43892
R2 0.208858 Adjusted R2 0.205677
F (4, 995) 65.66879 P-value(F ) 2.53e–49
Log-likelihood −3853.454 Akaike criterion 7716.908
Schwarz criterion 7741.447 Hannan–Quinn 7726.234

First, notice that the sum-of-squared errors has been saved for future use. The only regional
indicator that is individually significant at 5% is midwest. The joint test results are

Comparison of Model 3 and Model 4:
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Null hypothesis: the regression parameters are zero for the variables

south, midwest, west

Test statistic: F(3, 992) = 4.24557, with p-value = 0.00542762

Of the 3 model selection statistics, 1 has improved.

The test statistic has an F (3, 992) distribution under the null and is equal to 4.25. The p-value is
less than 5% and we conclude that the indicators are jointly significant.

7.2.3 Testing Equivalence of Two Regions

The question arises, is the wage equation different for the south than for the rest of the country?
There are two ways to do this in gretl. One is very easy and the other not so easy, but makes for
a useful example of how to use loops to create interactions among variables.

A Chow test is used to test for structural breaks or changes in a regression. In other words,
one subsample has different intercept and slopes than another. It can be used to detect structural
breaks in time-series models or to determine whether, in our case, the south’s wages are determined
differently from those in the rest of the country. The easy method uses gretl’s built-in chow

command to test for a change in the regression. It must follow a regression and you must specify
the indicator variable that identifies the two subsets.

To illustrate its use, consider the basic wage model

wage = β1 + β2educ + δ1black + δ2female

+γ(black× female) + e

Now, if wages are determined differently in the south, then the slopes and intercept for southerners
will be different. The null hypothesis is that the coefficients of the two subsets are equal and the
alternative is that they are not. The gretl commands to perform the test are:

1 list x = const educ black female blk_fem

2 ols wage x

3 chow south --dummy

Since the regressors are going to be used again below, I put them into a list to simplify things later.
Line 2 estimates the model using least squares. Line 3 contains the test command. It is initiated
by chow followed by the indicator variable that is used to define the subsets, in this case south.
The option is used to tell gretl that south is an indicator. When the --dummy option is used, chow
tests the null hypothesis of structural homogeneity with respect to that dummy. Essentially, gretl
is creating interaction terms between the indicator and each of the regressors and adding them to
the model. We will replicate this below in a script.
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Figure 7.2: Click Tests>Chow test from a model window to reveal the dialog box for the Chow
test. Select an indicator variable or a break point for the sample.

The dialog box to perform the Chow test is found in the model window. After estimating the
regression via the GUI the model window appears. Click Tests>Chow test on its menu bar to
open the dialog box in Figure 7.2. The results from the test appear below.

Augmented regression for Chow test

OLS, using observations 1-1000

Dependent variable: wage

coefficient std. error t-ratio p-value

-----------------------------------------------------------

const -6.60557 2.33663 -2.827 0.0048 ***

educ 2.17255 0.166464 13.05 4.89e-036 ***

black -5.08936 2.64306 -1.926 0.0544 *

female -5.00508 0.899007 -5.567 3.33e-08 ***

blk_fem 5.30557 3.49727 1.517 0.1296

south 3.94391 4.04845 0.9742 0.3302

so_educ -0.308541 0.285734 -1.080 0.2805

so_black 1.70440 3.63333 0.4691 0.6391

so_female 0.901120 1.77266 0.5083 0.6113

so_blk_fem -2.93583 4.78765 -0.6132 0.5399

Mean dependent var 20.61566 S.D. dependent var 12.83472

Sum squared resid 129984.4 S.E. of regression 11.45851

R-squared 0.210135 Adjusted R-squared 0.202955

F(9, 990) 29.26437 P-value(F) 2.00e-45

Log-likelihood -3852.646 Akaike criterion 7725.292

Schwarz criterion 7774.369 Hannan-Quinn 7743.944

Chow test for structural difference with respect to south

F(5, 990) = 0.320278 with p-value 0.9009

Notice that the p-value associated with the test is 0.901, thus providing insufficient evidence to
convince us that wages are structurally different in the south.

The other way to do this uses a loop to manually construct the interactions. Though the chow

145



command makes this unnecessary, it is a great exercise that demonstrates how to create more
general interactions among variables. The variable south will be interacted with each variable in
a list and then added to a new list. The script is:

1 list x = const educ black female blk_fem

2 list dx = null

3 loop foreach i x

4 series south_$i = south * $i

5 list dx = dx south_$i

6 endloop

The first line includes each of the variables in the model that are to be interacted with south. The
statement list dx = null creates a new list called dx that is empty (i.e., = null). In line 3 a
foreach loop is initiated using the index i and it will increment through each element contained
in the list, x. Line 4 creates a new series named south varname that is constructed by interacting
south with each variable in x. This is added to the new list, dx and the loop is closed.

To make it clear, let’s go through a couple of iterations of the loop:

i=1

column 1 of x = const

series south_const = south * const

dx = dx south_const

implies dx = null south_const

so, dx = south_const

loop ends--increment i

i=2

column 2 of x = educ

series south_educ = south * educ

dx = dx south_educ

so, dx = south_const south_educ

loop ends--increment i

i=3

column 3 of x = black

series south_black = south * black

dx = dx south_black

so, dx = south_const south_educ south_black

loop ends--increment i

i=4

and so on ...

The interactions are created and a series of regressions are estimated and put into a model table.
The remaining script is:
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1 modeltab clear

2 ols wage x dx

3 scalar sseu=$ess

4 scalar dfu = $df

5 modeltab add

6

7 smpl south=1 --restrict

8 ols wage x

9 modeltab add

10 smpl full

11

12 smpl south=0 --restrict

13 ols wage x

14 modeltab add

15 smpl full

16 modeltab show

Notice that the smpl command is used to manipulate subsets. It is restricted to observations in
the south in line 7, restored to full in line 10, and then restricted to nonsouth observations in
line 12. Also, the sum of squared errors from the unrestricted model is saved. These will be used
to manually construct a Chow test below.

The model table appears below

OLS estimates
Dependent variable: wage

(1) (2) (3)

const −6.606∗∗ −2.662 −6.606∗∗

(2.337) (3.420) (2.302)

educ 2.173∗∗ 1.864∗∗ 2.173∗∗

(0.1665) (0.2403) (0.1640)

black −5.089∗ −3.385 −5.089∗

(2.643) (2.579) (2.604)

female −5.005∗∗ −4.104∗∗ −5.005∗∗

(0.8990) (1.581) (0.8857)

blk fem 5.306 2.370 5.306
(3.497) (3.383) (3.446)

south const 3.944
(4.048)

south educ −0.3085
(0.2857)

south black 1.704
(3.633)
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south female 0.9011
(1.773)

south blk fem −2.936
(4.788)

n 1000 296 704
R̄2 0.2030 0.1730 0.2170
` −3853 −1149 −2703

Standard errors in parentheses
* indicates significance at the 10 percent level
** indicates significance at the 5 percent level

The first column contains the results from the model with all of the interactions. The second
column is for workers in the south, and the third is for workers elsewhere.

The code to perform the Chow test uses the sum-of-squared errors and degrees of freedom that
were saved in the unrestricted estimation and computes an F -statistic using that from the restricted
regression.

1 smpl full

2 ols wage x

3 scalar sser = $ess

4 scalar fstat = ((sser-sseu)/5)/(sseu/dfu)

5 pvalue f 5 dfu fstat

Be sure to restore the full sample before estimating the restricted model. The restricted regression
pools observations from the entire country together and estimates them with common coefficients.
It is restricted because the parameters are the same in both subsets.

F(5, 990): area to the right of 0.320278 = 0.900945

(to the left: 0.0990553)

These results match those from the built-in version of the test.

7.2.4 Log-Linear Models with Indicators

In this example an indicator variable is included in a log-linear model. It is based on a wage
example used earlier.

ln(wage) = β1 + β2educ + δfemale + e (7.3)
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Estimation of this model by least squares allows one to compute percentage differences between
the wages of females and males. As discussed in POE4, the algebra suggests that the percentage
difference is

100(eδ̂−1)% (7.4)

The model is estimated and the computation carried out in the following script.

1 open "@gretldir\data\poe\cps4_small.gdt"

2 logs wage

3 ols l_wage const educ female

4 scalar differential = 100*(exp($coeff(female))-1)

The natural logarithm of wage is taken in line 2. Then the model is estimated an the percentage
difference computes.

OLS, using observations 1–1000
Dependent variable: l wage

Coefficient Std. Error t-ratio p-value
const 1.6539 0.0844 19.60 1.3e-072
educ 0.0962 0.0060 15.94 3.76e-051
female −0.2432 0.0327 −7.43 2.31e-013

Sum squared resid 262.2387 S.E. of regression 0.512862
R2 0.221337 Adjusted R2 0.219775
F (2, 997) 141.7000 P-value(F ) 6.88e–55

The computed difference is −21.5896, suggesting that females earn about 21.59% less than males
who have comparable levels of education.

7.3 Linear Probability

A linear probability model is a linear regression in which the dependent variable is an indicator
variable. The model is estimated by least squares.

Suppose that

yi =

{
1 if alternative is chosen

0 if alternative is not chosen
(7.5)

Suppose further that the Pr(yi = 1) = πi. For a discrete variable

E[yi] = 1× Pr(yi = 1) + 0× Pr(yi = 0) = πi (7.6)
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Thus, the mean of a binary random variable can be interpreted as a probability; it is the probability
that y = 1. When the regression E[yi|xi2, xi3, . . . , xiK ] is linear then E[yi] = β1+β2xi2+. . .+βKxiK
and the mean (probability) is modeled linearly.

E[yi|xi2, xi3, . . . , xiK ] = πi = β1 + β2xi2 + . . .+ βKxiK (7.7)

The variance of a binanry random variable is

var[yi] = πi(1− πi) (7.8)

which means that it will be different for each individual. Replacing the unobserved probability,
E(yi), with the observed indicator variable requires adding an error to the model that we can
estimate via least squares. In this following example we have 1140 observations from individuals
who purchased Coke or Pepsi. The dependent variable takes the value of 1 if the person buys
Coke and 0 if Pepsi. These depend on the ratio of the prices, pratio, and two indicator variables,
disp coke and disp pepsi. These indicate whether the store selling the drinks had promotional
displays of Coke or Pepsi at the time of purchase.

OLS, using observations 1–1140
Dependent variable: coke

Heteroskedasticity-robust standard errors, variant HC3

Coefficient Std. Error t-ratio p-value
const 0.8902 0.0656 13.56 5.88e-039
pratio −0.4009 0.0607 −6.60 6.26e-011
disp coke 0.0772 0.0340 2.27 0.0235
disp pepsi −0.1657 0.0345 −4.81 1.74e-006

Sum squared resid 248.0043 S.E. of regression 0.467240
R2 0.120059 Adjusted R2 0.117736
F (3, 1136) 56.55236 P-value(F ) 4.50e–34

The model was estimated using a variance-covariance matrix estimator that is consistent when the
error terms of the model have variances that depend on the observation. That is the case here. I’ll
defer discussion of this issue until the next chapter when it will be discussed at some length.

7.4 Treatment Effects

In order to understand the measurement of treatment effects, consider a simple regression model
in which the explanatory variable is a dummy variable, indicating whether a particular individual
is in the treatment or control group. Let y be the outcome variable, the measured characteristic
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the treatment is designed to affect. Define the indicator variable d as

di =

{
1 if treated

0 if not treated
(7.9)

The effect of the treatment on the outcome can be modeled as

yi = β1 + β2di + ei i = 1, 2, . . . , N (7.10)

where ei represents the collection of other factors affecting the outcome. The regression functions
for the treatment and control groups are

E(yi) =

{
β1 + β2 if individual is treated

β1 if not treated
(7.11)

The treatment effect that we want to measure is β2. The least squares estimator of β2 is

b2 =

∑N
i=1(di − d̄)(yi − ȳ)∑N

i=1(di − d̄)2
= ȳ1 − ȳ0 (7.12)

where ȳ1 is the sample mean for the observations on y for the treatment group and ȳ0 is the sample
mean for the observations on y for the untreated group. In this treatment/control framework the
estimator b2 is called the difference estimator because it is the difference between the sample
means of the treatment and control groups.

To illustrate, we use the data from project STAR described in POE4, chapter 7.5.3.

The first thing to do is to take a look at the descriptive statistics for a subset of the variables.
The list v is created to hold the variable names of all the variables of interest. Then the summary

command is issued for the variables in v with the --by option. This option takes an argument,
which is the name of a discrete variable by which the subsets are determined. Here, small and
regular are binary, taking the value of 1 for small classes and 0 otherwise. This will lead to two
sets of summary statistics.

1 open "@gretldir\data\poe\star.gdt"

2 list v = totalscore small tchexper boy freelunch white_asian \

3 tchwhite tchmasters schurban schrural

4 summary v --by=small --simple

5 summary v --by=regular --simple

Here is a partial listing of the output:

regular = 1 (n = 2005):

Mean Minimum Maximum Std. Dev.
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totalscore 918.04 635.00 1229.0 73.138

small 0.00000 0.00000 0.00000 0.00000

tchexper 9.0683 0.00000 24.000 5.7244

boy 0.51322 0.00000 1.0000 0.49995

freelunch 0.47382 0.00000 1.0000 0.49944

white_asian 0.68130 0.00000 1.0000 0.46609

tchwhite 0.79800 0.00000 1.0000 0.40159

tchmasters 0.36509 0.00000 1.0000 0.48157

schurban 0.30125 0.00000 1.0000 0.45891

schrural 0.49975 0.00000 1.0000 0.50012

small = 1 (n = 1738):

Mean Minimum Maximum Std. Dev.

totalscore 931.94 747.00 1253.0 76.359

small 1.0000 1.0000 1.0000 0.00000

tchexper 8.9954 0.00000 27.000 5.7316

boy 0.51496 0.00000 1.0000 0.49992

freelunch 0.47181 0.00000 1.0000 0.49935

white_asian 0.68470 0.00000 1.0000 0.46477

tchwhite 0.86249 0.00000 1.0000 0.34449

tchmasters 0.31761 0.00000 1.0000 0.46568

schurban 0.30610 0.00000 1.0000 0.46100

schrural 0.46260 0.00000 1.0000 0.49874

The --simple option drops the median, C.V., skewness and excess kurtosis from the summary
statistics. In this case we don’t need those so the option is used.

Next, we want to drop the observations for those classrooms that have a teacher’s aide and to
construct a set of variable lists to be used in the regressions that follow.

1 smpl aide != 1 --restrict

2 list x1 = const small

3 list x2 = x1 tchexper

4 list x3 = x2 boy freelunch white_asian

5 list x4 = x3 tchwhite tchmasters schurban schrural

In the first line the smpl command is used to limit the sample (--restrict) to those observations
for which the aide variable is not equal (!=) to one. The list commands are interesting. Notice
that x1 is constructed in a conventional way using list; to the right of the equality is the name
of two variables. Then x2 is created with the first elements consisting of the list, x1 followed by
the additional variable tchexper. Thus, x2 contains const, small, and tchexper. The lists x3

and x4 are constructed similarly. New variables are appended to previously defined lists. It’s quite
seamless and natural.

Now each of the models is estimated with the --quiet option and put into a model table.
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OLS estimates
Dependent variable: totalscore

(1) (2) (3) (4)

const 918.0∗∗ 907.6∗∗ 927.6∗∗ 936.0∗∗

(1.667) (2.542) (3.758) (5.057)

small 13.90∗∗ 13.98∗∗ 13.87∗∗ 13.36∗∗

(2.447) (2.437) (2.338) (2.352)

tchexper 1.156∗∗ 0.7025∗∗ 0.7814∗∗

(0.2123) (0.2057) (0.2129)

boy −15.34∗∗ −15.29∗∗

(2.335) (2.330)

freelunch −33.79∗∗ −32.05∗∗

(2.600) (2.666)

white asian 11.65∗∗ 14.99∗∗

(2.801) (3.510)

tchwhite −2.775
(3.535)

tchmasters −8.180∗∗

(2.562)

schurban −8.216∗∗

(3.673)

schrural −9.133∗∗

(3.210)

n 3743 3743 3743 3743
R̄2 0.0083 0.0158 0.0945 0.0988
` −2.145e+004 −2.144e+004 −2.128e+004 −2.127e+004

Standard errors in parentheses
* indicates significance at the 10 percent level
** indicates significance at the 5 percent level

The coefficient on the small indicator variable is not affected by adding or dropping variables from
the model. This is indirect evidence that it is not correlated with other regressors. The effect
of teacher experience on test scores falls quite a bit when boy, freelunch, and white asian are
added to the equation. This suggests that it is correlated with one or more of these variables and
that omitting them from the model leads to biased estimation of the parameters by least squares.
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7.4.1 School Fixed Effects

It may be that assignment to treatment groups is related to one or more of the observable
characteristics (school size or teacher experience in this case). One way to control for these omitted
effects is to used fixed effects estimation. This is taken up in more detail later. Here we introduce
it to show off a useful gretl function called dummify.

The dummify command creates dummy variables for each distinct value present in a series, x.
In order for it to work, you must first tell gretl that x is in fact a discrete variable. We want
to create a set of indicator variables, one for each school in the dataset. First declare the schid

variable to be discrete and then dummify it.

Here is the code and another model table that mimics Table 7.7 in POE4.

1 discrete schid

2 list d = dummify(schid)

3 ols totalscore x1 --quiet

4 scalar sser = $ess

5 scalar r_df = $df

6 modeltab add

7 ols totalscore x2 --quiet

8 modeltab add

9 ols totalscore x1 d --quiet

10 scalar sseu = $ess

11 scalar u_df = $df

12 modeltab add

13 ols totalscore x2 d --quiet

14 modeltab add

15 modeltab show

16 modeltab free

The discrete function in line 1 makes schid into a discrete variable. The next line creates a list

that includes each of the variables created by dummify(schid). Then, all you have to do is add it
to the variable list that includes the fixed effects. Gretl smartly avoids the dummy variable trap
by dropping one of the indicator variables from the regression.

Here is what you get with the indicator coefficients suppressed:

OLS estimates
Dependent variable: totalscore

(1) (2) (3) (4)

const 918.0∗∗ 907.6∗∗ 838.8∗∗ 830.8∗∗

(1.667) (2.542) (11.56) (11.70)
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small 13.90∗∗ 13.98∗∗ 16.00∗∗ 16.07∗∗

(2.447) (2.437) (2.223) (2.218)

tchexper 1.156∗∗ 0.9132∗∗

(0.2123) (0.2256)

School Effects no no yes yes

n 3743 3743 3743 3743
R̄2 0.0083 0.0158 0.2213 0.2245
` −2.145e+004 −2.144e+004 −2.096e+004 −2.095e+004

Standard errors in parentheses
* indicates significance at the 10 percent level
** indicates significance at the 5 percent level

The estimated slopes in columns (3) and (4) match those in POE4. The intercepts are different
only because a different reference group was used. The substance of the results is unaffected.

Testing the null hypothesis that the fixed effects are zero is very simple. Compare the restricted
and unrestricted sum of squared errors using a F -statistic. The restricted sum of squared errors is
saved for model (1) and the unrestricted for model (3). The statistic is computed using

1 scalar J = r_df-u_df

2 scalar fstat = ((sser - sseu)/J)/(sseu/u_df)

3 pvalue f J u_df fstat

and the result is:

Generated scalar J = 78

Generated scalar fstat = 14.1177

F(78, 3663): area to the right of 14.1177 = 1.70964e-154

(to the left: 1)

Notice how the difference in the number of degrees of freedom reveals how many restrictions are
imposed on the model. Given the number of times we’ve used this computation, it may pay to
write a gretl function to automate it.

7.4.2 Using Linear Probability to Verify Random Assignment

A number of variables are omitted from the model and it is safe to do so as long as they are
not correlated with regressors. This would be evidence of assignments to the control group that
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are systematic. This can be checked using a regression. Since small is an indicator, we use a linear
probability regression.

The independent variables include a constant, boy white asian, tchexper and freelunch.
The result is

OLS, using observations 1–3743
Dependent variable: small

Heteroskedasticity-robust standard errors, variant HC3

Coefficient Std. Error t-ratio p-value
const 0.4665 0.0253 18.46 7.33e-073
boy 0.0014 0.0163 0.09 0.931
white asian 0.0044 0.0197 0.22 0.823
tchexper −0.0006 0.0014 −0.42 0.676
freelunch −0.0009 0.0183 −0.05 0.961

Sum squared resid 930.9297 S.E. of regression 0.499044
R2 0.000063 Adjusted R2 -0.001007
F (4, 3738) 0.059396 P-value(F ) 0.993476

The overall-F statistic is not significant at 10%. None of the individual t-ratios are significant.
Finally, a test of the hypothesis that the constant is β1 = 0.5 cannot be rejected. A value of 0.5
would be consistent with assigning children to a small or large class by a fair coin flip. I think it is
safe to omit these regressors from the model.

7.5 Differences-in-Differences Estimation

If you want to learn about how a change in policy affects outcomes, nothing beats a randomized
controlled experiment. Unfortunately, these are rare in economics because they are either very
expensive of morally unacceptable. No one want to determines what the return to schooling is by
randomly assigning people to a prescribed number of schooling years. That choice should be yours
and not someone else’s.

But, the evaluation of policy is not hopeless when randomized controlled experiments are im-
possible. Life provides us with situations that happen to different groups of individuals at different
points in time. Such events are not really random, but from a statistical point of view the treatment
may appear to be randomly assigned. That is what so-called natural experiments are about.
You have two groups of similar people. For whatever reason, one group gets treated to the policy
and the other does not. Comparative differences are attributed to the policy.

In the example, we will look at the effects of a change in the minimum wage. It is made possible
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because the minimum wage is raised in one state and not another. The similarity of states is
important because the non-treated state is going to be used for comparison.

The data come from Card and Krueger and are found in the file njmin3.gdt. We will open it
and look at the summary statistics by state.

1 open "@gretldir\data\poe\njmin3.gdt"

2 smpl d = 0 --restrict

3 summary fte --by=nj --simple

4 smpl full

5 smpl d = 1 --restrict

6 summary fte --by=nj --simple

7 smpl full

Since we want to get a picture of what happened in NJ and PA before and after NJ raised the
minimum wage we restrict the sample to before the increase. Then get the summary statistics for
fte by state in line 3. Restore the full sample and then restrict it to after the policy d=1. Repeat
the summary statistics for fte. The results suggest not much difference at this point.

nj = 0 (n = 79) d=0:

Mean Minimum Maximum Std. Dev.

fte 23.331 7.5000 70.500 11.856

nj = 1 (n = 331) d=0:

Mean Minimum Maximum Std. Dev.

fte 20.439 5.0000 85.000 9.1062

nj = 0 (n = 79) d=1:

Mean Minimum Maximum Std. Dev.

fte 21.166 0.00000 43.500 8.2767

nj = 1 (n = 331) d=1:

Mean Minimum Maximum Std. Dev.

fte 21.027 0.00000 60.500 9.2930

Now, make some variable list and run a few regressions

1 list x1 = const nj d d_nj

2 list x2 = x1 kfc roys wendys co_owned

3 list x3 = x2 southj centralj pa1

4
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5 ols fte x1

6 modeltab add

7 ols fte x2

8 modeltab add

9 ols fte x3

10 modeltab add

11 modeltab show

The first set of variables include the indicator variables nj, d and their interaction. The second set
adds more indicators for whether the jobs are at kfc, roys, or wendys and if the store is companied
owned. The final set add more indicators for location.

The results from the three regressions appear below:

OLS estimates
Dependent variable: fte

(1) (2) (3)

const 23.33∗∗ 25.95∗∗ 25.32∗∗

(1.072) (1.038) (1.211)

nj −2.892∗∗ −2.377∗∗ −0.9080
(1.194) (1.079) (1.272)

d −2.166 −2.224 −2.212
(1.516) (1.368) (1.349)

d nj 2.754 2.845∗ 2.815∗

(1.688) (1.523) (1.502)

kfc −10.45∗∗ −10.06∗∗

(0.8490) (0.8447)

roys −1.625∗ −1.693∗∗

(0.8598) (0.8592)

wendys −1.064 −1.065
(0.9292) (0.9206)

co owned −1.169 −0.7163
(0.7162) (0.7190)

southj −3.702∗∗

(0.7800)

centralj 0.007883
(0.8975)

pa1 0.9239
(1.385)

n 794 794 794
R̄2 0.0036 0.1893 0.2115
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` −2904 −2820 −2808

Standard errors in parentheses
* indicates significance at the 10 percent level
** indicates significance at the 5 percent level

The coefficient on d nj is the difference-in-differences estimator of the change in employment due
to a change in the minimum wage. It is not significantly different from zero in this case and we can
conclude that raising the minimum wage in New Jersey did not adversely affect employment.

In the previous analysis we did not exploit an important feature of Card and Krueger’s data.
The same restaurants were observed before and after in both states–in 384 of the 410 observations.
It seems reasonable to limit the before and after comparison to the same units.

This requires adding an individual fixed effect to the model and dropping observations that
have no before or after with which to compare.

1 smpl missing(demp) != 1 --restrict

2 ols demp const nj

Fortunately, the data set includes the ∆FTE where it is called demp. Dropping the observations for
demp that are missing and using least squares to estimate the parameters of the simple regression
yield:

̂demp = −2.28333
(0.73126)

+ 2.75000
(0.81519)

nj

T = 768 R̄2 = 0.0134 F (1, 766) = 11.380 σ̂ = 8.9560

(standard errors in parentheses)

Again, the coefficient on nj is not significant at the 5% level and we cannot conclude that the
increase in minimum wage affects employment.

7.6 Script

1 set echo off

2 open "@gretldir\data\poe\utown.gdt"

3 # print first 8 observations

4 smpl 1 8

5 print price sqft age utown pool fplace --byobs
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6 # obtain summary statistics for full sample

7 smpl full

8 summary

9

10 # create indicator variable for large homes

11 series ld = (sqft>25)

12 discrete ld

13 smpl 1 8

14 print ld sqft --byobs

15 smpl full

16

17 # create interaction and estimate model

18 series sqft_utown=sqft*utown

19 ols price const utown sqft sqft_utown age pool fplace

20

21 # generate some marginal effects

22 scalar premium = $coeff(utown)*1000

23 scalar sq_u = 10*($coeff(sqft)+$coeff(sqft_utown))

24 scalar sq_other = 10*$coeff(sqft)

25 scalar depr = 1000*$coeff(age)

26 scalar sp = 1000*$coeff(pool)

27 scalar firep = 1000*$coeff(fplace)

28 printf "\n University Premium = $%8.7g\n\

29 Marginal effect of sqft near University = $%7.6g\n\

30 Marginal effect of sqft elsewhere = $%7.6g\n\

31 Depreciation Rate = $%7.2f\n\

32 Pool = $%7.2f\n\

33 Fireplace = $%7.2f\n",premium,sq_u,sq_other,depr,sp,firep

34 omit sqft_utown

35

36 # testing joint hypotheses

37 open "@gretldir\data\poe\cps4_small.gdt"

38 series blk_fem = black*female

39 ols wage const educ black female blk_fem

40 restrict

41 b[3]=0

42 b[4]=0

43 b[5]=0

44 end restrict

45

46 ols wage const educ black female blk_fem south midwest west

47 omit south midwest west

48 scalar sser = $ess

49

50 # creation of interactions using a loop

51 list x = const educ black female blk_fem

52 list dx = null

53 loop foreach i x

54 series south_$i = south * $i

55 list dx = dx south_$i

56 endloop
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57 modeltab clear

58 ols wage x dx

59 scalar sseu = $ess

60 scalar dfu = $df

61 modeltab add

62

63 # estimating subsets

64 smpl south=1 --restrict

65 ols wage x

66 modeltab add

67 smpl full

68

69 smpl south=0 --restrict

70 ols wage x

71 modeltab add

72 modeltab show

73

74 # Chow tests

75 smpl full

76 ols wage x

77 scalar sser = $ess

78 scalar fstat = ((sser-sseu)/5)/(sseu/dfu)

79 pvalue f 5 dfu fstat

80

81 ols wage x

82 chow south --dummy

83

84 # log-linear model--interpretation

85 open "@gretldir\data\poe\cps4_small.gdt"

86 logs wage

87 ols l_wage const educ female

88 scalar differential = 100*(exp($coeff(female))-1)

89

90 # linear probability model with HCCME

91 open "@gretldir\data\poe\coke.gdt"

92 ols coke const pratio disp_coke disp_pepsi --robust

93

94 # treatment effects

95 open "@gretldir\data\poe\star.gdt"

96 list v = totalscore small tchexper boy freelunch \

97 white_asian tchwhite tchmasters schurban schrural

98 summary v --by=small --simple

99 summary v --by=regular --simple

100

101 smpl aide != 1 --restrict

102 list x1 = const small

103 list x2 = x1 tchexper

104 list x3 = x1 boy freelunch white_asian

105 list x4 = x1 tchwhite tchmasters schurban schrural

106

107 ols totalscore x1 --quiet
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108 modeltab add

109 ols totalscore x2 --quiet

110 modeltab add

111 ols totalscore x3 --quiet

112 modeltab add

113 ols totalscore x4 --quiet

114 modeltab add

115 modeltab show

116 modeltab free

117

118 # manual creation of multiple indicators for school id

119 discrete schid

120 list d = dummify(schid)

121 ols totalscore x1 --quiet

122 scalar sser = $ess

123 scalar r_df = $df

124 modeltab add

125 ols totalscore x2 --quiet

126 modeltab add

127 ols totalscore x1 d --quiet

128 scalar sseu = $ess

129 scalar u_df = $df

130 modeltab add

131 ols totalscore x2 d --quiet

132 modeltab add

133 modeltab show

134 modeltab free

135

136 scalar J = r_df-u_df

137 scalar fstat = ((sser - sseu)/J)/(sseu/u_df)

138 pvalue f J u_df fstat

139

140 # testing random assignment of students

141 ols small const boy white_asian tchexper freelunch

142 restrict

143 b[1]=.5

144 end restrict

145

146 # differences-in-differences

147 open "@gretldir\data\poe\njmin3.gdt"

148 smpl d = 0 --restrict

149 summary fte --by=nj --simple

150 smpl full

151 smpl d = 1 --restrict

152 summary fte --by=nj --simple

153 smpl full

154

155 list x1 = const nj d d_nj

156 list x2 = x1 kfc roys wendys co_owned

157 list x3 = x2 southj centralj pa1

158
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159 summary x1 fte

160

161 ols fte x1

162 modeltab add

163 ols fte x2

164 modeltab add

165 ols fte x3

166 modeltab add

167 modeltab show

168 modeltab free

169

170 smpl missing(demp) != 1 --restrict

171 ols demp const nj
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Chapter 8
Heteroskedasticity

The simple linear regression models of chapter 2 and the multiple regression model in Chapter
5 can be generalized in other ways. For instance, there is no guarantee that the random variables
of these models (either the yi or the ei) have the same inherent variability. That is to say, some
observations may have a larger or smaller variance than others. This describes the condition known
as heteroskedasticity. The general linear regression model is shown in equation (8.1) below.

yi = β1 + β2xi2 + · · ·+ βkxiK + ei i = 1, 2, . . . , N (8.1)

where yi is the dependent variable, xik is the ith observation on the kth independent variable,
k = 2, 3, . . . ,K, ei is random error, and β1, β2, . . . , βK are the parameters you want to estimate.
Just as in the simple linear regression model, ei, have an average value of zero for each value of
the independent variables and are uncorrelated with one another. The difference in this model
is that the variance of ei now depends on i, i.e., the observation to which it belongs. Indexing
the variance with the i subscript is just a way of indicating that observations may have differ-
ent amounts of variability associated with them. The error assumptions can be summarized as
ei|xi2, xi3, . . . xiK iid N(0, σ2

i ).

The intercept and slopes, β1, β2, . . ., βK , are consistently estimated by least squares even if
the data are heteroskedastic. Unfortunately, the usual estimators of the least squares standard
errors and tests based on them are inconsistent and invalid. In this chapter, several ways to detect
heteroskedasticity are considered. Also, statistically valid ways of estimating the parameters of 8.1
and testing hypotheses about the βs when the data are heteroskedastic are explored.

8.1 Food Expenditure Example

First, a simple model of food expenditures is estimated using least squares. The model is

food expi = β1 + β2incomei + ei i = 1, 2, . . . , N (8.2)
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where food expi is food expenditure and incomei is income of the ith individual. When the errors
of the model are heteroskedastic, then the least squares estimator of the coefficients is consistent.
That means that the least squares point estimates of the intercept and slope are useful. However,
when the errors are heteroskedastic the usual least squares standard errors are inconsistent and
therefore should not be used to form confidence intervals or to test hypotheses.

To use least squares estimates with heteroskedastic data, at a very minimum, you’ll need a
consistent estimator of their standard errors in order to construct valid tests and intervals. A
simple computation proposed by White accomplishes this. Standard errors computed using White’s
technique are loosely referred to as robust, though one has to be careful when using this term;
the standard errors are robust to the presence of heteroskedasticity in the errors of model (but not
necessarily other forms of model misspecification).

Open the food.gdt data in gretl and estimate the model using least squares.

1 open "@gretldir\data\poe\food.gdt"

2 ols food_exp const income

3 gnuplot food_exp income --linear-fit

This yields the usual least squares estimates of the parameters, but produces the wrong standard
errors when the data are heteroskedastic. To get an initial idea of whether this might be the case a
plot of the data is generated and the least squares line is graphed. If the data are heteroskedastic
with respect to income then you will see more variation around the regression line for some levels
of income. The graph is shown in Figure 8.1 and this appears to be the case. There is significantly
more variation in the data for high incomes than for low.

To obtain the heteroskedasticity robust standard errors, simply add the --robust option to the
regression as shown in the following gretl script. After issuing the --robust option, the standard
errors stored in the accessor $stderr(income) are the robust ones.

1 ols food_exp const income --robust

2 # confidence intervals (Robust)

3 scalar lb = $coeff(income) - critical(t,$df,0.025) * $stderr(income)

4 scalar ub = $coeff(income) + critical(t,$df,0.025) * $stderr(income)

5 printf "\nThe 95%% confidence interval is (%.3f, %.3f).\n",lb,ub

In the script, we have used the critical(t,$df,0.025) function to get the desired critical value
from the t-distribution. Remember, the degrees of freedom from the preceding regression are stored
in $df. The first argument in the function indicates the desired distribution, and the last is the
desired right-tail probability (α/2 in this case).

The script produces
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Figure 8.1: Plot of food expenditures against income with least squares fit.

The 95% confidence interval is (6.391, 14.028).

This can also be done from the pull-down menus. Select Model>Ordinary Least Squares (see
Figure 2.6) to generate the dialog to specify the model shown in Figure 8.2 below. Note, the check
box to generate ‘robust standard errors’ is circled. You will also notice that there is a button
labeled Configure just to the right of the ‘Robust standard errors’ check box. Clicking this button
reveals a dialog from which several options can be selected. In this case, we can select the particular
method that will be used to compute the robust standard errors and even set robust standard errors
to be the default computation for least squares. This dialog box is shown in Figure 8.3 below.

To reproduce the results in Hill et al. (2011), you’ll want to select HC1 from the pull-down list.
As you can see, other gretl options can be selected here that affect the default behavior of the
program. The particular variant it uses depends on which dataset structure you have defined for
your data. If none is defined, gretl assumes you have cross-sectional data.

The model results for the food expenditure example appear in the table below. After estimating
the model using the dialog, you can use Analysis>Confidence intervals for coefficients to
generate 95% confidence intervals. Since you used the robust option in the dialog, these will be
based on the variant of White’s standard errors chosen using the ‘configure’ button. In this case, I
chose HC3, which some suggest performs slightly better in small samples. The result is:

VARIABLE COEFFICIENT 95% CONFIDENCE INTERVAL

const 83.4160 25.4153 141.417

income 10.2096 6.39125 14.0280
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OLS, using observations 1–40
Dependent variable: food exp

Heteroskedasticity-robust standard errors, variant HC3

Coefficient Std. Error t-ratio p-value

const 83.4160 28.6509 2.9115 0.0060
income 10.2096 1.88619 5.4128 0.0000

Mean dependent var 283.5735 S.D. dependent var 112.6752
Sum squared resid 304505.2 S.E. of regression 89.51700
R2 0.385002 Adjusted R2 0.368818
F (1, 38) 29.29889 P-value(F ) 3.63e–06

Table 8.1: Least squares estimates with the usual and robust standard errors.

8.2 Detecting Heteroskedasticity

In the discussion above we used a graph of the data and the regression function to give us an
initial reading of whether the data are heteroskedastic. Residual plots are equally useful, but some
care must be taken in generating and interpreting them. By their very nature, plots allow you to
‘see’ relationships one variable at a time. If the heteroskedasticity involves more than one variable
they may not be very revealing.

In Figure 8.4 is a plot of the least squares residuals against income. It appears that for larger
levels of income there is much higher variance in the residuals. The graph was generated from the
model window by selecting Graphs>Residual plot>Against income. I also right-clicked on the
graph, chose Edit and altered its appearance a bit. Summoning the dialog looks like

Of course, you can also generate graphs from a script, which in this case is:

1 ols food_exp const income --robust

2 series res = $uhat

3 setinfo res -d "Least Squares Residuals" -n "Residual"

4 gnuplot res income --output=c:\Temp\olsres
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In this script we continue to expand the use of gretl functions. The residuals are saved in line 2.
Then in line 3 the setinfo command is used to change the description and the graph label using
the -d and -n switches, respectively. Then gnuplot is called to plot res against income. This
time the output is directed to a specific file. Notice that no suffix was necessary. To view the file
in MS Windows, simply lauch wgnuplot and load ’c:\Temp\olsres’.

Another graphical method that shows the relationship between the magnitude of the residuals
and the independent variable is shown below:

1 series abs_e = abs(res)

2 setinfo abs_e -d "Absolute value of the LS Residuals"\

3 -n "Absolute Value of Residual"

4 gnuplot abs_e income --loess-fit --output=c:\temp\loessfit.plt

The graph appears in Figure 8.5. To generate this graph two things have been done. First, the
absolute value of the least squares residuals have been saved to a new variable called abs e. Then
these are plotted against income as a scatter plot and as a locally weighted, smoothed scatterplot
estimated by process called loess.

The basic idea behind loess is to create a new variable that, for each value of the dependent
variable, yi, contains the corresponding smoothed value, ysi . The smoothed values are obtained
by running a regression of y on x by using only the data (xi, yi) and a few of the data points
near this one. In loess, the regression is weighted so that the central point (xi, yi) gets the highest
weight and points that are farther away (based on the distance | xj − xi |) receive less weight.
The estimated regression line is then used to predict the smoothed value ysi for yis only. The
procedure is repeated to obtain the remaining smoothed values, which means that a separate
weighted regression is performed for every point in the data. Obviously, if your data set is large,
this can take a while. Loess is said to be a desirable smoother because of it tends to follow the data.
Polynomial smoothing methods, for instance, are global in that what happens on the extreme left
of a scatterplot can affect the fitted values on the extreme right.

One can see from the graph in Figure 8.5 that the residuals tend to get larger as income rises,
reaching a maximum at 28. The residual for an observation having the largest income is relatively
small and the locally smoothed prediction causes the line to start trending downward.

8.3 Lagrange Multiplier Tests

There are many tests of the null hypothesis of homoskedasticity that have been proposed else-
where. Two of these, based on Lagrange multipliers, are particularly simple to do and useful. The
first is sometimes referred to as the Breusch-Pagan (BP) test. The second test is credited to White.
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The null and alternative hypotheses for the Breusch-Pagan test are

H0 : σ2
i = σ2

H1 : σ2
i = h(α1 + α2zi2 + . . . αsziS)

The null hypothesis is that the data are homoskedastic. The alternative is that the data are
heteroskedastic in a way that depends upon the variables zis, i = 2, 3, . . . , S. These variables are
exogenous and correlated with the model’s variances. The function h(), is not specified. It could
be anything that depends on its argument, i.e., the linear function of the variables in z. Here are
the steps:

1. Estimate the regression model

2. Save the residuals

3. Square the residuals

4. Regress the squared residuals on zis, i = 2, 3, . . . , S.

5. Compute NR2 from this regression and compare it to the α level critical value from the
χ2(S − 1) distribution.

The gretl script to perform the test manually is

1 ols food_exp const income

2 series sq_ehat = $uhat*$uhat

3 ols sq_ehat const income

4 scalar NR2 = $trsq

5 pvalue X 1 NR2

The only new item in this script is the use of the accessor, $trsq. This is the saved value of NR2

from the previously estimated model. The output from the script is

1 Replaced scalar NR2 = 7.38442

2 Chi-square(1): area to the right of 7.38442 = 0.00657911

3 (to the left: 0.993421)

The p-value is less than 5% and we would reject the homoskedasticity null at that level. The
heteroskedasticity seen in the residual plots appears to be confirmed.

Gretl has a built-in function that will compute a special case of the BP test that yields the
same result in this example. The
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1 ols food_exp const income

2 modtest --breusch-pagan

Produces

Breusch-Pagan test for heteroskedasticity

OLS, using observations 1-40

Dependent variable: scaled uhat^2

coefficient std. error t-ratio p-value

-------------------------------------------------------

const -0.756949 0.633618 -1.195 0.2396

income 0.0896185 0.0305534 2.933 0.0057 ***

Explained sum of squares = 14.6879

Test statistic: LM = 7.343935,

with p-value = P(Chi-square(1) > 7.343935) = 0.006729

The functionality of modtest --breusch-pagan is limited in that it will include every regressor
in the model as a z. It matches the result we derived manually because the model only includes
income as the regressor. The modtest --breusch-pagan uses it as z. This means that you can’t
test a subset of the regressors with this function, nor can you use it to test for heteroskedasticity
of exogenous variables that are not included in the regression function. In either of these cases, use
the manual method described above; it is very easy to do.

8.3.1 The White Test

White’s test is in fact just a minor variation on the Breusch-Pagan test. The null and alternative
hypotheses are

H0 : σ2
i = σ2 for all i

H1 : σ2
i 6= σ2

j for at least 1 i 6= j

This is a composite alternative that captures every possibility other than the one covered by the
null. If you know nothing about the nature of heteroskedasticity in your data, then this is a
good place to start. The test is very similar to the BP test. In this test, the heteroskedasticity
related variables (zis, i = 2, 3, . . . , S) include each non-redundant regressor, its square, and all cross
products between regressors. See POE4 for details. In the food expenditure model there is only
one continuous regressor and an intercept. So, the constant squared and the cross product between
the constant and income are redundant. This leaves only one unique variable to add to the model,
income squared.
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In gretl generate the squared value of income and regress the squared residuals from the model
on income and its square. Compute NR2 from this regression and compare it to α level critical
value from the χ2(S − 1) distribution. As is the case in all the LM tests considered in this book,
N is the number of observations in the second or auxiliary regression.

As with the BP test there is a built-in function that computes White’s test. It generates all
of the squares and unique cross-products to add to the model. The script to do both manual and
built-in tests is found below:

1 ols food_exp const income

2 series sq_ehat = $uhat*$uhat

3 series sq_income = income^2

4 ols sq_ehat const income sq_income

5 scalar NR2 = $trsq

6 pvalue X 2 NR2

7

8 ols food_exp const income --quiet

9 modtest --white --quiet

The results from the two match perfectly and only that from the built-in procedure is produced
below:

White’s test for heteroskedasticity

Test statistic: TR^2 = 7.555079,

with p-value = P(Chi-square(2) > 7.555079) = 0.022879

The homoskedasticity null hypothesis is rejected at the 5% level.

8.3.2 Goldfeld Quandt Test for Heteroskedasticity

Using examples from Hill et al. (2011) a model of grouped heteroskedasticity is estimated and
a Goldfeld-Quandt test is performed to determine whether the two sample subsets have the same
error variance. The error variance associated with the first subset is σ2

1 and that for the other
subset is σ2

2.

The null and alternative hypotheses are

H0 : σ2
1 = σ2

2

H1 : σ2
1 6= σ2

2
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Estimating both subsets separately and obtaining the estimated error variances allow us to
construct the following ratio:

F =
σ̂2

1/σ
2
1

σ̂2
2/σ

2
2

∼ Fdf1,df2 (8.3)

where df1 = N1−K1 from the first subset and df2 = N2−K2 is from the second subset. Under the
null hypothesis that the two variances are equal

F =
σ̂2

1

σ̂2
2

∼ Fdf1,df2 (8.4)

This is just the ratio of the estimated variances from the two subset regressions.

Wage Example

Below, I have written a gretl program to reproduce the wage example from Hill et al. (2011)
that appears in chapter 8. The example is relatively straightforward and I’ll not explain the script
in much detail. It is annotated to help you decipher what each section of the program does.

The example consists of estimating wages as a function of education and experience. In addition,
an indicator variable is included that is equal to one if a person lives in a metropolitan area. This
is an “intercept” dummy which means that folks living in the metro areas are expected to respond
similarly to changes in education and experience (same slopes), but that they earn a premium
relative to those in rural areas (different intercept).

Each subset (metro and rural) is estimated separately using least squares and the standard error
of the regression is saved for each ($sigma). Generally, you should put the group with the larger
variance in the numerator. This allows a one-sided test and also allows you to use the standard
p-value calculations as done below.

1 open "@gretldir\data\poe\cps2.gdt"

2 ols wage const educ exper metro

3 # Use only metro observations

4 smpl metro=1 --restrict

5 ols wage const educ exper

6 scalar stdm = $sigma

7 scalar df_m = $df

8 #Restore the full sample

9 smpl full

10 # Use only rural observations

11 smpl metro=0 --restrict

12 ols wage const educ exper

13 scalar stdr = $sigma

14 scalar df_r = $df

15 # GQ statistic

16 gq = stdm^2/stdr^2
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17 scalar pv = pvalue(F, df_m, df_r, gq)

18 printf "\nThe F(%d, %d) statistic = %.3f. The right\

19 side p-value is %.4g.\n",df_m,df_r,gq,pv

which produces

The F(805, 189) statistic = 2.088. The right side p-value is 1.567e-009.

Food Expenditure Example

In this example the data are sorted by income (low to high) and the subsets are created using
observation numbers. This is accomplished using the GUI. Click Data>Sort data from the main
menu bar to reveal the dialog box shown on the right side of Figure 8.6. The large income group
is expected to have larger variance so its estimate will be placed in the numerator of the GQ ratio.
The script is:

1 open "@gretldir\data\poe\food.gdt"

2 dataset sortby income

3 list x = const income

4 # large variance observations

5 smpl 21 40 --restrict

6 ols food_exp x

7 scalar stdL = $sigma

8 scalar df_L = $df

9 #Restore the full sample

10 smpl full

11 # small variance observations

12 smpl 1 20 --restrict

13 ols food_exp x

14 scalar stdS = $sigma

15 scalar df_S = $df

16 # GQ statistic

17 gq = stdL^2/stdS^2

18 scalar pv = pvalue(F, df_m, df_r, gq)

19 printf "\nThe F(%d, %d) statistic = %.3f. The right\

20 side p-value is %.4g.\n",df_m,df_r,gq,pv

This yields:

The F(18, 18) statistic = 3.615. The right side p-value is 0.004596.
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Notice that in line 3 we have used the dataset sortby command in line 2 to sort the data without
using the GUI.1 This allows us to use the smpl 21 40 command to limit the sample to observations
21-40 for the first subset. The other minor improvement is to use the list command in line 3 to
specify the list of independent variables. This is useful since the same regression is estimated twice
using different subsamples. The homoskedasticity null hypothesis is rejected at the 5% level since
the p-value is smaller than 0.05.

8.4 Heteroskedastic-Consistent Standard Errors

The least squares estimator can be used to estimate the linear model even when the errors are
heteroskedastic with good results. As mentioned in the first part of this chapter, the problem with
using least squares in a heteroskedastic model is that the usual estimator of precision (estimated
variance-covariance matrix) is not consistent. The simplest way to tackle this problem is to use
least squares to estimate the intercept and slopes and use an estimator of least squares covariance
that is consistent whether errors are heteroskedastic or not. This is the so-called heteroskcedasticity
robust estimator of covariance that gretl uses.

In this example, the food expenditure data is used to estimate the model using least squares
with both the usual and the robust sets of standard errors. Start by estimating the food expen-
diture model using least squares and add the estimates to the model table the estimates (Usual).
Reestimate the model using the --robust option and store the results (modeltab add).

1 ols food_exp const income --quiet

2 modeltab add

3 ols food_exp const income --robust --quiet

4 modeltab add

5 modeltab show

The model table, which I edited a bit, is

OLS estimates
Dependent variable: food exp

(Usual) (HC3 Robust)

const 72.96∗ 72.96∗∗

(38.83) (19.91)

income 11.50∗∗ 11.50∗∗

(2.508) (2.078)

n 20 20

1Replace sortby income with dsortby income to sort the sample by income in descending order.
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R2 0.5389 0.5389
` −109.1 −109.1

Standard errors in parentheses
* indicates significance at the 10 percent level
** indicates significance at the 5 percent level

Notice that the coefficient estimates are the same, but that the estimated standard errors are
different. Interestingly enough, the robust standard error for the slope is actually smaller than the
usual one!

A number of commands behave differently when used after a model that employs the --robust

option. For instance, the omit and restrict commands will use a Wald test instead of the usual one
based on the difference in sum of squared errors.

The confidence intervals can be computed manually using saved results from the regression or
from the model window of a model estimated through the GUI. Estimate the model using ols from
the GUI. Select Analysis > Confidence Intervals for coefficients in the model window
to generate confidence intervals based on the HCCME.

When you estimate the model, check the ‘Robust standard errors’ option (see Figure 8.2) and
choose the ‘Configure’ button to select one of the options for bias correction using the pull-down
menu for cross-sectional data as shown earlier in Figure 8.3.

These robust standard errors are obtained from what is often referred to as the heteroskedasticity-
consistent covariance matrix estimator (HCCME) that was proposed by Huber and rediscovered
by White. In econometrics, the HCCME standard errors may be referred to as White’s standard
errors or Huber/White standard errors. This probably accounts for the tab’s name in the dialog
box.

Since least squares is inefficient in heteroskedastic models, you’d think that there might be
another unbiased estimator that is more precise. And, there is. The generalized least squares
(GLS) estimator is, at least in principle, easy to obtain. Essentially, with the GLS estimator of the
heteroskedastic model, the different error variances are used to reweigh the data so that they are
all have the same (homoskedastic) variance. If the data are equally variable, then least squares is
efficient!

8.5 Weighted Least Squares

If you know something about the structure of the heteroskedasticity, you may be able to get more
precise estimates using a generalization of least squares. In heteroskedastic models, observations
that are observed with high variance don’t contain as much information about the location of
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the regression line as those observations having low variance. The basic idea of generalized least
squares in this context is to reweigh the data so that all the observations contain the same level
of information (i.e., same variance) about the location of the regression line. So, observations
that contain more noise are given small weights and those containing more signal a higher weight.
Reweighing the data in this way is known in some statistical disciplines as weighted least squares.
This descriptive term is the one used by gretl as well.

Suppose that the errors vary proportionally with xi according to

var(ei) = σ2xi (8.5)

The errors are heteroskedastic since each error will have a different variance, the value of which
depends on the level of xi. Weighted least squares reweighs the observations in the model so that
each transformed observation has the same variance as all the others. Simple algebra reveals that

1
√
xi

var(ei) = σ2 (8.6)

So, multiply equation (8.1) by 1/
√
xi to complete the transformation. The transformed model is

homoskedastic and least squares and the least squares standard errors are statistically valid and
efficient.

Gretl makes this easy since it contains a function to reweigh all the observations according to
a weight you specify. The command is wls, which naturally stands for weighted least squares! The
only thing you need to be careful of is how gretl handles the weights. Gretl takes the square root
of the value you provide. That is, to reweigh the variables using 1/

√
xi you need to use its square

1/xi as the weight. Gretl takes the square root of w for you. To me, this is a bit confusing, so
you may want to verify what gretl is doing by manually transforming y, x, and the constant and
running the regression. The script file shown below does this.

In the example, you first have to create the weight, then call the function wls. The script
appears below.

open "@gretldir\data\poe\food.gdt"

#GLS using built in function

series w = 1/income

wls w food_exp const income

scalar lb = $coeff(income) - critical(t,$df,0.025) * $stderr(income)

scalar ub = $coeff(income) + critical(t,$df,0.025) * $stderr(income)

printf "\nThe 95%% confidence interval is (%.3f, %.3f).\n",lb,ub

#GLS using OLS on transformed data

series wi = 1/sqrt(income)

series ys = wi*food_exp

series xs = wi*x

series cs = wi

ols ys cs xs
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The first argument after wls is the name of the weight variable. Then, specify the regression to
which it is applied. Gretl multiplies each variable (including the constant) by the square root of
the given weight and estimates the regression using least squares.

In the next block of the program, wi = 1/
√
xi is created and used to transform the dependent

variable, x and the constant. Least squares regression using this manually weighted data yields
the same results as you get with gretl’s wls command. In either case, you interpret the output of
weighted least squares in the usual way.

The weighted least squares estimation yields:

Model 6: WLS, using observations 1–40
Dependent variable: food exp

Variable used as weight: w

Coefficient Std. Error t-ratio p-value

const 78.6841 23.7887 3.3076 0.0021
income 10.4510 1.38589 7.5410 0.0000

Statistics based on the weighted data:

Sum squared resid 13359.45 S.E. of regression 18.75006
R2 0.599438 Adjusted R2 0.588897
F (1, 38) 56.86672 P-value(F ) 4.61e–09
Log-likelihood −172.9795 Akaike criterion 349.9591
Schwarz criterion 353.3368 Hannan–Quinn 351.1804

Statistics based on the original data:

Mean dependent var 283.5735 S.D. dependent var 112.6752
Sum squared resid 304611.7 S.E. of regression 89.53266

and the 95% confidence interval for the slope β2 is (7.645, 13.257).

8.5.1 Grouped Data

In our discussion of the Goldfeld-Quandt test we decided that wages in rural and metropolitan
areas showed different amounts of variation. When the heteroskedasticity occurs between groups,
it is relatively straightforward to estimate the GLS corrections–this is referred to as Feasible GLS
(FGLS).
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The example consists of estimating wages as a function of education and experience and is
based on the cps2.gdt used in the Goldfeld-Quandt test example. The strategy for combining these
partitions and estimating the parameters using generalized least squares is fairly simple. Each
subsample will be used to estimate the model and the standard error of the regression, σ̂ (using the
accessor $sigma) will be saved. Then each subsample is weighted by the reciprocal of its estimated
variance (which is the squared value of the 1/σ̂2.

There are a couple of ways to estimate each subsample. The first was used in the Goldfeld-
Quandt test example where the metro subsample was chosen using smpl metro=1 --restrict and
the rural one chosen with smpl metro=0 --restrict. Grouped GLS using this method can be
found below:

1 open "@gretldir\data\poe\cps2.gdt"

2 list x = const educ exper

3 ols wage x metro

4 smpl metro --dummy

5 ols wage x

6 scalar stdm = $sigma

7 smpl full

8 series rural = 1-metro

9 smpl rural --dummy

10 ols wage x

11 scalar stdr = $sigma

12 #Restore the full sample

13 smpl full

14 series wm = metro*stdm

15 series wr = rural*stdr

16 series w = 1/(wm + wr)^2

17 wls w wage x metro

The smpl command is used in a new way here. In line 3 smpl metro --dummy restricts the sample
based on the indicator variable metro. The sample will be restricted to only those observations for
which metro=1. The wage equation is estimated in line 4 for the metro dwellers and the standard
error of the regression is saved in line 5.

The next lines restore the full sample and create a new indicator variable for rural dwellers.
Its value is just 1-metro. We generate this in order to use the smpl rural --dummy syntax. We
could have skipped generating the rural and simply used smpl metro=0 --restrict. In line 10
the model is estimated for rural dwellers and the standard error of the regression is saved.

The full sample must be restored and two sets of weights are going to be created and combined.
In line 14 the statement series wm = metro*stdm multiplies the metro S.E. of the regression times
the indicator variable. Its values will either be stdm for metro dwellers and 0 for rural dwellers.
We do the same for rural dwellers in 15. Adding these two series together creates a single variable
that contains only two distinct values, σ̂M for metro dwellers and σ̂R for rural ones. Squaring this
and taking the reciprocal provides the necessary weights for the weighted least squares regression.
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WLS, using observations 1–1000
Dependent variable: wage

Coefficient Std. Error t-ratio p-value

const −9.39836 1.01967 −9.2170 0.0000
educ 1.19572 0.0685080 17.4537 0.0000
exper 0.132209 0.0145485 9.0874 0.0000
metro 1.53880 0.346286 4.4437 0.0000

Statistics based on the weighted data:

Sum squared resid 998.4248 S.E. of regression 1.001217
R2 0.271528 Adjusted R2 0.269334
F (3, 996) 123.7486 P-value(F ) 3.99e–68
Log-likelihood −1418.150 Akaike criterion 2844.301
Schwarz criterion 2863.932 Hannan–Quinn 2851.762

Statistics based on the original data:

Mean dependent var 10.21302 S.D. dependent var 6.246641
Sum squared resid 28585.82 S.E. of regression 5.357296

8.6 A Hetroskedasticity Function

A commonly used model for the error variance is the multipicative heteroskedasticity
model. It appears below in equation 8.7.

σ2
i = exp (α1 + α2zi) (8.7)

The variable zi is an independent explanatory variable that determines how the error variance
changes with each observation. You can add additional zs if you believe that the variance is related
to them (e.g., σ2

i = exp (α1 + α2zi2 + α3zi3)). It’s best to keep the number of zs relatively small.
The idea is to estimate the parameters of (8.7) using least squares and then use predictions as
weights to transform the data.

In terms of the food expenditure model, let zi = ln(incomei). Then, taking the natural loga-
rithms of both sides of (8.7) and adding a random error term, vi, yields

ln (σ2
i ) = α1 + α2zi + vi (8.8)

To estimate the αs, first estimate the linear regression (8.2) (or more generally, 8.1) using least
squares and save the residuals. Square the residuals, then take the natural log; this forms an
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estimate of ln (σ2
i ) to use as the dependent variable in a regression. Now, add a constant and the

zs to the right-hand side of the model and estimate the αs using least squares.

The regression model to estimate is

ln (ê2
i ) = α1 + α2zi + vi (8.9)

where ê2
i are the least squares residuals from the estimation of equation (8.1). The predictions

from this regression can then be transformed using the exponential function to provide weights for
weighted least squares.

For the food expenditure example, the gretl code appears below.

1 ols food_exp const income

2 series lnsighat = log($uhat*$uhat)

3 series z = ln(income)

4 ols lnsighat const z

5 series predsighat = exp($yhat)

6 series w = 1/predsighat

7 wls w food_exp const income

The first line estimates the linear regression using least squares. Next, a new variable is generated
(lnsighat) that is the natural log of the squared residuals from the preceding regression. Then,
generate z as the natural log of income. Estimate the skedasticity function using least squares, take
the predicted values (yhat) and use these in the exponential function (i.e., exp ( ̂food expi)). The
reciprocal of these serve as weights for generalized least squares. Remember, gretl automatically
takes the square roots of w for you in the wls function.

The output is:

WLS, using observations 1-40

Dependent variable: food_exp

Variable used as weight: w

coefficient std. error t-ratio p-value

---------------------------------------------------------

const 76.0538 9.71349 7.830 1.91e-09 ***

income 10.6335 0.971514 10.95 2.62e-013 ***

Statistics based on the weighted data:

Sum squared resid 90.91135 S.E. of regression 1.546740

R-squared 0.759187 Adjusted R-squared 0.752850

F(1, 38) 119.7991 P-value(F) 2.62e-13

Log-likelihood -73.17765 Akaike criterion 150.3553

Schwarz criterion 153.7331 Hannan-Quinn 151.5766
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Statistics based on the original data:

Mean dependent var 283.5735 S.D. dependent var 112.6752

Sum squared resid 304869.6 S.E. of regression 89.57055

The model was estimated by least squares with the HCCME standard errors in section 8.1. The
parameter estimates from FGLS are not much different than those. However, the standard errors
are much smaller now. The HC3 standard error for the slope was 1.88 and is now only 0.97. The
constant is being estimated more precisely as well. So, there are some potential benefits from using
a more precise estimator of the parameters.

8.7 Heteroskedasticity in the Linear Probabilty Model

In chapter 7 we introduced the linear probability model. It was shown that the indicator
variable, yi is heteroskedastic. That is,

var(yi) = πi(1− πi) (8.10)

where πi is the probability that the dependent variable is equal to 1 (the choice is made). The
estimated variance is ̂var(yi) = π̂i(1− π̂i) (8.11)

This can be used to perform feasible GLS. The cola marketing data coke.gdt is the basis for this
example. The independent variable, coke, takes the value of 1 if the individual purchases Coca-Cola
and is 0 if not. The decision to purchase Coca-Cola depends on the ratio of the price relative to
Pepsi, and whether displays for Coca-Cola or Pepsi were present. The variables disp coke=1 if a
Coca-Cola display was present, otherwise 0; disp pepsi=1 if a Pepsi display was present, otherwise
it is zero.

1 First, the data are loaded and the summary statistics are provided.

2 open "@gretldir\data\poe\coke.gdt"

3 summary --simple

4 list x = const pratio disp_coke disp_pepsi

The --simple option is used for the summary command. Then a list is created that contains
the names of the independent variables to be used in the estimated models. The basic summary
statistics are:

Summary statistics, using the observations 1 - 1140

Mean Minimum Maximum Std. Dev.
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coke 0.44737 0.00000 1.0000 0.49744

pr_pepsi 1.2027 0.68000 1.7900 0.30073

pr_coke 1.1901 0.68000 1.7900 0.29992

disp_pepsi 0.36404 0.00000 1.0000 0.48137

disp_coke 0.37895 0.00000 1.0000 0.48534

pratio 1.0272 0.49721 2.3247 0.28661

Everything looks good. There are no negative prices, and the indicator variables are all contained
between 0 and 1. The magnitudes of the means are reasonable.

Next, least squares is used to estimate the model twice: once with usual standard errors and
again with the HCCME standard errors produced by the --robust option. Each is added to a
model table using modeltab add.

1 # OLS

2 ols coke x

3 modeltab add

4 # OLS w/robust

5 ols coke x --robust

6 modeltab add

Feasible GLS will be estimated in two ways. In the first regression, we will omit any observation
that has a negative estimated variance. Remember that one of the problems with linear probability
is that predictions are not constrained to lie between 0 and 1. If ŷi < 0 or ŷi > 1, then variance
estimates will be negative. In the first line below a new series is created to check this condition.
If the variance, varp, is greater than zero, pos will be equal to 1 and if not, then it is zero. The
second line creates a weight for wls that is formed by multiplying the indicator variable pos times
the reciprocal of the variance. In this way, any nonnegative weights become zeros.

Remove observations with negative variance
1 series p = $yhat

2 series varp = p*(1-p)

3 series pos = (varp > 0)

4 series w = pos * 1/varp

5 # omit regression

6 wls w coke x

7 modeltab add

The first line uses the accessor for the predicted values from a linear regression, $yhat, and therefore
it must follow least squares estimation of the linear probability model; in this model, they are
interpreted as probabilities. Once again, a trick is being used to eliminate observations from the
model. Basically, any observation that has a zero weight in w is dropped from the computation.
There are equivalent ways to do this in gretl as shown below
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Two other ways to drop observations
smpl varp>0 --restrict

setmiss 0 w

The restricting the sample is probably the most straightforward method. The second uses the
setmiss command that changes the missing value code to 0 for elements of w; any observation
where w=0 is now considered missing and won’t be used to estimate the model.

Finally, another feasible GLS estimation is done. This time, p̂1 is truncated at 0.01 if ŷi < 0.01
and to 0.99 if ŷi > 0.99. The code to do this is

WLS with truncated variances for observations out of bounds
1 series b = (p<.01) || (p>.99)

2 series pt = b*0.01 + p*(1-b)

3 series varp_t = pt*(1-pt)

4 series w_t = 1/varp_t

5 wls w_t coke x

6 modeltab add

7 modeltab show

The first line creates another indicator variable that takes the value of 1 if the predicted probability
falls outside of the boundary. The || is a logical operator that takes the union of the two condi-
tions (=“OR”). The second line creates the truncated value of the probability using the indicator
variable.

pt =

{
b(0.01) + p(1− b) = 0.01 when b = 1

b(0.01) + p(1− b) = p when b = 0
(8.12)

There is another, less transparent, way to generate the truncated probabilities: use the ternary
conditional assignment operator. This operates like an if statement and can be used to save a line
of script. This syntax would create the series as

The conditional assignment operator
series pt = ( (p<.01) || (p>.99) ) ? 0.01 : p

Basically the bound condition in parentheses (p < .01)||(p > .99) is checked: that is what the
question mark represents. If it is true, pt is set to the first value that appears in front of the
colon. If false, it is set to the value specified to the right of the colon. It operates very much like a
traditional if statement in a spreadsheet program. This method is more efficient computationally
as well, which could save some time if used in a loop to perform simulations.

Once the truncated probabilities are created, then the usual weighted least squares estimation
can proceed. The model table appears below:
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Dependent variable: coke

(1) (2) (3) (4)
OLS OLS WLS WLS

const 0.8902∗∗ 0.8902∗∗ 0.8795∗∗ 0.6505∗∗

(0.06548) (0.06563) (0.05897) (0.05685)

pratio −0.4009∗∗ −0.4009∗∗ −0.3859∗∗ −0.1652∗∗

(0.06135) (0.06073) (0.05233) (0.04437)

disp coke 0.07717∗∗ 0.07717∗∗ 0.07599∗∗ 0.09399∗∗

(0.03439) (0.03402) (0.03506) (0.03987)

disp pepsi −0.1657∗∗ −0.1657∗∗ −0.1587∗∗ −0.1314∗∗

(0.03560) (0.03447) (0.03578) (0.03540)

n 1140 1140 1124 1140
R̄2 0.1177 0.1177 0.2073 0.0865
` −748.1 −748.1 −1617 −1858

Standard errors in parentheses
* indicates significance at the 10 percent level
** indicates significance at the 5 percent level

Columns (1) and (2) are the OLS estimates with usual and robust standard errors, respectively.
Column (3) uses WLS with the negative variance observations omitted from the sample. Column
(4) is WLS with the negative predictions truncated. These results are quite a bit different from
the others. This no doubt occurs because of the large weight being placed on the 16 observations
whose weights were constructed by truncation. The var(ei) = 0.01(1− 0.01) = 0.0099. The square
root of the reciprocal is approximately 10, a large weight to be placed on these 16 observations
via WLS. Since these extreme observations carry a large weight relative to the others, they exert a
considerable influence on the estimated regression.

8.8 Script

1 open "@gretldir\data\poe\food.gdt"

2 set echo off

3 ols food_exp const income

4 gnuplot food_exp income --linear-fit

5 # see section 1.4 of this manual for commands to view these plots.

6

7 # ols with HCCME standard errors

8 ols food_exp const income --robust

9 # confidence intervals (Robust)
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10 scalar lb = $coeff(income) - critical(t,$df,0.025) * $stderr(income)

11 scalar ub = $coeff(income) + critical(t,$df,0.025) * $stderr(income)

12 printf "\nThe 95%% confidence interval is (%.3f, %.3f).\n",lb,ub

13

14 # residual plot

15 ols food_exp const income --robust

16 series res = $uhat

17 setinfo res -d "Least Squares Residuals" -n "Residual"

18 gnuplot res income --output=c:\Temp\olsres

19

20 # lauch gnuplot (Windows only)

21 launch wgnuplot

22 # To view graph, type: load ’C:\Temp\olsres’ at prompt

23

24 # residual magnitude plot with loess fit

25 series abs_e = abs(res)

26 setinfo abs_e -d "Absolute value of the LS\

27 Residuals" -n "Absolute Value of Residual"

28 gnuplot abs_e income --loess-fit --output=c:\temp\loessfit.plt

29

30 # LM test for heteroskdasticity

31 ols food_exp const income

32 series sq_ehat = $uhat*$uhat

33 ols sq_ehat const income

34 scalar NR2 = $trsq

35 pvalue X 1 NR2

36

37 # built-in LM test

38 ols food_exp const income

39 modtest income --breusch-pagan

40

41 # White test

42 ols food_exp const income

43 series sq_ehat = $uhat*$uhat

44 series sq_income = income^2

45 ols sq_ehat const income sq_income

46 scalar NR2 = $trsq

47 pvalue X 2 NR2

48

49 # built-in White test

50 ols food_exp const income --quiet

51 modtest --white --quiet

52

53 # grouped data--Goldfeld-Quandt

54 open "@gretldir\data\poe\cps2.gdt"

55 ols wage const educ exper metro

56 # Use only metro observations

57 smpl metro=1 --restrict

58 ols wage const educ exper

59 scalar stdm = $sigma

60 scalar df_m = $df
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61 #Restore the full sample

62 smpl full

63 # Use only rural observations

64 smpl metro=0 --restrict

65 ols wage const educ exper

66 scalar stdr = $sigma

67 scalar df_r = $df

68 # GQ statistic

69 gq = stdm^2/stdr^2

70 scalar pv = pvalue(F, df_m, df_r, gq)

71 printf "\nThe F(%d, %d) statistic = %.3f. The right side\

72 p-value is %.4g.\n",df_m,df_r,gq,pv

73

74 # Goldfeld-Quandt for food expenditure

75 open "@gretldir\data\poe\food.gdt"

76 dataset sortby income

77 list x = const income

78 ols food_exp x

79 # large variance observations

80 smpl 21 40

81 ols food_exp x

82 scalar stdL = $sigma

83 scalar df_L = $df

84 #Restore the full sample

85 smpl full

86 # small variance observations

87 smpl 1 20

88 ols food_exp x

89 scalar stdS = $sigma

90 scalar df_S = $df

91 # GQ statistic

92 gq = stdL^2/stdS^2

93 scalar pv = pvalue(F, df_L, df_S, gq)

94 printf "\nThe F(%d, %d) statistic = %.3f. The right\

95 side p-value is %.4g.\n",df_L,df_S,gq,pv

96

97 # compare ols with and without HCCME

98 list x = const income

99 ols food_exp x --quiet

100 modeltab add

101 ols food_exp x --robust --quiet

102 modeltab add

103 modeltab show

104

105 # hypothesis test

106 ols food_exp x --robust

107 omit income

108 ols food_exp x --quiet

109 restrict

110 b[2]=0

111 end restrict
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112

113 ols food_exp x --robust --quiet

114 restrict

115 b[2]=0

116 end restrict

117

118 open "@gretldir\data\poe\food.gdt"

119

120 #GLS using built in function

121 series w = 1/income

122 wls w food_exp const income

123 scalar lb = $coeff(income) - critical(t,$df,0.025) * $stderr(income)

124 scalar ub = $coeff(income) + critical(t,$df,0.025) * $stderr(income)

125 printf "\nThe 95%% confidence interval is (%.3f, %.3f).\n",lb,ub

126

127 #GLS using OLS on transformed data

128 series wi = 1/sqrt(income)

129 series ys = wi*food_exp

130 series xs = wi*income

131 series cs = wi

132 ols ys cs xs

133

134 #Wage Example

135 open "@gretldir\data\poe\cps2.gdt"

136 ols wage const educ exper metro

137 # Use only metro observations

138 smpl metro --dummy

139 ols wage const educ exper

140 scalar stdm = $sigma

141 smpl full

142 #Create a dummy variable for rural

143 series rural = 1-metro

144 #Restrict sample to rural observations

145 smpl rural --dummy

146 ols wage const educ exper

147 scalar stdr = $sigma

148 #Restore the full sample

149 smpl full

150 #Generate standard deviations for each metro and rural obs

151 series wm = metro*stdm

152 series wr = rural*stdr

153 series w = 1/(wm + wr)^2

154 #Weighted least squares

155 wls w wage const educ exper metro

156

157 # heteroskedastic model

158 open "@gretldir\data\poe\food.gdt"

159 ols food_exp const income

160 series lnsighat = log($uhat*$uhat)

161 series z = log(income)

162 ols lnsighat const z
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163 series predsighat = exp($yhat)

164 series w = 1/predsighat

165 wls w food_exp const income

166

167 # linear probability model

168 open "@gretldir\data\poe\coke.gdt"

169 summary --simple

170 list x = const pratio disp_coke disp_pepsi

171 # OLS

172 ols coke x

173 modeltab add

174 # OLS w/robust

175 ols coke x --robust

176 modeltab add

177 series p = $yhat

178 series varp = p*(1-p)

179 series pos = (varp > 0)

180 series w = pos * 1/varp

181

182 # omit regression

183 wls w coke x

184 modeltab add

185

186 # smpl varp>0 --restrict

187 # setmiss 0 w

188 series b = (p<.01) || (p>.99)

189 series pt = b*0.01 + p*(1-b)

190 series varp_t = pt*(1-pt)

191 series w_t = 1/varp_t

192 # trunc regression

193 wls w_t coke x

194 modeltab add

195 modeltab show
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Figure 8.2: Check the box for heteroskedasticity robust standard errors.

Figure 8.3: Set the method for computing robust standard errors. These are located under the
HCCME tab. From the pull-down list for cross-sectional data choose an appropriate option–HC3
in this case.
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Figure 8.4: Plot of food expenditures against income with least squares fit.
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Figure 8.5: Plot of the absolute value of the food expenditures model residuals against income with
loess fit.

Figure 8.6: Select Data>Sort data from the main menu bar to reveal the dialog box shown on the
right side of of this figure. Choose the desired sort key and indicate whether you want to sort in
ascending or descending order.
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Chapter 9
Regression with Time-Series Data: Stationary
Variables

As in chapter 9 of Principles of Econometrics, 4th edition, three ways in which dynamics can
enter a regression relationship are considered–through lagged values of the explanatory variable,
lagged values of the dependent variable, and lagged values of the error term.

In time-series regressions the data need to be stationary in order for the usual econometric
procedures to have the proper statistical properties. Basically this requires that the means, vari-
ances and covariances of the time-series data cannot depend on the time period in which they are
observed. For instance, the mean and variance of GDP in the third quarter of 1973 cannot be
different from those of the 4th quarter of 2006. Methods to deal with this problem have provided a
rich field of research for econometricians in recent years and several of these techniques are explored
later in chapter 12.

One of the first diagnostic tools used is a simple time-series plot of the data. A time-series
plot will reveal potential problems with the data and suggest ways to proceed statistically. As seen
in earlier chapters, time-series plots are simple to generate in gretl and a few new tricks will be
explored below.

Finally, since this chapter deals with time-series observations the usual number of observations,
N , is replaced by the more commonly used T . In later chapters, where both time-series and cross
sectional data are used, both N and T are used.
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9.1 Data Structures: Time Series

In order to take advantage of gretl’s many built-in functions for analyzing time-series data,
one has to declare the data in the set to be a time-series. Since time-series are ordered in time
their position relative to the other observations must be maintained. It is, after all, their temporal
relationships that make analysis of this kind of data different from cross-sectional analysis.

If the data you have do not already have a proper date to identify the time period in which the
observation was collected, then adding one is a good idea. This makes identification of historical
periods easier and enhances the information content of graphs considerably. Most of the data sets
distributed with your book have been declared to be time-series and contain the relevant dates in
the set of variables. However, it is a good idea to know how to add this information yourself and
we show how to do so here. Basically you need to identify to gretl that the data are time-series,
you need to specify their frequency of observation, and then identify the starting date. As long as
there are no ‘holes’ in the data, this should get you the relevant set of dates matched to the periods
they are observed.

Before getting to the specific examples from the text, something should be said about how gretl
handles dates and times.

Gretl is able to recognize dates as such in imported data if the date strings conform to the
following rules. For annual data, you must use 4-digit years. For quarterly data: a 4-digit year,
followed by a separator (either a period, a colon, or the letter Q), followed by a 1-digit quarter.
Examples: 1997.1, 2002:3, 1947Q1. For monthly data: a 4-digit year, followed by a period or a
colon, followed by a two-digit month. Examples: 1997.01, 2002:10.

Gretl allows you to declare time-series annually, monthly, weekly, daily (5, 6, or 7 per week),
hourly, decennially, and has a special command for other irregular dates. Its date handling features
are reasonably good, but it is not nearly as sophisticated as those found in other software like
Stata. On the other hand, for what it does it is much easier to use. It works beautifully with most
datasets.

There are two methods of getting your dataset structured as a time-series. The first uses
the GUI. Click Data>Dataset structure from the pull-down menu to initiate the data structure
wizard. The wizard serves up a series of dialog boxes that help you to define when the observations
occur. The first dialog defines the structure: the choices are cross-sectional, time-series, and panel.
Choosing time-series brings up a dialog to set the frequency. Choices include: annual, quarterly,
monthly, weekly, daily (5, 6, or 7 per week), hourly, decennial, a special command for other irregular
dates. Choosing one of these brings up the next dialog that sets the start point. For instance,
quarterly data might start at 3rd quarter of 1972. You would enter, 1972:3 in the box. Then the
confirmation dialog opens. It reveals how gretl interpreted your choices. You check to see whether
the data start and stop when expected. If so, then your data structure is almost certainly correct.
If the end date is something other than you expect, then go back and try again. You may have some
gaps in the data series that need to be filled in order for the dates and the number of observations
to match up. Sometimes things need manual editing due to holidays and such. Be patient and get
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Figure 9.1: Choose Data>Dataset structure from the main window. This starts the Dataset
wizard, a series of dialogs that allow you to specify the periodicity and dates associated with your
data.

Figure 9.2: Check the confirmation box to be sure the expected time periods are given.

this right, otherwise you may end up having to redo you analysis. Figure 9.1 shows the first three
dialog boxes for defining time-series structure. The last box (Figure 9.2) confirms that the series
starts in 1960:1 and ends in 2009:4.

The setobs command is used to accomplish the same thing from the console or in a script. The
syntax is summarized

194



Basically you define the periodicity and when the series starts. Then the options are used to
indicate what the actual structure is (e.g., time-series). Some examples are found in Table 9.1.

9.2 Time-Series Plots

Gnuplot handles all the plotting in gretl. Gretl includes some functions that help to com-
municate with gnuplot, which makes things much easier to do. On the other hand, if you have
something really fancy to plot, you may have to use gnuplot directly to get the desired result.
All-in-all, gretl’s graphical interface that works with gnuplot is quite easy to use and powerful.

Gretl’s time-series plot is really just an XY scatter plot against time with the --lines option
used to connect the data point. It’s relatively primitive. Clicking on a graph brings up a list of
things you can do, including edit the graph. Clicking the edit button brings up the plot control
dialog box (Figure 4.16) where substantial customization can be done.

Gretl also has a facility to plot multiple series in separate graphs that appear on the same page.
This is accomplished using the scatters command or View>Multiple graphs>Time-series from
the main menu bar. There is no built-in facility for further editing these graphs, but you can save
them in several formats. Examples of this are found below.

Syntax Results

setobs 4 1990:1 --time-series Quarterly data that start in 1990:1
setobs 1 1952 --time-series Annual data starting in 1952
setobs 12 1990:03 --time-series Monthly data starting in March, 1990
setobs 5 1950/01/06 --time-series Daily data (5 day weeks) starting Jan. 6, 1950

Table 9.1: Data structure using setobs: Some examples for time-series
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In this example time-series graphs are plotted for the U.S. unemployment rate and GDP growth
from 1985 to 2009. The data are found in the okun.gdt data file.

1 open "@gretldir\data\poe\okun.gdt"

2 setinfo g -d "percentage change in U.S. Gross Domestic Product, seasonally \

3 adjusted" -n "Real GDP growth"

4 setinfo u -d "U.S. Civilian Unemployment Rate (Seasonally adjusted)" -n \

5 "Unemployment Rate"

6 gnuplot g --with-lines --time-series --output=c:\temp\okun_g.plt

7 gnuplot u --with-lines --time-series --output=c:\temp\okun_u.plt

The two plots are shown in Figure 9.3. The graphs can be combined using the GUI by choosing
View>Multiple graphs>Time-series. The result appears in Figure 9.4. The gretl command to
generate multiple series in multiple graphs is

scatters g u

9.3 Finite Distributed Lags

Finite distributed lag models contain independent variables and their lags as regressors.

yt = α+ β0xt + β1xt−1 + β2xt−2 + . . . βqxt−q + et (9.1)

for t = q + 1, . . . , T . The particular example considered here is an examination of Okun’s Law. In
this model the change in the unemployment rate from one period to the next depends on the rate
of growth of output in the economy.

ut − ut−1 = −γ(gt − gN ) (9.2)

where ut is the unemployment rate, gt is GDP growth, and gN is the normal rate of GDP growth.
The regression model is

∆ut = α+ β0gt + et (9.3)

where ∆ is the difference operator, α = γGN , and β0 = −γ. An error term has been added to the
model. The difference operator, ∆u = ut − ut−1 for all = 2, 3, . . . , T . Notice that when you take
the difference of a series, you will lose an observation.

Recognizing that changes in output are likely to have a distributed-lag effect on unemployment–
not all of the effect will take place instantaneously–lags are added to the model to produce:

∆ut = α+ β0gt + β1gt−1 + β2gt−2 + · · ·+ βqgt−q + et (9.4)
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Figure 9.3: Time-Series graphs of Okun data
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Figure 9.4: Multiple time-series graphs of Okun data produced using View>Multiple

graphs>Time-series. This uses the scatters command.

Figure 9.5: Change in unemployment and real GDP growth. This uses the scatters command.

198



The differences of the unemployment rate are taken and the series plotted in Figure 9.5 below. and
this will produce a single graph that looks like those in Figure 9.4 of POE4. To estimate a finite
distributed lag model in gretl is quite simple using the lag operators. Letting q = 3 and

1 diff u

2 ols d_u const g(0 to -3)

This syntax is particularly pleasing. First, the diff varname function is used to add the first
difference of any series that follow; the new series is called d varname. Next, the contemporaneous
and lagged values of g can be succinctly written g(0 to -3). That tells gretl to use the variable
named g and to include g, gt−1, gt−2, and gt−3. When the lagged values of g are used in the
regression, they are actually being created and added to the dataset. The names are g number .
The number after the underline tells you the lag position. For instance, g 2 is g lagged two time
periods. The new variables are given ID numbers and added to the variable list in the main gretl
window as shown in Figure 9.6.

The regression output that uses the new variables is:

OLS, using observations 1986:1–2009:3 (T = 95)
Dependent variable: d u

Coefficient Std. Error t-ratio p-value

const 0.580975 0.0538893 10.7809 0.0000
g −0.202053 0.0330131 −6.1204 0.0000
g 1 −0.164535 0.0358175 −4.5937 0.0000
g 2 −0.0715560 0.0353043 −2.0268 0.0456
g 3 0.00330302 0.0362603 0.0911 0.9276

Mean dependent var 0.027368 S.D. dependent var 0.289329
Sum squared resid 2.735164 S.E. of regression 0.174329
R2 0.652406 Adjusted R2 0.636957
F (4, 90) 42.23065 P-value(F ) 6.77e–20
Log-likelihood 33.71590 Akaike criterion −57.43179
Schwarz criterion −44.66241 Hannan–Quinn −52.27200
ρ̂ 0.358631 Durbin–Watson 1.274079

Notice that the t-ratio on g 3 is not significantly different from zero at 10%. We drop it and
reestimate the model with only 2 lagged values of g. For comparison, the sample is held constant.

1 smpl 1986:1 2009:3

2 ols d_u const g(0 to -2)
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Figure 9.6: Notice that the lagged variables used in the model are added to the list of available
series. They also receive ID numbers.

The AIC reported by gretl has fallen to -59.42303, indicating a marginal improvement in the
model.

If you are using the GUI rather than a gretl script to estimate the model, you have the
opportunity to create the lagged variables through a dialog box. The specify model dialog and the
lag order dialog are shown in Figure 9.7 below.

9.4 Serial Correlation

The multiple linear regression model of equation (5.1) assumes that the observations are not
correlated with one another. While this is certainly believable if one has drawn a random sample,
it’s less likely if one has drawn observations sequentially in time. Time series observations, which
are drawn at regular intervals, usually embody a structure where time is an important component.
If you are unable to completely model this structure in the regression function itself, then the
remainder spills over into the unobserved component of the statistical model (its error) and this
causes the errors be correlated with one another.

One way to think about it is that the errors will be serially correlated when omitted effects
last more than one time period. This means that when the effects of an economic ‘shock’ last more
than a single time period, the unmodeled components (errors) will be correlated with one another.
A natural consequence of this is that the more frequently a process is sampled (other things being
equal), the more likely it is to be autocorrelated. From a practical standpoint, monthly observations
are more likely to be autocorrelated than quarterly observations, and quarterly more likely than
yearly ones. Once again, ignoring this correlation makes least squares inefficient at best and the
usual measures of precision (standard errors) inconsistent.
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Figure 9.7: The OLS specify model dialog box has a button that brings up a dialog to specify lag
order. Once entered the new lagged variables show up in the list of independent variables.

9.4.1 Serial Correlation in a Time-Series

To gain some visual evidence of autocorrelation you can plot the series against its lagged values.
If there is serial correlation, you should see some sort of positive or negative relationship between
the series. Below (Figure 9.8) is the plot of Real GDP growth against its lagged value. A least
squares fit is plotted to show the general orientation of the linear relationship. The series itself
certainly appears to be serially correlated.

Other evidence can be obtained by looking at the correlogram. A correlogram is simply a
plot of a series’ sample autocorrelations. The kth order sample autocorrelation for a series y is the
correlation between observations that are k periods apart. The formula is

rk =

∑T
t=k+1(yt − ȳ)(yt−k − ȳ)∑T

t=1(yt − ȳ)2
(9.5)

In gretl the correlogram plots a number of these against lags. The syntax to plot 12 autocorrelations
of the series g is

corrgm g 12

which yields the plot in Figure 9.9. The correlogram is the plot at the top and the partial auto-
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Figure 9.8: This plot shows the relationship between GDP growth vs. lagged growth.

correlations are printed in the bottom panel. Approximate 95% confidence intervals are plotted to
indicate which are statistically significant at 5%.

Approximate 95% confidence bands are computed using the fact that
√
Trk ∼ N(0, 1). These

can be computed manually using the fact that the corrgm function actually generates a matrix
return. The script to generate the intervals is

1 matrix ac = corrgm(g, 12)

2 matrix lb = ac[,1]-1.96/sqrt($nobs)

3 matrix ub = ac[,1]+1.96/sqrt($nobs)

4 matrix all = lb~ac[,1]~ub

5 colnames(all, "Lower AC Upper ")

6 printf "\nAutocorrelations and 95%% confidence intervals\n %9.4f\n", all

7

The intervals so generated are:

Autocorrelations and 95% confidence intervals

Lower AC Upper
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Figure 9.9: The 12 period correlogram for U.S. GDP growth.

0.296 0.494 0.692

0.213 0.411 0.609

-0.044 0.154 0.352

0.002 0.200 0.398

-0.108 0.090 0.288

-0.174 0.024 0.222

-0.228 -0.030 0.168

-0.280 -0.082 0.116

-0.154 0.044 0.242

-0.219 -0.021 0.177

-0.285 -0.087 0.111

-0.402 -0.204 -0.006

The matrix ac holds the autocorrelations in the first column and the partial autocorrelations in
the second. The matrices lb, ub, and all use indexing to use all rows of the first column of ac,
i.e., ac[,1]. This was be dressed up a bit by adding colnames function to add the column names
to the matrix.
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You can see that zero is not included in the 1st, 2nd, 4th, and last interval. Those are signifi-
cantly different from zero at 5% level.

The correlogram can be useful for detecting the order of autocorrelation. A long series of
declining autocorrelations with a single significant pacf is often an indication of a short order
autocorrelation process. See POE4 for more guidance.

9.4.2 Serial Correlation in Residuals

The correlogram can also be used to check whether the assumption that model errors have zero
covariance–an important assumption in the proof of the Gauss-Markov theorem. The example that
illustrates this is based on the Phillips curve that relates inflation and unemployment. The data
used are from Australia and reside in the phillips aus.gdt dataset.

The model to be estimated is
inft = β1 + β2∆ut + et (9.6)

The data are quarterly and begin in 1987:1. A time-series plot of both series is shown below in
Figure 9.10. The graphs show some evidence of serial correlation in both series.

Figure 9.10: This plot shows the relationship between inflation and the change in unemployment
in Australia, 1987:1 - 2009:3.

The model is estimated by least squares and the residuals are plotted against time. These
appear in Figure 9.11. A correlogram of the residuals that appears below seems to confirm this.
To generate the regression and graphs is simple. The script to do so is:
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1 ols inf const d_u

2 series ehat = $uhat

3 gnuplot ehat --time-series

4 corrgm ehat

Unfortuantely, gretl will not accept the accessor, $uhat, as an input into either gnuplot or corrgm.
That means you have to create a series, ehat, first. Once this is created, both functions work as
expected.

The GUI is even easier in this instance once the model is estimated. The model window offers
a way to produce both sets of graphs. Simply choose Graphs>Residual plot>Against time to
produce the first. The second is Graphs>Residual correlogram. The latter opens a dialog box
allowing you to specify how many autocorrelations to compute. In this example, I set it to 12.

9.5 Another Test for Autocorrelation

Another way to determine whether or not your residuals are autocorrelated is to use an LM
(Lagrange multiplier) test. For autocorrelation, this test is based on an auxiliary regression where
lagged least squares residuals are added to the original regression equation. If the coefficient on the
lagged residual is significant then you conclude that the model is autocorrelated. So, for a regression
model yt = β1 + β2xt + et the first step is to estimate the parameters using least squares and save
the residuals, êt. An auxiliary regression model is formed using êt as the dependent variable and
original regressors and the lagged value êt−1 as an independent variables. The resulting auxiliary
regression is

êt = β1 + β2xt + ρêt−1 + vt (9.7)

Now, test the hypothesis ρ = 0 against the alternative that ρ 6= 0 and you are done. The test
statistic is NR2 from this regression which will have a χ2

1 if H0 : is true. The script to accomplish
this is:

1 ols ehat const d_u ehat(-1)

2 scalar TR2 = $trsq

3 pvalue X 1 TR2

Estimating the statistic in this way causes the first observation to be dropped (since ê0 is not
observed. The result for the phillips aus data reveal

Chi-square(1): area to the right of 27.6088 = 1.48501e-007

(to the left: 1)

The no autocorrelation null hypothesis is clearly rejected at any reasonable level of significance.
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Gretl also includes a model test function that does the same thing. To use it, estimate the
model of interest and then use modtest 1 --autocorr as shown here:

1 ols inf const d_u --quiet

2 modtest 1 --autocorr

The print out from the modtest is fairly extensive as shown here:

Breusch-Godfrey test for first-order autocorrelation

OLS, using observations 1987:2-2009:3 (T = 90)

Dependent variable: uhat

coefficient std. error t-ratio p-value

---------------------------------------------------------

const -0.00216310 0.0551288 -0.03924 0.9688

d_u -0.151494 0.193671 -0.7822 0.4362

uhat_1 0.558784 0.0900967 6.202 1.82e-08 ***

Unadjusted R-squared = 0.306582

Test statistic: LMF = 38.465381,

with p-value = P(F(1,87) > 38.4654) = 1.82e-008

Alternative statistic: TR^2 = 27.592347,

with p-value = P(Chi-square(1) > 27.5923) = 1.5e-007

Ljung-Box Q’ = 28.0056,

with p-value = P(Chi-square(1) > 28.0056) = 1.21e-007

Before explaining what is reported here, an important difference between the manual method and
modtest needs to be pointed out. When modtest is used to perform this test, it sets ê0 = 0, which
is its expected value. By doing so, it is able to use the complete set of 90 observations in the data.
The manual method used only 89. Hence, you’ll get slightly different results depending on the size
of your sample and the number of lags tested.

The results themselves are relevant to those found in POE4. The first thing to notice is the
t-ratio on uhat 1 is equal to 6.202, significantly different from zero at 5%. Next, the statistic named
LMF actually performs an F -test of the no autocorrelation hypothesis based upon the regression.
With only one autocorrelation parameter this is equivalent to the square of the t-ratio. The next
test is the LM test, i.e., TR2 from the auxiliary regression. Gretl also computes a Ljung-Box Q
statistic whose null hypothesis is no autocorrelation. It is also insignificant at the 5% level. These
results match those in POE4 exactly.

If you prefer to use the dialogs, then estimate the model using least squares in the usual
way (Model>Ordinary least squares). This generates a model window containing the regression
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results. From this select Tests>Autocorrelation to reveal a dialog box that allows you to choose
the number of lagged values of êt to include as regressors in the auxiliary regression. Choose the
number of lagged values of êt you want to include (in our case 4) and click OK. This will give you
the same result as the script. The result appears in Figure 9.12. Note, the first statistic reported
is simply the joint test that all the lagged values of ê you included in auxiliary are jointly zeros.
The second one is the TR2 version of the test done in the script. This example shows the relative
strength of the LM test. One can use it to test for any order of autocorrelation. Other tests, like
that of Durbin and Watson discussed later, are more difficult to do in higher orders. The LM test
is also robust to having lag(s) of the dependent variable as a regressor.

9.6 Estimation with Serially Correlated Errors

In this section, several methods of estimating models with serially correlated errors will be
explored. We will use least squares with robust standard errors to estimate regression models with
serial correlation in the errors. We also consider the nonlinear least squares estimator of the model
and a more general strategy for estimating models with serially correlation. In the appendix to
this chapter, you will find some traditional estimators of this model as well.

9.6.1 Least Squares and HAC Standard Errors

As is the case with heteroskedastic errors, there is a statistically valid way to use least squares
when your data are autocorrelated. In this case you can use an estimator of standard errors that is
robust to both heteroskedasticity and autocorrelation. This estimator is sometimes called HAC,
which stands for heteroskedasticity autocorrelated consistent. This and some issues that
surround its use are discussed in the next few sections.

9.6.2 Bandwidth and Kernel

HAC is not quite as automatic as the heteroskedasticity consistent (HCCME) estimator in
chapter 8. To be robust with respect to autocorrelation you have to specify how far away in time
the autocorrelation is likely to be significant. Essentially, the autocorrelated errors over the chosen
time window are averaged in the computation of the HAC standard errors; you have to specify
how many periods over which to average and how much weight to assign each residual in that
average. The language of time-series analysis can often be opaque. This is the case here. The
weighted average is called a kernel and the number of errors to average in this respect is called
bandwidth. Just think of the kernel as another name for weighted average and bandwidth as the
term for number of terms to average.

Now, what this has to do with gretl is fairly simple. You get to pick a method of averaging
(Bartlett kernel or Parzen kernel) and a bandwidth (nw1, nw2 or some integer). Gretl defaults to
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the Bartlett kernel and the bandwidth nw1 = 0.75×N1/3. As you can see, the bandwidth nw1 is
computed based on the sample size, N . The nw2 bandwidth is nw2 = 4 × (N/100)2/9. This one
appears to be the default in other programs like EViews.

Implicity there is a trade-off to consider. Larger bandwidths reduce bias (good) as well as
precision (bad). Smaller bandwidths exclude more relevant autocorrelations (and hence have more
bias), but use more observations to compute the overall covariance and hence increase precision
(smaller variance). The general principle is to choose a bandwidth that is large enough to contain
the largest autocorrelations. The choice will ultimately depend on the frequency of observation and
the length of time it takes for your system to adjust to shocks.

The bandwidth or kernel can be changed using the set command from the console or in a script.
The set command is used to change various defaults in gretl and the relevant switches for our use
are hac lag and hac kernel. The use of these is demonstrated below. The following script changes
the kernel to bartlett and the bandwidth to nw2. Then the differences of the unemployment rate
are generated. The Phillips curve is estimated by OLS using the ordinary covariance estimator and
then by the HAC estimator. The results are collected in a model table.

1 open "@gretldir\data\poe\phillips_aus.gdt"

2 set hac_kernel bartlett

3 set hac_lag nw2

4 diff u

5 ols inf const d_u

6 modeltab add

7 ols inf const d_u --robust

8 modeltab add

9 modeltab show

The results from the model table are

OLS estimates
Dependent variable: inf

(OLS) (OLS w/HAC)

const 0.7776∗∗ 0.7776∗∗

(0.06582) (0.1018)

d u −0.5279∗∗ −0.5279∗

(0.2294) (0.3092)

n 90 90
R2 0.0568 0.0568
` −83.96 −83.96
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Standard errors in parentheses
* indicates significance at the 10 percent level
** indicates significance at the 5 percent level

HAC: bandwidth 3 – Bartlett kernel

You can see that the HAC standard errors are quite a bit larger than the usual (and inconsistent)
ones. Once gretl recognizes that your data are time-series, then the --robust option will auto-
matically apply the HAC estimator of standard errors with the default values of the kernel and
bandwidth (or the ones you have set with the set command).

Notice that the standard errors computed using HAC are a little different from those in Hill
et al. (2011). No worries, though. They are statistically valid and suggest that EViews and gretl
are doing the computations a bit differently.

9.6.3 Nonlinear Least Squares

Perhaps the best way to estimate a linear model that is autocorrelated is using nonlinear least
squares. As it turns out, the nonlinear least squares estimator only requires that the errors be
stable (not necessarily stationary). The other methods commonly used make stronger demands on
the data, namely that the errors be covariance stationary. Furthermore, the nonlinear least squares
estimator gives you an unconditional estimate of the autocorrelation parameter, ρ, and yields a
simple t-test of the hypothesis of no serial correlation. Monte Carlo studies show that it performs
well in small samples as well. So with all this going for it, why not use it?

The biggest reason is that nonlinear least squares requires more computational power than
linear estimation, though this is not much of a constraint these days. Also, in gretl it requires an
extra step on your part. You have to type in an equation for gretl to estimate. This is the way
one works in EViews and other software by default, so the burden here is relatively low.

Nonlinear least squares (and other nonlinear estimators) use numerical methods rather than
analytical ones to find the minimum of your sum of squared errors objective function. The routines
that do this are iterative. You give the program a good first guess as to the value of the parameters
and it evaluates the sum of squares function at this guess. The program looks at the slope of
your sum of squares function at the guess, points you in a direction that leads closer to smaller
values of the objective function, and computes a step in the parameter space that takes you some
distance toward the minimum (further down the hill). If an improvement in the sum of squared
errors function is found, the new parameter values are used as the basis for another step. Iterations
continue until no further significant reduction in the sum of squared errors function can be found.

In the context of the area response equation the AR(1) model is

inft = β1(1− ρ) + β2(∆ut − ρ∆ut−1) + ρ inft−1 + vt (9.8)

The errors, vt, are random and the goal is to find β1, β2, and ρ that minimize
∑
v2
t . Ordinary least
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squares is a good place to start in this case. The OLS estimates are consistent so we’ll start our
numerical routine there, setting ρ equal to zero. The gretl script to do this follows:

1 open "@gretldir\data\poe\phillips_aus.gdt"

2 diff u

3 ols inf const d_u --quiet

4

5 scalar beta1 = $coeff(const)

6 scalar beta2 = $coeff(d_u)

7 scalar rho = 0

8

9 nls inf = beta1*(1-rho) + rho*inf(-1) + beta2*(d_u-rho*d_u(-1))

10 params rho beta1 beta2

11 end nls

Magically, this yields the same result from your text!

The nls command is initiated with nls followed by the equation representing the systematic
portion of your model. The command is closed by the statement end nls. If possible, it is always a
good idea to supply analytical derivatives for nonlinear maximization. In this case I did not, opting
to let gretl take numerical derivatives. When using numerical derivatives, the params statement is
required in order for gretl to figure out what to take the derivatives with respect to. In the script,
I used gretl’s built in functions to take differences and lags. Hence, inf(-1) is the variable inf

lagged by one period (-1). In this way you can create lags or leads of various lengths in your gretl
programs without explicitly having to create new variables via the generate or series command.
The results of nonlinear least squares appear below in Figure 9.13.

9.6.4 A More General Model

Equation 9.8 can be expanded and rewritten in the following way:

inft = β1(1− ρ) + β2∆ut − β2ρ∆ut−1 + ρ inft−1 + vt (9.9)

inft = δ + δ0∆ut − δ1∆ut−1 + θ inft−1 + vt (9.10)

Both equations contain the same variables, but Equation (9.8) contains only 3 parameters while
(9.10) has 4. This means that (9.8) is nested within (9.10) and a formal hypothesis test can be
performed to determine whether the implied restriction holds. The restriction is δ1 = −θ1δ0.1 To
test this hypothesis using gretl you can use a variant of the statistic (6.2) discussed in section 6.1.
You’ll need the restricted and unrestricted sum of squared errors from the models. The statistic is

J × F =
(SSEr − SSEu)

SSEu/(N −K)
∼̇χ2

J if H0 : δ1 = −θ1δ0 is true (9.11)

1δ = β1(1 − ρ), δ0 = β2, δ1 = −ρβ2, θ1 = ρ
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Since J = 1 this statistic has an approximate χ2
1 distribution and it is equivalent to an F test.

Note, you will get a slightly different answer than the one listed in your text. However, rest assured
that the statistic is asymptotically valid.

For the example, we’ve generated the output:

Chi-square(1): area to the right of 0.112231 = 0.737618

(to the left: 0.262382)

F(1, 85): area to the right of 0.112231 = 0.738443

(to the left: 0.261557)

Because the sample is relatively large the p-values from the F(1,85) and the χ2
1 are very close to

one another. Neither is significant at the 5% level.

The estimated model is:

OLS, using observations 1987:3–2009:3 (T = 89)
Dependent variable: inf

Coefficient Std. Error t-ratio p-value

const 0.333633 0.0899028 3.7110 0.0004
d u −0.688185 0.249870 −2.7542 0.0072
d u 1 0.319953 0.257504 1.2425 0.2175
inf 1 0.559268 0.0907962 6.1596 0.0000

Mean dependent var 0.783146 S.D. dependent var 0.635902
Sum squared resid 23.16809 S.E. of regression 0.522078
R2 0.348932 Adjusted R2 0.325953
F (3, 85) 15.18488 P-value(F ) 5.37e–08
Log-likelihood −66.39473 Akaike criterion 140.7895
Schwarz criterion 150.7440 Hannan–Quinn 144.8019
ρ̂ −0.149981 Durbin’s h −2.685227

Notice how gretl refers to the parameters–by their variable names. This is possible because the
model is linear and there is no ambiguity. Also, ∆ut−1 is referred to as d u 1. It can get a little
confusing, but d u is the difference and the lag has the usual 1 suffix.

The lagged unemployment rate has a t-ratio of 1.243. It is not significant and it may be worth
considering removing it from the model using the omit d u(-1) statement.

You can also compare nonlinear combinations of parameters from the equations (9.8) and (9.10).
To do so you can use gretl to compute the relevant scalars and print them to the screen as shown
below in the script:
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1 nls inf = beta1*(1-rho) + rho*inf(-1) + beta2*(d_u-rho*d_u(-1))

2 params rho beta1 beta2

3 end nls

4 scalar delta = $coeff(beta1)*(1-$coeff(rho))

5 scalar delta1 = -$coeff(rho)*$coeff(beta2)

6 printf "\nThe estimated delta is %.3f and the \

7 estimated delta1 is %.3f.\n",delta,delta1

In lines 4 and 5 δ and δ1 are approximated from the NLS estimated AR(1) regression. the result is

The estimated delta is 0.337 and the estimated delta1 is 0.387.

You can see that these values are actually fairly close to the ones estimated in the unrestricted
model, which were 0.334 and 0.320, respectively. Also, β̂2 is similar to δ̂1 and ρ̂ is similar to θ̂. It
is no wonder that the hypothesis restrictions are not rejected statistically.

9.7 Autoregressive Distributed Lag Models

A model that combines finite distributed lags and is autoregressive is considered. This is the
so-called autoregressive distributed lag model (ARDL). The ARDL(p,q) model has the general form

yt = δ + θ1yt−1 + · · ·+ θpyt−p + δ0xt + δ1xt−1 + · · ·+ δqxt−q + vt (9.12)

As regressors, it has p lags of the dependent variable, yt, and q lags of the independent variable, xt.

9.7.1 Phillips Curve

The ARDL(1,1) and ARDL(1,0) models of inflation can be estimated using least squares. The
two models of the Phillips curve

OLS estimates
Dependent variable: inf

(1) (2)

const 0.3336∗∗ 0.3548∗∗

(0.08990) (0.08760)

inf 1 0.5593∗∗ 0.5282∗∗

(0.09080) (0.08508)

d u −0.6882∗∗ −0.4909∗∗
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(0.2499) (0.1921)

d u 1 0.3200
(0.2575)

n 89 90
R̄2 0.3260 0.3314
` −66.39 −67.45

Standard errors in parentheses
* indicates significance at the 10 percent level
** indicates significance at the 5 percent level

Choosing between these models can be done in several ways. First, if the t-ratio on ∆ut−1 is
insignificant, then the evidence suggests that omitting it may not adversely impact the properties
of the least squares estimator of the restricted model. it is not significant in this case and you may
consider dropping it from the model.

Another possibility is to use one of the model selection rules discussed in chapter 6. Recall that
we wrote a function called modelsel that computes the AIC and SC model selection rules. Here,
the program is modified slightly by omitting the display of the adjusted R2. Refer to chapter 6 for
more details on the program structure in gretl.

To choose between the ARDL(1,1) and ARDL(1,0) using the AIC or SC create and run the
following function called modelsel.

1 function matrix modelsel (series y, list xvars)

2 ols y xvars --quiet

3 scalar sse = $ess

4 scalar N = $nobs

5 scalar K = nelem(xvars)

6 scalar aic = ln(sse/N)+2*K/N

7 scalar bic = ln(sse/N)+K*ln(N)/N

8 matrix A = { K, N, aic, bic}

9 printf "\nRegressors: %s\n",varname(xvars)

10 printf "K = %d, N = %d, AIC = %.4f SC = %.4f.\n",K,N,aic,bic

11 return A

12 end function

Then, we can form variable lists and use the function to compare two models:

1 list x = const inf(-1) d_u(0 to -1)

2 matrix a = modelsel(inf,x)
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3 list x = const inf(-1) d_u(0)

4 matrix b = modelsel(inf,x)

This yields

Regressors: const,inf_1,d_u,d_u_1

K = 4, N = 91, AIC = -1.2802 SC = -1.1698.

Regressors: const,inf_1,d_u

K = 3, N = 91, AIC = -1.2841 SC = -1.2013.

The smaller model (K = 3) has a smaller AIC and SC and it is preferred.

We could also search over a wider range of models using loops. Searching over p = 1, 2, . . . 6 and
q = 0, 1 is done in the next section of code. Admittedly, this is a little clumsy in that formulating
a set of nested loops for this setup is not straightforward in gretl due to the fact that it cannot
recognize variables like inf(0 to 0). This causes one to have to hard code certain parts and use
a series of if statements to control the construction of the variable lists.2 The code to search over
this set is:

1 open "@gretldir\data\poe\phillips_aus.gdt"

2 diff u

3 smpl 1988:3 2009:3

4 matrix A = {}

5 scalar q = 0

6 loop p = 1..6 --quiet

7 if p = 1

8 list x = const inf(-1) d_u

9 else

10 list x = const inf(-1 to -p) d_u

11 endif

12 matrix a = p~q~modelsel(inf,x)

13 matrix A = A | a

14 modelsel(inf,x)

15 endloop

16 scalar q = 1

17 loop p = 1..6 --quiet

18 if p = 1

19 list x = const inf(-1) d_u(0 to -1)

20 else

21 list x = const inf(-1 to -p) d_u(0 to -1)

22 endif

23 matrix a = p~q~modelsel(inf,x)

24 matrix A = A | a

2I’m still working on a more elegant solution. Stay tuned for future editions to see if I succeed.
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25 endloop

26 colnames(A,"p q K N AIC SC ")

27 print A

The data are loaded and the differences of unemployment are generated using the diff command.
Then, the sample is limited to 1988:3 - 2009:3 in order to get the same results as found in Table 9.4
of POE4. An empty matrix A is created. This matrix will be used to collect results of the modelsel
command. To do this, the row vectors created by modelsel will be vertically concatenated. That
means as a new row will be appended below existing rows. If the matrix starts out empty the first
row appended becomes the first row!

As I mentioned above, some of the variables are hard coded into the loop. In this example the
distributed lag parameter, q, only takes two values, 0 and 1. In the first loop q is hard coded to
be equal to zero. So, the loop is executed with the variable ∆ut permanently in the variable list
named x.

The loop itself loops over the parameter p, which starts at 1 increments to 6. When p=1, the
syntax inf(-1 to -1) fails so we must tell gretl to construct the variable list x with inf(-1) when
p=1. Otherwise we can construct the variable list using inf(-1 to -$p).

In line 12 a row vector is created that includes p, q, and the results from modelsel. This uses
horizontal concatenation via the symbol, ~. In the next line vertical concatenation is used to stack
the new vector of results underneath the existing ones. The loop ends and column names are added
to the matrix and printed.

The next loop is nearly identical. The only difference is that q=1 is hard coded into the script.
Notice that q=1 is fixed as a scalar in line and that d u(0 to -1) replaces d u in the previous loop.
So, the code looks complicated, but it can effectively be replicated by a cut and paste with minor
editing. In this particular script, p and q are actually numbers that work in this loop construct.
Hence, there is no need to use the string prefix, $ (although if used in lines 10 and 12 this will work
as well).

That is a lot of code, but the output is nice:

p q K N AIC SC

1.0000 0.0000 3.0000 85.000 -1.2466 -1.1604

2.0000 0.0000 4.0000 85.000 -1.2905 -1.1755

3.0000 0.0000 5.0000 85.000 -1.3352 -1.1915

4.0000 0.0000 6.0000 85.000 -1.4020 -1.2296

5.0000 0.0000 7.0000 85.000 -1.3964 -1.1952

6.0000 0.0000 8.0000 85.000 -1.3779 -1.1480

1.0000 1.0000 4.0000 85.000 -1.2425 -1.1275

2.0000 1.0000 5.0000 85.000 -1.2860 -1.1423

3.0000 1.0000 6.0000 85.000 -1.3233 -1.1509

4.0000 1.0000 7.0000 85.000 -1.3795 -1.1784

5.0000 1.0000 8.0000 85.000 -1.3729 -1.1430
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6.0000 1.0000 9.0000 85.000 -1.3544 -1.0958

From this you can see that the ARDL(4,0) minimizes both AIC and SC. Estimating this model
yields,

OLS, using observations 1988:1–2009:3 (T = 87)
Dependent variable: inf

Coefficient Std. Error t-ratio p-value

const 0.100100 0.0982599 1.0187 0.3114
d u −0.790172 0.188533 −4.1912 0.0001
inf 1 0.235440 0.101556 2.3183 0.0230
inf 2 0.121328 0.103757 1.1693 0.2457
inf 3 0.167690 0.104960 1.5977 0.1140
inf 4 0.281916 0.101380 2.7808 0.0067

Sum squared resid 18.23336 S.E. of regression 0.474450
R2 0.458422 Adjusted R2 0.424992
F (5, 81) 13.71262 P-value(F ) 1.07e–09
Log-likelihood −55.47215 Akaike criterion 122.9443
Schwarz criterion 137.7397 Hannan–Quinn 128.9020
ρ̂ −0.032772 Durbin’s h −0.903935

Finally, you can check the residuals for autocorrelation using the LM test. Here we want to
check the model for autocorrelation for up to 5 lags. The easiest way is to put modtest into a loop.
The underlying regression is an ARDL(1,0). This one wins the model selection derby because the
coefficient on ∆ut−1 was not significant in and ARDL(1,1).

1 open "@gretldir\data\poe\phillips_aus.gdt"

2 diff u

3 ols inf inf(-1) d_u const

4 loop i=1..4

5 modtest $i --autocorr --quiet

6 endloop

This is an example of an index loop. The index is called i and it loops in increments of 1 from 1
to 4. The modtest command takes the string argument $i at each iteration. The --quiet option
is used to reduce the copious amount of output this loop will produce. The p-values for the LM
test, which I’ve chosen not to include, match the ones Table 9.3 of POE4.
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9.7.2 Okun’s Law

Okun’s Law provides another opportunity to search for an adequate specification of the time-
series model. Load the okun.gdt data. These quarterly data begin at 1985:2. Set the data structure
to time-series if needed. In this example, the model search is over p = 0, 1, 2 and q = 1, 2, 3. There
are 12 possible models to consider and loops will again be used to search for the preferred one.

To make the loop simpler, the modelsel function has been modified slightly. It now accepts a
single variable list as its input. This allows us to place the dependent variable, x, and its first lag
into the model as x(0 to -1). Gretl reads this as x x(-1). Thus, these two regressions would
yield the same result

ols x const x(-1)

ols x(0 to -1) const

Placing the constant at the end of the list only moves its position in the output, it does not change
the substance of the results.

The new and improved modelsel2 appears below:

modelsel2 function useful for ARDL models
1 function matrix modelsel2 (list xvars)

2 ols xvars --quiet

3 scalar sse = $ess

4 scalar N = $nobs

5 scalar K = nelem(xvars)-1

6 scalar aic = ln(sse/N)+2*K/N

7 scalar bic = ln(sse/N)+K*ln(N)/N

8 matrix A = { K, N, aic, bic}

9 # printf "\nDependent variable and Regressors: %s\n",varname(xvars)

10 # printf "K = %d, N = %d, AIC = %.4f SC = %.4f.\n",K,N,aic,bic

11 return A

12 end function

Notice that the input on line one is now just a single variable list. Line 6 is modified by subtracting
one from the number of elements in the variable list, since the list now includes the dependent
variable. Also, the printf statements are commented out to reduce the amount of output sent to
the screen. You can remove the # from lines 9 and 10 if you want to see what’s in the model and
the results at each iteration. Since we are dealing with an ARDL(p, q), p and q tell us exactly
which regressors are in the model so these are really not needed in the current context.

The new and improved loop to compute the model selection rules is:

Loop for the Okun Example
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1 open "@gretldir\data\poe\okun.gdt"

2 diff u

3 smpl 1986:1 2009:3

4 matrix A = {}

5 loop p = 0..2 --quiet

6 loop q = 1..3 --quiet

7 if p=0

8 list vars = d_u g(0 to -q) const

9 else

10 list vars = d_u(0 to -p) g(0 to -q) const

11 endif

12 matrix a = p~q~modelsel2(vars)

13 matrix A = A | a

14 endloop

15 endloop

16 colnames(A,"p q K N AIC SC ")

17 print A

18 function modelsel2 clear

This loop improves upon the last in at least one way. It now contains a nest that should function
properly for any p>1 and q>0. The first three lines load the data, create the difference of unem-
ployment, and set the sample to match the one used in POE4. This script contains two loops, one
for p and one for q that are nested. When loops are nested this way, the p loop starts at zero and
then the q loop iterates from 1 to 3. Once the q loop is finished, the p loop increments by 1 and
the q loop starts over again.

The conditional if statement is necessary because when p=0 the statement d u(0 to -p) in
line 10 cannot be computed. The last line clears the modelsel2 function from memory. If you need
to modify the function, perform your changes, and re-run it to load it into memory. Once loaded
into memory, there is no need to run it again.

The results from this script are

p q K N AIC SC

0.0000 1.0000 3.0000 95.000 -3.4362 -3.3556

0.0000 2.0000 4.0000 95.000 -3.4634 -3.3559

0.0000 3.0000 5.0000 95.000 -3.4424 -3.3080

1.0000 1.0000 4.0000 95.000 -3.5880 -3.4805

1.0000 2.0000 5.0000 95.000 -3.5675 -3.4331

1.0000 3.0000 6.0000 95.000 -3.5612 -3.3999

2.0000 1.0000 5.0000 95.000 -3.5693 -3.4349

2.0000 2.0000 6.0000 95.000 -3.5483 -3.3870

2.0000 3.0000 7.0000 95.000 -3.5491 -3.3609

The ARDL(1,1) minimizes both AIC and SC. The estimates for this model are:

OLS, using observations 1985:4–2009:3 (T = 96)
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Dependent variable: d u
HAC standard errors, bandwidth 3 (Bartlett kernel)

Coefficient Std. Error t-ratio p-value

const 0.378010 0.0671726 5.6275 0.0000
g −0.184084 0.0268375 −6.8592 0.0000
g 1 −0.0991552 0.0388520 −2.5521 0.0124
d u 1 0.350116 0.0861251 4.0652 0.0001

Mean dependent var 0.025000 S.D. dependent var 0.288736
Sum squared resid 2.422724 S.E. of regression 0.162277
R2 0.694101 Adjusted R2 0.684126
F (3, 92) 70.24213 P-value(F ) 1.04e–23
Log-likelihood 40.39577 Akaike criterion −72.79155
Schwarz criterion −62.53415 Hannan–Quinn −68.64534
ρ̂ −0.024372 Durbin’s h −0.437108

9.7.3 Autoregressive Models

An autoregressive model is just a special case of an ARDL(p,q) where q = 0. The model only
includes lags of the dependent variable.

yt = δ + θ1yt−1 + θ2yt−2 · · ·+ θpyt−p + vt (9.13)

The example is based on the okun.gdt data. An initial AR(2) model is estimated using GDP
growth. The possibility of residual autocorrelation is explored using LM tests and by looking at
the correlogram.

1 open "@gretldir\data\poe\okun.gdt"

2 ols g(0 to -2) const

3 series res = $uhat

4 corrgm res

5 loop i = 1..4

6 modtest $i --autocorr --quiet

7 endloop

The correlogram appears in Figure 9.14 below. Only the autocorrelation at the 12th lag is signifi-
cant, probably by chance. None of the LM statistics computed by the modtest loop have p-values
smaller than 10%, therefore this model may be properly specified. To see how this compares with
others via the model selection rules, we use another loop and the modesel2 function.
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1 open "@gretldir\data\poe\okun.gdt"

2 smpl 1986:3 2009:3

3 matrix A = {}

4 scalar q=0

5 loop p = 1..5 --quiet

6 list vars = g(0 to -p) const

7 matrix a = p~q~modelsel2(vars)

8 matrix A = A | a

9 endloop

10 colnames(A,"p q K N AIC SC ")

11 print A

The sample was shortened again and the nested loop is removed. Otherwise, this is the same as
used to model select in the ARDL(p,q) example. The results

p q K N AIC SC

1.0000 0.0000 2.0000 93.000 -1.0935 -1.0391

2.0000 0.0000 3.0000 93.000 -1.1306 -1.0489

3.0000 0.0000 4.0000 93.000 -1.1242 -1.0153

4.0000 0.0000 5.0000 93.000 -1.1332 -0.99700

5.0000 0.0000 6.0000 93.000 -1.1117 -0.94827

match those in POE4. The AR(2) model is supported by the SC while the AIC chooses one with
4 lags. As mentioned previously, the SC criterion imposes a slightly larger penalty for adding
regressors and may sometimes leas to smaller models.

9.8 Forecasting

In this section we consider forecasting using 3 different models, an AR model, an ARDL model,
and an exponential smoothing model. The examples focus on short-term forecasting, typically up
to 3 periods into the future.

9.8.1 Forecasting with an AR model

Suppose that it is the 3rd quarter in 2009 and have estimated the AR(2) model of GDP growth
using data up to and including 2009:3. In this section the use of an AR(2) model to forecast the
next three periods is discussed and forecast confidence intervals are generated.

The AR(2) model in terms of its unknown coefficients

gt = δ + θ1gt−1 + θ2gt−2 + vt (9.14)
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Denoting the last sample observation as gT , the task is to forecast gT+1, gT+2, and gT+3. The value
of the next observation beyond the available sample is

gT+1 = δ + θ1gT + θ2gT−1 + vT+1 (9.15)

Growth rates for the 2 most recent quarters are GT = G2009:3 = 0.8, and gT−1 = g2009:2 = −0.2,
which with the estimated values of the parameters is used to make a forecast of gT+1 = g2009:4.

ĝT+1 =δ̂ + θ̂1gT + θ̂2gT−1

=0.46573 + 0.37700 × 0.8 + 0.24624× (−0.2)

=0.7181

Once the model is estimated it is easy to compute this forecast.

1 open "@gretldir\data\poe\okun.gdt"

2 ols g(0 to -2) const --robust --quiet

Using this model to forecast in gretl is very simple. The main decision you have to make at
this point is how many periods into the future you want to forecast. In gretl you have to extend
the sample to include future periods under study.

9.8.2 Using the Dialogs

Return to the main gretl window and choose Model>Ordinary least squares. This will bring
up the ‘specify model’ dialog box. Choose g as the dependent variable as shown.

Since your data are defined as time-series (recall, you did this through Data>Dataset structure)
an extra button, labeled ‘lags...’, appears at the bottom of the dialog. Click the ‘lags...’ button in
the specify model dialog box and the ‘lag order’ dialog box shown on the right-hand side in Figure
9.7 opens.

Click OK and the 3 lagged values of GDP growth are added to the model. Now, click OK in
the specify model dialog and the model is estimated.

Now, we’ll use the dialogs to extend the sample and generate the forecasts. From the model
window choose Analysis>Forecasts. This opens the ‘Add observations’ dialog box shown in
Figure 9.15. To add three observations change the number in the box to 3. Click OK to open the
forecast dialog box shown below in Figure 9.16.

By choosing to add 3 observations to the sample, the forecast range is automatically set to
2009:4 to 2010.2. Notice that we’ve chosen ’automatic forecast (dynamic out of sample).’ Click
OK and the forecast results appear.

A script is actually much simpler. Here is the example in a script.
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1 open "@gretldir\data\poe\okun.gdt"

2 ols g(0 to -2) const

3 dataset addobs 3

4 fcast 2009:4 2010:2 --plot=c:\temp\ar2plot.plt

In line 3 the dataset addobs tells gretl to add 3 observations to the dataset. Then, the fcast

command with the desired dates to forecast are given. The results are:

For 95% confidence intervals, t(93, 0.025) = 1.986

Obs g prediction std. error 95% interval

2009:4 0.718079 0.552688 -0.379448 - 1.81561

2010:1 0.933435 0.590660 -0.239499 - 2.10637

2010:2 0.994452 0.628452 -0.253530 - 2.24243

Miraculously, these match those in POE4 ! Gretl can optionally use gnuplot to plot the time-series
and the forecasts (with intervals). The plot is shown in Figure 9.17.3 The last three observations
are forecasts (in blue) and include the 95% confidence intervals shown in green. Actual inflation
appears in red. From an economics standpoint, the forecast is depressing, mainly because the
intervals are very wide. The 95% interval includes a possible recession.

9.8.3 Exponential Smoothing

Another popular model used for predicting the future value of a variable based on its history
is exponential smoothing. Like forecasting with an AR model, forecasting using exponential
smoothing does not use information from any other variable.

The basic idea is that the forecast for next period is a weighted average of the forecast for the
current period and the actual realized value in the current period.

ŷT+1 = αyT + (1− α)ŷT (9.16)

The exponential smoothing method is a versatile forecasting tool, but one needs a value for the
smoothing parameter α and a value for ŷT to generate the forecast ŷT−1 . The value of α can reflect
one’s judgment about the relative weight of current information; alternatively, it can be estimated
from historical information by obtaining within-sample forecasts

ŷt = αyt−1 + (1− α)ŷt−1 (9.17)

3This graph was generated from the GUI. The plot command as shown in the script actually yields only the plots
of the forecasted values and their intervals.

222



and choosing that value of α that minimizes the sum of squares of the one-step forecast errors

vt = yt − ŷt = yt − (αyt−1 + (1− α)ŷt−1) (9.18)

Smaller values of α result in more smoothing of the forecast. Gretl does not contain a routine
that performs exponential smoothing, though it can perform other types.

Below, the okun.gdt data are used to obtain the exponentially smoothed forecast values of GDP
growth. First the data are opened. Then the series to be smoothed is placed in a matrix called y.
The number of observations is counted and an another matrix called sm1 is created; it is na T × 1
vector of zeros. We will populate this vector with the smoothed values of y. In line 5 the smoothing
parameter is set to 0.38.

There are several ways to populate the first forecast value. A popular way is the take the
average of the first (T + 1)/2 elements of the series. The scalar stv is the mean of the first 50
observations. The full sample is then restored.

The loop is quite simple. It loops in increments of 1 from 1 to T. The --quiet option is
used to suppress screen output. For the first observation, the vector sm1[1] receives the initial
forecast, stv. For all subsequent smoothed values the exponential smoothing is carried out. Once
the loop ends the matrix is converted back into a series so that it can be graphed using regular
gretl functions.

1 open "@gretldir\data\poe\okun.gdt"

2 matrix y = { g }

3 scalar T = $nobs

4 matrix sm1 = zeros(T,1)

5 scalar a = .38

6 smpl 1 round((T+1)/2)

7 scalar stv = mean(y)

8 smpl full

9 loop i=1..T --quiet

10 if i = 1

11 matrix sm1[i]=stv

12 else

13 matrix sm1[$i]=a*y[$i]+(1-a)*sm1[i-1]

14 endif

15 endloop

16 series exsm = sm1

17 gnuplot g exsm --time-series

The time-series plot of GDP growth and the smoothed series is found in Figure 9.18. Increasing
the smoothing parameter to 0.8 reduces the smoothing considerably. The script appears at the end
of the chapter, and merely changes the value of a in line 5 to 0.8. The figure appears below in the
bottom panel of Figure 9.18.
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Gretl actually includes a function that can smooth a series in a single line of code. The movavg

function. To exponentially smooth the series g

1 scalar tmid = round(($nobs+1)/2)

2 scalar a = .38

3 series exsm = movavg(g, a, tmid)

The function takes three argumants. The first is the series for which you want to find the moving
average. The second is smoothing parameter, α. The final argument is teh number of initial
observations to average to produce y0. This will duplicate what we did in the script. It is worth
mentioning that the movavg function will take a regular moving average if the middle argument is
set to a positive integer, with the integer being the number of terms to average.

9.9 Multiplier Analysis

Multiplier analysis refers to the effect, and the timing of the effect, of a change in one variable
on the outcome of another variable. The simplest form of multiplier analysis is based on a finite
distributed lag model

yt = α+ β0xt + β1xt−1 + β2xt−2 + · · ·+ βqxt−q + et (9.19)

The estimated coefficients from this model can be used to produce impact, delay and interim
multipliers. The impact multiplier is the impact of a one unit change in xt on the mean of yt.
Since x and y are in the same time period the effect is contemporaneous and therefore equal to the
initial impact of the change. The s-period delay multiplier is

∂E(yt)

∂xt−s
= βs (9.20)

is the effect of a change in x s-periods in the past on the average value of the dependent variable in
the current period. If xt is increased by 1 unit and then maintained at its new level in subsequent
periods (t+ 1), (t+ 2), . . ., then one can compute the interim multiplier. An interim multiplier
simply adds the immediate effect (impact multiplier), β0, to subsequent delay multipliers to measure
the cumulative effect. So in period t + 1 the interim effect is β0 + β1. In period t + 2, it will be
β0 + β1 + β2, and so on. The total multiplier is the final effect on y of the sustained increase
after q or more periods have elapsed; it is given by

∑q
s=0 βs.

The ARDL model adds lagged values of the dependent variable to the AR model,

yt = δ + θ1yt−1 + · · ·+ θpyt−p + δ0xt + δ1xt−1 + · · ·+ δqxt−q + vt (9.21)

and this makes the multiplier analysis a little harder. Basically, this needs to be transformed into
an infinite distributed lag model using the properties of the lag operator, L. That is, Lixt = xt−i.
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This puts the model into the familiar AR form and the usual definitions of the multipliers can be
applied. This is discussed in detail in POE4 and will not be replicated in any detail here.

For the ARDL(1,1) model used to describe Okun’s law we have

∆ut = δ + θ1∆ut−1 + δ0gt + δ1gt−1 + vt

Written with the lag operator, L

(1− θ1L) ∆ut = δ + (δ0 + δ1L) gt + vt

∆ut = (1− θ1L)−1δ + (1− θ1L)−1 (δ0 + δ1L) gt + (1− θ1L)−1vt

∆ut = α+ β0gt + β1gt−1 + β2gt−2 + β3gt−3 + · · ·+ et

= α+
(
β0 + β1L+ β2L

2 + β3L
3 + · · ·

)
gt + et

This is just an infinite distributed lag model. The coefficients for the multipliers involve the β
coefficients, which must be solved for in terms of the estimated parameters of the ARDL. The
solutions given in POE4 are

β0 =δ0 (9.22)

β1 =δ1 + β0θ1 (9.23)

βj =βj−1θ1 for j ≥ 2 (9.24)

The gretl code to accomplish this is simple to construct. In terms of the model of Okun’s Law,

1 open "@gretldir\data\poe\okun.gdt"

2 diff u

3 ols d_u(0 to -1) g(0 to -1) const

4 scalar b0 = $coeff(g)

5 scalar b1 = $coeff(d_u_1)*b0+$coeff(g_1)

6 scalar b2 = b1*$coeff(d_u_1)

7 scalar b3 = b2*$coeff(d_u_1)

This can be automated by using a loop to construct the multipliers. Once this is done, it is simple
to graph the result up to an arbitrary number of periods.

The script is:

1 scalar h = 8

2 matrix mult = zeros(h,2)

3 loop i=1..h

4 mult[i,1] = i-1

5 scalar b0 = $coeff(g)

6 scalar b1 = $coeff(d_u_1)*b0+$coeff(g_1)
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7 if i=1

8 mult[i,2]=b0

9 elif i=2

10 mult[i,2]=b1

11 else

12 mult[i,2]=mult[i-1,2]*$coeff(d_u_1)

13 endif

14 endloop

15 printf "\nThe impact and delay multipliers are \n %10.5f\n", mult

16 gnuplot 2 1 --matrix=mult --output=display --with-lines --suppress-fitted

Although it took a few lines of code, the results (Figure 9.19 below) look great and the code can
easily be reused for other models. It assumes that you have already estimated the ARDL(1,1) for
Okun data as done in the previous script. The first thing to do is to decide how many multipliers
to compute. I chose 8 and initialized a matrix of zeros that is 8 × 2. We will put lags in the first
column and the corresponding multiplier in the second.

The loop begins in line 3 and i will start at 1 and end at 8, with increments of 1. The first two
multipliers are computed manually. Then a series of if statements follows. Since there are three
forms of the multiplier in equations (9.22) – (9.24), there are 3 if statements. When the index is
equal 1, the impact multiplier is placed in m. When the index is equal to 2, the period one delay is
placed in m. The last condition fills in m for any i > 2.

Next, we want to be able to plot the multipliers against lag. This is done from a matrix using
the --matrix option to gnuplot. Also, using the output=display option sends the plot to the
screen which allows for subsequent editing via gretl’s gnuplot interface.

The other option is to convert the matrix to data series and use the regular gretl GUI to
make the plots. This requires opening an empty dataset and setting the observations to equal 8.
This is done using the nulldata command. The --preserve option is required because without
it the matrix containing the multipliers would be cleared from memory. This option preserves the
contents of all existing matrices and scalars. The lags are read out of the first column and the
multipliers from the second.

1 nulldata 8 --preserve

2 series m = mult[,2]

3 series lag = mult[,1]

4 setinfo m -d "Multipliers" -n "Multiplier"

5 gnuplot m index --with-lines --output=display --suppress-fitted

The edited outcome appears in Figure 9.19 below. The figure shows that an increase in GDP
growth leads to an initial reduction in the unemployment rate of about 0.18; the effect diminishes
over time and lasts about six or seven quarters.

226



9.10 Appendix

9.10.1 Durbin-Watson Test

The Durbin-Watson statistic is produced with every time-series regression estimated by least
squares. To access the p-value associated with the test, which is computed using the Imhoff
procedure, use the accessor $dwpval. An example based on the Phillips curve is:

1 open "@gretldir\data\poe\phillips_aus.gdt"

2 diff u

3 setinfo inf -d "Australian Inflation Rate" -n "Inflation Rate"

4 setinfo d_u -d "Change in Australian Civilian Unemployment Rate\

5 (Seasonally adjusted)" -n "D.Unemployment Rate"

6 ols inf d_u const

7 scalar dw_p = $dwpval

8 print dw

The result, including the last line of the regression output that shows the estimated value of ρ and
the DW statistic, is:

rho 0.549882 Durbin-Watson 0.887289

dw_p = 2.1981736e-009

The DW statistic is 0.887 and its p-value is well below the 5% threshold, indicating significant
autocorrelation. The GUI gives a slightly prettier result. It has to be called from the model
window as Tests>Durbin-Watson p-value.

Many interpret a significant DW statistic as evidence of general model misspecification.

9.10.2 FGLS and Other Estimators

The feasible GLS estimator of the AR(p) model can be estimated using gretl in a number of
ways. For first order autocorrelated models the ar1 command can be used. There are a num-
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ber of estimators available by option including the Cochrane-Orcutt (iterated), the Prais-Winsten
(iterated), and the Hildreth-Lu search procedure. Examples are:

1 list x = d_u const

2 ar1 inf x # Cochrane-Orcutt (default)

3 ar1 inf x --pwe # Prais-Winsten

4 ar1 inf x --hilu --no-corc # Hildreth-Lu

The results are collected in a model table below.

AR(1) Errors
Dependent variable: inf

(CO) (PW) (HL)

const 0.7609∗∗ 0.7862∗∗ 0.7608∗∗

(0.1238) (0.1218) (0.1245)

d u −0.6944∗∗ −0.7024∗∗ −0.6953∗∗

(0.2429) (0.2430) (0.2430)

ρ 0.55739 0.55825 .56
n 89 90 89
R̄2 0.3407 0.3418 0.3406

Standard errors in parentheses
* indicates significance at the 10 percent level
** indicates significance at the 5 percent level

CO = Cochrane Orcutt, PW=Prais-Winsten, HL=Hildreth-Lu

You can see that there are minor differences produced by these options. If the --no-corc option
is not used with --hilu then the Hildreth-Lu estimator is modified slightly to perform additional
iterations as the end. Notice that the Prais-Winsten is the only procedure to use all 90 observations.

For higher order models there are two commands worth taking note of. The ar command
estimates a linear regression with arbitrary autocorrelation structure. It uses a generalization of
the Cochrane-Orcutt iterative procedure to obtain estimates.

The other estimator is arima, the syntax for which appears below:
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The default estimation method for arima in gretl is to estimate the parameters of the model
using the “native” gretl ARMA functionality, with estimation by exact maximum likelihood using
the Kalman filter. You can estimate the parameters via conditional maximum likelihood as well.

Estimating the simple AR(1) regression using these estimators is done:

1 ar 1 ; inf x

2 arima 1 0 0 ; inf x

For the ar command, list the lag numbers for the desired residuals. In the case of AR(1) this is
just 1. This is followed by a semicolon and then the regression to estimate. The arima syntax is
similar, except you specify p, d, and q, where p is the order of the desired autocorrelation, d is the
number of differences to take of the time-series, and q is the order of any moving average terms
you might have in the residuals.

The outcome for the simple ARIMA(1,0,0) ia

ARMAX, using observations 1987:2-2009:3 (T = 90)

Estimated using Kalman filter (exact ML)

Dependent variable: inf

Standard errors based on Hessian

coefficient std. error z p-value

--------------------------------------------------------

const 0.786212 0.120601 6.519 7.07e-011 ***

phi_1 0.558827 0.0877359 6.369 1.90e-010 ***

d_u -0.702558 0.242234 -2.900 0.0037 ***
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Mean dependent var 0.791111 S.D. dependent var 0.636819

Mean of innovations -0.003996 S.D. of innovations 0.510937

Log-likelihood -67.45590 Akaike criterion 142.9118

Schwarz criterion 152.9110 Hannan-Quinn 146.9441

Real Imaginary Modulus Frequency

-----------------------------------------------------------

AR

Root 1 1.7895 0.0000 1.7895 0.0000

-----------------------------------------------------------

These are very similar to the ones above. The coefficient labeled phi 1 is the estimate of the
autocorrelation parameter. The root of this equation is 1/phi 1. The roots (or modulus) must be
greater than 1 in absolute value in order for the model to be stationary.

9.11 Script

1 open "@gretldir\data\poe\okun.gdt"

2 set echo off

3 # change variable attributes

4 setinfo g -d "percentage change in U.S. Gross Domestic Product, seasonally \

5 adjusted" -n "Real GDP growth"

6 setinfo u -d "U.S. Civilian Unemployment Rate (Seasonally adjusted)" -n \

7 "Unemployment Rate"

8

9 # plot series and save output to files

10 gnuplot g --with-lines --time-series --output="@workdir\okun_g.plt"

11 gnuplot u --with-lines --time-series --output="@workdir\okun_u.plt"

12

13 # graphing multiple time-series

14 scatters g u --with-lines

15

16 diff u

17 setinfo d_u -d "Change in U.S. Civilian Unemployment \

18 Rate (Seasonally adjusted)" -n \

19 "D.Unemployment Rate"

20 scatters g d_u --with-lines --output=display

21

22 # distributed lag models

23 ols d_u const g(0 to -3)

24 smpl 1986:1 2009:3

25 ols d_u const g(0 to -2)

26

27 gnuplot g g_1

28

29 # correlogram and confidence interval

30 corrgm g 12
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31 matrix ac = corrgm(g, 12)

32 matrix lb = ac[,1]-1.96/sqrt($nobs)

33 matrix ub = ac[,1]+1.96/sqrt($nobs)

34 matrix all = lb~ac[,1]~ub

35 colnames(all, "Lower AC Upper ")

36 printf "\nAutocorrelations and 95%% confidence intervals\n %9.4f\n", all

37

38 # Phillips curve

39 open "@gretldir\data\poe\phillips_aus.gdt"

40 diff u

41 setinfo inf -d "Australian Inflation Rate" -n "Inflation Rate"

42 setinfo d_u -d "Change in Australian Civilian \

43 Unemployment Rate (Seasonally adjusted)" -n \

44 "D.Unemployment Rate"

45 scatters inf d_u --with-lines

46

47 ols inf const d_u

48 series ehat = $uhat

49 gnuplot ehat --time-series

50 corrgm ehat

51

52 # LM tests

53 ols ehat const d_u ehat(-1)

54 scalar NR2 = $trsq

55 pvalue X 1 NR2

56

57 ols ehat const d_u ehat(-1 to -4)

58 scalar NR2 = $trsq

59 pvalue X 4 NR2

60

61 ols inf const d_u

62 modtest 1 --autocorr

63 modtest 4 --autocorr --quiet

64

65 # HAC standard errors

66 open "@gretldir\data\poe\phillips_aus.gdt"

67 set hac_kernel bartlett

68 set hac_lag nw2

69 diff u

70 ols inf const d_u

71 modeltab add

72 ols inf const d_u --robust

73 modeltab add

74 modeltab show

75 modeltab free

76

77 # nonlinear least squares estimation of regression w/AR(1) errors

78 open "@gretldir\data\poe\phillips_aus.gdt"

79 diff u

80 ols inf const d_u --quiet

81
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82 scalar beta1 = $coeff(const)

83 scalar beta2 = $coeff(d_u)

84 scalar rho = 0

85

86 nls inf = beta1*(1-rho) + rho*inf(-1) + beta2*(d_u-rho*d_u(-1))

87 params rho beta1 beta2

88 end nls

89 scalar delta = $coeff(beta1)*(1-$coeff(rho))

90 scalar delta1 = -$coeff(rho)*$coeff(beta2)

91 printf "\nThe estimated delta is %.3f and the estimated delta1\

92 is %.3f.\n",delta,delta1

93 scalar sser=$ess

94

95 # estimation of more general model

96 ols inf const inf(-1) d_u(0 to -1)

97 scalar sseu=$ess

98 scalar fstat = (sser-sseu)/(sseu/$df)

99 pvalue X 1 fstat

100 pvalue F 1 $df fstat

101 omit d_u(-1)

102

103 ols inf const inf(-1) d_u(0 to -1)

104 modeltab add

105 ols inf const inf(-1) d_u(0)

106 modeltab add

107 modeltab show

108 modeltab free

109

110 # model selection function

111 function matrix modelsel (series y, list xvars)

112 ols y xvars --quiet

113 scalar sse = $ess

114 scalar N = $nobs

115 scalar K = nelem(xvars)

116 scalar aic = ln(sse/N)+2*K/N

117 scalar bic = ln(sse/N)+K*ln(N)/N

118 matrix A = { K, N, aic, bic}

119 printf "\nRegressors: %s\n",varname(xvars)

120 printf "K = %d, N = %d, AIC = %.4f SC = %.4f.\n",K,N,aic,bic

121 return A

122 end function

123

124 # using the modelsel function

125 list x = const inf(-1) d_u(0 to -1)

126 matrix a = modelsel(inf,x)

127 list x0 = const

128 matrix b = modelsel(inf,x)

129 list x = const d_u inf(-1)

130

131 # putting the model selection results into a matrix

132 open "@gretldir\data\poe\phillips_aus.gdt"
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133 diff u

134 smpl 1988:3 2009:3

135 matrix A = {}

136 scalar q = 0

137 loop p = 1..6 --quiet

138 if p = 1

139 list x = const inf(-1) d_u

140 else

141 list x = const inf(-1 to -$p) d_u

142 endif

143 matrix a = $p~q~modelsel(inf,x)

144 matrix A = A | a

145 modelsel(inf,x)

146 endloop

147 scalar q = 1

148 loop p = 1..6 --quiet

149 if p = 1

150 list x = const inf(-1) d_u(0 to -1)

151 else

152 list x = const inf(-1 to -$p) d_u(0 to -1)

153 endif

154 matrix a = $p~q~modelsel(inf,x)

155 matrix A = A | a

156 endloop

157 colnames(A,"p q K N AIC SC ")

158 print A

159

160 smpl full

161 ols inf const inf(-1 to -4) d_u --robust

162

163 # improved modelsel2 function for ARDL

164 function matrix modelsel2 (list xvars)

165 ols xvars --quiet

166 scalar sse = $ess

167 scalar N = $nobs

168 scalar K = nelem(xvars)-1

169 scalar aic = ln(sse/N)+2*K/N

170 scalar bic = ln(sse/N)+K*ln(N)/N

171 matrix A = { K, N, aic, bic}

172 # printf "\nDependent variable and Regressors: %s\n",varname(xvars)

173 # printf "K = %d, N = %d, AIC = %.4f SC = %.4f.\n",K,N,aic,bic

174 return A

175 end function

176

177 # using modelsel2

178 open "@gretldir\data\poe\okun.gdt"

179 diff u

180 smpl 1986:1 2009:3

181 matrix A = {}

182 loop p = 0..2 --quiet

183 loop q = 1..3 --quiet
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184 if p=0

185 list vars = d_u g(0 to -q) const

186 else

187 list vars = d_u(0 to -p) g(0 to -q) const

188 endif

189 matrix a = p~q~modelsel2(vars)

190 matrix A = A | a

191 endloop

192 endloop

193 colnames(A,"p q K N AIC SC ")

194 print A

195 function modelsel clear

196

197 smpl full

198 ols d_u(0 to -1) g(0 to -1) const

199 loop i=1..4

200 modtest $i --autocorr --quiet

201 endloop

202

203 open "@gretldir\data\poe\okun.gdt"

204 smpl 1986:3 2009:3

205 matrix A = {}

206 scalar q=0

207 loop p = 1..5 --quiet

208 list vars = g(0 to -p) const

209 matrix a = p~q~modelsel2(vars)

210 matrix A = A | a

211 endloop

212 colnames(A,"p q K N AIC SC ")

213 print A

214 function modelsel clear

215

216 # loop to test for autocorrelation in ARDL

217 open "@gretldir\data\poe\phillips_aus.gdt"

218 diff u

219 ols inf(0 to -1) d_u const

220 loop i=1..5

221 modtest $i --autocorr --quiet

222 endloop

223

224 # loop to test for autocorrelation at several lags

225 open "@gretldir\data\poe\okun.gdt"

226 ols g(0 to -2) const

227 series res = $uhat

228 corrgm res

229 loop i = 1..4

230 modtest $i --autocorr --quiet

231 endloop

232

233 # model selection for Okun data

234 open "@gretldir\data\poe\okun.gdt"
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235 smpl 1986:3 2009:3

236 matrix A = {}

237 scalar q=0

238 loop p = 1..5 --quiet

239 list vars = g(0 to -p) const

240 matrix a = p~q~modelsel2(vars)

241 matrix A = A | a

242 endloop

243 colnames(A,"p q K N AIC SC ")

244 print A

245

246 # estimation of preferred model and a forecast

247 open "@gretldir\data\poe\okun.gdt"

248 ols g(0 to -2) const

249 dataset addobs 3

250 fcast 2009:4 2010:2 --plot="@workdir\ar2plot1.plt"

251

252 # multiplier analysis

253 open "@gretldir\data\poe\okun.gdt"

254 matrix y = { g }

255 scalar T = $nobs

256 matrix sm1 = zeros(T,1)

257 scalar a = .38

258 smpl 1 round((T+1)/2)

259 scalar stv = mean(y)

260 smpl full

261 loop i=1..T --quiet

262 if i = 1

263 matrix sm1[i]=stv

264 else

265 matrix sm1[$i]=a*y[$i]+(1-a)*sm1[i-1]

266 endif

267 endloop

268 series exsm = sm1

269 gnuplot g exsm --time-series

270

271 scalar a = .8

272 loop i=1..T --quiet

273 if i = 1

274 matrix sm1[i]=stv

275 else

276 matrix sm1[$i]=a*y[$i]+(1-a)*sm1[i-1]

277 endif

278 endloop

279 series exsm8 = sm1

280 gnuplot g exsm8 --time-series

281

282 open "@gretldir\data\poe\okun.gdt"

283 diff u

284 ols d_u(0 to -1) g(0 to -1) const

285 scalar b0 = $coeff(g)
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286 scalar b1 =$coeff(d_u_1)*b0+$coeff(g_1)

287 scalar b2 = b1*$coeff(d_u_1)

288 scalar b3 = b2*$coeff(d_u_1)

289

290 # Matrix & Series Plot

291 open "@gretldir\data\poe\okun.gdt"

292 diff u

293 ols d_u(0 to -1) g(0 to -1) const

294 scalar h = 8

295 matrix mult = zeros(h,2)

296 loop i=1..h

297 mult[i,1] = i-1

298 scalar b0 = $coeff(g)

299 scalar b1 = $coeff(d_u_1)*b0+$coeff(g_1)

300 if i=1

301 mult[i,2]=b0

302 elif i=2

303 mult[i,2]=b1

304 else

305 mult[i,2]=mult[i-1,2]*$coeff(d_u_1)

306 endif

307 endloop

308

309 gnuplot 2 1 --matrix=mult --output=display --with-lines --suppress-fitted

310

311 printf "\nThe impact and delay multipliers are \n %10.5f\n", mult

312

313 nulldata 8 --preserve

314 series m = mult[,2]

315 series lag = mult[,1]

316 setinfo m -d "Multipliers" -n "Multiplier"

317 gnuplot m index --with-lines --output=display --suppress-fitted

318

319 # appendix

320 open "@gretldir\data\poe\phillips_aus.gdt"

321 diff u

322 setinfo inf -d "Australian Inflation Rate" -n "Inflation Rate"

323 setinfo d_u -d "Change in Australian Civilian \

324 Unemployment Rate (Seasonally adjusted)" -n \

325 "D.Unemployment Rate"

326

327 # Durbin-Watson with p-value

328 list x = d_u const

329 ols inf x

330 scalar dw_p = $dwpval

331 print dw_p

332

333 # various ways to estimate AR(1) regression

334 ar1 inf x

335 modeltab add

336 ar1 inf x --pwe
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337 modeltab add

338 ar1 inf x --hilu --no-corc

339 modeltab add

340 modeltab show

341 modeltab free

342

343 ar 1 ; inf x

344 arima 1 0 0 ; inf x
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Figure 9.11: This plot shows that the residuals from the simple Phillips curve model are serially
correlated. Australia, 1987:1 - 2009:3.
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Figure 9.12: Using Test>Autocorrelation from the model pull-down menu will generate the
following output. The alternative hypothesis is AR(4).

Figure 9.13: Nonlinear least squares results for the AR(1) regression model.
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Figure 9.14: Residual correlogram for Okun AR(2)

Figure 9.15: Using Data>Add observations from the main gretl pull-down menu will extend the
sample period. This is necessary to generate forecasts.

240



Figure 9.16: Forecast dialog box

Figure 9.17: Gretl calls gnuplot to generate a graph of the time-series and the forecast.
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Figure 9.18: GDP growth and exponentially smoothed growth. The smaller the smoothing param-
eter α, the greater the smoothing.

242



Figure 9.19: Impact and delay multipliers for an ARDL(1,1) of the change in unemployment caused
by 1% increase in U.S. GDP growth.
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Chapter 10
Random Regressors and Moment Based
Estimation

In this chapter you will learn to use instrumental variables to obtain consistent estimates of a
model’s parameters when its independent variables are correlated with the model’s errors.

10.1 Basic Model

Consider the linear regression model

yi = β1 + β2xi + ei i = 1, 2, . . . , N (10.1)

Equation (10.1) suffers from a significant violation of the usual model assumptions when its explana-
tory variable is contemporaneously correlated with the random error, i.e., Cov(ei, xi) = E(eixi) 6= 0.
When a regressor is correlated with the model’s errors, the regressor is often referred to as being
endogenous.1 If a model includes an endogenous regressor, least squares is known to be both
biased and inconsistent.

An instrument is a variable, z, that is correlated with x but not with the error, e. In addition,
the instrument does not directly affect y and thus does not belong in the actual model as a separate
regressor. It is common to have more than one instrument for x. All that is required is that these
instruments, z1, z2, . . . , zs, be correlated with x, but not with e. Consistent estimation of (10.1) is
possible if one uses the instrumental variables or two-stage least squares estimator, rather
than the usual OLS estimator.

1There is a certain sloppiness associated with the use of endogenous in this way, but it has become standard
practice in econometrics.
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10.2 IV Estimation

Gretl handles this estimation problem with ease using what is commonly referred to as two-
stage least squares. In econometrics, the terms two-stage least squares (TSLS) and instrumental
variables (IV) estimation are often used interchangeably. The ‘two-stage’ terminology is a legacy
of the time when the easiest way to estimate the model was to actually use two separate least
squares regressions. With better software, the computation is done in a single step to ensure the
other model statistics are computed correctly. Since the software you use invariably expects you to
specify ‘instruments,’ it is probably better to think about this estimator in those terms from the
beginning. Keep in mind though that gretl uses the old-style term two-stage least squares (tsls)
even as it asks you to specify instruments in it dialog boxes and scripts.

10.2.1 Least Squares Estimation of a Wage Equation

The example is model of wages estimated using mroz.gdt using the 428 women in the sample
that are in the labor force. The model is

ln(wage) = β1 + β2educ + β3exper + β4exper2 + e (10.2)

In all likelihood a woman’s wages will depend on her ability as well as education and experience.
Ability is omitted from the model, which poses no particular problem as long as it is not correlated
with either education or experience. The problem in this example, however, is that ability is likely
to be correlated with education. The opportunity cost of additional education for those of high
ability is low and they tend to get more of it. Hence, there is an endogeneity problem in this
model. The model is estimated using least squares to produce:

OLS, using observations 1–428
Dependent variable: l wage

Coefficient Std. Error t-ratio p-value

const −0.522041 0.198632 −2.6282 0.0089
educ 0.107490 0.0141465 7.5983 0.0000
exper 0.0415665 0.0131752 3.1549 0.0017
sq exper −0.000811193 0.000393242 −2.0628 0.0397

Mean dependent var 1.190173 S.D. dependent var 0.723198
Sum squared resid 188.3051 S.E. of regression 0.666420
R2 0.156820 Adjusted R2 0.150854
F (3, 424) 26.28615 P-value(F ) 1.30e–15
Log-likelihood −431.5990 Akaike criterion 871.1979
Schwarz criterion 887.4344 Hannan–Quinn 877.6105
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The estimated return to another year of schooling is 10.75%. That seems fairly high and if education
and the omitted ability are correlated, then it is being estimated inconsistently by least squares.

10.2.2 Two-Stage Least Squares

To perform Two-Stage Least Squares (TSLS) or Instrumental Variables (IV) estimation you
need instruments that are correlated with your independent variables, but not correlated with the
errors of your model. In the wage model, we will need some variables that are correlated with
education, but not with the model’s errors. We propose that mother’s education (mothereduc) is
suitable. The mother’s education is unlikely to enter the daughter’s wage equation directly, but it
is reasonable to believe that daughters of more highly educated mothers tend to get more education
themselves. These propositions can and will be be tested later. In the meantime, estimating the
wage equation using the instrumental variable estimator is carried out in the following example.
First, load the mroz.gdt data into gretl. Then, to open the basic gretl dialog box that computes
the IV estimator choose Model>Instrumental Variables>Two-Stage Least Squares from the
pull-down menu as shown below in Figure 10.1. This opens the dialog box shown in Figure 10.2.

Figure 10.1: Two-stage least squares estimator from the pull-down menus

In this example we choose l wage as the dependent variable, put all of the desired instruments into
the Instruments box, and put all of the independent variables, including the one(s) measured with
error, into the Independent Variables box. If some of the right-hand side variables for the model are
exogenous, they should be referenced in both lists. That’s why the const, exper, and sq exper

variables appear in both places. Press the OK button and the results are found in Table 10.1.
Notice that gretl ignores the sound advice offered by the authors of your textbook and computes
an R2. Keep in mind, though, gretl computes this as the squared correlation between observed
and fitted values of the dependent variable, and you should resist the temptation to interpret R2

as the proportion of variation in l wage accounted for by the model.

If you prefer to use a script, the syntax is very simple.
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TSLS, using observations 1–428
Dependent variable: l wage

Instrumented: educ
Instruments: const mothereduc exper sq exper

Coefficient Std. Error z p-value

const 0.198186 0.472877 0.4191 0.6751
educ 0.0492630 0.0374360 1.3159 0.1882
exper 0.0448558 0.0135768 3.3039 0.0010
sq exper −0.000922076 0.000406381 −2.2690 0.0233

Mean dependent var 1.190173 S.D. dependent var 0.723198
Sum squared resid 195.8291 S.E. of regression 0.679604
R2 0.135417 Adjusted R2 0.129300
F (3, 424) 7.347957 P-value(F ) 0.000082
Log-likelihood −3127.203 Akaike criterion 6262.407
Schwarz criterion 6278.643 Hannan–Quinn 6268.819

Table 10.1: Results from two-stage least squares estimation of the wage equation.

The basic syntax is this: tsls y x ; z, where y is the dependent variable, x are the regressors,
and z the instruments. Thus, the gretl command tsls calls for the IV estimator to be used and
it is followed by the linear model you wish to estimate.

The script for the example above is

1 list x = const educ exper sq_exper

2 list z = const exper sq_exper mothereduc

3 tsls l_wage x ; z

In the script, the regressors for the wage equation are collected into a list called x. The instruments,
which should include all exogenous variables in the model including the constant, are placed in
the list called z. Notice that z includes all of the exogenous variables in x. Here the dependent
variable, y, is replaced with its actual value from the example, (l wage).
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It is certainly possible to compute two-stage least squares in two steps, but in practice it is not
a good idea to do so. The estimates of the slopes and intercept will be the same as you get using
the regular tsls IV estimator. The standard errors will not be computed correctly though. To
demonstrate, we will do the estimation in two steps and compare results. The gretl code to do
two step estimation is

1 smpl wage>0 --restrict

2 ols educ z

3 series educ_hat = $yhat

Notice that the sample had to be restricted to those wages greater than zero using the --restrict
option. If you fail to do this, the first stage regression will be estimated with all 753 observations
instead of the 428 used in tsls. TSLS is implicitly limiting the first stage estimation to the non-
missing values of l wage. You can see that the coefficient estimates are the same as those in Table
10.1, but the standard errors are not.

10.2.3 Partial Correlations

Valid instruments are supposed to be correlated with the endogenous regressor. However, an
important determinant of the statistical properties of the IV estimator is the degree of correlation
between the instrument and the endogenous regressor. Furthermore, it is the independent corre-
lation between the instrument and the endogenous regressor that is important. The higher, the
better.

One way to get at this in a multiple regression model is to partial out the correlation in variables
measured with error that is due to the exogenous regressors. Whatever common variation that
remains will measure the independent correlation between the variable measured with error and
the instrument. This sounds complicated, but it is not. It is simple to do in gretl.

1 ols educ const exper sq_exper

2 series e1 = $uhat

3 ols mothereduc const exper sq_exper

4 series e2 = $uhat

5 ols e1 e2

6 corr e1 e2

The first statement regresses const, exper, and sq exper on educ and saves the residuals, e1. The
residuals contain all variation in educ not accounted for by the regressors. In effect, the variation
in const, exper, and sq exper has been partialled out of the variable measured with error, educ.
The second regression does the same for the instrument, mothereduc. The residuals, e2, have the
correlation with const, exper, and sq exper partialled out. Regressing e2 onto e1 yields, 0.26769.
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This turns out to be exactly the coefficient on mothereduc in the first-stage regression. This is
no coincidence since regression coefficients are the effect of one variable on another, holding the
remaining regressors constant.2

First Stage Regression: OLS, using observations 1-428

Dependent variable: educ

coefficient std. error t-ratio p-value

-----------------------------------------------------------

const 9.77510 0.423889 23.06 7.57e-077 ***

exper 0.0488615 0.0416693 1.173 0.2416

sq_exper -0.00128106 0.00124491 -1.029 0.3040

mothereduc 0.267691 0.0311298 8.599 1.57e-016 ***

The correlation between the two sets of residuals yields what is called a partial correlation. This is
a correlation where the common effects of const, exper, and sq exper have been removed. The
partial correlation between e1 and e2 is 0.3854. Partial correlations play a key role in testing for
weak instruments.

10.3 Specification Tests

There are three specification tests you will find useful with instrumental variables estimation.
By default, Gretl computes each of these whenever you estimate a model using two-stage least
squares. Below I’ll walk you through doing it manually and we’ll compare the manual results to
the automatically generated ones.

10.3.1 Hausman Test

The first test is to determine whether the independent variable(s) in your model is (are) in
fact uncorrelated with the model’s errors. If so, then least squares is more efficient than the IV
estimator. If not, least squares is inconsistent and you should use the less efficient, but consistent,
instrumental variable estimator. The null and alternative hypotheses are Ho : Cov(xi, ei) = 0
against Ha : Cov(xi, ei) 6= 0. The first step is to use least squares to estimate the first stage of
TSLS

xi = γ1 + θ1zi1 + θ2zi2 + νi (10.3)

and to save the residuals, ν̂i. Then, add the residuals to the original model

yi = β1 + β2xi + δν̂i + ei (10.4)

Estimate this equation using least squares and use the t-ratio on the coefficient δ to test the
hypothesis. If it is significantly different from zero then the regressor, xi is not exogenous or

2This demonstrates an important outcome of the Frisch-Waugh-Lovell Theorem.
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predetermined with respect to ei and you should use the IV estimator (TSLS) to estimate β1 and
β2. If it is not significant, then use the more efficient estimator, OLS.

The gretl script for the Hausman test applied to the wage equation is:

open "c:\Program Files\gretl\data\poe\mroz.gdt"

logs wage

list x = const educ exper sq_exper

list z2 = const exper sq_exper mothereduc fathereduc

ols educ z2 --quiet

series ehat2 = $uhat

ols l_wage x ehat2

Notice that the equation is overidentified. There are two additional instruments, mothereduc
and fathereduc, that are being used for a lone endogenous regressor, educ. Overidentification
basically means that you have more instruments than necessary to estimate the model. Lines 5
and 6 of the script are used to get the residuals from least squares estimation of the first stage
regression, and the last line adds these to the wage model, which is estimated by least squares.
The t-ratio on ehat2 =1.671, which is not significant at the 5% level. We would conclude that the
instruments are exogenous.

You may have noticed that whenever you use two-stage least squares in gretl that the program
automatically produces the test statistic for the Hausman test. There are several different ways of
computing this statistic so don’t be surprised if it differs from the one you compute manually using
the above script.

10.3.2 Testing for Weak Instruments

To test for weak instruments, regress each independent variable suspected of being contempora-
neously correlated with the error (xk) onto all of the instruments (internal and external). Suppose
xK is the endogenous regressor. The first stage regression is:

xK = γ1 + γ2x2 + · · ·+ γK−1xK−1 + θ1z1 + · · ·+ θLzL + νK (10.5)

In this notation, the z1, . . ., zL are the external instruments. The others, x2, . . ., zK−1 are
exogenous and are used as instruments for themselves (i.e., internal to the model). If the F -
statistic associated with the hypothesis that the coefficients on the external instruments, θ1, . . . ,
θL are jointly zero is less than 10, then you conclude that the instruments are weak. If it is greater
than 10, you conclude that the instruments are strong enough. The following script uses least
squares to perform three such tests. The first regression assumes there is only one instrument, z1;
the second that the single instrument is z2; the third assumes both are instruments.

open "@gretldir\data\poe\mroz.gdt"

smpl wage>0 --restrict
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logs wage

square exper

list x = const educ exper sq_exper

list z2 = const exper sq_exper mothereduc fathereduc

ols educ z2

omit mothereduc fathereduc

When omit follows an OLS regression, gretl estimates a restricted model where the variables
listed after it are omitted from the model above. It then performs a joint hypothesis test that the
coefficients of the omitted variables are zero against the alternative that one or more are not zero.
The --quiet option reduces the amount of output you have to wade through by suppressing the
regressions; only the test results are printed. The output from gretl appears in Figure 10.3 below:
Since the F value = 55.4, which is well beyond 10. We reject the hypothesis that the (external)
instruments mothereduc and fathereduc are weak in favor of the alternative that they are strong.

Gretl proves its worth here. Whenever you estimate a model using two stage least squares,
gretl will compute the test statistic for the weak instruments test.

10.3.3 Sargan Test

The final test is the Sargan test of the overidentifying restrictions implied by an overidentified
model. Recall that to be overidentified just means that you have more instruments than you have
endogenous regressors. In our example we have a single endogenous regressor (educ) and two
instruments, (mothereduc and fatehreduc). The first step is to estimate the model using TSLS
using all the instruments. Save the residuals and then regress these on the instruments alone. TR2

from this regression is approximately χ2 with the number of surplus instruments as your degrees of
freedom. Gretl does this easily since it saves TR2 as a part of the usual regression output, where
T is the sample size (which we are calling N in cross-sectional examples). The script for the Sargan
test follows:

1 open "@gretldir\data\poe\mroz.gdt"

2 smpl wage>0 --restrict

3 logs wage

4 square exper

5 list x = const educ exper sq_exper

6 list z2 = const exper sq_exper mothereduc fathereduc

7 tsls l_wage x; z2

8 series ehat2 = $uhat

9 ols ehat2 z2

10 scalar test = $trsq

11 pvalue X 2 test

The first 6 lines open the data, restricts the sample, generates logs and squares, and creates the lists
of regressors and instruments. In line 7 the model is estimated using TSLS with the variables in
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list x as regressors and those in z2 as instruments. In line 8 the residuals are saved as ehat2. Then
in line 9 a regression is estimated by ordinary least squares using the residuals and instruments as
regressors. TR2 is collected and the p-value computed in the last line.

The result is:

Generated scalar test = 0.378071

Chi-square(2): area to the right of 0.378071 = 0.827757

(to the left: 0.172243)

The p-value is large and the null hypothesis that the overidentifying restrictions are valid cannot
be rejected. The instruments are determined to be ok. Rejection of the null hypothesis can mean
that the instruments are either correlated with the errors or that they are omitted variables in the
model. In either case, the model as estimated is misspecified.

Finally, gretl produces these tests whenever you estimate a model using tsls. If the model is
exactly identified, then the Sargan test results are omitted. Here is what the output looks like in
the wage example:

Hausman test –
Null hypothesis: OLS estimates are consistent
Asymptotic test statistic: χ2(1) = 2.8256
with p-value = 0.0927721

Sargan over-identification test –
Null hypothesis: all instruments are valid
Test statistic: LM = 0.378071
with p-value = P (χ2(1) > 0.378071) = 0.538637

Weak instrument test –
First-stage F (2, 423) = 55.4003

Critical values for desired TSLS maximal size, when running

tests at a nominal 5% significance level:

size 10% 15% 20% 25%

value 19.93 11.59 8.75 7.25

Maximal size is probably less than 10%

You can see that the Hausman test statistic differs from the one we computed manually using the
script. However, the p-value associated with this version and ours above are virtually the same.
The results from the instrument strength test and from the Sargan test for overdentification are
the same. In conclusion, there is no need to compute any of these tests manually, unless you want
to.
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Finally, you will also see that some additional information is being printed at the bottom of
the test for weak instruments. The rule-of-thumb we have suggested is that if the F > 10 then
instruments are relatively strong. This begs the question, why not use the usual 5% critical value
from the F -distribution to conduct the test? The answer is that instrumental variables estimators
(though consistent) are biased in small samples. The weaker the instruments, the greater the bias.
In fact, the bias is inversely related to the value of the F -statistic. An F = 10 is roughly equivalent
to 1/F = 10% bias in many cases. The other problem caused by weak instruments is that they
affect the asymptotic distribution of the usual t- and F-statistics. This table is generated to give
you a more specific idea of what the actual size of the weak instruments test is. For instance, if
you are willing to reject weak instruments 10% of the time, then use a critical value of 19.93. The
rule-of-thumb value of 10 would lead to actual rejection of weak instruments somewhere between
15% and 20% of the time. Since our F = 55.4 > 19.93 we conclude that our test has a size less than
10%. If so, you would expect the resulting TSLS estimator based on these very strong instruments
to exhibit relatively small bias.

10.3.4 Multiple Endogenous Regressors and the Cragg-Donald F-test

3Cragg and Donald (1993) have proposed a test statistic that can be used to test for weak
identification (i.e., weak instruments). In order to compute it manually, you have to obtain a set
of canonical correlations. These are not computed in gretl so we will use another free software, R,
to do part of the computations. On the other hand, gretl prints the value of the Cragg-Donald
statistic by default so you won’t have to go to all of this trouble. Still, to illustrate a very powerful
feature of gretl we will use R to compute part of this statistic.

One solution to identifying weak instruments in models with more than one endogenous regressor
is based on the use of canonical correlations. Canonical correlations are a generalization of the usual
concept of a correlation between two variables and attempt to describe the association between two
sets of variables.

Let N denote the sample size, B the number of righthand side endogenous variables, G the
number of exogenous variables included in the equation (including the intercept), L the number of
external instruments–i.e., ones not included in the regression. If we have two variables in the first
set of variables and two variables in the second set then there are two canonical correlations, r1

and r2.

A test for weak identification–which means that the instruments are correlated with endogenous
regressors, but not very highly–is based on the Cragg-Donald F -test statistic

Cragg-Donald− F = [(N −G−B)/L]× [r2
B/(1− r2

B)] (10.6)

The Cragg-Donald statistic reduces to the usual weak instruments F -test when the number of
endogenous variables is B = 1. Critical values for this test statistic have been tabulated by Stock
and Yogo (2005), so that we can test the null hypothesis that the instruments are weak, against
the alternative that they are not, for two particular consequences of weak instruments.

3The computations in this section use R. You should refer to D for some hints about using R.
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The problem with weak instruments is summarized by Hill et al. (2011, p. 435):

Relative Bias: In the presence of weak instruments the amount of bias in the IV estimator can
become large. Stock and Yogo consider the bias when estimating the coefficients of the
endogenous variables. They examine the maximum IV estimator bias relative to the bias of
the least squares estimator. Stock and Yogo give the illustration of estimating the return to
education. If a researcher believes that the least squares estimator suffers a maximum bias
of 10%, and if the relative bias is 0.1, then the maximum bias of the IV estimator is 1%.

Rejection Rate (Test Size): When estimating a model with endogenous regressors, testing hy-
potheses about the coefficients of the endogenous variables is frequently of interest. If we
choose the α = 0.05 level of significance we expect that a true null hypothesis is rejected 5%
of the time in repeated samples. If instruments are weak, then the actual rejection rate of the
null hypothesis, also known as the test size, may be larger. Stock and Yogo’s second criterion
is the maximum rejection rate of a true null hypothesis if we choose α = 0.05. For example,
we may be willing to accept a maximum rejection rate of 10% for a test at the 5% level, but
we may not be willing to accept a rejection rate of 20% for a 5% level test.

The script to compute the statistic manually is given below:

1 open "@gretldir\data\poe\mroz.gdt"

2 smpl wage>0 --restrict

3 logs wage

4 square exper

5 series nwifeinc = (faminc-wage*hours)/1000

6 list x = mtr educ kidsl6 nwifeinc const

7 list z = kidsl6 nwifeinc mothereduc fathereduc const

8 tsls hours x ; z

9 scalar df = $df

This first section loads includes much that we’ve seen before. The data are loaded, the sample
restricted to the wage earners, the log of wage is taken, the square is experience is added to the
data. Then a new variable is computed to measure family income from all other members of the
household. The next part estimates a model of hours as a function of mtr, educ, kidsl6, nwifeinc,
and a constant. Two of the regressors are endogenous: mtr and educ. The external instruments
are mothereduc and fathereduc; these join the internal ones (const, kidsl6, nwifeinc) in the
instrument list. The degrees of freedom from this regression is saved to compute (N −G−B)/L.

The next set of lines partial’s out the influence of the internal instruments on each of the
endogenous regressors and on the external instruments.

10 list w = const kidsl6 nwifeinc

11 ols mtr w --quiet
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12 series e1 = $uhat

13 ols educ w --quiet

14 series e2 = $uhat

15 ols mothereduc w --quiet

16 series e3 = $uhat

17 ols fathereduc w --quiet

18 series e4 = $uhat

Now this is where it gets interesting. From here we are going to call a separate piece of software
called R to do the computation of the canonical correlations. Lines 19-25 hold what gretl refers
to as a foreign block.

19 foreign language=R --send-data --quiet

20 set1 <- gretldata[,29:30]

21 set2 <- gretldata[,31:32]

22 cc1 <- cancor(set1,set2)

23 cc <- as.matrix(cc1$cor)

24 gretl.export(cc)

25 end foreign

26

27 vars = mread("@dotdir/cc.mat")

28 print vars

29 scalar mincc = minc(vars)

30 scalar cd = df*(mincc^2)/(2*(1-mincc^2))

31 printf "\nThe Cragg-Donald Statistic is %10.4f.\n",cd

A foreign block takes the form

Foreign Block syntax
foreign language=R [--send-data] [--quiet]

... R commands ...

end foreign

and achieves the same effect as submitting the enclosed R commands via the GUI in the noninter-
active mode (see section 30.3 of the Gretl Users Guide). In other words, it allows you to use R
commands from within gretl . Of course, you have to have installed R separately, but this greatly
expands what can be done using gretl. The --send-data option arranges for auto-loading of the
data from the current gretl session. The --quiet option prevents the output from R from being
echoed in the gretl output. The block is closed with an end foreign command.

Inside our foreign block we create two sets of variables. The first set includes the residuals, e1
and e2 computed above. There are obtained from a matrix called gretldata. This is the name
that gretl gives to data matrices that are passed into R. You have to pull the desired variables
out of gretldata. In this case I used a rather inartful but effective means of doing so. These two
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variables are located in the 29th and 30th columns of gretldata. These also happen to be their
ID numbers in gretl. Line 20 puts these two variables into set1.

The second set of residuals is put into set2. Then, R’s cancor function is used to find the
canonical correlations between the two sets of residuals. The entire set of results is stored in R as
cc. This object contains many results, but we only need the actual canonical correlations between
the two sets. The canonical correlations are stored within cc as cor. They are retrieved as cc$cor
and put into a matrix with R’s as.matrix command. These are exported to gretl as cc.mat. R
adds the .mat suffix. cc.mat is placed in your working directory.

The next step is to read the cc.mat into gretl. Then in line we take the smallest canonical
correlation and use it in line to compute the Cragg-Donald statistic. The result printed to the
screen is:

? printf "\nThe Cragg-Donald Statistic is %6.4f.\n",cd

The Cragg-Donald Statistic is 0.1006.

It matches the automatic one produced by tsls, which is shown below, perfectly! It also shows
that these instruments are very weak.

Weak instrument test -

Cragg-Donald minimum eigenvalue = 0.100568

Critical values for desired TSLS maximal size, when running

tests at a nominal 5% significance level:

size 10% 15% 20% 25%

value 7.03 4.58 3.95 3.63

Maximal size may exceed 25%

Of course, you can do this exercise without using R as well. Gretl’s matrix language is very
powerful and you can easily get the canonical correlations from two sets of regressors. The following
funcrion4 does just that.

1 function matrix cc(list Y, list X)

2 matrix mY = cdemean({Y})

3 matrix mX = cdemean({X})

4

5 matrix YX = mY’mX

6 matrix XX = mX’mX

7 matrix YY = mY’mY

8

9 matrix ret = eigsolve(qform(YX, invpd(XX)), YY)

4Function supplied by gretl guru Riccardo Lucchetti.
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10 return sqrt(ret)

11 end function

The function is called cc and takes two arguments, just as the one in R. Feed the function two lists,
each containing the variable names to be included in each set for which the canonical correlations
are needed. Then, the variables in each set are demeaned using the very handy cdemean function.
This function centers the columns of the matrix argument around the column means. Then the
various cross-products are taken (YX, XX, YY) and the eigenvalues for |Q − λY Y | = 0, where
Q = (Y X)(XX)−1(Y X)T , are returned.

Then, to get the value of the Cragg-Donald F, assemble the two sets of residuals and use the
cc function to get the canonical correlations.

1 list E1 = e1 e2

2 list E2 = e3 e4

3

4 l = cc(E1, E2)

5 scalar mincc = minc(l)

6 scalar cd = df*(mincc^2)/(2*(1-mincc^2))

7 printf "\nThe Cragg-Donald Statistic is %10.4f.\n",cd

10.4 Simulation

In appendix 10F of POE4, the authors conduct a Monte Carlo experiment comparing the
performance of OLS and TSLS. The basic simulation is based on the model

y = x+ e (10.7)

x = πz1 + πz2 + πz3 + v (10.8)

The zi are exogenous instruments that are each N(0,1). The errors, e and v, are(
e
v

)
∼ N

[(
0
0

)
,

(
1 ρ
ρ 1

)]
(10.9)

The parameter π controls the strength of the instruments and is set to either 0.1 or 0.5. The
parameter ρ controls the endogeneity of x. When ρ = 0, x is exogenous. When ρ = 0.8 it is
seriously endogenous. Sample size is set to 100 and 10,000 simulated samples are drawn.

The gretl script to perform the simulation appears below:

1 scalar N = 100

2 nulldata N
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3 scalar rho = 0.8 # set r = (0.0 or 0.8)

4 scalar p = 0.5 # set p = (0.1 or 0.5)

5 matrix S = {1, rho; rho, 1}

6 matrix C = cholesky(S)

7

8 series z1 = normal(N,1)

9 series z2 = normal(N,1)

10 series z3 = normal(N,1)

11 series xs = p*z1 + p*z2 + p*z3

12 list z = z1 z2 z3

13

14 loop 10000 --progressive --quiet

15 matrix errors = mnormal(N,2)*C’

16 series v = errors[,1]

17 series e = errors[,2]

18 x = xs + v

19 y = x + e

20 ols x const z --quiet

21 scalar f = $Fstat

22 ols y 0 x --quiet

23 scalar b_ols = $coeff(x)

24 tsls y 0 x; 0 z --quiet

25 scalar b_tsls = $coeff(x)

26 store coef.gdt b_ols b_tsls f

27 print b_ols b_tsls f

28 endloop

The top part of the script initializes all of the parameters for the simulation. The sample size
is set to 100, an empty dataset is created, the values of ρ and π are set, then the covariance
matrix is created and the Cholesky decomposition is taken. The Cholesky decomposition is a trick
used to create correlation among the residuals. There are more transparent ways to do this (e.g.,
e = rho*v + normal(0,1)), but this is a useful trick to use, especially when you want to correlate
more than two series. The systematic part of x is created and called xs and a list to contain the
instruments is created as well.

The loop uses the --progressive option and is set to do 10,000 iterations. The matrix called
errors uses the Cholesky decomposition of the variance covariance to create the correlated errors.
The first column we assign to v and the second to e. The endogenous regressor x is created by
adding v to the systematic portion of the model, and then the dependent variable in the regression
is created. The first regression in line 20 is the reduced form. The overall F statistic from this
regression can serve as the test for weak instruments since there are no other exogenous variables
in the model. The omit form of the F -test won’t work in a progressive loop so I avoided it here.
The slope estimates for least squares and two-stage least squares are collected, stored to coef.gdt,
and printed.

For this particular parameterization, I obtained the following result:
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Statistics for 10000 repetitions

Variable mean std. dev.

b_ols 1.42382 0.0532148

b_tsls 1.00887 0.106816

f 30.6130 7.88943

With strong instruments, TSLS is basically unbiased. Least squares is seriously biased. Notice
that the average value of the weak instrument test is 30.6, indicating the strong instruments. Try
changing p and rho to replicate the findings in Table 10F.1 of POE4.

10.5 Script

1 set echo off

2 open "@gretldir\data\poe\mroz.gdt"

3 logs wage

4 square exper

5

6 list x = const educ exper sq_exper

7 list z = const exper sq_exper mothereduc

8 # least squares and IV estimation of wage eq

9 ols l_wage x

10 tsls l_wage x ; z

11

12 # tsls--manually

13 smpl wage>0 --restrict

14 ols educ z

15 series educ_hat = $yhat

16 ols l_wage const educ_hat exper sq_exper

17

18 # partial correlations--the FWL result

19 ols educ const exper sq_exper

20 series e1 = $uhat

21 ols mothereduc const exper sq_exper

22 series e2 = $uhat

23 ols e1 e2

24 corr e1 e2

25

26 list z = const exper sq_exper mothereduc

27 list z1 = const exper sq_exper fathereduc

28 list z2 = const exper sq_exper mothereduc fathereduc

29

30 # Hausman test with different sets of instruments

31 ols educ z --quiet

32 series ehat = $uhat

33 ols l_wage x ehat

34

35 ols educ z1 --quiet

259



36 series ehat1 = $uhat

37 ols l_wage x ehat1

38

39 ols educ z2 --quiet

40 series ehat2 = $uhat

41 ols l_wage x ehat2

42

43 # weak instruments

44 open "@gretldir\data\poe\mroz.gdt"

45 smpl wage>0 --restrict

46 logs wage

47 square exper

48 list x = const educ exper sq_exper

49 list z2 = const exper sq_exper mothereduc fathereduc

50 ols educ z2

51 omit mothereduc fathereduc

52

53 # Sargan test of overidentification

54 tsls l_wage x; z2

55 series uhat2 = $uhat

56 ols uhat2 z2

57 scalar test = $trsq

58 pvalue X 2 test

59

60 tsls l_wage x ; z2

61

62 open "@gretldir\data\poe\mroz.gdt"

63 smpl wage>0 --restrict

64 logs wage

65 square exper

66 list x = const educ exper sq_exper

67 list z2 = const exper sq_exper mothereduc fathereduc

68 tsls l_wage x; z2

69 series ehat2 = $uhat

70 ols ehat2 z2

71 scalar test = $trsq

72 pvalue X 2 test

73

74 # Cragg-Donald F

75 open "@gretldir\data\poe\mroz.gdt"

76 smpl wage>0 --restrict

77 logs wage

78 square exper

79 series nwifeinc = (faminc-wage*hours)/1000

80 list x = mtr educ kidsl6 nwifeinc const

81 list z = kidsl6 nwifeinc mothereduc fathereduc const

82 tsls hours x ; z

83 scalar df = $df

84 list w = const kidsl6 nwifeinc

85 ols mtr w --quiet

86 series e1 = $uhat
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87 ols educ w --quiet

88 series e2 = $uhat

89 ols mothereduc w --quiet

90 series e3 = $uhat

91 ols fathereduc w --quiet

92 series e4 = $uhat

93

94 # canonical correlations in R

95 foreign language=R --send-data --quiet

96 set1 <- gretldata[,29:30]

97 set2 <- gretldata[,31:32]

98 cc1 <- cancor(set1,set2)

99 cc <- as.matrix(cc1$cor)

100 gretl.export(cc)

101 end foreign

102

103 vars = mread("@dotdir/cc.mat")

104 print vars

105 scalar mincc = minc(vars)

106 scalar cd = df*(mincc^2)/(2*(1-mincc^2))

107 printf "\nThe Cragg-Donald Statistic is %6.4f.\n",cd

108

109 # canonical correlations in gretl

110 function matrix cc(list Y, list X)

111 matrix mY = cdemean({Y})

112 matrix mX = cdemean({X})

113

114 matrix YX = mY’mX

115 matrix XX = mX’mX

116 matrix YY = mY’mY

117

118 matrix ret = eigsolve(qform(YX, invpd(XX)), YY)

119 return sqrt(ret)

120 end function

121

122 list E1 = e1 e2

123 list E2 = e3 e4

124

125 l = cc(E1, E2)

126 scalar mincc = minc(l)

127 scalar cd = df*(mincc^2)/(2*(1-mincc^2))

128 printf "\nThe Cragg-Donald Statistic is %10.4f.\n",cd

129

130 # simulation for ols and tsls

131 scalar N = 100

132 nulldata N

133 scalar rho = 0.8 # set r = (0.0 or 0.8)

134 scalar p = 0.5 # set p = (0.1 or 0.5)

135 matrix S = {1, rho; rho, 1}

136 matrix C = cholesky(S)

137
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138 series z1 = normal(N,1)

139 series z2 = normal(N,1)

140 series z3 = normal(N,1)

141 series xs = p*z1 + p*z2 + p*z3

142 list z = z1 z2 z3

143

144 loop 10000 --progressive --quiet

145 matrix errors = mnormal(N,2)*C’

146 series v = errors[,1]

147 series e = errors[,2]

148 x = xs + v

149 y = x + e

150 ols x const z --quiet

151 scalar f = $Fstat

152 ols y 0 x --quiet

153 scalar b_ols = $coeff(x)

154 tsls y 0 x; 0 z --quiet

155 scalar b_tsls = $coeff(x)

156 store coef.gdt b_ols b_tsls f

157 print b_ols b_tsls f

158 endloop
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Figure 10.2: Two-stage least squares dialog box

Figure 10.3: Results from using the omit statement after least squares
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Chapter 11
Simultaneous Equations Models

In Chapter 11 of POE4 the authors present a model of supply and demand. The econometric
model contains two equations and two dependent variables. The distinguishing factor for models
of this type is that the values of two (or more) of the variables are jointly determined. This means
that a change in one of the variables causes the other to change and vice versa. The estimation of a
simultaneous equations model is demonstrated using the truffle example which is explained below.

11.1 Truffle Example

Consider a supply and demand model for truffles:

qi =α1 + α2pi + α3psi + α4dii + edi (11.1)

qi =β1 + β2pi + β3pfi + esi (11.2)

The first equation (11.1) is demand and q us the quantity of truffles traded in a particular French
market, p is the market price of truffles, ps is the market price of a substitute good, and di is per
capita disposable income of the local residents. The supply equation (11.2) contains the variable
pf, which is the price of a factor of production. Each observation is indexed by i, i = 1, 2, . . . , N .
As explained in the text, prices and quantities in a market are jointly determined; hence, in this
econometric model p and q are both endogenous to the system.
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11.2 The Reduced Form Equations

The reduced form equations express each endogenous variable as a linear function of every
exogenous variable in the entire system. So, for our example

qi =π11 + π21psi + π31dii + π41pfi + νi1 (11.3)

pi =π12 + π22psi + π32dii + π42pfi + νi2 (11.4)

Since each of the independent variables is exogenous with respect to q and p, the reduced form
equations (11.3) and (11.4) can be estimated using least squares. In gretl the script is

1 open "@gretldir\data\poe\truffles.gdt"

2 list z = const ps di pf

3 ols q z

4 ols p z

The gretl results appear in Table 11.1 Each of the variables are individually different from zero

q̂ = 7.89510
(2.434)

+ 0.656402
(4.605)

ps + 2.16716
(3.094)

di− 0.506982
(−4.181)

pf

T = 30 R̄2 = 0.6625 F (3, 26) = 19.973 σ̂ = 2.6801

(t-statistics in parentheses)

p̂ = −32.5124
(−4.072)

+ 1.70815
(4.868)

ps + 7.60249
(4.409)

di + 1.35391
(4.536)

pf

T = 30 R̄2 = 0.8758 F (3, 26) = 69.189 σ̂ = 6.5975

(t-statistics in parentheses)

Table 11.1: The least squares estimates of the reduced form equations.

at 5%. The overall F -statistics are 19.97 and 69.19, both significant at 5% as well.

11.3 The Structural Equations

The structural equations are estimated using two-stage least squares. The basic gretl commands
for this estimator are discussed in Chapter 10. The instruments consist of all exogenous variables,
i.e., the same variables you use to estimate the reduced form equations (11.3) and (11.4).
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The gretl commands to open the truffle data and estimate the structural equations using two-
stage least squares are:

1 open "@gretldir\data\poe\truffles.gdt"

2 list z = const ps di pf

3 tsls q const p ps di; z

4 tsls q const p pf; z

The second line of the script estimates puts all of the exogenous variables into a list called z.
These variables are the ones used to compute the first-stage regression, i.e., the list of instruments.
Line 3 estimates the coefficients of the demand equation by TSLS. The gretl command tsls calls
for the two-stage least squares estimator and it is followed by the structural equation you wish
to estimate. List the dependent variable (q) first, followed by the regressors (const p ps di). A
semicolon separates the model to be estimated from the list of instruments, now contained in the
list, z. The fourth line uses the same format to estimate the parameters of the supply equation.
Refer to section 10.2, and Figures 10.1 and 10.2 specifically, about using the GUI to estimate the
model.

The results from two-stage least squares estimation of the demand equation appear below in
Table 11.2 The coefficient on price in the demand equation is −0.374 and it is significantly negative
at 5% level. It is good to know that demand curves have a negative slope! The Hausman test for
the exogeneity of price is equal to 132 with a near 0 p-value. Price is clearly not exogenous. The
test for weak instruments exceeds 10. Additional information from the results yields

Critical values for desired TSLS maximal size, when running

tests at a nominal 5% significance level:

size 10% 15% 20% 25%

value 16.38 8.96 6.66 5.53

Maximal size is probably less than 10%

Clearly, the set of instruments is fairly strong. There is no Sargan test because the model is not
overidentified. With one endogenous variable there is only 1 external instrument provided by pf

from the supply equation.

The results for the supply equation are in Table 11.3 In this case, the coefficient on price
is positive (as expected). The model is suitably overidentified according to the Sargan test (p-
value=0.216 > 0.05), and the instruments are suitably strong (First-stage F -statistic (2, 26) =
41.4873). The outcome of the Hausman test looks suspicious. The statistic is close to zero. A
manual check can easily be done using the script:
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TSLS of Demand, using observations 1–30
Dependent variable: q

Instrumented: p
Instruments: const ps di pf

Coefficient Std. Error z p-value

const −4.27947 5.54388 −0.7719 0.4402
ps 1.29603 0.355193 3.6488 0.0003
di 5.01398 2.28356 2.1957 0.0281
p −0.374459 0.164752 −2.2729 0.0230

Mean dependent var 18.45833 S.D. dependent var 4.613088
Sum squared resid 631.9171 S.E. of regression 4.929960
R2 0.226805 Adjusted R2 0.137590
F (3, 26) 5.902645 P-value(F ) 0.003266
Log-likelihood −193.8065 Akaike criterion 395.6130
Schwarz criterion 401.2178 Hannan–Quinn 397.4061

Hausman test –
Null hypothesis: OLS estimates are consistent
Asymptotic test statistic: χ2(1) = 132.484
with p-value = 1.17244e-030

Weak instrument test –
First-stage F (1, 26) = 20.5717

Table 11.2: Two-stage least square estimates of the demand of truffles.

1 ols p x

2 series v = $uhat

3 ols q const p pf v

4 omit v

The first step is to regress all instruments on the endogenous regressor, p. Get the residuals and
add them to the structural equation for supply. Reestimate by least squares and check the t-ratio
on the added residual. If it is significant, then p is endogenous. In this example, we confirm the
gretl calculation. This suggests that the supply equation can safely be estimated by least squares.
Doing so using:

ols q const p pf

reveals that the results are almost identical to those from TSLS. This is an implication of having a
Hausman statistic that is so small. See the appendix in Chapter 10 of POE4 for a nice explanation
for this.
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TSLS of supply, using observations 1–30
Dependent variable: q

Instrumented: p
Instruments: const ps di pf

Coefficient Std. Error z p-value

const 20.0328 1.22311 16.3785 0.0000
pf −1.00091 0.0825279 −12.1281 0.0000
p 0.337982 0.0249196 13.5629 0.0000

Mean dependent var 18.45833 S.D. dependent var 4.613088
Sum squared resid 60.55457 S.E. of regression 1.497585
R2 0.901878 Adjusted R2 0.894610
F (2, 27) 95.25929 P-value(F ) 5.85e–13

Hausman test –
Null hypothesis: OLS estimates are consistent
Asymptotic test statistic: χ2(1) = 2.62751e-007
with p-value = 0.999591

Sargan over-identification test –
Null hypothesis: all instruments are valid
Test statistic: LM = 1.53325
with p-value = P (χ2(1) > 1.53325) = 0.215625

Weak instrument test –
First-stage F (2, 26) = 41.4873

Table 11.3: Two-stage least square estimates of the demand of truffles.

11.4 Fulton Fish Example

The following script estimates the reduced form equations using least squares and the demand
equation using two-stage least squares for Graddy’s Fulton Fish example.

In the example, ln(quan) and ln(price) are endogenously determined. There are several potential
instruments that are available. The variable stormy may be useful in identifying the demand
equation. In order for the demand equation to be identified, there must be at least one variable
available that effectively influences the supply of fish without affecting its demand. Presumably,
stormy weather affects the fishermen’s catch without affecting people’s appetite for fish! Logically,
stormy may be a good instrument.

The model of demand includes a set of indicator variables for day of the week. Friday is omitted
to avoid the dummy variable trap. These day of week variables are not expected to affect supply;
fishermen catch the same amount on average on any working day. Day of the week may affect
demand though, since people in some cultures buy more fish on some days than others.

268



The demand equation is:

ln(quan) = α1 + α2 ln(price) + α3mon + α4tue + α5wed + α6thu + ed (11.5)

Supply is affected by the weather in the previous three days, which is captured in the indicator
variable stormy.

ln(quan) = β1 + β2 ln(price) + β3stormy + es (11.6)

In both demand and supply equations, ln(price) is the right-hand side endogenous variable. Iden-
tification of the demand equation requires stormy to be significantly correlated with lprice. This
can be determined by looking at the t-ratio in the lprice reduced form equation.

For supply to be identified, at least one of the day of the week dummy variables (mon tue wed
thu) that are excluded from the supply equation, has to be significantly correlated with lprice in
the reduced form. If not, the supply equation cannot be estimated; it is not identified.

Proceeding with the analysis, open the data and estimate the reduced form equations for lquan
and lprice. Go ahead and conduct the joint test of the day of the week variables using the --quiet

option.

1 open "@gretldir\data\poe\fultonfish.gdt"

2 #Estimate the reduced form equations

3 list days = mon tue wed thu

4 list z = const stormy days

5 ols lquan z

6 omit days --quiet

7 ols lprice z

8 omit days --quiet

Notice how the list command is used. A separate list is created to contain the indicator variables.
This allows us to add them as a set to the list of instruments in line 4 and to test their joint
significance in the reduced form equation for price in lines 6 and 8. The reduced form results for
lquan appear below:

Model 1: OLS estimates using the 111 observations 1–111
Dependent variable: lquan

Variable Coefficient Std. Error t-statistic p-value
const 8.810 0.147 59.922 0.000
stormy −0.388 0.144 −2.698 0.008
mon 0.101 0.207 0.489 0.626
tue −0.485 0.201 −2.410 0.018
wed −0.553 0.206 −2.688 0.008
thu 0.054 0.201 0.267 0.790
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Standard error of residuals (σ̂) 0.681790
Unadjusted R2 0.193372
F (5, 105) 5.03429
p-value for F () 0.000356107

and the results for lprice

Model 2: OLS estimates using the 111 observations 1–111
Dependent variable: lprice

Variable Coefficient Std. Error t-statistic p-value
const −0.272 0.076 −3.557 0.001
stormy 0.346 0.075 4.639 0.000
mon −0.113 0.107 −1.052 0.295
tue −0.041 0.105 −0.394 0.695
wed −0.012 0.107 −0.111 0.912
thu 0.050 0.104 0.475 0.636

Unadjusted R2 0.178889
F (5, 105) 4.57511
p-value for F () 0.000815589

In the reduced form equation for price, stormy is highly significant with a t-ratio of 4.639. This
implies that the demand equation is identified and can be estimated with the data. A joint test
of the significance of the daily indicator variables reveals that they are not jointly significant; the
F -statistic has a p-value of only 0.65. Since the daily indicators are being used as instruments to
estimate supply, the supply structural equation is not identified by the data and can’t be estimated
without better variables.

The two-stage least squares estimates of the demand equation are obtained using:

#TSLS estimates of demand

tsls lquan const lprice days ; z

to produce the result:

Model 3: TSLS estimates using the 111 observations 1–111
Dependent variable: lquan

Instruments: stormy
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Variable Coefficient Std. Error t-statistic p-value
const 8.506 0.166 51.189 0.000
mon −0.025 0.215 −0.118 0.906
tue −0.531 0.208 −2.552 0.011
wed −0.566 0.213 −2.662 0.008
thu 0.109 0.209 0.523 0.601
lprice −1.119 0.429 −2.612 0.009

Mean of dependent variable 8.52343
S.D. of dependent variable 0.741672
Sum of squared residuals 52.0903
Standard error of residuals (σ̂) 0.704342
F (5, 105) 5.13561
p-value for F () 0.000296831

Hausman test –
Null hypothesis: OLS estimates are consistent
Asymptotic test statistic: χ2

1 = 2.4261
with p-value = 0.119329

First-stage F (1, 105) = 21.5174

The coefficient on lprice is negative and significant. It also appears that demand is significantly
lower on Tuesday and Wednesday compared to Fridays. The Hausman test for the exogeneity
of lprice is not rejected at 5%. This suggests that least squares might be a suitable means of
estimating the parameters in this case. Also, the instruments appear to be sufficiently strong, i.e.,
the F = 21.51 > 10.

11.5 Alternatives to TSLS

There are several alternatives to the standard IV/TSLS estimator. Among them is the limited
information maximum likelihood (LIML) estimator, which was first derived by Anderson and Rubin
(1949). There is renewed interest in LIML because evidence indicates that it performs better than
TSLS when instruments are weak. Several modifications of LIML have been suggested by Fuller
(1977) and others. These estimators are unified in a common framework, along with TSLS, using
the idea of a k -class of estimators. LIML suffers less from test size aberrations than the TSLS
estimator, and the Fuller modification suffers less from bias. Each of these alternatives will be
considered below.

In a system of M simultaneous equations let the endogenous variables be y1, y2, . . . , yM . Let
there be K exogenous variables x1, x2, . . . , xK . The first structural equation within this system is

y1 = α2y2 + β1x1 + β2x2 + e1 (11.7)

271



The endogenous variable y2 has reduced form y2 = π12x1 +π22x2 + · · ·+πK2xK + v2 = E (y2) + v2,
which is consistently estimated by least squares. The predictions from the reduced form are

Ê (y2) = π̂12x1 + π̂22x2 + · · ·+ π̂K2xK (11.8)

and the residuals are v̂2 = y2 − Ê (y2).

The two-stage least squares estimator is an IV estimator using Ê (y2) as an instrument. A
k -class estimator is an IV estimator using instrumental variable y2 − kv̂2. The LIML estimator
uses k = l̂ where l̂ is the minimum ratio of the sum of squared residuals from two regressions. The
explanation is given on pages 468-469 of POE4. A modification suggested by Fuller (1977) that
uses the k -class value

k = ˆ̀− a

N −K
(11.9)

where K is the total number of instrumental variables (included and excluded exogenous variables)
and N is the sample size. The value of a is a constant-usually 1 or 4. When a model is just identified,
the LIML and TSLS estimates will be identical. It is only in overidentified models that the two
will diverge. There is some evidence that LIML is indeed superior to TSLS when instruments are
weak and models substantially overidentified.

With the Mroz data we estimate the hours supply equation

hours = β1 + β2mtr + β3educ + β4kidsl6 + β5nwifeinc + e (11.10)

A script can be used to estimate the model via LIML. The following one is used to replicate the
results in Table 11B.3 of POE4.

1 open "@gretldir\data\poe\mroz.gdt"

2 square exper

3 series nwifeinc = (faminc-wage*hours)/1000

4 smpl hours>0 --restrict

5 list x = mtr educ kidsl6 nwifeinc const

6 list z1 = educ kidsl6 nwifeinc const exper

7 list z2 = educ kidsl6 nwifeinc const exper sq_exper largecity

8 list z3 = kidsl6 nwifeinc const mothereduc fathereduc

9 list z4 = kidsl6 nwifeinc const mothereduc fathereduc exper

10

11 tsls hours x; z1 --liml

12 tsls hours x; z2 --liml

13 tsls hours x; z3 --liml

14 tsls hours x; z4 --liml

LIML estimation uses the tsls command with the --liml option. The results from LIML estima-
tion of the hours equation, (11.10) the fourth model in line 14, are given below. The variables mtr
and educ are endogenous, and the external instruments are mothereduc, fathereduc, and exper ; two
endogenous variables with three external instruments suggests that the model is overidentified in
this specification.
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LIML, using observations 1–428
Dependent variable: hours
Instrumented: mtr educ

Instruments: const nwifeinc mothereduc fathereduc exper kidsl6

Coefficient Std. Error z p-value

const 18587.9 3683.61 5.0461 0.0000
mtr −19196.5 4003.68 −4.7947 0.0000
educ −197.259 64.6212 −3.0525 0.0023
nwifeinc −104.942 20.6867 −5.0729 0.0000
kidsl6 207.553 163.252 1.2714 0.2036

Mean dependent var 1302.930 S.D. dependent var 776.2744
Sum squared resid 3.11e+08 S.E. of regression 857.3679
Log-likelihood −5989.014 Akaike criterion 11988.03
Schwarz criterion 12008.32 Hannan–Quinn 11996.04

Smallest eigenvalue = 1.00288
LR over-identification test: χ2(1) = 1.232 [0.2670]

The LIML results are easy to replicate using matrix commands. Doing so reveals some of
hansl’s power.

1 matrix y1 = { hours, mtr, educ }

2 matrix w = { kidsl6, nwifeinc, const, exper, mothereduc, fathereduc}

3 matrix z = { kidsl6, nwifeinc, const}

4 matrix Mz = I($nobs)-z*invpd(z’*z)*z’

5 matrix Mw = I($nobs)-w*invpd(w’*w)*w’

6 matrix Ez= Mz*y1

7 matrix W0 = Ez’*Ez

8 matrix Ew = Mw*y1

9 matrix W1 = Ew’*Ew

10 matrix G = inv(W1)*W0

11 matrix l = eigengen(G, null)

12 scalar minl = min(l)

13 printf "\nThe minimum eigenvalue is %.8f \n",minl

14 matrix X = { mtr, educ, kidsl6, nwifeinc, const }

15 matrix y = { hours }

16 matrix kM = (I($nobs)-(minl*Mw))

17 matrix b =invpd(X’*kM*X)*X’*kM*y

18 a=rownames(b, " mtr educ kidsl6 nwifeinc const ")

19 printf "\nThe liml estimates are \n %.6f \n", b

The equations that make this magic are found in Davidson and MacKinnon (2004, pp. 537-538).
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Hansl’s straightforward syntax makes translating the algebra into a computation quite easy. The
result from the script is:

The liml estimates are

mtr -19196.516697

educ -197.259108

kidsl6 207.553130

nwifeing -104.941545

const 18587.905980

which matches the ones produced by gretl’s tsls with --liml option.

Fuller’s modification relies on a user chosen constant and makes a small change in k of the
k -class estimator. In the script that ends the chapter, the value of a is set to 1 and the model
is reestimated using Fuller’s method. The modification is quite simple to make and the chapter
ending script shows the actual details.

11.6 Script

1 set echo off

2 open "@gretldir\data\poe\truffles.gdt"

3 # reduce form estimation

4 list x = const ps di pf

5 ols q x

6 ols p x

7

8 # demand and supply of truffles

9 open "@gretldir\data\poe\truffles.gdt"

10 list x = const ps di pf

11 tsls q const p ps di; x

12 tsls q const p pf; x

13

14 # Hausman test

15 ols p x

16 series v = $uhat

17 ols q const p pf v

18 omit v

19

20 # supply estimation by OLS

21 ols q const p pf

22

23 # Fulton Fish

24 open "@gretldir\data\poe\fultonfish.gdt"

25 #Estimate the reduced form equations

26 list days = mon tue wed thu
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27 list z = const stormy days

28 ols lquan z

29 ols lprice z

30 omit days --quiet

31

32 tsls lquan const lprice days ; z

33

34 # LIML

35 open "@gretldir\data\poe\mroz.gdt"

36 square exper

37 series nwifeinc = (faminc-wage*hours)/1000

38 smpl hours>0 --restrict

39 list x = mtr educ kidsl6 nwifeinc const

40 list z1 = educ kidsl6 nwifeinc const exper

41 list z2 = educ kidsl6 nwifeinc const exper sq_exper largecity

42 list z3 = kidsl6 nwifeinc const mothereduc fathereduc

43 list z4 = kidsl6 nwifeinc const mothereduc fathereduc exper

44

45 # LIML using tsls

46 tsls hours x; z1 --liml

47 tsls hours x; z2 --liml

48 tsls hours x; z3 --liml

49 tsls hours x; z4 --liml

50 tsls hours x; z4

51

52 # LIML using matrices

53 matrix y1 = { hours, mtr, educ }

54 matrix w = { kidsl6, nwifeinc, const, exper, mothereduc, fathereduc}

55 matrix z = { kidsl6, nwifeinc, const}

56 matrix Mz = I($nobs)-z*invpd(z’*z)*z’

57 matrix Mw = I($nobs)-w*invpd(w’*w)*w’

58 matrix Ez= Mz*y1

59 matrix W0 = Ez’*Ez

60 matrix Ew = Mw*y1

61 matrix W1 = Ew’*Ew

62 matrix G = inv(W1)*W0

63 matrix l = eigengen(G, null)

64 scalar minl = min(l)

65 printf "\nThe minimum eigenvalue is %.8f \n",minl

66 matrix X = { mtr, educ, kidsl6, nwifeinc, const }

67 matrix y = { hours }

68 matrix kM = (I($nobs)-(minl*Mw))

69 matrix b =invpd(X’*kM*X)*X’*kM*y

70 a=rownames(b, " mtr educ kidsl6 nwifeinc const ")

71 printf "\nThe liml estimates are \n %.6f \n", b

72

73 # Fuller’s Modified LIML a=1

74 scalar fuller_l=minl-(1/($nobs-cols(w)))

75 printf "\nThe minimum eigenvalue is %.8f \n",minl

76 matrix X = { mtr, educ, kidsl6, nwifeinc, const }

77 matrix y = { hours }
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78 matrix kM = (I($nobs)-(fuller_l*Mw))

79 matrix b =invpd(X’*kM*X)*X’*kM*y

80 a=rownames(b, " mtr educ kidsl6 nwifeinc const ")

81 printf "\nThe liml estimates using Fuller a=1 \n %.6f \n", b

82 tsls hours mtr educ kidsl6 nwifeinc const ; z4 --liml
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Chapter 12
Regression with Time-Series Data:
Nonstationary Variables

The main purpose this chapter is to use gretl to explore the time-series properties of your
data. One of the basic points we make in econometrics is that the properties of the estimators
and their usefulness for point estimation and hypothesis testing depend on how the data behave.
For instance, in a linear regression model where errors are correlated with regressors, least squares
won’t be consistent and consequently it should not be used for either estimation or subsequent
testing.

In time-series regressions the data need to be stationary. Basically this requires that the means,
variances and covariances of the data series do not depend on the time period in which they are
observed. For instance, the mean and variance of the probability distribution that generated GDP
in the third quarter of 1973 cannot be different from the one that generated the 4th quarter GDP
of 2006. Observations on stationary time-series can be correlated with one another, but the nature
of that correlation can’t change over time. U.S. GDP is growing over time (not mean stationary)
and may have become less volatile (not variance stationary). Changes in information technology
and institutions may have shortened the persistence of shocks in the economy (not covariance
stationary). Nonstationary time-series have to be used with care in regression analysis. Methods
to effectively deal with this problem have provided a rich field of research for econometricians in
recent years.

12.1 Series Plots

The first thing to do when working with time-series is to take a look at the data graphically.
A time-series plot will reveal potential problems with your data and suggest ways to proceed
statistically. In gretl time-series plots are simple to generate since there is a built-in function
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that performs this task. Open the data file usa.gdt and create the first differences using the diff

command. The first differences of your time-series are added to the data set and each of the
differenced series is prefixed with ‘d ’, e.g., ∆gdpt = gdpt − gdpt−1 ⇒ d gdp.

1 open "@gretldir\data\poe\usa.gdt"

2 diff b inf f gdp

3 setinfo b -d "3-year Bond rate" -n "3-year Bond rate"

4 setinfo d_b -d "Change in the 3-year Bond rate" -n "D.BOND"

5 setinfo inf -d "annual inflation rate" -n "inflation rate"

6 setinfo d_inf -d "Change in the annual inflation rate" -n "D.INFLATION"

7 setinfo gdp -d "real US gross domestic product" -n "Real GDP"

8 setinfo d_gdp -d "= first difference of gdp" -n "D.GDP"

9 setinfo f -d "federal funds rate" -n "Fed Funds Rate"

10 setinfo d_f -d "= first difference of f" -n "D.FED_FUNDS"

Next, I want to add descriptions and labels for graphing. This is done using the setinfo command.
Recall, the -d switch changes the description and -n assigns a label to be used in graphs. Text
needs to be enclosed in double quotes.

Plotting the series can be done in any number of ways. The easiest is to use view>multiple

graphs>Time series from the pull-down menu. This will allow you to graph the eight series in
two batches. Two batches are required since the maximum number of series that can be graphed
simultaneously is currently limited to six.

Use your mouse to select four of the series. I chose inf, d inf, f, d f. Once these are highlighted
choose View>Multiple graphs>Time-series from the pull-down menu. These variables should
appear in the ‘Selected vars’ box. You can change the ordering of the variables by highlighting a
variable and a right mouse click. The Up/Down box opens and clicking Down will place d inf

below inf in the list.

Then, select Add>First differences of selected variables from the pull-down menu as
shown in Figure 12.2. You can gain more control over how the graphs look by plotting the series
individually and then editing the graphs to taste. For instance, here is the plot of the change in
the bond rate, with recessionary periods highlighted (Figure 12.3).
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Figure 12.1: Highlight inf, d inf, f, and d f using the mouse. Then choose View>Multiple

graphs>Time-series from the pull-down menu to open the dialog box. Click OK reveals this
graph.

The next thing to do is to create a set of summary statistics. In this case, the textbook has
you produce summary statistics for subsamples of the data. The first subsample consists of the
52 observations from 1984:2 to 1996:4. The second also contains 52 observations and continues
from 1997:1 to 2009:4. The summary command is used to obtain the summary statistics on the
desired subsample. In the script, open the data file usa.gdt and change the sample to 1984:2-1996:4
using the command smpl 1984:2 1996:4. Issue the summary --simple command to print the
condensed set of summary statistics of all variables in memory to the screen. Finally, restore the
sample to the full range using smpl full.

Ordinarily, gretl’s smpl functions are cumulative. This means that whatever modifications you
make to the sample are made based on the sample that is already in memory. In this example
though, we were able to load the second subperiod without having to first restore the full sample.
This is undocumented so it may stop working at some point. If so, just issue a smpl full command
after getting summary statistics for the first subset.

The script is
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Figure 12.2: Add the first differences of the selected series from the pull-down menu.

1 smpl 1984:2 1996:4

2 summary --simple

3 smpl 1997:1 2009:4

4 summary --simple

5 smpl full

This produces

Summary statistics, using the observations 1984:2 - 1996:4

Mean Minimum Maximum Std. Dev.

gdp 5813.0 3906.3 8023.0 1204.6

inf 6.9037 1.2800 13.550 3.3378

f 6.4173 2.9900 11.390 2.1305

b 7.3431 4.3200 12.640 1.9398

d_b -0.10294 -1.5400 1.4500 0.63128

d_inf -0.16059 -1.8000 1.4300 0.83201

d_f -0.086471 -2.1200 0.97000 0.58607

d_gdp 82.659 -4.6000 161.80 29.333

Full data range: 1984:1 - 2009:4 (n = 104)

280



Figure 12.3: Individual plots can be edited using the edit controls. This one shows the first
differences of the 3 year bond rate. Recessions are shaded grey.

Current sample: 1997:1 - 2009:4 (n = 52)

Summary statistics, using the observations 1997:1 - 2009:4

Mean Minimum Maximum Std. Dev.

gdp 11458. 8137.0 14485. 2052.1

inf 3.2194 1.4500 6.0400 1.1166

f 3.4875 0.12000 6.5200 2.0253

b 3.9771 1.2700 6.5600 1.5643

d_b -0.087500 -1.3300 0.81000 0.47885

d_inf 0.025192 -0.93000 1.5200 0.46174

d_f -0.099231 -1.4300 0.59000 0.51429

d_gdp 120.27 -293.70 267.90 92.920

Notice that the --simple option is used to suppress other summary statistics like the median,
skewness and kurtosis. If these statistics interest you, feel free to remove the option.

One can limit the summary statistics to certain variables by creating a list that follows sum-
mary. For instance, to limit the summary statistics to the variables in levels you could use:

list levels = gdp inf f b

summary levels --simple
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The levels of each time series are put into a list called levels. The summary statistics of all the
contents can then be obtained using summary levels.

12.2 Spurious Regressions

It is possible to estimate a regression and find a statistically significant relationship even if none
exists. In time-series analysis this is actually a common occurrence when data are not stationary.
This example uses two data series, rw1 and rw2, that were generated as independent random walks.

rw1 : yt = yt−1 + v1t

rw2 : xt = xt−1 + v2t
(12.1)

The errors are independent standard normal random deviates generated using a pseudo-random
number generator. As you can see, xt and yt are not related in any way. To explore the empirical
relationship between these unrelated series, load the spurious.gdt data and declare the data to be
time-series.

1 open "@gretldir\data\poe\spurious.gdt"

2 setobs 1 1 --special-time-series

The sample information at the bottom of the main gretl window indicates that the data have
already been declared as time-series and that the full range (1-700) is in memory. The first thing
to do is to plot the data using a time-series plot. To place both series in the same time-series
graph, select View>Graph specified vars>Time-series plots from the pull-down menu. This
will reveal the ‘define graph’ dialog box. Place both series into the ‘Selected vars’ box and click
OK. The result appears in top part of Figure 12.4 (after editing) below. The XY scatter plot
is obtained similarly, except use View>Graph specified vars>X-Y scatter from the pull-down
menu. Put rw1 on the y axis and rw2 on the x axis.

The linear regression confirms this. Left click on the graph to reveal a pop-up menu, from
which you choose Edit. This brings up the plot controls shown in Figure 4.16. Select the linear
fit option to reveal the regression results in Table 12.1.

The coefficient on rw2 is positive (0.842) and significant (t = 40.84 > 1.96). However, these
variables are not related to one another! The observed relationship is purely spurious. The cause
of the spurious result is the nonstationarity of the two series. This is why you must check your
data for stationarity whenever you use time-series in a regression.
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OLS, using observations 1–700
Dependent variable: rw1

Coefficient Std. Error t-ratio p-value

const 17.8180 0.620478 28.7167 0.0000
rw2 0.842041 0.0206196 40.8368 0.0000

Sum squared resid 51112.33 S.E. of regression 8.557268
R2 0.704943 Adjusted R2 0.704521

Table 12.1: Least squares estimation of a spurious relationship.

12.3 Tests for Stationarity

The (augmented) Dickey-Fuller test can be used to test for the stationarity of your data. To
perform this test, a few decisions have to be made regarding the time-series. The decisions are
usually made based on visual inspection of the time-series plots. By looking at the plots you can
determine whether the time-series have a linear or quadratic trend. If the trend in the series is
quadratic then the differenced version of the series will have a linear trend in them. In Figure 12.1
you can see that the Fed Funds rate appears to be trending downward and its difference appears to
wander around some constant amount. Ditto for bonds. This suggests that the Augmented Dickey
Fuller test regressions for each of the series should contain a constant, but not a time trend.

The GDP series in the upper left side of Figure 12.2 appears to be slightly quadratic in time.
The differenced version of the series that appears below it has a slight upward drift and hence I
would choose an augmented Dickey-Fuller (ADF) test that included a constant and a time trend.
As you may have guessed, analyzing time-series in this way is a bit like reading entrails and there is
something of an art to it. Our goal is to reduce some of the uncertainty using formal tests whenever
we can, but realize that choosing the appropriate test specification requires some judgement by the
econometrician.

The next decision is to pick the number of lagged terms to include in the ADF regressions.
Again, this is a judgement call, but the residuals from the ADF regression should be void of any
autocorrelation. Gretl is helpful in this respect since it reports the outcome of an autocorrelation
test whenever the built-in ADF routines are used. Below is the example from your text, where the
stationarity of the Fed Funds rate and the three year bond series are explored.

To perform the ADF test on the Fed Funds rate, use the cursor to highlight the series and
click Variable>Unit root tests>Augmented Dickey-Fuller test from the pull-down menu as
shown in Figure 12.5 below. This brings up the dialog box shown in the next Figure, 12.6. Notice
that here is where you inform gretl whether you want to include a constant, trend, trend squared,
seasonal indicators, etc. We have chosen to start with a maximum lag of 4 and to allow gretl to
test-down to the number of lags required. We have also chosen to perform the test two ways, one
including a constant in the ADF regression and the other including a constant and trend. Also, we
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have not checked the box to have gretl report the results from the regression. To make the results
a bit more transparent it is often a good idea to see the regression results that generate the test
statistics, and we invite you to try it for yourself.

At the bottom of the dialog you must choose whether you want to use the level or the difference
of the variable. Choosing the level, as shown in the box, puts the difference on the left-hand
side of the regression. This can be a bit confusing, but in reality it should not be. Remember, you
are testing to see whether the levels values of the series are stationary. Choosing this box is telling
gretl that you want to test the nonstationarity of the series’ levels.

If you want to check to see whether the differences are nonstationary, then click the radio button
below the one indicated. Click OK and the results appear as in Figure 12.7.

The test results are quite informative. First it tells you that you one lagged value was selected
(from a maximum of 4) to include in the model. It reveals that the first set of statistics is for a
test based on a regression with a constant. It provides you with an estimate of γ, which it refers
to as a-1, the t-ratio for γ, and the correct p-value for the statistic as computed by Davidson and
MacKinnon. It also reports an estimated autocorrelation coefficient for the errors (−0.051) which
should be small if you have chosen the correct number of lags in the ADF regression.

The null hypothesis of the ADF test is that the time-series has a unit root and is not stationary.
If you reject this hypothesis then you conclude that the series is stationary. To not reject the null
means that the level is not stationary. Here, the test statistic for the stationarity of the Fed Funds
rate is −2.50482 which has a p-value of 0.1143. Nonstationarity of the Fed Funds rate can not be
rejected in this case at the usual 5 or 10% levels of significance.

One more thing should be said about the ADF test results. Gretl expresses the model in a
slightly different way than your textbook. The model is

(1− L)yt = β0 + (α− 1)yt−1 + α1∆yt−1 + et (12.2)

The coefficient β0 is included because you believe the series has a trend, (α−1) = γ is the coefficient
of interest in the Dickey-Fuller regression, and α1 is the parameter for the term that ‘augments’ the
Dickey-Fuller regression. It is included to eliminate autocorrelation in the model’s errors, et, and
more lags can be included if needed to accomplish this. The notation on the left side of the equation
(1−L)yt makes use of the lag operator, L. The lag operator performs the magic Lyt = yt−1. Thus,
(1− L)yt = yt − Lyt = yt − yt−1 = ∆yt.

The script to perform the ADF test is:

1 open "@gretldir\data\poe\usa.gdt"

2 adf 4 f --c --ct --test-down

The syntax is fairly straightforward. The first number after adf gives gretl the lag number for
the ADF test. Next is the series name to test. There are three options: 1) --c tells gretl to run
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the ADF regressions with a constant (when the series has a trend) 2) --ct tells gretl to run the
regression with a constant and trend (the series and its difference have trends) and 3) --test-down
informs gretl that you want to use the lag number 4 as a starting point and to reduce the number
of lags to find the optimal model.

When testing down, gretl follows the algorithm.

1. Estimate the ADF regression with the given maximum lags, km, of the dependent variable
included as regressors.

2. Gretl checks to see if the last lag significantly different from zero at the 10% level. If it is,
perform the ADF test with lag order km. If the coefficient on the last lag is not significant,
reduce the lag number by one, km−1 = km − 1 and repeat.

3. if k1 is insignificant, execute the test with lag order 0.

You could also use model selection rules via a user written function to eliminate lags from the ADF
regressions.

The adf syntax from the gretl command help is summarized:

The augmented version of the Dickey-Fuller test adds lagged differences to the model. For the
model with a constant and no trend this would be:

∆yt = α+ γyt−1 +

m∑
s=1

as∆yt−s + vt (12.3)

You have to pick the number of lags to include. Essentially, one should include just enough lags
of ∆yt−s to ensure that the residuals are uncorrelated. The number of lagged terms can also be
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determined by examining the autocorrelation function (ACF) of the residuals, or the significance of
the estimated lag coefficients. The latter is what gretl does when you use the --test-down option.
Notice that gretl also includes the autocorrelation coefficient in the output. Thus, it serves as a
final check of the adequacy of your ADF regression.

In the example from POE4, the Federal Funds rate (f) and the 3-year Bond rate (b) are consid-
ered. The series plots show that the data wander about, indicating that they may be nonstationary.
To perform the Dickey-Fuller tests, first decide whether to use a constant and/or a trend. Since
the levels of the series fluctuate around a nonzero mean and the differences around zero, we include
a constant. Then decide on how many lagged difference terms to include on the right-hand side of
the equation. You can also use the model selection rules described in chapter 9, to choose lags for
the ADF.

To use this method as a means of model selection, we have to return to our modelsel2 function
and estimate the ADF regressions manually. The model selection function is shown below:

Model Selection function
1 function matrix modelsel2 (list xvars)

2 ols xvars --quiet

3 scalar sse = $ess

4 scalar N = $nobs

5 scalar K = nelem(xvars)-1

6 scalar aic = ln(sse/N)+2*K/N

7 scalar bic = ln(sse/N)+K*ln(N)/N

8 matrix A = { K, N, aic, bic}

9 % printf "\nDependent variable and Regressors: %s\n",varname(xvars)

10 % printf "K = %d, N = %d, AIC = %.4f SC = %.4f.\n",K,N,aic,bic

11 return A

12 end function

This is exactly the same version of the model selection function used in chapter 9. Refer to page
217 for details. We will use it in a loop to select lag lengths for the ADF regressions.

The ADF regressions require only a single loop over the lagged differences in the series. The
loop is:

1 diff b

2 matrix A = {}

3 loop p = 1..4 --quiet

4 list vars = d_b(0 to -p) b(-1) const

5 matrix a = p~modelsel2(vars)

6 matrix A = A | a

7 endloop

8 colnames(A,"p K N AIC SC ")

9 print A
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The matrix result is:

p K N AIC SC

1.0000 3.0000 104.00 -1.3674 -1.2911

2.0000 4.0000 104.00 -1.3544 -1.2527

3.0000 5.0000 104.00 -1.4241 -1.2970

4.0000 6.0000 104.00 -1.4291 -1.2765

The AIC is minimized at 4 lags and the SC at 3.

Finally, here is a way to automate the model selection process for an arbitrary time-series. We
want to be able to feed the modelsel2 function the name of a time-series to compute an ADF
regression. We’ll create another function that has two inputs; one for the maximum lag over which
to search and another for the name of the series. The loop will create the differences, generate
the variable list needed to estimate a ADF regression that contains a constant, send the list to the
modelsel2 routine, and collect its output into a matrix, and print the matrix. It is fairly simple,
but effective.

1 function scalar modelseladf (scalar p, series *y)

2 diff y

3 matrix A = {}

4 loop i = 1..p --quiet

5 list vars = d_y(0 to -i) y(-1) const

6 matrix a = i~modelsel2(vars)

7 matrix A = A | a

8 endloop

9 colnames(A,"p K N AIC SC ")

10 print A

11 return 0

12 end function

The return is a scalar that will be equal to zero, provided everything in the function is executed.
The other small difference is that a pointer to the series is used instead of the series itself. This is
mainly a way to save some memory and is not strictly necessary. The pointer to the series input
in the function is preceded by a *. To call the function to get model selection statistics for the
inflation series use

modelseladf(5, &inf)

Because we used a pointer in the function, the series (inf) has to be preceded by the ampersand
(&). The output is printed to the screen:
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modelseladf(5, &inf)

A (5 x 5)

p K N AIC SC

1.0000 3.0000 104.00 -1.0233 -0.94704

2.0000 4.0000 104.00 -1.0257 -0.92404

3.0000 5.0000 104.00 -1.0906 -0.96351

4.0000 6.0000 104.00 -1.2439 -1.0914

5.0000 7.0000 104.00 -1.3028 -1.1248

The inflation series appears to have longer lags than the two interest rate series. AIC and SC
are minimized at 5 lags. Schwert (1989) proposed that for N > 100 the maximum lag be set to
kmax = int[12(T + 1)/100]0.25. If your sample is smaller then use kmax = int[4(T + 1)/100]0.25.1

Once you are finished with these functions you can use the function modelsel2 modelseladf

clear command to remove them from memory.

12.3.1 Other Tests for Nonstationarity

There are other tests for nonstationarity in gretl that you may find useful. The first is the
DF-GLS test. It performs the modified Dickey-Fuller t-test (known as the DF-GLS test) proposed
by Elliott et al. (1996). Essentially, the test is an augmented Dickey-Fuller test, similar to the test
performed by gretl’s adf command, except that the time-series is transformed via a generalized
least squares (GLS) regression before estimating the model. Elliott et al. (1996) and others have
shown that this test has significantly greater power than the previous versions of the augmented
Dickey-Fuller test. Consequently, it is not unusual for this test to reject the null of nonstationarity
when the usual augmented Dickey-Fuller test does not.

The --gls option performs the DF-GLS test for a series of models that include 1 to k lags
of the first differenced, detrended variable. The lag k can be set by the user or by the method
described in Schwert (1989). As discussed above and in POE4, the augmented Dickey-Fuller test
involves fitting a regression of the form

∆yt = α+ βyt−1 + δt+ ζ1∆yt−1 + ...+ ζk∆yt−k + ut (12.4)

and then testing the null hypothesis H0 : β = 0. The DF-GLS test is performed analogously but
on GLS-demeaned or GLS-detrended data. The null hypothesis of the test is that the series is a
random walk, possibly with drift. There are two possible alternative hypotheses: yt is stationary
about a linear time trend or stationary with a possibly nonzero mean but with no linear time trend.
Thus, you can use the --c or --ct options.

For the levels of the Fed funds rate:

Augmented Dickey-Fuller (GLS) test for f

including 6 lags of (1-L)f (max was 12)

1This tip provided via the gretl users group by Grzegorz Konat.
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sample size 97

unit-root null hypothesis: a = 1

with constant and trend

model: (1-L)y = b0 + b1*t + (a-1)*y(-1) + ... + e

1st-order autocorrelation coeff. for e: 0.010

lagged differences: F(6, 90) = 16.433 [0.0000]

estimated value of (a - 1): -0.115012

test statistic: tau = -4.14427

10% 5% 2.5% 1%

Critical values: -2.74 -3.03 -3.29 -3.58

The test statistic is −4.14, which is in the 1% rejection region for the test. The series is nonstation-
ary. Notice that the lag selected was 6 and that all available observations were used to estimate
the model at this point. This is somewhat different from Stata’s implementation, which sets the
sample to the maximum available for the largest model. Also, notice that we used a trend. This is
optional.

For the levels of the Fed funds rate:

Augmented Dickey-Fuller (GLS) test for b

including 5 lags of (1-L)b (max was 12)

sample size 98

unit-root null hypothesis: a = 1

with constant and trend

model: (1-L)y = b0 + b1*t + (a-1)*y(-1) + ... + e

1st-order autocorrelation coeff. for e: -0.005

lagged differences: F(5, 92) = 4.799 [0.0006]

estimated value of (a - 1): -0.128209

test statistic: tau = -3.17998

10% 5% 2.5% 1%

Critical values: -2.74 -3.03 -3.29 -3.58

The test statistic is −3.18, which is in the 5% rejection region for the test. The series is nonsta-
tionary. Notice that the lag selected was 5 and that one more observation is available to obtain the
test statistic.

Gretl also can perform the KPSS test proposed by Kwiatkowski et al. (1992). The kpss

command computes the KPSS test for each of the specified variables (or their first difference, if the
--difference option is selected). The null hypothesis is that the variable in question is stationary,
either around a level or, if the --trend option is given, around a deterministic linear trend.

The statistic itself is very simple

η =

∑T
i=1 S

2
t

T 2σ̃2
(12.5)
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where St =
∑T

i=1 es and σ̃2 is an estimate of the long-run variance of et = (yt − ȳ). The long run
variance is estimated using a bandwidth parameter, m, that the user chooses.

σ̃2 =
m∑

i=−m

(
1− |i|

(m+ 1)

)
γ̂i (12.6)

and where γ̂i is an empirical autocovariance of et from order −m to m.

The command calls for the a bandwidth parameter, m (see section 9.6.2 for a brief discussion).
For this estimator to be consistent, m must be large enough to accommodate the short-run persis-
tence of et, but not too large compared to the sample size T . If you supply a 0, gretl will compute
an automatic bandwidth of 4(T/100)1/4.

kpss 0 f b

The KPSS statistics using automatic bandwidth selection results in:

KPSS test for f

T = 104

Lag truncation parameter = 4

Test statistic = 1.36747

10% 5% 1%

Critical values: 0.349 0.466 0.734

KPSS test for b

T = 104

Lag truncation parameter = 4

Test statistic = 1.72833

10% 5% 1%

Critical values: 0.349 0.466 0.734

Both are significantly different from zero and the stationary null hypothesis is rejected at any
reasonable level of significance. Also note that the bandwidth was chosen to be 4.

12.4 Cointegration

Two nonstationary series are cointegrated if they tend to move together through time. For
instance, we have established that the levels of the Fed Funds rate and the 3-year bond are non-
stationary, whereas their differences are stationary. In the opaque language used in time-series
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literature, each series is said to be “integrated of order 1” or I(1). If the two nonstationary series
move together through time then we say they are “cointegrated.” Economic theory would suggest
that they should be tied together via arbitrage, but that is no guarantee. In this context, testing
for cointegration amounts to a test of the substitutability of these assets.

The basic test is very simple. Regress one I(1) variable on another using least squares. If the
series are cointegrated, the residuals from this regression will be stationary. This is verified using
augmented Dickey-Fuller test, with a new set of critical values that take into account that the series
of residuals used in the test is estimated from data.

The null hypothesis is that the residuals are nonstationary, which implies that the series are
not cointegrated. Rejection of this leads to the conclusion that the series are cointegrated. The
coint function in gretl carries out each of the three steps in this test. First, it carries out a
Dickey-Fuller test of the null hypothesis that each of the variables listed has a unit root. Then it
estimates the cointegrating regression using least squares. Finally, it runs a Dickey Fuller test on
the residuals from the cointegrating regression. This procedure, referred to as the Engle-Granger
(EG) cointegration test and discussed in chapter 12 of Hill et al. (2011), is the one done in gretl
by default. Gretl can also perform cointegration tests based on maximum likelihood estimation of
the cointegrating relationships proposed by Johansen and summarized in Hamilton (1994, chapter
20). The Johansen tests use the coint2 command, which is explained in gretl’s documentation
(Cottrell and Lucchetti, 2011, chapter 24).

Figure 12.8 shows the dialog box used to test cointegration in this way. To obtain it use
Model>Time series>Cointegration test>Engle-Granger from the main gretl window. In the
dialog box you have to indicate how many lags you want in the initial Dickey-Fuller regressions
on the the variables, which variables you want to include in the cointegrating relationship, and
whether you want a constant, trend, or quadratic trend in the regressions. Testing down from the
maximum lag order is chosen via a check-box. To select these additional modeling options you’ll
have to click on the down arrow button indicated in Figure 12.8. This will reveal the four choices:

We are choosing the model that contains a constant, which is the default. For the 3-year bond rate
and the Fed funds rate series we get the result shown in Figure 12.9.

Since the --skip-df option is used, there are only two steps shown in the output. The first
is the outcome of the cointegrating regression. It is just a linear regression of b and a constant
on f. The residuals are automatically generated and passed to step 2 that performs the EG test.
The model selection occurs because the --test-down option is used, which picks a model with 3
lags. The test statistic and its p-value are circled at the bottom. The statistic is −4.32 and it is
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significant at the 5% level. The unit root null hypothesis is rejected and we conclude that the series
are cointegrated.

The syntax and options available for the Engle-Granger test are summarized:

If the specified lag order is positive all the Dickey-Fuller tests use that order, with this qualifi-
cation: if the --test-down option is used, the given value is taken as the maximum and the actual
lag order used in each case is obtained by testing down. Basically, a series of t-tests on the last lag
is used until the last one becomes significant at 10% level.

The syntax for Engle-Granger tests from a script from the console follows

coint 4 f b --test-down --skip-df

Notice that a maximum of 4 lags are considered; the --test-down option will attempt to auto-
matically reduce that number according to the algorithm discussed above. Also, we have chosen
to skip the Dickey-Fuller tests for stationarity of f and b since they have already been done and
discussed above.

12.5 Error Correction

Cointegration is a relationship between two nonstationary, I(1), variables. These variables share
a common trend and tend to move together in the long-run. In this section, a dynamic relationship
between I(0) variables that embeds a cointegrating relationship known as the short-run error
correction model is examined.

Start with an ARDL(1,1)

yt = δ + θ1yt−1 + δ0xt + δ1xt−1 + vt (12.7)

after some manipulation (see POE4 for details)

∆yt = −(1− θ1)(yt−1 − β1 − β2xt−1) + δ0∆xt + δ1∆xt−1 + vt (12.8)
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The term in the second set of parentheses is a cointegrating relationship. The levels of y and x are
linearly related. Let α = (1 − θ1) and the equation’s parameters can be estimated by nonlinear
least squares.

In gretl this is easiest done in a script. There are basically three steps. First open the data
and create lags and differences. Second, decide upon reasonable starting values for the numerical
optimization procedure. Finally, specify the equation to be estimated by nls.

1 open "@gretldir\data\poe\usa.gdt"

2 lags 2; f b

3 diff f b

4 ols b const f

5 scalar b1 = $coeff(const)

6 scalar b2 = $coeff(f)

7 ols d_b const d_f(0 to -1)

8 scalar d0 = $coeff(d_f)

9 scalar d1 = $coeff(d_f_1)

10 ols b const b(-1) f(0 to -1)

11 scalar a = 1-$coeff(b_1)

12 nls d_b=-a*(b_1-b1-b2*f_1)+d0*d_f+d1*d_f(-1)

13 params a b1 b2 d0 d1

14 end nls

The hardest part of this is giving the routine a decent set of starting values. Here, I used three
separate linear regressions to generate reasonable starting values. I estimated the cointegrating
relationship via least squares in line 4 to populate β1 and β2. To get start values for δ0 and δ1 I
used a similar strategy, estimating the ARDL(1,1) in its difference form (equation 12.8). Estimate
that regression without the cointegrating relationship in it and use these parameters as the starting
values. For the parameter a, I estimated equation (12.7) and used a0 = (1− θ̂).

Since I am reluctant to taking derivatives analytically unless I have to, I tried to estimate the
model without them, relying on gretl’s excellent numerical versions. The params statement in line
13 is required when using numerical derivatives. Fortunately, gretl rewarded me with the correct
result (as verified in Eviews and Stata).

Using numerical derivatives

Tolerance = 1.81899e-012

Convergence achieved after 19 iterations

NLS, using observations 1984:3-2009:4 (T = 102)

d_b = -a*(b_1-b1-b2*f_1)+d0*d_f+d1*d_f(-1)

estimate std. error t-ratio p-value

-------------------------------------------------------

a 0.141877 0.0496561 2.857 0.0052 ***

b1 1.42919 0.624625 2.288 0.0243 **
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b2 0.776557 0.122475 6.341 7.25e-09 ***

d0 0.842463 0.0897482 9.387 2.83e-015 ***

d1 -0.326845 0.0847928 -3.855 0.0002 ***

Mean dependent var -0.110294 S.D. dependent var 0.537829

Sum squared resid 14.18070 S.E. of regression 0.382352

R-squared 0.514614 Adjusted R-squared 0.494598

Log-likelihood -44.10409 Akaike criterion 98.20819

Schwarz criterion 111.3331 Hannan-Quinn 103.5229

rho 0.126909 Durbin-Watson 1.745112

Once the model is estimated, you can get the implied estimate of θ1.

scalar theta1 = 1-$coeff(a)

which is 0.858123. You can also perform an EG test for stantionarity by constructing the residuals
and using adf. In this case, you’ll have to consult a table of critical values since the EG ones are
not available from adf routine.

series ehat = b-$coeff(b1)-$coeff(b2)*f

adf 1 ehat --nc

As before, the null is that (b, f) are not cointegrated. Since the cointegrating relationship includes
a constant term, the critical value is (−3.37). Comparing the calculated value −3.92668 with the
critical value, we reject the null hypothesis and conclude that (b, f) are cointegrated.

12.6 Script

1 open "@gretldir\data\poe\usa.gdt"

2 set echo off

3 # take differences

4 diff b inf f gdp

5 # change variable attributes

6 setinfo b -d "3-year Bond rate" -n "3-year Bond rate"

7 setinfo d_b -d "Change in the 3-year Bond rate" -n "D.BOND"

8 setinfo inf -d "annual inflation rate" -n "inflation rate"

9 setinfo d_inf -d "Change in the annual inflation rate" -n "D.INFLATION"

10 setinfo gdp -d "real US gross domestic product" -n "Real GDP"

11 setinfo d_gdp -d "= first difference of gdp" -n "D.GDP"

12 setinfo f -d "federal funds rate" -n "Fed Funds Rate"

13 setinfo d_f -d "= first difference of f" -n "D.FED_FUNDS"
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14

15 # multiple time series plots

16 scatters inf d_inf f d_f

17 scatters b d_b gdp d_gdp

18

19 # summary statistics for subsamples and full sample

20 smpl 1984:2 1996:4

21 summary --simple

22 smpl 1997:1 2009:4

23 summary --simple

24 smpl full

25

26 list levels = gdp inf f b

27 summary levels --simple

28

29 # spurious regression

30 open "@gretldir\data\poe\spurious.gdt"

31 setobs 1 1 --special-time-series

32 gnuplot rw1 rw2 --with-lines --time-series

33 ols rw1 rw2 const

34

35 # adf tests

36 open "@gretldir\data\poe\usa.gdt"

37 adf 4 f --c --ct --test-down

38 adf 4 b --c --test-down --verbose

39

40 function scalar modelseladf (scalar p, series *y)

41 diff y

42 matrix A = {}

43 loop i = 1..p --quiet

44 list vars = d_y(0 to -i) y(-1) const

45 matrix a = i~modelsel2(vars)

46 matrix A = A | a

47 endloop

48 colnames(A,"p K N AIC SC ")

49 print A

50 return 0

51 end function

52

53 # model selection for adf tests

54 matrix a = modelseladf(4, &b)

55 matrix a = modelseladf(4, &f)

56

57 smpl full

58 scalar mlag = int(12*(($nobs+1)/100)^(0.25))

59 adf mlag f --ct --gls --test-down

60 adf mlag b --ct --gls --test-down

61

62 # kpss test

63 kpss 0 f b

64 coint 4 f b inf --test-down --skip-df
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65

66 open "@gretldir\data\poe\usa.gdt"

67 lags 2; f b

68 diff f b

69

70 # nls estimation of cointegrating vector

71 ols b const f

72 scalar b1 = $coeff(const)

73 scalar b2 = $coeff(f)

74 ols d_b const d_f(0 to -1)

75 scalar d0 = $coeff(d_f)

76 scalar d1 = $coeff(d_f_1)

77 ols b const b(-1) f(0 to -1)

78 scalar a = 1-$coeff(b_1)

79 nls d_b=-a*(b_1-b1-b2*f_1)+d0*d_f+d1*d_f(-1)

80 params a b1 b2 d0 d1

81 end nls

82 scalar theta1 = 1-$coeff(a)

83 series ehat = b-$coeff(b1)-$coeff(b2)*f

84 adf 1 ehat --nc
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Figure 12.4: The two independent random walk series appear to be related. The top graph is a
simple time-series plot and the bottom is an XY scatter with least squares fit.
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Figure 12.5: Choose the ADF test from the pull-down menu.

Figure 12.6: The ADF test dialog box.
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Figure 12.7: The ADF test results.

Figure 12.8: The dialog box for the cointegration test.
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Figure 12.9: The results from the Engle-Granger test. The output from the Dickey-Fuller regres-
sions is suppressed using the the --skip-df option.
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Chapter 13
Vector Error Correction and Vector
Autoregressive Models: Introduction to
Macroeconometrics

The vector autoregression model is a general framework used to describe the dynamic interre-
lationship between stationary variables. So, the first step in your analysis should be to determine
whether the levels of your data are stationary. If not, take the first differences of your data and try
again. Usually, if the levels (or log-levels) of your time-series are not stationary, the first differences
will be.

If the time-series are not stationary then the VAR framework needs to be modified to allow
consistent estimation of the relationships among the series. The vector error correction model
(VECM) is just a special case of the VAR for variables that are stationary in their differences (i.e.,
I(1)). The VECM can also take into account any cointegrating relationships among the variables.

13.1 Vector Error Correction and VAR Models

Consider two time-series variables, yt and xt. Generalizing the discussion about dynamic rela-
tionships in chapter 9 to these two interrelated variables yield a system of equations:

yt =β10 + β11yt−1 + β12xt−1 + vyt (13.1)

xt =β20 + β21yt−1 + β22xt−1 + vxt (13.2)

The equations describe a system in which each variable is a function of its own lag, and the lag
of the other variable in the system. Together the equations constitute a system known as a vector
autoregression (VAR). In this example, since the maximum lag is of order one, we have a VAR(1).
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If y and x are stationary, the system can be estimated using least squares applied to each
equation. If y and x are not stationary in their levels, but stationary in differences (i.e., I(1)), then
take the differences and estimate:

∆yt =β11∆yt−1 + β12∆xt−1 + v∆y
t (13.3)

∆xt =β21∆yt−1 + β22∆xt−1 + v∆x
t (13.4)

using least squares. If y and x are I(1) and cointegrated, then the system of equations can be
modified to allow for the cointegrating relationship between the I(1) variables. Introducing the
cointegrating relationship leads to a model known as the vector error correction (VEC) model.

In this example from POE4, we have macroeconomic data on real GDP for a large and a small
economy; usa is real quarterly GDP for the United States and aus is the corresponding series for
Australia. The data are found in the gdp.gdt dataset and have already been scaled so that both
economies show a real GDP of 100 in the year 2000. We decide to use the vector error correction
model because (1) the time-series are not stationary in their levels but are in their differences (2)
the variables are cointegrated.

In an effort to keep the discussion moving, the authors of POE4 opted to avoid discussing how
they actually determined the series were nonstationary in levels, but stationary in differences. This
is an important step and I will take some time here to explain how one could approach this. There
are several ways to do this and I’ll show you two ways to do it in gretl.

13.1.1 Series Plots–Constant and Trends

Our initial impressions of the data are gained from looking at plots of the two series. The data
plots are obtained in the usual way after importing the dataset. The data on U.S. and Australian
GDP are found in the gdp.gdt file and were collected from 1970:1 - 2004:4.1 Open the data and set
the data structure to quarterly time-series using the setobs 4 command, start the series at 1970:1,
and use the --time-series option.

open "@gretldir\data\poe\gdp.gdt"

setobs 4 1970:1 --time-series

One purpose of the plots is to help you determine whether the Dickey-Fuller regressions should
contain constants, trends or squared trends. The simplest way to do this is from the console using
the scatters command.

scatters usa diff(usa) aus diff(aus)

The scatters command produces multiple graphs, each containing one of the listed series. The
diff() function is used to take the differences of usa and aus, which appear in the graphs featured
in Figure 13.1 below.

1POE4 refers to these variables as U and A, respectively.
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Figure 13.1: The levels of Australian and U.S. GDP appear to be nonstationary and cointegrated.
The difference plots have a nonzero mean, indicating a constant in their ADF regressions.

This takes two steps from the pull-down menu. First, use the mouse to highlight the two series
and then create the differences using Add>First differences of selected variables. Then,
select View>Multiple graphs>Time series. Add the variables to the selected list box to produce
Figure 13.1.

From the time-series plots it appears that the levels are mildly parabolic in time. The differences
have a small trend. This means that the augmented Dickey-Fuller (ADF) regressions may need to
contain these elements.

13.1.2 Selecting Lag Length

The second consideration is the specification of lags for the ADF regressions. There are several
ways to select lags and gretl automates one of these. The basic concept is to include enough lags
in the ADF regressions to make the residuals white noise. These will be discussed presently.
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Testing Down

The first strategy is to include just enough lags so that the last one is statistically significant.
Gretl automates this using the --test-down option for the augmented Dickey-Fuller regressions.
Start the ADF regressions with a generous number of lags and gretl automatically reduces that
number until the t-ratio on the longest remaining lag is significant at the 10 percent level. For the
levels series we choose the maximum number using Schwert’s method as discussed in chapter 12.
The model includes a constant, trend, and trend squared (--ctt option), and use the --test-down

option.

1 scalar mlag = int(12*(($nobs+1)/100)^(0.25))

2 adf mlag usa --ctt --test-down

3 adf mlag aus --ctt --test-down

The USA series contains a very long significant lag twelve periods into the past. The Australian
series shows much less persistence, choosing only 3 in testing down from 12. The result is shown
in Figure 13.2. Both ADF statistics are insignificant at the 5% or 10% level, indicating they are
nonstationary. This is repeated for the differenced series using the commands:

adf mlag diff(usa) --ct --test-down

adf mlag diff(aus) --ct --test-down

The selected lags for the U.S. and Australia are eleven and seven, respectively. Both ADF statistics
are significant at the 5% level and we conclude that the differences are stationary.

Testing Up

The other strategy is to test the residuals from the augmented Dickey-Fuller regressions for
autocorrelation. In this strategy you can start with a small model, and test the residuals of the
Dickey-Fuller regression for autocorrelation using an LM test. If the residuals are autocorrelated,
add another lagged difference of the series to the ADF regression and test the residuals again. Once
the LM statistic is insignificant, you quit you are done. This is referred to as testing-up. You will
still need to start with a reasonable number of lags in the model or the tests will not have desirable
properties.

To employ this strategy in gretl, you’ll have to estimate the ADF equations manually using
the ols command. Since the data series has a constant and quadratic trend, you have to define a
time trend (genr time) and possibly trend squared (square time) to include in the regressions.2

2It was not apparent from the plots of the differenced series that a squared trend was required. However, the
squared trend was included in the model because it is statistically significant in each of the ADF regressions.
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Figure 13.2: Based on ADF tests, the levels of Australian and U.S. GDP are nonstationary.

Note this is another one of those cases where you cannot use series in place of genr. The genr

time is a special function for genr. The other cases include genr dummy and genr unitdum. You
will also need to generate the differences to use in a new function called lags. The script to do
this follows:

1 genr time

2 square time

3 diff usa aus

Now, estimate a series of augmented Dickey-Fuller regressions using ols. Follow each regression
with the LM test for autocorrelation of the residuals discussed in chapter 9.

1 loop i=1..12

2 ols d_usa(0 to -i) usa(-1) const time sq_time --quiet

3 printf "ADF lag order = %d\n",i

4 modtest 1 --autocorr --quiet

5 end loop
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The first ols regression is the ADF(1). It includes 1 lagged value of the d usa as a regressor in
addition to the lagged value of usa, a constant, a trend, and a squared trend. Gretl’s variable(i
to j) function creates a series of lags from i through j of variable. So in the first regression,
d usa(0 to -i) creates the contemporaneous value and a single lagged value of d usa. Since
the contemporaneous value, d usa, appears first in the variable list, it is taken as the dependent
variable. A printf statement is issued to remind us of which test we are performing. Then the
LM and other AR tests are conducted using modtest 1 --autocorr --quiet. If the p-value is
greater than 0.10 then, this is your model. If not, consider the outcome of the next loop which has
added another lag of d usa to the model. Stop when the p-value is greater than 0.10.

In this code example we chose to suppress the results from the first regression so that the output
from the tests would fit on one page (Figure 13.3). In practice, you could skip this option and read
the Dickey-Fuller t-ratio directly from the output. The only disadvantage of this is that the proper
p-value for it is not computed using the manual approach.

Figure 13.3: Testing up: manually estimate the ADF regressions and use LM tests for autocorre-
lation to determine the proper lag length.

If you repeat this exercise for aus (as we have done in the script at the end of the chapter3) you
will find that testing up determines zero lags of d aus are required in the Dickey-Fuller regression;
testing down revealed three lags were needed. The incongruence occurs because we did a poor job
of testing up, failing to include enough autocorrelation terms in the LM test. This illustrates a
danger of testing up. When we conducted the LM test using only a single autocorrelation term,

3Actually, the LM statistic for the ADF(1) was insignificant and a separate DF regression also had an insignificant
LM statistic, indicating no lags are needed. I made the loop a bit fancier in order to produce the DF statistic by
adding a conditional statement for when i=0 as we did earlier in the book.
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we had not searched far enough in the past to detect significant autocorrelations that lie further
back in time. Adding terms to the autocorrelation test using modtest 3 --autocorr would have
helped to detect this.

So which is better, testing down or testing up? I think the econometric consensus is that testing
down is safer. We’ll leave it for future study!

13.1.3 Cointegration Test

Given that the two series are stationary in their differences (i.e., both are I(1)), the next step
is to test whether they are cointegrated. In the discussion that follows, we return to reproducing
results from POE4. To do this, use least squares to estimate the following regression.

aust = βusat + et (13.5)

obtain the residuals, êt, and then estimate

∆êt = γêt−1 + ut (13.6)

This is the “case 1 test” from chapter 12 of Hill et al. (2011) and the 5% critical value for the t-ratio
is −2.76. The following script estimates the model cointegrating regression, saves the residuals, and
estimates the regression required for the unit root test.

1 ols aus usa

2 series uhat = $uhat

3 ols diff(uhat) uhat(-1)

The result is:
∆êt = −0.127937

(0.044279)
êt−1 (13.7)

T = 123 R̄2 = 0.0640 F (1, 122) = 8.3482 σ̂ = 0.5985

(standard errors in parentheses)

The t-ratio is −0.1279/.0443 = −2.889 which lies in the rejection region for this test. Therefore,
you reject the null hypothesis of no cointegration.

13.1.4 VECM: Australian and U.S. GDP

You have two difference stationary series that are cointegrated. Consequently, an error cor-
rection model of the short-run dynamics can be estimated using least squares. A simple error
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correction model is:

∆aust = β11 + β12êt−1 + v1t (13.8)

∆usat = β21 + β22êt−1 + v2t (13.9)

and the estimates

∆âust = 0.491706
(8.491)

+−0.0987029
(−2.077)

êt−1

∆ûsat = 0.509884
(10.924)

+ +0.0302501
(0.790)

êt−1

(t-statistics in parentheses)
which are produced using

1 ols diff(aus) const uhat(-1)

2 ols diff(usa) const uhat(-1)

The significant negative coefficient on êt−1 indicates that Australian GDP responds to a temporary
disequilibrium between the U.S. and Australia.

The U.S. does not appear to respond to a disequilibrium between the two economies; the t-ratio
on êt−1 is insignificant. These results support the idea that economic conditions in Australia depend
on those in the U.S. more than conditions in the U.S. depend on Australia. In a simple model of
two economy trade, the U.S. is a large closed economy and Australia is a small open economy.

13.1.5 Using gretl’s vecm Command

The Australian/U.S. GDP example above was carried out manually in a series of steps in order
to familiarize you with the structure of the VEC model and how, at least in principle, they are
estimated. In most applications, you will probably use other methods to estimate the VECM;
they provide additional information that is useful and are usually more efficient. Gretl contains a
full-featured vecm command that estimates a VECM. Chapter 24 of Cottrell and Lucchetti (2011)
provides an excellent tutorial on estimating a VECM and includes some examples using gretl.
Before using the vecm command in gretl, this is required reading!

One feature of the example in POE4 that bothers me is that tests for autocorrelation in the error
correction models reject the no serial correlation hypothesis. That implies that the lag structure in
the error correction models probably needs more thought. Thus, lags are added to the model and
it is reestimated using gretl’s vecm command, the syntax for which is:
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After some experimentation I decide to use a third order model. Since there are only 2 series,
the maximum and only number of cointegrating vectors is 1. The default, ‘case 3,’ which is an
unrestricted constant, is used to model the deterministic components of the model. Choosing the
correct case is another part of the art of doing a VECM study and I am not expert enough to give
advice on how to do this. I will leave you to your own devices to resolve this tricky issue.

The model is estimated via a script:

3rd order VECM with 1 cointegrating vector--unrestricted constant
vecm 3 1 aus usa

The dialog boxes are also useful. Choose Model>Time-Series>VECM to bring up the appropriate
dialog box shown in Figure 13.4. It allows you to add endogenous variables to the VAR, exogenous
variables (which must be I(0)), choose lags, number of cointegrating vectors, and choose the model
for the deterministic portion of the trend. One of the advantages of using the dialog is that the
model results appear, as usual, in a separate model window. The window gives you immediate
access to tests, plots, and additional tools for analysis. Furthermore, there is also a handy facility
that allows quick respecificaiton of the model. From the menu bar of the model window choose
Edit>Revise specification brings up the VECM dialog box again for you to change settings.

One way to evaluate whether you have made adequate modeling choices is to look at various
statistics within the output to check for significance of lags, as well as the magnitudes and signs of
the coefficients. Even without the --verbose option, the command produces quite a bit of output.
Here I divide it into two parts. The first part of our output can be seen below in Figure 13.5 The
lag order is given, the selected cointegration rank is shown, and the “case” (unrestricted constant)
is identified. Next are the estimates from the cointegrating equation. The adjustment vectors
are actually the coefficients on the lagged residuals from the cointegrating relationship. Generally,
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Figure 13.4: The VECM dialog box

these should have opposite signs in two variable models, otherwise the adjustments to shocks may
not be equilibrating. Finally, some model selection statistics appear at the bottom that may be
useful in determining the order of the VECM. As with the ones computed in our own modelsel2

function, smaller is better.

The second part of the output appears in Figure 13.6. This shows the estimates from the
complete VECM. You will want to check to see if unnecessary lags have been included in the model
(insignificant t-ratios on the longest lags), check the value of the Durbin-Watson statistic (it should
be close to 2), and check the signs and significance of the error correction terms. In this case the
signs are as expected, and only the Australian economy adjusts significantly to shocks in the short-
run. Issuing a modtest 1 --autocorr after the vecm will produce some autocorrelation statistics.
Check these to make sure that no autocorrelation remains.

In this example, having 2 lagged differences in the U.S. equation appears to be warranted. The
second lag in the Australian equation is also significant at 10%. The signs on the error correction
terms make sense. I would conclude that this model is a worthy candidate for further use.

One more check is worth considering. A plot of the error correction terms is shown in Figure 13.7
This plot shows that most of the disequilibrium is negative. Australia is constantly playing catch-
up to the U.S. I’m not sure I believe this. You will notice that the coefficient in the cointegrating
equation is −1.025. The simple least squares estimation of it was −0.98. I suspect that this
parameter should be equal to −1 (these market economies are roughly comparable) and I test for
it, using a restrict statement. The hypothesis is not rejected at 5% and the restriction is imposed
and the plot recast as shown in Figure 13.8. You can see that it has the same basic shape as in
Figure 13.7, but the now there are many more positive disequilibria. The regression output from
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Figure 13.5: The first part of the output from the vecm 3 1 aus usa command.

the restricted VECM appears below: The magnitude of the adjustment parameters have become
more similar in magnitude. The coefficient for Australia (-0.096929) is significant at 10% and the
one for the U.S. is not.

Finally, there are some advantages of working with a script as well. Gretl has accessors for
some of the output from vecm. The $jbeta accessor stores the parameters from the cointegrating
estimations. $vecGamma stores the coefficients on the lagged differences of the cointegrated variables,
and $ec stores the error correction terms. In the script, I compute the error correction terms
manually using $jbeta. There are other accessors for the vecm results. See the Gretl Users Guide
for details.

Restricting the VECM and accessing some results
1 vecm 3 1 aus usa

2 restrict --full

3 b[1]+b[2]=0

4 end restrict

5

6 scalar a = $vecGamma

7 scalar b =$jbeta

8 series ec = aus + $jbeta[2,1]*usa
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Figure 13.6: The second part of the output from the vecm 3 1 aus usa command.

13.2 Vector Autoregression

The vector autoregression model (VAR) is actually a little simpler to estimate than the VEC
model. It is used when there is no cointegration among the variables and it is estimated using
time-series that have been transformed to their stationary values.

In the example from POE4, we have macroeconomic data on RPDI and RPCE for the United
States. The data are found in the fred.gdt dataset and have already been transformed into their
natural logarithms. In the dataset, y is the log of real disposable income and c is log of real
consumption expenditures. As in the previous example, the first step is to determine whether the
variables are stationary. If they are not, then you transform them into stationary time-series and
test for cointegration.

The data need to be analyzed in the same way as the GDP series in the VECM example.
Examine the plots to determine possible trends and use the ADF tests to determine which form
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Figure 13.7: Plot of the error correction terms from the vecm 3 1 aus usa command.

of the data are stationary. These data are nonstationary in levels, but stationary in differences.
Then, estimate the cointegrating vector and test the stationarity of its residuals. If stationary, the
series are cointegrated and you estimate a VECM. If not, then a VAR treatment is sufficient.

Open the data and take a look at the time-series plots.

1 open "@gretldir\data\poe\fred.gdt"

2 scatters c diff(c) y diff(y)

The plots appear in Figure 13.10. The levels series appear to be trending together. The differences
may be trending downward ever so slightly. The mean of the difference series appears to be greater
than zero, suggesting that a least a constant be included in the ADF regressions. Inclusion of a
trend could be tested using a t-test based on the regression output.

The other decision that needs to be made is the number of lagged differences to include in the
augmented Dickey-Fuller regressions. The principle to follow is to include just enough so that the
residuals of the ADF regression are not autocorrelated. The recommendation is to test down using
the --test-down option of the adf command.

1 adf 12 c --ct --test-down --verbose

2 adf 12 y --ct --test-down --verbose
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Figure 13.8: Plot of the error correction terms from the vecm 3 1 aus usa where the cointegrating
vector is aus = usa.

After some experimentation, the decision was made to keep the trend in the ADF regresions. The
term was significant for both series. The test-down procedure chose 3 lagged differences of c in the
first model and 10 lagged differences of y in the second. In both cases, the unit root hypothesis
could not be rejected at 10%. See Figures 13.11 and 13.12.

It is probably a good idea to confirm that the differences are stationary, since VAR in differences
will require this.

If c and y are cointegrated then you would estimate a VECM. The Engle-Granger tests reveals
that they are not.

Augmented Dickey-Fuller test for uhat

including 5 lags of (1-L)uhat (max was 12)

sample size 194

unit-root null hypothesis: a = 1

model: (1-L)y = b0 + (a-1)*y(-1) + ... + e

1st-order autocorrelation coeff. for e: -0.008

lagged differences: F(5, 188) = 5.028 [0.0002]

estimated value of (a - 1): -0.0798819
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Figure 13.9: Output from the restricted VECM model. The cointegrating relationship is A=U.

test statistic: tau_c(2) = -2.39489

asymptotic p-value 0.327

There is evidence for a cointegrating relationship if:

(a) The unit-root hypothesis is not rejected for the individual variables.

(b) The unit-root hypothesis is rejected for the residuals (uhat) from the

cointegrating regression.

The p-value on the test statistic is 0.327. We cannot reject the unit root hypothesis for the residuals
and therefore the series are not cointegrated. We are safe to estimate the VAR in differences.

The basic syntax for the var command appears below

You specify the lag order, the series to place in the VAR, and any options you want. You can
choose HAC standard errors and ways to model deterministic trends in the model. Estimating the
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Figure 13.10: Natural logs of consumption and income and their differences.

VAR with the –lagselect option is useful in deciding how many lags of the two variables to add to
the model.

var 12 diff(c) diff(y) --lagselect

We’ve chosen that option here with the first few lines of the result:

VAR system, maximum lag order 12

The asterisks below indicate the best (that is, minimized) values

of the respective information criteria, AIC = Akaike criterion,

BIC = Schwarz Bayesian criterion and HQC = Hannan-Quinn criterion.

lags loglik p(LR) AIC BIC HQC

1 1319.59415 -14.049135 -13.945463* -14.007127*

2 1323.61045 0.09039 -14.049310 -13.876523 -13.979296

3 1329.48171 0.01937 -14.069323* -13.827422 -13.971305
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Figure 13.11: ADF tests of ln(RPCE)

4 1333.38145 0.09921 -14.068251 -13.757235 -13.942227

The BIC (SC ) and HQC pick the same number of lags, 1. That is what we’ve estimated so we
are satisfied. You can also issue a model test command after the VAR to determine if there is any
remaining autocorrelation in the residuals. If there is, you probably need to add additional lags to
the VAR. When used here, the Ljung-Box Q statistics for both equations have p-values above 0.10
and the null hypothesis of no autocorrelation is not rejected.

The model output is found in Table 13.1

You can also get gretl to generate the VAR’s lag selection command through the dialogs.
Select Model>Time series>VAR lag selection from the pull-down menu. This reveals the VAR
lag selection dialog box. You can choose the maximum lag to consider, the variables to include in
the model, and whether the model should contain constant, trend, or seasonal dummies.
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Figure 13.12: ADF tests of ln(RPDI)

13.3 Impulse Response Functions and Variance Decompositions

Impulse response functions show the effects of shocks on the adjustment path of the variables.
Forecast error variance decompositions measure the contribution of each type of shock to the
forecast error variance. Both computations are useful in assessing how shocks to economic variables
reverberate through a system.

Impulse response functions (IRFs) and forecast error variance decompositions (FEVD) can be
produced after using the var or vecm commands. The results can be presented in a table or a
graph.

Obtaining the impulse responses after estimating a VAR is easy in gretl. The first step is to esti-
mate the VAR. From the main gretl window choose Model>Time series>Vector Autoregression.
This brings up the dialog, shown in Figure 13.13. Set the lag order to 1, and add the differenced
variables to the box labeled Endogenous Variables. Make sure the ‘Include a constant’ box is
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VAR system, lag order 1
OLS estimates, observations 1960:3–2009:4 (T = 198)

Equation 1: d c
Heteroskedasticity-robust standard errors, variant HC3

Coefficient Std. Error t-ratio p-value

const 0.00527761 0.000952508 5.5408 0.0000
d c 1 0.215607 0.0903028 2.3876 0.0179
d y 1 0.149380 0.0595427 2.5088 0.0129

Mean dependent var 0.008308 S.D. dependent var 0.006976
Sum squared resid 0.008431 S.E. of regression 0.006575
R2 0.120487 Adjusted R2 0.111466
F (2, 195) 10.39596 P-value(F ) 0.000051
ρ̂ −0.052639 Durbin–Watson 2.085697

Equation 2: d y
Heteroskedasticity-robust standard errors, variant HC3

Coefficient Std. Error t-ratio p-value

const 0.00603667 0.00110476 5.4642 0.0000
d c 1 0.475428 0.105260 4.5167 0.0000
d y 1 −0.217168 0.0977454 −2.2218 0.0274

Mean dependent var 0.008219 S.D. dependent var 0.009038
Sum squared resid 0.014293 S.E. of regression 0.008562
R2 0.111815 Adjusted R2 0.102706
F (2, 195) 10.22543 P-value(F ) 0.000060
ρ̂ −0.003022 Durbin–Watson 1.993480

Table 13.1: Results from the VAR

checked and click OK. The results are shown in Table 13.1.

You can generate impulse responses by selecting Analysis>Impulse responses from the results
window. An impulse response dialog appears that allows you to specify the forecast horizon and to
change the ordering of the variables. Using 12 periods with d c ordered first produces the results
shown in Figure 13.2.

These can be graphed for easier interpretation from the results window by selecting Graphs>Impulse

responses (combined) from the pull-down menu. This brings up a dialog that allows you to choose
how the graph will be constructed. The dialog is shown in Figure 13.14.

This yields the graph shown in Figure 13.15. The forecast error variance decompositions
(FEVD) are obtained similarly. Select Analysis>Forecast variance decomposition from the
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Figure 13.13: From the main gretl window, choose Model>Time series>Vector

Autogregression to bring up the VAR dialog box.

vector autoregression model window to obtain the result shown in Table 13.3.

To generate the IRFs and the FEVDs using a script, simply employ the options --impulse-responses
and --variance-decomp. These can be used with the var command as done here or the vecm com-
mand.

var 1 diff(c) diff(y) --impulse-responses --variance-decomp
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Figure 13.14: Select Graphs>Impulse responses (combined) from the VAR results window brings
up this dialog box.

13.4 Script

1 open "@gretldir\data\poe\gdp.gdt"

2 set echo off

3 setobs 4 1970:1 --time-series

4 # plot multiple time-series

5 scatters usa diff(usa) aus diff(aus)

6

7 # ADF tests with test down

8 scalar mlag = int(12*(($nobs+1)/100)^(0.25))

9 adf mlag usa --ctt --test-down

10 adf mlag aus --ctt --test-down

11

12 adf mlag diff(usa) --ct --test-down

13 adf mlag diff(aus) --ct --test-down

14

15 # manually testing down based on LM tests

16 # USA

17 genr time

18 square time

19 diff usa aus

20 loop i=1..12

21 ols d_usa(0 to -i) usa(-1) const time sq_time --quiet

22 printf "ADF lag order = %d\n",i

23 modtest 1 --autocorr --quiet
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Figure 13.15: U.S. ln(RDPI) and ln(RPCE) impulse responses

24 end loop

25

26 # Australia

27 loop i=0..12

28 if i = 0

29 ols d_aus aus(-1) const time sq_time --quiet

30 else

31 ols d_aus(0 to -i) aus(-1) const time sq_time --quiet

32 endif

33 printf "ADF lag order = %d\n",i

34 modtest 1 --autocorr --quiet

35 end loop

36

37 # Section 13.2 in POE4

38 ols aus usa

39 series uhat = $uhat

40 ols diff(uhat) uhat(-1)

41 ols diff(aus) const uhat(-1)

42 ols diff(usa) const uhat(-1)

43 modtest 1 --autocorr

44

45 # Engle-Granger test

46 coint 8 aus usa --test-down --nc
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47

48 # restricted VECM

49 vecm 3 1 aus usa

50 restrict --full

51 b[1]+b[2]=0

52 end restrict

53

54 # collecting error correction terms from restricted model

55 matrix a = $vecGamma

56 matrix b =$jbeta

57 series ec = aus + $jbeta[2,1]*usa

58 modtest 1 --autocorr

59

60 # VAR estimation

61 open "@gretldir\data\poe\fred.gdt"

62 scatters c diff(c) y diff(y)

63

64 adf 12 c --ct --test-down --verbose

65 adf 12 y --ct --test-down --verbose

66

67 adf 12 diff(c) --ct --test-down --verbose

68 adf 12 diff(y) --ct --test-down --verbose

69

70 var 12 diff(c) diff(y) --lagselect

71 var 1 diff(c) diff(y) --robust-hac

72 modtest 1 --autocorr

73

74 var 1 diff(c) diff(y) --impulse-responses --variance-decomp
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Responses to a one-standard error shock in d c

period d c d y
1 0.00652541 0.00378594
2 0.00197247 0.00228018
3 0.000765890 0.000442583
4 0.000231244 0.000268010
5 8.98931e–005 5.17366e–005
6 2.71100e–005 3.15021e–005
7 1.05509e–005 6.04757e–006
8 3.17823e–006 3.70284e–006
9 1.23838e–006 7.06878e–007

10 3.72596e–007 4.35247e–007
11 1.45351e–007 8.26206e–008
12 4.36806e–008 5.11615e–008

Responses to a one-standard error shock in d y

period d c d y
1 0.000000 0.00760630
2 0.00113623 −0.00165185
3 −1.77382e–006 0.000898922
4 0.000133898 −0.000196060
5 −4.18065e–007 0.000106237
6 1.57795e–005 −2.32700e–005
7 −7.38999e–008 1.25555e–005
8 1.85961e–006 −2.76179e–006
9 −1.16116e–008 1.48388e–006

10 2.19159e–007 −3.27772e–007
11 −1.71048e–009 1.75376e–007
12 2.58288e–008 −3.88992e–008

Table 13.2: Impulse response functions (IRF)
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Decomposition of variance for d c

period std. error d c d y
1 0.00652541 100.0000 0.0000
2 0.00691105 97.2970 2.7030
3 0.00695336 97.3298 2.6702
4 0.0069585 97.2967 2.7033
5 0.00695908 97.2972 2.7028
6 0.00695915 97.2967 2.7033
7 0.00695916 97.2967 2.7033
8 0.00695916 97.2967 2.7033
9 0.00695916 97.2967 2.7033

10 0.00695916 97.2967 2.7033
11 0.00695916 97.2967 2.7033
12 0.00695916 97.2967 2.7033

Decomposition of variance for d y

period std. error d c d y
1 0.00849642 19.8552 80.1448
2 0.00895081 24.3800 75.6200
3 0.00900671 24.3198 75.6802
4 0.00901283 24.3752 75.6248
5 0.00901361 24.3743 75.6257
6 0.00901369 24.3750 75.6250
7 0.0090137 24.3750 75.6250
8 0.00901371 24.3750 75.6250
9 0.00901371 24.3750 75.6250

10 0.00901371 24.3750 75.6250
11 0.00901371 24.3750 75.6250
12 0.00901371 24.3750 75.6250

Table 13.3: Forecast Error Variance Decompositions (FEVD)
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Chapter 14
Time-Varying Volatility and ARCH Models:
Introduction to Financial Econometrics

In this chapter we’ll estimate several models in which the variance of the dependent variable
changes over time. These are broadly referred to as ARCH (autoregressive conditional heteroskedas-
ticity) models and there are many variations upon the theme.

The first thing to do is illustrate the problem graphically using data on stock returns. The
data are stored in the gretl dataset returns.gdt. The data contain four monthly stock price indices:
U.S. Nasdaq (nasdaq), the Australian All Ordinaries (allords), the Japanese Nikkei (nikkei) and
the U.K. FTSE (ftse). The data are recorded monthly beginning in 1988:01 and ending in 2009:07.
Notice that with monthly data, the suffix is two digits, that is 1988:01 is January (01) in the year
1988.

Simple scatter plots appear below. They can be generated using the GUI as described on page
278, or using the scatters command.

1 open "@gretldir\data\poe\returns.gdt"

2 scatters nasdaq allords ftse nikkei
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14.1 ARCH and GARCH

The basic ARCH(1) model can be expressed as:

yt = β + et (14.1)

et|It−1 ∼ N(0, ht) (14.2)

ht = α0 + α1e
2
t−1 (14.3)

α0 > 0, 0 ≤ α1 < 1

The first equation describes the behavior of the mean of your time-series. In this case, equation
(14.1) indicates that we expect the time-series to vary randomly about its mean, β. If the mean of
your time-series drifts over time or is explained by other variables, you’d add them to this equation
just as you would a regular regression model. The second equation indicates that the error of the
regression, et, are normally distributed and heteroskedastic. The variance of the current period’s
error depends on information that is revealed in the preceding period, i.e., It−1. The variance of
et is given the symbol ht. The final equation describes how the variance behaves. Notice that ht
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depends on the error in the preceding time period. The parameters in this equation have to be
positive to ensure that the variance, ht, is positive. Notice also that α cannot be greater than one;
if it were, the variance would be unstable.

The ARCH(1) model can be extended to include more lags of the errors, et−q. In this case,
q refers to the order of the ARCH model. For example, ARCH(2) replaces (14.3) with ht =
α0 + α1e

2
t−1 + α2e

2
t−2. When estimating regression models that have ARCH errors in gretl, you’ll

have to specify this order.

ARCH is treated as a special case of a more general model in gretl called GARCH. GARCH
stands for generalized autoregressive conditional heteroskedasticity and it adds lagged values of the
variance itself, ht−p, to (14.3). The GARCH(1,1) model is:

yt = β + et

et|It−1 ∼ N(0, ht)

ht = δ + α1e
2
t−1 + β1ht−1 (14.4)

The difference between ARCH (14.3) and its generalization (14.4) is a term β1ht−1, a function of
the lagged variance. In higher order GARCH(p, q) model’s, q refers to the number of lags of et and
p refers to the number of lags of ht to include in the model of the regression’s variance.

To open the dialog for estimating ARCH and GARCH in gretl choose Model>Time series>GARCH

from the main gretl window.1 This reveals the dialog box where you specify the model (Figure
14.1). To estimate the ARCH(1) model, you’ll place the time-series r into the dependent variable
box and set q=1 and p=0. This yields the results:

Model 1: GARCH, using observations 1–500
Dependent variable: r

Standard errors based on Hessian

Coefficient Std. Error z p-value

const 1.06394 0.0399241 26.6491 0.0000

α0 0.642139 0.0648195 9.9066 0.0000
α1 0.569347 0.0913142 6.2350 0.0000

Mean dependent var 1.078294 S.D. dependent var 1.185025
Log-likelihood −740.7932 Akaike criterion 1489.586
Schwarz criterion 1506.445 Hannan–Quinn 1496.202

Unconditional error variance = 1.49108

1In a later version of gretl , an ARCH option has been added. You can use this as well, but the answer you get
will be slightly different due to differences in the method used to estimate the model.
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Figure 14.1: Estimating ARCH using the dialog box in gretl .

You will notice that the coefficient estimates and standard errors for the ARCH(1) and GARCH(1,
1) models are quite close to those in chapter 14 of your textbook. To obtain these, you will have to
change the default variance-covariance computation using set garch vcv op before running the
script. Although this gets you close the the results in POE4, using the garch vcv op is not usually
recommended; just use the gretl default, set garch vcv unset.

The standard errors and t-ratios often vary a bit, depending on which software and numerical
techniques are used. This is the nature of maximum likelihood estimation of the model’s parameters.
With maximum likelihood, the model’s parameters are estimated using numerical optimization
techniques. All of the techniques usually get you to the same parameter estimates, i.e., those that
maximize the likelihood function; but, they do so in different ways. Each numerical algorithm
arrives at the solution iteratively based on reasonable starting values and the method used to
measure the curvature of the likelihood function at each round of estimates. Once the algorithm
finds the maximum of the function, the curvature measure is reused as an estimate of the variance
covariance matrix. Since curvature can be measured in slightly different ways, the routine will
produce slightly different estimates of standard errors.

Gretl gives you a way to choose which method you like use for estimating the variance-
covariance matrix. And, as expected, this choice will produce different standard errors and t-ratios.
The set garch vcv command allows you to choose among five alternatives: unset–which restores
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the default, hessian, im (information matrix) , op (outer product matrix), qml (QML estimator),
or bw (Bollerslev-Wooldridge). If unset is given the default is restored, which in this case is the
Hessian; if the ”robust” option is given for the garch command, QML is used.

The series are characterized by random, rapid changes and are said to be volatile. The volatility
seems to change over time as well. For instance the U.S. stock returns index (NASDAQ) experiences
a relatively sedate period from 1992 to 1996. Then, stock returns become much more volatile until
early 2004. Volatility increases again at the end of the sample. The other series exhibit similar
periods of relative calm followed by increased volatility.

A histogram graphs of the empirical distribution of a variable. In gretl the freq command
generates a histogram. A curve from a normal distribution is overlaid using the normal option and
the Doornik-Hansen test for normality is performed. A histogram for the ALLORDS series appears
below in Figure 14.1.

The series is leptokurtic. That means it has many observations around the average and a
relatively large number of observations that are far from average; the center of the histogram has
a high peak and the tails are relatively heavy compared to the normal. The normality test has a
p-value of 0.0007 < 0.05 and is significant at the 5% level.

14.2 Testing for ARCH

Testing for the presence of ARCH in the errors of your model is straightforward. In fact, there
are at least two ways to proceed. The first is to estimate the regression portion of your model using
least squares. Then choose the Tests>ARCH from the model’s pull-down menu. This is illustrated
in Figure 14.3 below.

This brings up the box where you tell gretl what order of ARCH(q) you want as your alternative
hypothesis. In the example, q = 1 which leads to the result obtained in the text. The output is
shown below in Figure 14.5. Gretl produces the LM statistic discussed in your text; the relevant
part is highlighted in red.

The other way to conduct this test is manually. The first step is to estimate the regression
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Figure 14.2: A histogram of the ALLORDS series is plotted using the normal option.

(14.1) using gretl . Save the squared residuals and then regress these on their lagged value. Take
TR2 from this regression as your test statistic. The script for this appears below:

open "c:\Program Files\gretl\data\poe\BYD.gdt"

ols r const

series ehat = $uhat

series ehat2 = ehat*ehat

ols ehat2 const ehat2(-1)

scalar tr2 = $trsq

The first line estimates the regression
rt = β + et (14.5)

The residuals are saved in ehat and then squared as ehat2. The next line estimates the regression

êt = α1 + α2êt−1 + ut (14.6)

The notation ehat2(-1) takes the variable ehat2 and offsets it in the dataset by the amount in
parentheses. In this case, ehat2(-1) puts a minus one period lag of ehat2 into your regression.
The final line computes TR2 from the regression.

Once you’ve estimated your ARCH or GARCH model, you can graph the behavior of the vari-
ance as done in the textbook. After estimating ARCH or GARCH, you can save the predicted vari-
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Figure 14.3: Estimate the model using least squares. Then choose Tests>ARCH from the model’s
pull-down menu.

Figure 14.4: Testing for ARCH dialog box

ances using the command series ht = $h. Then plot them using gnuplot ht --time-series.
The result is shown in Figure 14.2. A prettier plot can be obtained using the pull-down menus
and editing the plot yourself using gretl’s Edit dialog box. To modify the graph, right click on
the graph and choose Edit. From here you can add labels, change the colors or line style, and add
titles. That’s what I have done to produce the result in Figure 14.2.

14.3 Threshold ARCH

Threshold ARCH (TARCH) can also be estimated in gretl, though it requires a little pro-
gramming; there aren’t any pull-down menus for this estimator. Instead, we’ll introduce gretl’s
powerful mle command that allows user defined (log) likelihood functions to be maximized.

332



The threshold ARCH model replaces the variance equation (14.3) with

ht = δ + α1e
2
t−1 + γdt−1e

2
t−1 + β1ht−1 (14.7)

dt =

{
1 if et < 0
0 otherwise

(14.8)

The model’s parameters are estimated by finding the values that maximize its likelihood. Maximum
likelihood estimators are discussed in appendix C of Hill et al. (2011).

Gretl provides a fairly easy way to estimate via maximum likelihood that can be used for a wide
range of estimation problems (see chapter 16 for other examples). To use gretl’s mle command,
you must specify the log-likelihood function that is to be maximized. Any parameters contained in
the function must be given reasonable starting values for the routine to work properly. Parameters
can be declared and given starting values (using the scalar command).

Numerical optimization routines use the partial derivatives of the objective function to itera-
tively find the minimum or maximum of the function. If you want, you can specify the analytical
derivatives of the log-likelihood function with respect to each of the parameters in gretl; if ana-
lytical derivatives are not supplied, gretl tries to compute a numerical approximation. The actual
results you obtain will depend on many things, including whether analytical derivatives are used
and the starting values.

For the threshold GARCH model, open a new script file and type in the program that appears
in Figure 14.7.

Lines 3-7 of the script give starting values for the model’s parameters. This is essential and
picking good starting values increases the chances of success. You want to start the numerical
optimization at a feasible point. In other words, you cannot start the model with a negative
variance.

The second part of the script starting on line 9 contains the the algebraic expression of the
log-likelihood function. Line 9 ll = -0.5*(log(h) + (ê 2)/h) is what is called the kernel of the
normal probability density function. Recall that the errors of the ARCH model are assumed to be
normally distributed and this is reflected in the kernel.

Figure 14.5: ARCH test results
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Figure 14.6: Plot of the variances after estimating the GARCH(1,1) using the BrightenYourDay
returns. Right click on the graph to bring up the menu shown. Then choose edit to modify your
graph.

Next, we have to specify an initial guess for the variances of the model, and these are set to
the empirical variance of the series using var(r). Then, the errors are generated, squared, and the
threshold term is created using series e2m = e2 * (e<0); the expression (e<0) takes the value
of 1 for negative errors, e, and is zero otherwise. Then in line 14, the heteroskedastic function ht is
specified. The parameters of the model are given at the end using the params statement. This is
required since we are going to let gretl try to maximize this function using numerical derivatives.
The mle loop is ended with end mle. The output appears in Figure 14.8. The coefficient estimates
are very close to those printed in POE4, and the standard errors and corresponding t-ratios are
fairly similar as well. It is not unusual for estimates produced by different software to produce this
kind of variation when estimating nonlinear models numerically. Different pieces of software that
no doubt use different algorithms were used to numerically maximize the log-likelihood function.
What is amazing here is that gretl does such a fine job without having to specify the analytic
derivatives of the log-likelihood. Very impressive.

Gretl offers a new set of functions that estimate various kinds of GARCH models. Choose
Models¿Time-series¿GARCH variants from the pull-down menu to reveal the following dialog box:
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1 open "c:\Program Files\gretl\data\poe\BYD.gdt"

2

3 scalar mu = 0.5

4 scalar omega = .5

5 scalar alpha = 0.4

6 scalar delta = 0.1

7 scalar beta = 0

8

9 mle ll = -0.5*(log(h) + (e^2)/h)

10 series h = var(r)

11 series e = r - mu

12 series e2 = e^2

13 series e2m = e2 * (e<0)

14 series h = omega + alpha*e2(-1) + delta*e2m(-1) + beta*h(-1)

15 params mu omega alpha delta beta

16 end mle

Figure 14.7: Threshold GARCH script

Figure 14.8: Threshold ARCH results
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The GJR model type is actually equivalent to the TARCH discussed above. Estimating it with
the OPG covariance estimator yields very similar results to the ones in POE4. This module offers
several other variants of GARCH, but you will have to use the gretl documentation to be sure of
what you are estimating. For instance, the TARCH option is not the same as the one in POE4.

Model: GJR(1,1) [Glosten et al.] (Normal)*

Dependent variable: r

Sample: 1-500 (T = 500), VCV method: OPG

Conditional mean equation

coefficient std. error z p-value

-------------------------------------------------------

const 0.995450 0.0429312 23.19 6.15e-119 ***

Conditional variance equation

coefficient std. error z p-value

------------------------------------------------------
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omega 0.356106 0.0900902 3.953 7.73e-05 ***

alpha 0.476221 0.102614 4.641 3.47e-06 ***

gamma 0.256974 0.0873509 2.942 0.0033 ***

beta 0.286913 0.115495 2.484 0.0130 **

(alt. parametrization)

coefficient std. error z p-value

------------------------------------------------------

delta 0.356106 0.0900902 3.953 7.73e-05 ***

alpha 0.262915 0.0804612 3.268 0.0011 ***

gamma 0.489506 0.203966 2.400 0.0164 **

beta 0.286913 0.115495 2.484 0.0130 **

Llik: -730.58891 AIC: 1471.17783

BIC: 1492.25087 HQC: 1479.44686

You notice that α and γ refer to two different ways to parameterize the model. The alternative
refers to the TARCH model discussed in POE4.

14.4 Garch-in-Mean

The Garch-in-mean (MGARCH) model adds the equation’s variance to the regression function.
This allows the average value of the dependent variable to depend on volatility of the underlying
asset. In this way, more risk (volatility) can lead to higher average return. The equations are listed
below:

yt = β0 + θht + et (14.9)

ht = δ + α1e
2
t−1 + γdt−1e

2
t−1 + β1ht−1 (14.10)

Notice that in this formulation we left the threshold term in the model. The errors are normally
distributed with zero mean and variance ht.

The parameters of this model can be estimated using gretl, though the recursive nature of the
likelihood function makes it a bit more difficult. In the script below (Figure 14.9) you will notice
that we’ve defined a function to compute the log-likelihood.2 The function is called gim filter and
it contains eight arguments. The first argument is the time-series, y. Then, each of the parameters
is listed (mu, theta, delta, alpha, gam, and beta) as scalars. The final argument is a placeholder
for the variance, h, that is computed within the function.

Once the function is named and its arguments defined, you need to initiate series for the
variances and the errors; these have been called lh and le, respectively. The log-likelihood function

2Actually, gretl genius Professor ‘Jack’ Lucchetti wrote the function and I’m very grateful!
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is computed using a loop that runs from the second observation through the last. The length of
the series can be obtained using the saved result $nobs, which is assigned to the variable T.

Gretl’s loop syntax is very straightforward, though as we have shown in previous chapters,
there are several variations. In this example the loop is controlled using the special index variable,
i. In this case you specify starting and ending values for i, which is incremented by one each time
round the loop. In the MGARCH example the loop syntax looks like this:

loop for i=2..T --quiet

[Things to compute]

end loop

The first line start the loop using an index variable named i. The first value of i is set to 2. The
index i will increment by 1 until it reaches T, which has already been defined as being equal to
$nobs. The end loop statement tells gretl the point at which to return to the top of the loop and
advance the increment i. The --quiet option just reduces the amount of output that is written to
the screen.

Within the loop itself, you’ll want to lag the index and create an indicator variable that will
take the value of 1 when the news is bad (et−1 < 0). The next line squares the residual. lh[i] uses
the loop index to place the variance computation from the iteration into the ith row of lh. The
line that begins le[i]= works similarly for the errors of the mean equation.

The variances are collected in h and the residuals in le, the latter of which is returned when
the function is called. The function is closed using end function.

If this looks too complicated, you can simply highlight the code with your cursor, copy it using
Ctrl-C, and paste it into a gretl script file (or use the scripts provided with this book).

Once the function is defined, you need to initialize each parameter just as you did in TGARCH.
The series that will eventually hold the variances also must be initialized. The latter is done using
series h = NA, which creates the series h and fills it with missing values (NA). The missing values
for observations 2 through T are replaced as the function loops.

Next, the built-in mle command is issued and the normal density kernel is specified just as it
was in the TGARCH example. Then, use the predefined e=gim filter( ) function, putting in the
variable r for the time-series, the initialized parameters, and &h as a pointer to the variances that
will be computed within the function. Issue the params statement to identify the parameters and
have them print to the screen. Close the loop and run the script. The results appear in Figure
14.10 below. This is a difficult likelihood to maximize and gretl may take some time to compute
the estimates. Still, it is quite remarkable that we get so close using a free piece of software and
the numerical derivatives that it computes for us.
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14.5 Script

1 open "@gretldir\data\poe\returns.gdt"

2 set echo off

3

4 scatters nasdaq allords ftse nikkei

5 freq nasdaq --normal

6 freq allords --normal

7 freq ftse --normal

8 freq nikkei --normal

9

10 open "@gretldir\data\poe\byd.gdt"

11

12 # arch(1) Using built in command for arch

13 arch 1 r const

14

15 # garch(0,1)=arch(1)

16 garch 0 1 ; r const

17

18 # garch(1,1)

19 garch 1 1 ; r const

20

21 # LM test for arch

22 ols r const

23 modtest 1 --arch

24

25 # LM test manually

26 ols r const

27 series ehat = $uhat

28 series ehat2 = ehat*ehat

29 ols ehat2 const ehat2(-1)

30 scalar tr2 = $trsq

31

32 # plotting garch variances

33 garch 1 1 ; r const

34 series ht = $h

35 gnuplot ht time

36

37 # threshold arch

38 open "@gretldir\data\poe\byd.gdt"

39

40 scalar mu = 0.5

41 scalar omega = .5

42 scalar alpha = 0.4

43 scalar delta = 0.1

44 scalar beta = 0

45

46 mle ll = -0.5*(log(h) + (e^2)/h)

47 series h = var(r)

48 series e = r - mu
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49 series e2 = e^2

50 series e2m = e2 * (e<0)

51 series h = omega + alpha*e2(-1) + delta*e2m(-1) + beta*h(-1)

52 params mu omega alpha delta beta

53 end mle

54

55 # garch-in-mean -- the function

56 function gim_filter(series y, \

57 scalar mu, scalar theta, scalar delta, scalar alpha, \

58 scalar gam, scalar beta, series *h)

59

60 series lh = var(y)

61 series le = y - mu

62 scalar T = $nobs

63 loop for i=2..T --quiet

64 scalar ilag = $i - 1

65 scalar d = (le[ilag]<0)

66 scalar e2lag = le[ilag]^2

67 lh[i] = delta + alpha*e2lag + gam*e2lag*d + beta*lh[ilag]

68 le[i] = le[i] - theta*lh[i]

69 end loop

70

71 series h = lh

72 return series le

73

74 end function

75

76 # garch-in-mean

77 open "@gretldir\data\poe\byd.gdt"

78

79 scalar mu = 0.8

80 scalar gam = .1

81 scalar alpha = 0.4

82 scalar beta = 0

83 scalar delta = .5

84 scalar theta = 0.1

85

86 series h = NA

87

88 mle ll = -0.5*(log(2*pi) + log(h) + (e^2)/h)

89 e = gim_filter(r, mu, theta, delta, alpha, gam, beta, &h)

90 params mu theta delta alpha gam beta

91 end mle --robust
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1 function gim_filter(series y, \

2 scalar mu, scalar theta, scalar delta, scalar alpha, \

3 scalar gam, scalar beta, series *h)

4

5 series lh = var(y)

6 series le = y - mu

7 scalar T = $nobs

8 loop for i=2..T --quiet

9 scalar ilag = $i - 1

10 scalar d = (le[ilag]<0)

11 scalar e2lag = le[ilag]^2

12 lh[i] = delta + alpha*e2lag + gam*e2lag*d + beta*lh[ilag]

13 le[i] = le[i] - theta*lh[i]

14 end loop

15

16 series h = lh

17 return series le

18

19 end function

20

21 open "c:\Program Files\gretl\data\poe\BYD.gdt"

22

23 scalar mu = 0.8

24 scalar gam = .1

25 scalar alpha = 0.4

26 scalar beta = 0

27 scalar delta = .5

28 scalar theta = 0.1

29

30 series h = NA

31

32 mle ll = -0.5*(log(2*pi) + log(h) + (e^2)/h)

33 e = gim_filter(r, mu, theta, delta, alpha, gam, beta, &h)

34 params mu theta delta alpha gam beta

35 end mle --robust

Figure 14.9: The MGARCH script includes a function to compute the log-likelihood.
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Figure 14.10: Garch-in-mean results
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Chapter 15
Pooling Time-Series and Cross-Sectional Data

A panel of data consists of a group of cross-sectional units (people, firms, states or countries)
that are observed over time. Following Hill et al. (2011) we will denote the number of cross-sectional
units by N and the number of time periods we observe them as T.

In order to use the predefined procedures for estimating models using panel data in gretl you
have to first make sure that your data have been properly structured in the program. The dialog
boxes for assigning panel dataset structure using index variables is shown below:

To use this method, the data have to include variables that identify each individual and time
period. Select the Panel option using the radio button and gretl will then be able to work behind
the scenes to accurately account for the time and individual dimensions. The datasets that come
with this manual have already been setup this way, but if you are using your own data you’ll want
to to assign the proper dataset structure to it so that all of the appropriate panel data procedures
are available for use.

Gretl gives you easy access to a number of useful panel data sets via its database server.1 These
include the Penn World Table and the Barro and Lee (1996) data on international educational

1Your computer must have access to the internet to use this.
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attainment. These data can be installed using File>Databases>On database server from the
menu bar as shown in Figure 15.1 below. From here, select a database you want. In Figure 15.2

Figure 15.1: Accessing data from the database server via the pull-down menus

the entry for the Barro-Lee panel is highlighted. To its right, you are given information about
whether that dataset is installed on your computer. Double click on barro lee and a listing of
the series in this database will appear in a new window. From that window you can search for a
particular series, display observations, graph a series, or import it. This is a VERY useful utility,
both for teaching and research and I encourage you to explore what is available on the gretl server.
You will notice the 4 icons at the top of the window

The first icon from the left is the list series icon. Clicking it will bring up the list of series in a
particular database as shown below in Figure 15.3. The icon that looks like a floppy disk (remember
those?) will install the database. The clicking the next icon will show which databases are installed
on your computer, and the ‘X’ closes the window.

Figure 15 shows a portion of the series list window for the Barro and Lee data from the database
server. From here you can display the values contained in a series, plot the series, or add a series
to your dataset. Highlight the particular series you want and click on the appropriate icon at the
top.
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Figure 15.2: Installing a data from the database server via the pull-down menus

15.1 A Basic Model

The most general expression of linear regression models that have both time and unit dimensions
is seen in equation 15.1 below.

yit = β1it + β2itx2it + β3itx3it + eit (15.1)

where i = 1, 2, . . . , N and t = 1, 2, . . . , T . If we have a full set of time observations for every
individual then there will be NT total observations in the sample. The panel is said to be balanced
in this case. It is not unusual to have some missing time observations for one or more individuals.
When this happens, the total number of observation is less than NT and the panel is unbalanced.

The biggest problem with equation (15.1) is that even if the panel is complete (balanced), the
model contains 3 times as many parameters as observations (NT)! To be able to estimate the model,
some assumptions have to be made in order to reduce the number of parameters. One of the most
common assumptions is that the slopes are constant for each individual and every time period;
also, the intercepts vary only by individual. This model is shown in equation (15.2).

yit = β1i + β2x2it + β3x3it + eit (15.2)
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Figure 15.3: This shows a portion of the series list window for the Barro and Lee data from the
database server. From here you can display the values contained in a series, plot the series, or add
a series to your dataset. Highlight the particular series you want and click on the appropriate icon
at the top.

This specification, which includes N + 2 parameters, includes dummy variables that allow the
intercept to shift for each individual. By using such a model you are saying that over short time
periods there are no substantive changes in the regression function. Obviously, the longer your
time dimension, the more likely this assumption will be false.

In equation (15.2) the parameters that vary by individual are called individual fixed effects
and the model is referred to as one-way fixed effects. The model is suitable when the individuals
in the sample differ from one another in a way that does not vary over time. It is a useful way to
avoid unobserved differences among the individuals in your sample that would otherwise have to
be omitted from consideration. Remember, omitting relevant variables may cause least squares to
be biased and inconsistent; a one-way fixed effects model, which requires the use of panel data, can
be very useful in mitigating the bias associated with time invariant, unobservable effects.

If you have a longer panel and are concerned that the regression function is shifting over time,
you can add T − 1 time dummy variables to the model. The model becomes

yit = β1i + β1t + β2x2it + β3x3it + eit (15.3)

where either β1i or β1t have to be omitted in order to avoid perfect collinearity. This model contains
N + (T − 1) + 2 parameters which is generally fewer than the NT observations in the sample.
Equation (15.3) is called the two-way fixed effects model because it contains parameters that
will be estimated for each individual and each time period.

15.2 Estimation

Hill et al. (2011) provides a subset of National Longitudinal Survey which is conducted by
the U.S. Department of Labor. The database includes observations on women, who in 1968, were
between the ages of 14 and 24. It then follows them through time, recording various aspects of their
lives annually until 1973 and bi-annually afterwards. Our sample consists of 716 women observed
in 5 years (1982, 1983, 1985, 1987 and 1988). The panel is balanced and there are 3580 total
observations.
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Two model considered is found in equation (15.2) below.

ln(wage)it = β1i + β2educit + β3experit + β4exper2
it + β5tenureit

+β6tenure2
it + β7southit + β8unionit + β9blackit + eit (15.4)

The main command used to estimate models with panel data in gretl is panel. The panel
syntax is:

All of the basic panel data estimators are available. Fixed effects, two-way fixed effects, random
effects, between estimation and (not shown) pooled least squares.

The first model to be estimated is referred to as pooled least squares. Basically, it imposes the
restriction that β1i = β1 for all individuals. The individuals have the same intercepts. Applying
pooled least squares in a panel is restrictive in a number of ways. First, to estimate the model
using least squares violates at least one assumption that is used in the proof of the Gauss-Markov
theorem. It is almost certain that errors for an individual will be correlated. If Johnny isn’t the
sharpest marble in the bag, it is likely that his earnings given equivalent education, experience,
tenure and so on will be on the low side of average for each year. He has low ability and that affects
each year’s average wage similarly.

It is also possible that an individual may have smaller of larger earnings variance compared to
others in the sample. The solution to these specification issues is to use robust estimates of the
variance covariance matrix. Recall that least squares is consistent for the slopes and intercept (but
not efficient) when errors are correlated or heteroskedastic, but that this changes the nature of the
variance-covariance.

Robust covariances in panel data take into account the special nature of these data. Specifically
they account for autocorrelation within the observations on each individual and they allow the
variances for different individuals to vary. Since panel data have both a time-series and a cross-
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sectional dimension one might expect that, in general, robust estimation of the covariance matrix
would require handling both heteroskedasticity and autocorrelation (the HAC approach).

Gretl currently offers two robust covariance matrix estimators specifically for panel data. These
are available for models estimated via fixed effects, pooled OLS, and pooled two-stage least squares.
The default robust estimator is that suggested by Arellano (2003), which is HAC provided the panel
is of the “large n, small T” variety (that is, many units are observed in relatively few periods).

In cases where autocorrelation is not an issue, however, the estimator proposed by Beck and
Katz (1995) and discussed by Greene (2003, chapter 13) may be appropriate. This estimator takes
into account contemporaneous correlation across the units and heteroskedasticity by unit.

1 open "@gretldir\data\poe\nls_panel.gdt"

2 list xvars = const educ exper exper2 tenure tenure2 south black union

3 panel lwage xvars --pooled --robust

The first thing to notice is that even though the model is being estimated by least squares, the
panel command is used with the --pooled option. The --robust option requests the default
HCCME for panel data which is basically a special version of HAC (see section 9.6.1).

Pooled OLS, using 3580 observations
Included 716 cross-sectional units

Time-series length = 5
Dependent variable: lwage

Robust (HAC) standard errors

Coefficient Std. Error t-ratio p-value

const 0.476600 0.0844094 5.6463 0.0000
educ 0.0714488 0.00548952 13.0155 0.0000
exper 0.0556851 0.0112896 4.9324 0.0000
exper2 −0.00114754 0.000491577 −2.3344 0.0196
tenure 0.0149600 0.00711024 2.1040 0.0354
tenure2 −0.000486042 0.000409482 −1.1870 0.2353
south −0.106003 0.0270124 −3.9242 0.0001
black −0.116714 0.0280831 −4.1560 0.0000
union 0.132243 0.0270255 4.8933 0.0000

ρ̂ 0.811231 Durbin–Watson 0.337344

As long as omitted effects (e.g., individual differences) are uncorrelated with any of the regressors,
these estimates are consistent. If the individual differences are correlated with regressors, then you
can estimate the model’s parameters consistently using fixed effects.
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For comparison purposes, the pooled least squares results without cluster standard errors is
shown

Pooled OLS, using 3580 observations
Included 716 cross-sectional units

Time-series length = 5
Dependent variable: lwage

Coefficient Std. Error t-ratio p-value

const 0.476600 0.0561559 8.4871 0.0000
educ 0.0714488 0.00268939 26.5669 0.0000
exper 0.0556851 0.00860716 6.4696 0.0000
exper2 −0.00114754 0.000361287 −3.1763 0.0015
tenure 0.0149600 0.00440728 3.3944 0.0007
tenure2 −0.000486042 0.000257704 −1.8860 0.0594
south −0.106003 0.0142008 −7.4645 0.0000
black −0.116714 0.0157159 −7.4265 0.0000
union 0.132243 0.0149616 8.8388 0.0000

You can see that the estimates are the same those from the first set, but that the standard errors
are much smaller. Given that the data come from a panel, and likely to suffer both within group
autocorrelation and between group heteroskedasticity, the t-ratios could be highly misleading.

15.3 Fixed Effects

The model (15.2) is reestimated using fixed effects. Race and education do not change for
individuals in the sample, and their influences cannot be estimated using fixed effects.

1 open "c:\Program Files\gretl\data\poe\nels_panel.gdt"

2 list xvars = const educ exper exper2 tenure tenure2 south union black

3 panel lwage xvars --fixed-effects

4

5 xvars -= educ black

6 panel lwage xvars --fixed-effects

Even though the parameters for black and educ are not identified in this model, we included them
anyway in line 3 just to see how gretl handles this. The results are:

Fixed-effects, using 3580 observations
Included 716 cross-sectional units
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Time-series length = 5
Dependent variable: lwage

Coefficient Std. Error t-ratio p-value

const 1.45003 0.0401400 36.1244 0.0000
exper 0.0410832 0.00662001 6.2059 0.0000
exper2 −0.000409052 0.000273333 −1.4965 0.1346
tenure 0.0139089 0.00327784 4.2433 0.0000
tenure2 −0.000896227 0.000205860 −4.3536 0.0000
south −0.0163224 0.0361490 −0.4515 0.6516
union 0.0636972 0.0142538 4.4688 0.0000

Test for differing group intercepts –
Null hypothesis: The groups have a common intercept
Test statistic: F (715, 2858) = 15.145
with p-value = P (F (715, 2858) > 15.145) = 0

Cleverly, gretl has dropped educ and black from the model. It also reports a test of the hypothesis
that the individual differences are jointly equal to zero. Failure to reject this hypothesis would lead
to the pooled least squares estimates. The p-value is near zero and the equality of intercepts is
rejected.

In line 5, we’ve used a special gretl trick that can be used to remove items from a list. The
operator is -= and in this line the variables educ and black are removed from the xvars list. You
can add things to a list using +=.

As pointed out in POE4, when N is small you can create a set of dummy variables for the fixed
effects and estimate the model using least squares. This is equivalent to using the fixed effects
estimator. The nls panel10.gdt contains a subset of 10 individuals from the larger set of 716 and
we can use it to demonstrate some features of gretl and the equivalence of the two procedures.

The first step is to create a set of indicator variables for each individual.

1 open "@gretldir\data\poe\nls_panel10.gdt"

2 setobs id year --panel-vars

3 genr unitdum

4 list x = exper exper2 tenure tenure2 union

5 ols lwage x du_*

6 panel lwage x --fixed-effects

Since the dataset has been declared to be a panel, gretl knows that the id variable identifies
individuals. Hence, genr unitdum generates an indicator for each unique id. This is a special
circumstance where the genr command must be used instead of series. The indicator variables
are added to the dataset and are given names and variable ID numbers. The name of the first

350



indicator is du 1 which takes a 1 if individual has id=1 and 0 otherwise. The remaining individuals
also get an indicator variable, the last being du 10. The use of the wildcard * in line 5 reduces
the amount of typing. The * will pick up every variable that begins du . In this model du * is
equivalent to du 1 du 2 du 3 du 4 du 5 du 6 du 7 du 8 du 9 du 10.

The results from least squares dummy variable estimation and the equivalent fixed effects panel
appear below in Table 15.1. The advantage of using the panel fixed effects version is that when there

Model 1: Pooled OLS, using 50 observations

Included 10 cross-sectional units

Time-series length = 5

Dependent variable: lwage

coefficient std. error t-ratio p-value

--------------------------------------------------------

exper 0.237999 0.187757 1.268 0.2133

exper2 -0.00818817 0.00790482 -1.036 0.3074

tenure -0.0123500 0.0341433 -0.3617 0.7197

tenure2 0.00229615 0.00268846 0.8541 0.3989

union 0.113543 0.150863 0.7526 0.4567

du_1 0.151905 1.09675 0.1385 0.8906

du_2 0.186894 1.07148 0.1744 0.8625

du_3 -0.0630423 1.35092 -0.04667 0.9630

du_4 0.185626 1.34350 0.1382 0.8909

du_5 0.938987 1.09778 0.8554 0.3982

du_6 0.794485 1.11177 0.7146 0.4796

du_7 0.581199 1.23591 0.4703 0.6411

du_8 0.537925 1.09750 0.4901 0.6271

du_9 0.418334 1.08405 0.3859 0.7019

du_10 0.614558 1.09018 0.5637 0.5765

Model 2: Fixed-effects, using 50 observations

Included 10 cross-sectional units

Time-series length = 5

Dependent variable: lwage

coefficient std. error t-ratio p-value

-------------------------------------------------------

const 0.434687 1.14518 0.3796 0.7066

exper 0.237999 0.187757 1.268 0.2133

exper2 -0.00818817 0.00790482 -1.036 0.3074

tenure -0.0123500 0.0341433 -0.3617 0.7197

tenure2 0.00229615 0.00268846 0.8541 0.3989

union 0.113543 0.150863 0.7526 0.4567

Table 15.1: Comparison of fixed effects and least squares dummy variable estimators.

are many individuals, the output of the coefficients on the fixed effects themselves is suppressed.
When N is large, you are seldom interested in the values of these parameters anyway.
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15.4 Random Effects

The random effects estimator treats the individual differences as being randomly assigned to
the individuals. Rather than estimate them as parameters as we did in the fixed effects model, here
they are incorporated into the model’s error, which in a panel will have a specific structure. The
β1i term in equation 15.3 is modeled:

β1i = β̄1 + ui (15.5)

where the ui are random individual differences that are the same in each time period.

yit = β̄1 + β2x2it + β3x3it + (eit + ui) (15.6)

= β̄1 + β2x2it + β3x3it + vit (15.7)

where the combined error is
vit = ui + eit

the key property of the new error term is that it is homoskedastic

σ2
v = var (vit) = var (ui + eit) = σ2

u + σ2
e (15.8)

and serially correlated. For individual i, that covariance among his errors is

cov (vit, vis) = σ2
u

for i 6= s. The covariance between any two individuals is zero. One of the key advantages of the
random effects model is that parameters on time invariant regressors can be estimated. That means
that coefficients on black and educ can be estimated. Not so with fixed effects.

The parameter estimates are actually obtained through feasible generalized least squares. Equa-
tion 15.8 contains two parameters that describe the variances and covariances in the model. These
are estimated and used to perform FGLS. The process is described in some detail in POE4 and
will not be discussed in much detail here. However, when gretl estimates the model as specified,
it refers to the results as ‘GLS’.

The transformation that is used on the variables of the model is sometimes referred to as
quasi-demeaning. It is based on the computation of

θ = 1− σe√
Tσ2

u + σ2
e

(15.9)

This parameter θ is estimated from the data and the transformation are

y∗it = yit − θ ȳi, x∗1it = 1− θ, x∗2it = x2it − θ x̄2i, x∗3it = x3it − θ x̄3i (15.10)

The bars over the variables indicate means for the ith individual taken over the available time
periods. Gretl estimates θ and the variances. In the wage equation the estimate of σ2

e , σ
2
u and θ

are, respectively:
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’Within’ variance = 0.0380681

’Between’ variance = 0.115887

theta used for quasi-demeaning = 0.743683

These match the ones in POE4 exactly.

If the random individual effects are correlated with regressors, then the random effects estimator
will not be consistent. A statistical test of this proposition should be done whenever this estimator
is used in order to reduce the chance of model misspecification.

To estimate the parameters of this model in gretl is easy. Simply specify the model you want
to estimate and choose the random effects option.

1 open "@gretldir\data\poe\nls_panel.gdt"

2 setobs id year --panel-vars

3 list x1 = educ exper exper2 tenure tenure2 union black south

4 panel lwage x1 --random-effects

The results from FGLS estimation of the random effects model are shown in Table 15.3.

15.5 Between Estimator

Before discussing such tests, another estimator of the model’s parameters deserves mention.
The between estimator is also used in some circumstances. The between model is

ȳi = β̄1 + β2x̄2i + β3x̄3i + ui + ēi (15.11)

where the ȳi is the average value of y for individual i, and x̄ki is the average value of the kth regressor
for individual i. Essentially, the observation in each group (or individual) are averaged over time.
The parameters are then estimated by least squares. The variation between individuals is being
used to estimate parameters. The errors are uncorrelated across individuals and homoskedastic and
as long as individual differences are not correlated with regressors, the between estimator should
be consistent for the parameters.

To obtain the between estimates, simply use the --between option of panel as shown below:

1 open "@gretldir\data\poe\nls_panel.gdt"

2 setobs id year --panel-vars

3 list x1 = educ exper exper2 tenure tenure2 union black south

4 panel lwage x1 --between
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Dependent variable: lwage

(1) (2) (3) (4)
Within FGLS Between Pooled OLS

const 1.45∗∗ 0.534∗∗ 0.417∗∗ 0.477∗∗

(36.1) (6.68) (3.07) (5.65)

exper 0.0411∗∗ 0.0436∗∗ 0.0662∗∗ 0.0557∗∗

(6.21) (6.86) (2.82) (4.93)

exper2 −0.000409 −0.000561∗∗ −0.00161 −0.00115∗∗

(−1.50) (−2.14) (−1.61) (−2.33)

tenure 0.0139∗∗ 0.0142∗∗ 0.0166 0.0150∗∗

(4.24) (4.47) (1.36) (2.10)

tenure2 −0.000896∗∗ −0.000755∗∗ −0.000495 −0.000486
(−4.35) (−3.88) (−0.704) (−1.19)

south −0.0163 −0.0818∗∗ −0.105∗∗ −0.106∗∗

(−0.452) (−3.65) (−3.62) (−3.92)

union 0.0637∗∗ 0.0802∗∗ 0.156∗∗ 0.132∗∗

(4.47) (6.07) (4.39) (4.89)

educ 0.0733∗∗ 0.0708∗∗ 0.0714∗∗

(13.7) (13.1) (13.0)

black −0.117∗∗ −0.122∗∗ −0.117∗∗

(−3.86) (−3.84) (−4.16)

n 3580 3580 716 3580
R̄2 0.824 0.358 0.324
` 1.17e+003 −1.65e+003 −240 −1.63e+003

t-statistics in parentheses
* indicates significance at the 10 percent level
** indicates significance at the 5 percent level

Table 15.3: Fixed Effects (Within), Random Effects (FGLS), Between, and Pooled OLS with robust
standard errors.
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The results for each of the estimators, in tabular form, are in Table 15.3. Wisely, gretl has
omitted the R2 for the random effects model. Recall that R2 is only suitable for linear models
estimated using OLS, which is the case for one-way fixed effects. There is not a lot of variation
in these results, suggesting that perhaps the unobserved individual differences are not significantly
correlated with the model’s regressors.

15.6 Specification Tests

There are a couple of key specification tests one must do before relying on the between, random
effects, or pooled least squares estimators. For consistency all require that the unobserved hetero-
geneity be uncorrelated with the model’s regressors. This is tested using a version of a Hausman
test. The other test is for the presence of random effects. This test is an LM test that is sometimes
referred to as Breusch-Pagan, although there are tests of other hypotheses that go by the latter.

15.6.1 Breusch-Pagan Test

The Breusch Pagan test statistic is based on a Lagrange multiplier and is computed

LM =

√
NT

2 (T − 1)


N∑
i=1

(
T∑
t=1

êit

)2

N∑
i=1

T∑
t=1

ê2
it

− 1

 (15.12)

The null hypothesis is H0 : σ2
u = 0 against the alternative that H1 : σ2

u ≥ 0. Under the null,
LM ∼ N(0, 1) and the best idea would be to perform a one-sided test. Unfortunately, gretl and
most other pieces of software report LM2 and use the χ2

1 which makes the alternative H1 : σ2
u 6= 0.

The good news is that at least gretl computes LM2 by default whenever you estimate a ran-
dom effects model. Rejection of the null means that the individual (and in this model, random)
differences have variance. If you fail to reject then you probably want to use pooled least squares.

For the wage model the result is

Breusch-Pagan test -

Null hypothesis: Variance of the unit-specific error = 0

Asymptotic test statistic: Chi-square(1) = 3859.28

with p-value = 0

The statistic is 3859.28, which is very large and the no random effects hypothesis is rejected at the
5% level.
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15.6.2 Hausman Test

The Hausman test probes the consistency of the random effects estimator. The null hypothesis
is that these estimates are consistent–that is, that the requirement of orthogonality of the model’s
errors and the regressors is satisfied. The test is based on a measure, H, of the “distance” between
the fixed-effects and random-effects estimates, constructed such that under the null it follows the
χ2 distribution with degrees of freedom equal to the number of time-varying regressors, J . If the
value of H is “large” this suggests that the random effects estimator is not consistent and the
fixed-effects model is preferable.

There are two ways of calculating H, the matrix-difference method and the regression method.
The procedure for the matrix-difference method is this:

• Collect the fixed-effects estimates in a vector, β̃, and the corresponding random-effects esti-
mates in β̂, then form the difference vector (β̃ − β̂)

• Form the covariance matrix of the difference vector as var(β̃ − β̂) = var(β̃) − var(β̂) = Ψ.
The two variance covariance matrices are estimated using the sample variance matrices of the
fixed- and random-effects models respectively.

• Compute the quadratic form H = (β̃ − β̂)′Ψ̂−1(β̃ − β̂) ∼ χ2
J if the errors and regressors are

not correlated.

Given the relative efficiencies of β̃ and β̂, the matrix Ψ̂ “should be” positive definite, in which case
H is positive, but in finite samples this is not guaranteed and of course a negative χ2 value is not
admissible.

The regression method avoids this potential problem. The procedure is:

• Treat the random-effects model as the restricted model, and record its sum of squared residuals
as SSRr.

• Estimate via OLS an unrestricted model in which the dependent variable is quasi-demeaned
y and the regressors include both quasi-demeaned X (as in the RE model) and the demeaned
variants of all the time-varying variables (i.e. the fixed-effects regressors); record the sum of
squared residuals from this model as SSRu.

• Compute H = n(SSRr− SSRu)/SSRu, where n is the total number of observations used. On
this variant H cannot be negative, since adding additional regressors to the RE model cannot
raise the SSR. See chapter 16 of the Gretl Users Guide for more details.

By default gretl computes the Hausman test via the regression method, but it uses the matrix
difference method if you pass the option --matrix-diff to the panel command.

In the wage example, the Hausman test results are:
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Hausman test -

Null hypothesis: GLS estimates are consistent

Asymptotic test statistic: Chi-square(6) = 20.5231

with p-value = 0.00223382

The p-value is less than 5% which suggests that the random effects estimator is inconsistent. The
conclusion from these tests is that even though there is evidence of random effects (LM rejects),
the random effects are not independent of the regressors; the FGLS estimator will be inconsistent
and you’ll have to use the fixed effects estimator of a model that excludes education and race.

15.7 Seemingly Unrelated Regressions

The acronym SUR stands for seemingly unrelated regression equations. SUR is another
way of estimating panel data models that are long (large T ), but not wide (small N). More generally
though, it is used to estimate systems of equations that do not necessarily have any parameters
in common and whose regression functions do not appear to be related. In the SUR framework,
each firm in your sample is parametrically different; each firm has its own regression function, i.e.,
different intercept and slopes. Firms are not totally unrelated, however. In this model the firms
are linked by what is not included in the regression rather than by what is. The firms are thus
related by unobserved factors and SUR requires us to specify how these omitted factors are linked
in the system’s error structure.

In the basic SUR model, the errors are assumed to be homoscedastic and linearly independent
within each equation, or in our case, each firm. The error of each equation may have its own
variance. Most importantly, each equation (firm) is correlated with the others in the same time
period. The latter assumption is called contemporaneous correlation, and it is this property
that sets SUR apart from other models.

Now consider the investment model suggested by Grunfeld (1958). Considering investment
decisions of only two firms, General Electric (g) and Westinghouse (w), we have

invgt = β1g + β2gvgt + β3gkgt + egt (15.13)

invwt = β1w + β2wvwt + β3wkwt + ewt (15.14)

where t = 1, 2, . . . , 20, k is capital stock and v is value of the firm. In the context of the two
firm Grunfeld model in (15.13) and (15.14) this would mean that var[egt] = σ2

g ; var[ewt] = σ2
w;

cov(egt, ewt) = σgw for all time periods; and cov(eit, eis) = 0 for t 6= s for each firm, i = g, w. So
in the SUR model you essentially have to estimate a variance for each individual and a covariance
between each pair of individuals. These are then used to construct a feasible generalized least
squares estimator of the equations parameters.

Even though SUR requires a T and an N dimension, it is not specifically a panel technique.
This is because the equations in an SUR system may be modeling different behaviors for a single
individual rather than the same behavior for several individuals. As mentioned before, it is best used
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when panels are long and narrow since this gives you more observations to estimate the equations
variances and the cross equation covariances. More time observations reduces the sampling variation
associated with these estimates, which in turn improves the performance of the feasible generalized
least squares estimator. If your panel dataset has a very large number of individuals and only a
few years, then FGLS may not perform very well in a statistical sense. In the two firm Grunfeld
example, N=2 and T=20 so we needn’t worry about this warning too much, although the asymptotic
inferences are based on T (and not N) being infinite.

The two firm example is from Hill et al. (2011) who have provided the data in the grunfeld2.gdt
data set. The first model we estimate is the pooled model, estimated by least squares. This is done
in lines 2 and 3.

1 open "@gretldir\data\poe\grunfeld2.gdt"

2 list xvars = const v k

3 ols inv xvars

4 modeltab add

The second model estimates the investment equations for each firm separately. There are a
number of ways to do this and several are explored below. The first method uses interaction terms
(see chapter 7) to estimate the two equations. Basically, an indicator variable is interacted with
each regressor, including the constant. The two firm model would be:

inv = β1 + β2k + β3v + β4d+ β5(d× k) + β6(d× v) + e (15.15)

where d is the firm indicator. In the script the interactions are created using a loop. In this way,
you could automate the procedure for any number of explanatory variables. Line 5 generates the
set of indicators for the units of the panel. There are only two units in this panel, so only two
indicators are created named du 1 and du 2. An empty list called Z is created. Z will be used to
hold the variables created in the loop. The foreach loop is used in this example. The index is
called i and it will loop over each element of the variable list, X. In line 8 the interaction term is
assigned to a series. The name will be d$i, which as the loop proceeds will be dvarname . The
next line creates the variable list, adding the new interaction at each iteration. Finally, the model
is estimated using the original regressors.

5 series unitdum

6 list dZ = null

7 loop foreach i X

8 series d$i = du_2 * $i

9 list dZ = dZ d$i

10 endloop

11 ols inv X dZ

12 modeltab add

13 modeltab show

The results appear below.
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Pooled OLS estimates

Dependent variable: inv

(1) (2)

const 17.87** -9.956

(7.024) (23.63)

v 0.01519** 0.02655**

(0.006196) (0.01172)

k 0.1436** 0.1517**

(0.01860) (0.01936)

dconst 9.447

(28.81)

dv 0.02634

(0.03435)

dk -0.05929

(0.1169)

n 40 40

Adj. R**2 0.7995 0.8025

lnL -177.3 -175.3

Standard errors in parentheses

* indicates significance at the 10 percent level

** indicates significance at the 5 percent level

They match those in Table 13.12 of POE4. One of the disadvantages of estimating the separate
equations in this way is that it assumes that the error variances of the two firms are equal. If this
is not true, then standard errors and t-ratios will not be valid. You could use a robust covariance
estimator or estimate the model via groupwise heteroskedasticity. Also, the use of interaction terms
complicates the interpretation of the coefficients a bit. The coefficients on the interaction terms
are measuring the difference in effect between the interacted group and the reference group (GE).
To get the marginal effect of an increase in k on average investment for Westinghouse we would
add β2 + β5. The computation based on the least squares estimates is 0.1517− 0.0593 = 0.0924.

The next method of estimating the equations separately is better. It allows the variances of
each subset to differ. The gretl script to estimate the two firm model using this data

1 wls du_1 inv v k const

2 wls du_2 inv v k const

This uses the trick explored earlier where observations can be included or excluded when weighted
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by 1 or 0, respectively. So, each of the firm indicator variables could be used to separate out that
firm’s observations. This allows use of wls to easily estimate the model. In fact, this could be
automated for an arbitrary number of firms by putting it into a loop.

1 loop foreach i du_*

2 wls $i inv v k const

3 endloop

Notice that the wildcard du * is used again. The results from this exercise were added to the model
table and appears below:

Dependent variable: inv

(W) (GE) (GE) (W)

Pooled OLS Pooled OLS WLS WLS

const 17.87** -9.956 -9.956 -0.5094

(7.024) (23.63) (31.37) (8.015)

v 0.01519** 0.02655** 0.02655 0.05289**

(0.006196) (0.01172) (0.01557) (0.01571)

k 0.1436** 0.1517** 0.1517** 0.09241

(0.01860) (0.01936) (0.02570) (0.05610)

dconst 9.447

(28.81)

dv 0.02634

(0.03435)

dk -0.05929

(0.1169)

n 40 40 20 20

Adj. R**2 0.7995 0.8025 0.6706 0.7144

lnL -177.3 -175.3 -93.31 -73.23

Standard errors in parentheses

* indicates significance at the 10 percent level

** indicates significance at the 5 percent level

Notice that the coefficients are actually equivalent in the two sets of regressions. The GE equations
are put side-by-side to ease the comparison. The standard errors differ, as expected. The Westing-
house coefficients estimated by WLS are also the same as the ones from the pooled model, though
it is less obvious. Recall that the implied marginal effect of a change in k on average investment
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was estimated to be 0.1517 − 0.0593 = 0.0924, which matches the directly estimated result in the
last column.

Collecting the results for large N would be somewhat of a problem, but remember, up to 6
models can be added to a model table in gretl.

Next, we will estimate the model using SUR via the system command. To do this, some
rearranging of the data is required. The system estimator is gretl handles many different cases,
but the observations have to be ordered in a particular way in order for it to work. Since each
equation in a system may be estimated separately, each firm’s observations must be given unique
names and the observations must be aligned by time period. The grunfeld2.gdt has the data for
each firm stacked on top of one another, making it 40×3. We need it to be 20×6. Ordinarily with
SUR this is not a problem. Recall that SUR is for large T , small N models and the equations may
not even contain the same variables. In our case, the data were ordered for use as panel and not
as a system. This is easy enough to rectify.

The easiest way to do this in gretl is to use matrices. The data series will be converted to a
matrix, reshaped, and then reloaded as data series. Unique names will have to be given the new
series and you’ll have to keep up with what gets placed where. It is slightly clumsy, but easy enough
to do.

1 open "@gretldir\data\poe\grunfeld2.gdt"

2 list X = inv v k

3 matrix dat = { X }

4 matrix Y = mshape(dat,20,6)

5 colnames(Y,"ge_i w_i ge_v w_v ge_k w_k ")

In line 1 the data are opened and in line 2 the variable list created. In line 3 the data series listed in
X are converted to a matrix called dat. Then, the matrix Y is converted from 40× 3 to 20× 6. The
mshape(matrix,rows,columns ) command essentially takes whatever is in the matrix and converts
it to the new dimension. Elements are read from X and written to the target in column-major order.
Thus, y=mshape(X,2,4)

X =


1 2
3 4
5 6
7 8

 =⇒
(

1 2 5 6
3 4 7 8

= y

)
(15.16)

Finally, the proper column names were reassigned using the colnames command.

Next, the matrix needs to reenter gretl as a dataset. Begin by creating a new, empty dataset
that contains the proper number of observations (T=20) using the nulldata command. You must
use the --preserve option, otherwise the contents of your matrix will be deleted when you create
the empty dataset!
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6 nulldata 20 --preserve

7 list v = null

8 scalar n = cols(Y)

9 loop for i=1..n

10 series v$i = Y[,i]

11 endloop

12 rename v1 inv_g

13 rename v2 inv_w

An empty list called v is created in line 7. A scalar n is created that contains the number of columns
of Y and then a loop from 1 to n is initiated. Inside the loop is a single statement that will assign
each column of the matrix to a separate series. The series name will begin with v and the column
number will be appended. You will end up with variables v1, v2, to v6. The choice of variable
names is not informative. You need to verify that the new variables correspond to the correct
variables from the original dataset. To help keep the regressions straight, the dependent variables
were renamed. A clever programmer could probably figure out how to do this automatically, but
for now let’s move on.

Before pushing on to estimation of the SUR, there is one more way to estimate the model
equation by equation using least squares. This can be done within the same system framework as
SUR.

It consists of a block of code that starts with the system name="Grunfeld" line. One advantage
naming your system is that results are attached to it, stored into the session, and are available for
further analysis. For instance, with a saved set of equations you can impose restrictions on a single
equation in the model or impose restrictions across equations.

1 system name="Grunfeld"

2 equation inv_g const v_g k_g

3 equation inv_w const v_w k_w

4 end system

5 estimate "Grunfeld" method=ols

Following the system name, each equation is put on a separate line. Notice that each equation
is identified using equation which is followed by the dependent variable and then the independent
variables which includes a constant. Close the system block using the end system command. The
system is then estimated using the line estimate "Grunfeld" method=ols. Executing this script
yields

Equation system, Grunfeld
Estimator: Ordinary Least Squares

Equation 1: OLS, using observations 1–20
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Dependent variable: inv g

Coefficient Std. Error t-ratio p-value

const −9.95631 31.3742 −0.3173 0.7548
v g 0.0265512 0.0155661 1.7057 0.1063
k g 0.151694 0.0257041 5.9015 0.0000

Mean dependent var 102.2900 S.D. dependent var 48.58450
Sum squared resid 13216.59 S.E. of regression 27.88272

Equation 2: OLS, using observations 1–20
Dependent variable: inv w

Coefficient Std. Error t-ratio p-value

const −0.509390 8.01529 −0.0636 0.9501
v w 0.0528941 0.0157065 3.3677 0.0037
k w 0.0924065 0.0560990 1.6472 0.1179

Mean dependent var 42.89150 S.D. dependent var 19.11019
Sum squared resid 1773.234 S.E. of regression 10.21312

Cross-equation VCV for residuals
(correlations above the diagonal)

660.83 (0.729)
176.45 88.662

log determinant = 10.2203

Breusch–Pagan test for diagonal covariance matrix:
χ2(1) = 10.6278 [0.0011]

Naming the system has many advantages. First, the specified model is saved to a session and
an icon is added to the session icon view as shown below in Figure 15.4. Clicking on the model
icon named “Grunfeld” opens the dialog shown in Figure 15.5. Do not worry about the code that
appears in the box. It is not editable and is generated by gretl. You do have some choice as to
how the particular system is estimated and whether iterations should be performed. These choices
appear in Figure 15.6. As you can see, you may choose sur, ols, tsls, wls, and others. To
reestimated a model, choose an estimator, and click OK.

A test can be used to determine whether there is sufficient contemporaneous correlation. The
test is simple to do from the standard output or you can rely on gretl’s automatic result. Recall
from POE4 that the test is based on the squared correlation computed from least squares estimation
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Figure 15.4: The session view window

of the system.

r2
g,w =

σ̂2
g,w

σ̂2
gσ̂2

w

(15.17)

A little caution is required here. The squared correlations are must be computed based on the
residuals from the least squares estimator, not SUR. Since we’ve used the system command to
estimate the model by OLS, the results above can be used directly.

The resulting cross-equation variance covariance for the residuals is

Cross-equation VCV for residuals

(correlations above the diagonal)

777.45 (0.729)

207.59 104.31

Then you compute

r2
ge,w =

207.592

(777.45)(104.31)
= 0.729 (15.18)

Gretl produces this number for you in the upper diagonal of the matrix and places it in parentheses.
Using the given computation the test statistic is

LM = Tr2
g,w d−→χ

2
(1) (15.19)

provided the null hypothesis of no correlation is true. The arithmetic is (20 ∗ 0.729) = 14.58.

Fortunately, gretl also produces this statistic as part of the standard output from system
estimation by method=ols. It is referred to in the output as “Breusch–Pagan test for diagonal
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Figure 15.5: The system model choice dialog box. This system will be estimated by least squares.
To reestimate using another model, click on the down arrow to reveal a set of estimator choices.

Figure 15.6: The estimator choices available from the system dialog.

covariance matrix” and its distributed χ2(1) if there is no contemporaneous correlation among firms.
The statistic is = 10.6278 with a p-value of 0.0011. The two firms appear to be contemporaneously
correlated and SUR estimation may be more efficient.

To perform SUR, the only change is to rename the system (if desired) and to change method=ols
to method=sur.

1 system name="Grunfeld_sur"

2 equation inv_g const v_g k_g

3 equation inv_w const v_w k_w

4 end system

5 estimate "Grunfeld_sur" method=sur

The results appear below:
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Equation system, Seemingly Unrelated Regressions

Equation 1: SUR, using observations 1–20
Dependent variable: inv g

Coefficient Std. Error t-ratio p-value

const −27.7193 27.0328 −1.0254 0.3174
v g 0.0383102 0.0132901 2.8826 0.0092
k g 0.139036 0.0230356 6.0357 0.0000

Mean dependent var 102.2900 S.D. dependent var 48.58450
Sum squared resid 13788.38 S.E. of regression 26.25679

Equation 2: SUR, using observations 1–20
Dependent variable: inv w

Coefficient Std. Error t-ratio p-value

const −1.25199 6.95635 −0.1800 0.8590
v w 0.0576298 0.0134110 4.2972 0.0004
k w 0.0639781 0.0489010 1.3083 0.2056

Mean dependent var 42.89150 S.D. dependent var 19.11019
Sum squared resid 1801.301 S.E. of regression 9.490260

Once the system has been estimated, the restrict command can be used to impose the cross-
equation restrictions on a system of equations that has been previously defined and named. The
set of restrictions is starts with the keyword restrict and terminates with end restrict. Some
additional details and examples of how to use the restrict command are given in section 6.1.
Each restriction in the set is expressed as an equation. Put the linear combination of parameters
to be tested on the left-hand-side of the equality and a numeric value on the right. Parameters are
referenced using b[i,j] where i refers to the equation number in the system, and j the parameter
number. So, to equate the intercepts in equations one and two use the statement

b[1, 1]− b[2, 1] = 0 (15.20)

The full syntax for testing the full set of cross-equation restrictions

β1g = β1w, β2g = β2w, β3g = β3w (15.21)

on equations (15.13) and (15.14) is shown

1 restrict "Grunfeld_sur"

2 b[1,1]-b[2,1]=0
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3 b[1,2]-b[2,2]=0

4 b[1,3]-b[2,3]=0

5 end restrict

6 estimate "Grunfeld_sur" method=sur --geomean

Gretl estimates the two equation SUR subject to the restrictions.

Equation system, Grunfeld sur
Estimator: Seemingly Unrelated Regressions

Equation 1: SUR, using observations 1–20
Dependent variable: inv g

Coefficient Std. Error t-ratio p-value

const 19.1578 2.54265 7.5346 0.0000
v g 0.0226805 0.00502650 4.5122 0.0002
k g 0.109053 0.0190478 5.7252 0.0000

Mean dependent var 102.2900 S.D. dependent var 48.58450
Sum squared resid 15923.76 S.E. of regression 28.21681

Equation 2: SUR, using observations 1–20
Dependent variable: inv w

Coefficient Std. Error t-ratio p-value

const 19.1578 2.54265 7.5346 0.0000
v w 0.0226805 0.00502650 4.5122 0.0002
k w 0.109053 0.0190478 5.7252 0.0000

Notice that the intercept and slopes are equal across firms now. The restrictions are imposed. It also
computes an F -statistic of the null hypothesis that the restrictions are true versus the alternative
that at least one of them is not true. It returns the computed F -statistic and its p-value. A p-value
less than the desired level of significance leads to a rejection of the hypothesis.

The gretl output from this test procedure is

F test for the specified restrictions:

F(3,34) = 3.43793 [0.0275]

which does not match the result in the text.2 At the 5% level of significance, the equality of the
two equations is rejected.

2Not sure why. To be determined.
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15.8 Script

1 set echo off

2 open "@gretldir\data\poe\nls_panel.gdt"

3 # pooled least squares

4 list xvars = const educ exper exper2 tenure tenure2 south union black

5 panel lwage xvars --pooled --robust

6

7 # fixed effects

8 xvars -= const

9 panel lwage xvars const --fixed-effects

10

11 # fixed effects and lsdv

12 genr unitdum

13 xvars -= educ black

14 ols lwage xvars du_*

15 panel lwage xvars const --fixed-effects

16

17 # fe, re, between, and pooled comparison

18 open "@gretldir\data\poe\nls_panel.gdt"

19 list xvars = educ exper exper2 tenure tenure2 south union black

20 panel lwage xvars const --fixed-effects

21 modeltab add

22 panel lwage xvars const --random-effects

23 modeltab add

24 panel lwage xvars const --between

25 modeltab add

26 panel lwage xvars const --pooled --robust

27 modeltab add

28 modeltab show

29 modeltab clear

30

31 # Grunfeld example -- ols

32 open "@gretldir\data\poe\grunfeld2.gdt"

33 list X = const v k

34 ols inv X

35 modeltab add

36 genr unitdum

37 list dZ = null

38 loop foreach i X

39 series d$i = du_2 * $i

40 list dZ = dZ d$i

41 endloop

42 ols inv X dZ

43 modeltab add

44 modeltab show

45

46 # using wls to estimate each equation separately

47 wls du_1 inv v k const

48 modeltab add
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49 wls du_2 inv v k const

50 modeltab add

51 modeltab show

52

53 # repeat using wls with a loop

54 loop foreach i du_*

55 wls $i inv v k const

56 endloop

57

58 # sur--reshaping the data

59 open "@gretldir\data\poe\grunfeld2.gdt"

60 list X = inv v k

61 matrix dat = { X }

62 matrix Y = mshape(dat,20,6)

63 colnames(Y,"ge_i w_i ge_v w_v ge_k w_k ")

64

65 nulldata 20 --preserve

66 list v = null

67 scalar n = cols(Y)

68 loop for i=1..n

69 series v$i = Y[,i]

70 endloop

71

72 # rename the variables to improve output

73 rename v1 inv_g

74 rename v2 inv_w

75 rename v3 v_g

76 rename v4 v_w

77 rename v5 k_g

78 rename v6 k_w

79 setinfo inv_g -d "Investment GE" -n ""

80 setinfo inv_w -d "Investment Westinghouse" -n ""

81

82 # actual system estimation -- ols

83 system name="Grunfeld"

84 equation inv_g const v_g k_g

85 equation inv_w const v_w k_w

86 end system

87 estimate "Grunfeld" method=ols

88

89 # actual system estimation -- sur

90 system name="Grunfeld_sur"

91 equation inv_g const v_g k_g

92 equation inv_w const v_w k_w

93 end system

94 estimate "Grunfeld_sur" method=sur

95

96 # restricting sur

97 restrict "Grunfeld_sur"

98 b[1,1]-b[2,1]=0

99 b[1,2]-b[2,2]=0
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100 b[1,3]-b[2,3]=0

101 end restrict

102 estimate "Grunfeld_sur" method=sur --geomean
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Chapter 16
Qualitative and Limited Dependent Variable
Models

16.1 Probit

There are many things in economics that cannot be meaningfully quantified. How you vote in an
election, whether you go to graduate school, whether you work for pay, or what college major you
choose has no natural way of being quantified. Each of these expresses a quality or condition that
you possess. Models of how these decisions are determined by other variables are called qualitative
choice or qualitative variable models.

In a binary choice model, the decision you wish to model has only two possible outcomes.
You assign artificial numbers to each outcome so that you can do further analysis. In a binary
choice model it is conventional to assign ‘1’ to the variable if it possesses a particular quality or if
a condition exists and ‘0’ otherwise. Thus, your dependent variable is

yi =

{
1 if individual i has the quality
0 if not.

The probit statistical model expresses the probability p that yi = 1 as a function of your indepen-
dent variables.

P [(yi|xi2, xi3) = 1] = Φ(β1 + β2xi2 + β3xi3) (16.1)

where Φ is the cumulative normal probability distribution (cdf). The argument inside Φ is linear
in the parameters and is called the index function. Φ maps values of the index function to the
0 to 1 interval. Estimating this model using maximum likelihood is very simple since the MLE of
the probit model is already programmed into gretl.

The syntax for a script is the same as for linear regression except you use the probit command
in place of ols. The following script estimates how the difference in travel time between bus and
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auto affects the probability of driving a car. The dependent variable (auto) is equal to 1 if travel
is by car, and dtime is (bus time - auto time).

1 open "@gretldir\data\poe\transport.gdt"

2 probit auto const dtime

3 scalar i_20 = $coeff(const)+$coeff(dtime)*20

4 scalar p_30 = cnorm($coeff(const)+$coeff(dtime)*30)

The third line computes the predicted value of the index (β1 +β2dtime) when dtime = 20 using the
estimates from the probit MLE. The last line computes the estimated probability of driving, given
that it takes 30 minutes longer to ride the bus. This computation requires cnorm, which computes
the cumulative normal cdf, Φ().

The results are:

Probit estimates using the 21 observations 1–21
Dependent variable: auto

Coefficient Std. Error z-stat Slope∗

const −0.0644342 0.399244 −0.1614 .
dtime 0.0299989 0.0102867 2.9163 0.0119068

Mean dependent var 0.476190 S.D. dependent var 0.396907
McFadden R2 0.575761 Adjusted R2 0.438136
Log-likelihood −6.165158 Akaike criterion 16.33032
Schwarz criterion 18.41936 Hannan–Quinn 16.78369

∗Evaluated at the mean

Number of cases ‘correctly predicted’ = 19 (90.5 percent)
Likelihood ratio test: χ2(1) = 16.734 [0.0000]

i_20 = 0.535545

p_30 = 0.798292

Of course, you can also access the probit estimator from the pull-down menus using Model>Nonlinear

models>Probit>Binary. The dialog box (Figure 16.1) looks very similar to the one for linear re-
gression, except it gives you some additional options e.g., to view the details of the iterations.
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Figure 16.1: Use Model>Nonlinear models>Probit>Binary to open the Probit model’s dialog box.

Several other statistics are computed. They include a measure of fit (McFadden’s pseudo-R2),
the value of the standard normal pdf φ(β̂T x̄) at mean of independent variables, and a test statistic
for the null hypothesis that the coefficients on the independent variables (but not the constant) are
jointly zero; this corresponds to the overall F -statistic of regression significance in chapter 6.

16.1.1 Marginal Effects and Average Marginal Effects

The marginal effect of a change in xij on Pi is

∂Pi
∂xij

= φ(β1 + β2xi2 + β3xi3)βj (16.2)

where φ() is the standard normal probability density. That means that the marginal effect depends
on all of the parameters of the model as well as the values of the variables themselves. In the travel
example, suppose we want to estimate the marginal effect of increasing public transportation time.
Given that travel via public transport currently takes 20 (dtime=2) minutes longer than auto, the
marginal effect would be

∂Pi
∂dtimei

= φ(β̂1 + β̂2dtimei) = φ(−0.0644 + 0.3000× 2)(0.3000) = 0.1037 (16.3)

This computation is easily done in a script:
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1 open "@gretldir\data\poe\transport.gdt"

2 probit auto const dtime

3 scalar i_20 = $coeff(const)+$coeff(dtime)*2

4 scalar d_20 = dnorm(i_20)*$coeff(dtime)

5 printf "\nThe value of the index for dtime=20 is %8.4f\n\

6 The probability of choosing auto is %8.4f \n", i_20, d_20

which produces

The value of the index for dtime=20 is 0.5355

The probability of choosing auto is 0.1037

Rather than evaluate marginal effects at specific points in the data, some authors report average
marginal effects. The average marginal effect of a change in xij on Pi is

̂AMEj =
1

N

N∑
i=1

φ(β̂1 + β̂2xi2 + β̂3xi3)β̂j (16.4)

With these, you compute the marginal effect at each point in your dataset and average them.

There is one other way that people use to estimate marginal effects, and that is to evaluate the
marginal effect at the means of the data. That would be

M̂Ej = φ(β̂1 + β̂2x̄2 + β̂3x̄3)β̂j (16.5)

These are computed and reported by gretl and labeled ‘slope’ in the output. The biggest dis-
advantage of using these is that the average values of the variables may not be representative of
anyone in your sample. This is especially true if one or more of the variables is an indicator. For
this reason, I generally favor the use of the AME, unless there are specific cases that I want to
consider. You can actually get a pretty good idea of what the (average) marginal effects will be by
looking at the estimated slopes from a linear probability model.

Below is a simple script to compute the average marginal effects (AME) for the travel example.
The model has only one regressor and a constant. We will compute the AME for an increase in
travel time.

1 series me = dnorm($coeff(const)+$coeff(dtime)*dtime)*$coeff(dtime)

2 scalar amf = mean(me)

3 summary me --simple

The first line computes a new variable, me, that holds the marginal effect for each individual.
The mean function, which takes the average of a series) finds the average marginal effect. The
simple summary statistis also reveal the AME and give us an idea of how variable it is (minimum,
maximum, and standard deviation). The result is:
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Summary statistics, using the observations 1 - 21

for the variable ’me’ (21 valid observations)

Mean 0.048407

Minimum 0.0024738

Maximum 0.11526

Standard deviation 0.036457

The average marginal effect in the sample is 0.0484. The smallest is 0.0024738 and the largest
0.11526. That is a fairly large range, actually.

To facilitate the computation of AME, I have written a function that will compute them for
an arbitrary probit model. The function is called ame and it needs two pieces of information to
compute the marginal effects. First, it needs the parameters from estimation of probit. Then, it
needs the list of explanatory variables that are in the model. The function will print the average
marginal effects and output a N ×K matrix that contains each of the marginal effects for every
observation and variable. This matrix is handy to have for further computations.

1 function matrix ame(matrix *param, list x)

2 matrix p = lincomb(x, param)

3 matrix me_matrix = dnorm(p)*param’

4 matrix amfx = meanc(me_matrix)

5 printf "\nThe average marginal effects are %8.4f \n", amfx

6 return me_matrix

7 end function

The function is quite simple, but uses what is referred to as a pointer. The *param is the pointer.
This is technically not necessary, but saves some computer overhead. It also requires special
handling when the function is called. More on that detail in a moment.

The second line uses the lincomb function, which takes a linear combination of its arguments.
The first argument should be a list that contains the desired series, the second argument is a
vector of coefficients to use with the series. The result can be a series, or in this case, a matrix.
So for instance, suppose X is T ×K and contains variables and β is K × 1 parameters. The linear
combination Xβ is T × 1. Line 3 computes the matrix that contains all of the marginal effects.
The meanc function in line 4 computes the column means of the matrix (AME), which gets printed
in line 5. The entire matrix of marginal effects is returned when the function is called.

Once the function is loaded (highlight it and run it) it is ready to be used. Create the variable
list, estimate the probit model, and save the coefficients using matrix coef = $coeff. Given the
variable list and the parameter estimates, you can call the function as in line 4 of the script below.

1 list x = const dtime

2 probit auto x
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3 matrix coef = $coeff

4 ame(&coef, x)

Since I used a pointer to identify the parameter vector in the function (matrix *param), you
have to use the ampersand (&) in front of the parameter matrix being passed to the function, i.e.,
ame(&coef, x). Thus, pointers require a pair of markers, * and &, when used. The * tells gretl to
use the memory address of what follows rather than make a copy of the object to pass through the
function. The & tells gretl to go get that object from the memory address when called. Basically,
the use of pointers means that copies of objects do not have to be made, and it also means that
whatever is getting passed around in this fashion can be modified in the process. That may not
sound like a great idea, but it can make your programs more modular. See section 10.4 of the
Gretl Users Guide for more details.

The use of ame(&coef, x) in line 4 will print the AME to the screen. If you want to save the
matrix output from the function, use matrix me probit = ame(&coef, x) and the result will be
saved to me probit.

The result for the travel time example is:

The average marginal effects are -0.0104 0.0484

The average marginal effect of a 10 minute (dtime = 1) increase in travel time is 0.0484.

16.1.2 Standard Errors and Confidence Intervals for Marginal Effects

Obtaining confidence intervals for the marginal effects (and the AME) is relatively straightfor-
ward as well. To estimate the standard error of the marginal effect, we resort to the Delta method.
This method of finding the variance of functions of parameters was discussed in section 5.3.2. You
may want to take a look at this section again (page 99), before proceeding.

Using the Delta method means taking analytic or numerical derivatives of the marginal effect or
AME to be used in the computation of the standard error of the AME. The analytic derivatives are
not that hard to take, but why bother when numerical ones are available. This is the approach taken
in commercial software that includes the ability to estimate nonlinear combinations of parameters
and their standard errors.

The function in gretl that takes numeric derivatives is fdjac, which stands for first difference
Jacobian. To use the Delta method, you want to take the partial derivatives of a function with
respect to the model’s parameters. Not surprisingly, the fdjac function requires two arguments: a
function and a vector of parameters. To illustrate its use, consider the new function for marginal
effects below.
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1 function matrix me1(matrix *param, list x, scalar *q)

2 matrix p = lincomb(x, param)

3 return dnorm(p)*param[q]

4 end function

It is very similar to the ame function, except in this instance we have added an extra scalar input.
The scalar *q will be used to locate the desired parameter in the model. So, if we want to compute
the marginal effect for x2, and list x = const x2 x3, then q will be set to 2; x2 is the second
variable in the list. Rather than return all of the marginal effects, this function only returns the
set for a given variable. This makes using fdjac easier to use and to explain.

Once the function is defined, you are ready to use fdjac in the Delta method.

1 open "@gretldir\data\poe\transport.gdt"

2 list x = const dtime

3 probit auto x

4 matrix coef = $coeff

5 matrix covmat = $vcv

6 scalar q = 2

7 series mfx = me1(&coef, x, &q)

8 matrix amfx = mean(mfx)

9 matrix jac = fdjac(coef, me1(&coef, x, &q))

10 matrix mjac = meanc(jac)

11 matrix variance = qform(mjac,covmat)

12 matrix se = sqrt(variance)

13 printf "\nThe average marginal effect of dtime = %6.4f with\

14 standard error %6.4f \n", amfx, se

15

16 scalar ub = amfx + critical(z,0.025)*se

17 scalar lb = amfx + critical(z,0.025)*se

18 printf "\nThe 95%% confidence interval for the AME is (%6.4f, %6.4f) \n",lb,ub

The first six lines of the script are standard. Open the data, create the variable list, estimate the
model by probit, create the matrix to hold the coefficients, create the matrix to hold the estimated
covariance matrix, and choose the scalar q that identifies the location of the desired marginal effect
in the variable list, which in this case is the second one.

Lines 7 and 8 get the sample marginal effects for the second coefficient and their mean. The
next line takes the derivative of the marginal effect function using fdjac. Since we used pointers
in the function, the ampersand needs to precede the coefficient and scalar inputs.

As shown in the appendix of chapter 16 in POE4, taking the average of the derivatives is what
is needed for the variance calculation. In line 11 the quadratic form is taken. Basically, qform(x,A)
computes xAxT ; this is exactly what is involved in the variance expression in equation (5.10). The
square root provides the standard error of the AME. The average marginal effect = 0.0484 with
standard error 0.0034. The 95% confidence interval for the AME is (0.0413, 0.0556).
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Finally, we can automate the evaluation of marginal effects at certain points. Recall that we
computed the marginal effect for someone who is currently taking 20 (dtime=2) minutes longer to
travel by bus than auto. The marginal effect was easy enough to compute, but now we want to add
a confidence interval. The function will be modified slightly to accept a row vector that contains
the values of the explanatory variables at the desired evaluation point. The function is:

1 function matrix me_at(matrix *param, matrix *xx, scalar *q)

2 scalar p = xx*param

3 return dnorm(p)*param[q]

4 end function

Now instead of using lincomb, we use a matrix calculation in line 2. This requires a matrix input
in the function definition in line 1, which we have marked with a pointer.

The script to execute this is

1 open "@gretldir\data\poe\transport.gdt"

2 list x = const dtime

3 probit auto x

4 matrix coef = $coeff

5 matrix covmat = $vcv

6 scalar q = 2

7 matrix xx = { 1, 2 }

8 matrix mfx = me_at(&coef, &xx, &q)

9 matrix jac = fdjac(coef, me_at(&coef, &xx, &q))

10 matrix variance = qform(jac,covmat)

11 matrix se = sqrt(variance)

12 printf "\nThe marginal effect of dtime when dtime=2 is %6.4f with \

13 standard error %6.4f \n", mfx, se

14

15 scalar ub = mfx + critical(z,0.025)*se

16 scalar lb = mfx + critical(z,0.025)*se

17 printf "\nThe 95%% confidence interval the ME with dtime=2 is\

18 (%6.4f, %6.4f) \n", lb, ub

Lines 3-5 set the inputs to the function. Line 5 is a row vector that has a 1 in the first element
for the constant and 2 in the second for dtime. This is sent to the me at function to get the
marginal effect and the fdjac evaluates the derivative with respect to coefficients, coef. Variance
is computed using qform and then the standard error is taken from this. The result is:

The marginal effect of dtime when dtime=2 is 0.1037 with standard error 0.0326

The 95% confidence interval the ME with dtime=2 is (0.0397, 0.1677).

A perfect match for the result in POE4. Excellent!
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Finally, the predicted probability that auto = 1 given a commuting time difference of 30 minutes
is calculated and a confidence interval obtained using the Delta method. The function is very similar
to the last one and it was used as a template.

1 function matrix mep(matrix *param, matrix *xx, scalar *q)

2 scalar p = xx*param

3 return cnorm(p)

4 end function

Notice that cnorm is used to get the cumulative probability.

To use the function,

1 scalar q = 2

2 matrix coef = $coeff

3 matrix xx = { 1, 3 }

4 matrix mp = mep(&coef, &xx, &q)

5 matrix jac_3 = fdjac(coef, mep(&coef, &xx, &q))

6 matrix variance = qform(jac_3,covmat)

7 matrix se = sqrt(variance)

8 printf "\nThe probability of driving when dtime=3 is %6.4f with standard \

9 error %6.4f \n", mp, se

10

11 scalar ub = mp + critical(z,0.025)*se

12 scalar lb = mp - critical(z,0.025)*se

13 printf "\nThe 95%% confidence interval the Prob with dtime=3 is \

14 (%6.4f, %6.4f) \n",lb,ub

The probability of driving when dtime=3 is 0.7983 with standard error 0.1425. The 95% confi-
dence interval with dtime=3 is (0.5189, 1.0777). Obviously, the upper bound is not feasible since
probabilities cannot exceed 1.

16.1.3 Hypothesis Tests

Based on the soft drink example explored in section 8.7, suppose you want to test the hypothesis
that the Coke and Pepsi displays have an equal but opposite effect on the probability of buying
Coke. If a store has both displays, the net effect on Coke purchases is zero.

The model is:

Pr(Cokei = 1) = Φ(β1 + β2pratio + β3disp coke + β4disp pepsi) (16.6)
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The null and alternative hypotheses are:

H0 : β3 − β4 = 0 H1 : β3 − β4 6= 0 (16.7)

The simplest thing to do is use the restrict statement as shown below:

1 open "@gretldir\data\poe\coke.gdt"

2 list x = pratio disp_coke disp_pepsi const

3 probit coke x

4 restrict

5 b[3]+b[4]=0

6 end restrict

This works exactly as it did in linear regression. The outcome in gretl is:

Restriction:

b[disp_pepsi] + b[disp_coke] = 0

Test statistic: chi^2(1) = 5.40401, with p-value = 0.0200905

The p-value is less than 5% and the hypothesis is rejected at this level.

Another hypothesis to consider is that the displays have no effect. The null and alternative
hypotheses are:

H0 : β3 = 0 and β4 = 0 H1 : β3 6= 0 or β4 6= 0 (16.8)

The gretl code is

1 open "@gretldir\data\poe\coke.gdt"

2 list x = pratio disp_coke disp_pepsi const

3 probit coke x

4 restrict

5 b[3]=0

6 b[4]=0

7 end restrict

This statistic will have an χ2
2 distribution if the null hypothesis is true. The outcome in gretl is:

Restriction set

1: b[disp_pepsi] = 0

2: b[disp_coke] = 0

Test statistic: chi^2(2) = 19.4594, with p-value = 5.9489e-005
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Again, this hypothesis is rejected at any reasonable level of significance.

Since probit and logit are estimated via maximum likelihood, you can also perform a likelihood
ratio test. The likelihood ratio is

LR = 2(lnLU − lnLR) ∼ χ2
J (16.9)

if the null is true. The parameter J is the degrees of freedom for the χ2 and it equals the number
of hypotheses you are testing, in this case 2. It has the same approximate distribution as the
preceding test. LU and LR are the maximized log-likelihoods from an unrestricted and restricted
model, respectively. The key is to estimate restricted and unrestricted models and collect the
log-likelihood from each. For the first hypothesis, the restriction implies that

Pcoke = Φ(β1 + β2pratio + β4(disp pepsi− disp coke) (16.10)

To estimate the restricted model, just form the new variable (disp pepsi− disp coke) and use it in
the model. The script to compute and evaluate the LR is:

1 scalar c_p = disp_pepsi-disp_coke

2 probit coke x # unrestricted model

3 scalar llu = $lnl

4 probit coke const pratio c_p # restricted model

5 scalar llr = $lnl

6 scalar lr = 2*(llu-llr)

7 pvalue X 1 lr

The result is

Generated scalar lr = 5.42183

Chi-square(1): area to the right of 5.42183 = 0.0198865

(to the left: 0.980114)

The statistic is 5.42, which is very close to the value from the previous test of this hypothesis.

16.2 Logit

The logit model is very similar to probit. Rather than the probability of an event being described
by a normal distribution, it is modeled using a logistic distribution. The logistic and normal have
very similar shapes and the outcomes from the logit estimation are usually very similar to those in
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probit. The probability that individual i chooses the alternative is

Pi = F (zi) = Λ(zi) =
1

1 + e−zi
(16.11)

zi =
k∑
j=1

xijβj (16.12)

In logit the probability is modeled using Λ(zi) rather than Φ(zi) as in the probit model.

Below we estimate the probability of purchasing Coca-Cola rather than Pepsi using probit,
logit, and the linear probability model. The data are contained in coke.gdt and consist of 1140
individuals who purchased either Coke or Pepsi. The gretl script to estimate the models and put
the results in a model table is

1 open "@gretldir\data\poe\coke.gdt"

2 list x = pratio disp_coke disp_pepsi const

3 probit coke x --quiet

4 modeltab add

5 logit coke x --quiet

6 modeltab add

7 ols coke x --robust

8 modeltab add

9 modeltab show

The result obtained is:

Dependent variable: coke

(1) (2) (3)
Probit Logit OLS

const 1.11∗∗ 1.92∗∗ 0.890∗∗

(5.83) (5.90) (13.6)

pratio −1.15∗∗ −2.00∗∗ −0.401∗∗

(−6.34) (−6.34) (−6.60)

disp pepsi −0.447∗∗ −0.731∗∗ −0.166∗∗

(−4.41) (−4.36) (−4.81)

disp coke 0.217∗∗ 0.352∗∗ 0.0772∗∗

(2.25) (2.22) (2.27)

n 1140 1140 1140
R2 0.093 0.095 0.120
` −711 −709 −748
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t-statistics in parentheses
** indicates significance at the 5 percent level

For logit and probit, R2 is McFadden’s pseudo-R2

The signs and the t-ratios are approximately equal across the model. In logit and probit, the
coefficient’s sign indicates the sign of the marginal effect. Coefficient magnitudes differ only because
of the implicit differences in how the coefficients are normalized. Although it is not obvious, there
is an approximate relationship among the ‘slope’ coefficients of the three sets of estimates.

γ̃Logit ∼= 4β̂LPM

β̃Probit ∼= 2.5β̂LPM

γ̃Logit ∼= 1.6β̂Probit

So, 4(−0.4009) = −1.6036, which is fairly close to the estimate −1.996 for the pratio coefficient in
the logit column. More importantly, there are even closer similarities between the marginal effects
implies by logit and probit. Their averages (AME) are usually very close to the corresponding
coefficient in the linear probability model.

To get the AMEs in the logit model, we need a function to evaluate the logistic probability
density, which is

λ(zi) =
e−zi

(1 + e−zi)2
, −∞ < zi <∞ (16.13)

My function is

1 function matrix dlogist(matrix *param, list x)

2 matrix p = lincomb(x, param)

3 matrix d = exp(-p)./(1.+exp(-p)).^2

4 return d

5 end function

It uses the ‘dot’ operators for division, multiplication, and exponentiation. These work element-
by-element. Vectorizing this as done here may or may not be a good idea, but the syntax is
straightforward. A more versatile approach would probably be to loop over the available observa-
tions.

Now we need a function that computes and average the marginal effects. Minor modification
of the ame function that was used for the probit model yields the average marginal effect for the
logit function ame l below:

1 function matrix ame_l(matrix *param, list x)

2 matrix p = lincomb(x, param)

3 matrix me_matrix = dlogist(&param,x)*param’
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4 matrix amfx = meanc(me_matrix)

5 printf "\nThe average marginal effects are %8.4f \n", amfx

6 return me_matrix

7 end function

The only change to the original probit ame function comes in line 3 where the dlogist function
replaces dnorm.

Estimating the model by logit and getting the AME is done using:

1 list x = const pratio disp_coke disp_pepsi

2 logit coke x

3 matrix coef = $coeff

4 ame_l(&coef,x)

which produces

The average marginal effects are 0.4175 -0.4333 0.0763 -0.1587

The average marginal effect for a increase in the price ratio is −0.4333. That compares to −0.4097
in probit and −0.4009 in the linear probability model. It would certainly be easy at this point to
compute standard errors for these marginal effects, but we will save that as an exercise.

The models can also be compared based on predictions. Gretl produces a table in the standard
probit and logit outputs that facilitates this. The table is 2× 2 and compares predictions from the
model to actual choices. The table for the beverage choice model is:

Number of cases ’correctly predicted’ = 754 (66.1%)

f(beta’x) at mean of independent vars = 0.394

Likelihood ratio test: Chi-square(3) = 145.823 [0.0000]

Predicted

0 1

Actual 0 507 123

1 263 247

The table reveals that with probit, of the (507 + 123) = 630 consumers that chose Pepsi (Pepsi=0),
the model predicted 507 of these correctly (80.48% correct for Pepsi). It predicted 247/(263 +
247) = 247/510 = 48.43% correct for Coke. The overall percentage that was correctly predicted is
754/1140 = 66.1%. The table for logit is exactly the same, so there is no reason to prefer one over
the other for their predictive accuracy.

In fact, look at the correlations between the predictions of the three estimators:
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Correlation Coefficients for model predictions, using the observations 1 - 1140

5\% critical value (two-tailed) = 0.0581 for n = 1140

probit logit ols

1.0000 0.9996 0.9950 probit

1.0000 0.9924 logit

1.0000 ols

As you can see, these are VERY highly correlated, all over 0.99 and significant at 5%.

16.3 Multinomial Logit

Starting with version 1.8.1, Gretl includes a routine to estimate multinomial logit (MNL) using
maximum likelihood. In versions before 1.8.1 the alternatives were either (1) use gretl’s maximum
likelihood module to estimate your own or (2) use another piece of software! In this section we’ll
estimate the multinomial logit model using the native gretl function and I’ll relegate the other
methods to a separate (optional) section 16.3.1. The other methods serve as good examples of how
to use gretl’s scripting language and how to use it in conjunction with R.

In this model the dependent variable is categorical and is coded in the following way. A student
graduating from high school chooses among three alternatives: attend no college psechoice=1,
enroll in a 2-year college psechoice=2, or enroll in a 4-year college psechoice=3. The explanatory
variable is grades, which is an index ranging from 1.0 (highest level, A+ grade) to 13.0 (lowest
level, F grade) and represents combined performance in English, Math and Social Studies. For this
example, the choices are treated as being unordered. There are 1000 observations.

To estimate the model of school choice as a function of grades and a constant open the
nels small.gdt dataset and use the logit command with the --multinomial option as shown:

1 open "c:\Program Files\gretl\data\poe\nels_small.gdt"

2 logit psechoice const grades --multinomial

This yields the output shown in Figure 16.2:

The coefficients appear in sets. The first set are the coefficients that go with psechoice=2 and
the second set go with psechoice=3; this implies that gretl chose psechoice=1 used as the base.
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Figure 16.2: Output from multinomial logit

Figure 16.3: You can obtain the outcome probabilities from the multinomial logit model window.
These are also available after estimation in the $mnlprobs accessor.

The probability of choosing an alternative in multinomial logit is

pi1 =
1

1 +
∑J

j=2 exp(β1j + β2jxi2 + · · ·+ βkjxik)
j = 1 (16.14)

pij =
exp(β1j + β2jxi2 + · · ·+ βkjxik)

1 +
∑J

j=2 exp(β1j + β2jxi2 + · · ·+ βkjxik)
j 6= 1 (16.15)

Obtaining the probabilities is simple. If you estimate the model via the GUI (Model>Nonlinear
models>Logit>Multinomial) then you will have an option in the model window to produce the pre-
dicted probabilities for each case in the sample. In Figure 16.3 you will see that Analysis>Outcome
probabilities can be selected. The first few of these are shown:

Estimated outcome probabilities for psechoice
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1 2 3

1 0.4408 0.3274 0.2319

2 0.3511 0.3308 0.3181

3 0.2539 0.3148 0.4313

4 0.2539 0.3148 0.4313

5 0.2539 0.3148 0.4313

....

1000 0.0339 0.1351 0.8310

A script can be written to obtain predicted probabilities that shows off a few more tricks. The
proposed function is called mlogitprob and the script for it is:

1 function list mlogitprob(series y, list x, matrix theta)

2 list probs = null

3 matrix X = { x }

4 scalar j = max(y)

5 scalar k = cols(X)

6 matrix b = mshape(theta,k,j-1)

7 matrix tmp = X*b

8 series den = (1 + sumr(exp(tmp)))

9

10 loop for i=1..j --quiet

11 if i = 1

12 series p$i = 1/den

13 else

14 scalar q = i - 1

15 series num = exp(X[q,]*b[,q])

16 series p$i=num/den

17 endif

18 list probs += p$i

19 endloop

20 return probs

21 end function

The inputs are the dependent variable, y, a list of independent variables, x, and the coefficients from
multinomial logit estimation, theta. The function will return a list that contains the computed
probabilites. These will be added to the dataset.

An empty list must be created, which is done using list null. In line 3 the independent
variables are converted into a matrix called X. The fourth line finds the maximum category in the
coding of the dependent variable. Ours, psechoice, takes values 1, 2, and 3 in the data so this
will return the value 3. If your data are coded 0, 1, 2 like they sometimes are, you will have to
alter your script to account for that. The scalar k counts the number of independent variables. In
MNL there are J choices and J − 1 sets of k parameters. The matrix b reshapes the (J − 1)k × 1
vector of coefficients produced by logit --multinomial into a k × (J − 1) matrix. Each column
of this matrix contains the coefficients for the (j − 1)th choice. The matrix labeled tmp computes
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the indexes for each choice. The matrix den computes the row sums of these to produce the
denominator found in the MNL probabilities.

The loop is required because of the way MNL probabilities are computed. For the normalized
choice, the numerator is 1. For the others it is exp(indexj). The computed probabilities are added
to the list probs using the operator (+=), which is a fancy way of appending new results to existing
results. The loop ends and you must return the list probs in order for the computed series to
be passed out of the function and added to the dataset. If you have been working through the
simpler functions we’ve considered up to this point, then the added complexity of this one will not
be bothersome. If this is your first function in gretl, then you are no doubt lost. Again, it is not
required to get probabilities from MNL.

To use the function, create the variable list, estimate the model and save the coefficients to a
matrix. Finally, create a list and print it by observation as in:

1 open "@gretldir\data\poe\nels_small.gdt"

2 list x = const grades

3 logit psechoice x --multinomial

4 matrix theta = $coeff

5 list n = mlogitprob(psechoice, x, theta)

6 smpl 1 12

7 print n --byobs

8 smpl full

Of course, you could make things easy on yourself and just use the accessor, $mnlprobs. This gives
you access to the probabilities from the multinomial logit that we obtained using the GUI. Not
much fun in that, but it is easy. However, with our homemade function we can compute marginal
effects.

To get average marginal effects is a snap at this point. We will simply add 1 to the value of
grades, recompute the probabilities, and average the difference between the two. This will require
renaming the predicted probabilities, but that is easily done.

1 rename p1 p01

2 rename p2 p02

3 rename p3 p03

4

5 series grade1 = grades+1

6 list x1 = const grade1

7 list n1 = mlogitprob(psechoice, x1, theta)

8 series d1 = p1-p01

9 series d2 = p2-p02

10 series d3 = p3-p03

11 summary d* --simple
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The script yields:

Summary statistics, using the observations 1 - 1000

Mean Minimum Maximum Std. Dev.

d1 0.080044 0.0092216 0.11644 0.034329

d2 -0.00014717 -0.11560 0.017795 0.023719

d3 -0.066086 -0.31899 -0.00037743 0.069045

As a student’s performance gets worse (grades increases by 1), the average probability of not
attending college goes up by 0.08. The probability of attending 4-year school declines by −0.066.

Finding marginal effects at specific points requires another function, but it is very similar to
the one used above. The only substantive change is feeding the function a matrix rather than the
list of variables and changing series computations within the function to either scalars or matrix.
Here is the new function called

1 function matrix mlogitprob_at(series y, matrix X, matrix theta)

2 matrix probs = {}

3 scalar j = max(y)

4 scalar k = cols(X)

5 matrix b = mshape(theta,k,j-1)

6 matrix tmp = X*b

7 scalar den = (1 + sumr(exp(tmp)))

8

9 loop for i=1..j --quiet

10 if i = 1

11 scalar p$i = 1/den

12 else

13 scalar q = i - 1

14 scalar num = exp(X*b[,q])

15 scalar p$i=num/den

16 endif

17 matrix probs = probs ~ p$i

18 endloop

19 return probs

20 end function

The function is quite easy to use and reproduces the results in POE4 Table 16.3.

1 open "@gretldir\data\poe\nels_small.gdt"

2 list x = const grades

3 logit psechoice x --multinomial

4 matrix theta = $coeff

5 matrix Xm = {1 , quantile(grades,.50)}
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6 matrix p50 = mlogitprob_at(psechoice, Xm, theta)

7 matrix Xm = {1 , quantile(grades,.05)}

8 matrix p05 = mlogitprob_at(psechoice, Xm, theta)

9 printf "\nThe predicted probabilities for student\

10 grades=%6.2f is %8.4f\n",quantile(grades,.05), p05

11 printf "\nThe predicted probabilities for student\

12 grades=%6.2f is %8.4f\n",quantile(grades,.50), p50

To use the function to get marginal effects of 1 unit change in grades for median and 95th
percentile students we create quantiles based on the series grades and use these in our new function.
Taking the difference in probabilities will give us an approximate marginal effect at those quantiles.

1 open "@gretldir\data\poe\nels_small.gdt"

2 list x = const grades

3 logit psechoice x --multinomial

4 matrix theta = $coeff

5 scalar q50 = quantile(grades,.50)

6 matrix Xm = {1 , q50-0.5}

7 matrix p0 = mlogitprob_at(psechoice, Xm, theta)

8 matrix Xm = {1 , q50+0.5}

9 matrix p1 = mlogitprob_at(psechoice, Xm, theta)

10 matrix me = p1-p0

11 printf "\nThe marginal effect of grades for student\

12 grades =%6.2f is %8.4f\n",median(grades), me

13

14 scalar q05 = quantile(grades,.05)

15 matrix Xm = {1 , q05-0.5}

16 matrix p0 = mlogitprob_at(psechoice, Xm, theta)

17 matrix Xm = {1 , q05+0.5}

18 matrix p1 = mlogitprob_at(psechoice, Xm, theta)

19 matrix me = p1-p0

20 printf "\nThe marginal effect of grades for student\

21 grades=%6.2f is %8.4f\n", q05, me

Notice that the script returns the predicted probabilities for these students and the change in those
probabilities resulting from a 1 unit change in grades. The total probabilities should sum to 1
and the marginal effects should sum to zero. This script also uses a common trick. The one unit
change is evaluated at ±0.5 on either side of each quantile; then the discrete difference is taken.
The results match those in POE4 reasonably well.

The option --multinomial is used when the choices are unordered. For ordered logit, this
option is omitted. Gretl takes a look at the dependent variable, in this case psechoice, to make
sure that it is actually discrete. Ours takes on three possible values (1, 2, or 3) and the logit

function in gretl will handle this automatically.
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16.3.1 Using a Script for MNL

In this section I’ll give you an idea of how to estimate this model using another gretl script
and in section 16.10 I’ll show you how to estimate the model in another free software called R.

Although versions of Gretl prior to 1.8.1 did not include a specific function for estimating MNL,
it can be estimated with a little effort. Gretl contains two things that make this reasonably easy
to do. First, it includes a module for maximizing user specified likelihood functions (see chapter 14
for other examples). To use the mle function, the user has to write a program in hansl to compute
a model’s log-likelihood given the data. The parameters of the log-likelihood must be declared and
given starting values (using the scalar command). If you want, you can specify the derivatives of
the log-likelihood function with respect to each of the parameters; if analytical derivatives are not
supplied, a numerical approximation is computed. In many instances, the numerical approximations
work quite well. In the event that the computations based on numerical derivatives fail, you may
have to specify analytical ones to make the program work.

What appears below is taken from the Gretl Users Guide. The example for MNL for POE4
requires only a slight modification in order for the program to run with our dataset.

The multinomial logit function, which can be found in the Gretl User’s Guide, is defined

1 function mlogitlogprobs(series y, matrix X, matrix theta)

2 scalar n = max(y)

3 scalar k = cols(X)

4 matrix b = mshape(theta,k,n)

5 matrix tmp = X*b

6 series ret = -ln(1 + sumr(exp(tmp)))

7 loop for i=1..n --quiet

8 series x = tmp[,i]

9 ret += (y=$i) ? x : 0

10 end loop

11 return series ret

12 end function

The function is named mlogitlogprobs and has three arguments. The first is the dependent
variable, series y, the second is set of independent variables contained in matrix X, and the last
is the matrix of parameters, called theta. Scalars in the function are defined for sample size, number
of regressors, and the coefficients are placed in an n× k array in order to match the dimensionality
of the data. The index tmp=X*b is created and ret returns the log-likelihood function. Don’t worry
if you can’t make sense of this because you should not have to change any of this to estimate MNL
with another dataset. That is one of the beauties of defining and using a function.

To use the mlogitlogprobs function, you need to know a little about how it works. You will
have to get your data into the right form in order for the function to work properly. After loading
the data, make sure that the dependent choice variable is in the correct format for the function.
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The function requires the choices to start at 0. If you list the data, you’ll find that psechoice is
coded 1, 2, 3 instead of the required 0, 1, 2. So the next step is to subtract 1 from psechoice.

Create the matrix of regressors, define the number of regressors and use these to initialize the
matrix of coefficients, theta. Then list the dependent variable, matrix of independent variables,
and the initialized parameter matrix as arguments in the function. Click the run button and wait
for the result.

1 open "@gretldir\data\poe\nels_small.gdt"

2 psechoice = psechoice-1 # dep. var. must be 0-based

3 list x = const grades

4 smpl full

5 matrix X = { x }

6 scalar k = cols(X)

7 matrix theta = zeros(2*k, 1)

8 mle loglik = mlogitlogprobs(psechoice,X,theta)

9 params theta

10 end mle --hessian

The only changes I had to make to the original example in the Gretl User Guide are (1) change
the dataset (2) change the dependent variable to psechoice (3) put the desired regressors into X

and (4) make sure the function contains the desired variables.

The results from the program appear below in Figure 16.4. Wow! They match those in POE4
and are dirt simple to obtain. Finally, if you want to produce the probabilities and marginal effects,

Figure 16.4: These results are from a gretl function taken from the Gretl Users Guide.

you can use the estimates gretl has stored in the 4× 1 vector called theta. This was the approach
taken in the preceding section and I won’t repeat the details here.
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16.4 Conditional Logit

Conditional logit is used to model choices when there is alternative specific information available.
When choosing among brands of soft-drinks, you have information on the choice that an individual
makes as well as the price of each available alternative. This kind of data differs from the scanner
data used in multinomial logit because in that example we only had information on the grade
earned by an individual; there were no alternative grades for those choosing what kind of school
to attend. The grade was specific to the individual, not the choices. In conditional logit there is
information about each alternative. Models that combine individual specific information and choice
specific information are referred to as mixed. Such data are somewhat rare. Usually you either
have information on the individual (income or race) or the choices (prices and advertising), but not
both.

The following example should make this more clear. We are studying choices among three soft-
drinks: Pepsi, Coke, and Seven-up. Each may sell for a different price. Each individual purchases
one of the brands. The probability that individual i chooses j is

pij =
exp(β1j + β2priceij)

exp(β11 + β2pricei1) + exp(β12 + β2pricei2) + exp(β13 + β2pricei3)
(16.16)

Now there is only 1 parameter that relates to price, but there are J=3 constants. One of these
is not identified and is set to zero. This is referred to as normalization and in our case we set
β13 = 0.

Below is a function and a script that will estimate the conditional logit model for the soft drink
example by maximum likelihood. The function is not general in the sense that it will work with
another model, but the basic idea could be used to generalize it to do so. The MCMC method
discussed below is an alternative that is more ready for general use, but the results will differ
somewhat from maximum likelihood estimation.

The function computes the value of the log-likelihood for the conditional logit model. The
inputs consist of two lists and a vector of starting values. The first list contains indicator variables
identifying which choice was made (pepsi, 7up or coke). The second list contains the regressors.

Conditional Logit script
1 function matrix clprobs(list y, list x, matrix theta)

2 matrix Y = { y }

3 matrix p = { x }

4 scalar n = $nobs

5 matrix P = {}

6 loop i=1..n --quiet

7 scalar i1 = exp(theta[1]+theta[3]*p[i,1])

8 scalar i2 = exp(theta[2]+theta[3]*p[i,2])

9 scalar i3 = exp(theta[3]*p[i,3])

10 scalar d = i1+i2+i3

11 matrix pp = (Y[i,1]=1)*i1/d + (Y[i,2]=1)* i2/d + (Y[i,3]=1)* i3/d

12 matrix P = P | pp
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13 endloop

14 return sumc(ln(P))

15 end function

16

17 open "@gretldir\data\poe\cola2.gdt"

18 list y = pepsi sevenup coke

19 list x = pr_pepsi pr_7up pr_coke

20 matrix theta = {-1.19, .283, .1038}

21

22 mle lln = clprobs(y, x, theta)

23 params theta

24 end mle

Lines 2 and 3 convert the lists to matrices. The number of observations is counted in line 4 and
an empty matrix is created to hold the result in 5. The loop that starts in line 6 just computes
the probabilities for each observed choice. The scalars i1, i2 and i3 are added together for the
denominator of equation (16.16); each of these scalars is divided by the denominator term. The
logical statements, i.e., (Y[i,1]=1) is multiplied by the probability. If the person chooses the first
alternative, this i1/d is set to pp. The other logicals are false at this point and are zero. The
vector pp contains the probabilities of making the choice for the alternative actually chosen. The
return is the sum of the logs of the probabilities, which is just the log-likelihood.

The results from this function and MLE estimation are found below:

Using numerical derivatives

Tolerance = 1.81899e-012

Function evaluations: 41

Evaluations of gradient: 12

Model 2: ML, using observations 1-1822

lln = clprobs(y, x, theta)

Standard errors based on Hessian

estimate std. error z p-value

-------------------------------------------------------

theta[1] 0.283166 0.0623772 4.540 5.64e-06 ***

theta[2] 0.103833 0.0624595 1.662 0.0964 *

theta[3] -2.29637 0.137655 -16.68 1.77e-062 ***

Log-likelihood -1824.562 Akaike criterion 3655.124

Schwarz criterion 3671.647 Hannan-Quinn 3661.220

These match the results in POE4. Even the estimated standard errors are the same out to 4 decimal
places. Very good indeed. Substantively, the price coefficient is −2.296 and is significantly different
from zero at any reasonable level of significance.
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16.5 Ordered Probit

In this example, the probabilities of attending no college, a 2 year college, and a 4 year college
after graduation are modeled as a function of a student’s grades. In principle, we would expect
that those with higher grades to be more likely to attend a 4 year college and less likely to skip
college altogether. In the dataset, grades are measured on a scale of 1 to 13, with 1 being the
highest. That means that if higher grades increase the probability of going to a 4 year college, the
coefficient on grades will be negative. The probabilities are modeled using the normal distribution
in this model where the outcomes represent increasing levels of difficulty.

We can use gretl to estimate the ordered probit model because its probit command actually
handles multinomial ordered choices as well as binomial choice. Open the nels small.gdt data

1 open "@gretldir\data\poe\nels_small.gdt"

2 probit psechoice const grades

The results in below are very much like the ones in POE4 and those produced by Bayesian esti-
mation provided by MCMCpack, the generation of which is discussed in section 16.10.3.

Model 2: Ordered Probit, using observations 1–1000
Dependent variable: psechoice

Coefficient Std. Error z p-value

grades −0.306624 0.0191735 −15.9921 0.0000

cut1 −2.94559 0.146828 −20.0615 0.0000
cut2 −2.08999 0.135768 −15.3938 0.0000

Mean dependent var 2.305000 S.D. dependent var 0.810328
Log-likelihood −875.8217 Akaike criterion 1757.643
Schwarz criterion 1772.367 Hannan–Quinn 1763.239

Number of cases ‘correctly predicted’ = 587 (58.7 percent)
Likelihood ratio test: χ2(1) = 285.672 [0.0000]

Test for normality of residual –
Null hypothesis: error is normally distributed
Test statistic: χ2(2) = 2.96329
with p-value = 0.227264

The coefficient on grades is negative and significant at 5%. This means that as the grades
variable gets larger (grades get worse), the index is getting smaller and at the margins 2-year
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college attendees are being pushed towards no college and the 4-year college attendees are being
pushed toward the 2-year option. We know for sure that the probability of being in the lowest
category goes up and of being in the highest category goes down. Whatever happens in the middle
depends on net effects of people being pushed out below and pulled in from above.

The other two parameters are the cut-off points that determine the boundaries between cate-
gories. The parameter µ1 < µ2.

The algebraic expressions for the marginal effects are:

∂P (y = 1)

∂grades
= −φ(µ1 − βgrades)β

∂P (y = 2)

∂grades
= [φ(µ1 − βgrades)− φ(µ2 − βgrades)]β

∂P (y = 3)

∂grades
= φ(µ2 − βgrades)β

where φ is the probability density function of a standard normal distribution. The parameters µ1

and µ2 are the thresholds (or cut-off points) and β is the coefficient on grades. So, for example if
you want to calculate the marginal effect on the probability of attending a 4-year college (y = 3)
for a student having grades at the median (6.64) and 5th percentile (2.635) use:

1 probit psechoice grades

2 k = $ncoeff

3 matrix b = $coeff[1:k-2]

4 mu1 = $coeff[k-1]

5 mu2 = $coeff[k]

6

7 matrix X = {6.64}

8 scalar Xb = X*b

9 P3a = pdf(N,mu2-Xb)*b

10

11 matrix X = 2.635

12 scalar Xb = X*b

13 P3b = pdf(N,mu2-Xb)*b

14

15 printf "\nFor the median grade of 6.64, the marginal\

16 effect is %.4f\n", P3a

17 printf "\nFor the 5th percentile grade of 2.635, the\

18 marginal effect is %.4f\n", P3b

This yields

For the median grade of 6.64, the marginal effect is -0.1221

For the 5th percentile grade of 2.635, the marginal effect is -0.0538
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16.6 Poisson Regression

When the dependent variable in a regression model is a count of the number of occurrences
of an event you may want to use the poisson regression model. In these models, the dependent
variable is a nonnegative integer, (i.e., y = 0, 1, . . .), which represent the number of occurrences of
a particular event. The probability of a given number of occurrences is modeled as a function of
independent variables.

P (Y = y|x) =
e−λλy

y!
y = 0, 1, 2, . . . (16.17)

where λ = β1 + β2x is the regression function.

Estimating this model using maximum likelihood is very simple since the MLE of the poisson
regression model is already programmed into gretl. The syntax for a script is the same as for linear
regression except you use the possion command in place of ols. This is shown in the following
script which replicates the example from your textbook.

A country’s total number of medals (medaltot) in the 1988 olympics is modeled as a function
of ln(gdp) and ln(pop). Of course, you can also access the poisson regression estimator from the
pull-down menus using Model>Nonlinear models>Possion. To replicate the example in POE4 be
sure to restrict the sample to 1988 before estimating the model.

1 open "@gretldir\data\poe\olympics.gdt"

2 set echo off

3 set messages off

4 smpl year = 88 --restrict

5 logs pop gdp

6 poisson medaltot const l_pop l_gdp

7 scalar m1 = exp($coeff(const)+$coeff(l_pop)*ln(quantile(pop,0.5)) \

8 +$coeff(l_gdp)*ln(quantile(gdp,0.5)))

9 scalar m2 = exp($coeff(const)+$coeff(l_pop)*ln(quantile(pop,0.75)) \

10 +$coeff(l_gdp)*ln(quantile(gdp,0.5)))

11 scalar mft = exp($coeff(const)+$coeff(l_pop)*ln(quantile(pop,0.5)) \

12 +$coeff(l_gdp)*ln(quantile(gdp,0.5)))*$coeff(l_gdp)

13 printf "\nMarginal Effect at the medians is %.3f\n",mft

14 printf "\nAverage medal total for median gdp and pop is %.3f\n",m1

15 printf "\nAverage medal total for median gdp and 75th quantile pop is %.3f\n",m2

In the script, we have also computed a marginal effect and two means for representative countries.
The algebraic justification for these can be found below.

The results for poisson model are:

Poisson, using observations 1–205 (n = 151)
Missing or incomplete observations dropped: 54
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Dependent variable: medaltot

Coefficient Std. Error z p-value

const −15.8875 0.511805 −31.0420 0.0000
l pop 0.180038 0.0322801 5.5773 0.0000
l gdp 0.576603 0.0247217 23.3238 0.0000

Mean dependent var 4.887417 S.D. dependent var 16.62670
Sum squared resid 25165.58 S.E. of regression 13.03985
McFadden R2 0.546854 Adjusted R2 0.544972
Log-likelihood −722.3365 Akaike criterion 1450.673
Schwarz criterion 1459.725 Hannan–Quinn 1454.350

Overdispersion test: χ2(1) = 9.20208 [0.0024]

Both the size and the wealth of a country contribute to higher medal counts. The probability that
the random variable Y is equal to an outcome y can be obtained based on the formula:

̂P (Y = y) =
exp(−λ̃0)λ̃y0

y!
y = 0, 1, 2, . . . (16.18)

where Ê(y0) = λ̃0 = exp(β̃1 + β̃2x0). The marginal effects are simple

∂E(yi)

∂xi
= λiβ2 (16.19)

The marginal effect at the medians and the average medal totals for two hypothetical countries are:

Marginal Effect at the medians is 0.498

Average medal total for median gdp and pop is 0.863

Average medal total for median gdp and 75th quantile pop is 1.051

16.7 Tobit

The tobit model is essentially just a linear regression where some of the observations on your
dependent variable have been censored. A censored variable is one that, once it reaches a limit, it
is recorded at that limit no matter what it’s actual value might be. For instance, anyone earning $1
million or more per year might be recorded in your dataset at the upper limit of $1 million. That
means that Bill Gates and the authors of your textbook earn the same amount in the eyes of your
dataset (just kidding, gang). Least squares can be seriously biased in this case and it is wise to use
a censored regression model (tobit) to estimate the parameters of the regression when a portion of
your sample is censored.
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Hill et al. (2011) consider the following model of hours worked for a sample of women. equation
(16.20).

hoursi = β1 + β2educi + β3experi + β4agei + β5kidsl6i + ei (16.20)

They estimate the model as a censored regression since a number of people in the sample are found
to work zero hours. The command for censored regression in gretl is tobit, the syntax for which is
shown below

The routine allows you to specify the left and right points at which censoring occurs. You also
can choose a robust covariance that is robust with respect to the normality assumption used to
obtain the MLE (not heteroskedasticity).

Estimation of this model in gretl is shown in the following script which replicates the example
from POE4. The script estimates a tobit model of hours worked and generates the marginal effect
of another year of schooling on the average hours worked. Hours are assumed to be censored at
zero and no lower limit need be specified.

1 open "@gretldir\data\poe\mroz.gdt"

2 list xvars = const educ exper age kidsl6

3 tobit hours xvars

The results from the basic tobit estimation of the hours worked equation are:

Tobit, using observations 1–753
Dependent variable: hours

Standard errors based on Hessian

Coefficient Std. Error z p-value

const 1349.88 386.298 3.4944 0.0005
educ 73.2910 20.4698 3.5804 0.0003
age −60.7678 6.88310 −8.8286 0.0000
exper 80.5353 6.28051 12.8231 0.0000
kidsl6 −918.918 111.588 −8.2349 0.0000
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Chi-square(4) 244.2972 p-value 1.10e–51
Log-likelihood −3827.143 Akaike criterion 7666.287
Schwarz criterion 7694.031 Hannan–Quinn 7676.975

σ̂ = 1133.7 (40.8769)
Left-censored observations: 325
Right-censored observations: 0

Test for normality of residual –
Null hypothesis: error is normally distributed
Test statistic: χ2(2) = 6.31679
with p-value = 0.0424938

The marginal effect of another year of schooling on hours worked is

∂E(hoursi)

∂educi
= Φ( ̂hoursi)β̂2, (16.21)

where ̂hoursi is the estimated regression function evaluated at the mean levels of education, expe-
rience, and age for a person with one child under the age of six. Then, the cnorm function is used
to compute the normal cdf, Φ( ̂hoursi), evaluated at the prediction.

1 matrix beta = $coeff

2 scalar H_hat = beta[1]+beta[2]*mean(educ)+beta[3]*mean(exper) \

3 +beta[4]*mean(age)+beta[5]*1

4 scalar z = cnorm(h_hat/$sigma)

5 scalar me_educ = z*$coeff(educ)

6

7 printf "\nThe computed scale factor = %6.5g\nand marginal effect of\

8 another year of schooling = %5.5g.\n", z, me_educ

This produces

The computed scale factor = 0.363

and marginal effect of another year of schooling = 26.605.

Note, the backward slashes (\) used at the end of the first two lines in the generation of H_hat
are continuation commands. The backslash at the end of a line tells gretl that the next line is a
continuation of the current line. This helps keep your programs looking good (and in this case,
fitting within the margins of the page!).

A slightly easier way to evaluate the index, ̂hours0, is to use matrices. In the alternative version
we convert the data to a matrix and create a vector of the variable means. The average number of
children (0.24), is replaced with a 1 and the index is computed using vector algebra.
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1 tobit hours xvars

2 matrix beta = $coeff

3 matrix X = { xvars }

4 matrix meanx = meanc(X)

5 matrix meanx[1,5]=1

6 scalar h_hat=meanx*beta

7 printf "\nTwo ways to compute a prediction get %8.4f and %8.4f\n", h_hat, H_hat

This produces

Two ways to compute a prediction get -397.3022 and -397.3022

Finally, estimates of the restricted sample using least squares and the full sample that includes the
zeros for hours worked follow.

1 list xvars = const educ exper age kidsl6

2 smpl hours > 0 --restrict

3 ols hours xvars

4 smpl --full

5 ols hours xvars

Notice that the sample is restricted to the positive observations using the smpl hours > 0 --restrict

statement. To estimate the model using the entire sample the full range is restored using smpl full.

These were added to a model table and the result appears below:

Dependent variable: hours

(1) (2) (3)
Tobit OLS OLS

const 1350∗∗ 1830∗∗ 1335∗∗

(386.3) (292.5) (235.6)

educ 73.29∗∗ −16.46 27.09∗∗

(20.47) (15.58) (12.24)

exper 80.54∗∗ 33.94∗∗ 48.04∗∗

(6.281) (5.009) (3.642)

age −60.77∗∗ −17.11∗∗ −31.31∗∗

(6.883) (5.458) (3.961)

kidsl6 −918.9∗∗ −305.3∗∗ −447.9∗∗

(111.6) (96.45) (58.41)
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n 753 428 753
R̄2 0.1168 0.2531
` −3827 −3426 −6054

Standard errors in parentheses
* indicates significance at the 10 percent level
** indicates significance at the 5 percent level

You can see that the tobit regression in column (1) and the OLS regression in column (3) use
the entire sample. Estimating the model by OLS with the zero observations in the model reduces
all of the slope coefficients by a substantial amount. Tossing out the zero observations as in the
OLS regression in column (2) reverses the sign on years of schooling (though it is not significant).
For only women in the labor force, more schooling has no effect on hours worked. If you consider
the entire population of women, more schooling does increase hours, presumably by enticing more
women into the labor force.

16.8 Simulation

You can use gretl to show that least squares is biased when the sample is censored using a
Monte Carlo simulation. The simulated data are generated

y∗i = −9 + 1xi + ei (16.22)

where ei ∼ N(0, 16). Then,

yi =

{
y∗i if y∗i > 0
0 if y∗i ≤ 0

The xi ∼ U(0, 20), which are held constant in the simulated samples.

The following script demonstrates that least squares is indeed biased when all observations,
including the zero ones, are included in the sample. The line series yc = (y > 0) ? y : 0 is
a logical statement that generates ‘y’ or ‘0’ depending on whether the statement in parentheses is
true. Thus, a new variable, yc, is created that takes the value y if y>0 and is zero if not. Another
logical is used in line 10 to generate an indicator variable, w. The variable w=1 when the statement
in the parentheses (y>0) is true. Otherwise it is equal to zero. The variable w is used in wls to
exclude the observations that have zero hours of work.

1 nulldata 200

2 series xs = 20*uniform()

3 list x = const xs

4 series ys = -9 + 1*xs
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5 loop 1000 --progressive --quiet

6 series y = ys + normal(0,4)

7 series yc = (y > 0) ? y : 0

8 ols y x

9 ols yc x

10 series w = (yc>0)

11 wls w yc x

12 tobit yc x

13 endloop

Because the tobit estimator is iterative, there is a lot of output generated to the screen. However, if
you scroll down you will find the results from this simulation. Recall, the value of the constant was
set at −9 and the slope to 1. The column labeled ‘mean of the estimated coefficients’ is the average
value of the estimator in 1000 iterations of the Monte Carlo. When the estimator is unbiased, this
number should be ‘close’ to the true value in the statistical sense. You can use the next column
(std. dev. of estimated coefficients) to compute a Monte Carlo standard error to perform a test.

Since the coefficients are being averaged over the number, NMC, of simulated samples, the
central limit theorem should apply; the mean should be approximately normally distributed and
the variance of the mean equal to σ/

√
NMC. The result in the column labeled ‘std. dev. of

estimated coefficients’ is an estimate of σ. To test for unbiasedness of the tobit estimator of the
slope (Ho : b2 = 1 against the two-sided alternative) compute:

√
NMC(b̄2 − 1)/σ̂ =

√
1000(1.00384− 1)/0.0737160 = 1.647 ∼ N(0, 1) (16.23)

if the estimator is unbiased. The 5% critical value is 1.96 and the unbiasedness of the tobit estimator
cannot be rejected at this level of significance. See Adkins (2011b) for more examples and details.

OLS estimates using the 200 observations 1-200

Statistics for 1000 repetitions

Dependent variable: y

mean of std. dev. of mean of std. dev. of

estimated estimated estimated estimated

Variable coefficients coefficients std. errors std. errors

const -9.00646 0.548514 0.562873 0.0283463

xs 0.999336 0.0494064 0.0500999 0.00252303

OLS estimates using the 200 observations 1-200

Statistics for 1000 repetitions

Dependent variable: yc

mean of std. dev. of mean of std. dev. of

estimated estimated estimated estimated

Variable coefficients coefficients std. errors std. errors
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const -2.20798 0.232987 0.405670 0.0226162

xs 0.558122 0.0351037 0.0361076 0.00201301

WLS estimates using the 108 observations 1-200

Statistics for 1000 repetitions

Dependent variable: yc

mean of std. dev. of mean of std. dev. of

estimated estimated estimated estimated

Variable coefficients coefficients std. errors std. errors

const -2.09574 0.960994 1.09869 0.118095

xs 0.602659 0.0743574 0.0774449 0.00757796

Tobit estimates using the 200 observations 1-200

Standard errors based on Hessian

Statistics for 1000 repetitions

Dependent variable: yc

mean of std. dev. of mean of std. dev. of

estimated estimated estimated estimated

Variable coefficients coefficients std. errors std. errors

const -9.07517 0.988720 0.994815 0.0954671

xs 1.00384 0.0737160 0.0742580 0.00629653

The estimators in the first set and last are unbiased. OLS in the first instance uses the full sample
that has not been censored. In reality, the censored observations won’t be available so this estimator
is not really feasible outside of the Monte Carlo. The tobit estimator in the last set is feasible,
however. Clearly it is working pretty well with this data generation process. The second set of
results estimates the model using the entire sample with 0 recorded for the censored observations.
It is not performing well at all and is no better than the third set of results that discards the zero
hours observations. It does reveal what happens, conditional on being in the labor force though.
So, it is not without its uses.

16.9 Selection Bias

Selection bias occurs when your sample is truncated and the cause of that truncation is corre-
lated with your dependent variable. Ignoring the correlation, the model could be estimated using
least squares or truncated least squares. In either case, obtaining consistent estimates of the re-
gression parameters is not possible. In this section the basic features of the this model will be
presented.
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Consider a model consisting of two equations. The first is the selection equation, defined

z∗i = γ1 + γ2wi + ui, i = 1, . . . , N (16.24)

where z∗i is a latent variable, γ1 and γ2 are parameters, wi is an explanatory variable, and ui
is a random disturbance. A latent variable is unobservable, but we do observe the dichotomous
variable

zi =

{
1 z∗i > 0

0 otherwise
(16.25)

The second equation, called the regression equation, is the linear model of interest. It is

yi = β1 + β2xi + ei, i = 1, . . . , n, N > n (16.26)

where yi is an observable random variable, β1 and β2 are parameters, xi is an exogenous variable,
and ei is a random disturbance. It is assumed that the random disturbances of the two equations
are distributed as [

ui
ei

]
∼ N

[(
0
0

)
,

(
1 ρ
ρ σ2

e

)]
(16.27)

A selectivity problem arises when yi is observed only when zi = 1 and ρ 6= 0. In this case the
ordinary least squares estimator of β in (16.26) is biased and inconsistent. A consistent estimator
has been suggested by Heckman (1979) and is commonly referred to as Heckman’s two-step
estimator, or more simply, Heckit. Because the errors are normally distributed, there is also a
maximum likelihood estimator of the parameters. Gretl includes routines for both.

The two-step (Heckit) estimator is based on conditional mean of yi given that it is observed:

E[yi|zi > 0] = β1 + β2xi + βλλi (16.28)

where

λi =
φ(γ1 + γ2wi)

Φ(γ1 + γ2wi)
(16.29)

is the inverse Mill’s ratio;(γ1+γ2wi) is the index function; φ(·) is the standard normal probability
density function evaluated at the index; and Φ(·) is the standard normal cumulative density function
evaluated at the index. Adding a random disturbance yields:

yi = β1 + β2xi + βλλi + vi (16.30)

It can be shown that (16.30) is heteroskedastic and if λi were known (and nonstochastic),
then the selectivity corrected model (16.30) could be estimated by generalized least squares. Al-
ternately, the heteroskedastic model (16.30) could be estimated by ordinary least squares, using
White’s heteroskedasticity consistent covariance estimator (HCCME) for hypothesis testing and
the construction of confidence intervals. Unfortunately, λi is not known and must be estimated
using the sample. The stochastic nature of λi in (16.30) makes the automatic use of HCCME in
this context inappropriate.

The two-steps of the Heckit estimator consist of
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1. Estimate the selection equation to obtain γ̂1 and γ̂2. Use these in equation (16.29) to estimate
the inverse Mill’s ratio, λ̂i.

2. Add λ̂i to the regression model as in equation (16.30) and estimate it using least squares.

This ignores the problem of properly estimating the standard errors, which requires an additional
step. Gretl takes care of this automatically when you use the heckit command.

The example from POE4 uses the mroz.gdt data. The first thing we’ll do is to estimate the
model ignoring selection bias using least squares on the nonzero observations. Load the data and
generate the natural logarithm of wages. Since wages are zero for a portion of the sample, gretl
will generate an error when you take the natural logs. You can safely ignore it as gretl will simply
create missing values for the variables that cannot be transformed. Then use the ols command to
estimate a linear regression on the truncated subset.

1 open "@gretldir\data\poe\mroz.gdt"

2 logs wage

3 ols l_wage const educ exper

The results are:

Model 1: OLS estimates using the 428 observations 1–428
Dependent variable: l wage

Coefficient Std. Error t-ratio p-value

const −0.400174 0.190368 −2.1021 0.0361
educ 0.109489 0.0141672 7.7283 0.0000
exper 0.0156736 0.00401907 3.8998 0.0001

Mean dependent var 1.190173 S.D. dependent var 0.723198
Sum squared resid 190.1950 S.E. of regression 0.668968
R2 0.148358 Adjusted R2 0.144350
F (2, 425) 37.01805 P-value(F ) 1.51e–15
Log-likelihood −433.7360 Akaike criterion 873.4720
Schwarz criterion 885.6493 Hannan–Quinn 878.2814

Notice that the sample has been truncated to include only 428 observations for which hours
worked are actually observed. The estimated return to education is about 11%, and the estimated
coefficients of both education and experience are statistically significant.

The Heckit procedure takes into account that the decision to work for pay may be correlated
with the wage a person earns. It starts by modeling the decision to work and estimating the resulting
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selection equation using a probit model. The model can contain more than one explanatory variable,
wi, and in this example we have four: a womans age, her years of education, a dummy variable for
whether she has children and the marginal tax rate that she would pay upon earnings if employed.
Generate a new variable kids which is a dummy variable indicating the presence of any kids in
the household. Estimate the probit model, generate the index function, and use it to compute the
inverse Mill’s ratio variable. Finally, estimate the regression including the IMR as an explanatory
variable.

1 open "@gretldir\data\poe\mroz.gdt"

2 series kids = (kidsl6+kids618>0)

3 logs wage

4 series kids = (kidsl6+kids618>0)

5 list X = const educ exper

6 list W = const mtr age kids educ probit lfp W

7 series ind = $coeff(const) + $coeff(age)*age + \

8 $coeff(educ)*educ + $coeff(kids)*kids + $coeff(mtr)*mtr

9 series lambda = dnorm(ind)/cnorm(ind)

10 ols l_wage X lambda

The variables for the regression are put into the list X and those for the selection equation are put
into W. The dnorm and cnorm functions return the normal density and normal cumulative density
evaluated at the argument, respectively. The results are:

OLS estimates using the 428 observations 1–428
Dependent variable: l wage

Coefficient Std. Error t-ratio p-value

const 0.810542 0.494472 1.6392 0.1019
educ 0.0584579 0.0238495 2.4511 0.0146
exper 0.0163202 0.00399836 4.0817 0.0001
lambda −0.866439 0.326986 −2.6498 0.0084

Mean dependent var 1.190173 S.D. dependent var 0.723198
Sum squared resid 187.0967 S.E. of regression 0.664278
R2 0.162231 Adjusted R2 0.156304
F (3, 424) 27.36878 P-value(F ) 3.38e–16
Log-likelihood −430.2212 Akaike criterion 868.4424
Schwarz criterion 884.6789 Hannan–Quinn 874.8550

Notice that the estimated coefficient of the inverse Mill’s ratio is statistically significant, im-
plying that there is a selection bias in the least squares estimator. Also, the estimated return to
education has fallen from approximately 11% (which is inconsistently estimated) to approximately
6%. Unfortunately, the usual standard errors do not account for the fact that the inverse Mills
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ratio is itself an estimated value and so they are not technically correct. To obtain the correct
standard errors, you will use gretl’s built-in heckit command.

The heckit command syntax is

In terms of our example the generic syntax will be

heckit y const x2 x3 ... xk; z const w2 w3 ... ws --two-step

where const x2 ... xk are the k independent variables for the regression and const w2 ....

ws are the s independent variables for the selection equation. In this example, we’ve used the two-
step option which mimics the manual procedure employed above, but returns the correct standard
errors.

heckit l_wage X ; lfp W --two-step

Again, we’ve used the results from the list function, which put the independent variables for the
regression into X and the variables for the selection equation into W.

The results appear below in Table 16.3. Notice that in this model, the return to another year of
schooling is about 5.8%. The parameter on the inverse Mills ratio is significant, which is evidence
of selection bias.

To use the pull-down menus, select Model>Nonlinear models>Heckit from gretl’s main win-
dow. This will reveal the dialog shown in figure 16.5. Enter lwage as the dependent variable and
the indicator variable lfp as the selection variable. Then enter the desired independent variables
for the regression and selections equations. Finally, select the 2-step estimation button at the
bottom of the dialog box and click OK.

You will notice that the coefficient estimates are identical to the ones produced manually above.
However, the standard errors, which are now consistently estimated, have changed. The t-ratio
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Figure 16.5: Choose Model>Nonlinear models>Heckit from gretl’s main window to reveal the
dialog box for Heckit.
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Two-step Heckit estimates using the 428 observations 1–428
Dependent variable: l wage

Selection variable: lfp
Coefficient Std. Error z-stat p-value

const 0.810542 0.610798 1.3270 0.1845
educ 0.0584579 0.0296354 1.9726 0.0485
exper 0.0163202 0.00420215 3.8838 0.0001
lambda −0.866439 0.399284 −2.1700 0.0300

Selection equation

const 1.19230 0.720544 1.6547 0.0980
mtr −1.39385 0.616575 −2.2606 0.0238
age −0.0206155 0.00704470 −2.9264 0.0034
kids −0.313885 0.123711 −2.5372 0.0112
educ 0.0837753 0.0232050 3.6102 0.0003

Mean dependent var 1.190173 S.D. dependent var 0.723198
σ̂ 0.932559 ρ̂ −0.929098

Total observations: 753
Censored observations: 325 (43.2%)

Table 16.3: Two-step Heckit results.

of the coefficient on the inverse Mills ratio, λ̂, has fallen to −2.17, but it is still significant at the
5% level. Gretl also produces the estimates of the selection equation, which appear directly below
those for the regression.

16.10 Using R for Qualitative Choice Models

R is a programming language that can be very useful for estimating sophisticated econometric
models. In fact, many statistical procedures have been written for R. Although gretl is very
powerful, there are still many things that it won’t do out of the box. The ability to export
gretl data into R makes it possible to do some very fancy econometrics with relative ease. The
proliferation of new procedures in R comes as some cost though. Although the packages that
are published at CRAN (http://cran.r-project.org/) have met certain standards, there is no
assurance that any of them do what they intend correctly. Gretl, though open source, is more
controlled in its approach. There are two major programmers that vet what gretl does and an
active community of users that experiment and test the outcomes. Gretl users can add functions,
just as R users do, but the basic set of gretl routines have been tested against known results.
Mistakes occur, but they are usually rooted out and fixed by Professor Cottrell or Lucchetti before
most people notice.

To use any of the R packages, you’ll need a copy of R, internet access, and the ability to install
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these to a local drive. A package is just a collection of programs and documentation written in R
that make it easier to use for specific tasks. In the appendix D we use a package to read in data
saved in Stata’s format and below another to estimate qualitative choice models using a Bayesian
approach.

The R software package that is used to estimate qualitative choice models is called MCMC-
pack. MCMCpack stands for Markov Chain Monte Carlo package and it can be used to estimate
every qualitative choice model in this chapter. We will just use it to estimate multinomial logit,
conditional logit, and ordered probit. So, let’s take a quick look at MCMCpack and what it does.

The Markov chain Monte Carlo (MCMC) methods are basic numerical tools that are often
used to compute Bayesian estimators. In Bayesian analysis one combines what one already knows
(called the prior) with what is observed through the sample (the likelihood function) to estimate
the parameters of a model. The information available from the sample information is contained in
the likelihood function; this is the same likelihood function discussed in your book. If we tell the
Bayesian estimator that everything we know is contained in the sample, then the two estimators
are essentially the same. That is what happens with MCMCpack under its defaults.

The biggest difference is in how the two estimators are computed. The MLE is computed
using numerical optimization of the likelihood function, whereas MCMCpack uses simulation to
accomplish virtually the same thing. See Lancaster (2004) or Koop (2003) for an introduction to
Bayesian methods and its relationship to maximum likelihood.

The MCMC creates a series of estimates–called a (Markov) chain–and that series of estimates has
an empirical probability distribution. Under the proper circumstances the probability distribution
of the chain will mimic that of the MLE. Various features of the chain can be used as estimates. For
instance, the sample mean is used by MCMCpack to estimate the parameters of the multinomial
logit model. MCMCpack uses variation within the chain to compute the MLE variance covariance
matrix, which is produced using the summary command.

One piece of information that you must give to MCMCpack is the desired length of your
Markov chain. In the examples here, I chose 20,000, which is the number used in the sample
programs included in MCMCpack. Longer chains tend to be more accurate, but take longer to
compute. This number gets us pretty close to the MLEs produced by gretl and by Stata.

16.10.1 Multinomial Logit

Open the nels small.gdt data set and then open a new R script. The latter is done using
File>Script files>New script>R script. This opens a window called edit R commands as is
shown in Figure D.2. In the box, type in the following program The program code to estimate the
multinomial logit example is shown below:
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1 nels <- gretldata

2 library(MCMCpack)

3 posterior <- MCMCmnl(nels$psechoice ~ nels$grades, mcmc=20000)

4 summary(posterior)

The first line converts the data contained in gretldata, which is what gretl loads into R by default,
to nels. Then load the MCMCpack using the library command. A warning is in order. If you
have not installed MCMCpack, then this will cause gretl to crash. Be sure to save anything of
importance in gretl before trying this. Refer to sections D.3 and D.4 for a brief introduction to
packages and reading Stata datasets in R.

The next line calls the multinomial logit estimator (MCMCmnl). The first argument of MCMCmnl

is the dependent variable nels$psechoice, followed by a ∼, and then the independent variable
nels$grades. The last argument tells R how many simulated values to compute, in this case
20,000. The results of the simulation are stored in the object called posterior. Posterior is the
name given in the Bayesian literature to the probability distribution of the estimates. The mean
or median of this distribution is used as a point estimate (vis-a-vis the MLE). The last line of the
program requests the summary statistics from the Markov chain. The results appear in Figure 16.6
In the MNL model, the estimates from MCMCpack are a little different from those produced by

Figure 16.6: Multinomial logit results from the MCMCmnl estimator in R

gretl, but they are reasonably close. The quantiles are useful for several reasons. As you can see,
the median is actually closer to the MLE than the mean of the posterior distribution. Also, 95%
confidence sets can be gleaned from the 2.5% and 97.5% quantiles.
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16.10.2 Conditional Logit

In this example I’ll show you how to use MCMCpack in R to estimate the conditional logit
model.

The first order of business is to get the data into a format that suits R. This part is not too
pretty, but it works. The data are read into gretl from the cola.gdt data. Launching R from within
gretl transfers the data into R, where it is referred to as gretldata. It is renamed cola and then
attach(cola) is used to make referencing the variables easier to do. The attach(cola) statement
is not necessary, but including it will enable you to call each of the variables in the object cola

by name. For example, cola$price refers to the variable named price in the object named cola.
Once cola is attached, cola$price can be referred to simply as price.

The data in the original cola.gdt dataset are arranged

> cola[1:12,]

id choice price feature display

1 1 0 1.79 0 0

2 1 0 1.79 0 0

3 1 1 1.79 0 0

4 2 0 1.79 0 0

5 2 0 1.79 0 0

6 2 1 0.89 1 1

7 3 0 1.41 0 0

8 3 0 0.84 0 1

9 3 1 0.89 1 0

10 4 0 1.79 0 0

11 4 0 1.79 0 0

12 4 1 1.33 1 0

The MCMCpack routine in R wants to see it as

id bev.choice pepsi.price sevenup.price coke.price

1 3 1.79 1.79 1.79

2 3 1.79 1.79 0.89

3 3 1.41 0.84 0.89

4 3 1.79 1.79 1.33

where each line represents an individual, recording his choice of beverage and each of the three
prices he faces. The goal then is to reorganize the original dataset so that the relevant information
for each individual, which is contained in 3 lines, is condensed into a single row. To simplify the
example, I dropped the variables not being used.

Most of the program below is devoted to getting the data into the proper format. The line
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pepsi.price <- price[seq(1,nrow(cola),by=3)]

creates an object called pepsi.price. The new object consists of every third observation in price,
starting with observation 1. The square brackets [ ] are used to take advantage of R’s powerful
indexing ability. The function seq(1,nrow(cola),by=3) creates a seqence of numbers that start
at 1, increment by 3, and extends until the last row of cola i.e., [1 3 6 9 . . . 5466]. When used
inside the square brackets, these numbers constitute an index of the object’s elements that you
want to grab. In this case the object is price. The sevenup.price and coke.price lines do the
same thing, except their sequences start at 2 and 3, respectively.

The next task is to recode the alternatives to a single variable that takes the value of 1, 2 or 3
depending on a person’s choice. For this I used the same technique.

1 pepsi <- choice[seq(1,nrow(cola),by=3)]

2 sevenup <- 2*choice[seq(2,nrow(cola),by=3)]

3 coke <- 3*choice[seq(3,nrow(cola),by=3)]

The first variable, pepsi, takes every third observation of choice starting at the first row. The
variable will contain a one if the person chooses Pepsi and a zero otherwise since this is how the
variable choice is coded in the data file. The next variable for Seven-Up starts at 2 and the
sequence again increments by 3. Since Seven-Up codes as a 2 the ones and zeros generated by the
sequence get multiplied by 2 (to become 2 or 0). Coke is coded as a 3 and its sequence of ones and
zeros is multiplied by 3. The three variables are combined into a new one called bev.choice that
takes the value of 1,2, or 3 depending on a person’s choice of Pepsi, Seven-Up, or Coke.

Once the data are arranged, load the MCMCpack library and use MCMCmnl to estimate the
model. The conditional logit model uses choice specific variables. For MCMCmnl these choice-specific
covariates have to be entered using a special syntax: choicevar(cvar,"var","choice") where
cvar is the name of a variable in data, var is the name of the new variable to be created, and
choice is the level of bev.choice that cvar corresponds to.

1 cola <- gretldata

2 cola[1:12,]

3

4 attach(cola)

5 pepsi.price <- price[seq(1,nrow(cola),by=3)]

6 sevenup.price <- price[seq(2,nrow(cola),by=3)]

7 coke.price <- price[seq(3,nrow(cola),by=3)]

8

9 pepsi <- choice[seq(1,nrow(cola),by=3)]

10 sevenup <- 2*choice[seq(2,nrow(cola),by=3)]

11 coke <- 3*choice[seq(3,nrow(cola),by=3)]

12
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13 bev.choice <- pepsi + sevenup + coke

14

15 posterior <- MCMCmnl(bev.choice ~

16 choicevar(coke.price, "cokeprice", "3") +

17 choicevar(pepsi.price, "cokeprice", "1") +

18 choicevar(sevenup.price, "cokeprice", "2"),

19 mcmc=20000, baseline="3")

20 summary(posterior)

21

In this example, we specified that we want to normalize the conditional logit on the coke choice;
this is done using the baseline="3" option in MCMCmnl.

The results appear in Figure 16.7.

Figure 16.7: Conditional logit results from the MCMCoprobit estimator in R

16.10.3 Ordered Probit

MCMCpack can also be used to estimate the ordered probit model. It is very easy and the
results you get using the Markov chain Monte Carlo simulation method are very similar to those
from maximizing the likelihood. In principle the maximum likelihood and the simulation estimator
used by MCMCpack are asymptotically equivalent.1 The difference between MCMCpack and

1Of course, if you decide to use more information in your prior then they can be substantially different.
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Stata’s MLE results occurs because the sample sizes for the datasets used is small.

nels <- gretldata

attach(nels)

library(MCMCpack)

posterior <- MCMCoprobit(psechoice ~ grades, mcmc=20000)

summary(posterior)

The first line converts the generic gretldata data frame that is loaded when you launch R from
within gretl. The second line creates the data object called nels. The attach(nels) statement
allows you to refer to the variables in nels data frame directly by their names.

The next line loads MCMCpack into R. Then the ordered probit estimator (MCMCoprobit)
is called. The first argument of MCMCoprobit is the dependent variable psechoice, followed by
a ∼, and then the independent variable grades. The last argument tells R how many simulated
values to compute, in this case 20,000. The results of the simulation are stored in the object called
posterior. The mean or median of this distribution is used as your point estimate (vis-a-vis the
MLE). The last line of the program requests the summary statistics from the simulated values of the
parameters. The results appear in Figure 16.10.3. One important difference between MCMCpack

Figure 16.8: Ordered probit results from the MCMCoprobit estimator in R

and the MLE is in how the results are reported. The model as specified in your textbook contains
no intercept and 2 thresholds. To include a separate intercept would cause the model to be perfectly
collinear. In MCMCpack, the default model includes an intercept and hence can contain only
one threshold.
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The ‘slope’ coefficient β, which is highlighted in Figure 16.10.3, is virtually the same as that
we obtained using the MLE in gretl. The other results are also similar and are interpreted like
the ones produced in gretl. The intercept in MCMCpack is equal to −µ1. The second cut-off
in POE4 ’s no-intercept model is µ2 = −(Intercept − γ2), where γ2 is the single threshold in the
MCMCpack specification.

The standard errors are comparable and you can see that they are equivalent to 3 or 4 decimal
places to those from the MLE.

16.11 Script

Frist, here are all of the functions used in this chapter. You’ll need to run these before using
the second part of the script.

Functions used in chapter 16
1 set echo off

2

3 function matrix me1(matrix *param, list x, scalar *q)

4 matrix p = lincomb(x, param)

5 return dnorm(p)*param[q]

6 end function

7

8 function matrix ame(matrix *param, list x)

9 matrix p = lincomb(x, param)

10 matrix me_matrix = dnorm(p)*param’

11 matrix amfx = meanc(me_matrix)

12 printf "\nThe average marginal effects are %8.4f \n", amfx

13 return me_matrix

14 end function

15

16 function matrix me_at(matrix *param, matrix *xx, scalar *q)

17 scalar p = xx*param

18 return dnorm(p)*param[q]

19 end function

20

21 function matrix mep(matrix *param, matrix *xx, scalar *q)

22 scalar p = xx*param

23 return cnorm(p)

24 end function

25

26 function matrix dlogist(matrix *param, list x)

27 matrix p = lincomb(x, param)

28 matrix d = exp(-p)./(1.+exp(-p)).^2

29 return d

30 end function

31

32 function matrix clogist(matrix *param, list x)
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33 matrix p = lincomb(x, param)

34 matrix c = exp(p)./(1.+exp(p))

35 return c

36 end function

37

38 function matrix ame_l(matrix *param, list x)

39 matrix p = lincomb(x, param)

40 matrix me_matrix = dlogist(&param,x)*param’

41 matrix amfx = meanc(me_matrix)

42 printf "\nThe average marginal effects are %8.4f \n", amfx

43 return me_matrix

44 end function

45

46 function list mlogitprob(series y, list x, matrix theta)

47 list probs = null

48 matrix X = { x }

49 scalar j = max(y)

50 scalar k = cols(X)

51 matrix b = mshape(theta,k,j-1)

52 matrix tmp = X*b

53 series den = (1 + sumr(exp(tmp)))

54

55 loop for i=1..j --quiet

56 if i = 1

57 series p$i = 1/den

58 else

59 scalar q = i - 1

60 series num = exp(X[q,]*b[,q])

61 series p$i=num/den

62 endif

63 list probs += p$i

64 endloop

65 return probs

66 end function

67

68 function matrix mlogitprob_at(series y, matrix X, matrix theta)

69 matrix probs = {}

70 scalar j = max(y)

71 scalar k = cols(X)

72 matrix b = mshape(theta,k,j-1)

73 matrix tmp = X*b

74 scalar den = (1 + sumr(exp(tmp)))

75

76 loop for i=1..j --quiet

77 if i = 1

78 scalar p$i = 1/den

79 else

80 scalar q = i - 1

81 scalar num = exp(X*b[,q])

82 scalar p$i=num/den

83 endif
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84 matrix probs = probs ~ p$i

85 endloop

86 return probs

87 end function

88

89 function mlogitlogprobs(series y, matrix X, matrix theta)

90 scalar n = max(y)

91 scalar k = cols(X)

92 matrix b = mshape(theta,k,n)

93 matrix tmp = X*b

94 series ret = -ln(1 + sumr(exp(tmp)))

95 loop for i=1..n --quiet

96 series x = tmp[,i]

97 ret += (y=$i) ? x : 0

98 end loop

99 return series ret

100 end function

Once the functions have been run, the script below should produce all of the results in the
chapter.

1 # run the function.inp first!

2 open "@gretldir\data\poe\transport.gdt"

3 set echo off

4 summary --simple

5 ols auto const time

6 probit auto const dtime --robust

7 matrix covmat = $vcv

8 scalar i_20 = $coeff(const)+$coeff(dtime)*2

9 scalar d_20 = dnorm(i_20)*$coeff(dtime)

10 printf "\nThe value of the index for dtime=20 is %8.4f\n \

11 the probability of choosing auto is %8.4f \n", i_20, d_20

12

13 # probit marginal effects and average mfx

14 series me = dnorm($coeff(const)+$coeff(dtime)*dtime)*$coeff(dtime)

15 scalar amf = mean(me)

16 summary me --simple

17

18 # probit average mfx using function

19 list x = const dtime

20 probit auto x

21 matrix coef = $coeff

22 matrix me_probit = ame(&coef, x)

23

24 # using Delta method to get standard errors for mfx

25 open "@gretldir\data\poe\transport.gdt"

26 summary --simple

27 list x = const dtime

28 probit auto x
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29 matrix coef = $coeff

30 matrix covmat = $vcv

31 scalar q = 2

32 series mfx = me1(&coef, x, &q)

33 matrix amfx = mean(mfx)

34 matrix jac = fdjac(coef, me1(&coef, x, &q))

35 matrix mjac = meanc(jac)

36 matrix variance = qform(mjac,covmat)

37 matrix se = sqrt(variance)

38 printf "\nThe average marginal effect of dtime = %6.4f with\

39 standard error %6.4f \n", amfx, se

40

41 # confidence interval for average mfx

42 scalar ub = amfx + critical(t,$df,0.025)*se

43 scalar lb = amfx - critical(t,$df,0.025)*se

44 printf "\nThe 95%% confidence interval for the AME of dtime\

45 is (%6.4f, %6.4f) \n",lb,ub

46

47 # marginal effects and std errors at specific points

48 open "@gretldir\data\poe\transport.gdt"

49 summary --simple

50 list x = const dtime

51 probit auto x

52 matrix coef = $coeff

53 matrix covmat = $vcv

54 scalar q = 2

55 matrix xx = { 1, 2 }

56 matrix mfx = me_at(&coef, &xx, &q)

57 matrix jac = fdjac(coef, me_at(&coef, &xx, &q))

58 matrix variance = qform(jac,covmat)

59 matrix se = sqrt(variance)

60 printf "\nThe marginal effect of dtime when dtime=2 is %6.4f with\

61 standard error %6.4f \n", mfx, se

62

63 scalar ub = mfx + critical(z,0.025)*se

64 scalar lb = mfx - critical(z,0.025)*se

65 printf "\nThe 95%% confidence interval the ME with dtime=2 is\

66 (%6.4f, %6.4f) \n",lb,ub

67

68 # predicted probability and its confidence interval

69 probit auto x

70 scalar q = 2

71 matrix coef = $coeff

72 matrix xx = { 1, 3 }

73 matrix mp = mep(&coef, &xx, &q)

74 matrix jac_3 = fdjac(coef, mep(&coef, &xx, &q))

75 matrix variance = qform(jac_3,covmat)

76 matrix se = sqrt(variance)

77 printf "\nThe probability of driving when dtime=3 is %6.4f with\

78 standard error %6.4f \n", mp, se

79
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80 scalar ub = mp + critical(z,0.025)*se

81 scalar lb = mp - critical(z,0.025)*se

82 printf "\nThe 95%% confidence interval the Prob with dtime=3\

83 is (%6.4f, %6.4f) \n",lb,ub

84

85 # comparing probit, logit, ols

86 open "@gretldir\data\poe\coke.gdt"

87 list x = pratio disp_pepsi disp_coke const

88 probit coke x --quiet

89 modeltab add

90 logit coke x --quiet

91 modeltab add

92 ols coke x --robust

93 modeltab add

94 modeltab show

95

96 # test hypotheses with probit

97 probit coke x

98 restrict

99 b[3]+b[4]=0

100 end restrict

101

102 probit coke x

103 restrict

104 b[3]=0

105 b[4]=0

106 end restrict

107

108 series c_p = disp_pepsi-disp_coke

109 probit coke x

110 scalar llu = $lnl

111 probit coke const pratio c_p

112 scalar llr = $lnl

113 scalar lr = 2*(llu-llr)

114 pvalue X 1 lr

115

116 # average mfx with logit

117 list x = const pratio disp_coke disp_pepsi

118 logit coke x

119 matrix coef = $coeff

120 ame_l(&coef,x)

121

122 # average mfx with probit

123 probit coke x

124 matrix coef = $coeff

125 ame(&coef,x)

126

127 # correlation among predictions

128 probit coke x --quiet

129 series pp = $yhat

130 logit coke x --quiet
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131 series pl = $yhat

132 ols coke x --quiet

133 series po = $yhat

134 corr pp pl po

135

136 # Multinomial Logit

137 open "@gretldir\data\poe\nels_small.gdt"

138 list x = const grades

139 logit psechoice x --multinomial

140 matrix theta = $coeff

141 list n = mlogitprob(psechoice, x, theta)

142 smpl 1 12

143 print n --byobs

144 smpl full

145

146 # Average marginal effects

147 rename p1 p01

148 rename p2 p02

149 rename p3 p03

150

151 series grade1 = grades+1

152 list x1 = const grade1

153 list n1 = mlogitprob(psechoice, x1, theta)

154 series d1 = p1-p01

155 series d2 = p2-p02

156 series d3 = p3-p03

157 summary d* --simple

158

159 # mnl predictions at points

160 open "@gretldir\data\poe\nels_small.gdt"

161 list x = const grades

162 logit psechoice x --multinomial

163 matrix theta = $coeff

164 matrix Xm = {1 , quantile(grades,.50)}

165 matrix p50 = mlogitprob_at(psechoice, Xm, theta)

166 matrix Xm = {1 , quantile(grades,.05)}

167 matrix p05 = mlogitprob_at(psechoice, Xm, theta)

168 printf "\nThe predicted probabilities for student\

169 grades=%6.2f is %8.4f\n",quantile(grades,.05), p05

170 printf "\nThe predicted probabilities for student\

171 grades=%6.2f is %8.4f\n",quantile(grades,.50), p50

172

173 # mnl marginal effects at points

174 open "@gretldir\data\poe\nels_small.gdt"

175 list x = const grades

176 logit psechoice x --multinomial

177 matrix theta = $coeff

178 scalar q50 = quantile(grades,.50)

179 matrix Xm = {1 , q50-0.5}

180 matrix p0 = mlogitprob_at(psechoice, Xm, theta)

181 matrix Xm = {1 , q50+0.5}
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182 matrix p1 = mlogitprob_at(psechoice, Xm, theta)

183 matrix me = p1-p0

184 printf "\nThe marginal effect of grades for student\

185 grades =%6.2f is %8.4f\n",median(grades), me

186

187 scalar q05 = quantile(grades,.05)

188 matrix Xm = {1 , q05-0.5}

189 matrix p0 = mlogitprob_at(psechoice, Xm, theta)

190 matrix Xm = {1 , q05+0.5}

191 matrix p1 = mlogitprob_at(psechoice, Xm, theta)

192 matrix me = p1-p0

193 printf "\nThe marginal effect of grades for student\

194 grades=%6.2f is %8.4f\n", q05, me

195

196 # mnl logit with user written likelihood

197 open "@gretldir\data\poe\nels_small.gdt"

198 psechoice = psechoice-1 # dep. var. must be 0-based

199 list x = const grades

200 smpl full

201 matrix X = { x }

202 scalar k = cols(X)

203 matrix theta = zeros(2*k, 1)

204 mle loglik = mlogitlogprobs(psechoice,X,theta)

205 params theta

206 end mle --hessian

207

208 # conditional logit

209 open "@gretldir\data\poe\cola2.gdt"

210 list y = pepsi sevenup coke

211 list x = pr_pepsi pr_7up pr_coke

212 matrix theta = {-1.19, .283, .1038}

213

214 mle lln = clprobs(y, x, theta)

215 params theta

216 end mle

217

218 #Ordered Probit

219 open "@gretldir\data\poe\nels_small.gdt"

220 probit psechoice const grades

221

222 # Marginal effects on probability of going to 4 year college

223 k = $ncoeff

224 matrix b = $coeff[1:k-2]

225 mu1 = $coeff[k-1]

226 mu2 = $coeff[k]

227

228 matrix X = {6.64}

229 matrix Xb = X*b

230 P3a = pdf(N,mu2-Xb)*b

231

232 matrix X = 2.635
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233 matrix Xb = X*b

234 P3b = pdf(N,mu2-Xb)*b

235

236 printf "\nFor the median grade of 6.64, the marginal effect\

237 is %.4f\n", P3a

238 printf "\nFor the 5th percentile grade of 2.635, the marginal\

239 effect is %.4f\n", P3b

240

241 # Poisson Regression -- means and marginal effect

242 open "@gretldir\data\poe\olympics.gdt"

243 smpl year = 88 --restrict

244 logs pop gdp

245 poisson medaltot const l_pop l_gdp

246 scalar m1 = exp($coeff(const)+$coeff(l_pop)*ln(quantile(pop,0.5)) \

247 +$coeff(l_gdp)*ln(quantile(gdp,0.5)))

248 scalar m2 = exp($coeff(const)+$coeff(l_pop)*ln(quantile(pop,0.75)) \

249 +$coeff(l_gdp)*ln(quantile(gdp,0.5)))

250 scalar mft = exp($coeff(const)+$coeff(l_pop)*ln(quantile(pop,0.5)) \

251 +$coeff(l_gdp)*ln(quantile(gdp,0.5)))*$coeff(l_gdp)

252 printf "\nMarginal Effect at the medians is %.3f\n",mft

253 printf "\nAverage medal total for median gdp and pop is %.3f\n",m1

254 printf "\nAverage medal total for median gdp and 75th quantile\

255 pop is %.3f\n",m2

256

257 #Tobit

258 open "@gretldir\data\poe\mroz.gdt"

259 list xvars = const educ exper age kidsl6

260 tobit hours xvars

261 scalar H_hat = $coeff(const)+$coeff(educ)*mean(educ) \

262 +$coeff(exper)*mean(exper) \

263 +$coeff(age)*mean(age)+$coeff(kidsl6)*1

264 scalar z = cnorm(H_hat/$sigma)

265 scalar me_educ = z*$coeff(educ)

266 printf "\nThe computed scale factor = %6.5g\nand marginal effect of\

267 another year of schooling = %5.5g.\n", z, me_educ

268

269 matrix beta = $coeff

270 matrix X = { xvars }

271 matrix meanx = meanc(X)

272 matrix meanx[1,5]=1

273 scalar h_hat=meanx*beta

274 printf "\nTwo ways to compute a prediction get %8.4f and %8.4f\n", h_hat, H_hat

275

276 smpl hours > 0 --restrict

277 ols hours xvars

278 smpl --full

279 ols hours xvars

280

281 # tobit simulation

282 nulldata 200

283 series xs = 20*uniform()
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284 list x = const xs

285 series ys = -9 + 1*xs

286 loop 1000 --progressive --quiet

287 series y = ys + normal(0,4)

288 series yc = (y > 0) ? y : 0

289 ols y x

290 ols yc x

291 series w = (yc>0)

292 wls w yc x

293 tobit yc x

294 endloop

295

296 #Heckit

297 open "@gretldir\data\poe\mroz.gdt"

298

299 series kids = (kidsl6+kids618>0)

300 logs wage

301

302 list X = const educ exper

303 list W = const mtr age kids educ

304

305 probit lfp W

306 series ind = $coeff(const) + $coeff(age)*age + \

307 $coeff(educ)*educ + $coeff(kids)*kids + $coeff(mtr)*mtr

308 series lambda = dnorm(ind)/cnorm(ind)

309 ols l_wage X lambda

310

311 heckit l_wage X ; lfp W --two-step
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Appendix A
Gretl Commands

Estimation

ar Autoregressive estimation ar1 AR(1) estimation
arbond Arellano-Bond arch ARCH model
arima ARMA model biprobit Bivariate probit
dpanel Dynamic panel models duration Duration models
equation Define equation within a sys-

tem
estimate Estimate system of equations

garch GARCH model gmm GMM estimation
heckit Heckman selection model hsk Heteroskedasticity-corrected

estimates
intreg Interval regression model kalman Kalman filter
lad Least Absolute Deviation es-

timation
logistic Logistic regression

logit Logit regression mle Maximum likelihood estima-
tion

mpols Multiple-precision OLS negbin Negative Binomial regression
nls Nonlinear Least Squares ols Ordinary Least Squares
panel Panel Models poisson Poisson estimation
probit Probit model quantreg Quantile regression
system Systems of equations tobit Tobit model
tsls Instrumental variables regres-

sion
var Vector Autoregression

vecm Vector Error Correction
Model

wls Weighted Least Squares
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Tests

add Add variables to model adf Augmented Dickey-Fuller test
chow Chow test coeffsum Sum of coefficients
coint Engle-Granger cointegration

test
coint2 Johansen cointegration test

cusum CUSUM test difftest Nonparametric test for differ-
ences

hausman Panel diagnostics kpss KPSS stationarity test
leverage Influential observations levinlin Levin-Lin-Chu test
meantest Difference of means modtest Model tests
normtest Normality test omit Omit variables
qlrtest Quandt likelihood ratio test reset Ramseys RESET
restrict Testing restrictions runs Runs test
vartest Difference of variances vif Variance Inflation Factors

Transformations

diff First differences discrete Mark variables as discrete
dummify Create sets of dummies lags Create lags
ldiff Log-differences logs Create logs
orthdev Orthogonal deviations sdiff Seasonal differencing
square Create squares of variables

Statistics

anova ANOVA corr Correlation coefficients
corrgm Correlogram fractint Fractional integration
freq Frequency distribution hurst Hurst exponent
mahal Mahalanobis distances pca Principal Components Analy-

sis
pergm Periodogram spearman Spearmanss rank correlation
summary Descriptive statistics xcorrgm Cross-correlogram
xtab Cross-tabulate variables
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Dataset

append Append data data Import from database
dataset Manipulate the dataset delete Delete variables
scalar Generate a new variable info Information on data set
labels Print labels for variables nulldata Creating a blank dataset
open Open a data file rename Rename variables
setinfo Edit attributes of variable setobs Set frequency and starting

obser-
setmiss Missing value code smpl Set the sample range
store Save data varlist Listing of variables

Graphing

boxplot Boxplots gnuplot Create a gnuplot graph
graphpg Gretl graph page qqplot Q-Q plot
rmplot Range-mean plot scatters Multiple pairwise graphs
textplot ASCII plot

Printing

eqnprint Print model as equation modprint Print a user-defined model
outfile Direct printing to file print Print data or strings
printf Formatted printing sprintf Printing to a string
tabprint Print model in tabular form

Programming

break Break from loop catch Catch errors
clear debug Debugging
elif Flow control else

end End block of commands endif Flow control
endloop End a command loop foreign Non-native script
function Define a function if Flow control
include Include function definitions loop Start a command loop
makepkg Make function package run Execute a script
set Set program parameters sscanf Scanning a string
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Utilities

help Help on commands modeltab The model table
pvalue Compute p-values quit Exit the program
shell Execute shell commands
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Appendix B
Some Basic Probability Concepts

In this chapter, you learned some basic concepts about probability. Since the actual values that
economic variables take on are not actually known before they are observed, we say that they are
random. Probability is the theory that helps us to express uncertainty about the possible values of
these variables. Each time we observe the outcome of a random variable we obtain an observation.
Once observed, its value is known and hence it is no longer random. So, there is a distinction to
be made between variables whose values are not yet observed (random variables) and those whose
values have been observed (observations). Keep in mind, though, an observation is merely one of
many possible values that the variables can take. Another draw will usually result in a different
value being observed.

A probability distribution is just a mathematical statement about the possible values that
our random variable can take on. The probability distribution tells us the relative frequency (or
probability) with which each possible value is observed. In their mathematical form probability dis-
tributions can be rather complicated; either because there are too many possible values to describe
succinctly, or because the formula that describes them is complex. In any event, it is common
summarize this complexity by concentrating on some simple numerical characteristics that they
possess. The numerical characteristics of these mathematical functions are often referred to as
parameters. Examples are the mean and variance of a probability distribution. The mean of a
probability distribution describes the average value of the random variable over all of its possible
realizations. Conceptually, there are an infinite number of realizations therefore parameters are
not known to us. As econometricians, our goal is to try to estimate these parameters using a finite
amount of information available to us. We collect a number of realizations (called a sample) and
then estimate the unknown parameters using a statistic. Just as a parameter is an unknown numer-
ical characteristic of a probability distribution, a statistic is an observable numerical characteristic
of a sample. Since the value of the statistic will be different for each sample drawn, it too is a
random variable. The statistic is used to gain information about the parameter.

Expected values are used to summarize various numerical characteristics of a probability dis-
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tributions. For instance, if X is a random variable that can take on the values 0,1,2,3 and these
values occur with probability 1/6, 1/3, 1/3, and 1/6, respectively. The average value or mean of
the probability distribution, designated µ, is obtained analytically using its expected value.

µ = E[X] =
∑

xf(x) = 0 · 1

6
+ 1 · 1

3
+ 2 · 1

3
+ 3 · 1

6
=

3

2
(B.1)

So, µ is a parameter. Its value can be obtained mathematically if we know the probability
density function of the random variable, X. If this probability distribution is known, then there is
no reason to take samples or to study statistics! We can ascertain the mean, or average value, of a
random variable without every firing up our calculator. Of course, in the real world we only know
that the value of X is not known before drawing it and we don’t know what the actual probabilities
are that make up the density function, f(x). In order to Figure out what the value of µ is, we have
to resort to different methods. In this case, we try to infer what it is by drawing a sample and
estimating it using a statistic.

One of the ways we bridge the mathematical world of probability theory with the observable
world of statistics is through the concept of a population. A statistical population is the collection
of individuals that you are interested in studying. Since it is normally too expensive to collect
information on everyone of interest, the econometrician collects information on a subset of this
population–in other words, he takes a sample.

The population in statistics has an analogue in probability theory. In probability theory one
must specify the set of all possible values that the random variable can be. In the example above,
a random variable is said to take on 0,1,2, or 3. This set must be complete in the sense that the
variable cannot take on any other value. In statistics, the population plays a similar role. It consists
of the set that is relevant to the purpose of your inquiry and that is possible to observe. Thus it
is common to refer to parameters as describing characteristics of populations. Statistics are the
analogues to these and describe characteristics of the sample.

This roundabout discussion leads me to an important point. We often use the words mean,
variance, covariance, correlation rather casually in econometrics, but their meanings are quire
different depending on whether we are refereing to a probability distribution or a sample. When
referring to the analytic concepts of mean, variance, covariance, and correlation we are specifically
talking about characteristics of a probability distribution; these can only be ascertained through
complete knowledge of the probability distribution functions. It is common to refer to them in this
sense as population mean, population variance, and so on. These concepts do not have anything
to do with samples or observations!

In statistics we attempt to estimate these (population) parameters using samples and explicit
formulae. For instance, we might use the average value of a sample to estimate the average value
of the population (or probability distribution).

431



Probability Distribution Sample

mean E[X] = µ 1
n

∑
xi = x̄

variance E[X − µ]2 = σ2 1
n−1

∑
(xi − x̄)2 = s2

x

When you are asked to obtain the mean or variance of random variables, make sure you know
whether the person asking wants the characteristics of the probability distribution or of the sample.
The former requires knowledge of the probability distribution and the later requires a sample.

In gretl you are given the facility to obtain sample means, variances, covariances and correla-
tions. You are also given the ability to compute tail probabilities using the normal, t-, F and χ2

distributions. First we’ll examine how to get summary statistics.

Summary statistics usually refers to some basic measures of the numerical characteristics of your
sample. In gretl , summary statistics can be obtained in at least two different ways. Once your
data are loaded into the program, you can select Data>Summary statistics from the pull-down
menu. Which leads to the output in Figure B.2. The other way to get summary statistics is from

Figure B.1: Choosing summary statistics from the pull-down menu

the console or script. Recall, gretl is really just a language and the GUI is a way of accessing that
language. So, to speed things up you can do this. Load the dataset and open up a console window.
Then type summary. This produces summary statistics for all variables in memory. If you just want
summary statistics for a subset, then simply add the variable names after summary, i.e., summary
x gives you the summary statistics for the variable x.

Gretl computes the sample mean, median, minimum, maximum, standard deviation (S.D.),
coefficient of variation (C.V.), skewness and excess kurtosis for each variable in the data set. You
may recall from your introductory statistics courses that there are an equal number of observations
in your sample that are larger and smaller in value than the median. The standard deviation is the
square root of your sample variance. The coefficient of variation is simply the standard deviation
divided by the sample mean. Large values of the C.V. indicate that your mean is not very precisely
measured. Skewness is a measure of the degree of symmetry of a distribution. If the left tail (tail
at small end of the the distribution) extends over a relatively larger range of the variable than the
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Figure B.2: Choosing summary statistics from the pull-down menu yields these results.

right tail, the distribution is negatively skewed. If the right tail covers a larger range of values then
it is positively skewed. Normal and t-distributions are symmetric and have zero skewness. The
χ2
n is positively skewed. Excess kurtosis refers to the fourth sample moment about the mean of

the distribution. ‘Excess’ refers to the kurtosis of the normal distribution, which is equal to three.
Therefore if this number reported by gretl is positive, then the kurtosis is greater than that of the
normal; this means that it is more peaked around the mean than the normal. If excess kurtosis is
negative, then the distribution is flatter than the normal.

Sample Statistic Formula

Mean
∑
xi/n = x̄

Variance 1
n−1

∑
(xi − x̄)2 = s2

x

Standard Deviation s =
√
s2

Coefficient of Variation s/x̄

Skewness 1
n−1

∑
(xi − x̄)3/s3

Excess Kurtosis 1
n−1

∑
(xi − x̄)4/s4 − 3

You can also use gretl to obtain tail probabilities for various distributions. For example if X ∼
N(3, 9) then P (X ≥ 4) is

P [X ≥ 4] = P [Z ≥ (4− 3)/
√

9] = P [Z ≥ 0.334]=̇0.3694 (B.2)

To obtain this probability, you can use the Tools>P-value finder from the pull-down menu.
Then, give gretl the value of X, the mean of the distribution and its standard deviation using
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the dialog box shown in Figure B.3. The result appears in Figure B.4. Gretl is using the mean

Figure B.3: Dialog box for finding right hand side tail areas of various probability distributions.

Figure B.4: Results from the p value finder of P [X ≥ 4] where X ∼ N(3, 9). Note, the area in the
tail of this distribution to the right of 4 is .369441.

and standard deviation to covert the normal to a standard normal (i.e., z-score). As with nearly
everything in gretl , you can use a script to do this as well. First, convert 4 from the X ∼ N(3, 9)
to a standard normal, X ∼ N(0, 1). That means, subtract its mean, 3, and divide by its standard
error,

√
9. The result is a scalar so, open a script window and type:

scalar z1 = (4-3)/sqrt(9)

Then use the cdf function to compute the tail probability of z1. For the normal cdf this is

scalar c1 = 1-cdf(z,z1)

The first argument of the cdf function, z, identifies the probability distribution and the second, z1,
the number to which you want to integrate. So in this case you are integrating a standard normal
cdf from minus infinity to z1=.334. You want the other tail (remember, you want the probability
that Z is greater than 4) so subtract this value from 1.

In your book you are given another example X ∼ N(3, 9) then find P (4 ≤ X ≤ 6) is

P [4 ≤ X ≤ 6] = P [0.334 ≤ Z ≤ 1] = P [Z ≤ 1]− P [Z ≤ .33] (B.3)
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Take advantage of the fact that P [Z ≤ z] = 1−P [Z > z] to obtain use the p-value finder to obtain:

(1− 0.1587)− (1− 0.3694) = (0.3694− 0.1587) = 0.2107 (B.4)

Note, this value differs slightly from the one given in your book due to rounding error that occurs
from using the normal probability table. When using the table, the P [Z ≤ .334] was truncated to
P [Z ≤ .33]; this is because your tables are only taken out to two decimal places and a practical
decision was made by the authors of your book to forgo interpolation (contrary to what your Intro
to Statistics professor may have told you, it is hardly ever worth the effort to interpolate when
you have to do it manually). Gretl, on the other hand computes this probability out to machine
precision as P [Z ≤ 1

3 ]. Hence, a discrepancy occurs. Rest assured though that these results are,
aside from rounding error, the same.

Using the cdf function makes this simple and accurate. The script is

scalar z1 = (4-3)/sqrt(9)

scalar z2 = (6-3)/sqrt(9)

scalar c1 = cdf(z,z1)

scalar c2 = cdf(z,z2)

scalar area = c2-c1

Gretl has a handy new feature that allows you to plot probability distributions. If you’ve ever
wondered what a Weibull(10,0.4) looks like then this is the utility you have waited for. From the
main menu choose Tools>Distribution graphs from the main menu. The following dialog will
appear:

You can plot normal, t, χ2, F, binomial, poisson, and weibull probability density functions. Fill in
the desired parameters and click OK. For the normal, you can also tell gretl whether you want
the pdf or the cdf. This utility is closely related to another that allows you to plot a curve. The
curve plotting dialog is also found in the Tools menu.
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The dialog box allows you to specify the range of the graph as well as the formula, which must
be a function of x. Once the graph is plotted you can edit it in the usual way and add additional
formulae and lines as you wish. Please note that gnuplot uses ** for exponentiation (raising to a
power).
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Appendix C
Some Statistical Concepts

The hip data are used to illustrate computations for some simple statistics in your text.

C.1 Summary Statistics

Using a script or operating from the console, open the hip data, hip.gdt, and issue the summary

command. This yields the results shown in Table C.1. This gives you the mean, median, mini-

Summary Statistics, using the observations 1 - 50

for the variable ’y’ (50 valid observations)

Mean 17.158

Median 17.085

Minimum 13.530

Maximum 20.400

Standard deviation 1.8070

C.V. 0.10531

Skewness -0.013825

Ex. kurtosis -0.66847

Table C.1: Summary statistics from the hip data

mum, maximum, standard deviation, coefficient of variation, skewness and excess kurtosis of your
variable(s). Once the data are loaded, you can use gretl’s language to generate these as well. For
instance, scalar y bar = mean(y) yields the mean of the variable y. To obtain the sample vari-
ance use scalar y var = sum((y-y bar)̂2)/($nobs-1). The script below can be used to compute
other summary statistics as discussed in your text.
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1 open "@gretldir\data\poe\hip.gdt"

2 summary

3 scalar y_bar = mean(y)

4 scalar y_var = sum((y-y_bar)^2)/($nobs-1)

5 scalar y_se = sqrt(y_var)

6 scalar se_ybar = sqrt(y_var/$nobs)

7

8 scalar mu2 = sum((y-y_bar)^2)/($nobs)

9 scalar mu3 = sum((y-mean(y))^3)/($nobs)

10 scalar mu4 = sum((y-mean(y))^4)/($nobs)

11 printf "\n mean = %5.4f\n sample variance = %5.4f\n sample\

12 std deviation = %5.4f\n",y_bar,y_var,y_se

13 printf "\n mu2 = %5.4f\n mu3 = %5.4f\n mu4 = %5.4f\n",mu2,mu3,mu4

Then, to estimate skewness, S = µ̃3/σ̃3, and excess kurtosis, K = µ̃4/σ̃4 − 3:

1 scalar sig_tild = sqrt(mu2)

2 scalar skew = mu3/sig_tild^3

3 scalar ex_kurt = mu4/sig_tild^4 -3

4 printf "\n std dev. of the mean = %5.4f\n skewness = %5.4f\n\

5 excess kurtosis = %5.4f\n",se_ybar,skew,ex_kurt

Note, in gretl’s built in summary command, the excess kurtosis is reported. The normal dis-
tribution has a theoretical kurtosis equal to 3 and the excess is measured relative to that. Hence,
excess kurtosis = µ̃4/σ̃4 − 3

If hip size in inches is normally distributed, Y ∼ N(µ, σ2). Based on our estimates, Y ∼
N(17.158, 3.265). The percentage of customers having hips greater than 18 inches can be estimated.

P (Y > 18) = P

(
Y − µ
σ

>
18− µ
σ

)
(C.1)

Replacing µ and σ by their estimates yields

1 scalar zs = (18 - mean(y))/sd(y)

2 pvalue z zs

The last line actually computes the p-value associated with z -score. So, the pvalue command
requests that a p-value be returned, the second argument (z) indicates the distribution to be used
(in this case, z indicates the normal), and the final argument (zs) is the statistic itself, which is
computed in the previous line. The result is 0.3207, indicating that about 32% of the population
would not fit into a seat that is 18 inches wide.

438



How large would a seat have to be to be able to fit 95% of the population? Find y∗ to satisfy

P (Y ≤ y∗) =
y∗ − ȳ
σ̂

≤ y∗ − 17.1582

1.8070
= 0.95 (C.2)

In gretl you need to find the value of Z = (y∗ − ȳ)/σ̂ that satisfies the probability. The invcdf

function does this. Since Z is standard normal

1 scalar zz = invcdf(n,.95)

2 scalar ystar = sd(y)*zz+mean(y)

3 print ystar

The seat width is estimated to be 20.13 inches.

C.2 Interval Estimation

Estimating a confidence interval using the hip data is also easy to do in gretl. Since the true
variance, σ2, is not known, the t-distribution is used to compute the interval. The interval is

ȳ ± tc
σ̂√
N

(C.3)

where tc is the desired critical value from the student-t distribution. In our case, N = 50
and the desired degrees of freedom for the t-distribution is N − 1 = 49. The gretl command
critical(t,49,.025 can be used to return the 0.025 critical value from the t49 distribution shown
in Figure C.1

The computation is

1 open "@gretldir\data\poe\hip.gdt"

2 scalar y_sd = sd(y)

3 scalar ybar_sd = y_sd/sqrt($nobs)

4 scalar lb = mean(y) - 2.01*ybar_sd

5 scalar ub = mean(y) + 2.01*ybar_sd

which indicates that the interval [16.64,17.67] works 95% of the time. Note these numbers differ
slightly from those in your book because we used 2.01 as our critical value. Hill et al. carry their
critical value out to more decimal places and hence the difference. You can use gretl’s internal
functions to improve accuracy. Replace 2.01 with critical(t,$nobs-1,0.025) and see what
happens!
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1 scalar lb = mean(y) - critical(t,$nobs-1,0.025)*ybar_sd

2 scalar ub = mean(y) + critical(t,$nobs-1,0.025)*ybar_sd

3 printf "\nThe 95\% confidence interval is (%5.4f, %6.4f)\n",lb,ub

C.3 Hypothesis Tests

Hypothesis tests are based on the same principles and use the same information that is used in
the computation of confidence intervals. The first test is on the null hypothesis that hip size does
not exceed 16.5 inches against the alternative that it does. Formally, H0 : µ = 16.5 against the
alternative Ha : µ > 16.5. The test statistic is computed based on the sample average, Ȳ and is

t =
Ȳ − 16.5

σ̂/
√
N
∼ tN−1 (C.4)

if the null hypothesis is true. Choosing the significance level, α = .05, the right-hand side critical
value for the t49 is 1.677. The average hip size is 17.1582 with standard deviation 1.807 so the test
statistic is

t =
17.1582− 16.5

1.807/
√

50
= 2.576 (C.5)

The gretl code to produce this is:

1 open "@gretldir\data\poe\hip.gdt"

2 scalar df = $nobs-1

3 scalar y_bar = mean(y)

4 scalar y_sd = sd(y)

5 scalar ybar_sd = y_sd/sqrt($nobs)

6 scalar tstat = (y_bar-16.5)/(ybar_sd)

7 scalar c = critical(t,df,0.025)

8 pvalue t df tstat

The scalar c = critical(t,49,0.025) statement can be used to get the α = 0.025 critical value
for the t distribution with 49 degrees of freedom. The next line, pvalue t 49 tstat, returns the
p-value from the t distribution with 49 degrees of freedom for the computed statistic, tstat.

The two-tailed test is of the hypothesis, H0 : µ = 17 against the alternative, Ha : µ 6= 17.

t =
Ȳ − 17

σ̂/
√
N
∼ tN−1 (C.6)

if the null hypothesis is true. Choosing the significance level, α = .05, the two sided critical value
is ±2.01. Hence, you will reject the null hypothesis if t < −2.01 or if t > 2.01. The statistic is
computed

t =
17.1582− 17

1.807/
√

50
= .6191 (C.7)
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and you cannot reject the null hypothesis. The gretl code is:

1 scalar tstat = (y_bar-17)/(ybar_sd)

2 scalar c = critical(t,df,0.025)

3 pvalue t df tstat

C.4 Testing for Normality

Your book discusses the Jarque-Bera test for normality which is computed using the skewness
and kurtosis of the least squares residuals. To compute the Jarque-Bera statistic, you’ll first need
to obtain the summary statistics from your data series.

From gretl script

1 open "@gretldir\data\poe\hip.gdt"

2 summary

You could also use the point and click method to get the summary statistics. This is accom-
plished from the output window of your regression. Simply highlight the hip series and then choose
Data>Summary statistics>selected variables from the pull-down menu. This yields the re-
sults in Table C.1.

One thing to note, gretl reports excess kurtosis rather than kurtosis. The excess kurtosis is
measured relative to that of the normal distribution which has kurtosis of three. Hence, your
computation is

JB =
N

6

(
Skewness2 +

(Excess Kurtosis)2

4

)
(C.8)

Which is

JB =
50

6

(
−0.01382 +

−0.668472

4

)
= .9325 (C.9)

Using the results in section C.1 for the computation of skewness and kurtosis, the gretl code is:

1 scalar sig_tild = sqrt(sum((y-mean(y))^2)/($nobs))

2 scalar mu3 = sum((y-mean(y))^3)/($nobs)

3 scalar mu4 = sum((y-mean(y))^4)/($nobs)

4 scalar skew = mu3/sig_tild^3

5 scalar kurt = mu4/sig_tild^4

6 scalar JB = ($nobs/6)*(skew^2+(kurt-3)^2/4)

7 pvalue X 2 JB
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C.5 Script

1 set echo off

2 open "@gretldir\data\poe\hip.gdt"

3 summary

4 scalar y_bar = mean(y)

5 scalar y_var = sum((y-y_bar)^2)/($nobs-1)

6 scalar y_se = sqrt(y_var)

7 scalar se_ybar = sqrt(y_var/$nobs)

8

9 scalar mu2 = sum((y-y_bar)^2)/($nobs)

10 scalar mu3 = sum((y-mean(y))^3)/($nobs)

11 scalar mu4 = sum((y-mean(y))^4)/($nobs)

12 printf "\n mean = %5.4f\n sample variance = %5.4f\n sample\

13 std deviation = %5.4f\n",y_bar,y_var,y_se

14 printf "\n mu2 = %5.4f\n mu3 = %5.4f\n mu4 = %5.4f\n",mu2,mu3,mu4

15

16 scalar sig_tild = sqrt(mu2)

17 scalar skew = mu3/sig_tild^3

18 scalar ex_kurt = mu4/sig_tild^4 -3

19 printf "\n std dev. of the mean = %5.4f\n skewness = %5.4f\n\

20 excess kurtosis = %5.4f\n",se_ybar,skew,ex_kurt

21

22 # Using the estimates

23 scalar zs = (18 - mean(y))/sd(y)

24 pvalue z zs

25 scalar zz = invcdf(n,.95)

26 scalar ystar = sd(y)*zz+mean(y)

27 print ystar

28

29 # Confidence interval

30 open "@gretldir\data\poe\hip.gdt"

31 scalar y_sd = sd(y)

32 scalar ybar_sd = y_sd/sqrt($nobs)

33 scalar lb = mean(y) - 2.01*ybar_sd

34 scalar ub = mean(y) + 2.01*ybar_sd

35 scalar lb = mean(y) - critical(t,$nobs-1,0.025)*ybar_sd

36 scalar ub = mean(y) + critical(t,$nobs-1,0.025)*ybar_sd

37 printf "\nThe 95\% confidence interval is (%5.4f, %6.4f)\n",lb,ub

38

39 # t-test

40 open "@gretldir\data\poe\hip.gdt"

41 scalar df = $nobs-1

42 scalar y_bar = mean(y)

43 scalar y_sd = sd(y)

44 scalar ybar_sd = y_sd/sqrt($nobs)

45 scalar tstat = (y_bar-16.5)/(ybar_sd)

46 scalar c = critical(t,df,0.025)

47 pvalue t df tstat

48 scalar tstat = (y_bar-17)/(ybar_sd)
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49 scalar c = critical(t,df,0.025)

50 pvalue t df tstat

51

52 # Jarque-Bera

53 scalar sig_tild = sqrt(sum((y-mean(y))^2)/($nobs))

54 scalar mu3 = sum((y-mean(y))^3)/($nobs)

55 scalar mu4 = sum((y-mean(y))^4)/($nobs)

56 scalar skew = mu3/sig_tild^3

57 scalar kurt = mu4/sig_tild^4

58 scalar JB = ($nobs/6)*(skew^2+(kurt-3)^2/4)

59 pvalue X 2 JB
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Figure C.1: Obtaining critical values from the t distribution using hansl.
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Appendix D
Using R with gretl

Another feature of gretl that makes it extremely powerful is its ability to work with another
free program called R. R is actually a programming language for which many statistical procedures
have been written. Although gretl is powerful, there are still many things that it won’t do, at least
without some additional programming. The ability to export gretl data into R makes it possible
to do some sophisticated analysis with relative ease.

Quoting from the R web site

R is a system for statistical computation and graphics. It consists of a language plus
a run-time environment with graphics, a debugger, access to certain system functions,
and the ability to run programs stored in script files.

The design of R has been heavily influenced by two existing languages: Becker, Cham-
bers & Wilks’ S and Sussman’s Scheme. Whereas the resulting language is very simi-
lar in appearance to S, the underlying implementation and semantics are derived from
Scheme.

The core of R is an interpreted computer language which allows branching and looping
as well as modular programming using functions. Most of the user-visible functions
in R are written in R. It is possible for the user to interface to procedures written
in the C, C++, or FORTRAN languages for efficiency. The R distribution contains
functionality for a large number of statistical procedures. Among these are: linear and
generalized linear models, nonlinear regression models, time series analysis, classical
parametric and nonparametric tests, clustering and smoothing. There is also a large set
of functions which provide a flexible graphical environment for creating various kinds
of data presentations. Additional modules (add-on packages) are available for a variety
of specific purposes (see R Add-On Packages).

R was initially written by Ross Ihaka and Robert Gentleman at the Department of
Statistics of the University of Auckland in Auckland, New Zealand. In addition, a large
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group of individuals has contributed to R by sending code and bug reports.

Since mid-1997 there has been a core group (the R Core Team) who can modify the R
source code archive. The group currently consists of Doug Bates, John Chambers, Peter
Dalgaard, Seth Falcon, Robert Gentleman, Kurt Hornik, Stefano Iacus, Ross Ihaka,
Friedrich Leisch, Uwe Ligges, Thomas Lumley, Martin Maechler, Duncan Murdoch,
Paul Murrell, Martyn Plummer, Brian Ripley, Deepayan Sarkar, Duncan Temple Lang,
Luke Tierney, and Simon Urbanek.

R has a home page at http://www.R-project.org/. It is free software distributed
under a GNU-style copyleft, and an official part of the GNU project (GNU S).

R can be downloaded from http://www.r-project.org/, which is referred to as CRAN or
the comprehensive R archive network. To install R, you’ll need to download it and follow the
instructions given at the CRAN web site. Also, there is an appendix in the gretl manual about
using R that you may find useful. The remainder of this brief appendix assumes that you have
R installed and linked to gretl through the programs tab in the File>Preferences>General pull
down menu. Make sure that the ‘Command to launch GNR R’ box points to the RGui.exe file
associated with your installation of R.

D.1 Ways to Use R in gretl

The standard method of working with R is by writing scripts, or by typing commands at the
R prompt, much in the same way as one would write gretl scripts or work with the gretl console.
This section is a gentle introduction to using R in general with a few tips on using it with gretl.
As you will see, there are several ways in which to use R in gretl.

D.1.1 Using the foreign command

In section 10.3.4 a foreign statement was used to actually execute R routines from within
gretl and to pass results to gretl for further processing. A foreign block has the basic structure:

Basic foreign block for R
1 foreign language=R --send-data --quiet

2 [ R code to create a matrix called ’Rmatrix’ ]

3 gretl.export(Rmatrix)

4 end foreign

5

6 matrix m = mread("@dotdir/Rmatrix.mat")

The foreign command uses the language=R to open R and to ready it for further computing
outside of gretl. The --send-data option sends the current gretl data set to R. The --quiet
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option prevents the output from R from being echoed in the gretl output. The block is closed
and R exited with the end foreign command. What appears in between are statements coded
in R. The last statement, gretl.export(Rmatrix), is used to export a matrix computation that
I have called ‘Rmatrix’ to gretl. R attaches a .mat suffix to Rmatrix automatically. The matrix
is written to the gretl working directory on your harddrive. To read the matrix and ready it for
further processing, use the mread command (matrix read). The mread("@dotdir/Rmatrix.mat")
tells gretl to look in the working directory (@dotdir)for Rmatrix.mat.

This achieves the same effect as submitting the enclosed R commands via the GUI in the
noninteractive mode (see section 30.3 of the Gretl Users Guide). In other words, it allows you to
use R commands from within gretl . Of course, you have to have installed R separately, but this
greatly expands what can be done using gretl.

D.1.2 Opening an R session

To illustrate, open the cola.gdt data in gretl.

open "C:\Program Files (x86)\gretl\data\poe\cola.gdt"

Now, select Tools>start GNU R from the pull-down menu. The current gretl data set, in this case
cola.gdt, will be transported into R’s required format. You’ll see the R console which is shown in
Figure D.1. The message in R tells you that the data are loaded into an R data frame called
gretldata. You can now use R with the data loaded from gretl. Gretl’s data import features
are very good and it makes an excellent front-end for getting data into R.

D.1.3 R Script from gretl

1Opening an R window and keying in commands is a convenient method when the job is small.
In some cases, however, it would be preferable to have R execute a script prepared in advance.
One way to do this is via the source() command in R. Alternatively, gretl offers the facility to
edit an R script and run it, having the current dataset pre-loaded automatically. This feature can
be accessed via the File, Script Files menu entry. By selecting User file, one can load a pre-existing
R script; if you want to create a new script instead, select the New script, R script menu entry.
Figure D.2

In either case, you are presented with a window very similar to the editor window used for
ordinary gretl scripts, as in Figure D.2.

1This is taken almost directly from the gretl Users Guide, chapter 30
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Figure D.1: The R console when called from gretl. Choose Tools>Start GNU R from the main
gretl window.

Figure D.2: Using R from the R script editor in gretl.
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There are two main differences. First, you get syntax highlighting for Rs syntax instead of
gretl’s. Second, clicking on the Execute button (the gears icon), launches an instance of R in
which your commands are executed. Before R is actually run, you are asked if you want to run R
interactively or not in this dialog box:

An interactive run opens an R instance similar to the one seen in the previous section: your
data will be pre-loaded (if the pre-load data box is checked) and your commands will be executed.
Once this is done, you will find yourself in R and at the R prompt. From here you can enter more
R commands.

A non-interactive run, on the other hand, will execute your script, collect the output from R
and present it to you in an output window; R will be run in the background. This was the approach
taken in the canonical correlation analysis from chapter 10, since we did not have further use for
R and the results were being passed back to gretl.

D.2 A few basic commands and conventions

The first thing I usually do is to change the name to something less generic, e.g., cola, using

> cola <-gretldata

You can also load the current gretl data into R manually as shown below. To load the data
in properly, you have to locate the Rdata.tmp file that gretl creates when you launch R from
the GUI. Mine was cleverly hidden in C:/Users/Lee/AppData/Roaming/gretl/Rdata.tmp. Once
found, use the read.table command in R as shown. The system you are using (Windows in my
case) dictate whether the slashes are forward or backward. Also, I read the data in as cola rather
than the generic gretldata to make things easier later. R.
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> cola <- read.table("C:/Users/Lee/AppData/Roaming/gretl/Rdata.tmp",

+ header = TRUE )

The addition of Header = TRUE to the code that gretl writes for you ensures that the variable
names, which are included on the first row of the Rdata.tmp, get read into R properly. Then, to
run the regression in R.

R code to estimate a linear model and print results
1 fitols <- lm(price~feature+display,data=cola)

2 summary(fitols)

3 anova(fitols)

The fitols <- lm(price feature+display,data=cola) command estimates a linear regression
model with price as the dependent variable. The results are stored into memory under the name
fitols. The variables feature and display are included as regressors. R automatically in-
cludes an intercept. To print the results to the screen, you have to use the summary(fitols)

command. Before going further, let me comment on this terse piece of computer code. First, in R

Figure D.3: The fitols <- lm(price feature+display,data=cola) command estimates a lin-
ear regression model with price as the dependent variable. The variables feature and display are
included as regressors.

the symbol <- is used as the assignment operator2; it assigns whatever is on the right hand side
(lm(y∼x,data=gretldata)) to the name you specify on the left (fitols). It can be reversed ->

if you want to call the object to its right what is computed on its left.

2You can also use =, but it only assigns in one direction–right is assigned to left.
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The lm command stands for ‘linear model’ and in this example it contains two arguments
within the parentheses. The first is your simple regression model. The dependent variable is price
and the independent variables feature, display, and a constant. The dependent variable and
independent variables are separated by the symbol which substitutes in this case for an equals
sign. The independent variables are separated by plus signs (+). In a linear model the meaning of
this is unambiguous. The other argument points to the data set that contains these two variables.
This data set, pulled into R from gretl, is by default called gretldata. We changed the name to
cola above and that is what we refer to here. There are other options for the lm command, and
you can consult the substantial pdf manual to learn about them. In any event, you’ll notice that
when you enter this line and press the return key (which executes this line) R responds by issuing
a command prompt, and no results! R does not bother to print results unless you ask for them.
This is handier than you might think, since most programs produce a lot more output than you
actually want and must be coerced into printing less. The last line asks R to print the ANOVA
table to the screen. This gives the result in Figure D.4. It’s that simple!

Figure D.4: The anova(olsfit) command asks R to print the anova table for the regression results
stored in olsfit.

To do multiple regression in R, you can also put each of your independent variables (other
than the intercept) into a matrix and use the matrix as the independent variable. A matrix is
a rectangular array (which means it contains numbers arranged in rows and columns). You can
think of a matrix as the rows and columns of numbers that appear in a spreadsheet program
like MS Excel. Each row contains an observation on each of your independent variables; each
column contains all of the observations on a particular variable. For instance suppose you have
two variables, x1 and x2, each having 5 observations. These can be combined horizontally into the
matrix, X. Computer programmers sometimes refer to this operation as horizontal concatenation.
Concatenation essentially means that you connect or link objects in a series or chain; to concatenate
horizontally means that you are binding one or more columns of numbers together.

The function in R that binds columns of numbers together is cbind. So, to horizontally con-
catenate x1 and x2 use the command

X <- cbind(x1,x2)
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which takes

x1 =


2
1
5
2
7

 , x2 =


4
2
1
3
1

 , and yieldsX =


2 4
1 2
5 1
2 3
7 1

 .

Then the regression is estimated using

fitols <- lm(y~X)

There is one more thing to mention about R that is very important and this example illustrates it
vividly. R is case sensitive. That means that two objects x and X can mean two totally different
things to R. Consequently, you have to be careful when defining and calling objects in R to get to
distinguish lower from upper case letters.

D.3 Packages

The following is section is taken with very minor changes from Venables et al. (2006).

All R functions and datasets are stored in packages. Only when a package is loaded are its
contents available. This is done both for efficiency (the full list would take more memory and would
take longer to search than a subset), and to aid package developers, who are protected from name
clashes with other code. The process of developing packages is described in section Creating R
packages in Writing R Extensions. Here, we will describe them from a users point of view. To see
which packages are installed at your site, issue the command library() with no arguments. To
load a particular package (e.g., the MCMCpack package containing functions for estimating models
in Chapter 16

> library(MCMCpack)

If you are connected to the Internet you can use the install.packages() and update.packages()

functions (both available through the Packages menu in the Windows GUI). To see which packages
are currently loaded, use

> search()

to display the search list.
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To see a list of all available help topics in an installed package, use

> help.start()

to start the HTML help system, and then navigate to the package listing in the Reference section.

D.4 Stata Datasets

With R you can read in datasets in many different formats. Your textbook includes a dataset
written in Stata’s format and R can both read and write to this format. To read and write Stata’s
.dta files, you’ll have to load the foreign package using the library command:

1 library(foreign)

2 nels <- read.dta("c:/temp/nels_small.dta")

3 pse <- nels$psechoice

4 attach(nels)

Line 2 reads the Stata dataset using the read.dta command directly into R. It is placed into an
object called nels. There are two things to note, though. First, the slashes in the filename are
backwards from the Windows convention. Second, you need to point to the file in your directory
structure and enclose the path/filename in double quotes. R looks for the the file where you’ve
directed it and, provided it finds it, reads it into memory. It places the variable names from Stata
into the object. Then, to retrieve a variable from the object you create the statement in line 3.
Now, you have created a new object called pse that contains the variable retrieved from the nels

object called psechoice. This seems awkward at first, but believe it or not, it becomes pretty
intuitive after a short time.

The command attach(nels) will take each of the columns of nels and allow you to refer
to it by its variable name. So, instead of referring to nels$psechoice you can directly ask for
psechoice without using the nels$ prefix. For complex programs, using attach() may lead to
unexpected results. If in doubt, it is probably a good idea to forgo this option. If you do decide to
use it, you can later undo it using detach(nels).

D.5 Final Thoughts

A very brief, but useful document can be found at http://cran.r-project.org/doc/contrib/
Farnsworth-EconometricsInR.pdf (Farnsworth, 2008). This is a guide written by Grant Farnsworth
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about using R in econometrics. He gives some alternatives to using MCMCpack for the models dis-
cussed in Chapter 16.
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Appendix E
Errata and Updates

Date Action

2011-07-14 None yet

2011-08-16 Typo on p. 221 (section 9.8.1): const missing from regression.

2011-08-17 The gretl macro commands @gretldir, @dotdir, @workdir replace references to specific
places on harddrive.

2011-08-17 Point out that launch wgnuplot is a Windows command.

2011-08-17 The movavg function is used to do exponential smoothing

2011-08-17 The multiplier script was modified to use the elif construct.

2011-08-17 Script to plot the multipliers from a matrix is added.

2011-08-17 ”=” deleted from ols command in the script on page 247.

2011-08-17 gig was used to estimate TARCH using the GJR option.

2011-08-17 Version 2.1 of scripts posted.

2011-08-18 Error in script on page 248. Removed equal sign in ols command.

2011-08-18 Added the native canonical correlation function, cc, to chapter 10 text and script.

2011-08-18 Version 2.12 of scripts posted.

2011-08-18 Section 10.4 is added to study the performance of TSLS.

2011-08-18 Chapter 16. Variable ordering for conditional logit example was incorrect.
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Appendix F
GNU Free Documentation License

Version 1.2, November 2002

Copyright c© 2000,2001,2002 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and useful
document “free” in the sense of freedom: to assure everyone the effective freedom to copy and
redistribute it, with or without modifying it, either commercially or noncommercially. Secondarily,
this License preserves for the author and publisher a way to get credit for their work, while not
being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which is a
copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the same
freedoms that the software does. But this License is not limited to software manuals; it can be used
for any textual work, regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction or reference.
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1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License. Such
a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under
the conditions stated herein. The “Document”, below, refers to any such manual or work. Any
member of the public is a licensee, and is addressed as “you”. You accept the license if you copy,
modify or distribute the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a portion
of it, either copied verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document to the
Document’s overall subject (or to related matters) and contains nothing that could fall directly
within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a
Secondary Section may not explain any mathematics.) The relationship could be a matter of
historical connection with the subject or with related matters, or of legal, commercial, philosophical,
ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this License.
If a section does not fit the above definition of Secondary then it is not allowed to be designated as
Invariant. The Document may contain zero Invariant Sections. If the Document does not identify
any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts
or Back-Cover Texts, in the notice that says that the Document is released under this License. A
Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a for-
mat whose specification is available to the general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of pixels) generic paint pro-
grams or (for drawings) some widely available drawing editor, and that is suitable for input to text
formatters or for automatic translation to a variety of formats suitable for input to text formatters.
A copy made in an otherwise Transparent file format whose markup, or absence of markup, has
been arranged to thwart or discourage subsequent modification by readers is not Transparent. An
image format is not Transparent if used for any substantial amount of text. A copy that is not
“Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and
standard-conforming simple HTML, PostScript or PDF designed for human modification. Examples
of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary
formats that can be read and edited only by proprietary word processors, SGML or XML for which
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the DTD and/or processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as
are needed to hold, legibly, the material this License requires to appear in the title page. For works
in formats which do not have any title page as such, “Title Page” means the text near the most
prominent appearance of the work’s title, preceding the beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either is pre-
cisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language.
(Here XYZ stands for a specific section name mentioned below, such as “Acknowledgements”,
“Dedications”, “Endorsements”, or “History”.) To “Preserve the Title” of such a section
when you modify the Document means that it remains a section “Entitled XYZ” according to this
definition.

The Document may include Warranty Disclaimers next to the notice which states that this
License applies to the Document. These Warranty Disclaimers are considered to be included by
reference in this License, but only as regards disclaiming warranties: any other implication that
these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommer-
cially, provided that this License, the copyright notices, and the license notice saying this License
applies to the Document are reproduced in all copies, and that you add no other conditions whatso-
ever to those of this License. You may not use technical measures to obstruct or control the reading
or further copying of the copies you make or distribute. However, you may accept compensation
in exchange for copies. If you distribute a large enough number of copies you must also follow the
conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display
copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover Texts, you
must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover
Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly
and legibly identify you as the publisher of these copies. The front cover must present the full title
with all words of the title equally prominent and visible. You may add other material on the covers
in addition. Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other respects.
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If the required texts for either cover are too voluminous to fit legibly, you should put the first
ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must
either include a machine-readable Transparent copy along with each Opaque copy, or state in or
with each Opaque copy a computer-network location from which the general network-using public
has access to download using public-standard network protocols a complete Transparent copy of the
Document, free of added material. If you use the latter option, you must take reasonably prudent
steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent
copy will remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the
public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sec-
tions 2 and 3 above, provided that you release the Modified Version under precisely this License,
with the Modified Version filling the role of the Document, thus licensing distribution and modifi-
cation of the Modified Version to whoever possesses a copy of it. In addition, you must do these
things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document,
and from those of previous versions (which should, if there were any, be listed in the History
section of the Document). You may use the same title as a previous version if the original
publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of
the modifications in the Modified Version, together with at least five of the principal authors
of the Document (all of its principal authors, if it has fewer than five), unless they release
you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright
notices.

F. Include, immediately after the copyright notices, a license notice giving the public permis-
sion to use the Modified Version under the terms of this License, in the form shown in the
Addendum below.
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G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts
given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at
least the title, year, new authors, and publisher of the Modified Version as given on the Title
Page. If there is no section Entitled “History” in the Document, create one stating the title,
year, authors, and publisher of the Document as given on its Title Page, then add an item
describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent
copy of the Document, and likewise the network locations given in the Document for previous
versions it was based on. These may be placed in the “History” section. You may omit a
network location for a work that was published at least four years before the Document itself,
or if the original publisher of the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the
section, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles.
Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in the
Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title with
any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Sec-
ondary Sections and contain no material copied from the Document, you may at your option
designate some or all of these sections as invariant. To do this, add their titles to the list of Invari-
ant Sections in the Modified Version’s license notice. These titles must be distinct from any other
section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements
of your Modified Version by various parties–for example, statements of peer review or that the text
has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to
25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version.
Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the same
cover, previously added by you or by arrangement made by the same entity you are acting on behalf
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of, you may not add another; but you may replace the old one, on explicit permission from the
previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use
their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the
terms defined in section 4 above for modified versions, provided that you include in the combination
all of the Invariant Sections of all of the original documents, unmodified, and list them all as
Invariant Sections of your combined work in its license notice, and that you preserve all their
Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same
name but different contents, make the title of each such section unique by adding at the end of
it, in parentheses, the name of the original author or publisher of that section if known, or else a
unique number. Make the same adjustment to the section titles in the list of Invariant Sections in
the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original
documents, forming one section Entitled “History”; likewise combine any sections Entitled “Ac-
knowledgements”, and any sections Entitled “Dedications”. You must delete all sections Entitled
“Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with a
single copy that is included in the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under
this License, provided you insert a copy of this License into the extracted document, and follow
this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent docu-
ments or works, in or on a volume of a storage or distribution medium, is called an “aggregate” if
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the copyright resulting from the compilation is not used to limit the legal rights of the compilation’s
users beyond what the individual works permit. When the Document is included in an aggregate,
this License does not apply to the other works in the aggregate which are not themselves derivative
works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then
if the Document is less than one half of the entire aggregate, the Document’s Cover Texts may be
placed on covers that bracket the Document within the aggregate, or the electronic equivalent of
covers if the Document is in electronic form. Otherwise they must appear on printed covers that
bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations requires
special permission from their copyright holders, but you may include translations of some or all
Invariant Sections in addition to the original versions of these Invariant Sections. You may include
a translation of this License, and all the license notices in the Document, and any Warranty
Disclaimers, provided that you also include the original English version of this License and the
original versions of those notices and disclaimers. In case of a disagreement between the translation
and the original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the
requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual
title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided
for under this License. Any other attempt to copy, modify, sublicense or distribute the Document
is void, and will automatically terminate your rights under this License. However, parties who have
received copies, or rights, from you under this License will not have their licenses terminated so
long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documen-
tation License from time to time. Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.
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Each version of the License is given a distinguishing version number. If the Document specifies
that a particular numbered version of this License “or any later version” applies to it, you have the
option of following the terms and conditions either of that specified version or of any later version
that has been published (not as a draft) by the Free Software Foundation. If the Document does
not specify a version number of this License, you may choose any version ever published (not as a
draft) by the Free Software Foundation.
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log-linear, 31, 77, 78
log-log, 83

GARCH, 328
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generalized R2, 80
generalized least squares, 175
generating variables, 13
gnuplot

launch wgnuplot, 15
from the console, 15
scripts, 15

gnuplot, 14, 195
--matrix, 226
--output=display, 226

graph data, 22
graphs

multiple time-series, 195
time-series, 195

growth model, 77

HAC standard errors, 207, 315
panel, 348

hansl, 8, 33
Hausman test, 249, 266, 356

regression method, 356
HCCME, 175
Heckit, 405, 408
Heckman’s two-step estimator, 405
help icon, 11
heteroskedasticity, 69, 164

Breusch-Pagan test, 168
detection of, 167
Goldfeld-Quandt test, 171
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linear probability, 181
multiplicative model, 179
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heteroskedasticity robust standard errors, 165
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HQC, 317

ID #, 25
impact multiplier, 224
impulse response functions, 318, 319
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index function, 371, 372
index loop, 216
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generation using unitdum, 350
information criteria, 124
instrument, 244
instrumental variables estimator, 244, 246, 266
integrated series, I(1), 291
interaction, 98
interactions

create using loop, 145
interim multiplier, 224
inverse Mill’s ratio, 405
irrelevant variables, 121

Jacobian, 99, 376
Jarque-Bera, 70

k -class estimator, 271
kernel, 207
KPSS, 290
kurtosis, 71, 438

lag operator, 284
lag syntax, 199
latent variable, 405
LATEX, 73, 74
least squares dummy variable, 351
leptokurtic, 330
likelihood ratio test, 381
LIML, 271

Fuller’s modified method, 274
linear probability model, 149, 155, 181, 182, 374
list, 27, 152
loess, 168
log-linear model, 31, 66, 77, 78
log-log model, 83
logistic distribution, 382
logit model, 381
loop

--progressive, 30
--quiet, 30
count, 30
foreach, 146, 358
index, 216
print, 30, 35
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marginal effect, 98
at the means, 374
probit, 373
tobit, 400

marginal effects
confidence intervals, 376
multinomial logit, 388
ordered probit, 396
poisson regression, 397
standard errors, 376

Markov chain Monte Carlo, 411
maximum likelihood, 333, 411
McFadden’s pseudo-R2, 373
menu bar, 5
MGARCH, 337
model selection, 122, 125
model table, 122
Monte Carlo, 4, 28, 257, 402
multinomial logit, 385

probabilities, 386
multiple regression, 88
multiplicative heteroskedasticity, 179
multiplier analysis, 224

natural experiments, 156
new line, \n, 93
Newey-West standard errors, 207
nonlinear least squares, 209, 293
normalization, 393
numerical derivatives, 293

open data, 20
ordered logit, 390
ordered probit, 395
overall F -statistic, 113
overidentification, 250, 251

p-value finder, 433
panel, 345
panel data, 343
partial correlations, 248
plots

gnuplot , 15
distribution, 435
types, 15

pointer, 287, 375
pointers, 376
poisson regression, 397
pooled least squares, 347
Prais-Winsten, 228
prediction interval, 81
print format, 92
probit

AME, 375
predictions, 384

probit model, 371

qualitative choice models, 371
quantiles, 390

R, 410
MCMCmnl, 412
MCMCoprobit, 416
MCMCpack, 411, 414, 415

conditional logit, 413
multinomial logit, 411
ordered probit, 415

attach, 453
cancor, 256
cbind, 451
foreign, 453
foreign block, 255
lm, 450
read.dta, 453
summary(), 450
assignment operator, 450
packages, 452
Stata datasets, 453

R2, 62, 104
adjusted, 104
generalized, 80

random effects, 352
reduced form equations, 265
reference group, 141
relevant variables, 121
RESET, 128
residual plots, 68
restrictions, 112
robust covariance

panel, 348

sample-selection bias, 405
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Sargan test, 251
SC, 124
scatter plot, 282
script, 3
script editor, 10
seemingly unrelated regressions, 357
selection bias, 404
selectivity bias, 405
session, 12
session window, 12
significance test, 94
simple linear regression, 19
simultaneous equations, 264
skewness, 71, 438
spurious, 282
standard error, 92
standard error of the regression, 26
Stata, 8, 53, 193
stationarity, 277
summary statistics, 26, 432
system name, 362

ternary operator, 34
testing down, 285, 304
testing up, 304
tests, 110

F -statistic, 109
add, 110
omit, 110
ARCH, 330
augmented Dickey-Fuller, 283, 285
Breusch-Pagan for random effects, 355
contemporaneous correlation, 363
Cragg-Donald F, 253
DF-GLS, 288
Dickey-Fuller, 283
Doornik-Hansen, 330
Engle-Granger, 291, 314
Hausman, 249, 266, 356
Johansen, 291
KPSS, 289, 290
likelihood ratio, 381
normality, 70
Sargan, 251
Wald, 111, 175
weak instruments, 250

threshold ARCH, 332
time, 193
time-series plots, 282
tobit regression, 398
toolbar, 9
total multiplier, 224
treatment effects, 150
two-stage least squares, 244, 246, 266
two-tailed test, 440

VAR
lag selection, 317

variable list, 152
variance inflation factor, 131
variance-covariance matrix, 27, 55, 91

--vcv, 56, 91
VECM, 301
vector error correction model, 301

weak instruments, 250
consequences, 253

weighted least squares, 176
working directory, 35
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