
The Key Features
of Fortran 95

Ninety-Five Key Features of Fortran 95

Jeanne C. Adams
Walter S. Brainerd

Jeanne T. Martin
Brian T. Smith

The Fortran Company

Library of Congress Catalog Card Number

Copyright © 1994-2006 by Jeanne C. Adams, Walter S. Brainerd, Jeanne T. Martin, and
Brian T. Smith. All rights reserved. Printed in the United States of America. Except as
permitted under the United States Copyright Act of 1976, no part of either the printed
or electronic versions of this book may be reproduced or distributed in any form or by
any means, or stored in a database or retrieval system, without the prior written per-
mission of the authors and the publisher.

Version 20051122

ISBN

The Fortran Company
6025 N. Wilmot Road
Tucson, Arizona 85750 USA
+1-520-760-1397
info@fortran.com

Composition by The Fortran Company

Fortran Top 95—Ninety-Five Key Features of Fortran 95

iv

Preface
This guide is intended as a handy quick reference to the 95 features of Fortran 95 that
are the most important for contemporary applications of Fortran. Although it is
intended to be comprehensive and self-contained, many details are omitted; for com-
pleteness each topic contains relevant specific references to the Fortran 95 standard,
the comprehensive Fortran 95 Handbook, and the Fortran 95 Using F.

This quick reference displays each feature in a left-right two-page layout, for a total of
190 pages plus appendices and index.

The normal left-hand page format has an introduction and purpose section, a number
of examples, references, and in some cases a tip regarding use of that feature. The
right-hand page contains a summary of the syntax and semantics for that feature,
including many key “things to know” about it. In some cases the syntax shown has
been simplified. For example, sometimes this is done for declaration statements
where only one specification is indicated but several, separated by commas, are per-
mitted.

A more appropriate format was used for a few of the 95 topics such as the overviews.

Topic

Introduction and purpose

Tip:

Related Topics:

Related Intrinsics:

To Read More About It:

Topic #

Things to Know:

 1. . . .

 2. . . .

 3. . . .

 .

 .

 .

Examples:

Syntax: R#s

Fortran Top 95—Ninety-Five Key Features of Fortran 95

v

The electronic version has hypertext links in several contexts:
1. Each of the 95 topics has a link to it in the Bookmark section.
2. Each intrinsic procedure has a link to it in the Bookmark section.
3. The Bookmark section contains links to the List of Topics, the appendix containing the in-

trinsic procedures, and the index.
4. Each entry in the List of Topics contains a link to the topic.
5. Each Related Topic is linked to the topic.
6. Each Related Intrinsic is linked to the description of the intrinsic procedure in the appendix.
7. Each index entry page number is linked to the appropriate text.
8. Each link to a reference in the book Fortran 95 Using F will be active provided that book

is available in the same directory.

Selecting any of these will display the corresponding material. Selecting the back but-
ton will reverse (undo) the link.

Selecting the topics button will display a list of all 95 topics, and any topic can be
selected from this list. Similarly, selecting the index button will bring up the index,
which can be scrolled and any entry selected. Selecting an item from either the topic
list or index list reinitializes the hypertext browsing path.

The topics are in alphabetical order. Similarly the intrinsic procedures of Appendix A
are in alphabetical order. A short example of a complete Fortran 95 application
appears at the end of the book (on and inside the back cover of the printed version).

The authors hope that users will find this quick reference to be a handy and useful, if
not indispensable, tool in working with Fortran 95.

Jeanne Adams
Walt Brainerd
Jeanne Martin

Brian Smith

2004 May

Fortran Top 95—Ninety-Five Key Features of Fortran 95

vi

iv

Topics
1 ALLOCATE and DEALLOCATE Statements 2

2 Argument Keywords 4

3 CASE Construct 6

4 Complex Type and Constants 8

5 Defined Type: Definition 10

6 Defined Type: Structure Component 12

7 Modules 14

8 Pointers 16

9 SAVE Attribute and Statement 18

10 Source Form 20

Fortran Top 95—Ninety-Five Key Features of Fortran 95

v

2

1 ALLOCATE and DEALLOCATE Statements

The ALLOCATE statement creates space for allocatable arrays and variables with the
POINTER attribute. The DEALLOCATE statement frees space previously allocated for
allocatable arrays and pointer targets. These statements give the user the ability to man-
age space dynamically at execution time.

Related Topics:
ALLOCATE and DEALLOCATE Statements Pointer Association
Dynamic Objects POINTER Attribute and Statement
Pointers Pointer Nullification

Related Intrinsics:
ALLOCATED (ARRAY) NULL (MOLD)
ASSOCIATED (POINTER, TARGET)

To Read More About It:
ISO 1539 : 1997, Fortran Standard, 6.3.1, 6.3.3
Fortran 95 Handbook, 6.5.1, 6.5.3
Fortran 95 Using F, 4.1.3

Examples:
COMPLEX, POINTER :: HERMITIAN (:, :) ! Complex array pointer
READ *, M, N

ALLOCATE (HERMITIAN (M, N))

 . . .
DEALLOCATE (HERMITIAN, STAT = IERR7)

REAL, ALLOCATABLE :: INTENSITIES(:,:) ! Rank-2 allocatable array
DO

 ALLOCATE (INTENSITIES (I, J), & ! IERR4 will be positive

 STAT = IERR4) ! if there is
 IF (IERR4 == 0) EXIT ! insufficient space.

 I = I/2; J = J/2

END DO
 . . .

IF (ALLOCATED (INTENSITIES)) DEALLOCATE (INTENSITIES)

TYPE NODE

 REAL VAL

 TYPE(NODE), POINTER :: LEFT, RIGHT ! Pointer components
END TYPE NODE

TYPE(NODE) TOP, BOTTOM

 . . .
ALLOCATE (TOP % LEFT, TOP % RIGHT)

IF (ASSOCIATED (BOTTOM % RIGHT)) DEALLOCATE (BOTTOM % RIGHT)

CHARACTER, POINTER :: PARA(:), KEY(:) ! Pointers to char arrays

ALLOCATE (PARA (1000))

 . . .
KEY => PARA (K : K + LGTH)

ALLOCATE and DEALLOCATE Statements 1

3

Things To Know:
1. Each allocate object must be an allocatable array or a pointer; the bounds in the shape

specification must be scalar integer expressions.
2. The status variable (the variable following STAT=) is set to a positive value if an error

is detected and is set to zero otherwise. If there is no status variable, the occurrence of
an error causes the program to terminate.

3. For allocatable arrays, an error occurs when there is an attempt to allocate an already
allocated array or to deallocate an array that is not allocated. The ALLOCATED intrin-
sic function may be used to determine whether an allocatable array is allocated.

4. It is not an error to allocate an associated pointer. Its old target connection is replaced
by a connection to the newly allocated space. If the previous target was allocated and
no other pointer became associated with it, the space is no longer accessible. A pointer
may be assigned to point to a portion of an allocated object such as a section of an array.
It is not permitted to deallocate such a pointer; only whole allocated objects may be
deallocated. It is also not permitted to deallocate a pointer associated with an allocat-
able array; the allocatable array must be deallocated instead. The ASSOCIATED intrin-
sic function may be used to determine whether a pointer is associated or if it is
associated with a particular target or the same target as another pointer.

5. When a pointer is deallocated, its association status is set to disassociated (as if a NUL-
LIFY statement were also executed). When a pointer is deallocated, the association sta-
tus of any other pointer associated with the same (or part of the same) target becomes
undefined.

Syntax:

An ALLOCATE statement is:
ALLOCATE (allocation-list [, STAT = scalar-integer-variable])

An allocation is:
allocate-object [(allocate-shape-spec-list)]

An allocate object is one of:
variable-name
structure-component

An allocate shape specification is:
[lower-bound :] upper-bound

A DEALLOCATE statement is:
DEALLOCATE (allocate-object-list [, STAT = scalar-integer-variable])

4

2 Argument Keywords

An argument keyword is a dummy argument name, followed by =, that appears in an
actual argument list to identify the actual argument. In the absence of argument key-
words, actual arguments are matched to dummy arguments by their position in the actual
argument list; however, when argument keywords are used, the actual arguments may
appear in any order. This is particularly convenient if some of the arguments are optional
and are omitted. An actual argument list may contain both positional and keyword argu-
ments; the positional arguments appear first in the list. If an argument keyword is used in
a reference to a user-defined procedure, the procedure interface must be explicit. Argu-
ment keywords are specified for all intrinsic procedures.

Tip: Argument keywords can enhance program reliability and readability. Program con-
struction is easier when the strict ordering of arguments can be relaxed.

Related Topics:
Argument Association Internal Procedures
Functions Module Procedures
Generic Procedures and Operators OPTIONAL Attribute and Statement
Interfaces and Interface Blocks Subroutines

To Read More About It:
ISO 1539 : 1997, Fortran Standard, 2.5.2, 12.4.1, 13.3, 14.1.2.6
Fortran 95 Handbook, 2.5, 12.7.4, 13.1
Fortran 95 Using F, 3.8.6, A.3

Examples:
! Interface for subroutine DRAW

INTERFACE
 SUBROUTINE DRAW (X_START, Y_START, X_END, Y_END, FORM, SCALE)

 REAL X_START, Y_START, X_END, Y_END

 CHARACTER (LEN = 6), OPTIONAL :: FORM
 REAL, OPTIONAL :: SCALE

 END SUBROUTINE DRAW

END INTERFACE

! References to DRAW

CALL DRAW (5., -4., 2., .6, FORM = “DASHED”)

CALL DRAW (SCALE=.4, X_END=0., Y_END=0., X_START=.5, Y_START=3.)

! References to intrinsics LBOUND, UBOUND, SIZE, and PRODUCT

REAL A (LBOUND (B, DIM=1) : UBOUND (B, DIM=1), SIZE (B, DIM=2))
A_PROD = PRODUCT (A, MASK = A > 0.0)

Argument Keywords 2

5

Things To Know:
1. If an argument keyword is used in a reference to a procedure, the procedure interface

must be explicit; that is, the procedure must be:
• an intrinsic procedure,
• an internal procedure,
• a module procedure, or
• an external procedure (or dummy procedure) with an interface block accessible to

the program unit containing the reference.
Statement function references cannot use keyword calls.

2. After the first appearance of a keyword argument in an actual argument list, all subse-
quent arguments must use the keyword form.

3. If an optional argument is omitted, the keyword form is required for any following ar-
guments.

4. In an interface block for an external procedure, the keywords do not have to be the
same as the dummy argument names in the procedure definition. The keyword names
can be tailored to fit their use in the referencing program unit.

5. The positional form is required for alternate returns, because the keyword must be a
dummy argument name.

6. When choosing argument keyword names for generic procedures, care must be taken
to avoid any ambiguity in the resolution of a generic reference to a specific procedure
(see Generic Procedures and Operators, item 2 of the Things to Know).

Syntax:

A keyword argument is one of:
keyword = expression
keyword = procedure-name

where a keyword is a dummy argument name.

6

3 CASE Construct

The CASE construct may be used to select for execution at most one of the blocks in the
construct. Selection is based on a scalar value of type integer, character, or logical. A CASE
construct may be named. It permits the following control flow:

Tip: For program clarity, use an IF-THEN-ELSE construct rather than a logical CASE con-
struct.

Related Topics:
Expressions: Initialization IF Construct and Statement

To Read More About It:
ISO 1539 : 1997, Fortran Standard, 8.1.3, C.5.2
Fortran 95 Handbook, 8.4
Fortran 95 Using F, 2.3

Examples:
! Character example ! Integer example
 RANGES: &

 SELECT CASE (STYLE) SELECT CASE (ITEM)

 CASE DEFAULT CASE (1:7, 52:81) RANGES

 CALL SOLID (X1,Y1,X2,Y2) BIN1 = BIN1 + 1.0
 CASE (“DOTS”) CASE (8:32, 51, 82) RANGES

 CALL DOTS (X1,Y1,X2,Y2) BIN2 = BIN2 + 1.0

 CASE (“DASHES”) CASE (33:50, 83:) RANGES
 CALL DASHES (X1,Y1,X2,Y2) BIN3 = BIN3 + 1.0

END SELECT CASE DEFAULT RANGES

 WRITE (*, “(‘BAD ITEM’)”)
 END SELECT RANGES

! Logical example

LIMIT: SELECT CASE (X > X_MAX)

CASE (.TRUE.)

 Y = X * 0.9
 CASE (.FALSE.)

 Y = 1.0 / X

END SELECT LIMIT

.

CASE Construct 3

7

Things To Know:
1. The case expression and all case values must be scalar and of the same type. The case

values must be initialization expressions. The types allowed are integer, character, and
logical. If the character type is used, different lengths are allowed. If the logical type is
used, a case value range (with a :) is not permitted. Overlapping case values are pro-
hibited.

2. The case value range list enclosed in parentheses and the keyword DEFAULT are
called selectors. The case expression must select at most one of the selectors. If the case
expression matches one of the values or falls in one of the ranges, the block following
the matched selector is the one executed. If there is no match, the block following the
DEFAULT selector is executed; it need not be last. If there is no match and no DE-
FAULT selector, no code block is executed and the CASE construct is terminated. A
block may be empty.

3. Control constructs may be nested, in which case a program may be easier to read if the
constructs are named. If a construct name appears on a SELECT CASE statement, the
same name must appear on the corresponding END SELECT statement and is optional
on CASE statements of the construct.

4. A construct name must not be used as the name of any other entity in the program unit
such as a variable, named constant, procedure, type, namelist group, or another con-
struct.

5. Branching to any statement in a CASE construct, other than the initial SELECT CASE
statement, from outside the construct is not permitted. Branching to an END SELECT
statement from within the construct is permitted.

Syntax:

A CASE construct is:
[case-construct-name :] SELECT CASE (case-expression)

[CASE (case-value-range-list) [case-construct-name]
block]...

[CASE DEFAULT [case-construct-name]
 block]

END SELECT [case-construct-name]

A case-value-range is one of:
case-value [: case-value]
case-value :
: case-value

8

4 Complex Type and Constants

The complex type is used for data that are approximations to the mathematical complex
numbers. A complex number consists of a real part and an imaginary part and is often
represented as in mathematical terms, where a is the real part and b is the imagi-
nary part.

Related Topics:
Expressions Real Type and Constants
Implicit Typing

Related Intrinsics:
AIMAG (Z) RANGE (X)
CMPLX (X, Y, KIND) REAL (A, KIND)
KIND (X) SELECTED_REAL_KIND (P, R)
PRECISION (X)

To Read More About It:
ISO 1539 : 1997, Fortran Standard, 4.3.1.3, 5.1.1.4
Fortran 95 Handbook, 4.3.3, 5.1.4
Fortran 95 Using F, 1.2.3

 Examples:
COMPLEX CUT, CTEMP, X(10) ! Complex type declaration

COMPLEX (KIND=LONG) :: CTC ! CTC has kind parameter LONG
REAL XX, Y

CTC = CMPLX (XX, Y, KIND = LONG)

COMPLEX (SELECTED_REAL_KIND (6,32)) NORTH

! NORTH is a complex variable or function

! whose parts have at least 6 decimal digits of precision
! and decimal range of 10-32 to 1032.

Examples of complex constants are:
(1.0,2.0) A complex constant:

 1.0 is the real part.
 2.0 is the imaginary part.

(4, -.4) Integer values are converted to real.

(2, 3.E1) One part is integer and the other is
 is real, but the resulting complex

 constant is of type default real with

 both parts of this type.
(1.0_LONG, 2.0_LONG) The complex constant has the kind LONG.

a bι+

Complex Type and Constants 4

9

Things To Know:
1. The arithmetic operators are +, –, /, ∗, ∗∗, unary +, and unary –. Only the relational op-

erators == and /=, and synonymously .EQ. and .NE. may be used for comparisons; the
result is a default logical value.

2. There are at least two approximation methods for complex, one is default real, and one
is default double precision. There are as many complex kinds as there are real kinds.

3. If both parts of a complex constant are integer, they are converted to real. If one part is
integer, it is converted to the type and kind of the other part.

4. If both parts of a complex constant are real, but not with the same kind parameter, both
take the kind parameter corresponding to the one with the higher precision.

5. The intrinsic function CMPLX (X, Y, KIND) converts complex, real, or integer argu-
ments to complex type. If the first argument is complex, the second argument must not
be present. The kind parameter also is optional. The intrinsic function REAL (Z, KIND)
extracts the real part of a complex Z and the expression REAL (AIMAG (Z), KIND) ex-
tracts the imaginary part of Z, each resulting in a real of kind KIND.

6. Note that there is no default implicit typing for complex.

Syntax:

A COMPLEX type declaration statement is:
COMPLEX [([KIND =] kind-parameter)] [, attribute-list ::] entity-list

A complex constant is:
(real-part , imaginary-part)

The real part is one of:
signed-integer-literal-constant
signed-real-literal-constant

The imaginary part is one of:
signed-integer-literal-constant
signed-real-literal-constant

10

5 Defined Type: Definition

User-defined data types, officially called derived types, are built of components of intrin-
sic or user-defined type; ultimately, the components are of intrinsic type. This permits the
creation of objects, called structures, that contain components of different types (unlike
arrays, which are homogeneous). It also permits objects, both scalars and arrays, to be
declared to be of a user-defined type and operations to be defined on such objects. A com-
ponent may be a pointer, which provides for dynamic data structures, such as lists and
trees. Defined types provide the basis for building abstract data types.

Related Topics:
Argument Association Generic Procedures and Operators
Defined Type: Default Initialization Interfaces and Interface Blocks
Defined Operators and Assignment Modules
Defined Type: Objects PUBLIC and PRIVATE Attributes and Statements
Defined Type: Structure Component Scope, Association, and Definition Overview
Defined Type: Structure Constructor USE Statement and Use Association

To Read More About It:
ISO 1539 : 1997, Fortran Standard, 4.4, C.1.1, C.8.3.3, C.8.3.7
Fortran 95 Handbook, 4.4, 11.6.5.3-5
Fortran 95 Using F, 6.2

Examples:
TYPE TEMP_RANGE ! This is a simple example of

 INTEGER HIGH, LOW ! a defined type with two
END TYPE TEMP_RANGE ! components, HIGH and LOW.

TYPE TEMP_RECORD ! This type uses the previous
 CHARACTER(LEN=40) CITY ! definition for one component.

 TYPE (TEMP_RANGE) EXTREMES(1950:2050)

END TYPE TEMP_RECORD

TYPE LINKED_LIST ! This one has a pointer compon-

 REAL VALUE ! ent to provide links to other

 TYPE(LINKED_LIST),POINTER :: NEXT! objects of the same type,
END TYPE LINKED_LIST ! thus providing linked lists.

TYPE, PUBLIC :: SET; PRIVATE ! This is a public type whose
 INTEGER CARDINALITY ! component structure is

 INTEGER ELEMENT (MAX_SET_SIZE) ! private; defined

END TYPE SET ! operations provide
 ! all functionality.

! Declare scalar and array structures of type SET.
TYPE (SET) :: BAKER, FOX(1:SIZE(HH))

Defined Type: Definition 5

11

Things To Know:
1. A type name may be any legal Fortran name as long as it is not the same as an intrinsic

type name or another local name in that scoping unit. A type definition forms its own
scoping unit, which means that the component names are not restricted by the occur-
rence of any names outside the type definition; the scoping unit has access to host ob-
jects by host association so that named constants and accessible types may be used in
component declarations.

2. A component array specification must be explicit shape or deferred shape; a deferred-
shape component must have the POINTER attribute.

3. A component may itself be a defined type. If, in addition, the POINTER attribute is
specified, the component type may even be that of the type being defined.

4. Default initialization may be specified for a component (see Defined Type: Default Ini-
tialization).

5. If a type definition is in a module, it may contain a PUBLIC or PRIVATE attribute or
an internal PRIVATE statement.

6. The internal PRIVATE statement in a type definition makes the components unavail-
able outside the module even though the type itself might be available.

7. The SEQUENCE statement is used: (a) to allow objects of this type to be storage asso-
ciated, or (b) to allow actual and dummy arguments to have the same type without use
or host association (see Argument Association, item 5 of Things To Know).

8. Operations on defined types are defined with procedures and given operator symbols
with interface blocks.

Syntax:

A defined-type definition is:
TYPE [[, access-spec] ::] type-name

[PRIVATE]
[SEQUENCE]
component-declaration
[component-declaration]...

END TYPE [type-name]

A component declaration is:
type-spec [[, component-attribute-list] ::] component-list

A component attribute is one of:
POINTER

DIMENSION (array-spec)

12

6 Defined Type: Structure Component

A structure component is a component of an object of user-defined type. Where the name
of the component is accessible, the component may be referenced and used like any other
variable. The reference may appear in an expression or as the variable on the lefthand side
of an assignment statement. In the latter case, a value is assigned to the component. The
name of the component is accessible in a scoping unit that contains the type definition,
whose host contains the type definition, or where the type definition is publicly accessible
by use association. A component may be a scalar, an explicit-shape array, or, if it has the
POINTER attribute, a deferred-shape array.

Related Topics:
Character Substring Defined Type: Objects
Defined Type: Definition Variables

To Read More About It:
ISO 1539 : 1997, Fortran Standard, 6.1.2, C.3.1
Fortran 95 Handbook, 6.3
Fortran 95 Using F, 6.3.1

Examples:
TYPE REG_FORM ! REG_FORM is a defined type.

 CHARACTER (30) LAST_NAME, FIRST_NAME
 INTEGER ID_NUM ! Note that ID_NUM in REG_FORM does not

 CHARACTER (2) GRADE ! conflict with ID_NUM in CLASS because

END TYPE REG_FORM ! each type definition is a scoping unit.

TYPE CLASS ! CLASS is a simple defined type

 INTEGER YEAR, QUARTER, ID_NUM ! that includes another

 CHARACTER(30) INSTRUCTOR ! defined type as a component.
 TYPE (REG_FORM) STUDENT(40)

END TYPE CLASS

TYPE (CLASS) ALGEBRA, CHEMISTRY ! Two structures of type CLASS

TYPE (REG_FORM) TRANSFERS(20) ! An array of structures

ALGEBRA % INSTRUCTOR = “Brown” ! Some typical uses

ALGEBRA % ID_NUM = 101 ! of structure

ALGEBRA % STUDENT(1) % ID_NUM = 593010040 ! components
CHEMISTRY % STUDENT(39) % LAST_NAME = “Flake”

CHEMISTRY % STUDENT(39) % GRADE = “F-”

 . . .
ALGEBRA % STUDENT(27:33) = TRANSFERS(1:7) ! An array assignment

ALGEBRA % STUDENT(6:8) % GRADE = “B+” ! The B+ is broadcast.

PRINT *, CHEMISTRY % STUDENT(1:33) ! Print 33 students.

Defined Type: Structure Component 6

13

Things To Know:
1. In a structure component reference, each part name except the rightmost one must be

of defined type, each part name except the leftmost one must be the name of a compo-
nent of the preceding defined type, and the leftmost part name is the name of a struc-
tured object.

2. The type and type parameters of a structure component are those of the rightmost part
name. A structure component is a pointer only if the rightmost part name has the
POINTER attribute.

3. If the leftmost part name has the INTENT, TARGET, or PARAMETER attribute, the
structure component has that attribute.

4. In a structure component reference, only one part may be array valued, in which case
the reference is an array reference. This is an arbitrary restriction in the language, im-
posed for simplicity.

5. If a structure component reference is an array reference, no part to the right of the array
part may have the POINTER attribute. It is possible to declare an array of structures
that have a pointer component, but it is not possible to have an array-valued reference
to such an object. The reason for this is that Fortran allows pointers to arrays, but does
not provide for arrays of pointers.

6. If the type definition is in a module and contains an internal PRIVATE statement, the
internal structure, including the number, names, and types of the components are not
accessible outside the module. If the type itself is public, objects of this type may be de-
clared and used outside the module but none of the components may be accessed di-
rectly.

Syntax:

A structure component reference is:
 part-reference [% part-reference]...

A part reference is:
 part-name [(section-subscript-list)]

A section subscript is one of:
 subscript subscript-triplet vector-subscript

A subscript triplet is:
 [subscript] : [subscript] [: subscript]

A vector subscript is:
rank-one-integer-array

A substring of a structure component is:
part-reference [% part-name]... (starting-position : ending-position)

14

7 Modules

Modules are nonexecutable program units that contain type definitions, object declara-
tions, procedure definitions (module procedures), external procedure interfaces, user-
defined generic names, user-defined operators and assignments, common blocks, and
namelist groups. Any such definitions not specified to be private to the module containing
them are available to be shared with those programs that use the module. Thus modules
provide a convenient sharing and encapsulation mechanism for data, types, procedures,
and procedure interfaces.

Related Topics:
Defined Operators and Assignment Program Units
Defined Type: Objects PUBLIC and PRIVATE Attributes and Statements
Host Association USE Statement and Use Association
Module Procedures

To Read More About It:
ISO 1539 : 1997, Fortran Standard, 2.2.4, 11.3, C.8.3
Fortran 95 Handbook, 2.2.1, 11.6
Fortran 95 Using F, 3.4, 7

Examples:
MODULE SHARED ! Making data objects

 COMPLEX GTX (100, 6) ! and a data type
 REAL, ALLOCATABLE :: Y(:), Z(:,:) ! sharable via a module

 TYPE PEAK_ITEM

 REAL PEAK_VAL, ENERGY
 TYPE(PEAK_ITEM), POINTER :: NEXT

 END TYPE PEAK_ITEM

END MODULE SHARED

MODULE RATIONAL_ARITHMETIC ! Defining a data

 TYPE RATIONAL; PRIVATE ! abstraction for

 INTEGER NUMERATOR,DENOMINATOR ! rational arithmetic
 END TYPE RATIONAL ! via a module

 INTERFACE ASSIGNMENT (=) ! Generic extension of =

 MODULE PROCEDURE ERR, ERI, EIR
 END INTERFACE

 INTERFACE OPERATOR (+) ! Generic extension of +

 MODULE PROCEDURE ARR, ARI, AIR
 END INTERFACE

 . . .

CONTAINS
 SUBROUTINE ERR (. . .) ! A specific definition of =

 . . .

 FUNCTION ARR (. . .) ! A specific definition of +
 . . .

END MODULE RATIONAL_ARITHMETIC

Modules 7

15

Things To Know:
1. A module does not contain executable code except the execution parts of any module

subprograms.
2. The specification part of a module must not contain the following attributes or state-

ments: ENTRY, FORMAT, INTENT, OPTIONAL, or statement function statement.
Similarly, the specification part of a module must not contain automatic objects; all of
these may appear in module procedures, however.

3. PUBLIC and PRIVATE attributes and statements are allowed only in the specification
part of a module. PUBLIC specifies the designated entity as sharable by using program
units. PRIVATE specifies the designated entity as not sharable but rather private with-
in the module; such entities are fully shared and accessible among the module proce-
dures of the module by host association.

4. A MODULE PROCEDURE statement may appear only in an interface block that has a
generic specification. The interface block must be in a module that contains the proce-
dure or in a host that accesses the module.

5. SAVE attributes and statements can be used in a module to preserve data values
among uses of the module. If such values are to remain intact when all program units
using the module are inactive, SAVE must be specified.

6. Module procedures are like internal procedures in that they access the host environ-
ment by host association as well as its implicit type mapping, but otherwise they are
like external procedures.

7. Modules are ideal for data abstraction, generic procedure definition, operator exten-
sion, and the sharing of such information to all program units of an application that
need it.

Syntax:

A module is:
MODULE module-name

[specification-part]
[CONTAINS

module-subprogram
[module-subprogram]...]

END [MODULE [module-name]]

16

8 Pointers

Pointers are used to provide dynamic-data-object and aliasing capabilities in Fortran. By
deferring the sizes of objects to execution time, a code can run at the exact size needed;
recompilation for unusual cases is no longer required. Dynamic structures such as lists
and trees can grow in ways that could not be anticipated when the program was written.
The use of pointer aliasing can contribute to more readable, maintainable code.

The elements of the Fortran pointer facility are: two attributes, POINTER and TARGET;
four statements, NULLIFY, ALLOCATE, DEALLOCATE, and pointer assignment; and
two intrinsic functions, ASSOCIATED and NULL.

Related Topics:
ALLOCATE and DEALLOCATE Statements POINTER Attribute and Statement
Dynamic Objects Pointer Nullification
Interfaces and Interface Blocks TARGET Attribute and Statement
Pointer Association

To Read More About It:
ISO 1539 : 1997, Fortran Standard, 2.4.6, 5.1.2.7-8, 6.3, 7.5.2, 13.9, 13.14.13, 13.14.79, 14.6.2, C.1.3,

C.2, C.3.2, C.4.3-4
Fortran 95 Handbook, 2.3.4, 5.4, 6.5, 7.5.3, A.13, A.79
Fortran 95 Using F, 8

Examples:
REAL, POINTER :: WEIGHT (:,:,:) ! Extents are not specified;

REAL, POINTER :: W_REGION (:,:,:) ! they are determined
READ *, I, J, K ! during execution.

 . . .

ALLOCATE (WEIGHT (I, J, K)) ! WEIGHT is created.
W_REGION => WEIGHT (3:I-2, 3:J-2, 3:K-2) ! W_REGION is an alias

 ! for an array section.

AVG_W = SUM (W_REGION) / ((I-4) * (J-4) * (K-4))

 . . .
DEALLOCATE (WEIGHT) ! WEIGHT is no longer needed.

TYPE CATALOG
 INTEGER :: ID, PUB_YR, NO_PAGES

 CHARACTER, POINTER :: SYNOPSIS (:)

END TYPE CATALOG
 . . .

TYPE(CATALOG), TARGET :: ANTHROPOLOGY (5000)

CHARACTER, POINTER :: SYNOPSIS (:)
 . . .

DO I = 1, 5000

 SYNOPSIS => ANTHROPOLOGY(I) % SYNOPSIS! Alias for a component
 WRITE (*,*) HEADER, SYNOPSIS, DISCLAIMER! of an array element

 . . .

END DO

Pointers 8

17

Things To Know:
1. POINTER is an attribute in Fortran—not a type. An object of any type can have the

POINTER attribute. Such an object cannot be referenced until it is associated with a tar-
get. A pointer target must have the same type, rank, and kind as the pointer. When the
name of an object with the POINTER attribute appears in most executable statements,
it is its target that is referenced.

2. To be a candidate for a pointer target, most objects must be given the TARGET at-
tribute; a pointer has this attribute implicitly. A target may be thought of as an object
with dynamic names.

3. When the name of an object with the POINTER attribute appears in certain places, it is
the pointer that is referenced. These include pointer initialization, the left side of a
pointer assignment statement, a NULLIFY, ALLOCATE and DEALLOCATE state-
ment, and arguments of the ASSOCIATED and NULL intrinsic functions. A function
may return a pointer or have pointer arguments; if so, the function must have an ex-
plicit interface.

4. Recursive procedures are helpful in dealing with dynamic structures such as lists and
trees.

Linked List Example
TYPE LINK

 REAL VALUE

 TYPE (LINK), POINTER :: NEXT => NULL()
END TYPE LINK

TYPE(LINK), POINTER :: LIST => NULL(), SAVE_LIST

 . . .
DO

 READ (*, *, IOSTAT = NO_MORE) VALUE

 IF (NO_MORE /= 0) EXIT
 SAVE_LIST => LIST

 ALLOCATE (LIST) ! Add link to head of list.

 LIST % VALUE = VALUE
 LIST % NEXT => SAVE_LIST

END DO

 . . .
DO ! Linked list can be

 IF (.NOT.ASSOCIATED (LIST)) EXIT ! removed when no

 SAVE_LIST => LIST % NEXT ! longer needed.

 DEALLOCATE (LIST)
 LIST => SAVE_LIST

END DO

18

9 SAVE Attribute and Statement

A variable with the SAVE attribute retains its value and definition, association, and alloca-
tion status on exit from a procedure. All variables accessible to a main program are saved
implicitly. An entire common block may be saved in order to maintain the integrity of the
storage when none of the procedures using the common block are active. Similarly, saving
a variable in a module preserves its value when no procedure using the module is active.

Tip: Even though many early implementations of Fortran saved all variables and named
common blocks, a standard-conforming program may not rely on this. Modern systems
are more complex and more attention should be paid to variables that must retain their
value. Unless the SAVE attribute has been declared, a variable might not be saved. For the
sake of portability, the SAVE attribute should always be declared for variables that need to
retain their value.

Related Topics:
Data Initialization Recursion

To Read More About It:
ISO 1539 : 1997, Fortran Standard, 5.1.2.5, 5.2.4 , 5.2.10, 12.5.2.4
Fortran 95 Handbook, 5.5.1, 5.6.4, 12.1.3
Fortran 95 Using F, 3.1.2

Examples:
MODULE FLOWERS

REAL, SAVE, ALLOCATABLE :: FOLIAGE(:) ! FOLIAGE is real type and
. . . ! has the SAVE attribute.

END MODULE FLOWERS

SAVE A, B, TEMP, /BLOCKXY/ ! A common block BLOCKXY

 ! has the SAVE attribute.

RECURSIVE SUBROUTINE ATLATL (X, Y)

INTEGER :: COUNT = 0 ! COUNT is saved

. . . ! automatically.

COUNT = COUNT + 1
. . .

CALL ATLATL (X, Y)

. . .
END SUBROUTINE ATLATL

SUBROUTINE DAISY
 SAVE ! This saves everything.

 . . .

END SUBROUTINE DAISY

SAVE Attribute and Statement 9

19

Things To Know:
1. If the list in a SAVE statement is omitted in a scoping unit, everything in that scoping

unit that can be saved is saved. No other explicit occurrences of the SAVE attribute or
SAVE statement are allowed.

2. A variable in a common block must not be saved individually. If a common block is
saved in one program unit, it must be saved everywhere it appears other than in a main
program.

3. A SAVE statement in a main program has no effect because all variables and common
blocks are saved implicitly in a main program.

4. There is only one copy of saved variables in all activations in a recursive procedure. If
a local variable is not saved, there is a different copy for each activation.

5. Initialization in a DATA statement or in a type declaration implies that a variable has
the SAVE attribute, unless the variable is in a named common block in a block data
subprogram. Default initialization does not cause a variable to be saved.

6. The SAVE attribute may be declared in the specification part of a module. A variable
in a module that is not saved becomes undefined when the module is not being used
by any active program unit.

Syntax:

A type declaration statement with the SAVE attribute is:
type , SAVE [, attribute-list] :: entity-list

A SAVE statement is:
SAVE [[::] saved-entity-list]

A saved entity is one of:
 data-object-name
/ common-block-name /

Initia
liz

ati
on

ALLOCATABLE

DIM
ENSIO

N

EXTERNAL

IN
TENT

IN
TRIN

SIC

OPTIO
NAL

PARAM
ETER

POIN
TER

PRIV
ATE

PUBLIC

TARGET

SAVE

Attribute
compatibility

20

10 Source Form

There are two source forms that may be used to write Fortran programs. One is called
fixed source form. The other, free source form, is described here. Fixed source form is
obsolete and is a candidate for deletion from the next Fortran standard.

Tip: Pick a consistent style for writing programs, using a consistent amount of indenta-
tion, placement of comments, etc.

A source form conversion program is available at no cost from the free software section of
the Fortran Market: http://www.fortran.com/fortran.

It is possible to write programs in a way that is acceptable as both free source form and
fixed source form. The rules are:
• Put labels in positions 1-5.
• Put statement bodies in positions 7-72.
• Begin comments with an exclamation (!) in any position except 6.
• Indicate all continuations with an ampersand in position 73 of the line to be continued

and an ampersand in position 6 of the continuing line.

Related Topics:
INCLUDE Line

To Read More About It:
ISO 1539 : 1997, Fortran Standard, 3.3
Fortran 95 Handbook, 3.3, 3.4
Fortran 95 Using F, 1.4

Examples:
PROGRAM NICE

! This is a nice way to write a program!

PRINT *

PRINT *, &
12.0 + 34.6

END PROGRAM NICE

PROGRAM &
UGH ! This is a terrible way to write a program!

PRINT &

*; PRINT &

* , &
12.0 +&

34.6

END

Source Form 10

21

Things To Know:
1. A Fortran program consists of a sequence of statements, comments, and include lines;

they are written on lines that contain from 0 to 132 characters.
2. A statement can be continued onto more lines if the last character of the line (not in a

comment) to be continued is an ampersand (&).
PRINT *, &

"I hope this is the right answer."

An ampersand must be used on the continuing line if a keyword or character string is
split between lines in free source form. A statement may not have more than 40 lines.

3. The semicolon (;) symbol is used to separate multiple statements on the same line; it
may be used in both free and fixed source form programs.
A = 0; B = 0

4. The ! symbol for a comment may be used in both free and fixed source form programs.
Any occurrence of the exclamation symbol (!) other than within a character context or
a comment marks the beginning of a comment. The comment is terminated by the end
of the line. All comments are ignored by the Fortran system.

5. In the absence of a continuation symbol, the end of a line marks the end of a statement.
6. Blank characters are significant in a Fortran program written using free source form.

In general, they must not occur within things that normally would not be typed with
blanks in English text, such as names and numbers. On the other hand, they must be
used between two things that look like “words”. An example is that in the first line of
a program the keyword PROGRAM and the name of the program must be separated
by one or more blanks.

7. Keywords and names such as PRINT and NUMBER must contain no blank characters,
except that keywords that consist of more than one English word may contain blanks
between the words, as in the Fortran statement END DO. Two or more consecutive
blanks are always equivalent to one blank unless they are in a character string.

8. Statements may begin anywhere, including positions 1 to 6.
9. Labels may appear anywhere before the main part of the statement, even in a position

to the right of position 6.
10. A construct name followed by a colon may appear anywhere before the main part of

the statement.

22

Symbols
! 21
– 9
% 13
& 21
* 9
** 9
+ 9
.EQ. 9
.NE. 9
/ 9
/= 9
; 21
== 9

A
actual argument 4, 5
aliasing 16
allocatable array 2, 3
allocate object 3
ALLOCATE statement 2, 16, 17
ALLOCATED function 3
allocation 3

status 18
alternate return 5
ampersand (&) 21
argument

actual 4, 5
association 11
dummy 4, 5
keyword 4, 5
optional 5
positional 4

arithmetic operator 9
array

allocatable 2, 3
component 11

assignment
pointer 16

ASSOCIATED function 3, 16, 17
associated pointer 3
association

argument 11

host 11, 15
status 3, 18

attribute
POINTER 2, 11, 12, 13, 16, 17
PRIVATE 11, 15
PUBLIC 11, 15
SAVE 15, 18, 19
TARGET 16, 17

B
blank

character 21
block

common 18, 19
interface 5, 15

C
case

expression 7
value 7

CASE construct 6, 7
CASE statement 7
character

blank 21
comment 21
common block 18, 19
complex

constant 9
default 9
kind 9
operator 9

complex number 8
COMPLEX statement 9
complex type 8
component

array 11
declaration 11
name 11
structure 12, 13

reference 13
constant

complex 9
construct

Index

23

CASE 6, 7
name 7, 21

continued statement 21

D
DEALLOCATE statement 2, 16, 17
declaration

component 11
type 19

default complex 9
DEFAULT keyword 7
defined type 11

definition 11
definition

defined type 11
status 18
type 11

derived type 10
dummy argument 4, 5
dummy procedure 5

E
END SELECT statement 7
exclamation mark (!) 21
expression

case 7
initialization 7

external procedure 5

F
fixed source form 20
form

program 21
source 20

free source form 20
function

ALLOCATED 3
ASSOCIATED 3, 16, 17
NULL 16, 17

G
generic procedure 5

H
host association 11, 15

I
implicit typing 15
initialization 19

expression 7
interface

block 5, 15
procedure 4, 5

internal procedure 5
intrinsic procedure 5

K
keyword 21

argument 4, 5
DEFAULT 7

kind
complex 9

L
label 21
line

source 21

M
main program 18
module 14, 15

procedure 5
MODULE PROCEDURE statement 15

N
name 21

component 11
construct 7, 21
type 11

NULL function 16, 17
NULLIFY statement 3, 16, 17
number

complex 8

24

O
object

allocate 3
operator

arithmetic 9
complex 9
relational 9

optional argument 5

P
part

reference 13
pointer 3, 10, 16

assignment 16
associated 3
target 2

pointer assignment statement 17
POINTER attribute 2, 11, 12, 13, 16, 17
positional argument 4
PRIVATE attribute 11, 15
PRIVATE statement 11, 13
procedure

dummy 5
external 5
generic 5
interface 4, 5
internal 5
intrinsic 5
module 5
recursive 17
specific 5
user defined 4

program 21
form 21
main 18
unit 14

PUBLIC attribute 11, 15

R
recursive procedure 17
reference

part 13
relational operator 9

S
SAVE attribute 15, 18, 19
SAVE statement 15, 19
saved entity 19
section

vector subscript 13
SELECT CASE statement 7
semicolon (;) 21
SEQUENCE statement 11
source form 20

fixed 20
free 20

specific procedure 5
specification

part 15
specifier

STAT= 3
STAT= specifier 3
statement

ALLOCATE 2, 16, 17
CASE 7
COMPLEX 9
continued 21
DEALLOCATE 2, 16, 17
END SELECT 7
length 21
MODULE PROCEDURE 15
NULLIFY 3, 16, 17
pointer assignment 17
PRIVATE 11, 13
SAVE 15, 19
SELECT CASE 7
separator 21
SEQUENCE 11
TYPE 11

status
allocation 18
association 3, 18
definition 18

status variable 3
structure 10

component 12, 13
reference 13

subscript
triplet 13
vector 13

25

vector section 13

T
target 17

pointer 2
TARGET attribute 16, 17
triplet

subscript 13
type

complex 8
declaration 19
defined 11
definition 11
derived 10
name 11
user defined 12

TYPE statement 11

U
unit

program 14
user-defined procedure 4
user-defined type 12

V
value

case 7
variable

status 3
vector

subscript 13
vector subscript 13

Example
MODULE PRECISION

 ! ADEQUATE is a kind number of a real representation with at least

 ! 10 digits of precision and 99 digits range, which results in
 ! 64-bit arithmetic on most machines.

 INTEGER, PARAMETER :: ADEQUATE = SELECTED_REAL_KIND(10,99)

END MODULE PRECISION

MODULE LINEAR_EQUATION_SOLVER

 USE PRECISION

 IMPLICIT NONE

 PRIVATE ADEQUATE
 CONTAINS

 SUBROUTINE SOLVE_LINEAR_EQUATIONS (A, X, B, ERROR)

 ! Solve the system of linear equations Ax = B.

 ! ERROR is true if the extents of A, X, and B are incompatible

 ! or a zero pivot is found.
 REAL (ADEQUATE), DIMENSION (:, :), INTENT (IN) :: A

 REAL (ADEQUATE), DIMENSION (:), INTENT (OUT) :: X

 REAL (ADEQUATE), DIMENSION (:), INTENT (IN) :: B
 LOGICAL, INTENT (OUT) :: ERROR

 REAL (ADEQUATE), DIMENSION (SIZE (B), SIZE (B) + 1) :: M

 INTEGER :: N

 ! Check for compatible extents.

 ERROR = SIZE (A, DIM=1) /= SIZE (B) .OR. SIZE (A, DIM=2) /= SIZE (B)
 IF (ERROR) THEN

 X = 0.0

 RETURN
 END IF

 ! Append the right-hand side of the equation to M.
 N = SIZE (B)

 M (1:N, 1:N) = A; M (1:N, N+1) = B

 ! Factor M and perform forward substitution in the last column of M.

 CALL FACTOR (M, ERROR)

 IF (ERROR) THEN
 X = 0.0

 RETURN

 END IF

 ! Perform back substitution to obtain the solution.

 CALL BACK_SUBSTITUTION (M, X)

 END SUBROUTINE SOLVE_LINEAR_EQUATIONS

 SUBROUTINE FACTOR (M, ERROR)

 ! Factor M in place into a lower and upper tranular matrix

 ! using partial pivoting.
 ! Terminate when a pivot element is zero.

 ! Perform forward substitution with the lower triangle

 ! on the right-hand side M(:,N+1)
 REAL (ADEQUATE), DIMENSION (:, :), INTENT (INOUT) :: M

 LOGICAL, INTENT (OUT) :: ERROR

 INTEGER, DIMENSION (1) :: MAX_LOC
 REAL (ADEQUATE), DIMENSION (SIZE (M, DIM=2)) :: TEMP_ROW

 INTEGER :: N, K

 INTRINSIC MAXLOC, SIZE, SPREAD, ABS

 N = SIZE (M, DIM=1)

 TRIANG_LOOP: &

 DO K = 1, N

 MAX_LOC = MAXLOC (ABS (M (K:N, K)))

 TEMP_ROW (K:N+1) = M (K, K:N+1)

 M (K, K:N+1) = M (K-1+MAX_LOC(1), K:N+1)

 M (K-1+MAX_LOC(1), K:N+1) = TEMP_ROW (K:N+1)

 IF (M (K, K) == 0) THEN

 ERROR = .TRUE.
 EXIT TRIANG_LOOP

 ELSE

 M (K, K:N+1) = M (K, K:N+1) / M (K, K)
 M (K+1:N, K+1:N+1) = M (K+1:N, K+1:N+1) - &

 SPREAD (M (K, K+1:N+1), 1, N-K) * &

 SPREAD (M (K+1:N, K), 2, N-K+1)
 END IF

 END DO TRIANG_LOOP

 END SUBROUTINE FACTOR

 SUBROUTINE BACK_SUBSTITUTION (M, X)

 ! Perform back substitution on the upper triangle
 ! to compute the solution.

 REAL (ADEQUATE), DIMENSION (:, :), INTENT (IN) :: M

 REAL (ADEQUATE), DIMENSION (:), INTENT (OUT) :: X
 INTEGER :: N, K

 INTRINSIC SIZE, SUM

 N = SIZE (M, DIM=1)

 DO K = N, 1, -1
 X (K) = M (K, N+1) - SUM (M (K, K+1:N) * X (K+1:N))

 END DO

 END SUBROUTINE BACK_SUBSTITUTION

END MODULE LINEAR_EQUATION_SOLVER

PROGRAM EXAMPLE

 USE PRECISION ! Uses modules shown

 USE LINEAR_EQUATION_SOLVER ! inside back cover

 IMPLICIT NONE

 REAL (ADEQUATE) A(3,3), B(3), X(3)
 INTEGER I, J

 LOGICAL ERROR

 DO I = 1,3

 DO J = 1,3

 A(I,J) = I+J
 END DO

 END DO

 A(3,3) = -A(3,3)

 B = (/ 20, 26, -4 /)

 CALL SOLVE_LINEAR_EQUATIONS (A, X, B, ERROR)

 PRINT *, ERROR

 PRINT *, X

END PROGRAM EXAMPLE

! Coefficient matrix A:

! 2.0 3.0 4.0

! 3.0 4.0 5.0
! 4.0 5.0 -6.0

! Constants on right-hand side of equation:

! 20.0

! 26.0
! -4.0

! Error flag:

! F

! Solution:

! 1.0 2.0 3.0

ISBN
The Fortran Company
6025 N. Wilmot Road

Tucson, Arizona 85750 USA

	Preface
	Topics
	1 ALLOCATE and DEALLOCATE Statements
	2 Argument Keywords
	3 CASE Construct
	4 Complex Type and Constants
	5 Defined Type: Definition
	6 Defined Type: Structure Component
	7 Modules
	8 Pointers
	9 SAVE Attribute and Statement
	10 Source Form
	Index
	Example

