Fortran 95/2003
Disclaimer:

Quick Reference PDF (unofficial)

This information has not been approved by any formal draft body,
therefore you use this information at your own risk; no one shall be held
responsible for any consequences following the use of the information
contained herein in any way whatsoever.

References Consulted include:

gfortran.pdf : Using GNU Fortran, For gcc version 4.2.1,(c) 2007 FSF
07-007r1.pdf: WORKING DRAFT, J3/07-007r1, 30th March 2007 9:52
n3661.pdf, ISO/IEC JTC1/SC22/WG5 N1578, ISO/IEC JTC1/SC22
N1579.pdf: ISO/IEC JTC1/SC22/WGS5 N1579,New Features Fortran '03
2008 extensions: http://www.fortran.bcs.org/2007/bcs07.pdf

NOTE: This Quick Reference contains GNU-Extensions to the Fortran
Standard, so please be aware of that while referring to this guide.

GNU Fortran 95/2003 Language Syntax and Quick Reference Guide
This guide favors the GNU gfortran series of compilers and utilities,
each copyright their respective owners.

At the time of this writing, the following URL's provide downloads for
the GNU Fortran packages:

http://gcc.gnu.org/wiki/GFortranBinaries

Win32 Version was known to be available here:
http://quatramaran.ens.fr/~coudert/gfortran/gfortran-windows.exe
Documentation can be downloaded here (for various GNU packages):
http://gce.gnu.org/onlinedocs/

Finding out the version of gfortran installed (if any):
gfortran --version
GNU Fortran (GCC) 4.3.0 20070722 (experimental)

Most simple form of compile syntax: gfortran x.f95,
results in the creation of a.out, which is then executed: ./a.out
To formally name the executable application:

gfortran x.f95 -0 x, execute the application: ./x

The following extensions are supported:
.f Fortran 77
.f95 Fortran95

"generic fortran"

190 Fortran 90 .f03 Fortran 2003

If you need to compile under a specific standard, use -std:
gfortran -std=f95, 2003, gnu, or legacy

09-06-2007
Ver 002.002 Influencing runtime behavior with environment variables:

GFORTRAN_STDIN_UNIT—Unit number standard input
GFORTRAN_STDOUT_UNIT—Unit number standard output
GFORTRAN_STDERR_UNIT—Unit number standard error
GFORTRAN_USE_STDERR—Send lib output to standard error
GFORTRAN_TMPDIR—Directory for scratch files
GFORTRAN_UNBUFFERED_ALL—Don’t buffer output
GFORTRAN_SHOW_LOCUS—Show location runtime errors
GFORTRAN_OPTIONAL_PLUS—Print leading + where permitted
GFORTRAN_DEFAULT_RECL—Default record length for new files
GFORTRAN_LIST_SEPARATOR—Separator list output
GFORTRAN_CONVERT_UNIT—Set endianness unformatted I/0

LANGUAGE-REFERENCE (WORK-IN-PROGRESS!)

Fortran character set consists of
ABCDEFGHIJKLMNOPQRSTUVWXYZ,
abcdefghijklmnopqrstuvwxyz

0123456789
<blank>=+-*/(),.":!" % & ;<>?$

[

e letters:

o digits:
* special characters:
¢ and underscore character ‘_
Special characters are used as operators, as separators or delimiters, or
for grouping. 2 and ‘$’ have no special meaning.
Lower case letters are equivalent to corresponding upper-case letters
except in CHARACTER literals.

a non-leading significant character in a name.

Underscore character can be used as

Type Kind Type Parameter Notes
INTEGER 1 Range: -128 to 127
INTEGER 2 Range: -32,768 to 32,767
INTEGER 4* Range: -2,147,483,648 to 2,147,483,647
INTEGER 8 Range: -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807
REAL 4% Range: 1.18 * 10E-38 to 3.40 * 10E38
Precision: 6-7 decimal digits
REAL 8 Range: 2.23 * 10E-308 to 1.79 * 10E308
Precision: 15-16 decimal digits
REAL 16 Range: 10E-4931 to 104932
Precision: approximately 33 decimal digits
COMPLEX 4* Range: 1.18 * 10-38 to 3.40 * 1038
Precision: 7-8 decimal digits
COMPLEX 8 Range: 2.23 * 10E-308 to 1.79 * 10E308
Precision: 15-16 decimal digits
COMPLEX 16 Range: 10-4931 to 104932
Precision: approximately 33 decimal digits
LOGICAL 1 Values: . TRUE. and .FALSE.
LOGICAL 4* Values: .TRUE. and .FALSE.

CHARACTER 1* ASCII character set

Named Data: Implicit Typing, Type Declaration Statements,
Attributes (DIMENSION, PARAMETER, POINTER, TARGET,
EXTERNAL, ALLOCATABLE, {INTENT(IN), INTENT(OUT),
INTENT(N OUT) }, PUBLIC, PRIVATE, INTRINSIC, OPTIONAL,
SAVE, SEQUENCE)

Substrings: string ([lower-bound] : [upper-bound])
Arrays, Array References, Array Elements,
Array Element Order:
(I+(sl—=j1))+((s2-j2)xdl)+...+((sn—jn)xdn—-1xdn-2
... xdl) siis subscript in ith dimension, ji is lower bound of the ith
dimension, di is size of the ith dimension, n is rank of the array,
Array Sections, Subscript Triplets, Vector Subscripts.
Arrays and Substrings: character (len=10), dimension (10,10) :: my_string
my_string(3:8,:) (2:4) = "abc’
Dynamic Arrays.
Allocatable Arrays: integer, allocatable :: a(:), b(:,:,:)
allocate (a(3), b(1,3,-3:3))
Array Pointers: integer, pointer, dimension(:,:) :: ¢
integer, target, dimension(2,4) :: d
integer, pointer, dimension(:,:) :: ¢
c=>d
Assumed-Shape. Assumed-Size. Adjustable and Automatic Arrays.
Array Constructors: (/ constructor-values /)
integer, dimension(3) :: a, b=(/1,2,3/), c=(/(i, i=4,6)/)
a=b+c+(/7,8,9/) ! ais assigned (/12,15,18/)

real,dimension(2,2) :: a = reshape((/1,2,3,4/),(/2,2/))

Operator Represents Operands
wok exponentiation two numeric
*and/ multiplication and division two numeric
+and - unary addition and subtraction one numeric

+and - binary addition and subtraction two numeric

// concatenation two CHARACTER
.EQ. and == equal to 2 numeric or 2 CHARACTER
.NE. and /= not equal to
.LT. and < less than
.LE. and <= less than or equal to two non-COMPLEX
.GT. and > greater than numeric or two CHARACTER
.GE. and >= greater than or equal to
NOT. logical negation one LOGICAL
.AND. logical conjunction two LOGICAL
.OR. logical inclusive disjunction two LOGICAL

.EQV. and.NEQV. logical equivalence and non-equivalence

[GFORTRAN QUICK-REFERENCE GUIDE PAGE 2]
LANGUAGE-REFERENCE:

Number-base BOZ Literal Constants (and GNU extensions):
Hexadecimal: Z’ABC’ and ’ABC’Z are equivalent
data z /Z'688be87a'/

Binary: B'01101' and '01101'B are equivalent
data b /B'011010001000101111101000011110107
Octal: 0'1504" and '1504'0 are equivalent

data o /0'15042764172'/

When converting from a LOGICAL to an INTEGER,

FALSE. is interpreted as zero, and

.TRUE. is interpreted as one.

When converting from INTEGER to LOGICAL, the

value zero is interpreted as .FALSE. and

any nonzero value is interpreted as .TRUE..

RESULT = LOGICAL(L [, KIND]) Converts one kind of LOGICAL
variable to another. Return value is a LOGICAL value equal to L, with
a kind corresponding to KIND, or of the default logical kind if KIND is
not given.

BLOCK DATA [block-data-name]
[specification statement] ...
END [BLOCK DATA [block-data-name] |

CASE Construct
[construct-name :] SELECT CASE (case-expr)
CASE (case-selector [, case-selector] ...) [construct-name]
block
[CASE DEFAULT [construct-name]]
block
END SELECT [construct-name]

COMMON [/ [common-name] /] common-object-list [[,]
/ [common-name] / common-object-list] ...
statement provides a global data facility. It specifies contiguous blocks
of physical storage, called common blocks, that are available to any
program unit that references the common block.

CONTAINS statement separates body of a main program, module, or
subprogram from any internal or module subprograms it contains.
See important notes in the Manual.

Computed GOTO Statement (obsolescent)
GO TO (labels) [,] scalar-int-expr

CYCLE statement skips to the next iteration of a DO loop.

integer :: i, j
outer: do i=1, 10
if(i < 3) cycle ! cycles outer
inner: do j=I1, 10
if (i <j) cycle
if (i > j) cycle outer ! cycles to outer

! cycles inner

end do inner
end do outer

CONTINUE statement is traditionally used in conjunction with a
statement label, as target of a branch statement or a do loop terminus.
Execution of a CONTINUE statement has no effect; drops down to
next statement.

DATA statement provides initial values for data objects.
DATA data-stmt-set [[,] data-stmt-set] ...

DO construct specifies the repeated execution (loop) of a block of code.
[construct-name :] DO [label] [loop-control]

block

[exit]
do-termination

Implied-DO loop allows elements to be transferred selectively or in

some non-standard order. Rules for an implied-DO are similar to that of

an ordinary DO-loop but loop forms a single item in the data-transfer
list and is enclosed by a pair of parentheses.

ENTRY entry-name [([dummy-arg-list]) [RESULT (result-name)]]
statement permits a program unit to define multiple procedures, each
with a different entry point.

EQUIVALENCE equivalence-sets
statement specifies two or more aliases that share same storage.

EXTERNAL [::] external-name-list
statement declares external procedures. Specifying a procedure name as
EXTERNAL permits the procedure name to be used as an actual
argument.

[construct-name:] FORALL (forall-triplets [, mask])
[forall-body]
END FORALL [construct-name]
construct controls execution of a block of assignment and pointer
assignment statements. Execution in block is selected by sets of index
values and an optional mask expression.

FORALL (forall-triplets [, mask]) forall-assignment-stmt

statement controls execution of an assignment or pointer assignment
statement with selection by sets of index values and an optional mask
expression.

Format. Table Format Options. Single-line examples. [See Manual.]

function-name ([dummy-args]) = scalar-expr
mean(a,b)=(a+b)/2
c=mean(2.0,3.0) ! ¢ is assigned value 2.5

Statement function is a function defined by a single statement.

[PURE][ELEMENTAL][RECURSIVE] [type-spec] FUNCTION
function-name ([dummy-arg-names]) [RESULT (result-name)]

GO TO statement transfers control to a statement identified by a label.
GO TO label

IF Construct

[construct-name:] IF (expr) THEN
block

[ELSE IF (expr) THEN [construct-name]
block]

[ELSE [construct-name]
block]

END IF [construct-name]

IF statement controls whether or not a statement is executed based on

value of a logical expression. IF (expr) action-statement

IMPLICIT implicit-specs, IMPLICIT NONE
statement specifies a type and optionally a kind or a CHARACTER

or

length for each variable or function name beginning with letter(s)
specified in IMPLICIT statement. Alternately, it can specify that no
implicit typing is to apply in the scoping unit.

INCLUBDE filespec
line causes text in a separate file to be processed as if text replaced
INCLUDE line. INCLUDE line is not a Fortran statement.

INTENT(IN, or OUT or IN OUT) [::] comma-separated dummy-args
statement specifies the treatment dummy arguments.

INTERFACE [generic-spec]
[procedure-heading
[specification-construct] ...

[GFORTRAN QUICK-REFERENCE GUIDE PAGE 3]
LANGUAGE-REFERENCE:

procedure-ending] ...

[MODULE PROCEDURE module-procedure-name-list] ...

END INTERFACE [generic-spec]

block specifies forms of reference by which a procedure can be

invoked. An interface block specifies a procedure interface, a defined

operation, or a defined assignment.

INTRINSIC [::] intrinsic-procedure-names
statement permits a reference to a specific intrinsic function as an actual
argument.

MODULE module-name

[specification construct]

[CONTAINS

subprogram [subprogram] ...]

END [MODULE [module-name] |

statement begins a module program unit. Module encapsulates data and
procedures, provides a global data facility, which can be considered a
replacement for COMMON, and establishes implicit interfaces for
procedures contained in the module.
MODULE PROCEDURE module-procedure-list
statement can only appear in a generic interface block within a module or
within a program unit that accesses a module by use association.

NULL function returns a disassociated pointer.

NULL ([mold])

real,pointer,dimension(:) :: a => null() ! a is disassociated
LANGUAGE-REFERENCE continued (work-in-progress):

NULLIFY statement disassociates a pointer.
NULLIFY (pointers)

OPTIONAL [::] dummy-arg-names
statement declares that any dummy arguments specified need
not be associated with an actual argument when procedure is invoked.

PARAMETER (named-constant-defs)

statement specifies and initializes named constants.

PAUSE (Obsolete) Can be replaced by one WRITE and one READ
statement: more flexible/less system-dependent.

pointer => target
Pointer assignment statement associates a pointer with a target.

POINTER [::] variable-name [(deferred-shape)]
[, variable-name [(deferred-shape)]] ...

statement specifies a list of variables that have POINTER attribute.

PRIVATE [[::] access-ids]
statement specifies that names of entities are accessible only within
current module.

PROGRAM program-name
[specification construct]
[executable construct]
[CONTAINS
internal-procedure [internal-procedure] ... |
END [PROGRAM [program-name]]
statement signals beginning of a main program unit.

PUBLIC [[::] access-ids]

statement specifies that entities are accessible by use association anywhere

module that contains the PUBLIC statement is used.

READ (io-control-specs) [inputs] or READ format [, inputs]
statement transfers values from an input/output unit to data objects
specified in an input list or a namelist group.

REAL (a [, kind]) function converts a number to a REAL data type.
REAL [kind-selector] [[, attribute-list] ::] entity [, entity] ...
statement declares entities having REAL data type.

RESULT result_name
if specified, result_name becomes a function's result variable.

RETURN [alt-return]

statement causes a transfer of control from a subprogram back to calling
procedure. Execution continues at statement following procedure
invocation.

SAVE [[::] comma-separated list of object-name

or / common-block-name /]
statement specifies that all data objects listed retain any previous
association, allocation, definition, or value upon reentry of a subprogram.

SEQUENCE statement specifies a storage sequence for objects of a
derived type. It can only appear within a derived type definition.

STOP [scalar CHARACTER constant or a series of 1 to 5 digits]
statement causes execution of a program to terminate.

TARGET [::] object-name [(array-spec)][,object-name [(array-spec)]] ...
statement specifies that data objects have target attribute and thus can be
associated with a pointer.

Definition: TYPE [[, access-spec] ::] type-name

Declaration: TYPE (type-name) [, attribute-list ::] entity [, entity] ...
statement defines a derived type, and declares entities having a derived
type.

USE module [, rename-list] or USE module, ONLY: [only-list]
statement specifies that a module is accessible from current scoping unit.
It also provides a means of renaming or limiting the accessibility of
entities in the module.

TYPE [[, access-spec]::] type-name

[PRIVATE |

[SEQUENCE]

[type-spec [[, component-attribute-list]::] &
component-declaration-list] ...

END TYPE [type-name |

WHERE (LOGICAL mask-expr)
[assignment-stmt]
[ELSEWHERE (LOGICAL mask-expr)]
[assignment-stmt]
[ELSE WHERE]
[assignment-stmt]
END WHERE
construct controls which elements of an array will be affected by a block
of assignment statements. Also known as masked array assignment.

WRITE (io-control-specs) [outputs]
statement transfers values to an input/output unit from entities specified
in an output list or a namelist group.
[UNIT =] io-unit or [FMT =] format or [NML =] namelist-group-name
or REC=record or IOSTAT=stat or ERR=errlabel or END=endlabel
or EOR=eorlabel or ADVANCE=advance or SIZE=size
io-unit is an external file unit, or *
format is a format specification
record is the number of the direct-access record that is to be written.
stat is a scalar default INTEGER variable that is assigned a positive value
if an error condition occurs and zero otherwise.
errlabel is a label that is branched to if an error condition occurs and no
end-of-record condition or end-of-file condition occurs during execution
of the statement.
endlabel is a label that is branched to if an end-of-file condition occurs and
no error condition occurs during execution of the statement.
eorlabel is a label that is branched to if an end-of-record condition occurs
and no error condition or end-of-file condition occurs during execution of
the statement.
advance is a scalar default CHARACTER expression that evaluates to NO

[GFORTRAN QUICK-REFERENCE GUIDE PAGE 4]

if non-advancing input/output is to occur, and YES if advancing
input/output is to occur. The default value is YES.

size is a scalar default INTEGER variable that is assigned the number of
characters transferred by data edit descriptors during execution of the
current non-advancing input/output statement.

13.5.1 Numeric functions
ABS (A)

AIMAG (Z)

AINT (A [, KIND])
ANINT (A [, KIND])
CEILING (A [, KIND])
CMPLX (X [, Y, KIND])

Absolute value
Imaginary part of a complex number
Truncation to whole number
Nearest whole number

Least integer greater than or equal to number
Conversion to complex type

CONIJG (2) Conjugate of a complex number

DBLE (A) Conversion to double precision real type
DIM (X, Y) Positive difference

DPROD (X, Y) Double precision real product

FLOOR (A [, KIND])
INT (A [, KIND])
MAX (A1, A2 [, A3,...])

Conversion to integer type
Maximum value

13.5.1 Numeric functions
MIN (A1, A2 [, A3,...])
MOD (A, P)

MODULO (A, P)

NINT (A [, KIND])
REAL (A [, KIND])

SIGN (A, B)

Minimum value
Remainder function
Modulo function
Nearest integer
Conversion to real type
Transfer of sign

13.5.2 Mathematical functions

ACOS (X) Arccosine

ASIN (X) Arcsine

ATAN (X) Arctangent
ATAN2 (Y, X) Arctangent

COS (X) Cosine

COSH (X) Hyperbolic cosine
EXP (X) Exponential

LOG (X) Natural logarithm
LOGI10 (X) Common logarithm (base 10)
SIN (X) Sine

SINH (X) Hyperbolic sine
SQRT (X) Square root

TAN (X) Tangent

TANH (X) Hyperbolic tangent

13.5.3 Character functions
ACHAR (I [, KIND])

Greatest integer less than or equal to number MIN (A1, A2 [, A3,...])

Character in given position in ASCII collating sequence
ADJUSTL (STRING) Adjust left
ADJUSTR (STRING) Adjust right
CHAR (I [, KIND])

Character in given position in processor collating sequence
IACHAR (C [, KIND])

Position of a character in ASCII collating sequence
ICHAR (C [, KIND])

Position of a character in processor collating sequence
INDEX (STRING,SUBSTRING [,BACK,KIND])

Starting position of a substring
LEN TRIM (STRING [, KIND])

Length without trailing blank characters
LGE (STRING A, STRING B)
LGT (STRING A, STRING B)
LLE (STRING A, STRING B)
LLT (STRING A, STRING B)
MAX (A1, A2 [, A3,...])

Lexically greater than or equal
Lexically greater than
Lexically less than or equal
Lexically less than
Maximum value
Minimum value
REPEAT (STRING, NCOPIES) Repeated concatenation
SCAN (STRING, SET [, BACK, KIND])
Scan a string for a character in a set

TRIM (STRING) Remove trailing blank characters
VERIFY (STRING, SET [, BACK, KIND])

Verify the set of characters in a string

13.5.4 Kind functions
KIND (X) Kind type parameter value
SELECTED CHAR KIND (NAME)
Character kind type parameter value, given character set name
SELECTED INT KIND (R)
Integer kind type parameter value, given range
SELECTED REAL KIND ([P, R])
Real kind type parameter value, given precision and range

13.5.5 Miscellaneous type conversion functions
LOGICAL (L [, KIND]) Convert between objects of type logical with
different kind type parameters
TRANSFER (SOURCE, MOLD [, SIZE])
Treat first argument as if of type of second argument

13.5.6 Numeric inquiry functions

DIGITS (X) Number of significant digits of the model
EPSILON (X) Number that is almost negligible compared to one
HUGE (X) Largest number of the model
MAXEXPONENT (X) Maximum exponent of the model
MINEXPONENT (X) Minimum exponent of the model
PRECISION (X) Decimal precision

RADIX (X) Base of the model
RANGE (X) Decimal exponent range
TINY (X) Smallest positive number of the model

LBOUND (ARRAY [, DIM, KIND])

Lower dimension bounds of an array
SHAPE (SOURCE [, KIND]) Shape of an array or scalar
SIZE (ARRAY [, DIM, KIND]) Total number of elements in an array
UBOUND (ARRAY [, DIM, KIND])

Upper dimension bounds of an array

13.5.8 Other inquiry functions
ALLOCATED (ARRAY) or
ALLOCATED (SCALAR)
ASSOCIATED (POINTER [, TARGET])

Association status inquiry or comparison
BIT_SIZE (I) Number of bits of the model
EXTENDS TYPE OF (A, MOLD) Same dynamic type or an extension
LEN (STRING [, KIND])
NEW_LINE (A)
PRESENT (A)
SAME TYPE AS (A, B)

Allocation status

Length of a character entity
Newline character
Argument presence
Same dynamic type

13.5.9 Bit manipulation procedures

BTEST (I, POS) Bit testing
IAND (I, J) Bitwise AND
IBCLR (I, POS) Clear bit
IBITS (I, POS, LEN) Bit extraction
IBSET (I, POS) Set bit

IEOR (1, J) Exclusive OR
IOR (1, J) Inclusive OR

ISHFT (I, SHIFT) Logical shift
ISHFTC (I, SHIFT [, SIZE]) Circular shift
MVBITS (FROM,FROMPOS,LEN,TO,TOPOS)
Copies bits from one integer to another

NOT (I) Bitwise complement

13.5.10 Floating-point manipulation functions
EXPONENT (X) Exponent part of a model number
FRACTION (X) Fractional part of a number
NEAREST (X, S) Nearest different processor number in given direction
RRSPACING (X) Reciprocal of the relative spacing of model
numbers near given number
SCALE (X, I) Multiply a real by its base to an integer power
SET EXPONENT (X, I) Set exponent part of a number
SPACING (X) Absolute spacing of model numbers near given

13.5.11 Vector and matrix multiply functions

DOT PRODUCT (VECTOR A,VECTOR B)
Dot product of two rank-one arrays
MATMUL (MATRIX A, MATRIX B) ~ Matrix multiplication

13.5.12 Array reduction functions
ALL (MASK [, DIM])
ANY (MASK [, DIM]) True if any value is true
COUNT (MASK [, DIM, KIND]) Number of true elements in an array
MAXVAL (ARRAY, DIM [, MASK]) or
MAXVAL (ARRAY [, MASK])
MINVAL (ARRAY, DIM [, MASK]) or
MINVAL (ARRAY [, MASK])
PRODUCT (ARRAY, DIM [, MASK]) or
PRODUCT (ARRAY [, MASK])
SUM (ARRAY, DIM [, MASK]) or
SUM (ARRAY [, MASK])

True if all values are true

Maximum value in an array
Minimum value in an array
Product of array elements

Sum of array elements

13.5.13 Array construction functions
CSHIFT (ARRAY, SHIFT [, DIM]) Circular shift
EOSHIFT (ARRAY, SHIFT [BOUNDARY,DIM]) End-off shift
MERGE (TSOURCE, FSOURCE, MASK) Merge under mask
[GFORTRAN QUICK-REFERENCE GUIDE PAGE 5]
LANGUAGE-REFERENCE:
PACK (ARRAY, MASK [, VECTORY])

Pack an array into an array of rank one under a mask
RESHAPE (SOURCE, SHAPE[, PAD,ORDER]) Reshape an array
SPREAD (SOURCE, DIM, NCOPIES)

Replicates array by adding a dimension
TRANSPOSE (MATRIX) Transpose of an array of rank two
UNPACK (VECTOR, MASK, FIELD)

Unpack an array of rank one into an array under a mask

13.5.14 Array location functions
MAXLOC (ARRAY, DIM [, MASK, KIND]) or
MAXLOC (ARRAY [, MASK,KIND])
Location of a maximum value in an array
MINLOC (ARRAY, DIM [, MASK, KIND]) or
MINLOC (ARRAY [, MASK, KIND]J)
Location of a minimum value in an array

13.5.15 Null function
NULL ([MOLDY]) Returns disassociated or unallocated result
13.5.16 Allocation transfer procedure
MOVE ALLOC (FROM, TO)
Moves an allocation from one allocatable object

13.5.17 Random number subroutines
RANDOM NUMBER (HARVEST) Returns pseudorandom number

13.5.18 System environment procedures

COMMAND ARGUMENT COUNT () Number of command arguments
CPU_TIME (TIME) Obtain processor time
DATE_AND_TIME ([DATE, TIME, ZONE,VALUES])

Obtain date and time
GET_COMMAND ([COMMAND,LENGTH, STATUS])

Returns entire command
GET_COMMAND_ARGUMENT (NUMBER [, VALUE, LENGTH,
STATUS])) Returns a command argument
GET_ENVIRONMENT_VARIABLE (NAME [,VALUE,LENGTH,
STATUS, TRIM NAME]) Obtain the value of an environment variable
IS_IOSTAT_END (I)
IS_IOSTAT_EOR (I) Test for end-of-record value
SYSTEM CLOCK ([COUNT,COUNT RATE, COUNT MAX])

Obtain data from the system clock

Test for end-of-file value

New in Fortran 95:
Miscellaneous
free source form
enhancements to fixed source form:
“;” statement separator
“I” trailing comment
names may be up to 31 characters in length
both upper and lower case characters are accepted
INCLUDE line
relational operators in mathematical notation
enhanced END statement
IMPLICIT NONE
binary, octal, and hexadecimal constants
quotation marks around CHARACTER constants
Data
enhanced type declaration statements
new attributes:
extended DIMENSION attribute

ALLOCATABLE POINTER TARGET INTENT
PUBLIC PRIVATE

kind and length type parameters derived types

pointers

Operations

extended intrinsic operators extended assignment
user-defined operators
Arrays

automatic arrays

New in Fortran 95 (Continued):

allocatable arrays
assumed-shape arrays array sections

array expressions

masked array assignment (WHERE statement and construct)

FORALL statement™

Execution Control

LANGUAGE-REFERENCE continued (work-in-progress):
CASE construct
CYCLE statement
Input/Output

enhance DO construct
EXIT statement

binary, octal, and hexadecimal edit descriptors
engineering and scientific edit descriptors
namelist formatting

partial record capabilities (non-advancing I/0)
extra OPEN and INQUIRE specifiers
Procedures

keyword arguments
INTENT attribute
array-valued functions

optional arguments

derived type actual arguments and functions
recursive procedures

user-defined generic procedures
user-defined elemental procedures* pure procedures™
specification of procedure interfaces internal procedures
Modules

New Intrinsic Procedures

NULL* PRESENT (See manual for List)

