

Modern Fortran in Practice
From its earliest days, the Fortran programming language has been designed
with computing efficiency in mind. The latest standard, Fortran 2008, incor-
porates a host of modern features, including object-orientation, array opera-
tions, user-defined types, and provisions for parallel computing.

This tutorial guide shows Fortran programmers how to apply these features
in twenty-first-century style: modular, concise, object-oriented, and resource-
efficient, using multiple processors. It offers practical real-world examples of
interfacing to C, memory management, graphics and GUIs, and parallel com-
puting using MPI, OpenMP, and coarrays. The author also analyzes several
numerical algorithms and their implementations and illustrates the use of
several open source libraries. Full source code for the examples is available on
the book’s website.

Arjen Markus is a senior consultant at Deltares, an institute for applied research
in the field of water, subsurface and infrastructure in The Netherlands, where
he develops and maintains their numerical modeling programs and the tools
that accompany them. He is an active contributor to the ACM newsletter
Fortran Forum and the comp.lang.fortran newsgroup.

Modern Fortran
in Practice

Arjen Markus

with Foreword by Michael Metcalf

cambridge university press
Cambridge, New York, Melbourne, Madrid, Cape Town,
Singapore, São Paulo, Delhi, Mexico City

Cambridge University Press
32 Avenue of the Americas, New York, NY 10013-2473, USA

www.cambridge.org
Information on this title: www.cambridge.org/9781107603479

c© Arjen Markus 2012

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written
permission of Cambridge University Press.

First published 2012

Printed in the United States of America

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging in Publication Data

Markus, Arjen.
Modern Fortran in practice / Arjen Markus, Michael Metcalf.

pages cm
Includes bibliographical references and index.
ISBN 978-1-107-01790-0 (hardback) – ISBN 978-1-107-60347-9 (pbk.)
1. Fortran 2008 (Computer program language) I. Metcalf, Michael. II. Title.
QA76.73.F25M375 2012
005.26′2–dc23 2012000126

ISBN 978-1-107-01790-0 Hardback
ISBN 978-1-107-60347-9 Paperback

Additional resources for this publication at http://flibs.sf.net/examples-modern-fortran.html

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for
external or third-party Internet websites referred to in this publication and does not guarantee
that any content on such websites is, or will remain, accurate or appropriate.

"Eadem mutata resurgo"
(Loosely: though changed, I reappear as myself)

Inscription on the grave of Jacob Bernoulli,
referring to the logarithmic spiral.

In memory of my father

My parents taught me to be inquisitive.
My wife and kids teach me still other

important things.

Contents

Foreword by Michael Metcalf . page xi
Preface . xv

1. Introduction to Modern Fortran . 1
1.1 The Flavor of Modern Fortran . 1
1.2 Fortran 90 . 5
1.3 Fortran 95 . 7
1.4 Fortran 2003 . 8
1.5 Fortran 2008 . 9
1.6 What Has Not Changed? . 10

2. Array-Valued Functions . 12
2.1 Passing Arrays . 12
2.2 Elemental Functions and Automatic Reallocation 15
2.3 Two More Advanced Examples . 16
2.4 Concise Style . 20

3. Mathematical Abstractions . 21
3.1 Automatic Differentiation . 21
3.2 Integer Programming. .26
3.3 Enumerating Solutions of Diophantine Equations28
3.4 Delayed Evaluation . 31

4. Memory Management . 35
4.1 Flexible Arrays . 35
4.2 Memory Leaks with Pointers . 36
4.3 Extending an Array . 36
4.4 Character Strings with Adjustable Length . 37
4.5 Combining Automatic and Allocatable Arrays 40
4.6 Performance of Various Types of Arrays . 41
4.7 Parametrized Derived Types . 42
4.8 Avoiding Memory Leaks with Derived Types . 44
4.9 Performance and Memory Access . 48

5. An Interface Problem . 51
5.1 Filling in the Parameters . 52
5.2 Using a Pool of Data . 55

vii

viii CONTENTS

5.3 Passing Extra Arguments . 60
5.4 Control Structures . 66
5.5 Dealing with Different Precisions . 73
5.6 Overview . 75

6. Interfacing to C: SQLite As an Example 76
6.1 Matching Data Types . 76
6.2 Passing Arguments Between C and Fortran Routines 79
6.3 Naming and Calling Conventions .80
6.4 Dealing with Derived Types . 82
6.5 Interfacing to SQLite .85

7. Graphics, GUIs, and the Internet . 92
7.1 Plotting the Results . 92
7.2 Graphical User-Interfaces . 98
7.3 The Internet . 105
7.4 Dealing with XML Files . 109

8. Unit Testing . 114
8.1 Testing Frameworks . 114
8.2 Tridiagonal Matrices As an Example .115
8.3 Design and Implementation . 118
8.4 Concluding Remarks . 120

9. Code Reviews . 121
9.1 Be Explicit . 121
9.2 Don’t Stray . 125
9.3 Avoid Traps . 128
9.4 Clean Code . 132

10. Robust Implementation of Several Simple Algorithms 135
10.1 Related Approaches . 136
10.2 Linear Interpolation . 137
10.3 Basic Statistics . 143
10.4 Finding the Roots of an Equation .151

11. Object-Oriented Programming . 163
11.1 Extending Types and Type-Bound Procedures 163
11.2 Interfaces As Contracts . 173
11.3 Using a Prototype Approach . 178
11.4 Abstract Data Types and Generic Programming 184
11.5 Changing the Behavior of a Type . 187
11.6 Design Patterns . 189

CONTENTS ix

12. Parallel Programming . 196
12.1 Prime Numbers . 196
12.2 Domain Decomposition . 210
12.3 Alternatives . 219
12.4 Overview . 220

A. Tools for Development and Maintenance 221
A.1 The Compiler . 221
A.2 Build Tools . 222
A.3 Integrated Development Environments .223
A.4 Run-Time Checking . 224
A.5 Version Control Systems . 226
A.6 Documenting the Source Code .227
A.7 Code Coverage and Static Analysis . 229

B. Caveats . 232
B.1 Details of the Standard . 232
B.2 Arrays . 239
B.3 Dynamic Libraries . 241

C. Trademarks . 243

Bibliography . 245
Index . 251

Foreword

The applications of Fortran span, very nearly, the whole period during which
computers have been in general-purpose use. This is quite remarkable and,
given the demise so many other high-level languages, it is quite difficult to
know why. Possibly the original design concepts of John Backus – ease of use
and efficiency of execution – have been two major factors. Another might
be the devotion of Fortran’s user community, who labor to keep it abreast
of developments in programming techniques and to adapt it to ever-more
demanding requirements.

Despite all the predictions, over several decades, that Fortran is about to
become extinct, the language has shown itself to be remarkably resilient.
Furthermore, over the last few years, it has been subject to new rounds of stan-
dardization, and the latest standard, Fortran 2008, should again extend the
language’s life. Against this background, it is very regrettable that old versions
of Fortran live on, both in the form of antiquated courses given by incorrigi-
ble teachers and also as an outmoded concept in the minds of its detractors.
After all, modern Fortran is a procedural, imperative, and compiled language
with a syntax well suited to a direct representation of mathematical formulae.
Its individual procedures may be compiled separately or grouped into mod-
ules, either way allowing the convenient construction of very large programs
and procedure libraries. The language contains features for array processing,
abstract data types, dynamic data structures, object-oriented programming,
and parallel processing. It can readily be interfaced to C. Thus, modern For-
tran, as versions from Fortran 95 onwards are called, is a powerful tool. It fully
supports structured programming, and the introduction of object-oriented
programming into Fortran 2003, which was its most significant new feature,
represented a major upgrade. Much of this is explained in this book.

Nevertheless, no Fortran standard up to and including Fortran 2003 contained
any significant feature intended directly to facilitate parallel programming.
Rather, this has had to be achieved through the intermediary of ad hoc auxiliary
standards, in particular HPF, MPI, OpenMP, and Posix Threads. The use of
MPI and OpenMP has become widespread, but HPF, ultimately, met with
little success. However, now, with the advent of Fortran 2008, a particular
strength of modern Fortran is its ability to support parallel programming, as
this latest standard introduces a sorely needed facility: coarrays.

HPF directives took the form of Fortran comment lines that were recognized
as such only by an HPF processor. An example was the ability to align three

xi

xii FOREWORD

conformable (matching in shape) arrays with a fourth, thus ensuring local-
ity of reference. Further directives allowed, for instance, aligned arrays to be
distributed over a set of processors. MPI, on the other hand, is a library spec-
ification for message passing, and OpenMP, which supports multiplatform,
shared-memory parallel programming, consists of a set of compiler directives,
library routines, and environment variables that determine run-time behavior.
Posix Threads is a library specification, for multithreading.

By contrast, the objective of coarrays is to provide a syntax, designed to make
the smallest possible impact on the appearance of a program, that enables the
distribution over some number of processors not only of data, as in a Single-
Instruction-Multiple-Data (SIMD) model, but also of work, using the Single-
Program-Multiple-Data (SPMD) model. The facility requires a programmer
to learn only a modest set of new rules. Coarray handling is Fortran 2008’s
single most important new feature, but the do concurrent form of loop control
is also introduced as a way of parallelizing loops. We then see how it becomes
possible to achieve a significant degree of parallelization without going outside
the language itself. These various paradigms are compared and contrasted in
this book.

Other major new features in Fortran 2008 include: submodules, enhanced
access to data objects, enhancements to I/O and to execution control, and
additional new intrinsic procedures, in particular for bit processing. Fortran
2008 was published in 2010 and is the current standard. If Fortran lives on, it
will be because it is well suited to applications in high-performance computing
and thus, coarrays will be crucial.

But a language cannot survive without a means to learn about it. This implies
the availability not only of textbooks on the language’s syntax and semantics,
but also of books on how to use the language in real-life situations. Somehow,
experience in the use and application of a language needs to be passed on to a
new generation of programmers and new features require advice on how they
are best to be used. At a time when a single language is rarely used in isolation,
but more often in conjunction with other languages or with various tools,
Modern Fortran in Practice fulfills a real need for practical advice in the field.

The author has been a regular contributor to the ACM newsletter For-
tran Forum and has given valuable and much appreciated advice on the
comp.lang.fortran user newsgroup, where he has been very active as a con-
tributor. Here, the community has been able to benefit from his experience
in scientific programming in The Netherlands. His papers on topics such as
generic programming and design patterns were quite novel to Fortran. Thus,
he is more than amply qualified to write this book.

But Modern Fortran in Practice is not merely a concatenation of previous
contributions. They have been woven into a coherent primer, together with
original material on parallel programming in Fortran, using MPI, OpenMP

FOREWORD xiii

and, briefly, coarrays, as well as on the use of Fortran for graphics applica-
tions and within GUIs. It is supplemented by extended examples that will be
invaluable to providing a framework upon which users can build.

This book is a most worthwhile undertaking and I commend it to all Fortran
practitioners. After all, as we have seen, Fortran is in for the long haul.

Michael Metcalf
Tokyo, October 2011

Preface

I have been programming in Fortran for more than 25 years, first in
FORTRAN IV and somewhat later in FORTRAN 77. In the last decade
of the 20th century, I attended, together with a number of colleagues, a course
on Fortran 90, given by the late Jan van Oosterwijk at the Technical University
of Delft. It was also around this time that I came to know the comp.lang.fortran
newsgroup, and I have learned a lot by participating in that friendly
community.

In a way, I am a typical Fortran programmer. My background is physics and
I learned the task of programming partly during my study, but mostly on
the job. In other ways, I am not because I took a fancy to the more esoteric
possibilities of programming in general and sought means to apply them in
Fortran. I also began writing articles for the ACM Fortran Forum. These articles
are the groundwork for this book.

This book will not teach you how to program in Fortran. There are plenty of
books dedicated to that ([22], [65]). Instead, the purpose of this book is to show
how modern Fortran can be used for modern programming problems, such
as how techniques made popular in the world of object-oriented languages
like C++ and Java fit neatly into Fortran as it exists today. It even shows
some techniques for solving certain programming problems that are not easily
achieved in these languages.

If you know Fortran mainly from the days before Fortran 90, you may find the
first few chapters to be a gentle introduction to array operations, overloaded
operations, and other features that were introduced by that standard. You will
find that Fortran has also opened the way to completely different styles of
programming, normally associated with functional programming languages.
Most chapters are dedicated to illustrating how all of these language features
can be employed in practice.

In this book, I often refer to software I have written myself and published via
the SourceForge website or to software I am involved with in some other way.
This is not to promote that particular software over anything else – it is merely
a consequence of knowing that software very well. I have tried to attribute all
of the examples that are not my own to the people who have written them.
However, as I am only human, I may have forgotten one or two names.

A book like this can hardly come into existence in isolation. Besides Michael
Metcalf and Ian Chivers, the editors of the ACM Fortran Forum, and many
people who participate in the comp.lang.fortran newsgroup, I am indebted to

xv

xvi PREFACE

at least the following people, in no particular order: Bil Kleb, Paul van Delst,
Rolf Ade, Henry Gardner, Simon Geard, Richard Suchenwirth, Daniel Kraft,
Richard Maine, Steve Lionel, Cameron Laird, and Clif Flynt. I thank them for
their discussions, reviewing my contributions, and bringing various aspects of
programming, directly related to Fortran or otherwise, to my attention.

The website that accompanies this book, http://flibs.sf.net/examples modern
fortran.html contains the full source code for the examples. I have run them
using the gfortran and Intel Fortran compilers, mostly on Windows, but also
on Linux. As some of these programs use the very latest features of Fortran,
you will need a recent version of the compiler of your choice.

Arjen Markus
Rotterdam, November 2011

1.

Introduction to Modern
Fortran

Since the publication of the FORTRAN 77 standard in 1978, the Fortran
language has undergone a large number of revisions [61].1 The changes that
were introduced reflect both new insights in programming techniques and
new developments in computer hardware. From the very start, the language
has been designed with computing efficiency in mind. The latest standard
as of this writing, Fortran 2008, puts even more emphasis on this aspect by
introducing explicit support for parallel processing [71].

This first chapter gives an overview of the various standards that have appeared
after FORTRAN 77. There is no attempt to be complete or even to describe
all major features, as that would mean a whole book or even a series of books.
Consult Metcalf [63], [65] or Brainerd et al. [36] for a detailed description of
the standards.

1.1 The Flavor of Modern Fortran
The Fortran 90 standard introduced some very significant changes with respect
to the widespread FORTRAN 77 standard: free form source code, array opera-
tions, modules, and derived types to name a few. To give an impression of what
this means for the programmer, consider this simple problem: you have a file
with numbers, one per line (to keep it simple), and you want to determine the
distribution of these numbers to produce a simple histogram. In FORTRAN
77, a program that does this might look like the following:

*
* Produce a simple histogram
*

PROGRAM HIST

INTEGER MAXDATA
PARAMETER (MAXDATA = 1000)

1 Officially, Fortran 77 should be written as FORTRAN 77. Since the Fortran 90 standard, the name
is written in lowercase.

1

2 MODERN FORTRAN IN PRACTICE

INTEGER NOBND
PARAMETER (NOBND = 9)
REAL BOUND(NOBND)

REAL DATA(MAXDATA)
INTEGER I, NODATA

DATA BOUND /0.1, 0.3, 1.0, 3.0, 10.0, 30.0,
& 100.0, 300.0, 1000.0/

OPEN(10, FILE = 'histogram.data',
STATUS = 'OLD', ERR = 900)

OPEN(20, FILE = 'histogram.out')

DO 110 I = 1,MAXDATA
READ(10, *, END = 120, ERR = 900) DATA(I)

110 CONTINUE
*
120 CONTINUE

CLOSE(10)
NODATA = I - 1

CALL PRHIST(DATA, NODATA, BOUND, NOBND)
STOP

*
* File not found, and other errors
*
900 CONTINUE

WRITE(*, *) 'File histogram.data could not be opened'
& 'or some reading error'

END

*
* Subroutine to print the histogram
*

SUBROUTINE PRHIST(DATA, NODATA, BOUND, NOBND)
REAL DATA(*), BOUND(*)
INTEGER NODATA, NOBND

INTEGER I, J, NOHIST

DO 120 I = 1,NOBND
NOHIST = 0
DO 110 J = 1,NODATA

IF (DATA(J) .LE. BOUND(I)) THEN
NOHIST = NOHIST + 1

ENDIF

INTRODUCTION TO MODERN FORTRAN 3

110 CONTINUE

WRITE(20, '(F10.2,I10)') BOUND(I), NOHIST
120 CONTINUE

END

Since Fortran 90, this program can be rewritten in the so-called free form,
using various inquiry functions and array operations:

! Produce a simple histogram
!
program hist

implicit none

integer, parameter :: maxdata = 1000
integer, parameter :: nobnd = 9

real, dimension(maxdata) :: data
real, dimension(nobnd) :: &

bound = (/0.1, 0.3, 1.0, 3.0, 10.0, &
30.0, 100.0, 300.0, 1000.0/)

integer :: i, nodata, ierr

open(10, file = 'histogram.data', status = 'old', &
iostat = ierr)

if (ierr /= 0) then
write(*, *) 'file histogram.data could not be opened'
stop

endif

open(20, file = 'histogram.out')

do i = 1,size(data)
read(10, *, iostat = ierr) data(i)

if (ierr > 0) then
write(*, *) 'Error reading the data!'
stop

elseif (ierr < 0) then
exit ! Reached the end of the file

endif
enddo

close(10)
nodata = i - 1

4 MODERN FORTRAN IN PRACTICE

call print_history(data(1:nodata), bound)

contains

! subroutine to print the histogram
!
subroutine print_history(data, bound)

real, dimension(:), intent(in) :: data, bound

integer :: i

do i = 1,size(bound)
write(20, '(f10.2,i10)') &

bound(i), count(data <= bound(i))
enddo

end subroutine print_history

end program hist

The main differences are:
■ Fortran 90 and later allow the free form and lower-case program text,

though many FORTRAN 77 compilers did allow for this as well as an
extension.

■ The introduction of the statement implicit none causes the compiler to
check that all variables are actually declared with an explicit type, removing
a whole class of programming errors.

■ By using an internal routine (indicated by the contains statement), you
can ensure that the compiler checks the correctness of the actual arguments
so far as number and types are concerned.2

■ You have no more need for the infamous GOTO statement in this program,
therefore, it can be replaced by its more structured counterpart exit to
terminate the do loop.

■ You can use array sections (such as data(1:nodata)) to pass only that part
of the array data that is of interest, and the inquiry function size() allows
you to get the appropriate number of elements. This also means you can
remove the two arguments that indicate the sizes.

■ Finally, you have eliminated an entire do loop in the code by using the
standard function count() to determine the histogram data.

Note, however, that the first program is still completely valid as far as modern
Fortran standards are concerned. This is a very important aspect of Fortran. It
means that you can gradually introduce modern features, rather than rewrite
an entire program.

2 This is actually only one effect of internal routines – (see Section 1.2).

INTRODUCTION TO MODERN FORTRAN 5

1.2 Fortran 90
The Fortran 90 standard introduced a large number of features. The best
known are perhaps those involving array operations, but there are many more:
■ The implicit none statement requires the user to explicitly declare all

variables and it requires the compiler to check this. Using this feature means
typing errors are much less likely to inadvertently introduce new variables.

■ Modules, together with the public and private statements or attributes,
provide an effective means to partition the entire program into smaller units
that can only be accessed when explicitly stated in the source code. Modules
furthermore provide explicit interfaces. to the routines they contain, which
makes it possible for the compiler to perform all manner of checks and
optimizations.

Should this not be possible (such as when dealing with routines in a different
language), you can use interface blocks.

■ The main program but also subroutines and functions can contain so-called
internal routines. These routines have access to the variables of the contain-
ing routine but provide a new scope in which to define local variables. It is
an additional method for modularizing the code.

■ As modern computers allow a flexible memory management that was not
at all ubiquitous when the FORTRAN 77 standard was published, several
features of Fortran 90 relate to managing the memory:

– Recursive routines are now allowed, making it far easier to implement
recursive algorithms.

– Via the allocate and deallocate statements, programmers can adjust the
size of arrays to fit the problem at hand. Arrays whose size can be
adjusted come in two flavors: allocatable and pointer. The former offers
more opportunities for optimization, whereas the latter is much more
flexible.

– Besides explicit allocation, the programmer can also use automatic arrays
– arrays that get their size from the dummy arguments and that are
automatically created and destroyed upon entry or exit of a subroutine
or function.

■ Array operations are an important aspect of the Fortran 90 standard, as
they allow a concise style of programming and make the optimization task
much simpler for the compiler. These operations are supported in arithmetic
expressions but also via a collection of generic standard functions.

Not only can you manipulate an entire array, but you can also select a part,
defined by the start, stop, and stride in any dimension.

User-defined functions can also return arrays as a result, adding to the
flexibility and usefulness of array operations.

■ Besides the obsolete fixed form that characterized Fortran from the start,
there is the free form, where columns 1 to 6 no longer have a special meaning.
This makes source code look much more modern.

6 MODERN FORTRAN IN PRACTICE

■ Arrays of values can be constructed on the fly, via so-called array construc-
tors. This is a powerful mechanism that can be put to good use to fill an
array with values.

■ Just as in most other modern languages, Fortran allows the definition of
new data structures. The basic mechanism is that of derived types. Derived
types consist of components of different types – either basic types, like
integers or reals, or other derived types. You can use them in much the
same way as the basic types – pass them to subroutines, use them as return
values, or create arrays of such types.
Moreover, you can use derived types to create linked lists, trees, and other
well-known abstract data types.

■ Overloading of routines and operations, such as addition and subtraction,
makes it possible to extend the language with new full-blown types. The
idea is that you define generic names for specific routines or define +, -,
and so forth for numerical types that are not defined by the standard (for
instance, rational numbers).
It is in fact possible to define your own operations. A simple exam-
ple: suppose your program deals with planar geometrical objects, then
it may make sense to define an intersection operation on two such
objects, object_a .intersects. object_b, to replace the call to a function
intersect_objects(object_a, object_b).

■ Functions and subroutines can now have optional arguments, where the
function present() determines if such an argument is present or not. You
can also call functions and subroutines with the arguments in an arbitrary
order, as long as you add the names of the dummy arguments, so the
compiler can match the actual arguments with the dummy arguments.
A further enhancement is that you can specify the intent of an argument:
whether it is input only, output only, or both input and output. This
is an aid to documentation as well as an aid to the compiler for certain
optimizations.

■ Kinds are Fortran’s way of determining the characteristics of the basic types.
For example, you can select single or double precision for real variables not
via a different type (real or double precision) but via the kind:

integer, parameter :: double = &
select_kind_real(precision, range)

real(kind=double) :: value

■ Besides the introduction of the select/case construct, do while loops and
do loops without a condition, you can use a name for all control structures.
This makes it easier to document the beginning and end of such structures.
To skip the rest of a do loop’s body you can now use the cycle statement –
possibly with the name of the do loop – so that you can skip more than one
do loop in a nested construction. Similarly, the exit statement terminates
the do loop.

INTRODUCTION TO MODERN FORTRAN 7

■ The Fortran standard defines a large number of functions and subroutines:

– Numerical inquiry functions for retrieving the properties of the floating-
point model.

– Array manipulation functions that often take an array expression as one
of their arguments. For instance, you can count the number of positive
elements in an array using:

integer, dimension(100,100) :: array
...
write(*,*) 'Number of positive elements:', &

count(array > 0)

– Character functions and bit manipulation functions
■ Enhancements of the I/O system include nonadvancing I/O. That is, rather

than whole records, a program can read or write a part of a record in one
statement and the rest in another one.

1.3 Fortran 95
As the Fortran 95 standard is a minor revision of the previous one, the differ-
ences mostly concern details. However, these details are important:
■ In Fortran 90, variables with the pointer attribute could not be initialized.

Their initial status was explicitly undefined: neither associated nor not
associated. Fortran 95 introduces the null() function to initialize pointers
explicitly:

real, dimension(:), pointer :: ptr => null()

■ A further enhancement is that local allocatable variables without the save
attribute are automatically deallocated, when they go out of scope (upon
returning from a subroutine or function). It is safe for the compiler to do
so, as the memory cannot be reached by any means afterwards.

■ As a preparation for the next standard, a technical report describes how
derived types may contain allocatable components and how functions can
return allocatable results. (This technical report has become part of the
Fortran 2003 standard with some additions.)

■ New features in Fortran 95 are the pure and elemental routines. Elemental
routines release the programmer from having to write versions of a routine
for arrays of all the dimensions they want to support. Many functions and
subroutines in the standard library already were elemental, meaning they
work on individual elements of the arrays that are passed without regard
for any order. With the advent of Fortran 95, programmers themselves can
also write such routines.

Pure routines are routines that provide the compiler more opportunities to
optimize, as, roughly, they cause no side effects.

8 MODERN FORTRAN IN PRACTICE

■ Finally, the forall statement must be mentioned, known from High Per-
formance Fortran. It was designed to enhance the capabilities of array
operations, but in practice it turns out to be difficult to use properly. (In
Fortran 2008, a more flexible construct, do concurrent, is introduced.)

1.4 Fortran 2003
Fortran 2003 is also a major revision and its main theme is the introduction of
object-oriented programming.3 However, there are more enhancements, for
instance, a standardization of interacting with C routines.
■ The support for object-oriented programming comes from several new

features:

– Derived types can now contain procedures (functions and subroutines).
These are either bound to the type, so that all variables of a particular
type have the same actual procedure, or they can be procedures particular
to a variable. Such procedures automatically get passed the variable (or
object if you like) as one of their arguments, but you can control which
one. (We will discuss these matters extensively in Chapter 11.)

– Derived types can be extended into new types. This is Fortran’s inher-
itance mechanism. An extended type can have new components (both
data and procedures), it can redefine the procedures that are bound to
the parent type, but it cannot change their signature.

– The select statement has been enhanced to select on the type of the
variable. This is important if you use so-called polymorphic variables –
pointer variables whose type comes from the variable they are associated
with while the program is running. Polymorphic variables are declared
via the class keyword instead of the type keyword.4

– To enhance the flexibility of the extension mechanism, procedures can
be characterized by abstract interfaces. Rather than defining a particular
routine, these interfaces define what a routine should look like in terms
of its argument list and return value. This can then be applied as a mold
for actual routines.

■ While procedure pointers will most often occur within derived types, you
can use them as “ordinary” variables as well.

■ To achieve certain special effects, the concept of intrinsic modules has been
introduced. Examples of these special effects are the control of the floating-
point environment: rounding mode, the effect of floating-point exceptions,

3 Fortran 90 possesses quite a few features that allow a programmer to come close to that style
of programming, but it lacks inheritance, often viewed as one of the important characteristics of
object-oriented programming. Fortran 90 is, therefore, sometimes called object-based.
4 Rouson and Adalsteinsson [73] compare the terminology for object-oriented concepts in Fortran
and C++.

INTRODUCTION TO MODERN FORTRAN 9

but also the interfacing to C, as that sometimes requires a different calling
and naming convention.

■ Memory management has been enhanced:

– The length of character strings can now be determined by the allocate
statement.

– Under some circumstances an allocatable array can be automatically
reallocated to the correct size.

– It is possible to move the allocated memory from one variable to the
next via the move alloc routine. This makes it easier to expand an array.

■ Another welcome new feature is that of stream access to files. This makes
it possible to read (and write) files without attention to complete records.
In particular, it makes it possible to read and write binary files that contain
no intrinsic structure, unlike the traditional unformatted files that do have
a record structure and are cumbersome to deal with in other programming
languages.

■ Fortran 2003 also standardizes the access to the system’s environment in
the form of environment variables and to the command-line arguments that
were used to start the program. Previously, you had to use all manner of
compiler-specific solutions to access this information.

1.5 Fortran 2008
The Fortran 2008 standard is a minor revision to the language, even though
it defines a rather large new feature: coarrays. These are discussed more fully
in Chapter 12 [72], [71]. Besides these, the standard defines a number of new
constructs and keywords as well as new standard functions:
■ Coarrays are a mechanism for parallel computing that falls in the category of

Partitioned Global Address Space (PGAS). Essentially, it makes data available
on various copies of the program without the programmer having to worry
about the exact methods that have to be used to transfer the data. It is the
compiler’s job to generate code that does this efficiently and effectively.

■ Arrays can be defined to be contiguous. This enables the compiler to generate
more efficient code, as the array elements are adjacent in memory.

■ The block – end block construct defines a local scope within a program or
routine, so that new variables can be declared that are present only within
that block.

■ Modules as introduced in Fortran 90 are an important mechanism to
modularize a program. However, the module mechanism itself does not
allow much modularization, as the entire module must be compiled. Fortran
2003 introduces submodules to overcome the problem of very large source
files containing a large module. An additional enhancement is the import
feature. This is used in interface blocks to import a definition from the
containing module, instead of having to define a second module containing
just the definitions you require.

10 MODERN FORTRAN IN PRACTICE

■ To further reduce the need for a GOTO statement, the exit statement can
be used to jump to the end of if blocks and select blocks.

■ The do concurrent statement may be regarded as a more flexible alternative
to the forall statement/block. It indicates to the compiler that the code can
be run in parallel (note that this is parallellism within the same copy, not
between copies as with coarrays).

■ Internal procedures may now be passed as actual arguments, thus giving
access to the variables in the routine that contains them. It makes certain
interface problems easier to solve (see Chapter 5).

■ New standard functions include various Bessel functions and bit inquiry
functions.

1.6 What Has Not Changed?
The introduction of all these new features to the Fortran language does not
have consequences for existing code that adheres to one or the other standards,
with the exception of a few features that have been deleted or obsoleted.5

Apart from such deleted, and perhaps almost forgotten features, like the
assigned GOTO, old code should still work.6

There are in fact more invariants in the design of modern Fortran, besides this
support for old code:
■ Fortran is case-insensitive, contrary to many other programming languages

in use today.
■ There is no concept of a file as an organizational unit for the source code. In

particular, there can be no code outside the program, subroutine, function,
or module.

■ The design of Fortran is biased to efficient execution. This is especially so
in the latest Fortran 2008 standard, in which features have been added to
help the compiler in the creation of fast and efficient programs.

The details may surprise programmers who are used to languages like C
(see Appendix B).

■ The data type of an expression or subexpression depends solely on the
operands and the operation, not on the context. This makes reasoning
about a program much easier, but again it may cause surprises (Appendix
B). Here is an example:

real :: r

r = 1 / 3

5 The most important of these deleted features is the use of real variables to control a do loop
([68], Section 2.1.5).
6 Most compilers continue to support such features, so that old programs can still be compiled and
run.

INTRODUCTION TO MODERN FORTRAN 11

The value of the variable r is 0.0, not 0.333333..., as the two integers are
divided first, yielding a new integer. Then that integer is converted to a real.

The same separation of concern holds for array operations:

integer, dimension(10) :: array
array = 2 * array(10:1:-1)

This statement is executed (at least conceptually) as:

integer, dimension(10) :: array
integer, dimension(10) :: tmp
integer :: i

! First evaluate the right-hand side and store the result
! in a temporary array
do i = 1,10

tmp(i) = 2 * array(11-i)
enddo

! Now copy the right-hand side into the array left of the
! equal sign
do i = 1,10

array(i) = tmp(i)
enddo

This means that code like the preceding simply works, even though the
right-hand side involves the same array elements as the left-hand side, but
in a different order.

2.

Array-Valued Functions

Along with array operations the Fortran 90 standard introduced the concept
of functions returning arrays. Such functions can be used for a very compact,
high-level programming style, much like what John Backus, the “father” of
Fortran, advocated in his speech for accepting the ACM Award [13].

While Fortran 90 allowed the programmer to define functions that return
arrays of data, Fortran 95 introduced the concept of elemental functions and
procedures. In combination with several features were introduced in Fortran
2003, these have become even more powerful and easy to use.

Many of the intrinsic functions work directly on arrays and Fortran’s array
operations transform one array into another, without the need for explicit
loops that can obscure the programmer’s goal. For example, suppose you have
an array of data and you want to print only those values that are larger than
some threshold. One way of doing that is:

do i = 1,size(data)
if (data(i) > threshold) then

write(*, '(f10.4)') data(i)
endif

enddo

If you use the pack() intrinsic function, this can be written more compactly:

write(*, '(f10.4)') pack(data, data > threshold)

2.1 Passing Arrays
The standard function pack() returns only those elements of an array for
which the accompanying logical array elements are true. For example:

integer, dimension(5) :: x = (/ 1, 2, 3, 4, 5 /)

write(*,*) pack(x, x > 3)

prints the numbers 4 and 5, because these are the only elements of the array
x that are greater than 3. The result is always an array, even if there is only
one element that fits the condition, or even no elements at all, since zero-sized
arrays are allowed.

12

ARRAY-VALUED FUNCTIONS 13

You can pass the result of pack() to another function or subroutine, such as
one that determines basic statistical properties:

write(*, '(a,f10.4)') 'Mean of values above mean:', &
mean(pack(data, data > mean(data)))

with mean() looking like:

real function mean(data)
real, dimension(:) :: data

mean = sum(data)/max(1,size(data))

end function mean

Compare this to an approach with work arrays (so that you can reuse the
mean() function):

real, dimension(...) :: data
real, dimension(size(data)) :: work ! Work array for selected data

meanv = mean(data)
count = 0

do i = 1,size(data)
if (data(i) > meanv) then

count = count + 1
work(count) = data(i)

endif
enddo

write(*, '(a,f10.4)') 'Mean of values above mean:', &
mean(work(1:count))

Or, bypass the mean() function, because it is so simple:

meanv = mean(data) ! We do need to determine the threshold

sumv = 0.0
count = 0
do i = 1,size(data)

if (data(i) > meanv) then
count = count + 1
sumv = sumv + data(i)

endif
enddo

write(*, '(a,f10.4)') 'Mean of values above mean:', &
sumv/max(1,count)

14 MODERN FORTRAN IN PRACTICE

In consequence, using such functions can lead to more compact, and, in many
cases, clearer code. But they do have drawbacks:
■ You cannot access individual elements directly. For instance, to determine

the second largest element of an array, you need to first store the result of a
sort function to a separate array.

■ Similarly, if you need the result in more than one place, you have to copy
it to an actual array or pass it to a function or subroutine.

■ The functions produce intermediate arrays that need to be allocated and
deallocated at appropriate times. This may influence the performance of
the program.

Whether these drawbacks are a serious problem greatly depends on the context
in which this feature is used. The style of programming is, at the very least,
quite economic in terms of lines of code and it conveys the purpose much
more clearly. Also compilers improve all the time, so performance should not
be your first concern.

Performance with Array-Valued Functions To illustrate the difference in
performance, the mean value of random numbers larger than a threshold is
computed using two different methods:
■ Filter the data that are larger than the threshold via pack() and determine

the mean from that:

call random_data(data)
...
call mean_pack(pack(data, data > threshold), mean1)

Implement the subroutine mean_pack as:

subroutine mean_pack(data, mean)
real, dimension(:) :: data
real :: mean

mean = sum(data)/max(1,size(data))

end subroutine mean_pack

■ Pass the complete array (filled with the same random numbers) to a sub-
routine that selects the data and determines the sum in a do loop:

call random_data(data)
...
call mean_do_loop(data, threshold, mean2)

Implement the subroutine in question as:

subroutine mean_do_loop(data, threshold, mean)
real, dimension(:) :: data
real :: threshold
real :: mean

ARRAY-VALUED FUNCTIONS 15

Table 2.1. Elapsed Time for Determining the Mean of an Array of Data
(time in clock ticks)

Total Number of Data Using a Do Loop Using Array Operations Ratio

1000 16 47 2.9
10000 62 172 2.8

100000 556 1219 2.2
1000000 6594 12515 1.9

integer :: i
integer :: count

mean = 0.0
count = 0
do i = 1,size(data)

if (data(i) > threshold) then
mean = mean + data(i)
count = count + 1

endif
enddo

mean = mean / max(1,count)

end subroutine mean_do_loop

The elapsed time is measured using the system_clock subroutine: the system
time is requested before and after a loop in which each of the methods is called
1000 times. The difference between these times is a measure for the elapsed
time (in clock ticks). The results are shown in Table 2.1.

These times are merely indications of the relative performance of the two
methods. Much depends on the compiler that is used as well as the compiler
options. For example, results with another compiler indicate that the ratio
between the two timings may increase with increasing array size.

2.2 Elemental Functions and Automatic Reallocation
In Fortran 90, only the standard functions and the array operations can be
used for arrays of any dimensions. For instance, it makes no difference if you
use the sine function on a scalar, one-dimensional array, or n-dimensional
array – the code remains the same. If you want to do the same for a function
implementing the Bessel J0 function, then you need a version for scalar
arguments, one-dimensional array arguments, and so on as well as introduce
an interface to hide the separate names.

Fortran 95 introduced the so-called elemental functions and subroutines. They
have to satisfy a number of conditions, as the order in which the function

16 MODERN FORTRAN IN PRACTICE

works on the various array elements is conceptually undefined, meaning a
single version suffices:

program test_j0
real :: scalar
real, dimension(10,10) :: matrix

scalar = 1.0
call random_number(matrix)
matrix = matrix * 100.0

write(*,*) 'J0(1) = ', j0(scalar)
write(*,*) 'Random values x in the range (0,100):'
write(*,'(10f10.4)') j0(matrix)

contains

real elemental function j0(x)
real :: x

j0 = ...
end function j0
end program test_j0

This is quite useable if the return value of the function is the same shape as
the input argument(s). If not, then elemental functions cannot be used.

If you do not know in advance how many elements the result will contain, as
is quite often the case with the pack() function, then it is difficult to assign the
result to an array – the shapes need to match. However, a feature introduced
in Fortran 2003 solves this problem rather elegantly via allocatable arrays:

real, dimension(:), allocatable :: positive_values

positive_values = pack(data, data > 0.0)

Using this feature,1 the array on the left-hand side of the preceding statement
is reallocated automatically to the right size and shape, if that is necessary to
assign the result.

2.3 Two More Advanced Examples
The following two examples are more elaborate: a number-theoretical problem
and a compact implementation of the QuickSort algorithm.

1 At least one compiler requires a special option to turn on this feature.

ARRAY-VALUED FUNCTIONS 17

Spacing of Irrational Numbers
This first example requires a bit of explanation: it is a number-theoretical prob-
lem regarding the spacing of irrational numbers [66]. The numbers considered
are (α, an irrational number):

V = {x | x = nα mod 1, n = 1 .. N} (2.1)

If you sort these numbers, the spacing between successive numbers takes only
one of three distinct values (here the interval [0,1) is wrapped, so that 0.9
and 0.1 are 0.2 apart, not 0.8). The following program demonstrates this. It
constructs an array of these numbers, sorts them (using a simple algorithm),
and prints the spacings:

program nearest_neighbors
implicit none
integer :: i

write(*,'(f10.4)') &
cdiff(sort((/ (mod(i*sqrt(2.0),1.0) ,i=1,20) /)))

contains

function cdiff(array)
real, dimension(:) :: array
real, dimension(size(array)) :: cdiff

cdiff = abs(array - cshift(array,1))
cdiff = min(cdiff, 1.0 - cdiff)

end function cdiff

function sort(array)
real, dimension(:) :: array
real, dimension(size(array)) :: sort

real :: temp
integer :: i, j
integer, dimension(1) :: pos

!
! Retrieve the lowest elements one by one
!
sort = array
do i = 1,size(sort)

pos = minloc(sort(i:))
j = i + pos(1) - 1
temp = sort(j)

18 MODERN FORTRAN IN PRACTICE

sort(j) = sort(i)
sort(i) = temp

enddo
end function sort
end program nearest_neighbors

In this example, the sort() function works by finding the position of the
smallest value first and then exchanging that value with the value in the first
non-sorted position. Note that the minloc() function returns an array (one
element for each dimension) and that you need to correct the index returned,
as it is relative to the start of the array section.

A more traditional program looks like this, adapting the contents of the array
data directly:

program nearest_neighbors
implicit none
integer :: i
integer, parameter :: n = 20
real, dimension(n) :: data

do i = 1,n
data(i) = mod(i*sqrt(2.0),1.0)

enddo

call sort(data)
call cdiff(data)

write(*,'(f10.4)') data

contains

subroutine cdiff(array)
real, dimension(:) :: array
real, dimension(size(array)) :: work
integer :: i

do i = 1,size(array)-1
work(i) = array(i+1) - array(i)

enddo
work(size(array)) = array(size(array)) - array(1)

do i = 1,size(array)
array(i) = min(abs(work(i)), abs(1.0-work(i)))

enddo
end subroutine

ARRAY-VALUED FUNCTIONS 19

subroutine sort(array)
real, dimension(:) :: array

real :: temp
integer :: i, j

do i = 1,size(array)
do j = i+1,size(array)

if (array(i) > array(j)) then
temp = array(i)
array(i) = array(j)
array(j) = temp

endif
enddo

enddo

end subroutine sort
end program nearest_neighbors

QuickSort
With array constructors, you can do even more surprising things. This imple-
mentation of the well-known QuickSort algorithm may not be fast (and it
consumes more memory than necessary), but it is rather compact:

recursive function qsort_reals(data) result(sorted)
real, dimension(:), intent(in) :: data
real, dimension(1:size(data)) :: sorted

if (size(data) > 1) then
sorted = &
(/ qsort_reals(pack(data(2:), data(2:) > data(1))), &

data(1), &
qsort_reals(pack(data(2:), data(2:) <= data(1))) /)

else
sorted = data

endif
end function qsort_reals

These eleven lines of code have two important properties:
■ Arrays in Fortran can have length 0, which removes the need for a number

of special cases in this function.
■ The conditions are carefully chosen so that the constructed array has exactly

the same length as the input array. The function should also work if the
same value occurs multiple times.

20 MODERN FORTRAN IN PRACTICE

Table 2.2. Tabulated Function, Illustrating Linear Interpolation
in Two Dimensions. Cell Containing (12.0, l6.7) Highlighted

y\x . . . 5.0 10.0 25.0 100.0 . . .

. .

2.5 . . . 0.1 0.9 2.3 7.8 . . .

5.0 . . . 0.5 2.0 3.5 11.0 . . .

10.0 . . . 1.4 3.1 4.7 12.5 . . .

20.0 . . . 2.6 5.3 6.5 14.0 . . .

. .

The construction of a more traditional version is left as an exercise. You can
also experiment with a more robust version that has better worst-case behavior.

2.4 Concise Style
This style of programming is not always the best way to solve a problem:
the preceding QuickSort routine creates multiple copies of the array during
the recursion – roughly, 2log N times – but if used carefully, it helps create
programs that are easy to understand.

The following is another example of a concise solution to a programming
problem. Suppose you have a tabulated function with three independent
variables and you need to find the value for a particular triple of these variables
via multidimensional linear interpolation (see Table 2.2 for an illustration of
the two-dimensional case). First, you need to find the “cell” within which the
triple lies and the weighing factors in each dimension (this can be done for
each dimension). Say this has the indices (i1,i2,i3) to (i1+1,i2+1,i3+1), with
weights (w1,w2,w3). For the interpolation only the values at the corners of this
cell are required, so you can extract them into an array of 2 × 2 × 2 elements:

real, dimension(:,:,:) :: table
real, dimension(2,2,2) :: cell

cell = table(i1:i1+1,i2:i2+1,i3:i3+1)

If you use an explicit formula for the interpolation, you need to write down all
eight terms, and for higher dimensions even more. However, the interpolation
can also be done per dimension: simply compute the values at a slice through
the cell, thereby reducing the dimension by 1. Repeat until the dimension of
the cell is reduced to zero. This is elegantly expressed in the Fortran code:

cell(:,:,1) = w3 * cell(:,:,1) + (1.0-w3) * cell(:,:,2)
cell(:,1,1) = w2 * cell(:,1,1) + (1.0-w2) * cell(:,2,1)
cell(1,1,1) = w1 * cell(1,1,1) + (1.0-w1) * cell(2,1,1)

result = cell(1,1,1)

It is trivial to extend this code to any number of dimensions, as long as you
stay within the maximum number of dimensions that the standard allows.

3.

Mathematical
Abstractions

The features of Fortran 90 and later to define operations for derived types,
to use array operations, and, for Fortran 2003 and later, to store proce-
dure pointers allow a high-level style of programming that can be likened to
functional programming languages such as Lisp. We will discuss several exam-
ples: automatic differentiation, integer programming, Diophantine equations,
and dynamic expressions.

3.1 Automatic Differentiation
When solving stiff differential equations or finding the roots of some function,
you often use the first derivative of the functions involved. It is, of course,
possible to implement the function and its derivative explicitly, but that is
error-prone if the function is even mildly complicated. For example, let the
function f be defined as:

f (x) = x
(1 − x 2)2

− e−x

1 + cos2 x
(3.1)

Here is the first derivative:

f ′(x) = 1 + 3x 2

(1 − x 2)3
− e−x 1 + cos2 x − sin 2x

(1 + cos2 x)2
(3.2)

Determining the derivative of a function is a completely mechanical process.
You just follow the basic rules. Because of this property we can automate it
using overloaded operators [38].

We start with a derived type, autoderiv:

type autoderiv
real :: v
real :: dv

end type autoderiv

21

22 MODERN FORTRAN IN PRACTICE

In this type, the component v represents the value of the independent variable
or the function value and dv, the derivative. Summing two such variables is
done using this function:

function add_vv(x, y) result(z)
type(autoderiv), intent(in) :: x
type(autoderiv), intent(in) :: y
type(autoderiv) :: z

z%v = x%v + y%v
z%dv = x%dv + y%dv

end function add_vv

Multiplying them is a bit more complicated, as you need to use the multi-
plication rule for the derivative components (note the intent(in) attributes,
these are required later on):

function mult_vv(x, y) result(z)
type(autoderiv), intent(in) :: x
type(autoderiv), intent(in) :: y
type(autoderiv) :: z

z%v = x%v * y%v
z%dv = x%dv * y%v + x%v * y%dv

end function mult_vv

Likewise, you define functions for subtraction, division, and all mathematical
functions you are interested in. Via interface blocks you then tie these functions
to the arithmetical operations:

interface operator(+)
module procedure add_vv

end interface
interface operator(*)

module procedure mult_vv
end interface

Next apply this technique to the function f (x) = cos x/(1 + x 2) − 1
2 :

function f(x) result(z)
type(autoderiv), intent(in) :: x
type(autoderiv) :: z

z = cos(x) / (1 + x**2) - 0.5
end function f

Because of the overloading, the function looks just like a normal mathematical
function, only the return type and the type of the arguments is special.

MATHEMATICAL ABSTRACTIONS 23

This main program prints the function value and its first derivative:

program print_table
use automatic_differentiation

type(autoderiv) :: x, y

do i = 0,10
x%v = 0.1 * i
x%dv = 1.0 ! x is the variable we differentiate to

y = f(x)

write(*,'(310.4)') x%v, y%v, y%dv
enddo

contains
function f(x) result(z)

...
end function f

end program print_table

You can apply the technique to find the root of equation f (x) = 0 using
Newton’s method. Mathematically, the method is expressed as:

xk+1 = xk − f (xk)

f ′(xk)
(3.3)

where xk+1 is the new estimate of the root, if the iteration converges. Put into
a subroutine, it looks like:

subroutine find_root(f, xinit, tolerance, root, found)
use automatic_differentiation

interface
function f(x)

use automatic_differentiation
type(autoderiv), intent(in) :: x
type(autoderiv) :: f

end function
end interface

type(autoderiv), intent(in) :: xinit
type(autoderiv), intent(out) :: root
real :: tolerance
logical :: found

integer :: iter
integer, parameter :: maxiter = 1000
type(autoderiv) :: fvalue

24 MODERN FORTRAN IN PRACTICE

type(autoderiv) :: newroot

found = .false.
root = xinit
root%dv = 1.0

do iter = 1,maxiter

fvalue = f(root)

newroot = root - fvalue%v / fvalue%dv
found = abs(newroot%v - root%v) < tolerance
root = newroot

if (found .or. abs(root%v) > huge(1.0)/10.0) exit
enddo

end subroutine find_root

The interface to the function passed as an argument is non-trivial, therefore,
you need to explicitly define what kind of function you are using. This is done
with an interface block:1

interface
function f(x)

use automatic_differentiation
type(autoderiv), intent(in) :: x
type(autoderiv) :: f

end function
end interface

Inside an interface block, you must use the module that contains the definition
of the derived type, either via a use statement or via Fortran 2003’s import
statement.

Note that the loop used to find the root stops on three criteria (see also
Chapter 10):
■ If the new estimate is within the error margin of the previous estimate.
■ If the maximum number of iterations is reached.
■ If the iteration does not seem to converge: the root is becoming larger and

larger.

The technique is not limited to functions of one variable or to the first
derivative. It is quite possible to expand it to functions of two or three variables:

type autoderiv_two_vars
real :: v
real :: dvdx
real :: dvdy

end type autoderiv_two_vars

1 With Fortran 2003 and later you can also use abstract interfaces (see Section 11.2).

MATHEMATICAL ABSTRACTIONS 25

As an example, the multiplication rule then becomes:

function mult_vv(x, y) result(z)
type(autoderiv_two_vars), intent(in) :: x
type(autoderiv_two_vars), intent(in) :: y
type(autoderiv_two_vars) :: z

z%v = x%v * y%v
z%dvdx = x%dvdx * y%v + x%v * y%dvdx
z%dvdy = x%dvdy * y%v + x%v * y%dvdy

end function mult_vv

To determine ∂ f
∂x and ∂ f

∂y , you must use the right “vectors”: x = (x0, 1, 0) and
y = (y0, 0, 1).

For the function f (x , y) = x y , the result will then be:

f %v = x0 · y0 (3.4)

f %dvd x = 1 · y0 + x0 · 0 = y0 (3.5)

f %dvd y = 0 · y0 + x0 · 1 = x0 (3.6)

Of course, the implementation gets more complicated with higher-order
derivatives and more variables, but the principle remains the same.

Numerical Aspects The technique of automatic differentiation does have a
few problems. First of all, it does not work well if the function in question has
a “removable” singular point, like the sinc function. However, more seriously,
catastrophic cancellation can occur. Here is an example:

f (x) = ln x
x − 1

(x �= 1) (3.7)

f (x) = 1 (x = 1) (3.8)

The first derivative of this function is:

f ′(x) = 1

x (x − 1)
− ln x

(x − 1)2
(3.9)

= x − 1 − x ln x
x (x − 1)2

(3.10)

which tends to − 1
2 for x → 1.

If you compute the derivative around x = 1 using the automatic differentiation
module, a very large relative error is observed around x = 1.00001 (see Fig-
ure 3.1). The cause is the fact that the two contributions to the derivative in

26 MODERN FORTRAN IN PRACTICE

-0.01

-0.005

0.0

0.005

0.01

1.0e-007 1.0e-006 1.0e-005 1.0e-004 1.0e-003
x-1

Figure 3.1. Error in determining the first derivative of the function
f (x) = ln x

x−1 around x = 1

Equation 3.9 are computed separately – both are large numbers near x = 1 –
and the two contributions are subtracted. This leads to a severe loss of accuracy.

If you use the rearranged version and approximate the logarithm with a Taylor
series, the result is a well-behaved function. Such a rearrangement can not be
taken care of with automatic differentiation alone.

3.2 Integer Programming
As a second example, consider the following problem: For integer x , y ≥ 0,
find the pair (x , y) for which f (x , y) = 3x + 4y is maximal, subject to the
constraints:

10x + 3y ≤ 200 (3.11)

3x + 7y ≤ 121 (3.12)

You can tackle this problem with brute force: Due to the constraints x must
be between 0 and 20 and y lies in the range [0,17]. Therefore, looping over
all pairs (x , y) within that region will give the desired answer.

Using array operations and suitable derived types you can solve this problem
in a more elegant way:

type(integer_set) :: xset
type(integer_set) :: yset
type(integer_pair_set) :: c

MATHEMATICAL ABSTRACTIONS 27

integer, dimension(1) :: idx

xset = range(0,20) ! x values in the required range
yset = range(0,17) ! ditto for y

c = cartesian_product(xset,yset) ! create all pairs

You first define the sets of integers you will use, xset and yset, and a set c of
integer pairs that contains all pairs (x , y) with x and y in the allowed range.

Then, you impose the actual set of constraints 3.11 and 3.12 from the problem
you want to solve:

!
! Select those pairs that fulfill the first two conditions
!
c = select(c, 10*x(c)+3*y(c) <= 200)
c = select(c, 3*x(c)+7*y(c) <= 121)

Now you have all (x , y) pairs that could possibly be candidates. The last step
is to pick out the one that maximizes f (x , y) = 3x + 4y :

idx = maxloc(3*x(c) + 4*y(c))

write(*,*) 'Solution: ', getelem(c,idx(1))

Note: The auxiliary function getelem hides the details of the derived type
integer_pair_set and the intrinsic function maxloc returns an array of
indices, even if its argument is a one-dimensional array; x and y are func-
tions that return the x- and y-coordinates, respectively.

Memory Management What is conveniently hidden from the user is the
management of the memory involved. Rather than relying on the default
assignment method for derived types a custom routine is used to set variables
of the types integer_set and integer_pair_set:
■ The derived type integer_set contains an array of elements that needs to

be adjusted in size to fit the intended set:

type integer_set
logical :: from_function
integer, dimension(:), pointer :: elements => null()

end type integer_set

■ The default assignment is overwritten by two module procedures:

interface assignment(=)
module procedure assign_set
module procedure assign_pair_set

end interface

28 MODERN FORTRAN IN PRACTICE

■ If the right-hand side in an assignment is the result of a function, the
component from_function in the derived type is set to .true., so that the
memory can be pointed to instead of newly allocated:

subroutine assign_set(setleft, setright)
type(integer_set), intent(inout) :: setleft
type(integer_set), intent(in) :: setright

setleft%from_function = .false
if (associated(setleft%elements)) then

deallocate(setleft%elements)
endif
if (.not. setright%from_function) then

allocate(setleft%elements(size(setright%elements)))
setleft%elements = setright%elements

else
setleft%elements => setright%elements

endif

end subroutine assign_set

In Fortran 2003, you have the move_alloc routine, so that you can use a
very similar technique for allocatable components. You can even rely on
automatic reallocation:

if (.not. setright%from_function) then
setleft%elements = setright%elements

else
call move_alloc(setright%elements, setleft%elements)

endif

3.3 Enumerating Solutions of Diophantine Equations
Procedure pointers, as defined in Fortran 2003, make it possible to enumerate
the solutions of Diophantine equations in a very generic way. Such equations
take only integer or rational solutions. One example is Fermat’s famous last
theorem – x n + y n = zn , which has no non-trivial solutions for n > 2. Pell’s
equation [82]:

y 2 = Ax 2 ± 1 (A square free) (3.13)

is another well-known example. Contrary to Fermat’s theorem, these equations
do have solutions and even an infinitude of solutions. One way of looking at
this equation is: Consider the left-hand side and the right-hand side as separate
sets of points (x , t) and (y , s):

S1 = {(x , t) | t = Ax 2 + 1, x ∈ N} (3.14)

S2 = {(y , s) | s = y 2, y ∈ N} (3.15)

MATHEMATICAL ABSTRACTIONS 29

Then consider what is the set S3 defined as:

S3 = {(x , y) | (x , t) ∈ S1 ∧ (y , s) ∈ S2 ∧ t = s } (3.16)

If you assume that t and s in these sets are increasing functions of x and y ,
then a simple algorithm suffices to determine the elements of S3:

1. Set x and y to 0.
2. Determine t = Ax 2 + 1 and s = y 2.
3. If t = s , you have found a solution.
4. If t < s , increase x by 1 and go to step 2.
5. If t > s , increase y by 1 and go to step 2.

To implement this mathematical algorithm, use a derived type that can store
the descriptions in Equations 3.14 and 3.15:

type enum_func
type(enum_func), pointer :: f => null()
type(enum_func), pointer :: g => null()
procedure(enumeration), pointer, pass(t) :: enum => null()

end type enum_func

This type uses the feature that you can refer recursively to the same type. It also
uses an abstract interface to define what kind of procedures enum you will deal
with (see Chapter 11, which also discusses the class keyword):

abstract interface
integer function enumeration(t, idx)

import :: enum_func
class(enum_func), intent(in) :: t
integer, intent(in) :: idx

end function enumeration
end interface

The sets S1 and S2 are implemented using these two functions:

integer function y_square(t, idx)
class(enum_func), intent(in) :: t ! Not used
integer, intent(in) :: idx

y_square = idx ** 2

end function y_square

integer function x_pell(t, idx)
class(enum_func), intent(in) :: t ! Not used
integer, intent(in) :: idx

x_pell = 2 * idx ** 2 + 1

end function x_pell

30 MODERN FORTRAN IN PRACTICE

The set S3 requires a bit more work, but the preceding algorithm is contained
in the function combine:

integer function combine(t, idx)
class(enum_func), intent(in) :: t
integer, intent(in) :: idx

integer :: count, i, j, fi, gj

count = 0
i = 0
j = 0

fi = t%f%enum(i)
gj = t%g%enum(j)

do while (count < idx)

if (fi == gj) then
count = count + 1
i = i + 1

else if (fi < gj) then
i = i + 1

else
j = j + 1

endif
fi = t%f%enum(i)
gj = t%g%enum(j)

enddo

combine = i - 1

end function combine

All you have to do now is to create the Fortran equivalent of set S3 and to
enumerate a number of its elements:

xright = func(x_pell)
yleft = func(y_square)

xpell = combination(xright, yleft, combine)
ypell = combination(yleft, xright, combine)

do i = 1,5
x = xpell%enum(i)
y = ypell%enum(i)
write(*,*) '>>', i, x, y

enddo

MATHEMATICAL ABSTRACTIONS 31

where the function func() is merely a convenience function to set the enum

component:

function func(f)
procedure(enumeration) :: f
type(enum_func) :: func

func%enum => f

end function func

The output of the program is:

>> 1 0 1
>> 2 2 3
>> 3 12 17
>> 4 70 99
>> 5 408 577

By inserting other functions, such as h(x) = x 3 + 2, you can solve other
Diophantine equations. Of course, the implementation of combine assumes
that there are solutions and you tacitly ignore the fact that the integers you
use have a finite range. However, these are mere practical details that obscure
the principle, which is the reformulation of a mathematical problem into a
Fortran program that closely resembles the mathematics.

3.4 Delayed Evaluation
You can take the overloading of operations one step further. Instead of running
the routines that do the computations immediately, you will store the operation.
You do this by creating an expression parse tree, so that you can evaluate it
later. In this way, you can create new expressions, new functions if you like,
within the running program. You cannot quite use the same syntax as ordinary
functions, but you do get the effect.

Here is a simple example:

type(integer_operand), target :: x
type(integer_operand), target :: y

type(integer_relation), pointer :: relation

!
! Store the relation, NOT the result
!
relation => x + y == 0

x = 1
y = -1
write(*,*) 'x, y: 1, -1 ', integer_relation_eval(relation)

32 MODERN FORTRAN IN PRACTICE

x = 2
y = -1
write(*,*) 'x, y: 2, -1 ', integer_relation_eval(relation)

First, set a variable relation that holds the relation between two variables x
and y that can be considered to be place holders for integer values. Then by
assigning an actual value to these variables, you determine whether the relation
holds or not. The hard work is done by the functions integer_relation_eval
and integer_eval:

function integer_relation_eval(relation) result(value)
type(integer_relation) :: relation
logical :: value

call integer_eval(relation%first)
call integer_eval(relation%second)

select case(relation%relation)
case (1)

!
! Relation: equality
!
value = relation%first%value == relation%second%value

case (2)

... other relations (>, <, ...)
end select

end function integer_relation_eval

The function integer_eval is a recursive function that looks like this:

recursive subroutine integer_eval(x)
type(integer_operand) :: x

if (associated(x%first)) call integer_eval(x%first)
if (associated(x%second)) call integer_eval(x%second)

select case(x%operation)
case (0)

! Nothing to be done

case (1)
x%value = x%first%value + x%second%value

case (2)
x%value = x%first%value * x%second%value

case (3)
x%value = x%first%value ** x%second%value

MATHEMATICAL ABSTRACTIONS 33

case default
! Nothing to be done

end select

end subroutine integer_eval

The secret is that for the derived type integer_operand you have overloaded
operations that store what operation was called and with what operands, rather
than do the actual computation:

function integer_add(x, y) result(add)
type(integer_operand), intent(in), target :: x
type(integer_operand), intent(in), target :: y
type(integer_operand), pointer :: add

allocate(add)

add%operation = 1
add%first => x
add%second => y

end function integer_add

Note that the function result, defined via the result variable add, is a pointer
variable – it must persist after the statement has been executed.

The previous example concerns a very simple relation, but you can extend this
to Pell’s equation or any relation between numbers. The following full example
shows how to create a set of pairs of integers that can then be queried:

type(integer_operand), target :: x
type(integer_operand), target :: y

type(integer_pair_set) :: set

write(*,*) 'Does the set {(x,y) | y**2 = 3*x**2 + 1} &
&contain (1,2) or (3,3)?'

set = create_pair_set(y**2 == 3*x**2 + 1, range(x, 0, 0), &
range(y, 0, 0))

write(*,*) '(1,2) in this set? ', has_element(set, (/1,2/))
write(*,*) '(3,3) in this set? ', has_element(set, (/3,3/))

The program produces the expected output:

Does the set {(x,y) | y**2 = 3*x**2 + 1} contain (1,2) or (3,3)?
(1,2) in this set? T
(3,3) in this set? F

34 MODERN FORTRAN IN PRACTICE

Note the following important concepts:
■ The function range is a means to examine all values of x and y within the

given range, so that the pairs for which the relation holds can be added to a
cache. In this case, with only 0 in the range, nothing will be added to that
cache.

■ The function has_element simply checks whether the given pair of integers
is part of the set. It does this by evaluating the stored relation with the given
pair as the values for the two variables x and y.

Thus, using Fortran 90 features, you can implement a style of programming
that seems at first sight impossible in a compiled, statically typed language like
Fortran.

4.

Memory Management

The introduction of allocatable arrays and pointers has made it much easier to
create programs that can adapt their memory requirements to the problem at
hand. As a side effect though, memory management, in the sense of allocating
and deallocating arrays, has become an issue that needs to be addressed.

4.1 Flexible Arrays
Fortran 90 and later provides three ways of creating arrays of flexible size:
■ Automatic arrays are created when a subroutine or function is entered and

they are automatically destroyed when returning from the routine. This
type of arrays is perfectly suited for work arrays. The only drawback is
that they are often created on the stack of the program and, therefore, they
should not become too large.1

Something similar can be done with character strings: the length of local
character variables in routines can be dynamic, as shown in Section 4.4.

■ Allocatable arrays require an explicit allocate statement, but as long as
they do not have the save attribute, the compiler will clean them up on
return from a routine (from Fortran 95 on). Of course, you can deallocate
such arrays explicitly if you no longer need them.

■ Pointers are the most flexible type of memory. For instance, via a pointer
you can select elements from an array that need not be contiguous:

real, dimension(:,:), allocatable, target :: array

real, dimension(:,:), pointer :: ptr

allocate(array(20,20))

ptr => array(1:20:5,3:4)

The variable ptr would point to the elements array(1,3), array(6,3), and
so forth as:

ptr(1,1) => array(1,3)

ptr(2,1) => array(6,3)

...

ptr(1,2) => array(1,4)

ptr(2,2) => array(6,4)

...

1 Some compilers offer options to control how such arrays are allocated, either from the stack (faster)
or from the heap (more robust).

35

36 MODERN FORTRAN IN PRACTICE

However, because a pointer can also point to fixed memory, or to auto-
matic memory, it is very difficult and often impossible for the compiler to
determine if it is safe to deallocate the memory that is being pointed to by
such variables. In other words, if you use pointer variables, you are yourself
responsible for cleaning up the memory.

From Fortran 2003 onwards, there are two more methods to consider: character
strings with an allocatable length and parametrized derived types.

In the remainder of this chapter, various aspects of the previous types of arrays
are discussed.

4.2 Memory Leaks with Pointers
In the following fragment, the memory allocated via the pointer variable ptr

becomes unavailable, because the pointer disappears upon return from the
routine:

subroutine alloc_and_forget(amount)
integer :: amount

real, dimension(:), pointer :: ptr ! Local variable!

allocate(ptr(amount))
end subroutine alloc_and_forget

Such a memory leak can be very difficult to find, and if this routine is called
often, more and more memory gets allocated and becomes unavailable until,
finally, all is lost.

Tools exist that can detect this type of problem, such as valgrind (see Appendix
A). However, in some circumstances it is not easy to prevent them, for
instance, with derived types that have pointer or allocatable components (see
Section 4.8).

4.3 Extending an Array
Quite often you need to grow an array as more and more values are added,
such as when reading input data. Until Fortran 2003, one way to do this is:
■ Create a pointer to an array of the new size.
■ Copy the contents of the old array into the temporary one.
■ Deallocate the old array and then make it point to the temporary array.

In actual code, this looks like:

real, dimension(:), pointer :: array, tmp
integer :: newsize, oldsize

MEMORY MANAGEMENT 37

allocate(tmp(newsize))
tmp(1:oldsize) = array
deallocate(array)
array => tmp

This requires the use of pointers rather than allocatable arrays, lacking the
advantages of the latter type. Using allocatables in this context is possible, but
it requires two copy actions instead of one.

In Fortran 2003, the move_alloc routine enables you to write this as:

real, dimension(:), allocatable :: array, tmp
integer :: newsize, oldsize

allocate(tmp(newsize))
tmp(1:oldsize) = array
deallocate(array)
call move_alloc(tmp, array)

In this case, you have all the benefits of allocatables.

4.4 Character Strings with Adjustable Length
Just as for arrays, locally defined character strings can have a length that is
determined at runtime. This is illustrated in the following code fragment that
implements an index() function to find the position of a string in another
string while ignoring the case:

integer function index_ignore_case(stringa, stringb)
implicit none

character(len=*), intent(in) :: stringa, stringb

character(len=len(stringa)) :: copya
character(len=len(stringb)) :: copyb

copya = stringa
copyb = stringb

! Convert to uppercase
call toupper(copya)
call toupper(copyb)

index_ignore_case = index(copya, copyb)

end function index_ignore_case

38 MODERN FORTRAN IN PRACTICE

From Fortran 2003 onwards, you can allocate character strings to have a length
determined at run-time (so-called deferred-length strings):

character(len=:), allocatable :: string
integer :: size

size = ...
allocate(character(len=size):: string)

This is very useful for analyzing the contents of a file or to split up a string in
words. The following module uses allocatable strings and several other features
to read an arbitrarily long line from a file:

module readline_utility
use iso_fortran_env

implicit none

contains

subroutine readline(lun, line, success)
integer, intent(in) :: lun
character(len=:), allocatable, intent(out) :: line
logical, intent(out) :: success

character(len=0) :: newline

success = .true.

call readline_piece_by_piece(newline)

contains

recursive subroutine readline_piece_by_piece(newline)
character(len=*) :: newline

character(len=10) :: piece
integer :: ierr
integer :: sz

read(lun, '(a)', advance = 'no', size = sz, &
iostat = ierr) piece

if (ierr /= 0 .and. ierr /= iostat_eor) then
allocate(character(len=len(newline)):: line)
line = newline
success = .false.
return

endif

MEMORY MANAGEMENT 39

!
! Have we gotten to the end of the line or not?
!
if (sz >= len(piece)) then

call readline_piece_by_piece(newline // piece)
else

allocate(character(len=len(newline)+sz):: line)
line = newline // piece(1:sz)
success = .true.

endif
end subroutine readline_piece_by_piece
end subroutine readline

end module readline_utility

The public subroutine readline simply provides a convenient interface to
the functionality, it is the recursive subroutine readline_piece_by_piece that
does the actual work:
■ The read statement uses nonadvancing I/O to read a small piece of the

current line in the file. If you reach the end of the line, then the file pointer
will move to the start of the next line or to the end of the file.

■ Depending on whether the end of the line is reached or not, the routine
either calls itself recursively or it allocates the memory needed to store the
entire string in the variable line. The number of characters read and stored
in the variable sz is used as an indicator.

When the subroutine calls itself recursively, it does so with a longer string
as the argument. This string is constructed on the fly via concatenation and
contains all the contents sofar.

If it reached the end of the line, the job is finished and the routine returns
successively, up to the calling routine.

■ When the routine reaches the end of the file or some other error occurs, it
allocates the string and stores whatever it was able to read.

■ The preceding code defines readline_piece_by_piece to be a subroutine
internal to readline – it appears between contains and the end subrou-

tine statement of readline. It also uses the standard iso_fortran_env

module to access the integer parameter iostat_eor to detect the end of line
condition.

This is an example of how you can use various techniques for managing the
memory. However, it may not actually be the most efficient way to read an
arbitrarily long line from a file. An alternative is to use a do loop within which
you repeatedly allocate the string to ever-increasing length. An advantage of
a such a do loop is that you can release the memory of a previous iteration
immediately.

40 MODERN FORTRAN IN PRACTICE

4.5 Combining Automatic and Allocatable Arrays
As discussed while automatic arrays are very easy to use, large automatic
arrays pose a problem. Here is a method to prevent this from happening. The
algorithm for getting the median of a set of data requires sorting the data, but
you do not want to disturb the original array.2 Therefore, you need a copy of
the data and then to sort that copy. As the array can be any size, you distinguish
between small data arrays, for which you use an automatic array, and larger
data arrays, for which you explicitly allocate a work array of the correct size:

subroutine get_median(array, median)
implicit none

real, dimension(:), intent(in) :: array
real, intent(out) :: median

! Arbitrary threshold ...
integer, parameter :: threshold = 2000

real, dimension(min(size(array), threshold)) :: auto_array
real, dimension(:), allocatable :: alloc_array

if (size(array) < threshold) then
auto_array = array
call get_median_sub(auto_array, median)

else
allocate(alloc_array(size(array)))
alloc_array = array
call get_median_sub(alloc_array, median)

endif
contains
subroutine get_median_sub(array, median)

real, dimension(:), intent(in) :: array
real, intent(out) :: median

call sort_data(array)

!
! Either the middle element or the mean of the
! two elements at the center
!
median = 0.5 * (array((size(array)+1)/2) + &

array((size(array)+2)/2))

end subroutine get_median_sub
end subroutine get_median

2 Algorithms exist to do this without sorting, but that would defeat the purpose of this example.

MEMORY MANAGEMENT 41

The idea is to let the subroutine get_median decide what method is safe and
efficient and then let an internal routine (get_median_sub) do the actual work.
This way you only need to use an allocated array with the (slight) performance
hit when dealing with a large number of data.

4.6 Performance of Various Types of Arrays
Common wisdom has it that arrays with the pointer attribute are more costly
than other arrays, as they can point to non-contiguous memory and they can
cause aliasing (two names for the same memory location), which hampers all
manner of optimizations. To give an indication of that cost, measure the time
it takes to run a simple algorithm with various types of arrays.

The basic code is this:

subroutine compute_mean(data, sz, mean)
real, dimension(:) :: data
integer :: sz
real :: mean

integer :: i

do i = 1,sz
data(i) = i

enddo

mean = sum(data(1:sz)) / sz
end subroutine compute_mean

The array data can be an automatic array, a local allocatable array, or a local
pointer array. The latter two types are allocated explicitly, so there is some
overhead due to the allocation and deallocation. A second alternative is to pass
an array that has the allocatable or pointer attribute in the calling program,
but not in the subroutine itself.

The results are shown in Figure 4.1. The numbers that were used for the figure
are the result of measuring the time that had elapsed after repeating the various
versions of the subroutine 10,000 times. The numbers were reproduceable
within several percents. In the figure, the mean value per array size is used to
normalize the data.

While it is difficult to draw general conclusions (the numbers vary greatly per
compiler, compiler options, and per operating system), it would seem that
local arrays with the pointer attribute require systematically 10 to 20 percent
more time – which includes the overhead of allocations and deallocations.
There is little difference between automatic and allocatable arrays (the triangle
symbols), though this depends on the choice of platform.

42 MODERN FORTRAN IN PRACTICE

0.0

0.5

1.0

1.5

2.0

1.0 10.0 100.0 1000.0 10000.0

Fixed array passed
Allocatable array passed
Pointer array passed
Local automatic array
Local allocatable array
Local pointer array

Figure 4.1. Performance of various types of arrays, normalized time
as a function of the array size

If you pass arrays with various attributes to a routine where the dummy argu-
ment is declared without the attribute, the performance is quite comparable.
Therefore, in this case it pays to “strip off ” the pointer attribute:

real, dimension(:), pointer :: data
integer :: sz
real :: mean

interface
subroutine compute_mean(array, sz, mean)

real, dimension(:) :: array
integer :: sz
real :: mean

end subroutine
end interface

allocate(data(sz))

call compute_mean(data, sz, mean)

In general, however, pointers can refer to arrays that are not contiguous. The
program will then have to copy the data into a temporary array and back into
the original one.

4.7 Parametrized Derived Types
The Fortran 2003 standard adds so-called parametrized derived types to the
instruments for memory management. This is in fact a generalization of the

MEMORY MANAGEMENT 43

kind mechanism from Fortran 90 and the character lengths that are at least
as old as FORTRAN 77. For example, suppose you are dealing with image
processing. It would be very useful to have a derived type that stores the image
data in such a way that you can hide all details, such as the image dimensions.
With parametrized derived types, you can:

type image_data(rows, columns)
integer, len :: rows, columns
integer, dimension(rows,columns) :: data

end type

(This assumes the image data are represented as discrete intensity, hence a
single integer.)

You can declare variables of this type with fixed dimensions:

type(image_data(100,100)) :: picture
type(image_data(5,5)) :: mask

You can also adapt the dimensions to the problem at hand:3

type(image_data(:,:)), allocatable :: picture
integer :: rows, columns
...
! Read the image size
read(10, *) rows, columns

allocate(image_data(rows, columns) :: picture)

If you need another variable of this type with the same parameters, then you
can use sourced allocation:

type(image_data(:,:)), allocatable :: picture1, picture2

allocate(picture2, source = picture1)

The effect of sourced allocation is that the newly allocated variable has the
same length parameters as the source variable, and that it has the same value.4

Variables of a parametrized type can be passed to routines in a way similar to
the length of character strings:

subroutine convolution(picture, mask, result)
type(image_data(*,*)) :: picture, mask, result
...

end subroutine convolution

3 While you can use kind parameters as well to define a derived type, the kinds are fixed at compile-time.
There is no way to redefine the kinds dynamically.
4 Fortran 2008 introduces the option to use the source variable as a “mold” only, so that the type
parameters are copied, but not the value.

44 MODERN FORTRAN IN PRACTICE

or, for clarity:

subroutine convolution(picture, mask, result)
type(image_data(rows=*,columns=*)) :: picture, mask, result
...

end subroutine convolution

Of course, you need to know the actual values of these type parameters to
work with such parametrized types. They are simply available as implicit
components:

write(*, *) 'Picture dimensions: ', &
picture%rows, picture%columns

4.8 Avoiding Memory Leaks with Derived Types
Derived types that have pointer components, and are also used in operations
like addition or assignment, still suffer from the possibility of memory leaks. In
this section, I describe a simple technique to avoid such leaks. Even when you
replace the pointer attribute by the allocatable attribute, a slightly different
variant of it may be beneficial.5

Consider three variables a, b, and c of a derived type chain with pointer
components that are used in an expression like this, where .concat. is a
user-defined operation:

a = b .concat. c

The derived type and its associated operations are implemented in the follow-
ing module.

module chains
type chain

integer, dimension(:), pointer :: values => null()
end type chain

interface assignment(=)
module procedure assign_chain
module procedure assign_array

end interface assignment(=)

interface operator(.concat.)
module procedure concat_chain

end interface operator(.concat.)

5 List and Car, describe a general reference counting technique for managing the memory [53].

MEMORY MANAGEMENT 45

contains

subroutine assign_array(ic, jc)
type(chain),intent(inout) :: ic
integer, dimension(:) :: jc

if (associated(ic%values)) deallocate(ic%values)
allocate(ic%values(1:size(jc)))
ic%values = jc

end subroutine assign_array

subroutine assign_chain(ic, jc)
type(chain), intent(inout) :: ic
type(chain), intent(in) :: jc

if (associated(ic%values)) deallocate(ic%values)
allocate(ic%values(1:size(jc%values)))
ic%values = jc%values

end subroutine assign_chain

function concat_chain(ic, jc)
type(chain), intent(in) :: ic, jc
type(chain) :: concat_chain
integer :: nic, njc

nic = size(ic%values)
njc = size(jc%values)

allocate(concat_chain%values(1:nic+njc))
concat_chain%values(1:nic) = ic%values(1:nic)
concat_chain%values(nic+1:nic+njc) = jc%values(1:njc)

end function concat_chain

end module chains

The derived type represents a chain of integers that can be extended via the
.concat. operation. The result is a new type(chain) data item that contains
the concatenated arrays of the two operands. When you assign one variable of
this type to another, a copy is made of the array of values.

Whenever assigning a new value to a variable of this type, any old memory
must be deallocated and new memory of the right size allocated (as shown in
the subroutines assign_array and assign_chain). Otherwise, memory would
be referenced twice or get lost. The problem, however, is that the program will
not deallocate the data in the temporary object that is created via the .concat.
operation, because it does not know that it is safe to do so.

46 MODERN FORTRAN IN PRACTICE

Therefore, while code like:

a = b .concat. c

is perfectly possible, it also introduces a memory leak.

One alternative to avoid this is to use subroutines instead of functions and
assignments, so that there are no intermediate results, but this causes a rather
awkward way of working. Compare:

call concatenate(a, b, c)

with:

a = b .concat. c

or:

a = concat(b, c)

A better solution that allows you to use such operations as .concat. almost
without memory leaks is to mark the derived types, so that the allocated
memory can be deallocated when it is no longer needed. You modify the
definition of the derived type slightly:

type chain
integer, dimension(:), pointer :: values => null()
logical :: tmp = .false.

end type chain

With this new type, the function concat_chain() can mark its result as
temporary. All functions in the module now check whether their arguments
are temporary and clean them up if that is the case, as they will not be used
anymore:

function concat_chain(ic, jc)
type(chain), intent(in) :: ic, jc
type(chain) :: concat_chain
integer :: nic, njc

nic = size(ic%values)
njc = size(jc%values)

allocate(concat_chain%values(1:nic+njc))
concat_chain%values(1:nic) = ic%values(1:nic)
concat_chain%values(nic+1:nic+njc) = jc%values(1:njc)

concat_chain%tmp = .true. ! Mark as temporary

call cleanup(ic, .true.) ! Clean up temporary arguments
call cleanup(jc, .true.)

end function concat_chain

and similarly for the assign_array and assign_chain subroutines.

MEMORY MANAGEMENT 47

The routine cleanup has the task of hiding the details of deallocating the
arrays:

subroutine cleanup(ic, only_tmp)
type(chain) :: ic
logical :: only_tmp

if (.not. only_tmp .or. ic%tmp) then
if (associated(ic%values)) deallocate(ic%values)

endif
end subroutine cleanup

To effectively avoid all memory leaks using this technique puts some burden on
the programmer of these modules. The programmer must ensure that variables
are appropriately initialized and memory is released when it can be done.

If the derived type has allocatable components instead of pointer compo-
nents, keeping track of the temporary status is still worthwhile, even though
memory leaks would not be the main reason anymore. Consider again the
chain type, but now with allocatable components:

type chain
integer, dimension(:), allocatable :: values
logical :: tmp = .false.

end type chain

Concatenating two such variables becomes simpler when using Fortran 2003’s
automatic allocation feature:

function concat_chain(ic, jc)
type(chain), intent(in) :: ic
type(chain), intent(in) :: jc
type(chain) :: concat_chain

concat_chain%values = (/ ic%values, jc%values /)
end function concat_chain

However, in the assignment routine you can avoid the allocation and copying
if the right-hand side is a temporary object:

subroutine assign_chain(ic, jc)
type(chain), intent(inout) :: ic
type(chain) :: jc

if (jc%tmp) then
call move_alloc(jc%values, ic%values)

else
ic%values = jc%values ! Automatic allocation

endif

ic%tmp = .false.
end subroutine assign_chain

48 MODERN FORTRAN IN PRACTICE

4.9 Performance and Memory Access
Another form of memory management is how you access the memory. In
modern computers, and, in fact, this has been the case for several decades, as
witnessed by a 1982 book by Metcalf [60], the locality of memory access is
quite often the foremost important factor in the performance of a program.
This is due to the relative slowness of memory access compared to the rate of
(numerical) operations. The hardware solution is to have several levels of cache
memory with different sizes and speeds. It is the compiler’s task to efficiently
use these caches, so that the data on which the operations occur are available
as fast as possible [7], [32].

The programmer can help by carefully considering the access patterns. The
following program accesses the matrix elements in three different rows and
columns [31]:

program measure_matrix
implicit none
double complex, allocatable :: a(:,:)
integer :: i, j, l, m, n
integer :: t1, t2, rate

write(*,*) 'Enter power of 2'
read(*,*) n

call system_clock(count_rate = rate)

allocate(a(n+4,n+4))

!
! Avoid some caching effect that causes the first iteration
! to take much more time
!
m = n-4
do l=1,max(1,100000000/(n*n))

call test(a,m,n-4)
enddo

do m = n-4, n+4
a = 1.0d0

call system_clock(t1)
do l = 1, max(1,100000000/(n*n))

call test(a, m, n-4)
enddo
call system_clock(t2)
write(*,'(i4,f8.3)') m, (t2 - t1) / real(rate)

enddo

MEMORY MANAGEMENT 49

Table 4.1. Measured Time as Function of the Matrix Size. Results for Sizes
that are a Power of 2 are Highlighted

Size Time Size Time Size Time Size Time Size Time

28 0.156 60 0.218 124 0.250 252 0.266 508 0.640
29 0.156 61 0.219 125 0.266 253 0.265 509 0.641
30 0.141 62 0.203 126 0.250 254 0.266 510 0.672
31 0.172 63 0.219 127 0.265 255 0.375 511 0.719
32 0.156 64 0.391 128 0.500 256 0.656 512 0.750
33 0.140 65 0.218 129 0.250 257 0.297 513 0.781
34 0.172 66 0.219 130 0.266 258 0.266 514 0.687
35 0.141 67 0.219 131 0.250 259 0.281 515 0.657
36 0.156 68 0.219 132 0.266 260 0.281 516 0.640

contains
subroutine test(a, m, n)

! goes through a in "wrong" order
integer :: m, n
double complex :: a(m,m)

integer :: i, j

do i = 2, n-1
do j = 2, n-1

a(i,j) = (a(i+1,j-1) + a(i-1,j+1)) * 0.5
enddo

enddo
endsubroutine
endprogram

Table 4.1 shows the reported run times. When the size of the matrix is a power
of 2, the operation takes roughly twice as long as when it is not. This is due
to cache misses. The size of the columns interferes with the size of the cache,
which makes the temporary storage of a part of the matrix in the fastest cache
inefficient.

When the column is large enough, the effect disappears, as can be seen in the
last part of the Table 4.2.6

In this case, the problem can be solved by going through the matrix in column
first order, instead of row first – or by using odd matrix dimensions.

Another example is searching in a linked list. Linked lists are quite convenient
for inserting and deleting data efficiently, but there is no guarantee that the
locations of the memory occupied by the various elements are close together.

6 The effect depends on the compiler and the compile options you use. The results shown here were
obtained with the Intel Fortran compiler. With the gfortran compiler, the run times were longer and
did not show such a pronounced effect.

50 MODERN FORTRAN IN PRACTICE

Table 4.2. Measured Time of Finding an Element
in the List for Different Data Structures

Structure Time (μ s)

Simple array 1.55
Compact list 2.30
List with irregularly allocated elements 4.97

This means caching blocks of memory is likely to be less efficient than with
arrays. As a consequence, it can take up to two or three times as long to find
an element in a linked list as to find an element in an ordinary array:

Both linked lists have list elements defined as:

type linked_list
real :: value
type(linked_list), pointer :: next => null()

end type linked_list

The elements for the compact list were allocated in a tight loop, whereas in
the second case, the elements were allocated with extra allocations in between:

do i = 2,size(data)
allocate(element)
allocate(dummy(11*i))
element%value = data(i)
plist%next => element
plist => element

enddo

This causes the list elements to be far away from each other in the memory
and annihilates the benefits of the cache.

5.

An Interface Problem

This chapter focuses on how to make a general (computing/programming)
facility generic enough to be useful for a large set of applications, but specific
enough to make it practically useable. Concrete examples are: a library for
integrating ordinary differential equations or a library to read XML files (see
Section 7.4). To elaborate on the second example, you can read such files piece
by piece and deal with the data you read directly or you can store the data
in some convenient structure for later reference – the SAX and the DOM
approaches.

Now examine various implementations for a somewhat simpler problem: inte-
grating a function over a particular interval.1 You are not interested in the
numerical aspects, though they are quite interesting in their own right, but
rather in the methods available for integrating a well-behaved function that
depends on one or more parameters. For instance, the function f :

f (x) = e−ax cos bx (a , b >= 0) (5.1)

to be integrated over the interval [0, 10].

A general library of suitable integration methods might contain a routine
such as:

module integration_library

implicit none

contains

subroutine integrate_trapezoid(f, xmin, xmax, steps, result)

interface
real function f(x)

real, intent(in) :: x
end function f

end interface

real, intent(in) :: xmin, xmax
integer, intent(in) :: steps

1 Oliveira and Stewart [68] call this the environment problem. It is also discussed at some length
by [65].

51

52 MODERN FORTRAN IN PRACTICE

real, intent(out) :: result

integer :: i
real :: x, deltx

if (steps <= 0) then
result = 0.0
return

endif

deltx = (xmax - xmin) / steps

result = (f(xmin) + f(xmax))/ 2.0

do i = 1,steps-1
x = xmin + i * deltx
result = result + f(x)

enddo

result = result * deltx
end subroutine integrate_trapezoid

end module integration_library

The limitations of such an implementation are immediately clear: the interface
of any subprogram that computes the mathematical function f is fixed and
in the preceding example it does not allow any parameters like a and b in
Equation 5.1 to be passed.

If you are stuck with this implementation, then you have only two options:
■ Incorporate the values of the parameters directly in the implementation of

the function f .
■ Use a “pool of data” (a COMMON block or module variables) that is

accessed from within the implementation of f and from the outside, so
that you can set the parameters before invoking the integration routine.

If, however, you can revise the implementation of the library, you pass
these extra parameters directly or you could use a technique like reverse
communication.

You will now study these methods in the light of the four major standards for
Fortran: FORTRAN 77, Fortran 90/95, Fortran 2003, and Fortran 2008.

5.1 Filling in the Parameters
If you are interested in only a few particular values of the parameters a and b,
you could easily program specific versions of the function f and pass these to

AN INTERFACE PROBLEM 53

the integration routine:2

c
c Define the function
c

real function f(x)
real x

real a, b
save a, b
data a, b / 1.0, 2.0 /

f = exp(-a*x) * cos(b*x)
end

A more sophisticated approach is to read these parameters from a file:

c
c Define the function
c

real function f(x)
real x

logical first
real a
real b
save a, b, first
data first / .true. /

if (first) then
first = .false.
open(10, file = 'function_values.inp')
read(10, *) a
read(10, *) b
close(10)

endif

f = exp(-a*x) * cos(b*x)
end

The drawbacks are that you cannot pass a file name and the file is read only the
first time (with no way to integrate the parameterized function with different
values).

2 The example almost conforms to FORTRAN 77 (officially lowercase is not allowed, but in later
examples names longer than 6 characters appear). This style will not be consistently used, except when
emphasizing an aspect of FORTRAN 77 that has a more modern counterpart in later standards.

54 MODERN FORTRAN IN PRACTICE

FORTRAN 77, however, does offer a somewhat obscure facility, the entry

statement, which could be exploited here:

c
c Define the function
c

real function f(x)
real x

logical first
real a
real b
save a, b

f = exp(-a*x) * cos(b*x)

return
c
c Provide access to the parameters A and B
c (Set the value of the function f - a synonym for
c the function setab c for good form)
c

entry setab(ain, bin)
real ain, bin
a = ain
b = bin
f = 0.0
end

This allows access to the variables a and b by means of the alternative interface
defined by the entry statement [62]. It can be used as follows:

program integrate_function

real xmin, xmax, result, dummy
integer steps
external f

c
c Set the parameters before calling the integration routine
c (setab is formally a function, just as f is, so call it as
c a function)
c

dummy = setab(1.0, 2.0)

xmin = 0.0
xmax = 10.0
steps = 10

AN INTERFACE PROBLEM 55

call integrate_trapezoid(f, xmin, xmax, steps, result)

write(*,*) 'Result: ', result

end

The advantages are clear: you only need to implement the function itself,
perhaps with a few extras, to make it slightly more flexible. The values of the
parameters are completely private to the function.

The disadvantage is that you need to implement several specific versions or
create roundabout ways to set the parameters. Also, if you need to output
more information,3 for instance, to report that you are crossing a singularity,
making the result unreliable, you have very little support.

5.2 Using a Pool of Data
The example with the entry statement is akin to the second approach to be
discussed: using COMMON blocks or module variables. In FORTRAN 77,
such an approach looks like this:

c
c Define the function
c

real function f(x)
real x

real a, b
common /fparam/ a, b

f = exp(-a*x) * cos(b*x)

end

with the following program as a typical way to use the interfacing via
COMMON blocks:

program integrate_function

real xmin, xmax, result
integer steps
external f

c
c We need to repeat the definition of the COMMON block
c to access the function parameters

3 This is likely to be an important issue if you apply this approach to other types of program-
ming/computing problems.

56 MODERN FORTRAN IN PRACTICE

c

real a, b
common /fparam/ a, b

c
c Set the parameters before calling the integration routine
c

a = 1.0
b = 2.0

xmin = 0.0
xmax = 10.0
steps = 10
call integrate_trapezoid(f, xmin, xmax, steps, result)

write(*,*) 'Result: ', result

end

COMMON blocks have a rather bad reputation:
■ You need to include the same source code defining the COMMON block

in each routine that uses it.
■ You are allowed to use different variable names and even different variable

types for defining the same COMMON block (only the block’s name is
fixed), as they only provide access to a piece of memory.

Data in Modules Module variables are much more reliable: you define them
in one location – the module – and you can access them by using the module.
A preferable implementation in Fortran 90 is:

module functions
implicit none

!
! Publically accessible parameters
!
real :: a, b

contains
real function f(x)

real, intent(in) :: x

f = exp(-a*x) * cos(b*x)

end function f
end module functions

AN INTERFACE PROBLEM 57

The corresponding program to illustrate the use is as follows:

program integrate_function

use integration_library
use functions

implicit none

real :: xmin, xmax, result
integer :: steps

!
! Set the parameters before calling the integration routine
!

a = 1.0
b = 2.0

xmin = 0.0
xmax = 10.0
steps = 10
call integrate_trapezoid(f, xmin, xmax, steps, result)

write(*,*) 'Result: ', result

end program integrate_function

Additional benefits of using modules are that the compiler can now check the
number and types of all arguments and that subroutine and function names
are no longer completely global. In a large program that uses many libraries,
global names can cause all manner of conflicts.

Using module variables does have an important drawback though. Multi-
threaded computing is more and more common these days and without mea-
sures it would be easy to have one thread mess up the values used in another
thread.

The details depend on the method by which you implement multithreading
but if you use OpenMP, a possible solution to this problem is this (see Chap-
ter 12):

module functions
implicit none

!
! Publically accessible parameters
! Assume no more than 10 threads for simplicity
!
real, dimension(10), private :: a
real, dimension(10), private :: b

58 MODERN FORTRAN IN PRACTICE

contains
subroutine setab(ain, bin)

real, intent(in) :: ain, bin

integer :: thid

thid = omp_get_thread_num()
a(thid) = ain
b(thid) = bin

end subroutine setab

real function f(x)

real, intent(in) :: x

integer :: thid

thid = omp_get_thread_num()

f = exp(-a(thid)*x) * cos(b(thid)*x)

end function f
end module functions

Instead of a single set of variables, which can be (mis)used by different threads,
you use a separate set per thread. Unfortunately, it complicates the implemen-
tation, especially if a lot of parameters are involved:

program integrate_function

use integration_library
use functions

implicit none

real :: xmin, xmax, result
real :: a, b
integer :: steps, thid

xmin = 0.0
xmax = 10.0
steps = 10

!$omp parallel
!$omp private(a, b, result, thid)

!
! Set the parameters per thread

AN INTERFACE PROBLEM 59

!
thid = omp_get_thread_num()
a = 1.0 * thid
b = 2.0 * thid
call setab(a, b)

call integrate_trapezoid(f, xmin, xmax, steps, result)

write(*,*) 'Result: a= ', a, ' b = ', b, &
' -- result: ', result

!$omp end parallel

end program integrate_function

Internal Routines With the Fortran 2008 standard, it has become a standard
feature to pass internal routines as actual arguments. This introduces a new
solution, which is also thread-safe. Use this feature to provide a convenient
interface to integrate the example function. As the constants a and b reside in
the calling program or subroutine, the internal routine feval that is passed
to the actual integration routine can use them directly. In turn, feval calls
the function f, passed as an argument, that implements the mathematical
function. This gives a general routine that adapts the interface of f to that
required by the integration routine:

subroutine integrate_function(f, xmin, xmax, a, b, result)

use integration_library

implicit none

interface
real function f(x, a, b)

real, intent(in) :: x, a, b
end function f

end interface

real, intent(in) :: a, b, xmin, xmax
real, intent(out) :: result

integer :: steps

steps = 10

call integrate_trapezoid(feval, xmin, xmax, steps, &
result)

60 MODERN FORTRAN IN PRACTICE

contains
real function feval(x)

real, intent(in) :: x

feval = f(x, a, b)

end function feval
end subroutine integrate_function

5.3 Passing Extra Arguments
As an alternative to the previous approaches, have a look at what you can
do with extra arguments. The integration routine does not use them directly
because they are only needed by the function. The challenge is to pass them
along.

Array of Parameters The simplest solution is to pass an array of parameters:

subroutine integrate_trapezoid(f, params, xmin, xmax, &
steps, result)

...
interface

real function f(x, params)
real, intent(in) :: x
real, dimension(:), intent(in) :: params

end function f
end interface

real, dimension(:) :: params
...

end subroutine

The function f can be implemented in a straightforward way:

real function f(x, params)
real, intent(in) :: x
real, dimension(:), intent(in) :: params

f = exp(-params(1)*x) * cos(params(2)*x)

end function f

However, if the set of parameters does not only consist of reals, this solution
is awkward [65]. In other situations than this numerical integration problem,
you might be dealing with character strings or linked lists. Therefore, an
alternative needs to allow more general data types.

AN INTERFACE PROBLEM 61

Use the transfer() Function In FORTRAN 77, there were very few facil-
ities that could help, but with Fortran 90/95 you can use the transfer()

function to convert arbitrary data into an array of reals and back:

type function_parameters
real :: a
real :: b

end type function_parameters

type(function_parameters) :: params

! Defines the type for the transfer function
real, dimension(1) :: real_array
...
call integration_trapezoid(f, transfer(params,real_array), &

xmin, xmax, steps, result)
...

While this works, it is not a very elegant solution: it puts the burden of
converting the data on the user, even though you can hide it in an (internal)
routine4:

program integrate

type function_parameters
real :: a, b

end type function_parameters

type(function_parameters) :: params
...
call integration_trapezoid_ab(f, params, xmin, xmax, &

steps, result)
...

contains
!
! This code can go into an include file if needed, to hide the
! details from sight
!
subroutine integration_trapezoid_ab(f, params, xmin, xmax, &

steps, result)
...
type(function_parameters) :: params

! Defines the type for the transfer function
real, dimension(1) :: real_array

4 You might call this and the solution with the internal routine the Façade pattern [54].

62 MODERN FORTRAN IN PRACTICE

call integration_trapezoid(&
f, transfer(params,real_array), &
xmin, xmax, steps, result)

end subroutine
end program integrate

Type-Bound Procedures With Fortran 2003, you have more possibilities to
solve this issue in an elegant way ([65], see also Chapter 11):

module integration_library

implicit none

type, abstract :: user_function
! No data - merely a placeholder

contains
procedure(function_evaluation), deferred, &

pass(params) :: eval
end type user_function

abstract interface
real function function_evaluation(x, params)

import :: user_function
real :: x
class(user_function) :: params

end function function_evaluation
end interface

contains

subroutine integrate_trapezoid(&
params, xmin, xmax, steps, result)

class(user_function) :: params
real, intent(in) :: xmin, xmax
integer, intent(in) :: steps
real, intent(out) :: result

integer :: i
real :: x
real :: deltx

if (steps <= 0) then
result = 0.0
return

endif

deltx = (xmax - xmin) / steps

AN INTERFACE PROBLEM 63

result = (params%eval(xmin) + params%eval(xmax))/ 2.0

do i = 2,steps
x = xmin + (i - 1) * deltx
result = result + params%eval(x)

enddo

result = result * deltx
end subroutine integrate_trapezoid
end module integration_library

The preceding module is shown in the following example. Note that the
implementation of function f is now a part of the type user_function:

module functions
use integration_library

implicit none

type, extends(user_function) :: my_function
real :: a
real :: b

contains
procedure, pass(params) :: eval => f

end type my_function

contains
real function f(x, params)

real, intent(in) :: x
class(my_function) :: params

f = exp(-params%a*x) * cos(params%b*x)

end function f

end module functions

Rather than pass the name of the function, you now pass the derived type that
contains the function you want to integrate:

program test_integrate

use integration_library
use functions

implicit none

type(my_function) :: params

64 MODERN FORTRAN IN PRACTICE

real :: xmin, xmax, result
integer :: steps

params%a = 1.0
params%b = 2.0

xmin = 1.0
xmax = 10.0
steps = 10

call integrate_trapezoid(params, xmin, xmax, steps, &
result)

write(*,*) 'Result: ', result

end program test_integrate

The abstract derived type user_function provides the common type that the
integration library uses for passing the function and its data. You need to define
a specific implementation of that type in order to actually do the computation.

The only thing that “feels” awkward about this solution is that each function
to integrate requires its own type. You might say: the solution is data-centered
instead of function-centered.

Procedure Pointers As in the previous example, if instead of a type-bound
procedure you use a procedure pointer, you can change the function that needs
to be evaluated – without introducing a new type of each function. For this,
you move the procedure component to the “data” section and add the pointer
attribute:

module integration_library

implicit none

type, abstract :: function_parameters
procedure(eval), pointer, pass(params) :: feval

end type function_parameters

abstract interface
real function eval(x, params)

import :: function_parameters
class(function_parameters) :: params

end function eval
end interface

contains

AN INTERFACE PROBLEM 65

subroutine integrate_trapezoid(&
params, xmin, xmax, steps, result)

interface
real function f(x, params)

import function_parameters
real, intent(in) :: x
class(function_parameters) :: params

end function f
end interface

class(function_parameters) :: params

... (identical to the previous implementation) ...

end subroutine integrate_trapezoid

end module integration_library

Now, you can vary the function that is to be integrated without introducing a
new type for each function:

module functions
use integration_library

implicit none

type, extends(function_parameters) :: my_parameters
real :: a

end type my_parameters

contains
real function f(x, params)

real, intent(in) :: x
class(my_parameters) :: params

f = exp(-params%a*x) * cos(params%b*x)

end function f

!
! Function g() does not use parameter b,
! but otherwise it has the same data requirements, hence
! reuse type "my_parameters".
!
real function g(x, params)

66 MODERN FORTRAN IN PRACTICE

real, intent(in) :: x
class(my_parameters) :: params

g = params%a * x

end function g

end module functions

program test_integrate

use integration_library
use functions

implicit none

type(my_parameters) :: params
real :: xmin, xmax, result
integer :: steps

params%a = 1.0
params%b = 2.0

xmin = 1.0
xmax = 10.0
steps = 10

params%feval => f ! First function

call integrate_trapezoid(&
params, xmin, xmax, steps, result)

write(*,*) 'Result f: ', result

params%feval => g ! Second function

call integrate_trapezoid(&
params, xmin, xmax, steps, result)

write(*,*) 'Result g: ', result

end program test_integrate

5.4 Control Structures
So far we have concentrated on passing arbitrary data to a subprogram that is
itself called from another subprogram that should be general and, therefore,
should be independent of these data types. However, the only thing this
general integration subprogram needs to know is the value of the function.

AN INTERFACE PROBLEM 67

This observation leads to a completely different approach – passing the value
instead of the function:

module integration_library

implicit none

type integration_parameters
private
integer :: state = -1 ! Not-initialized
integer :: steps
integer :: i
real :: x, xmin, xmax, deltx
real :: result, sum

end type integration_parameters

!
! Parameters describing actions
!
integer, parameter :: get_value = 1
integer, parameter :: completed = 2
integer, parameter :: failure = 3

contains

subroutine set_parameters(data, xmin, xmax, steps)
type(integration_parameters) :: data
real, intent(in) :: xmin, xmax
integer, intent(in) :: steps

if (steps <= 0) then
return

endif

data%xmin = xmin
data%xmax = xmax
data%steps = steps

data%state = 1
data%sum = 0.0
data%i = 0
data%deltx = (xmax - xmin) / steps

end subroutine set_parameters

subroutine integrate_trapezoid(& data, value, result, action, x)

type(integration_parameters) :: data

68 MODERN FORTRAN IN PRACTICE

real, intent(in) :: value
real, intent(out) :: result
integer, intent(out) :: action
real, intent(out) :: x

result = 0.0
if (data%state == -1) then

action = failure
return

endif

!
! We split the computation into steps
!
select case (data%state)

case (1)
x = data%xmin
action = get_value
data%state = 2

case (2)
data%result = 0.5 * value
x = data%xmax
action = get_value
data%state = 3

case (3)
data%result = data%result + 0.5 * value
x = data%xmin + data%deltx
data%i = 1
action = get_value
data%state = 4

case (4)
data%result = data%result + value
if (data%i < data%steps-1) then

data%i = data%i + 1
x = data%xmin + data%i * data%deltx
action = get_value
data%state = 4

else
result = data%result * data%deltx
action = completed

endif
case default

write(*,*) 'Programming error - unknown state: ', &
data%state

stop
end select

end subroutine integrate_trapezoid
end module integration_library

AN INTERFACE PROBLEM 69

This routine should be used as part of a dedicated control structure, as the
following illustrates:

module functions

implicit none

contains

real function f(x, a, b)
real, intent(in) :: x, a, b

f = exp(-a*x) * cos(b*x)

end function f
end module functions

program test_integrate

use integration_library
use functions

implicit none

real :: xmin, xmax, result, value, x
real :: a, b
integer :: steps
integer :: action

type(integration_parameters) :: data

a = 1.0
b = 2.0

xmin = 1.0
xmax = 10.0
steps = 10

call set_parameters(data, xmin, xmax, steps)

do
call integrate_trapezoid(&

data, value, result, action, x)

select case (action)
case (get_value)

value = f(x,a,b)

case (completed)
exit

70 MODERN FORTRAN IN PRACTICE

case (failure)
write(*,*) 'Error: invalid arguments'

case default
write(*,*) &

'Programming error: unknown action - ', &
action

end select
enddo

write(*,*) 'Computed: ', result

end program test_integrate

You have turned the integration procedure into a finite state machine. By
looping until reaching the final state, you get the final result. The code that
takes care of this procedure is completely independent of the evaluation of the
function. Furthermore, because the user code (in the main program) controls
the steps, this approach allows you to bail out – should the function not
be well-behaved over the whole integration interval – without requiring the
general library to provide such a feature (or any other useful features). Also,
if you need several routines in applying a particular programming/computing
facility, this design can be much more flexible than the other ones seen.

A major drawback, however, is that the code for the general integration proce-
dure has become much more complicated: you need to save the local variables
between calls and you need to split up the work into steps that require only a
single function value.

Another drawback is that you need to program a control structure instead
of simply a call to a subroutine, although that can be hidden via an internal
routine:

program test_integrate

use functions

implicit none

real :: xmin, xmax, result, value, x
real :: a, b
integer :: steps
integer :: action

a = 1.0
b = 2.0

xmin = 1.0

AN INTERFACE PROBLEM 71

xmax = 10.0
steps = 10

call integrate_trapezoid_ab(f, xmin, xmax, steps, result)

write(*,*) 'Computed: ', result

contains
!
! The code below can be put into an INCLUDE file, for any
! function f that uses two parameters, a and b
!
! The parameters a and b come from the encompassing program
! unit
!
subroutine integrate_trapezoid_ab(&

f, xmin, xmax, steps, result)

use integration_library

... identical to previous example ...

end subroutine integrate_trapezoid
end program test_integrate

Using this approach, sometimes known as reverse communication, is tedious
here, but it can be quite useful and natural in other situations. For instance,
Section 7.4 discusses reading a file with a structure that requires complicated
support code.

OpenMP You can use multiprocessing techniques as well to solve this envi-
ronment problem. It may seem a bit strange, as multiprocessing is usually meant
to enhance the performance of a program, but these techniques provide exactly
the two simultaneous computational environments you need.

You need to have two threads, one that does the integration and the other
that evaluates the function at a given coordinate x. This is accomplished in
OpenMP via the section directive. The following main program uses this:

program test_integrate
use integration
use functions

implicit none

real :: x, a, xbegin, xend, result
integer :: steps
logical :: next

72 MODERN FORTRAN IN PRACTICE

type(integration_status) :: status

a = 1.0
xbegin = 0.0
xend = 10.0
steps = 10

! All can be shared!

call start_integration(status)

!
! The first section is to integrate the function,
! the other is to evaluate the function
!

!$omp parallel sections

!$omp section
call integrate_trapezoid(&

status, xbegin, xend, steps, result)

!$omp section
do

call get_next(status, x, next)
if (.not. next) exit
call set_value(status, f(x,a))

enddo

!$omp end parallel sections

write(*,*) 'Result: ', result

end program test_integrate

The difficulty with this approach is the synchronization between the two
threads, but that is all hidden in the implementation of the integrate and
get_next routines:

subroutine get_next(status, x, next)
type(integration_status) :: status
real :: x
logical :: next

!
! Synchronize the memory
!

AN INTERFACE PROBLEM 73

!$omp flush
if (status%done) then

next = .false.
else

do while (.not. status%next)
!$omp flush

enddo

!
! This is one of the places where the threads may
! get in each others' ways, so use a critical
! section
!
!$omp critical
x = status%xvalue
status%next = .false.
status%ready = .false.
!$omp end critical

next = .true.
endif

end subroutine get_next

and similarly for the integrate_trapezoid routine.

5.5 Dealing with Different Precisions
We have considered only the matter of passing arbitrary data to a function. A
second aspect of a generic interface is whether to perform the computations
in single or double precision. Currently, Fortran does not allow you to define
one subroutine or function and specify the precision later. You are forced to
define a specific routine for all the precisions you are interested in.

Fortran 90 introduced the kind atttribute, which makes it possible to at least
concentrate the precision in one single location:

integer, parameter :: wp = kind(1.0)
real(wp) :: x

defines a parameter wp (the working precision) that has a value corresponding
to single precision - the kind of the literal constant 1.0.

You can use this facility and the include statement to define the routines with
a “generic” kind:

module single
implicit none

74 MODERN FORTRAN IN PRACTICE

! Single precision constant
integer, parameter :: wp = kind(1.0)

include "generic.f90"
end module single

module double
implicit none

! Double precision constant
integer, parameter :: wp = kind(1.0d0)

include "generic.f90"
end module double

module unite
use single
use double

end module unite

The include file “generic.f90” contains all the code that is independent of the
kind:

interface print_kind
module procedure print_kind_wp

end interface
private :: print_kind_wp

contains
subroutine print_kind_wp(x)

real(kind=wp), intent(in) :: x

write(*,*) 'Kind:', kind(x)
end subroutine print_kind_wp

The following program shows that it works:

program test_kinds

use unite

call print_kind(1.0)
call print_kind(1.0d0)

end program test_kinds

Note that because the two versions of the routine print_kind_wp are in dif-
ferent modules, the generic interface print_kind needs not refer to unique

AN INTERFACE PROBLEM 75

Table 5.1. Overview of the Characteristics of the Discussed Solutions

Type- Thread-
Solution safe safe Ease of Useb Flexibilityb Standard

Filled-in parameters yes yes moderate no F77
Function with entry yes noa moderate no F77
COMMON-block no noa moderate moderate F77
Module variables yes noa moderate moderate F90
Internal routine yes yes easy yes F2008c

REAL array no yes hard moderate F77
Transfer function no yes moderate moderate F90
Class with procedure pointer yes yes easy yes F2003
Type-bound procedure yes yes easy yes F2003
Reverse communication yes yes difficult very flexible F77
OpenMP solutiond yes yes moderate moderate –

a Each of these solutions can be made thread-safe, but it requires the use of an array instead
of a scalar variable.

b These qualifications are, of course, subjective.
c Some compilers offer the required feature as an extension to an older standard.
d OpenMP is a separate standard. It can be used, however, in combination with FORTRAN 77

and later.

names. This makes it much easier to write these interface blocks. It even makes
it possible to put them in the include file.

5.6 Overview
Designing a suitable interface to a generic programming facility, such as a
library of numerical integration methods, is a challenge. The features of mod-
ern Fortran do allow for a wide range of solutions, even if you have to work
with an implementation over which you have no control.

For the interface problem previously discussed, the characteristics of each
solution are found in Table 5.1.

6.

Interfacing to C: SQLite
As an Example

Quite often the public interface of a library that you are interested in is written
in a different programming language than the one you use. You will need an
interface library that bridges the gap between both languages. This is the case
with SQLite, a lightweight database management system [44]. It is written in
C and there is a host of libraries to communicate with SQLite in all manner
of languages.

For Fortran, there is the fsqlite library that I developed. It was inspired by the
work of Al Danial [27], but focused on FORTRAN 77, that was mainly an
example of how you could interface to the SQLite library. I wanted a generic
solution instead.

The design decisions and the implementation of fsqlite illustrate a more general
question: how to combine Fortran and other programming languages? Each
time you need to consider:
■ Low-level aspects of the combination:

– How do the basic types of the two languages relate to each other?
– What are the naming and calling conventions?

■ High-level aspects relating to the actual library: What is a good “model”
for the interface? Should you simply write wrapping routines that merely
translate the routine interfaces or should you build a higher-level interface,
molding the original interface into something that is a better fit for the
library’s use?

This chapter will cover both types of issues in the context of interfacing with
C (an intermediate layer in C is often a convenient way to communicate with
any other language) and of the interface to SQLite.

6.1 Matching Data Types
The basic data types of Fortran are: integer, logical, single, and double precision
with real and complex numbers and character strings. C has more or less the
same types (as they are dictated by computer hardware and tradition, more
than language design), but there are important differences:
■ In C, there are no logicals, instead integer values are used. However, nor

are there complex numbers (although the C99 standard does define them).

76

INTERFACING TO C: SQLITE AS AN EXAMPLE 77

A common approach is to mimic complex variables via an array of two real
numbers or as a structure with two numbers.

■ In C, double precision reals (double) are the default, rather than single
precision as in Fortran. Presumably, that has some historical reasons and
does not reflect a typical need for high-precision computations in C pro-
grams. In the case of SQLite it means, however, that you do not store single
precision reals in the database, only double precision.

■ Fortran does not have unsigned integers. While they can be emulated,
handling such data types is a bit awkward. As long as you only need to pass
the data, plain integers will suffice.

■ The most complicated aspects of matching data types are how to match
character strings and arrays. Character strings in C are actually arrays of
single characters where the end of the string is indicated by a NUL char-
acter (achar(0) in Fortran). Single characters are different from character
strings. In Fortran, a character variable “knows” its length and there is no
special convention to indicate that end of the string – strings are padded
with spaces. This difference means you have to convert a string from the
Fortran convention to the C convention and back, plus there is some loss
of information. If trailing blanks are significant, you must adopt a separate
mechanism in Fortran; for example, storing the significant length for each
string. In C, you must take considerable care not to exceed the space that
is allocated for the strings. There is no protection against overflowing the
bounds, which could happen if you copy a string that is too long or forget
to add the NUL character.

Arrays of any basic data type have their own set of complications. In C, arrays
are essentially one-dimensional. Two-dimensional arrays can be emulated by
an array of pointers (statically defined two-dimensional arrays behave as a
shorthand notation). Here is a pattern you frequently find:

int i;
int **array2d;

/* Create an array[20][10]
*/
array2d = (int **) malloc(20 * sizeof(int *));
*array2d = (int *) malloc(20 * 10 * sizeof(int)) ;

for (i = 1; i < 20; i ++) {
array2d[i] = array2d[0] + 10 * i;

}

The block of memory is divided into 20 pieces, each ten integers long. How-
ever, each piece could be arbitrarily long:

78 MODERN FORTRAN IN PRACTICE

for (i = 0; i < 20; i ++) {
array2d[i] = (int *) malloc((i+1) * sizeof(int));

}

and will create a set of one-dimensional arrays each with a different length.

Fortran does not allow that sort of pattern, at least not with the same notation
as regular two-dimensional arrays. Instead, in Fortran arrays are, at least con-
ceptually, contiguous blocks of memory whose elements can be indexed with
one, two, or more indices. If you need to pass a two-dimensional array to C,
then use code like this to create the array of pointers that C requires.

/* The two-dimensional Fortran array f_array(dim1,dim2) appears
as a one-dimensional array on the C side
Extra complication: dimensions in C are reversed wrt Fortran

*/
void pass_2d_array(int *f_array, int *dim1, int *dim2) {

int i;
int **c_array;

/* Create a c_array[dim2][dim1]
*/
c_array = (int **) malloc((*dim2) * sizeof(int *));

for (i = 0; i < (*dim2); i ++) {
c_array[i] = f_array + (*dim1) * i;

}
...

}

In the previous C code, you can access Fortran array element f_array(4,5) as
c_array[4][3].1

With the advent of Fortran 2003, a lot has changed in the way you can interface
to C. Using the iso_c_binding intrinsic module, you can specify much more
of the interface on the Fortran side (see Section 6.4). For instance, you can
specify kinds for all basic data types so that they match the C data types. A
type integer(c_long) in Fortran corresponds to a long int in C, whereas
previously you had to take into account that C does not make guarantees
about the actual size of a long int. The C standard only guarantees:

short int <= int <= long int

On 32-bits platforms, a long int is typically 32 bits long and on a 64-bits
platform it is 64 bits, while an int is still 32 bits.

1 In C indices, start at 0, meaning you need to offset the indices by −1 and the order of the indices is
reversed.

INTERFACING TO C: SQLITE AS AN EXAMPLE 79

6.2 Passing Arguments Between C and
Fortran Routines
Basically speaking, Fortran (up to Fortran 2003) passes all arguments by
reference and C passes all arguments by value (even with arrays and pointers,
the address is passed as the value and by dereferencing that address you can
manipulate the memory contents). In Fortran 2003, you can select the method
of passing primarily to make interfacing to C easier, but it has some merits
within a Fortran-only context too ([65], Section 14.6).

The result of this difference in argument passing is that you need to have
an intermediate routine in C to accommodate for the mismatch. Here is an
example from the fsqlite library. The routine sqlite3_column_count_c is used
to get the number of database columns that will be returned in a query. On
the Fortran side, it has this interface:

interface
subroutine sqlite3_column_count_c(handle, count)

integer, dimension(*) :: handle
integer :: count

end subroutine sqlite3_column_count_c
end interface

The first argument is actually a pointer to an opaque structure of type
sqlite3_stmt, defined by the SQLite library. On the Fortran side, it is mapped
to a one-dimensional integer array of length 2, to accommodate for both 32-
bits and 64-bits platforms. The interface predates the Fortran 2003 standard,
otherwise the type type(c_ptr) would have been the method of choice.

On the C side, you get the start address of this array, but as it actually represents
a pointer, you need two-level indirection (the double asterisk):2

void FTNCALL sqlite3_column_count_c_(
sqlite3_stmt **stmt,
int *count) {

*count = sqlite3_column_count(*stmt) ;
return ;

}

The plain integer argument count on the Fortran side turns into a pointer to
an int value. As you need to return a value via that argument, this is quite
appropriate.

2 The macro FTNCALL is used to get the calling convention correct and the extra underscore has to
do with naming conventions (see the next section).

80 MODERN FORTRAN IN PRACTICE

In Fortran 2003, you can solve this in a different way (note the value attribute
for the stmt argument):

interface
function sqlite3_column_count(stmt) bind(C)

use, intrinsic :: iso_c_binding
type(c_ptr), value :: stmt
integer(c_int) :: sqlite3_column_count

end function sqlite3_column_count
end interface

You use the intrinsic module iso_c_binding to fully describe the inter-
face on the Fortran side. This makes it possible to call the C function
sqlite3_column_count directly, instead of via an intermediate C function
that translates between the C and Fortran data types and function names.
(The original intermediate C function behaves as a subroutine, but that is
merely a choice.)

6.3 Naming and Calling Conventions
The next hurdles in combining Fortran and C concern the internal name of
the routine you will call and the calling convention. For the first one, consider
what should happen to a Fortran routine called MyRoutine:

subroutine MyRoutine
...

end subroutine MyRoutine

As Fortran does not distinguish between lowercase and uppercase in variable
names and routine names, the name as presented to the linker is translated to
either lowercase or uppercase, depending on the compiler.

To distinguish it from names in the system libraries, an underscore may
be attached. The end result is that the name MyRoutine, which you use in
the Fortran code, becomes MYROUTINE or myroutine_ (or some other varia-
tion). Routines defined in a module commonly get the name of the module
prepended, so that the result might be mymodule_mp_myroutine_. It is these
names that you should use in the C code, unless you use the Fortran 2003
naming feature.

The second issue, the calling convention, is more obscure. It touches upon
low-level features of passing arguments and managing the memory involved
(the stack). First, to pass a character string, most Fortran compilers insert an
argument holding the length of the string that is not visible on the Fortran

INTERFACING TO C: SQLITE AS AN EXAMPLE 81

side, but is visible on the C side. The routine sqlite3_do_c looks like this on
the Fortran side:

integer function sqlite3_do_c(handle, command, errmsg)
integer, dimension(*) :: handle
character(len=*) :: command
character(len=*) :: errmsg

end function sqlite3_do_c

On the C side, the two hidden arguments are visible:

int FTNCALL sqlite3_do_c_(
sqlite3 **db, char *command, char *errmsg,
int len_command, int len_errmsg) {

...
}

With some compilers, hidden arguments are placed right after the string
argument, while with other compilers hidden arguments are placed after all
the regular arguments. The latter method seems to be the most common.

Finally, on Windows, there are two ways of cleaning up the stack after return-
ing from a subroutine or function: the “cdecl” method where the caller is
responsible and the “stdcall” method where the callee takes care of it. This
second method appears to be deprecated, but is still used by many libraries. It
is important that the proper method is used, otherwise the stack gets corrupted
and the program will crash.

While all other aspects of C-Fortran interfacing can be handled in regular C or
Fortran code, the matter of this calling convention has to be dealt with using
Fortran compiler directives or non-standard C keywords:

#ifdef WIN32
#define FTNCALL __stdcall
#endif

or (for the Intel Fortran compiler – the gfortran compiler has a very similar
method):

!dec$ attributes stdcall :: myroutine

Interfacing C and Fortran has become much easier in this case too with the
iso_c_binding module of Fortran 2003. The preceding C routine can be
replaced by a Fortran routine, but it is easier to leave the C version (see Section
6.5 for the code). The hidden arguments, however, can now be made explicit:

interface
integer function sqlite3_do_c(handle, command, &

errmsg, len_errmsg) bind(C)
use, intrinsic :: iso_c_binding

82 MODERN FORTRAN IN PRACTICE

type(c_ptr), value :: handle
character(kind=c_char), dimension(*) :: command
character(kind=c_char), dimension(*) :: errmsg
integer(kind=c_int), value :: len_errmsg

end function sqlite3_do_c
end interface

The Fortran routine fsqlite_do, the public routine you are supposed to use,
converts the command string to a string in the C convention with a trailing
NUL character, the result of trim(string)//achar(0).

When you pass the character strings to a routine that has the C binding
attribute, the strings become, just as in C, arrays of single characters. This is
a special rule in the standard. It boils down to an implicit conversion of the
type:

character(len=*) :: string

character(len=1), dimension(*) :: string

As a consequence, there are no hidden length arguments anymore. You do need
to pass the (maximum) length of the string that will store an error message,
but that is an ordinary argument, visible on both the C and the Fortran sides.

As the names of the C functions match the names on the Fortran side, that
is, they are all lowercase, there is no need to use the binding label in the bind

clause. For a C function that has uppercase characters, like Sqlite3DoC, you
would use:

interface
function sqlite3_do_c(handle, command, &

errmsg, len_errmsg) &
bind(C, name = 'Sqlite3DoC')

...
end function sqlite3_do_c

end interface

You can call this function by the name sqlite3_do_c in Fortran while on the
C side it is called Sqlite3DoC.

6.4 Dealing with Derived Types
The aspects discussed so far all assume that you use only Fortran 77 features,
basic types like single and double precision reals and arrays of fixed or assumed
size. What about derived types, Fortran 90 pointers and allocatable arrays, or
even Fortran 2003 polymorphic variables?

INTERFACING TO C: SQLITE AS AN EXAMPLE 83

Because Fortran pointers are actually a very different concept than C pointers
and the allocation of arrays in any language must be done in a consistent way,
there are a number of restrictions.3 The most important are:
■ The components of a derived type cannot have the pointer or allocatable

attributes, or be a derived type that in turn has such components.
■ There cannot be any type-bound procedures.

To deal with pointers and allocatable arrays, you can use routines such as
c_loc() to get the C address of a Fortran variable (including pointers and
allocatables) or c_f_pointer() to convert a C address (C pointer) to a Fortran
pointer.

Here is a simple example. The C struct

typedef struct {
int number;
char name[10];
float *array;

} mystruct;

can be represented in Fortran as:

use iso_binding_c
type, bind(C) :: mystruct

integer(c_int) :: number
character(c_char), dimension(10) :: name
type(c_ptr) :: array

end type mystruct

The component array is not recognizable as an array of reals on the Fortran
side, so you will have to take special care, as illustrated in the following.

Here are several fragments of a library written by Daniel Kraft to interface with
the MySQL database management system ([57], the layout has been adjusted
to the style used in this book). It uses the iso_c_bindingmodule to completely
define this interface in Fortran. Data are stored in dedicated derived types,
such as:

type myfortran_row
integer :: num_fields
integer, allocatable :: lengths(:)
type(c_ptr) :: c_row

end type myfortran_row

3 Work is being done on an extension of the interfacing facilities that will relieve many of these
restrictions [12].

84 MODERN FORTRAN IN PRACTICE

The various MySQL routines have interfaces like these:

interface
function c_fetch_row (res) bind(C, name='mysql_fetch_row')

use, intrinsic :: iso_c_binding
type(c_ptr), value :: res
type(c_ptr) :: c_fetch_row

end function c_fetch_row
end interface

To get the results of a query, row by row, into a Fortran program, the function
myfortran_fetch_row is used: The C function c_fetch_row returns the data
in the row as a long string of characters and the C function c_fetch_lengths

returns the lengths of the fields within this long string. To manage these C
data structures, several intrinsic functions from the iso_c_binding module
are used:

! Fetch a row. Returns false if no more rows available.
logical function myfortran_fetch_row(res, row)

type(myfortran_result), intent(inout) :: res
type(myfortran_row), intent(out) :: row

integer(c_int), pointer :: lenptr(:)
type(c_ptr) :: lengths

!
! Fetch the row data itself.
!
row%c_row = c_fetch_row(res%res)
myfortran_fetch_row = c_associated(row%c_row)

if (.not. myfortran_fetch_row) return

!
! Fetch number of fields.
!
row%num_fields = c_num_fields(res%res)

!
! Get field lengths.
!
allocate(row%lengths(row%num_fields))

lengths = c_fetch_lengths(res%res)
call c_f_pointer(lengths, lenptr, shape(row%lengths))

row%lengths = lenptr

end function myfortran_fetch_row

INTERFACING TO C: SQLITE AS AN EXAMPLE 85

Once the row data has been retrieved, another function takes care of extracting
the correct data for a particular field, which again requires a routine from the
iso_c_binding module:

! Get a field from a row.
function myfortran_get_field(row, ind)

type(myfortran_row), intent(in) :: row
integer, intent(in) :: ind
character(len=row%lengths(ind)) :: myfortran_get_field

type(c_ptr), pointer :: cstrs(:)
character(kind=c_char), pointer :: cstr(:)
integer :: i

call c_f_pointer(row%c_row, cstrs, shape (row%lengths))
call c_f_pointer(cstrs(ind), cstr, (/row%lengths(ind)/))

do i = 1, row%lengths(ind)
myfortran_get_field(i:i) = cstr(i)

end do
end function myfortran_get_field

6.5 Interfacing to SQLite
SQLite is a well-known open source database management system developed
by Richard Hipp [44]. It actually consists of a single C library as it works
without a server. A simple but typical scenario for working with SQLite is:
■ Open the database (an ordinary file or a block of memory).
■ Run one or more SQL statements to create a new table and fill it with data

or to select existing data from an existing set of tables.
■ Close the file.

The goal of the fsqlite library is to work with SQLite without having to
know anything about SQL, although for more complicated queries you would
need to construct suitable SQL statements. More specifically, fsqlite provides
high-level routines to:
■ Connect to the database
■ Create tables and query the structure of the tables
■ Select data from the tables
■ Enter new data or delete existing data
■ Start and stop transactions

The connection to the database is represented by a C pointer to an opaque
data structure. Executing SQL statements is at the heart of the library and
these statements are represented by a pointer to another opaque structure.
For the library to be useable from Fortran, you need to deal with these
pointers.

86 MODERN FORTRAN IN PRACTICE

As previously explained, the library fsqlite stores these pointers in a small array
of integers – long enough to hold C pointers on 32-bits and 64-bits machines.
On the Fortran side, the arrays are kept in derived types:

type sqlite_database
integer, dimension(2) :: db_handle
integer :: error
character(len=80) :: errmsg

end type sqlite_database

Many of the routines in the fsqlite library simply run a single SQL statement,
but the only information returned is whether all went well or there was
some error condition. To communicate this to the Fortran side, the type
sqlite_database also holds the error code and the error message (if any). The
Fortran routine sqlite3_do takes care of this:

subroutine sqlite3_do(db, command)
type(sqlite_database) :: db
character(len=*) :: command

interface
integer function sqlite3_do_c(handle, command, errmsg)

integer, dimension(*) :: handle
character(len=*) :: command
character(len=*) :: errmsg

end function sqlite3_do_c
end interface

! +1 for the NUL character
character(len=len(command)+1) :: commandc
integer :: k

commandc = command
call stringtoc(commandc)

db%errmsg = ' '
db%error = sqlite3_do_c(db%db_handle, commandc, db%errmsg)

end subroutine sqlite3_do

Its C counterpart (sqlite3_do_c_, slightly simplified):

int FTNCALL sqlite3_do_c_(
sqlite3 **db,
char *command,
char *errmsg,
int len_command,
int len_errmsg) {

int rc ;

INTERFACING TO C: SQLITE AS AN EXAMPLE 87

char *msg ;

rc = sqlite3_exec(*db, command, callback, 0, &msg) ;
if (msg != NULL)
{

strncpy(errmsg, msg, len_errmsg) ;
}
return rc ;

}

The SQL statement that you must run is contained in the string argument.
This string is first converted into a string compatible with C. For this purpose,
use a local string variable with a length one larger than that of the incoming
string, so that there is always room for the NUL character at the end.

As you can see, the C side does not get passed the derived type. Instead, only
pass the individual fields of the sqlite_database type.

This routine suffices for all SQL statements where no information is returned
or passed on beyond an error code. It suffices, for instance, to create a new
table when the SQL statement to do so has been constructed:

subroutine sqlite3_create_table(&
db, tablename, columns, primary)

type(sqlite_database) :: db
character(len=*) :: tablename
type(sqlite_column), dimension(:) :: columns
character(len=*), optional :: primary

character(len=20+80*size(columns)) :: command
character(len=40) :: primary_
integer :: i, ncols

primary_ = ' '
if (present(primary)) then

primary_ = primary
endif

ncols = size(columns)
write(command, '(100a)') &

'create table ', tablename, ' (', &
(trim(columns(i)%name), ' ', &
trim(typename(columns(i), primary_)), ', ', &

i = 1,ncols-1), &
trim(columns(ncols)%name), ' ', &
trim(typename(columns(ncols),primary_)), ')'

call sqlite3_do(db, command)

end subroutine sqlite3_create_table

88 MODERN FORTRAN IN PRACTICE

The description of what columns the table should contain is stored in an array
of type sqlite_column. This derived type is used throughout to deal with
how the SQL language, as implemented in SQLite, handles data types. Several
auxiliary routines are available to fill the fields of this data type and to extract
information, as shown in this fragment:

type(sqlite_database) :: db
type(sqlite_column), dimension(4) :: col

call sqlite3_open('somedata.db', db)

call sqlite3_column_props(col(1), 'station', sqlite_char, 10)
call sqlite3_column_props(col(2), 'date', sqlite_char, 10)
call sqlite3_column_props(col(3), 'salinity', sqlite_real)
call sqlite3_column_props(col(4), 'temperature', sqlite_real)

call sqlite3_create_table(db, 'measurements', col)

To get data from the database or store new data, you also use the sqlite_column
type, but here you need to be careful: SQLite uses a binding technique to
communicate the values back and forth – rather than via arguments, which
would be awkward as the types and the number of data will vary per query or
per table. Therefore, it stores the addresses of the variables that (will) hold the
data. These variables may not be local variables in a subroutine, as these cease
to exist as soon as you return from the subroutine. Instead, use the fields in
the sqlite_column type (extracted from the sqlite3_insert routine):

!
! Prepare the insert statement for this table
! (The question marks indicate the bound variables)
!
write(command, '(100a)') 'insert into ', trim(tablename), &

' values(', ('?,', i = 1,size(columns)-1), '?)'

call stringtoc(command)
prepared_columns => columns
call sqlite3_prepare(db, command, stmt, prepared_columns)

!
! Bind the values
!
do i = 1,size(columns)

select case (columns(i)%type_set)
case (sqlite_int)

rc = sqlite3_bind_int_c(&
stmt%stmt_handle, i, columns(i)%int_value)

case (sqlite_double)
rc = sqlite3_bind_double_c(&

stmt%stmt_handle, i, columns(i)%double_value)

INTERFACING TO C: SQLITE AS AN EXAMPLE 89

case (sqlite_char)
rc = sqlite3_bind_text_c(&

stmt%stmt_handle, i, &
trim(columns(i)%char_value))

end select
if (rc .ne. 0) then

db%error = rc
call sqlite3_errmsg_c(db%db_handle, db%errmsg)
call stringtof(db%errmsg)

endif
enddo

!
! Actually perform the insert command
!
call sqlite3_step(stmt, rc)
call sqlite3_finalize(stmt)

(Using the result of the trim() function is safe, as the corresponding SQLite
routine, sqlite3_bind_text(), is called with the flag SQLITE_TRANSIENT, to
indicate that it should create a copy of the string.)

Retrieving the data is done in a completely analogous way. The following
program illustrates the interface. It first creates a database with one table and
fills it with data from a CSV file, consisting of the name of a monitoring station
and three measured values. Then, it queries the database to get averages per
station, sorted alphabetically:

program csvtable
use sqlite

implicit none

type(sqlite_database) :: db
type(sqlite_statement) :: stmt
type(sqlite_column), dimension(:), pointer :: col

integer :: lun = 10
integer :: i
integer :: j
integer :: ierr
character(len=40), dimension(4) :: name
real :: salin
real :: temp
character(len=40) :: station
character(len=40) :: date
logical :: finished

character(len=40), pointer, dimension(:,:) :: result

90 MODERN FORTRAN IN PRACTICE

character(len=80) :: errmsg

!
! Read the CSV file and feed the data into the database
!
open(lun, file = 'somedata.csv')
read(lun, *) name

call sqlite3_open('somedata.db', db)

allocate(col(4))
call sqlite3_column_props(col(1), name(1), sqlite_char, 10)
call sqlite3_column_props(col(2), name(2), sqlite_char, 10)
call sqlite3_column_props(col(3), name(3), sqlite_real)
call sqlite3_column_props(col(4), name(4), sqlite_real)
call sqlite3_create_table(db, 'measurements', col)

!
! Insert the values into the table. For better performance,
! make sure (via begin/commit) that the changes are committed
! only once.
!
call sqlite3_begin(db)
do

read(lun, *, iostat=ierr) &
station, date, salin, temp

if (ierr .ne. 0) exit

call sqlite3_set_column(col(1), station)
call sqlite3_set_column(col(2), date)
call sqlite3_set_column(col(3), salin)
call sqlite3_set_column(col(4), temp)

call sqlite3_insert(db, 'measurements', col)

enddo

close(lun)

call sqlite3_commit(db)

!
! We want a simple report, the mean of salinity and

temperature
! sorted by the station
!

INTERFACING TO C: SQLITE AS AN EXAMPLE 91

deallocate(col)
allocate(col(3))

call sqlite3_column_query(col(1), 'station', sqlite_char)
call sqlite3_column_query(col(2), name(3), sqlite_real, &

function='avg')
call sqlite3_column_query(col(3), name(4), sqlite_real, &

function='avg')

call sqlite3_prepare_select(db, 'measurements', col, &
stmt, 'group by station order by station')

write(*, '(3a20)') &
'Station', 'Mean salinity', 'Mean temperature'

do
call sqlite3_next_row(stmt, col, finished)

if (finished) exit

call sqlite3_get_column(col(1), station)
call sqlite3_get_column(col(2), salin)
call sqlite3_get_column(col(3), temp)

write(*, '(a20,2f20.3)') station, salin, temp
enddo

call sqlite3_close(db)

end program

The program lets the fsqlite library take care of constructing the various SQL
statements. Only the extra clause to the sqlite3_prepare_select routine
exposes a part of an SQL statement. The results of the query are then retrieved
row by row.

7.

Graphics, GUIs, and
the Internet

Interaction with the user via graphical presentation or graphical interfaces is
an extremely important aspect of computing. It is also an area that depends
heavily on the available hardware and the operating system. While much effort
has been put into the various operating environments to hide the hardware
aspect, programming a graphical user-interface (GUI) on MS Windows is
completely different from doing so on Linux or Mac OS X.

Hardly any programming language defines how you can display results graph-
ically or how to build a graphical user-interface. The common approach is to
use a library that hides – if possible or desirable – the specifics of the operat-
ing system, so that a portable program results. Some libraries, however, have
been designed to take advantage of exactly one operating system, so that the
program fits seamlessly in that environment, at the cost of not being portable
anymore. At the same time, you should not underestimate the effort and skills
required for designing and building a useful and usable GUI [3].

For a Fortran programmer, the situation is a bit complicated: most GUI
libraries are written with C, C++, and similar languages in mind. Further-
more, a GUI for a long-running computation should have different properties
than one for filling in a database form. This chapter examines a variety of
solutions.

7.1 Plotting the Results
The first type of graphical interaction to examine is the presentation of the
results of a computation. The responses from the user are simple: leaf through
the collection of plots – in many cases sequentially – and maybe change
a display parameter here and there. Anything more falls in the category of
GUIs. This is essentially a one-way interaction, therefore, all you need is a
library of routines to draw various objects on the screen or in a file on disk,
like a PostScript or PDF file, for later processing.

There exists a broad variety of such libraries [18], [25], many with Fortran
bindings and both commercial and open source software. From this collection,
I describe PLplot in more detail. I chose this library as I have been involved in
its development and maintenance for several years now and as a consequence

92

GRAPHICS, GUIS, AND THE INTERNET 93

1086420
-1.0

-0.5

0.0

0.5

1.0
Function: f(x) = exp(-x) * cos(ax)

(x)

(y
)

Figure 7.1. Plotting a graph via PLplot

know its usage and capabilities. You can choose any library that better suits
your purposes, but the principles will be similar.

PLplot is a library, or rather a collection of libraries, for plotting technical and
scientific data, such that the source code is independent of the platform. It
offers a wide range of output formats (both on screen and in files on disk) as
well as interfaces to a variety of languages (C, Java, Octave, and Tcl to name
a few). It has an interface to Fortran in both FORTRAN 77 and Fortran 90
style.

The style of programming is illustrated with a small example. The program
reads a parameter a for the function f : f (x) = exp(−x) cos ax and then draws
a graph of that function. To do this, it uses the following PLplot routines:
■ plparseopts analyzes the command-line arguments and one or more

parameters.
■ plinit initializes the library, asks for the output device if that is not set

(via the command-line arguments or the routine pldev), and brings up a
graphical window.

■ plenv and pllab are used to draw a simple axis system with labels.
■ plline draws a continuous line through the data points.
■ plend finalizes the library (for example, in interactive mode it waits for the

user to click in the window, while in batch mode it completes the output
files).

94 MODERN FORTRAN IN PRACTICE

The source code for the program follows1

program plotgraph
use plplot

implicit none

real(kind=plflt) :: param
real(kind=plflt), dimension(201) :: x, y
real(kind=plflt) :: xmin, ymin, xmax, ymax
integer :: justify, axis
integer :: i

! Ask for the parameter "a"
write(*,*) 'Value for the parameter "a":'
read(*,*) param

! Parse the command-line arguments
call plparseopts(PL_PARSE_FULL)

! Initialize the library
call plinit

! Set up the viewport with default axes
xmin = 0.0_plflt
xmax = 10.0_plflt
ymin = -1.0_plflt
ymax = 1.0_plflt

justify = 0
axis = 0
call plenv(xmin, xmax, ymin, ymax, justify, axis)
call pllab('(x)', '(y)', &

'Function: f(x) = exp(-x) * cos(ax)')

! Compute the values and draw the graph
do i = 1,size(x)

x(i) = (i-1) * 0.05_plflt
y(i) = func(param, x(i))

enddo

call plline(x, y)

call plend
contains

1 The real kind plflt is used to make the program independent of the specific reals the PLplot library
expects – it can be either single or double precision, depending on the build options.

GRAPHICS, GUIS, AND THE INTERNET 95

real function func(param, x)
real(kind=plflt) :: param, x

func = exp(-x) * cos(param*x)

end function func

end program plotgraph

By selecting the right device, you can get the picture on screen or store it in a
PNG file.

Libraries such as PLplot generally offer both low-level routines for plotting
graphical primitives, like lines and circles, and high-level routines that take
care of many details – plotting a time axis or a complete shaded surface in
three dimensions. Some also offer GUI capabilities [DISLIN and Interacter,
for instance, and both commercial products, see also [29] for several
others].

An alternative approach is to separate the program that does the graphical
presentation and the program that provides the data for that presentation.
This gives you a number of benefits:
■ The computational program can be developed independently of the pre-

sentation program.
■ The presentation program in turn could be an off-the-shelf product like

gnuplot or a MATLAB script.
■ If the computations take a long time, simply store the results in a file

and present them later. There is no need to try and show intermediate
results.

The two programs can actually run together, so for the user, it is irrelevant
which program does what. The following Tcl/Tk program presents a very
simple interface where the user enters a value for the parameter a and presses
the button. It feeds this value to the computational program that then produces
a table of values to plot (see Figure 7.2):

plotgui.tcl --
Very simple GUI:
- Get one value
- Run the computational program
- Display the result
#

#
Load a plotting package
#
package require Plotchart

96 MODERN FORTRAN IN PRACTICE

Figure 7.2. Plotting a graph via a simple GUI in Tcl/Tk

#
Create the user-interface elements
#
::ttk::frame .toprow
::ttk::button .toprow.b -text Plot \

-command {putValue} -width 10
::ttk::label .toprow.l -text Parameter:
::ttk::entry .toprow.e -textvariable parameter

canvas .c -width 500 -height 400 -bg white

#
Arrange them in the main window (.)
grid .toprow.l .toprow.e .toprow.b -padx 5 -sticky w
grid .toprow
grid .c - -

#
Auxiliary procedures
#
proc putValue {} {

global parameter
global program
global plot

GRAPHICS, GUIS, AND THE INTERNET 97

puts $program $parameter
flush $program

#
Clean up the graph
#
$plot plot data {} {}
.c delete data

}

proc readData {channel} {
global plot

if { ![eof $channel] } {

gets $channel line

scan $line "%f %f" x y
$plot plot data $x $y

} else {
close $channel

}
}

#
Set up the plot and start the program
#
set parameter 1.0

set plot [::Plotchart::createXYPlot .c {0.0 10.0 2.0} \
{-1.0 1.0 0.25}]

set program [open "|runprogram" r+]
fileevent $program readable [list readData $program]

#
The event loop starts automatically ...
We can just wait now

The Fortran program that is run is called “runprogram” or “runprogram.exe”,
depending on the platform. It is run via a so-called pipe, therefore, the Tcl
program can send data to the Fortran program and vice versa. The details
are hidden in the Tcl open command and the pipe symbol (|) that precedes
the name of the program. Because such communication is event-driven, use
the fileevent command to set up an event handler for this communication.
The Plotchart package is a Tcl-only package for plotting xy-graphs and other
common types of charts [52].

98 MODERN FORTRAN IN PRACTICE

The source code for “runprogram” is straightforward:

program runprogram
use iso_fortran_env

implicit none

real :: param, x, y
integer :: i

do
read(*,*) param

do i = 0,200
x = i * 0.05
y = func(param, x)

write(*,*) x, y
enddo

flush(output_unit)

enddo
contains

real function func(param, x)
real :: param, x

func = exp(-x) * cos(param*x)

end function func
end program runprogram

The only special feature is the use of the flush statement to ensure that the
data are immediately sent to the Tcl program, rather than kept in a buffer
until that is full.

With this architecture, the responsibilities are completely separated:
■ The presentation program merely expects the computational program to

read the parameter and to produce the table.
■ The computational program can be changed or completely replaced inde-

pendently of the presentation program (and vice versa).

7.2 Graphical User-Interfaces
From the programmer’s point of view, graphical user-interfaces differ in one
important aspect from textual interfaces: There is no predefined order in which
the user makes choices. With a textual interface, the program can present a list

GRAPHICS, GUIS, AND THE INTERNET 99

of possibilities and the user selects one. Based on that choice, the program does
some processing and presents the next list of choices, or perhaps a question,
to get the value of a parameter. The program, however, dictates the order.

With GUIs, the user sees all possibilities within one screen. He or she can
decide to fill in all the entry fields in any order, leave out a few, then press one
of a range of buttons, or select a menu item. This has distinct consequences
for the architecture of a GUI program. The decision structure at the heart of
a textual interface is not present anymore. Instead, the various parts of a GUI
program need to respond to events such as when the user presses the button
“Run”, so the program gathers all information typed in the window and runs
the computation. In the Tcl/Tk example from the previous section, this is
handled by associating the command putValue with the push button labeled
“Run.” The value that the user entered is kept in a global variable parameter,
as the entry widget2 and that variable are connected:

entry .toprow.e -textvariable parameter

In other GUI systems, you may have to read out the contents of the window
explicitly before running the computation.

Another type of event is when the keyboard focus is set or lost in an entry
widget. You can use this to check if the value that the user typed is acceptable.
For example, is it a proper number?

The structure of the program, therefore, will look like this:
■ An implicit or explicit event loop, where the program receives the events

that describe the user’s actions. From the event loop, the routines associated
with the events are called.

In many systems, the interface for these routines is fixed – you cannot pass
an arbitrary list of arguments and, therefore, you need access to some global
data structure.3

■ A global data structure that is filled and read by the routines associated with
the events.

■ A set of routines that are responsible for the appropriate actions based on
the event. These routines have to be registered so that the event loop can
dispatch each event to such a routine.

With some toolkits for building GUIs, routines for handling events receive all
events for a particular window and, therefore, they have to handle events for all
widgets inside that window. With other toolkits, routines may be associated
with a particular widget or even a particular type of event for the widget.
The Software Development Kit (SDK) on MicroSoft Windows, meant for

2 The term widget is commonly used for elements of a GUI window. It refers to that element and the
way it reacts to various events (mouse clicks, for instance). Another term is control.
3 This is another example of the interface or environment problem, discussed in Chapter 5.

100 MODERN FORTRAN IN PRACTICE

developing C programs, is an example of the first category. The AWT toolkit
found in Java is an example of the second.

The Tk toolkit, part of Tcl/Tk4, takes care of many details automatically and,
therefore, offers a high-level interface. Typically, there are only a few events of
interest for the programmer, and you bind a routine to the combination of
widget and event.

That said, there are roughly four methods to add a GUI to a (computational)
program:
■ The program and its computations are extended with a GUI library so that

it brings up the windows and handles all events.
■ The original program is turned into a library. A more or less separate GUI

program is written, which calls the routines from the computational library
to do the computations.

■ The GUI is a completely separate program that merely writes the input files
for the computational program.

■ The GUI interacts with the computational program in a similar manner as
the Tcl/Tk program in the previous section.

An example of the first approach is found in the Xeffort library [33].5 This
library, developed by Jugoslav Dujic, allows you to build user-interfaces directly
in Fortran. It assumes a particular development environment: MS Windows
and the Intel Fortran compiler. Here are a few fragments from the XGraph
example to illustrate the style of programming:

!PURPOSE: Initialization function called by XFT library
! on app start.
LOGICAL FUNCTION XInit(szCmdLine,nCmdShow)
!DEC$ATTRIBUTES DECORATE, ALIAS: "XINIT":: Xinit

USE View
USE FuncDlg

IMPLICIT NONE

CHARACTER(*), INTENT(IN):: szCmdLine
INTEGER, INTENT(IN):: nCmdShow

LOGICAL:: bSt
INTEGER:: iSt, iX, iY

4 For the Tk toolkit bindings exist for a large number of other programming languages such as Perl
and Python.
5 At the time of this writing, Jerry Delisle is developing Fortran bindings for the GTK+ toolkit to
provide a platform-independent solution [30].

GRAPHICS, GUIS, AND THE INTERNET 101

INCLUDE 'Resource.fd'

!Loading menu resource
xMenu = XLoadMenu(IDR_MENU_MAIN)

bSt = XLoadAccelerators(IDR_ACCELTABLE)
!Creation of App & frame window
bSt = XCreateSDIApp(xMenu, "XGraph", IDI_ICON_MAIN, &

iExStyle=WS_EX_CONTROLPARENT+WS_EX_APPWINDOW)

!Handle sizing of the main window
bSt = XSetHandler(XW_FRAME, WM_SIZE, XW_FRAME_OnSize)
bSt = XSetHandler(XW_FRAME, WM_CLOSE, XW_FRAME_OnClose)

!Menu item handlers
bSt = XSetCommand(XW_FRAME, IDM_HELP_ABOUT, XFrame_OnAbout)
bSt = XSetCommand(XW_FRAME, IDM_FILE_CLOSE, XFrame_OnExit)
bSt = XSetCommand(XW_FRAME, IDM_VIEW_GRID, &

XW_FRAME_OnViewGrid)
bSt = XSetCommand(XW_FRAME, IDM_COPY_WMF, XW_FRAME_OnCopyWmf)
bSt = XSetCommand(XW_FRAME, IDM_COPY_BMP, XW_FRAME_OnCopyBmp)
bSt = XSetCommand(XW_FRAME, IDM_FILE_SAVEAS, &

XW_FRAME_OnFileSaveas)

!Create dialog for entering function properties
CALL XFuncDlg_Create()
!Create view window for image rendering
CALL XView_Create()

!Force refresh of the window/scrollbar
bSt = XGetClientRect(XW_FRAME, iX, iY)
bSt = XW_FRAME_OnSize(XW_FRAME, iX, iY, 0)

XInit = .TRUE.

END FUNCTION XInit

Here is the function to react to the user resizing the window:

!==
!Called whenever the window is resized. It demonstrates
!two types of behavior:
! - when the size is "locked", the virtual image size
! remains unchanged. Scrollbars appear whenever necessary
! - otherwise, the image is scaled to match the client
! area dimensions.
LOGICAL FUNCTION XW_FRAME_OnSize(&

xWnd, iWidth, iHeight, nFlag)

102 MODERN FORTRAN IN PRACTICE

USE View
USE FuncDlg

TYPE(X_WINDOW):: xWnd
INTEGER, INTENT(IN):: iWidth, iHeight
INTEGER, INTENT(IN):: nFlag

LOGICAL:: bSt
INTEGER:: iX, iY, jWidth, jHeight

!Move the FuncDlg window
bSt = XGetWindowPos(xFuncDlg, iX, iY, iWidth=jWidth, &

iHeight=jHeight)
bSt = XSetWindowPos(xFuncDlg, 0, 0, iWidth, jHeight)
!Move the View window just below the FuncDlg window
bSt = XSetWindowPos(xView, 0, jHeight, iWidth, &

iHeight-jHeight)
CALL XUpdateWindow(xView)

XW_FRAME_OnSize = .FALSE.

END FUNCTION XW_FRAME_OnSize

The resulting user-interface is shown in Figure 7.3. The programming model
is therefore:
■ Create individual subroutines like XW_FRAME_OnSize for handling particular

events in a window.
■ Register these routines so that they can be automatically invoked when the

event occurs.

The second approach, using the program as a library, is illustrated by the Ftcl
library that I developed myself [55]. This library enables you to use Fortran
routines as new Tcl commands. The method to do so is to create a routine
with a predefined interface and to register it as a new command:

module functions
implicit none

contains

! compute_func --
! Compute the function:
! f(x) = exp(-x) * cos(ax)
!
! Arguments:
! cmdname Name of the Tcl command
! noargs Number of arguments
!
subroutine compute_func(cmdname, noargs)

GRAPHICS, GUIS, AND THE INTERNET 103

Figure 7.3. Example of a graphical user-interface using the Xeffort
library

character(len=*) :: cmdname
integer :: noargs

real :: param
real :: x
real :: result

if (noargs .ne. 2) then
call ftcl_set_error(&

"Usage: " // trim(cmdname) // " param x")
return

else
call ftcl_get_arg(1, param)
call ftcl_get_arg(2, x)

result = exp(-x) * cos(param * x)

call ftcl_put_result(result)
endif

end subroutine compute_func
end module functions

! package_init --
! Register the commands and the package itself

104 MODERN FORTRAN IN PRACTICE

!
! Arguments:
! error Zero if all is okay, otherwise an error
! occurred while initializing
!
subroutine package_init(error)

use functions

implicit none
integer :: error

error = 0

call ftcl_make_command(compute_func, "func")

call ftcl_provide_package("functions", "1.0", error)

end subroutine package_init

The Fortran subroutine compute_func is callable from Tcl via the command
func. The routine ftcl_make_command takes care of the details. Note that the
routine package_init is kept out of a module, as it needs to be called from a
C function.

Then, the GUI is programmed using Tcl/Tk:6

...
package require functions
...
::ttk::button .toprow.b -text Plot -command {drawGraph} \

-width 10

...

proc drawGraph {} {
global parameter
global plot

#
Clean up the graph
#
$plot plot data {} {}
.c delete data

6 While using two different programming languages makes it is easy to separate the GUI from the
computations, this separation, is of course, possible within one language, too. It takes more discipline,
however, to maintain the separation of concerns.

GRAPHICS, GUIS, AND THE INTERNET 105

Table 7.1. Characteristics of Various Methods for Adding a GUI to a
Program

Method Advantages

Integrated GUI and computations One programming language
GUI and computational program naturally

evolve together

GUI with computational library One or two programming languages,
choose the most suitable ones

Clear separation of responsibilities

Separate programs and Complete freedom in choosing the
cooperating programs development environment for the GUI

Clear separation of responsibilities

Method Disadvantages

Integrated GUI and computations Suitable Fortran toolkit required
Intertwined of responsibilities

GUI with computational library Interfacing to Fortran required if the GUI
toolkit does not support Fortran directly

Separate programs and Independent programs can lead to disparate
Cooperating programs development

for {set i 0} {$i <= 200} {incr i} {
set x [expr {$i * 0.05}]
set y [func $parameter $x]
$plot plot data $x $y

}
}
...

Instead of starting an external program as in Section 7.1, call the routine
drawGraph in response to pressing the button. This routine calls the Fortran
routine via func once for each data point.

The advantages and disadvantages of the various approaches are summarized
in Table 7.1.

7.3 The Internet
While creating a complete Internet site that is rich in content is no sinecure,
the technical principle is remarkably simple. A server program handles the
incoming requests for information. It passes these requests to the right com-
ponent, which, in turn, produces an HTML file that the server sends back to
the client.

Although this book will not consider what the server is all about, it will
look at a single method that an Internet server can use to interact with the

106 MODERN FORTRAN IN PRACTICE

component – the so-called common gateway interface or CGI. This is the
only method that is independent of the chosen server software. With other
methods, the program that implements the actual service is called as a library
and the interaction with the server relies on a set of routines that are specific
to the server.

CGI is a relatively simple, uniform protocol. The server starts the program as a
separate process, sending it information about the request either via “standard
input” (read(*,*)) or via an environment variable. The program itself then
writes the output with a suitable header to the “standard output” (write(*,*)).

The technical complications are limited:
■ You need to get the parameters that are part of the user’s request from the

information supplied by the server. The details depend on which method
was used in the HTML file that led to the new request, “GET” or “POST”.7

■ The output should have a header that tells the server (and the receiving
client) what kind of output is sent – plain text, HTML text, and so on.

More important, however, are the complications that arise from the modus
operandi:
■ A CGI program starts and stops independently with each request. There-

fore, there is no state information other than that stored in the parameters
belonging to the request.

■ There may be many requests at once, so that the program is started several
times. This means you will have to devise a way to store data in independent
files, if you need external files.

Suppose that you want to show the new results in a long-running computation.
You have to store what results the user saw last somewhere, if you want to show
results they have not seen. This “somewhere” may be a file on disk, but you
will have to store the user’s identity and what computation he or she wants to
see as well. Then, this all information must be somehow retrieved.

The following illustrates the basics of CGI using a simple service. Suppose
you want to design a website that presents a table of function values. The
function is that of Section 7.1. The user types in the single parameter and
sends a request to the server for the table. Here is the initial HTML page:

<html>
<head><title>Table of function values</title>
<body>
Parameter: <input type="text" name="param" value="0.0">
<input type="submit">
</body>
</html>

7 The CGI module in the Flibs library [57] takes care of these details.

GRAPHICS, GUIS, AND THE INTERNET 107

The CGI program will produce this same page but extended with the table
(or a graph of the function, using PLplot to create a GIF file). This way the
user can change the parameter value and ask for a new table without having
to navigate back.

When the user clicks on the Submit button, the URL connected to the button
is sent back along with the parameter value. On the server side, the CGI
program is called. Using the CGI module from the Flibs library, you can write
the code like this:

program cgi_example

use cgi_protocol

implicit none

! Initialization is important!
type(dict_struct), pointer :: dict => null()
integer :: i
integer :: luout
integer :: steps
real :: xmin
real :: xmax
real :: param
real :: x, y
character(len=20) :: param_string

!
! Get the CGI information
! and write the start of the HTML file (plus the
! start of the table)
! (Note: we include the text entry and submit button,
! so the user can easily select a new value)
!
call cgi_begin(output_html, dict, luout)

call cgi_get(dict, "param", param)
call cgi_get(dict, "param", param_string)

write(luout, '(a)') '<html>'
write(luout, '(a)') &

'<head><title>Table of function values</title></head>'
write(luout, '(a)') '<body>'

write(luout, '(a,a,a)') &
'Parameter: <input type="text" name="param" value="', &
trim(param_string), '"> <input type="submit">'

108 MODERN FORTRAN IN PRACTICE

write(luout, '(a)') '<table>'
write(luout, '(a)') '<tr>'
write(luout, '(3a)') &

' <td>x</td><td>f(x) = exp(-x) * cos(ax)</td>'
write(luout, '(a)') '</tr>'

!
! Produce the table of function values
!
xmin = 0.0
xmax = 10.0
steps = 201

do i = 1,steps
x = (i-1) * 0.05

y = func(param, x)

write(luout, '(a)') '<tr>'
write(luout, '(a,f10.4,a,f10.4,a)') &

' <td>', x, '</td><td>', y, '</td>'
write(luout, '(a)') '</tr>'

enddo

write(luout, '(a)') '</table>'
write(luout, '(a)') '</body>'
write(luout, '(a)') '</html>'

!
! We are done
!
call cgi_end

contains

real function func(param, x)
real :: param, x

func = exp(-x) * cos(param*x)

end function func

end program cgi_example

The parameters from the request (a single one in this example) are analyzed
by the routine cgi_begin and stored in a so-called dictionary. This contains
the names of the parameters and their values. Using the routine cgi_get you
can then get the value by name, almost all details are hidden in the module.

GRAPHICS, GUIS, AND THE INTERNET 109

When the actual output of the program is written to the output file (“word”),
the final routine can finish the output, so that it is a valid CGI response.

In a more elaborate web application, you may end up with many such programs
or just a few that can write many different HTML pages. The same principle
applies though: The various runs must be independent of each other and
only by external administration can you keep some form of state information.
Well-known techniques for doing so are cookies, but hidden variables in the
HTML page may help as well. These topics are beyond the scope of this book
[15].

7.4 Dealing with XML Files
With the Internet, one particular file format has become very popular: XML
files. The attraction of XML files is that their regular structure makes it possible
to develop generic libraries for parsing the contents and verifying that they
comply to the expected structure. This makes them very suitable for conveying,
configuration information.

Furthermore, the structure is hierarchical, making it easy to group the infor-
mation in ways that are most suitable for the purpose. This hierarchy is used
extensively in docbook [81], a set of conventions to structure the text and
layout of books, including software manuals (the PLplot library, discussed in
the beginning of this chapter, is documented using docbook).

A simple example of an XML file is:

<?xml version="1.0"?>
<bibliography>

<book reference="GulliversTravels">
<author>Jonathan Swift</author>
<year>...</year>
<title>Gulliver's travels</title>

</book>
<book reference="Iliad">

<author>Homer</author>
<year>unknown</year>
<title>Iliad</title>

</book>
<book reference="Odyssey">

<author>Homer</author>
<year>unknown</year>
<title>Odyssey</title>

</book>
...

</bibliography>

The overall element “bibliography,” encloses a list of zero or more books and
other literature references, or everything contained between the “book” tags.

110 MODERN FORTRAN IN PRACTICE

The tag <book reference=...> is the start of a reference, while the tag </book>
is the end of it. All information about the book is contained between these
two tags via new tags.

A tag, as in the example of “book”, can also contain one or more attributes:

<book reference="GulliversTravels">

These are always interpreted as key-value pairs with a character string as the
value.

Parsing the XML file is one thing, but handling the contents is quite another.
There are several general strategies, each with its own merits. You can simply
read the file and process the contents as you go along. For example, you may
want to reformat the preceding bibliography to a more suitable form (HTML
with CSS markup, for instance). This is known as the SAX approach.

Another strategy, “document object model” or DOM, is to store the contents
in a tree structure, so that you can search for the right elements: load the XML
file into memory and print all references to Jonathan Swift or sort the entries
in alphabetical order.

Often, it is more convenient to create a data structure that corresponds directly
to the structure of the XML file:

type book_reference
character(len=20) :: key
character(len=80) :: author
character(len=200) :: title
integer :: year

end type book_reference

type(book_reference), dimension(:), allocatable :: bibliography

Once you have read the XML file into this structure, you can use the infor-
mation directly:

call load_bibliography(bibliography, xmlfile)
call sort_author_and_year(bibliography)
call pretty_print(bibliography)

There are a number of libraries that enable you to read XML files [18].
One is xml-fortran. The associated xmlreader utility takes a description of
the XML file’s structure and generates a complete module to read XML files
with this structure and store the information automatically. For the preceding
bibliography file, the description may look like the following:

<?xml version="1.0"?>
<template>

<options strict="yes" rootname="bibliography"/>
<typedef name="book_t">

GRAPHICS, GUIS, AND THE INTERNET 111

<component name="reference" type="word" length="40"/>
<component name="author" type="line" length="40"/>
<component name="year" type="word" length="10"/>
<component name="title" type="line" length="80"/>

</typedef>
<variable name="book" type="book_t" dimension="1"/>

</template>

The type “word” represents items that should consist of a single word only,
whereas the “line” represents items that contain arbitrary text contained on a
single line.

Reading a bibliography file is done using the generated routine read_xml_

file_bibliography:

program print_bib

use xml_data_bibliography

!
! Read in the entire file (leave out optional arguments)
!
call read_xml_file_bibliography("example_bib.xml")

!
! Print the contents
!
do i = 1,size(book)

write(*,'(a20,a,a)') &
book(i)%author, ' - ', trim(book(i)%title)

enddo
end program print_bib

The library also supports the SAX approach:8

module bibliography_scan
implicit none

!
! Work arrays for storing the information from the XML file
!
character(len=20), dimension(2,100) :: attribs
character(len=80), dimension(100) :: data

8 Other methods store the contents in a general tree or handle the entires file tag by tag. In that case,
the routine xmlparse is used to get the tag and the data that belong to it. The library does not support
searching the tree via “XPath” queries [23].

112 MODERN FORTRAN IN PRACTICE

!
! Variables for storing the information that is
! to be printed
!
character(len=20) :: author
logical :: store = .false.

contains
subroutine startfunc(tag, attribs, error)

character(len=*) :: tag

character(len=*), dimension(:,:) :: attribs
logical :: error

! Dummy - has no function in this case
end subroutine startfunc
subroutine endfunc(tag, error)

character(len=*) :: tag
logical :: error

! Dummy - has no function in this case
end subroutine endfunc

subroutine datafunc(tag, data, error)
character(len=*) :: tag
character(len=*), dimension(:) :: data
logical :: error

if (tag == "author" .and. &
index(data(1), "Swift") > 0) then
author = data(1)
store = .true.

endif
if (tag == "title" .and. store) then

write(*,'(a20,a,a)') author, ' - ', trim(data(1))
store = .false.

endif
end subroutine datafunc
end module bibliography_scan

program select_bib
use xmlparse
use bibliography_scan

implicit none

GRAPHICS, GUIS, AND THE INTERNET 113

integer :: lunrep
logical :: error

!
! Read in the entire file (leave out optional arguments)
!
lunrep = 10
open(lunrep, file = "select_bib.log")
call xml_process("example_bib.xml", attribs, data, &

startfunc, datafunc, endfunc, lunrep, error)

end program select_bib

What happens within the xml_process() routine – part of the xml-fortran
library – is that the XML file is scanned. At the start and end of an element,
the three user-supplied subroutines are called. This allows for instant processing
instead of first storing the entire file in memory. A disadvantage is, however,
that some information must be kept between calls to these user routines.
Therefore, programming these routines can be a bit complex.

8.

Unit Testing

The subject of this chapter is a simple framework for automating one particu-
lar aspect of testing: unit tests. Unit tests focus on “small” parts of a program,
typically single subroutines or functions. The idea is these tests give confidence
in the correct operation of routines. As the code for these tests should be con-
sidered part of the program, you can repeatedly run them during development
and maintenance of the whole system. Some development methods take this
to the extreme. Test-driven development (TDD), for instance, prescribes that
the tests be written first, before you start implementing the actual code.1

This is just one way to develop a program, but thinking about the ways you
can test a particular routine helps to define its functionality. Most importantly,
however, such unit tests become part of the program. Therefore, testing at that
level is not an afterthought, implemented in ad hoc one-off programs.

8.1 Testing Frameworks
Junit is a well-known framework for unit tests in a Java programming environ-
ment [37]. It has been seminal for a whole range of similar frameworks for all
manner, of programming languages. Junit depends on explicit support from
several language features that Fortran does not have, such as special annota-
tions and the possibility to programmatically get a list of routine (method)
names from a library. Nevertheless, it is quite possible to implement a unit
testing framework in Fortran as well. There are several:
■ Funit, by Kleb et al. [50], implemented in Fortran and Ruby
■ pfunit, by Womack and Clune [84], a framework, implemented in Fortran
■ FRUIT, by Chen [21], implemented in Fortran and Ruby
■ Ftnunit, by me [56] (implemented in Fortran)

As I know the framework I developed myself best, this chapter only discusses
Ftnunit. The framework offers a set of routines to run the tests and a set of
routines to check the actual results against the expected results (assertions).
■ Write a number of subroutines that exercise parts of the code and check the

results using the assertion routines.
■ These routines get called in a separate subroutine, which does nothing but

call the various test subroutines.
■ The framework takes care of the administrative tasks.

1 According to [4], Kent Beck is credited for inventing or developing this technique.

114

UNIT TESTING 115

8.2 Tridiagonal Matrices As an Example
The following subroutine illustrates the framework from the perspective of a
user.

module tridiag

implicit none

contains

subroutine solve(a, b, c, d, x)
real, dimension(:) :: a, b, c, d, x

integer :: i
integer :: n
real :: factor

n = size(a)
do i = 2,n

factor = a(i) / b(i-1)
b(i) = b(i) - factor * c(i-1)
d(i) = d(i) - factor * d(i-1)

enddo

x(n) = d(n) / b(n)
do i = n-1,1,-1

x(i) = (d(i) - c(i) * x(i+1)) / b(i)
enddo

end subroutine solve
end module tridiag

It is a straightforward implementation of Gauss elimination for a tridiagonal
matrix. The matrix is represented by three separate arrays (a, b, and c) and the
right-hand side by array d. The system of linear equations reads:

ai xi−1 + bi xi + c i xi+1 = di (8.1)

Examples of tests for this routine are:
■ Use a diagonal matrix with constant coefficients, such as 3.0 and a right-

hand side with a constant value of 1.0. The expected result is a vector with
all elements close to 1

3 . It is a trivial system, but the algorithm does not take
that into account.

■ Use a (diagonally dominant) matrix with diagonals a = 1, b = 2, and
c = 1. The right-hand side is chosen so that the exact solution is a vector
1, 1

2 , 1
3 , ..., 1

n . By varying the size of the matrix, you can check the accuracy
of the implementation.

116 MODERN FORTRAN IN PRACTICE

The first case is implemented as follows:

subroutine test_trivial

integer, parameter :: rows = 10
real, dimension(rows) :: a, b, c, d, x, y

a = 0.0
b = 3.0 ! Using 3 because of numerical rounding issues
c = 0.0
d = 1.0

y = 1.0/3.0 ! Expected solution

call solve(a, b, c, d, x)
call assert_comparable(x, y, margin, &

"Solution is uniformly 1/3")
end subroutine test_trivial

The second case is implemented as follows:

subroutine test_diagonal_dom2

integer, parameter :: rows = 10
real, dimension(rows) :: a, b, c, d, x, y
integer :: i

a = -1.0
b = 2.0
c = -1.0
y = (/ (1.0/i ,i=1,rows) /) ! Expected solution

d(2:rows-1) = a(2:rows-1) * y(1:rows-2) + &
b(2:rows-1) * y(2:rows-1) + &
c(2:rows-1) * y(3:rows)

d(1) = b(1) * y(1) + c(1) * y(2)
d(rows) = a(rows) * y(rows-1) + &

b(rows) * y(rows)

call solve(a, b, c, d, x)

call assert_comparable(x, y, margin, &
"Solution is 1/k (10 rows)")

end subroutine test_diagonal_dom2

In these routines, you use the assertion routine assert_comparable to check
that the solution contained in array x is close enough to 1

3 or the sequence of
fractions 1

k . The argument margin indicates the relative error that is acceptable.

UNIT TESTING 117

The assertion routine prints a message if there are elements in the two arrays
that do not match and records the fact that this assertion failed.

To run the test routines, you put these routines (and several others) in a
separate routine and call them indirectly via the routine test, which is part of
the framework:

subroutine test_all

call test(test_trivial, &
"Solve trivial system a=0, b=3, c=0, d=1")

call test(test_basic, &
"Solve basic system a=0, b=6, c=-5, d=1")

call test(test_diagonal_dom1, &
"Solve diagonally dominant system - n=3")

call test(test_diagonal_dom2, &
"Solve diagonally dominant system - n=10")

call test(test_diagonal_dom3, &
"Solve diagonally dominant system - n=100")

end subroutine test_all

Now run this routine test_all via the framework at a convenient spot in the
program. Typically, this is run at the start for the following reasons:

program solve_tridiagonal_systems
use ftnunit
use tridiag ! The actual implementation
use test_tridiag ! The tests

implicit none

call runtests_init
call runtests(test_all)
call runtests_final

!
! If not in testing mode, then proceed with the ordinary
! processing ...
!
...

end program solve_tridiagonal_systems

The routines runtests_init, runtests, and runtests_final are all part of
the framework. If the program is not run in test mode (see the following), they
do nothing and the program simply continues with its ordinary processing.
Otherwise, the tests are run and when the last one is done, the program stops.

118 MODERN FORTRAN IN PRACTICE

The output from the tests looks like this:

Test: Solve trivial system a=0, b=3, c=0, d=1

Test: Solve basic system a=0, b=6, c=-5, d=1

Test: Solve diagonally dominant system - n=3

Test: Solve diagonally dominant system - n=10

Test: Solve diagonally dominant system - n=100
One or more values different: "Solution is 1/k (100 rows)" -

assertion failed
Index First Second

22 0.45454E-01 0.45454E-01
23 0.43478E-01 0.43478E-01
24 0.41666E-01 0.41666E-01
25 0.39999E-01 0.39999E-01
26 0.38461E-01 0.38461E-01
27 0.37036E-01 0.37037E-01
28 0.35714E-01 0.35714E-01
29 0.34482E-01 0.34482E-01
30 0.33333E-01 0.33333E-01
31 0.32258E-01 0.32258E-01
32 0.31249E-01 0.31250E-01
33 0.30302E-01 0.30303E-01
...
82 0.12195E-01 0.12195E-01
83 0.12048E-01 0.12048E-01
84 0.11904E-01 0.11904E-01
85 0.11764E-01 0.11764E-01
86 0.11627E-01 0.11627E-01

Number of differences: 50
Number of failed assertions: 1
Number of runs needed to complete the tests: 1

Only the last test fails, because of small differences between the expected
solution and the solution that was found. Apparently, the size of the matrix
matters, because for smaller matrices there was no problem.

8.3 Design and Implementation
One of the design goals of the Ftnunit framework is to make it possible to
have the code for testing close to the actual program code. Experiences with
another framework that I developed show how separating the test code from
the actual program makes the test code hard to maintain.

Another goal is to use Fortran as much as possible, and as a consequence
you can keep the test code inside the program. The test code is only run if a

UNIT TESTING 119

Figure 8.1. Screenshot of the graphical user interface

particular file called ftnunit.run is present in the working directory. If the test
code is run, the program stops automatically in the routine runtests_final.
This is the reason the test routines should appear early in the program.

Some non-Fortran programming is convenient. If the program under test is
suddenly stops because of a runtime error, or because it encounters an error
condition that causes it to stop explicitly, the remaining tests should still run.
This is achieved in several steps:
■ Each time a test is run, a file ftnunit.lst records its start and when

successful (that is, the program continues) also its completion.
■ The program under test runs via a shell script or a batch file that continues

running the program as long as that particular file exists.
■ When the last test is run, the file is deleted automatically.

In addition to this batch mode, there is a straightforward graphical user interface
(Figure 8.1). It first runs the selected program in list mode so that it prints the
descriptions of the tests (but does not run the routines). The GUI then builds
up the list of test cases, so that you can either run them all at once or only a
small selection. If, in a test case, an assertion fails or the program stops with a
runtime error, this is recorded with an icon forming a red cross.

To accommodate for the problem of large datasets being necessary for a par-
ticular test – such as a complicated initial condition that is required for testing
a solver for partial differential equations – the framework also offers some
storage and retrieval routines. Here you can create and store the data, save
them with a descriptive text in a file, and retrieve them in any number of
tests.

120 MODERN FORTRAN IN PRACTICE

8.4 Concluding Remarks
While this cannot be enforced in a general framework, it is important that
each test routine works independently of any other. This sometimes leads to
duplication of code, but an interdependency means that failure in one test
obscures the correct execution of the other.

In the example, the test routines are an integral part of the actual program, but
this is not the only possible setup. You can put the test routines in a separate
program as well. That program should, however, be an integral part of the
whole project.

The output from the framework consists of a plain text report (the titles of the
test cases and any assertions that failed) and of an HTML file with the same
information. You can use the latter type of output to show the report in an
Internet browser. For instance, on Windows the following suffices, thanks to
the association of the file extension “.html” to the default browser:

call system("ftnunit.html")

Unit testing can be combined with measuring the test coverage, recording what
parts of the code are run. Tools exist to preprocess the source code, so that
the coverage is automatically recorded or it can be left to the compiler via
a suitable option (see Appendix A). Test coverage can be used to set up the
individual tests, especially if several decisions are involved in the tested code.
For numerical programs, the size of the problem to be solved may need to be
taken into account.

9.

Code Reviews

There is extensive literature on reviewing code and design documents as a
means to check that the software is performing as it should and that the imple-
mentation is maintainable and understandable. Some development method-
ologies, such as Extreme Programming [16], prescribe continuous reviews by
peers [40]. In all forms, code reviews are about finding defects in the code, but
they are not intended to criticize the programmer.

While the procedural (and psychological) aspects of code reviews are widely
described, some practical aspects are not. For example, what should you be
looking for in the code? It is not enough to check that the code adheres to the
programming standard of the project it belongs to. Such a standard may not
exist, be incomplete, or be focused on layout, not on questionable constructs
that are a liability (see Appendix B).

What do you want to achieve with code reviews? First, you want to verify that
the code is doing its job and that the code is of good enough quality:
■ It is readable by others than the author.
■ It is maintainable – adding new functionality or correcting bugs should not

amount to hard labor.
■ It is testable – do you understand what goes in and what comes out?

Secondly, the code should be portable. This means it should be possible to
build the program and run it on a different operating system, and also with
different compilers and versions of that same compiler. Many compilers offer
options to check against the language standard. Therefore, use it to see if you
accidentally used some compiler-specific feature.

From these considerations, here are four “principles” and a number of practical
guidelines:
■ Be explicit.
■ Don’t stray.
■ Avoid traps.
■ Use clean code.

9.1 Be Explicit
The source code is the most important product from which you can judge if
software works, therefore, you must rely on that source code to give you all
the information you need.

121

122 MODERN FORTRAN IN PRACTICE

Use Explicit Declarations of Variables and Constants While Fortran of old
is perfectly happy to use undeclared variables and determine their types from
a few simple rules, it is also easy to make mistakes that go undetected for a
long time. Consider this code fragment:

integer :: i
real, dimension(10) :: x
...
do i = l,10

x(i) = 2.0 * i + l
enddo

The typos (the use of a lower-case “L” instead of a digit “1”) would be caught
by the compiler if explicit declarations were enforced. Therefore, always use
implicit none.

Some compilers have an option to force an error if an undeclared variable is
used, but then you rely on something outside the source code and it is not a
portable feature. Also, some compilers allow you to change the meaning of a
default real or integer. This can make reals double precision by default or turn
integers into 8-byte integers. Again, this makes the program rely on features
not visible in the code.

Another example is the use of literal numbers in the source code:

rate = rate * 1.15740740740741e-5

The number will probably not be recognized as 1/86400, where 86400 is
the number of seconds in a day. The computation is intended to convert the
“rate” from day−1 to s −1. Instead, declare a parameter to make this conversion
explicitly:

! Convert from 1/day to 1/s
real, parameter :: per_day = 1.0/(24.0*3600.0)

While you are at it, use an explicit kind:

integer, parameter :: wp = kind(1.0) ! Working precision
!
! An alternative that is even more precise:
! Working precision
!integer, parameter :: wp = selected_real_kind(6,37)

! Convert from 1/day to 1/s
real(wp), parameter :: per_day = 1.0_wp /(24.0_wp * 3600.0_wp)

The reason for this, although it may seem rather pedantic, is that it will be
much simpler to change the precision of the program by just replacing the
definition of the parameter wp:

! Working precision is double precision
integer, parameter :: wp = kind(1.0d0)

CODE REVIEWS 123

Use Preconditions A subroutine may expect its arguments to conform to
particular conditions. For example, if it reads a file, that file must already
exist, however, check these conditions inside the routine. In a code fragment
like:

inquire(file = 'myfile.inp', exist = exists)
if (exists) then

call read_file(...)
endif

the condition should be moved into the subroutine itself. Now you have a
distributed responsibility: the calling code must make sure that the routine is
not inadvertently called, whereas the routine itself must also make sure that
the file can be properly read.

A related issue arises with composite conditions:

if (allocated(array) .and. array(1) > 0) then
...

endif

If the array is not allocated, then the second part does not need to be evaluated.
However, there is no guarantee that the program will never do that because
Fortran does not guarantee short-circuiting.1

Therefore, the preceding should be written as:

if (allocated(array)) then
if (array(1) > 0) then

...
endif

endif

Variables that Need to Retain Their Values Between Calls Fortran has
several rules to determine if a local variable retains its value between calls.
But, why rely on your understanding of such rules? Use the save attribute
or statement wherever you want a variable to behave that way. (Even worse,
some compilers keep all the local variables in static memory because it is more
efficient on that particular platform. However, this means your program may
work on that platform but not on others if you forget the save attribute). And,
of course, be explicit about what variables you want to save: do not use the
save statement without any names.

Visibility of the Interface to a Subroutine or Function Modern Fortran
programs usually use assumed-shape arrays, optional arguments, or derived
types and other features. In these cases, it is very important that the compiler

1 Short-circuiting can lead to inefficient machine code, especially when the condition has multiple
logical connectors. The given example could actually fail at run-time without short-circuiting as it may
access an element of an unallocated array.

124 MODERN FORTRAN IN PRACTICE

“knows” about the interface for the subroutines and functions. This require-
ment is automatically fulfilled if you use modules for all your routines. Organize
the modules in a comprehensive way. For example, routines that manipulate
the contents of the same derived type should go in one module.

Availability of Variables and Routines If you use variables and routines in
a module, then, by default, they will be available for any program unit that
uses the module. This may or may not be what you want: a program could
inadvertently use a variable reserved for the inner workings of your module
and cause bugs that are difficult to find. Therefore, use the private statement
to hide any data and routines and only make those items public that should
be public. The same goes for the content of a derived type.

The Default Case in a Select Block and the Else Case in an If Block
Quite often, you will think a particular condition may not occur, like in a
select case block only certain cases will ever need to be handled. It does not
hurt to insert code that makes this explicit:

select case (case_var)
... legitimate cases ...

case default
write(*,*) 'Programming error: case should not occur: ', &

case_var
end select

A similar thing occurs with nested if blocks or if/elseif constructions: if you
are certain a particular alternative should not occur, then say so.

Appropriate Error Messages Error messages should be to the point, accu-
rately indicate what is wrong, and – if possible – present what can be done
about it. Using code like this:

if (n > nmax) then
write(*,*) 'Invalid number of items'
stop

endif

is wrong and plainly unhelpful. There is nothing wrong with the number of
items, it is merely larger than the maximum is allowed. (I have encountered
such code in practice. Only by examining the source code was it finally clear
what was wrong.) Use dynamically allocated memory – possibly a bit more
work, but more robust – so that the error condition cannot occur anymore.

CODE REVIEWS 125

If that is not practical, replace the error message with something more infor-
mative (maybe include the location in the source too):

if (n > nmax) then
write(*,*) 'Error: More items (',n, ') than can be handled.'
write(*,*) ' Parameter nmax (now: ',nmax, &

') must be increased to at least ', n
stop

endif

This alternative gives a clear indication of what is wrong and what can be done
about it. In summary:

■ Use implicit none, parameters instead of literal constants, and parameters
to specify the numerical kind.

■ Explicitly check the input arguments: do they satisfy the preconditions of
the routine? Put these checks inside the routine.

■ Watch out for composite logical conditions: do not rely on short-circuiting.
■ Use save for local variables that should retain their value.
■ Use modules for all of your code.
■ Use private and public to control access.
■ Provide error messages that inform the user about what to do.

Of course, there are always good reasons why it is impossible or undesirable
to conform to these guidelines. For instance, routines called by a program in
another language should not be in a module. But, if you have such reasons, be
explicit about them!

9.2 Don’t Stray
Many projects use a programming standard and guidelines for coding besides
the standard of the programming language itself. Published examples include
Boukabara and van Delst [19] and Kleb and others [49]. An even more
extensive set of guidelines is the book by Clerman and Spector [24], which
presents how the various features of modern Fortran can be used in a clear
style.

They represent the practical experience people have built up using the language.
This may include typical solutions for common programming tasks – the
idiom – and choices for the layout of the code such as indentation. Don’t go
against the grain. Even if the standard or the idiom prescribed by the project
is silly, use it anyway:
■ If you modify a program’s code, use the same layout and programming

style. Code that looks like a hotchpotch of styles is not very appealing. If it
is already bad, advise to clean it up first.

126 MODERN FORTRAN IN PRACTICE

■ Conform to the agreed standard. If you think the standard needs to be
changed, discuss it separately from work on the code.2

This also means the programmer should have a good understanding of the
language: What features are acceptable and what features are a possibly com-
mon but nevertheless non-portable extension? The programmer should also
be aware of things that are explicitly left to the discretion of the language
implementation.

Here are a few examples:
■ Declarations of the type real*4 or real(4) are not portable and should

be removed. real*4 is a common extension, but it has never been part of
a Fortran standard. real(4) hints at a common misunderstanding of the
kind mechanism: Compilers are free to use any positive integer number
to select the precision and range of the integer and real types. This is not
necessarily identical to the number of bytes these types occupy in memory.

■ Unformatted files are not portable between platforms: The record structure
may differ, although there exists a popular structure that is (almost) univer-
sal. Besides the record structure, the ordering of the bytes that make up a
single number may differ, as well as the interpretation of these bytes. Again,
a ubiquitous ordering and interpretation exist, but they are not universal.

■ Direct-access files pose a peculiar issue: The unit of length is one byte
with some compilers and one word with others (4 bytes on a 32-bits
platform). Use the file_storage_size parameter in the intrinsic module
iso_fortran_env to find out what the unit is (in bits).

■ Tab characters have no place in Fortran source code (with the possible
exception of literal strings). They are not part of the Fortran character set.
Simply do not use them. In the editor, they may expand to the right number
of positions, but on a printout the resulting indentation can be horrible.

■ A code fragment like:

if (x > 0) then
valid = .true.

else
valid = .false.

endif

indicates the programmer does not quite understand logical expressions.
Here is a simpler equivalent:

valid = x > 0

A code fragment such as:

if (x > 0) then
valid = .true.

endif

2 Few things seem to be so provocative as posing a standard to programmers [42], [6].

CODE REVIEWS 127

is a completely different matter – the variable valid is being updated under
some condition. You can do that with:

valid = valid .or. x > 0

but it is very easy to make a mistake.
■ Code like:

if (string(1:5) == 'start') then

raises a few questions:

– Is “start” meant to be a prefix? If so, then this code is fine, although the
fixed substring index is worrisome. It is easy to miscount, especially with
long prefixes. It would be less error-prone to use something along these
lines:

if (index(string, 'start') == 1) then

– Is the string meant to contain nothing more than the word “start”?
Then,

if (string == 'start') then

is more appropriate. The original construction indicates yet another
misunderstanding: In Fortran, strings are padded with blanks (spaces)
before such a comparison. There is no need for taking the substring.

■ Watch out for uninitialized variables. In Fortran, variables do not get a
default value. Some compilers can detect particular classes of uninitialized
variables, others can generate code where each variable and array is initialized
with a special value so that you can detect initialization problems at run-
time. (Note that the program will probably be slower because of this.)
However, such options are no substitute for proper initialization, making
the initialization explicitly visible in the source code.3

■ If you initialize a variable via a data statement or initialization expression
like:

integer :: count = 0

the initialization is done once, and once only. This is in contrast to C-like
languages where the preceding line is shorthand for:

integer :: count
...
count = 0

■ There is a rather subtle gotcha involving data in modules and COMMON blocks:
If no active subroutine or function refers to the module (via use) or the

3 Some compilers can find uninitialized variables if both optimization and warnings are turned on
[48]. For instance, gfortran -Wall -Wextra -O2 will give more information.

128 MODERN FORTRAN IN PRACTICE

COMMON block, the data they contain are discarded – or at least the Fortran
standard says so. In practice, few, if any, implementations really do that,
but it is something to keep in mind.

■ Beware of micro-optimizations:

do i = 1, n
if (x(i) .ne. 1.0) y(i) = x(i) * y(i)

enddo

There is no reason to do something like this:

– The program will be slightly slower, unless you have a very smart com-
piler, because in every iteration the condition has to be checked.

– The time saved by not multiplying the trivial factor is marginal.
– The code is more difficult to read.
– You do not gain accuracy.

■ A somewhat surprising feature of Fortran is that lower bounds for array
indices are not passed on to subroutines or functions, not even with intrinsic
functions. The following program illustrates this:

program chkidx
real, dimension(-3:3) :: x
x = 0.0
x(0) = 1.0
write(*,*) 'Maximum at: ', maxloc(x)

end program chkidx

The printed index is 4, not 0. If you think about why, it is quite a reasonable
feature. If lower bounds were passed on, then every subroutine and function
would have to take care of it, with loops like:

do i = 1, n
y(i) = x(i) * y(i)

enddo

These would have to be consistently written as:

do i = lbound(x),ubound(x)
y(i) = x(i) * y(i)

enddo

As lower bounds other than 1 are fairly rare, it would put a large burden
on the programmer for a small gain.

9.3 Avoid Traps
In any programming language, there are perfectly legal and well-defined con-
structs or idioms to avoid. Fortran is no exception.

CODE REVIEWS 129

Adequate Error Handling
With respect to errors that may occur, opening and reading a file in Fortran is
pretty easy.
■ Method 1: you do not explicitly handle errors, therefore, the program will

take care of it itself with drastic yet clear measures (it stops and prints an
error message, possibly with details of where it occurred).

■ Method 2: you use the keywords err=, end= or iostat=.

If you choose the second method, you have the opportunity to recover from
the error. But you also have the opportunity to ignore it:

open(10, file = 'non-existing-file.inp', status = 'old', &
iostat = ierr)

! Happily go on -- ignore ierr

Comparing Reals
Common wisdom says you should not compare reals for (strict) equality
or inequality, because of the finite precision.4 Instead, you should use some
margin or a “fuzzy” comparison [51]. Actually, this rule can be relaxed in one
way: if the mathematical real number can be represented exactly. With a value
like -999.0, which is sometimes used to indicate missing values and is exactly
representable, the code will work as expected.

real, parameter :: missing = -999.0
if (x == missing) then

On the other hand, checking if a variable is greater than some threshold is just
as dangerous as checking if it is equal to that value. Consider a thermostat,
for instance. If the temperature is below a threshold, the heating turns on,
but if it is above another threshold, it turns off. A precise check T < Tmin
or T > Tmax may lead to subtle differences when the heating turns on or
off, depending on the precise values of the temperature. A slightly different
order in the evaluations due to a different optimization option might cause
the moment to shift.

A peculiar problem occurs with special numbers, like “not a number” (NaN).
Look at this fragment:

if (x < 0.0) then
write(*,*) 'Variable x should be positive'

else
write(*,*) 'All is well'

endif

4 The compiler you use may have an option to warn about such comparisons.

130 MODERN FORTRAN IN PRACTICE

If the value of x is NaN – for instance, the result of sqrt(-1.0) – then,
the condition is false. NaNs are unordered, so they are not even equal to
themselves. The previous code would not give the intended warning. Inverting
the condition solves the problem, but be very careful that the result is correct:

if (x >= 0.0) then
write(*,*) 'All is well'

else
write(*,*) 'Variable x should be positive'

endif

[Fortran 2003 defines a number of inquiry functions, such as ieee_is_nan(),
that are meant to make handling special numbers easier [65].]

Mixed Precision When dealing with real constants, take care to use the right
precision:

real(kind=kind(1.0d0)), parameter ::
pi = 3.1415926535897932384626433

This is how the code may look if you specify the parameter piwith a large num-
ber of decimals, but the actual value is default precision. On most computers
only 6 or 7 decimals are retained.

The same caution holds for expressions where real or complex numbers of
different precision are used. The result may have the desired precision, but the
accuracy is that of the item of the lowest precision.

Surprises with Negative Numbers Fortran defines two functions for dealing
with the mathematical modulo operation: mod and modulo. They differ in the
way negative arguments are treated. Be sure to choose the right one.

However, negative numbers can cause more surprises. Suppose you use the
minimum function to delimit a term so it may not exceed some maximum
value:

x = min(x, xmax)

If your purpose is to make sure that the magnitude of the number x does not
exceed xmax, then the preceding will not work for negative x. You would have
to use:

x = max(min(x, xmax), -xmax)

or similar expressions.

Automatic Arrays One construction in Fortran that may lead to problems is
the automatic array. As long as the arrays are small, they fit into the memory
set apart for these constructions, usually the stack. If the arrays are too large,
however, stack overflows occur and your program simply stops in midair. It is

CODE REVIEWS 131

a compiler-dependent problem, but if you deal with potentially large arrays,
consider using allocated arrays instead. Here is an example:

n = 1
do i = 1,8

n = n * 10
call auto_array(n)

enddo
...
contains
subroutine auto_array(n)

integer :: n
integer, dimension(n) :: array
array = n
write(*,*) array(1)

end subroutine

The array is defined as an automatic array with increasing size, and in many
implementations it is taken from the stack. Running the program will, at some
point, lead to a stack overflow as the array simply does not fit anymore. An
alternative is to explicitly allocate the array:

subroutine allocated_array(n)
integer :: n
integer, dimension(:), allocatable :: array
allocate(array(n))
array = n
write(*,*) array(1)

end subroutine

While this array may become too large as well, the program can at least
catch that (via the stat= keyword). When leaving the routine, the array is
automatically deallocated.

Similar issues exist with array sections: The statement

write(20) value(i,:)

uses an array section that can be implemented by the compiler as a temporary
array. Whether or not this leads to a stack overflow depends on the size of that
temporary array, but it is a risk. Here a simple alternative is to use an implied
do loop:

write(20) (value(i,j), j = 1,size(value,2))

Not Just Numbers While it is nonsensical to add one meter to one sec-
ond, for a computer program these are simply numbers so it does the
computation without any protest. There are several libraries [70] that can
help with the correct handling of units. If you have not used them during

132 MODERN FORTRAN IN PRACTICE

development of the code, then check the various computations manually for
this aspect.

The problem occurs not only with physical units: if your program deals with
different currencies, for example, you need to do very similar checks.

9.4 Clean Code
The last category consists of a lack of attention to design, readability, and other
aspects that are important for the program in the long run.

If your program, however large, is put in a single file on disk, building it
(compiling and linking) is almost trivial. However, source files of 100,000 code
lines are not easy to work with and printing is a waste of paper, if you only need
to look at a few hundred lines. Two related routines may be thousands of lines
apart. Therefore, a conscientious organization of the code in files, directories,
and subdirectories is just as important as getting the program to work.

Within the code, if you decide to use both uppercase and lowercase letters
(such as all keywords are capitalized), do so consistently. It does not matter to
the compiler, but it does to the human eye.

Then, there is the complexity of the code itself to consider:
■ If a routine has a lot of tasks, is it necessary to do all of them in that one

routine? Can you split it up or add an extra level of routines? This will make
the structure clearer.

■ Routines with a lot of tasks tend to require long argument lists and many
lines of code. Understanding them and verifying that the correct arguments
are passed is tedious and error-prone work.

■ Common subexpressions that are often repeated have a number of draw-
backs:

– Unless the compiler recognizes them, they need to be computed every
time.

– More importantly, if you make a mistake or if the subexpression changes
for another reason, you must change it in several places. It is easy to
forget one.

– The code is more difficult to read, so you must recognize that parts of
the expressions are the same.

Store the result in an extra variable and use that instead, or if the expressions
are similar, but not identical (differing in one or two variables), it may help
to use small functions.

■ Sometimes not just subexpressions are repeated, but whole groups of state-
ments. Here a function or a subroutine is probably a better solution, as it
highlights the role of that group of statements and allows you to concentrate
the code in one place, making it easier to consistently correct any bugs or
implement an improvement or an extension.

CODE REVIEWS 133

■ Here are a few fragments of code that could be made simpler (all of these
fragments are derived from actual code):

if (a+b+c > 0.0) then
x = a + b + c

else
x = 0.0

endif

if (x > y) then
x = y

endif

which can be simplified to:

x = max(a+b+c, 0.0)

x = max(x, y)

This longer fragment:

if (have_file) then
call read_data(data1, data2, ...)

else
data1 = 0
data2 = 0
...

endif

has the problem that the routine read_data is initializing more variables
than the else block. You either always call the routine and first initialize all
of these variables inside the routine or initialize the variables and then call
the routine:

! First alternative
!
call read_data(have_file, data1, data2, ...)
...
!
subroutine read_data(have_file, data1, data2,...)

...
data1 = 0
data2 = 0
...

! Read the data
if (have_file) then

...
endif

end subroutine

134 MODERN FORTRAN IN PRACTICE

!
! Second alternative
!
data1 = 0
data2 = 0
...
if (have_file) then

call read_data(data1, data2, ...)
endif

The advantage over the given code is that initialization is taking place first,
so its role is more prominently displayed.

■ Functions (as opposed to subroutines) should not have side effects, which
means they should return the same value whenever the same arguments are
passed and preferably the arguments or anything else is changed. This way
they stay close to the mathematical concept and there is less surprise when
using them.

Another reason for functions without side effects is that in a multithreaded
program, it becomes almost impossible to keep the program correct. In
general, a function with side effects poses restrictions on its use:

a = 1.0
x = f(a) - f(1.0)
...
real function f(y)

real :: y
real, save :: count = 0.0
f = y + count
count = count + 1.0

end function

The previous code might produce -1 but also 1, depending on the order in
which the function is actually called. One piece of useful advice here: make
the function pure, this way the compiler will complain if there are any side
effects [48].

10.

Robust Implementation
of Several Simple

Algorithms

Computer programs sometimes exhibit unexpected behavior. They may func-
tion correctly for years and then, suddenly, they fail. Computer programs that
solve numerical problems are no exception. The unexpected behavior, perhaps
a division by zero, is often the consequence of input that does not conform to
the hidden assumptions and restrictions of the program. For example, a Gauss
elimination procedure to solve systems of linear equations requires the matrix
to be non-singular. If the matrix is numerically singular or ill-conditioned,
the mathematical problem of solving the system is still well-defined, but the
numerical counterpart may have a hard time delivering a decent approxima-
tion to the exact solution. The conclusion that the matrix is ill-conditioned is
only drawn while solving the system.

Sometimes there is a mismatch between the specification and the actual imple-
mentation. The part of the program that reads the data accepts input that
conforms to the specification, but there are a few tacit assumptions, like line-
endings for a text file containing the coefficients of the matrix for the Gauss
elimination program.1

Subtle bugs may lurk in an otherwise well-written and well-behaved program.
Can you avoid them altogether? The unsatisfying answer is probably not, but
that does not mean you cannot make an effort to understand the source of
these bugs. That is the intention of this chapter – to examine three simple
mathematical algorithms and their implementation in Fortran.

The idea is that a straightforward implementation contains all manners of hid-
den assumptions about the problem that needs solving. Careful examination
reveals these assumptions, and then you can take measures to prevent them
from causing failures in a practical situation – either by carefully documenting
the conditions on the input or by explicitly taking care of them in the code.

1 Problems can occur when the last line in the input file does not end in a proper end-of-line or when
the line endings are not in accordance with those of the platform the program is running on.

135

136 MODERN FORTRAN IN PRACTICE

Ultimately, the implementation should be robust:
■ Unacceptable input is recognized (if possible).
■ If the program can find an adequate answer, it will do so, otherwise, it will

indicate why it cannot find it.

In particular, this means no crash and no incorrect answer.

10.1 Related Approaches
Good programming practices that should lead to robust programs are described
in many publications, such as in Safer C, by Hatton [42] and in Code Complete,
by McConnell [58]. However, these books present few detailed numerical
examples as to how robustness in this area is achieved. Metcalf et al. [65]
touch upon the subject when they illustrate the floating-point features new to
the Fortran 2003 standard.

The problems that floating-point arithmetic presents to the reliable imple-
mentation of numerical algorithms are usually handled in two different ways:
■ Use of arbitrary-precision arithmetic
■ Use of interval arithmetic

The first approach, as exemplified by Karamcheti and others [47], attempts to
overcome the limitations by using arithmetic methods that allow much higher
precision than the precision offered by ordinary single and double precision.
There is quite a significant impact on the performance, but the alternative of
unreliable results is probably worse.

Karamcheti and others apply this method to geometrical computations to
obtain so-called exact geometrical computation. The imprecision of floating-
point numbers may cause false conclusions about whether two lines in space are
parallel or not. Their special library, which can apply more accurate arithmetic
at a number of levels of precision, greatly alleviates these and other problems.

In the second approach, the goal is to compute the margins within which
the true answer lies [1]. The major criticism is that quite often the intervals
become so large that the answer is practically useless. Most implementations
cannot account for the dependencies between numbers, but the manual for
SUN’s Forte Fortran compiler [45] describes an implementation where this is
taken care of.

The CADNA library [74] uses a somewhat different method: It computes
three different values for each operation using different rounding modes. These
modes are chosen randomly. As the library requires only limited changes to
the original source code, it is particularly suitable for investigating possible
numerical instabilities in existing programs.

In this chapter, you will reason mostly about the visible part of the implemen-
tation, the source code. The actual program that is derived from this may have
some unexpected and different properties. Corden and Kreizer [26] explain in
some detail how these differences arise as a consequence of various compiler

ROBUST IMPLEMENTATION OF SEVERAL SIMPLE ALGORITHMS 137

options. Some of these consequences are actually visible in the results of the
sample programs given here.

10.2 Linear Interpolation
The first algorithm to consider is linear interpolation. The mathematics is
simple enough: given an interval [a,b] and the values of a function f at the
endpoints a and b to be estimated at a point x within that interval, estimate
the value at x to be:

f (x) ≈ f (a) + (x − a)

(b − a)
(f (b) − f (a)) (10.1)

In practice, you have several such intervals. This leads to a straightforward
implementation like:

module interpolation_methods
implicit none

contains

real function interpolate(x, y, xp)

real, dimension(:), intent(in) :: x, y
real, intent(in) :: xp

integer :: i, idx

!
! Search for the interval that contains xp
!
idx = size(x) - 1

do i = 2,size(x)-1
if (xp < x(i)) then

idx = i - 1
exit

endif
enddo

!
! Estimate the function value
!
interpolate = y(idx) + (xp-x(idx)) * (y(idx+1)-y(idx)) / &

(x(idx+1)-x(idx))

end function interpolate

end module interpolation_methods

138 MODERN FORTRAN IN PRACTICE

The implementation presumes a number of things about the input, but it is
not clear what happens with a number of edge cases. The following examines
them:
■ Input arrays x and y should be filled with data for the x-coordinate in

ascending order. If not, the do loop will turn up an arbitrary starting point
and the result is equally arbitrary.

■ The size of array y must be at least that of x – otherwise, at some data point
xp, you will be using elements out of the valid range.

■ The implementation tacitly assumes that linear extrapolation is required if
the coordinate xp is lower than x(1) or greater than x(size(x)). Whether
this is a useful approach will depend on the application. Alternatives are:
return either x(1) or x(size(x)) or return an indication that xpwas outside
the given range.

■ The number of data points, size(x), is assumed to be at least two. If not,
the implementation will violate the array bounds.

■ If two values in the array x are the same, the implementation is a model of
discontinuity in the function. However, this does not work for xp exactly
equal to these values for x: a division by zero results.
This is unlikely to occur in practice.2 Nonetheless, one might want to
control – just as in the case of extrapolation – what the program returns at
the jump: the value left, the value right or the average. At the very least, the
documentation should be clear about this.

■ As a last point of criticism, the implementation may fail with an overflow
error if the values of x and y are large enough:

x = {1, 1030}, y = {1, 1030}, x p = 1020. (10.2)

The last statement in the program would then involve the computation
of (1020 − 1) × (1030 − 1), which is a result that exceeds the range for
single-precision floating-point numbers.

If you change it to:

factor = (xp - x(idx)) / (x(idx+1) - x(idx))
interpolate = y(idx) + factor * (y(idx+1) - y(idx))

all operations involve numbers that are within range, if the exact result is
within range.

You can improve the implementation in two ways: by documenting in detail
the assumptions (thereby, making the user responsible) or by checking the
conditions on the input and allowing the user some control over the details.

2 While I was working on this chapter, I came across a bug report for one of the software products
of my company that related to just this type of bug, a division by zero because two x-values were
inadvertently equal.

ROBUST IMPLEMENTATION OF SEVERAL SIMPLE ALGORITHMS 139

Checking the “sortedness” of the array x for each invocation of the interpolation
routine is overdoing it. It is more efficient to create a self-contained “object”
that requires such checking only when it is created. The routine to create this
object can also check the sizes of the arrays x and y and store options with
respect to extrapolation and jumps. The interpolation object holds a copy of
the two arrays, as you do not want data to change without repeated checking.
Here is the improved implementation:

! robust_interp.f90 --
! Robust version of interpolation
!
module interpolation

implicit none

type interpolation_data
logical :: useable = .false.
integer :: extrapolation
real, dimension(:), allocatable :: x, y

end type interpolation_data

integer, parameter :: extrapolation_none = 0
integer, parameter :: extrapolation_constant = 1
integer, parameter :: extrapolation_linear = 2

contains

function interpolation_object(x, y, extrapolation)
type(interpolation_data) :: interpolation_object
real, dimension(:), intent(in) :: x, y
integer, intent(in) :: extrapolation

integer :: i, ierr, n
logical :: success

interpolation_object%useable = .false.

if (allocated(interpolation_object%x)) then
deallocate(interpolation_object%x)

endif
if (allocated(interpolation_object%y)) then

deallocate(interpolation_object%y)
endif

!
! Set the extrapolation method
!

140 MODERN FORTRAN IN PRACTICE

interpolation_object%extrapolation = extrapolation_none
if (extrapolation == extrapolation_constant .or. &

extrapolation == extrapolation_linear) then
interpolation_object%extrapolation = extrapolation

endif

!
! Enough data? If not, simply return
!
if (size(x) < 2 .or. size(y) < size(x)) then

return
endif

!
! Data sorted?
!
success = .true.

do i = 2,size(x)
if (x(i) < x(i-1)) then

success = .false.
exit

endif
enddo

if (.not. success) then
return

endif

!
! Copy the data
!
n = size(x)
allocate(interpolation_object%x(n), &

interpolation_object%y(n), stat = ierr)

if (ierr /= 0) then
return

endif

!
! We allow array y to be larger than x,
! so take care of that
!
interpolation_object%x(1:n) = x(1:n)
interpolation_object%y(1:n) = y(1:n)

interpolation_object%useable = .true.

ROBUST IMPLEMENTATION OF SEVERAL SIMPLE ALGORITHMS 141

end function interpolation_object
subroutine interpolate(object, xp, estimate, success)

type(interpolation_data) :: object
real, intent(in) :: xp
real, intent(out) :: estimate
logical, intent(out) :: success

integer :: i, idx, nd
real :: dx, factor

estimate = 0.0
success = .false.

if (.not. object%useable) then
return

endif

!
! Check extrapolation
!
nd = size(object%x)

if (object%extrapolation == extrapolation_none) then
if (xp < object%x(1)) return
if (xp > object%x(nd)) return

endif
if (object%extrapolation == extrapolation_constant) then

if (xp < object%x(1)) then
estimate = object%x(1)
success = .true.
return

endif
if (xp > object%x(nd)) then

estimate = object%x(nd)
success = .true.
return

endif
endif

!
! Search for the interval that contains xp
! (Linear extrapolation is taken care of
! automatically)
!
idx = nd - 1

142 MODERN FORTRAN IN PRACTICE

do i = 2,nd - 1
if (xp < object%x(i)) then

idx = i - 1
exit

endif
enddo

dx = object%x(idx+1) - object%x(idx)

if (dx /= 0.0) then
factor = (xp - object%x(idx)) / dx
estimate = object%y(idx) + &

factor * (object%y(idx+1) - object%y(idx))
else

!
! In case of jumps, we simply take the average
!
estimate = 0.5 * (object%y(idx+1) + object%y(idx))

endif

success = .true.

end subroutine interpolate

end module interpolation

The following program shows how it can be used:

program test_interpolation
use interpolation

implicit none

real, dimension(6) :: &
x = (/ 0.0, 1.0, 10.0, 10.0, 20.0, 20.0 /)

real, dimension(6) :: &
y = (/ 0.0, 2.0, 20.0, 20.0, 10.0, 10.0 /)

type(interpolation_data) :: interp

integer :: i
real :: xp, result
logical :: success

interp = interpolation_object(x, y, &
extrapolation_constant)

do i = 1,25

ROBUST IMPLEMENTATION OF SEVERAL SIMPLE ALGORITHMS 143

Table 10.1. Results of Two Implementations of Linear Interpo-
lation. Extrapolation Option: Constant

Straightforward Robust
X Value Interpolation Interpolation Remark

−3.000 −6.000 0.000 Extrapolation
−2.000 −4.000 0.000 Extrapolation
−1.000 −2.000 0.000 Extrapolation

0.000 0.000 0.000
1.000 2.000 2.000
2.000 4.000 4.000
8.000 16.00 16.00
9.000 18.00 18.00

10.00 20.00 20.00
11.00 19.00 19.00
12.00 18.00 18.00
13.00 17.00 17.00
18.00 12.00 12.00
19.00 11.00 11.00
20.00 NaN 10.00 Double point
21.00 NaN 20.00 Extrapolation

xp = -4.0 + 1.0 * i
call interpolate(interp, xp, result, success)
write(*,'(2g12.4,5x,l)') xp, result, success

enddo
end program

Using this implementation is a bit more complicated, unfortunately, but it gives
the user more flexibility: a choice for extrapolation and an indication whether
or not an estimate is possible. The results for the two implementations are
given in Table 10.1.

10.3 Basic Statistics
Another well-known programming problem is the determination of the mean
and standard deviation of a series of data. Consider this problem in the
following context: You have a file with the data, one value per line, and there
may be missing data as well, indicated with a question mark. You will produce
the mean, the standard deviation, the number of data, and the number of
missing data (to indicate the quality of the series). At first sight, this is a
straightforward exercise:

! basic_stat.f90 --
! Basic statistical parameters - straightforward version
!
program basic_stat

144 MODERN FORTRAN IN PRACTICE

implicit none
real :: value, sum, sumsq, stdev, vmean
integer :: i, j, nodata, nomissing, ierr

open(10, file = 'basic_stat.data', status = 'old', &
iostat = ierr)

if (ierr /= 0) then
write(*,*) 'Error opening file with input data &

&- basic_stat.data'
write(*,*) 'Check that it exists'
stop

endif

!
! One value per line, ? means a missing value ...
! (As a ? can not be read into a number, we treat
! each line that causes a read error as a missing value)
!
sum = 0.0
sumsq = 0.0
nodata = 0
nomissing = 0

do
read(10, *, iostat = ierr) value

if (ierr < 0) then
!
! End of file
!
exit

elseif (ierr > 0) then
!
! Missing value
!
nomissing = nomissing + 1
cycle

endif

sum = sum + value
sumsq = sumsq + value ** 2
nodata = nodata + 1

enddo

close(10)

!

ROBUST IMPLEMENTATION OF SEVERAL SIMPLE ALGORITHMS 145

! Report our findings
!
write(*,*) 'Outcome:'
write(*,*) ' Number of valid data: ', nodata
write(*,*) ' Number of missing data:', nomissing
write(*,*) ' '

if (nodata > 0) then
vmean = sum / nodata
write(*,*) ' Mean value: ', vmean

if (nodata > 1) then
stdev = &

sqrt((sumsq - sum**2/nodata) / (nodata-1))
write(*,*) ' Standard deviation: ', stdev

else
write(*,*) &

' Standard deviation: too few data'
endif

else
write(*,*) ' Mean value: too few data'

endif
end program basic_stat

Note that you use the mathematical identity:

σ 2 = 1

n − 1

n∑
i=1

(xi − μ)2 = 1

n − 1
(

n∑
i=1

xi − nμ2) (10.3)

to avoid having to store the individual data and to loop over the data twice.

The preceding implementation can be split into two parts, each with its
own robustness issues. Reading the data from file is one part, computing the
statistical parameters is the second part.

The statement

read(10, *, iostat = ierr) value

reads a number using Fortran’s list-directed input features. While this is very
flexible, it does assume that input conforms to the rules. More specifically, the
input is supposed to consist of valid numbers, separated by spaces, commas,
or new lines. After each read statement, the file pointer advances to the next
line, if there is any, thereby skipping and ignoring whatever comes after the
last read item. If the input encountered does not match the expected type, the
variable ierr is set to a positive value. If the end of the file is encountered, it
is set to a negative value.

146 MODERN FORTRAN IN PRACTICE

This raises some questions about the details of the file format:
■ List-directed input will skip an empty line. Should that have been inter-

preted by the previous program as a missing value?
■ If the line contains more than one value, it is accepted, but the other values

are silently ignored. Is that acceptable behavior?
■ What happens if the line contains an invalid number, such as “1.0?”? Is this

interpreted as a missing value or is it reported separately?
■ More subtle problems:

– What happens if the line endings in the file do not match those of the
platform? (Perhaps you have a UNIX/Linux file on Windows or vice
versa.)

– Sometimes files on Windows do not terminate the last line with an end-
of-file sequence. Is that acceptable? Can the list-directed read statement
handle that in a clear way?

– Fortran’s list-directed input does not accept tab characters. As they are
often not visible when viewing the file, they can be difficult to detect.

The remedy to the issues mentioned here is not simple. It is not, however, the
fault of Fortran’s list-directed input features, rather you have underspecified
what acceptable input should be. The specification must pay attention to what
is not acceptable, too.

You can implement reading the data in such a way that you can detect most
of the issues already mentioned, by reading a line of text from the file and
analyzing that in detail. This is done in the second version of the program.
But, first pay attention to the computational part.

The second part of the program is the actual computation of the statistical
parameters. The formulae are simple, but they present a few important prob-
lems. First of all, the computation of the variance is numerically unstable. It
is easy to see: The program computes two sums and then uses the difference
as the final result. If the variation is small, then you subtract two large quan-
tities and significant rounding errors occur. A dramatic example is an input
consisting of nine times 0.1:3

Outcome:
Number of valid data: 9
Number of missing data: 0

Mean value: 0.10000001
Standard deviation: NaN

Not only is the mean value slightly different than 0.1, a result of the finite pre-
cision, the standard deviation, which should have been 0, is in fact computed
from the square root of a small negative number, −1.93715111.10−9.

3 I used the gfortran compiler under Windows XP with default options to compute this result.

ROBUST IMPLEMENTATION OF SEVERAL SIMPLE ALGORITHMS 147

Alternatives to this formula exist that do not exhibit numerical instability, but
they are more complicated. A simple workaround for the problem is to modify
the values that are being summed:

sum = sum + (value - offset)
sumsq = sumsq + (value - offset) ** 2

where offset is one of the non-missing values in the series of data. As the
values in the two sums capture only the variation in the numbers, the roundoff
errors are smaller.

Secondly, when the input value are either very large (> 1030) or very small
(< 10−30), overflow or underflow may occur – the square of such extreme
numbers cannot be represented with standard single-precision floating-point
numbers. There are several methods to avoid this particular issue:
■ Use a type of floating-point numbers that allows a wider range, like dou-

ble precision. This merely expands the range of numbers you can deal
with.

■ Use scaling to force the numbers into a more convenient range.

Whether it is worth introducing such measures, depends on the expected data
and the emphasis you must put on the robustness aspects. The simplest way
to deal with the problem is to warn about numbers outside a particular safe
range. This is exactly what is done in the following revised version:

! robust_stat.f90 --
! Basic statistical parameters - robust version
!
program robust_stat

character(len=80) :: line
real :: value, sum, sumsq, var
integer :: i, j, nodata, nomissing
integer :: noerrors, noempty, nolines, ierr
logical :: first_value = .true.

open(10, file = 'robust_stat.data', status = 'old', &
iostat = ierr)

if (ierr /= 0) then
write(*,*) 'Error opening file with input data - &

&robust_stat.data'
write(*,*) 'Check that it exists'
stop

endif

!
! One value per line, ? means a missing value ...

148 MODERN FORTRAN IN PRACTICE

! (Any other value that can not be read is regarded to
! be an error, ! empty lines are reported but
! not counted)
!
sum = 0.0
sumsq = 0.0
nodata = 0
nomissing = 0
nolines = 0
noerrors = 0

do
read(10, '(a)', iostat = ierr) line

if (ierr < 0) then
!
! End of file
!
exit

elseif (ierr > 0) then
!
! Some reading error occurred - report it
!
write(*,*) 'Error reading line no.', nolines+1
write(*,*) 'Skipping the rest of the file'
exit

else
!
! Get rid of tabs and carriage returns
!
call cleanup_line(line)
!
! Analyze the contents:
! - Empty line?
! - Missing value?
! - Not a valid number?
! - Valid number
!
! Note: only the first value on the line is used
! Anything else is ignored.
!
nolines = nolines + 1

if (line == ' ') then
noempty = noempty + 1
cycle

endif

ROBUST IMPLEMENTATION OF SEVERAL SIMPLE ALGORITHMS 149

if (adjustl(line) == '?') then
nomissing = nomissing + 1
cycle

endif

read(line, *, iostat = ierr) value

if (ierr /= 0) then
noerrors = noerrors + 1
cycle

endif

!
! If the value is out of range, report it and
! skip it
!
if (abs(value) > sqrt(huge(value) .or. &

(abs(value) < tiny(value) .and. &
abs(value) /= 0.0)) then

write(*,*) 'Value out of range: ', value, &
' - ignoring it!'

nomissing = nomissing + 1
cycle

endif

!
! We do have a valid value
!
if (first_value) then

first_value = .false.
offset = value

endif

sum = sum + (value - offset)
sumsq = sumsq + (value - offset) ** 2
nodata = nodata + 1

endif
enddo

close(10)

!
! Report our findings
!
write(*,*) 'Outcome:'
write(*,*) ' Number of lines read: ', nolines
write(*,*) ' Number of empty lines: ', noempty

150 MODERN FORTRAN IN PRACTICE

write(*,*) ' Number of valid data: ', nodata
write(*,*) ' Number of missing data:', nomissing
write(*,*) ' Number of invalid data:', noerrors
write(*,*) ' '

if (nodata > 0) then
vmean = offset + sum / nodata
write(*,*) ' Mean value: ', vmean

if (nodata > 1) then
stdev = &

sqrt((sumsq - sum**2/nodata) / (nodata-1))
write(*,*) ' Standard deviation: ', stdev

else
write(*,*) &

' Standard deviation: too few data'
endif

else
write(*,*) ' Mean value: too few data'

endif
contains

subroutine cleanup_line(line)
character(len=*), intent(inout) :: line

logical :: found
integer :: i, k
integer, dimension(3) :: chars = (/9,10,13/)

found = .true.
do while (found)

found = .false.
!
! Remove any tabs, carriage returns and newlines
!
do i = 1,size(chars)

k = index(line, achar(chars(i)))
if (k > 0) then

found = .true.
line(k:k) = ' '

endif
enddo

endif

end subroutine cleanup_line

end program robust_stat

ROBUST IMPLEMENTATION OF SEVERAL SIMPLE ALGORITHMS 151

-1.0

-0.5

0.0

0.5

1.0

1.5

0.00 0.50 1.00 1.50 2.00

New estimate

 Old estimate

Figure 10.1. Constructing a new estimate with the Newton-
Raphson algorithm

10.4 Finding the Roots of an Equation
The Newton-Raphson method is a popular algorithm for finding the roots of
an equation. It is fast (quadratic convergence), if it converges, and you need
only a single starting point. Geometrically it works by constructing the tangent
line through the current estimate and using the zero of that tangent as the next
estimate (see Figure 10.1).

The formula for the iteration process is:

xk+1 = xk − f (xk)

f ′(xk)
(10.4)

Drawbacks are as follows:
■ You need the first derivative of the function.
■ If the root is a multiple root (the first derivative is zero also), convergence

slows down to a linear rate.
■ Local extrema (where the derivative has a zero) may cause the estimates to

“run away.”

The issue of the derivative is solved in a number of ways:
■ The user must supply a routine that computes the value of the function as

well as its first derivative explicitly.
■ Use automatic or symbolic differentation (see Chapter 3).
■ Estimate the derivative numerically.

For complicated functions, the first method is rather error-prone. The sec-
ond method is closest to the mathematical formulation, but it may not be
implemented easily in the chosen programming language.

From the point of view of robustness, the third method is the most interesting.
The focus is on that method, but the algorithm itself poses a few intriguing
riddles, too.

152 MODERN FORTRAN IN PRACTICE

Here again is a straightforward implementation:

module newton_raphson

implicit none

contains

subroutine find_root(f, xinit, tol, maxiter, result, success)

interface
real function f(x)

real, intent(in) :: x
end function f

end interface

real, intent(in) :: xinit, tol
integer, intent(in) :: maxiter
real, intent(out) :: result
logical, intent(out) :: success

real :: eps = 1.0e-4
real :: fx1, fx2, fprime, x, xnew
integer :: i

result = 0.0
success = .false.

x = xinit
do i = 1,max(1,maxiter)

fx1 = f(x)
fx2 = f(x+eps)
fprime = (fx2 - fx1) / eps

xnew = x - fx1 / fprime

if (abs(xnew-x) <= tol) then
success = .true.
result = xnew
exit

endif

x = xnew
enddo

end subroutine find_root

end module

ROBUST IMPLEMENTATION OF SEVERAL SIMPLE ALGORITHMS 153

Table 10.2. Results of the Straightforward Newton-Raphson Implementa-
tion for Several Functions. Relative Tolerance: 10−5.

Function Start Value Root Found Remarks

ln x − 1 0.1 2.7182817 7 iterations
ln x − 1 10 Outside domain (NaN) x1 is negative
x2 10 3.99.10−5 Slow convergence

– 20 iterations
x2 + 1 10 No convergence There is no real root√|x| 1.0 Oscillation Theoretically: xk+1 = −xk

Some results of this program are shown in Table 10.2.

Sometimes the process will converge, sometimes it will not, and sometimes
the function cannot be properly evaluated. A robust implementation should
try to accurately diagnose the situation. More subtle problems exist as well:
How do you choose the tolerance? And for that matter, how do you define the
tolerance?

Let us examine the simplest case first: a simple root. There is not always a
floating-point value for x for which the numerical implementation of f (x) is
exactly zero. However, you can find two numbers, x1 and x2, such that f (x1)
and f (x2) have opposite signs, thus bracketing the exact root.

Therefore, the two floating-point numbers on either side of the exact zero that
are closest together are in fact the closest approximations you can get. It may
not be necessary to go that far, but it is reassuring to know that you can find
such a pair. This is not the case for multiple roots of even order. They present
an entirely different problem.

If you do not need to find this narrow interval, but rather an approximation
to within 10−4, what exactly do you need? This is more involved than you
might think. It is tempting to think it means:

“We accept any number x that lies in the interval ((1 − ε)r , (1 + ε)r), with r
the exact root and ε the relative tolerance.”

This definition is meaningless if the exact root is 0. If the root is small,
with respect to 1, say 10−6, and you are interested in numbers ranging from
−10 to 10, you may want to accept an interval (−10−4, 10−4), instead of
(0.9999 × 10−6, 1.0001 × 10−6).

If the numbers have a “logarithmic” character, meaning you interpret a number
based on its order of magnitude, rather than the absolute value, the original
relative interpretation is called for.

Leave the decision to the user: if he or she requires a logarithmic interpretation,
then the function should actually be formulated as such:
■ Rewrite f (x) as g (y), y = ln x .
■ Determine the root of g and transform the result.

154 MODERN FORTRAN IN PRACTICE

A useful criterium for convergence that tries to overcome the preceding criti-
cisms:
■ The best estimate xk+1 lies in the interval (xk − Sδ, xk + Sδ), where S is

a scale factor, indicating the typical values of x for which the function is
relevant and δ is the relative tolerance.

■ The function values at the end points of this interval have opposite signs.
■ If convergence does not happen within a preset number of iterations, assume

it will not happen at all.

The first point guarantees that you have a meaningful, small interval under
all circumstances, while the second guarantees that you bracket the exact root.
The choice of S and δ is left to the user.

The next step is: how to determine the derivative numerically? You will use
finite differences to approximate the derivative:

f ′(x) ≈ f (x + η) − f (x)

η
(10.5)

This is prone to numerical errors (subtracting two almost equal quantities), but
there is no alternative, if we cannot or do not want to use automatic or explicit
differentiation. The criterium for selecting the stepsize η in this formula is that
the two function values differ significantly enough to avoid rounding errors,
but are small enough to avoid effects of the higher-order derivatives.

Unfortunately, it is not trivial to decide what stepsize to use. Take the following
example:

f (x) =
⎧⎨
⎩

1 − cos x
x

if x �= 0

0 if x = 0
(10.6)

The mathematically exact derivative at x = 0 is 1
2 . Determining this value via a

small program requires selecting a value of x = 0 + η, where cos x numerically
differs from 1 (see Table 10.3).

The smallest value of η where this theoretically can happen is:4

cos(0 + η) = largest value smaller than 1 = 0.999999940395 (10.7)

giving:

η ≈ 3.453 × 10−4 (10.8)

Therefore, it makes no sense to try and determine the root to an error smaller
than that.

4 You can use the nearest() function to determine the largest distinguishable value smallest than 1.

ROBUST IMPLEMENTATION OF SEVERAL SIMPLE ALGORITHMS 155

Table 10.3. Computed Values for the Function f(x) = 1−cos x
x for Various

Implementations

Direct Mathematical
x Implementation Via f(x) and g(x) Equivalent

1.0000 × 10−10 0.0 0.0 5.0000 × 10−11

1.0000 × 10−8 4.9982 × 10−9 0.0 5.0000 × 10−9

1.0000 × 10−6 5.0000 × 10−7 0.0 5.0000 × 10−7

1.0000 × 10−5 5.0000 × 10−6 0.0 5.0000 × 10−6

1.0000 × 10−4 5.0000 × 10−5 0.0 5.0000 × 10−5

3.0000 × 10−4 1.5000 × 10−4 1.9868 × 10−4 1.5000 × 10−4

1.0000 × 10−3 5.0000 × 10−4 4.7684 × 10−4 5.0000 × 10−4

1.0000 × 10−2 5.0000 × 10−3 5.0008 × 10−3 5.0000 × 10−3

1.0000 × 10−1 4.9958 × 10−2 4.9958 × 10−2 4.9958 × 10−2

1.0 4.5970 × 10−1 4.5970 × 10−1 4.5970 × 10−1

You can, however, write the function in a mathematically equivalent way as:

f (x) =
⎧⎨
⎩

2sin2 1
2 x

x
if x �= 0

0 if x = 0
(10.9)

With an implementation of this form, the minimum value of η is much smaller
(see Table 10.3).

These estimates are complicated by the fact that many modern computers use
extended precision to store intermediate results, as can be seen in Table 10.3.
The apparent greater accuracy in the computations is offset by the fact that
this extra precision is a rather volatile feature. If you evaluate the function
f using the following implementation or if you use compiler options to
guarantee floating-point consistency,5 the results are that in a fairly large range
the numerical implementation of the function gives exactly zero:

real function f(x)
real, intent(in) :: x

if (x /= 0.0) then
f = (1.0 - g(x)) / x

else
f = 0.0

endif
end function f

real function g(x)
real, intent(in) :: x

g = cos(x)
end function g

5 gfortran, for instance, has the option -ffloat-store to store intermediate results as a regular number.

156 MODERN FORTRAN IN PRACTICE

Just as with the tolerance, the value of the stepsize is meaningless, unless you
relate it to the scale of the function – a value of 1.0 × 10−3 works with this
function, but it does not with:

h(x) =
⎧⎨
⎩

1 − cos(104x)

x
if x �= 0

0 if x = 0
(10.10)

The first has a scale of 1, which is the order of magnitude for x over which the
function values change considerably. The second has a scale of 10−4, therefore,
the function varies much more rapidly.

Given these considerations, you should ask the user to supply that scale,
because it can be used to define the tolerance interval and the stepsize for
numerical differentiation.

Yet another refinement that you need if the implementation is to be robust:
not all functions are defined over the entire range of floating-point numbers.
For f defined by:

f (x) = ln x − 1 (10.11)

the iteration may produce a negative value of x . For a function like:

f (x) = e x − 1 (10.12)

the problem is that the function value may become too large to be represented
as a floating-point number (for example, use a starting value of −10).

Therefore, you need to deal with partial functions as well. One way is to ask
the user to return a flag indicating if a domain error occurs or not. Then after
determining the next acceptable estimate, you
■ Compute the next regular estimate:

xk+1 = xk − f (x)

f ′(x)
(10.13)

■ If xk+1 is within the domain, accept it.
■ If it is not, try:

xk+1 = xk − f (x)

2 f ′(x)
(10.14)

■ Repeat the halving until an acceptable value is found.

The initial estimate must, of course, be within the domain of f .

The last point of concern is roots that are not first order. As long as the
values in the neighborhood are both positive and negative, you get the same
situation as before, only the convergence is not quadratic anymore. The most
problematic situation is roots where the function does not change sign. The
function f (x) = √|x | leads to an oscillation:

xk+1 = xk − f (xk)/ f ′(xk) = −xk (10.15)

ROBUST IMPLEMENTATION OF SEVERAL SIMPLE ALGORITHMS 157

1e-14

1e-13

1e-12

1e-11

1.7320500 1.7320505 1.7320510 1.7320515

Figure 10.2. Values of the quartic function f (x) = (x2 − 3)2

around the root
√

3. The floating-point values of x were enumerated
using the Fortran 90 nearest() function.

With functions like:

f (x) = (x 2 − 3)2 (10.16)

you have a more subtle problem: Mathematically, you have two double roots,
−√

3 and +√
3, but the function as implemented in a small program never

attains the value zero (see Figure 10.2). The minimum value is attained at
the value of sqrt(3.0), but this value can be arbitrarily large. Consider, for
instance, the same function with a large constant:

f (x) = 1010(x 2 − 3)2 (10.17)

Furthermore, the values around the precise minimum are 10 times larger.

A solution around this could be to specify a tolerance for the function value:
any point where the function reaches a small enough absolute value is regarded
as an approximation to its zero.

Piecing it all together, you get the following steps:

1. Determine if the initial guess, x0, is within the domain of the function. If
not, you cannot continue.

2. If the function value is small enough, you stop. However, also see if the
exact root is enclosed or not in the tolerance interval.

3. Determine a reasonable stepsize δ for estimating the derivative then take
care of the step’s direction. If you cannot find a reasonable step, stop the
procedure. (A reasonable stepsize is one where the function values changes
enough to determine the derivative accurately.)

4. Determine the next iterate. If not within the function’s domain, modify the
estimate.

158 MODERN FORTRAN IN PRACTICE

5. If you have the maximum number of function evaluations, stop the proce-
dure: no convergence. If you have not reached the maximum yet, go back
to step 2.

The implementation uses the number of function evaluations as the cancella-
tion criterium, because evaluating the function is generally the most expensive
step.

Here is an implementation:

! robust_newton.f90 --
! Robust version of the Newton-Raphson method
!
module robust_newton

implicit none

integer, parameter :: bracketed_root = 1
integer, parameter :: small_value_solution = 2
integer, parameter :: convergence_reached = 3
integer, parameter :: invalid_start_value = -1
integer, parameter :: no_convergence = -2
integer, parameter :: invalid_arguments = -3

contains

subroutine find_root(f, xinit, scalex, tolx, smallf, &
maxevals, result, success)

interface
subroutine f(x, indomain, value)

real, intent(in) :: x
logical, intent(out) :: indomain
real, intent(out) :: value

end subroutine f
end interface

real, intent(in) :: xinit, scalex, tolx, smallf
integer, intent(in) :: maxevals
real, intent(out) :: result
integer, intent(out) :: success

real :: eps, epsinit, epsf
real :: fx1, fx2, fxnew, fprime, fscale
real :: x, xnew
integer :: i, evals
logical :: indomain

result = 0.0

ROBUST IMPLEMENTATION OF SEVERAL SIMPLE ALGORITHMS 159

success = no_convergence

!
! Sanity check
!
if (scalex <= 0.0 .or. tolx <= 0.0 .or. &

smallf <= 0.0) then
success = invalid_arguments
return

endif

!
! Starting value for the stepsize
!
epsinit = scalex * sqrt(epsilon(xinit))
epsf = 100.0 * epsilon(fx1)

!
! Check the initial value
!
x = xinit

call f(x, indomain, fx1)
evals = 1

if (.not. indomain) then
success = invalid_start_value
return

endif

outerloop: &
do

!
! Is the function value small enough?
! Then stop
!
if (abs(fx1) <= smallf) then

success = small_value_solution
result = x
exit

endif

!
! Determine the derivative - be careful about
! the domain
!
eps = epsinit

160 MODERN FORTRAN IN PRACTICE

epsloop: &
do while (evals < maxevals)

call f(x+eps, indomain, fx2)

evals = evals + 1
if (evals >= maxevals) exit

if (.not. indomain) then
eps = -eps
call f(x+eps, indomain, fx2)

evals = evals + 1
if (evals >= maxevals) exit outerloop

if (.not. indomain) exit outerloop
endif

fscale = (abs(fx2)+abs(fx1))/2.0
if (abs(fx2-fx1) < epsf * fscale + smallf) then

eps = 2.0 * eps
else

exit epsloop
endif

enddo &
epsloop

fprime = (fx2 - fx1) / eps

!
! Determine the next estimate
!

newxloop: &
do while (evals < maxevals)

xnew = x - fx1 / fprime

call f(xnew, indomain, fxnew)
evals = evals + 1

if (.not. indomain) then
fx1 = fx1 / 2.0

else
exit newxloop

endif
enddo &

newxloop

fx1 = fxnew

ROBUST IMPLEMENTATION OF SEVERAL SIMPLE ALGORITHMS 161

!
! Have we reached convergence?
!
if (evals < maxevals) then

if (abs(xnew-x) <= scalex * tolx) then
success = convergence_reached
if (abs(fx1) < smallf) then

success = small_value_solution
endif
result = xnew
exit outerloop

endif
else

exit outerloop
endif

x = xnew
enddo &

outerloop

!
! Simply a small value or a bracketed root?
!
call f(x - scalex*tolx, indomain, fx1)
evals = evals + 1
if (indomain) then

call f(x + scalex*tolx, indomain, fx2)
evals = evals + 1
if (indomain) then

if (fx1 * fx2 <= 0.0) then
success = bracketed_root

endif
endif

endif

end subroutine find_root

end module

It may be difficult to determine whether the x value is within the domain of
the function. In that case, the intrinsic module ieee_arithmetic introduced
in Fortran 2003 is helpful. This module contains the functions ieee_is_nan()
and ieee_is_finite() to check if a number is a valid, ordered number or not,
and whether it is a finite number (see Chapter 9). Instead of demanding the
user to indicate that the value of x is within the function’s domain, you can
check that the returned value is still usable:

162 MODERN FORTRAN IN PRACTICE

Table 10.4. Results of the Robust Newton-Raphson Implementation for
Several Functions. Relative Tolerance: 10−5, Maximum Number of Evalu-
ations: 20 (except for the parabola, there it was 40). For the Cosine Func-
tion, a Scale Factor of 10−4 was Used and the Root Found is Approximately
57.5 ß × 10−4

Function Start Value Root Found Conclusion Evaluations

ln x − 1 0.1 2.7182817 convergence 15
ln x − 1 10 2.7182817 convergence 12
x2 10 2.87 × 10−3 small value solution 30
x2 + 1 10 – no convergence 22√|x| 1.0 – no convergence 22
cos(104x) 0.0 0.0184064158 convergence 16

use, intrinsic :: ieee_arithmetic, only :: ieee_is_finite

...
fxnew = f(xnew)
indomain = ieee_is_finite(fxnew)
...

Table 10.4 contains the results for the same set of functions as you started
with and one extra function to examine what happens if the scale factor is very
different from 1. Some experimenting shows that it is very difficult to reach
1
2π × 10−4 via the scale factor and a starting value of 0. A different starting
value (2.355 × 10−4 ≈ 0.75π × 10−4) does give approximately 1

2π × 10−4

as the root.

11.

Object-Oriented
Programming

An interesting feature of Fortran 2003 is the possibility to use an object-
oriented style of programming. While Akin [2] and Decyk and Gardner
[28] have shown that object-oriented programming (OOP) is possible in
Fortran 90/95, the lack of inheritance and run-time polymorphism poses
some limits on what you can do. Fortran 2003 makes these aspects of OOP
readily available. Furthermore, in combination with other facilities you can do
more than merely class-based OOP.

One thing to note: Object-oriented programming is a subject that is both
vast and confusing at times. Not only does the terminology that is used differ
per programming language, but also their semantics, or what the concepts
actually mean. Authors differ in what they consider to be the essential concepts
of OOP. Rouson and Adalsteinsson [73] compare Fortran 2003 and C++
implementations of several design patterns and they provide synonyms for the
various concepts in these two languages.

11.1 Extending Types and Type-Bound Procedures
The basic features that allow you to create an object-oriented program are type
extension and type-bound procedures. For example, consider points in two-
dimensional space. The following elaborates this example in several directions.
The starting point is this derived type:

type point2d
real :: x, y

end type point2d

You can define operations like adding a vector to this point or scaling with
respect to the origin in the classical way using Fortran 90/95:

module points2d

implicit none

type point2d
real :: x, y

end type point2d

163

164 MODERN FORTRAN IN PRACTICE

contains
type(point2d) function add_vector(point, vector)

type(point2d), intent(in) :: point, vector

add_vector%x = point%x + vector%x
add_vector%y = point%y + vector%y

end function add_vector

type(point2d) function scale_by_factor(point, factor)
type(point2d), intent(in) :: point, vector
real, intent(in) :: factor

scale_by_factor%x = factor * point%x
scale_by_factor%y = factor * point%y

end function scale_by_factor

end module points2d

But these procedures (with one modification) can also be bound to the
type:

type point2d
real :: x, y

contains
procedure :: add => add_vector
procedure :: scale => scale_by_factor

end type point2d

The consequence of this binding is that you can use them as follows:

! Translate the point over the vector

newpoint = point%add(vector)

You may conclude that this is merely a syntactic difference from:

! Translate the point over the vector

newpoint = add_vector(point, vector)

In a way that is true. Even though the procedure is now bound to the point2d
type, you can still call it with the object as an explicit argument.

Because types can, in principle, be extended, the signature of the type-bound
procedures add_vector and scale_by_factor must be changed to accommo-
date for these extended types. This is done by making at least the object that is
implicitly passed a so-called polymorphic variable, that is, a variable that has

OBJECT-ORIENTED PROGRAMMING 165

a declared type and a dynamic type. This type of variable is declared via the
class keyword:

type(point2d) function add_vector(point, vector)
class(point2d), intent(in) :: point
type(point2d), intent(in) :: vector

add_vector%x = point%x + vector%x
add_vector%y = point%y + vector%y

end function add_vector

Passing the Object Via Another Argument If the argument containing the
object is not the first, you can specify that:

type point2d
real :: x, y

contains
procedure :: add, pass(vector) => add_vector

end type point2d

This has the effect that the left-hand side pnt of pnt%add(vec) is no longer
passed as the first argument, but as the argument whose name is “vector”:

newpnt = pnt%add(vec)

It is now equivalent to:

newpnt = add(vec, pnt)

instead of:

newpnt = add(pnt, vec)

If you want to suppress this automatic passing of the left-hand side, you can
use the nopass keyword instead of pass.

Extending to Three Dimensions You have points in a two-dimensional
space, so use this type as the basis for points in 3D space by extending the
point2d type:

type, extends(point2d) :: point3d
real :: z

contains
procedure :: add => add_vector3d

end type point3d

This new type inherits all the components and type-bound procedures of
the type it extends, but you need to revise the procedures (hence the new
procedure add_vector3d) to reflect that these are points in 3D space and to
accommodate for the restrictions the Fortran standard imposes.

166 MODERN FORTRAN IN PRACTICE

First, interfaces like add are overwritten in extended types, but then you need
to take care that the signature remains essentially the same. The only required
change is that the type of the object passed is the extended type. In the
preceding case, the signature of the routine add_vector3d becomes:

type(point2d) function add_vector3d(point, vector)
class(point3d), intent(in) :: point ! Required change!
type(point2d), intent(in) :: vector
...

end function add_vector3d

Note that the returned value and the vector over which the point translates are
still type(point2d), not type(point3d). The Fortran standard does not allow
you to change that. Instead, you need polymorphic variables.

For the two-dimensional case:

class(point2d) function add_vector_2d(point, vector)
class(point2d), intent(in) :: point
class(point2d), intent(in) :: vector
...

end function add_vector_2d

For the three-dimensional case:

class(point2d) function add_vector_3d(point, vector)
class(point3d), intent(in) :: point

! This one still point2d
class(point2d), intent(in) :: vector
...

end function add_vector_3d

This has some consequences for the implementation of the actual routines as
well: You cannot simply return a class variable. It must be either an allocatable
or a pointer, because the type is dynamic. The allocation or the association
transfers the type information as well as information on the memory to be
used. Therefore, the two-dimensional variant becomes (note the allocation):

function add_vector_2d(point, vector)
class(point2d), intent(in) :: point, vector
class(point2d), allocatable :: add_vector_2d

allocate(add_vector_2d)

add_vector_2d%x = point%x + vector%x
add_vector_2d%y = point%y + vector%y

end function add_vector_2d

OBJECT-ORIENTED PROGRAMMING 167

The three-dimensional variant has an additional difficulty to cope with. The
result must be class(point2d), not class(point3d), so you need to adjust
the dynamic type of the result before returning. Here is one solution:

function add_vector_3d(point, vector)
class(point3d), intent(in) :: point
class(point2d), intent(in) :: vector

class(point2d), allocatable :: add_vector_3d
class(point3d), allocatable :: add_result

allocate(add_result)

add_result%point2d = point%point2d%add(vector)
add_result%z = 0.0

select type (vector)
class is (point3d)

add_result%z = point%z + vector%z
end select

call move_alloc(add_result, add_vector_3d)

end function add_vector_3d

In this example, you allocate a local variable add_result, which has the right
basic type, and use the move_alloc intrinsic routine to move the memory
and the type information into the result variable, using add_vector_3d. To
make sure you know the type of the vector argument – known as basic type
type(point2d) only – use the select type construction.1

The type from which you extended the 3D point is available with all its
components and procedures, as an implicit component point2d. Therefore,
do the part of the task that has not changed and add the new aspects separately.2

Example: Random Walk in Two and Three Dimensions The dynamic
type of these polymorphic variables is exploited in a program to simulate a
random walk in two or three dimensions. The random walk is constructed by
repeatedly selecting a random vector and adding that to the current position
of a point to get the new position. If you are using ordinary types, use:

do i = 1,nsteps
call random_vector(vector)

1 This may seem awkward, but it is not that different from languages like C++ or Java where you
first have to create an object of the right type as well.
2 In C++ and Java, you would use the super class to achieve this effect.

168 MODERN FORTRAN IN PRACTICE

point = point + deltt * vector

call print(point)
enddo

The compact expression point = point + deltt * vector relies on defining
operator interfaces, so that the compiler knows what the + and * operations
mean for the involved derived types:

interface operator(+)
module procedure add_vector_2d

end interface

This does not work for type-bound procedures, such as an interface block:

interface operator(+)
module procedure add_vector_2d
module procedure add_vector_3d

end interface

This would result in a compiler error because the compiler cannot distinguish
between these two routines. A variable of type class(point3d) is regarded as
class(point2d) as well, due to the fact that one is extended from the other.

The proper way to do this is using generic interfaces:

type point2d
real :: x, y

contains
procedure :: add => add_vector
generic :: operator(+) => add

end type point2d

Using the generickeyword, you associate the procedure addwith the operation
+. In extended types, the actual routine that implements the add procedure
is different and, therefore, the + operation has a different meaning for such
extended types. But that is, of course, exactly what you want.

In the following program, the variables point and vector are polymorphic
and assume the dynamic types of point2d and point3d during the run of the
program (not all code, such as the subroutine random_vector, is shown):

program random_walk

use point3d ! Both 2D and 3D points available

type(point2d), target :: point_2d, vector_2d
type(point3d), target :: point_3d, vector_3d

!
! A variable of class point2d can point to point_2d but

OBJECT-ORIENTED PROGRAMMING 169

! also to point_3d
!
class(point2d), pointer :: point, vector

integer :: nsteps = 100
integer :: i
integer :: trial
real :: deltt = 0.1

do trial = 1,2
! Select what type of point ...
if (trial == 1) then

point => point_2d
vector => vector_2d

write(*,*) 'Two-dimensional walk:'
else

point => point_3d
vector => vector_3d

write(*,*) 'Three-dimensional walk:'
endif

call point%random_vector

do i = 1,nsteps
call vector%random_vector

point = point + deltt * vector

call point%print
enddo

enddo
end program random_walk

Because the variable point is declared to be of class(point2d), it can point
to any variable of type either point2d or an extension, like point3d.

The second iteration of the outer loop can use a 3D point. This would, in
general, be much harder to achieve with Fortran 90/95. One way, however, is
to let a general point type consist of both a point2d pointer component and
a point3d pointer component:

type :: point_t
type(point2d), pointer :: p2d => null()
type(point3d), pointer :: p3d => null()

end type point_t

170 MODERN FORTRAN IN PRACTICE

Though in this simple case, it would not be entirely impossible, the code for
the routine random_vector and others needs to distinguish between the two
types. Therefore, only one of the two pointer components is associated and
this is used to select the relevant code.

With the runtime polymorphism that Fortran 2003 offers, this selection mech-
anism is completely transparent. It is the dynamic type of the variable point

that determines it.

Determining the Dynamic Type As previously discussed, sometimes you
need to know the dynamic type of a polymorphic variable to use it in the
correct way. For this, Fortran 2003 offers the select type construction as well
as two intrinsic functions to inquire about (dynamic) types, same_type_as()
and extends_type_of().

Particle Tracking To further illustrate object-oriented programming in For-
tran, extend the 2D point example in a different way. The points will become
particles in a hydrodynamic flow field, or an electromagnetic force field, if you
prefer that. You need a way to let the particles go with the flow field, but if
they represent oil droplets or grains of silt or sand, they will be influenced by
gravitational forces in addition to the flow field. The flow field itself may be
schematized by a set of analytical functions, an approximation on a rectangular
grid or a finite-element mesh. The variety in particle behavior, or the way the
flow field is handled, is encapsulated in the precise type of particles and in the
type of flow field, but the basic types are:

module particle_modelling
use points2d3d

implicit none

type, extends(point2d) :: basic_particle_type
real :: mass

contains
procedure :: force => force_basic_particle
procedure, pass(particle) &

:: new_position => position_basic_particle
end type basic_particle_type

type :: basic_flow_field_type
contains

procedure :: flow_velocity => velocity_basic_flow_field
end type basic_flow_field_type

contains

OBJECT-ORIENTED PROGRAMMING 171

subroutine position_basic_particle(&
particle, flow_field, deltt)

class(basic_particle_type), intent(inout) :: particle
class(basic_flow_field_type), intent(in) :: flow_field
real, intent(in) :: deltt

! Empty routine
end subroutine position_basic_particle

subroutine force_basic_particle(particle, force_vector)

class(basic_particle_type), intent(inout) :: particle
class(point2d), intent(out) :: force_vector

! Empty routine
end subroutine force_basic_particle

subroutine velocity_basic_flow_field(&
flow_field, position, velocity)

class(basic_flow_field_type), intent(in) :: flow_field
class(point2d), intent(in) :: position
class(point2d), intent(out) :: velocity

! Empty routine
end subroutine velocity_basic_flow_field
end module particle_modelling

In this example, using empty routines emphasizes that you need to fill in the
details before you can actually use them. The next section describes a method
to formalize this via so-called abstract interfaces.

Simulating the behavior over time of a set of particles that are supposed to
model oil, now becomes a matter of updating the position in response to the
flow field, and to the processes that act on the oil, such as sticking to the
bottom:3

subroutine position_oil_particle(particle, flow_field, deltt)
class(oil_particle), target :: particle
real :: deltt
class(basic_flow_field_type) :: flow_field

class(point2d), pointer :: position

3 This is a rather naive implementation, as it assumes that the flow field does not change over time
and that the flow velocity does not change appreciably over the distance a particle travels within one
time step.

172 MODERN FORTRAN IN PRACTICE

class(point2d) :: flow_velocity
class(point2d) :: random_displacement

real :: r

!
! The particle may get stuck to the bottom ...
!
call random_number(r)
if (r > 0.99) then

particle%stuck = .true.
endif
!
! If it is stuck to the bottom, no further motion
!
if (particle%stuck) then

return
endif

!
! Else let it be transported with the flow. Add a
! random displacement due to mixing and turbulence
!
position => particle%point2d

call flow_field%flow_velocity(position, velocity)
call random_displacement%random_vector

position = position + deltt * velocity + &
random_displacement

end subroutine position_oil_particle

The simulation itself then computes the tracks of a large number of oil particles
over time:

type(oil_particle), dimension(100000) :: particle
type(analytical_field) :: flow_field
real :: deltt

... initialize the flow field and the particle positions ...

do time = 1,number_times
do p = 1,size(particle)

call particle(p)%new_position(flow_field, deltt)
enddo

enddo

OBJECT-ORIENTED PROGRAMMING 173

The preceding takes a “particle-centric” point of view where the particles are
the most important agent, hence the call:

call particle(p)%new_position(flow_field, deltt)

You may want to change that viewpoint to a “flow-field-centric” one:

type(analytical_field) :: flow_field
type(oil_particle), dimension(100000) :: particle
real :: deltt

do time = 1,number_times
... compute the flow field for this time ...

!
! Update the particle positions using the new flow field
!
do p = 1,size(particle)

call flow_field%new_position(particle(p), deltt)
enddo

enddo

This “inversion” is achieved, not by changing the interface of the actual routine,
but via the pass() keyword. The definition of the flow field type becomes:

type :: basic_flow_field_type
contains

procedure :: flow_velocity => velocity_basic_flow_field
procedure, pass(flow_field) :: &

new_position => position_basic_particle
end type basic_flow_field_type

11.2 Interfaces As Contracts
Fortran 2003 does not allow multiple inheritance (in contrast to C++), which
is sometimes useful to combine properties. It does not allow you to specify
Java-style interfaces either, assuring that certain routines with a predefined
interface are available. Instead, you can emulate these features by extending
types from a basic type.

The idea is to use abstract types and abstract interfaces. This is a mechanism
to specify what is expected of a derived type, in particular what routines are
available with what interface without actually defining them. You use the
deferred keyword and the abstract interface keyword:

type, abstract :: abstract_point
! No coordinates, leave that to the extending types

contains
procedure(add_vector), deferred :: add

end type abstract_point

174 MODERN FORTRAN IN PRACTICE

!
! Define what the named interface "add_vector" should
! look like
!
abstract interface

subroutine add_vector(point, vector)
import abstract_point
class(abstract_point), intent(inout) :: point
class(abstract_point), intent(in) :: vector

end subroutine add_vector
end interface

You cannot declare ordinary variables to be of type(abstract_point) because
it is an abstract type. To use it you need to define some type that extends it
(note that the procedure add is not given an interface name):

type, extends(abstract_point) :: point2d
real :: x, y

contains
procedure :: add => add_vector_2d

end type point2d

type(point2d) :: point

You can declare a pointer (or allocatable) variable to be of class(abstract_
point), but at some point it should be associated with a “concrete” type, such
as point2d:

class(abstract_point), pointer :: p
type(point2d), target :: point
type(point2d) :: vector

p => point
call p%add_vector(vector)

Any type that extends abstract_point must define the add procedure with
the correct interface. This guarantees that you can write generic code like the
random walk program presented in the previous section. In other words, the
abstract type defines a contract [64]. If you want to use facilities that rely on
this abstract type, you will have to satisfy this contract. However, then you
have access to a generic interface of these facilities.

Another example is a module to sort an array of items. In Fortran 90/95,
you need to implement a specific version for each type you want to use, even
though this can be done with a minimum of repeated code (replace <module>
and <type> by the appropriate actual names):

OBJECT-ORIENTED PROGRAMMING 175

module <module>_sorting

use <module>, data_type => <type>

!
! Include the generic code
!
include "sort_f90_include.f90"

end module <module>_sorting

module <module>_public
use <module>_sorting, <type> => data_type

end module <module>_public

This implementation relies on renaming a derived type and on user-defined
operations.

The file “sort f90 include.f90” is completely oblivious of the particular type
to be sorted. The interface statement ensures you can have several sorting
routines without a naming conflict, and the sort routine relies on a user-defined
comparison operation.

private :: sort
interface sort_data

module procedure sort
end interface

contains

subroutine sort(data)
implicit none

type(data_type), dimension(:) :: data

type(data_type) :: tmp
integer :: i, j

do i = 1,size(data)
do j = i+1,size(data)

if (data(j) < data(i)) then
tmp = data(i)
data(i) = data(j)
data(j) = tmp

endif
enddo

enddo
end subroutine sort

176 MODERN FORTRAN IN PRACTICE

Two modules are required to rename the specific derived type (for instance,
address) to the generic name data_type then back to the specific name again.

The one requirement to the derived type is that it provides a comparison
operation to determine if one value of that type is smaller than another. For
example:

module address_module
type address

character(len=40) :: name
character(len=40) :: street

end type address

interface operator(<)
module procedure lower_address

end interface
contains
logical function lower_address(x, y)

type(address), intent(in) :: x, y

if (x%name /= y%name) then
lower_address = x%name < y%name

else
lower_address = x%street < y%street

endif
end function lower_address

end module address_module

In Fortran 2003, you make these requirements part of the definition of an
abstract type:

module sortable_types

type, abstract :: sortable
! No particular data

contains
procedure(islower), deferred :: islower
procedure(assignx), deferred :: assign_data
generic :: operator(<) => islower
generic :: assignment(=) => assign_data

end type
abstract interface

logical function islower(item1, item2)
import sortable
class(sortable), intent(in) :: item1, item2

end function islower
end interface

OBJECT-ORIENTED PROGRAMMING 177

abstract interface
subroutine assignx(item1, item2)

import sortable
class(sortable), intent(inout) :: item1
class(sortable), intent(in) :: item2

end subroutine assignx
end interface

contains

subroutine sort(array)
class(sortable), dimension(:), &

intent(inout), target :: array

class(sortable), allocatable :: tmp
class(sortable), pointer :: first_element

integer :: i, j

!
! Allocate the temporary variable such that it has the
! proper dynamic type
!
allocate(tmp, source = array(1))

do i = 1,size(array)
do j = i+1,size(array)

if (array(j) < array(i)) then
tmp = array(i)
array(i) = array(j)
array(j) = tmp

endif
enddo

enddo
end subroutine sort

end module sortable_types

The only requirement to the types you pass is they extend from the sortable
abstract type.

Approximating Multiple Inheritance The fact that you cannot use multiple
inheritance may be considered a hindrance. Suppose you require both sorting
and printing for a derived type. Do you need to define an abstract type that
combines all the required features and then extend that type? Not necessarily,
because you can do it in steps:

178 MODERN FORTRAN IN PRACTICE

module printable_sortable_types
use sortable_types

implicit none

type, abstract, extends(sortable) :: printable_sortable
! No particular data

contains
procedure(print_item), deferred :: print

end type printable_sortable

abstract interface
subroutine print_item(item)

import printable_sortable
class(printable_sortable), intent(in) :: item

end subroutine print_item
end interface

contains

...

end module printable_sortable_types

In this way, the properties of the sortable type are propagated to a printable
type. The result is a derived type that combines the properties of both.

11.3 Using a Prototype Approach
So far this chapter emphasized the class-based style of object-oriented pro-
gramming, meaning objects get their behavior from a centrally defined “class”
(the derived type and its type-bound procedures). An alternative approach is
that some behavior is made specific for the object. For instance, you have a set
of polygons and one of the procedures that are bound to the corresponding
polygon type is to determine the surface area. You could decide to specialize
that procedure if the polygons happen to be a square or a rectangle:

module polygons

implicit none

type polygon_type
real, dimension(:), allocatable :: x, y
procedure(compute_value), &

pointer :: area => area_polygon
contains

procedure :: draw => draw_polygon
end type polygon_type

OBJECT-ORIENTED PROGRAMMING 179

abstract interface
real function compute_value(polygon)

import :: polygon_type
class(polygon_type) :: polygon

end function compute_value
end interface

contains

subroutine draw_polygon(polygon)
class(polygon_type) :: polygon
... general drawing method ...

end subroutine draw_polygon

real function area_polygon(polygon)
type(polygon_type) :: polygon
... general method to determine the area ...

end function area_polygon

!
! Alternative for rectangles: simpler method
!
real function area_rectangle(polygon)

type(polygon_type) :: polygon

associate(x => polygon%x, y => polygon%y)
area_rectangle = abs((x(2)-x(1)) * (y(3) - y(2)))

end associate
end function area_rectangle

subroutine new_polygon(polygon, x, y)
real, dimension(:) :: x, y
type(polygon_type), allocatable :: polygon

allocate(polygon%x(size(x)), polygon%y(size(x)))
polygon%x = x
polygon%y = y

end subroutine new_polygon

!
! Alternative method to construct a rectangle
! Override the default method for computing the area!
!
subroutine new_rectangle(rectangle, x1, y1, width, height)

real :: x1, y1, width, height
type(polygon_type), allocatable :: rectangle

180 MODERN FORTRAN IN PRACTICE

allocate(rectangle%x(4), rectangle%y(4))
rectangle%x = (/ x1, x1+width, x1+width, x1 /)
rectangle%y = (/ y1, y1, y1+height, y1+height /)

rectangle%area => area_rectangle

end subroutine new_rectangle

end module polygons

Therefore, drawing the polygons makes use of the general drawing procedure
while for squares and rectangles the computation of the area is done by the
alternative routine pointed to by the procedure pointer. A very nice aspect of
procedure pointers in Fortran is that they are indistinguishable – to the using
code – from type-bound procedures. You can use procedure pointers instead
of type-bound procedures, with the same pass() property. Only the position
of the declaration is different (they come before the contains keyword) and
the fact that they can be changed dynamically per object.

Therefore, objects can obtain a different behavior but still belong to the same
“class”. For instance, in ecological modelling systems where the behavior of
individuals depends on their age or even the time of year, this flexibility can
be gratefully deployed (see the following).

A concise example is shown in Chapter 5. Instead of separate classes for all
functions to integrate, you can define a single class that takes a pointer to the
specific function, as long as these functions share the set of parameters defined
in this class.

There are more alternatives conceivable, such as delegation. The object in
question can delegate the actual work to a component or to a specific routine
if one is defined on a per-object basis:

module flow_fields

use grids

implicit none

type flow_field_type
class(geometry_type) :: grid

contains
procedure :: cell_index => get_cell_index

end type flow_field_type

contains

function get_cell_index(this, x, y)
type(flow_field_type) :: this

OBJECT-ORIENTED PROGRAMMING 181

real :: x, y
class(cell_data), allocatable :: get_cell_index

call this%grid%cell_index(x, y, get_cell_index)
end function get_cell_index

Therefore, rather than extend the grid type to form a new flow field type based
on the chosen type of grid, use the grid as a component in the flow_field

type and use the facilities, such as the geometry_type type, to implement the
geometrical functions that are required.

If an object has both generic and specific implementations of certain functions
or tasks, for instance, you may want to track one particular particle in the
computation, this can be solved elegantly via:

subroutine new_position(particle, flow_field)
type(particle_type) :: particle
type(flow_field_type) :: flow_field

if (associated(particle%special_new_position)) then
call particle%special_new_position(flow_field)

else
! General code

endif
end subroutine new_position

You can also move the condition to the initialization of the computation:

!
! Initialize the particles
!
do i = 1,number_particles

if (... special particle ...) then
particle%new_position => special_new_position

else
particle%new_position => general_new_position

endif
enddo

The caller does not need to take the special property into account because
it is handled automatically. However, if desired, the caller can use their own
version of the special routine to determine the new position:

call particle(idx)%set_position_handler(my_new_position)

182 MODERN FORTRAN IN PRACTICE

Example: Modeling Fish Behavior As a strongly simplified (and ecologically
unrealistic) example, consider the fate of a number of salmon-like fish. As larvae
they have no individual motion and are just transported along with the flow.
As adults, however, they need to swim to their food and, later on to their
mating grounds. The various stages of their life can be modeled using different
routines:

module fishes

use flow_fields
use food_situations

type fish_type
real :: x, y
real :: age
procedure, pointer :: behave

end type fish_type
! Grown up at age 1/2

real, parameter :: age_reach_adulthood = 0.5

! Mating start at age 5
real, parameter :: age_reach_mating = 5.0

contains

subroutine behave_juvenile(&
this, deltt, flow_field, food_situation)

type(fish_type) :: this
real :: deltt
type(flow_field_type) :: flow_field
type(food_situation_type) :: food_situation

!
! No motion of their own
!
call this%update_position(deltt, flow_field)

!
! Update age
!
this%age = this%age + deltt

if (this%age >= age_reach_adulthood) then
this%behave => behave_adult

endif
end subroutine behave_juvenile

OBJECT-ORIENTED PROGRAMMING 183

subroutine behave_adult(&
this, deltt, flow_field, food_situation)

type(fish_type) :: this
real :: deltt
type(flow_field_type) :: flow_field
type(food_situation_type) :: food_situation

!
! New position: where is the food?
!
call this%update_position(deltt, flow_field)

call this%swim_to_food(deltt, food_situation)

!
! Update age - time to mate?
!
this%age = this%age + deltt

if (this%age >= age_reach_mating) then
this%behave => behave_migrate

endif
end subroutine behave_adult

... Similar for behave_migrate

end module fishes

In the main program, you need not to worry about the changes in the behavior
of the fish. This is all taken care of inside the module:

program test_fishes
use fishes
implicit none

integer, parameter :: number = 1000
type(fish_type), dimension(number) :: fish
type(flow_field_type) :: flow
type(food_situation_type) :: food

real :: deltt
integer :: i, time

!
! Initialize the information on fish, flow and food:
! fish in a square of 100x100 km
!
call random_number(fish%x)

184 MODERN FORTRAN IN PRACTICE

call random_number(fish%y)

fish%x = 100000.0 * fish%x
fish%y = 100000.0 * fish%y
fish%age = 0.0

deltt = 0.1

do time = 1,100
do i = 1,size(fish)

call fish(i)%behave(deltt, flow, food)
enddo

enddo
end program test_fishes

11.4 Abstract Data Types and Generic Programming
With the introduction of pointers in Fortran 90, it became straightforward to
develop code for manipulating other data structures than arrays. In fact, any
recursively defined abstract data type, such as linked lists and binary trees, can
be implemented directly in Fortran 90:4

type linked_list
integer :: value
type(linked_list), pointer :: next

end type linked_list

The essential feature is that it allows use of a pointer to a component of a
type that is not (fully) defined yet. The definition should appear in the same
compilation unit.

The main problem to confront is the type of the data to be stored. Fortran 90
does not easily allow different data types to be stored in one linked list or tree.
That means for a list that should contain both arrays of reals and strings, you
need a construction like:

type linked_list
real, dimension(:), pointer :: array
character(len=80) :: string ! Not used if array

! is associated
type(linked_list), pointer :: next

end type linked_list

This is much like the solution discussed in Section 11.1 for dealing with points
in two- and three-dimensional space.

4 In Fortran 77, the basic data structure is the array. While it is quite possible to use that as a basis for
linked lists, an implementation would be much less flexible than in Fortran 90 or later.

OBJECT-ORIENTED PROGRAMMING 185

A completely different approach is to transform the data into the type you do
store and to keep track of the original type separately:

type linked_list
integer, dimension(:), pointer :: array
integer :: type_indicator ! 1 - real array,

! 2 - character string
type(linked_list), pointer :: next

end type linked_list

Here is the code with associated routines:

subroutine store_real_array(element, array)
type(linked_list) :: element
real, dimension(:) :: array

element%type_indicator = 1
call store_integer_array(&

element, transfer(array,element%array))
end subroutine store_real_array

subroutine store_character_string(element, string)
type(linked_list) :: element
character(len=*) :: string

element%type_indicator = 2
call store_integer_array(&

element, transfer(string,element%array))
end subroutine store_character_string

! Private routine - here we know the exact size
subroutine store_integer_array(element, data)

type(linked_list) :: element
integer, dimension(:) :: data

allocate(element%array(size(data))
element%array = data

end subroutine store_integer_array

... Similar routines to retrieve the data in the original form

(You use the transfer() function to transform the data from one type into
another; in this case, an integer array.)

The code for an abstract data type is easily reused to store the data of any type,
if the type is a derived type:

module linked_list_points2d
use points2d, stored_type => point2d

186 MODERN FORTRAN IN PRACTICE

private
public :: linked_list, add,

type linked_list
type(stored_type) :: data
type(linked_list), pointer :: next

end type linked_list

!
! Define generic names for the functionality
! - makes using different types of lists easier
!
interface add

module procedure :: add_element
end interface

... Other interfaces

contains

... Subroutines and functions needed

end module linked_list_points2d

As there is only a small part that is specific to the data type, you can put the
generic part of the code in a file that is be included for specific implementations:

module linked_list_points2d
use points2d, stored_type => point2d
include 'generic_lists.f90'

end module linked_list_points2d

module linked_list_grids
use grids, stored_type => grid
include 'generic_lists.f90'

end module linked_list_grids

module linked_lists
use linked_list_points2d, &

linked_list_of_2dpoints => linked_list
use linked_list_grids, &

linked_list_of_grids => linked_list
end module linked_lists

Both types of lists can be used in the same program without naming conflicts
because of the generic names. The original routines live in different modules
and are made private. The using program only sees the generic names. Via the

OBJECT-ORIENTED PROGRAMMING 187

renaming facility of the use statement, the general name linked_list for the
derived type is made more specific.

Using polymorphic variables (declared as class(some_type)), you can, of
course, store data of any type as long as their type extends from the basic type:

type linked_list
class(basic_type), allocatable :: data
type(linked_list), pointer :: next

end type linked_list

This last restriction is lifted if you use so-called unlimited polymorphic variables,
declared as class(*). These can be associated with any data, at the cost of
requiring some extra code to make them useful:

real, target :: x = 3.1415926
class(*) :: pi

pi => x

select type
type is real

write(*,*) 'x = ', pi
end select

The additional flexibility of polymorpic variables, limited or unlimited, comes
at a cost. If you want to guarantee that all data are of the same type, you need
to take extra measures:

subroutine add_element(element, data)
type(linked_list) :: element
class(*) :: data

if (same_type_as(element%data, data)) then
... add the new element

else
write(*,*) 'Wrong type of data!'

endif
end subroutine add_element

11.5 Changing the Behavior of a Type
When you use a module, you can rename the names of variables, data types,
and routines to avoid name conflicts. This feature actually allows you to
“mix in” functionality without changing the original implementation. In the
realm of dynamic languages, such as Python or Tcl, this process is known as
adding mixins or filters [67]. There the process is quite transparent, due to the
dynamic nature of the languages. Variables do not have a fixed data type, even

188 MODERN FORTRAN IN PRACTICE

the implementation of a routine can be changed at runtime. In Fortran, you
need to do a bit more work.

Suppose you want to keep track of the state of objects of a particular type, a
common enough example is logging the activities of a program via its objects.
Then, do the following:
■ Use the module containing the type’s definition and rename that type:

module new_points2d
use points2d, point2d_original => point2d, &

add_vector_2d_original => add_vector_2d
...

end module new_points2d

■ Define a new type point2d that extends the original one:

type, extends(point2d_original) :: point2d
...

contains
procedure :: add_vector => add_vector_2d

end type point2d

■ The hard work is to extend all the type-bound procedures that you want to
track:

subroutine add_vector_2d(point, vector)
class(point2d) :: point
class(point2d_original) :: vector

write(*,*) 'Calling "add_vector"'

call point%point2d_original%add_vector(vector)
end subroutine add_vector

■ Finally, use the new module instead of the old one. This can be done
transparently as modules pass on the functionality they define themselves
as well as the functionality they import from others. The only thing to
watch out for is that the name of a module is global to the program:

module point2d_functionality
!
! This module merely passes on the functionality we
! import from the various underlying modules. This
! allows us to change the actual modules in one
! place only
!
! We have extended the point2d type - so use the
! new module
!

OBJECT-ORIENTED PROGRAMMING 189

! use points2d
use new_points2d

end module point2d_functionality

The change in the type’s implementation is completely hidden from the using
program. You only need to rebuild it, all the other source code remaining the
same.

11.6 Design Patterns
While design patterns have been described mostly in the context of program-
ming languages such as C++ and Java, the principles involved are quite
universal [35], [28]. Design patterns try to capture the essence of common
solutions to a wide range of software problems. Rouson, Xia and Xu [34]
compare implementations in Fortran 2003 and C++ of a number of design
patterns. Some are quite well-known, others are domain-specific, therefore,
they are particularly useful in, for example, physical simulations.

The following considers two examples only, the Factory pattern and the
Observer pattern, to illustrate how design patterns can be applied in a Fortran
program [see also [54] and [73]) for some other examples].

The Factory Pattern
One popular design pattern in object-oriented programming is the so-called
factory pattern. The idea behind this pattern is that a program may need one
or more objects of a certain type, but it should not take the responsibility of
properly initializing or managing such objects, if it takes more than merely
creating it, [9]. Proper initialization or management include tasks like:
■ Allocating memory for its components.
■ Setting initial values.
■ Opening a file and reading its contents if that is part of how the object

works.
■ The object may be part of a pool of objects and then managing the associated

resources should be done consistently.

Another use of the factory pattern is to allow the using program to handle a
generic object rather than an object of a specific type. Here is an example: The
program requests an object that generates a pseudo-random number, either
with a uniform or an exponential distribution. The creation function returns
a polymorphic object that behaves as either type. It is completely transparent
to the program, so extending the set of pseudo-random number generators
with generators to support new distributions has no effect on its source code,
except perhaps that a new type becomes available:

190 MODERN FORTRAN IN PRACTICE

program test_prng_factory
use prng_factory

class(prng), pointer :: p
integer :: i

p => prng_create(type_uniform, 1.0, 2.0)

do i = 1,10
write(*,*) p%get()

enddo

p => prng_create(type_exponential, 10.0)

do i = 1,10
write(*,*) p%get()

enddo

end program test_prng_factory

The module achieves this effect via a straightforward construction:

function prng_create(type, param1, param2)
integer :: type
real :: param1
real, optional :: param2

class(prng), pointer :: prng_create
type(prng_uniform), pointer :: uniform
type(prng_exponential), pointer :: exponential

select case (type)
case (type_uniform)

allocate(uniform)
prng_create => uniform

if (present(param2)) then
prng_create%xmin = param1
prng_create%xmax = param2

else
prng_create%xmin = 0.0
prng_create%xmax = param1

endif

case (type_exponential)
allocate(exponential)
prng_create => exponential
prng_create%xmean = param1

OBJECT-ORIENTED PROGRAMMING 191

case default
nullify(prng_create)

end select
end function prng_create

As long as the interface of the extended types, prng_uniform and
prng_exponential, does not add new methods, you can use the full func-
tionality via the base type and never know how it is implemented. (It might
not even be a set of extended types, but instead one where a single routine
takes care of each type of distribution.)

This method can be used as a basis for a plugin architecture, illustrated here
using an auxiliary module that hides the (platform-dependent) details of load-
ing a dynamic library (a shared library or a DLL):

! Private routine - initialize the factory
!
subroutine initialize_factory

character(len=20), dimension(2) :: prng_name
character(len=20), dimension(2) :: libname
type(dynamic_library) :: dynlib
logical :: success

integer :: i

prng_name = &
(/ 'uniform ', 'exponential ' /)

libname = &
(/ 'prng_uniform.dll ', 'prng_exponential.dll' /)

do i = 1,size(libname)
call load_library(dynlib, libname(i), success)
if (success) then

call get_procedure(dynlib, 'create_prng', &
prng_creators(i)%create, success)

if (.not. success) then
write(*,*) 'Could not load create_prng - ', &

libname(i)
endif
prng_creators(i)%name = prng_name(i)

endif
enddo

end subroutine initialize_factory

! Return an object of the right dynamic type
!

192 MODERN FORTRAN IN PRACTICE

function prng_create(type, param1, param2)

character(len=*) :: type
real :: param1
real, optional :: param2

class(prng), pointer :: prng_create
real :: param2opt
integer :: i

if (.not. initialized) then
initialized = .true.
call initialize_factory

endif

param2opt = 0.0
if (present(param2)) then

param2opt = param2
endif

prng_create => null()

do i = 1,size(prng_creators)
if (prng_creators(i)%name == type) then

call prng_creators(i)%create(prng_create, &
param1, param2opt)

exit
endif

enddo
end function prng_create

In this case, the public creation routine first checks if the dynamic libraries
have been loaded already and that the pointer to the actual creation routine
is available. If not, it loads the libraries. For simplicity, this example uses fixed
names for the dynamic libraries, but it is straightforward to read them from
some configuration file.

This setup has the very attractive property that you can expand the function-
ality of the program (for instance, introduce new probability distributions)
without changing the code and even without rebuilding it.

The Observer Pattern
A design pattern that is very interesting from the point of view of numerical
computation is the Observer pattern. This pattern allows you to extend the
functionality of a program without having to designhow to extend it. Instead

OBJECT-ORIENTED PROGRAMMING 193

of prescribing where in the computation the user should insert a subroutine
call to check the properties of a solution, your program offers a facility to
register routines or data objects with type-bound procedures that are invoked
whenever a particular event occurs.

For example, when computing the flow of water in a network of pipes an
interesting event could be the completion of a single step in the integration
over time. Here are some fragments of code that accomplish this:

In the module containing the definitions of the solver, you have the following
types, one to serve as a “parent” class for the actual observer objects and the
other to hold all the interesting data on the solution:

type, abstract :: observer
contains

procedure(check_result), deferred, pass(obs) :: check
end type observer

type :: observer_list
contains

class(observer), pointer :: observer
end type observer_list

type solution_data
type(observer_list), dimension(:), allocatable :: list
... ! Fields defining the solution

end type solution_data

The type observer_list is introduced because you cannot use default assign-
ment to a class variable. The alternative is to require a user-defined assignment
routine. Therefore, instead of the observer objects themselves you store a
pointer to these objects. Fortran does not have arrays of pointers, but you
can use a workaround: an array of a derived type which contains a pointer
component.

You can define an abstract interface to the checking routine and an abstract
type that serves as a “parent” class for the actual observer objects:

abstract interface
logical function check_result(obs, result_data)

import :: observer, solution_data
class(observer) :: obs
type(solution_data) :: result_data ! Type, not class

end function check_result
end interface

Descendents of the class observer must define a procedure check with the
interface check_result. What is done in this procedure is completely up to
the particular implementation.

194 MODERN FORTRAN IN PRACTICE

The solver module contains at least procedures like the following to allow the
registration of the specific observer objects and the evaluation of the solution
by these procedures:

subroutine add_observer(solution, obs)
type(solution_data) :: solution
class(observer), target :: obs

solution%list = (/ solution%list, observer_list(obs) /)
end subroutine add_observer

subroutine solve(solution, ...)
type(solution_data) :: solution

... ! Preliminaries

do while (time < time_end + 0.5*time_step)
call solution%solve_one_step(...)

!
! This is the moment in the computation to
! see if the solution still obeys our
! requirements
!
acceptable = .true.
do i = 1,size(solution%list)

acceptable = acceptable .and. &
solution%list(i)%observer%check(solution)

enddo
if (.not. acceptable) exit

time = time + time_step

enddo
...

end subroutine solve

Via the subroutine add_observer, register observer objects that can check
the solution according to some specific criteria. The solution object (or the
associated procedures) contains no details whatsoever of these checks, except
that the observer object must be of a particular lineage. Therefore, its type
must be an extension of observer. (Note the use of the automatic reallocation
feature in the subroutine add_observer. This makes extending arrays really
easy.)

OBJECT-ORIENTED PROGRAMMING 195

In the example, you have only one interesting type of event: the completion
of a single time step. However, you can easily extend this to any number of
event types, each associated with its own type-bound procedure.

The purpose of the Observer pattern is to ensure a loose coupling between two
parts of a program that need to interact. Ideally, there should be no or very
little feedback from the observing data object to the calling solution object (or
its solve procedure), limiting it to setting a flag.

12.

Parallel Programming

The ubiquity of computers with multiple processors and computers cooperat-
ing in some network has made parallel computing a mainstream subject. Up
to the Fortran 2008 standard, Fortran did not offer any language constructs
for such a programming style. The two approaches that are most popular at
the moment are message passing interface [83] (MPI) and open multiprocess-
ing [14] (OpenMP). These two approaches actually complement each other:
MPI deals with different processes running on, possibly, different computers
that communicate with one another explicitly and OpenMP is a method to
run parts of a program in parallel (multiple threads), so there is only a single
process running.

Fortran 2008 introduces coarrays and supporting statements and intrinsic
routines to enable a Fortran program to run multiple copies (called images)
that interact. Sharing the data between these images is done transparently. It
is the task of the compiler to insert the required data communication, not the
programmer’s.

This chapter discusses these three forms and uses two examples: a program to
find the first N prime numbers and a program that numerically solves a partial
differential equation using several domains. Neither program is meant to be
very practical, they merely illustrate the techniques involved.

12.1 Prime Numbers
Here is a straightforward program to determine the first 1000 prime numbers:

program primes_plain

implicit none

integer, dimension(1000) :: prime
integer :: number_primes
integer :: candidate
integer :: residue
integer :: j
logical :: isprime

number_primes = 0
candidate = 2

196

PARALLEL PROGRAMMING 197

do while (number_primes < size(prime))
isprime = .true.
do j = 2,int(sqrt(real(candidate)))

residue = mod(candidate,j)
if (residue == 0) then

isprime = .false.
exit

endif
enddo
if (isprime) then

number_primes = number_primes + 1
prime(number_primes) = candidate

endif

candidate = candidate + 1
enddo

write(*,'(10i5)') prime

end program primes_plain

As it stands, it is difficult to parallellize: the do while loop represents a
formidable obstacle. You cannot split it up in portions as you do not know
how many iterations are needed. This depends on the work that is actually
done inside the do loop. Moreover, the various iterations depend on each other
via the index number_primes into the array of primes found so far.

Using OpenMP, you may split up the inner loop:

!$omp parallel do private(residue)
do j = 2,int(sqrt(real(candidate)))

residue = mod(candidate,j)
if (residue == 0) then

isprime = .false.
endif

enddo
!$omp end parallel do

The directive !$omp parallel do instructs the compiler to create a parallel
region and to distribute the individual iterations of the inner do loop over the
threads that exist within this region. However, you need to be careful with
the characteristics of the variables. By default variables are shared among the
threads so that setting them in one thread may unexpectedly change the results
of another thread.

This is the reason for the private(residue) clause: One thread may have
found a divisor of the candidate prime number, whereas another thread has
also finished the computation and found a non-zero residue. By the time the

198 MODERN FORTRAN IN PRACTICE

if-statement is run, the variable residue is overwritten, if it was not a private
variable.

You do not need to be careful about variable isprime. If it is set, then all
threads would set it to the same value.

Note also that you cannot leave the loop, because this is a consequence of the
way OpenMP works. There is an implicit synchronization at the end of the
parallel region and all threads must reach this.

Parallellizing do loops with fixed ranges is a typical use of OpenMP, but, in
this case, it will not gain you any performance: starting up the threads and
stopping them again present a considerable overhead. The amount of work to
be done in each iteration must be large enough to justify this overhead.

By restructuring the program, you take a chunk of integers and examine each in
turn. Now the program deals with well-defined and, importantly, independent
tasks1:

program primes_chunks

implicit none

integer, dimension(2) :: range
integer :: number_tasks, number_primes
integer, dimension(1000) :: prime
logical :: new_results, new_task
logical :: ready

ready = .false.
new_results = .false.
new_task = .false.
number_tasks = 0
number_primes = 0

range(2) = 0

!
! Determine the primes: iterate over small ranges of
! integers and gather the results.
!
do while (.not. ready)

range(1) = range(2) + 1
range(2) = range(2) + 100

call find_primes
enddo

1 Sanders and others describe this type of parallellization as the task parallel pattern [78].

PARALLEL PROGRAMMING 199

write(*,'(10i5)') prime

contains

... Implementation of the subroutine find_primes not shown

... Sets "ready" when enough primes have been found

end program primes_chunks

OpenMP
When using OpenMP it is important to realize that the sections of code that
you want to be run in parallel are run by all the threads. Only by additional
instructions (compiler directives like !$omp do or if-statements involving the
thread number), do you actually divide the work over the various threads.

In this example, you divide the entire domain of candidate prime numbers
into intervals of 100 integers and these are each handled by one single thread.
Therefore, the main problems to solve are how to hand out these pieces to a
thread and how to store the results once they are available.

To make sure that the threads can handle a given interval, you have to put the
information in shared variables, so that any thread can pick it up. You need
to do something similar for the results. Only one thread at a time is allowed
to pick up a task or store the results, so you need to properly protect these
variables. You do that via the critical sections in the adapted program:

program primes_openmp
use omp_lib

implicit none

integer, dimension(2) :: range
integer :: number_tasks, number_primes
integer, dimension(1000) :: prime
logical :: new_results, new_task
logical :: ready

ready = .false.
new_results = .false.
new_task = .false.
number_tasks = 0
number_primes = 0

range(2) = 0

!$omp parallel
!
! Create tasks

200 MODERN FORTRAN IN PRACTICE

!
do while (.not. ready)

if (omp_get_thread_num() == 0) then
call add_task

endif

call get_task
enddo

!$omp end parallel

write(*,'(10i5)') prime

contains

!
! Subroutine to post a new task (consisting of a
! range of integers in which to look for primes)
!
! Note: make sure there is only one thread at
! a time that changes "new_task"
!
subroutine add_task

!$omp critical
if (.not. new_task) then

range(1) = range(2) + 1
range(2) = range(2) + 100
new_task = .true.

endif
!$omp end critical

end subroutine add_task

!
! Subroutine to get a task and search for
! primes inside the new range
!
subroutine get_task

integer, dimension(100) :: new_prime
integer :: lower, upper
logical :: isprime, got_task
integer :: np, i, j
integer :: residue, maxindex

got_task = .false.
np = 0

PARALLEL PROGRAMMING 201

!$omp critical
if (new_task) then

lower = range(1)
upper = range(2)
new_task = .false.
got_task = .true.

endif
!$omp end critical

if (got_task) then
do i = lower,upper

isprime = .true.
do j = 2,int(sqrt(real(i)))

residue = mod(i,j)
if (residue == 0) then

isprime = .false.
exit

endif
enddo
if (isprime) then

np = np + 1
new_prime(np) = i

endif
enddo

endif

!$omp critical
if (got_task) then

maxindex = min(size(prime) - number_primes, np)
prime(number_primes+1:number_primes+maxindex) = &

new_prime(1:maxindex)
number_primes = number_primes + maxindex

ready = number_primes >= size(prime)
endif

!$omp end critical

end subroutine get_task

end program primes_openmp

When you run it, the output of primes is not necessarily sorted. The threads
run independently and it is not possible to predict which one will get what
chunk of integers or in what order they deliver their results. It may in fact
differ for each run. This is inherent to parallel computing.

202 MODERN FORTRAN IN PRACTICE

MPI
An often cited advantage of OpenMP over MPI is that with OpenMP you can
work incrementally: Just parallellize those sections you want to speed up one
by one. With MPI, you need to carefully reorganize the whole program, as
the communication between the individual processes has to be implemented
manually. A clear advantage of MPI over OpenMP, however, is that data are
not shared accidentally. An MPI program is run as several separate processes
that explicitly communicate their data.

Here is an MPI version of the example:

program primes_mpi
use mpi

implicit none

integer, parameter :: tag_new_task = 1 ! Get new task
integer, parameter :: tag_results = 2 ! Transmit results

integer :: rank
integer :: main = 0
integer :: error

integer :: number_images

integer, dimension(2) :: range
integer :: number_tasks
integer, dimension(1000) :: prime
integer :: number_primes
integer, dimension(MPI_STATUS_SIZE) :: status
logical :: new_results
logical :: new_task
logical :: ready

call mpi_init(error)

call mpi_comm_rank(MPI_COMM_WORLD, rank, error)
call mpi_comm_size(MPI_COMM_WORLD, number_images, error)

!
! What we do depends on the rank:
! Rank 0 is the main program that hands out the chunks
! and gathers the results
! All others do the work
!

if (rank == 0) then
ready = .false.

PARALLEL PROGRAMMING 203

new_results = .false.
number_tasks = 0
number_primes = 0

! The main program:
! Hand out the chunks and receive the results
!
range(2) = 0

do while (.not. ready)
call handle_communication

enddo
else

!
! Worker programs:
! Get a task (new range, determine the primes)
!
new_task = .false.
do

call get_range

if (new_task) then
call find_primes
call mpi_send(&

prime, number_primes, MPI_INTEGER, &
main, tag_results, MPI_COMM_WORLD, &
status, error)

else
exit

endif
enddo

endif

!
! Print the results
!
if (rank == 0) then

write(*,'(10i5)') prime
endif

call mpi_finalize

stop

contains
...

end program

204 MODERN FORTRAN IN PRACTICE

The main program sets up the MPI environment and then splits into two
parts:
■ Via MPI a number of copies of the program are started. They interact with

each other via the MPI routines.
■ The copy with rank 0 gets the task of coordinating the communication

(handing out new tasks, receiving the results). This is a design choice,
which differs from the OpenMP version, where the master thread takes
tasks as well. With this choice, the program is somewhat simpler.

■ All other copies wait for a new task, therefore, determine the primes within
the given range and then pass back the results.

The routine handle_communication sends out the data for the new task and
receives the primes that are found by examining the message received. When
enough primes are found, all copies are informed that there are no more tasks
to be done.

The routine get_range that is run by all worker copies sends a request for a
new task and waits for the data for that new task by using the blocking versions
of the MPI routines. If there is no new task, the copy stops.

Here is the code for these two routines:

...
contains
!
! Communicate with the worker images
!
subroutine handle_communication

integer, dimension(MPI_STATUS_SIZE) :: status
integer :: error
integer :: count
integer, dimension(100) :: result
integer :: i
integer :: number_store
integer :: end_store

do
call mpi_recv(result, size(result), MPI_INTEGER, &

MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &
status, error)

!
! Send a new task or store the results?
!
if (status(MPI_TAG) == tag_new_task) then

range(1) = range(2) + 1
range(2) = range(2) + 100
call mpi_send(range, 2, MPI_INTEGER, &

PARALLEL PROGRAMMING 205

status(MPI_SOURCE), tag_new_task, &
MPI_COMM_WORLD, status, error)

call mpi_send(range, 2, MPI_INTEGER, &
status(MPI_SOURCE), tag_new_task, &
MPI_COMM_WORLD, status, error)

else
call mpi_get_count(&

status, MPI_INTEGER, count, error)

number_store = &
min(size(prime) - number_primes, count)

end_store = number_prime + number_store
prime(number_primes+1:end_store) = &

result(1:number_store)
number_primes = end_store

!
! Signal the worker programs to stop
!
if (number_primes == size(prime)) then

do i = 1,number_images-1
range = -1
call mpi_send(range, 2, MPI_INTEGER, &

i, tag_new_task, &
MPI_COMM_WORLD, status, error)

enddo
exit

endif
endif

enddo

end subroutine handle_communication

!
! Get the range - if any
!
subroutine get_range

integer, dimension(MPI_STATUS_SIZE) :: status
integer :: error

call mpi_send(1, 1, MPI_INTEGER, main, &
tag_new_task, MPI_COMM_WORLD, status, error)

call mpi_recv(range, size(range), MPI_INTEGER, main, &
tag_new_task, MPI_COMM_WORLD, status, error)

206 MODERN FORTRAN IN PRACTICE

!
! Do we have a task?
!
new_task = range(2) > range(1)

end subroutine get_range
...

(The routine to find the primes is straightforward as no MPI calls are involved.)

Coarrays
The coarrays feature of the Fortran 2008 standard [71] resembles OpenMP in
that communication between the threads (or images as they are called in the
standard) because it is hidden from the programmer. However, it resembles
MPI in that the images have their own memory, only the coarrays are shared.
When handing out the chunks of integers, you need to again make sure that
the shared data are updated by only one image at a time.

You have a choice here, just as with OpenMP and MPI, which image (or
thread or copy) is responsible for gathering the data. You can dedicate one
single image to the task or you can have each image store the data in the result
array. The two choices involve different synchronization methods. Here the
first option is used:2

program primes_coarrays
implicit none

integer, dimension(2) :: range_priv
integer, dimension(2), codimension[*] :: range
integer, dimension(1000) :: prime
integer :: total_primes
integer, dimension(100), codimension[*] :: primes_in_task
integer, codimension[*] :: number_in_task
logical, codimension[*] :: new_results
logical, codimension[*] :: new_task
logical, codimension[*] :: ready

ready = .false.
new_results = .true. ! Indicates the image has

! results available
new_task = .false. ! Indicates a new task has been

! issued for the image
number_in_task = 0 ! Number of primes found in task

range_priv(2) = 0
total_primes = 0

2 The collection of examples at the website contains an implementation of the second option as well.

PARALLEL PROGRAMMING 207

sync all

!
! Collect the found primes in image 1, create new tasks
! for all images
!
do while (.not. ready)

if (this_image() == 1) then
call collect_results
call create_tasks
sync images(*)

else
sync images(1)

endif

call get_task
enddo

if (this_image() == 1) then
write(*,*) 'Primes:'
write(*,'(20i5)') prime

endif

contains
...

end program primes_coarrays

In the main program, you define a number of coarray variables. These are the
variables that are shared among the images. As you will have Image 1 collect
all the primes, the result array prime is an ordinary array.

After an initial synchronization step via the sync all statement, the do loop
starts. The pattern should be familiar: Image 1 collects the results, just as with
the MPI version and hands out new tasks.

To ensure the data are distributed, it synchronizes with all images via the sync
images(*) statement. The counterpart of this statement is sync images(1),
which is run by all other images. The advantage of sync images over sync all

is that the individual images can start as soon as the synchronization with the
first image is completed. They do not have to wait for all others.

The routine collect_results checks which images complete their task, and
they set the new_results variable to indicate that. If an image completes its
task, the coindex [i] selects the value from Image i. Then, Image 1 copies the
data into the prime array.

Once enough primes are found, Image 1 signals to all images that the program
has completed its job by setting the ready variable in all images.

208 MODERN FORTRAN IN PRACTICE

After gathering the new results, Image 1 hands out new tasks for those images
that complete their tasks. Again, this is accomplished by examining and setting
coarray variables.

The routine get_task can now rely on the coarray variables to have the right
values for that image, so no coindices are required:

...
contains
!
! Subroutine to collect the results from all
! images (run by image 1)
!
subroutine collect_results

integer :: i
integer :: np
integer :: maxindex

do i = 1,num_images()
sync images(i)
if (new_results[i]) then

np = number_in_task[i]

maxindex = min(size(prime) - total_primes, np)
prime(total_primes+1:total_primes+maxindex) = &

primes_in_task(1:maxindex)[i]

total_primes = total_primes + maxindex
endif

enddo

ready = total_primes >= size(prime)

if (ready) then
do i = 1,num_images()

ready[i] = .true.
enddo

endif
end subroutine collect_results

!
! Subroutine to post new tasks (consisting of a
! range of integers in which to look for primes)
!
! Loop over the images to see which one wants a
! new task
!

PARALLEL PROGRAMMING 209

subroutine create_tasks
integer :: i

do i = 1,num_images()
if (new_results[i]) then

new_results[i] = .false.
range_priv(1) = range_priv(2) + 1
range_priv(2) = range_priv(2) + 100

range(:)[i] = range_priv(:)
new_task[i] = .true.

endif
enddo

end subroutine create_tasks

!
! Subroutine to get a task and search for
! primes inside the new range
!
subroutine get_task

integer :: lower
integer :: upper
logical :: isprime
integer :: np
integer :: i
integer :: j
integer :: residue

if (new_task) then
np = 0
new_task = .false.
lower = range(1)
upper = range(2)

!
! Determine what primes we have in this range
!
do i = lower,upper

isprime = .true.
do j = 2,int(sqrt(real(i)))

residue = mod(i,j)
if (residue == 0) then

isprime = .false.
exit

endif

210 MODERN FORTRAN IN PRACTICE

Beam

T=1 T=1

T=1 T=1

T=1 T=1

T=1 T=1

No heat exchange

No heat exchange

L

W

Figure 12.1. Schematic representation of the beam with a square
grid overlaid

enddo
if (isprime) then

np = np + 1
primes_in_task(np) = i

endif
enddo

number_in_task = np
new_results = .true.

endif

end subroutine get_task
...
end program primes_coarrays

12.2 Domain Decomposition
The second example demonstrates how parallel computing is used to solve
partial differential equations (PDE). Consider as a typical situation the con-
duction of heat in a beam of metal. The equation you need to solve, together
with its boundary conditions is (see Figure 12.1):3

∂T
∂t

= a∇2T (12.1)

t = 0 : T = 0 (initial condition) (12.2)

x = 0 or L : T = 1 (Dirichlet) (12.3)

y = 0 or B :
∂T
∂y

= 0 (Neumann) (12.4)

3 For simplicity, you will assume a two-dimensional geometry, rather than a three-dimensional one.

PARALLEL PROGRAMMING 211

Domain 1 Domain 2

Figure 12.2. Grid split up in two separate domains with an internal
boundary

Solving this mathematical problem using finite differences gives a set of
algebraic equations:

T t+	t
i j = T t

i j + a	t

(
T t

i−1, j + T t
i+1, j − 2T t

i j

	x 2
+ T t

i , j−1 + Tt
i , j+1 − 2T t

i j

	y 2

)

(12.5)

where the indices i and j run over the whole interior of the grid.

You can apply parallel programming techniques in a variety of ways. With
OpenMP, you can split up the do loops, for instance, the outer one, but that
gives a low-level type of parallel computing only. A more interesting method
is to split up the beam (or whatever geometry you encounter in practice) into
smaller domains (see Figure 12.2). Each domain is now handled by a single
thread or image. At the end of each time step, you will communicate the values
at the internal boundaries and wait until all threads/images have finished their
work before proceeding with the next time.

OpenMP
There is only one process if we use OpenMP, therefore, you be careful to
provide all the data for one domain to one thread. You use an array of matrices
to store the temperature per domain:

type domain_data
real, dimension(:,:), allocatable :: temperature
integer :: ibound
integer :: icopy
integer :: todomain

end type

type(domain_data), dimension(2), target :: domain

212 MODERN FORTRAN IN PRACTICE

The temperature data at the internal boundary must be available for all
domains. You store it in a two-dimensional array where the first dimension
is the number of grid cells along that boundary and the second dimension is
used for the two domains at each side:

real, dimension(:,:), pointer :: temp

...

!
! Allocate the array we need to transfer the temperature
! at the interface
!
allocate(temp_interface(20,2))
temp_interface = 0.0

!$omp parallel private(thid, side, ibound, icopy, &
!$omp xmax, ymax, todomain, temp)

do itime = 1,10000
thid = 1 + omp_get_thread_num()

temp => domain(thid)%temperature
ibound = domain(thid)%ibound
icopy = domain(thid)%icopy
todomain = domain(thid)%todomain

... set Neumann boundary conditions

!
! Copy the temperature at the interface from
! the other thread
!
temp(:,ibound) = temp_interface(:,thid)

... determine temperature at new time

!
! Copy the values to the other thread
!
temp_interface(:,todomain) = temp(:,icopy)

!$omp barrier
enddo
!$omp end parallel

PARALLEL PROGRAMMING 213

The entire program follows:

program dd_openmp

use omp_lib

implicit none

type domain_data
real, dimension(:,:), allocatable :: temperature
integer :: ibound
integer :: icopy
integer :: todomain

end type

type(domain_data), dimension(2), target :: domain

real, dimension(:,:), allocatable :: temp_interface
real, dimension(:,:), pointer :: temp

integer :: itime
integer :: ibound
integer :: icopy
integer :: todomain
integer :: side
integer :: xmax
integer :: ymax
integer :: thid

real :: deltt
real :: coeff

!
! Allocate the arrays we need
!
deltt = 0.1
coeff = 1.0 ! Contains the thermal conductivity

! and grid cell size

call omp_set_num_threads(2)

!$omp parallel

if (omp_get_thread_num() == 0) then
allocate(domain(1)%temperature(20,20))
domain(1)%temperature = 0.0

214 MODERN FORTRAN IN PRACTICE

!
! Left boundary value
!
domain(1)%temperature(:,1) = 1.0
!
! Right interface
!
domain(1)%ibound = size(domain(1)%temperature,2)
domain(1)%icopy = domain(1)%ibound - 1
domain(1)%todomain = 2

else
allocate(domain(2)%temperature(20,30))
domain(2)%temperature = 0.0
!
! Right boundary value
!
domain(2)%temperature(:,30) = 1.0
!
! Left interface
!
domain(2)%ibound = 1
domain(2)%icopy = domain(2)%ibound + 1
domain(2)%todomain = 1

endif

!$omp end parallel

!
! Allocate the array we need to transfer the temperature
! at the interface
!
allocate(temp_interface(20,2))
temp_interface = 0.0

!
! From now on: compute
!
!$omp parallel private(thid, side, ibound, icopy, &
!$omp xmax, ymax, todomain)

do itime = 1,10000
thid = 1 + omp_get_thread_num()

temp => domain(thid)%temperature
ibound = domain(thid)%ibound
icopy = domain(thid)%icopy
todomain = domain(thid)%todomain

PARALLEL PROGRAMMING 215

!
! Set the Neumann boundary conditions
!
side = size(temp,1)
temp(1,:) = temp(2,:)
temp(side,:) = temp(side-1,:)

!
! Copy the temperature at the interface from
! the other image
!
temp(:,ibound) = temp_interface(:,thid)

!
! Determine the new values
!
xmax = size(temp,1) - 1
ymax = size(temp,2) - 1
temp(2:xmax,2:ymax) = temp(2:xmax,2:ymax) + &

deltt * coeff * &
(temp(1:xmax-1,2:ymax) + temp(3:xmax+1,2:ymax) + &
temp(2:xmax,1:ymax-1) + temp(2:xmax,3:ymax+1) &
- 4.0*temp(2:xmax,2:ymax))

!
! Copy the values to the other image
!
temp_interface(:,todomain) = temp(:,icopy)

!
! Make sure all images wait for the next step
!

!$omp barrier

write(*,*) itime, thid, &
temp(10,10), temp_interface(10,thid)

enddo
!$omp end parallel
stop

end program

Some things to note:
■ Threads are numbered from zero onwards. To use them as indices in the

arrays, thread IDs are incremented by 1.

216 MODERN FORTRAN IN PRACTICE

■ The program is designed for running with two threads, one for each domain.
You, therefore, explicitly set the number of threads to use although that is
not possible with MPI or coarrays as the environment in which the copies
of the program run determines their number. You need means outside the
program itself to prevent excess copies from disturbing the computation,
although you can check how many copies are active.

■ The !$omp barrier statement synchronizes all threads before continuing
with the next step. Just before that, the temperature data are copied to the
other domain.

■ The administrative variables side, ibound, and so on must be private per
thread. This is a drawback of the OpenMP approach as it is very easy to
make a mistake.

■ The program explicitly stops with the STOP statement after completing the
loop. This should not be necessary, but with one compiler I used a problem
occurs without it: the program would not finish.

MPI
Using MPI, you end up with a program that is largely similar, but it is the
details that are important:
■ You explicitly send the data to the other domain, but without waiting for

that domain to pick them up. This asynchronous sending is achieved with
the MPI_Isend() routine.

■ You cannot continue until receiving the data from the other domain, there-
fore, use the synchronous receive routine MPI_Recv() to wait for the data.
This means that you synchronize the two copies automatically because there
is no need for an explicit synchronisation.

■ Every copy has its own memory space, so simply allocate the two-
dimensional array that holds the temperature and the one-dimensional
array that is used to send and receive the data on the inner boundary.

Leaving out some of the details, here is the do loop to integrate over time:

do itime = 1,10000

... Set the Neumann boundary conditions

!
! Copy the temperature at the interface from the other image
!
temp(:,ibound) = temp_interface(:)

... Determine the new values

!
! Copy the values to the other image
! - do not wait for an answer

PARALLEL PROGRAMMING 217

!
temp_interface(:) = temp(:,icopy)
call mpi_isend(temp_interface, size(temp_interface), &

MPI_REAL, tag, tag, MPI_COMM_WORLD, &
handle, error)

!
! Receive them from the other side (use rank as the tag!)
!
call mpi_recv(temp_interface, size(temp_interface), &

MPI_REAL, tag, rank, MPI_COMM_WORLD, &
status, error)

!
! Make sure all images wait for the next step
! - this is implicit in the fact that we have to
! receive the data first
!
write(*,*) itime, rank, &

temp(10,10), temp_interface(10)
enddo

Coarrays
It should come as no surprise that you need only one coarray variable for this
PDE problem: The data at the interface of the two domains. Just as in the
OpenMP version, you need to synchronize the images at the end of each time
step. And, like in the MPI version, you can use a simple two-dimensional array
to store the temperature for a domain.

The array temperature is an ordinary array that stores the temperature for a
single domain. It is allocated to a different size on each image, to match the
geometry. The coarray variable temp_interface that is used to exchange the
temperature at the interface of the two domains must, however, have the same
dimensions on all images:

real, dimension(:,:), allocatable :: temp
real, dimension(:), codimension[:], allocatable :: &

temp_interface
...
if (this_image() == 1) then

allocate(temp(20,20))
temp = 0.0
!
! Left boundary
!
temp(:,1) = 1.0

else

218 MODERN FORTRAN IN PRACTICE

allocate(temp(20,30))
temp = 0.0
!
! Right boundary value
!
temp(:,30) = 1.0

endif

!
! Allocate the one coarray we need to transfer the temperature
! at the interface
!
allocate(temp_interface(20)[*])
temp_interface = 0.0

The do loop by which the evolution of the temperature over time is computed
becomes:

do itime = 1,10000

... Set the Neumann boundary conditions

!
! Copy the temperature at the interface from
! the other image
!
temp(:,ibound) = temp_interface

... Determine the new values

!
! Copy the values to the other image
!
temp_interface(:)[toimage] = temp(:,icopy)

!
! Make sure all images wait for the next step
!
sync all

write(*,*) itime, this_image(), &
temp(10,10), temp_interface(10)

enddo

Note that you do not collect the data for each domain into one large array.
For a more serious program, you do have to consider such a feature since the
results for all domains together form the results you are after.

PARALLEL PROGRAMMING 219

12.3 Alternatives
OpenMP, MPI, and coarrays are but three techniques you can employ to create
a parallel program. The following are a few alternatives:
■ Using shared memory to communicate between two or more programs on

the same computer.
■ POSIX or Windows threads instead of OpenMP for a fine-grained and

explicit control of the threads in the same program.
■ TCP/IP communication between programs on possibly different com-

puters.

Drawbacks of the preceding approaches are that they all rely on platform-
specific system libraries and require considering low-level details.

A different aspect of parallel computing that is worth discussing is the way
the threads or images cooperate. The first example used a master-workers
setup – one thread handing out the tasks and collecting the results. The
second example used two threads that synchronize with each other without
any playing a special role. Depending on the problem to solve, very different
setups are possible [78], [39], for instance:
■ Pipeline architecture: The data undergo a series of transformations, where

each transformation is handled by a different thread. Once the transforma-
tion is complete, the result is transferred to the next stage and a new set of
data is requested.

■ Tuplespaces: The threads request a task with certain characteristics from a
central repository and hand back new tasks. This type of parallellism is very
flexible, because synchronization needs to be done between the thread and
the repository only.

The past couple of years using the graphics card (GPU) for parallel processing
has received much attention. GPUs are attractive because they consist of many
hundreds of fast processors. The drawback is that they have only indirect access
to the data to be processed and this requires redesigning the entire algorithm.
Another drawback is that programming for the GPU requires vendor-specific
extensions to the programming language.4 Besides C and C++, it is possible
to use Fortran to program for the GPU, the PGI CUDA Fortran compiler
being one compiler that supports this natively [41].

Various research groups have been successful in developing complex pro-
grams using this technique for a variety of computational problems. Xian and
Takayuki [85], for instance, report on the use of a cluster of GPUs to compute
the flow of an incompressible fluid around obstacles.

4 Standardization is being developed in the form of OpenCL.

220 MODERN FORTRAN IN PRACTICE

Table 12.1. Characteristics of the Three Parallel Programming Techniques

Incremental
Method Support Development Main Issue
OpenMP Compiler Yes Easy to make mistakes

in shared/private variables
MPI External libraries Limited Communication of data

is responsibility of
the programmer

coarrays Compiler supporting Yes Synchronization must be
Fortran 2008 carefully designed

12.4 Overview
All three methods of creating a program for parallel computing have their
pros and cons. From a programming point of view, coarrays seem to com-
bine the advantages of OpenMP with those of MPI – data communication
is transparent and what data are shared is defined explicitly. From a usage
point of view, coarrays have the disadvantage that they require a supporting
environment to start the separate processes and to control the number of pro-
cesses. This is not different from MPI, however. Like OpenMP, coarrays of
only require the compiler to support them. There is no need for an external
library.

The major disadvantage of coarrays is that the rules are rather complex.
They are complex to ensure both efficiency and data consistency. Table 12.1
compares the methods.

As mentioned, besides OpenMP, MPI, and coarrays there are several other
methods to exploit parallel programming, such as the use of shared memory
and multithreading libraries as pthreads. They are much more difficult to
use, however, and they have not reached much popularity within the Fortran
community.

Appendix A

Tools for Development
and Maintenance

Nowadays there are myriad tools to select from if you develop and maintain
software. Much is open source, but there are also many commercial tools
available. The development and maintenance tools include:
■ Compilers, linkers, and interactive debuggers
■ Build tools to automatically compile the source code in the right order
■ Integrated development environments
■ Tools for static and dynamic analysis
■ Version control systems
■ Tools for source code documentation

This appendix describes some uses of these tools, but it does not provide a
complete overview.

A.1 The Compiler
Since the Fortran 90 standard, the language has gained features that make it
easier for the compiler to perform static and dynamic analysis:
■ The implicit none statement (or equivalent compiler options) force the

compiler to check that every variable is explicitly declared. This reduces
the chance that typos inadvertently introduce bugs in the form of stray
variables names into the program.

■ By putting all routines in modules, you make sure the compiler checks the
number and types of the arguments for subroutine and function calls.1 It
also reduces name clashes when linking a large program, which uses many
libraries.

■ By using assumed-shape arrays instead of assumed-size, the compiler can
insert runtime checks for array bounds. Moreover, you do not need to
add separate arguments for the size of arrays anymore. This makes the call
simpler and less error-prone.

Therefore, the compiler has become a much more powerful tool with respect
to static and dynamic analysis.

1 Some compilers, like the Intel Fortran compiler, generate interfaces for all routines that are not part
of a module. This enhances the compiler’s capability to diagnose mismatches in the arguments lists.

221

222 APPENDIX A: TOOLS FOR DEVELOPMENT AND MAINTENANCE

A.2 Build Tools
The classic tool that helps build a program efficiently is the UNIX utility make
that can be found on most, if not all, systems in wide use today. The main
attraction of make is that it checks if the source code needs to be compiled or
not, thus reducing the runtime of the build process. It does so by checking the
given dependencies between the object file, the source file, and any other files
(such as include files or module files).

Creating and maintaining the input files for make, the so-called makefiles, can
be tedious and error-prone, as they contain platform dependencies, different
compilers with different options or the names and locations of system libraries,
to name but a few. This maintenance task is made easier by software that
actually generates these makefiles from more abstract and generic descriptions.

This software typically examines the source code (you specify a list of source
files to check), determines from that the dependencies, and generates the
makefiles. Two examples of these software systems are: autotools [20] and
CMake [5]. Of the two, autotools is the oldest and it is well-established.
However, it relies on tools typically available under a UNIX-like environment
only, and it only generates makefiles. CMake, on the other hand, can run on
MS Windows, Linux, and Mac OSX and it can generate project files for an
integrated development environment such as MS Visual Studio.

Here is a small example of both. The program consists of a source file “prog.f90”
living in the directory “main” and a file “lib.f90” living in the directory “lib”.
For autotools, you need files like this “Makefile.am” to describe how to build
the program from its components:

include $(top_srcdir)/common.am
bin_PROGRAMS = example

example_SOURCES = \
prog.f90

#
Extend the macro FMODULES, defined in "common.am" to access
the directory with the module file.
#
FMODULES += -I$(top_srcdir)/lib

example_LDADD = \
$(top_srcdir)/lib/liblib.a

You then run the autoreconf program that delivers a shell script configure and
templates for the makefiles:

autoreconf -ivf
./configure

APPENDIX A: TOOLS FOR DEVELOPMENT AND MAINTENANCE 223

You would distribute the file configure and several other files besides the
source code. It is not necessary for a user to have autotools installed.

The procedure for CMake is similar. To build the program, you have a file
“CMakeLists.txt” for the main program and similar files for the library:

#
Add the directory with the module file to the compile options.
#
include_directories(${CMAKE_BINARY_DIR}/lib)

add_executable(example prog.f90)

target_link_libraries(example lib)

Then, run CMake in a separate directory:

cd build-example
cmake ../sources -G "Unix Makefiles"

This gives a set of makefiles so that typing make suffices to build the program.

Using MicroSoft Visual Studio 2008:

cd build-example
cmake ../sources -G "Visual Studio 9 2008"

gives a solution file that you can load into visual studio.

The drawback is that these makefiles are specific to the system on which
they were generated, so you need to distribute the CMakeLists.txt files along
with the source code and the user will have to run CMake themselves. The
advantage is, of course, that CMake itself is platform-independent and has
excellent support for Fortran.

Table A.1 gives an overview of the files needed in both cases.

A.3 Integrated Development Environments
The purpose of integrated development environments (IDEs) is to offer the
user a complete set of tools to edit the source code, build the program, and
debug or run it. They also help maintain the information about how to build
it (from what sources, what compiler options, and so on).

Having all these tools within one single (graphical) environment is certainly
worthwhile, but it does have a few drawbacks. They often work with very
specific files that describe how to build the program, which limits you to that
IDE. The source file editor integrated into the environment may not be to
your liking. Another important drawback, they tend to be platform-specific
(only running on a particular operating system and the choice of compilers is
limited).

The major advantage of IDEs is that they take care of tedious aspects of
building a program: set up the dependencies or determine the order in which

224 APPENDIX A: TOOLS FOR DEVELOPMENT AND MAINTENANCE

Table A.1. Overview of the Source and Build Files Required for the
Sample Program

Directory File Description

sources Main directory
configure.ac Main configuration file (autotools)
common.am File with compiler options (autotools)
CMakeLists.txt Main configuration file (CMake)
NEWS, ... Auxiliary text files required by autotools

sources/prog Directory with main program
prog.f90 Fortran source file
Makefile.am How to build the program (autotools)
CMakeLists.txt How to build the program (CMake)

sources/lib Directory with library
lib.f90 Fortran source file
Makefile.am How to build the library (autotools)
CMakeLists.txt How to build the library (CMake)

the source files have to be compiled. In this respect, they are akin to the build
tools described previously. It is mostly a matter of personal preference which
type of supporting software you should use.

A gain-source IDE for Fortran is Photran, itself based on Eclipse [10], and
it can be run on various operating systems. See Figure A.1 for a screenshot.
It provides a set of refactorings, transformations of source code with the aim
to make the program better readable and maintainable, that are specific for
Fortran [59].

A.4 Run-Time Checking
Memory leaks are especially an issue for long-running programs as the memory
that is no longer reachable typically accumulates. While the compiler can insert
runtime checks for array bound violations, keeping track of the allocated and
deallocated memory is a completely separate problem.

Most compilers do not do this, unless you specify extra options. The g95 com-
piler provides an overview by default [80], but the valgrind utility [75] gives
more detailed information about where in the program memory was allocated
that was not deallocated afterward. It also reports array bound violations. The
following sample program contains an easy to spot memory leak and an array
bound violation:

program test_valgrind

integer, dimension(:), pointer :: data

allocate(data(100))

APPENDIX A: TOOLS FOR DEVELOPMENT AND MAINTENANCE 225

Figure A.1. Eclipse/Photran integrated development environment

data(1) = 1
data(101) = 2
nullify(data)

end program test_valgrind

Compile this program on Linux (valgrind is limited to this platform) with the
debug flag on, then run it via valgrind :

valgrind --leak-check=full program

The code reports:

==27770== Memcheck, a memory error detector.

==27770== Copyright (C) 2002-2006, and GNU GPL'd, by Julian Seward et al.

==27770== Using LibVEX rev 1658, a library for dynamic binary translation.

==27770== Copyright (C) 2004-2006, and GNU GPL'd, by OpenWorks LLP.

==27770== Using valgrind-3.2.1, a dynamic binary instrumentation framework.

==27770== Copyright (C) 2000-2006, and GNU GPL'd, by Julian Seward et al.

==27770== For more details, rerun with: -v

==27770==

==27770== Invalid write of size 4

==27770== at 0x400711: MAIN__ (test_valgrind.f90:11)

==27770== by 0x40073D: main (in /tmp/fort90/test_valgrind)

226 APPENDIX A: TOOLS FOR DEVELOPMENT AND MAINTENANCE

==27770== Address 0x4EF9700 is 0 bytes after a block of size 400 alloc'd

==27770== at 0x4A05809: malloc (vg_replace_malloc.c:149)

==27770== by 0x4C6A34C: (within /usr/lib64/libgfortran.so.1.0.0)

==27770== by 0x4006BE: MAIN__ (test_valgrind.f90:8)

==27770== by 0x40073D: main (in /tmp/fort90/test_valgrind)

==27770==

==27770== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 4 from 1)

==27770== malloc/free: in use at exit: 400 bytes in 1 blocks.

==27770== malloc/free: 7 allocs, 6 frees, 26,032 bytes allocated.

==27770== For counts of detected errors, rerun with: -v

==27770== searching for pointers to 1 not-freed blocks.

==27770== checked 85,752 bytes.

==27770==

==27770==

==27770== 400 bytes in 1 blocks are definitely lost in loss record 1 of 1

==27770== at 0x4A05809: malloc (vg_replace_malloc.c:149)

==27770== by 0x4C6A34C: (within /usr/lib64/libgfortran.so.1.0.0)

==27770== by 0x4006BE: MAIN__ (test_valgrind.f90:8)

==27770== by 0x40073D: main (in /tmp/fort90/test_valgrind)

==27770==

==27770== LEAK SUMMARY:

==27770== definitely lost: 400 bytes in 1 blocks.

==27770== possibly lost: 0 bytes in 0 blocks.

==27770== still reachable: 0 bytes in 0 blocks.

==27770== suppressed: 0 bytes in 0 blocks.

==27770== Reachable blocks (those to which a pointer was found)

are not shown.

==27770== To see them, rerun with: --show-reachable=yes

As it indicates exactly where the memory was allocated, you have a much
lighter task determining a solution for this problem. It also reports where the
array bound violation occurs – at least, for explicitly allocated memory.

A.5 Version Control Systems
An indispensable tool in modern software development is the version control
system. The basic idea of the system is that you record the changes over time in
the source code, documentation, and build files. This enables you to roll back
changes that turned out to be unwanted, to experiment with alternatives, or use
new features while keeping the mainstream version intact. Most importantly,
it allows for cooperation with other programmers.

There is a wide variety of systems available: From the classic CVS or Subversion
with a central repository to the newer distributed version control systems, such
as git or fossil, where every developer has a copy of the repository [8], [76].
Up to a point, it is a matter of taste which one to select. Most, if not all, offer
commands such as:
■ checkout: get the (current) version of the source files into a new directory.
■ update: merge the latest changes into your own source files.

APPENDIX A: TOOLS FOR DEVELOPMENT AND MAINTENANCE 227

■ commit: put your changes back into the repository so that your co-
developers can get your work. Other benefits of committing regularly,
are recording the various stages of development or retrieving a previous
version, if necessary.

■ diff : compare two versions of the source files.
■ branch and merge: start a parallel development, to test a new feature without

interrupting the mainstream, and later bring the changes back into the
mainstream.

These are just the basic features you may expect from a version control system.2

A.6 Documenting the Source Code
Many programmers have trouble keeping the documentation of their programs
updated or even to create some formal documentation at all. This is especially
true if you have to write the documentation after the program or library is
finished. Tools like Doxygen and ROBODoc can help to automate the process.
They extract the documentation via specially formatted comments from the
source code itself. In this way, the source code and the documentation are
intimately connected.

ROBODoc [77] is a tool that relies entirely on extracting the information
from comments, whereas Doxygen [79] analyzes the source code to extract
further details. With the first tool, you have to do more work, but it is
essentially agnostic with respect to the programming language and it allows
easy customization. Doxygen is capable of extracting most of the structure
of the program automatically, but it requires knowledge of the programming
language to do this. The consequence is that the structuring concepts of one
language have to be mapped on those of the tool. For example, where Fortran
has one definition of module, C++ has a different concept.

Both tools can be used to create comprehensive documentation, in various
formats (HTML, LATEX, and others), if you supply the right information.

Here is a small example of the code required by ROBODoc:

!****h* Utilities/sort_routines
! FUNCTION
! The sort_routines module provides several routines
! to sort arrays
!!****
!
module sort_routines

implicit none

!****m* sort_routines/sort

2 At least one, fossil [43], comes with a built-in Internet server, a Wiki, and an issue tracker system, so
that you can maintain much more than source code with one tool.

228 APPENDIX A: TOOLS FOR DEVELOPMENT AND MAINTENANCE

! NAME
! sort - generic name for the sorting routines
! PURPOSE
! The sort interface allows the programmer
! to use a single generic name
!****
!
interface sort

...
end interface

contains
... actual code ...

end module sort_routines

The comment lines starting with “!****h*” and “!****m*” introduce comment
blocks that contain the documentation. ROBODoc uses a large number of
keywords to identify the role of the text.

A similar example for Doxygen is:

!> @file
!! The sort_routines module provides several routines
!! to sort arrays
!<
!
!> @defgroup Sort library
!! The sort_routines module provides several routines
!! to sort arrays
!!
module sort_routines

implicit none

!> generic name for the sorting routines
!! The sort interface allows the programmer to use
!! a single generic name
!<
interface sort

...
end interface

contains
... actual code ...

end module sort_routines

Doxygen determines the items to be extracted itself and can also produce call-
graphs from the source code. Both programs have a large number of options
to customize the output.

APPENDIX A: TOOLS FOR DEVELOPMENT AND MAINTENANCE 229

A.7 Code Coverage and Static Analysis
A technique that should to be part of the testing procedure is test coverage.
This means measuring what part of the code has actually been run. Consider
for example:

program test_coverage
implicit none

real :: a = 0.0

call setvalue(a, 1)

write(*,*) 'Parameter = ', a

contains
subroutine setvalue(param, type)

real, intent(inout) :: param
integer, intent(in) :: type

if (type == 0) then
param = param * exp(-param)

endif

end subroutine setvalue
end program test_coverage

The statement in the subroutine setvalue that assigns a new value to its first
argument is not run. With the given start value of variable a, its effect would
be undetectable, meaning a test on the output will not reveal if the assignment
has run. By measuring the test coverage, you get insight into this fact. Here
is the output from the gcov utility that, together with the gfortran compiler,
analyzes what parts of the program were run and what parts were not:3

-: 0:Source:coverage_example.f90
-: 0:Graph:coverage_example.gcno
-: 0:Data:coverage_example.gcda
-: 0:Runs:1
-: 0:Programs:1
-: 1:! coverage_example.f90 --
-: 2:! Show how to use the gcov utility
-: 3:!
1: 4:program test_coverage
-: 5: implicit none
-: 6:

3 The numbers before each line indicate how often the line was run. However, the “2” before line 11
should have been “1”.

230 APPENDIX A: TOOLS FOR DEVELOPMENT AND MAINTENANCE

-: 7: real :: a = 0.0
-: 8:
1: 9: call setvalue(a, 1)
-: 10:
2: 11: write(*,*) 'Parameter = ', a
-: 12:
-: 13:contains
1: 14:subroutine setvalue(param, type)
-: 15:
-: 16: real, intent(inout) :: param
-: 17: integer, intent(in) :: type
-: 18:
1: 19: if (type == 0) then

#####: 20: param = param * exp(-param)
-: 21: endif
-: 22:
1: 23:end subroutine setvalue
-: 24:end program test_coverage

The statement that was not run, line 20, is clearly marked. To get this output,
use the following commands:4

gfortran --coverage -o coverage_example coverage_example.f90
coverage_example
gcov coverage_example.f90

Line coverage, where the coverage per statement is measured, is the weakest
form of test coverage [17]. A more sophisticated form is branch coverage and
in fact a whole series of coverage criteria exists with different strengths and
difficulties to achieve 100 percent coverage. In practice, it is very difficult to
reach 100 percent coverage in all but the simplest programs. Still, it is worth
trying to achieve as high coverage as practical, because untested code may be
sheltering some bug that is waiting to surface.

Branch coverage would reveal that if you change the call on line 9 to

call setvalue(a, 0)

force the assignment, you miss the implicit else branch of the if block. Two
tests are required to cover all the branches even in this simple program.

Tools as gcov, but also commercial ones like McCabe IQ, can help in various
ways to measure the coverage or even to design tests to increase the coverage.

Another valuable tool is static analysis. The Intel Fortran compiler, for instance,
will perform an in-depth analysis of the source code revealing many hidden

4 On Windows, set the environment variable GCOV PREFIX STRIP to 1000, otherwise, the .gcda
file that records the coverage is not produced.

APPENDIX A: TOOLS FOR DEVELOPMENT AND MAINTENANCE 231

flaws, if you specify the option -Qdiag-enable:sc3. These analyses are costly,
though, and therefore not all compilers will take these steps by default.

A slight modification to the preceding program illustrates what this analysis
can do. The new source code is:

program test_coverage
implicit none

real :: a
real :: b

call setvalue(a, 1)

write(*,*) 'Parameter = ', a

contains
subroutine setvalue(param, type)

real, intent(inout) :: param
integer, intent(in) :: type

if (type == 0) then
param = b * param * exp(-param)

endif

end subroutine setvalue
end program test_coverage

Note the introduction of a variable b and the removal of the initial value for
variable a. The output from the compiler is then:5

Intel(R) Visual Fortran Compiler Professional ...
Copyright (C) 1985-2010 Intel Corporation. All rights reserved.

coverage_example_3.f90(14): error #12144: "A" is possibly
uninitialized

coverage_example_3.f90(23): warning #12301: "B" is set to zero
value by default

In a short program like this one, it is easy to spot these errors, but in more
practical programs you will have a hard time tracking them unaided. It is here
these compiler features come in handy.

5 It is necessary to compile and link the program because the static analysis is carried out in a later
stage.

Appendix B

Caveats

Programming languages – and programming environments – all have their
share of surprising features. This appendix attempts to describe the most
important ones in Fortran. Not all caveats that appear here are part of the
language. Some arise when you use dynamic libraries (DLLs), others are still
surprising when you compare Fortran with other programming languages.

B.1 Details of the Standard
Short-Circuiting Logical Expressions In languages like C/C++, or Java,
you can rely on the so-called short-circuiting of logical expressions:

if (pointer != NULL && pointer[0] == 1) {
...

}

The expression consists of two parts: Check that the pointer variable is
referring to some memory and check that the value at the first location has
a particular value. If the first condition is not satisfied, it is not necessary to
check the second condition. (It would actually lead to a crash of the program.)
Therefore, the compound expression is evaluated as if written:

if (pointer != NULL) {
if (pointer[0] == 1) {

...
}

}

The Fortran standard does not guarantee this, but it leaves it up to the compiler.
The reason: efficiency. On modern computers, evaluating both parts and then
deciding the outcome can be much faster than the stepwise evaluation that
short-circuiting requires. If the expressions get more complicated, the number
of tests required to ensure short-circuiting will increase as does the object
code.

Saving Local Variables While the Fortran language explicitly states (from at
least FORTRAN 77 onward), that local variables in a routine do not retain
their values between calls, unless they have the save attribute, some compilers
will put them in static memory, because it is more efficient on that platform.

232

APPENDIX B: CAVEATS 233

To avoid problems when moving to a different compiler, always explicitly use
the save attribute. For instance:

subroutine print_data(data)
real, dimension(:) :: data

logical :: first = .true.
integer :: count

if (first) then
first = .false.
count = 0

endif

count = count + 1
write(*,*) 'Page: ', count
write(*,*) data

end subroutine

This routine may or may not work. It relies on the variable count retaining its
value. By using the save attribute, you make this portable and you document
the expectations:

subroutine print_data(data)
...

logical, save :: first = .true.
integer, save :: count

...
end subroutine

The variable first implicitly has the save attribute, because of the initializa-
tion to .true., but for the sake of clarity, you should use that attribute for its
declaration as well.

More on Initialization For programmers used to C and related languages, it
may come as a surprise that a statement like:

real :: x = 3.3

in a subroutine or function is not executed each time the routine is entered.
Rather than a short-cut for:

real :: x
x = 3.3

234 APPENDIX B: CAVEATS

as it is in C, this statement has a two-fold effect in Fortran:
■ The variable x implicitly gets the save attribute: It will retain whatever

value it has between routine calls.
■ The variable x is guaranteed to have the value 3.3 at the start of the program.

Which brings another feature, variables in Fortran are not initialized by default.
Their value is explicity undefined, unless some form of initialization is used
or their value is set via assignment.

Double Precision and Evaluating Right-Hand Side There is a very strict
principle in Fortran: The right-hand side is evaluated without regard to the
left-hand side. The rationale is that is much easier to reason about what a
statement means, and, in some cases, there is no left-hand side that could be
used to determine the precision or the size of the result:

write(*,*) 1.1d0 * 10

In this write statement, the precision of the result, and the number that is
written to the file, is dictated by the operands alone. The integer is promoted
to double precision and the final result is a double precision number.

The first part holds for this assignment as well:

real :: x
x = 1.1d0 * 10

The expression on the right-hand side is computed using double precision.
Only on assigning the result to the single-precision variable x, is it converted
to single precision.

This consistent rule presents some surprises:

real(kind=kind(1.0d0)) :: x
x = 1.11111111111111111111111111111111111111

The value of x is not as accurate as the code suggests: The number appearing on
the right may have a lot of digits, but it still is a single-precision number. There-
fore, the value of x is the double-precision equivalent of that single-precision
value.

Passing the Same Argument Twice Consider the following code fragments:

integer :: x, y
x = 1
y = 2
call add(x, x, y)

APPENDIX B: CAVEATS 235

Here is the implementation of the subroutine add:

subroutine add(a, b, c)
integer :: a, b, c
b = b + a
c = c + a
end subroutine add

Because the dummy arguments a and b are both associated with the actual
argument x, you might expect the output to be: x = 2 (twice the original
value), y = 4. However, the result may very well be: x = 2, y = 3.

The reason is that the compiler does not need to assume that this aliasing can
occur. In particular, it means that in a simple piece of code like this, the value
of a can be left in a register (for fast access) and, therefore, b and c are increased
by 1, the original value.

However, you do not know if this will in fact occur or not, because it depends
on the details of the code and the compiler. Therefore, you should avoid this
kind of programming.

If the variables involved have the pointer attribute or the target attribute, then
the compiler must take the possibility of aliasing into account. In that case, all
manner of optimizations are impossible.

For instance, the fragment:

real, dimension(:), pointer :: a, b
a = b

has to be evaluated in a way equivalent to:

real, dimension(:), pointer :: a, b
real, dimension(:), allocatable :: tmp

allocate(tmp(size(a)))

tmp = b
a = tmp

deallocate(tmp)

as b might be pointing partially to the same memory as a:

real, dimension(100), target :: data
real, dimension(:), pointer :: a, b

a => data(1:50)
b => data(26:75)

236 APPENDIX B: CAVEATS

REAL(4) While many compilers use kind numbers that indicate how many
bytes a particular type of real or integer occupies, this is by no means universal.
Kind numbers are simply any positive number that uniquely identifies all
properties of the associated type for that particular compiler.

The scheme where the kind number equals the number of bytes already breaks
down with complex numbers: The kind number is related to the underlying
real values, so rather than four bytes, a complex(4) number often occupies two
times four bytes. Then, there are computers whose hardware supports two or
more kinds of reals occupying the same number of bytes, for instance, one
kind adhering to the IEEE 754 format and a native format that is faster for
that particular hardware.

An additional drawback of hard coding these numbers is that you cannot easily
switch to a different precision: you have to consistently change the “4” into an
“8” to get double precision.

Simply put, use portable means, like the kind() and selected_real_kind()

functions to get the kind number.

End-of-file, Output to the Screen, and Others Values to indicate “End of
file” and the logical unit numbers for pre-connected files, such as output to
the screen or input from the keyboard, have traditionally been associated with
numbers like −1, 6 or 5 respectively. These values, while ubiquitous, are not
portable.

The best way to deal with them is to avoid specific values altogether (“End of
file” is always indicated by a negative number, other read errors are indicated by
a positive value, while an asterisk refers to the output to screen or input from the
keyboard.) If that is not possible, then the intrinsic iso_fortran_env module,
introduced in Fortran 2003, contains parameters that can be used instead:
iostat_end for the “end of file” condition, output_unit, and input_unit for
the respective LU numbers.

Another quantity that may vary from one compiler to the next (it may even
be influenced by the compile options) is the unit in which the record length
for direct-access files is expressed. This unit can be a single byte or a single
word, and that is often four bytes. The parameter file_storage_size in the
intrinsic iso_fortran_env module gives the size of this unit in bits.

External and Intrinsic Routines According to the standard, user-defined
routines are to be declared as external routines to avoid possible conflicts with
intrinsic routines, defined in the standard or as an extension in the compiler.
You may be in for a surprise with the following program if you do not know
that dim() is a standard intrinsic function:

real function dim(x, y)
real :: x, y

APPENDIX B: CAVEATS 237

dim = x + y
end function dim

program use_dim

real :: x, y
x = 1.0
y = 2.0
write(*,*) dim(x,y)

end program use_dim

The solution is either to use an external statement or to put the function
dim() in a module.

Mismatches in Interfaces: Assumed-Shape and Explicit-Shape The use of
explicit-shape arrays clashes with assumed-shape arrays, as shown in the fol-
lowing example published by Page (2011) on the comp.lang.fortran newsgroup
(formatting slightly adjusted) [69]:

module mymod
implicit none

contains

subroutine mysub(param, result)
real, intent(in) :: param(3)
real, intent(out) :: result
print *,'param=', param
result = 0.0

end subroutine mysub

subroutine minim(param, subr, result)
real, intent(in) :: param(:)
interface

subroutine subr(p, r)
real, intent(in) :: p(:)
real, intent(out) :: r

end subroutine subr
end interface
real, intent(out):: result

call subr(param, result)
end subroutine minim
end module mymod

program main
use mymod
implicit none

238 APPENDIX B: CAVEATS

real :: param(3) = [1.0, 2.0, 3.0], result

call minim(param, mysub, result)
end program main

If you run the program, the three numbers for the param array seem to contain
rubbish:

param= 6.14149881E-39 NaN 3.93764868E-43

The problem is the use of an explicit-shape – real, intent(in) :: param(3)

– instead of an assumed-shape for the array param. This kind of mismatch may
or may not be caught by the compiler, but if not, it is probably hard to spot
in a more realistic program.

Seeding the Random Number Generator The routine random_number is
very convenient if you need pseudo-random numbers in a program and you
do not need to control the quality. Unfortunately, the standard allows the
compiler a lot of freedom where the random number generator is concerned:
■ There is no guarantee as to the quality, even though most compilers come

with a very decent generator.
■ There is no guarantee that the generator is initialized with different seeds

at each run. Sometimes you will want that to happen and sometimes not.
If your program crucially depends on that behavior, you will need to take
care of it explicitly.

■ Taking care of the proper seeding is not at all trivial. The routine
random_seed is meant for this. Invoked without any arguments, it resets
the random number generator in a compiler-dependent way. It also gives
access to the array of values that is used internally by the generator. The
actual contents and size depend on the implementation, and you have no
guarantee that setting the array to a particular value or values will give a
good-quality series of random numbers.

■ The behavior of the built-in random number generator in a multithreaded
environment like OpenMP, or when using coarrays, is unclear. Ideally, you
would get independent sequences but that is not guaranteed.

When you need a high-quality random number generator and detailed control
over its behavior, the best solution is to use an implementation that you can
control. That is a recommendation that holds for most, if not all, programming
languages. Luckily, there is a vast amount of literature on the subject [11], [46].

Opening the Same File Twice Sometimes it is convenient to open a file
twice, on different logical unit numbers, so that two parts of the program
can process the contents independently. Unfortunately, the Fortran standard
does not allow that, not even when the files are opened for reading only. As a
consequence, you will have to implement a different solution:

APPENDIX B: CAVEATS 239

■ Stream access allows you to arbitrarily set the reading/writing position in
the file.

■ Direct access requires you to specify what record to read/write.

Either solution can be used to achieve the effects needed, but they are more
involved than might have been possible.

B.2 Arrays
Automatic and Temporary Arrays can Cause Stack Overflow From Fortran
90 onward, you can use automatic arrays:

subroutine handle_data(data)
real, dimension(:) :: data
real, dimension(size(data)) :: work
...

end subroutine

This feature is very useful for creating work arrays of just the right size. The
user of your routine does not need to know about the workspace and is not
responsible for passing arrays of the right size. Furthermore, the array is created
and destroyed automatically, so that you do not need to worry about it either.

There is a caveat, however. If the array gets too large, the stack from which the
array is created may well get exhausted, leading to a crash of the program. Try
the following code:

program check_stack
implicit none

integer :: size

size = 1
do

size = size * 2
write(*,*) 'Size: ', size

call create_automatic_array(size)
enddo

contains
subroutine create_automatic_array(size)

integer :: size
real, dimension(size) :: data

data(1) = 0.0
end subroutine create_automatic_array
end program check_stack

240 APPENDIX B: CAVEATS

If you can expect these arrays to become very large, allocatable arrays are a far
better choice. When you allocate these arrays, you can catch the error code
and arrange for a graceful shutdown if there is not enough memory.

Array operations are sometimes implemented via hidden temporary arrays,
especially if pointers to arrays are involved. It is not immediately clear from
the code, but if these temporary arrays are allocated on the stack, then the same
problem can occur. Many compilers offer an option to control the behavior.
Therefore, small arrays are taken from the stack (which is faster), while large
arrays are allocated on the heap (which poses less restrictions on the size).

Lower Bounds Other Than 1 Suppose you use a declaration like:

real, dimension(-3:3) :: array

and you fill it with the following values: 0, 0, 0, 1, 0, 0, 0.

The function maxloc() will report the maximum at position 4, not position
0, as you might expect (array(0) has the value 1 and all other elements have
the value 0). This is because the lower bound is not automatically propagated
to call subroutines or functions.

This is a compromise. If the lower bound was actually propagated to routines,
then code using arrays passed as arguments would need to use the lower bound
(and upper bound) consistently:

do i = 1,size(array)
write(*,*) i, array(i)

enddo

would need to become:

do i = lbound(array),ubound(array)
write(*,*) i, array(i)

enddo

for all arrays.

As non-default lower bounds are not that common, it is more convenient to
put the burden on programs that actually use non-trivial lower bounds, than
to put the burden on all programs.

Array Declarations: dimension(:) Versus dimension(*) The rules for pass-
ing arguments to functions and subroutines are simple: Unless the interface to
the routine is known explicitly – via modules, interface blocks, or because it is
an internal routine – the compiler assumes the FORTRAN 77 conventions.

APPENDIX B: CAVEATS 241

Therefore, unless the interface to the following routine (which uses an assumed-
shape array) is known, it is called the wrong way:

subroutine print_array(array)
real, dimension(:) :: array

integer :: i

do i = 1,size(array)
write(*,*) array(i)

enddo

end subroutine print_array

Therefore, it is called as if it was declared as:

subroutine print_array(array)
real, dimension(*) :: array
...

end subroutine print_array

and that means at the very least, the size of the array is unknown. In effect,
the loop will not run as intended (the size() function may return zero) or the
program could crash.

As a rule of thumb, use modules whenever possible. You do not have to
consider these interface questions and the compiler can do more checks.

B.3 Dynamic Libraries
Opening a File in a Program and Using It in a DLL or Vice Versa A
dynamic library, whether a “DLL” on Windows, a “dylib” on Mac OSX, or a
shared object on Linux, is best thought of as a separate program with some
special connections to the calling program. Just as two ordinary programs
do not share access to files on disk, neither do a program and the dynamic
library share that access. The practical consequence is that if you open a file
on logical unit number (LUN) 10 in the program, the library does not know
anything about that file. If you use LUN 10 within the library, it may be
actually be connected to a completely different file. This is caused by the use
of LUNs as global resources. You can pass the numbers as arguments, but
not the connection itself. This even more illustrates the way dynamic libraries
work.

Some compilers offer a solution for this and the related problem of memory
allocation and deallocation (see the following), but you need to be aware of
this behavior.

242 APPENDIX B: CAVEATS

Allocate Memory in a DLL and Deallocate It in the Program or Vice Versa
Memory allocated in a dynamic library should not be deallocated in the calling
program or vice versa. The underlying administrations are independent. This
is something to be aware of if you change a static library into a dynamic one.

As it involves no changes to the source code, only the build procedure needs
changed. However, these aspects can be easily forgotten.

Command-Line Arguments Are Not Available in a DLL The intrinsic
routine get_command_argument together with two related subroutines give
access to the arguments that were given to start the program. This can be
very useful, especially because you can use these subroutines anywhere in the
program. You do not need to pass them on from the main program, as with
other programming languages. However, these subroutines do not always work
in a DLL. Notably, it does not work of the most program is not a Fortran
program.

Subroutines or Data from the Main Program Used in the DLL The rou-
tines and data in a DLL are available to the main program (or other DLLs that
link against the first one), if it makes them available. (The method to do this
is platform-dependent and it is entirely beyond the Fortran language.)

This is not the case the other way around: a program cannot make its sub-
routines or data available to the DLL. Only by explicitly passing references
to the DLL can they become available. The DLL is created as a more or less
separate “program”, so it can be used in any context. There is no guarantee
that a routine my_subroutine will exist in that context, so the DLL cannot
rely on it.

Appendix C

Trademarks

DISLIN is owned by the Max Planck Institute, for Solar System Research,
Lindau, Germany.

Doxygen is an open-source program maintained by Dimitri van Heesch.

GNU, gcc, and gfortran are trademarks of the Free Software Foundation.

gnuplot is a plot program developed and maintained by the Free Software
Foundation.

Intel Fortran is a trademark of Intel.

Interacter is a trademark of Interactive Services Ltd.

Java is a trademark of Oracle.

Linux is a trademark handled by the Linux Mark Institute.

Mac OSX is a trademark of Apple.

MATLAB is a trademark of The MathWorks, Inc.

McCabe IQ is a trademark of McCabe Software.

MS Visual Studio and MS Windows are trademarks of MicroSoft.

MySQL is an open source project at http://www.mysql.com.

Perl is a dynamic programming language. Its home page is http://www.perl.org.

PGI CUDA is a trademark of The Portland Group and NVIDIA.

PLplot is an open source project at http://plplot.sf.net.

PostScript and PDF are trademarks of Adobe.

Python is a dynamic programming language. Its home page is
http://www.python.org.

ROBODoc is an open-source program maintained by Frank Slothouber.

SQLite is an open-source database management, residing at
http://www.sqlite.org.

Tcl is a dynamic programming language developed and maintained by the Tcl
Association. Tk is a user-interface library that can be used with Tcl and other
languages. The home page for both is http://www.tcl.tk.

Xeffort is developed and maintained by Jugoslav Dujic.

243

Bibliography

[1] S. L. Abrams, W. Chot, C.-Y. Hu, T. Maekawa, N. M. Patrikalakis,
E. C. Sherbrooke, and X. Ye. “Efficient and Reliable Methods for Rounded-
Interval Arithmetic.” Computer-Aided Design 30, no. 8 (1998); 657–665.

[2] Ed Akin. Object-Oriented Programming via Fortran 90/95. New York: Cam-
bridge University Press, 2003.

[3] Robert Reimann, Alan Cooper, and David Cronin. About Face 3: The Essen-
tials of Interaction Design. Indianopolis, Indiana: Wiley Publishing Inc.,
2007.

[4] “Test-Driven Development.” Wikipedia, last modified March 2012,
http://en.wikipedia.org/wiki/Test-driven development, 2010.

[5] CMake, accessed March 2012, http://www.cmake.org.

[6] Coding Standard accessed March 2012, http://c2.com/cgi/wiki?/
CodingStandard.

[7] “CPU Cache,” Wikipedia, last modified March 2012, http://en.
wikipedia.org/wiki/CPU cache.

[8] “Distributed Revision Control,” Wikipedia, last modified March 2012,
http://en.wikipedia.org/wiki/Distributed revision control.

[9] “Factory Method Pattern.” Wikipedia, last modified March 2012,
http://en.wikipedia.org/wiki/Factory method pattern, 2011.

[10] Photran – An Integrated Development Environment and Refactoring Tool for
Fortran. http://www.eclipse.org/photran/, 2011.

[11] “Pseudorandom Number Generator,” Wikipedia, last modified
March 2012, http://en.wikipedia.org/wiki/Pseudorandom number
generator, 2011.

[12] TR 29113 Technical Report on Further Interoperability of Fortran
with C, accessed on March 2012, http://j3-fortran.org/pipermail/j3/
attachments/20110707/85783ea3/attachment-0001.pdf, 2011.

[13] J. Backus. “Can Programming Be Liberated from the von Neumann Style?
A Functional Style and Its Algebra of Programs.” Communications of the
ACM 21, No. 8 (1978) http://www.stanford.edu/class/cs242/readings/
backus.pdf.

[14] Gabriele Jost, Barbara Chapman, and Ruud van der Pas. Using OpenMP:
Portable Shared Memory Parallel Programming. Cambridge: MIT Press, 2008.

245

246 BIBLIOGRAPHY

[15] Chris Bates. Web Programming: Building Internet Applications. Hoboken NJ:
John Wiley & Sons, 2001.

[16] K. Beck and C. Andres. Extreme Programming Explained: Embrace Change.
Boston: Addison-Wesley Professional, 2004.

[17] Boris Beizer. Software Testing Techniques. Boston: International Thomson
Computer Press, 1990.

[18] “Fortran Wiki.” Jason Blevin, accessed on March 2012, http://
fortranwiki.org.

[19] S-A. Boukabara and P. Van Delst. Standards, Guidelines and Recommen-
dations for Writing Fortran 95 Code. http://projects.osd.noaa.gov/spsrb/
standards docs/fortran95 standard rev26sep2007.pdf, 2007.

[20] John Calcote. Autotools, A Practioner’s Guide to GNU Autoconf, Automake,
and Libtool GNU Autotools. San Francisco: No Starch Press, 2010.

[21] “FRUIT.” Andrew Chen, accessed on March 2012, http://www.sourceforge.
net/projects/fortranxunit.

[22] Ian Chivers and Jane Sleightholme. Introduction to programming with Fortran.
New York: Springer, 2006.

[23] “XML Path Language (XPath).” James Clark and Steve DeRose, accessed on
March 2012, http://www.w3.org/TR/xpath.

[24] Norman S. Clerman and Walter Spector. Modern Fortran: Style and Usage.
New York: Cambridge University Press, 2012.

[25] “The Fortran Company.” The Fortran company, accessed on March 2012,
http://www.fortran.com.

[26] Martyn J. Corden and David Kreizer. Consistency of Floating-Point Results
using the Intel Compiler or Why doesn’t my application always give
the same answer. Intel Corporation, 2009, http://software.intel.com/en-
us/articles/consistency-of-floating-point-results-using-the-intel-compiler/.

[27] “Using SQLite with Fortran.” Al Danial, accessed on March 2012, http://
danial.org/sqlite/fortran/.

[28] “Object-Oriented Design Patterns in Fortran.” Victor K. Decyk and
Henry J. Gardner, accessed on March 2012, http://exodus.physics.ucla.edu/
fortran95/decykGardner07v3.pdf.

[29] “Debunking the Myths About Fortran.” Craig T. Dedo, accessed on March
2012, http://www.box.net/shared/gksd4706a9.

[30] “gtk-fortran.” Jerry DeLisle, accessed on March 2012, https://github.com/
jerryd/gtk-fortran/wiki.

[31] “Cache misses.” Kay Diederichs, accessed on March 2012, http://coding.
derkeiler.com/Archive/Fortran/comp.lang.fortran/2006-11/msg00341.
html.

BIBLIOGRAPHY 247

[32] “What Every Programmer Should Know About Memory, Part 1.” Ulrich Drep-
per, http://lwn.net/Articles/250967/, 2007.

[33] “Xeffort.” Jugloslav Dujic, accessed on March 2012, http://www.xeffort.com.

[34] J. Xia, D.W.I. Rouson and X. Xu. Scientific Software Design: The Object-
oriented Way. New York: Cambridge University Press, 2011.

[35] Ralph Johnson, Erich Gamma, Richard Helm, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Boston: Addison-
Wesley, 1995.

[36] W. Brainerd et al. Guide to Fortran 2003 Programming. New York: Springer,
2009.

[37] “Junit.” Erich Gamma, accessed on March 2012, http://www.junit.org.

[38] Simon Geard. e-mail message to author, 2006.

[39] David Gelernter. Generative Communication in Linda. ACM Transactions on
Programming Languages and Systems 7, no. 1 (1985).

[40] P. Goodliffe. Code Craft, the Practice of Writing Excellent Code. San Francisco:
No Starch Press, Inc, 2007.

[41] “CUDA Fortran, Programming Guide and Reference.” The Portland
Group, accessed on March 2012, http://www.pgroup.com/lit/whitepapers/
pgicudaforug.pdf.

[42] Les Hatton. Safer C, Developing software for High-integrity and Safety-critical
Systems. New York: McGraw-Hill Book Company, 1994.

[43] “Fossil – Simple, High-Reliability, Distributed Software Configuration Man-
agement.” D. Richard Hipp, accessed on March 2012, http://fossil-scm.org.

[44] “SQLite.” D. Richard Hipp, accessed on March 2012, http://www.sqlite.org.

[45] “Interval Arithmetic in Forte Fortran, Technical White Paper.”
SUN Microsystems Inc., accessed on March 2012, http://developers.sun.
com/sunstudio/products/archive/whitepapers/tech-interval-final.pdf.

[46] “Good Practice in (Pseudo) Random Number Generation for Bioinformatics
Applications.” D. Jones, accessed on March 2012, http://www.cs.ucl.
ac.uk/staff/d.jones/GoodPracticeRNG.pdf.

[47] “A Core Library For Robust Numeric and Geometric Computation.” V. Karam-
cheti, C. Li, I. Pechtchanski, and Yap C., accessed on March 2012,
http://cs.nyu.edu/ pechtcha/pubs/scg99.pdf.

[48] B. Kleb. e-mail message to author, 2009.

[49] “F95 Coding standard for the FUN3D project.” B. Kleb et al., accessed
on March 2012, http://fun3d.larc.nasa.gov/chapter-9.html#f95 coding
standard.

[50] “Funit.” Bil Kleb et al., accessed on March 2012, http://nasarb.rubyforge.
org.

248 BIBLIOGRAPHY

[51] “Collection of Fortran code.” H. Knoble, accessed on March 2012,
http://www.personal.psu.edu/faculty/h/d/hdk/fortran.html.

[52] “Tklib, library of Tk extensions.” Andreas Kupries et al., accessed on March
2012, http://tcllib.sf.net/.

[53] Michael List and David Car. “A polymorphic Reference Counting Implemen-
tation in Fortran 2003.” ACM Fortran Forum 30, No. 2, August 2011.

[54] Arjen Markus. “Design Patterns and Fortran 95.” ACM Fortran Forum 25,
no. 2, April 2006.

[55] “Ftcl, combining Fortran and Tcl.” Arjen Markus, accessed on March 2012,
http://ftcl.sf.net.

[56] “Ftnunit.” Arjen Markus, accessed on March 2012, http://flibs.sourceforge.
net.

[57] “The Flibs project.” Arjen Markus, accessed on March 2012, http://flibs.
sf.net.

[58] Steve McConnell. Code Complete, Redmond, Washington: MicrosSoft Press,
2nd edition, 2004.

[59] “Fortran Refactoring for Legacy Systems.” Mariano Méndez, accessed
on March 2012, http://www.fortranrefactoring.com.ar/papers/Fortran-
Refactoring-for-Legacy-Systems.pdf.

[60] Michael Metcalf. Fortran Optimization. New York: Academic Press,
1982.

[61] Michael Metcalf. “The Seven Ages of Fortran.” Journal of Computer Sci-
ence and Technology 11, no. 1 (2011). http://journal.info.unlp.edu.ar/
journal/journal30/papers/JCST-Apr11-1.pdf.

[62] Michael Metcalf and John Reid. Fortran 8X Explained. New York: Oxford
University Press, 1987.

[63] Michael Metcalf and John Reid. Fortran 90/95 Explained. New York: Oxford
University Press, 2004.

[64] Bertrand Meyer. Object-Oriented Software Construction. Upper Saddle River,
NJ: Prentice Hall International Ltd., 1988.

[65] John Reid, Michael Metcalf and Malcolm Cohen. Fortran 95/2003
Explained. New York: Oxford University Press, 2004.

[66] Steven J. Miller and Ramin Takloo-Bighash. An Invitation to Modern
Number-Theory. Princeton, NJ: Princeton University Press, 2006.

[67] “XOTcl – Extended Object Tcl.” Gustave Neumann, accessed on March 2012,
http://media.wu.ac.at/.

[68] Suely Oliveira and David Stewart. Writing Scientific Software. New York:
Cambridge University Press, 2006.

BIBLIOGRAPHY 249

[69] “Importance of Not Being Explicit.” Clive Page, accessed on May 9, 2011,
https://groups.google.com/group/comp.lang.fortran/browse frm/thread/
1a40cc3e6e4546de.

[70] G.W. Petty. Automated computation and consistency checking of physical dimen-
sions and units in scientific programs. Software – Practice and Experience,
31, 1067-1076 (URL: http://sleet.aos.wisc.edu/∼gpetty/wp/?page id=684),
2001.

[71] “Coarrays in the Next Fortran Standard.” John Reid, accessed on March 2012,
ftp://ftp.nag.co.uk/sc22wg5/N1801-N1850/N1824.pdf.

[72] “The new features of Fortran 2008.” John Reid, accessed on March 2012,
ftp://ftp.nag.co.uk/sc22wg5/N1801-N1850/N1828.pdf.

[73] Damian W.I. Rouson and Helgi Adalsteinsson. “Design Patterns for Multi-
physics Modelling in Fortran 2003 and C++.” ACM Transactions on Mathe-
matical Software 37, no. 1 (2009).

[74] N.S. Scott, F. Jézéquel, Denis C., and J.-M. Chesneaux. “Numerical ‘health
check’ for Scientific Codes: the CADNA Approach.” Computer Physics Commu-
nications 176 (2007), pp. 507–521.

[75] “Valgrind.” Julian Seward et al., accessed on March 2012, http://valgrind.org.

[76] “Version Control by Example.” Eric Sink, accessed on March 2012,
http://www.ericsink.com/vcbe/.

[77] “ROBODoc, Automating the Software Documentation Process.” Frank Slothou-
ber, accessed on March 2012, http://rfsber.home.xs4all.nl/Robo/.

[78] Beverly A. Sanders, Timothy G. Mattson and Berna L. Massingill. Patterns
for Parallel Programming. Boston: Pearson Education inc., 2005.

[79] “Doxygen, Generate Documentation From Source Code.” Dimitri van Heesch,
accessed on March 2012, http://www.stack.nl/ dimitri/doxygen/index.html.

[80] “G95.” Andrew Vaught, accessed on March 2012, http://www.g95.org.

[81] Norman Walsh. DocBook 5: The Definitive Guide. Sebastopol, CA: O’Reilly
Media, 2010.

[82] Eric W. Weisstein. Pell Equation. MathWorld, 2011, http://mathworld.
wolfram.com/PellEquation.html.

[83] Ewing Lusk, William Gropp and Anthony Skjellum. Using MPI: portable
parallel programming with message passing. Cambridge: MIT Press, 1999.

[84] “Pfunit.” Brice Womack and Tom Clune, accessed on March 2012,
http://www.sourceforge.net/projects/pfunit.

[85] Wang Xian and Aoki Takayuki. “Multi-GPU Performance of Incompressible
Flow Computation by Lattice Bolzmann Method on GPU Cluster.” Parallel
Computing 27 (2011), pp. 521–535.

Index

allocation
allocatable array, 9, 35, 41, 82, 83, 240
allocate, 38, 39, 40, 42, 131, 167, 216, 240
automatic reallocation, 194
deallocate, 14, 35, 36, 45, 46, 47, 224, 242

analysis
dynamic, 221
static, 231

array
assumed-shape, 221
automatic, 40, 131
explicit-shape, 237, 238
lower bound, 240
section, 4, 18, 131
work, 13, 40, 239
zero length, 19

attribute, xiii, 7, 22, 41, 42, 80, 83, 123, 233
allocatable, 28, 41, 44, 47
external, 105, 106, 109, 220
nopass, 165
pass, 173, 180
pointer, 41, 42, 44, 47, 232
private, 55, 198, 216
public, 39, 76, 82, 192
save, 70, 119, 123
target, 235

binding, 82, 100, 164
bit, x, 7, 10, 17, 22, 30, 71, 77, 78, 92, 113,

124, 143, 188
byte, 126, 236

C++, xiii, 92, 163, 167, 189, 219, 227
calling convention, 79, 81
character string, 9, 36, 37, 60, 77, 82
coarray, x, 208, 217, 238
command-line arguments, 93
COMMON block, 52, 56
compiler, x, xiv, 4, 5, 6, 7, 9, 10, 15, 16, 35,

35, 36, 49, 57, 80, 81, 120, 121, 122,
123, 126, 127, 129, 131, 132, 134, 136,
168, 196, 197, 216, 219, 220, 221, 222,
223, 224, 231, 232, 235, 236, 238, 240,
241

compiler-specific, 9, 121, 131, 238
optimization, 5, 127, 129
option, 15, 41, 155, 223

complex numbers, 76, 77, 130, 219, 220,
236

concatenation, x, 39
condition, 19, 119, 123, 124, 128, 130, 135,

138, 181, 210, 232

database, 76, 79, 83, 85, 88, 89, 92, 243
MySQL, 243
SQL, 85
SQLite, 76, 77, 243

derived type, 1, 6, 7, 24, 26, 27, 28, 29, 33,
36, 42, 43, 44, 45, 46, 47, 64, 83, 88,
123, 124, 176, 178, 187, 193

default assignment, 27
user-defined assignment, 193

design pattern, 77, 189, 192, 195, 207
dynamic, ix, 21, 168, 170, 187, 192, 221,

232, 241, 243

elemental routine, 7, 15

file formats
PDF, 92, 243
PNG, 95
PostScript, 92, 243

floating-point arithmetic, 136
framework, xi, 114, 115, 118, 119, 120
function

count(), 4
intrinsic, x, 9, 12, 27, 78, 84, 126, 128,

161, 167, 170, 196, 236, 242
present(), 6
recursive, 5, 32, 39, 184
size(), 4, 241
transfer(), 9

Gauss elimination, 115, 135
generic, x, 5, 6, 28, 51, 75, 76, 109, 174,

175, 176, 181, 184, 186, 222
gfortran, xiv, 49, 81, 127, 146, 229, 243
gnuplot, 243

251

252 INDEX

GOTO, 10
GPU, 219
graphical user-interface, 92, 95, 99, 100, 104,

104, 119
Interacter, 243
Xeffort, 243

graphics, xi, 93, 95, 97
DISLIN, 243
PLplot, 94, 243

image, 43, 196, 206, 207, 208, 217, 219
import, 9, 188
import statement, 24
initialization, 127, 134, 181, 189, 233,

234
Intel Fortran, 49, 81, 100, 221, 230, 243
interface, 5, 8, 10, 15, 24, 39, 52, 54, 59, 75,

76, 78, 79, 80, 83, 84, 92, 93, 95, 99,
102, 106, 123, 124, 166, 173, 174, 175,
191, 193, 217, 221, 240, 241

generic, 73, 74, 174
interface block, 9, 22, 24, 168, 240

Internet, 105, 109, 120, 227
CGI, 106, 107, 109
HTML, 105, 106, 109, 120
URL, 107

Java, xiii, 100, 114, 167, 232, 243

keyboard, 99
kind, 24, 29, 43, 94, 106, 235, 236,

238

library, x, 51, 57, 64, 70, 75, 76, 83, 85, 86,
91, 92, 93, 100, 102, 106, 110, 111,
131, 136, 191, 192, 219, 227, 241, 242,
243

DLL, 241, 242
dynamic, 191, 241, 242

linked list, 49, 50, 184
Linux, 92, 222, 225, 243
literal number, 73, 122, 125

Mac OSX, 222, 241, 243
mathematics

automatic differentiation, 25, 26
derivative, 21, 22, 25, 151, 154, 157
Diophantine equations, 21, 28
partial differential equation, 196
prime numbers, 196
set, 27, 28, 29, 30, 33, 204

MATLAB, 243

memory
cache, 48, 49
heap, 35, 240
memory leak, 224
memory management, 5, 48
stack, 35, 81, 130, 131, 239, 240
stackoverflow, 131

module, 1, 8, 9, 24, 27, 38, 39, 44, 46, 52,
55, 56, 57, 63, 80, 81, 83, 84, 110, 124,
125, 126, 127, 161, 174, 176, 186, 187,
188, 190, 191, 193, 194, 221, 222, 236,
241

variable, 57
MS Windows, 92, 99, 100, 120, 146, 219,

222, 230, 243

Newton’s method, 151
non-advancing I/O, 39
numerical, 6, 51, 60, 75, 120, 125, 135, 136,

146, 147, 153, 154, 155, 156, 192,
196

numerical aspects
accuracy, 115, 130, 155
precision, 73, 122, 126, 130, 136, 155,

234
double, 6, 76, 77, 82, 234
single, 73, 77

numerical problems, 135
catastrophic cancellation, 158

object, 45, 110, 139, 164, 165, 166, 167,
180, 181, 189, 194, 195, 222,
232

object-oriented
abstract interface, 29, 193
abstract type, 174, 177, 193
basic type, 167
class, 4, 127, 180, 193
dynamic type, 167, 170
extend, ix, xi, 6, 8, 20, 33, 45, 100, 107,

155, 164, 166, 167, 168, 170, 173, 177,
181, 188, 189, 191, 192, 194

polymorphic variables, 163, 164, 166,
167, 168, 170, 187, 189

prototype, 178
type-bound procedure, 64, 164, 165, 188,

193
object-oriented programming, ix, xiii, 8, 163,

170, 178, 189
implicit component, 167

OOP, see object-oriented programming
open source, 85, 92, 243

INDEX 253

operation
overloaded, xiii, 22, 31, 33
user-defined, 44

parallel programming, x, 211
MPI, ix
multiprocessing, 71
multithreading, 57, 134, 220, 238
OpenMP, ix, x, 219

parameterized, 53
performance, 14, 15, 41, 42, 48, 71
Perl, 100, 243
PGI, 219, 243
plotting, see graphics
pointer, 8, 33, 35, 36, 39, 41, 42, 44, 64, 79,

83, 85, 145, 169, 170, 180, 184, 192,
193, 235

pointer variable, 7, 21, 28, 35, 77, 78, 82, 83,
86, 180, 184, 240

precondition, 125
programming style, 5, 8, 14, 20, 21, 34, 83,

93, 100, 178
pure routine, 7, 134
Python, 187, 243

random numbers, 14, 167, 174, 238
renaming, 176, 187, 188
routine

internal, 4, 41, 59, 61, 240

screen, 92, 93, 95, 236
shared object, see library
short-circuiting, 123, 232

side effects, 134
sorting, 14, 17, 40, 78, 110, 174, 175, 177
source form

free, 1, 4
standard, ix, 1, 4, 5, 7, 9, 10, 12, 15, 20, 39,

59, 76, 78, 109, 121, 125, 126, 128,
143, 146, 147, 165, 166, 232, 236, 238

Fortran 2003, ix, 7, 8, 9, 16, 21, 28, 36,
37, 38, 42, 52, 62, 78, 79, 80, 82, 136,
161, 163, 170, 173, 176, 236

Fortran 2008, x, 8, 9, 10, 59, 196, 206
FORTRAN 77, 1, 4, 5, 53, 55, 61, 93,

232, 240
Fortran 90, 1, 3, 4, 5, 7, 8, 12, 15, 21, 34,

35, 43, 56, 73, 82, 93, 184, 221, 239
static, 34
synchronization, 72, 198, 206, 207, 219

Tcl/Tk, 93, 95, 97, 98, 99, 100, 102, 104,
187, 243

thread, 57, 197, 198, 199, 201, 204, 206,
211, 215, 216, 219

toolkit, 100

unit testing, 114
use statement, 24, 187

widget, 99, 100
word, 111, 126, 127

XML files, 51, 109, 110, 113
DOM, 51
SAX, 51, 110, 111

