

NUMERICAL MATHEMATICS AND SCIENTIFIC COMPUTATION

Series Editors

A. M. STUART E. SÜLI

NUMERICAL MATHEMATICS AND SCIENTIFIC COMPUTATION

Books in the series
Monographs marked with an asterisk (∗) appeared in the series ‘Monographs in Numerical Analysis’

which is continued by the current series.

For a full list of titles please visit

http://www.oup.co.uk/academic/science/maths/series/nmsc

∗ J. H. Wilkinson: The algebraic eigenvalue problem
∗ I. Duff, A. Erisman, and J. Reid: Direct methods for sparse matrices
∗ M. J. Baines: Moving finite elements
∗ J. D. Pryce: Numerical solution of Sturm-Liouville problems

C. Schwab: p- and hp- finite element methods: theory and applications in solid and fluid mechanics

J. W. Jerome: Modelling and computation for applications in mathematics, science, and engineering

A. Quarteroni and A. Valli: Domain decomposition methods for partial differential equations

G. Em Karniadakis and S. J. Sherwin: Spectral/hp element methods for CFD

I. Babuška and T. Strouboulis: The finite element method and its reliability

B. Mohammadi and O. Pironneau: Applied shape optimization for fluids

S. Succi: The lattice Boltzmann equation: for fluid dynamics and beyond

P. Monk: Finite element methods for Maxwell’s equations

A. Bellen and M. Zennaro: Numerical methods for delay differential equations

J. Modersitzki: Numerical methods for image registration

M. Feistauer, J. Felcman, and I. Straškraba: Mathematical and computational methods for

compressible flow

W. Gautschi: Orthogonal polynomials: computation and approximation

M. K. Ng: Iterative methods for Toeplitz systems

M. Metcalf, J. Reid, and M. Cohen: Fortran 95/2003 explained

G. Em Karniadakis and S. Sherwin: Spectral/hp element methods for computational fluid dynamics,

second edition

D. A. Bini, G. Latouche, and B. Meini: Numerical methods for structured Markov chains

H. Elman, D. Silvester, and A. Wathen: Finite elements and fast iterative solvers: with applications

in incompressible fluid dynamics

M. Chu and G. Golub: Inverse eigenvalue problems: theory, algorithms, and applications

J.-F. Gerbeau, C. Le Bris, and T. Lelièvre: Mathematical methods for the magnetohydrodynamics of

liquid metals

G. Allaire and A. Craig: Numerical analysis and optimization: an introduction to mathematical

modelling and numerical simulation

K. Urban: Wavelet methods for elliptic partial differential equations

B. Mohammadi and O. Pironneau: Applied shape optimization for fluids, second edition

K. Böhmer: Numerical methods for nonlinear elliptic differential equations: a synopsis

M. Metcalf, J. Reid, and M. Cohen: Modern Fortran Explained

Modern Fortran Explained

Michael Metcalf
Formerly of CERN, Geneva, Switzerland

John Reid
JKR Associates, Oxfordshire

and

Malcolm Cohen
The Numerical Algorithms Group, Oxfordshire

1

3
Great Clarendon Street, Oxford ox2 6dp

Oxford University Press is a department of the University of Oxford.
It furthers the University’s objective of excellence in research, scholarship,

and education by publishing worldwide in

Oxford New York

Auckland Cape Town Dar es Salaam Hong Kong Karachi
Kuala Lumpur Madrid Melbourne Mexico City Nairobi

New Delhi Shanghai Taipei Toronto

With offices in

Argentina Austria Brazil Chile Czech Republic France Greece
Guatemala Hungary Italy Japan Poland Portugal Singapore
South Korea Switzerland Thailand Turkey Ukraine Vietnam

Oxford is a registered trade mark of Oxford University Press
in the UK and in certain other countries

Published in the United States
by Oxford University Press Inc., New York

c© Michael Metcalf, John Reid, and Malcolm Cohen 2011

The moral rights of the authors have been asserted
Database right Oxford University Press (maker)

First edition published 1987 as Fortran 8x Explained
Second edition published 1989

Third edition published 1990 as Fortran 90 Explained
Fourth edition published 1996 as Fortran 90/95 Explained

Fifth edition published 1999
Sixth edition published 2004 as Fortran 95/2003 Explained

This edition published 2011

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means,

without the prior permission in writing of Oxford University Press,
or as expressly permitted by law, or under terms agreed with the appropriate

reprographics rights organization. Enquiries concerning reproduction
outside the scope of the above should be sent to the Rights Department,

Oxford University Press, at the address above

You must not circulate this book in any other binding or cover
and you must impose the same condition on any acquirer

British Library Cataloguing in Publication Data

Data available

Library of Congress Cataloging in Publication Data

Library of Congress Control Number: 2010941705

Printed in Great Britain
on acid-free paper by

CPI Antony Rowe, Chippenham, Wiltshire

ISBN 978–0–19–960141–7 (Hbk)
978–0–19–960142–4 (Pbk)

1 3 5 7 9 10 8 6 4 2

Preface

Fortran remains one of the principal languages used in the fields of scientific, numerical,

and engineering programming, and a series of revisions to the standard defining successive

versions of the language has progressively enhanced its power and kept it competitive with

several generations of rivals.

Beginning in 1978, the technical committee responsible for the development of Fortran

standards, X3J3 (now PL22.3 but still informally called J3), laboured to produce a new, much-

needed modern version of the language, Fortran 90. Its purpose was to ‘promote portability,

reliability, maintainability, and efficient execution. . . on a variety of computing systems’.

That standard was published in 1991, and work began in 1993 on a minor revision, known as

Fortran 95. Subsequently, and with the same purpose, a further major upgrade to the language

was prepared by J3 and the international committee, WG5. This revision, which included

object-oriented programming features, is now known as Fortran 2003. This has now been

followed by a further revision, Fortran 2008, and, once again, it seems appropriate to prepare

a definitive informal description of the language that it defines. This continues the series of

editions of this book – the two editions of Fortran 8x Explained that described the two drafts

of the standard (1987 and 1989), Fortran 90 Explained that described the Fortran 90 standard

(1990), two editions of Fortran 90/95 Explained that included Fortran 95 too (1996 and 1999)

and Fortran 95/2003 (2004), with its added chapters on Fortran 2003. In that final endeavour,

a third co-author was welcomed.

In this book, an initial chapter sets out the background to the work on new standards,

and the nine following chapters describe Fortran 95 (less its obsolescent features and the

redundant Fortran 77 features whose use we deprecate) in a manner suitable both for grasping

the implications of its features, and for writing programs. We include the allocatable array

extensions that were originally published as an ISO Technical Report and are now part of

Fortran 2003, since they have been implemented in Fortran 95 compilers for many years.

Some knowledge of programming concepts is assumed. In order to reduce the number of

forward references and also to enable, as quickly as possible, useful programs to be written

based on material already absorbed, the order of presentation does not always follow that of

the standard. In particular, we have chosen to defer to appendices the description of features

that are officially labelled as redundant (some of which were deleted from the Fortran 95

standard) and other features whose use we deprecate. They may be encountered in old

programs, but are not needed in new ones.

Chapter 11 describes another part of Fortran 2003 that was originally defined by an ISO

Technical Report. This is followed, in Chapters 12 to 17, by descriptions of the other features

vi Preface

defined by the Fortran 2003 standard. Chapter 18 describes a part of Fortran 2008 that

was originally defined by an ISO Technical Report and two further chapters describe the

other new features of Fortran 2008. The structure of the book thus allows the reader to

distinguish clearly between Fortran 95 (plus allocatable array extensions), Fortran 2003, and

the new Fortran 2008 features. Note that, apart from a small number of deletions, each of the

languages Fortran 77, Fortran 90, Fortran 95, Fortran 2003, and Fortran 2008 is a subset of

its successor.

In order to make the book a complete reference work, it concludes with seven appendices.

They contain, successively, a list of the intrinsic procedures, a description of various features

whose use we deprecate and do not describe in the body of the book, a description of

obsolescent and deleted features, advice on avoiding compilation cascades, an extended

example illustrating the use of object orientation, a glossary of Fortran terms, and solutions

to most of the exercises.

It is our hope that this book, by providing complete descriptions of Fortran 95, Fortran 2003

and Fortran 2008, will continue the helpful role that earlier editions played for the

corresponding versions of the standard, and that it will serve as a long-term reference work

for the modern Fortran programming language.

∗∗∗
Malcolm Cohen wishes to thank the Numerical Algorithms Group (NAG) for its encour-

agement during the writing of this book.

Conventions used in this book

Fortran displayed text is set in typewriter font:

integer :: i, j

and a line consisting of a colon indicates omitted lines:

subroutine sort
:

end subroutine sort

Informal BNF terms are in italics:

if (scalar-logical-expr) action-stmt

Square brackets in italics indicate optional items:

end if [name]

and an ellipsis represents an arbitrary number of repeated items:

[case selector [name]]
block] ...

The italic letter b signifies a blank character.

Corrections to any significant errors detected in this book will be made available in the

files edits.ps and edits.pdf at ftp://ftp.numerical.rl.ac.uk/pub/MRandC.

This page intentionally left blank

Contents

1 Whence Fortran? 1
1.1 Introduction . 1

1.2 Fortran’s early history . 2

1.3 The drive for the Fortran 90 standard . 3

1.4 Language evolution . 4

1.5 Fortran 95 . 4

1.6 Extensions to Fortran 95 . 5

1.7 Fortran 2003 . 6

1.8 Fortran 2008 . 7

1.9 Conformance . 7

2 Language elements 9
2.1 Introduction . 9

2.2 Fortran character set . 9

2.3 Tokens . 10

2.4 Source form . 11

2.5 Concept of type . 13

2.6 Literal constants of intrinsic type . 14

2.6.1 Integer literal constants . 14

2.6.2 Real literal constants . 15

2.6.3 Complex literal constants . 17

2.6.4 Character literal constants . 17

2.6.5 Logical literal constants . 19

2.7 Names . 20

2.8 Scalar variables of intrinsic type . 20

2.9 Derived data types . 21

2.10 Arrays of intrinsic type . 23

2.11 Character substrings . 26

2.12 Objects and subobjects . 27

2.13 Pointers . 27

2.14 Summary . 29

3 Expressions and assignments 33
3.1 Introduction . 33

x Contents

3.2 Scalar numeric expressions . 34

3.3 Defined and undefined variables . 37

3.4 Scalar numeric assignment . 38

3.5 Scalar relational operators . 38

3.6 Scalar logical expressions and assignments 39

3.7 Scalar character expressions and assignments 41

3.8 Structure constructors and scalar defined operators 42

3.9 Scalar defined assignments . 45

3.10 Array expressions . 46

3.11 Array assignment . 48

3.12 Pointers in expressions and assignments . 48

3.13 The nullify statement . 51

3.14 Summary . 51

4 Control constructs 55
4.1 Introduction . 55

4.2 The if construct and statement . 55

4.3 The case construct . 57

4.4 The do construct . 59

4.5 The go to statement . 62

4.6 Summary . 63

5 Program units and procedures 67
5.1 Introduction . 67

5.2 Main program . 68

5.3 The stop statement . 69

5.4 External subprograms . 69

5.5 Modules . 70

5.6 Internal subprograms . 73

5.7 Arguments of procedures . 73

5.7.1 Pointer arguments . 75

5.7.2 Restrictions on actual arguments . 76

5.7.3 Arguments with the target attribute 76

5.8 The return statement . 77

5.9 Argument intent . 77

5.10 Functions . 78

5.10.1 Prohibited side-effects . 80

5.11 Explicit and implicit interfaces . 80

5.12 Procedures as arguments . 82

5.13 Keyword and optional arguments . 83

5.14 Scope of labels . 85

5.15 Scope of names . 85

5.16 Direct recursion . 88

5.17 Indirect recursion . 89

5.18 Overloading and generic interfaces . 90

Contents xi

5.19 Assumed character length . 93

5.20 The subroutine and function statements . 95

5.21 Summary . 96

6 Array features 99
6.1 Introduction . 99

6.2 Zero-sized arrays . 99

6.3 Assumed-shape arrays . 100

6.4 Automatic objects . 100

6.5 Allocation of data . 102

6.5.1 The allocatable attribute . 102

6.5.2 The allocate statement . 103

6.5.3 The deallocate statement . 104

6.5.4 Allocatable dummy arguments . 105

6.5.5 Allocatable functions . 105

6.5.6 Allocatable components . 106

6.5.7 Allocatable arrays vs. pointers . 109

6.6 Elemental operations and assignments . 110

6.7 Array-valued functions . 110

6.8 The where statement and construct . 111

6.9 The forall statement and construct . 114

6.10 Pure procedures . 117

6.11 Elemental procedures . 118

6.12 Array elements . 119

6.13 Array subobjects . 120

6.14 Arrays of pointers . 123

6.15 Pointers as aliases . 124

6.16 Array constructors . 125

6.17 Mask arrays . 126

6.18 Summary . 127

7 Specification statements 133
7.1 Introduction . 133

7.2 Implicit typing . 133

7.3 Declaring entities of differing shapes . 134

7.4 Named constants and constant expressions 134

7.5 Initial values for variables . 137

7.5.1 Initialization in type declaration statements 137

7.5.2 The data statement . 138

7.5.3 Pointer initialization and the function null 140

7.5.4 Default initialization of components 141

7.6 The public and private attributes . 142

7.7 The pointer, target, and allocatable statements 144

7.8 The intent and optional statements . 144

7.9 The save attribute . 145

xii Contents

7.10 The use statement . 146

7.11 Derived-type definitions . 149

7.12 The type declaration statement . 150

7.13 Type and type parameter specification . 152

7.14 Specification expressions . 153

7.14.1 Specification functions . 153

7.15 The namelist statement . 155

7.16 Summary . 156

8 Intrinsic procedures 161
8.1 Introduction . 161

8.1.1 Keyword calls . 161

8.1.2 Categories of intrinsic procedures 162

8.1.3 The intrinsic statement . 162

8.1.4 Argument intents . 162

8.2 Inquiry functions for any type . 162

8.3 Elemental numeric functions . 163

8.3.1 Elemental functions that may convert 163

8.3.2 Elemental functions that do not convert 164

8.4 Elemental mathematical functions . 165

8.5 Elemental character and logical functions 166

8.5.1 Character–integer conversions . 166

8.5.2 Lexical comparison functions . 167

8.5.3 String-handling elemental functions 167

8.5.4 Logical conversion . 168

8.6 Non-elemental string-handling functions . 168

8.6.1 String-handling inquiry function . 168

8.6.2 String-handling transformational functions 168

8.7 Numeric inquiry and manipulation functions 168

8.7.1 Models for integer and real data . 168

8.7.2 Numeric inquiry functions . 169

8.7.3 Elemental functions to manipulate reals 170

8.7.4 Transformational functions for kind values 171

8.8 Bit manipulation procedures . 171

8.8.1 Inquiry function . 172

8.8.2 Elemental functions . 172

8.8.3 Elemental subroutine . 173

8.9 Transfer function . 173

8.10 Vector and matrix multiplication functions 174

8.11 Transformational functions that reduce arrays 175

8.11.1 Single argument case . 175

8.11.2 Optional argument dim . 175

8.11.3 Optional argument mask . 176

8.12 Array inquiry functions . 176

8.12.1 Allocation status . 176

Contents xiii

8.12.2 Bounds, shape, and size . 176

8.13 Array construction and manipulation functions 177

8.13.1 The merge elemental function . 177

8.13.2 Packing and unpacking arrays . 177

8.13.3 Reshaping an array . 177

8.13.4 Transformational function for replication 178

8.13.5 Array shifting functions . 178

8.13.6 Matrix transpose . 179

8.14 Transformational functions for geometric location 179

8.15 Transformational function for pointer disassociation 179

8.16 Non-elemental intrinsic subroutines . 180

8.16.1 Real-time clock . 180

8.16.2 CPU time . 181

8.16.3 Random numbers . 181

8.17 Summary . 182

9 Data transfer 185
9.1 Introduction . 185

9.2 Number conversion . 185

9.3 I/O lists . 186

9.4 Format definition . 188

9.5 Unit numbers . 190

9.6 Internal files . 191

9.7 Formatted input . 193

9.8 Formatted output . 194

9.9 List-directed I/O . 195

9.10 Namelist I/O . 197

9.11 Non-advancing I/O . 198

9.12 Edit descriptors . 200

9.12.1 Repeat counts . 200

9.12.2 Data edit descriptors . 201

9.12.3 Character string edit descriptor . 205

9.12.4 Control edit descriptors . 205

9.13 Unformatted I/O . 208

9.14 Direct-access files . 209

9.15 Execution of a data transfer statement . 210

9.16 Summary . 211

10 Operations on external files 213
10.1 Introduction . 213

10.2 Positioning statements for sequential files 214

10.2.1 The backspace statement . 214

10.2.2 The rewind statement . 214

10.2.3 The endfile statement . 215

10.2.4 Data transfer statements . 215

xiv Contents

10.3 The open statement . 216

10.4 The close statement . 218

10.5 The inquire statement . 219

10.6 Summary . 222

11 Floating-point exception handling 223
11.1 Introduction . 223

11.2 The IEEE standard . 224

11.3 Access to the features . 225

11.4 The Fortran flags . 227

11.5 Halting . 228

11.6 The rounding mode . 228

11.7 The underflow mode (Fortran 2003 only) . 229

11.8 The module ieee_exceptions . 229

11.8.1 Derived types . 229

11.8.2 Inquiry functions for IEEE exceptions 230

11.8.3 Subroutines for the flags and halting modes 230

11.8.4 Subroutines for the whole of the floating-point status 231

11.9 The module ieee_arithmetic . 232

11.9.1 Derived types . 232

11.9.2 Inquiry functions for IEEE arithmetic 232

11.9.3 Elemental functions . 234

11.9.4 Non-elemental subroutines . 235

11.9.5 Transformational function for kind value 236

11.10 Examples . 237

11.10.1 Dot product . 237

11.10.2 Calling alternative procedures . 237

11.10.3 Calling alternative in-line code . 238

11.10.4 Reliable hypotenuse function . 238

11.10.5 Access to IEEE arithmetic values 239

12 Interoperability with C 243
12.1 Introduction . 243

12.2 Interoperability of intrinsic types . 243

12.3 Interoperability with C pointer types . 245

12.4 Interoperability of derived types . 246

12.5 Interoperability of variables . 247

12.6 The value attribute . 248

12.7 Interoperability of procedures . 249

12.8 Interoperability of global data . 250

12.9 Invoking a C function from Fortran . 251

12.10 Invoking Fortran from C . 252

12.11 Enumerations . 253

Contents xv

13 Type parameters and procedure pointers 255
13.1 Introduction . 255

13.2 Deferred type parameters . 255

13.3 Type parameter enquiry . 256

13.4 Parameterized derived types . 256

13.4.1 Defining a parameterized derived type 256

13.4.2 Assumed and deferred type parameters 258

13.4.3 Default type parameter values . 258

13.4.4 Derived type parameter enquiry . 259

13.5 Abstract interfaces . 259

13.6 Procedure pointers . 261

13.6.1 Procedure pointer variables . 261

13.6.2 Procedure pointer components . 261

13.6.3 The pass attribute . 262

14 Object-oriented programming 265
14.1 Introduction . 265

14.2 Type extension . 265

14.2.1 Type extension and type parameters 267

14.3 Polymorphic entities . 267

14.3.1 Establishing the dynamic type . 268

14.3.2 Limitations on the use of a polymorphic variable 269

14.3.3 Polymorphic arrays and scalars . 269

14.3.4 Unlimited polymorphic entities . 269

14.3.5 Polymorphic entities and generic resolution 270

14.4 The associate construct . 271

14.5 The select type construct . 272

14.6 Type-bound procedures . 274

14.6.1 Specific type-bound procedures . 274

14.6.2 Generic type-bound procedures . 277

14.6.3 Type extension and type-bound procedures 279

14.7 Deferred bindings and abstract types . 280

14.8 Finalization . 281

14.8.1 Type extension and final subroutines 284

14.9 Procedure encapsulation example . 284

14.10 Type inquiry functions . 286

15 Establishing and moving data 289
15.1 Introduction . 289

15.2 Mixed component accessibility . 289

15.3 Structure constructors . 289

15.4 The allocate statement . 291

15.4.1 Typed allocation and deferred type parameters 291

15.4.2 Polymorphic variables and typed allocation 292

15.4.3 Sourced allocation . 292

xvi Contents

15.5 Allocatable entities . 293

15.5.1 Allocatable scalars . 294

15.5.2 Assignment to an allocatable array 294

15.5.3 Transferring an allocation . 295

15.6 Pointer assignment . 296

15.7 More control of access from a module . 296

15.8 Renaming operators on the use statement 297

15.9 Array constructor syntax . 297

15.10 Specification and constant expressions . 298

16 Miscellaneous enhancements 301
16.1 Introduction . 301

16.2 Pointer intent . 301

16.3 The volatile attribute . 301

16.3.1 Volatile semantics . 302

16.3.2 Volatile scoping . 303

16.3.3 Volatile arguments . 304

16.4 The import statement . 304

16.5 Intrinsic modules . 306

16.6 Access to the computing environment . 307

16.6.1 Environment variables . 307

16.6.2 Information about the program invocation 308

16.7 Support for internationalization . 308

16.7.1 Character sets . 309

16.7.2 ASCII character set . 309

16.7.3 ISO 10646 character set . 310

16.7.4 UTF-8 files . 310

16.7.5 Decimal comma for input/output . 311

16.8 Lengths of names and statements . 312

16.9 Binary, octal, and hexadecimal constants . 312

16.10 Other changes to intrinsic procedures . 313

16.11 Error message retrieval . 314

16.12 Enhanced complex constants . 314

16.13 Interface block extensions . 314

16.14 Public entities of private type . 315

17 Input/output enhancements 317
17.1 Introduction . 317

17.2 Non-default derived-type input/output . 317

17.3 Asynchronous input/output . 320

17.4 The asynchronous attribute . 322

17.5 Input and output of IEEE exceptional values 323

17.6 Stream access input/output . 323

17.7 Recursive input/output . 324

17.8 The flush statement . 324

Contents xvii

17.9 Comma after a P edit descriptor . 324

17.10 The iomsg= specifier . 325

17.11 The round= specifier . 325

17.12 The sign= specifier . 325

17.13 Kind type parameters of integer and logical specifiers 325

17.14 More specifiers in read and write statements 326

17.15 Intrinsic functions for I/O status testing . 326

17.16 Some inquire statement enhancements . 326

17.17 Namelist enhancements . 327

18 Enhanced module facilities 329
18.1 Introduction . 329

18.2 Submodules . 330

18.2.1 Separate module procedures . 330

18.2.2 Submodules of submodules . 331

18.2.3 Submodule entities . 331

18.2.4 Submodules and use association . 332

18.3 The advantages of submodules . 332

19 Coarrays 333
19.1 Introduction . 333

19.2 Referencing images . 334

19.3 The properties of coarrays . 335

19.4 Accessing coarrays . 336

19.5 The sync all statement . 337

19.6 Coarrays in procedures . 338

19.7 Allocatable coarrays . 340

19.8 Coarrays with allocatable or pointer components 341

19.8.1 Data components . 341

19.8.2 Procedure pointer components . 342

19.9 Coarray components . 342

19.10 References to polymorphic subobjects . 343

19.11 Volatile and asynchronous attributes . 343

19.12 Interoperability . 343

19.13 Synchronization . 343

19.13.1 Execution segments . 343

19.13.2 The sync images statement . 344

19.13.3 The lock and unlock statements . 345

19.13.4 Critical sections . 347

19.13.5 The sync memory statement and atomic subroutines 347

19.13.6 The stat= and errmsg= specifiers in synchronization statements . . . 348

19.13.7 The image control statements . 348

19.14 Program termination . 348

19.15 Input/output . 349

19.16 Intrinsic procedures . 351

xviii Contents

19.16.1 Inquiry functions . 351

19.16.2 Transformational functions . 351

20 Other Fortran 2008 enhancements 353
20.1 Trivial syntactic conveniences . 353

20.1.1 Implied-shape arrays . 353

20.1.2 Implied-do loops in data statements 353

20.1.3 Type-bound procedures . 354

20.1.4 Structure constructors . 354

20.1.5 Semicolons . 355

20.1.6 The stop statement . 355

20.1.7 Exit from nearly any construct . 355

20.2 Limitation changes . 356

20.2.1 64-bit integer support . 356

20.2.2 Maximum array rank . 356

20.3 Data expressiveness . 356

20.3.1 Allocatable components of recursive type 356

20.3.2 Initial pointer association . 358

20.4 Performance-oriented features . 359

20.4.1 The do concurrent construct . 359

20.4.2 The contiguous attribute . 361

20.4.3 Simply contiguous array designators 364

20.5 Computational expressiveness . 365

20.5.1 Accessing parts of complex variables 365

20.5.2 Pointer functions denoting variables 366

20.5.3 The block construct . 366

20.5.4 Impure elemental procedures . 368

20.5.5 Internal procedures as actual arguments 370

20.5.6 Specifying the kind of a forall index variable 370

20.5.7 Generic resolution . 371

20.6 Data usage and computation . 372

20.6.1 Enhancements to the allocate statement 372

20.6.2 Automatic reallocation . 373

20.6.3 Elemental subprogram restrictions 373

20.7 Input/output . 374

20.7.1 Recursive input/output . 374

20.7.2 The newunit= specifier . 374

20.7.3 Writing comma-separated values . 375

20.8 Intrinsic procedures . 376

20.9 Mathemetical intrinsic functions . 376

20.9.1 Changes to trigonometric functions 376

20.9.2 New hyperbolic trigonometic functions 376

20.9.3 New special mathematical functions 377

20.9.4 Euclidean norms . 378

20.10 Bit manipulation . 378

Contents xix

20.10.1 Bitwise (unsigned) comparison . 378

20.10.2 Double-width shifting . 379

20.10.3 Bitwise reductions . 379

20.10.4 Counting bits . 380

20.10.5 Producing bitmasks . 380

20.10.6 Merging bits . 381

20.10.7 Additional shift operations . 381

20.11 Miscellaneous intrinsic procedures . 382

20.11.1 Procedures supporting coarrays . 382

20.11.2 Executing another program . 382

20.11.3 Character comparison . 383

20.11.4 Array searching . 383

20.11.5 Logical parity . 383

20.11.6 Decimal arithmetic support . 384

20.11.7 Size of an object in memory . 384

20.12 Additions to the iso_fortran_env module 385

20.12.1 Compilation information . 385

20.12.2 Names for common kinds . 385

20.12.3 Kind arrays . 386

20.12.4 Coarray support facilities . 386

20.13 Changes to other standard intrinsic modules 387

20.13.1 The iso_c_binding module . 387

20.13.2 The ieee_arithmetic module . 387

20.14 Programs and procedures . 388

20.14.1 Saved module entities . 388

20.14.2 Automatic pointer targetting . 388

20.14.3 Denoting absent arguments . 389

A Intrinsic procedures 393

B Deprecated features 399
B.1 Introduction . 399

B.2 Storage association . 399

B.2.1 Storage units . 399

B.2.2 The equivalence statement . 400

B.2.3 The common block . 402

B.2.4 The block data program unit . 404

B.2.5 Coarrays and storage association . 405

B.3 Shape and character length disagreement . 405

B.4 The include line . 407

B.5 Other forms of loop control . 407

B.5.1 The labelled do construct . 407

B.5.2 The do while . 408

B.6 Double precision real . 408

B.7 The dimension, codimension, and parameter statements 409

xx Modern Fortran Explained

B.8 Specific names of intrinsic procedures . 410

B.9 Non-default mapping for implicit typing . 412

B.10 Fortran 2008 deprecated features . 413

B.10.1 The sync memory statement and atomic subroutines 413

B.10.2 Components of type c_ptr or c_funptr 416

B.10.3 Type declarations . 416

B.10.4 Redundant contains statement . 417

B.10.5 The end statement . 417

B.10.6 Referencing atan2 by the name atan 418

C Obsolescent features 419
C.1 Obsolescent in Fortran 95 . 419

C.1.1 Fixed source form . 419

C.1.2 Computed go to . 420

C.1.3 Character length specification character* 420

C.1.4 Data statements among executables 420

C.1.5 Statement functions . 421

C.1.6 Assumed character length of function results 422

C.1.7 Arithmetic if statement . 422

C.1.8 Shared do-loop termination . 423

C.1.9 Alternate return . 423

C.2 Feature obsolescent in Fortran 2008: Entry statement 424

C.3 Feature deleted in Fortran 2003: Carriage control 426

C.4 Features deleted in Fortran 95 . 427

D Avoiding compilation cascades 429

E Object-oriented list example 433

F Fortran terms 441

G Solutions to exercises 453

Index 475

1. Whence Fortran?

1.1 Introduction

This book is concerned with the Fortran 95, Fortan 2003 and Fortran 2008 programming

languages, setting out a reasonably concise description of the whole of each. The form chosen

for its presentation is that of a textbook intended for use in teaching or learning the language.

The description of Fortran 95 occupies Chapters 2 to 10 and Appendices B and C. We

include the allocatable array extensions that were originally published as an ISO Technical

Report, since they have been implemented in Fortran 95 compilers for many years and

are now part of Fortran 2003. These chapters are written in such a way that simple

programs can already be coded after the first three (on language elements, expressions and

assignments, and control) have been read. Successively more complex programs can be

written as the information in each subsequent chapter is absorbed. Chapter 5 describes the

important concept of the module and the many aspects of procedures, Chapter 6 completes

the description of the powerful array features, Chapter 7 considers the details of specifying

data objects and derived types, and Chapter 8 details the intrinsic procedures. Chapters 9

and 10 cover the whole of the input/output features in a manner such that the reader can also

approach this more difficult area feature by feature, but always with a useful subset already

covered. In Appendices B and C, we describe features that are redundant in the language.

Those of Appendix B are still fully part of the standard but their use is deprecated by us,

while those of Appendix C are designated as obsolescent by the standard.

Chapter 11 describes an official extension to Fortran 95.

Fortran 2003 contains all of Fortran 95, including the extensions of Chapter 11, and

Chapters 12 to 18 describe its additional features. Chapter 12 deals with interoperability

with the C programming language, Chapter 13 with parameterized data types and procedure

pointers, Chapter 14 with object-oriented programming, and Chapter 15 with establishing

and manipulating data. Chapter 16 covers some miscellaneous enhancements, while Chapter

17 deals with enhancements in the area of input/output and Chapter 18 with submodules,

formally an extension.

Fortran 2008, in its turn, contains the whole of Fortran 2003, including the extensions of

Chapter 18, with an addition, coarrays, that is important for parallel processing, as well as a

number of lesser enhancements. These are described in Chapters 19 and 20, respectively.

This introductory chapter has the task of setting the scene for those that follow. Section 1.2

presents the early history of Fortran, starting with its introduction over fifty years ago. Section

1.3 continues with the development of the Fortran 90 standard, summarizes its important

2 Modern Fortran Explained

new features, and outlines how standards are developed; Section 1.4 looks at the mechanism

that has been adopted to permit the language to evolve. Sections 1.5 to 1.8 consider the

development of Fortran 95 and its extensions, then of Fortran 2003 and Fortran 2008. The

final section considers the requirements on programs and processors for conformance with

the standard.

1.2 Fortran’s early history

Programming in the early days of computing was tedious in the extreme. Programmers

required a detailed knowledge of the instructions, registers, and other aspects of the central

processing unit (CPU) of the computer for which they were writing code. The source
code itself was written in a numerical notation, so-called octal code. In the course of time

mnemonic codes were introduced, a form of coding known as machine or assembly code.

These codes were translated into the instruction words by programs known as assemblers.

In the 1950s it became increasingly apparent that this form of programming was highly

inconvenient, although it did enable the CPU to be used in a very efficient way.

These difficulties spurred a team led by John Backus of IBM to develop one of the earliest

high-level languages, Fortran. Their aim was to produce a language which would be simple to

understand but almost as efficient in execution as assembly language. In this they succeeded

beyond their wildest dreams. The language was indeed simple to learn, as it was possible to

write mathematical formulae almost as they are usually written in mathematical texts. (In fact,

the name Fortran is a contraction of Formula Translation.) This enabled working programs

to be written faster than before, for only a small loss in efficiency, as a great deal of care was

devoted to the generation of fast object code.

But Fortran was revolutionary as well as innovatory. Programmers were relieved of the

tedious burden of using assembler language, and were able to concentrate more on the

problem in hand. Perhaps more important, however, was the fact that computers became

accessible to any scientist or engineer willing to devote a little effort to acquiring a working

knowledge of Fortran; no longer was it necessary to be an expert on computers to be able to

write application programs.

Fortran spread rapidly as it fulfilled a real need. Inevitably, dialects of the language

developed, which led to problems in exchanging programs between computers, and so,

in 1966 the then American Standards Association (later the American National Standards

Institute, ANSI) brought out the first ever standard for a programming language, now known

as Fortran 66.

Fortran brought with it several other advances. It was, for instance, a language which

remained close to, and exploited, the available hardware rather than being an abstract concept.

It also brought with it the possibility for programmers to control storage allocation in a simple

way, a feature which was very necessary in those early days of small memories.

The proliferation of dialects remained a problem after the publication of the 1966 standard.

There was a widespread implementation in compilers of features which were essential

for large-scale programs, but which were ignored by the standard. Different compilers

implemented such facilities in different ways. These difficulties were partially resolved by

Whence Fortran? 3

the publication of a new standard, in 1978, known as Fortran 77, which included several new

features that were based on vendor extensions or pre-processors.

1.3 The drive for the Fortran 90 standard

After thirty years’ existence, Fortran was far from being the only programming language

available on most computers, but Fortran’s superiority had always been in the area of

numerical, scientific, engineering, and technical applications and so, in order that it be

brought properly up to date, the ANSI-accredited technical committee X3J3 (subsequently

known as J3 and now formally as PL22.3), working as a development body for the ISO

committee ISO/IEC JTC1/SC22/WG5, once again prepared a new standard, formerly known

as Fortran 8x and now as Fortran 90. We will use the abbreviations J3 and WG5 for these

two committees.

J3 itself is a body composed of representatives of computer hardware and software vendors,

users, and academia. It is now accredited to NCITS (National Council for Information

Technology Standards). J3 acts as the development body for the corresponding international

group, WG5, consisting of international experts responsible for recommending that a draft

standard become an international standard. J3 maintains other close contacts with the

international community by welcoming foreign members, including the present authors over

many years.

What were the justifications for continuing to revise the definition of the Fortran language?

As well as standardizing vendor extensions, there was a need to modernize it in response to

the developments in language design which had been exploited in other languages, such as

APL, Algol 68, Pascal, Ada, C, and C++. Here, J3 could draw on the obvious benefits of

concepts like data hiding. In the same vein was the need to begin to provide an alternative

to dangerous storage association, to abolish the rigidity of the outmoded source form, and

to improve further on the regularity of the language, as well as to increase the safety of

programming in the language and to tighten the conformance requirements. To preserve

the vast investment in Fortran 77 codes, the whole of Fortran 77 was retained as a subset.

However, unlike the previous standard, which resulted almost entirely from an effort to

standardize existing practices, the Fortran 90 standard was much more a development of

the language, introducing features which were new to Fortran, but were based on experience

in other languages.

The main features of Fortran 90 were, first and foremost, the array language and abstract

data types. The former is built on whole array operations and assignments, array sections,

intrinsic procedures for arrays, and dynamic storage. It was designed with optimization in

mind. The latter is built on modules and module procedures, derived data types, operator

overloading, and generic interfaces, together with pointers. Also important were the new

facilities for numerical computation, including a set of numeric inquiry functions, the

parameterization of the intrinsic types, new control constructs – select case and new

forms of do, internal and recursive procedures, optional and keyword arguments, improved

I/O facilities, and many new intrinsic procedures. Last but not least were the new free

source form, an improved style of attribute-oriented specifications, the implicit none
statement, and a mechanism for identifying redundant features for subsequent removal from

4 Modern Fortran Explained

the language. The requirement on compilers to be able to identify, for example, syntax

extensions, and to report why a program has been rejected, are also significant. The resulting

language was not only a far more powerful tool than its predecessor, but a safer and more

reliable one too. Storage association, with its attendant dangers, was not abolished, but

rendered unnecessary. Indeed, experience showed that compilers detected errors far more

frequently than before, resulting in a faster development cycle. The array syntax and

recursion also allowed quite compact code to be written, a further aid to safe programming.

1.4 Language evolution

The procedures under which J3 works require that a period of notice be given before any

existing feature is removed from the language. This means, in practice, a minimum of

one revision cycle, which for Fortran is at least five years. The need to remove features is

evident: if the only action of the committee is to add new features, the language will become

grotesquely large, with many overlapping and redundant items. The solution finally adopted

by J3 was to publish as an appendix to a standard a set of two lists showing which items have

been removed or are candidates for eventual removal.

One list contains the deleted features, those that have been removed. Since Fortran 90

contained the whole of Fortran 77, this list was empty for Fortran 90 but was not for

Fortran 95.

The second list contains the obsolescent features, those considered to be outmoded and

redundant, and which are candidates for deletion in the next revision. The Fortran 95

obsolescent features are described in Appendix C.

For Fortran 2003, there were no new obsolescent features and none of the Fortran 95

obsolescent features have been deleted. In Fortran 2008, the entry statement has been made

obsolescent.

The obsolescent features that were deleted from Fortran 95 are still being supported by

most compilers, because of the demand for old tried and tested programs to continue to work.

Thus, the concept of obsolescence is really not working as intended, but at least it gives a

clear signal that certain features are outmoded, and should be avoided in new programs and

not be taught to new programmers.

1.5 Fortran 95

Following the publication of the Fortran 90 standard in 1991, two further significant

developments concerning the Fortran language occurred. The first was the continued

operation of the two Fortran standards committees, J3 and WG5, and the second was the

founding of the High Performance Fortran Forum (HPFF).

Early on in their deliberations, the standards committees decided on a strategy whereby a

minor revision of Fortran 90 would be prepared by the mid-1990s and a major revision by

about the year 2000. The first revision, Fortran 95, is the subject of the first part of this book.

The HPFF was set up in an effort to define a set of extensions to Fortran, such that it would

be possible to write portable code when using parallel computers for handling problems

involving large sets of data that can be represented by regular grids. This version of Fortran

Whence Fortran? 5

was to be known as High Performance Fortran (HPF), and it was quickly decided, given the

array features of Fortran 90, that it, and not Fortran 77, should be its base language. The

final form of HPF1 was of a superset of Fortran 90, the main extensions being in the form

of directives that take the form of Fortran 90 comment lines, and are thus recognized as

directives only by an HPF processor. However, it did become necessary also to add some

additional syntax, as not all the desired features could be accommodated in the form of such

directives.

The work of J3 and WG5 went on at the same time as that of HPFF, and the bodies liaised

closely. It was evident that, in order to avoid the development of divergent dialects of Fortran,

it would be desirable to include the new syntax defined by HPFF in Fortran 95 and, indeed,

the HPF features are its most significant new features. Beyond this, a small number of other

pressing but minor language changes were made, mainly based on experience with the use of

Fortran 90.

Fortran 95 was backwards compatible with Fortran 90, apart from a minor change in the

definition of sign (Section 8.3.2) and the deletion of some Fortran 77 features declared

obsolete in Fortran 90. However, there were two new intrinsic procedures, null and

cpu_time, which might also be names of external procedures in an existing Fortran 90

program.

The details of Fortran 95 were finalized in 1995, and the new ISO standard, replacing

Fortran 90, was adopted in 1997, following successful ballots, as ISO/IEC 1539-1 : 1997.

1.6 Extensions to Fortran 95

Soon after the publication of Fortran 90, an auxiliary standard for varying length strings was

developed. A minority felt that this should have been part of Fortran 90, but were satisfied

with this alternative. The auxiliary standard defines the interface and semantics for a module

that provides facilities for the manipulation of character strings of arbitrary and dynamically

variable length. It has been revised for Fortran 95 as ISO/IEC 1539-2 : 2000(E). An annex

referenced a possible implementation2 in Fortran 95, which demonstrated its feasibility. The

intention was that vendors provide equivalent features that execute more efficiently but, in

fact, that never happened.

Further, in 1995, WG5 decided that these three features:

i) handling floating-point exceptions;

ii) permitting allocatable arrays as structure components, dummy arguments, and function

results; and

iii) interoperability with C,

were so urgently needed in Fortran that it established development bodies to develop

‘Technical Reports of Type 2’. The intent was that the material of these technical reports

be integrated into the next revision of the Fortran standard, apart from any defects found in

the field. It was essentially a beta-test facility for a language feature. In the event, the first two

1The High Performance Fortran Handbook, C. Koebel et al., MIT Press, Cambridge, MA, 1994.
2ftp://ftp.nag.co.uk/sc22wg5/ISO_VARYING_STRING/

6 Modern Fortran Explained

were completed and the first is the subject of Chapter 11. The details of the second have been

incorporated into the earlier chapters as it was widely implemented in Fortran 95 compilers.

Difficulties were encountered with the third, so the report mechanism was abandoned for

interoperability with C, but it was subsequently included in Fortran 2003 (see Chapter 13).

Another auxiliary standard, ISO/IEC 1539-3 : 1999(E), was developed to meet the need of

programmers to maintain several versions of code to allow for different systems and different

applications. Keeping several copies of the source code is error prone. It is far better to

maintain a master code from which any of the versions may be selected. This standard is

for a very simple form of conditional compilation, which selects some of the Fortran lines

from the source and omits the rest or converts them to comments. The process is controlled

by ‘coco lines’ in the source that are also omitted or converted to comments. This auxilliary

standard has met with little success.

1.7 Fortran 2003

The next full language revision was published in November 2004 and is known as Fortran

2003 since the details were finalized in 2003. It is the subject of the middle part of this book.

Unlike Fortran 95, it was a major revision, its main new features being:

• Derived type enhancements: parameterized derived types, improved control of

accessibility, improved structure constructors, and finalizers.

• Object-oriented programming support: type extension and inheritance, polymorphism,

dynamic type allocation, and type-bound procedures.

• Data manipulation enhancements: allocatable components, deferred type parameters,

volatile attribute, explicit type specification in array constructors and allocate

statements, pointer enhancements, extended initialization expressions (now called

constant expressions), and enhanced intrinsic procedures.

• Input/output enhancements: asynchronous transfer, stream access, user-specified

transfer operations for derived types, user-specified control of rounding during

format conversions, named constants for preconnected units, the flush statement,

regularization of keywords, and access to error messages.

• Procedure pointers.

• Support of IEC 60559 (IEEE 754) exceptions.

• Interoperability with the C programming language.

• Support for international usage: access to ISO 10646 4-byte characters and choice of

decimal point or comma in numeric formatted I/O.

• Enhanced integration with the host operating system: access to command line

arguments, environment variables, and processor error messages.

Fortran 2003 has been slow to be fully implemented in compilers. The standard was

augmented by a further Technical Report, published in February 2005, that defines how the

use of modules can be enhanced by the use of submodules (see Chapter 12).

Whence Fortran? 7

1.8 Fortran 2008

Notwithstanding the fact that Fortran 2003-compliant compilers have been very slow to

appear, the standardization committees have thought fit to plunge on with yet another

standard, Fortran 2008. Its single most important new feature is intended for parallel

processing – the addition of coarray handling facilities. Further, the do concurrent form

of loop control and the contiguous attribute are introduced, and other new features include:

the submodule extension to Fortran 2003, various data enhancements, enhanced access to

data objects, enhancements to I/O and to execution control, and more intrinsic procedures, in

particular for bit processing. Fortran 2008 was published in October 2010.

1.9 Conformance

The standards are almost exclusively concerned with the rules for programs rather than for

processors. A processor is required to accept a standard-conforming program and to interpret

it according to the standard, subject to limits that the processor may impose on the size and

complexity of the program. The processor is allowed to accept further syntax and to interpret

relationships that are not specified in the standard, provided they do not conflict with the

standard. In many places in this book we say “... is not permitted”. By this we mean that

it is not permitted in a standard-conforming program. An implementation may nevertheless

permit it as an extension. Of course, the programmer must avoid such syntax extensions if

portability is desired.

The interpretation of some of the standard syntax is processor dependent, that is, may vary

from processor to processor. For example, the set of characters allowed in character strings

is processor dependent. Care must be taken whenever a processor-dependent feature is used

in case it leads to the program not being portable to a desired processor.

A drawback of the Fortran 77 standard was that it made no statement about requiring

processors to provide a means to detect any departure from the allowed syntax by a program,

as long as that departure did not conflict with the syntax rules defined by the standard. The

new standards are written in a different style from the old one. The syntax rules are expressed

in a form of BNF with associated constraints, and the semantics are described by the text.

This semi-formal style is not used in this book, so an example, from Fortran 95, is perhaps

helpful:

R609 substring is parent-string (substring-range)

R610 parent-string is scalar-variable-name
or array-element
or scalar-structure-component
or scalar-constant

R611 substring-range is [scalar-int-expr] : [scalar-int-expr]
Constraint: parent-string shall be of type character.

The value of the first scalar-int-expr in substring-range is called the starting
point and the value of the second one is called the ending point. The length of a

8 Modern Fortran Explained

substring is the number of characters in the substring and is MAX(�− f +1,0),
where f and � are the starting and ending points, respectively.

Here, the three production rules and the associated constraint for a character substring are

defined, and the meaning of the length of such a substring explained.

The standards are written in such a way that a processor, at compile-time, may check that

the program satisfies all the constraints. In particular, the processor must provide a capability

to detect and report the use of any

• obsolescent feature;

• additional syntax;

• kind type parameter (Section 2.5) that it does not support;

• non-standard source form or character;

• name that is inconsistent with the scoping rules; or

• non-standard intrinsic procedure.

Furthermore, it must be able to report the reason for rejecting a program. These capabilities

are of great value in producing correct and portable code.

2. Language elements

2.1 Introduction

Written prose in a natural language, such as an English text, is composed firstly of basic

elements – the letters of the alphabet. These are combined into larger entities, words,

which convey the basic concepts of objects, actions, and qualifications. The words of

the language can be further combined into larger units, phrases and sentences, according

to certain rules. One set of rules defines the grammar. This tells us whether a certain

combination of words is correct in that it conforms to the syntax of the language, that is

those acknowledged forms which are regarded as correct renderings of the meanings we wish

to express. Sentences can in turn be joined together into paragraphs, which conventionally

contain the composite meaning of their constituent sentences, each paragraph expressing a

larger unit of information. In a novel, sequences of paragraphs become chapters and the

chapters together form a book, which usually is a self-contained work, largely independent

of all other books.

2.2 Fortran character set

Analogies to these concepts are found in a programming language. In Fortran 95, the basic

elements, or character set, are the 26 letters of the English alphabet, the 10 Arabic numerals,

0 to 9, the underscore, _, and the so-called special characters listed in Table 2.1. Fortran 95

does not require the support of lower-case letters, but almost all computers nowadays support

them.1 Within the Fortran syntax, the lower-case letters are equivalent to the corresponding

upper-case letters; they are distinguished only when they form part of character sequences.

In this book, syntactically significant characters will always be written in lower case. The

letters, numerals, and underscore are known as alphanumeric characters.

Except for the currency symbol, whose graphic may vary (for example, to be £ in the

United Kingdom), the graphics are fixed, though their styles are not fixed. The special

characters $ and ? have no specific meaning within the Fortran language.2

In the course of this and the following chapters, we shall see how further analogies with

natural language may be drawn. The unit of Fortran information is the lexical token, which

corresponds to a word or punctuation mark. Adjacent tokens are usually separated by spaces

or the end of a line, but sensible exceptions are allowed just as for a punctuation mark in

1Fortran 2003 requires the support of lower-case letters.
2Of the additional special characters of Fortran 2003, only square brackets have a specific meaning.

10 Modern Fortran Explained

Table 2.1. The special characters of the Fortran language.

Fortran 95 Fortran 95 Fortran 2003
= Equals sign : Colon \ Backslash

+ Plus sign Blank [Left square bracket

- Minus sign ! Exclamation mark] Right square bracket

* Asterisk " Quotation mark { Left curly bracket

/ Slash % Percent } Right curly bracket

(Left parenthesis & Ampersand ~ Tilde

) Right parenthesis ; Semicolon ‘ Grave accent

, Comma < Less than ^ Circumflex accent

. Decimal point > Greater than | Vertical line

$ Currency symbol ? Question mark # Number sign

’ Apostrophe @ Commercial at

prose. Sequences of tokens form statements, corresponding to sentences. Statements, like

sentences, may be joined to form larger units like paragraphs. In Fortran these are known

as program units, and out of these may be built a program. A program forms a complete

set of instructions to a computer to carry out a defined sequence of operations. The simplest

program may consist of only a few statements, but programs of more than 100 000 statements

are now quite common.

2.3 Tokens

Within the context of Fortran, alphanumeric characters (the letters, the underscore, and the

numerals) may be combined into sequences that have one or more meanings. For instance,

one of the meanings of the sequence 999 is a constant in the mathematical sense. Similarly,

the sequence date might represent, as one possible interpretation, a variable quantity to

which we assign the calendar date.

The special characters are used to separate such sequences and also have various meanings.

We shall see how the asterisk is used to specify the operation of multiplication, as in x*y, and

also has a number of other interpretations.

Basic significant sequences of alphanumeric characters or of special characters are referred

to as tokens; they are labels, keywords, names, constants (other than complex literal

constants), operators (listed in Table 3.4, Section 3.8), and separators, which are3

/ () (/ /) , = => : :: ; %

For example, the expression x*y contains the three tokens x, *, and y.

Apart from within a character string or within a token, blanks may be used freely to

improve the layout. Thus, whereas the variable date may not be written as d a t e,

3In Fortran 2003, the characters [and] are also separators.

Language elements 11

the sequence x * y is syntactically equivalent to x*y. In this context, multiple blanks are

syntactically equivalent to a single blank.

A name, constant, or label must be separated from an adjacent keyword, name, constant,

or label by one or more blanks or by the end of a line. For instance, in

real x
rewind 10

30 do k=1,3

the blanks are required after real, rewind, 30, and do. Likewise, adjacent keywords must

normally be separated, but some pairs of keywords, such as else if, are not required to

be separated. Similarly, some keywords may be split; for example inout may be written

in out. We do not use these alternatives, but the exact rules are given in Table 2.2.

Table 2.2. Adjacent keywords where separating blanks are optional.

all stop** block data double precision else if

else where* end associate* end block** end block data

end critical** end do end enum* end file

end forall end function end if end interface

end module end procedure** end program end select

end submodule** end subroutine end type end where

go to in out select case select type*

* Fortran 2003 onwards; ** Fortran 2008 only.

2.4 Source form

The statements of which a source program is composed are written on lines. Each line may

contain up to 132 characters,4 and usually contains a single statement. Since leading spaces

are not significant, it is possible to start all such statements in the first character position, or in

any other position consistent with the user’s chosen layout. A statement may thus be written

as

x = (-y + root_of_discriminant)/(2.0*a)

In order to be able to mingle suitable comments with the code to which they refer, Fortran

allows any line to carry a trailing comment field, following an exclamation mark (!). An

example is

x = y/a - b ! Solve the linear equation

Any comment always extends to the end of the source line and may include processor-

dependent characters (it is not restricted to the Fortran character set, Section 2.2). Any line

whose first non-blank character is an exclamation mark, or contains only blanks, or which

4Lines containing characters of non-default kind (Section 2.6.4) are subject to a processor-dependent limit.

12 Modern Fortran Explained

is empty, is purely commentary and is ignored by the compiler. Such comment lines may

appear anywhere in a program unit, including ahead of the first statement (but not after the

final program unit5). A character context (those contexts defined in Sections 2.6.4 and 9.12.4)

is allowed to contain !, so the ! does not initiate a comment in this case; in all other cases it

does.

Since it is possible that a long statement might not be accommodated in the 132 positions

allowed in a single line, up to 39 additional continuation lines are allowed.6 The so-called

continuation mark is the ampersand (&) character, and this is appended to each line that is

followed by a continuation line. Thus, the first statement of this section (considerably spaced

out) could be written as

x = &
(-y + root_of_discriminant) &
/(2.0*a)

In this book, the ampersands will normally be aligned to improve readability. On a non-

comment line, if & is the last non-blank character or the last non-blank character ahead of the

comment symbol !, the statement continues from the character immediately preceding the

&. Normally, continuation is to the first character of the next non-comment line, but if the

first non-blank character of the next non-comment line is &, continuation is to the character

following the &. For instance, the above statement may be written

x = &
&(-y + root_of_discriminant)/(2.0*a)

In particular, if a token cannot be contained at the end of a line, the first non-blank character

on the next non-comment line must be an & followed immediately by the remainder of the

token.

Comments are allowed to contain any characters, including &, so they cannot be continued

since a trailing & is taken as part of the comment. However, comment lines may be freely

interspersed among continuation lines and do not count towards the limit of 39 lines.

In a character context, continuation must be from a line without a trailing comment and to

a line with a leading ampersand. This is because both ! and & are permitted both in character

contexts and in comments.

No line is permitted to have & as its only non-blank character, or as its only non-blank

character ahead of !. Such a line is really a comment and becomes a comment if & is removed.

When writing short statements one after the other, it can be convenient to write several

of them on one line. The semicolon (;) character is used as a statement separator in these

circumstances, for example:

a = 0; b = 0; c = 0

Since commentary always extends to the end of the line, it is not possible to insert

commentary between statements on a single line. In principle, it is possible to write even

long statements one after the other in a solid block of lines, each 132 characters long and

5Fortran 2003 allows blank comment lines after the final program unit.
6More continuation lines are allowed in Fortran 2003, see Section 16.8.

Language elements 13

with the appropriate semicolons separating the individual statements. In practice, such code

is unreadable, and the use of multiple-statement lines should be reserved for trivial cases such

as the one shown in this example.

Any Fortran statement (that is not part of a compound statement) may be labelled, in order

to be able to identify it. For some statements a label is mandatory. A statement label precedes

the statement, and is regarded as a token. The label consists of from one to five digits, one

of which must be nonzero. An example of a labelled statement is

100 continue

Leading zeros are not significant in distinguishing between labels. For example, 10 and 010
are equivalent.

2.5 Concept of type

In Fortran, it is possible to define and manipulate various types of data. For instance, we may

have available the value 10 in a program, and assign that value to an integer scalar variable

denoted by i. Both 10 and i are of type integer; 10 is a fixed or constant value, whereas i
is a variable which may be assigned other values. Integer expressions, such as i+10, are

available too.

A data type consists of a set of data values, a means of denoting those values, and

a set of operations that are allowed on them. For the integer data type, the values are

. . . ,−3,−2,−1,0,1,2,3, . . . between some limits depending on the kind of integer and

computer system being used. Such tokens as these are literal constants, and each data type

has its own form for expressing them. Named scalar variables, such as i, may be established.

During the execution of a program, the value of i may change to any valid value, or may

become undefined, that is have no predictable value. The operations which may be performed

on integers are those of usual arithmetic; we can write 1+10 or i-3 and obtain the expected

results. Named constants may be established too; these have values that do not change during

execution of the program.

Properties like those just mentioned are associated with all the data types of Fortran, and

will be described in detail in this and the following chapters. The language itself contains five

data types whose existence may always be assumed. These are known as the intrinsic data
types, whose literal constants form the subject of the next section. Of each intrinsic type there

is a default kind and a processor-dependent number of other kinds. Each kind is associated

with a non-negative integer value known as the kind type parameter. This is used as a means

of identifying and distinguishing the various kinds available.

In addition, it is possible to define other data types based on collections of data of the

intrinsic types, and these are known as derived data types. The ability to define data types

of interest to the programmer – matrices, geometrical shapes, lists, interval numbers – is a

powerful feature of the language, one which permits a high level of data abstraction, that is

the ability to define and manipulate data objects without being concerned about their actual

representation in a computer.

14 Modern Fortran Explained

2.6 Literal constants of intrinsic type

The intrinsic data types are divided into two classes. The first class contains three numeric
types which are used mainly for numerical calculations – integer, real, and complex. The

second class contains the two non-numeric types which are used for such applications as text-

processing and control – character and logical. The numerical types are used in conjunction

with the usual operators of arithmetic, such as + and -, which will be described in Chapter 3.

Each includes a zero and the value of a signed zero is the same as that of an unsigned zero.7

The non-numeric types are used with sets of operators specific to each type; for instance,

character data may be concatenated. These too will be described in Chapter 3.

2.6.1 Integer literal constants

The first type of literal constant is the integer literal constant. The default kind is simply a

signed or unsigned integer value, for example

1
0
-999
32767
+10

The range of the default integers is not specified in the language, but on a computer with a

word size of n bits, is often from −2n−1 to +2n−1 −1. Thus, on a 32-bit computer8 the range

is often from −2147483648 to +2147483647.

To be sure that the range will be adequate on any computer requires the specification of

the kind of integer by giving a value for the kind type parameter. This is best done through a

named integer constant. For example, if the range −999999 to 999999 is desired, k6 may be

established as a constant with an appropriate value by the statement, fully explained later,

integer, parameter :: k6=selected_int_kind(6)

and used in constants thus:

-123456_k6
+1_k6
2_k6

Here, selected_int_kind(6) is an intrinsic inquiry function call, and it returns a kind

parameter value that yields the range −999999 to 999999 with the least margin (see Section

8.7.4).

On a given processor, it might be known that the kind value needed is 3. In this case, the

first of our constants can be written

7Although the representation of data is processor dependent, for the numeric data types the standard defines

model representations and means to inquire about the properties of those models. The details are deferred to Section

8.7.
8Fortran 2008 also requires support for, effectively, a 64-bit integer type, see Section 20.2.1.

Language elements 15

-123456_3

but this form is less portable. If we move the code to another processor, this particular value

may be unsupported, or might correspond to a different range.

Many implementations use kind values that indicate the number of bytes of storage

occupied by a value, but the standard allows greater flexibility. For example, a processor

might have hardware only for 4-byte integers, and yet support kind values 1, 2, and 4 with

this hardware (to ease portability from processors that have hardware for 1-, 2-, and 4-byte

integers). However, the standard makes no statement about kind values or their order, except

that the kind value is never negative.

The value of the kind type parameter for a given data type on a given processor can be

obtained from the kind intrinsic function (Section 8.2):

kind(1) for the default value
kind(2_k6) for the example

and the decimal exponent range (number of decimal digits supported) of a given entity may

be obtained from another function (Section 8.7.2), as in

range(2_k6)

which in this case would return a value of at least 6.

In addition to the usual integers of the decimal number system, for some applications

it is very convenient to be able to represent positive whole numbers in binary, octal, or

hexadecimal form. Unsigned constants of these forms exist in Fortran, and are represented

as illustrated in these examples:

binary (base 2): b’01100110’
octal (base 8): o’076543’
hexadecimal (base 16): z’10fa’

In the hexadecimal form, the letters a to f represent the values beyond 9; they may be used

also in upper case. The delimiters may be quotation marks or apostrophes. The use of these

forms of constants is limited to their appearance as implicit integers in the data statement

(Section 7.5.2). A binary, octal, or hexadecimal constant may also appear in an internal

or external file as a digit string, without the leading letter and the delimiters (see Section

9.12.2).9

Bits stored as an integer representation may be manipulated by the intrinsic procedures

described in Section 8.8.10

2.6.2 Real literal constants

The second type of literal constant is the real literal constant. The default kind is a floating-

point form built of some or all of: a signed or unsigned integer part, a decimal point, a

fractional part, and a signed or unsigned exponent part. One or both of the integer part and

9Further possibilities, in Fortran 2003, are described in Section 16.9.
10Fortran 2008 has additional bit intrinsic procedures, see Section 20.10.

16 Modern Fortran Explained

fractional part must be present. The exponent part is either absent or consists of the letter e
followed by a signed or unsigned integer. One or both of the decimal point and the exponent

part must be present. An example is

-10.6e-11

meaning −10.6×10−11, and other legal forms are

1.
-0.1
1e-1
3.141592653

The default real literal constants are representations of a subset of the real numbers of

mathematics, and the standard specifies neither the allowed range of the exponent nor the

number of significant digits represented by the processor. Many processors conform to the

IEEE standard for floating-point arithmetic and have values of 10−37 to 10+37 for the range,

and a precision of six decimal digits.

To be sure to obtain a desired range and significance requires the specification of a kind

parameter value. For example,

integer, parameter :: long = selected_real_kind(9, 99)

ensures that the constants

1.7_long
12.3456789e30_long

have a precision of at least nine significant decimals, and an exponent range of at least 10−99

to 10+99. The number of digits specified in the significand has no effect on the kind. In

particular, it is permitted to write more digits than the processor can in fact use.

As for integers, many implementations use kind values that indicate the number of bytes of

storage occupied by a value, but the standard allows greater flexibility. It specifies only that

the kind value is never negative. If the desired kind value is known it may be used directly,

as in the case

1.7_4

but the resulting code is then less portable.

The processor must provide at least one representation with more precision than the default,

and this second representation may also be specified as double precision. We defer the

description of this alternative but outmoded syntax to Appendix B.

The kind function is valid also for real values:

kind(1.0) for the default value
kind(1.0_long) for the example

In addition, there are two inquiry functions available which return the actual precision and

range, respectively, of a given real entity (see Section 8.7.2). Thus, the value of

Language elements 17

precision(1.7_long)

would be at least 9, and the value of

range(1.7_long)

would be at least 99.

2.6.3 Complex literal constants

Fortran, as a language intended for scientific and engineering calculations, has the advantage

of having as third literal constant type the complex literal constant. This is designated by a

pair of literal constants, which are either integer or real, separated by a comma and enclosed

in parentheses. Examples are

(1., 3.2)
(1, .99e-2)
(1.0, 3.7_8)

where the first constant of each pair is the real part of the complex number, and the second

constant is the imaginary part. If one of the parts is integer, the kind of the complex constant

is that of the other part. If both parts are integer, the kind of the constant is that of the default

real type. If both parts are real and of the same kind, this is the kind of the constant. If both

parts are real and of different kinds, the kind of the constant is that of one of the parts: the

part with the greater decimal precision, or the part chosen by the processor if the decimal

precisions are identical.

A default complex constant is one whose kind value is that of default real.

The kind, precision, and range functions are equally valid for complex entities.

Note that if an implementation uses the number of bytes needed to store a real as its kind

value, the number of bytes needed to store a complex value of the corresponding kind is

twice the kind value. For example, if the default real type has kind 4 and needs four bytes of

storage, the default complex type has kind 4 but needs eight bytes of storage.

2.6.4 Character literal constants

The fourth type of literal constant is the character literal constant. The default kind consists

of a string of characters enclosed in a pair of either apostrophes or quotation marks, for

example

’Anything goes’

"Nuts & bolts"

The characters are not restricted to the Fortran set (Section 2.2). Any graphic character

supported by the processor is permitted, but not control characters such as ‘newline’. The

apostrophes and quotation marks serve as delimiters, and are not part of the value of the

constant. The value of the constant

18 Modern Fortran Explained

’STRING’

is STRING. We note that in character constants the blank character is significant. For example

’a string’

is not the same as

’astring’

A problem arises with the representation of an apostrophe or a quotation mark in a

character constant. Delimiter characters of one sort may be embedded in a string delimited

by the other, as in the examples

’He said "Hello"’
"This contains an ’ "

Alternatively, a doubled delimiter without any embedded intervening blanks is regarded as a

single character of the constant. For example

’Isn’’t it a nice day’

has the value Isn’t it a nice day.

The number of characters in a string is called its length, and may be zero. For instance, ’’
and "" are character constants of length zero.

We mention here the particular rule for the source form concerning character constants

that are written on more than one line (needed because constants may include the characters !

and &): not only must each line that is continued be without a trailing comment, but each

continuation line must begin with a continuation mark. Any blanks following a trailing

ampersand or preceding a leading ampersand are not part of the constant, nor are the

ampersands themselves part of the constant. Everything else, including blanks, is part of

the constant. An example is

long_string = &
’Were I with her, the night would post too soon; &

& But now are minutes added to the hours; &
& To spite me now, each minute seems a moon; &
& Yet not for me, shine sun to succour flowers! &
& Pack night, peep day; good day, of night now borrow: &
& Short, night, to-night, and length thyself tomorrow.’

On any computer, the characters have a property known as their collating sequence. One

may ask the question whether one character occurs before or after another in the sequence.

This question is posed in a natural form such as ‘Does C precede M?’, and we shall see

later how this may be expressed in Fortran terms. Fortran requires the computer’s collating

sequence to satisfy the following conditions:

• A is less than B is less than C . . . is less than Y is less than Z;

Language elements 19

• 0 is less than 1 is less than 2 . . . is less than 8 is less than 9;

• blank is less than A and Z is less than 0, or blank is less than 0 and 9 is less than A;

and, if the lower-case letters are available,

• a is less than b is less than c . . . is less than y is less than z;

• blank is less than a and z is less than 0, or blank is less than 0 and 9 is less than a.

Thus, we see that there is no rule about whether the numerals precede or succeed the

letters, nor about the position of any of the special characters or the underscore, apart from the

rule that blank precedes both partial sequences. Any given computer system has a complete

collating sequence, and most computers nowadays use the collating sequence of the ASCII

standard (also known as ISO/IEC 646 : 1991). However, Fortran is designed to accommodate

other sequences, notably EBCDIC, so for portability, no program should ever depend on

any ordering beyond that stated above. Alternatively, Fortran provides access to the ASCII

collating sequence on any computer through intrinsic functions (Section 8.5.1), but this access

is not so convenient and is less efficient on some computers.

A processor is required to provide access to the default kind of character constant just

described. In addition, it may support other kinds of character constants, in particular those

of non-European languages, which may have more characters than can be provided in a single

byte. For example, a processor might support Kanji with the kind parameter value 2; in this

case, a Kanji character constant may be written

2_’ ’

or

kanji_" "

where kanji is an integer named constant with the value 2. We note that, in this case, the

kind type parameter exceptionally precedes the constant.11

There is no requirement on a processor to provide more than one kind of character, and

the standard does not require any particular relationship between the kind parameter values

and the character sets and the number of bytes needed to represent them. In fact, all that is

required is that each kind of character set includes a blank character. As for the other data

types, the kind function gives the actual value of the kind type parameter, as in

kind(’ASCII’)

Non-default characters are permitted in comments.

2.6.5 Logical literal constants

The fifth type of literal constant is the logical literal constant. The default kind has one of two

values, .true. and .false. . These logical constants are normally used only to initialize

logical variables to their required values, as we shall see in Section 3.6.

11This is to make it easier for a compiler to support multiple different character sets occurring within a single

source file.

20 Modern Fortran Explained

The default kind has a kind parameter value which is processor dependent. The actual

value is available as kind(.true.). As for the other intrinsic types, the kind parameter may

be specified by an integer constant following an underscore, as in

.false._1

.true._long

Non-default logical kinds are useful for storing logical arrays compactly; we defer further

discussion until Section 6.17.

2.7 Names

A Fortran program references many different entities by name. Such names must consist of

between 1 and 31 alphanumeric characters12 – letters, underscores, and numerals – of which

the first must be a letter. There are no other restrictions on the names; in particular there are

no reserved words in Fortran. We thus see that valid names are, for example,

a
a_thing
x1
mass
q123
real
time_of_flight

and invalid names are

1a First character is not alphabetic
a thing Contains a blank
$sign Contains a non-alphanumeric character

Within the constraints of the syntax, it is important for program clarity to choose names

that have a clear significance – these are known as mnemonic names. Examples are day,

month, and year, for variables to store the calendar date.

The use of names to refer to constants, already met in Section 2.6.1, will be fully described

in Section 7.4.

2.8 Scalar variables of intrinsic type

We have seen in the section on literal constants that there exist five different intrinsic data

types. Each of these types may have variables too. The simplest way by which a variable

may be declared to be of a particular type is by specifying its name in a type declaration
statement such as

integer :: i

12Up to 63 characters are allowed in Fortran 2003, see Section 16.8.

Language elements 21

real :: a
complex :: current
logical :: pravda
character :: letter

Here, all the variables have default kind, and letter has default length, which is 1. Explicit

requirements may also be specified through type parameters, as in the examples

integer(kind=4) :: i
real(kind=long) :: a
character(len=20, kind=1) :: english_word
character(len=20, kind=kanji) :: kanji_word

Character is the only type to have two parameters, and here the two character variables

each have length 20. Where appropriate, just one of the parameters may be specified, leaving

the other to take its default value, as in the cases

character(kind=kanji) :: kanji_letter
character(len=20) :: english_word

The shorter forms

integer(4) :: i
real(long) :: a
character(20, 1) :: english_word
character(20, kanji) :: kanji_word
character(20) :: english_word

are available, but note that

character(kanji) :: kanji_letter ! Beware

is not an abbreviation for

character(kind=kanji) :: kanji_letter

because a single unnamed parameter is taken as the length parameter.

2.9 Derived data types

When programming, it is often useful to be able to manipulate objects that are more

sophisticated than those of the intrinsic types. Imagine, for instance, that we wished to

specify objects representing persons. Each person in our application is distinguished by a

name, an age, and an identification number. Fortran allows us to define a corresponding data

type in the following fashion:

type person
character(len=10) :: name
real :: age
integer :: id

end type person

22 Modern Fortran Explained

This is the definition of the type. A scalar object of such a type is called a structure. In

order to create a structure of that type, we write an appropriate type declaration statement,

such as

type(person) :: you

The scalar variable you is then a composite object of type person containing three separate

components, one corresponding to the name, another to the age, and a third to the

identification number. As will be described in Sections 3.8 and 3.9, a variable such as you
may appear in expressions and assignments involving other variables or constants of the same

or different types. In addition, each of the components of the variable may be referenced

individually using the component selector character percent (%). The identification number

of you would, for instance, be accessed as

you%id

and this quantity is an integer variable which could appear in an expression such as

you%id + 9

Similarly, if there were a second object of the same type:

type(person) :: me

the differences in ages could be established by writing

you%age - me%age

It will be shown in Section 3.8 how a meaning can be given to an expression such as

you - me

Just as the intrinsic data types have associated literal constants, so too may literal constants

of derived type be specified. Their form is the name of the type followed by the constant

values of the components, in order and enclosed in parentheses. Thus, the constant

person(’Smith’, 23.5, 2541)

may be written assuming the derived type defined at the beginning of this section, and could

be assigned to a variable of the same type:

you = person(’Smith’, 23.5, 2541)

Any such structure constructor can appear only after the definition of the type.

A derived type may have a component that is of a previously defined derived type. This is

illustrated in Figure 2.1. A variable of type triangle may be declared thus

type(triangle) :: t

and t has components t%a, t%b, and t%c all of type point, and t%a has components t%a%x
and t%a%y of type real.

Language elements 23

Figure 2.1
type point

real :: x, y
end type point
type triangle

type(point) :: a, b, c
end type triangle

2.10 Arrays of intrinsic type

Another compound object supported by Fortran is the array. An array consists of a

rectangular set of elements, all of the same type and type parameters. There are a number of

ways in which arrays may be declared; for the moment we shall consider only the declaration

of arrays of fixed sizes. To declare an array named a of 10 real elements, we add the

dimension attribute to the type declaration statement thus:

real, dimension(10) :: a

The successive elements of the array are a(1), a(2), a(3), . . ., a(10). The number of

elements of an array is called its size. Each array element is a scalar.

Many problems require a more elaborate declaration than one in which the first element is

designated 1, and it is possible in Fortran to declare a lower as well as an upper bound:

real, dimension(-10:5) :: vector

This is a vector of 16 elements, vector(-10), vector(-9), . . ., vector(5). We thus see

that whereas we always need to specify the upper bound, the lower bound is optional, and by

default has the value 1.

An array may extend in more than one dimension, and Fortran allows up to seven

dimensions13 to be specified. For instance

real, dimension(5,4) :: b

declares an array with two dimensions, and

real, dimension(-10:5, -20:-1, 0:15, -15:0, 16, 16, 16) :: grid

declares seven dimensions, the first four with explicit lower bounds. It may be seen that the

size of this second array is

16×20×16×16×16×16×16 = 335 544 320,

and that arrays of many dimensions can thus place large demands on the memory of a

computer. The number of dimensions of an array is known as its rank. Thus, grid has a

rank of seven. Scalars are regarded as having rank zero. The number of elements along a

13Fortran 2008 allows fifteen dimensions.

24 Modern Fortran Explained

dimension of an array is known as the extent in that dimension. Thus, grid has extents 16,

20,

The sequence of extents is known as the shape. For example, grid has the shape

(16,20,16,16,16,16,16).
A derived type may contain an array component. For example, the following type

type triplet
real :: u
real, dimension(3) :: du
real, dimension(3,3) :: d2u

end type triplet

might be used to hold the value of a variable in three dimensions and the values of its first

and second derivatives. If t is of type triplet, t%du and t%d2u are arrays of type real.

Some statements treat the elements of an array one by one in a special order which we

call the array element order. It is obtained by counting most rapidly in the early dimensions.

Thus, the elements of grid in array element order are

grid(-10, -20, 0, -15, 1, 1, 1)
grid(-9, -20, 0, -15, 1, 1, 1)

:
grid(5, -1, 15, 0, 16, 16, 16)

This is illustrated for an array of two dimensions in Figure 2.2. Most implementations

actually store arrays in contiguous storage in array element order, but we emphasize that

the standard does not require this.

Figure 2.2 The ordering of elements in the array b(5,4).

b (1,1)

b (2,1)

b (3,1)

b (4,1)

b (5,1)

b (1,2)

b (2,2)

b (3,2)

b (4,2)

b (5,2)

b (1,3)

b (2,3)

b (3,3)

b (4,3)

b (5,3)

b (1,4)

b (2,4)

b (3,4)

b (4,4)

b (5,4)

We reference an individual element of an array by specifying, as in the examples above,

its subscript values. In the examples we used integer constants, but in general each subscript

may be formed of a scalar integer expression, that is, any arithmetic expression whose value

is scalar and of type integer. Each subscript must be within the corresponding ranges defined

in the array declaration and the number of subscripts must equal the rank. Examples are

Language elements 25

a(1)
a(i*j) ! i and j are of type integer
a(nint(x+3.)) ! x is of type real
t%d2u(i+1,j+2) ! t is of derived type triplet

where nint is an intrinsic function to convert a real value to the nearest integer (see Section

8.3.1). In addition subarrays, called sections, may be referenced by specifying a range for

one or more subscripts. The following are examples of array sections:

a(i:j) ! Rank-one array of size j-i+1
b(k, 1:n) ! Rank-one array of size n
c(1:i, 1:j, k) ! Rank-two array with extents i and j

We describe array sections in more detail in Section 6.13. An array section is itself an

array, but its individual elements must not be accessed through the section designator. Thus,

b(k, 1:n)(l) cannot be written; it must be expressed as b(k, l).

A further form of subscript is shown in

a(ipoint) ! ipoint is an integer array

where ipoint is an array of indices, pointing to array elements. It may thus be seen that

a(ipoint), which identifies as many elements of a as ipoint has elements, is an example

of another array-valued object, and ipoint is referred to as a vector subscript. This will be

met in greater detail in Section 6.13.

It is often convenient to be able to define an array constant. In Fortran, a rank-one array

may be constructed as a list of elements enclosed between the tokens (/ and (/).14 A simple

example is

(/ 1, 2, 3, 5, 10 /)

which is an array of rank one and size five. To obtain a series of values, the individual values

may be defined by an expression that depends on an integer variable having values in a range,

with an optional stride. Thus, the constructor

(/1, 2, 3, 4, 5/)
can be written as

(/ (i, i = 1,5) /)
and

(/2, 4, 6, 8/)
as

(/ (i, i = 2,8,2) /)
and

(/ 1.1, 1.2, 1.3, 1.4, 1.5 /)
as

(/ (i*0.1, i=11,15) /)
An array constant of rank greater than one may be constructed by using the function reshape
(see Section 8.13.3) to reshape a rank-one array constant.

A full description of array constructors is reserved for Section 6.16.

14In Fortran 2003, the characters [and] may be used to delimit an array constructor.

26 Modern Fortran Explained

2.11 Character substrings

It is possible to build arrays of characters, just as it is possible to build arrays of any other

type:

character, dimension(80) :: line

declares an array, called line, of 80 elements, each one character in length. Each character

may be addressed by the usual reference, line(i) for example. In this case, however, a more

appropriate declaration might be

character(len=80) :: line

which declares a scalar data object of 80 characters. These may be referenced individually or

in groups using a substring notation

line(i:j) ! i and j are of type integer

which references all the characters from i to j in line. The colon is used to separate the two

substring subscripts, which may be any scalar integer expressions. The colon is obligatory

in substring references, so that referencing a single character requires line(i:i). There are

default values for the substring subscripts. If the lower one is omitted, the value 1 is assumed;

if the upper one is omitted, a value corresponding to the character length is assumed. Thus,

line(:i) is equivalent to line(1:i)
line(i:) is equivalent to line(i:80)
line(:) is equivalent to line or line(1:80)

If i is greater than j in line(i:j), the value is a zero-sized string.

We may now combine the length declaration with the array declaration to build arrays of

character objects of specified length, as in

character(len=80), dimension(60) :: page

which might be used to define storage for the characters of a whole page, with 60 elements

of an array, each of length 80. To reference the line j on a page we may write page(j),

and to reference character i on that line we could combine the array subscript and character

substring notations into

page(j)(i:i)

A substring of a character constant or of a structure component may also be formed:

’ABCDEFGHIJKLMNOPQRSTUVWXYZ’(j:j)
you%name(1:2)

At this point we must note a limitation associated with character variables, namely

that character variables must have a declared maximum length, making it impossible to

manipulate character variables of variable length, unless they are defined appropriately as of a

derived data type.15 Nevertheless, this data type is adequate for most character manipulation

applications.

15This limitation does not apply in Fortran 2003, see Section 15.2.

Language elements 27

2.12 Objects and subobjects

We have seen that derived types may have components that are arrays, as in

type triplet
real, dimension(3) :: vertex

end type triplet

and arrays may be of derived type as in the example

type(triplet), dimension(10) :: t

A single structure (for example, t(2)) is always regarded as a scalar, but it may have a

component (for example, t(2)%vertex) that is an array. Derived types may have components

of other derived types.

An object referenced by an unqualified name (all characters alphanumeric) is called a

named object and is not part of a bigger object. Its subobjects have designators that consist

of the name of the object followed by one or more qualifiers (for example, t(1:7) and

t(1)%vertex). Each successive qualifier specifies a part of the object specified by the name

or designator that precedes it.

We note that the term ‘array’ is used for any object that is not scalar, including an array

section or an array-valued component of a structure. The term ‘variable’ is used for any

named object that is not specified to be a constant and for any part of such an object, including

array elements, array sections, structure components, and substrings.

2.13 Pointers

In everyday language, nouns are often used in a way that makes their meaning precise only

because of the context. ‘The chairman said that . . .’ will be understood precisely by the

reader who knows that the context is the Fortran Committee developing Fortran 90 and that

its chairman was then Jeanne Adams.

Similarly, in a computer program it can be very useful to be able to use a name that

can be made to refer to different objects during execution of the program. One example

is the multiplication of a vector by a sequence of square matrices. We might write code that

calculates

yi =
n

∑
j=1

ai j x j, i = 1,2, . . . ,n

from the vector x j, j = 1,2,. . . ,n. In order to use this to calculate

BCz

we might first make x refer to z and A refer to C, thereby using our code to calculate y =Cz,

then make x refer to y and A refer to B so that our code calculates the result vector we finally

want.

An object that can be made to refer to other objects in this way is called a pointer, and

must be declared with the pointer attribute, for example

28 Modern Fortran Explained

real, pointer :: son
real, pointer, dimension(:) :: x, y
real, pointer, dimension(:,:) :: a

In the case of an array, only the rank (number of dimensions) is declared, and the bounds (and

hence shape) are taken from that of the object to which it points. Given such a declaration,

the compiler arranges storage for a descriptor that will later hold the address of the actual

object (known as the target) and holds, if it is an array, its bounds and strides.

Besides pointing to existing variables, a pointer may be made explicitly to point at nothing:

nullify (son, x, y, a)

(nullify is described in Section 3.13) or may be given fresh storage by an allocate
statement such as

allocate (son, x(10), y(-10:10), a(n, n))

In the case of arrays, the lower and upper bounds are specified just as for the dimension
attribute (Section 2.10) except that any scalar integer expression is permitted. This use of

pointers provides a means to access dynamic storage, but in Section 6.5 we will describe a

better way to to do this in cases where the ‘pointing’ property is not essential.

By default, pointers are initially undefined (see also final paragraph of Section 3.3). This

is a very undesirable state since there is no way to test for it. However, it may be avoided by

using the declaration:

real, pointer :: son => null()

(the function null is described in Section 8.15) and we recommend that this always be

employed. Alternatively, pointers may be defined as soon as they come into scope by

execution of a nullify statement or a pointer assignment.

Components of derived types are permitted to have the pointer attribute. This enables a

major application of pointers: the construction of linked lists. As a simple example, we

might decide to hold a sparse vector as a chain of variables of the type shown in Figure 2.3,

which allows us to access the entries one by one; given

type(entry), pointer :: chain

where chain is a scalar of this type and holds a chain that is of length two, its entries

are chain%index and chain%next%index, and chain%next%next will have been nullified.

Additional entries may be created when necessary by an appropriate allocate statement. We

defer the details to Section 3.12.

When a pointer is of derived type and a component such as chain%index is selected, it is

actually a component of the pointer’s target that is selected.

A subobject is not a pointer unless it has a final component selector for the name of a

pointer component, for example, chain%next.

Pointers will be discussed in detail in later chapters (especially Sections 3.12, 5.7.1, 6.14,

6.15, 7.5.3, 7.5.4, and 8.2).

Language elements 29

Figure 2.3 A type for a holding a sparse vector as a chain of variables.

type entry
real :: value
integer :: index
type(entry), pointer :: next

end type entry

2.14 Summary

In this chapter, we have introduced the elements of the Fortran language. The character set has

been listed, and the manner in which sequences of characters form literal constants and names

explained. In this context, we have encountered the five intrinsic data types defined in Fortran,

and seen how each data type has corresponding literal constants and named objects. We have

seen how derived types may be constructed from the intrinsic types. We have introduced one

method by which arrays may be declared, and seen how their elements may be referenced

by subscript expressions. The concepts of the array section, character substring, and pointer

have been presented, and some important terms defined. In the following chapter we shall see

how these elements may be combined into expressions and statements, Fortran’s equivalents

of ‘phrases’ and ‘sentences’.

Exercises

1. For each of the following assertions, state whether it is true, false, or not determined, according to

the Fortran collating sequences:

b is less than m
8 is less than 2
* is greater than T
$ is less than /
blank is greater than A
blank is less than 6

2. Which of the Fortran lines in the code

x = y
3 a = b+c ! add

word = ’string’
a = 1.0; b = 2.0
a = 15. ! initialize a; b = 22. ! and b
song = "Life is just&

& a bowl of cherries"
chide = ’Waste not,

want not!’
0 c(3:4) = ’up"

are correctly written according to the requirements of the Fortran source form? Which ones contain

commentary? Which lines are initial lines and which are continuation lines?

30 Modern Fortran Explained

3. Classify the following literal constants according to the five intrinsic data types of Fortran. Which

are not legal literal constants?

-43 ’word’
4.39 1.9-4
0.0001e+20 ’stuff & nonsense’
4 9 (0.,1.)
(1.e3,2) ’I can’’t’
’(4.3e9, 6.2)’ .true._1
e5 ’shouldn’ ’t’
1_2 "O.K."
z10 z’10’

4. Which of the following names are legal Fortran names?

name name32
quotient 123
a182c3 no-go
stop! burn_
no_go long__name

5. What are the first, tenth, eleventh, and last elements of the following arrays?

real, dimension(11) :: a
real, dimension(0:11) :: b
real, dimension(-11:0) :: c
real, dimension(10,10) :: d
real, dimension(5,9) :: e
real, dimension(5,0:1,4) :: f

Write an array constructor of eleven integer elements.

6. Given the array declaration

character(len=10), dimension(0:5,3) :: c

which of the following subobject designators are legal?

c(2,3) c(4:3)(2,1)
c(6,2) c(5,3)(9:9)
c(0,3) c(2,1)(4:8)
c(4,3)(:) c(3,2)(0:9)
c(5)(2:3) c(5:6)
c(5,3)(9) c(,)

7. Write derived type definitions appropriate for:

i) a vehicle registration;

ii) a circle;

iii) a book (title, author, and number of pages).

Give an example of a derived type constant for each one.

8. Given the declaration for t in Section 2.12, which of the following objects and subobjects are

arrays?

t t(4)%vertex(1)
t(10) t(5:6)
t(1)%vertex t(5:5)

Language elements 31

9. Write specifications for these entities:

a) an integer variable inside the range −1020 to 1020;

b) a real variable with a minimum of 12 decimal digits of precision and a range of 10−100 to

10100;

c) a Kanji character variable on a processor that supports Kanji with kind=2.

This page intentionally left blank

3. Expressions and assignments

3.1 Introduction

We have seen in the previous chapter how we are able to build the ‘words’ of Fortran – the

constants, keywords, and names – from the basic elements of the character set. In this chapter

we shall discover how these entities may be further combined into ‘phrases’ or expressions,

and how these, in turn, may be combined into ‘sentences’ or statements.
In an expression, we describe a computation that is to be carried out by the computer. The

result of the computation may then be assigned to a variable. A sequence of assignments

is the way in which we specify, step by step, the series of individual computations to be

carried out, in order to arrive at the desired result. There are separate sets of rules for

expressions and assignments, depending on whether the operands in question are numeric,

logical, character, or derived in type, and whether they are scalars or arrays. There are also

separate rules for pointer assignments. We shall discuss each set of rules in turn, including a

description of the relational expressions that produce a result of type logical and are needed

in control statements (see next chapter). To simplify the initial discussion, we commence

by considering expressions and assignments that are intrinsically defined and involve neither

arrays nor entities of derived data types.

An expression in Fortran is formed of operands and operators, combined in a way that

follows the rules of Fortran syntax. A simple expression involving a dyadic (or binary)

operator has the form

operand operator operand

an example being

x+y

and a unary or monadic operator has the form

operator operand

an example being

-y

The type and kind of the result are determined by the type and kind of the operands and

do not depend on their values. The operands may be constants, variables, or functions (see

Chapter 5), and an expression may itself be used as an operand. In this way, we can build up

more complicated expressions such as

34 Modern Fortran Explained

operand operator operand operator operand

where consecutive operands are separated by a single operator. Each operand must have a

defined value.

The rules of Fortran state that the parts of expressions without parentheses are evaluated

successively from left to right for operators of equal precedence, with the exception of **
(exponentiation, see Section 3.2). If it is necessary to evaluate part of an expression, or

subexpression, before another, parentheses may be used to indicate which subexpression

should be evaluated first. In

operand operator (operand operator operand)

the subexpression in parentheses will be evaluated, and the result used as an operand to the

first operator.

If an expression or subexpression has no parentheses, the processor is permitted to evaluate

an equivalent expression, that is an expression that always has the same value apart, possibly,

from the effects of numerical round-off. For example, if a, b, and c are real variables, the

expression

a/b/c

might be evaluated as

a/(b*c)

on a processor that can multiply much faster than it can divide. Usually, such changes

are welcome to the programmer since the program runs faster, but when they are not (for

instance, because they would lead to more round-off) parentheses should be inserted because

the processor is required to respect them.

If two operators immediately follow each other, as in

operand operator operator operand

the only possible interpretation is that the second operator is unary. Thus, there is a general

rule that a binary operator must not follow immediately after another operator.

3.2 Scalar numeric expressions

A numeric expression is an expression whose operands are one of the three numeric types –

integer, real, and complex – and whose operators are

** exponentiation

* / multiplication, division

+ - addition, subtraction

These operators are known as numeric intrinsic operators, and are listed here in their order

of precedence. In the absence of parentheses, exponentiations will be carried out before

multiplications and divisions, and these before additions and subtractions.

We note that the minus sign (-) and the plus sign (+) can be used as unary operators, as in

Expressions and assignments 35

-tax

Because it is not permitted in ordinary mathematical notation, a unary minus or plus must not

follow immediately after another operator. When this is needed, as for x−y, parentheses must

be placed around the operator and its operand:

x**(-y)

The type and kind type parameter of the result of a unary operation are those of the operand.

The exception to the left-to-right rule noted in Section 3.1 concerns exponentiations.

Whereas the expression

-a+b+c

will be evaluated from left to right as

((-a)+b)+c

the expression

a**b**c

will be evaluated as

a**(b**c)

For integer data, the result of any division will be truncated towards zero, that is to the

integer value whose magnitude is equal to or just less than the magnitude of the exact result.

Thus, the result of

6/3 is 2

8/3 is 2

-8/3 is −2

This fact must always be borne in mind whenever integer divisions are written. Similarly, the

result of

2**3 is 8

whereas the result of

2**(-3) is 1/(2**3)

which is zero.

The rules of Fortran allow a numeric expression to contain numeric operands of differing

types or kind type parameters. This is known as a mixed-mode expression. Except when

raising a real or complex value to an integer power, the object of the weaker (or simpler) of

the two data types will be converted, or coerced, into the type of the stronger one. The result

will also be that of the stronger type. If, for example, we write

a*i

36 Modern Fortran Explained

when a is of type real and i is of type integer, then i will be converted to a real data type

before the multiplication is performed, and the result of the computation will also be of type

real. The rules are summarized for each possible combination for the operations +, -, *, and

/ in Table 3.1, and for the operation ** in Table 3.2. The functions real and cmplx that they

reference are defined in Section 8.3.1. In both Tables, I stands for integer, R for real, and C

for complex.

Table 3.1. Type of result of a .op. b, where .op. is +, -, *, or /.

Type Type Value of Value of Type of
of a of b a used b used result

I I a b I

I R real(a,kind(b)) b R

I C cmplx(a,0,kind(b)) b C

R I a real(b,kind(a)) R

R R a b R

R C cmplx(a,0,kind(b)) b C

C I a cmplx(b,0,kind(a)) C

C R a cmplx(b,0,kind(a)) C

C C a b C

Table 3.2. Type of result of a**b.

Type Type Value of Value of Type of
of a of b a used b used result

I I a b I

I R real(a,kind(b)) b R

I C cmplx(a,0,kind(b)) b C

R I a b R

R R a b R

R C cmplx(a,0,kind(b)) b C

C I a b C

C R a cmplx(b,0,kind(a)) C

C C a b C

If both operands are of type integer, the kind type parameter of the result is that of the

operand with the greater decimal exponent range, or is processor dependent if the kinds differ

but the decimal exponent ranges are the same. If both operands are of type real or complex,

the kind type parameter of the result is that of the operand with the greater decimal precision,

or is processor dependent if the kinds differ but the decimal precisions are the same. If one

Expressions and assignments 37

operand is of type integer and the other is of real or complex, the type parameter of the result

is that of the real or complex operand.

Note that a literal constant in a mixed-mode expression is held to its own precision, which

may be less than that of the expression. For example, given a variable a of kind long (Section

2.6.2), the result of a/1.7 will be less precise than that of a/1.7_long.

In the case of raising a complex value to a complex power, the principal value1 is taken.

Raising a negative real value to a real power is not permitted since the exact result probably

has a nonzero imaginary part.

3.3 Defined and undefined variables

In the course of the explanations in this and the following chapters, we shall often refer to

a variable becoming defined or undefined. In the previous chapter, we showed how a scalar

variable may be called into existence by a statement like

real :: speed

In this simple case, the variable speed has, at the beginning of the execution of the program,

no defined value. It is undefined. No attempt must be made to reference its value since it has

none. A common way in which it might become defined is for it to be assigned a value:

speed = 2.997

After the execution of such an assignment statement it has a value, and that value may be

referenced, for instance in an expression:

speed*0.5

For a compound object, all of its subobjects that are not pointers must be individually

defined before the object as a whole is regarded as defined. Thus, an array is said to be

defined only when each of its elements is defined, an object of a derived data type is defined

only when each of its non-pointer components is defined, and a character variable is defined

only when each of its characters is defined.

A variable that is defined does not necessarily retain its state of definition throughout the

execution of a program. As we shall see in Chapter 5, a variable that is local to a single

subprogram usually becomes undefined when control is returned from that subprogram. In

certain circumstances, it is even possible that a single array element becomes undefined and

this causes the array considered as a whole to become undefined; a similar rule holds for

entities of derived data type and for character variables.

A means to specify the initial value of a variable is explained in Section 7.5.

In the case of a pointer, the pointer association status may be undefined, associated with a

target, or disassociated, which means that it is not associated with a target but has a definite

status that may be tested by the function associated (Section 8.2). Even though a pointer is

associated with a target, the target itself may be defined or undefined. Means to specify the

initial status of disassociated are provided (see Section 7.5.3).

1The principal value of ab is exp(b(log |a|+ iarga)), with −π < arga ≤ π.

38 Modern Fortran Explained

3.4 Scalar numeric assignment

The general form of a scalar numeric assignment is

variable = expr

where variable is a scalar numeric variable and expr is a scalar numeric expression. If expr is

not of the same type or kind as variable, it will be converted to that type and kind before the

assignment is carried out, according to the set of rules given in Table 3.3 (the function int is

defined in Section 8.3.1).

Table 3.3. Numeric conversion for assignment statement variable = expr.

Type of variable Value assigned
integer int(expr, kind(variable))

real real(expr, kind(variable))

complex cmplx(expr, kind=kind(variable))

We note that if the type of variable is integer but expr is not, then the assignment will result

in a loss of precision unless expr happens to have an integral value. Similarly, assigning a real

expression to a real variable of a kind with less precision will also cause a loss of precision to

occur, and the assignment of a complex quantity to a non-complex variable involves the loss

of the imaginary part. Thus, the values in i and a following the assignments

i = 7.3 ! i of type default integer
a = (4.01935, 2.12372) ! a of type default real

are 7 and 4.01935, respectively. Also, if a literal constant is assigned to a variable of greater

precision, the result will have the accuracy of the constant. For example, given a variable a
of kind long (Section 2.6.2), the result of

a = 1.7

will be less precise than that of

a = 1.7_long

3.5 Scalar relational operators

It is possible in Fortran to test whether the value of one numeric expression bears a certain

relation to that of another, and similarly for character expressions. The relational operators

are

< or .lt. less than

<= or .le. less than or equal

== or .eq. equal

/= or .ne. not equal

> or .gt. greater than

>= or .ge. greater than or equal

Expressions and assignments 39

If either or both of the expressions are complex, only the operators == and /= (or .eq. and

.ne.) are available.

The result of such a comparison is one of the default logical values .true. or .false.,

and we shall see in the next chapter how such tests are important in controlling the flow of

a program. Examples of relational expressions (for i and j of type integer, a and b of type

real, and char1 of type default character) are

i < 0 integer relational expression

a < b real relational expression

a+b > i-j mixed-mode relational expression

char1 == ’Z’ character relational expression

In the third expression above, we note that the two components are of different numeric

types. In this case, and whenever either or both of the two components consist of numeric

expressions, the rules state that the components are to be evaluated separately, and converted

to the type and kind of their sum before the comparison is made. Thus, a relational expression

such as

a+b <= i-j

will be evaluated by converting the result of (i-j) to type real.

For character comparisons, the kinds must be the same and the letters are compared from

the left until a difference is found or the strings are found to be identical. If the lengths differ,

the shorter one is regarded as being padded with blanks2 on the right. Two zero-sized strings

are considered to be identical.

No other form of mixed-mode relational operator is intrinsically available, though such

an operator may be defined (Section 3.8). The numeric operators take precedence over the

relational operators.

3.6 Scalar logical expressions and assignments

Logical constants, variables, and functions may appear as operands in logical expressions.

The logical operators, in decreasing order of precedence, are:

unary operator:
.not. logical negation

binary operators:
.and. logical intersection

.or. logical union

.eqv. and .neqv. logical equivalence and non-equivalence

If we assume a logical declaration of the form

logical :: i,j,k,l

2Here and elsewhere, the blank padding character used for a non-default type is processor dependent.

40 Modern Fortran Explained

then the following are valid logical expressions:

.not.j
j .and. k
i .or. l .and. .not.j
(.not.k .and. j .neqv. .not.l) .or. i

In the first expression we note the use of .not. as a unary operator. In the third expression,

the rules of precedence imply that the subexpression l.and..not.j will be evaluated

first, and the result combined with i. In the last expression, the two subexpressions

.not.k.and.j and .not.l will be evaluated and compared for non-equivalence. The result

of the comparison, .true. or .false., will be combined with i.

The kind type parameter of the result is that of the operand for .not., and for the others is

that of the operands if they have the same kind or processor dependent otherwise.

We note that the .or. operator is an inclusive operator; the .neqv. operator provides an

exclusive logical or (a.and..not.b .or. .not.a.and.b).

The result of any logical expression is the value true or false, and this value may then be

assigned to a logical variable such as element 3 of the logical array flag in the example

flag(3) = (.not. k .eqv. l) .or. j

The kind type parameter values of the variable and expression need not be identical.

A logical variable may be set to a predetermined value by an assignment statement:

flag(1) = .true.
flag(2) = .false.

In the foregoing examples, all the operands and results were of type logical – no other data

type is allowed to participate in an intrinsic logical operation or assignment.

The results of several relational expressions may be combined into a logical expression,

and assigned, as in

real :: a, b, x, y
logical :: cond
:
cond = a>b .or. x<0.0 .and. y>1.0

where we note the precedence of the relational operators over the logical operators. If the

value of such a logical expression can be determined without evaluating a subexpression, a

processor is permitted not to evaluate the subexpression. An example is

i<=10 .and. ary(i)==0 ! for a real array ary(10)

when i has the value 11. However, the programmer must not rely on such behaviour – an out-

of-bounds subscript might be referenced if the processor chooses to evaluate the right-hand

subexpression before the left-hand one. We return to this topic in Section 5.10.1.

Expressions and assignments 41

3.7 Scalar character expressions and assignments

The only intrinsic operator for character expressions is the concatenation operator //, which

has the effect of combining two character operands into a single character result. For example,

the result of concatenating the two character constants AB and CD, written as

’AB’//’CD’

is the character string ABCD. The operands must have the same kind parameter values, but may

be character variables, constants, or functions. For instance, if word1 and word2 are both of

default kind and length 4, and contain the character strings LOOP and HOLE, respectively, the

result of

word1(4:4)//word2(2:4)

is the string POLE.

The length of the result of a concatenation is the sum of the lengths of the operands. Thus,

the length of the result of

word1//word2//’S’

is 9, which is the length of the string LOOPHOLES.

The result of a character expression may be assigned to a character variable of the same

kind. Assuming the declarations

character(len=4) :: char1, char2
character(len=8) :: result

we may write

char1 = ’any ’
char2 = ’book’
result = char1//char2

In this case, result will now contain the string any book. We note in these examples that

the lengths of the left- and right-hand sides of the three assignments are in each case equal.

If, however, the length of the result of the right-hand side is shorter than the length of the

left-hand side, then the result is placed in the left-most part of the left-hand side and the rest

is filled with blank characters. Thus, in

character(len=5) :: fill
fill(1:4) = ’AB’

fill(1:4) will have the value ABbb (where b stands for a blank character). The value of

fill(5:5) remains undefined, that is, it contains no specific value and should not be used

in an expression. As a consequence, fill is also undefined. On the other hand, when the

left-hand side is shorter than the result of the right-hand side, the right-hand end of the result

is truncated. The result of

character(len=5) :: trunc8
trunc8 = ’TRUNCATE’

42 Modern Fortran Explained

is to place in trunc8 the character string TRUNC. If a left-hand side is of zero length, no

assignment takes place.

The left- and right-hand sides of an assignment may overlap. In such a case, it is always

the old values that are used in the right-hand side expression. For example, the assignment

result(3:5) = result(1:3)

is valid and if result began with the value ABCDEFGH, it would be left with the value

ABABCFGH.

Other means of manipulating characters and strings of characters, via intrinsic functions,

are described in Sections 8.5 and 8.6.

3.8 Structure constructors and scalar defined operators

No operators for derived types are automatically available, but a structure may be constructed

from expressions for its components, just as a constant structure may be constructed from

constants (Section 2.9). The general form of a structure constructor is

type-name (expr-list)

where the expr-list specifies the values of the components. For example, given the type

type char10
integer :: length
character(len=10) :: value

end type char10

and the variables

character(len=4) :: char1, char2

the following is a value of type char10:

char10(8, char1//char2)

Each expression in expr-list corresponds to a component of the structure; if it is not a pointer

component, the value is assigned to the component under the rules of intrinsic assignment;

if it is a pointer component, the expression must be a valid target for it,3 as in a pointer

assignment statement (Section 3.12).

When a programmer defines a derived type and wishes operators to be available, he or

she must define the operators, too. For a binary operator this is done by writing a function,

with two intent in arguments, that specifies how the result depends on the operands, and

an interface block that associates the function with the operator token (functions, intent, and

interface blocks will be explained fully in Chapter 5). For example, given the type

type interval
real :: lower, upper

end type interval

3In particular, it must not be a constant.

Expressions and assignments 43

that represents intervals of numbers between a lower and an upper bound, we may define

addition by a module (Section 5.5) containing the procedure

function add_interval(a,b)
type(interval) :: add_interval
type(interval), intent(in) :: a, b
add_interval%lower = a%lower + b%lower ! Production code would
add_interval%upper = a%upper + b%upper ! allow for roundoff.

end function add_interval

and the interface block (Section 5.18)

interface operator(+)
module procedure add_interval

end interface

This function would be invoked in an expression such as

y + z

to perform this programmer-defined add operation for scalar variables y and z of type

interval. A unary operator is defined by an interface block and a function with one intent

in argument.

The operator token may be any of the tokens used for the intrinsic operators or may be a

sequence of up to 31 letters4 enclosed in decimal points other than .true. or .false. . An

example is

.sum.

In this case, the header line of the interface block would be written as

interface operator(.sum.)

and the expression as

y.sum.z

If an intrinsic token is used, the number of arguments must be the same as for the intrinsic

operation, the precedence of the operation is as for the intrinsic operation, and a unary

minus or plus must not follow immediately after another operator. Otherwise, it is of highest

precedence for defined unary operators and lowest precedence for defined binary operators.

The complete set of precedences is given in Table 3.4. Where another precedence is required

within an expression, parentheses must be used.

Retaining the intrinsic precedences is helpful both to the readability of expressions and to

the efficiency with which a compiler can interpret them. For example, if + is used for set

union and * for set intersection, we can interpret the expression

i*j + k

4An operator token may have up to 63 characters in Fortran 2003.

44 Modern Fortran Explained

Table 3.4. Relative precedence of operators (in decreasing order).

Type of operation when intrinsic Operator

– monadic (unary) defined operator

Numeric **

Numeric * or /

Numeric monadic + or -

Numeric dyadic + or -

Character //

Relational == /= < <= > >=

.eq. .ne. .lt. .le. .gt. .ge.

Logical .not.

Logical .and.

Logical .or.

Logical .eqv. or .neqv.

– dyadic (binary) defined operator

for sets i, j, and k without difficulty.

If either of the intrinsic tokens == and .eq. is used, the definition applies to both tokens so

that they are always equivalent. The same is true for the other equivalent pairs of relational

operators.

Note that a defined unary operator not using an intrinsic token may follow immediately

after another operator as in

y .sum. .inverse. x

Operators may be defined for any types of operands, except where there is an intrinsic

operation for the operator and types. For example, we might wish to be able to add an

interval number to an ordinary real, which can be done by adding the procedure

function add_interval_real(a,b)
type(interval) :: add_interval_real
type(interval), intent(in) :: a
real, intent(in) :: b
add_interval_real%lower = a%lower + b ! Production code would
add_interval_real%upper = a%upper + b ! allow for roundoff.

end function add_interval_real

and changing the interface block to

interface operator(+)
module procedure add_interval, add_interval_real

end interface

Expressions and assignments 45

The result of a defined operation may have any type. The type of the result, as well as its

value, must be specified by the function.

Note that an operation that is defined intrinsically cannot be redefined; thus in

real :: a, b, c
:
c = a + b

the meaning of the operation is always unambiguous.

3.9 Scalar defined assignments

Assignment of an expression of derived type to a variable of the same type is automatically

available and takes place component by component. For example, if a is of the type interval
defined at the start of Section 3.8, we may write

a = interval(0.0, 1.0)

(structure constructors were met in Section 3.8, too).

In other circumstances, however, we might wish to define a different action for an

assignment involving an object of derived type, and indeed this is possible. An assignment

may be redefined or another assignment may be defined by a subroutine with two arguments,

the first having intent out or intent inout and corresponding to the variable and the second

having intent in and corresponding to the expression (subroutines will also be dealt with fully

in Chapter 5). In the case of an assignment involving an object of derived type and an object

of a different type, such a definition must be provided. For example, assignment of reals to

intervals and vice versa might be defined by a module containing the subroutines

subroutine real_from_interval(a,b)
real, intent(out) :: a
type(interval), intent(in) :: b
a = (b%lower + b%upper)/2

end subroutine real_from_interval

and

subroutine interval_from_real(a,b)
type(interval), intent(out) :: a
real, intent(in) :: b
a%lower = b
a%upper = b

end subroutine interval_from_real

and the interface block

interface assignment(=)
module procedure real_from_interval, interval_from_real

end interface

46 Modern Fortran Explained

Given this, we may write

type(interval) :: a
a = 0.0

A defined assignment must not redefine the meaning of an intrinsic assignment for intrinsic

types, that is an assignment between two objects of numeric type, of logical type, or of

character type with the same kind parameter, but may redefine the meaning of an intrinsic

assignment for two objects of the same derived type. For instance, for an assignment between

two variables of the type char10 (Section 3.8) that copies only the relevant part of the

character component, we might write

subroutine assign_string (left, right)
type(char10), intent(out) :: left
type(char10), intent(in) :: right
left%length = right%length
left%value(1:left%length) = right%value(1:right%length)

end subroutine assign_string

Intrinsic assignment for a derived-type object always involves intrinsic assignment for all

its non-pointer components, even if a component is of a derived type for which assignment

has been redefined.

3.10 Array expressions

So far in this chapter, we have assumed that all the entities in an expression are scalar.

However, any of the unary intrinsic operations may also be applied to an array to produce

another array of the same shape (identical rank and extents, see Section 2.10) and having

each element value equal to that of the operation applied to the corresponding element of the

operand. Similarly, binary intrinsic operations may be applied to a pair of arrays of the same

shape to produce an array of that shape, with each element value equal to that of the operation

applied to corresponding elements of the operands. One of the operands to a binary operation

may be a scalar, in which case the result is as if the scalar had been broadcast to an array of

the same shape as the array operand. Given the array declarations

real, dimension(10,20) :: a,b
real, dimension(5) :: v

the following are examples of array expressions:

a/b ! Array of shape (10,20), with elements a(i,j)/b(i,j)
v+1. ! Array of shape (5), with elements v(i)+1.0
5/v+a(1:5,5) ! Array of shape (5), with elements 5/v(i)+a(i,5)
a == b ! Logical array of shape (10,20), with elements

! .true. if a(i,j) == b(i,j), and .false. otherwise

Two arrays of the same shape are said to be conformable and a scalar is conformable with

any array.

Expressions and assignments 47

Note that the correspondence is by position in the extent and not by subscript value. For

example,

a(2:9,5:10) + b(1:8,15:20)

has element values

a(i+1,j+4) + b(i,j+14), i=1,2,...,8, j=1,2,...,6

This may be represented pictorially as in Figure 3.1.

Figure 3.1 The sum of two array sections.

+ =
resu l t
8 x 6

a(1,1) a(1,20)

a(2,5) a(2,10)

a(9,5) a(9,10)

a(10,1) a(10,20)

b(1,1) b(1,15)

b(1,20)

b(8,15) b(8,20)

b(10,1) b(10,20)

The order in which the scalar operations in any array expression are executed is not

specified in the standard, thus enabling a compiler to arrange efficient execution on a vector

or parallel computer.

Any scalar intrinsic operator may be applied in this way to arrays and array–scalar

pairs. For derived operators, the programmer may define an elemental procedure with these

properties (see Section 6.11). He or she may also define operators directly for certain ranks

or pairs of ranks. For example, the type

type matrix
real :: element

end type matrix

might be defined to have scalar operations that are identical to the operations for reals, but

for arrays of ranks one and two the operator * defined to mean matrix multiplication. The

48 Modern Fortran Explained

type matrix would therefore be suitable for matrix arithmetic, whereas reals are not suitable

because multiplication for real arrays is done element by element. This is further discussed

in Section 6.7.

3.11 Array assignment

By intrinsic assignment, an array expression may be assigned to an array variable of the

same shape, which is interpreted as if each element of the expression were assigned to the

corresponding element of the variable. For example, with the declarations of the beginning

of the last section, the assignment

a = a + 1.0

replaces a(i,j) by a(i,j)+1.0 for i = 1, 2, . . . , 10 and j = 1, 2, . . . , 20. Note that, as

for expressions, the element correspondence is by position within the extent rather than by

subscript value. This is illustrated by the example

a(1,11:15) = v ! a(1,j+10) is assigned from
! v(j), j=1,2,...,5

A scalar expression may be assigned to an array, in which case the scalar value is broadcast

to all the array elements.

If the expression includes a reference to the array variable or to a part of it, the expression

is interpreted as being fully evaluated before the assignment commences. For example, the

statement

v(2:5) = v(1:4)

results in each element v(i) for i = 2, 3, 4, 5 having the value that v(i-1) had prior to the

commencement of the assignment. This rule exactly parallels the rule for substrings that was

explained in Section 3.7. The order in which the array elements are assigned is not specified

by the standard, to allow optimizations.

Sets of numeric and mathematical intrinsic functions, whose results may be used as

operands in scalar or array expressions and in assignments, are described in Sections 8.3

and 8.4.

If a defined assignment (Section 3.9) is defined by an elemental subroutine (Section 6.11),

it may be used to assign a scalar value to an array or an array value to an array of the

same shape. A separate subroutine may be provided for any particular combination of ranks

and will override the elemental assignment. If there is no elemental defined assignment,

intrinsic assignment is still available for those combinations of ranks for which there is no

corresponding defined assignment.

A form of array assignment under a mask is described in Section 6.8 and assignment

expressed with the help of indices in Section 6.9.

3.12 Pointers in expressions and assignments

A pointer may appear as a variable in the expressions and assignments that we have

considered so far in this chapter, provided it has a valid association with a target. The target is

Expressions and assignments 49

accessed without any need for an explicit dereferencing symbol. In particular, if both sides

of an assignment statement are pointers, data are copied from one target to the other target.

Sometimes the need arises for another sort of assignment. We may want the left-hand

pointer to point to another target, rather than that its current target acquire fresh data. That is,

we want the descriptor to be altered. This is called pointer assignment and takes place in a

pointer assignment statement:

pointer => target

where pointer is the name of a pointer or the designator of a structure component that is

a pointer, and target is usually a variable but may also be a reference to a pointer-valued

function (see Section 5.10). For example, the statements

x => z
a => c

have variables as targets and are needed for the first matrix multiplication of Section 2.13, in

order to make x refer to z and a to refer to c. The statement

x => null()

(the function null is described in Section 8.15) nullifies x. Pointer assignment also takes

place for a pointer component of a structure when the structure appears on the left-hand side

of an ordinary assignment. For example, suppose we have used the type entry of Figure 2.3

of Section 2.13 to construct a chain of entries and wish to add a fresh entry at the front. If

first points to the first entry and current is a scalar pointer of type entry, the statements

allocate (current)
current = entry(new_value, new_index, first)
first => current

allocate a new entry and link it into the top of the chain. The assignment statement has the

effect

current%next => first

and establishes the link. The pointer assignment statement gives first the new entry as its

target without altering the old first entry. The ordinary assignment

first = current

would be incorrect because the target would be copied, destroying the old first entry,

corresponding to the component assignments

first%value = current%value ! Components of the
first%index = current%index ! old first are lost.
first%next => current%next

In the case where the chain began with length two and consisted of

first : (1.0, 10, associated)
first%next : (2.0, 15, null)

50 Modern Fortran Explained

following the execution of the first set of statements it would have length three and consist of

first : (4.0, 16, associated)
first%next : (1.0, 10, associated)
first%next%next : (2.0, 15, null)

If the target in a pointer assignment statement is a variable that is not itself a pointer or a

subobject of a pointer target, it must have the target attribute. For example, the statement

real, dimension(10), target :: y

declares y to have the target attribute. Any non-pointer subobject of an object with the

target attribute also has the target attribute. The target attribute is required for the

purpose of code optimization by the compiler. It is very helpful to the compiler to know that

a variable that is not a pointer or a target may not be accessed by a pointer target.

The target in a pointer assignment statement may be a subobject of a pointer target. For

example, given the declaration

character(len=80), dimension(:), pointer :: page

and an appropriate association, the following are all permitted targets:

page, page(10), page(2:4), page(2)(3:15)

Note that it is sufficient for the pointer to be at any level of component selection. For example,

given the declaration

type(entry) :: node

which has a pointer component next, see Section 2.13 and an appropriate association,

node%next%value is a permitted target.

If the target in a pointer assignment statement is itself a pointer target, then a straight-

forward copy of the descriptor takes place. If the pointer association status is undefined or

disassociated, this state is copied.

If the target is a pointer or a subobject of a pointer target, the new association is with that

pointer’s target and is not affected by any subsequent changes to its pointer association status.

This is illustrated by the following example. The sequence

b => c ! c has the target attribute
a => b
nullify (b)

will leave a still pointing to c.

The type, type parameters, and rank of the pointer and target in a pointer assignment

statement must each be the same. If the pointer is an array, it takes its shape and bounds from

the target. The bounds are as would be returned by the functions lbound and ubound (Section

8.12.2) for the target, which means that an array section or array expression is always taken

to have the value 1 for a lower bound and the extent for the corresponding upper bound.5

5In Fortran 2003, a lower bound may be specified, see Section 15.6

Expressions and assignments 51

Fortran is unusual in not requiring a special character for a reference to a pointer target,

but requiring one for distinguishing pointer assignment from ordinary assignment. The reason

for this choice was the expectation that most engineering and scientific programs will refer to

target data far more often than they change targets.

3.13 The nullify statement

A pointer may be explicitly disassociated from its target by executing a nullify statement.

Its general form is

nullify(pointer-object-list)

There must be no dependencies among the objects, in order to allow the processor to nullify

the objects one by one in any order. The statement is also useful for giving the disassociated

status to an undefined pointer. An advantage of nullifying pointers rather than leaving them

undefined is that they may then be tested by the intrinsic function associated (Section 8.2).

For example, the end of the chain of Section 3.12 will be flagged as a disassociated pointer if

the statement

nullify(first)

is executed initially to create a zero-length chain. Because often there are other ways to access

a target (for example, through another pointer), the nullify statement does not deallocate

the targets. If deallocation is also required, a deallocate statement (Section 6.5.3) should

be executed instead.

3.14 Summary

In this chapter, we have seen how scalar and array expressions of numeric, logical, character,

and derived types may be formed, and how the corresponding assignments of the results may

be made. The relational expressions and the use of pointers have also been presented. We

now have the information required to write short sections of code forming a sequence of

statements to be performed one after the other. In the following chapter we shall see how

more complicated sequences, involving branching and iteration, may be built up.

Exercises

1. If all the variables are numeric scalars, which of the following are valid numeric expressions?

a+b -c
a+-c d+(-f)
(a+c)**(p+q) (a+c)(p+q)
-(x+y)**i 4.((a-d)-(a+4.*x)+1)

2. In the following expressions, add the parentheses which correspond to Fortran’s rules of precedence

(assuming a, c-f are real scalars, i-n are logical scalars, and b is a logical array); for example,

a+d**2/c becomes a+((d**2)/c).

52 Modern Fortran Explained

c+4.*f
4.*g-a+d/2.
a**e**c**d
a*e-c**d/a+e
i .and. j .or. k
.not. l .or. .not. i .and. m .neqv. n
b(3).and.b(1).or.b(6).or..not.b(2)

3. What are the results of the following expressions?

3+4/2 6/4/2
3.*4**2 3.**3/2
-1.**2 (-1.)**3

4. A scalar character variable r has length eight. What are the contents of r after each of the following

assignments?

r = ’ABCDEFGH’
r = ’ABCD’//’01234’
r(:7) = ’ABCDEFGH’
r(:6) = ’ABCD’

5. Which of the following logical expressions are valid if b is a logical array?

.not.b(1).and.b(2) .or.b(1)
b(1).or..not.b(4) b(2)(.and.b(3).or.b(4))

6. If all the variables are real scalars, which of the following relational expressions are valid?

d .le. c p .lt. t > 0
x-1 /= y x+y < 3 .or. > 4.
d.lt.c.and.3.0 q.eq.r .and. s>t

7. Write expressions to compute:

a) the perimeter of a square of side l;

b) the area of a triangle of base b and height h;

c) the volume of a sphere of radius r.

8. An item costs n cents. Write a declaration statement for suitable variables and assignment

statements which compute the change to be given from a $1 bill for any value of n from 1 to

99, using coins of denomination 1, 5, 10, and 25 cents.

9. Given the type declaration for interval in Section 3.8, the definitions of + given in Section 3.8,

the definitions of assignment given in Section 3.9, and the declarations

type(interval) :: a,b,c,d
real :: r

which of the following statements are valid?

a = b + c
c = b + 1.0
d = b + 1
r = b + c
a = r + 2

Expressions and assignments 53

10. Given the type declarations

real, dimension(5,6) :: a, b
real, dimension(5) :: c

which of the following statements are valid?

a = b c = a(:,2) + b(5,:5)
a = c+1.0 c = a(2,:) + b(:,5)
a(:,3) = c b(2:,3) = c + b(:5,3)

This page intentionally left blank

4. Control constructs

4.1 Introduction

We have learnt in the previous chapter how assignment statements may be written, and how

these may be ordered one after the other to form a sequence of code which is executed step

by step. In most computations, however, this simple sequence of statements is by itself

inadequate for the formulation of the problem. For instance, we may wish to follow one

of two possible paths through a section of code, depending on whether a calculated value is

positive or negative. We may wish to sum 1000 elements of an array, and to do this by writing

1000 additions and assignments is clearly tedious; the ability to iterate over a single addition

is required instead. We may wish to pass control from one part of a program to another, or

even stop processing altogether.

For all these purposes, we have available in Fortran various facilities to enable the logical

flow through the program statements to be controlled. The most important form is that of a

block construct, that is a construct which begins with an initial keyword statement, may have

intermediate keyword statements, and ends with a matching terminal statement, and that

may be entered only at the initial statement. Each sequence of statements between keyword

statements is called a block. A block may be empty, though such cases are rare.

Block constructs may be nested, that is a block may contain another block construct. In

such a case, the block must contain the whole of the inner construct. Execution of a block

always begins with its first statement.

4.2 The if construct and statement

The if construct contains one or more sequences of statements (blocks), at most one of which

is chosen for execution. The general form is shown in Figure 4.1. Here and throughout the

book we use square brackets to indicate optional items, followed by dots if there may be any

number (including zero) of such items. There can be any number (including zero) of else
if statements, and zero or one else statements. Naming is optional, but an else or else if
statement may be named only if the corresponding if and end if statements are named, and

must be given the same name. The name may be any valid and distinct Fortran name (see

Section 5.15 for a discussion on the scope of names).

An example of the if construct in its simplest form is

56 Modern Fortran Explained

Figure 4.1 The if construct.

[name:] if (scalar-logical-expr) then
block

[else if (scalar-logical-expr) then [name]
block]...

[else [name]
block]

end if [name]

swap: if (x < y) then
temp = x
x = y
y = temp

end if swap

The block of three statements is executed if the condition is true; otherwise execution

continues from the statement following the end if statement. Note that the block inside

the if construct is indented. This is not obligatory, but makes the logic easier to understand,

especially in nested if constructs as we shall see at the end of this section.

The next simplest form has a else block, but no else if blocks. Now there is an

alternative block for the case where the condition is false. An example is

if (x < y) then
x = -x

else
y = -y

end if

in which the sign of x is changed if x is less than y, and the sign of y is changed if x is greater

than or equal to y.

The most general type of if construct uses the else if statement to make a succession of

tests, each of which has its associated block of statements. The tests are made one after the

other until one is fulfilled, and the associated statements of the relevant if or else if block

are executed. Control then passes to the end of the if construct. If no test is fulfilled, no

block is executed, unless there is a final ‘catch-all’ else clause.

There is a useful shorthand form for the simplest case of all. An if construct of the form

if (scalar-logical-expr) then
action-stmt

end if

may be written

if (scalar-logical-expr) action-stmt

Examples are

Control constructs 57

if (x-y > 0.0) x = 0.0
if (cond .or. p<q .and. r<=1.0) s(i,j) = t(j,i)

It is permitted to nest if constructs within one another to an arbitrary depth, as shown to

two levels in Figure 4.2, in which we see the necessity to indent the code in order to be able

to understand the logic easily. For even deeper nesting, naming is to be recommended. The

constructs must be properly nested, that is each construct must be wholly contained in a block

of the next outer construct.

Figure 4.2 A nested if construct.

if (i < 0) then
if (j < 0) then

x = 0.0
y = 0.0

else
z = 0.0

end if
else if (k < 0) then

z = 1.0
else

x = 1.0
y = 1.0

end if

4.3 The case construct

Fortran provides another means of selecting one of several options, rather similar to that of

the if construct. The principal differences between the two constructs are that, for the case
construct, only one expression is evaluated for testing, and the evaluated expression may

belong to no more than one of a series of pre-defined sets of values. The form of the case
construct is shown by:

[name:] select case (expr)
[case selector [name]

block]...
end select [name]

As for the if construct, the leading and trailing statements must either both be unnamed

or both bear the same name; a case statement within it may be named only if the leading

statement is named and bears the same name. The expression expr must be scalar and of

type character, logical, or integer, and the specified values in each selector must be of this

type. In the character case, the lengths are permitted to differ, but not the kinds. In the logical

58 Modern Fortran Explained

and integer cases, the kinds may differ. The simplest form of selector is a scalar constant

expression.1 in parentheses, such as in the statement

case (1)

For character or integer expr, a range may be specified by a lower and an upper scalar constant

expression separated by a colon:

case (low:high)

Either low or high, but not both, may be absent; this is equivalent to specifying that the case

is selected whenever expr evaluates to a value that is less than or equal to high, or greater

than or equal to low, respectively. An example is shown in Figure 4.3.

Figure 4.3 A case construct.

select case (number) ! number is of type integer
case (:-1) ! all values below 0

n_sign = -1
case (0) ! only 0

n_sign = 0
case (1:) ! all values above 0

n_sign = 1
end select

The general form of selector is a list of non-overlapping values and ranges, all of the same

type as expr, enclosed in parentheses, such as

case (1, 2, 7, 10:17, 23)

The form

case default

is equivalent to a list of all the possible values of expr that are not included in the other

selectors of the construct. Though we recommend that the values be in order, as in this

example, this is not required. Overlapping values are not permitted within one selector, nor

between different ones in the same construct.

There may be only a single case default selector in a given case construct as shown in

Figure 4.4. The case default clause does not necessarily have to be the last clause of the

case construct.

Since the values of the selectors are not permitted to overlap, at most one selector may be

satisfied; if none is satisfied, control passes to the next executable statement following the

end select statement.

Like the if construct, case constructs may be nested inside one another.

1A constant expression is a restricted form of expression that can be verified to be constant (the restrictions

being chosen for ease of implementation) The details are tedious and are deferred to Section 7.4. In this section, all

examples employ the simplest form of constant expression: the literal constant.

Control constructs 59

Figure 4.4 A case construct with a case default selector.

select case (ch) ! ch of type character
case (’c’, ’d’, ’r’:)

ch_type = .true.
case (’i’:’n’)

int_type = .true.
case default

real_type = .true.
end select

4.4 The do construct

Many problems in mathematics require the ability to iterate. If we wish to sum the elements

of an array a of length 10, we could write

sum = a(1)
sum = sum+a(2)
:
sum = sum+a(10)

which is clearly laborious. Fortran provides a facility known as the do construct which allows

us to reduce these ten lines of code to

sum = 0.0
do i = 1,10 ! i is of type integer

sum = sum+a(i)
end do

In this fragment of code we first set sum to zero, and then require that the statement between

the do statement and the end do statement shall be executed ten times. For each iteration

there is an associated value of an index, kept in i, which assumes the value 1 for the first

iteration through the loop, 2 for the second, and so on up to 10. The variable i is a normal

integer variable, but is subject to the rule that it must not be explicitly modified within the do
construct.

The do statement has more general forms. If we wished to sum the fourth to ninth elements

we would write

do i = 4, 9

thereby specifying the required first and last values of i. If, alternatively, we wished to sum

all the odd elements, we would write

do i = 1, 9, 2

where the third of the three loop parameters, namely the 2, specifies that i is to be

incremented in steps of 2, rather than by the default value of 1, which is assumed if no third

parameter is given. In fact, we can go further still, as the parameters need not be constants at

all, but integer expressions, as in

60 Modern Fortran Explained

do i = j+4, m, -k(j)**2

in which the first value of i is j+4, and subsequent values are decremented by k(j)**2 until

the value of m is reached. Thus, do indices may run ‘backwards’ as well as ‘forwards’. If any

of the three parameters is a variable or is an expression that involves a variable, the value of

the variable may be modified within the loop without affecting the number of iterations, as

the initial values of the parameters are used for the control of the loop.

The general form of this type of bounded do construct control clause is

[name:] do [,] variable = expr1, expr2 [,expr3]
block

end do [name]

where variable is a named scalar integer variable, expr1, expr2, and expr3 (expr3 is optional

but must be nonzero when present) are any valid scalar integer expressions, and name is the

optional construct name. The do and end do statements must either both bear the same name,

or both be unnamed.

The number of iterations of a do construct is given by the formula

max((expr2-expr1+expr3)/expr3, 0)

where max is a function which we shall meet in Section 8.3.2 and which returns either the

value of the expression or zero, whichever is the larger. There is a consequence following

from this definition, namely that if a loop begins with the statement

do i = 1, n

then its body will not be executed at all if the value of n on entering the loop is zero or less.

This is an example of the zero-trip loop, and results from the application of the max function.

A very simple form of the do statement is the unbounded

[name:] do

which specifies an endless loop. In practice, a means to exit from an endless loop is required,

and this is provided in the form of the exit statement:

exit [name]

where name is optional and is used to specify from which do construct the exit should be

taken in the case of nested constructs.2 Execution of an exit statement causes control to

be transferred to the next executable statement after the end do statement to which it refers.

If no name is specified, it terminates execution of the innermost do construct in which it is

enclosed. As an example of this form of the do, suppose we have used the type entry of

Section 2.13 to construct a chain of entries in a sparse vector, and we wish to find the entry

with index 10, known to be present. If first points to the first entry, the code in Figure 4.5

is suitable.

The exit statement is also useful in a bounded loop when all iterations are not always

needed.

A related statement is the cycle statement

2Fortran 2008 allows a named exit to be used to exit from nearly any construct, not just a loop.

Control constructs 61

Figure 4.5 Searching a linked list.

type(entry), pointer :: first, current
:
current => first
do

if (current%index == 10) exit
current => current%next

end do

cycle [name]

which transfers control to the end do statement of the corresponding construct. Thus, if

further iterations are still to be carried out, the next one is initiated.

The value of a do construct index (if present) is incremented at the end of every loop

iteration for use in the subsequent iteration. As the value of this index is available outside the

loop after its execution, we have three possible situations, each illustrated by the following

loop:

do i = 1, n
:
if (i==j) exit
:

end do
l = i

The situations are as follows.

i) If, at execution time, n has the value zero or less, i is set to 1 but the loop is not

executed, and control passes to the statement following the end do statement.

ii) If n has a value which is greater than or equal to j, an exit will be taken at the if
statement, and l will acquire the last value of i, which is of course j.

iii) If the value of n is greater than zero but less than j, the loop will be executed n times,

with the successive values of i being 1,2, . . ., etc. up to n. When reaching the end of

the loop for the nth time, i will be incremented a final time, acquiring the value n+1,

which will then be assigned to l.

We see how important it is to make careful use of loop indices outside the do block, especially

when there is the possibility of the number of iterations taking on the boundary value of the

maximum for the loop.

The do block, just mentioned, is the sequence of statements between the do statement and

the end do statement. From anywhere outside a do block, it is prohibited to jump into the

block or to its end do statement.

It is similarly illegal for the block of a do construct (or any other construct, such as an if or

case construct), to be only partially contained in a block of another construct. The construct

must be completely contained in the block. The following two sequences are legal:

62 Modern Fortran Explained

if (scalar-logical-expr) then
do i = 1, n

:
end do

else
:

end if

and

do i = 1, n
if (scalar-logical-expr) then

:
end if

end do

Any number of do constructs may be nested. We may thus write a matrix multiplication as

shown in Figure 4.6.

Figure 4.6 Matrix multiplication as a triply nested do construct.

do i = 1, n
do j = 1, m

a(i,j) = 0.0
do l = 1, k

a(i,j) = a(i,j)+b(i,l)*c(l,j)
end do

end do
end do

A further form of do-construct, in Fortran 2008, is described in Section 20.4.1, and

additional, but redundant, forms of do syntax in Appendix B.5.

Finally, it should be noted that many short do-loops can be expressed alternatively in the

form of array expressions and assignments. However, this is not always possible, and a

particular danger to watch for is where one iteration of the loop depends upon a previous one.

Thus, the loop

do i = 2, n
a(i) = a(i-1) + b(i)

end do

cannot be replaced by the statement

a(2:n) = a(1:n-1) + b(2:n) ! Beware

4.5 The go to statement

Just occasionally, especially when dealing with error conditions, the control constructs that

we have described may be inadequate for the programmer’s needs. The remedy is the most

Control constructs 63

disputed statement in programming languages – the go to statement. It is generally accepted

that it is difficult to understand a program which is interrupted by many branches, especially

if there is a large number of backward branches – those returning control to a statement

preceding the branch itself.

The form of the unconditional go to statement is

go to label

where label is a statement label. This statement label must be present on an executable
statement (a statement which can be executed, as opposed to one of an informative nature,

like a declaration). An example is

x = y + 3.0
go to 4

3 x = x + 2.0
4 z = x + y

in which we note that after execution of the first statement, a branch is taken to the last

statement, labelled 4. This is a branch target statement. The statement labelled 3 is jumped

over, and can be executed only if there is a branch to the label 3 somewhere else. If the

statement following an unconditional go to is unlabelled – it can never be reached and

executed, creating dead code, normally a sign of incorrect coding.

The statements within a block of a construct may be labelled, but the labels must never be

referenced in such a fashion as to pass control into the range of a block from outside it, to an

else if or else statement. It is permitted to pass control from a statment in a construct to

the terminal statement of the construct, or to a statement outside its construct.

The if statement is normally used either to perform a single assignment depending on

a condition, or to branch depending on a condition. The action-stmt may not be labelled

separately. Examples are

if (flag) go to 6
if (x-y > 0.0) x = 0.0

4.6 Summary

In this chapter we have introduced the four main features by which the control in Fortran

code may be programmed – the go to statement, the if statement and construct, the case
construct, and the do construct. The effective use of these features is the key to sound code.

We have touched upon the concept of a program unit as being like the chapter of a book.

Just as a book may have just one chapter, so a complete program may consist of just one

program unit, which is known as a main program. In its simplest form it consists of a series

of statements of the kinds we have been dealing with so far, and terminates with an end
statement, which acts as a signal to the computer to stop processing the current program.

In order to test whether a program unit of this type works correctly, we need to be able to

output, to a terminal or printer, the values of the computed quantities. This topic will be fully

explained in Chapter 9, and for the moment we need to know only that this can be achieved

by a statement of the form

64 Modern Fortran Explained

print * , ’ var1 = ’, var1 , ’ var2 = ’, var2

which will output a line such as

var1 = 1.0 var2 = 2.0

Similarly, input data can be read by statements like

read *, val1, val2

This is sufficient to allow us to write simple programs like that in Figure 4.7, which outputs

the converted values of a temperature scale between specified limits, and Figure 4.8, which

constructs a linked list. Valid inputs are shown at the end of each example.

Exercises

1. Write a program which

a) defines an array to have 100 elements;

b) assigns to the elements the values 1,2,3, . . . ,100;

c) reads two integer values in the range 1 to 100;

d) reverses the order of the elements of the array in the range specified by the two values.

2. The first two terms of the Fibonacci series are both 1, and all subsequent terms are defined as the

sum of the preceding two terms. Write a program which reads an integer value limit and which

computes and prints the coefficients of the first limit terms of the series.

3. The coefficients of successive orders of the binomial expansion are shown in the normal Pascal

triangle form as

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

etc.

Write a program which reads an integer value limit and prints the coefficients of the first limit
lines of this Pascal triangle.

4. Define a character variable of length 80. Write a program which reads a value for this variable.

Assuming that each character in the variable is alphabetic, write code which sorts them into

alphabetic order, and prints out the frequency of occurrence of each letter.

5. Write a program to read an integer value limit and print the first limit prime numbers, by any

method.

6. Write a program which reads a value x, and calculates and prints the corresponding value x/(1.+x).

The case x = −1. should produce an error message and be followed by an attempt to read a new

value of x.

7. Given a chain of entries of the type entry of Section 2.13, modify the code in Figure 4.5 (Section

4.4) so that it removes the entry with index 10, and makes the previous entry point to the following

entry.

Control constructs 65

Figure 4.7 Print a conversion table.

! Print a conversion table of the Fahrenheit and Celsius
! temperature scales between specified limits.
!

real :: celsius, fahrenheit
integer :: low_temp, high_temp, temperature
character :: scale

!
read_loop: do
!
! Read scale and limits

read *, scale, low_temp, high_temp
!
! Check for valid data

if (scale /= ’C’ .and. scale /= ’F’) exit read_loop
!
! Loop over the limits

do temperature = low_temp, high_temp
!
! Choose conversion formula

select case (scale)
case (’C’)

celsius = temperature
fahrenheit = 9.0/5.0*celsius + 32.0

! Print table entry
print *, celsius, ’ degrees C correspond to’, &

fahrenheit, ’ degrees F’
case (’F’)

fahrenheit = temperature
celsius = 5.0/9.0*(fahrenheit-32.0)

! Print table entry
print *, fahrenheit, ’ degrees F correspond to’,&

celsius, ’ degrees C’
end select

end do
end do read_loop

!
! Termination
print *, ’ End of valid data’

end
C 90 100
F 20 32
* 0 0

66 Modern Fortran Explained

Figure 4.8 Constructing and printing a linked list.

type entry ! Type for sparse matrix
real :: value
integer :: index
type(entry), pointer :: next

end type entry

type(entry), pointer :: first, current
integer :: key
real :: value

!
! Create a null list

nullify (first)
!
! Fill the list

do
read *, key, value
if (key <= 0) exit
allocate (current)
current = entry(value, key, first)
first => current

end do
!
! Print the list

current => first
do

if (.not.associated(current)) exit
print *, current%index, current%value
current => current%next

end do
end

1 4
2 9
0 0

5. Program units and procedures

5.1 Introduction

As we saw in the previous chapter, it is possible to write a complete Fortran program as a

single unit, but it is preferable to break the program down into manageable units. Each such

program unit corresponds to a program task that can be readily understood and, ideally, can

be written, compiled, and tested in isolation. We will discuss the three kinds of program unit,

the main program, external subprogram, and module.

A complete program must, as a minimum, include one main program. This may contain

statements of the kinds that we have met so far in examples, but normally its most important

statements are invocations or calls to subsidiary programs known as subprograms. A

subprogram defines a function or a subroutine. They differ in that a function returns a single

object and usually does not alter the values of its arguments (so that it represents a function

in the mathematical sense), whereas a subroutine usually performs a more complicated task,

returning several results through its arguments and by other means. Functions and subroutines

are known collectively as procedures.

There are various kinds of subprograms. A subprogram may be a program unit in its own

right, in which case it is called an external subprogram and defines an external procedure.

External procedures may also be defined by means other than Fortran. A subprogram may be

a member of a collection in a program unit called a module, in which case we call it a module
subprogram and it defines a module procedure. A subprogram may be placed inside a module

subprogram, an external subprogram, or a main program, in which case we call it an internal
subprogram and it defines an internal procedure. Internal subprograms may not be nested,

that is they may not contain further subprograms, and we expect them normally to be short

sequences of code, say up to about twenty lines. We illustrate the nesting of subprograms in

program units in Figure 5.1. If a program unit or subprogram contains a subprogram, it is

called the host of that subprogram.

Besides containing a collection of subprograms, a module may contain data definitions,

derived-type definitions, interface blocks (Section 5.11), and namelist groups (Section 7.15).

This collection may provide facilities associated with some particular task, such as providing

matrix arithmetic, a library facility, or a data base. It may sometimes be large.

In this chapter, we will describe program units and the statements that are associated with

them. Within a complete program, they may appear in any order, but many compilers require

a module to precede other program units that use it.

68 Modern Fortran Explained

Figure 5.1 Nesting of subprograms in program units.

Module
subprograms

Module

Internal
subprograms

Main
program

Internal
subprograms

External
subprogram

Internal
subprograms

5.2 Main program

Every complete program must have one, and only one, main program. Optionally, it may

contain calls to subprograms. A main program has the following form:

[program program-name]
[specification-stmts]
[executable-stmts]

[contains
internal-subprograms]

end [program [program-name]]

The program statement is optional, but we recommend its use. The program-name may be

any valid Fortran name such as model. The only non-optional statement is the end statement

which has two purposes. It acts as a signal to the compiler that it has reached the end of

the program unit and, when executed, it causes the complete program to stop. If it includes

program-name, this must be the name on the program statement. We recommend using the

full form so that it is clear both to the reader and to the compiler exactly what is terminated

by the end statement.

A main program without calls to subprograms is usually used only for short tests, as in

program test
print *, ’Hello world!’

end program test

The specification statements define the environment for the executable statements. So far,

we have met the type declaration statement (integer, real, complex, logical, character,

and type(type-name)) that specifies the type and other properties of the entities that it lists,

Program units and procedures 69

and the type definition block (bounded by type type-name and end type statements). We

will meet other specification statements in this and the next two chapters.

The executable statements specify the actions that are to be performed. So far, we have met

the assignment statement, the pointer assignment statement, the if statement and construct,

the do and case constructs, the go to statement, and the read and print statements. We will

meet other executable statements in this and later chapters. Execution of a program always

commences with the first executable statement of the main program.

The contains statement flags the presence of one or more internal subprograms. We

will describe internal subprograms in Section 5.6. They are excluded from the sequence of

executable statements of the main program, which concludes with the last statement ahead

of the contains statement followed by the end statement. The end statement may be the

target of a branch from one of the executable statements. If the end statement is executed,

the program stops.

5.3 The stop statement

Another way to stop program execution is to execute a stop statement. This statement may

appear in the main program or any subprogram. A well-designed program normally returns

control to the main program for program termination, so the stop statement should appear

there. However, in applications where several stop statements appear in various places in a

complete program, it is possible to distinguish which of the stop statements has caused the

termination by adding to each one a stop code consisting of a default character constant or a

string of up to five digits whose leading zeros are not significant.1 This might be used by a

given processor to indicate the origin of the stop in a message. Examples are

stop
stop ’Incomplete data. Program terminated.’
stop 12345

5.4 External subprograms

External subprograms are called from a main program or elsewhere, usually to perform a

well-defined task within the framework of a complete program. Apart from the leading

statement, they have a form that is very like that of a main program:

1Fortran 2008 allows any default integer or default character constant expression.

70 Modern Fortran Explained

subroutine-stmt
[specification-stmts]
[executable-stmts]

[contains
internal-subprograms]

end [subroutine [subroutine-name]]

or

function-stmt
[specification-stmts]
[executable-stmts]

[contains
internal-subprograms]

end [function [function-name]]

The contains statement plays exactly the same role as within a main program (see Section

5.2). The effect of executing an end statement in a subprogram is to return control to the

caller, rather than to stop execution. As for the end program statement, we recommend using

the full form for the end statement so that it is clear both to the reader and to the compiler

exactly what it terminates.

The simplest form of external subprogram defines a subroutine without any arguments and

has a subroutine-stmt of the form

subroutine subroutine-name

Such a subprogram is useful when a program consists of a sequence of distinct phases, in

which case the main program consists of a sequence of call statements that invoke the

subroutines as in the example

program game ! Main program to control a card game
call shuffle ! First shuffle the cards.
call deal ! Now deal them.
call play ! Play the game.
call display ! Display the result.

end program game ! Cease execution.

But how do we handle the flow of information between the subroutines? How does play
know which cards deal has dealt? There are, in fact, two methods by which information

may be passed. The first is via data held in a module (Section 5.5) and accessed by the

subprograms, and the second is via arguments (Section 5.7) in the procedure calls.

5.5 Modules

The third type of program unit, the module, provides a means of packaging global data,

derived types and their associated operations, subprograms, interface blocks (Section 5.11),

and namelist groups (Section 7.15). Everything associated with some task (such as interval

Program units and procedures 71

arithmetic, see later in this section) may be collected into a module and accessed whenever

it is needed. Those parts that are associated with the internal working and are of no interest

to the user may be made ‘invisible’ to the user, which allows the internal design to be altered

without the need to alter the program that uses it and prevents accidental alteration of internal

data. Fortran libraries often consist of sets of modules.

The module has the form

module module-name
[specification-stmts]

[contains
module-subprograms]

end [module [module-name]]

As for the end program, end subroutine, and end function statements, we recommend

using the full form for the end statement.

In its simplest form, the body consists only of data specifications. For example

module state
integer, dimension(52) :: cards

end module state

might hold the state of play of the game of Section 5.4. It is accessed by the statement

use state

appearing at the beginnings of the main program game and subprograms shuffle, deal,

play, and display. The array cards is set by shuffle to contain the integer values 1 to 52

in a random order, where each integer value corresponds to a pre-defined playing card. For

instance, 1 might stand for the ace of clubs, 2 for the two of clubs, etc. up to 52 for the king of

spades. The array cards is changed by the subroutines deal and play, and finally accessed

by subroutine display.

A further example of global data in a module would be the definitions of the values of the

kind type parameters that might be required throughout a program (Section 2.6.2). They can

be placed in a module and used wherever they are required. On a processor that supports all

the kinds listed, an example might be:

module numeric_kinds
! named constants for 4, 2, and 1 byte integers:
integer, parameter :: &

i4b = selected_int_kind(9), &
i2b = selected_int_kind(4), &
i1b = selected_int_kind(2)

! and for single, double and quadruple precision reals:
integer, parameter :: &

sp = kind(1.0), &
dp = selected_real_kind(2*precision(1.0_sp)), &
qp = selected_real_kind(2*precision(1.0_dp))

end module numeric_kinds

72 Modern Fortran Explained

A very useful role for modules is to contain definitions of types and their associated

operators. For example, a module might contain the type interval of Section 3.8, as shown

in Figure 5.2. Given this module, any program unit needing this type and its operators need

only include the statement

use interval_arithmetic

at the head of its specification statements.

Figure 5.2 A module for interval arithmentic.

module interval_arithmetic
type interval

real :: lower, upper
end type interval
interface operator(+)

module procedure add_intervals
end interface
:

contains
function add_intervals(a,b)

type(interval) :: add_intervals
type(interval), intent(in) :: a, b
add_intervals%lower = a%lower + b%lower
add_intervals%upper = a%upper + b%upper

end function add_intervals
:

end module interval_arithmetic

A module subprogram has exactly the same form as an external subprogram, except that

function or subroutine must be present on the end statement. It always has access to other

entities of the module, including the ability to call other subprograms of the module, rather

as if it contained a use statement for its module.

A module may contain use statements that access other modules. It must not access itself

directly or indirectly through a chain of use statements, for example a accessing b and b
accessing a. No ordering of modules is required by the standard, but normal practice is

to require each module to precede its use. We recommend this practice, which will make

it impossible for a module to access itself through other modules. It is required by many

compilers.

It is possible within a module to specify that some of the entities are private to it and cannot

be accessed from other program units. Also, there are forms of the use statement that allow

access to only part of a module and forms that allow renaming of the entities accessed. These

features will be explained in Sections 7.6 and 7.10. For the present, we assume that the whole

module is accessed without any renaming of the entities in it.

Program units and procedures 73

5.6 Internal subprograms

We have seen that internal subprograms may be defined inside main programs and external

subprograms, and within module subprograms. They have the form

subroutine-stmt
[specification-stmts]
[executable-stmts]

end subroutine [subroutine-name]

or

function-stmt
[specification-stmts]
[executable-stmts]

end function [function-name]

that is, the same form as a module subprogram, except that they may not contain further

internal subprograms. Note that function or subroutine must be present on the end
statement. An internal subprogram automatically has access to all the host’s entities,

including the ability to call its other internal subprograms. Internal subprograms must be

preceded by a contains statement in the host.

In the rest of this chapter, we describe several properties of subprograms that apply to

external, module, and internal subprograms. We therefore do not need to describe internal

subprograms separately. An example is given in Figure 5.10 (Section 5.15).

5.7 Arguments of procedures

Procedure arguments provide an alternative means for two program units to access the same

data. Returning to our card game example, instead of placing the array cards in a module, we

might declare it in the main program and pass it as an actual argument to each subprogram,

as shown in Figure 5.3.

Figure 5.3 Subroutine calls with actual arguments.

program game ! Main program to control a card game
integer, dimension(52) :: cards
call shuffle(cards) ! First shuffle the cards.
call deal(cards) ! Now deal them.
call play(cards) ! Play the game.
call display(cards) ! Display the result.

end program game ! Cease execution.

Each subroutine receives cards as a dummy argument. For instance, shuffle has the

form shown in Figure 5.4.

We can, of course, imagine a card game in which deal is going to deal only three cards

to each of four players. In this case, it would be a waste of time for shuffle to prepare a

74 Modern Fortran Explained

Figure 5.4 A subroutine with a dummy argument.

subroutine shuffle(cards)
! Subroutine that places the values 1 to 52 in cards
! in random order.
integer, dimension(52) :: cards
! Statements that fill cards
:

end subroutine shuffle ! Return to caller.

deck of 52 cards when only the first 12 cards are needed. This can be achieved by requesting

shuffle to limit itself to a number of cards that is transmitted in the calling sequence thus:

call shuffle(3*4, cards(1:12))

Inside shuffle, we would define the array to be of the given length and the algorithm to

fill cards would be contained in a do construct with this number of iterations, as shown in

Figure 5.5.

Figure 5.5 A subroutine with two dummy arguments.

subroutine shuffle(ncards, cards)
integer :: ncards, icard
integer, dimension(ncards) :: cards
do icard = 1, ncards

:
cards(icard) = ...

end do
end subroutine shuffle

We have seen how it is possible to pass an array and a constant expression between two

program units. An actual argument may be any variable or expression (or a procedure

name, see Section 5.12). Each dummy argument of the called procedure must agree with

the corresponding actual argument in type, type parameters, and shape.2 However, the names

do not have to be the same. For instance, if two decks had been needed, we might have

written the code thus:

program game
integer, dimension(52) :: acards, bcards
call shuffle(acards) ! First shuffle the a deck.
call shuffle(bcards) ! Next shuffle the b deck.
:

end program game

2The requirements on character length and shape agreement are relaxed in Appendix B.3.

Program units and procedures 75

The important point is that subprograms can be written independently of one another, the

association of the dummy arguments with the actual arguments occurring each time the call

is executed. We can imagine shuffle being used in other programs which use other names.

In this manner, libraries of subprograms may be built up.

Being able to have different names for actual and dummy arguments provides a useful

flexibility, but it should only be used when it is actually needed. When the same name can be

used, the code is more readable.

As the type of an actual argument and its corresponding dummy argument must agree, care

must be taken when using component selection within an actual argument. Thus, supposing

the type definitions point and triangle of Figure 2.1 (Section 2.9) are available in a module

def, we might write

use def
type(triangle) :: t
:
call sub(t%a)
:

contains
subroutine sub(p)

type(point) :: p

5.7.1 Pointer arguments

A dummy argument is permitted to have the attribute pointer. In this case, the actual

argument must also have the attribute pointer. When the subprogram is invoked, the rank

of the actual argument must match that of the dummy argument, and its pointer association

status is passed to the dummy argument. On return, the actual argument normally takes

its pointer association status from that of the dummy argument, but it becomes undefined if

the dummy argument is associated with a target that becomes undefined when the return is

executed (for example, if the target is a local variable that does not have the save attribute,

Section 7.9).

In the case of a module or internal procedure, the compiler knows when the dummy

argument is a pointer. In the case of an external or dummy procedure, the compiler assumes

that the dummy argument is not a pointer unless it is told otherwise in an interface block

(Section 5.11).

A pointer actual argument is also permitted to correspond to a non-pointer dummy

argument. In this case, the pointer must have a target and the target is associated with the

dummy argument, as in (assumed-shape arrays are explained in Section 6.3)

real, pointer :: a(:,:)
:
allocate (a(80,80))
call find (a)
:

subroutine find (c)
real :: c(:,:) ! Assumed-shape array

76 Modern Fortran Explained

5.7.2 Restrictions on actual arguments

There are two important restrictions on actual arguments, which are designed to allow the

compiler to optimize on the assumption that the dummy arguments are distinct from each

other and from other entities that are accessible within the procedure. For example, a compiler

may arrange for an array to be copied to a local variable on entry, and copied back on return.

While an actual argument is associated with a dummy argument the following statements

hold.

i) Action that affects the allocation status or pointer association status of the argument or

any part of it (any pointer assignment, allocation, deallocation, or nullification) must

be taken through the dummy argument. If this is done, then throughout the execution

of the procedure, the argument may be referenced only through the dummy argument.

ii) Action that affects the value of the argument or any part of it must be taken through the

dummy argument unless

a) the dummy argument has the pointer attribute;

b) the part is all or part of a pointer subobject; or

c) the dummy argument has the target attribute, the dummy argument does not

have intent in (Section 5.9), the dummy argument is scalar or an assumed-shape

array (Section 6.3), and the actual argument is a target other than an array section

with a vector subscript.

If the value of the argument or any part of it is affected through a dummy argument for

which neither a), b), or c) holds, then throughout the execution of the procedure, the

argument may be referenced only through that dummy argument.

An example of i) is a pointer that is nullified (Section 3.13) while still associated with the

dummy argument. As an example of ii), consider

call modify(a(1:5), a(3:9))

Here, a(3:5) may not be changed through either dummy argument since this would violate

the rule for the other argument. However, a(1:2) may be changed through the first argument

and a(6:9) may be changed through the second. Another example is an actual argument

that is an object being accessed from a module; here, the same object must not be accessed

from the module by the procedure and redefined. As a third example, suppose an internal

procedure call associates a host variable h with a dummy argument d. If d is defined during

the call, then at no time during the call may h be referenced directly.

5.7.3 Arguments with the target attribute

In most circumstances, an implementation is permitted to make a copy of an actual argument

on entry to a procedure and copy it back on return. This may be desirable on efficiency

grounds, particularly when the actual argument is not held in contiguous storage. In any case,

if a dummy argument has neither the target nor pointer attribute, any pointers associated

Program units and procedures 77

with the actual argument do not become associated with the corresponding dummy argument

but remain associated with the actual argument.

However, copy-in copy-out is not allowed when

i) a dummy argument has the target attribute and is either scalar or is an assumed-

shaped array; and

ii) the actual argument is a target other than an array section with a vector subscript.

In this case, the dummy and actual arguments must have the same shape, any pointer

associated with the actual argument becomes associated with the dummy argument on

invocation, and any pointer associated with the dummy argument on return remains

associated with the actual argument.

When a dummy argument has the target attribute, but the actual argument is not a target

or is an array section with a vector subscript, any pointer associated with the dummy argument

obviously becomes undefined on return.

In other cases where the dummy argument has the target attribute, whether copy-in copy-

out occurs is processor dependent. No reliance should be placed on the pointer associations

with such an argument after the invocation.

5.8 The return statement

We saw in Section 5.2 that if the last executable statement in a main program is executed and

does not cause a branch, the end statement is executed and the program stops. Similarly, if the

last executable statement in a subprogram is executed and does not cause a branch, the end
statement is executed and control returns to the point of invocation. Just as the stop statement

is an executable statement that provides an alternative means of stopping execution, so the

return statement provides an alternative means of returning control from a subprogram. It

has the form

return

and must not appear in a main program.

5.9 Argument intent

In Figure 5.5, the dummy argument cards was used to pass information out from shuffle
and the dummy argument ncards was used to pass information in. A third possibility is for a

dummy argument to be used for both input and output variables. We can specify such intent

on the type declaration statement for the argument, for example:

subroutine shuffle(ncards, cards)
integer, intent(in) :: ncards
integer, intent(out), dimension(ncards) :: cards

For input/output arguments, intent inout may be specified.

78 Modern Fortran Explained

If a dummy argument is specified with intent in, it (or any part of it) must not be redefined

by the procedure, say by appearing on the left-hand side of an assignment or by being passed

on as an actual argument to a procedure that redefines it. For the specification intent inout,

the corresponding actual argument must be a variable because the expectation is that it will

be redefined by the procedure. For the specification intent out, the corresponding actual

argument must again be a variable; in this case, the intention is that it be used only to

pass information out, so it becomes undefined on entry to the procedure, apart from any

components with default initialization (Section 7.5.4).

If a function specifies a defined operator (Section 3.8), the dummy arguments must have

intent in. If a subroutine specifies defined assignment (Section 3.9), the first argument must

have intent out or inout, and the second argument must have intent in.

If a dummy argument has no intent, the actual argument may be a variable or an expression,

but the actual argument must be a variable if the dummy argument is redefined. It has been

traditional for Fortran compilers not to check this rule, since they usually compile each

program unit separately. Breaching the rule can lead to program errors at execution time

that are very difficult to find. We recommend that all dummy arguments be given a declared

intent. Not only is this good documentation, but it allows compilers to make more checks at

compile time.

If a dummy argument has the pointer attribute, its intent is not allowed to be specified.

This is because of the ambiguity of whether the intent applies to the target data object or to

the pointer association.3

If a dummy argument is of a derived type with pointer components, its intent attribute

also refers to the pointer association status of those components. For example, if the intent is

in, no pointer assignment, allocation, or deallocation is permitted.

The Fortran 95 standard does not specify whether the intent attribute applies to the target

of a pointer component.4

5.10 Functions

Functions are similar to subroutines in many respects, but they are invoked within an

expression and return a value that is used within the expression. For example, the subprogram

in Figure 5.6 returns the distance between two points in space and the statement

if (distance(a, c) > distance(b, c)) then

invokes the function twice in the logical expression that it contains.

Note the type declaration for the function result. The result behaves just like a dummy

argument with intent out. It is initially undefined, but once defined it may appear in an

expression and it may be redefined. The type may also be defined on the function statement

thus:

real function distance(p, q)

It is permissible to write functions that change the values of their arguments, modify values

in modules, rely on local data saved (Section 7.9) from a previous invocation, or perform

3In Fortran 2003, intent is allowed and refers to the pointer association status (see Section 16.2).
4Fortran 2003 is clear that the intent attribute does not apply to the target of a pointer component.

Program units and procedures 79

Figure 5.6 A function that returns the distance between two points in space. The intrinsic

function sqrt is defined in Section 8.4.

function distance(p, q)
real :: distance
real, intent(in), dimension(3) :: p, q
distance = sqrt((p(1)-q(1))**2 + (p(2)-q(2))**2 + &

(p(3)-q(3))**2)
end function distance

input/output operations. However, these are known as side-effects and conflict with good

programming practice. Where they are needed, a subroutine should be used. It is reassuring

to know that when a function is called, nothing else goes on ‘behind the scenes’, and it may

be very helpful to an optimizing compiler, particularly for internal and module subprograms.

A formal mechanism for avoiding side-effects is provided, but we defer its description to

Section 6.10.

A function result may be an array, in which case it must be declared as such.

A function result may also be a pointer.5 The result is initially undefined. Within the

function, it must become associated or defined as disassociated. We expect the function

reference usually to be such that a pointer assignment takes place for the result, that is, the

reference occurs as the right-hand side of a pointer assignment (Section 3.12), for example,

real :: x(100)
real, pointer :: y(:)
:
y => compact(x)

or as a pointer component of a structure constructor. The reference may also occur as a

primary of an expression or as the right-hand side of an ordinary assignment, in which case

the result must become associated with a target that is defined and the value of the target

is used. We do not recommend this practice, however, since it is likely to lead to memory

leakage, discussed at the end of Section 6.5.3.

The value returned by a non-pointer function must always be defined.

As well as being a scalar or array value of intrinsic type, a function result may also be a

scalar or array value of a derived type, as we have seen already in Section 3.8. When the

function is invoked, the function value must be used as a whole, that is, it is not permitted to

be qualified by substring, array-subscript, array-section, or structure-component selection.

Although this is not very useful, a function is permitted to have an empty argument list.

In this case, the brackets are obligatory both within the function statement and at every

invocation.

5However, it is not possible for a pointer to have a function as its target. In other words, dynamic binding, or

association of a pointer with a function at run time, is not available. This deficiency is remedied in Fortran 2003 (see

Section 13.6).

80 Modern Fortran Explained

5.10.1 Prohibited side-effects

In order to assist an optimizing compiler, the standard prohibits reliance on certain side-

effects. It specifies that it is not necessary for a processor to evaluate all the operands of

an expression, or to evaluate entirely each operand, if the value of the expression can be

determined otherwise. For example, in evaluating

x>y .or. l(z) ! x, y, and z are real; l is a logical function

the function reference need not be made if x is greater than y. Since some processors will

make the call and others will not, any variable (for example z) that is redefined by the

function is regarded as undefined following such an expression evaluation. Similarly, it is

not necessary for a processor to evaluate any subscript or substring expressions for an array

of zero size or character object of zero character length.

Another prohibition is that a function reference must not redefine the value of a variable

that appears in the same statement or affect the value of another function reference in the

same statement. For example, in

d = max(distance(p,q), distance(q,r))

distance is required not to redefine its arguments. This rule allows any expressions that are

arguments of a single procedure call to be evaluated in any order. With respect to this rule,

an if statement,

if (lexpr) stmt

is treated as the equivalent if construct

if (lexpr) then
stmt

end if

and the same is true for the where statement (Section 6.8) and forall statement (Section

6.9).

5.11 Explicit and implicit interfaces

A call to an internal subprogram must be from a statement within the same program unit. It

may be assumed that the compiler will process the program unit as a whole and will therefore

know all about any internal subprogram. In particular, it will know about its interface, that is

whether it defines a function or a subroutine, the names and properties of the arguments, and

the properties of the result if it defines a function. This, for example, permits the compiler to

check whether the actual and dummy arguments match in the way that they should. We say

that the interface is explicit.
A call to a module subprogram must either be from another statement in the module or

from a statement following a use statement for the module. In both cases, the compiler will

know all about the subprogram, and again we say that the interface is explicit. Similarly,

intrinsic procedures (Chapter 8) always have explicit interfaces.

Program units and procedures 81

When compiling a call to an external or dummy procedure (Section 5.12), the compiler

normally does not have a mechanism to access its code. We say that the interface is implicit.
All the compiler has is the information about the interface that is implicit in the statements

in the environment of the invocation, for example, the number of arguments and their types.

To specify that a name is that of an external or dummy procedure, the external statement is

available. It has the form

external external-name-list

and appears with other specification statements, after any use or implicit statements

(Section 7.2) and before any executable statements. The type and type parameters of a

function with an implicit interface are usually specified by a type declaration statement for

the function name; an alternative is by the rules of implicit typing (Section 7.2) applied to the

name, but this is not available in a module unless the function has the private attribute (see

Section 7.6).

The external statement merely specifies that each external-name is the name of an

external or dummy procedure. It does not specify the interface, which remains implicit.

However, a mechanism is provided for the interface to be specified. It may be done through

an interface block of the form

interface
interface-body

end interface

Normally, the interface-body is an exact copy of the subprogram’s header, the specifications

of its arguments and function result, and its end statement. However,

• the names of the arguments may be changed;

• other specifications may be included (for example, for a local variable), but not internal

procedures, data statements, or format statements;

• the information may be given by a different combination of statements;6

• in the case of an array argument or function result, the expressions that specify a bound

may differ as long as their values can never differ; and

• a recursive procedure (Sections 5.16 and 5.17) or a pure procedure (Section 6.10) need

not be specified as such if it is not called as such.

An interface-body may be provided for a call to an external procedure defined by means other

than Fortran (usually C or assembly language).

Naming a procedure in an external statement or giving it an interface body (doing both

is not permitted) ensures that it is an external or dummy procedure. We strongly recommend

the practice for external procedures, since otherwise the processor is permitted to interpret

6A practice that is permitted by the standard, but which we do not recommend, is for a dummy argument to be

declared implicitly as a procedure by invoking it in an executable statement. If the subprogram has such a dummy

procedure, the interface will need an external statement for that dummy procedure.

82 Modern Fortran Explained

the name as that of an intrinsic procedure. It is needed for portability since processors are

permitted to provide additional intrinsic procedures. Naming a procedure in an external
statement makes all versions of an intrinsic procedure having the same name unavailable.

The same is true for giving it an interface body in the way described in the next section (but

not when the interface is generic, Section 5.18).

The interface block is placed in a sequence of specification statements and this suffices

to make the interface explicit. Perhaps the most convenient way to do this is to place the

interface block among the specification statements of a module and then use the module.

Libraries can be written as sets of external subprograms together with modules holding

interface blocks for them. This keeps the modules of modest size. Note that if a procedure

is accessible in a scoping unit, its interface is either explicit or implicit there. An external

procedure may have an explicit interface in some scoping units and an implicit interface in

others.

Interface blocks may also be used to allow procedures to be called as defined operators

(Section 3.8), as defined assignments (Section 3.9), or under a single generic name. We

therefore defer description of the full generality of the interface block until Section 5.18,

where overloading is discussed.

An explicit interface is required to invoke a procedure with a pointer or target dummy

argument or a pointer function result, and is required for several useful features that we

will meet later in this and the next chapter. It is needed so that the processor can make

the appropriate linkage. Even when not strictly required, it gives the compiler an opportunity

to examine data dependencies and thereby improve optimization. Explicit interfaces are also

desirable because of the additional security that they provide. It is straightforward to ensure

that all interfaces are explicit and we recommend the practice.

5.12 Procedures as arguments

So far, we have taken the actual arguments of a procedure invocation to be variables and

expressions, but another possibility is for them to be procedures. Let us consider the case

of a library subprogram for function minimization. It needs to receive the user’s function,

just as the subroutine shuffle in Figure 5.5 needs to receive the required number of cards.

The minimization code might look like the code in Figure 5.7. Notice the way the procedure

argument is declared by an interface block playing a similar role to that of the type declaration

statement for a data object.

Just as the type and shape of actual and dummy data objects must agree, so must the

properties of the actual and dummy procedures. The agreement is exactly as for a procedure

and an interface body for that procedure (see Section 5.11). It would make no sense to specify

an intent attribute (Section 5.9) for a dummy procedure, and this is not permitted.

On the user side, the code may look like that in Figure 5.8. Notice that the structure is rather

like a sandwich: user-written code invokes the minimization code which in turn invokes user-

written code. An external procedure here would instead require the use of an interface block

or, as a minimum, the procedure name would have to be declared in an external statement.

The procedure that is passed can only be an external or module procedure and its specific

name must be passed when it also has a generic name (Section 5.18). Internal procedures are

Program units and procedures 83

Figure 5.7 A library subprogram for function minimization.

real function minimum(a, b, func) ! Returns the minimum
! value of the function func(x) in the interval (a,b)

real, intent(in) :: a, b
interface

real function func(x)
real, intent(in) :: x

end function func
end interface
real :: f,x
:
f = func(x) ! invocation of the user function.
:

end function minimum

not permitted7 because it is anticipated that they may be implemented quite differently (for

example, by in-line code), and because of the need to identify the depth of recursion when

the host is recursive (Section 5.16) and the procedure involves host variables.

5.13 Keyword and optional arguments

In practical applications, argument lists can get long and actual calls may need only a few

arguments. For example, a subroutine for constrained minimization might have the form

subroutine mincon(n, f, x, upper, lower, &
equalities, inequalities, convex, xstart)

On many calls, there may be no upper bounds, or no lower bounds, or no equalities, or

no inequalities, or it may not be known whether the function is convex, or a sensible

starting point may not be known. All the corresponding dummy arguments may be declared

optional (see also Section 7.8). For instance, the bounds might be declared by the statement

real, optional, dimension(n) :: upper,lower

If the first four arguments are the only wanted ones, we may use the statement

call mincon(n, f, x, upper)

but usually the wanted arguments are scattered. In this case, we may follow a (possibly

empty) ordinary positional argument list for leading arguments by a keyword argument list,

as in the statement

call mincon(n, f, x, equalities=q, xstart=x0)

7A rule abolished in Fortran 2008, see Section 20.5.5.

84 Modern Fortran Explained

Figure 5.8 Invoking the library code of Figure 5.7.

module code
contains

real function fun(x)
real, intent(in) :: x
:

end function fun
end module code
program main

use code
real :: f
:
f = minimum(1.0, 2.0, fun)
:

end program main

The keywords are the dummy argument names and there must be no further positional

arguments after the first keyword argument.

This example also illustrates the merits of both positional and keyword arguments as far as

readability is concerned. A small number of leading positional arguments (for example, n, f,

and x) are easily linked in the reader’s mind to the corresponding dummy arguments. Beyond

this, the keywords are very helpful to the reader in making these links. We recommend their

use for long argument lists even when there are no gaps caused by optional arguments that

are not present.

A non-optional argument must appear exactly once, either in the positional list or in the

keyword list. An optional argument may appear at most once, either in the positional list or

in the keyword list. An argument must not appear in both lists.

The called subprogram needs some way to detect whether an argument is present so that it

can take appropriate action when it is not. This is provided by the intrinsic function present
(see Section 8.2). For example

present(xstart)

returns the value .true. if the current call has provided a starting point and .false.
otherwise. When it is absent, the subprogram might, for example, use a random number

generator to provide a starting point.

A slight complication occurs if an optional dummy argument is used within the subprogram

as an actual argument in a procedure invocation. For example, our minimization subroutine

might start by calling a subroutine that handles the corresponding equality problem by the

call

call mineq(n, f, x, equalities, convex, xstart)

In such a case, an absent optional argument is also regarded as absent in the second-level

subprogram. For instance, when convex is absent in the call of mincon, it is regarded as

Program units and procedures 85

absent in mineq too. Such absent arguments may be propagated through any number of calls,

provided the dummy argument is optional in each case. An absent argument further supplied

as an actual argument must be specified as a whole, and not as a subobject. Furthermore,

an absent pointer is not permitted to be associated with a non-pointer dummy argument (the

target is doubly absent).

Since the compiler will not be able to make the appropriate associations unless it knows

the keywords (dummy argument names), the interface must be explicit (Section 5.11) if any

of the dummy arguments are optional or keyword arguments are in use. Note that an interface

block may be provided for an external procedure to make the interface explicit. In all cases

where an interface block is provided, it is the names of the dummy arguments in the block

that are used to resolve the associations.

5.14 Scope of labels

Execution of the main program or a subprogram always starts at its first executable statement

and any branching always takes place from one of its executable statements to another.

Indeed, each subprogram has its own independent set of labels. This includes the case of

a host subprogram with several internal subprograms. The same label may be used in the

host and the internal subprograms without ambiguity.

This is our first encounter with scope. The scope of a label is a main program or a

subprogram, excluding any internal subprograms that it contains. The label may be used

unambiguously anywhere among the executable statements of its scope. Notice that the host

end statement may be labelled and be a branch target from a host statement, that is the internal

subprograms leave a hole in the scope of the host (see Figure 5.9).

5.15 Scope of names

In the case of a named entity, there is a similar set of statements within which the name

may always be used to refer to the entity. Here, type definitions and interface blocks as well

as subprograms can knock holes in scopes. This leads us to regard each program unit as

consisting of a set of non-overlapping scoping units. A scoping unit is one of the following:

• a derived-type definition;

• a procedure interface body, excluding any derived-type definitions and interface bodies

contained within it; or

• a program unit or subprogram, excluding derived-type definitions, interface bodies, and

subprograms contained within it.

An example containing five scoping units is shown in Figure 5.9.

Once an entity has been declared in a scoping unit, its name may be used to refer to it in

that scoping unit. An entity declared in another scoping unit is always a different entity even

if it has the same name and exactly the same properties.8 Each is known as a local entity. This

8Apart from the effect of storage association, which is not discussed until Appendix B and whose use we strongly

discourage.

86 Modern Fortran Explained

Figure 5.9 An example of nested scopes.

module scope1 ! scope 1
: ! scope 1

contains ! scope 1
subroutine scope2 ! scope 2

type scope3 ! scope 3
: ! scope 3

end type scope3 ! scope 3
interface ! scope 2

: ! scope 4
end interface ! scope 2
: ! scope 2

contains ! scope 2
function scope5(...) ! scope 5

: ! scope 5
end function scope5 ! scope 5

end subroutine scope2 ! scope 2
end module scope1 ! scope 1

is very helpful to the programmer, who does not have to be concerned about the possibility

of accidental name clashes. Note that this is true for derived types, too. Even if two derived

types have the same name and the same components, entities declared with them are treated

as being of different types.9

A use statement of the form

use module-name

is regarded as a re-declaration of all the module entities inside the local scoping unit, with

exactly the same names and properties. The module entities are said to be accessible by use
association. Names of entities in the module may not be used to declare local entities (but

see Section 7.10 for a description of further facilities provided by the use statement when

greater flexibility is required).

In the case of a derived-type definition, a module subprogram, or an internal subprogram,

the name of an entity in the host (including an entity accessed by use association) is similarly

treated as being automatically re-declared with the same properties, provided no entity with

this name is declared locally, is a local dummy argument or function result, or is accessed by

use association. The host entity is said to be accessible by host association. For example, in

the subroutine inner of Figure 5.10, x is accessible by host association, but y is a separate

local variable and the y of the host is inaccessible. We note that inner calls another internal

procedure that is a function, f; it must not contain a type specification for that function, as the

interface is already explicit. Such a specification would, in fact, declare a different, external
function of that name. The same remark applies to a module procedure calling a function in

the same module.

9Apart from storage association effects (Appendix B).

Program units and procedures 87

Figure 5.10 Examples of host association.

subroutine outer
real :: x, y
:

contains
subroutine inner

real :: y
y = f(x) + 1. ! x and f accessed by host association
:

end subroutine inner
function f(z)

real :: f
real, intent(in) :: z
:

end function f
end subroutine outer

Note that the host has no access to the local entities of a subroutine that it contains.

Host association does not extend to interface blocks.10 This allows an interface body

to be constructed mechanically from the specification statements of an external procedure.

Note, however, that if a derived type needed for the interface is accessed from a module, the

interface block constructed from the procedure cannot be placed in the module that defines

the type since a module is not permitted to access itself. For example, the attempted access

in Figure 5.11 is not permitted.

Figure 5.11 Trying to write an interface in a module for a procedure that uses the module.

module m
type t

integer :: i, j, k
end type t
interface g

subroutine s(a)
use m ! Illegal module access.
type(t) :: a

end subroutine s
end interface

end module m

Within a scoping unit, each named data object, procedure, derived type, named construct,

and namelist group (Section 7.15) must have a distinct name, with the one exception of

generic names of procedures (to be described in Section 5.18). Note that this means that

10In Fortran 2003, this is remedied by the import statement, Section 16.4.

88 Modern Fortran Explained

any appearance of the name of an intrinsic procedure in another rôle makes the intrinsic

procedure inaccessible by its name (the renaming facility described in Section 7.10 allows

an intrinsic procedure to be accessed from a module and renamed). Within a type definition,

each component of the type, each intrinsic procedure referenced, and each derived type or

named constant accessed by host association, must have a distinct name. Apart from these

rules, names may be reused. For instance, a name may be used for the components of two

types, or the arguments of two procedures referenced with keyword calls.

The names of program units and external procedures are global, that is available anywhere

in a complete program. Each must be distinct from the others and from any of the local

entities of the program unit.

At the other extreme, the do variable of an implied-do in a data statement (Section 7.5.2)

or an array constructor (Section 6.16) has a scope that is just the implied-do. It is different

from any other entity with the same name.

5.16 Direct recursion

Normally, a subprogram may not invoke itself, either directly or indirectly, through a

sequence of other invocations. However, if the leading statement is prefixed recursive,

this is allowed. Where the subprogram is a function that calls itself directly in this fashion,

the function name cannot be used for the function result and another name is needed. This is

done by adding a further clause to the function statement as in Figure 5.12, which illustrates

the use of a recursive function to sum the entries in a chain (see Section 2.13).

Figure 5.12 Summing the entries in a linked list.

recursive function sum(top) result(s)
type(entry), pointer :: top
real :: s
if (associated(top)) then

s = top%value + sum(top%next)
else

s = 0.0
end if

end function sum

The type of the function (and its result) may be specified on the function statement, either

before or after the token recursive:

integer recursive function factorial(n) result(res)
or

recursive integer function factorial(n) result(res)

or in a type declaration statement for the result name (as in Figure 5.12). In fact, the result

name, rather than the function name, must be used in any specification statement. In the

executable statements, the function name refers to the function itself and the result name

Program units and procedures 89

must be used for the result variable. If there is no result clause, the function name is used

for the result, and is not available for a recursive function call.

The result clause may also be used in a non-recursive function.

Just as in Figure 5.12, any recursive procedure that calls itself directly must contain a

conditional test that terminates the sequence of calls at some point, otherwise it will call

itself indefinitely.

Each time a recursive procedure is invoked, a fresh set of local data objects is created,

which ceases to exist on return. They consist of all data objects declared in the procedure’s

specification statements or declared implicitly (see Section 7.2), but excepting those with the

data or save attribute (see Sections 7.5 and 7.9) and any dummy arguments. The interface

is explicit within the procedure.

5.17 Indirect recursion

A procedure may also be invoked by indirect recursion, that is it may call itself through calls

to other procedures. To illustrate that this may be useful, suppose we wish to perform a two-

dimensional integration but have only the procedure for one-dimensional integration shown

in Figure 5.13. For example, suppose that it is desired to integrate a function f of x and y

Figure 5.13 A library code for one-dimensional integration.

recursive function integrate(f, bounds)
! Integrate f(x) from bounds(1) to bounds(2)
real :: integrate
interface

function f(x)
real :: f
real, intent(in) :: x

end function f
end interface
real, dimension(2), intent(in) :: bounds
:

end function integrate

over a rectangle. We might write a Fortran function in a module to receive the value of x
as an argument and the value of y from the module itself by host association, as shown in

Figure 5.14. We can then integrate over x for a particular value of y, as shown in Figure 5.15,

where integrate might be as shown in Figure 5.13. We may now integrate over the whole

rectangle thus

volume = integrate(fy, ybounds)

Note that integrate calls fy, which in turn calls integrate.

90 Modern Fortran Explained

Figure 5.14 A two-dimensional function to be integrated.

module func
real :: yval
real, dimension(2) :: xbounds, ybounds

contains
function f(xval)

real :: f
real, intent(in) :: xval
f = ... ! Expression involving xval and yval

end function f
end module func

Figure 5.15 Integrate over x.

function fy(y)
use func
real :: fy
real, intent(in) :: y
yval = y
fy = integrate(f, xbounds)

end function fy

5.18 Overloading and generic interfaces

We saw in Section 5.11 how to use a simple interface block to provide an explicit interface

to an external or dummy procedure. Another use is for overloading, that is being able to

call several procedures by the same generic name. Here, the interface block contains several

interface bodies and the interface statement specifies the generic name. For example, the

code in Figure 5.16 permits both the functions sgamma and dgamma to be invoked using the

generic name gamma.

A specific name for a procedure may be the same as its generic name. For example, the

procedure sgamma could be renamed gamma without invalidating the interface block.

Furthermore, a generic name may be the same as another accessible generic name. In

such a case, all the procedures that have this generic name may be invoked through it. This

capability is important, since a module may need to extend the intrinsic functions such as sin
to a new type such as interval (Section 3.8).

If it is desired to overload a module procedure, the interface is already explicit so it is

inappropriate to specify an interface body. Instead, the statement

module procedure procedure-name-list

is included in the interface block in order to name the module procedures for overloading;

if the functions sgamma and dgamma above were defined in a module, the interface block

becomes

Program units and procedures 91

Figure 5.16 A generic interface block.

interface gamma
function sgamma(x)

real (selected_real_kind(6)) :: sgamma
real (selected_real_kind(6)), intent(in) :: x

end function sgamma
function dgamma(x)

real (selected_real_kind(12)) :: dgamma
real (selected_real_kind(12)), intent(in) :: x

end function dgamma
end interface

interface gamma
module procedure sgamma, dgamma

end interface

It is probably most convenient to place such a block in the module itself.

Any generic specification on an interface statement may be repeated on the correspond-

ing end interface statement, for example,

end interface gamma

As for other end statements, we recommend use of this fuller form.

Another form of overloading occurs when an interface block specifies a defined operation

(Section 3.8) or a defined assignment (Section 3.9) to extend an intrinsic operation or

assignment. The scope of the defined operation or assignment is the scoping unit that contains

the interface block, but it may be accessed elsewhere by use or host association. If an intrinsic

operator is extended, the number of arguments must be consistent with the intrinsic form (for

example, it is not possible to define a unary * operator).

The general form of the interface block is

interface [generic-spec]
[interface-body]...
[module procedure procedure-name-list]...

! Interface bodies and module
! procedure statements may appear in any order.

end interface [generic-spec]

where generic-spec is

generic-name
operator(defined-operator)

or

assignment(=)

92 Modern Fortran Explained

A module procedure statement is permitted only when a generic-spec is present, and all

the procedures must be accessible module procedures (as shown in the complete module in

Figure 5.18 below). No procedure name may be given a particular generic-spec more than

once in the interface blocks accessible within a scoping unit. An interface body must be

provided for an external or dummy procedure.

If operator is specified on the interface statement, all the procedures in the block must

be functions with one or two non-optional arguments having intent in.11 If assignment is

specified, all the procedures must be subroutines with two non-optional arguments, the first

having intent out or inout and the second intent in. In order that invocations are always

unambiguous, if two procedures have the same generic operator and the same number of

arguments or both define assignment, one must have a dummy argument that corresponds

by position in the argument list to a dummy argument of the other that has a different type,

different kind type parameter, or different rank.

All procedures that have a given generic name must be subroutines or all must be functions,

including the intrinsic ones when an intrinsic procedure is extended. Any two non-intrinsic

procedures with the same generic name must have arguments that are distinguishable (have

incompatible data type, kind, or rank) in order that any invocation will be unambiguous. The

rule is that either

i) one of them has more non-optional data-object arguments of a particular data type, kind

type parameter, and rank than the other has data-object arguments (including optional

data-object arguments) of that data type, kind type parameter, and rank; or

ii) at least one of them has both

• a non-optional dummy argument that corresponds by position in the argument

list to a dummy argument that is distinguishable from it, or for which no dummy

argument corresponds by position; and

• a non-optional dummy argument with the same name as a dummy argument that

is distinguishable from it, or for which there is no dummy argument of that name.

These two arguments must either be the same or the argument that corresponds by

position must occur earlier in the dummy argument list.

For case ii), both rules are needed in order to cater for both keyword and positional

dummy argument lists. For instance, the interface in Figure 5.17 is invalid because the two

functions are always distinguishable in a positional call, but not on a keyword call such as

f(i=int, x=posn). If a generic invocation is ambiguous between a non-intrinsic and an

intrinsic procedure, the non-intrinsic procedure is invoked.

Note that the presence or absence of the pointer attribute is insufficient to ensure an

unambiguous invocation since a pointer actual argument may be associated with a non-pointer

dummy argument, see Section 5.7.1.

11Since intent must not be specified in Fortran 95 for a pointer dummy argument (Section 5.7.1), this implies

that if an operand of derived data type also has the pointer attribute, it is the value of its target that is passed to the

function defining the operator, and not the pointer itself. The pointer status is inaccessible within the function. In

Fortran 2003, intent may be specified for a pointer dummy argument.

Program units and procedures 93

Figure 5.17 An example of a broken overloading rule.

interface f ! Invalid interface block
function fxi(x,i)

real :: fxi
real, intent(in) :: x
integer :: i

end function fxi
function fix(i,x)

real :: fix
real, intent(in) :: x
integer :: i

end function fix
end interface

There are many scientific applications in which it is useful to keep a check on the sorts of

quantities involved in a calculation. For instance, in dimensional analysis, whereas it might

be sensible to divide length by time to obtain velocity, it is not sensible to add time to velocity.

There is no intrinsic way to do this, but we conclude this section with an outline example, see

Figures 5.18 and 5.19, of how it might be achieved using derived types.

Note that definitions for operations between like entities are also required, as shown by

time_plus_time. Similarly, any intrinsic function that might be required, here sqrt, must

be overloaded appropriately. Of course, this can be avoided if the components of the variables

are referenced directly, as in

t%seconds = t%seconds + 1.0

5.19 Assumed character length

A character dummy argument may be declared with an asterisk for the value of the length

type parameter, in which case it automatically takes the value from the actual argument. For

example, a subroutine to sort the elements of a character array might be written thus

subroutine sort(n,chars)
integer, intent(in) :: n
character(len=*), dimension(n), intent(in) :: chars
:

end subroutine sort

If the length of the associated actual argument is needed within the procedure, the intrinsic

function len (Section 8.6.1) may be invoked, as in Figure 5.20.

An asterisk must not be used for a kind type parameter value. This is because a change of

character length is analogous to a change of an array size and can easily be accommodated in

the object code, whereas a change of kind probably requires a different machine instruction

for every operation involving the dummy argument. A different version of the procedure

94 Modern Fortran Explained

Figure 5.18 A module for distinguishing real entities.

module sorts
type time

real :: seconds
end type time
type velocity

real :: metres_per_second
end type velocity
type length

real :: metres
end type length
type length_squared

real :: metres_squared
end type length_squared
interface operator(/)

module procedure length_by_time
end interface
interface operator(+)

module procedure time_plus_time
end interface
interface sqrt

module procedure sqrt_metres_squared
end interface

contains
function length_by_time(s, t)

type(length), intent(in) :: s
type(time), intent(in) :: t
type(velocity) :: length_by_time
length_by_time%metres_per_second = s%metres / t%seconds

end function length_by_time
function time_plus_time(t1, t2)

type(time), intent(in) :: t1, t2
type(time) :: time_plus_time
time_plus_time%seconds = t1%seconds + t2%seconds

end function time_plus_time
function sqrt_metres_squared(l2)

type(length_squared), intent(in) :: l2
type(length) :: sqrt_metres_squared
sqrt_metres_squared%metres = sqrt(l2%metres_squared)

end function sqrt_metres_squared
end module sorts

Program units and procedures 95

Figure 5.19 Use of the module of Figure 5.18.

program test
use sorts
type(length) :: s = length(10.0), l
type(length_squared) :: s2 = length_squared(10.0)
type(velocity) :: v
type(time) :: t = time(3.0)
v = s / t

! Note: v = s + t or v = s * t would be illegal
t = t + time(1.0)
l = sqrt(s2)
print *, v, t, l

end program test

Figure 5.20 A function with an argument of assumed character length.

integer function count (letter, string)
character (1), intent(in) :: letter
character (*), intent(in) :: string

! Count the number of occurrences of letter in string
count = 0
do i = 1, len(string)

if (string(i:i) == letter) count = count + 1
end do

end function count

would need to be generated for each possible kind value of each argument. The overloading

feature (previous section) gives the programmer an equivalent functionality with explicit

control over which versions are generated.

5.20 The subroutine and function statements

We finish this chapter by giving the syntax of the subroutine and function statements,

which have so far been explained through examples. It is

[prefix] subroutine subroutine-name [([dummy-argument-list])]

and

[prefix] function function-name ([dummy-argument-list]) &
[result(result-name)]

where prefix is

prefix-spec [prefix-spec] ...

96 Modern Fortran Explained

and prefix-spec is type, recursive, pure, or elemental. A prefix-spec must not be repeated.

For details of type, see Section 7.13; this, of course, must not be present on a subroutine
statement.

Apart from pure and elemental, which will be explained in Sections 6.10 and 6.11, each

feature has been explained separately and the meanings are the same in the combinations

allowed by the syntax.

5.21 Summary

A program consists of a sequence of program units. It must contain exactly one main program

but may contain any number of modules and external subprograms. We have described each

kind of program unit. Modules contain data definitions, type definitions, namelist groups,

interface blocks, and module subprograms, all of which may be accessed in other program

units with the use statement. The program units may be in any order, but many compilers

require modules to precede their use.

Subprograms define procedures, which may be functions or subroutines. They may also

be defined intrinsically (Chapter 8) and external procedures may be defined by means other

than Fortran. We have explained how information is passed between program units and to

procedures through argument lists and through the use of modules. Procedures may be called

recursively provided they are correspondingly specified.

The interface to a procedure may be explicit or implicit. If it is explicit, keyword calls may

be made, and the procedure may have optional arguments. Interface blocks permit procedures

to be invoked as operations or assignments, or by a generic name. The character lengths of

dummy arguments may be assumed.

We have also explained about the scope of labels and Fortran names, and introduced the

concept of a scoping unit.

Exercises

1. A subroutine receives as arguments an array of values, x, and the number of elements in x, n. If the

mean and variance of the values in x are estimated by

mean =
1

n

n

∑
i=1

x(i)

and

variance =
1

n−1

n

∑
i=1

(x(i)−mean)2

write a subroutine which returns these calculated values as arguments. The subroutine should check

for invalid values of n (≤ 1).

2. A subroutine matrix_mult multiplies together two matrices A and B, whose dimensions are i× j
and j× k, respectively, returning the result in a matrix C dimensioned i× k. Write matrix_mult,

given that each element of C is defined by

Program units and procedures 97

C(m,n) =
J

∑
�=1

(A(m, �)×B(�,n))

The matrices should appear as arguments to matrix_mult.

3. The subroutine random_number (Section 8.16.3) returns a random number in the range 0.0 to 1.0,

that is

call random_number(r) ! 0≤r<1

Using this function, write the subroutine shuffle of Figure 5.4.

4. A character string consists of a sequence of letters. Write a function to return that letter of the

string which occurs earliest in the alphabet; for example, the result of applying the function to

DGUMVETLOIC is C.

5. Write an internal procedure to calculate the volume, πr2�, of a cylinder of radius r and length �,
using as the value of π the result of acos(-1.0), and reference it in a host procedure.

6. Choosing a simple card game of your own choice, and using the random number procedure (Section

8.16.3), write the subroutines deal and play of Section 5.4, using data in a module to communicate

between them.

7. Objects of the intrinsic type character are of a fixed length. Write a module containing a definition

of a variable-length character string type, of maximum length 80, and also the procedures necessary

to:

i) assign a character variable to a string;

ii) assign a string to a character variable;

iii) return the length of a string;

iv) concatenate two strings.

This page intentionally left blank

6. Array features

6.1 Introduction

In an era when many computers have the hardware capability for efficient processing of array

operands, it is self-evident that a numerically based language such as Fortran should have

matching notational facilities. Such facilities provide not only a notational convenience for

the programmer, but also provide an opportunity to enhance optimization.

Arrays were introduced in Sections 2.10 to 2.13, their use in simple expressions and in

assignments was explained in Sections 3.10 and 3.11, and they were used as procedure

arguments in Chapter 5. These descriptions were deliberately restricted because Fortran

contains a very full set of array features whose complete description would have unbalanced

those chapters. The purpose of this chapter is to describe the array features in detail, but

without anticipating the descriptions of the array intrinsic procedures of Chapter 8; the rich

set of intrinsic procedures should be regarded as an integral part of the array features.

6.2 Zero-sized arrays

It might be thought that an array would always have at least one element. However, such

a requirement would force programs to contain extra code to deal with certain natural

situations. For example, the code in Figure 6.1 solves a lower-triangular set of linear

equations. When i has the value n, the sections have size zero, which is just what is required.

Figure 6.1 A do loop whose final iteration has a zero-sized array.

do i = 1,n
x(i) = b(i) / a(i, i)
b(i+1:n) = b(i+1:n) - a(i+1:n, i) * x(i)

end do

Fortran allows arrays to have zero size in all contexts. Whenever a lower bound exceeds

the corresponding upper bound, the array has size zero.

There are few special rules for zero-sized arrays because they follow the usual rules, though

some care may be needed in their interpretation. For example, two zero-sized arrays of the

same rank may have different shapes. One might have shape (0,2) and the other (0,3) or (2,0).

100 Modern Fortran Explained

Such arrays of differing shape are not conformable and therefore may not be used together as

the operands of a binary operation. However, an array is always conformable with a scalar so

the statement

zero-sized-array = scalar

is valid and the scalar is ‘broadcast to all the array elements’, making this a ‘do nothing’

statement.

A zero-sized array is regarded as being defined always, because it has no values that can

be undefined.

6.3 Assumed-shape arrays

Outside Appendix B, we require that the shapes of actual and dummy arguments agree, and

so far we have achieved this by passing the extents of the array arguments as additional

arguments. However, it is possible to require that the shape of the dummy array be taken

automatically to be that of the corresponding actual array argument. Such an array is said

to be an assumed-shape array. When the shape is declared by the dimension clause, each

dimension has the form

[lower-bound]:

where lower-bound is an integer expression that may depend on module data or the other

arguments (see Section 7.14 for the exact rules). If lower-bound is omitted, the default value

is 1. Note that it is the shape that is passed, and not the upper and lower bounds. For example,

if the actual array is a, declared thus:

real, dimension(0:10, 0:20) :: a

and the dummy array is da, declared thus:

real, dimension(:, :) :: da

then a(i,j) corresponds to da(i+1,j+1); to get the natural correspondence, the lower

bound must be declared:

real, dimension(0:, 0:) :: da

In order that the compiler knows that additional information is to be supplied, the interface

must be explicit (Section 5.11) at the point of call. A dummy array with the pointer attribute

is not regarded as an assumed-shape array because its shape is not necessarily assumed.

6.4 Automatic objects

A procedure with dummy arguments that are arrays whose size varies from call to call may

also need local arrays whose size varies. A simple example is the array work in the subroutine

to interchange two arrays that is shown in Figure 6.2.

An array whose extents vary in this way is called an automatic array, and is an example

of an automatic data object. Such an object is not a dummy argument and its declaration

Array features 101

Figure 6.2 A procedure with an automatic array. size is described in Section 8.12.2.

subroutine swap(a, b)
real, dimension(:), intent(inout) :: a, b
real, dimension(size(a)) :: work ! automatic array

! size provides the size of an array
work = a
a = b
b = work

end subroutine swap

contains one or more values that are not known at compile time; that is, not a constant

expression (Section 7.4). An implementation is likely to bring them into existence when

the procedure is called and destroy them on return, maintaining them on a stack.1 The values

must be defined by specification expressions (Section 7.14).

The other way that automatic objects arise is through varying character length. The variable

word2 in

subroutine example(word1)
character(len = *), intent(inout) :: word1
character(len = len(word1)) :: word2

is an example. If a function result has varying character length, the interface must be explicit

at the point of call because the compiler needs to know this, as shown in Figure 6.3.

Figure 6.3 A module containing a procedure with an automatic scalar.

program loren
character (len = *), parameter :: a = ’just a simple test’
print *, double(a)

contains
function double(a)

character (len = *), intent(in) :: a
character (len = 2*len(a)) :: double
double = a//a

end function double
end program loren

An array bound or the character length of an automatic object is fixed for the duration of

each execution of the procedure and does not vary if the value of the specification expression

varies or becomes undefined.

Some small restrictions on the use of automatic data objects appear in Sections 7.5, 7.9,

and 7.15.

1A stack is a memory management mechanism whereby fresh storage is established and old storage is discarded

on a ‘last in, first out’ basis, often within contiguous memory.

102 Modern Fortran Explained

6.5 Allocation of data

There is an underlying assumption in Fortran that the processor supplies a mechanism for

managing heap2 storage. The statements described in this section are the user interface to

that mechanism.

6.5.1 The allocatable attribute

Sometimes an array is required to be of a size that is known only after some data have

been read or some calculations performed. For this purpose, an array may be given the

allocatable attribute by a statement such as

real, dimension(:, :), allocatable :: a

Such an array is called allocatable. Its rank is specified when it is declared, but the bounds

are undefined until an allocate statement such as

allocate (a(n, 0:n+1)) ! n of type integer

has been executed for it. Its allocation status is either allocated or not currently allocated.

Its initial status is not currently allocated and it becomes allocated following successful

execution of an allocate statement.

An important example is shown in Figure 6.4. The array work is placed in a module and is

allocated at the beginning of the main program to a size that depends on input data. The array

is then available throughout program execution in any subprogram that has a use statement

for work_array.

Figure 6.4 An allocatable array in a module.

module work_array
integer :: n
real, dimension(:,:,:), allocatable :: work

end module work_array
program main

use work_array
read *, n
allocate (work(n, 2*n, 3*n))
:

When an allocatable array a is no longer needed, it may be deallocated by execution of the

statement

deallocate (a)

following which the array is ‘not currently allocated’. The deallocate statement is

described in more detail in Section 6.5.3.

If it is required to make any change to the bounds of an allocatable array, the array must

be deallocated and then allocated afresh.3 It is an error t allocate an allocatable array that is

2A heap is a memory management mechanism whereby fresh storage may be established and old storage may be

discarded in any order. Mechanisms to deal with the progressive fragmentation of the memory are usually required.
3This restriction is removed in Fortran 2003, see Section 15.5.3.

Array features 103

already allocated, or to deallocate an allocatable array that is not currently allocated, but one

that can easily be avoided by the use of the allocated intrinsic function (Section 8.12.1).

An undefined allocation status cannot occur. On return from a subprogram, an allocated

allocatable array without the save attribute (Section 7.9) is automatically deallocated if it is

local to the subprogram.4 This automatic deallocation avoids inadvertent memory leakage.

6.5.2 The allocate statement

We mentioned in Section 2.13 that the allocate statement can also be used to give fresh

storage for a pointer target directly. A pointer becomes associated (Section 3.3) following

successful execution of the statement. The general form of the allocate statement is

allocate (allocation-list [, stat=stat])

where allocation-list is a list of allocations of the form

allocate-object [(array-bounds-list)]

each array-bound has the form

[lower-bound :] upper-bound

and stat is a scalar integer variable that must not be part of an object being allocated.

If the stat= specifier is present, stat is given either the value zero after a successful

allocation or a positive value after an unsuccessful allocation (for example, if insufficient

storage is available). After an unsuccessful execution, each array that was not successfully

allocated retains its previous allocation or pointer association status. If stat= is absent and

the allocation is unsuccessful, program execution stops.

Each allocate-object is an allocatable array or a pointer. It is permitted to have zero

character length.

Each lower-bound and each upper-bound is a scalar integer expression. The default value

for the lower bound is 1. The number of array-bounds in a list must equal the rank of the

allocate-object. They determine the array bounds, which do not alter if the value of a variable

in one of the expressions changes subsequently. An array may be allocated to be of size zero.

The bounds of all the arrays being allocated are regarded as undefined during the execution

of the allocate statement, so none of the expressions that specify the bounds may depend

on any of the bounds or on the value of the stat= variable. For example,

allocate (a(size(b)), b(size(a))) ! illegal

or even

allocate (a(n), b(size(a))) ! illegal

is not permitted, but

allocate (a(n))
allocate (b(size(a)))

4Strictly speaking, it is processor dependent as to whether an allocatable array remains allocated or is deallocated

if it is local to a module and is accessed only by the subprogram, but such deallocation is not permitted in Fortran

2008 and we know of no Fortran 95 implementation that does it.

104 Modern Fortran Explained

is valid. This restriction allows the processor to perform the allocations in a single allocate
statement in any order.

In contrast to the case with an allocatable array, a pointer may be allocated a new target

even if it is currently associated with a target. In this case, the previous association is broken.

If the previous target was created by allocation, it becomes inaccessible unless another pointer

is associated with it. Linked lists are normally created by using a single pointer in an

allocate statement for each node of the list. There is an example in Figure 4.8.

6.5.3 The deallocate statement

When an allocatable array or pointer target is no longer needed, its storage may be recovered

by using the deallocate statement. Its general form is

deallocate (allocate-object-list [,stat=stat])

where each allocate-object is an allocatable array that is allocated or a pointer that is

associated with the whole of a target that was allocated through a pointer in an allocate
statement.5 Here, stat is a scalar integer variable that must not be deallocated by the statement

nor depend on an object that is deallocated by the statement. If stat= is present, stat is given

either the value zero after a successful execution or a positive value after an unsuccessful

execution (for example, if a pointer is disassociated). After an unsuccessful execution,

each array that was not successfully deallocated retains its previous allocation or pointer

association status. If stat= is absent and the deallocation is unsuccessful, program execution

stops.

A pointer becomes disassociated (Section 3.3) following successful execution of the

statement. If there is more than one object in the list, there must be no dependencies among

them, to allow the processor to deallocate the objects one by one in any order.

A danger in using the deallocate statement is that storage may be deallocated while

pointers are still associated with the targets it held. Such pointers are left ‘dangling’ in an

undefined state, and must not be reused until they are again associated with an actual target.

In order to avoid an accumulation of unused and unusable storage, all explicitly allocated

storage should be explicitly deallocated when it is no longer required (although, as noted

at the end of Section 6.5.1, for allocatable arrays, there are circumstances in which this is

automatic). This explicit management is required in order to avoid a potentially significant

overhead on the part of the processor in handling arbitrarily complex allocation and reference

patterns.

Note also that the standard does not specify whether the processor recovers storage

allocated through a pointer but no longer accessible through this or any other pointer. This

failure to recover storage is known as memory leakage. It might be important where, for

example, a pointer function is referenced within an expression – the programmer cannot rely

on the compiler to arrange for deallocation. To ensure that there is no memory leakage, it

is necessary to use such functions only on the right-hand side of pointer assignments or as

pointer component values in structure constructors, and to deallocate the pointer when it is

no longer needed.

5Note that this excludes a pointer that is associated with an allocatable array.

Array features 105

6.5.4 Allocatable dummy arguments

A dummy arrray is permitted to have the allocatable attribute. In this case, the corresponding

actual argument must be an allocatable array of the same type, kind parameters, and rank;

also, the interface must be explicit. The dummy argument always receives the allocation

status (descriptor) of the actual argument on entry and the actual argument receives that of

the dummy argument on return. In both cases, this includes the bounds and may be ‘not

currently allocated’.

Our expectation is that some compilers will perform copy-in copy-out of the descriptor.

Rule i) of Section 5.7.2 is applicable and is designed to permit compilers to do this. In

particular, this means that no reference to the actual argument (for example, through it being

a module variable) is permitted from the invoked procedure if the dummy array is allocated

or deallocated there.

For the array itself, the situation is just like the case when the actual and dummy arguments

are both explicit-shape arrays (see Section 5.7.3). Copy-in copy-out is permitted unless both

arrays have the target attribute.

An allocatable dummy argument is permitted to have intent and this applies both to the

allocation status (the descriptor) and to the array itself. If the intent is in, the array is not

permitted to be allocated or deallocated and the value is not permitted to be altered. If the

intent is out and the array is allocated on entry, it becomes deallocated. An example of the

application of an allocatable dummy argument to reading arrays of variable bounds is shown

in Figure 6.5.

Figure 6.5 Reading arrays whose size is not known beforehand.

subroutine load(array, unit)
real, allocatable, intent(out), dimension(:, :, :) :: array
integer, intent(in) :: unit
integer :: n1, n2, n3
read (unit) n1, n2, n3
allocate (array(n1, n2, n3))
read (unit) array

end subroutine load

6.5.5 Allocatable functions

An array function result is permitted to have the allocatable attribute, which is very useful

when the size of the result depends on a calculation in the function itself, as illustrated in

Figure 6.6. The allocation status on each entry to the function is ‘not currently allocated’.

The result may be allocated and deallocated any number of times during execution of the

procedure, but it must be allocated and have a defined value on return.

The interface must be explicit in any scoping unit in which the function is referenced.

The result array is automatically deallocated after execution of the statement in which the

reference occurs, even if it has the target attribute.

106 Modern Fortran Explained

Figure 6.6 An allocatable function to remove duplicate values.

program no_leak
real, dimension(100) :: x, y
:
y(:size(compact(x))) = compact(x)**2
:

contains
function compact(x) ! To remove duplicates from the array x

real, allocatable, dimension(:) :: compact
real, dimension(:), intent(in) :: x
integer :: n
: ! Find the number of distinct values, n
allocate (compact(n))
: ! Copy the distinct values into compact

end function compact
end program no_leak

6.5.6 Allocatable components

Array components of derived type are permitted to have the allocatable attribute. For

example, a lower-triangular matrix may be held by using an allocatable array for each row.

Consider the type

type row
real, dimension(:), allocatable :: r

end type row

and the arrays

type(row), dimension(n) :: s, t ! n of type integer

Storage for the rows can be allocated thus

do i = 1, n ! i of type integer
allocate (t(i)%r(1:i)) ! Allocate row i of length i

end do

The array assignment

s = t

would then be equivalent to the assignments

s(i)%r = t(i)%r

for all the components.

Just as for an ordinary allocatable array, the initial state of an allocable component is ‘not

currently allocated’. This is also true for an ultimate allocatable component (Section 9.3) of

an object created by an allocate statement. Hence, there is no need for default initialization

Array features 107

of allocatable components. In fact, initialization in a derived-type definition (Section 7.11) of

an allocatable component is not permitted.

In a structure constructor (Section 3.8), an expression corresponding to an allocatable

component must be an array or a reference to the intrinsic function null with no arguments.

If it is an allocatable array, the component takes the same allocation status and, if allocated,

the same bounds and value. If it is an array, but not an allocatable array, the component is

allocated with the same bounds and is assigned the same value. If it is a reference to the

intrinsic function null with no arguments, the component receives the allocation status of

‘not currently allocated’.

Allocatable components are illustrated in Figure 6.7, where code to manipulate polynomi-

als with variable numbers of terms is shown.

Figure 6.7 Using allocatable components for adding polynomials.

module real_polynomial_module
type real_polynomial
real, allocatable, dimension(:) :: coeff

end type real_polynomial
interface operator(+)

module procedure rp_add_rp
end interface operator(+)

contains
function rp_add_rp(p1, p2)

type(real_polynomial) :: rp_add_rp
type(real_polynomial), intent(in) :: p1, p2
integer :: m, m1, m2
m1 = ubound(p1%coeff,1)
m2 = ubound(p2%coeff,1)
allocate (rp_add_rp%coeff(max(m1,m2)))
m = min(m1,m2)
rp_add_rp%coeff(:m) = p1%coeff(:m) +p2%coeff(:m)
if (m1 > m) rp_add_rp%coeff(m+1:) = p1%coeff(m+1:)
if (m2 > m) rp_add_rp%coeff(m+1:) = p2%coeff(m+1:)

end function rp_add_rp
end module real_polynomial_module
program example

use real_polynomial_module
type(real_polynomial) :: p, q, r
p = real_polynomial((/4.0, 2.0, 1.0/)) ! Set p to 4+2x+x**2
q = real_polynomial((/-1.0, 1.0/))
r = p + q
print *, ’Coefficients are: ’, r%coeff

end program example

108 Modern Fortran Explained

Just as an allocatable array is not permitted to have the parameter attribute (be a constant),

so an object of a type having an ultimate allocatable component is not permitted to have the

parameter attribute; further, a structure constructor of such a type cannot be a constant and

thus an constant expression cannot have such a type.6

When a variable of derived type is deallocated, any ultimate allocatable component that

is currently allocated is also deallocated, as if by a deallocate statement. The variable

may be a pointer or an allocatable array, and the rule applies recursively, so that all allocated

allocatable components at all levels (apart from any lying beyond pointer components) are

deallocated. Such deallocations of components also occur when a variable is associated with

an intent out dummy argument.

Intrinsic assignment

variable = expr

for a type with an ultimate allocatable component (as in r = p + q in Figure 6.7) consists

of the following steps for each such component.

i) If the component of variable is currently allocated, it is deallocated.

ii) If the component of expr is currently allocated, the component of variable is allocated

with the same bounds and the value is then transferred using intrinsic assignment.

If the allocatable component of expr is ‘not currently allocated’, nothing happens in step ii),

so the component of variable is left ‘not currently allocated’. Note that if the component

of variable is already allocated with the same shape, the compiler may choose to avoid the

overheads of deallocation and reallocation. Note also that if the compiler can tell that there

will be no subsequent reference to expr, because it is a function reference or a temporary

variable holding the result of expression evaluation, no allocation or assignment is needed –

all that has to happen is the deallocation of any allocated ultimate allocatable components of

variable followed by the copying of the descriptor.

If a component is itself of a derived type with an allocatable component, the intrinsic

assignment in step ii) will involve these rules, too. In fact, they are applied recursively at

all levels, and copying occurs in every case. This is known as deep copying as opposed to

shallow copying which occurs for pointer components, where the descriptor is copied and

nothing is done for components of pointer components.

If an actual argument and the corresponding dummy argument have an ultimate allocatable

component, rule i) of Section 5.7.2 is applicable and requires all allocations and deallocations

of the component to be performed through the dummy argument, in case copy-in copy-out is

in effect.

If a statement contains a reference to a function whose result is of a type with an ultimate

allocatable component, any allocated ultimate allocatable components of the function result

are deallocated after execution of the statement. This parallels the rule for allocatable function

results (Section 6.5.5).

6All of these are permitted in Fortran 2003 provided the component is specifed as ‘not currently allocated’

explicitly with null() or implicitly by not being given a value. The component will always be ‘not currently

allocated’.

Array features 109

6.5.7 Allocatable arrays vs. pointers

Why are allocatable arrays needed? Is all their functionality not available (and more) with

pointer arrays? The reason is that there are significant advantages for memory management

and execution speed in using allocatable arrays when the added functionality of pointers is

not needed.

• Code for a pointer array is likely to be less efficient because allowance has to be

made for strides other than unity. For example, its target might be the section

vector(1:n:2) or the section matrix(i,1:n) with non-unit strides, whereas most

computers hold allocatable arrays in contiguous memory.

• If a defined operation involves a temporary variable of a derived type with a pointer

component, the compiler will probably be unable to deallocate its target when storage

for the variable is freed. Consider, for example, the statement

a = b + c*d ! a, b, c, and d are of the same derived type

This will create a temporary for c*d, which is not needed once b + c*d has been

calculated. The compiler is unlikely to be sure that no other pointer has the component

or part of it as a target, so is unlikely to deallocate it.

• Intrinsic assignment is often unsuitable for a derived type with a pointer component

because the assignment

a = b

will leave a and b sharing the same target for their pointer component. Therefore, a

defined assignment that allocates a fresh target and copies the data will be used instead.

However, this is very wasteful if the right-hand side is a temporary such as that of the

assignment of the previous paragraph.

• Similar considerations apply to a function invocation within an expression. The

compiler will be unlikely to be able to deallocate the pointer after the expression has

been calculated.

• When a variable of derived type is deallocated, any ultimate allocatable component

that is currently allocated is also deallocated. To avoid memory leakage with pointer

components, the programmer would need to deallocate each one explicitly and be

careful to order the deallocations correctly.

Although the Fortran standard does not mention descriptors, it is very helpful to think of

an allocatable array as being held as a descriptor that records whether it is allocated and, if

so, its address and its bounds in each dimension. This is like a descriptor for a pointer, but no

strides need be held since these are always unity. As for pointers, the expectation is that the

array itself is held separately.

110 Modern Fortran Explained

6.6 Elemental operations and assignments

We saw in Section 3.10 that an intrinsic operator can be applied to conformable operands, to

produce an array result whose element values are the values of the operation applied to the

corresponding elements of the operands. Such an operation is called elemental.
It is not essential to use operator notation to obtain this effect. Many of the intrinsic

procedures (Chapter 8) are elemental and have scalar dummy arguments that may be called

with array actual arguments provided all the array arguments have the same shape. For a

function, the shape of the result is the shape of the array arguments. For example, we may

find the square roots of all the elements of a real array thus:

a = sqrt(a)

If any actual argument in a subroutine invocation is array valued, all the actual arguments

corresponding to dummy arguments with intent out or inout must be arrays. If a procedure

that invokes an elemental function has an optional array-valued dummy argument that is

absent, that dummy argument must not be used in the elemental invocation unless another

array of the same rank is associated with a non-optional argument of the elemental procedure

(to ensure that the rank does not vary from call to call).

Similarly, an intrinsic assignment may be used to assign a scalar to all the elements of an

array, or to assign each element of an array to the corresponding element of an array of the

same shape (Section 3.11). Such an assignment is also called elemental.
For a defined operator, a similar effect may be obtained with a generic interface to functions

for each desired rank or pair of ranks. For example, the module in Figure 6.8 provides

summation for scalars and rank-one arrays of intervals (Section 3.8). Alternatively, an

elemental procedure can be defined for this purpose (Section 6.11).

Similarly, elemental versions of defined assignments may be provided explicitly or an

elemental procedure can be defined for this purpose (Section 6.11).

6.7 Array-valued functions

We mentioned in Section 5.10 that a function may have an array-valued result, and have used

this language feature in Figure 6.8 where the interpretation is obvious.

In order that the compiler should know the shape of the result, the interface must be explicit

(Section 5.11) whenever such a function is referenced. The shape is specified within the

function definition by the dimension attribute for the function name. Unless the function

result is allocatable or a pointer, the bounds must be explicit expressions and they are

evaluated on entry to the function. For another example, see the declaration of the function

result in Figure 6.9.

An array-valued function is not necessarily elemental. For example, at the end of Section

3.10 we considered the type

type matrix
real :: element

end type matrix

Array features 111

Figure 6.8 Interval addition for scalars and arrays of rank one.

module interval_addition
type interval

real :: lower, upper
end type interval
interface operator(+)

module procedure add00, add11
end interface

contains
function add00 (a, b)

type (interval) :: add00
type (interval), intent(in) :: a, b
add00%lower = a%lower + b%lower ! Production code would
add00%upper = a%upper + b%upper ! allow for roundoff.

end function add00
function add11 (a, b)

type (interval), dimension(:), intent(in) :: a
type (interval), dimension(size(a)) :: add11
type (interval), dimension(size(a)), intent(in) :: b
add11%lower = a%lower + b%lower ! Production code would
add11%upper = a%upper + b%upper ! allow for roundoff.

end function add11
end module interval_addition

Its scalar and rank-one operations might be as for reals, but for multiplying a rank-two array

by a rank-one array, we might use the module function shown in Figure 6.9 to provide matrix

by vector multiplication.

6.8 The where statement and construct

It is often desired to perform an array operation only for certain elements, say those whose

values are positive. The where statement provides this facility. A simple example is

where (a > 1.0) a = 1.0/a ! a is a real array

which reciprocates those elements of a that are greater than 1.0 and leaves the rest unaltered.

The general form is

where (logical-array-expr) array-variable = expr

The logical array expression logical-array-expr must have the same shape as array-variable.

It is evaluated first and then just those elements of expr that correspond to elements of logical-
array-expr that have the value true are evaluated and are assigned to the corresponding

elements of array-variable. All other elements of array-variable are left unaltered. The

assignment may be a defined assignment, provided that it is elemental (Section 6.11).

112 Modern Fortran Explained

Figure 6.9 A function for matrix by vector multiplication. size is defined in Section 8.12.

function mult(a, b)
!

type(matrix), dimension(:, :) :: a
type(matrix), dimension(size(a, 2)) :: b
type(matrix), dimension(size(a, 1)) :: mult
integer :: j, n

!
mult = 0.0 ! A defined assignment from a real

! scalar to a rank-one matrix.
n = size(a, 1)
do j = 1, size(a, 2)

mult = mult + a(1:n, j) * b(j)
! Uses defined operations for addition of
! two rank-one matrices and multiplication
! of a rank-one matrix by a scalar matrix.

end do
end function mult

A single logical array expression may be used for a sequence of array assignments all of

the same shape. The general form of this construct is

where (logical-array-expr)
array-assignments

end where

The logical array expression logical-array-expr is first evaluated and then each array

assignment is performed in turn, under the control of this mask. If any of these assignments

affect entities in logical-array-expr, it is always the value obtained when the where statement

is executed that is used as the mask.

The where construct may take the form

where (logical-array-expr)
array-assignments

elsewhere
array-assignments

end where

Here, the assignments in the first block of assignments are performed in turn under the control

of logical-array-expr and then the assignments in the second block are performed in turn

under the control of .not.logical-array-expr. Again, if any of these assignments affect

entities in logical-array-expr, it is always the value obtained when the where statement is

executed that is used as the mask.

A simple example of a where construct is

Array features 113

where (pressure <= 1.0)
pressure = pressure + inc_pressure
temp = temp + 5.0

elsewhere
raining = .true.

end where

where pressure, inc_pressure, temp, and raining are arrays of the same shape.

If a where statement or construct masks an elemental function reference, the function is

called only for the wanted elements. For example,

where (a > 0) a = log(a)

(log is defined in Section 8.4) would not lead to erroneous calls of log for negative

arguments.

This masking applies to all elemental function references except any that are within an

argument of a non-elemental function reference. The masking does not extend to array

arguments of such a function. In general, such arguments have a different shape so that

masking would not be possible. For example, in the case

where (a > 0) a = a/sum(log(a))

(sum is defined in Section 8.11) the logarithms of each of the elements of a are summed and

the statement will fail if they are not all positive.

If a non-elemental function reference or an array constructor is masked, it is fully evaluated

before the masking is applied.

It is permitted to mask not only the where statement of the where construct, but also any

elsewhere statement that it contains. The masking expressions involved must be of the same

shape. A where construct may contain any number of masked elsewhere statements but at

most one elsewhere statement without a mask, and that must be the final one. In addition,

where constructs may be nested within one another; the masking expressions of the nested

constructs must be of the same shape, as must be the array variables on the left-hand sides of

the assignments.

A simple where statement such as that at the start of this section is permitted within a

where construct and is interpreted as if it were the corresponding where construct containing

one array assignment.

Finally, a where construct may be named in the same way as other constructs.

An example illustrating more complicated where constructs that are named is shown in

Figure 6.10.

All the statements of a where construct are executed one by one in sequence, including

the where and elsewhere statements. The logical array expressions in the where and

elsewhere statements are evaluated once and control of subsequent assignments is not

affected by changes to the values of these expressions. Throughout a where construct there

is a control mask and a pending mask which change after the evaluation of each where,

elsewhere, and end where statement, as illustrated in Figure 6.10.

114 Modern Fortran Explained

Figure 6.10 Nested where constructs, showing the masking.

assign_1: where (cond_1)
: ! masked by cond_1

elsewhere (cond_2)
: ! masked by
: ! cond_2.and..not.cond_1

assign_2: where (cond_4)
: ! masked by
: ! cond_2.and..not.cond_1.and.cond_4

elsewhere
: ! masked by
: ! cond_2.and..not.cond_1.and..not.cond_4

end where assign_2
:

elsewhere (cond_3) assign_1
: ! masked by
: ! cond_3.and..not.cond_1.and..not.cond_2

elsewhere assign_1
: ! masked by
: ! not.cond_1.and..not.cond_2.and..not.cond_3

end where assign_1

6.9 The forall statement and construct

When elements of an array are assigned values by a do construct such as

do i = 1, n
a(i, i) = 2.0 * x(i) ! a is rank-2 and x rank-1

end do

the processor is required to perform each successive iteration in order and one after the other.

This represents a potentially severe impediment to optimization on a parallel processor so,

for this purpose, Fortran has the forall statement. The above loop can be written as

forall(i = 1:n) a(i, i) = 2.0 * x(i)

which specifies that the set of expressions denoted by the right-hand side of the assignment

is first evaluated in any order, and the results are then assigned to their corresponding array

elements, again in any order of execution. The forall statement may be considered to be an

array assignment expressed with the help of indices. In this particular example, we note also

that this operation could not otherwise be represented as a simple array assignment. Other

examples of the forall statement are

forall(i = 1:n, j = 1:m) a(i, j) = i + j
forall(i = 1:n, j = 1:n, y(i, j) /= 0.) x(j, i) = 1.0/y(i, j)

where, in the second statement, we note the masking condition – the assignment is not carried

out for zero elements of y.

Array features 115

The forall construct also exists. The forall equivalent of the array assignments

a(2:n-1, 2:n-1) = a(2:n-1, 1:n-2) + a(2:n-1, 3:n) &
+ a(1:n-2, 2:n-1) + a(3:n, 2:n-1)

b(2:n-1, 2:n-1) = a(2:n-1, 2:n-1)

is

forall(i = 2:n-1, j = 2:n-1)
a(i, j) = a(i, j-1) + a(i, j+1) + a(i-1, j) + a(i+1, j)
b(i, j) = a(i, j)

end forall

This sets each internal element of a equal to the sum of its four nearest neighbours and copies

the result to b. The forall version is more readable. Note that each assignment in a forall
is like an array assignment; the effect is as if all the expressions were evaluated in any order,

held in temporary storage, then all the assignments performed in any order. Each statement

in a forall construct must fully complete before the next can begin.

A forall statement or construct may contain pointer assignments. An example is

type element
character(32), pointer :: name

end type element
type(element) :: chart(200)
character(32), target :: names(200)
: ! define names
forall(i =1:200)

chart(i)%name => names(i)
end forall

Note that there is no array syntax for performing, as in this example, an array of pointer

assignments.

As with all constructs, forall constructs may be nested. The sequence

forall (i = 1:n-1)
forall (j = i+1:n)

a(i, j) = a(j, i) ! a is a rank-2 array
end forall

end forall

assigns the transpose of the lower triangle of a to the upper triangle of a.

A forall construct can include a where statement or construct. Each statement of a where
construct is executed in sequence. An example with a where statement is

forall (i = 1:n)
where (a(i, :) == 0) a(i, :) = i
b(i, :) = i / a(i, :)

end forall

Here, each zero element of a is replaced by the value of the row index and, following

this complete operation, the elements of the rows of b are assigned the reciprocals of the

corresponding elements of a multiplied by the corresponding row index.

116 Modern Fortran Explained

The complete syntax of the forall construct is

[name:] forall(index = lower: upper [:stride] &
[, index = lower: upper [:stride]]... [,scalar-logical-expr])

[body]
end forall [name]

where index is a named integer scalar variable. Its scope is that of the construct; that is, other

variables may have the name but are separate and not accessible in the forall. The index
may not be redefined within the construct. Within a nested construct, each index must have

a distinct name. The expressions lower, upper, and stride (stride is optional but must be

nonzero when present) are scalar integer expressions and form a sequence of values as for a

section subscript (Section 6.13); they may not reference any index of the same statement but

may reference an index of an outer forall. Once these expressions have been evaluated, the

scalar-logical-expr, if present, is evaluated for each combination of index values. Those for

which it has the value .true. are active in each statement of the construct. The name is the

optional construct name; if present, it must appear on both the forall and the end forall
statements.

The body itself consists of one or more: assignment statements, pointer assignment

statements, where statements or constructs, and further forall statements or constructs. The

subobject on the left-hand side of each assignment in the body should reference each index
of the constructs it is contained in as part of the identification of the subobject, whether it be

a non-pointer variable or a pointer object.7

In the case of a defined assignment statement, the subroutine that is invoked must not

reference any variable that becomes defined by the statement, nor any pointer object that

becomes associated.

A forall construct whose body is a single assignment or pointer assignment statement

may be written as a single forall statement.

Procedures may be referenced within the scope of a forall, both in the logical scalar

expression that forms the optional mask or, directly or indirectly (for instance as a defined

operation or assignment), in the body of the construct. All such procedures must be pure (see

Section 6.10).

As in assignments to array sections (Section 6.13), it is not allowed to make a many-to-one

assignment. The construct

forall (i = 1:10)
a(index(i)) = b(i) ! a, b and index are arrays

end forall

is valid if and only if index(1:10) contains no repeated values. Similarly, it is not permitted

to associate more than one target with the same pointer.

7This is not actually a requirement, but any missing index would need to be restricted to a single value to satisfy

the requirements of the final paragraph of this section. For example, the statement

forall (i = i1:i2, j = j1:j2) a(j) = a(j) + b(i, j)

is valid only if i1 and i2 have the same value.

Array features 117

6.10 Pure procedures

In the description of functions in Section 5.10, we noted the fact that, although it is

permissible to write functions with side-effects, this is regarded as undesirable. In fact,

used within forall statements or constructs (Section 6.9), the possibility that a function

or subroutine reference might have side-effects is a severe impediment to optimization on

a parallel processor – the order of execution of the assignments could affect the results. In

order to control this situation, it is possible for the programmer to assert that a procedure has

no side-effects by adding the pure keyword to the subroutine or function statement. In

practical terms, this is an assertion that the procedure

i) if a function, does not alter any dummy argument;

ii) does not alter any part of a variable accessed by host or use association;

iii) contains no local variable with the save attribute (Section 7.9);

iv) performs no operation on an external file (Chapters 9 and 10); and

v) contains no stop statement.

To ensure that these requirements are met and that a compiler can easily check that this is

so, there are the following further rules:

i) any dummy argument that is a procedure and any procedure referenced must be pure

and have an explicit interface;

ii) the intent of a dummy argument must be declared unless it is a procedure or a pointer,

and this intent must be in in the case of a function;

iii) any procedure internal to a pure procedure must be pure; and

iv) a variable that is accessed by host or use association or is an intent in dummy argument

or any part of such a variable must not be the target of a pointer assignment statement;

it must not be the right-hand side of an intrinsic assignment if the left-hand side is of

derived type with a pointer component at any level of component selection; and it must

not be associated as an actual argument with a dummy argument that is a pointer or has

intent out or inout.

This last rule ensures that a local pointer cannot cause a side-effect.

The function in Figure 5.6 (Section 5.10) is pure, and this could be specified explicitly:

pure function distance(p, q)

An external or dummy procedure that is used as a pure procedure must have an interface

block that specifies it as pure. However, the procedure may be used in other contexts without

the use of an interface block or with an interface block that does not specify it as pure. This

allows library procedures to be specified as pure without limiting them to be used as such.

The main reason for allowing pure subroutines is to be able to use a defined assignment

in a forall statement or construct and so, unlike pure functions, they may have dummy

arguments that have intent out or inout or the pointer attribute. Their existence also gives

the possibility of making subroutine calls from within pure functions.

118 Modern Fortran Explained

All the intrinsic functions (Chapter 8) are pure, and can thus be referenced freely within

pure procedures. Also, the elemental intrinsic subroutine mvbits (Section 8.8.3) is pure.

The pure attribute is given automatically to any procedure that has the elemental attribute

(next section).

6.11 Elemental procedures

We have met already the notion of elemental intrinsic procedures (Section 6.6 and, later,

Chapter 8) – those with scalar dummy arguments that may be called with array actual

arguments provided that the array arguments have the same shape (that is, provided all

the arguments are conformable). For a function, the shape of the result is the shape of

the array arguments. This feature exists too for non-intrinsic procedures. This requires the

elemental prefix on the function or subroutine statement. For example, we could make

the function add_intervals of Section 3.8 elemental, as shown in Figure 6.11. This is an

aid to optimization on parallel processors.

Figure 6.11 An elemental function.

elemental function add_intervals(a,b)
type(interval) :: add_intervals
type(interval), intent(in) :: a, b
add_intervals%lower = a%lower + b%lower ! Production code
add_intervals%upper = a%upper + b%upper ! would allow for

end function add_intervals ! roundoff.

An elemental procedure must satisfy all the requirements of a pure procedure (previous

section); in fact, it automatically has the pure attribute.8 In addition, all dummy arguments

and function results must be scalar variables without the pointer attribute. A dummy argument

or its subobject may be used in a specification expression only as an argument to the intrinsic

functions bit_size, kind, len or numeric inquiry functions of Section 8.7.2. An example is

elemental real function f(a)
real, intent(in) :: a
real(selected_real_kind(precision(a)*2)) :: work
:

end function f

This restriction prevents character functions yielding an array result with elements of varying

character lengths and permits implementations to create array-valued versions that employ

ordinary arrays internally. A simple example that would break the rule is

8These requirements can be overridden in Fortran 2008 by the impure attribute, see Section 20.5.4.

Array features 119

elemental function c(n)
character (len=n) :: c ! Invalid
integer, intent(in) :: n
real :: work(n) ! Invalid
:

end function c

If this were allowed, a rank-one version would need to hold work as a ragged-edge array of

rank two.

An interface block for an external procedure is required if the procedure itself is non-

intrinsic and elemental. The interface must specify it as elemental. This is because the

compiler may use a different calling mechanism in order to accommodate the array case

efficiently. It contrasts with the case of pure procedures, where more freedom is permitted

(see previous section).

For an elemental subroutine, if any actual argument is array valued, all actual arguments

corresponding to dummy arguments with intent inout or out must be arrays. For example,

we can make the subroutine swap of Figure 6.2 (Section 6.4) perform its task on arrays of

any shape or size, as shown in Figure 6.12. Calling swap with an array and a scalar argument

is obviously erroneous and is not permitted.

Figure 6.12 Elemental version of the subroutine of Figure 6.2.

elemental subroutine swap(a, b)
real, intent(inout) :: a, b
real :: work
work = a
a = b
b = work

end subroutine swap

If a generic procedure reference (Section 5.18) is consistent with both an elemental and a

non-elemental procedure, the non-elemental procedure is invoked. For example, we might

write versions of add_intervals (Figure 6.11) for arrays of rank one and rely on the

elemental function for other ranks. In general, one must expect the elemental version to

execute more slowly for a specific rank than the corresponding non-elemental version.

We note that a non-intrinsic elemental procedure may not be used as an actual argument.

A procedure is not permitted to be both elemental and recursive.

6.12 Array elements

In Section 2.10, we restricted the description of array elements to simple cases. In general,

an array element is a scalar of the form

part-ref [%part-ref]...

where part-ref is

120 Modern Fortran Explained

part-name[(subscript-list)]

and the last part-ref has a subscript-list. The number of subscripts in each list must be

equal to the rank of the array or array component, and each subscript must be a scalar integer

expression whose value is within the bounds of its dimension of the array or array component.

To illustrate this, take the type

type triplet
real :: u
real, dimension(3) :: du
real, dimension(3,3) :: d2u

end type triplet

which was considered in Section 2.10. An array may be declared of this type:

type(triplet), dimension(10,20,30) :: tar

and

tar(n,2,n*n) ! n of type integer

is an array element. It is a scalar of type triplet and

tar(n, 2, n*n)%du

is a real array with

tar(n, 2, n*n)%du(2)

as one of its elements.

If an array element is of type character, it may be followed by a substring reference:

(substring-range)

for example,

page (k*k) (i+1:j-5) ! i, j, k of type integer

By convention, such an object is called a substring rather than an array element.

Notice that it is the array part-name that the subscript list qualifies. It is not permitted

to apply such a subscript list to an array designator unless the designator terminates with an

array part-name. An array section, a function reference, or an array expression in parentheses

must not be qualified by a subscript list.

6.13 Array subobjects

Array sections were introduced in Section 2.10 and provide a convenient way to access a

regular subarray such as a row or a column of a rank-two array:

a(i, 1:n) ! Elements 1 to n of row i
a(1:m, j) ! Elements 1 to m of column j

For simplicity of description, we did not explain that one or both bounds may be omitted

when the corresponding bound of the array itself is wanted, and that a stride other than one

may be specified:

Array features 121

a(i, :) ! The whole of row i
a(i, 1:n:3) ! Elements 1, 4, ... of row i

Another form of section subscript is a rank-one integer expression. All the elements of

the expression must be defined with values that lie within the bounds of the parent array’s

subscript. For example,

v((/ 1, 7, 3, 2 /))

is a section with elements v(1), v(7), v(3), and v(2), in this order. Such a subscript is

called a vector subscript. If there are any repetitions in the values of the elements of a vector

subscript, the section is called a many–one section because more than one element of the

section is mapped onto a single array element. For example,

v((/ 1, 7, 3, 7 /))

has elements 2 and 4 mapped onto v(7). A many–one section must not appear on the left of

an assignment statement because there would be several possible values for a single element.

For instance, the statement

v((/ 1, 7, 3, 7 /)) = (/ 1, 2, 3, 4 /) ! Illegal

is not allowed because the values 2 and 4 cannot both be stored in v(7). The extent is zero if

the vector subscript has zero size.

When an array section with a vector subscript is an actual argument, it is regarded as an

expression and the corresponding dummy argument must not be defined or redefined and

must not have intent out or inout. We expect compilers to make a copy as a temporary

regular array on entry but to perform no copy back on return. Also, an array section with a

vector subscript is not permitted to be a pointer target, since allowing them would seriously

complicate the mechanism that compilers would otherwise have to establish for pointers. For

similar reasons, such an array section is not permitted to be an internal file (Section 9.6).

In addition to the regular and irregular subscripting patterns just described, the intrinsic

circular shift function cshift (Section 8.13.5) provides a mechanism that manipulates array

sections in a ‘wrap-round’ fashion. This is useful in handling the boundaries of certain types

of periodic grid problems, although it is subject to similar restrictions to those on vector

subscripts. If an array v(5) has the value [1,2,3,4,5], then cshift(v, 2) has the value

[3,4,5,1,2].

The general form of a subobject is

part-ref[%part-ref]... [(substring-range)]

where part-ref now has the form

part-name [(section-subscript-list)]

where the number of section subscripts in each list must be equal to the rank of the array

or array component. Each section-subscript is either a subscript (Section 6.12), a rank-one

integer expression (vector subscript), or a subscript-triplet of the form

[lower] : [upper] [: stride]

122 Modern Fortran Explained

where lower, upper, and stride are scalar integer expressions. If lower is omitted, the default

value is the lower bound for this subscript of the array. If upper is omitted, the default value

is the upper bound for this subscript of the array. If stride is omitted, the default value is one.

The stride may be negative so that it is possible to take, for example, the elements of a row in

reverse order by specifying a section such as

a(i, 10:1:-1)

The extent is zero if stride>0 and lower>upper, or if stride<0 and lower<upper. The value

of stride must not be zero.

Normally, we expect the values of both lower and upper to be within the bounds of the

corresponding array subscript. However, all that is required is that each value actually used

to select an element is within the bounds. Thus,

a(1, 2:11:2)

is legal even if the upper bound of the second dimension of a is only 10.

The subscript-triplet specifies a sequence of subscript values,

lower, lower + stride, lower + 2*stride,...

going as far as possible without going beyond upper (above it when stride> 0 or below it

when stride< 0). The length of the sequence for the ith subscript-triplet determines the ith
extent of the array that is formed.

The rank of a part-ref with a section-subscript-list is the number of vector subscripts and

subscript triplets that it contains. So far in this section, all the examples have been of rank

one; by contrast, the ordinary array element

a(1,7)

is an example of a part-ref of rank zero, and the section

a(:,1:7)

is an example of a part-ref of rank two. The rank of a part-ref without a section-subscript-list
is the rank of the object or component. A part-ref may be an array; for example,

tar%du(2)

for the array tar of Section 6.12 is an array section with elements tar(1,1,1)%du(2),

tar(2,1,1)%du(2), tar(3,1,1)%du(2), Being able to form sections in this way from

arrays of derived type, as well as by selecting sets of elements, is a very useful feature of the

language. A more prosaic example, given the specification

type(person), dimension(1:50) :: my_group

for the type person of Section 2.9, is the subobject my_group%id which is an integer array

section of size 50.

Unfortunately, it is not permissible for more than one part-ref to be an array; for example,

it is not permitted to write

tar%du ! Illegal

for the array tar of Section 6.12. The reason for this is that if tar%du were considered to be

an array, its element (1,2,3,4) would correspond to

Array features 123

tar(2,3,4)%du(1)

which would be too confusing a notation.

The part-ref with nonzero rank determines the rank and shape of the subobject. If any of

its extents is zero, the subobject itself has size zero. It is called an array section if the final

part-ref has a section-subscript-list or another part-ref has a nonzero rank.

A substring-range may be present only if the last part-ref is of type character and is either

a scalar or has a section-subscript-list. By convention, the resulting object is called a section

rather than a substring. It is formed from the unqualified section by taking the specified

substring of each element. Note that, if c is a rank-one character array,

c(i:j)

is the section formed from elements i to j; if substrings of all the array elements are wanted,

we may write the section

c(:)(k:l)

An array section that ends with a component name is also called a structure component.
Note that if the component is scalar, the section cannot be qualified by a trailing subscript list

or section subscript list. Thus, using the example of Section 6.12,

tar%u

is such an array section and

tar(1, 2, 3)%u

is a component of a valid element of tar. The form

tar%u(1, 2, 3) ! not permitted

is not allowed.

Additionally, a part-name to the right of a part-ref with nonzero rank must not have

the allocatable or pointer attribute. This is because such an object would represent

an array whose elements were independently allocated and would require a very different

implementation mechanism from that needed for an ordinary array. For example, consider

the array

type(entry), dimension(n) :: rows ! n of type integer

for the type entry defined near the end of Section 6.5.2. If we were allowed to write the

object rows%next, it would be interpreted as another array of size n and type entry, but

its elements are likely to be stored without any regular pattern (each having been separately

given storage by an allocate statement) and indeed some will be null if any of the pointers

are disassociated. Note that there is no problem over accessing individual pointers such as

rows(i)%next.

6.14 Arrays of pointers

Although arrays of pointers as such are not allowed in Fortran, the equivalent effect can be

achieved by creating a type containing a pointer component. This is useful when constructing

a linked list that is more complicated than the chain described in Section 2.13. For instance,

if a variable number of links are needed at each entry, the recursive type entry of Figure 2.3

might be expanded to the pair of types:

124 Modern Fortran Explained

type ptr
type(entry), pointer :: point

end type ptr
type entry

real :: value
integer :: index
type(ptr), pointer :: children(:)

end type entry

After appropriate allocations and pointer associations, it is then possible to refer to the index

of child j of node as

node%children(j)%point%index

This extra level of indirection is necessary because the individual elements of children
do not, themselves, have the pointer attribute – this is a property only of the whole array.

For example, we can take two existing nodes, say a and b, each of which is a tree root, and

make a big tree thus

tree%children(1)%point => a
tree%children(2)%point => b

which would not be possible with the original type entry.

6.15 Pointers as aliases

If an array section without vector subscripts, such as

table(m:n, p:q)

is wanted frequently while the integer variables m, n, p, and q do not change their values, it is

convenient to be able to refer to the section as a named array such as

window

Such a facility is provided in Fortran by pointers and the pointer assignment statement. Here,

window would be declared thus

real, dimension(:, :), pointer :: window

and associated with table, which must of course have the target or pointer attribute,9 by

the execution of the statement

window => table(m:n, p:q)

If, later on, the size of window needs to be changed, all that is needed is another pointer

assignment statement. Note, however, that the subscript bounds for window in this example

are (1:n-m+1, 1:q-p+1) since they are as provided by the functions lbound and ubound
(Section 8.12.2).

The facility provides a mechanism for subscripting or sectioning arrays such as

9In Fortran 2003, the associate statement provides a means of achieving this without the need for the target
or pointer attribute, see Section 14.4.

Array features 125

tar%u

where tar is an array and u is a scalar component, discussed in Section 6.13. Here we may

perform the pointer association

taru => tar%u

if taru is a rank-three pointer of the appropriate type. Subscripting as in

taru(1, 2, 3)

is then permissible. Here the subscript bounds for taru will be those of tar.

6.16 Array constructors

The syntax that we introduced in Section 2.10 for array constants may be used to construct

more general rank-one arrays. The general form of an array-constructor is

(/ array-constructor-value-list /)

where each array-constructor-value is one of expr or constructor-implied-do. The array thus

constructed is of rank one with its sequence of elements formed from the sequence of scalar

expressions and elements of the array expressions in array element order. A constructor-
implied-do has the form

(array-constructor-value-list, variable = expr1, expr2 [,expr3])

where variable is a named integer scalar variable, and expr1, expr2, and expr3 are scalar

integer expressions. Its interpretation is as if the array-constructor-value-list had been written

max ((expr2 - expr1 + expr3)/expr3, 0)

times, with variable replaced by expr1, expr1+expr3, . . ., as for the do construct (Section

4.4). A simple example is

(/ (i,i=1,10) /)

which is equal to

(/ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 /)

Note that the syntax permits nesting of one constructor-implied-do inside another, as in the

example

(/ ((i,i=1,3), j=1,3) /)

which is equal to

(/ 1, 2, 3, 1, 2, 3, 1, 2, 3 /)

and the nesting of structure constructors within array constructors (and vice versa), for

instance, for the type in Section 6.7,

(/ (matrix(0.0), i = 1, limit) /)

126 Modern Fortran Explained

The sequence may be empty, in which case a zero-sized array is constructed. The scope of

the variable is the constructor-implied-do. Other statements, or even other parts of the array

constructor, may refer to another variable having the same name. The value of the other

variable is unaffected by execution of the array constructor and is available except within the

constructor-implied-do.

The type and type parameters of an array constructor are those of the first expr, and each

expr must have the same type and type parameters. If every expr, expr1, expr2, and expr3 is

a constant expression (Section 7.4), the array constructor is a constant expression.

An array of rank greater than one may be constructed from an array constructor by using

the intrinsic function reshape (Section 8.13.3). For example,

reshape(source = (/ 1,2,3,4,5,6 /), shape = (/ 2,3 /))

has the value

1 3 5

2 4 6

Some deficiencies of array constructors have been removed in Fortran 2003 (details are in

Section 15.9).

6.17 Mask arrays

Logical arrays are needed for masking in where statements and constructs (Section 6.8),

and they play a similar role in many of the array intrinsic functions (Chapter 8). Often,

such arrays are large, and there may be a worthwhile storage gain from using non-default

logical types, if available. For example, some processors may use bytes to store elements

of logical(kind=1) arrays, and bits to store elements of logical(kind=0) arrays.

Unfortunately, there is no portable facility to specify such arrays, since there is no intrinsic

function comparable to selected_int_kind and selected_real_kind.

Logical arrays are formed implicitly in certain expressions, usually as compiler-generated

temporary variables. In

where (a > 0.0) a = 2.0 * a

or

if (any(a > 0.0)) then

(any is described in Section 8.11.1) the expression a > 0.0 is a logical array. In such a

case, an optimizing compiler can be expected to choose a suitable kind type parameter for the

temporary array.

Array features 127

6.18 Summary

We have explained that arrays may have zero size and that no special rules are needed

for them. A dummy array may assume its shape from the corresponding actual argument.

Storage for an array may be allocated automatically on entry to a procedure and automatically

deallocated on return, or the allocation may be controlled in detail by the program. Functions

may be array valued either through the mechanism of an elemental reference that performs

the same calculation for each array element, or through the truly array-valued function. Array

assignments may be masked through the use of the where statement and construct. Structure

components may be arrays if the parent is an array or the component is an array, but not

both. A subarray may either be formulated directly as an array section, or indirectly by

using pointer assignment to associate it with a pointer. An array may be constructed from a

sequence of expressions. A logical array may be used as a mask.

The intrinsic functions are an important part of the array features and will be described in

Chapter 8.

We conclude this chapter with a complete program, Figures 6.13 and 6.14, that illustrates

the use of array expressions, array assignments, allocatable arrays, automatic arrays, and

array sections. The module linear contains a subroutine for solving a set of linear equations,

and this is called from a main program that prompts the user for the problem and then solves

it.

128 Modern Fortran Explained

Figure 6.13 First part of a module for solving a set of linear equations. size is described in

Section 8.12.2 and maxloc is described in Section 8.14.
module linear

integer, parameter, public :: kind=selected_real_kind(10)
public :: solve

contains
subroutine solve(a, piv_tol, b, ok)
! arguments

real(kind), intent(inout), dimension(:,:) :: a
! The matrix a.

real(kind), intent(in) :: piv_tol
! Smallest acceptable pivot.

real(kind), intent(inout), dimension(:) :: b
! The right-hand side vector on
! entry. Overwritten by the solution.

logical, intent(out) :: ok
! True after a successful entry
! and false otherwise.

! Local variables
integer :: i ! Row index.
integer :: j ! Column index.
integer :: n ! Matrix order.
real(kind), dimension(size(b)) :: row

! Automatic array needed for workspace;
real(kind) :: element ! Workspace variable.

n = size(b)
ok = size(a, 1) == n .and. size(a, 2) == n
if (.not.ok) then

return
end if

do j = 1, n

! Update elements in column j.
do i = 1, j - 1

a(i+1:n, j) = a(i+1:n, j) - a(i,j) * a(i+1:n, i)
end do

! Find pivot and check its size
i = maxloc(abs(a(j:n, j)), dim=1) + j - 1
if (abs(a(i, j)) < piv_tol) then

ok = .false.
return

end if

Array features 129

Figure 6.14 Second part of Figure 6.13 module and a program that uses it. The edit

descriptors used in the write statements are described in Section 9.12

! If necessary, apply row interchange
if (i/=j) then

row = a(j, :); a(j, :) = a(i, :); a(i, :) = row
element = b(j); b(j) = b(i); b(i) = element

end if

! Compute elements j+1 : n of j-th column.
a(j+1:n, j) = a(j+1:n, j)/a(j, j)

end do

! Forward substitution
do i = 1, n-1

b(i+1:n) = b(i+1:n) - b(i)*a(i+1:n, i)
end do

! Back-substitution
do j = n, 1, -1

b(j) = b(j)/a(j, j)
b(1:j-1) = b(1:j-1) - b(j)*a(1:j-1, j)

end do
end subroutine solve

end module linear

program main
use linear
integer :: i, n
real(kind), allocatable :: a(:, :), b(:)
logical :: ok

print *, ’ Matrix order?’
read *, n
allocate (a(n, n), b(n))
do i = 1, n

write (*, ’(a, i2, a)’) ’ Elements of row ’, i, ’ of a?’
read *, a(i,:)
write (*, ’(a, i2, a)’) ’ Component ’, i, ’ of b?’
read *, b(i)

end do

call solve(a, maxval(abs(a))*1.0e-10, b, ok)
if (ok) then

write (*, ’(/,a,/,(5f12.4))’) ’ Solution is’, b
else

print *, ’ The matrix is singular’
end if

end program main

130 Modern Fortran Explained

Exercises

1. Given the array declaration

real, dimension(50,20) :: a

write array sections representing

i) the first row of a;

ii) the last column of a;

iii) every second element in each row and column;

iv) as for (iii) in reverse order in both dimensions;

v) a zero-sized array.

2. Write a where statement to double the value of all the positive elements of an array z.

3. Write an array declaration for an array j which is to be completely defined by the statement

j = (/ (3, 5, i=1,5), 5,5,5, (i, i = 5,3,-1) /)

4. Classify the following arrays:

subroutine example(n, a, b)
real, dimension(n, 10) :: w
real :: a(:), b(0:)
real, pointer :: d(:, :)

5. Write a declaration and a pointer assignment statement suitable to reference as an array all the third

elements of component du in the elements of the array tar having all three subscript values even

(Section 6.12).

6. Given the array declarations

integer, dimension(100, 100), target :: l, m, n
integer, dimension(:, :), pointer :: ll, mm, nn

rewrite the statements

l(j:k+1, j-1:k) = l(j:k+1, j-1:k) + l(j:k+1, j-1:k)
l(j:k+1, j-1:k) = m(j:k+1, j-1:k) + n(j:k+1, j-1:k) + n(j:k+1, j:k+1)

as they could appear following execution of the statements

ll => l(j:k+1, j-1:k)
mm => m(j:k+1, j-1:k)
nn => n(j:k+1, j-1:k)

7. Complete Exercise 1 of Chapter 4 using array syntax instead of do constructs.

8. Write a module to maintain a data structure consisting of a linked list of integers, with the ability to

add and delete members of the list, efficiently.

9. Write a module that contains the example in Figure 6.9 (Section 6.7) as a module procedure and

supports the defined operations and assignments that it contains.

10. Using the type stack of Section 6.5.6, write code to define a variable of that type with an allocatable

component length of four and then to extend that allocatable array with two additional values.

Array features 131

11. Given the type

type emfield
real, allocatable :: strength(:,:)

end type

initialize a variable of type emfield so that its component has bounds (1:4,1:6) and value 1

everywhere. Extend this variable so that the component has bounds (0:5,0:8), keeping the values of

the old elements and setting the values of the new elements to zero.

12. As 11., but with new bounds (1:6,1:9) and using the reshape intrinsic function.

This page intentionally left blank

7. Specification statements

7.1 Introduction

In the preceding chapters we have learnt the elements of the Fortran language, how they

may be combined into expressions and assignments, how we may control the logic flow of

a program, how to divide a program into manageable parts, and have considered how arrays

may be processed. We have seen that this knowledge is sufficient to write programs, when

combined with a rudimentary print statement and with the end statement.

Already in Chapters 2 to 6, we met some specification statements when declaring the

type and other properties of data objects, but to ease the reader’s task we did not always

explain all the available options. In this chapter we fill this gap. To begin with, however,

it is necessary to recall the place of specification statements in a programming language. A

program is processed by a computer in stages. In the first stage, compilation, the source

code (text) of the program is read by a program known as a compiler which analyses it,

and generates files containing object code. Each program unit of the complete program is

usually processed separately. The object code is a translation of the source code into a form

which can be understood by the computer hardware, and contains the precise instructions as

to what operations the computer is to perform. Using these files, an executable program is

constructed. The final stage consists of the execution, whereby the coded instructions are

performed and the results of the computations made available.

During the first stage, the compiler requires information about the entities involved.

This information is provided at the beginning of each program unit or subprogram by

specification statements. The description of most of these is the subject of this chapter. The

specification statements associated with procedure interfaces, including interface blocks and

the interface statement and also the external statement, were explained in Chapter 5. The

intrinsic statement is explained in Chapter 8.

7.2 Implicit typing

Many programming languages require that all typed entities have their types specified

explicitly. Any data entity that is encountered in an executable statement without its type

having been declared will cause the compiler to indicate an error. This, and a prohibition on

mixing types, is known as strong typing. In the case of Fortran, an entity that is not accessed

by use or host association and is not explicitly typed by appearing in a type declaration

statement is implicitly typed, being assigned a type according to the initial letter of its name.

134 Modern Fortran Explained

The default in a program unit or an interface block is that entities whose names begin with

one of the letters i, j, ..., n are of type default integer, and variables beginning with the letters

a, b, ..., h or o, p, ..., z are of type default real.1 This absence of strong typing can lead to

program errors; for instance, if a variable name is misspelt, the misspelt name will give rise

to a separate variable which, if used, can lead to unforseen consequences. For this reason, we

recommend that implicit typing be avoided. For no implicit typing whatsoever, the statement

implicit none

is available, and we recommend its use througout a whole program.

An implicit none statement may be preceded within a scoping unit only by use (and

format) statements. An implicit none statement in a module applies to it, its module

subprograms, and their internal subprograms. An implicit none statement in a main

program or a subprogram, applies to it and its internal subprograms.

7.3 Declaring entities of differing shapes

So far, we have used separate type declaration statements such as

integer :: a, b
integer, dimension(10) :: c, d
integer, dimension(8,7) :: e

to declare several entities of the same type but differing shapes. In fact, Fortran permits

the convenience of using a single statement. Whether or not there is a dimension attribute

present, arrays may be declared by placing the shape information after the name of the array:

integer :: a, b, c(10), d(10), e(8, 7)

If the dimension attribute is present, it provides a default shape for the entities that are not

followed by their own shape information, and is ignored for those that are:

integer, dimension(10) :: c, d, e(8, 7)

7.4 Named constants and constant expressions

Inside a program, we often need to define a constant or set of constants. For instance, in a

program requiring repeated use of the speed of light, we might use a real variable c that is

given its value by the statement

c = 2.99792458

A danger in this practice is that the value of c may be overwritten inadvertently, for instance

because another programmer reuses c as a variable to contain a different quantity, failing to

notice that the name is already in use.

It might also be that the program contains specifications such as

1See Section B.9 for means of specifying other mappings between the letters and types.

Specification statements 135

real :: x(10), y(10), z(10)
integer :: mesh(10, 10), ipoint(100)

where all the dimensions are 10 or 102. Such specifications may be used extensively, and 10

may even appear as an explicit constant, say as a parameter in a do-construct which processes

these arrays:

do i = 1, 10

Later, it may be realized that the value 20 rather than 10 is required, and the new value must

be substituted everywhere the old one occurs, an error-prone undertaking.

Yet another case was met in Section 2.6, where named constants were needed for kind type

parameter values.

In order to deal with all of these situations, Fortran contains what are known as named
constants. These may never appear on the left-hand side of an assignment statement, but may

be used in expressions in any way in which a literal constant may be used, except within a

complex constant (Section 2.6.3).2 A type declaration statement may be used to specify such

a constant:

real, parameter :: c = 2.99792458

The value is protected, as c is now the name of a constant and may not be used as a variable

name in the same scoping unit. Similarly, we may write

integer, parameter :: length = 10
real :: x(length), y(length), z(length)
integer :: mesh(length, length), ipoint(length**2)
:
do i = 1, length

which has the clear advantage that in order to change the value of 10 to 20 only a single line

need be modified, and the new value is then correctly propagated.

In this example, the expression length**2 appeared in one of the array bound specifica-

tions. This is a particular example of a constant expression. Such an expression is expected

to be evaluated at compile time, so it is restricted in its form.3 A constant expression is an

expression in which each operation is intrinsic, each exponentiation operator has an integer

power and each primary is

i) a constant or a subobject of a constant;

ii) an array constructor whose expressions (including bounds and strides) have primaries

that are constant expressions;

iii) a structure constructor whose components are constant expressions;

iv) an integer or character elemental intrinsic function reference whose arguments are

constant expressions of type integer or character;

2This irregularity is corrected in Fortran 2003.
3These restrictions are relaxed in Fortran 2003, see Section 15.10.

136 Modern Fortran Explained

v) a reference to one of the transformational intrinsic functions repeat, reshape,

selected_int_kind, selected_real_kind, transfer, and trim with actual argu-

ments that are constant expressions;

vi) a reference to the transformational intrinsic function null with an argument that is

either of type other than character or has character length that is defined by a constant

expression and is not assumed;

vii) a reference to

an array inquiry function (Section 8.12) other than allocated, the bit inquiry

function bit_size, the character inquiry function len, the kind inquiry function

kind, or a numeric inquiry function (Section 8.7.2)

where each argument is either a constant expression or a variable whose type

parameters or bounds inquired about are neither assumed, defined by an expression

other than a constant expression, defined by an allocate statement, nor defined by a

pointer assignment;

viii) an implied-do variable with constant expressions as bounds and strides; or

ix) a constant expression enclosed in parentheses;

and where each subscript, section subscript, or substring bound is a constant expression.

If a constant expression invokes an inquiry function for a type parameter or an array bound

of an object, the type parameter or array bound must be specified in a prior specification

statement or to the left in the same specification statement.

In the definition of a named constant we may use any constant expression, and the

constant becomes defined with the value of the expression according to the rules of intrinsic

assignment. This is illustrated by the example

integer, parameter :: length=10, long=selected_real_kind(12)
real, parameter :: lsq = length**2

Note from this example that it is possible in one statement to define several named constants,

in this case two, separated by commas.

A named constant may be an array, as in the case

real, dimension(3), parameter :: field = (/ 0.0, 10.0, 20.0 /)

For an array of rank greater than one, the reshape function described in Section 8.13.3 must

be applied.

A named constant may be of derived type, as in the case

type(posn), parameter :: a = posn(1.0,2.0,0)

for the type

type posn
real :: x, y
integer :: z

end type posn

Specification statements 137

Note that a subobject of a constant need not necessarily have a constant value. For example,

if i is an integer variable, field(i) may have the value 0.0, 10.0, or 20.0. Note also that a

constant may not be a pointer, allocatable array, dummy argument, or function result, since

these are always variables. However, it may be of a derived type with a pointer component

that is disassociated (Section 7.5.4):

type(entry), parameter :: e = entry(0.0, null())

Clearly, since such a pointer component is part of a constant, it is not permitted to be allocated

or pointer assigned.

Any named constant used in a constant expression must either be accessed from the host,

be accessed from a module, be declared in a preceding statement, or be declared to the left

of its use in the same statement. An example using a constant expression including a named

constant that is defined in the same statement is

integer, parameter :: apple = 3, pear = apple**2

Finally, there is an important point concerning the definition of a scalar named constant of

type character. Its length may be specified as an asterisk and taken directly from its value,

which obviates the need to count the length of a character string, making modifications to its

definition much easier. An example of this is

character(len=*), parameter :: string = ’No need to count’

Unfortunately, there is a need to count when a character array is defined using an array

constructor, since all the elements must be of the same length:4

character(len=7), parameter, dimension(3) :: &
c=(/’Cohen ’, ’Metcalf’, ’Reid ’/)

would not be correct without the two blanks in ’Cohen ’ and the three in ’Reid ’.

The parameter attribute is an important means whereby constants may be protected from

overwriting, and programs modified in a safe way. It should be used for these purposes on

every possible occasion.

7.5 Initial values for variables

7.5.1 Initialization in type declaration statements

A variable may be assigned an initial value in a type declaration statement, simply by

following the name of the variable by an equals sign and a constant expression (Section

7.4), as in the examples

real :: a = 0.0
real, dimension(3) :: b = (/ 0.0, 1.2, 4.5 /)

The initial value is defined by the value of the corresponding expression according to the

rules of intrinsic assignment. The variable automatically acquires the save attribute (Section

7.9). It must not be a dummy argument, a pointer, an allocatable array, an automatic object,

or a function result.
4This restriction can be circumvented in Fortran 2003, see Section 15.9.

138 Modern Fortran Explained

7.5.2 The data statement

An alternative way to specify an initial value for a variable is by the data statement. It has

the general form

data object-list /value-list/ [[,] object-list /value-list/]...

where object-list is a list of variables and implied-do loops; and value-list is a list of scalar

constants and structure constructors. A simple example is

real :: a, b, c
integer :: i, j, k
data a,b,c/1.,2.,3./, i,j,k/1,2,3/

in which a variable a acquires the initial value 1., b the value 2., etc.

If any part of a variable is initialized in this way, the variable automatically acquires

the save atribute. The variable must not be a dummy argument, an allocatable array, an

automatic object, or a function result. It may be a pointer and the corresponding value must

be a reference to the intrinsic function null with no arguments.

After any array or array section in object-list has been expanded into a sequence of scalar

elements in array element order, there must be as many constants in each value-list as scalar

elements in the corresponding object-list. Each scalar element is assigned the corresponding

scalar constant.

Constants which repeat may be written once and combined with a scalar integer repeat
count which may be a named or literal constant:

data i,j,k/3*0/

The value of the repeat count must be positive or zero. As an example consider the statement

data r(1:length)/length*0./

where r is a real array and length is a named constant which might take the value zero.

Arrays may be initialized in three different ways: as a whole, by element, or by an implied-

do loop. These three ways are shown below for an array declared by

real :: a(5, 5)

Firstly, for the whole array, the statement

data a/25*1.0/

sets each element of a to 1.0.

Secondly, individual elements and sections of a may be initialized, as in

data a(1,1), a(3,1), a(1,2), a(3,3) /2*1.0, 2*2.0/
data a(2:5,4) /4*1.0/

in each of which only the four specified elements and the section are initialized. Each array

subscript must be a constant expression, as must any character substring subscript.

When the elements to be selected fall into a pattern which can be represented by do-loop

indices, it is possible to write data statements a third way, like

Specification statements 139

data ((a(i,j), i=1,5,2), j=1,5) /15*0./

The general form of an implied-do loop is

(dlist, do-var = expr, expr[, expr])

where dlist is a list of array elements, scalar structure components, and implied-do loops,

do-var is a named integer scalar variable, and each expr is a scalar integer expression. It is

interpreted as for a do construct (Section 4.4), except that the do variable has the scope of the

implied-do as in an array constructor (Section 6.16). A variable in an expr must be a do-var
of an outer implied-do:

integer :: j, k
integer, parameter :: l=5, l2=((l+1)/2)**2
real :: a(l,l)
data ((a(j,k), k=1,j), j=1,l,2) / l2 * 1.0 /

This example sets to 1.0 the first element of the first row of a, the first three elements of the

third row, and all the elements of the last row, as shown in Figure 7.1.

Figure 7.1 Result of an implied-do loop in a data statement.

1.0

.

1.0 1.0 1.0 . .

.

1.0 1.0 1.0 1.0 1.0

The only variables permitted in subscript expressions in data statements are do indices of

the same or an outer-level loop, and all operations must be intrinsic.

An object of derived type may appear in a data statement. In this case, the corresponding

value must be a structure constructor having a constant expression for each component. Using

the type definition of posn in Section 7.4, we can write

type(posn) :: position1, position2
data position1 /posn(2., 3., 0)/, position2%z /4/

In the examples given so far, the types and type parameters of the constants in a value-list
have always been the same as the type of the variables in the object-list. This need not be

the case, but they must be compatible for intrinsic assignment since the entity is initialized

following the rules for intrinsic assignment. It is thus possible to write statements such as

data q/1/, i/3.1/, b/(0.,1.)/

(where b and q are real and i is integer). Integer values may be binary, octal, or hexadecimal

constants (Section 2.6.1).

Each variable must either have been typed in a previous type declaration statement in the

scoping unit, or its type is that associated with the first letter of its name according to the

140 Modern Fortran Explained

implicit typing rules of the scoping unit. In the case of implicit typing, the appearance of

the name of the variable in a subsequent type declaration statement in the scoping unit must

confirm the type and type parameters. Similarly, any array variable must have previously

been declared as such.

No variable or part of a variable may be initialized more than once in a scoping unit.

We recommend using the type declaration statement rather than the data statement, but

the data statement must be employed when only part of a variable is to be initialized.

7.5.3 Pointer initialization and the function null

Means are available to avoid the initial status of a pointer being undefined. This would be

a most undesirable status since such a pointer cannot even be tested by the intrinsic function

associated (Section 8.2). Pointers may be given the initial status of disassociated in a type

declaration statement such as

real, pointer, dimension(:) :: vector => null()

or a data statement

real, pointer, dimension(:) :: vector
data vector/ null() /

This, of course, implies the save attribute, which applies to the pointer association status.

The pointer must not be a dummy argument or function result. Here, or if the save attribute

is undesirable (for a local variable in a recursive procedure, for example), the variable may

be explicitly nullified early in the subprogram.

Our recommendation is that all pointers be so initialized to reduce the risk of bizarre effects

from the accidental use of undefined pointers. This is an aid too in writing code that avoids

memory leaks.

The function null is an intrinsic function (Section 8.15), whose simple form null(), as

used in the above example, is almost always suitable since the attributes are immediately

apparent from the context. For example, given the type entry of Section 6.5.2, the structure

constructor

entry (0.0, 0, null())

is available. Also, for a pointer vector, the statement

vector => null()

is equivalent to

nullify(vector)

The form with the argument is needed when null is an actual argument that corresponds

to a dummy argument with assumed character length (Section 5.19) or is in a reference to

a generic procedure and the type, type parameter, or rank is needed to resolve the reference

(Section 5.18).

There is no mechanism to initialize a pointer as associated.5

5A restriction lifted in Fortran 2008.

Specification statements 141

7.5.4 Default initialization of components

Means are available to specify that any object of a derived type is given a default initial value

for a component. The value must be specified when the component is declared as part of

the type definition (Section 2.9). If the component is not a pointer, this is done in the usual

way (Section 7.5.1) with the equals sign followed by a constant expression and the rules

of intrinsic assignment apply (including specifying a scalar value for all the elements of an

array component). If the component is a pointer, the only initialization allowed is the pointer

assignment symbol followed by a reference to the intrinsic function null with no arguments.

Initialization does not have to apply to all components of a given derived type. An example

for the type defined in Section 6.5.2 is

type entry
real :: value = 2.0
integer :: index
type(entry), pointer :: next => null()

end type entry

Given an array declaration such as

type(entry), dimension(100) :: matrix

subobjects such as matrix(3)%value will have the initial value 2.0, and the reference

associated(matrix(3)%next) will return the value false.

For an object of a nested derived type, the initializations associated with components at all

levels are recognized. For example, given the specifications

type node
integer :: counter
type(entry) :: element

end type node
type (node) :: n

the component n%element%value will have the initial value 2.0.

Unlike explicit initialization in a type declaration or data statement, default initialization

does not imply that the objects have the save attribute.6

Objects may still be explicitly initialized in a type declaration statement, as in

type(entry), dimension(100) :: matrix=entry(huge(0.0), &
huge(0),null())

in which case the default initialization is ignored. Similarly, default initialization may be

overridden in a nested type definition such as

6However, an object of such a type that is declared in a module is required to have the save attribute unless it

is a pointer or an allocatable array. This is because of the difficulty that some implementations would have with

determining when a non-saved object would need to be re-initialized. It does not apply in Fortran 2008, where all

data objects in a module have the save attribute.

142 Modern Fortran Explained

type node
integer :: counter
type(entry) :: element=entry(0.0, 0 , null())

end type node

However, no part of a non-pointer object with default initialization is permitted in a data
statement (Section 7.5.2).

As well as applying to the initial values of static data, default initialization also applies to

any data that is dynamically created during program execution. This includes allocation with

the allocate statement. For example, the statement

allocate (matrix(1)%next)

creates a partially initialized object of type entry. It also applies to unsaved local variables

(including automatic objects), function results, and dummy arguments with intent out.

It applies even if the type definition is private or the components are private.

7.6 The public and private attributes

Modules (Section 5.5) permit specifications to be ‘packaged’ into a form that allows them to

be accessed elsewhere in the program. So far, we have assumed that all the entities in the

module are to be accessible, that is have the public attribute, but sometimes it is desirable

to limit the access. For example, several procedures in a module may need access to a work

array containing the results of calculations that they have performed. If access is limited

to only the procedures of the module, there is no possibility of an accidental corruption of

these data by another procedure and design changes can be made within the module without

affecting the rest of the program. In cases where entities are not to be accessible outside their

own module, they may be given the private attribute.

These two attributes may be specified with the public and private attributes on type

declaration statements in the module, as in

real, public :: x, y, z
integer, private :: u, v, w

or in public and private statements, as in

public :: x, y, z, operator(.add.)
private :: u, v, w, assignment(=), operator(*)

which have the general forms

public [[::] access-id-list]
private [[::] access-id-list]

where access-id is a name or a generic-spec (Section 5.18).

Note that if a procedure has a generic identifier, the accessibility of its specific name is

independent of the accessibility of its generic identifier. One may be public while the other

is private, which means that it is accessible only by its specific name or only by its generic

identifier.

Specification statements 143

If a public or private statement has no list of entities, it confirms or resets the default.

Thus, the statement

public

confirms public as the default value, and the statement

private

sets the default value for the module to private accessibility. For example,

private
public :: means

gives the entity means the public attribute whilst all others are private. There may be at

most one accessibility statement without a list in a scoping unit.

The entities that may be specified by name in public or private lists are named variables,

procedures (including generic procedures), derived types, named constants, and namelist

groups. Thus, to make a generic procedure name accessible but the corresponding specific

names inaccessible, we might write

module example
private specific_int, specific_real
interface generic_name

module procedure specific_int, specific_real
end interface

contains
subroutine specific_int(i)

:
subroutine specific_real(a)

:
end module example

A type that is accessed from a module may be given the private attribute in the accessing

module (see Section 7.10). If an entity of this type has the public attribute, a subsequent

use statement for it may be accompanied by a use statement for the type from the original

module.

An object must not have the public attribute if its type was defined originally with the

private attribute. Similarly, if a module procedure has a dummy argument or function

result of such a type, the procedure must be given the attribute private and must not have a

generic identifier that is public.7

The use of the private statement for components of derived types in the context of

defining an entity’s access within a module will be described in Section 7.11.

The public and private attributes may appear only in the specifications of a module.

7The restrictions of this paragraph have been lifted in Fortran 2003, see Section 16.14.

144 Modern Fortran Explained

7.7 The pointer, target, and allocatable statements

For the sake of regularity in the language, there are statements for specifying the pointer,

target, and allocatable attributes of entities. They take the forms:

pointer [::] object-name[(array-spec)]
[,object-name [(array-spec)]]...

target [::] object-name[(array-spec)]
[,object-name [(array-spec)]]...

and

allocatable [::] array-name[(array-spec)]
[,array-name [(array-spec)]]...

as in

real :: a, son, y
allocatable :: a(:,:)
pointer :: son
target :: a, y(10)

We believe that it is much clearer to specify these attributes on the type declaration statements,

and therefore do not use these forms.

7.8 The intent and optional statements

The intent attribute (Section 5.9) for a dummy argument that is not a dummy procedure

or pointer may be specified in a type declaration statement or in an intent statement of the

form

intent(inout) [::] dummy-argument-name-list

where inout is in, out, or inout. Examples are

subroutine solve (a, b, c, x, y, z)
real :: a, b, c, x, y, z
intent(in) :: a, b, c
intent(out) :: x, y, z

The optional attribute (Section 5.13) for a dummy argument may be specified in a type

declaration statement or in an optional statement of the form

optional [::] dummy-argument-name-list

An example is

optional :: a, b, c

The optional attribute is the only attribute which may be specified for a dummy argument

that is a procedure.

Note that the intent and optional attributes may be specified only for dummy

arguments. As for the statements of Section 7.7, we believe that it is much clearer to specify

these attributes on the type declaration statements, and therefore do not use these forms.

Specification statements 145

7.9 The save attribute

Let us suppose that we wish to retain the value of a local variable in a subprogram, for

example to count the number of times the subprogram is entered. We might write a section

of code as in Figure 7.2. In this example, the local variables, a and counter, are initialized

to zero, and it is assumed that their current values are available each time the subroutine is

called. This is not necessarily the case. Fortran allows the computer system being used to

‘forget’ a new value, the variable becoming undefined on each return unless it has the save
attribute. In Figure 7.2, it is sufficient to change the declaration of a to

real, save :: a

to be sure that its value is always retained between calls. This may be done for counter, too,

but is not necessary as all variables with initial values acquire the save attribute automatically

(Section 7.5).

Figure 7.2 Counting the number of times a procedure is invoked.

subroutine anything(x)
real :: a, x
integer :: counter = 0 ! Initialize the counter
:
counter = counter + 1
if (counter==1) then

a = 0.0
else

a = a + x
end if

A similar situation arises with the use of variables in modules (Section 5.5). In theory,

on return from a subprogram that accesses a variable whose scope is a module, the variable

becomes undefined unless the main program accesses the module, another subprogram in

execution accesses the module, or the variable has the save attribute. In practice, compilers

treat module variables as having the save attribute.8

If a variable that becomes undefined has a pointer associated with it, the pointer’s

association status becomes undefined.

The save attribute must not be specified for a dummy argument, a function result, or an

automatic object (Section 6.4). It may be specified for a pointer, in which case the pointer

association status is saved. It may be specified for an allocatable array, in which case the

allocation status and value are saved. A saved variable in a recursive subprogram is shared

by all instances of the subprogram.

An alternative to specifying the save attribute on a type declaration statement is the save
statement:

save [[::] variable-name-list]
8In Fortran 2008, all data objects in a module have the save attribute.

146 Modern Fortran Explained

A save statement with no list is equivalent to a list containing all possible names, and in this

case the scoping unit must contain no other save statements and no save attributes in type

declaration statements. Our recommendation is against this form of save. If a programmer

tries to give the save attribute explicitly to an automatic object, a diagnostic will result. On

the other hand, he or she might think that save without a list would do this too, and not

get the behaviour intended. Also, there is a loss of efficiency associated with save on some

processors, so it is best to restrict it to those objects for which it is really needed.

The save statement or save attribute may appear in the declaration statements in a main

program but has no effect.

7.10 The use statement

In Section 5.5, we introduced the use statement in its simplest form

use module-name

which provides access to all the public named data objects, derived types, interface blocks,

procedures, generic identifiers, and namelist groups in the module named. Any use
statements must precede other specification statements in a scoping unit. The only attribute

of an accessed entity that may be specified afresh is public or private (and this only in a

module), but the entity may be included in one or more namelist groups (Section 7.15).

If access is needed to two or more modules that have been written independently, the same

name might be in use in more than one module. This is the main reason for permitting

accessed entities to be renamed by the use statement. Renaming is also available to resolve

a name clash between a local entity and an entity accessed from a module, though our

preference is to use a text editor or other tool to change the local name. With renaming,

the use statement has the form

use module-name, rename-list

where each rename has the form

local-name => use-name

and refers to a public entity in the module that is to be accessed by a different local name.

As an example,

use stats_lib, sprod => prod
use maths_lib

makes all the public entities in both stats_lib and maths_lib accessible. If maths_lib
contains an entity called prod, it is accessible by its own name while the entity prod of

stats_lib is accessible as sprod.

Renaming is not needed if there is a name clash between two entities that are not required.

A name clash is permitted if there is no reference to the name in the scoping unit.

A name clash is also permissible for a generic name that is required. Here, all generic

interfaces accessed by the name are treated as a single concatenated interface block. This is

true also for defined operators and assignments, where no renaming facility is available. In all

Specification statements 147

these cases, any two procedures having the same generic identifier must differ as explained

in Section 5.18. We imagine that this will usually be exactly what is needed. For example,

we might access modules for interval arithmetic and matrix arithmetic, both needing the

functions sqrt, sin, etc., the operators +, -, etc., and assignment, but for different types.

For cases where only a subset of the names of a module is needed, the only option is

available, having the form

use module-name, only : [only-list]

where each only has the form

access-id

or

[local-name =>] use-name

where each access-id is a public entity in the module, and is either a use-name or a generic-
spec (Section 5.18). This provides access to an entity in a module only if the entity is public

and is specified as a use-name or access-id. Where a use-name is preceded by a local-name,

the entity is known locally by the local-name. An example of such a statement is

use stats_lib, only : sprod => prod, mult

which provides access to prod by the local name sprod and to mult by its own name.

We would recommend that only one use statement for a given module be placed in a

scoping unit, but more are allowed. If there is a use statement without an only qualifier,

all public entities in the module are accessible and the rename-lists and only-lists are

interpreted as if concatenated into a single rename-list (with the form use-name in an only-
list being treated as the rename use-name => use-name). If all the statements have the only
qualification, only those entities named in one or more of the only-lists are accessible, that is

all the only-lists are interpreted as if concatenated into a single only-list.
An only list will be rather clumsy if almost all of a module is wanted. The effect of

an ‘except’ clause can be obtained by renaming unwanted entities. For example, if a large

program (such as one written in Fortran 77) contains many external procedures, a good

practice is to collect interface blocks for them all into a module that is referenced in each

program unit for complete mutual checking. In an external procedure, we might then write:

use all_interfaces, except_this_one => name

to avoid having two explicit interfaces for itself (where all_interfaces is the module name

and name is the procedure name).

When a module contains use statements, the entities accessed are treated as entities in the

module. They may be given the private or public attribute explicitly or through the default

rule in effect in the module. Thus, given the two modules in Figure 7.3 and a third program

unit containg a use statement for two, the variable i is accessible there only if it also contains

a use statement for one or if i is made public explicitly in two.

An entity may be accessed by more than one local name. This is illustrated in Figure 7.4,

where module b accesses s of module a by the local name bs; if a subprogram such as c

148 Modern Fortran Explained

Figure 7.3 Making private an entity accessed from a module.

module one
integer :: i

end module one
module two

use one
private
:

end module two

accesses both a and b, it will access s by both its original name and by the name bs. Figure

7.4 also illustrates that an entity may be accessed by the same name by more than one route

(see variable t).

Figure 7.4 Accessing a variable by more than one local name.

module a
real :: s, t
:

end module a
module b

use a, bs => s
:

end module b
subroutine c

use a
use b
:

end subroutine c

A more direct way for an entity to be accessed by more than one local name is for it to

appear more than once as a use-name. This is not a practice that we recommend.

Of course, all the local names of entities accessed from modules must differ from each

other and from names of local entities. If a local entity is accidentally given the same name

as an accessible entity from a module, this will be noticed at compile time if the local entity

is declared explicitly (since no accessed entity may be given any attribute locally, other than

private or public, and that only in a module). However, if the local entity is intended

to be implicitly typed (Section 7.2) and appears in no specification statements, then each

appearance of the name will be taken, incorrectly, as a reference to the accessed variable. To

avoid this, we recommend, as always, the conscientious use of explicit typing in a scoping

unit containing one or more use statements. For greater safety, the only option may be

employed on a use statement to ensure that all accesses are intentional.

Specification statements 149

7.11 Derived-type definitions

When derived types were introduced in Section 2.9, some simple example definitions were

given, but the full generality was not included. An example illustrating more features is

type, public :: lock
private
integer, pointer :: key(:)
logical :: state

end type lock

The general form (apart from redundant features, see Appendix B.2 and C.1.3) is

type [[,access]::] type-name
[private]
component-def-stmt
[component-def-stmt]...

end type [type-name]

Each component-def-stmt has the form

type [[,component-attr-list] ::]component-decl-list

where type specifies the type and type parameters (Section 7.13), each component-attr is

allocatable, pointer, or dimension(bounds-list), and each component-decl is

component-name [(bounds-list)][*char-len]

or

component-name [(bounds-list)][*char-len] [comp-int]

The meaning of *char-len is explained in Section 7.13 and comp-int represents component

initialization, as explained in Section 7.5.4. If the type is a derived type and neither the

allocatable nor the pointer attribute is specified, the type must be previously defined in

the host scoping unit or accessible there by use or host association. If the allocatable or

pointer attribute is specified, the type may also be the one being defined (for example, the

type entry of Section 2.13), or one defined elsewhere in the scoping unit.

A type-name must not be the same as the name of any intrinsic type or a derived type

accessed from a module.

The bounds of an array component are declared by a bounds-list, where each bounds is just

:

for an allocatable or a pointer component (see example in Section 6.14) or

[lower-bound:] upper-bound

for a component that is neither allocatable nor a pointer and lower-bound and upper-bound
are specification expressions (Section 7.14) whose values do not depend on those of variables.

150 Modern Fortran Explained

Similarly, the character length of a component of type character must be a specification

expression whose value does not depend on that of a variable. If there is a bounds-list attached

to the component-name, this defines the bounds. If a dimension attribute is present in the

statement, its bounds-list applies to any component in the statement without its own bounds-
list.

Only if the host scoping unit is a module may the access qualifier or private statement

appear. The access qualifier on a type statement may be public or private and specifies the

accessibility of the type. If it is private, then the type name, the structure constructor for the

type, any entity of the type, and any procedure with a dummy argument or function result of

the type are all inaccessible outside the host module. The accessibility may also be specified

in a private or public statement in the host. In the absence of both of these, the type

takes the default accessibility of the host module. If a private statement appears for a type

with public accessibility, the components of the type are inaccessible in any scoping unit

accessing the host module, so that neither component selection nor structure construction are

available there. Also, if any component is of a derived type that is private, the type being

defined must be private or have private components.

We can thus distinguish three levels of access:

i) all public, where the type and all its components are accessible, and the components

of any object of the type are accessible wherever the object is accessible;

ii) a public type with private components, where the type is accessible but its

components are hidden;

iii) all private, where both the type and its components are used only within the host

module, and are hidden to an accessing procedure.

Case ii) has, where appropriate, the advantage of enabling changes to be made to the type

without in any way affecting the code in the accessing procedure. Case iii) offers this

advantage and has the additional merit of not cluttering the name space of the accessing

procedure. The use of private accessibility for the components or for the whole type is thus

recommended whenever possible.

We note that, even if two derived-type definitions are identical in every respect except

their names, then entities of those two types are not equivalent and are regarded as being of

different types. Even if the names, too, are identical, the types are different (unless they have

the sequence attribute, a feature that we do not recommend and whose description is left to

Appendix B.2.1). If a type is needed in more than one program unit, the definition should be

placed in a module and accessed by a use statement wherever it is needed. Having a single

definition is far less prone to errors.

7.12 The type declaration statement

We have already met many simple examples of the declarations of named entities by

integer, real, complex, logical, character, and type(type-name) statements. The

general form is

type [[, attribute]... ::] entity-list

Specification statements 151

where type specifies the type and type parameters (Section 7.13), attribute is one of the

following:

parameter dimension(bounds-list)
public intent(inout)
private optional
pointer save
target external
allocatable intrinsic

and each entity is

object-name [(bounds-list)] [*char-len] [=constant-expr]

or

function-name [*char-len]

or

pointer-name [(bounds-list)] [*char-len] [=> null-init]

where null-init is a reference to the intrinsic function null with no arguments. The meaning

of *char-len is explained at the end of Section 7.13; a bounds-list specifies the rank and

possibly bounds of array-valued entities.

No attribute may appear more than once in a given type declaration statement. The

double colon :: need not appear in the simple case without any attributes and without any

=constant-expr; for example

real a, b, c(10)

If the statement specifies a parameter attribute, =constant-expr must appear.

If a pointer attribute is specified, the target, intent, external, and intrinsic
attributes must not be specified. The target and parameter attributes may not be specified

for the same entity, and the pointer and allocatable attributes may not be specified for

the same array. If the target attribute is specified, neither the external nor the intrinsic
attribute may also be specified.

If an object is specified with the intent or parameter attribute, this is shared by all its

subobjects. The pointer attribute is not shared in this manner, but note that a derived-data

type component may itself be a pointer. However, the target attribute is shared by all its

subobjects, except for any that are pointer components.

The allocatable, parameter, or save attribute must not be specified for a dummy

argument or function result.

The intent and optional attributes may be specified only for dummy arguments.

For a function result, specifying the external attribute is an alternative to the external

statement (Section 5.11) for declaring the function to be external, and specifying the

intrinsic attribute is an alternative to the intrinsic statement (Section 8.1.3) for declaring

the function to be intrinsic. These two attributes are mutually exclusive.

152 Modern Fortran Explained

Each of the attributes may also be specified in statements (such as save) that list entities

having the attribute. This leads to the possibility of an attribute being specified explicitly

more than once for a given entity, but this is not permitted. Our recommendation is to avoid

such statements because it is much clearer to have all the attributes for an entity collected in

one place.

7.13 Type and type parameter specification

We have used type to represent one of the following

integer [([kind=] kind-value)]
real [([kind=] kind-value)]
complex [([kind=] kind-value)]
character [(actual-parameter-list)]
logical [([kind=] kind-value)]
type (type-name)

in the function statement (Section 5.20), the component definition statement (Section 7.11),

and the type declaration statement (Section 7.12). A kind-value must be a constant expression

(Section 7.4) and must have a value that is valid on the processor being used.

For character, each actual-parameter has the form

[len=] len-value

or

[kind=] kind-value

and provides a value for one of the parameters. It is permissible to omit kind= from a kind

actual-parameter only when len= is omitted and len-value is both present and comes first,

just as for an actual argument list (Section 5.13). Neither parameter may be specified more

than once.

For a scalar named constant or for a dummy argument of a subprogram, a len-value may

be specified as an asterisk, in which case the value is assumed from that of the constant itself

or the associated actual argument. In both cases, the len intrinsic function (Section 8.6.1)

is available if the actual length is required directly, for instance as a do-construct iteration

count. A combined example is

character(len=len(char_arg)) function line(char_arg)
character(len=*) :: char_arg
character(len=*), parameter :: char_const = ’page’
if (len(char_arg) < len(char_const)) then
:

A len-value that is not an asterisk must be a specification expression (Section 7.14).

Negative values declare character entities to be of zero length.

In addition, it is possible to attach an alternative form of len-value to individual entities in

a type declaration statement using the syntax entity*char-len, where char-len is either (len-
value) or len and len is a scalar integer literal constant which specifies a length for the entity.

Specification statements 153

The constant len must not have a kind type parameter specified for it. An illustration of this

form is

character(len=8) :: word(4), point*1, text(20)*4

where, word, point, and text have character length 8, 1, and 4, respectively. Similarly, the

alternative form may be used for individual components in a component definition statement.

7.14 Specification expressions

Non-constant scalar integer expressions may be used to specify the array bounds (examples

in Section 6.4) and character lengths of data objects in a subprogram, and of function

results. Such an expression may depend only on data values that are defined on entry to

the subprogram. It must not depend on an optional argument, even if present. Any variable

referenced must not have its type and type parameters specified later in the same sequence of

specification statements, unless they are those implied by the implicit typing rules.

Array constructors and derived-type constructors are permitted. The expression may

reference an inquiry function for an array bound or for a type parameter of an entity which

either is accessed by use or host association, or is specified earlier in the same specification

sequence, but not later in the sequence.9 An element of an array specified in the same

specification sequence can be referenced only if the bounds of the array are specified earlier

in the sequence.10 Such an expression is called a specification expression.

An array whose bounds are declared using specification expressions is called an explicit-
shape array.

A variety of possibilities are shown in Figure 7.5.

The bounds and character lengths are not affected by any redefinitions or undefinitions of

variables in the expressions during execution of the procedure.

7.14.1 Specification functions

Any of the intrinsic functions defined by the standard may be used in a specification

expression. In addition, a non-intrinsic pure function may be used provided that such

a function is neither an internal function nor recursive, it does not have a dummy

procedure argument, and the interface is explicit. Functions that fulfil these conditions

are termed specification functions. The arguments of a specification function when used

in a specification expression are subject to the same restrictions as those on specification

expressions themselves, except that they do not necessarily have to be scalar.

9This avoids such a case as

character (len=len(a)) :: fun
character (len=len(fun)) :: a

10This avoids such a case as

integer, parameter, dimension (j(1):j(1)+1) :: i = (/0,1/)
integer, parameter, dimension (i(1):i(1)+1) :: j = (/1,2/)

154 Modern Fortran Explained

Figure 7.5 A variety of declarations in a subprogram.

subroutine sample(arr, n, string)
use definitions ! Contains the real a and the integer datasetsize
integer, intent(in) :: n
real, dimension(n), intent(out) :: arr ! Explicit-shape array
character(len=*), intent(in) :: string ! Assumed length
real, dimension(datasetsize+5) :: x ! Automatic array
character(len=n+len(string)) :: cc ! Automatic object
integer, parameter :: pa2 = selected_real_kind(2*precision(a))
real(kind=pa2) :: z ! Precision of z is at least twice

! the precision of a

As the interfaces of specification functions must be explicit yet they cannot be internal

functions,11 such functions are probably most conveniently written as module procedures.

This feature is a great convenience for specification expressions that cannot be written as

simple expressions. Here is an example,

function solve (a, ...
use matrix_ops
type(matrix), intent(in) :: a
real :: work(wsize(a))

where matrix is a type defined in the module matrix_ops and intended to hold a sparse

matrix and its LU factorization:

type matrix
integer :: n ! Matrix order.
integer :: nz ! Number of nonzero entries.
logical :: new = .true. ! Whether this is a new, unfactorized

! matrix.
:

end type matrix

and wsize is a module procedure that calculates the required size of the array work:

pure integer function wsize(a)
type(matrix), intent(in) :: a
wsize = 2*a%n + 2
if(a%new) wsize = a%nz + wsize

end function wsize

11This prevents them enquiring, via host association, about objects being specified in the set of statements in

which the specification function itself is referenced.

Specification statements 155

7.15 The namelist statement

It is sometimes convenient to gather a set of variables into a single group, in order to facilitate

input/output (I/O) operations on the group as a whole. The actual use of such groups is

explained in Section 9.10. The method by which a group is declared is via the namelist
statement which in its simple form has the syntax

namelist namelist-spec

where namelist-spec is

/namelist-group-name/ variable-name-list

The namelist-group-name is the name given to the group for subsequent use in the I/O

statements. A variable named in the list must not be a dummy array with a non-constant

bound, a variable with non-constant character length, an automatic object, an allocatable

array, a pointer, or have a component at any depth of component selection that is a pointer, is

allocatable or is inaccessible.12 An example is

real :: carpet, tv, brushes(10)
namelist /household_items/ carpet, tv, brushes

It is possible to declare several namelist groups in one statement, with the syntax

namelist namelist-spec [[,]namelist-spec]...

as in the example

namelist /list1/ a, b, c /list2/ x, y, z

It is possible to continue a list within the same scoping unit by repeating the namelist name

on more than one statement. Thus,

namelist /list/ a, b, c
namelist /list/ d, e, f

has the same effect as a single statement containing all the variable names in the same order.

A namelist group object may appear more than once in a namelist group and may belong to

more than one namelist group.

If the type, type parameters, or shape of a namelist variable is specified in a specification

statement in the same scoping unit, the specification statement must either appear before the

namelist statement, or be a type declaration statement that confirms the implicit typing rule

in force in the scoping unit for the initial letter of the variable. Also, if the namelist group has

the public attribute, no variable in the list may have the private attribute or have private

components.

12These restrictions are all lifted in Fortran 2003 except that assumed-size arrays remain prohibited.

156 Modern Fortran Explained

7.16 Summary

In this chapter most of the specification statements of Fortran have been described. The

following concepts have been introduced: implicit typing and its attendant dangers, named

constants, constant expressions, data initialization, control of the accessibility of entities

in modules, saving data between procedure calls, selective access of entities in a module,

renaming entities accessed from a module, specification expressions that may be used when

specifying data objects and function results, and the formation of variables into namelist

groups. We have also explained alternative ways of specifying attributes.

We conclude this chapter with a complete program, Figure 7.6, that uses a module to sort

US-style addresses (name, street, town, and state with a numerical zip code) by order of zip

code. It illustrates the interplay between many of the features described so far, but note that

it is not a production code since the sort routine is not very efficient and the full range of US

addresses is not handled. Suitable test data are:

Prof. James Bush,
206 Church St. SE,
Minneapolis,
MN 55455

J. E. Dougal,
Rice University,
Houston,
TX 77251

Jack Finch,
104 Ayres Hall,
Knoxville,
TN 37996

Figure 7.6 A module to sort postal addresses and a program that uses it. maxloc is described

in Section 8.14. The read and write statements here are explained in Sections 9.7 and 9.12.

module sort ! To sort postal addresses by zip code.
implicit none
private
public :: selection_sort
integer, parameter :: string_length = 30
type, public :: address

character(len = string_length) :: name, street, town, &
state*2

integer :: zip_code
end type address

contains
recursive subroutine selection_sort (array_arg)

type (address), dimension (:), intent (inout) &
:: array_arg

integer :: current_size
integer :: big
current_size = size (array_arg)
if (current_size > 0) then

big = maxloc (array_arg(:)%zip_code, dim=1)
call swap (big, current_size)
call selection_sort (array_arg(1: current_size - 1))

end if
contains

subroutine swap (i, j)
integer, intent (in) :: i, j
type (address) :: temp
temp = array_arg(i)
array_arg(i) = array_arg(j)
array_arg(j) = temp

end subroutine swap
end subroutine selection_sort

end module sort
program zippy

use sort
implicit none
integer, parameter :: array_size = 100
type (address), dimension (array_size) :: data_array
integer :: i, n
do i = 1, array_size

read (*, ’(/a/a/a/a2,i8)’, end=10) data_array(i)
write (*, ’(/a/a/a/a2,i8)’) data_array(i)

end do
10 n = i - 1

call selection_sort (data_array(1: n))
write (*, ’(//a)’) ’after sorting:’
do i = 1, n

write (*, ’(/a/a/a/a2,i8)’) data_array(i)
end do

end program zippy

158 Modern Fortran Explained

Exercises

1. Write suitable type statements for the following quantities:

i) an array to hold the number of counts in each of the 100 bins of a histogram numbered from

1 to 100;

ii) an array to hold the temperature to two significant decimal places at points, on a sheet of

iron, equally spaced at 1 cm intervals on a rectangular grid 20 cm square, with points in each

corner (the melting point of iron is 1530 ◦C);

iii) an array to describe the state of 20 on/off switches;

iv) an array to contain the information destined for a printed page of 44 lines, each of 70 letters

or digits.

2. Explain the difference between the following pair of declarations:

real :: i = 3.1

and

real, parameter :: i = 3.1

What is the value of i in each case?

3. Write type declaration statements which initialize:

i) all the elements of an integer array of length 100 to the value zero;

ii) all the odd elements of the same array to 0 and the even elements to 1;

iii) the elements of a real 10×10 square array to 1.0;

iv) a character string to the digits 0 to 9.

4. In the following module, identify all the scoping units and list the mappings for implicit typing for

all the letters in all of them:

module mod
implicit character(10, 2) (a-b)
:

contains
subroutine outer

implicit none
:

contains
subroutine inner(fun)

implicit complex (z)
interface

function fun(x)
implicit real (f, x)
:

end function fun
end interface

end subroutine inner
end subroutine outer

end module mod

Specification statements 159

5. i) Write a type declaration statement that declares and initializes a variable of derived type

person (Section 2.9).

ii) Either

a. write a type declaration statement that declares and initializes a variable of type entry
(Section 2.13); or

b. write a type declaration statement for such a variable and a data statement to initialize

its non-pointer components.

6. Which of the following are constant expressions:

i) kind(x), for x of type real

ii) selected_real_kind(6, 20)

iii) 1.7**2

iv) 1.7**2.0

v) (1.7, 2.3)**(-2)

vi) (/ (7*i, i=1, 10) /)

vii) person("Reid", 25*2.0, 22**2)

viii) entry(1.7, 1, null_pointer)

This page intentionally left blank

8. Intrinsic procedures

8.1 Introduction

In a language that has a clear orientation towards scientific applications there is an obvious

requirement for the most frequently required mathematical functions to be provided as part

of the language itself, rather than expecting each user to code them afresh. When provided

with the compiler, they are normally coded to be very efficient and will have been well tested

over the complete range of values that they accept. It is difficult to compete with the high

standard of code provided by the vendors.

The efficiency of the intrinsic procedures when handling arrays is particularly marked

because a single call may cause a large number of individual operations to be performed,

during the execution of which advantage may be taken of the specific nature of the hardware.

Another feature of a substantial number of the intrinsic procedures is that they extend

the power of the language by providing access to facilities that are not otherwise available.

Examples are inquiry functions for the presence of an optional argument, the parts of a

floating-point number, and the length of a character string.

There are over a hundred intrinsic procedures in all, a particularly rich set. They fall into

distinct groups, each of which we describe in turn. A list in alphabetical order, with one-

line descriptions, is given in Appendix A.1 Some processors may offer additional intrinsic

procedures. Note that a program containing references to such procedures is portable only

to other processors that provide those same procedures. In fact, such a program does not

conform to the standard.

All the intrinsic procedures are generic.

8.1.1 Keyword calls

The procedures may be called with keyword actual arguments, using the dummy argument

names as keywords. This facility is not very useful for those with a single non-optional

argument, but is useful for those with several optional arguments. For example

call date_and_time (date=d)

returns the date in the scalar character variable d. The rules for positional and keyword

argument lists were explained in Section 5.13. In this chapter, the dummy arguments that are

1Appendix A also lists the few that were added to Fortran 2003 and the substantial number that were added to

Fortran 2008.

162 Modern Fortran Explained

optional are indicated with square brackets. We have taken some ‘poetic licence’ with this

notation, which might suggest to the reader that the positional form is permitted following an

absent argument (this is not the case).

8.1.2 Categories of intrinsic procedures

There are four categories of intrinsic procedures.

i) Elemental procedures (Section 6.6).

ii) Inquiry functions return properties of their principal arguments that do not depend on

their values; indeed, for variables, their values may be undefined.

iii) Transformational functions are functions that are neither elemental nor inquiry; they

usually have array arguments and an array result whose elements depend on many of

the elements of the arguments.

iv) Non-elemental subroutines.

All the functions are pure (Section 6.10).

8.1.3 The intrinsic statement

A name may be specified to be that of an intrinsic procedure in an intrinsic statement,

which has the general form

intrinsic [::] intrinsic-name-list

where intrinsic-name-list is a list of intrinsic procedure names. A name must not appear

more than once in the intrinsic statements of a scoping unit and must not appear in an

external statement there (but may appear as a generic name on an interface block if an

intrinsic procedure is being extended, see Section 5.18). It is possible to include such a

statement in every scoping unit that contains references to intrinsic procedures, in order to

make the use clear to the reader. We particularly recommend this practice when referencing

intrinsic procedures that are not defined by the standard, for then a clear diagnostic message

should be produced if the program is ported to a processor that does not support the extra

intrinsic procedures.

8.1.4 Argument intents

Since all the functions are pure, their arguments all have intent in. For the subroutines, the

intents vary from case to case (see the descriptions given later in the chapter).

8.2 Inquiry functions for any type

The following are inquiry functions whose arguments may be of any type.

Intrinsic procedures 163

associated (pointer [,target]), when target is absent, returns the value true

if the pointer pointer is associated with a target and false otherwise. The pointer

association status of pointer must not be undefined. If target is present, it must have

the same type, type parameters, and rank as pointer. The value is true if pointer
is associated with target, and false otherwise. In the array case, true is returned

only if the shapes are identical and corresponding array elements, in array element

order, are associated with each other. If the character length or array size is zero,

false is returned. A different bound, as in the case of associated(p,a) following the

pointer assignment p => a(:) when lbound(a) = 0, is insufficient to cause false to

be returned. The argument target may itself be a pointer, in which case its target is

compared with the target of pointer; the pointer association status of target must

not be undefined and if either pointer or target is disassociated, the result is false.

present (a) may be called in a subprogram that has an optional dummy argument a
or accesses such a dummy argument from its host. It returns the value true if the

corresponding actual argument is present in the current call to it, and false otherwise.

If an absent dummy argument is used as an actual argument in a call of another

subprogram, it is regarded as also absent in the called subprogram.

There is an inquiry function whose argument may be of any intrinsic type:

kind (x) has type default integer and value equal to the kind type parameter value of x.

8.3 Elemental numeric functions

There are 17 elemental functions for performing simple numerical tasks, many of which

perform type conversions for some or all permitted types of arguments.

8.3.1 Elemental functions that may convert

If kind is present in the following elemental functions, it must be a scalar integer constant

expression and provide a kind type parameter that is supported on the processor.

abs (a) returns the absolute value of an argument of type integer, real, or complex. The

result is of type integer if a is of type integer and otherwise it is real. It has the same

kind type parameter as a.

aimag (z) returns the imaginary part of the complex value z. The type is real and the

kind type parameter is that of z.

aint (a [,kind]) truncates a real value a towards zero to produce a real that is a

whole number. The value of the kind type parameter is the value of the argument kind
if it is present, or that of a otherwise.

anint (a [,kind]) returns a real whose value is the nearest whole number to the real

value a. The value of the kind type parameter is the value of the argument kind, if it is

present, or that of a otherwise.

164 Modern Fortran Explained

ceiling (a [,kind]) returns the least integer greater than or equal to its real

argument. If kind is present, the value of the kind type parameter of the result is

the value of kind, otherwise it is that of the default integer type.

cmplx (x [,y] [,kind]) converts x or (x, y) to complex type with the value of

the kind type parameter being the value of the argument kind if it is present or that of

default complex otherwise. If y is absent, x may be of type integer, real, or complex. If

y is present, it must be of type integer or real and x must be of type integer or real.

floor (a [,kind]) returns the greatest integer less than or equal to its real argument.

If kind is present, the value of the kind type parameter of the result is the value of kind,

otherwise it is that of the default integer type.

int (a [,kind]) converts to integer type with the value of the kind type parameter

being the value of the argument kind, if it is present, or that of the default integer

otherwise. The argument a may be

• integer, in which case int(a)=a;

• real, in which case the value is truncated towards zero; or

• complex, in which case the real part is truncated towards zero.

nint (a [,kind]) returns the integer value that is nearest to the real a. If kind is

present, the value of the kind type parameter of the result is the value of kind, otherwise

it is that of the default integer type.

real (a [,kind]) converts to real type with the value of the kind type parameter

being that of kind if it is present. If kind is absent, the kind type parameter is that of

default real when a is of type integer or real, and is that of a when a is type complex.

The argument a may be of type integer, real, or complex. If it is complex, the imaginary

part is ignored.

8.3.2 Elemental functions that do not convert

The following are elemental functions whose result is of type and kind type parameter that are

those of the first or only argument. For those having more than one argument, all arguments

must have the same type and kind type parameter.

conjg (z) returns the conjugate of the complex value z.

dim (x, y) returns max(x-y, 0.) for arguments that are both integer or both real.

max (a1, a2 [,a3,...]) returns the maximum of two or more integer or real2

values.

min (a1, a2 [,a3,...]) returns the minimum of two or more integer or real2

values.

2In Fortran 2003, character type is also supported.

Intrinsic procedures 165

mod (a, p) returns the remainder of a modulo p, that is a-int(a/p)*p. The value of p
must not be zero; a and p must be both integer or both real.

modulo (a, p) returns a modulo p when a and p are both integer or both real, that is

a-floor(a/p)*p in the real case, and a-floor(a÷p)*p in the integer case, where ÷
represents ordinary mathematical division. The value of p must not be zero.

sign (a, b) returns the absolute value of a times the sign of b. The arguments a and b
must be both integer or both real. If b is zero, its sign is taken as positive. However, if

b is real with the value zero and the processor can distinguish between a negative and

a positive real zero, the result has the sign of b (see also Section 8.7.1).

8.4 Elemental mathematical functions

The following are elemental functions that evaluate elementary mathematical functions. The

type and kind type parameter of the result are those of the first argument, which is usually

the only argument.

acos (x) returns the arc cosine (inverse cosine) function value for real values x such that

|x| ≤ 1, expressed in radians in the range 0 ≤ acos(x)≤ π.

asin (x) returns the arc sine (inverse sine) function value for real values x such that

|x| ≤ 1, expressed in radians in the range − π
2 ≤ asin(x) ≤ π

2 .

atan (x) returns the arc tangent (inverse tangent) function value for real x, expressed in

radians in the range −π
2
≤ atan(x)≤ π

2
.

atan2 (y, x) returns the arc tangent (inverse tangent) function value for pairs of reals,

x and y, of the same type and type parameter. The result is the principal value

of the argument of the complex number (x,y), expressed in radians in the range

−π < atan2(y,x)≤ π.3 The values of x and y must not both be zero.

cos (x) returns the cosine function value for an argument of type real or complex that is

treated as a value in radians.

cosh (x) returns the hyperbolic cosine function value for a real argument x.

exp (x) returns the exponential function value for a real or complex argument x.

log (x) returns the natural logarithm function for a real or complex argument x. In the real

case, x must be positive. In the complex case, x must not be zero, and the imaginary

part w of the result lies in the range −π < w ≤ π.4

log10 (x) returns the common (base 10) logarithm of a real argument whose value must

be positive.

3In Fortran 2003, if the arithmetic is IEEE, an approximation to −π is returned if x < 0 and y is a negative zero.
4In Fortran 2003, if the arithmetic is IEEE, an approximation to −π is returned if the real part of x is less than

zero and the imaginary part is a negative zero.

166 Modern Fortran Explained

sin (x) returns the sine function value for a real or complex argument that is treated as a

value in radians.

sinh (x) returns the hyperbolic sine function value for a real argument.

sqrt (x) returns the square root function value for a real or complex argument x. If x is

real, its value must not be negative. In the complex case, the real part of the result is

not negative, and when it is zero the imaginary part of the result is not negative.5

tan (x) returns the tangent function value for a real argument that is treated as a value in

radians.

tanh (x) returns the hyperbolic tangent function value for a real argument.

8.5 Elemental character and logical functions

8.5.1 Character–integer conversions

The following are elemental functions for conversions from a single character to an integer,

and vice versa.

achar (i) is of type default character with length one and returns the character in the

position in the ASCII collating sequence that is specified by the integer i. The value

of i must be in the range 0 ≤ i ≤ 127, otherwise the result is processor dependent.

char (i [,kind]) is of type character and length one, with a kind type parameter

value that of the value of kind if present, or default otherwise. It returns the character

in position i in the processor collating sequence associated with the relevant kind

parameter. The value of i must be in the range 0 ≤ i ≤ n−1, where n is the number of

characters in the processor’s collating sequence. If kind is present, it must be a scalar

integer constant expression and provide a kind type parameter that is supported on the

processor.

iachar (c)6 is of type default integer and returns the position in the ASCII collating

sequence of the default character c. If c is not in the sequence, the result is processor

dependent.

ichar (c)6 is of type default integer and returns the position of the character c in the

processor collating sequence associated with the kind parameter of c.

5In Fortran 2003, if the arithmetic is IEEE, a negative imaginary result is returned if the real part of the result is

zero and the imaginary part of x is less than zero.
6In Fortran 2003, there is an optional final kind argument that must be a scalar integer constant expression and

controls the kind of the result.

Intrinsic procedures 167

8.5.2 Lexical comparison functions

The following elemental functions accept default character strings as arguments, make a

lexical comparison based on the ASCII collating sequence, and return a default logical result.

If the strings have different lengths, the shorter one is padded on the right with blanks.

lge (string_a, string_b) returns the value true if string_a follows string_b in

the ASCII collating sequence or is equal to it, and the value false otherwise.

lgt (string_a, string_b) returns the value true if string_a follows string_b in

the ASCII collating sequence, and the value false otherwise.

lle (string_a, string_b) returns the value true if string_b follows string_a in

the ASCII collating sequence or is equal to it, and the value false otherwise.

llt (string_a, string_b) returns the value true if string_b follows string_a in

the ASCII collating sequence, and false otherwise.

8.5.3 String-handling elemental functions

The following are elemental functions that manipulate strings. The arguments string,

substring, and set are always of type character, and where two are present have the same

kind type parameter. The kind type parameter value of the result is that of string.

adjustl (string) adjusts left to return a string of the same length by removing all

leading blanks and inserting the same number of trailing blanks.

adjustr (string) adjusts right to return a string of the same length by removing all

trailing blanks and inserting the same number of leading blanks.

index (string, substring [,back])7 has type default integer and returns the

starting position of substring as a substring of string, or zero if it does not occur

as a substring. If back is absent or present with value false, the starting position of the

first such substring is returned; the value 1 is returned if substring has zero length.

If back is present with value true, the starting position of the last such substring is

returned; the value len(string)+1 is returned if substring has zero length.

len_trim (string)7 returns a default integer whose value is the length of string
without trailing blank characters.

scan (string, set [,back])7 returns a default integer whose value is the posi-

tion of a character of string that is in set, or zero if there is no such character. If

the logical back is absent or present with value false, the position of the leftmost such

character is returned. If back is present with value true, the position of the rightmost

such character is returned.

7In Fortran 2003, there is an optional final kind argument that must be a scalar integer constant expression and

controls the kind of the result.

168 Modern Fortran Explained

verify (string, set [,back])7 returns the default integer value 0 if each

character in string appears in set, or the position of a character of string that is

not in set. If the logical back is absent or present with value false, the position of the

left-most such character is returned. If back is present with value true, the position of

the rightmost such character is returned.

8.5.4 Logical conversion

The following elemental function converts from a logical value with one kind type parameter

to another.

logical (l [,kind]) returns a logical value equal to the value of the logical l. The

value of the kind type parameter of the result is the value of kind if it is present or

that of default logical otherwise. If kind is present, it must be a scalar integer constant

expression and provide a kind type parameter that is supported on the processor.

8.6 Non-elemental string-handling functions

8.6.1 String-handling inquiry function

len (string)7 is an inquiry function that returns a scalar default integer holding the

number of characters in string if it is scalar, or in an element of string if it is array

valued. The value of string need not be defined.

8.6.2 String-handling transformational functions

There are two functions that cannot be elemental because the length type parameter of the

result depends on the value of an argument.

repeat (string, ncopies) forms the string consisting of the concatenation of

ncopies copies of string, where ncopies is of type integer and its value must not be

negative. Both arguments must be scalar.

trim (string) returns string with all trailing blanks removed. The argument string
must be scalar.

8.7 Numeric inquiry and manipulation functions

8.7.1 Models for integer and real data

The numeric inquiry and manipulation functions are defined in terms of a model set of

integers and a model set of reals for each kind of integer and real data type implemented.

For each kind of integer, it is the set

i = s×
q

∑
k=1

wk × rk−1

Intrinsic procedures 169

where s is ±1, q is a positive integer, r is an integer exceeding 1 (usually 2), and each wk is

an integer in the range 0 ≤ wk < r. For each kind of real, it is the set

x = 0

and

x = s×be ×
p

∑
k=1

fk ×b−k

where s is ±1, p and b are integers exceeding 1, e is an integer in a range emin ≤ e ≤ emax,

and each fk is an integer in the range 0 ≤ fk < b except that f1 is also nonzero.

Values of the parameters in these models are chosen for the processor so as best to fit

the hardware with the proviso that all model numbers are representable. Note that it is

quite likely that there are some machine numbers that lie outside the model. For example,

many computers represent the integer −rq, and the IEEE standard for Binary Floating-

point Arithmetic (IEEE 754-1985 or IEC 60559 : 1989) contains reals with f1 = 0 (called

denormalized numbers) and register numbers with increased precision and range.

In the first paragraph of Section 2.6, we noted that the value of a signed zero is regarded

as being the same as that of an unsigned zero. However, many processors distinguish at the

hardware level between a negative real zero value and a positive real zero value, and the IEEE

standard makes use of this where possible. For example, when the exact result of an operation

is nonzero but the rounding produces a zero, the sign is retained.

In Fortran, the two zeros are treated identically in all relational operations, as input

arguments to all intrinsic functions (except sign), or as the scalar expression in the arithmetic

if statement (Appendix C.1.7). However, the function sign (Section 8.3.2) is such that the

sign of the second argument may be taken into account even if its value is zero. On a processor

that has IEEE arithmetic, the value of sign(2.0, -0.0) is −2.0. Also, a Fortran processor

is required to represent all negative numbers on output, including zero, with a minus sign.

8.7.2 Numeric inquiry functions

There are nine inquiry functions that return values from the models associated with their

arguments. Each has a single argument that may be scalar or array valued and each returns a

scalar result. The value of the argument need not be defined.

digits (x), for real or integer x, returns the default integer whose value is the number of

significant digits in the model that includes x, that is p or q.

epsilon (x), for real x, returns a real result with the same type parameter as x that is

almost negligible compared with the value one in the model that includes x, that is

b1−p.

huge (x), for real or integer x, returns the largest value in the model that includes x. It has

the type and type parameter of x. The value is

(1−b−p)bemax

or

rq −1

170 Modern Fortran Explained

maxexponent (x), for real x, returns the default integer emax, the maximum exponent in

the model that includes x.

minexponent (x), for real x, returns the default integer emin, the minimum exponent in

the model that includes x.

precision (x), for real or complex x, returns a default integer holding the equivalent

decimal precision in the model representing real numbers with the same type parameter

value as x. The value is

int((p−1)∗log10(b))+ k

where k is 1 if b is an integral power of 10 and 0 otherwise.

radix (x), for real or integer x, returns the default integer that is the base in the model that

includes x, that is b or r.

range (x), for integer, real, or complex x, returns a default integer holding the equivalent

decimal exponent range in the models representing integer or real numbers with the

same type parameter value as x. The value is int(log10(huge)) for integers and

int(min(log10(huge), -log10(tiny)))

for reals, where huge and tiny are the largest and smallest positive numbers in the

models.

tiny (x), for real x, returns the smallest positive number

bemin−1

in the model that includes x. It has the type and type parameter of x.

8.7.3 Elemental functions to manipulate reals

There are seven elemental functions whose first or only argument is of type real and that

return values related to the components of the model values associated with the actual value

of the argument. For the functions exponent, fraction, and set_exponent, if the value of

x lies outside the range of model numbers, its e value is determined as if the model had no

exponent limits.

exponent (x) returns the default integer whose value is the exponent part e of x when

represented as a model number. If x=0, the result has value zero.

fraction (x) returns a real with the same type parameter as x whose value is the

fractional part of x when represented as a model number, that is x b−e.

nearest (x, s) returns a real with the same type parameter as x whose value is the

nearest different machine number in the direction given by the sign of the real s. The

value of s must not be zero.

Intrinsic procedures 171

rrspacing (x) returns a real with the same type parameter as x whose value is the

reciprocal of the relative spacing of model numbers near x. If the value of x is a model

number this is |x b−e|bp.

scale (x, i) returns a real with the same type parameter as x, whose value is x bi,

where b is the base in the model for x, and i is of type integer.

set_exponent (x, i) returns a real with the same type parameter as x, whose

fractional part is the fractional part of the model representation of x and whose

exponent part is i, that is x bi−e.

spacing (x) returns a real with the same type parameter as x whose value is the absolute

spacing of model numbers near x.

8.7.4 Transformational functions for kind values

There are two functions that return the least kind type parameter value that will meet a

given numeric requirement. They have scalar arguments and results, so are classified as

transformational.

selected_int_kind (r) returns the default integer scalar that is the kind type

parameter value for an integer data type able to represent all integer values n in the

range −10r < n < 10r, where r is a scalar integer. If more than one is available, a kind

with least decimal exponent range is chosen (and least kind value if several have least

decimal exponent range). If no corresponding kind is available, the result is −1.

selected_real_kind ([p] [, r]) returns the default integer scalar that is the

kind type parameter value for a real data type with decimal precision (as returned by

the function precision) at least p, and decimal exponent range (as returned by the

function range) at least r. If more than one is available, a kind with the least decimal

precision is chosen (and least kind value if several have least decimal precision). Both

p and r are scalar integers; at least one of them must be present. If no corresponding

kind value is available, the result is −1 if sufficient precision is unavailable, −2 if

sufficient exponent range is unavailable, and −3 if both are unavailable.

8.8 Bit manipulation procedures

There are eleven procedures for manipulating bits held within integers. They are based

on those in the US Military Standard MIL-STD 1753. They differ only in that here they

are elemental, where appropriate, whereas the original procedures accepted only scalar

arguments.

These intrinsics are based on a model in which an integer holds s bits wk, k = 0,1, . . . ,s−1,

in a sequence from right to left, based on the non-negative value

s−1

∑
k=0

wk ×2k

172 Modern Fortran Explained

This model is valid only in the context of these intrinsics. It is identical to the model for

integers in Section 8.7.1 when r = 2 and ws−1 = 0, but when r �= 2 or ws−1 = 1 the models do

not correspond, and the value expressed as an integer may vary from processor to processor.

8.8.1 Inquiry function

bit_size (i) returns the number of bits in the model for bits within an integer of the

same type parameter as i. The result is a scalar integer having the same type parameter

as i.

8.8.2 Elemental functions

btest (i, pos) returns the default logical value true if bit pos of the integer i has

value 1 and false otherwise. pos must be an integer with value in the range 0 ≤ pos<
bit_size(i).

iand (i, j) returns the logical and of all the bits in i and corresponding bits in j,

according to the truth table

i 1 1 0 0
j 1 0 1 0
iand(i, j) 1 0 0 0

The arguments i and j must have the same type parameter value, which is the type

parameter value of the result.

ibclr (i, pos) returns an integer, with the same type parameter as i, and value equal

to that of i except that bit pos is cleared to 0. The argument pos must be an integer

with value in the range 0 ≤ pos< bit_size(i).

ibits (i, pos, len) returns an integer, with the same type parameter as i, and

value equal to the len bits of i starting at bit pos right adjusted and all other bits

zero. The arguments pos and len must be integers with non-negative values such that

pos+len≤ bit_size(i).

ibset (i, pos) returns an integer, with the same type parameter as i, and value equal

to that of i except that bit pos is set to 1. The argument pos must be an integer with

value in the range 0 ≤ pos< bit_size(i).

ieor (i, j) returns the logical exclusive or of all the bits in i and corresponding bits in

j, according to the truth table

i 1 1 0 0
j 1 0 1 0
ieor(i, j) 0 1 1 0

Intrinsic procedures 173

The arguments i and j must have the same type parameter value, which is the type

parameter value of the result.

ior (i, j) returns the logical inclusive or of all the bits in i and corresponding bits in

j, according to the truth table

i 1 1 0 0
j 1 0 1 0
ior(i, j) 1 1 1 0

The arguments i and j must have the same type parameter value, which is the type

parameter value of the result.

ishft (i, shift) returns an integer, with the same type parameter as i, and value

equal to that of i except that the bits are shifted shift places to the left (-shift places

to the right if shift is negative). Zeros are shifted in from the other end. The argument

shift must be an integer with value satisfying the inequality |shift| ≤ bit_size(i).

ishftc (i, shift [, size]) returns an integer, with the same type parameter as

i, and value equal to that of i except that the size rightmost bits (or all the bits if size
is absent) are shifted circularly shift places to the left (-shift places to the right if

shift is negative). The argument shift must be an integer with absolute value not

exceeding the value of size (or bit_size(i) if size is absent).

not (i) returns the logical complement of all the bits in i, according to the truth table

i 0 1
not(i) 1 0

8.8.3 Elemental subroutine

call mvbits (from, frompos, len, to, topos) copies the sequence of bits

in from that starts at position frompos and has length len to to, starting at position

topos. The other bits of to are not altered. The arguments from, frompos, len,

and topos are all integers with intent in, and they must have values that satisfy the

inequalities: frompos+len≤ bit_size(from), len≥ 0, frompos≥ 0, topos+len≤
bit_size(to), and topos ≥ 0. The argument to is an integer with intent inout; it

must have the same kind type parameter as from. The same variable may be specified

for from and to.

8.9 Transfer function

The transfer function allows data of one type to be transferred to another without the physical

representation being altered. This would be useful, for example, in writing a generic data

storage and retrieval system. The system itself could be written for one type, default integer

say, and other types handled by transfers to and from that type, for example:

174 Modern Fortran Explained

integer :: store
character(len=4) :: word ! To be stored and retrieved
:
store = transfer(word, store) ! Before storage
:
word = transfer(store, word) ! After retrieval
:

transfer (source, mold [,size]) returns a result of type and type parameters

those of mold. When size is absent, the result is scalar if mold is scalar, and it is of

rank one and size just sufficient to hold all of source if mold is array valued. When

size is present, the result is of rank one and size size. If the physical representation of

the result is as long as or longer than that of source, the result contains source as its

leading part and the value of the rest is processor dependent; otherwise the result is the

leading part of source. As the rank of the result can depend on whether or not size
is specified, the corresponding actual argument must not itself be an optional dummy

argument.

8.10 Vector and matrix multiplication functions

There are two transformational functions that perform vector and matrix multiplications.

They each have two arguments that are both of numeric type (integer, real, or complex) or

both of logical type. The result is of the same type and type parameter as for the multiply or

and operation between two such scalars. The functions sum and any, used in the definitions,

are defined in Section 8.11.1.

dot_product (vector_a, vector_b) requires two arguments each of rank one

and the same size. If vector_a is of type integer or type real, it re-

turns sum(vector_a * vector_b); if vector_a is of type complex, it returns

sum(conjg(vector_a) * vector_b); and if vector_a is of type logical, it returns

any(vector_a .and. vector_b).

matmul (matrix_a, matrix_b) performs matrix multiplication. For numeric argu-

ments, three cases are possible:

i) matrix_a has shape (n,m) and matrix_b has shape (m,k). The result has shape

(n,k) and element (i, j) has the value

sum(matrix_a(i, :) * matrix_b(:, j)).

ii) matrix_a has shape (m) and matrix_b has shape (m, k). The result has shape (k)

and element (j) has the value

sum(matrix_a * matrix_b(:, j)).

iii) matrix_a has shape (n, m) and matrix_b has shape (m). The result has shape

(n) and element (i) has the value

sum(matrix_a(i, :) * matrix_b).

For logical arguments, the shapes are as for numeric arguments and the values are

determined by replacing ‘sum’ and ‘*’ in the above expressions by ‘any’ and ‘.and.’.

Intrinsic procedures 175

8.11 Transformational functions that reduce arrays

There are seven transformational functions that perform operations on arrays such as

summing their elements.

8.11.1 Single argument case

In their simplest form, these functions have a single array argument and return a scalar result.

All except count have a result of the same type and type parameter as the argument. The

mask array mask, used as an argument in any, all, count, and optionally in others, is

described also in Section 6.17.

all (mask) returns the value true if all elements of the logical array mask are true or mask
has size zero, and otherwise returns the value false.

any (mask) returns the value true if any of the elements of the logical array mask is true,

and returns the value false if no elements are true or if mask has size zero.

count (mask)8 returns the default integer value that is the number of elements of the

logical array mask that have the value true.

maxval (array) returns the maximum value of an element of an integer or real9 array.

If array has size zero, it returns the negative value of largest magnitude supported by

the processor.

minval (array) returns the minimum value of an element of an integer or real9 array.

If array has size zero, it returns the largest positive value supported by the processor.

product (array) returns the product of the elements of an integer, real, or complex

array. It returns the value one if array has size zero.

sum (array) returns the sum of the elements of an integer, real, or complex array. It

returns the value zero if array has size zero.

8.11.2 Optional argument dim

All these functions have an optional second argument dim that is a scalar integer. If this is

present, the operation is applied to all rank-one sections that span right through dimension

dim to produce an array of rank reduced by one and extents equal to the extents in the

other dimensions, or a scalar if the original rank is one. For example, if a is a real array

of shape (4,5,6), sum(a,dim=2) is a real array of shape (4,6) and element (i, j) has value

sum(a(i,:,j)).

As the rank of the result depends on whether dim is specified (unless the original is rank

one), the corresponding actual argument must not itself be an optional dummy argument.

8In Fortran 2003, there is an optional final kind argument that must be a scalar integer constant expression and

controls the kind of the result.
9In Fortran 2003, character type is also supported.

176 Modern Fortran Explained

8.11.3 Optional argument mask

The functions maxval, minval, product, and sum have a third optional argument, a logical

array mask. If this is present, it must have the same shape as the first argument and the

operation is applied to the elements corresponding to true elements of mask; for example,

sum(a, mask = a>0) sums the positive elements of the array a. The argument mask affects

only the value of the function and does not affect the evaluation of arguments that are array

expressions. The argument mask is permitted as the second positional argument when dim is

absent.

8.12 Array inquiry functions

There are five functions for inquiries about the bounds, shape, size, and allocation status of

an array of any type. Because the result depends on only the array properties, the value of the

array need not be defined.

8.12.1 Allocation status

allocated (array) returns, when the allocatable array array is currently allocated,

the value true; otherwise it returns the value false.

8.12.2 Bounds, shape, and size

The following functions enquire about the bounds of an array. In the case of an allocatable

array, it must be allocated; and in the case of a pointer, it must be associated with a target. An

array section or an array expression is taken to have lower bounds 1 and upper bounds equal

to the extents (like an assumed-shape array with no specified lower bounds). If a dimension

has size zero, the lower bound is taken as 1 and the upper bound is taken as 0.

lbound (array [,dim])10 when dim is absent, returns a rank-one default integer

array holding the lower bounds. When dim is present, it must be a scalar integer and

the result is a scalar default integer holding the lower bound in dimension dim. As

the rank of the result depends on whether dim is specified, the corresponding actual

argument must not itself be an optional dummy argument.

shape (source)10 returns a rank-one default integer array holding the shape of the array

or scalar source. In the case of a scalar, the result has size zero.

size (array [,dim])10 returns a scalar default integer that is the size of the array

array or extent along dimension dim if the scalar integer dim is present.

ubound (array [,dim])10 is similar to lbound except that it returns upper bounds.

10In Fortran 2003, there is an optional final kind argument that must be a scalar integer constant expression and

controls the kind of the result.

Intrinsic procedures 177

8.13 Array construction and manipulation functions

There are eight functions that construct or manipulate arrays of any type.

8.13.1 The merge elemental function

merge (tsource, fsource, mask) is an elemental function. The argument

tsource may have any type and fsource must have the same type and type parame-

ters. The argument mask must be of type logical. The result is tsource if mask is true

and fsource otherwise.

The principal application of merge is when the three arguments are arrays having the

same shape, in which case tsource and fsource are merged under the control of mask.

Note, however, that tsource or fsource may be scalar, in which case the elemental rules

effectively broadcast it to an array of the correct shape.

8.13.2 Packing and unpacking arrays

The transformational function pack packs into a rank-one array those elements of an array

that are selected by a logical array of conforming shape, and the transformational function

unpack performs the reverse operation. The elements are taken in array element order.

pack (array, mask [,vector]), when vector is absent, returns a rank-one array

containing the elements of array corresponding to true elements of mask in array

element order; mask may be scalar with value true, in which case all elements are

selected. If vector is present, it must be a rank-one array of the same type and type

parameters as array and size at least equal to the number t of selected elements; the

result has size equal to the size n of vector; if t < n, elements i of the result for i > t
are the corresponding elements of vector.

unpack (vector, mask, field) returns an array of the type and type parameters

of vector and shape of mask. The argument mask must be a logical array and vector
must be a rank-one array of size at least the number of true elements of mask. field
must be of the same type and type parameters as vector and must either be scalar or

be of the same shape as mask. The element of the result corresponding to the ith true

element of mask, in array element order, is the ith element of vector; all others are

equal to the corresponding elements of field if it is an array or to field if it is a

scalar.

8.13.3 Reshaping an array

The transformational function reshape allows the shape of an array to be changed, with

possible permutation of the subscripts.

reshape (source, shape [,pad] [,order]) returns an array with shape

given by the rank-one integer array shape, and type and type parameters those of the

178 Modern Fortran Explained

array source. The size of shape must be constant, and its elements must not be neg-

ative. If pad is present, it must be an array of the same type and type parameters as

source. If pad is absent or of size zero, the size of the result must not exceed the size

of source. If order is absent, the elements of the result, in array element order, are the

elements of source in array element order followed by copies of pad in array element

order. If order is present, it must be a rank-one integer array with a value that is a

permutation of (1,2,...,n); the elements r(s1, . . . ,sn) of the result, taken in subscript or-

der for the array having elements r(sorder(1),..., sorder(n)), are those of source in array

element order followed by copies of pad in array element order. For example, if order
has the value (3,1,2), the elements r(1,1,1), r(1,1,2), ..., r(1,1,k), r(2,1,1),

r(2,1,2), ... correspond to the elements of source and pad in array element order.

8.13.4 Transformational function for replication

spread (source, dim, ncopies) returns an array of type and type parameters

those of source and of rank increased by one. The argument source may be scalar

or array valued. The arguments dim and ncopies are integer scalars. The result

contains max(ncopies, 0) copies of source, and element (r1, . . . ,rn+1) of the result

is source(s1, . . . ,sn) where (s1, . . . ,sn) is (r1, . . . ,rn+1) with subscript dim omitted (or

source itself if it is scalar).

8.13.5 Array shifting functions

cshift (array, shift [,dim]) returns an array of the same type, type parame-

ters, and shape as array. The argument shift is of type integer and must be scalar

if array is of rank one. If shift is scalar, the result is obtained by shifting every

rank-one section that extends across dimension dim circularly shift times. The argu-

ment dim is an integer scalar and, if it is omitted, it is as if it were present with the

value 1. The direction of the shift depends on the sign of shift, being to the left for

a positive value and to the right for a negative value. Thus, for the case with shift=1
and array of rank one and size m, the element i of the result is array(i+1), where

i = 1,2, . . . ,m− 1, and element m is array(1). If shift is an array, it must have the

same shape as that of array with dimension dim omitted, and it supplies a separate

value for each shift. For example, if array is of rank three and shape (k, l,m) and dim
has the value 2, shift must be of shape (k,m) and supplies a shift for each of the k×m
rank-one sections in the second dimension of array.

eoshift (array, shift [,boundary] [,dim]) is identical to cshift ex-

cept that an end-off shift is performed and boundary values are inserted into the gaps

so created. The argument boundary may be omitted when array has intrinsic type, in

which case the value zero is inserted for the integer, real, and complex cases; false in

the logical case; and blanks in the character case. If boundary is present, it must have

the same type and type parameters as array; it may be scalar and supply all needed

values or it may be an array whose shape is that of array with dimension dim omitted

and supply a separate value for each shift.

Intrinsic procedures 179

8.13.6 Matrix transpose

The transpose function performs a matrix transpose for any array of rank two.

transpose (matrix) returns an array of the same type and type parameters as the rank-

two array matrix. Element (i, j) of the result is matrix(j, i).

8.14 Transformational functions for geometric location

There are two transformational functions that find the locations of the maximum and

minimum values of an integer or real array.

maxloc (array [, mask])11 returns a rank-one default integer array of size equal to

the rank of array. Its value is the sequence of subscripts of an element of maximum

value (among those corresponding to true values of the conforming logical array mask
if it is present), as though all the declared lower bounds of array were 1. If there is

more than one such element, the first in array element order is taken. If there are none,

the result is processor dependent.12

maxloc (array, dim [, mask])11 returns a default integer array of shape equal to

that of array with dimension dim omitted, where dim is a scalar integer with value in

the range 1 ≤ dim ≤ rank(array), or a scalar if the original rank is one. The value

of each element of the result is the position of the first element of maximum value in

the corresponding rank-one section spanning dimension dim, among those elements

corresponding to true values of the conforming logical array mask when it is present.

If there are none, the result is processor dependent.12

minloc (array [, mask])11 is identical to maxloc (array [, mask]) except

that the position of an element of minimum value is obtained.

minloc (array, dim [,mask])11 is identical to maxloc (array, dim [,mask])
except that positions of elements of minimum value are obtained.

8.15 Transformational function for pointer disassociation

The function null is available to give the disassociated status to pointer entities.

null ([mold]) returns a disassociated pointer. The argument mold is a pointer of

any type and may have any association status, including undefined. The type, type

parameter, and rank of the result are those of mold if it is present and otherwise are

those of the object with which it is associated. In an actual argument associated with a

dummy argument of assumed character length, mold must be present.

11In Fortran 2003, array may be of type character. There is also an optional final kind argument that must be a

scalar integer constant expression and controls the kind of the result.
12In Fortran 2003, the result has all elements zero.

180 Modern Fortran Explained

8.16 Non-elemental intrinsic subroutines

There are also in Fortran non-elemental intrinsic subroutines, which were chosen to be

subroutines rather than functions because of the need to return information through the

arguments.

8.16.1 Real-time clock

There are two subroutines that return information from the real-time clock, the first based

on the ISO standard IS 8601 (Representation of dates and times). It is assumed that there

is a basic system clock that is incremented by one for each clock count until a maximum

count_max is reached and on the next count is set to zero. Default values are returned on

systems without a clock. All the arguments have intent out.

call date_and_time ([date] [, time] [, zone] [, values]) returns the fol-

lowing (with default values blank or -huge(0), as appropriate, when there is no clock).

date is a scalar character variable of length 8 or more. Its first 8 characters are set to

the century, year, month, and day in the form ccyymmdd.13

time is a scalar character variable of length 10 or more. Its first 10 characters

are set to the time as hours, minutes, seconds, and milliseconds in the form

hhmmss.sss.13

zone is a scalar character variable of length 5 or more. Its first 5 characters are

set to the difference between local time and UTC (also known as Greenwich

Mean Time) in the form Shhmm, corresponding to sign, hours, and minutes. For

example, a processor in New York in winter would return the value -0500.13

values is a rank-one default integer array of size at least 8 holding the sequence of

values: the year, the month of the year, the day of the month, the time difference

in minutes with respect to UTC, the hour of the day, the minutes of the hour, the

seconds of the minute, and the milliseconds of the second.

call system_clock ([count] [,count_rate] [, count_max]) returns the

following.

count is a scalar default integer14 holding a processor-dependent value based on the

current value of the processor clock, or -huge(0) if there is no clock. On the first

call, the processor may set an initial value that may be zero.

count_rate is a scalar default integer14 holding the number of clock counts per

second, or zero if there is no clock.

count_max is a scalar default integer14 holding the maximum value that count may

take, or zero if there is no clock.

13In Fortran 2003, the variable may be shorter; in this case the leftmost characters of the value are assigned to the

variable. If the variable is longer than the value, the remaining characters are set to blank.
14In Fortran 2003, any kind of integer.

Intrinsic procedures 181

8.16.2 CPU time

There is a non-elemental intrinsic subroutine that returns the processor time.

call cpu_time (time) returns the following:

time is a scalar real that is assigned a processor-dependent approximation to the

processor time in seconds, or a processor-dependent negative value if there is

no clock.

The exact definition of time is left imprecise because of the variability in what different

processors are able to provide. The primary purpose is to compare different algorithms on the

same computer or discover which parts of a calculation on a computer are the most expensive.

The start time is left imprecise because the purpose is to time sections of code, as in the

example

real :: t1, t2
:
call cpu_time(t1)
: ! Code to be timed.
call cpu_time(t2)
write (*,*) ’Time taken by code was ’, t2-t1, ’ seconds’

8.16.3 Random numbers

A sequence of pseudorandom numbers is generated from a seed that is held as a rank-one

array of integers. The subroutine random_number returns the pseudorandom numbers and

the subroutine random_seed allows an inquiry to be made about the size or value of the seed

array, and the seed to be reset. The subroutines provide a portable interface to a processor-

dependent sequence.

call random_number (harvest) returns a pseudorandom number from the uni-

form distribution over the range 0 ≤ x < 1 or an array of such numbers. harvest
has intent out, may be a scalar or an array, and must be of type real.

call random_seed ([size] [put] [get]) has the following arguments.

size has intent out and is a scalar default integer that the processor sets to the size n
of the seed array.

put has intent in and is a default integer array of rank one and size n that is used by

the processor to reset the seed. A processor may set the same seed value for more

than one value of put.

get has intent out and is a default integer array of rank one and size n that the

processor sets to the current value of the seed. This value can be used later as

put to replay the sequence from that point, or in a subsequent program execution

to continue from that point.

182 Modern Fortran Explained

No more than one argument may be specified; if no argument is specified, the seed is

set to a processor-dependent value. Thus, this value may be identical for each call, or

different.

8.17 Summary

In this chapter, we introduced the four categories of intrinsic procedures, explained the

intrinsic statement, and gave detailed descriptions of all the procedures.

Intrinsic procedures 183

Exercises

1. Write a program to calculate the real roots or pairs of complex-conjugate roots of the quadratic

equation ax2 + bx+ c = 0 for any real values of a,b, and c. The program should read these three

values and print the results. Use should be made of the appropriate intrinsic functions.

2. Repeat Exercise 1 of Chapter 5, avoiding the use of do constructs.

3. Given the rules explained in Sections 3.12 and 8.2, what are the values printed by the following

program?

program main
real, target :: a(3:10)
real, pointer :: p1(:), p2(:)
p1 => a(3:9:2)
p2 => a(9:3:-2)
print *, associated(p1, p2)
print *, associated(p1, p2(4:1:-1))

end program main

4. In the following program, two pointer assignments, one to an array and the other to an array section,

are followed by a subroutine call. Bearing in mind the rules given in Sections 3.12, 6.3, and 8.12.2,

what values does the program print?

program main
real, target :: a(5:10)
real, pointer :: p1(:), p2(:)
p1 => a
p2 => a(:)
print *, lbound (a), lbound (a(:))
print *, lbound (p1), lbound (p2)
call what (a, a(:))

contains
subroutine what (x, y)

real, intent (in) :: x(:), y(:)
print *, lbound (x), lbound (y)

end subroutine what
end program main

This page intentionally left blank

9. Data transfer

9.1 Introduction

Fortran has, in comparison with many other high-level programming languages, a particularly

rich set of facilities for input/output (I/O), but it is an area of Fortran into which not all

programmers need to delve very deeply. For most small-scale programs it is sufficient to

know how to read a few data records containing input variables, and how to transmit to a

screen or printer the results of a calculation. In large-scale data processing, on the other

hand, the programs often have to deal with huge streams of data to and from many files; in

these cases it is essential that great attention be paid to the way in which the I/O is designed

and coded, as otherwise both the execution time and the real time spent in the program can

suffer dramatically. The term file is used for a collection of data outside the main memory

and a file is always organized into a sequence of records.

This chapter begins by discussing the various forms of formatted I/O, that is I/O which

deals with records that do not use the internal number representation of the computer, but

rather a character string which can be displayed. It is also the form usually needed for

transmitting data between different kinds of computers. The so-called edit descriptors, which

are used to control the translation between the internal number representation and the external

format, are then explained. Finally, the topics of unformatted (or binary) I/O and direct-access

files are covered.

9.2 Number conversion

The ways in which numbers are stored internally by a computer are the concern of neither the

Fortran standard nor this book. However, if we wish to output values – to display them on a

screen or to print them – then their internal representations must be converted into a character

string that can be read in a normal way. For instance, the contents of a given computer

word may be (in hexadecimal) be1d7dbf and correspond to the value −0.000450. For our

particular purpose, we may wish to display this quantity as -.000450, or as -4.5E-04, or

rounded to one significant digit as -5E-04. The conversion from the internal representation

to the external form is carried out according to the information specified by an edit descriptor

contained in a format specification. These will both be dealt with fully later in this chapter;

for the moment, it is sufficient to give a few examples. For instance, to print an integer value

in a field of 10 characters width, we would use the edit descriptor i10, where i stands for

integer conversion, and 10 specifies the width of the output field. To print a real quantity in a

186 Modern Fortran Explained

field of 10 characters, 5 of which are reserved for the fractional part of the number, we specify

f10.5. The edit descriptor f stands for floating-point (real) conversion, 10 is the total width

of the output field, and 5 is the width of the fractional part of the field. If the number given

above were to be converted according to this edit descriptor, it would appear as bb-0.00045,

where b represents a blank. To print a character variable in a field of 10 characters, we would

specify a10, where a stands for alphanumeric conversion.

A format specification consists of a list of edit descriptors enclosed in parentheses, and can

be coded either as a default character expression, for instance

’(i10, f10.3, a10)’

or as a separate format statement, referenced by a statement label, for example

10 format(i10, f10.3, a10)

To print the scalar variables j, b, and c, of types integer, real, and character, respectively, we

may then write either

print ’(i10, f10.3, a10)’, j,b,c
or

print 10, j,b,c
10 format(i10, f10.3, a10)

The first form is normally used when there is only a single reference in a scoping unit to

a given format specification, and the second when there are several or when the format is

complicated. The part of the statement designating the quantities to be printed is known as

the output list and forms the subject of the following section.

9.3 I/O lists

The quantities to be read or written by a program are specified in an I/O list. For output they

may be expressions, but for input they must be variables. In both cases, list items may be

implied-do lists of quantities. Examples are shown in Figure 9.1, where we note the use of

a repeat count in front of those edit descriptors that are required repeatedly. A repeat count

must be a positive integer literal constant and must not have a kind type parameter. Function

references are permitted in an I/O list, provided they do not themselves cause further I/O to

occur.1

In all these examples, except the last one, the expressions consist of single variables and

would be equally valid in input statements using the read statement, for example

read ’(i10)’, i

Such statements may be used to read values which are then assigned to the variables in the

input list.

If an array appears as an item, it is treated as if the elements were specified in array element

order. For example, the third of the print statements in Figure 9.1 could have been written

1This restriction was lifted in Fortran 2003 for internal files, and in Fortran 2008 for external files, see Sections

17.7 and 20.7.1.

Data transfer 187

Figure 9.1 Examples of formatted output.

integer :: i
real, dimension(10) :: a
character(len=20) :: word
print ’(i10)’, i
print ’(10f10.3)’, a
print ’(3f10.3)’, a(1),a(2),a(3)
print ’(a10)’, word(5:14)
print ’(5f10.3)’, (a(i), i=1,9,2)
print ’(2f10.3)’, a(1)*a(2)+i, sqrt(a(3))

print ’(3f10.3)’, a(1:3)

However, no element of the array may appear more than once in an input item. Thus, the case

in Figure 9.2 is not allowed.

Figure 9.2 An illegal input item (array element appears twice).

integer :: j(10), k(3)
:
k = (/ 1, 2, 1 /)
read ’(3i10)’, j(k) ! Illegal because j(1) appears twice

If an allocatable array appears as an item, it must be currently allocated.

Any pointers in an I/O list must be associated with a target, and transfer takes place between

the file and the targets.

An item of derived type with no allocatable or pointer components at any level of

component selection is treated as if the components were specified in the same order as in

the type declaration. This rule is applied repeatedly for components of derived type, so that it

is as if we specified the list of items of intrinsic type that constitute its ultimate components.

For example, if p and t are of the types point and triangle of Figure 2.1, the statement

read ’(8f10.5)’, p, t

has the same effect as the statement

read ’(8f10.5)’, p%x, p%y, t%a%x, t%a%y, t%b%x, &
t%b%y, t%c%x, t%c%y

Each ultimate component must be accessible (it may not, for example, be a private
component of a public type).

It is convenient to extend the term ultimate component to include the case that ends with

a component of derived type that is allocatable or is a pointer. For example, in Figure

9.3 the ultimate components of type two are ordinary%comp, alloc, and point, whereas

alloc%comp and point%comp are not. The parent object (obj in the example) may be

allocatable or a pointer.

188 Modern Fortran Explained

Figure 9.3 Nested types.

type one
integer :: comp

end type one
type two

type(one) :: ordinary
type(one), allocatable :: alloc(:)
type(one), pointer :: point

end type two
type(two) :: obj

An object in an I/O list is not permitted to be of a derived type that has an allocatable

or pointer component at any level of component selection. One reason for this restriction is

because of the problems associated with recursive data structures. For example, supposing

chain is a data object of the type entry of Figure 2.3 (in Section 2.13), it might hold a

chain of length three, chain%index, chain%next%index, chain%next%next%index with

chain%next%next%next a disassociated pointer. Another reason is that Fortran 2003 allows

edit descriptors to be defined for data structures (see Section 17.2). Programmers can write

procedures that are called as part of the I/O processing. Such a procedure is much better

able to handle structures whose size and composition vary dynamically, the usual case for

allocatable or pointer components.

An I/O list may include an implied-do list, as illustrated by the fifth print statement in

Figure 9.1. The general form is

(do-object-list, do-var = expr, expr [, expr])

where each do-object is a variable (for input), an expression (for output), or is itself an

implied-do list; do-var is a named scalar integer variable and each expr is a scalar integer

expression. The loop initialization and execution is the same as for a (possibly nested) set of

do constructs (Section 4.4). In an input list, a variable that is an item in a do-object-list must

not be a do-var of any implied-do list in which it is contained, nor be associated2 with such a

do-var. In an input or output list, no do-var may be a do-var of any implied-do list in which

it is contained or be associated with such a do-var.

Note that a zero-sized array, or an implied-do list with a zero iteration count, may occur as

an item in an I/O list. Such an item corresponds to no actual data transfer.

9.4 Format definition

In the print and read statements of the previous section, the format specification was given

each time in the form of a character constant immediately following the keyword. In fact,

there are three ways in which a format specification may be given. They are as follows.

2Such an illegal association could be established by pointer association.

Data transfer 189

A default character expression whose value commences with a format specification in

parentheses:

print ’(f10.3)’, q

or

character(len=*), parameter :: form=’(f10.3)’
:
print form, q

or

character :: carray(7)=(/ ’(’,’f’,’1’,’0’,’.’,’3’,’)’ /)
:
print carray, q ! Elements of an array expression

! are concatenated.

or

character(4) :: carr1(10)
character(3) :: carr2(10)
integer :: i, j
:
carr1(10) = ’(f10’
carr2(3) = ’.3)’
:
i = 10
j = 3
:
print carr1(i)//carr2(j), q

From these examples it may be seen that it is possible to program formats in a flexible

way, and particularly that it is possible to use arrays, expressions, and also substrings

in a way which allows a given format to be built up dynamically at execution time from

various components. Any character data that might follow the trailing right parenthesis

are ignored and may be undefined. In the case of an array, its elements are concatenated

in array element order. However, on input no component of the format specification

may appear also in the input list, or be associated with it. This is because the standard

requires that the whole format specification be established before any I/O takes place.

Further, no redefinition or undefinition of any characters of the format is permitted

during the execution of the I/O statement.

An asterisk This is a type of I/O known as list-directed I/O, in which the format is defined

by the computer system at the moment the statement is executed, depending on both

the type and magnitude of the entities involved. This facility is particularly useful for

the input and output of small quantities of values, especially in temporary code which

is used for test purposes, and which is removed from the final version of the program:

190 Modern Fortran Explained

print *, ’Square-root of q = ’, sqrt(q)

This example outputs a character constant describing the expression which is to be

output, followed by the value of the expression under investigation. On the screen, this

might appear as

Square-root of q = 4.392246

the exact format being dependent on the computer system used. Character strings in

this form of output are normally undelimited, as if an a edit descriptor were in use,

but an option in the open statement (Section 10.3) may be used to require that they be

delimited by apostrophes or quotation marks. Complex constants are represented as

two real values separated by a comma and enclosed in parentheses. Logical variables

are represented as T for true and F for false. Except for adjacent undelimited strings,

values are separated by spaces or commas. The processor may represent a sequence

of r identical values c by the form r*c. Further details of list-directed input/output are

deferred until Section 9.9.

A statement label referring to a format statement containing the relevant specification

between parentheses:

print 100, q
:

100 format(f10.3)

The format statement must appear in the same scoping unit, before the contains
statement if it has one. It is customary either to place each format statement

immediately after the first statement which references it, or to group them all together

just before the contains or end statement. It is also customary to have a separate

sequence of numbers for the statement labels used for format statements. A given

format statement may be used by any number of formatted I/O statements, whether

for input or for output.

Blank characters may precede the left parenthesis of a format specification, and may appear

at any point within a format specification with no effect on the interpretation, except within a

character string edit descriptor (Section 9.12.3).

9.5 Unit numbers

Input/output operations are used to transfer data between the variables of an executing

program, as stored in the computer, and an external medium. There are many types of external

media: the screen, printer, hard disc, memory stick, and CD are perhaps the most familiar.

Whatever the device, a Fortran program regards each one from which it reads or to which

it writes as a unit, and each unit, with two exceptions, has associated with it a unit number.

This number must not be negative. Thus, we might associate with a CD from which we are

reading the unit number 10, and to a hard disc to which we are writing the unit number 11. All

Data transfer 191

program units of an executable program that refer to a particular unit number are referencing

the same file. Many devices, such as a hard disc, may be referred to by more than one unit

number, as they can hold many different files.

There are two I/O statements, print and a variant of read, that do not reference any

unit number; these are the statements that we have used so far in examples, for the sake of

simplicity. A read statement without a unit number will normally expect to read from the

keyboard, unless the program is working in batch (non-interactive) mode, in which case there

will be a disc file with a reserved name from which it reads. A print statement will normally

expect to output to the screen, unless the program is in batch mode, in which case another

disc file with a reserved name will be used. Such files are usually suitable for subsequent

output on a physical output device. The system associates unit numbers to these default units

(usually 5 for input and 6 for output).3

Apart from these two special cases, all I/O statements must refer explicitly to a unit in order

to identify the device to which or from which data are to be transferred. The unit may be given

in one of three forms. These are shown in the following examples which use another form of

the read containing a unit specifier, u, and format specifier, fmt, in parentheses and separated

by a comma, where fmt is a format specification as described in the previous section:

read (u, fmt) list

The three forms of u are as follows.

A scalar integer expression that gives the unit number:

read (4, ’(f10.3)’) q
read (nunit, ’(f10.3)’) q
read (4*i+j, 100) a

where the value may be any non-negative integer allowed by the system for this

purpose.

An asterisk For example

read (*, ’(f10.3)’) q

where the asterisk implies the standard input unit designated by the system, the same

as that used for read without a unit number.

A default character variable identifying an internal file (see next section).

9.6 Internal files

Internal files allow format conversion between various representations to be carried out by

the program in a storage area defined within the program itself. There are two particularly

useful applications, one to read data whose format is not properly known in advance, and the

3In Fortran 2003, these values may be accessed from an intrinsic module, see Section 16.5.

192 Modern Fortran Explained

other to prepare output lists containing mixed character and numerical data, all of which has

to be prepared in character form, perhaps to be displayed as a caption on a graphics display.

The character data must be of default kind. The first application will now be described; the

second will be dealt with in Section 9.8.

Imagine that we have to read a string of 30 digits, which might correspond to 30 one-digit

integers, 15 two-digit integers, or 10 three-digit integers. The information as to which type

of data is involved is given by the value of an additional digit, which has the value 1, 2,

or 3, depending on the number of digits each integer contains. An internal file provides us

with a mechanism whereby the 30 digits can be read into a character buffer area. The value

of the final digit can be tested separately, and 30, 15, or 10 values read from the internal

file, depending on this value. The basic code to achieve this might read as follows (no error

recovery or data validation is included, for simplicity):

integer :: ival(30), key, i
character(30):: buffer
character(6) :: form(3) = (/ ’(30i1)’, ’(15i2)’, ’(10i3)’ /)
read (*, ’(a30,i1)’) buffer, key
read (buffer, form (key)) (ival(i), i=1,30/key)

Here, ival is an array which will receive the values, buffer a character variable of a length

sufficient to contain the 30 input digits, and form a character array containing the three

possible formats to which the input data might correspond. The first read statement reads 30

digits into buffer as character data, and a final digit into the integer variable key. The second

read statement reads the data from buffer into ival, using the appropriate conversion as

specified by the edit descriptor selected by key. The number of variables read from buffer
to ival is defined by the implied-do loop, whose second specifier is an integer expression

depending also on key. After execution of this code, ival will contain 30/key values, their

number and exact format not having been known in advance.

If an internal file is a scalar, it has a single record whose length is that of the scalar. If it is

an array, its elements, in array element order, are treated as successive records of the file and

each has length equal to that of an array element. It may not be an array section with a vector

subscript.

A record becomes defined when it is written. The number of characters sent must not

exceed the length of the record. It may be less, in which case the rest of the record is padded

with blanks. For list-directed output (Section 9.4), character constants are not delimited. A

record may be read only if it is defined (which need not only be by an output statement).

Records are padded with blanks, if necessary.

An internal file is always positioned at the beginning of its first record prior to data transfer

(the array section notation may be used to start elsewhere in an array). Of course, if an

internal file is an allocatable array or pointer, it must be allocated or associated with a target.

Also, no item in the input/output list may be in the file or associated with the file.

An internal file must be of default character type and non-default character items are not

permitted in input/output lists. It may be used for list-directed I/O (Section 9.9), but not for

namelist I/O (Section 9.10).4

4This restriction has been lifted in Fortran 2003.

Data transfer 193

9.7 Formatted input

In the previous sections we have given complete descriptions of the ways that formats and

units may be specified, using simplified forms of the read and print statements as examples.

There are, in fact, two forms of the formatted read statement. Without a unit, it has the form

read fmt [,list]

and with a unit it may take the form

read ([unit=]u, [fmt=]fmt [,iostat=ios] &
[, err=error-label] [,end=end-label]) [list]

where u and fmt are the unit and format specifiers described in Sections 9.4 and 9.5, iostat=,

err=, and end= are optional specifiers which allow a user to specify how a read statement

shall recover from various exceptional conditions, and list is a list of variables and implied-do
lists of variables. The keyword items may be specified in any order, although it is usual to

keep the unit number and format specification as the first two. The unit number must be first

if it does not have its keyword. If the format does not have its keyword, it must be second,

following the unit number without its keyword.

For simplicity of exposition, we have so far limited ourselves to formats that correspond to

a single record in the file, but we will meet later in this chapter cases that lead to the input of

a part of a record or of several successive records.

The meanings of the optional specifiers are as follows.

• If the iostat= is specified, then ios must be a scalar integer variable of default

kind which, after execution of the read statement, has a negative value if an end-of-

record condition is encountered during non-advancing input (Section 9.11), a different

negative value if an endfile condition was detected on the input device (Section 10.2.3),

a positive value if an error was detected (for instance a formatting error), or the value

zero otherwise. The actual values assigned to ios in the event of an exception occurring

are not defined by the standard, only the signs.

• If the end= is specified, then end-label must be a statement label of a statement in the

same scoping unit, to which control will be transferred in the event of the end of the

file being reached.

• If the err= is specified, then error-label is a statement label in the same scoping unit,

to which control will be transferred in the event of any other exception occurring. The

labels error-label and end-label may be the same. If they are not specified and an

exception occurs, execution will stop, unless iostat is specified. An example of

a read statement with its associated error recovery is given in Figure 9.4, in which

error and last_file are subroutines to deal with the exceptions. They will normally

be system dependent.

If an error or end-of-file condition occurs on input, the statement terminates and all list

items and any implied-do variables become undefined. If an end-of-file condition occurs for

an external file, the file is positioned following the endfile record (Section 10.2.3); if there

194 Modern Fortran Explained

Figure 9.4 Testing for an error or the end of the file.

read (nunit, ’(3f10.3)’, iostat=ios, err=110, end=120) a,b,c
! Successful read - continue execution.

:
110 call error (ios) ! Error condition - take appropriate action.

return
120 call last_file ! End of file - test for more files.

:

is otherwise an error condition, the file position is indeterminate. An end-of-file condition

occurs also if an attempt is made to read beyond the end of an internal file.

It is a good practice to include some sort of error recovery in all read statements which are

included permanently in a program. On the other hand, input for test purposes is normally

sufficiently well handled by the simple form of read without a unit number, and without error

recovery.

9.8 Formatted output

There are two types of formatted output statements, the print statement which has appeared

in many of the examples so far in this chapter, and the write statement whose syntax is

similar to that of the read statement:

print fmt [,list]

and

write ([unit=]u, [fmt=]fmt [,iostat=ios] [,err=error-label]) [list]

where all the components have the same meanings as described for the read statement

(Section 9.7). Note that the optional fmt= may be omitted only if the optional unit= is also

omitted. An asterisk for u specifies the standard output unit, as used by print. If an error

condition occurs on output, execution of the statement terminates, any implied-do variables

become undefined, and the file position becomes indeterminate.

An example of a write statement is

write (nout, ’(10f10.3)’, iostat=ios, err=110) a

An example using an internal file is given in Figure 9.5, which builds a character string from

numeric and character components. The final character string might be passed to another

subroutine for output, for instance as a caption on a graphics display.

In this example, we declare a character variable that is long enough to contain the text to be

transferred to it. (The write statement contains a format specification with a edit descriptors

without a field width. These assume a field width corresponding to the actual length of

the character strings to be converted.) After execution of the write statement, line might

contain the character string

Data transfer 195

Figure 9.5 Writing to an internal file.

integer :: day
real :: cash
character(len=50) :: line
:
! write into line
write (line, ’(a, i2, a, f8.2, a)’) &

’Takings for day ’, day, ’ are ’, cash, ’ dollars’

Takings for day 3 are 4329.15 dollars

and this could be used as a string for further processing.

The number of characters written to line must not exceed its length.

9.9 List-directed I/O

In Section 9.4, the list-directed output facility using an asterisk as format specifier was

introduced. We assumed that the list was short enough to fit into a single record, but for

long lists the processor is free to output several records. Character constants may be split

between records, and complex constants that are as long as, or longer than, a record may be

split after the comma that separates the two parts. Apart from these cases, a value always

lies within a single record. For the sake of carriage control (which is described in Appendix

C.3), the first character of each record is blank unless a delimited character constant is being

continued. Note that when an undelimited character constant is continued, the first character

of the continuation record is blank. The only blanks permitted in a numeric constant are

within a split complex constant after the comma.

This facility is equally useful for input, especially of small quantities of test data. On

the input record, the various constants may appear in most of their usual forms, just as if

they were being read under the usual edit descriptors, as defined in Section 9.12. Exceptions

are that complex values must consist of two numerical values separated by a comma and

enclosed in parentheses, character constants may be delimited, a blank must not occur except

in a delimited character constant or in a complex constant before or after a numeric field,

blanks are never interpreted as zeros, and the optional characters which are allowed in a

logical constant (those following t or f, see Section 9.12.2) must include neither a comma

nor a slash. A complex constant spread over more than one record must have any end of

record after the real part or before the imaginary part.

Character constants that are enclosed in apostrophes or quotation marks may be spread

over as many records as necessary to contain them, except that a doubled quotation mark

or apostrophe must not be split between records. Delimiters may be omitted for a default

character constant if:

• it is of nonzero length;

• the constant does not contain a blank, comma, or slash;

196 Modern Fortran Explained

• it is contained in one record;

• the first character is neither a quotation mark nor an apostrophe; and

• the leading characters are not numeric followed by an asterisk.

In this case, the constant is terminated when a blank, comma, slash, or end of record is

encountered, and apostrophes or quotation marks appearing within the constant must not be

doubled.

Whenever a character value has a different length from the corresponding list item, the

value is truncated or padded on the right with blanks, as in the character assignment statement.

It is possible to use a repeat count for a given constant, for example 6*10 to specify six

occurrences of the integer value 10. If it is possible to interpret the constant as either a literal

constant or an undelimited character constant, the first corresponding list item determines

which it is.

The (optionally repeated) constants are separated in the input by separators. A separator

is one of the following, appearing other than in a character constant:

• a comma, optionally preceded and optionally followed by one or more contiguous

blanks;

• a slash (/), optionally preceded and optionally followed by one or more contiguous

blanks; or

• one or more contiguous blanks between two non-blank values or following the last

non-blank value.

An end of record not within a character constant is regarded as a blank and, therefore, forms

part of a separator. A blank embedded in a complex constant or delimited character constant

is not a separator. An input record may be terminated by a slash separator, in which case all

the following values in the record are ignored, and the input statement terminates.

If there are no values between two successive separators, or between the beginning of the

first record and the first separator, this is taken to represent a null value and the corresponding

item in the input list is left unchanged, defined or undefined as the case may be. A null value

must not be used for the real or imaginary part of a complex constant, but a single null value

may be used for the whole complex value. A series of null values may be represented by a

repeat count without a constant: ,6*,. When a slash separator is encountered, null values are

given to any remaining list items.

An example of this form of the read statement is:

integer :: i
real :: a
complex :: field(2)
logical :: flag
character (len=12) :: title
character (len=4) :: word
:
read *, i, a, field, flag, title, word

Data transfer 197

If this reads the input record

10b6.4b(1.,0.)b(2.,0.)btbtest/

(in which b stands for a blank, and blanks are used as separators), then i, a, field, flag,

and title will acquire the values 10, 6.4, (1.,0.) and (2.,0.), .true., and test, respectively,

while word remains unchanged. For the input records

10,.64e1,2*,.true.
’histogramb10’/val1

(in which commas are used as separators), the variables i, a, flag, and title will acquire

the values 10, 6.4, .true., and histogramb10, respectively. The variables field and word
remain unchanged, and the input string val1 is ignored as it follows a slash. (Note the

apostrophes, which are required as the string contains a blank. Without delimiters, this string

would appear to be a string followed by the integer value 10.) Because of this slash, the read

statement does not continue with the next record and the list is thus not fully satisfied.

9.10 Namelist I/O

It can be useful, especially for program testing, to input or output an annotated list of

values. The values required are specified in a namelist group (Section 7.15), and the I/O is

performed by a read or write statement that does not have an I/O list, and in which either

• the format is replaced by a namelist-group name as the second positional parameter; or

• the fmt= specifier is replaced by a nml= specifier with that name.

When reading, only those objects which are specified in the input record and which do

not have a null value become defined. All other list items remain in their existing state of

definition or undefinition. It is possible to define the value of an array element or section

without affecting the other portions of the array. When writing, all the items in the group are

written to the file specified. This form of I/O is not available for internal files.5

The value for a scalar object or list of values for an array is preceded in the records by

the name or designator and an equals sign which may optionally be preceded or followed by

blanks. The form of the list of values and null values in the input and output records is as that

for list-directed I/O (Section 9.9), except that character constants must always be delimited

in input records and logical constants must not contain an equals sign. A namelist input

statement terminates on the appearance of a slash in the list outside a character constant. A

simple example is

integer :: no_of_eggs, litres_of_milk, kilos_of_butter
namelist/food/no_of_eggs, litres_of_milk, kilos_of_butter
read (5, nml=food)

to read the record

5But in Fortran 2003 it is available.

198 Modern Fortran Explained

&food litres_of_milk=5, no_of_eggs=12 /

where we note that the order of the two values given is not the same as their order in the

namelist group – the orders need not necessarily match. The value of kilos_of_butter
remains unchanged. The first non-blank item in the record is an ampersand followed without

an intervening blank by the group name. The slash is obligatory as a terminator. On output,

a similar annotated list of values is produced, starting with the name of the group and ending

with a slash. Here, the order is that of the namelist group. Thus, the statements

integer :: number, list(10)
namelist/out/number, list
write (6, nml=out)

might produce the record

&OUT NUMBER=1, LIST=14, 9*0 /

On output, the names are always in upper case.

Where a subobject designator appears in an input record, all substring expressions,

subscripts, and strides must be scalar integer literal constants without specified kind

parameters. All group names, object names, and component names are interpreted without

regard to case. Blanks may precede or follow the name or designator, but must not appear

within it.

If the object is scalar and of intrinsic type, the equals sign must be followed by one value.

If it is of derived type or is an array, the equals sign must be followed by a list of values

of intrinsic type corresponding to the replacement of each derived-type value by its ultimate

components and each array by its elements in array element order.

The list of values must not be too long, but it may be too short, in which case trailing

null values are regarded as having been appended. If an object is of type character, the

corresponding item must be of the same kind.

Zero-sized objects must not appear in a namelist input record. In any multiple occurrence

of an object in a sequence of input records, the final value is taken.

Input records for namelist input may bear a comment following an object name/value

separator other than a slash. This allows programmers to document the structure of a

namelist input file line by line. The comment is in the usual format for comments. The

input record of this section might be documented thus:

&food litres_of_milk=5, ! For camping holiday
no_of_eggs=12 /

A comment line, with ! as the first non-blank character in an input record, is also permitted,

but may not occur in a character context.

9.11 Non-advancing I/O

So far we have considered each read or write statement to perform the input or output of a

complete record. There are, however, many applications, especially in screen management,

Data transfer 199

where this would become an irksome restriction. What is required is the ability to read and

write without always advancing the file position to ahead of the next record. This facility

is provided by non-advancing I/O. To gain access to this facility, the optional advance=
specifier must appear in the read or write statement and be associated with a scalar default

character expression advance which evaluates, after suppression of any trailing blanks and

conversion of any upper-case letters to lower case, to the value no. The only other allowed

value is yes, which is the default value if the specifier is absent; in this case, normal

(advancing) I/O occurs.

The following optional specifiers are available for a non-advancing read statement:

eor=eor-label
size=size

where eor-label is a statement label in the same scoping unit and size is a default integer

scalar variable. The eor-label may be the same as an end-label or error-label of the read
statement.

An advancing I/O statement always repositions the file after the last record accessed.

A non-advancing I/O statement leaves the file positioned within the record except that if

it attempts to transfer data from beyond the end of the current record, an end-of-record

condition occurs and the file is repositioned to follow the record. The iostat variable, if

present, will acquire a different negative value to the one indicating an end-of-file condition;

and, if the eor= specifier is present, control is transferred to the statement specified by its

associated eor-label. In order to provide a means of controlling this process, the size=
specifier, when present, sets size to the number of characters actually read. A full example is

thus

character(len=3) :: key
integer :: unit, size
read (unit, ’(a3)’, advance=’no’, size=size, eor=66) key
:

! key is not in one record
66 key(size+1:) = ’’

:

As for error and end-of-file conditions, the program terminates when an end-of-record

condition occurs if neither eor= nor iostat= is specified.

If encountering an end-of-record on reading results in the input list not being satisfied,

the pad= specifier described in Section 10.3 will determine whether any padding with blank

characters occurs. Blanks inserted as padding are not included in the size= count.

It is possible to perform advancing and non-advancing I/O on the same record or file.

For instance, a non-advancing read might read the first few characters of a record and an

advancing read might read the remainder.

A particular application of this facility is to write a prompt to a screen and to read from the

next character position on the screen without an intervening line-feed:

write (*, ’(a)’, advance=’no’) ’enter next prime number:’
read (*, ’(i10)’) prime_number

200 Modern Fortran Explained

Non-advancing I/O may be performed only on an external file, and may not be used for

namelist or list-directed I/O. Note that, as for advancing input/output, several records may

be processed by a single statement.

9.12 Edit descriptors

In the description of the possible forms of a format specification in Section 9.4, a few

examples of the edit descriptors were given. As mentioned there, edit descriptors give a

precise specification of how values are to be converted into a character string on an output

device or internal file, or converted from a character string on an input device or internal file

to internal representations.

With certain exceptions noted in the following text, edit descriptors in a list are separated

by commas, and only in the case where an input/output list is empty or specifies only zero-

sized arrays may there be no edit descriptor at all in the format specification.

On a processor that supports upper- and lower-case letters,6 edit descriptors are interpreted

without regard to case. This is also true for numerical and logical input fields; an example is

89AB as a hexadecimal input value. In output fields, any alphabetic characters are in upper

case.

9.12.1 Repeat counts

Edit descriptors fall into three classes: data, control, and character-string. The data edit

descriptors may be preceded by a repeat count (a nonzero unsigned default integer literal

constant), as in the example

10f12.3

Of the remaining edit descriptors, only the slash edit descriptor (Section 9.12.4) may have

an associated repeat count. A repeat count may be applied to a group of edit descriptors,

enclosed in parentheses:

print ’(4(i5,f8.2))’, (i(j), a(j), j=1,4)

(for integer i and real a). This is equivalent to writing

print ’(i5,f8.2,i5,f8.2,i5,f8.2,i5,f8.2)’, (i(j), a(j), j=1,4)

Repeat counts such as this may be nested:

print ’(2(2i5,2f8.2))’, i(1),i(2),a(1),a(2),i(3),i(4),a(3),a(4)

If a format specification without components in parentheses is used with an I/O list that

contains more elements than the number of edit descriptors, taking account of repeat counts,

then a new record will begin, and the format specification will be repeated. Further records

begin in the same way until the list is exhausted. To print an array of 100 integer elements,

10 elements to a line, the following statement might be used:

6Almost all systems support both cases these days and this is a requirement in Fortran 2008.

Data transfer 201

print ’(10i8)’, i(1:100)

Similarly, when reading from an input file, new records will be read until the list is satisfied,

a new record being taken from the input file each time the specification is repeated even if the
individual records contain more input data than specified by the format specification. These

superfluous data will be ignored. For example, reading the two records (b again stands for a

blank)

bbb10bbb15bbb20
bbb25bbb30bbb35

under control of the read statement

read ’(2i5)’, i,j,k,l

will result in the four integer variables i, j, k, and l acquiring the values 10, 15, 25, and 30,

respectively.

If a format contains components in parentheses, as in

’(2i5, 3(i2,2(i1,i3)), 2(2f8.2,i2))’

whenever the format is exhausted, a new record is taken and format control reverts to the

repeat factor preceding the left parenthesis corresponding to the last-but-one right parenthesis,

here 2(2f8.2,i2), or to the parenthesis itself if it has no repeat factor. This we call reversion.

9.12.2 Data edit descriptors

Values of all the intrinsic data types may be converted by the g edit descriptor. However, for

reasons of clarity, it is described last. No form of value on either input or output may be with

a kind type parameter. For all the numeric edit descriptors, if an output field is too narrow to

contain the number to be output, it is filled with asterisks.7

Integer values may be converted by means of the i edit descriptor. Its basic form is iw,

where w is a nonzero unsigned default integer literal constant that defines the width of

the field. The integer value will be read from or written to this field, adjusted to its

right-hand side. If we again designate a blank position by b then the value −99 printed

under control of the edit descriptor i5 will appear as bb-99, the sign counting as one

position in the field.

For output, an alternative form of this edit descriptor allows the number of digits that

are to be printed to be specified exactly, even if some are leading zeros. The form iw.m
specifies the width of the field, w, and that at least m digits are to be output, where m
is an unsigned default integer literal constant. The value 99 printed under control of

the edit descriptor i5.3 would appear as bb099. The value of m is even permitted to

7Additional forms allowed by Fortran 2003 appear in Section 17.5.

202 Modern Fortran Explained

be zero, and the field will be then filled with blanks if the value printed is 0. On input,

iw.m is interpreted in exactly the same way as iw.

In order to allow output records to contain as little unused space as possible, the i
edit descriptor may specify w to be zero, as in i0. This does not denote a zero-width

field, but a field that is of the minimum width necessary to contain the output value in

question. The programmer does not need to worry that a field with too narrow a width

will cause an output field to overflow and contain only asterisks.

Integer values may also be converted by the bw, bw.m, ow, ow.m, zw, and zw.m edit de-

scriptors. These are similar to the i form, but are intended for integers represented in

the binary, octal, and hexadecimal number systems, respectively (Section 2.6.1). The

external form does not contain the leading letter (b, o, or z) or the delimiters. The

w.m form, with m equal to w, is recommended on output, so that any leading zeros are

visible.

Real values may be converted by either e, en, es, or f edit descriptors. The f descriptor we

have met in earlier examples. Its general form is fw.d, where w and d are unsigned

default integer literal constants which define, respectively, the field width and the

number of digits to appear after the decimal point in the output field. For input, w
must not be zero. The decimal point counts as one position in the field. On input, if

the input string has a decimal point, the value of d is ignored. Reading the input string

b9.3729b with the edit descriptor f8.3 would cause the value 9.3729 to be transferred.

All the digits are used, but round-off may be inevitable because of the actual physical

storage reserved for the value on the computer being used.

There are, in addition, two other forms of input string that are acceptable to the f
edit descriptor. The first is an optionally signed string of digits without a decimal

point. In this case, the d rightmost digits will be taken to be the fractional part of the

value. Thus, b-14629 read under control of the edit descriptor f7.2 will transfer the

value −146.29. The second form is the standard default real form of literal constant,

as defined in Section 2.6.2, and the variant in which the exponent is signed and e is

omitted. In this case, the d part of the descriptor is again ignored. Thus, the value

14.629e-2 (or 14.629-2), under control of the edit descriptor f9.1, will transfer the

value 0.14629. The exponent letter may also be written in upper case.

Values are rounded on output following the normal rules of arithmetic. Thus, the

value 10.9336, when output under control of the edit descriptor f8.3, will appear as

bb10.934, and under the control of f4.0 as b11. For output, if w is zero, as in f0.3,

this denotes a field that is of the minimum width necessary to contain the output value

in question.

The e edit descriptor has two forms, ew.d and ew.dee, and is more appropriate for

numbers with a magnitude below about 0.01, or above 1000. The value of w must not

be zero. The rules for these two forms for input are identical to those for the fw.d
edit descriptor. For output with the ew.d form of the descriptor, a different character

string will be transferred, containing a significand with absolute value less than 1 and

an exponent field of four characters that consists of either E followed by a sign and

Data transfer 203

two digits or of a sign and three digits. Thus, for 1.234× 1023 converted by the edit

descriptor e10.4, the string b.1234E+24 or b.1234+024 will be transferred. The form

containing the exponent letter E is not used if the magnitude of the exponent exceeds

99. For instance, e10.4 would cause the value 1.234× 10−150 to be transferred as

b.1234-149. Some processors print a zero before the decimal point.

In the second form of the e edit descriptor, ew.dee, e is an unsigned, nonzero default

integer literal constant that determines the number of digits to appear in the exponent

field. This form is obligatory for exponents whose magnitude is greater than 999. Thus,

the value 1.234× 101234 with the edit descriptor e12.4e4 is transferred as the string

b.1234E+1235. An increasing number of computers are able to deal with these very

large exponent ranges. It can also be used if only one exponent digit is desired. For

example, the value 1.211 with the edit descriptor e9.3e1 is transferred as the string

b0.121E+1.

The en (engineering) edit descriptor is identical to the e edit descriptor except that

on output the decimal exponent is divisible by three, a nonzero significand is greater

than or equal to 1 and less than 1000, and the scale factor (Section 9.12.4) has no ef-

fect. Thus, the value 0.0217 transferred under an en9.2 edit descriptor would appear

as 21.70E-03 or 21.70-003.

The es (scientific) edit descriptor is identical to the e edit descriptor, except that on

output the absolute value of a nonzero significand is greater than or equal to 1 and less

than 10, and the scale factor (Section 9.12.4) has no effect. Thus, the value 0.0217

transferred under an es9.2 edit descriptor would appear as 2.17E-02 or 2.17-002.

Complex values may be edited under control of pairs of f, e, en, or es edit descriptors. The

two descriptors do not need to be identical. The complex value (0.1,100.) converted

under control of f6.1,e8.1 would appear as bbb0.1b0.1E+03. The two descriptors

may be separated by character string and control edit descriptors (to be described in

Sections 9.12.3 and 9.12.4, respectively).

Logical values may be edited using the lw edit descriptor. This defines a field of width w
which on input consists of optional blanks, optionally followed by a decimal point, fol-

lowed by t or f (or T or F), optionally followed by additional characters. Thus, a field

defined by l7 permits the strings .true. and .false. to be input. The characters t or

f will be transferred as the values true or false, respectively. On output, the character T
or F will appear in the rightmost position in the output field.

Character values may be edited using the a edit descriptor in one of its two forms, either

a or aw. In the first of the two forms, the width of the input or output field is

determined by the actual width of the item in the I/O list, measured in number of

characters of whatever kind. Thus, a character variable of length 10, containing

204 Modern Fortran Explained

the value STATEMENTS, when written under control of the a edit descriptor would

appear in a field 10 characters wide, and the non-default character variable of length 4

containing the value would appear in a field 4 characters wide. If, however,

the first variable were converted under an a11 edit descriptor, it would be printed with

a leading blank: bSTATEMENTS. Under control of a8, the eight leftmost characters only

would be written: STATEMEN.

Conversely, with the same variable on input, an a11 edit descriptor would cause the

10 rightmost characters in the 11-character-wide input field to be transferred, so that

bSTATEMENTS would be transferred as STATEMENTS. The a8 edit descriptor would cause

the eight characters in the field to be transferred to the eight leftmost positions in the

variable, and the remaining two would be filled with blanks: STATEMEN would be

transferred as STATEMENbb.

All characters transferred under the control of an a or aw edit descriptor have the kind

of the I/O list item, and we note that this edit descriptor is the only one which can be

used to transmit non-default characters to or from a record. In the non-default case, the

blank padding character is processor dependent.

Any intrinsic data type values may be edited with the gw.d and gw.dee (general) edit

descriptor. When used for real or complex types, it is identical to the e edit descriptor

except that an output value with magnitude n in the range

0.1−0.5×10−d−1 ≤ n < 10d −0.5

or zero when d = 0 is converted as if by an f edit descriptor, and followed by a number

of blanks equal to the width of the exponent part as it would be specified by an e edit

descriptor. The equivalent f edit descriptor is fw′.d′, where w′ = w− 4 for gw.d or

w− e−2 for gw.dee, and d′ = d − k when n lies in the range

10k−1(1−0.5×10−d)≤ n < 10k(1−0.5×10−d)

for k = 0,1, . . . ,d and d′ = d−1 when n = 0 and d > 0. This form is useful for printing

values whose magnitudes are not well known in advance, and where an f conversion is

preferred where possible, and an e otherwise.

When the g edit descriptor is used for integer, logical, or character types, it follows the

rules of the iw, lw, and aw edit descriptors, respectively (any d or e is ignored).

Derived type values are edited by the appropriate sequence of edit descriptors corresponding

to the intrinsic types of the ultimate components of the derived type.8 An example is:

type string
integer :: length
character(len=20) :: word

8Fortran 2003 offers enhanced facilities for derived-type input/output (Section 17.2).

Data transfer 205

end type string
type(string) :: text
read (*, ’(i2, a)’) text

9.12.3 Character string edit descriptor

A default character literal constant without a specified kind parameter can be transferred to

an output file by embedding it in the format specification itself, as in the example

print "(’ This is a format statement’)"

The string will appear each time it is encountered during format processing. In this descriptor,

case is significant. Character string edit descriptors must not be used on input.

9.12.4 Control edit descriptors

It is sometimes necessary to give other instructions to an I/O device than just the width of

fields and how the contents of these fields are to be interpreted. For instance, it may be that

one wishes to position fields at certain columns or to start a new record without issuing a new

write command. For this type of purpose, the control edit descriptors provide a means of

telling the processor which action to take. Some of these edit descriptors contain information

that is used as it is processed; others are like switches, which change the conditions under

which I/O takes place from the point where they are encountered, until the end of the

processing of the I/O statement containing them (including reversions, Section 9.12.1). These

latter descriptors we shall deal with first.

Control edit descriptors setting conditions

Embedded blanks in numeric input fields are treated in one of two ways, either as zero, or

as null characters that are squeezed out by moving the other characters in the input

field to the right, and adding leading blanks to the field (unless the field is totally blank,

in which case it is interpreted as zero). The default is given by the blank= specifier

(Section 10.3) currently in effect for the unit or is null for an internal file. Whatever the

default may then be for a file, it may be overridden during a given format conversion

by the bn (blanks null) and bz (blanks zero) edit descriptors. Let us suppose that the

mode is that blanks are treated as zeros. The input string bb1b4 converted by the edit

descriptor i5 would transfer the value 104. The same string converted by bn,i5 would

give 14. A bn or bz edit descriptor switches the mode for the rest of that format speci-

fication, or until another bn or bz edit descriptor is met. The bn and bz edit descriptors

have no effect on output.

Leading signs are always written for negative numerical values on output. For positive quan-

tities other than exponents, whether the signs are written depends on the processor. The

ss (sign suppress) edit descriptor suppresses leading plus signs, that is the value 99

printed by i5 is bbb99 and 1.4 is printed by e10.2 as bb0.14E+01. To switch on plus

206 Modern Fortran Explained

sign printing, the sp (sign print) edit descriptors may be used; the same numbers writ-

ten by sp,i5,e10.2 become bb+99 and b+0.14E+01. The s edit descriptor restores

the option to the processor. An ss, sp, or s will remain in force for the remainder of

the format specification, unless another ss, sp, or s edit descriptor is met. These edit

descriptors provide complete control over sign printing, and are useful for producing

coded outputs which have to be compared automatically, on two different computers.

Scale factors apply to the input of real quantities under the e, f, en, es, and g edit

descriptors, and are a means of scaling the input values. Their form is kp, where k
is a default integer literal constant specifying the scale factor. The value is zero at the

beginning of execution of the statement. The effect is that any quantity which does not

have an exponent field will be reduced by a factor 10k. Quantities with an exponent are

not affected.

The scale factor kp also affects output with e, f, or g editing, but has no effect with en
or es editing. Under control of an f edit descriptor, the quantity will be multiplied by

a factor 10k. Thus, the number 10.39 output by an f6.0 edit descriptor following the

scale factor 2p will appear as b1039.. With the e edit descriptor, and with g where the

e style editing is taken, the quantity is transferred with the exponent reduced by k, and

the significand multiplied by 10k. Thus 0.31× 103, written after a 2p edit descriptor

under control of e9.2, will appear as 31.00E+01. This gives a better control over the

output style of real quantities which otherwise would have no significant digits before

the decimal point.

The comma between a scale factor and an immediately following f, e, en, es, or g
edit descriptor (without a repeat count) may be omitted, but we do not recommend

that practice since it suggests that the scale factor applies only to the next edit

descriptor, whereas in fact it applies throughout the format until another scale factor is

encountered.

Control edit descriptors for immediate processing

Tabulation in an input or output field can be achieved using the edit descriptors tn, trn
(and nx), and tln, where n is a positive default integer literal constant. These state,

respectively, that the next part of the I/O should begin at position n in the current

record (where the left tab limit is position 1), or at n positions to the right of the current

position, or at n positions to the left of the current position (the left tab limit if the

current position is less than or equal to n). Let us suppose that, following an advancing

read, we read an input record bb9876 with the following statement:

read (*, ’(t3, i4, tl4, i1, i2)’) i, j, k

The format specification will move a notional pointer firstly to position 3, whence i will

be read. The variable i will acquire the value 9876, and the notional pointer is then

at position 7. The edit descriptor tl4 moves it left four positions, back to position 3.

The quantities j and k are then read, and they acquire the values 9 and 87, respectively.

Data transfer 207

These edit descriptors cause replacement on output, or multiple reading of the same

items in a record on input. On output, any gaps ahead of the last character actually

written are filled with spaces. If any character that is skipped by one of the descriptors

is of other than default type, the positioning is processor dependent.

If the current record is the first one processed by the I/O statement and follows non-

advancing I/O that left the file positioned within a record, the next character is the left

tab limit; otherwise, the first character of the record is the left tab limit.

The nx edit descriptor is equivalent to the trn edit descriptor. It is often used to place

spaces in an output record. For example, to start an output record with a blank by this

method, one writes

fmt= ’(1x,....)’

Spaces such as this can precede a data edit descriptor, but 1x,i5 is not, for instance,

exactly equivalent to i6 on output, as any value requiring the full six positions in the

field will not have them available in the former case.

The t and x edit descriptors never cause replacement of a character already in an out-

put record, but merely cause a change in the position within the record such that such

a replacement might be caused by a subsequent edit descriptor.

New records may be started at any point in a format specification by means of the slash (/)

edit descriptor. This edit descriptor, although described here, may in fact have repeat

counts; to skip, say, three records one can write either /,/,/ or 3/. On input, a new

record will be started each time a / is encountered, even if the contents of the current

record have not all been transferred. Reading the two records

bbb99bbb10
bb100bbb11

with the statement

read ’(bz,i5,i3,/,i5,i3,i2)’, i, j, k, l, m

will cause the values 99, 0, 100, 0, and 11 to be transferred to the five integer variables,

respectively. This edit descriptor does not need to be separated by a comma from

a preceding edit descriptor, unless it has a repeat count; it does not ever need to be

separated by a comma from a succeeding edit descriptor.

The result of writing with a format containing a sequence of, say, four slashes, as

represented by

print ’(i5,4/,i5)’, i, j

is to separate the two values by three blank records (the last slash starts the record

containing j); if i and j have the values 99 and 100, they would appear as

208 Modern Fortran Explained

bbb99
b
b
b
bb100

A slash edit descriptor written to an internal file will cause the following values to be

written to the next element of the character array specified for the file. Each such el-

ement corresponds to a record, and the number of characters written to a record must

not exceed its length.

Colon editing is a means of terminating format control if there are no further items in an I/O

list. In particular, it is useful for preventing further output of character strings used for

annotation if the output list is exhausted. Consider the following output statement, for

an array l(3):

print ’(" l1 = ", i5, :, " l2 = ", i5, :," l3 = ", i5)’, &
(l(i) ,i=1,n)

If n has the value 3, then three values are printed. If n has the value 1, then, without the

colons, the following output string would be printed:

l1 = 59 l2 =

The colon, however, stops the processing of the format, so that the annotation for the

absent second value is not printed. This edit descriptor need not be separated from a

neighbour by a comma. It has no effect if there are further items in the I/O list.

9.13 Unformatted I/O

The whole of this chapter has so far dealt with formatted I/O. The internal representation of

a value may differ from the external form, which is always a character string contained in an

input or output record. The use of formatted I/O involves an overhead for the conversion

between the two forms, and often a round-off error too. There is also the disadvantage

that the external representation usually occupies more space on a storage medium than

the internal representation. These three drawbacks are all absent when unformatted I/O is

used. In this form, the internal representation of a value is written exactly as it stands to

the storage medium, and can be read back directly with neither round-off nor conversion

overhead. Here, a value of derived type is treated as a whole and is not equivalent to a list

of its ultimate components. This is another reason for the rule (Section 9.3) that it must not

have an allocatable or pointer component at any level of component selection.

This type of I/O should be used in all cases where the records are generated by a program

on one computer, to be read back on the same computer or another computer using the same

internal number representations. Only when this is not the case, or when the data have to be

Data transfer 209

visualized in one form or another, should formatted I/O be used. The records of a file must

all be formatted or all be unformatted (apart from the endfile record).

Unformatted I/O has the incidental advantage of being simpler to program since no

complicated format specifications are required. The forms of the read and write statements

are the same as for formatted I/O, but without any fmt= or nml= specifier:

read (4) q
write (nout, iostat=ios, err=110) a

The interpretation of iostat=, err=, and end= specifiers is as for formatted I/O.

Non-advancing I/O is not available (in fact, an advance= specifier is not allowed). Each

read or write statement transfers exactly one record. The file must be an external file. On

output to a file connected (Section 10.1) for sequential access, a record of sufficient length

is created. On input, the type and type parameters of each entity in the list must agree with

those of the value in the record, except that two reals may correspond to one complex when

all three have the same kind parameter. The number of values specified by the input list of a

read statement must not exceed the number of values available in the current record.

9.14 Direct-access files

The only type of file organization that we have so far dealt with is the sequential file, which

has a beginning and an end, and which contains a sequence of records, one after the other.

Fortran permits another type of file organization known as direct access (or sometimes as

random access or indexed). All the records have the same length, each record is identified

by an index number, and it is possible to write, read, or rewrite any specified record without

regard to position. (In a sequential file, only the last record may be rewritten without losing

other records; in general, records in sequential files cannot be replaced.) The records are

either all formatted or all unformatted.

By default, any file used by a Fortran program is a sequential file. A direct-access file must

be declared as such on its open statement (described in the next chapter) with the access=
’direct’ and recl=rl specifiers (rl is the length of a record in the file). Once this declaration

has been made, reading and writing, whether formatted or unformatted, proceeds as described

for sequential files, except for the addition of a rec=i specifier to the read and write
statements, where i is a scalar integer expression whose value is the index number of the

record concerned. An end= specifier is not permitted. Usually, a data transfer statement for a

direct-access file accesses a single record, but during formatted I/O any slash edit descriptor

increases the record number by one and causes processing to continue at the beginning of this

record. A sequence of statements to write, read, and replace a given record is given in Figure

9.6.

The file must be an external file and namelist formatting, list-directed formatting, and

non-advancing I/O are all unavailable.

Direct-access files are particularly useful for applications that involve lots of hopping

around inside a file, or where records need to be replaced, for instance in data base

applications. A weakness is that the length of all the records must be the same,9 though,

9This deficiency is avoided in Fortran 2003 with stream access, Section 17.6.

210 Modern Fortran Explained

Figure 9.6 Write, read, and replace record 14. The open and inquire statements are

explained in Sections 10.3 and 10.5.

integer, parameter :: nunit=2, len=100
integer :: i, length
real :: a(len), b(len+1:2*len)

:
inquire (iolength=length) a
open (nunit, access=’direct’, recl=length)

:
! Write array B to direct-access file in record 14

write (nunit, rec=14) b
:
read (nunit, rec=14) a ! Read the array back into array a
:
do i = 1, len/2

a(i) = i
end do
write (nunit, rec=14) a ! Replace modified record

on formatted output, the record is padded with blanks if necessary. For unformatted output,

if the record is not filled, the remainder is undefined.

This simple and powerful facility allows much clearer control logic to be written than is

the case for a sequential file which is repeatedly read, backspaced, or rewound. Only when

direct-access files become large may problems of long access times become evident on some

computer systems, and this point should always be investigated before heavy investments are

made in programming large direct-access file applications.

Some computer systems allow the same file to be regarded as sequential or direct access

according to the specification in the open statement or its default. The standard, therefore,

regards this as a property of the connection (Section 10.1) rather than of the file. In this case,

the order of records, even for sequential I/O, is that determined by the direct-access record

numbering.

9.15 Execution of a data transfer statement

So far, we have used simple illustrations of data transfer statements without dependencies.

However, some forms of dependency are permitted and can be very useful. For example, the

statement

read (*, *) n, a(1:n) ! n is an integer

allows the length of an array section to be part of the data.

With dependencies in mind, the order in which operations are executed is important. It is

as follows:

i) identify the unit;

Data transfer 211

ii) establish the format (if any);

iii) position the file ready for the transfer (if required);

iv) transfer data between the file and the I/O list or namelist;

v) position the file following the transfer (if required);

vi) cause the iostat and size variables (if present) to become defined.

The order of transfer of namelist input is that in the input records. Otherwise, the order is

that of the I/O list or namelist. Each input item is processed in turn, and may affect later

subobjects and implied-do indices. All expressions within an I/O list item are determined at

the beginning of the processing of the item. If an entity is specified more than once during

execution of a namelist input statement, the later value overwrites the earlier value. Any

zero-sized array or zero-length implied-do list is ignored.

When an input item is an array, no element of the array is permitted to affect the value of

an expression within the item. For example, the cases shown in Figure 9.7 are not permitted.

This prevents dependencies occurring within the item itself.

Figure 9.7 Dependencies are not permitted within an input item.

integer :: j(10)
:
read *, j(j) ! Not permitted
read *, j(j(1):j(10)) ! Not permitted

In the case of an internal file, an I/O item must not be in the file or associated with it. Nor

may an input item contain or be associated with any portion of the established format.

Finally, a function reference must not appear in an expression anywhere in an I/O statement

if it causes another I/O statement or a stop statement to be executed.

9.16 Summary

This chapter has begun the description of Fortran’s extensive I/O facilities. It has covered

the formatted I/O statements, and their associated format specifications, and then turned to

unformatted I/O and direct-access files.

The syntax of the read and write statements has been introduced gradually. The full

syntax is

read (control-list) [input-list]

and

write (control-list) [output-list]

where control-list contains one or more of the following:

212 Modern Fortran Explained

unit= u err= error-label
fmt= fmt end= end-label
nml= nml-name advance= advance
rec= i size= size
iostat= ios eor= eor-label

A control-list must include a unit specifier and must not include any specifier more than

once. The iostat and size variables must not be associated with each other (for instance, be

identical), nor with any entity being transferred, nor with any do-var of an implied-do list of

the same statement. If either of these variables is an array element, the subscript value must

not be affected by the data transfer, implied-do processing, or the evaluation of any other

specifier in the statement.

Exercises

1. Write suitable print statements to print the name and contents of each of the following arrays:

i) real :: grid(10,10), ten elements to a line (assuming the values are between 1.0 and

100.0);

ii) integer :: list(50), the odd elements only;

iii) character(len=10) :: titles(20), two elements to a line;

iv) real :: power(10), five elements to a line in engineering notation;

v) logical :: flags(10), on one line;

vi) complex :: plane(5), on one line.

2. Write statements to output the state of a game of tic-tac-toe (noughts and crosses) to a unit

designated by the variable unit.

3. Write a program which reads an input record of up to 132 characters into an internal file and

classifies it as a Fortran comment line with no statement, an initial line without a statement label,

an initial line with a statement label, a continuation line, or a line containing multiple statements.

4. Write separate list-directed input statements to fill each of the arrays of Exercise 1. For each

statement write a sample first input record.

5. Write a subroutine get_char(unit,c,end_of_file) to read a single character c from a

formatted, sequential file unit, ignoring any record structure; end_of_file is a logical variable

that is given the value .true. if the end of the file is reached and the value .false. otherwise.

10. Operations on external files

10.1 Introduction

So far we have discussed the topic of external files in a rather superficial way. In the examples

of the various I/O statements in the previous chapter, an implicit assumption has always been

made that the specified file was actually available, and that records could be written to it and

read from it. For sequential files, the file control statements described in the next section

further assume that it can be positioned. In fact, these assumptions are not necessarily valid.

In order to define explicitly and to test the status of external files, three file status statements

are provided: open, close, and inquire. Before beginning their description, however, two

new definitions are required.

A computer system contains, among other components, a CPU and a storage system.

Modern storage systems are usually based on some form of disc, which is used to store files

for long or short periods of time. The execution of a computer program is, by comparison,

a transient event. A file may exist for years, whereas programs run for only seconds or

minutes. In Fortran terminology, a file is said to exist not in the sense we have just used,

but in the restricted sense that it exists as a file to which the program might have access. In

other words, if the program is prohibited from using the file because of a password protection

system, or because some other necessary action has not been taken, the file ‘does not exist’.

A file which exists for a running program may be empty and may or may not be connected
to that program. The file is connected if it is associated with a unit number known to the

program. Such connection is usually made by executing an open statement for the file, but

many computer systems will preconnect certain files which any program may be expected to

use, such as terminal input and output. Thus, we see that a file may exist but not be connected.

It may also be connected but not exist. This can happen for a preconnected new file. The file

will only come into existence (be created) if some other action is taken on the file: executing

an open, write, print, or endfile statement. A unit must not be connected to more than

one file at once, and a file must not be connected to more than one unit at once.

There are a number of other points to note with respect to files.

• The set of allowed names for a file is processor dependent.

• Both sequential and direct access may be available for some files, but normally a file is

limited to one or the other.

• A file never contains both formatted and unformatted records.

214 Modern Fortran Explained

Finally, we note that no statement described in this chapter applies to internal files.

10.2 Positioning statements for sequential files

When reading or writing an external file that is connected for sequential access, whether

formatted or unformatted, it is sometimes necessary to perform other control functions on the

file in addition to input and output. In particular, one may wish to alter the current position,

which may be within a record, between records, ahead of the first record (at the initial point),
or after the last record (at its terminal point). The following three statements are provided

for these purposes.

10.2.1 The backspace statement

It can happen in a program that a series of records is being written and that, for some reason,

the last record written should be overwritten by a new one. Similarly, when reading records,

it may be necessary to reread the last record read, or to check-read a record which has just

been written. For this purpose, Fortran provides the backspace statement, which has the

syntax

backspace u
or

backspace ([unit=]u [,iostat=ios] [,err=error-label])

where u is a scalar integer expression whose value is the unit number, and the other optional

specifiers have the same meaning as for a read statement. Again, keyword specifiers may be

in any order, but the unit specifier must come first as a positional specifier.

The action of this statement is to position the file before the current record if it is positioned

within a record, or before the preceding record if it is positioned between records. An attempt

to backspace when already positioned at the beginning of a file results in no change in the

file’s position. If the file is positioned after an endfile record (Section 10.2.3), it becomes

positioned before that record. It is not possible to backspace a file that does not exist, nor to

backspace over a record written by a list-directed or namelist output statement (Sections 9.9

and 9.10). A series of backspace statements will backspace over the corresponding number

of records. This statement is often very costly in computer resources and should be used as

little as possible.

10.2.2 The rewind statement

In an analogous fashion to rereading, rewriting, or check-reading a record, a similar operation

may be carried out on a complete file. For this purpose the rewind statement,

rewind u
or

rewind ([unit=]u [,iostat=ios] [,err=error-label])

Operations on external files 215

may be used to reposition a file, whose unit number is specified by the scalar integer

expression u. Again, keyword specifiers may be in any order, but the unit specifier must

come first as a positional specifier. If the file is already at its beginning, there is no change in

its position. The statement is permitted for a file that does not exist, and has no effect.

10.2.3 The endfile statement

The end of a file connected for sequential access is normally marked by a special record

which is identified as such by the computer hardware, and computer systems ensure that all

files written by a program are correctly terminated by such an endfile record. In doubtful

situations, or when a subsequent program step will reread the file, it is possible to write an

endfile record explicitly using the endfile statement:

endfile u
or

endfile ([unit=]u [,iostat=ios] [,err=error-label])

where u, once again, is a scalar integer expression specifying the unit number. Again,

keyword specifiers may be in any order, but the unit specifier must come first as a positional

specifier. The file is then positioned after the endfile record. This endfile record, if

subsequently read by a program, must be handled using the iostat=ios or end=end-label
specifier of the read statement, otherwise program execution will normally terminate. Prior

to data transfer, a file must not be positioned after an endfile record, but it is possible to

backspace or rewind across an endfile record, which allows further data transfer to occur.

An endfile record is written automatically whenever either a backspace or rewind operation

follows a write operation as the next operation on the unit, or the file is closed by execution

of a close statement (Section 10.4), by an open statement for the same unit (Section 10.3),

or by normal program termination.

If the file may also be connected for direct access, only the records ahead of the endfile

record are considered to have been written and only these may be read during a subsequent

direct-access connection.

Note that if a file is connected to a unit but does not exist for the program, it will be made

to exist by executing an endfile statement on the unit.

10.2.4 Data transfer statements

Execution of a data transfer statement (read, write, or print) for a sequential file also

affects the file position. If it is between records, it is moved to the start of the next record.

Data transfer then takes place, which usually moves the position. No further movement

occurs for non-advancing access. For advancing access, the position finally moves to follow

the last record transferred.

216 Modern Fortran Explained

10.3 The open statement

The open statement is used to connect an external file to a unit, create a file that is

preconnected, create a file and connect it to a unit, or change certain properties of a

connection. The syntax is

open ([unit=]u [,olist])

where u is a scalar integer expression specifying the external file unit number, and olist is

a list of optional specifiers. If the unit is specified with unit=, it may appear in olist. A

specifier must not appear more than once. In the specifiers, all entities are scalar and all

characters are of default kind. In character expressions, any trailing blanks are ignored and,

except for file=, any upper-case letters are converted to lower case. The specifiers are as

follows.

iostat= ios, where ios is a default integer variable which is set to zero if the statement is

correctly executed, and to a positive value otherwise.

err= error-label, where error-label is the label of a statement in the same scoping unit to

which control will be transferred in the event of an error occurring during execution of

the statement.

file= fln, where fln is a character expression that provides the name of the file. If this

specifier is omitted and the unit is not connected to a file, the status= specifier must

be specified with the value scratch and the file connected to the unit will then depend

on the computer system. Whether the interpretation is case sensitive varies from system

to system.

status= st, where st is a character expression that provides the value old, new, replace,

scratch, or unknown. The file= specifier must be present if new or replace is

specified or if old is specified and the unit is not connected; the file= specifier must

not be present if scratch is specified. If old is specified, the file must already exist;

if new is specified, the file must not already exist, but will be brought into existence by

the action of the open statement. The status of the file then becomes old. If replace
is specified and the file does not already exist, the file is created; if the file does exist,

the file is deleted, and a new file is created with the same name. In each case the status

is changed to old. If the value scratch is specified, the file is created and becomes

connected, but it cannot be kept after completion of the program or execution of a

close statement (Section 10.4). If unknown is specified, the status of the file is system

dependent. This is the default value of the specifier, if it is omitted.

access= acc, where acc is a character expression that provides one of the values

sequential or direct. For a file which already exists, this value must be an allowed

value. If the file does not already exist, it will be brought into existence with the

appropriate access method. If this specifier is omitted, the value sequential will be

assumed.

form= fm, where fm is a character expression that provides the value formatted or

unformatted, and determines whether the file is to be connected for formatted or

Operations on external files 217

unformatted I/O. For a file which already exists, the value must be an allowed value.

If the file does not already exist, it will be brought into existence with an allowed set

of forms that includes the specified form. If this specifier is omitted, the default is

formatted for sequential access and unformatted for direct-access connection.

recl= rl, where rl is an integer expression whose value must be positive. For a direct-

access file, it specifies the length of the records, and is obligatory. For a sequential file,

it specifies the maximum length of a record, and is optional with a default value that

is processor dependent. For formatted files, the length is the number of characters for

records that contain only default characters; for unformatted files it is system dependent

but the inquire statement (Section 10.5) may be used to find the length of an I/O list.

In either case, for a file which already exists, the value specified must be allowed for

that file. If the file does not already exist, the file will be brought into existence with an

allowed set of record lengths that includes the specified value.

blank= bl, where bl is a character expression that provides the value null or zero.

This connection must be for formatted I/O. This specifier sets the default for the

interpretation of blanks in numeric input fields, as discussed in the description of the bn
and bz edit descriptors (Section 9.12.4, Embedded blanks). If the value is null, such

blanks will be ignored (except that a completely blank field is interpreted as zero). If

the value is zero, such blanks will be interpreted as zeros. If the specifier is omitted,

the default is null.

position= pos, where pos is a character expression that provides the value asis, rewind,

or append. The access method must be sequential, and if the specifier is omitted the

default value asis will be assumed. A new file is positioned at its initial point. If

asis is specified and the file exists and is already connected, the file is opened without

changing its position; if rewind is specified, the file is positioned at its initial point;

if append is specified and the file exists, it is positioned ahead of the endfile record

if it has one (and otherwise at its terminal point). For a file which exists but is not

connected, the effect of the asis specifier on the file’s position is unspecified.

action= act, where act is a character expression that provides the value read, write, or

readwrite. If read is specified, the write, print and endfile statements must not

be used for this connection; if write is specified, the read statement must not be used

(and backspace and position=’append’ may fail on some systems); if readwrite
is specified, there is no restriction. If the specifier is omitted, the default value is

processor dependent.

delim= del, where del is a character expression that provides the value quote,

apostrophe, or none. If apostrophe or quote is specified, the corresponding char-

acter will be used to delimit character constants written with list-directed or namelist
formatting, and it will be doubled where it appears within such a character constant;

also, non-default character values will be preceded by kind values. No delimiting char-

acter is used if none is specified, nor does any doubling take place. The default value

if the specifier is omitted is none. This specifier may appear only for formatted files.

218 Modern Fortran Explained

pad= pad, where pad is a character expression that provides the value yes or no. If yes is

specified, a formatted input record will be regarded as padded out with blanks whenever

an input list and the associated format specify more data than appear in the record. (If

no is specified, the length of the input record must not be less than that specified by

the input list and the associated format, except in the presence of an advance=’no’
specifier and either an eor= or an iostat= specification.) The default value if the

specifier is omitted is yes. For non-default characters, the blank padding character is

processor dependent.

An example of an open statement is

open (2, iostat=ios, err=99, file=’cities’, &
status=’new’, access=’direct’, recl=100)

which brings into existence a new, direct-access, unformatted file named cities, whose

records have length 100. The file is connected to unit number 2. Failure to execute the

statement correctly will cause control to be passed to the statement labelled 99, where the

value of ios may be tested.

The open statements in a program are best collected together in one place, so that any

changes which might have to be made to them when transporting the program from one

system to another can be carried out without having to search for them. Regardless of where

they appear, the connection may be referenced in any program unit of the program.

The purpose of the open statement is to connect a file to a unit. If the unit is, however,

already connected to a file then the action may be different. If the file= specifier is omitted,

the default is the name of the connected file. If the file in question does not exist, but is

preconnected to the unit, then all the properties specified by the open statement become part

of the connection. If the file is already connected to the unit, then of the existing attributes

only the blank=, delim=, pad=, err=, and iostat= specifiers may have values different

from those already in effect. If the unit is already connected to another file, the effect of the

open statement includes the action of a prior close statement on the unit (without a status=
specifier, see next section).

A file already connected to one unit must not be specified for connection to another unit.

In general, by repeated execution of the open statement on the same unit, it is possible to

process in sequence an arbitrarily high number of files, whether they exist or not, as long as

the restrictions just noted are observed.

10.4 The close statement

The purpose of the close statement is to disconnect a file from a unit. Its form is

close ([unit=]u [,iostat=ios] [,err=error-label] [,status=st])

where u, ios, and error-label have the same meanings as described in the previous section

for the open statement. Again, keyword specifiers may be in any order, but the unit specifier

must come first as a positional specifier.

The function of the status= specifier is to determine what will happen to the file once it

is disconnected. The value of st, which is a scalar default character expression, may be either

Operations on external files 219

keep or delete, ignoring any trailing blanks and converting any upper-case letters to lower

case. If the value is keep, a file that exists continues to exist after execution of the close
statement, and may later be connected again to a unit. If the value is delete, the file no

longer exists after execution of the statement. In either case, the unit is free to be connected

again to a file. The close statement may appear anywhere in the program, and if executed

for a non-existing or unconnected unit, acts as a ‘do nothing’ statement. The value keep must

not be specified for files with the status scratch.

If the status= specifier is omitted, its default value is keep unless the file has status

scratch, in which case the default value is delete. On normal termination of execution,

all connected units are closed, as if close statements with omitted status= specifiers were

executed.

An example of a close statement is

close (2, iostat=ios, err=99, status=’delete’)

10.5 The inquire statement

The status of a file can be defined by the operating system prior to execution of the program,

or by the program itself during execution, either by an open statement or by some action

on a preconnected file which brings it into existence. At any time during the execution of a

program it is possible to inquire about the status and attributes of a file using the inquire
statement. Using a variant of this statement, it is similarly possible to determine the status

of a unit, for instance whether the unit number exists for that system (that is, whether it is

an allowed unit number), whether the unit number has a file connected to it and, if so, which

attributes that file has. Another variant permits an inquiry about the length of an output list

when used to write an unformatted record.

Some of the attributes that may be determined by use of the inquire statement are

dependent on others. For instance, if a file is not connected to a unit, it is not meaningful to

inquire about the form being used for that file. If this is nevertheless attempted, the relevant

specifier is undefined.

The three variants are known as inquire by file, inquire by unit, and inquire by output

list. In the description of the inquire statement which follows, the first two variants will be

described together. Their forms are

inquire ([unit=]u, ilist)

for inquire by unit, where u is a scalar integer expression specifying an external unit, and

inquire (file=fln, ilist)

for inquire by file, where fln is a scalar character expression whose value, ignoring any

trailing blanks, provides the name of the file concerned. Whether the interpretation is case

sensitive is system dependent. If the unit or file is specified by keyword, it may appear in

ilist. A specifier must not occur more than once in the list of optional specifiers, ilist. All

assignments occur following the usual rules, and all values of type character, apart from that

220 Modern Fortran Explained

for the name= specifier, are in upper case. The specifiers, in which all variables are scalar and

of default kind,1 are as follows.

iostat= ios and err= error-label, have the meanings described for them in the open
statement in Section 10.3. The iostat= variable is the only one which is defined if an

error condition occurs during the execution of the statement.

exist= ex, where ex is a logical variable. The value true is assigned to ex if the file (or unit)

exists, and false otherwise.

opened= open, where open is a logical variable. The value true is assigned to open if the

file (or unit) is connected to a unit (or file), and false otherwise.

number= num, where num is an integer variable that is assigned the value of the unit number

connected to the file, or −1 if no unit is connected to the file.

named= nmd and name= nam, where nmd is a logical variable that is assigned the value

true if the file has a name, and false otherwise. If the file has a name, the character

variable nam will be assigned the name. This value is not necessarily the same as that

given in the file specifier, if used, but may be qualified in some way. However, in

all cases it is a name which is valid for use in a subsequent open statement, and so

the inquire can be used to determine the actual name of a file before connecting it.

Whether the file name is case sensitive is system dependent.

access= acc, where acc is a character variable that is assigned one of the values

SEQUENTIAL or DIRECT depending on the access method for a file that is connected,

and UNDEFINED if there is no connection.

sequential= seq and direct= dir, where seq and dir are character variables that are

assigned the value YES, NO, or UNKNOWN, depending on whether the file may be opened

for sequential or direct access, respectively, or whether this cannot be determined.

form= frm, where frm is a character variable that is assigned one of the values FORMATTED
or UNFORMATTED, depending on the form for which the file is actually connected, and

UNDEFINED if there is no connection.

formatted= fmt and unformatted= unf, where fmt and unf are character variables that

are assigned the value YES, NO, or UNKNOWN, depending on whether the file may be

opened for formatted or unformatted access, respectively, or whether this cannot be

determined.

recl= rec, where rec is an integer variable that is assigned the value of the record length

of a file connected for direct access, or the maximum record length allowed for a file

connected for sequential access. The length is the number of characters for formatted

records containing only characters of default type, and system dependent otherwise. If

there is no connection, rec becomes undefined.

1Those of integer or logical type may be of any kind in Fortran 2003.

Operations on external files 221

nextrec= nr, where nr is an integer variable that is assigned the value of the number of

the last record read or written, plus one. If no record has been yet read or written, it is

assigned the value 1. If the file is not connected for direct access or if the position is

indeterminate because of a previous error, nr becomes undefined.

blank= bl, where bl is a character variable that is assigned the value NULL or ZERO,

depending on whether the blanks in numeric fields are by default to be interpreted

as null fields or zeros, respectively, and UNDEFINED if there is either no connection, or

if the connection is not for formatted I/O.

position= pos, where pos is a character variable that is assigned the value REWIND,

APPEND, or ASIS, as specified in the corresponding open statement, if the file has

not been repositioned since it was opened. If there is no connection, or if the file is

connected for direct access, the value is UNDEFINED. If the file has been repositioned

since the connection was established, the value is processor dependent (but must not

be REWIND or APPEND unless that corresponds to the true position).

action= act, where act is a character variable that is assigned the value READ, WRITE, or

READWRITE, according to the connection. If there is no connection, the value assigned

is UNDEFINED.

read= rd, where rd is a character variable that is assigned the value YES, NO, or UNKNOWN,

according to whether read is allowed, not allowed, or is undetermined for the file.

write= wr, where wr is a character variable that is assigned the value YES, NO, or UNKNOWN,

according to whether write is allowed, not allowed, or is undetermined for the file.

readwrite= rw, where rw is a character variable that is assigned the value YES, NO, or

UNKNOWN, according to whether read/write is allowed, not allowed, or is undetermined

for the file.

delim= del, where del is a character variable that is assigned the value QUOTE, APOSTROPHE,

or NONE, as specified by the corresponding open statement (or by default). If there is

no connection, or if the file is not connected for formatted I/O, the value assigned is

UNDEFINED.

pad= pad, where pad is a character variable that is assigned the value YES or NO, as specified

by the corresponding open statement (or by default). If there is no connection, or if the

file is not connected for formatted I/O, the value assigned is UNDEFINED.

A variable that is a specifier in an inquire statement or is associated with one must not

appear in another specifier in the same statement.

The third variant of the inquire statement, inquire by I/O list, has the form

inquire (iolength=length) olist

where length is a scalar integer variable of default kind and is used to determine the length

of an unformatted output list in processor-dependent units, and might be used to establish

whether, for instance, an output list is too long for the record length given in the recl=

222 Modern Fortran Explained

specifier of an open statement, or be used as the value of the length to be supplied to a recl=
specifier (see Figure 9.6 in Section 9.14).

An example of the inquire statement, for the file opened as an example of the open
statement in Section 10.3, is

logical :: ex, op
character (len=11) :: nam, acc, seq, frm
integer :: irec, nr
inquire (2, err=99, exist=ex, opened=op, name=nam, access=acc, &

sequential=seq, form=frm, recl=irec, nextrec=nr)

After successful execution of this statement, the variables provided will have been assigned

the following values:

ex .true.
op .true.
nam citiesbbbbb
acc DIRECTbbbbb
seq NObbbbbbbbb
frm UNFORMATTED
irec 100
nr 1

(assuming no intervening read or write operations).

The three I/O status statements just described are perhaps the most indigestible of all

Fortran statements. They provide, however, a powerful and portable facility for the dynamic

allocation and deallocation of files, completely under program control, which is far in advance

of that found in any other programming language suitable for scientific applications.

10.6 Summary

This chapter has completed the description of the input/output features begun in the previous

chapter, and together they provide a complete reference to all the facilities available.

Exercises

1. A direct-access file is to contain a list of names and initials, to each of which there corresponds

a telephone number. Write a program which opens a sequential file and a direct-access file, and

copies the list from the sequential file to the direct-access file, closing it for use in another program.

Write a second program which reads an input record containing either a name or a telephone number

(from a terminal if possible), and prints out the corresponding entry (or entries) in the direct-access

file if present, and an error message otherwise. Remember that names are as diverse as Wu, O’Hara

and Trevington-Smythe, and that it is insulting for a computer program to corrupt or abbreviate

people’s names. The format of the telephone numbers should correspond to your local numbers,

but the actual format used should be readily modifiable to another.

11. Floating-point exception handling

11.1 Introduction

Exception handling is required for the development of robust and efficient numerical

software, a principal application of Fortran. Indeed, the existence of such a facility makes it

possible to develop more efficient software than would otherwise be possible. The clear need

for exception handling, something that had been left out of Fortran 95, led to a facility being

developed on a ‘fast track’ as a Technical Report,1 suitable for immediate implementation as

an extension to Fortran 95. In this chapter, we describe the extensions to Fortran 95 that were

detailed in this Report and which are all included in Fortran 2003. We also describe the few

related Fortran 2003 features that were not in the Report, with a clear indication of this in

each case.

Most computers nowadays have hardware based on the IEEE standard for binary floating-

point arithmetic,2 which later became an ISO standard.3 Therefore, the Fortran exception

handling features are based on the ability to test and set the five flags for floating-point

exceptions that the IEEE standard specifies. However, non-IEEE computers have not been

ignored; they may provide support for some of the features and the programmer is able to

find out what is supported or state that certain features are essential.

Few (if any) computers support every detail of the IEEE standard. This is because

considerable economies in construction and increases in execution performance are available

by omitting support for features deemed to be necessary to few programmers. It was therefore

decided to include inquiry facilities for the extent of support of the standard, and for the

programmer to be able to state which features are essential.

The mechanism finally chosen by the committees is based on a set of procedures for setting

and testing the flags and inquiring about the features, collected in an intrinsic module called

ieee_exceptions.

Given that procedures were being provided for the IEEE flags, it seemed sensible to provide

procedures for other aspects of the IEEE standard. These are collected in a separate intrinsic

module, ieee_arithmetic, which contains a use statement for ieee_exceptions.

To provide control over which features are essential, there is a third intrinsic module,

ieee_features containing named constants corresponding to the features. If a named

constant is accessible in a scoping unit, the corresponding feature must be available there.

1Technical Report ISO/IEC TR 15580 : 1998(E).
2IEEE 754-1985, Standard for binary floating-point arithmetic.
3IEC 559 : 1989, Binary floating-point arithmetic for microprocessor systems.

224 Modern Fortran Explained

11.2 The IEEE standard

In this section, we explain those aspects of the IEEE standard that the reader needs to know

in order to understand the features of this chapter. We do not attempt to give a complete

description of the standard.

Two floating-point data formats are specified, one for real and one for double precision

arithmetic. They are supersets of the Fortran model, repeated here (see Section 8.7.1),

x = 0

and

x = s×be ×
p

∑
k=1

fk ×b−k

where s is ±1, p and b are integers exceeding one, e is an integer in a range emin ≤ e ≤ emax,

and each fk is an integer in the range 0 ≤ fk < b except that f1 is also nonzero. Both IEEE

formats are binary, with b= 2. The precisions are p= 24 and p= 53, and the exponent ranges

are −125 ≤ e ≤ 128 and −1021 ≤ e ≤ 1024, for real and double precision, respectively.

In addition, there are numbers with e = emin and f1 = 0, which are known as denormalized
numbers; note that they all have absolute values less than that returned by the intrinsic tiny
since it considers only numbers within the Fortran model. Also, zero has a sign and both

0 and −0 have inverses, ∞ and −∞. Within Fortran, −0 is treated as the same as a zero in

all intrinsic operations and comparisons, but it can be detected by the sign function and is

respected on formatted output.

The IEEE standard also specifies that some of the binary patterns that do not fit the model

be used for the results of exceptional operations, such as 0/0. Such a number is known

as a NaN (Not a Number). A NaN may be signaling or quiet. Whenever a signaling NaN

appears as an operand, the invalid exception signals and the result is a quiet NaN. Quiet NaNs

propagate through almost every arithmetic operation without signaling an exception.

The standard specifies four rounding modes:

nearest rounds the exact result to the nearest representable value.

to-zero rounds the exact result towards zero to the next representable value.

up rounds the exact result towards +∞ to the next representable value.

down rounds the exact result towards −∞ to the next representable value.

Some computers perform division by inverting the denominator and then multiplying by

the numerator. The additional round-off that this involves means that such an implementation

does not conform with the IEEE standard. The IEEE standard also specifies that sqrt
properly rounds the exact result and returns −0 for

√−0. The Fortran facilities include

inquiry functions for IEEE division and sqrt.

The presence of −0, ∞, −∞, and the NaNs allows IEEE arithmetic to be closed, that is,

every operation has a result. This is very helpful for optimization on modern hardware since

several operations, none needing the result of any of the others, may actually be progressing

in parallel. If an exception occurs, execution continues with the corresponding flag signaling,

and the flag remains signaling until explicitly set quiet by the program. The flags are therefore

called sticky.

Floating-point exception handling 225

There are five flags:

overflow occurs if the exact result of an operation with two normal values is too large for

the data format. The stored result is ∞, huge(x), -huge(x), or −∞, according to the

rounding mode in operation, always with the correct sign.

divide_by_zero occurs if a finite nonzero value is divided by zero. The stored result is ∞ or

−∞ with the correct sign.

invalid occurs if the operation is invalid, for example, ∞×0, 0/0, or when an operand is a

signaling NaN.

underflow occurs if the result of an operation with two finite nonzero values cannot be

represented exactly and is too small to represent with full precision. The stored result

is the best available, depending on the rounding mode in operation.

inexact occurs if the exact result of an operation cannot be represented in the data format

without rounding.

The IEEE standard specifies the possibility of exceptions being trapped by user-written

handlers, but this inhibits optimization and is not supported by Fortran. Instead, Fortran

supports the possibility of halting program execution after an exception signals. For the sake

of optimization, such halting need not occur immediately.

The IEEE standard specifies several functions that are implemented in Fortran as

ieee_copy_sign, ieee_logb, ieee_next_after, ieee_rem, ieee_rint, ieee_scalb,

and ieee_unordered, and are described in Section 11.9.3.

11.3 Access to the features

To access the features of this chapter, we recommend that the user employ use statements for

one or more of the intrinsic modules ieee_exceptions, ieee_arithmetic (which contains

a use statement for ieee_exceptions), and ieee_features. If the processor does not

support a module accessed in a use statement, the compilation, of course, fails.

If a scoping unit does not access ieee_exceptions or ieee_arithmetic, the level of

support is processor dependent, and need not include support for any exceptions. If a flag is

signaling on entry to such a scoping unit, the processor ensures that it is signaling on exit.

If a flag is quiet on entry to such a scoping unit, whether it is signaling on exit is processor

dependent.

The module ieee_features contains the derived type

ieee_features_type

for identifying a particular feature. The only possible values objects of this type may take

are those of named constants defined in the module, each corresponding to an IEEE feature.

If a scoping unit has access to one of these constants, the compiler must support the feature

in the scoping unit or reject the program. For example, some hardware is much faster if

denormalized numbers are not supported and instead all underflowed values are flushed to

zero. In such a case, the statement

use, intrinsic :: ieee_features, only: ieee_denormal

226 Modern Fortran Explained

will ensure that the scoping unit is compiled with (slower) code supporting denormalized

numbers. This form of the use statement is safer because it ensures that should there be

another module with the same name, the intrinsic one is used. It is described fully in Section

16.5.

The module is unusual in that all a code ever does is to access it with use statements,

which affect the way the code is compiled in the scoping units with access to one or more of

the module’s constants. There is no purpose in declaring data of type ieee_features_type,

though it is permitted; the components of the type are private, no operation is defined for it,

and only intrinsic assignment is available for it. In a scoping unit containing a use statement,

the effect is that of a compiler directive, but the other properties of use make the feature more

powerful than would be possible with a directive.

The complete set of named constants in the module and the effect of their accessibility is:

ieee_datatype The scoping unit must provide IEEE arithmetic for at least one kind of real.

ieee_denormal The scoping unit must support denormalized numbers for at least one kind

of real.

ieee_divide The scoping unit must support IEEE divide for at least one kind of real.

ieee_halting The scoping unit must support control of halting for each flag supported.

ieee_inexact_flag The scoping unit must support the inexact exception for at least one kind

of real.

ieee_inf The scoping unit must support ∞ and −∞ for at least one kind of real.

ieee_invalid_flag The scoping unit must support the invalid exception for at least one kind

of real.

ieee_nan The scoping unit must support NaNs for at least one kind of real.

ieee_rounding The scoping unit must support control of the rounding mode for all four

rounding modes on at least one kind of real.

ieee_sqrt The scoping unit must support IEEE square root for at least one kind of real.

ieee_underflow_flag The scoping unit must support the underflow exception for at least one

kind of real.

Execution may be slowed on some processors by the support of some features. If

ieee_exceptions is accessed but ieee_features is not accessed, the vendor is free to

choose which subset to support. The processor’s fullest support is provided when all of

ieee_features is accessed:

use, intrinsic :: ieee_arithmetic
use, intrinsic :: ieee_features

but execution may then be slowed by the presence of a feature that is not needed. In all

cases, the extent of support may be determined by the inquiry functions of Sections 11.8.2

and 11.9.2.

Floating-point exception handling 227

11.4 The Fortran flags

There are five Fortran exception flags, corresponding to the five IEEE flags. Each has

a value that is either quiet or signaling. The value may be determined by the function

ieee_get_flag (Section 11.8.3). Its initial value is quiet and it signals when the associated

exception occurs in a real or complex operation. Its status may also be changed by the

subroutine ieee_set_flag (Section 11.8.3) or the subroutine ieee_set_status (Section

11.8.4). Once signaling, it remains signaling unless set quiet by an invocation of the

subroutine ieee_set_flag or the subroutine ieee_set_status. For invocation of an

elemental procedure, it is as if the procedure were invoked once for each set of corresponding

elements; if any of the invocations return with a flag signaling, it will be signaling in the

caller on completion of the call.

If a flag is signaling on entry to a procedure, the processor will set it to quiet on entry and

restore it to signaling on return. This allows exception handling within the procedure to be

independent of the state of the flags on entry, while retaining their ‘sticky’ properties: within

a scoping unit, a signaling flag remains signaling until explicitly set quiet. Evaluation of a

specification expression may cause an exception to signal.

If a scoping unit has access to ieee_exceptions and references an intrinsic procedure

that executes normally, the values of the overflow, divide-by-zero and invalid flags are as on

entry to the intrinsic procedure, even if one or more signals during the calculation. If a real or

complex result is too large for the intrinsic procedure to handle, overflow may signal. If a real

or complex result is a NaN because of an invalid operation (for example, log(-1.0)), invalid

may signal. Similar rules apply to format processing and to intrinsic operations: no signaling

flag shall be set quiet and no quiet flag shall be set signaling because of an intermediate

calculation that does not affect the result.

An implementation may provide alternative versions of an intrinsic procedure; for

example, one might be rather slow but be suitable for a call from a scoping unit with access

to ieee_exceptions, while an alternative faster one might be suitable for other cases.

If it is known that an intrinsic procedure will never need to signal an exception, there is

no requirement for it to be handled – after all, there is no way that the programmer will be

able to tell the difference. The same principle applies to a sequence of in-line code with no

invocations of ieee_get_flag, ieee_set_flag, ieee_get_status, ieee_set_status,

or ieee_set_halting. If the code, as written, includes an operation that would signal a

flag, but after execution of the sequence no value of a variable depends on that operation,

whether the exception signals is processor dependent. Thus, an implementation is permitted

to optimize such an operation away. For example, when y has the value zero, whether the

code

x = 1.0/y
x = 3.0

signals divide-by-zero is processor dependent. Another example is:

real, parameter :: x=0.0, y=6.0
:
if (1.0/x == y) print *,’Hello world’

228 Modern Fortran Explained

where the processor is permitted to discard the if statement since the logical expression can

never be true and no value of a variable depends on it.

An exception does not signal if this could arise only during execution of code not required

or permitted by the standard. For example, the statement

if (f(x) > 0.0) y = 1.0/z

must not signal divide-by-zero when both f(x) and z are zero and the statement

where(a > 0.0) a = 1.0/a

must not signal divide-by-zero. On the other hand, when x has the value 1.0 and y has the

value 0.0, the expression

x > 0.00001 .or. x/y > 0.00001

is permitted to cause the signaling of divide-by-zero.

The processor need not support the invalid, underflow, and inexact exceptions. If an

exception is not supported, its flag is always quiet. The function ieee_support_flag
(Section 11.8.2) may be used to inquire whether a particular flag is supported. If invalid

is supported, it signals in the case of conversion to an integer (by assignment or an intrinsic

procedure) if the result is too large to be representable.

11.5 Halting

Some processors allow control during program execution of whether to abort or continue

execution after an exception has occurred. Such control is exercised by invocation of the

subroutine ieee_set_halting_mode (Section 11.8.3). Halting is not precise and may occur

any time after the exception has occurred. The function ieee_support_halting (Section

11.8.2) may be used to inquire whether this facility is available. The initial halting mode is

processor dependent.

In a procedure other than ieee_set_halting_mode, the processor does not change the

halting mode on entry, and on return ensures that the halting mode is the same as it was on

entry.

11.6 The rounding mode

Some processors support alteration of the rounding mode during execution. In this case, the

subroutine ieee_set_rounding_mode (Section 11.9.4) may be used to alter it. The function

ieee_support_rounding (Section 11.9.2) may be used to inquire whether this facility is

available for a particular mode.

In a procedure other than ieee_set_rounding_mode, the processor does not change the

rounding mode on entry, and on return ensures that the rounding mode is the same as it was

on entry.

Note that the value of a literal constant is not affected by the rounding mode.

Floating-point exception handling 229

11.7 The underflow mode (Fortran 2003 only)

Some processors support alteration of the underflow mode during execution, that is, whether

small values are represented as denormalized values or are set to zero. The reason is likely to

be that such a processor executes much faster without denormalized values. The underflow

mode is said to be gradual if denormalized values are employed. If the underflow mode may

be altered at run time, the subroutine ieee_set_underflow_mode (Section 11.9.4) may be

used to alter it. The function ieee_support_underflow_control (Section 11.9.2) may be

used to inquire whether this facility is available for a particular kind of reals.

In a procedure other than ieee_set_underflow_mode, the processor does not change the

underflow mode on entry, and on return ensures that it is the same as it was on entry.

11.8 The module ieee_exceptions

When the module ieee_exceptions is accessible, the overflow and divide-by-zero flags are

supported in the scoping unit for all available kinds of real and complex data. This minimal

level of support has been designed to be possible also on a non-IEEE computer. Which

other exceptions are supported may be determined by the function ieee_support_flag, see

Section 11.8.2. Whether control of halting is supported may be determined by the function

ieee_support_halting, see Section 11.8.2. The extent of support of the other exceptions

may be influenced by the accessibility of the named constants ieee_inexact_flag,

ieee_invalid_flag, and ieee_underflow_flag of the module ieee_features, see

Section 11.3.

The module contains two derived types (Section 11.8.1), named constants of these types

(Section 11.8.1), and a collection of generic procedures (Sections 11.8.2, 11.8.3, and 11.8.4).

None of the procedures is permitted as an actual argument.

11.8.1 Derived types

The module ieee_exceptions contains two derived types.

ieee_flag_type for identifying a particular exception flag. The only values that can be

taken by objects of this type are those of named constants defined in the module

ieee_overflow ieee_divide_by_zero ieee_invalid
ieee_underflow ieee_inexact

and these are used in the module to define the named array constants

type(ieee_flag_type), parameter :: &
ieee_usual(3) = &

(/ieee_overflow, ieee_divide_by_zero, ieee_invalid/), &
ieee_all(5) = (/ieee_usual, ieee_underflow, ieee_inexact/)

These array constants are convenient for inquiring about the state of several flags at

once by using elemental procedures. Besides convenience, such elemental calls may

be more efficient than a sequence of calls for single flags.

230 Modern Fortran Explained

ieee_status_type for saving the current floating-point status. It includes the values

of all the flags supported, and also the current rounding mode if dynamic control of

rounding is supported and the halting mode if dynamic control of halting is supported.

The components of both types are private. No operation is defined for them and only

intrinsic assignment is available for them.

11.8.2 Inquiry functions for IEEE exceptions

The module ieee_exceptions contains two inquiry functions, both of which are

pure. Their argument flag must be of type type(ieee_flag_type) with one of

the values ieee_invalid, ieee_overflow, ieee_divide_by_zero, ieee_inexact, and

ieee_underflow. The inquiries are about the support for kinds of reals and the same level

of support is provided for the corresponding kinds of complex type.

ieee_support_flag (flag [,x]) returns .true. if the processor supports the

exception flag for all reals (x absent) or for reals of the same kind type parameter

as the real argument x. Otherwise, it returns .false..

ieee_support_halting (flag) returns .true. if the processor supports the ability

to change the mode by call ieee_set_halting_mode(flag, halting). Other-

wise, it returns .false..

11.8.3 Subroutines for the flags and halting modes

The module ieee_exceptions contains the following elemental subroutines.

call ieee_get_flag (flag, flag_value) where:

flag is of type type(ieee_flag_type). It specifies a flag.

flag_value is of type default logical and has intent out. If the value of flag
is ieee_invalid, ieee_overflow, ieee_divide_by_zero, ieee_underflow,

or ieee_inexact, flag_value is given the value true if the corresponding

exception flag is signaling and false otherwise.

call ieee_get_halting_mode (flag, halting) where:

flag is of type type(ieee_flag_type). It must have one of the values

ieee_invalid, ieee_overflow, ieee_divide_by_zero, ieee_underflow, or

ieee_inexact.

halting is of type default logical and has intent out. If the exception specified by

flag will cause halting, halting is given the value true; otherwise, it is given

the value false.

Elemental subroutines would not be appropriate for the corresponding ‘set’ actions since

an invocation might ask for a flag or mode to be set more than once. The module therefore

contains the following subroutines that are pure but not elemental:

Floating-point exception handling 231

call ieee_set_flag (flag, flag_value) where:

flag is of type type(ieee_flag_type). It may be scalar or array valued. If it is an

array, no two elements may have the same value.

flag_value is of type default logical. It must be conformable with flag. Each flag

specified by flag is set to be signaling if the corresponding flag_value is true,

and to be quiet if it is false.

call ieee_set_halting_mode (flag, halting) which may be called only if

the value returned by ieee_support_halting(flag) is true:

flag is of type type(ieee_flag_type). It may be scalar or array valued. If it is an

array, no two elements may have the same value.

halting is of type default logical. It must be conformable with flag. Each

exception specified by flag will cause halting if the corresponding value of

halting is true and will not cause halting if the value is false.

11.8.4 Subroutines for the whole of the floating-point status

The module ieee_exceptions contains the following non-elemental subroutines.

call ieee_get_status (status_value) where:

status_value is scalar and of type type(ieee_status_type) and has intent out.

It returns the floating-point status, including all the exception flags, the rounding

mode, and the halting mode.

call ieee_set_status (status_value) where:

status_value is scalar and of type type(ieee_status_type). Its value must

have been set in a previous invocation of ieee_get_status. The floating-point

status, including all the exception flags, the rounding mode, and the halting mode,

is reset to as it was then.

Figure 11.1 Performing a subsidiary calculation with an independent set of flags.

use, intrinsic :: ieee_exceptions
type(ieee_status_type) :: status_value

:
call ieee_get_status(status_value) ! Get the flags
call ieee_set_flag(ieee_all,.false.) ! Set the flags quiet
: ! Calculation involving exception handling

call ieee_set_status(status_value) ! Restore the flags

These subroutines have been included for convenience and efficiency when a subsidiary

calculation is to be performed, and one wishes to resume the main calculation with exactly

the same environment, as shown in Figure 11.1. There are no facilities for finding directly

the value held within such a variable of a particular flag, rounding mode, or halting mode.

232 Modern Fortran Explained

11.9 The module ieee_arithmetic

The module ieee_arithmetic behaves as if it contained a use statement for the mod-

ule ieee_exceptions, so all the features of ieee_exceptions are also features of

ieee_arithmetic.

The module contains two derived types (Section 11.9.1), named constants of these types

(Section 11.9.1), and a collection of generic procedures (Sections 11.9.2, 11.9.3, 11.9.4, and

11.9.5). None of the procedures is permitted as an actual argument.

11.9.1 Derived types

The module ieee_arithmetic contains two derived types.

ieee_class_type for identifying a class of floating-point values. The only values

objects of this type may take are those of the named constants defined in the module

ieee_signaling_nan ieee_quiet_nan
ieee_negative_inf ieee_negative_normal
ieee_negative_denormal ieee_negative_zero
ieee_positive_zero ieee_positive_denormal
ieee_positive_normal ieee_positive_inf

with obvious meanings and (Fortran 2003 only)

ieee_other_value

for any cases that cannot be so identified, for example, if an unformatted file were

written with gradual underflow enabled and read with it disabled.

ieee_round_type for identifying a particular rounding mode. The only possible values

objects of this type may take are those of the named constants defined in the module

ieee_nearest ieee_to_zero
ieee_up ieee_down

for the IEEE modes and

ieee_other

for any other mode.

The components of both types are private. The only operations defined for them are ==
and /= for comparing values of one of the types; they return a value of type default logical.

Intrinsic assignment is also available.

11.9.2 Inquiry functions for IEEE arithmetic

The module ieee_arithmetic contains the following inquiry functions, all of which are

pure. The inquiries are about the support of reals and the same level of support is provided

for the corresponding kinds of complex type. The argument x may be a scalar or an array.

Floating-point exception handling 233

ieee_support_datatype ([x]) returns .true. if the processor supports IEEE

arithmetic for all reals (x absent) or for reals of the same kind type parameter as

the real argument x. Otherwise, it returns .false.. Complete conformance with the

IEEE standard is not required for .true. to be returned, but the normalized numbers

must be exactly those of IEEE single or IEEE double; the binary arithmetic operators

+, -, and * must be implemented with at least one of the IEEE rounding modes;

and the functions ieee_copy_sign, ieee_scalb, ieee_logb, ieee_next_after,

ieee_rem, and ieee_unordered must implement the corresponding IEEE functions.

ieee_support_denormal ([x]) returns .true. if the processor supports the IEEE

denormalized numbers for all reals (x absent) or for reals of the same kind type

parameter as the real argument x. Otherwise, it returns .false..

ieee_support_divide ([x]) returns .true. if the processor supports divide with

the accuracy specified by the IEEE standard for all reals (x absent) or for reals of the

same kind type parameter as the real argument x. Otherwise, it returns .false..

ieee_support_inf ([x]) returns .true. if the processor supports the IEEE infinity

facility for all reals (x absent) or for reals of the same kind type parameter as the real

argument x. Otherwise, it returns .false..

ieee_support_io ([x]) returns .true. if the results of formatted input/output

satisfy the requirements of the IEEE standard for all four IEEE rounding modes for

all reals (x absent) or for reals of the same kind type parameter as the real argument x.

Otherwise, it returns .false..

ieee_support_nan ([x]) returns .true. if the processor supports the IEEE Not-A-

Number facility for all reals (x absent) or for reals of the same kind type parameter as

the real argument x. Otherwise, it returns .false..

ieee_support_rounding (round_value [,x]) for a round_value of the type

ieee_round_type returns .true. if the processor supports that rounding mode for

all reals (x absent) or for reals of the same kind type parameter as the argument x.

Otherwise, it returns .false.. Here, support includes the ability to change the mode

by the invocation

call ieee_set_rounding_mode (round_value)

ieee_support_sqrt ([x]) returns .true. if sqrt implements IEEE square root for

all reals (x absent) or for reals of the same kind type parameter as the real argument x.

Otherwise, it returns .false..

ieee_support_standard ([x]) returns .true. if the processor supports all the

IEEE facilities defined in this chapter for all reals (x absent) or for reals of the same

kind type parameter as the real argument x. Otherwise, it returns .false..

ieee_support_underflow_control ([x]) (Fortran 2003 only) returns .true.
if the processor supports control of the underflow mode for all reals (x absent) or for

reals of the same kind type parameter as the real argument x. Otherwise, it returns

.false..

234 Modern Fortran Explained

11.9.3 Elemental functions

The module ieee_arithmetic contains the following elemental functions for the reals x and

y for which the values of ieee_support_datatype(x) and ieee_support_datatype(y)
are true. If x or y is an infinity or a NaN, the behaviour is consistent with the general rules

of the IEEE standard for arithmetic operations. For example, the result for an infinity is

constructed as the limiting case of the result with a value of arbitrarily large magnitude, when

such a limit exists.

ieee_class (x) is of type type(ieee_class_type) and returns the IEEE class of the

real argument x. The possible values are explained in Section 11.9.1.

ieee_copy_sign (x, y) returns a real with the same type parameter as x, holding the

value of x with the sign of y. This is true even for the IEEE special values, such as

NaN and ∞ (on processors supporting such values).

ieee_is_finite (x) returns the value .true. if ieee_class (x) has one of the

values

ieee_negative_normal ieee_negative_denormal
ieee_negative_zero ieee_positive_zero
ieee_positive_denormal ieee_positive_normal

and .false. otherwise.

ieee_is_nan (x) returns the value .true. if the value of x is an IEEE NaN and

.false. otherwise.

ieee_is_negative (x) returns the value .true. if ieee_class (x) has one of the

values

ieee_negative_normal ieee_negative_denormal
ieee_negative_zero ieee_negative_inf

and .false. otherwise.

ieee_is_normal (x) returns the value .true. if ieee_class (x) has one of the

values

ieee_negative_normal ieee_negative_zero
ieee_positive_zero ieee_positive_normal

and .false. otherwise.

ieee_logb (x) returns a real with the same type parameter as x. If x is neither zero,

infinity, nor NaN, the value of the result is the unbiased exponent of x, that is,

exponent(x)-1. If x==0, the result is −∞ if ieee_support_inf(x) is true and

-huge(x); otherwise, ieee_divide_by_zero signals. If ieee_support_inf(x) is

true and x is infinite, the result is +infinity. If ieee_support_nan(x) is true and x is a

NaN, the result is a NaN.

Floating-point exception handling 235

ieee_next_after (x, y) returns a real with the same type parameter as x. If x==y,

the result is x, without an exception ever signaling. Otherwise, the result is the

neighbour of x in the direction of y. The neighbours of zero (of either sign) are

both nonzero. Overflow is signaled when x is finite but ieee_next_after (x, y)
is infinite; underflow is signaled when ieee_next_after (x, y) is denormalized; in

both cases, ieee_inexact signals.

ieee_rem (x, y) returns a real with the type parameter of whichever argument has the

greater precision and value exactly x-y*n, where n is the integer nearest to the exact

value x/y; whenever |n−x/y| = 1/2, n is even. If the result value is zero, the sign is

that of x.

ieee_rint (x, y) returns a real with the same type parameter as x whose value is that

of x rounded to an integer value according to the current rounding mode.

ieee_scalb (x, i) returns a real with the same type parameter as x whose value is

2ix if this is within the range of normal numbers. If 2ix is too large, ieee_overflow
signals; if ieee_support_inf(x) is true, the result value is infinity with the sign of

x; otherwise, it is sign(huge(x),x). If 2ix is too small and cannot be represented

exactly, ieee_underflow signals; the result is the nearest representable number with

the sign of x.

ieee_unordered (x, y) returns .true. if x or y is a NaN or both are, and .false.
otherwise.

ieee_value (x, class) returns a real with the same type parameter as x and a value

specified by class. The argument class is of type type(ieee_class_type) and

may have value

ieee_signaling_nan or ieee_quiet_nan if ieee_support_nan(x) is true,

ieee_negative_inf or ieee_positive_inf if ieee_support_inf(x) is true,

ieee_negative_denormal or ieee_positive_denormal if the value of

ieee_support_denormal(x) is true, or

ieee_negative_normal, ieee_negative_zero, ieee_positive_zero, or

ieee_positive_normal.

Although in most cases the value is processor dependent, it does not vary between

invocations for any particular kind type parameter of x and value of class.

11.9.4 Non-elemental subroutines

The module ieee_arithmetic contains the following non-elemental subroutines.

call ieee_get_rounding_mode (round_value) where:

236 Modern Fortran Explained

round_value is scalar, of type type(ieee_round_type), and has intent out.

It returns the floating-point rounding mode, with value ieee_nearest,

ieee_to_zero, ieee_up, or ieee_down if one of the IEEE modes is in oper-

ation, and ieee_other otherwise.

call ieee_get_underflow_mode (gradual) (Fortran 2003 only) where:

gradual is scalar, of type default logical, and has intent out. It returns .true. if

gradual underflow is in effect, and .false. otherwise.

call ieee_set_rounding_mode (round_value) where:

round_value is scalar, of type type(ieee_round_type). It specifies the mode to

be set.

The subroutine must not be called unless the value of ieee_support_rounding
(round_value, x) is true for some x such that the value of

ieee_support_datatype(x) is true.

call ieee_set_underflow_mode (gradual) (Fortran 2003 only) where:

gradual is scalar, of type default logical. If its value is .true., gradual underflow

comes into effect; otherwise gradual underflow ceases to be in effect.

The subroutine must not be called unless ieee_support_underflow_control (x)
is true for some x.

The example in Figure 11.2 shows the use of these subroutines to store the rounding mode,

perform a calculation with round to nearest, and restore the rounding mode.

Figure 11.2 Store the rounding mode, perform a calculation with another mode, and restore

the previous mode.

use, intrinsic :: ieee_arithmetic
type(ieee_round_type) round_value

:
call ieee_get_rounding_mode(round_value) ! Store the rounding mode
call ieee_set_rounding_mode(ieee_nearest)
: ! Calculation with round to nearest

call ieee_set_rounding_mode(round_value) ! Restore the rounding mode

11.9.5 Transformational function for kind value

The module ieee_arithmetic contains the following transformational function that is

permitted in a constant expression (Section 7.4):

ieee_selected_real_kind ([p] [, r]) is similar to selected_real_kind
(Section 8.7.4) except that the result is the kind value of a real x for which

ieee_support_datatype(x) is true.

Floating-point exception handling 237

11.10 Examples

11.10.1 Dot product

Our first example, Figure 11.3, is of a module for the dot product of two real arrays of rank 1.

It contains a logical scalar dot_error, which acts as an error flag. If the sizes of the arrays

are different, an immediate return occurs with dot_error true. If overflow occurs during the

actual calculation, the overflow flag will signal and dot_error is set true. If all is well, its

value is unchanged.

Figure 11.3 Module for the dot product of two real rank-1 arrays.

module dot
! The caller must ensure that exceptions do not cause halting.
use, intrinsic :: ieee_exceptions
implicit none
private :: mult
logical :: dot_error = .false.
interface operator(.dot.)

module procedure mult
end interface

contains
real function mult(a, b)

real, intent(in) :: a(:), b(:)
integer :: i
logical :: overflow
if (size(a)/=size(b)) then

dot_error = .true.
return

end if
! The processor ensures that ieee_overflow is quiet

mult = 0.0
do i = 1, size(a)

mult = mult + a(i)*b(i)
end do
call ieee_get_flag(ieee_overflow, overflow)
if (overflow) dot_error = .true.

end function mult
end module dot

11.10.2 Calling alternative procedures

Suppose the function fast_inv is a code for matrix inversion that ‘lives dangerously’ and

may cause a condition to signal. The alternative function slow_inv is far less likely to cause

238 Modern Fortran Explained

a condition to signal, but is much slower. The following code, Figure 11.4, tries fast_inv
and, if necessary, makes another try with slow_inv. If this still fails, a message is printed

and the program stops. Note, also, that it is important to set the flags quiet before the second

try. The state of all the flags is stored and restored.

Figure 11.4 Try a fast algorithm and, if necessary, try again with a slower but more reliable

algorithm.

use, intrinsic :: ieee_exceptions
use, intrinsic :: ieee_features, only: ieee_invalid_flag
! The other exceptions of ieee_usual (ieee_overflow and
! ieee_divide_by_zero) are always available with ieee_exceptions
type(ieee_status_type) :: status_value
logical, dimension(3) :: flag_value
:

call ieee_get_status(status_value)
call ieee_set_halting_mode(ieee_usual,.false.) ! Needed in case the
! default on the processor is to halt on exceptions.
call ieee_set_flag(ieee_usual,.false.) ! Elemental
! First try the "fast" algorithm for inverting a matrix:
matrix1 = fast_inv(matrix) ! This must not alter matrix.
call ieee_get_flag(ieee_usual, flag_value) ! Elemental
if (any(flag_value)) then
! "Fast" algorithm failed; try "slow" one:

call ieee_set_flag(ieee_usual,.false.)
matrix1 = slow_inv(matrix)
call ieee_get_flag(ieee_usual, flag_value)
if (any(flag_value)) then

write (*, *) ’Cannot invert matrix’
stop

end if
end if
call ieee_set_status(status_value)

11.10.3 Calling alternative in-line code

This example, Figure 11.5, is similar to the inner part of the previous one, but here the code

for matrix inversion is in line, we know that only overflow can signal, and the transfer is made

more precise by adding extra tests of the flag.

11.10.4 Reliable hypotenuse function

The most important use of a floating-point exception handling facility is to make possible the

development of much more efficient software than is otherwise possible. The code in Figure

Floating-point exception handling 239

Figure 11.5 As for Figure 11.4 but with in-line code.

use, intrinsic :: ieee_exceptions
logical :: flag_value

:
call ieee_set_halting_mode(ieee_overflow,.false.)
call ieee_set_flag(ieee_overflow,.false.)
! First try a fast algorithm for inverting a matrix.
do k = 1, n

:
call ieee_get_flag(ieee_overflow, flag_value)
if (flag_value) exit

end do
if (flag_value) then
! Alternative code which knows that k-1 steps have
! executed normally.
:
end if

11.6 for the ‘hypotenuse’ function,
√

x2 + y2, illustrates the use of the facility in developing

efficient software.

An attempt is made to evaluate this function directly in the fastest possible way. This will

work almost every time, but if an exception occurs during this fast computation, a safe but

slower way evaluates the function. This slower evaluation may involve scaling and unscaling,

and in (very rare) extreme cases this unscaling can cause overflow (after all, the true result

might overflow if x and y are both near the overflow limit). If the overflow or underflow flag

is signaling on entry, it is reset on return by the processor, so that earlier exceptions are not

lost.

11.10.5 Access to IEEE arithmetic values

The program in Figure 11.7 illustrates how the ieee_arithmetic module can be used to

test for special IEEE values. It repeatedly doubles a and halves b, testing for overflowed,

denormalized, and zero values. It uses ieee_set_halting_mode to prevent halting. The

beginning and end of a sample output are shown. Note the warning messages; the processor

is required to produce some such output if any exceptions are signaling at termination.

240 Modern Fortran Explained

Figure 11.6 A reliable hypotenuse function.

real function hypot(x, y)

! In rare circumstances this may lead to the signaling of
! ieee_overflow.
! The caller must ensure that exceptions do not cause halting.

use, intrinsic :: ieee_exceptions
use, intrinsic :: ieee_features, only: ieee_underflow_flag

! ieee_overflow is always available with ieee_exceptions

implicit none
real :: x, y
real :: scaled_x, scaled_y, scaled_result
logical, dimension(2) :: flags
type(ieee_flag_type), parameter, dimension(2) :: &

out_of_range = (/ ieee_overflow, ieee_underflow /)
intrinsic :: sqrt, abs, exponent, max, digits, scale

! The processor clears the flags on entry
call ieee_set_halting_mode(out_of_range, .false.) ! Needed in

! case the default on the processor is to halt on exceptions.
! Try a fast algorithm first

hypot = sqrt(x**2 + y**2)
call ieee_get_flag(out_of_range, flags)
if (any(flags)) then
call ieee_set_flag(out_of_range, .false.)
if (x==0.0 .or. y==0.0) then
hypot = abs(x) + abs(y)

else if (2*abs(exponent(x)-exponent(y)) > digits(x)+1) then
hypot = max(abs(x), abs(y))! We can ignore one of x and y

else ! Scale so that abs(x) is near 1
scaled_x = scale(x, -exponent(x))
scaled_y = scale(y, -exponent(x))
scaled_result = sqrt(scaled_x**2 + scaled_y**2)
hypot = scale(scaled_result, exponent(x)) ! May cause

end if ! overflow
end if

! The processor resets any flag that was signaling on entry
end function hypot

Floating-point exception handling 241

Figure 11.7 Test for overflowed, denormalized, and zero values.

program test
use ieee_arithmetic; use ieee_features
real :: a=1.0, b=1.0
integer :: i
call ieee_set_halting_mode(ieee_overflow, .false.)
do i = 1,1000

a = a*2.0
b = b/2.0
if (.not. ieee_is_finite(a)) then

write (*, *) ’2.0**’, i, ’ is infinite’
a = 0.0

end if
if (.not. ieee_is_normal(b)) &

write (*, *) ’0.5**’, i, ’ is denormal’
if (b==0.0) exit

end do
write (*, *) ’0.5**’, i, ’ is zero’

end program test

0.5** 127 is denormal
2.0** 128 is infinite
0.5** 128 is denormal
0.5** 129 is denormal
:
0.5** 148 is denormal
0.5** 149 is denormal
0.5** 150 is zero
Warning: Floating overflow occurred during execution
Warning: Floating underflow occurred during execution

This page intentionally left blank

12. Interoperability with C

12.1 Introduction

Fortran 2003 provides a standardized mechanism for interoperating with C. Clearly, any

entity involved must be such that equivalent declarations of it may be made in the two

languages. This is enforced within the Fortran program by requiring all such entities to be

interoperable. We will explain in turn what this requires for types, variables, and procedures.

They are all requirements on the syntax so that the compiler knows at compile time whether

an entity is interoperable. We continue with examining interoperability for global data and

then discuss some examples. We conclude with a new syntax for defining sets of integer

constants that is useful in this context.

12.2 Interoperability of intrinsic types

There is an intrinsic module named iso_c_binding that contains named constants of type

default integer holding kind type parameter values for intrinsic types. Their names are shown

in Table 12.1, together with the corresponding C types. The processor is required to support

only int. Lack of support is indicated with a negative value of the constant. If the value

is positive, it indicates that the Fortran type and kind type parameter interoperate with the

corresponding C type.

The negative values are as follows. For the integer types, the value is −1 if there is such a C

type but no interoperating Fortran kind or −2 if there is no such C type. For the real types, the

value is −1 if the C type does not have a precision equal to the precision of any of the Fortran

real kinds, −2 if the C type does not have a range equal to the range of any of the Fortran

real kinds, −3 if the C type has neither the precision nor range of any of the Fortran real

kinds, and equal to −4 if there is no interoperating Fortran kind for other reasons. The values

of c_float_complex, c_double_complex, and c_long_double_complex are the same as

those of c_float, c_double, and c_long_double, respectively. For logical, the value of

c_bool is −1 if there is no Fortran kind corresponding to the C type _Bool. For character,

the value of c_char is −1 if there is no Fortran kind corresponding to the C type char.

For character type, interoperability also requires that the length type parameter be omitted

or be specified by a constant expression whose value is one. The following named

constants (with the obvious meanings) are provided: c_null_char, c_alert, c_backspace,

c_form_feed, c_new_line, c_carriage_return, c_horizontal_tab, c_vertical_tab.

244 Modern Fortran Explained

They are all of type character with length one and kind c_char (or default kind if c_char has

the value −1).

Table 12.1. Named constants for interoperable kinds of intrinsic Fortran types.

Type Named constant C type or types
integer c_int int

c_short short int

c_long long int

c_long_long long long int

c_signed_char signed char, unsigned char

c_size_t size_t

c_int8_t int8_t

c_int16_t int16_t

c_int32_t int32_t

c_int64_t int64_t

c_int_least8_t int_least8_t

c_int_least16_t int_least16_t

c_int_least32_t int_least32_t

c_int_least64_t int_least64_t

c_int_fast8_t int_fast8_t

c_int_fast16_t int_fast16_t

c_int_fast32_t int_fast32_t

c_int_fast64_t int_fast64_t

c_intmax_t intmax_t

c_intptr_t intptr_t

real c_float float

c_double double

c_long_double long double

complex c_float_complex float _Complex

c_double_complex double _Complex

c_long_double_complex long double _Complex

logical c_bool _Bool

character c_char char

Interoperability with C 245

12.3 Interoperability with C pointer types

For interoperating with C pointers (which are just addresses), the module contains the derived

types c_ptr and c_funptr that are interoperable with C object and function pointer types,

respectively. Their components are private. There are named constants c_null_ptr and

c_null_funptr for the corresponding null values of C.

The module also contains the following procedures.

c_loc (x) is an inquiry function that returns a scalar of type c_ptr that holds the C

address of its argument x, which must

i) have interoperable type and type parameters and be

a) a variable that has the target attribute and is interoperable;

b) an allocated allocatable variable that has the target attribute and is not an

array of zero size; or

c) an associated scalar pointer;

or

ii) be a non-polymorphic scalar, have no length type parameters, and be

a) a non-allocatable, non-pointer variable that has the target attribute;

b) an allocated allocatable variable that has the target attribute; or

c) an associated pointer.

c_funloc (x) is an inquiry function that returns the C address of a procedure. The

argument x is permitted to be a procedure that is interoperable (see Section 12.7) or

a pointer associated with such a procedure.

c_associated (c_ptr1 [, c_ptr2]) is an inquiry function for scalars of type

c_ptr or for scalars of type c_funptr. It returns a default logical scalar. It has the

value false if c_ptr1 is a C null pointer or if c_ptr2 is present with a different value;

otherwise, it has the value true.

c_f_pointer (cptr, fptr [, shape]) is a subroutine with arguments

cptr is a scalar of type c_ptr with intent in. Its value is either

i) the C address of an interoperable data entity; or

ii) the result of a reference to c_loc with a non-interoperable argument.

It must not be the C address of a Fortran variable that does not have the target
attribute.

fptr is a pointer with intent out.

i) If cptr is the C address of an interoperable entity, fptr must be a data

pointer of the type and type parameters of the entity and it becomes pointer

associated with the target of cptr. If it is an array, its shape is specified by

shape and each lower bound is 1.

246 Modern Fortran Explained

ii) If cptr was returned by a call of c_loc with a non-interoperable argument

x, fptr must be a non-polymorphic scalar pointer of the type and type

parameters of x. x or its target if it is a pointer shall not have since been

deallocated or have become undefined due to execution of a return or an

end statement. fptr becomes pointer-associated with x or its target.

shape (optional) is a rank-one array of type integer with intent in. If present, its size

is equal to the rank of fptr. It must be present if fptr is an array.

c_f_procpointer (cptr, fptr) is a subroutine with arguments

cptr is a scalar of type c_funptr with intent in. Its value is the C address of a

procedure that is interoperable.

fptr is a procedure pointer with intent out. Its interface must be interoperable with

the target of cptr and it becomes pointer-associated with that target.

A Fortran pointer or allocatable variable, and most Fortran arrays, do not interoperate

directly with any C entity because C does not have quite the same concepts; for example,

unlike a Fortran array pointer, a C array pointer cannot describe a non-contiguous array

section. However, this does not prevent such entities being passed to C via argument

association since Fortran compilers already perform copy-in copy-out when this is necessary.

Also, the function c_loc may be used to obtain the C address of an allocated allocatable

array, which is useful if the C part of the program wishes to maintain a pointer to this array.

Similarly, the address of an array allocated in C may be passed to Fortran and c_f_pointer
used to construct a Fortran pointer whose target is the C array. There is an illustration of this

in Section 12.9.

Case ii) of c_loc allows the C program to receive a pointer to a Fortran scalar that is not

interoperable. It is not intended that any use of it be made within C except to pass it back

to Fortran, where c_f_pointer is available to reconstruct the Fortran pointer. There is an

illustration of this in Section 12.10.

12.4 Interoperability of derived types

For a derived type to be interoperable, it must have the bind attribute:

type, bind(c) :: mytype
:

end type mytype

It must not be a sequence type (Appendix B.2.1), have type parameters, have the extends
attribute (Section 14.2), or have any type-bound procedures (Section 14.6). Each component

must have interoperable type and type parameters, must not be a zero-sized array, must not

be a pointer, and must not be allocatable.

These restrictions allow the type to interoperate with a C struct type that has the same

number of components. The components correspond by position in their definitions. Each

Fortran component must be interoperable with the corresponding C component. Here is a

simple example:

Interoperability with C 247

typedef struct {
int m, n;
float r;

} myctype;

is interoperable with

use, intrinsic :: iso_c_binding
type, bind(c) :: myftype

integer(c_int) :: i, j
real(c_float) :: s

end type myftype

The name of the type and the names of the components are not significant for interoper-

ability. If two equivalent definitions of an interoperable derived type are made in separate

scoping units, they interoperate with the same C type (but it is usually preferable to define

one type in a module and access it by use statements).

No Fortran type is interoperable with a C union type, a C struct type that contains a bit

field, or a C struct type that contains a flexible array member.

12.5 Interoperability of variables

A scalar Fortran variable is interoperable if it is of interoperable type and type parameters,

and is neither a pointer nor allocatable. It is interoperable with a C scalar if the Fortran type

and type parameters are interoperable with the C type.

An array Fortran variable is interoperable if its size is nonzero, it is of interoperable type

and type parameters, and it is of explicit shape or assumed size (Appendix B.3).

For a Fortran array of rank one to interoperate with a C array, the Fortran array elements

must be interoperable with the C array elements. If the Fortran array is of explicit size, the C

array must have the same size. If the Fortran array is of assumed size, the C array must not

have a specified size.

A Fortran array a of rank greater than one and of shape (e1,e2, . . . ,er) is interoperable with

a C array of size er with elements that are interoperable with a Fortran array of the same type

as a and of shape (e1,e2, . . . ,er−1). For ranks greater than two, this rule is applied recursively.

For example, the Fortran arrays declared as

integer(c_int) :: fa(18, 3:7), fb(18, 3:7, 4)

are interoperable with C arrays declared as

int ca[5][18], cb[4][5][18];

and the elements correspond. Note that the subscript order is reversed.

An assumed-size Fortran array of rank greater than one is interoperable with a C array

of unspecified size if its elements are related to the Fortran array in the same way as in the

explicit-size case. For example, the Fortran arrays declared as

integer(c_int) :: fa(18, *), fb(18, 3:7, *)

are interoperable with C arrays declared as

int ca[][18], cb[][5][18];

248 Modern Fortran Explained

12.6 The value attribute

For the sake of interoperability, a new attribute, value, has been introduced for scalar dummy

arguments. It may be specified in a type declaration statement for the argument or separately

in a value statement:

function func(a, i, j) bind(c)
real(c_float) func, a
integer(c_int), value :: i, j
value :: a

When the procedure is invoked, a copy of the actual argument is made. The dummy argument

is a variable that may be altered during execution of the procedure, but on return no copy back

takes place. The only restriction on the type is that, if it is character, the character length must

be known at compile time. The argument must not be a pointer, be allocatable, have intent

out or inout, be a procedure, or have the volatile attribute (Section 16.3).

The value attribute is not limited to procedures with the bind attribute; it may be used in

any procedure. This is useful for a particular programming style; for example, in

integer function nth_word_position(string, n) result(pos)
character(*), intent(in) :: string
integer, value :: n
logical :: in_word
in_word = .false.
do pos = 1, len(string)

if (string(pos:pos)==’ ’)then
in_word = .false.

else if (.not.in_word) then
in_word = .true. ! At first character of a word.
n = n - 1
if (n==0) return ! Found nth one, return position.

end if
end do
pos = 0 ! n words not found, return zero.

end function

the argument n is locally decreased until it reaches zero, without affecting the actual argument

or requiring an extra temporary variable. Because the attribute alters the argument passing

mechanism, a procedure with a value dummy argument is required to have an explicit

interface.

In the context of a call from C, the absence of the value attribute indicates that it expects

the actual argument to be an object pointer to an object of the specified type or a function

pointer whose target has a prototype that is interoperable with the specified interface (see

next section).

Interoperability with C 249

12.7 Interoperability of procedures

A Fortran procedure is interoperable if it has an explicit interface and is declared with the

bind attribute:

function func(i, j, k, l, m) bind(c)
subroutine subr () bind(c)

Note that for a subroutine with no arguments, the parentheses are required. The procedure

may be an external or module procedure, but is not permitted to be an internal procedure.

All the dummy arguments must be non-optional and interoperable. For a function, the result

must be scalar and interoperable.

The procedure usually has a binding label, which has global scope and is the name by

which it is known to the C processor. By default, it is the lower-case version of the Fortran

name. For example, the function in the previous paragraph has the binding label func. An

alternative binding label may be specified:

function func(i, j, k, l, m) bind(c, name=’c_func’)

The value following the name= must be a scalar default character constant expression.

Ignoring leading and trailing blanks, this must be a valid C identifier and case is significant.

A binding label is not an alias for the procedure name for an ordinary Fortran invocation.

It is for use only from C. Two different entitities must not have the same binding label.

If the character expression has zero length or is all blanks, there is no binding label. The

procedure may still be invoked from C through a procedure pointer and, if this is the only

way it will be invoked, it is not appropriate to give it a binding label. In particular, a private
module procedure must not have a binding label.

An interoperable Fortran procedure interface is interoperable with a C function prototype

that has the same number of arguments and does not have variable arguments denoted by

the ellipsis (. . .). For a function, the result must be interoperable with the prototype result.

For a subroutine, the prototype must have a void result. A dummy argument with the value
attribute must be interoperable with the corresponding formal parameter. A dummy argument

without the value attribute must correspond to a formal parameter of a pointer type and be

interoperable with an entity of the referenced type of the formal parameter. Note that a Fortran

array is not permitted to have the value attribute, but it can interoperate with a C array since

this is automatically of a pointer type.

Here is an example of procedure interface interoperability. The Fortran interface in Figure

12.1 is interoperable with the C function prototype

short int func(int i, double *j, int *k, int l[10], void *m);

If a C function with this prototype is to be called from Fortran, the Fortran code must access

an interface such as this. The call itself is handled in just the same way as if an external

Fortran procedure with an explicit interface were being called. This means, for example,

that the array section larray(1:20:2) might be the actual argument corresponding to the

dummy array l; in this case, copy-in copy-out takes place.

Similarly, if a Fortran function with the interface of the previous paragraph is to be called

from C, the C code must have a prototype such as that of the previous paragraph.

250 Modern Fortran Explained

Figure 12.1 A Fortran interface for a C function.

interface
function func(i, j, k, l, m) bind(c)
use, intrinsic :: iso_c_binding

integer(c_short) :: func
integer(c_int), value :: i
real(c_double) :: j
integer(c_int) :: k, l(10)
type(c_ptr), value :: m

end function func
end interface

If a C function is called from Fortran, it must not use signal (C standard, 7.14.1) to change

the handling of any exception that is being handled by the Fortran processor, and it must

not alter the floating-point status (Section 11.8.4) other than by setting an exception flag

to signaling. The values of the floating-point exception flags on entry to a C function are

processor dependent.

12.8 Interoperability of global data

An interoperable module variable (or a common block, Appendix B.2.3, with interoperable

members) may be given the bind attribute in a type declaration statement or in a bind
statement:

use iso_c_binding
integer(c_int), bind(c) :: c_extern
integer(c_long) :: c2
bind(c, name=’myvariable’) :: c2
common /com/ r, s
real(c_float) :: r, s
bind(c) :: /com/

It has a binding label defined by the same rules as for procedures and interoperates with a C

variable with external linkage that is of a corresponding type. If a binding label is specified

in a statement, the statement must define a single variable.

A variable with the bind attribute also has the save attribute (which may be confirmed

explicitly). A change to the variable in either language affects the value of the corresponding

variable in the other language. A C variable is not permitted to interoperate with more than

one Fortran variable.

The bind statement is available only for this purpose; it is not available, for instance,

to specify the bind attribute for a module procedure. Also, the bind attribute must not be

specified for a variable that is not a module variable (that is, it is not available to confirm

that a variable is interoperable), and it must not be specified for a module variable that is in a

common block.

Interoperability with C 251

If a common block is specified in a bind statement, it must be specified in a bind
statement with the same binding label in every scoping unit in which it is declared. It

interoperates with a variable of struct type whose components are each interoperable with the

corresponding member of the common block. If the common block has only one member, it

also interoperates with a variable that is interoperable with the member.

The equivalence statement (Appendix B.2.2) is not permitted to specify a variable that

has the bind attribute or is a member of a common block that has the bind attribute.

The double colon in a bind statement is optional.

12.9 Invoking a C function from Fortran

If a C function is to be invoked from Fortran, it must have external linkage and be describable

by a C prototype that is interoperable with an accessible Fortran interface that has the same

binding label.

If it is required to pass a Fortran array to C, the interface may specify the array to be of

explicit or assumed size and the usual Fortran mechanisms, perhaps involving copy-in copy-

out, ensure that a contiguous array is received by the C code. Here is an example involving

both an assumed-size array and an allocatable array. The C prototype is

int c_library_function(int expl[100], float alloc[], int len_alloc);

and the Fortran code is shown in Figure 12.2.

Figure 12.2 Passing Fortran arrays to a C function.

use iso_c_binding
interface

integer (c_int) function c_library_function &
(expl, alloc, len_alloc) bind(c)

use iso_c_binding
integer(c_int) :: expl(100)
real(c_float) :: alloc(*)
integer(c_int), value :: len_alloc

end function c_library_function
end interface
integer(c_int) :: expl(100), len_alloc, x1
real(c_float), allocatable :: alloc(:)
:

len_alloc = 200
allocate (alloc(len_alloc))
:

x1 = c_library_function(expl, alloc, len_alloc)
:

The rules on shape and character length disagreement (Appendix B.3) allow entities

specified as character(kind=c_char) of any length to be associated with an assumed-size

252 Modern Fortran Explained

or explicit-shape array, and thus to be passed to and from C. For example, the C function with

prototype

void Copy(char in[], char out[]);

may be invoked by the Fortran code in Figure 12.3.

This code works because Fortran allows the character variable digit_string to be

associated with the assumed-size dummy array in. We have also taken the opportunity here to

illustrate the use of a binding label to call a C procedure whose name includes an upper-case

letter.

Figure 12.3 Passing Fortran character strings to a C function.

use, intrinsic :: iso_c_binding, only: c_char, c_null_char
interface

subroutine copy(in, out) bind(c, name=’Copy’)
use, intrinsic :: iso_c_binding, only: c_char
character(kind=c_char), dimension(*) :: in, out

end subroutine copy
end interface
character(len=10, kind=c_char) :: &

digit_string = c_char_’123456789’ // c_null_char
character(kind=c_char) :: digit_arr(10)
call copy(digit_string, digit_arr)
print ’(1x, a1)’, digit_arr(1:9)
end

12.10 Invoking Fortran from C

A reference in C to a procedure that has the bind attribute, has the same binding label, and is

defined by means of Fortran, causes the Fortran procedure to be invoked.

Figure 12.4 shows an example of a Fortran procedure that is called from C and uses a

structure to enable arrays allocated in C to be accessed in Fortran. The corresponding C

struct declaration is:

struct pass {
int lenc, lenf;
float *c, *f;

};

the C function prototype is:

void simulation(struct pass *arrays);

and the C calling statement might be:

simulation(&arrays);

Interoperability with C 253

Figure 12.4 Accessing in Fortran an array that was allocated in C.

subroutine simulation(arrays) bind(c)
use iso_c_binding
type, bind(c) :: pass

integer (c_int) :: lenc, lenf
type (c_ptr) :: c, f

end type pass
type (pass), intent(in) :: arrays
real (c_float), pointer :: c_array(:)
...
! associate c_array with an array allocated in C
call c_f_pointer(arrays%c, c_array, (/arrays%lenc/))
...

end subroutine simulation

It is not uncommon for a Fortran library module to have an initialization procedure that

establishes a data structure to hold all the data for a particular problem that is to be solved.

Subsequent calls to other procedures in the module provide data about the problem or receive

data about its solution. The data structure is likely to be of a type that is not interoperable, for

example, because it has components that are allocatable arrays.

The procedures c_loc and c_f_pointer have been designed to support this situation. The

Fortran code in Figure 12.5 illustrates this. The type problem_struct holds an allocatable

array of the size of the problem, and lots more. When the C code calls new_problem, it

passes the size. The Fortran code allocates a structure and an array component within it of the

relevant size; it then returns a pointer to the structure. The C code later calls add and passes

additional data together with the pointer that it received from new_problem. The Fortran

procedure add uses c_f_pointer to establish a Fortran pointer for the relevant structure and

performs calculations using it. Note that the C code may call new_problem several times if it

wishes to work simultaneously with several problems; each will have a separate structure of

type problem_struct and be accessible through its own ‘handle’ of type(c_ptr). When a

problem is complete, the C code calls goodbye to deallocate its structure.

12.11 Enumerations

An enumeration is a set of integer constants (enumerators) that is appropriate for interoperat-

ing with C. The kind of the enumerators corresponds to the integer type that C would choose

for the same set of constants. Here is an example:

enum, bind(c)
enumerator :: red = 4, blue = 9
enumerator yellow

end enum

This declares the named constants red, blue, and yellow with values 4, 9, and 10,

respectively.

254 Modern Fortran Explained

Figure 12.5 Providing access in C to a Fortran structure that is not interoperable.

module lib_code
use iso_c_binding
type :: problem_struct
real, allocatable :: a(:)
: ! More stuff

end type
contains
type(c_ptr) function new_problem(problem_size) bind(c)
integer(c_size_t), value :: problem_size
type(problem_struct),pointer :: problem_ptr
allocate(problem_ptr)
allocate(problem_ptr%a(problem_size))
new_problem = c_loc(problem_ptr)

end function new_problem
subroutine add(problem,...) bind(c)
type(c_ptr), intent(in) :: problem
type(problem_struct), pointer :: problem_ptr

:
call c_f_pointer(problem, problem_ptr)

:
end subroutine add
subroutine goodbye(problem) bind(c)
type(c_ptr), intent(in) :: problem
type(problem_struct), pointer :: problem_ptr
call c_f_pointer(problem, problem_ptr)
deallocate(problem_ptr)

end subroutine goodbye
end module lib_code

If a value is not specified for an enumerator, it is taken as one greater than the previous

enumerator or zero if it is the first.

To declare a variable of the enumeration type, use the kind intrinsic function on one of the

constants. An example using the above enum definition is:

integer(kind(red)) :: background_colour

Exercises

1. Write a generic Fortran interface block for the standard C libm error functions erf and erff.

2. Write Fortran functions to compute the dot product of two vectors, suitable for being called from C.

13. Type parameters and procedure
pointers

13.1 Introduction

This chapter combines the separate topics of type parameter extensions and procedure

pointers.

The type parameter extensions consist of the addition of deferred type parameters, type

parameter enquiry, and the ability to parameterize derived types.

The procedure pointer extension provides the ability to associate a pointer with a

procedure, similar to the way dummy procedures become associated with actual procedures.

13.2 Deferred type parameters

A len type parameter value is permitted to be a colon in a type declaration statement such as

character(len=:), pointer :: varchar

for a pointer or an allocatable entity. It indicates a deferred type parameter; such a type

parameter has no defined value until it is given one by allocation or pointer assignment. For

example, in

character(:), pointer :: varchar
character(100), target :: name
character(200), target :: address
:
varchar => name
:
varchar => address

the character length of varchar after each pointer assignment is the same as that of its target;

that is, 100 after the first pointer assignment and 200 after the second.

For intrinsic types, only character length may be deferred. Derived types that are

parameterized may have type parameters which can be deferred, see Section 13.4.2.

Deferred type parameters can be given values by the allocate statement; see Section

15.4.1 for details. For allocatable variables, they can also be given values by assignment; see

Section 15.5.2 for details.

256 Modern Fortran Explained

13.3 Type parameter enquiry

The (current) value of a type parameter of a variable can be discovered by a type parameter
enquiry. This uses the same syntax as for component access, but the value is always scalar,

even if the object is an array; for example, in

real(selected_real_kind(10,20)) :: z(100)
:
print *,z%kind

a single value is printed, that being the result of executing the reference to the intrinsic

function selected_real_kind. This particular case is equivalent to kind(z). However,

the type parameter enquiry may be used even when the intrinsic function is not available; for

example, in

subroutine write_centered(ch, len)
character(*), intent(inout) :: ch
integer, intent(in) :: len
integer :: i
do i=1, (len-ch%len)/2

it would not be possible to replace the type parameter enquiry ch%len with the reference to

the intrinsic function len(ch) because len is the name of a dummy argument.

Note that this syntax must not be used to alter the value of a type parameter, say by

appearing on the left-hand side of an assignment statement.

13.4 Parameterized derived types

Type parameters have been introduced for derived types, in exact analogy with type

parameters of intrinsic types. Like intrinsic type parameters, derived type parameters come

in two flavours; those that must be known at compile time (like the kind parameter for type

real), and those whose evaluation may be deferred until run time (like the len parameter for

type character). The former are known as kind type parameters (because, for the intrinsic

types, these are all named kind), and the latter as length type parameters (by analogy with

character length).

13.4.1 Defining a parameterized derived type

To define a derived type that has type parameters, the type parameters are listed on the

type definition statement and must also be explicitly declared at the beginning of the type

definition. For example,

type matrix(real_kind, n, m)
integer, kind :: real_kind
integer, len :: n, m
real(real_kind) :: value(n, m)

end type matrix

Type parameters and procedure pointers 257

defines a derived type matrix with one kind type parameter named real_kind and two

length type parameters named n and m. All type parameters must be explicitly declared to

be of type integer with the attribute kind or len to indicate a kind or length parameter,

respectively. Within the type definition, a kind type parameter may be used in both constant

and specification expressions, but a length type parameter may only be used in a specification

expression (that is, for array bounds and for other length type parameters such as character

length). There is, however, no requirement that a type parameter be used at all. For example,

see Figure 13.1.

Figure 13.1 A valid and an invalid parameterized derived type.

type goodtype(p1, p2, p3, p4)
integer, kind :: p1, p3
integer, len :: p2, p4
real(kind=p1) :: c1 ! ok, p1 is a kind type parameter
character(len=p2) :: c2 ! ok, this is a specification expr
complex :: c3(p3) ! ok, p3 can be used anywhere
integer :: c4 = p1 ! ok, p1 can be used anywhere
! p4 has not been used, but that is ok.

end type goodtype

type badtype(p5)
integer, len :: p5
real(kind=p5) :: x ! Invalid, p5 is not a kind type parameter
integer :: y = p5 ! Invalid, p5 is not a kind type parameter

end type badtype

If a component is default-initialized, its type parameters and array bounds must be constant

expressions. For example, if a component is declared as

character(n) :: ch(m) = ’xyz’

both n and m must be named constants or kind type parameters.

When declaring an entity of a parameterized derived type, its name is qualified by the type

parameters in a type declaration statement of the form

type(derived-type-spec)

where derived-type-spec is

derived-type-name(type-param-spec-list)

in which derived-type-name is the name of the derived type and type-param-spec is

[keyword =] type-param-value

The keyword must be the name of one of the type parameters of the type. Like keyword

arguments in procedure calls, after a type-param-spec that includes a keyword = clause, any

258 Modern Fortran Explained

further type parameter specifications must include a keyword. Note that this is consistent

with the syntax for specifying type parameters for intrinsic types. Here are some examples

for variables of our type matrix:

type(matrix(kind(0.0), 10, 20)) :: x
type(matrix(real_kind=kind(0d0), n=n1, m=n2)) :: y

13.4.2 Assumed and deferred type parameters

As for a dummy argument of the intrinsic type character, a length type parameter for a

derived type dummy argument may be assumed. In this case, its value is indicated by a

type-param-value that is an asterisk and is taken from that of the actual argument, as in the

example:

subroutine print_matrix(z)
type(matrix(selected_real_kind(30,999), n=*, m=*)) :: z
:

An asterisk may also be used for an assumed type parameter in the allocate statement (see

Section 15.4) and the select type statement (see Section 14.5).

As for the intrinsic type character, a length type-param-value for a derived type may be

deferred. For example, in

type(matrix(selected_real_kind(30,999), n=:, m=:)), pointer :: mp
type(matrix(selected_real_kind(30,999), n=100, m=200)), target :: x
mp => x

the values for both n and m are deferred until association or allocation. After execution of the

pointer assignment, the n and m type parameter values of mp are equal to those of x (100 and

200, respectively).

13.4.3 Default type parameter values

All type parameters for intrinsic types have default values. Similarly, a type parameter for a

derived type may have a default value; this is declared using the same syntax as for default

initialization of components, for example

type char_with_max_length(maxlen, kind)
integer, len :: maxlen = 255
integer, kind :: kind = kind(’a’)
integer :: len
character(maxlen, kind) :: value

end type char_with_max_length

When declaring objects of type char_with_max_length, it is not necessary to specify the

kind or maxlen parameters if the default values are acceptable. This also illustrates that,

in many simple cases that have only one kind type parameter, the natural name for the

Type parameters and procedure pointers 259

type parameter may be kind (just as it is for the intrinsic types). That name was chosen

in this particular example because char_with_max_length was meant to be as similar to the

intrinsic type character as possible. Note that this choice does not conflict with the attribute

keyword kind, nor does it conflict with the use of the intrinsic function kind within the type

definition.

13.4.4 Derived type parameter enquiry

The value of a type parameter of a variable can be discovered by a type parameter enquiry, as

with intrinsic types (see Section 13.3). For example, in

type(char_with_max_length(...,...)) :: x, y(100)
:
print *,x%kind
print *,y%maxlen

the values of the kind type parameter of x and the maxlen type parameter of y will be printed.

Because component syntax is used to access the value of a type parameter, a type is not

allowed to have a component whose name is the same as one of the parameters of the type.

13.5 Abstract interfaces

In Fortran 95, to declare a dummy or an external procedure with an explicit interface one

needs to use an interface block. This is fine for a single procedure, but is somewhat verbose

for declaring several procedures that have the same interface (apart from the procedure

names). Furthermore, in Fortran 2003, there are several situations where this becomes

impossible (procedure pointer components or abstract type-bound procedures).

For these reasons the abstract interface is introduced in Fortran 2003. An abstract interface

gives a name to a set of characteristics and argument keyword names that would constitute

an explicit interface to a procedure, without declaring any actual procedure to have those

characteristics. This abstract interface name may be used in the procedure statement

to declare procedures which might be external procedures, dummy procedures, procedure

pointers, or deferred type-bound procedures.

An abstract interface block contains the abstract keyword, and each procedure body

declared therein defines a new abstract interface. For example, given the abstract interface

block

abstract interface
subroutine boring_sub_with_no_args
end subroutine boring_sub_with_no_args
real function r2_to_r(a, b)

real, intent(in) :: a, b
end function r2_to_r

end interface

the declaration statements

260 Modern Fortran Explained

procedure(boring_sub_with_no_args) :: sub1, sub2
procedure(r2_to_r) :: modulus, xyz

declare sub1 and sub2 to be subroutines with no actual arguments, and modulus and xyz
to be real functions of two real arguments. The names boring_sub_with_no_args and

r2_to_r are local to the scoping unit in which the abstract interface block is declared, and

do not represent procedures or other global entities in their own right.

As well as with abstract interfaces, the procedure statement may be used with any specific

procedure that has an explicit interface. For example, if fun has an explicit interface,

procedure(fun) :: fun2

declares fun2 to be a procedure with an identical interface to that of fun.

The procedure statement is not available for a set of generic procedures, but can be used

for a specific procedure that is a member of a generic set. All the intrinsic procedures are

generic, but a few also have specific versions that may be passed as an actual argument and

are listed in Table B.2. An intrinsic may be named in a procedure statement only if the name

appears in this table.

In addition, the procedure statement can be used to declare procedures that have implicit

interfaces; instead of putting the name of a procedure inside the parentheses, either nothing

or a type specification is used. For example,

procedure() x
procedure(real) y
procedure(complex(kind(0.0d0))) z

declares x to be a procedure (which might be a subroutine or a function), y to be a real
function, and z to be a (double) complex function. This is exactly equivalent to

external :: x
real, external :: y
complex(kind(0.0d0)), external :: z

For these cases the procedure statement offers no useful functionality over the external
or type declaration statement; it really only comes into its own when declaring procedure

pointers (see next section).

The full syntax of the procedure statement is

procedure ([proc-interface]) [[, proc-attr-spec] ... ::] proc-decl-list

where a proc-attr-spec is one of

public
private
bind (c [, name=character-string])
intent (inout)
optional
pointer
save

and a proc-decl is

Type parameters and procedure pointers 261

procedure-name [=> null-init]

where null-init is a reference to the intrinsic function null with no arguments. (The bind
attribute for procedures is described in Section 12.7.)

Each proc-attr-spec gives all the procedures declared in that statement the corresponding

attribute. The initialization (to being a null pointer) may only appear if a procedure is a

pointer.

13.6 Procedure pointers

A procedure pointer is a pointer that, instead of being associated with a data object, is

associated with a procedure. It may have an explicit or implicit interface and its association

with a target is as for a dummy procedure, so its interface is not permitted to be generic or

elemental.

13.6.1 Procedure pointer variables

A procedure pointer is declared by specifying that it is both a procedure and has the pointer
attribute. For example,

pointer :: sp
interface

subroutine sp(a, b)
real, intent(inout) :: a
real, intent(in) :: b

end subroutine sp
end interface
real, external, pointer :: fp

declares sp to be a pointer to a subroutine with the specified explicit interface and declares fp
to be a pointer to a scalar real function with an implicit interface. More usually, a procedure

pointer is declared with the procedure statement specifying the pointer attribute:

procedure(sp), pointer :: p1 ! Pointer with the interface of sp
procedure(), pointer :: p2 ! Pointer with an implicit interface

If a procedure pointer is currently associated (is neither disassociated nor undefined), its

target may be invoked by referencing the pointer. For example,

fp => fun
sp => sub
print *, fp(x) ! prints fun(x)
call sp(a, b) ! calls sub

13.6.2 Procedure pointer components

A component of a derived type is permitted to be a procedure pointer. It must be declared

using the procedure statement. For example, to define a type for representing a list of

262 Modern Fortran Explained

procedures (each with the same interface) to be called at some time, a procedure pointer

component can be used, see Figure 13.2.

Figure 13.2 A type with a procedure pointer component.

type process_list
procedure(process_interface), pointer :: process
type(process_list), pointer :: next => null()

end type process_list
abstract interface

subroutine process_interface(...)
:

end subroutine process_interface
end interface

A procedure pointer component may be pointer-assigned to a procedure pointer, passed as

an actual argument, or invoked directly. For example,

type(process_list) :: x, y(10)
procedure(process_interface), pointer :: p
:
p => x%process
call another_subroutine(x%process)
call y(i)%process(...)

Note that, just as with a data pointer component, in a reference to a procedure pointer

component, the object of which the pointer is a component must be scalar (because there

are no arrays of pointers in Fortran).

When a procedure is called through a pointer component of an object, there is often a need

to access the object itself; this is the topic of Section 13.6.3.

13.6.3 The pass attribute

When a procedure pointer component (or a type-bound procedure, Section 14.6) is invoked,

the object through which it is invoked is normally passed to the procedure as its first actual

argument and the items in the parenthesized list are the other actual arguments. This could be

undesirable; for instance, it might be wished to pass the object to a dummy argument other

than the first, or not to pass it at all.

To pass the invoking object to a different dummy argument, the pass attribute is used. An

example is shown in Figure 13.3. The dummy argument to which the object is to be passed

is known as the passed-object dummy argument.
Unless the type has the sequence attribute (Appendix B.2.1) or the bind attribute (Section

12.4), it is extensible and the actual argument may be of an extended type. To allow for this,

the passed object dummy argument is required to be declared with the keyword class instead

of type, see Figure 13.3. Type extension is fully discussed in Chapter 14.

Type parameters and procedure pointers 263

Note that the pass attribute applies to the procedure pointer component, and not to the

procedure with which it is associated. For example, the procedure pointer might be associated

from time to time with two different procedures; the object might be passed as the first

argument in the first case and as the second argument in the second case. However, if the

associated procedure is invoked through some other means, there is no passed-object dummy

argument, so an explicit actual argument must be provided in the reference (as in ‘call
my_obp_sub(32, a)’ in Figure 13.3).

Figure 13.3 Using the pass attribute to associate the invoking object with the dummy

argument x.

type t
procedure(obp), pointer, pass(x) :: p

end type
abstract interface

subroutine obp(w, x)
import :: t
integer :: w
class(t) :: x

end subroutine
end interface
:
type(t) a
a%p => my_obp_sub
:
call a%p(32) ! equivalent to ‘call my_obp_sub(32, a)’

The pass attribute may also be used to confirm the default (of passing the invoking object

to the first dummy argument), by using the name of the first dummy argument.

If it is not desired to pass the invoking object to the procedure at all, the nopass attribute

is used.

Exercises

1. Write a replacement for the intrinsic type complex, which is opaque (has private components), uses

polar representation internally, and has a single kind parameter that has the same default as the

intrinsic type.

2. Write replacements for the character concatenation operator (//) and the intrinsic function index
which work on type char_with_max_length (defined in Section 13.4.3).

3. Write an event queue (data structure) and event dispatcher (procedure) using procedure pointer

components. Each event should have a time and an action (procedure to be invoked); the action

procedures should take the time as an argument. There should be a schedule procedure which,

given a time and a procedure, queues an event for that time. If the time has already passed, the

procedure should still be enqueued for immediate activation. The dispatcher procedure itself should,

264 Modern Fortran Explained

on invocation, process each event in the queue in time order (including extra events scheduled during

this process) until the queue is empty.

14. Object-oriented programming

14.1 Introduction

The object-oriented approach to programming and design is characterized by its focus on the

data structures of a program rather than the procedures. Often, invoking a procedure with

a data object as its principal argument is thought of as ‘sending a message’ to the object.

Typically, special language support is available for collecting these procedures (sometimes

known as ‘methods’) together with the definition of the type of the object.

This approach is supported in Fortran 2003 by type extension, polymorphic variables, and

type-bound procedures.

14.2 Type extension

Type extension creates new derived types by extending existing derived types. To create a

new type extending an old one, the extends attribute is used on the type definition statement.

For example, given an old type such as

type person
character(len=10) :: name
real :: age
integer :: id

end type person

this can be extended to form a new type with

type, extends(person) :: employee
integer :: national_insurance_number
real :: salary

end type employee

The new type inherits all of the components of the old type and may have additional

components. So an employee variable has the inherited components of name, age, and

id, and the additional components of number and salary. Where the order matters,

that is, in a structure constructor that does not use keywords1 and in default derived type

input/output (Chapter 9), the inherited components come first in their order, followed by the

new components in their order.

1The use of keywords in structure constructors is new in Fortran 2003 and is described in Section 15.3.

266 Modern Fortran Explained

Additionally, an extended type has a parent component; this is a component that has the

type and type parameters of the old type and its name is that of the old type. It allows the

inherited portion to be referenced as a whole. Thus, an employee variable has a component

called person of type person, associated with the inherited components. For example, given

type(employee) :: director

the component director%name is the same as director%person%name, and so on. The

parent component is particularly useful when invoking procedures that operate on the parent

type but which were not written with type extension in mind. For example, the procedure

subroutine display_older_people(parray, min_age)
type(person), intent(in) :: parray(:)
integer, intent(in) :: min_age
intrinsic :: size
do i=1, size(parray)

if (parray(i)%age >= min_age) print *, parray(i)%name
end do

end subroutine display_older_people

may be used with an array of type(employee) by passing it the parent component of the

array, for example

type(employee) :: staff_list(:)
:
!
! Show the employees eligible for early retirement
!
call display_older_people(staff_list%person, 55)

The parent component is itself inherited if the type is further extended (becoming a

‘grandparent component’); for example, with

type, extends(employee) :: salesman
real :: commission_rate

end type salesman
type(salesman) :: traveller

the traveller has both the employee and person components, and traveller%person is

exactly the same as traveller%employee%person.

A type can be extended without adding components, for example

type, extends(employee) :: clerical_staff_member
end type clerical_staff_member

Although a clerical_staff_member has the same ultimate components as an employee, it

is nonetheless considered to be a different type.

Extending a type without adding components can be useful in several situations, in

particular:

• to create a type with additional operations (as specific or generic type-bound proce-

dures, see Section 14.6);

Object-oriented programming 267

• to create a type with different effects for existing operations, by overriding specific

type-bound procedures; and

• for classification, that is, when the only extra information about the new type is the fact

that it is of that type (for example, as in the clerical_staff_member type above).

A derived type is extensible (can be extended) provided it does not have the sequence
attribute (see Appendix B.2.1) or the bind attribute (see Section 12.4). An extended type

must not be given the sequence or bind attribute.

14.2.1 Type extension and type parameters

When a type is extended, the new type inherits all of the type parameters. New type

parameters may also be added, for example:

type matrix(real_kind, n, m)
integer, kind :: real_kind
integer, len :: n, m
real(real_kind) :: value(n, m)

end type matrix
type, extends(matrix) :: labelled_matrix(max_label_length)

integer, len :: max_label_length
character(max_label_length) :: label = ’’

end type labelled_matrix
type(labelled_matrix(kind(0.0), 10, 20, 200)) :: x

The variable x has four type parameters: real_kind, n, m, and max_label_length.

14.3 Polymorphic entities

A polymorphic variable is a variable whose data type may vary at run time. It must be a

pointer or allocatable variable, or a dummy data object, and is declared using the class
keyword in place of the type keyword. For example,

type point
real :: x, y

end type point
class(point), pointer :: p

declares a pointer p that may point to any object whose type is in the class of types consisting

of type(point) and all of its extensions.

We say that the polymorphic object is type-compatible with such objects.2 A polymorphic

pointer may only be pointer-associated with a type-compatible target, a polymorphic

allocatable variable may only be allocated to have a type-compatible allocation (see Section

15.4), and a polymorphic dummy argument may only be argument-associated with a type-

compatible actual argument. Furthermore, if a polymorphic dummy argument is allocatable

2A non-polymorphic object is type-compatible only with objects of the same declared type.

268 Modern Fortran Explained

or a pointer, the actual argument must be of the same declared type; this is to ensure that the

type-compatibility relationship is enforced.

The type named in the class attribute must be an extensible derived type – it cannot be

a sequence derived type, a bind derived type, or an intrinsic type. This type is called the

declared type of the polymorphic entity, and the type of the object to which it refers is called

the dynamic type.

However, even when a polymorphic entity is referring to an object of an extended type, it

provides access via component notation only to components, type parameters, and bindings

(see Section 14.6) of the declared type. This is because the compiler only knows about the

declared type of the object, it cannot know about the dynamic type (which may vary at run

time). Access to components, etc. that are in the dynamic type but not the declared type is

provided by the select type construct (see Section 14.5).

A polymorphic dummy argument that is neither allocatable nor a pointer assumes its

dynamic type from the actual argument. This provides a convenient means of writing a

function that applies to any extension of a type, for example

real function distance(a, b)
class(point) :: a, b
distance = sqrt((a%x-b%x)**2 + (a%y-b%y)**2)

end function distance

This function will work unchanged, for example, not only on a scalar of type point but also

on a scalar of type

type, extends(point) :: data_point
real, allocatable :: data_value(:)

end type data_point

14.3.1 Establishing the dynamic type

A polymorphic dummy variable only has its dynamic type established by argument

association, which means that it does not vary during a single execution of the procedure,

though it may be different on different invocations.

However, the dynamic type of a polymorphic allocatable or pointer variable can be altered

at any time, as follows:

• it can be allocated to be of a type (and type parameters) specified on the allocate
statement, see Section 15.4;

• using the source= specifier on the allocate statement, it can be allocated to have the

same type, type parameters, and value as another variable;

the dynamic type of a polymorphic allocatable variable can be altered:

• when an allocation is transferred from one allocatable variable to another using the

intrinsic subroutine move_alloc (see Section 15.5.3), the receiving variable takes on

the dynamic type that the sender had;

and the dynamic type of a polymorphic pointer variable can be altered:

Object-oriented programming 269

• via pointer association since a polymorphic pointer has the dynamic type of its target.

Note that an allocate statement that lacks both a type specification and the source=
specifier will allocate the variable to be of its declared type.

The dynamic type of a disassociated pointer or unallocated allocatable variable is its

declared type. A pointer with undefined association status has no defined dynamic type:

it is not permitted to be used in any context where its dynamic type would be relevant.

In Fortran 2008, the dynamic type of an allocatable variable can also change due to

automatic reallocation, see Section 20.6.2.

14.3.2 Limitations on the use of a polymorphic variable

A polymorphic variable may appear in an input/output list only if it is processed by derived-

type input/output (Section 17.2).

The variable in an intrinsic assignment statement is not permitted to be polymorphic (this

is relaxed in Fortran 2008 for allocatable variables). However, if it is associated with a non-

polymorphic variable, perhaps via the type is guard in a select type statement (see Section

14.5), assigning to the non-polymorphic variable will have the desired effect.

A polymorphic variable is not permitted to be an actual argument corresponding to an

intent out assumed-size dummy argument (see Section B.3).

14.3.3 Polymorphic arrays and scalars

A polymorphic variable can be either an array or a scalar (including an allocatable scalar, see

Section 15.5.1).

A polymorphic array is always homogeneous; that is, each array element has the same

dynamic type. This is by construction: every method for establishing the dynamic type of

a polymorphic variable provides a single type for the entire array. The reason for this is

both to make reasoning about progams simpler, and to ensure that accessing an element of a

polymorphic array is reasonably efficient.

If a heterogeneous polymorphic array is required, the usual circumlocution of using an

array of derived type with a scalar polymorphic pointer or allocatable component can be

used.

14.3.4 Unlimited polymorphic entities

Sometimes, one wishes to have a pointer that may refer not just to objects in a class of

extended types, but to objects of any type, perhaps even including non-extensible or intrinsic

types. For example, one might wish to have a ‘universal’ list of variables (pointer targets),

each of which might be of any type.

This can be done with an unlimited polymorphic pointer. These are declared using * as the

class specifier, for example

class(*), pointer :: up

declares up to be an unlimited polymorphic pointer. This could be associated with a real
target, for instance:

270 Modern Fortran Explained

real, target :: x
:
up => x

An unlimited polymorphic object cannot be referenced in any normal way; it can only be

used as an actual argument, as the pointer or target in pointer assignment, or as the selector

in a select type statement (see Section 14.5).

Type information is maintained for an unlimited polymorphic pointer while it is associated

with an intrinsic type or an extensible derived type, but not when it is associated with a non-

extensible derived type. (This is because different non-extensible types are considered to

be the same if they have the same structure and names.) To prevent a pointer of intrinsic

or extensible type from becoming associated with an incompatible target, such a pointer

is not permitted to be the left-hand side of a pointer assignment if the target is unlimited

polymorphic. For example,

use iso_c_binding
type, bind(c) :: triplet

real(c_double) :: values(3)
end type triplet
class(*), pointer :: univp
type(triplet), pointer :: tripp
real, pointer :: realp
:
univp => tripp ! Valid
univp => realp ! Valid
:
tripp => univp ! Valid when the dynamic type matches
realp => univp ! Always invalid

Instead of the invalid pointer assignment, a select type construct must be used to

associate a pointer of intrinsic or extensible type with an unlimited polymorphic target. A

longer example showing the use of unlimited polymorphic pointers, together with select
type, is shown in Figure 14.2.

When an unlimited polymorphic pointer is allocated, the required type and type parameter

values must be specified in the allocate statement (Section 15.4).

14.3.5 Polymorphic entities and generic resolution

Because a polymorphic dummy argument may be associated with an actual argument of

an extended type, a polymorphic dummy argument is not distinguishable from a dummy

argument of an extended type in the rules for distinguishing procedures in a generic set

(Section 5.18). For example, the procedure

real function data_distance(a, b)
class(data_point) :: a, b
data_distance = ...

end function data_distance

Object-oriented programming 271

is not permitted in the same generic set as the function distance defined at the beginning of

this section (14.3). Where such an effect is required, type-bound procedures (Section 14.6.3)

may be employed.

In the case of an unlimited polymorphic dummy argument, because it is type-compatible

with any type, it is indistinguishable from any argument of the same rank.3

14.4 The associate construct

The associate construct allows one to associate a name either with a variable, or with the

value of an expression, for the duration of a block. Any entity with this name outside the

construct is separate and inaccessible inside it. During execution of the block, the associate-
name remains associated with the variable (or retains the value) specified, and takes its type,

type parameters, and rank from its association. This construct is useful for simplifying

multiple accesses to a variable which has a lengthy description (subscripts and component

names). For example, given a nested set of derived-type definitions, the innermost of which

is

type one
real, allocatable, dimension(:) :: xvec, levels
logical :: tracing

end type one

then the association as specified in

associate(point_qfstate => master_list%item(n)%qfield%posn(i, j)%state)
point_qfstate%xvec = matmul(transpose_matrix, point_qfstate%xvec)
point_qfstate%levels = timestep(point_qfstate%levels, input_field)
if (point_qfstate%tracing) call show_qfstate(point_qfstate, stepno)

end associate

would be even harder to understand if point_qfstate were written out in full in each

occurrence.

Formally, the syntax is

[name:] associate (association-list)
block

end associate [name]

where each association is

associate-name => selector

and selector is either a variable or an expression. As with other constructs, the associate
construct can be named; if name: appears on the associate statement, the same name must

appear on the end associate statement.

If the association is with a variable, the associate-name may be used as a variable within

the block. The association is as for argument association of a dummy argument that does not

3Fortran 2008 allows additional attributes to be used for generic resolution even in this case, see Section 20.5.7.

272 Modern Fortran Explained

have the pointer or allocatable attribute but the associate-name has the target attribute if the

variable does. If the association is with an expression, the associate-name may be used only

for its value. If the association is with an array, the bounds of associate-name are given by

the intrinsics lbound and ubound applied to the array.

If the selector is polymorphic, associate-name is also polymorphic. If selector is a

pointer or has the target attribute, associate-name has the target attribute. The only

other attributes that associate-name receives from the selector are the asynchronous and

volatile attributes; in particular, if selector has the optional attribute, associate-name
does not and so selector must be present when the construct is executed.

Multiple associations may be established within a single associate construct. For

example, in

associate (x => arg(i)%ground%coordinates(1), &
y => arg(i)%ground%coordinates(2))

distance = sqrt((myloc%x-x)**2+(myloc%y-y)**2)
bearing = atan2(myloc%y-y, myloc%x-x)

end associate

the simplifying names x and y improve the readability of the code.

Without this construct, to make this kind of code readable either a procedure would need

to be used, or pointers (requiring, in addition, the target attribute on the affected variables).

This could adversely affect the performance of the program (and indeed would probably still

not attain the readability shown here).

The construct may be nested with other constructs in the usual way.

14.5 The select type construct

To execute alternative code depending on the dynamic type of a polymorphic entity and to

gain access to the dynamic parts, the select type construct is provided. If the entity is not

unlimited polymorphic, this construct takes the form

[name:] select type ([associate-name =>] selector)
[type-guard-stmt [name]

block]...
end select [name]

where each type guard statement is one of

type is (derived-type-spec)
type is (intrinsic-type [(type-parameter-value-list)])
class is (derived-type-spec)
class default

where derived-type-spec is defined in Section 13.4.1. A type guard that specifies an intrinsic

type is only permitted if the selector is unlimited polymorphic. The derived-type-spec is

required to be an extensible type that is compatible with the selector. As with other constructs,

the select type construct can be named; if name: appears on the select type statement,

the same name must appear on each type guard and the end select statement.

Object-oriented programming 273

The selector is a variable or an expression and the associate-name is associated with it

within the block in exactly the same way as for an associate construct (previous section).

However, the body is now divided into parts, at most one of which is executed as follows:

i) The block following a type is guard is executed if the dynamic type of the selector is

exactly the derived type specified, and the kind type parameter values match.

ii) Failing this, the block following a class is guard is executed if it is the only one for

which the dynamic type is the derived type specified, or an extension thereof, and the

kind type parameter values match. If there is more than one such guard, one of them

must be of a type that is an extension of the types of all the others, and its block is

executed.

iii) Failing this, the block following a class default guard is executed.

In the (frequently occurring) case where the selector is a simple name and the same name

is suitable for the associate-name, the ‘associate-name=>’ may be omitted.

The example in Figure 14.1 shows a typical use of select type. Each type guard

statement that specifies an extended type provides access via component notation to the

extended components. Note that within a type is block, the associate-name is not

polymorphic, since it is known that its dynamic type is precisely the same as the type declared

in the type is statement.

Figure 14.1 Using the select type construct for polymorphic objects of class particle.

subroutine describe_particle(p)
class(particle) :: p

! These attributes are common to all particles.
call describe_vector(’Position:’,p%position)
call describe_vector(’Velocity:’,p%velocity)
print *,’Mass:’,p%mass

! Check for other attributes.
select type (p)
type is (charged_particle)

print *,’Charge:’,p%charge
class is (charged_particle)

print *,’Charge:’,p%charge
print *,’... may have other (unknown) attributes.’

type is (particle)
! Just the basic particle type, there is nothing extra.

class default
print *,’... may have other (unknown) attributes.’

end select
end subroutine describe_particle

274 Modern Fortran Explained

If the derived-type-spec contains a type-param-spec-list, values corresponding to kind

type parameters must be constant expressions and those for length type parameters must be

asterisks. This is so that length type parameters do not participate in type parameter matching,

but are always assumed from the selector.

If the selector is unlimited polymorphic, a type guard statement is permitted to specify an

intrinsic type, but still cannot specify a sequence or bind derived type. For example, if the

unlimited polymorphic pointer up is associated with the real target x, the execution of

select type(up)
type is (real)

up = 3.5
rp => up

end select

assigns the value of 3.5 to x and associates the real pointer rp with x. (The pointer

assignment would not have been allowed outside of the select type construct.)

A longer example, showing the use of unlimited polymorphic in constructing a generic

vector list package, is shown in Figure 14.2.

14.6 Type-bound procedures

Often, in object-oriented programming, one wishes to invoke a procedure to perform a task

whose nature varies according to the dynamic type of a polymorphic object.

This is the purpose of type-bound procedures. These are procedures which are invoked

through an object, and the actual procedure executed depends on the dynamic type of the

object.

They are called type-bound because the selection of the procedure depends on the type of

the object, in contrast to procedure pointer components which depend on the value of the

object (one might call the latter object-bound).

In some other languages type-bound procedures are known as methods, and invocation of

a method is thought of as ‘sending a message’ to the object.

However, type-bound procedures can be used even when there is no intention to extend the

type. We will first describe how to define and use type-bound procedures in the simple case,

and later explain how they are affected by type extension.

14.6.1 Specific type-bound procedures

The type-bound procedure section of a type definition is separated from the component

section by the contains statement, analogous to the way that module variables are separated

from the module procedures. The default accessibility of type-bound procedures is separate

from the default accessibility for components; that is, even with private components, each

type-bound procedure is public unless a private statement appears in the type-bound

procedure section or unless it is explicitly declared to be private.

Each type-bound procedure declaration specifies the name of the binding, and the name

of the actual procedure to which it is bound. (The latter may be omitted if it is the same as

the type-bound procedure name.) For example, in Figure 14.3 objects of type mytype have

Object-oriented programming 275

Figure 14.2 Generic vector list and type selection.

type generic_vector_pointer_list_elt
class(*), pointer :: element_vector(:) => null()
procedure(gvp_processor), pointer :: default_processor => null()
type(generic_vector_pointer_list_elt),pointer :: next => null()

end type generic_vector_pointer_list_elt
abstract interface

subroutine gvp_processor(gvp)
import :: generic_vector_pointer_list_elt
class(generic_vector_pointer_list_elt) :: gvp

end subroutine gvp_processor
end interface
type(generic_vector_pointer_list_elt), pointer :: p
:
do

if (.not.associated(p)) exit
select type(q => p%element_vector)
type is (integer(selected_int_kind(9)))

call special_process_i9(q)
type is (real)

call special_process_default_real(q)
type is (double precision)

call special_process_double_precision(q)
type is (character(*))

call special_process_character(q)
class default

if (associated(p%default_processor)) call p%default_processor
end select
p => p%next

end do

two type-bound procedures, write and reset. These are invoked as if they were component

procedure pointers of the object, and the invoking object is normally passed to the procedure

as its first argument. For example, the procedure references

call x%write(6)
call x%reset

are equivalent to

call write_mytype(x,6)
call reset(x)

However, because they are public, the type-bound procedures (write and reset) can be

referenced anywhere in the program that has a type(mytype) variable, whereas, because

the module procedures (write_mytype and reset) are private, they can only be directly

referenced from within mytype_module.

276 Modern Fortran Explained

Figure 14.3 A type with two type-bound procedures.

module mytype_module
type mytype

private
real :: myvalue(4) = 0.0

contains
procedure :: write => write_mytype
procedure :: reset

end type mytype
private :: write_mytype, reset

contains
subroutine write_mytype(this, unit)

class(mytype) :: this
integer, optional :: unit
if (present(unit)) then

write (unit, *) this%myvalue
else

print *,this%myvalue
end if

end subroutine write_mytype
subroutine reset(variable)

class(mytype) :: variable
variable%myvalue = 0.0

end subroutine reset
end module mytype_module

The full syntax of the statement declaring a specific type-bound procedure is

procedure [(interface-name)] [[, binding-attr-list] ::] tbp-name [=> proc-name]

where each binding-attr is one of

public or private
deferred
non_overridable
nopass or pass [(arg-name)]

and interface-name or proc-name is the name of a procedure with an explicit interface. The

public and private attributes are permitted only in the specification part of a module. The

pass and nopass attributes are described in Section 13.6.3. The (interface-name) appears

if and only if the deferred attribute also appears; these are described in Section 14.7. An

example of the case where it is not desired to pass the invoking object is shown in Figure

14.4.

If the non_overridable attribute appears, that type-bound procedure cannot be overrid-

den during type extension (see Section 14.6.3). Note that non_overridable is incompatible

with deferred, since that requires the type-bound procedure to be overridden.

Object-oriented programming 277

Figure 14.4 Two type-bound procedures with the nopass attribute.

module utility_module
private
type, public :: utility_access_type
contains

procedure, nopass :: startup
procedure, nopass :: shutdown

end type
contains

subroutine startup
print *,’Process started’

end subroutine
subroutine shutdown

stop ’Process stopped’
end subroutine

end module
:
use utility_module
type(utility_access_type) :: process_control
call process_control%startup

14.6.2 Generic type-bound procedures

Type-bound procedures may be generic. A generic type-bound procedure is defined with the

generic statement within the type-bound procedure part. This statement takes the form

generic [[, access-spec] ::] generic-spec => tbp-name-list

and can be used for named generics as well as for operators, assignment, and user-defined

derived-type input/output specifications. Each tbp-name specifies an individual (specific)

type-bound procedure to be included in the generic set.

For example, in Figure 14.5 the type-bound procedure extract is generic, being resolved

to one of the specific type-bound procedures xi or xc, depending on the data type of the

argument.

Thus, in

use container_module
type(container) v
integer ix
complex cx
:
call v%extract(ix)
call v%extract(cx)

one of the ‘extract_something_from_container’ procedures will be invoked.

278 Modern Fortran Explained

Figure 14.5 A named generic type-bound procedure.

module container_module
private
type, public :: container

integer, private :: i = 0
complex, private :: c = (0.,0.)

contains
private
procedure :: xi => extract_integer_from_container
procedure :: xc => extract_complex_from_container
generic, public :: extract => xi, xc

end type
contains

subroutine extract_integer_from_container(this, val)
class(container), intent(in) :: this
integer, intent(out) :: val
val = this%i

end subroutine extract_integer_from_container
subroutine extract_complex_from_container(this, val)

class(container), intent(in) :: this
complex, intent(out) :: val
val = this%c

end subroutine extract_complex_from_container
end module container_module

A generic type-bound procedure need not be named; it may be an operator, assignment, or

a user-defined derived-type input/output specification. In this case, the object through which

the type-bound procedure is invoked is whichever of the operands corresponds to the passed-

object dummy argument. For this reason, the specific type-bound procedures for an unnamed

generic must not have the nopass attribute. Like other type-bound procedures, unnamed

generics that are public are accessible wherever the type or an object of the type is accessible.

This is useful for packaging-up a type and its operations, because the only clause of a use
statement does not affect the accessibility of type-bound operators, unlike operators defined

by an interface block. This prevents the accidental omission of required operators by making

a mistake in the use statement. This is particularly germane when using defined assignment

between objects of the same type, since omitting the defined assignment would cause an

unwanted intrinsic assignment to be used without warning.

For example, Figure 14.6 shows the overloading of the operator (+) for operations on

type(mycomplex); these operations are available even if the user has done

use mycomplex_module, only: mycomplex

Object-oriented programming 279

Figure 14.6 A generic type-bound operator.

module mycomplex_module
type mycomplex

private
: ! data components not shown

contains
private
procedure :: mycomplex_plus_mycomplex
procedure :: mycomplex_plus_real
procedure, pass(b) :: real_plus_mycomplex
generic, public :: operator(+) => mycomplex_plus_mycomplex, &

mycomplex_plus_real, real_plus_mycomplex
: ! many other operations and functions...

end type
contains

: ! procedures which implement the operations
end module

14.6.3 Type extension and type-bound procedures

When a type is extended, the new type usually inherits all the type-bound procedures of the

old type, as is illustrated in Figure 14.7, where the new type charged_particle inherits not

only the components of particle, but also its type-bound procedures momentum and energy.

Figure 14.7 Extending a type with type-bound procedures.

type particle
type(vector) :: position, velocity
real :: mass

contains
procedure :: momentum => particle_momentum
procedure :: energy => particle_energy

end type particle

type, extends(particle) :: charged_particle
real :: charge

end type charged_particle

Specific type-bound procedures defined by the new type are either additional bindings

(with a new name), or may override type-bound procedures that would otherwise have been

inherited from the old type. (However, overriding a type-bound procedure is not permitted if

the inherited one has the non_overridable attribute.) An overriding type-bound procedure

binding must have exactly the same interface as the overridden procedure except for the

280 Modern Fortran Explained

type of the passed-object dummy argument; if there is a passed-object dummy argument, the

overriding procedure must specify its type to be class(new-type).

Generic type-bound procedures defined by the new type always extend the generic set;

the complete set of generic bindings for any particular generic identifier (including both

the inherited and newly defined generic bindings) must satisfy the usual rules for generic

disambiguation (Sections 5.18 and 14.3.5). A procedure that would be part of an inherited

generic set may be overridden using its specific name.

For example, in Figure 14.8 the three specific type-bound procedures have been overridden;

when the generic operation of (+) is applied to entities of type instrumented_mycomplex,

one of the overriding procedures will be invoked.

Figure 14.8 Extending a type with overriding of type-bound procedures.

type mycomplex
private

contains
procedure :: mycomplex_plus_mycomplex
procedure :: mycomplex_plus_real
procedure, pass(b) :: real_plus_mycomplex
generic :: operator(+) => mycomplex_plus_mycomplex, &

mycomplex_plus_real, real_plus_mycomplex
end type mycomplex

type, extends(mycomplex) :: instrumented_mycomplex
integer, public :: plus_operation_count = 0

contains
procedure :: mycomplex_plus_mycomplex => instrumented_myc_plus_myc
procedure :: mycomplex_plus_real => instrumented_myc_plus_r
procedure :: real_plus_mycomplex => instr_r_p_myc

end type instrumented_mycomplex

14.7 Deferred bindings and abstract types

Sometimes, a type is defined not for the purpose of creating objects of that type, but only

to serve as a base type for extension. In this situation, a type-bound procedure in the base

type might have no default or natural implementation, but rather only a well-defined purpose

and interface. This is supported by the abstract keyword on the type definition and the

deferred keyword in the procedure statement.

Here is a simple example:

type, abstract :: file_handle
contains

procedure (open_file), deferred, pass :: open
:

Object-oriented programming 281

end type file_handle
abstract interface

subroutine open_file(handle)
import :: file_handle
class(file_handle), intent(inout) :: handle

end subroutine open_file
end interface

Here, the intention is that extensions of the type would have components that hold data

about the file and open would be overridden by a procedure that uses these data to open it.

The procedure is known as a deferred type-bound procedure. An interface is required,

which may be an abstract interface or that of a procedure with an explicit interface.

No ordinary variable is permitted to be of an abstract type, but a polymorphic variable may

have it as its declared type. When an abstract type is extended, the new type may be a normal

extended type or may itself be abstract. Deferred bindings are allowed only in abstract types.

(But an abstract type is not required to have any deferred binding.)

Figure 14.9 shows the definition of an abstract type my_numeric_type, and the creation

of the normal type my_integer_type as an extension of it. Variables that are declared to be

my_numeric_type must be polymorphic, and if they are pointer or allocatable the allocate
statement must specify a normal type (see Section 15.4).

The use of the abstract and deferred attributes ensures that objects of insufficient type

cannot be created, and that when extending the abstract type to create a normal type, the

programmer can expect a diagnostic from the compiler if he or she has forgotten to override

any inherited deferred type-bound procedures.

14.8 Finalization

When variables are deallocated or otherwise cease to exist, it is sometimes desirable to

execute some procedure which ‘cleans up’ after the variable, perhaps releasing some resource

(such as closing a file or deallocating a pointer component). This process is known as

finalization and is provided by ‘final subroutines’. Finalization is only available for derived

types that do not have the sequence attribute (Appendix B.2.1) or the bind attribute (Section

12.4).

The set of final subroutines for a derived type is specified by statements of the form

final [::] subroutine-name-list

in the type-bound procedure section; however, they are not type-bound procedures, and

have no name which can be accessed through an object of the type. Instead, they execute

automatically when an object of that type ceases to exist.

A final subroutine for a type must be a module procedure with a single dummy argument

of that type. All the final subroutines for that type form a generic set and must satisfy the

rules for unambiguous generic references; since they each have exactly one dummy argument

of the same type, this simply means that the dummy arguments must have different kind

type parameter values or rank. Each such dummy argument must be a variable without the

allocatable, intent(out), optional, pointer, or value attribute, and any length type

parameter must be assumed (the value must be ‘*’).

282 Modern Fortran Explained

Figure 14.9 Abstract numeric type.

type, abstract :: my_numeric_type
contains

private
procedure(op2), deferred :: add
procedure(op2), deferred :: subtract
: ! procedures for other operations not shown
generic, public :: operator(+) => add, ...
generic, public :: operator(-) => subtract, ...
: ! generic specs for other operations not shown

end type my_numeric_type
abstract interface

function op2(a, b) result(r)
import :: my_numeric_type
class(my_numeric_type), intent(in) :: a, b
class(my_numeric_type), allocatable :: r

end function op2
end interface
type, extends(my_numeric_type) :: my_integer

integer, private :: value
contains

procedure :: add => add_my_integer
procedure :: subtract => subtract_my_integer
:

end type my_integer

A non-pointer object is finalizable if its type has a final subroutine whose dummy argument

matches the object. When a finalizable object is about to cease to exist (for example, by being

deallocated or from execution of a return statement), the final subroutine is invoked with

the object as its actual argument. This also occurs when the object is passed to an intent out
dummy argument, or is the variable on the left-hand side of an intrinsic assignment statement.

In the latter case, the final subroutine is invoked after the expression on the right-hand side

has been evaluated, but before it is assigned to the variable.

An example is shown in Figure 14.10. When subroutine s returns, the subrou-

tine close_scalar_file_handle will be invoked with x as its actual argument, and

close_rank1_file_handle will be invoked with y as its actual argument. The order in

which these will be invoked is processor dependent.

Termination of a program by an error condition, by execution of a stop statement or the

end statement in the main program, does not invoke any final subroutines.

If an object contains any (non-pointer) finalizable components, the object as a whole

will be finalized before the individual components. That is, in Figure 14.11, when ovalue
is finalized, destroy_outer_ftype will be invoked with ovalue as its argument before

destroy_inner_ftype is invoked with ovalue%ivalue as its argument.

Object-oriented programming 283

Figure 14.10 An example of finalization.

module file_handle_module
type file_handle

private
:

contains
final :: close_scalar_file_handle, close_rank1_file_handle

end type file_handle
contains

subroutine close_scalar_file_handle(h)
type(file_handle) :: h
:

end subroutine close_scalar_file_handle
:

end module file_handle_module
:
subroutine s(n)

type(file_handle) :: x, y(n)
:

end subroutine s

Figure 14.11 A finalizable type with a finalizable component.

type inner_ftype
:

contains
final :: destroy_inner_ftype

end type inner_ftype
type outer_ftype

type(inner_ftype) :: ivalue
contains

final :: destroy_outer_ftype
end type outer_ftype
:
type(outer_ftype) :: ovalue

284 Modern Fortran Explained

14.8.1 Type extension and final subroutines

When a type is extended, the new type does not inherit any of the final subroutines of the old

type. The new type is, however, still finalizable, and when it is finalized any applicable final

subroutines of the old type are invoked on the parent component.

If the new type defines any final subroutine, it will be invoked before any final subroutines

of the old type are invoked. (Which is to say, the object as a whole is finalized, then its parent

component is finalized, etc.) This operates recursively, so that when x is deallocated in the

code of Figure 14.12, destroy_bottom_type will be invoked with x as its argument, then

destroy_top_type will be invoked with x%top_type as its argument.

Figure 14.12 Nested extensions of finalizable types.

type top_type
:

contains
final :: destroy_top_type

end type
type, extends(top_type) :: middle_type

:
end type
type, extends(middle_type) :: bottom_type

:
contains

final :: destroy_bottom_type
end type

type(bottom_type), pointer :: x
allocate (x)
:
deallocate (x)

14.9 Procedure encapsulation example

A procedure may require its user to define the problem to be solved by providing a function

as well as data. The example that we will consider here is that multi-dimensional quadrature,

where the function to be integrated must be specified. This function may depend on other data

in some complicated way that was not anticipated by the writer of the quadrature procedure.

Previously available solutions for problems of this kind have been:

i) for the quadrature routine to accept an extra argument, typically a real vector, and

pass that to the user-defined function when it is called;

ii) for the program to pass the information to the function via module variables or common
blocks; or

Object-oriented programming 285

iii) the use of ‘reverse communication’ techniques, where the program repeatedly calls the

quadrature routine giving it extra information each time, until the quadrature routine is

satisfied.

These all have disadvantages; the first is not very flexible (a real vector might be a poor way

of representing the data), the second requires global data (recognized as being poor practice)

and is not thread-safe, while the third is flexible and thread-safe but very complicated to use,

particularly for the writer of the quadrature routine.

Figure 14.13 Outline of a quadrature module.

module quadrature_module
integer, parameter :: wp = selected_real_kind(15)
type, abstract :: bound_user_function

! No data components
contains

procedure(user_function_interface), deferred :: eval
end type bound_user_function
abstract interface

real(wp) function user_function_interface(data, coords)
import :: wp, bound_user_function
class(bound_user_function) :: data
real(wp), intent(in) :: coords(:)

end function user_function_interface
end interface
:

contains
real(wp) function ndim_integral(hyper_rect, userfun, options, &

status)
real(wp), intent(in) :: hyper_rect(:)
class(bound_user_function) :: userfun
type(quadrature_options), intent(in) :: options
type(quadrature_status), intent(out) :: status
:
! This is how the user function is invoked
single_value = userfun%eval(coordinates)
:

end function ndim_integral
:

end module

With type extension, the user can package up a procedure with any kind of required data,

and the quadrature routine will pass the data through. Figure 14.13 shows the definition of

the types concerned and an outline of the quadrature routine. Details not relevant to the

function evaluation (such as the definition of the types for passing options to the routine, and

for receiving the status of the integration) have been omitted.

286 Modern Fortran Explained

To use ndim_integral, the user needs to extend the abstract type to include any necessary

data components and to bind his or her function to the type. Figure 14.14 shows how the user

could do this for an arbitrary polynomial function.

Figure 14.14 Extending the Figure 14.13 type for polynomial integration.

module polynomial_integration
use quadrature_module

type, extends(bound_user_function) :: my_bound_polynomial
integer :: degree, dimensionality
real(wp),allocatable :: coeffs(:,:)

contains
procedure :: eval => polynomial_evaluation

end type
contains

real(wp) function polynomial_evaluation(data, coords) result(r)
class(my_bound_polynomial) :: data
real(wp), intent(in) :: coords(:)
integer :: i, j
r = 0
do i=1, data%dimensionality
r = r + sum([(data%coeffs(i, j)*coords(i)**j, &

j=1, data%degree)])
end do

end function polynomial_evaluation
end module polynomial_integration

To actually perform an integration, the user merely needs a local variable of this type to be

loaded with the required data, and calls the quadrature routine as shown in Figure 14.15.

14.10 Type inquiry functions

Two new intrinsic functions have been added which compare dynamic types. These are

intended for use on polymorphic variables but may also be used on non-polymorphic

variables.

extends_type_of(a, mold) returns, as a scalar default logical, whether the dynamic

type of a is an extension of the dynamic type of mold. Both a and mold must either be

unlimited polymorphic or of extensible type.

This will return true if mold is unlimited polymorphic and is either a disassociated

pointer or an unallocated allocatable variable; otherwise if a is unlimited polymorphic

and is either a disassociated pointer or an unallocatable allocatable variable, it will

return false.

Object-oriented programming 287

Figure 14.15 Performing polynomial integration.

use polynomial_integration
type(my_bound_polynomial) :: poly
real(wp) :: integral
real(wp), allocatable :: hyper_rectangle(:)
type(quadrature_options) :: options
type(quadrature_status) :: status

! Read the data into the local variable
read (...) poly%degree, poly%dimensionality
allocate (poly%coeffs(poly%dimensionality, poly%degree))
read (...) poly%coeffs

! Read the hyper-rectangle information
allocate (hyper_rectangle(poly%dimensionality))
read (...) hyper_rectangle
: ! Option-setting omitted
! Evaluate the integral
integral = ndim_integral(hyper_rectangle, poly, options, status)

Otherwise, if both a and mold are unlimited polymorphic and neither has extensible

dynamic type, the result is processor dependent.

same_type_as(a, b) returns, as a scalar default logical, whether the dynamic type

of a is the same as the dynamic type of b. Both a and b must either be unlimited

polymorphic or of extensible type.

If both a and b are unlimited polymorphic and neither has extensible dynamic type, the

result is processor dependent.

For both functions, neither argument is permitted to be a pointer with undefined associaton

status.

These two functions are not terribly useful, because knowing the dynamic type of a (or

how it relates to the dynamic type of b or mold) does not in itself allow access to the extended

components. Therefore, we recommend that select type be used for testing the dynamic

types of polymorphic entities.

Exercises

1. Define a polygon type where each point is defined by a component of class point (defined in

Section 14.3). A function to test whether a position is within the polygon would be useful. A typical

extension of such a type could have a label and some associated data; define such an extension.

2. Define a data logging type. This should contain type-bound procedures to initialize logging to a

particular file, and to write a log entry. The file should automatically be closed if the object ceases

to exist.

This page intentionally left blank

15. Establishing and moving data

15.1 Introduction

Many relatively minor improvements have been made for manipulating data objects.

15.2 Mixed component accessibility

It is now possible for some components of a type to be private while others remain public.

The private statement in a type, which previously set all components to be private, now

merely sets the default accessibility of components to be private. The default accessibility for

each component may be overridden or confirmed in the component definition statement, by

specifying the public or private attributes. For example, in

module mytype_module
type mytype

private
character(20), public :: debug_tag = ’’
: ! private components omitted

end type mytype
:

end module mytype_module

although some of the components of mytype are private, the debug_tag field is public,

exposing itself to the user of the module mytype_module.

If any component of a derived type is private, the structure constructor can be used outside

the module in which it is defined only if the value for that component is omitted.

15.3 Structure constructors

In Fortran 95, structure constructors look like function calls, except that keyword arguments

are not allowed. In Fortran 2003, structure constructors can have keyword arguments and

optional arguments; moreover, a generic procedure name can be the same as the structure

constructor name (which is the same as the type name), with any specific procedures in the

generic set taking precedence over the structure constructor if there is any ambiguity. This

can be used effectively to produce extra ‘constructors’ for the type, as shown in Figure 15.1.

290 Modern Fortran Explained

Figure 15.1
module mycomplex_module

type mycomplex
real :: argument, modulus

end type
interface mycomplex

module procedure complex_to_mycomplex, two_reals_to_mycomplex
end interface
:

contains
type(mycomplex) function complex_to_mycomplex(c)

complex, intent(in) :: c
:

end function complex_to_mycomplex
type(mycomplex) function two_reals_to_mycomplex(x, y)

real, intent(in) :: x
real, intent(in), optional :: y
:

end function two_reals_to_mycomplex
:

end module mycomplex_module
:
use mycomplex_module
type(mycomplex) :: a, b, c
:
a = mycomplex(argument=5.6, modulus=1.0) ! The structure constructor
c = mycomplex(x=0.0, y=1.0) ! A function reference

If a component of a type has default initialization, its value may be omitted in the structure

constructor as if it were an optional argument.1 For example, in

type real_list_element
real :: value
type(real_list_element), pointer :: next => null()

end type real_list_element
:
type(real_list_element) :: x = real_list_element(3.5)

the omitted value for the next component means that it takes on its default initialization value

– that is, a null pointer.

If the derived type has type parameters, these are specified in parentheses immediately after

the type name in its structure constructor. Again, if the type parameters have default values,

they may be omitted, as in the example in Figure 15.2.

1Fortran 2008 also allows omission of values for allocatable components, see Section 20.1.4.

Establishing and moving data 291

Figure 15.2
type character_with_max_length(maxlen, kind)

integer, len :: maxlen
integer, kind :: kind = kind(’a’)
integer :: length = 0
character(kind) :: value(maxlen)

end type character_with_max_length
:
type(character_with_max_length(100)) :: name
:
name = character_with_max_length(100)(’John Hancock’)

15.4 The allocate statement

As well as determining array size, the allocate statement can now determine type parameter

values, type (for a polymorphic variable), and value. This is controlled either by the inclusion

of a type specification in the allocate statement:

allocate ([type-spec ::] allocation-list [, stat=stat])

where type-spec is the type name followed by the type parameter values in parentheses, if

any, for both intrinsic and derived types; or by use of the source= clause for a single object:

allocate (allocation [, source=source-expr] [, stat=stat])

where the source-expr is an expression with which the allocation is type-compatible (see

Section 14.3). If allocation is for an array, source-expr may be an array of the same rank,

otherwise source-expr must be scalar.

An allocate statement with a type-spec is typed allocation, and an allocate statement

with a source= clause is sourced allocation. We now explain the new features.

15.4.1 Typed allocation and deferred type parameters

A length type parameter that is deferred (indicated by a colon in the type-spec) has no

defined value until it is given one by an allocate statement or by pointer assignment (a

type parameter that is not deferred cannot be altered by allocate or pointer assignment).

For example, in

character(:), allocatable :: x(:)
:
allocate (character(n) :: x(m))

the array x will have m elements and each element will have character length n after execution

of the allocate statement.

If a length parameter of an item being allocated is assumed, it must be specified as an

asterisk in the type-spec. For example, the type parameter string_dim in Figure 15.3 must

be specified as * because it is assumed.

292 Modern Fortran Explained

Figure 15.3
type string_vector(string_dim, space_dim)

integer, len :: string_dim, space_dim
type(string(string_dim)) :: value(space_dim)

end type string_vector
:
subroutine allocate_string_vectors(vp, n, m)

type(string_vector(*,:)), pointer :: vp(:)
integer, intent(in) :: n, m
allocate (string_vector(string_dim=*, space_dim=n) :: vp(m))

end subroutine allocate_string_vectors

Note that there is only one type-spec in an allocate statement, so it must be suitable for

all the items being allocated. In particular, if any one of them is a dummy argument with an

assumed type parameter, they must all be dummy arguments that assume this type parameter.

If any type parameter is neither assumed nor deferred, the value specified for it by the

type-spec must be the same as its current value. For example, in

subroutine allocate_string3_vectors(vp, n, m)
type(string_vector(3,:)), pointer :: vp(:)
integer, intent(in) :: n, m
allocate (string_vector(string_dim=3, space_dim=n) :: vp(m))

end subroutine allocate_string3_vectors

the expression provided for the string_dim type parameter must be equal to 3.

15.4.2 Polymorphic variables and typed allocation

For polymorphic variables, the type-spec specifies not only the values of any deferred type

parameters, but also the dynamic type to allocate. If an item is unlimited polymorphic, it

can be allocated to be any type (including intrinsic types); otherwise the type specified in the

allocate statement must be an extension of the declared type of the item.

For example,

class(*), pointer :: ux, uy(:)
class(t), pointer :: x, y(:)
:
allocate (t2 :: ux, x, y(10))
allocate (real :: uy(100))

allocates ux, x, and y to be of type t2 (an extension of t), and uy to be of type default real.

15.4.3 Sourced allocation

Instead of allocating a variable with an explicitly specified type (and type parameters), it

is possible to take the type, type parameters, and value from another variable or expression.

Establishing and moving data 293

This effectively produces a ‘clone’ of the source expression, and is done by using the source=
clause in the allocate statement. For example, in

subroutine s(b)
class(t), allocatable :: a
class(t) :: b
allocate (a, source=b)

the variable a is allocated with the same dynamic type and type parameters as b, and will

have the same value.

This is useful for copying heterogeneous data structures such as lists and trees, as in the

example in Figure 15.4.

Figure 15.4
type singly_linked_list

class(singly_linked_list), pointer :: next => null()
! No data - the user of the type should extend it to include
! desired data.

end type singly_linked_list
:
recursive function sll_copy(source) result(copy)

class(singly_linked_list), pointer :: copy
class(singly_linked_list), intent(in) :: source
allocate (copy, source=source)
if (associated(source%next)) copy%next => sll_copy(source%next)

end function sll_copy

If the allocated item is an array, its bounds and shape are specified in the usual way and are

not taken from the source. This allows the source to be a scalar whose value is given to every

element of the array. Alternatively, it may be an array of the same shape.

Because the bounds and shape of the allocated item are not taken from the source, making

a clone of an array has to be done as follows:

class(t), allocatable :: a(:), b(:)
:
allocate (a(lbound(b,1):ubound(b,1)), source=b)

15.5 Allocatable entities

There are several extensions to the allocatable attribute in Fortran 2003, beyond those of

the Technical Report and described in Chapters 2 to 10. We will now describe each of these

in turn.

294 Modern Fortran Explained

15.5.1 Allocatable scalars

The allocatable attribute (and hence the allocated function) may now also be applied to

scalar variables and components. This is particularly useful when combined with deferred

type parameters, for example, in

character(:), allocatable :: chdata
integer :: unit, reclen
:
read (unit) reclen
allocate (character(reclen) :: chdata)
read (unit) chdata

where reclen allows the length of character to be specified at run time.

Allocatable scalar components can also be used to construct data structures which do not

leak memory (because they get deallocated automatically).

15.5.2 Assignment to an allocatable array

We explained in Section 6.5.6 that intrinsic assignment for an object containing allocatable

components causes the automatic allocation or reallocation of any allocatable component

that is not allocated and of the right shape. In Fortran 2003, for consistency with allocatable

components, this automatic reallocation is extended to ordinary allocatable variables as well.

This simplifies the use of array functions which return a variable-sized result (such as the

intrinsic functions pack and unpack).

For example, in

subroutine process(x)
real(wp), intent(inout) :: x
real(wp), allocatable :: nonzero_values(:)
nonzero_values = pack(x, x/=0)

the variable nonzero_values is automatically allocated to be of the correct length to contain

the results of the intrinsic function pack, instead of the user having to allocate it manually

(which would necessitate counting the number of nonzeros separately). It also permits a

simple extension of an existing allocatable array whose lower bounds are all 1. To add some

extra values to such an integer array a of rank 1, it is sufficient to write, for example,

a = (/ a, 5, 6 /)

This automatic reallocation also occurs if the allocatable variable has a deferred type

parameter which does not already have the same value as the corresponding parameter of

the expression. This applies to allocatable scalars as well as to allocatable arrays, as in

character(:), allocatable :: quotation
:
quotation = ’Now is the winter of our discontent.’
:
quotation = "This ain’t the summer of love."

Establishing and moving data 295

In each of the assignments to quotation, it is reallocated to be the right length (unless it

is already of that length) to hold the desired quotation. If instead the normal truncation or

padding is required in an assignment to an allocatable-length character, substring notation

can be used to suppress the automatic reallocation. For example,

quotation(:) = ’’

leaves quotation at its current length, setting all of it to blanks.

15.5.3 Transferring an allocation

The intrinsic subroutine move_alloc has been introduced to move an allocation from one

allocatable object to another.

call move_alloc (from, to) where:

from is allocatable and of any type. It has intent inout.

to is allocatable and of the same type and rank as from. It has intent out.

After the call, the allocation status and target (if any) of to is that of from beforehand

and from becomes deallocated.

It provides what is essentially the allocatable equivalent of pointer assignment: allocation

transfer. However, unlike pointer assignment, this maintains the allocatable semantics of

having at most one allocated object for each allocatable variable. For example,

real, allocatable :: a1(:), a2(:)
allocate (a1(0:10))
a1(3) = 37
call move_alloc(from=a1, to=a2)
! a1 is now unallocated,
! a2 is allocated with bounds (0:10) and a2(3)==37.

This can be used to minimize the amount of copying required when one wishes to expand

or contract an allocatable array; the canonical sequence for this is:

real, allocatable :: a(:,:), temp(:,:)
:
! Increase size of a to (n, m)
allocate (temp(n, m))
temp(1:size(a,1), 1:size(a,2)) = a
call move_alloc(temp, a)
! a now has shape (/ n, m /), and temp is unallocated

This sequence only requires one copying operation instead of the two that would have been

required without move_alloc. Because the copy is controlled by the user, pre-existing values

will end up where the user wants them (which might be at the same subscripts, or all at the

beginning, or all at the end, etc.).

296 Modern Fortran Explained

15.6 Pointer assignment

Two improvements have been made to the array pointer assignment statement. The first is

that it is now possible to set the desired lower bounds to any value. This can be desirable in

situations like the following. Consider

real, target :: annual_rainfall(1700:2003)
real, pointer :: rp1(:), rp2(:)
:
rp1 => annual_rainfall
rp2 => annual_rainfall(1800:1856)

The bounds of rp1 will be (1700:2003); however, those of rp2 will be (1:57). To be able

to have a pointer to a subsection of an array have the appropriate bounds, they may be set on

the pointer assignment as follows:

rp2(1800:) => annual_rainfall(1800:1856)

This statement will set the bounds of rp2 to (1800:1856).

The second new facility for array pointer assignment is that the target of a multi-

dimensional array pointer may be one-dimensional. The syntax is similar to that of the

lower-bounds specification above, except that in this case one specifies each upper bound as

well as the lower bound. This can be used, for example, to provide a pointer to the diagonal

of an array:

real, pointer :: base_array(:), matrix(:,:), diagonal(:)
allocate (base_array(n*n))
matrix(1:n, 1:n) => base_array
diagonal => base_array(::n+1)

After execution of the pointer assignments, diagonal is now a pointer to the diagonal

elements of matrix.

15.7 More control of access from a module

It is sometimes desirable to allow the user of a module to be able to reference the value

of a module variable without allowing it to be changed. Such control is provided by the

protected attribute. This attribute does not affect the visibility of the variable, which must

still be public to be visible, but confers the same protection against modification that intent

in does for dummy arguments.

The protected attribute may be specified with the protected keyword in a type

declaration statement. For example, in

module m
public
real, protected :: v
integer, protected :: i

both v and i have the protected attribute. The attribute may also be specified separately, in

a protected statement, just as for other attributes (see Section 7.7).

Establishing and moving data 297

Variables with this attribute may only be modified within the defining module. Outside the

module they are not allowed to appear in a context in which they would be altered, such as

on the left-hand side of an assignment statement.

For example, in the code of Figure 15.5, the protected attribute allows users of

thermometer to read the temperature in either Fahrenheit or Celsius, but the variables can

only be changed via the provided subroutines which ensure that both values agree.

Figure 15.5
module thermometer
real, protected :: temperature_celsius = 0
real, protected :: temperature_fahrenheit = 32

contains
subroutine set_celsius(new_celsius_value)
real, intent(in) :: new_celsius_value
temperature_celsius = new_celsius_value
temperature_fahrenheit = temperature_celsius*(9.0/5.0) + 32

end subroutine set_celsius
subroutine set_fahrenheit(new_fahrenheit_value)
real, intent(in) :: new_fahrenheit_value
temperature_fahrenheit = new_fahrenheit_value
temperature_celsius = (temperature_fahrenheit - 32)*(5.0/9.0)

end subroutine set_fahrenheit
end module thermometer

15.8 Renaming operators on the use statement

User-defined operators may now be renamed on the use statement, just as variable and

procedure names may be. For example,

use fred, operator(.nurke.) => operator(.banana.)

renames the .banana. operator located in module fred so that it may be referenced by using

.nurke. as an operator.

However, this only applies to user-defined operators. Intrinsic operators cannot be

renamed, so all of the following are invalid:

use fred, only: operator(.equal.) => operator(.eq.) ! Invalid
use fred, only: operator(.ne.) => operator(.notequal.) ! Invalid
use fred, only: operator(*) => assignment(=) ! Invalid

15.9 Array constructor syntax

A well-recognized deficiency of array constructors in Fortran 95 is that they are somewhat

inconvenient to use for character type; each element must have exactly the same character

298 Modern Fortran Explained

length. This is irritating to the user, who is thus required to pad character constants with

blanks manually, to make them all the same length. For array constructors involving variables,

this requirement is often not checkable at compile time, leading to potential run-time errors

or strange results.

Another deficiency is that for zero-sized array constructors, it can be difficult if not

impossible for the compiler to deduce the value of any length type parameters (in Fortran

95 this is limited to character type).

A less serious deficiency is that one cannot mix items of different type even when those

items would be assignable to a common type (for example, having integer or real items in a

complex array constructor).

Finally, when parenthesized expressions are array constructor items, and when array

constructors are items inside parenthesized expressions and function references, it can be

difficult to match the parentheses so that the array constructors end with /).

All of these deficiencies have been addressed in Fortran 2003. To make it easier to match

parentheses, an array constructor may be bracketed with square brackets, [], instead of

(/ /).

To overcome the type deficiencies, an array constructor may now begin with an explicit

specification of its type and type parameters. The syntax for an array constructor with a type

specification is:

(/ type-spec :: ac-value-list /) or [type-spec :: ac-value-list]

where the type-spec is the short form used in the allocate statement (Section 15.4). In this

case, the array constructor values may have any type (and type parameters) that is assignment-

compatible with the specified type and type parameters, and the values are converted to that

type by the usual assignment conversions.

Here are some examples:

[character(len=33) :: ’the good’, ’the bad’, ’and’, &
’the appearance-challenged’]

[complex(kind(0d0)) :: 1, (0,1), 3.14159265358979323846264338327d0]

[matrix(kind=kind(0.0), n=10, m=20) ::] ! zero-sized array

If type-spec is absent, the rules of Fortran 95 continue to apply: all items must have the

same type and type parameters. This rule applies to parameterized derived types, too.

15.10 Specification and constant expressions

A specification expression (used for an array bound or length type parameter) may now

reference a recursive function, so long as the function does not invoke the procedure

containing that specification expression. It may contain a type parameter enquiry (Section

13.3) or a reference to an IEEE inquiry function (Section 11.9.2). Inside a derived-type

definition, a specification expression may also reference any type parameter of the type being

defined.

A constant expression is not as restricted as in Fortran 95. It may reference any elemental or

transformational standard intrinsic function, or the function ieee_selected_real_kind of

Establishing and moving data 299

the intrinsic module ieee_arithmetic, as long as its arguments are all constant expressions.

This includes the mathematical intrinsic functions (sin, cos, etc.). For example,

real :: root2 = sqrt(2.0)

is now a valid initialization. The exponentiation operator is not limited to an integer power.

All the inquiry functions may be referenced in a constant expression with the restrictions

on their arguments that are given in item vii) of the list in Section 7.4. A type parameter

enquiry (Section 13.3) may be used as long as the type parameter is not assumed, deferred,

or defined by an expression other than a constant expression.

A constant expression may reference the null intrinsic function as long as it does not have

an argument with a type parameter that is assumed or defined by an expression that is not a

constant expression.

Finally, within a derived-type definition, a constant expression may reference a kind type

parameter of the type being defined.

Exercises

1. Write a statement that makes an existing rank-2 integer array b, that has lower bounds of 1, two

rows and two columns larger, with the old elements’ values retained in the middle of the array.

(Hint: Use the reshape intrinsic function.)

2. Write an input procedure that reads a variable number of characters from a file, stopping on

encountering a character in a user-specified set or at end of record, returning the input in a deferred-

length allocatable character string.

This page intentionally left blank

16. Miscellaneous enhancements

16.1 Introduction

This chapter collects together a number of miscellaneous enhancements made in Fortran 2003

that do not fit into any convenient category.

16.2 Pointer intent

The intent attribute has been extended to include pointers. For a pointer, the intent refers

to the pointer association and not to the value of the target; that is, it refers to the descriptor.

An intent out pointer has undefined association status on entry to the procedure; an intent in
pointer cannot be nullified or associated during execution of the procedure; and the actual

argument for an intent inout pointer must be a pointer variable (that is, it cannot be a

reference to a pointer-valued function).

Note that, although an intent in pointer cannot have its pointer association status changed

inside the procedure, if it is associated with a target the value of its target may be changed.

For example,

subroutine maybe_clear(p)
real, pointer, intent(in) :: p(:)
if (associated(p)) p = 0.0

end subroutine maybe_clear

16.3 The volatile attribute

The volatile attribute is a new attribute which may be applied only to variables. It

is conferred either by the volatile attribute in a type declaration statement, or by the

volatile statement, which has the form

volatile [::] variable-name-list

For example,

integer, volatile :: x
real :: y
volatile :: y

declares two volatile variables x and y.

302 Modern Fortran Explained

16.3.1 Volatile semantics

Being volatile indicates to the compiler that, at any time, the variable might be changed and/or

examined from outside the Fortran program. This means that each reference to the variable

will need to load its value from main memory (so, for example, it cannot be kept in a register

in an inner loop). Similarly, each assignment to the variable must write the data to memory.

Essentially, this disables most optimizations that might have been applicable to the object,

making the program run slower but, one hopes, making it work with some special hardware

or multi-processing software.

However, it is the responsibility of the programmer to effect any necessary synchroniza-

tion; this is particularly relevant to multi-processor systems. Even if only one process is

writing to the variable and the Fortran program is reading from it, because the variable is not

automatically protected by a critical section it is possible to read a partially updated (and thus

an inconsistent or impossible) value. For example, if the variable is an IEEE floating-point

variable, reading a partially updated value could return a signalling NaN; or if the variable

is a pointer, its descriptor might be invalid. In either of these cases the program could be

abruptly terminated, so this facility must be used with care.

Similarly, if two processes are both attempting to update a single volatile variable, the

effects are completely processor dependent. The variable might end up with its original

value, one of the values from an updating process, a partial conglomeration of values from

the updating processes, or the program could even crash.

A simple use of this feature might be to handle some external (interrupt-driven) event, such

as the user typing Control-C, in a controlled fashion. For example,

logical, target, volatile :: event_has_occurred
:
event_has_occurred = .false.
call register_event_flag(event_has_occurred, ...)
:
do
: ! some calculations
if (event_has_occurred) exit ! exit loop if event happened
: ! some more calculations
if (...) exit ! Finished our calculations yet?

end do
:

where register_event_flag is a routine, possibly written in another language, which

ensures that event_has_occurred becomes true when the specified event occurs.

If the variable is a pointer, the volatile attribute applies both to the descriptor and to the

target. Even if the target does not have the volatile attribute, it is treated as having it when

accessed via a pointer that has it. If the variable is allocatable, it applies both to the allocation

and to the value. In both cases, if the variable is polymorphic (Section 14.3), the dynamic

type may change by non-Fortran means.

If a variable has the volatile attribute, so do all of its subobjects.

For example, in

Miscellaneous enhancements 303

logical, target :: signal_state(100)
logical, pointer, volatile :: signal_flags(:)
:
signal_flags => signal_state
:
signal_flags(10) = .true. ! A volatile reference
:
write (20) signal_state ! A nonvolatile reference

the pointer (descriptor) of signal_flags is volatile, and access to each element of

signal_flags is volatile; however, signal_state itself is not volatile.

The raison d’être for volatile is for interoperating with parallel-processing packages

such as MPI, which have procedures for asynchronously transferring data from one process

to another. For example, without the volatile attribute on the array data in Figure 16.1,

a compiler optimization could move the assignment prior to the call to mpi_wait. The use

of mpi_module provides access to MPI constants and explicit interfaces for MPI routines; in

particular, mpi_isend which requires the volatile attribute on its first dummy argument.

Figure 16.1 Using volatile to avoid code motion.

subroutine transfer_while_producing(...)
use mpi_module ! Access interfaces for mpi_isend etc.
real, allocatable :: newdata(:)
real, allocatable, volatile :: data(:)
: ! Produce data here
call mpi_isend(data, size(data), mpi_real, dest, &

tag, comm, request, ierr)
: ! Produce newdata here
call mpi_wait(request, status)
data = newdata
:

end subroutine transfer_while_producing

16.3.2 Volatile scoping

If a variable only needs to be treated as volatile for a short time, the programmer has two

options: either to pass it to a procedure to be acted on in a volatile manner (see Section

16.3.3), or to access it by use or host association, using a volatile statement to declare

it to be volatile only in the accessing scope. For example, in the code of Figure 16.2, the

data array is not volatile in data_processing, but is in data_transfer. Note that this

is an exception to the usual rules of use association, which prohibit other attributes from

being changed in the accessing scope. Similarly, declaring a variable that is accessed by host

association to be volatile is allowed, and unlike other specification statements, does not cause

the creation of a new local variable.

304 Modern Fortran Explained

Figure 16.2 Using a procedure to limit the scope of a variable’s volatility.

module data_module
real, allocatable :: data(:,:), newdata(:,:)
:

contains
subroutine data_processing

:
end subroutine data_processing
subroutine data_transfer

volatile :: data
:

end subroutine data_transfer
end module data_module

16.3.3 Volatile arguments

The volatility of an actual argument and its associated dummy argument may differ. This is

important since volatility may be needed in one but not in the other. In particular, a volatile

variable may be used as an actual argument in a call to an intrinsic procedure. However,

while a volatile variable is associated with a non-volatile dummy argument, the programmer

must ensure that the value is not altered by non-Fortran means. Note that, if the volatility of

an actual argument persists through a procedure reference, as for example in the MPI call in

Figure 16.1, this means that the procedure referenced must have an explicit interface and the

corresponding dummy argument must be declared to be volatile.

If the dummy argument is volatile, the actual argument must not be an array section with a

vector subscript; furthermore, if the actual argument is an array section or an assumed-shape

array, the dummy argument must be of assumed-shape and if the actual argument is an array

pointer, the dummy argument must be a pointer or of assumed-shape. These restrictions are

designed to allow the argument to be passed by reference; in particular, to avoid the need for

a local copy being made as this would interfere with the volatility.

A dummy argument with intent in or the value attribute (Section 12.6) is not permitted to

be volatile. This is because the value of such an argument is expected to remain fixed during

the execution of the procedure.

If a dummy argument of a procedure is volatile, the interface must be explicit whenever it

is called and the dummy argument must be declared as volatile in any interface body for the

procedure.

16.4 The import statement

One problem with procedure interface blocks in Fortran 95 is that an interface body does not

access its environment by host association, and therefore cannot use named constants and

derived types defined therein.

Miscellaneous enhancements 305

In particular, it is desirable in a module procedure to be able to describe a dummy procedure

that uses types defined in the module. For example, in Figure 16.3, the interface body is

invalid, because it has no access either to type t or to the constant wp.

Figure 16.3 An invalid interface block in a module procedure.

module m
integer, parameter :: wp = kind(0.0d0)
type t

:
end type t

contains
subroutine apply(fun,...)

interface
type(t) function fun(f) ! Not allowed

real(wp) :: f ! Not allowed
end function fun

end interface
end subroutine apply

end module m

This problem has been addressed by the import statement. This statement can be used

only in an interface body, and gives access to named entities of the containing scoping unit.

Figure 16.4 shows a correct interface body to replace the incorrect one in Figure 16.3.

Figure 16.4 The interface block of Figure 16.3 made valid by adding an import statement.

interface
function fun(f)

import :: t, wp
type(t) :: fun
real(wp) :: f

end function fun
end interface

The statement must be placed after any use statements but ahead of any other statements

of the body. It has the general form:

import [[::] import-name-list]

where each import-name is that of an entity that is accessible in the containing scoping unit.

If an imported entity is defined in the containing scoping unit, it must be explicitly declared

prior to the interface body.

An import statement without a list imports all entities from the containing scoping unit

that are not declared to be local entities of the interface body; this works the same way as

normal host association.

306 Modern Fortran Explained

16.5 Intrinsic modules

Like an intrinsic function, an intrinsic module is one that is provided by the Fortran processor

instead of by the user or a third party. A Fortran 2003 processor provides at least five intrinsic

modules: ieee_arithmetic, ieee_exceptions, ieee_features, iso_c_binding, and

iso_fortran_env, and may provide additional intrinsic modules.

Also like intrinsic procedures, it is possible for a program to use an intrinsic module and

a user-defined module of the same name, though they cannot both be referenced from the

same scoping unit. To use an intrinsic module in preference to a user-defined one of the same

name, the intrinsic keyword is specified on the use statement, for example

use, intrinsic :: ieee_arithmetic

Similarly, to ensure that a user-defined module is accessed in preference to an intrinsic

module, the non_intrinsic keyword is used, for example:

use, non_intrinsic :: random_numbers

If both an intrinsic module and a user-defined module are available with the same name, a

use statement without either of these keywords accesses the user-defined module. However,

should the compiler not be able to find the user’s module it would access the intrinsic

one instead without warning; therefore we recommend that programmers avoid using the

same name for a user-defined module as that of a known intrinsic module (or that the

non_intrinsic keyword be used).

The IEEE modules provide access to facilities from the IEEE arithmetic standard and

are described in Chapter 11. The intrinsic module iso_c_binding provides support for

interoperability with C and is described in Chapter 12.

The intrinsic module iso_fortran_env provides information about the Fortran environ-

ment, in the form of named constants as follows.

character_storage_size The size in bits of a character storage unit (only applicable

to storage association contexts, see Appendix B.2).

error_unit The unit number for a preconnected output unit suitable for reporting errors.

file_storage_size The size in bits of a file storage unit (the unit of measurement for

the record length of an external file, as used in the recl= clause of an open or inquire
statement).

input_unit The unit number for the preconnected standard input unit (the same one that

is used by read without a unit number, or with a unit specifier of *).

iostat_end The value returned by iostat= to indicate an end-of-file condition.

iostat_eor The value returned by iostat= to indicate an end-of-record condition.

numeric_storage_size The size in bits of a numeric storage unit (only applicable to

storage association contexts, see Appendix B.2).

Miscellaneous enhancements 307

output_unit The unit number for the preconnected standard output unit (the same one

that is used by print, or by write with a unit specifier of *).

Unlike normal unit numbers, the special unit numbers might be negative, but they will not

be −1 (this is because −1 is used by the number= clause of the inquire statement to mean

that there is no unit number). The error reporting unit error_unit might be the same as the

standard output unit output_unit.

Intrinsic modules should always be used with an only clause, as vendors or future

standards could make additions to the module.

16.6 Access to the computing environment

Intrinsic functions have been added to provide information about environment variables, and

about the command by which the program was executed.

16.6.1 Environment variables

Most operating systems have some concept of an environment variable, associating names

with values. Access to these is provided by an intrinsic subroutine.

call get_environment_variable (name [,value] [,length] [,status]
[,trim_name]) where the arguments are defined as follows.

name has intent in and is a scalar default character string containing the name of the

environment variable to be retrieved. Trailing blanks are not significant unless

trim_name is present and false. Case may or may not be significant.

value has intent out and is a scalar default character variable; it receives the value

of the environment variable (truncated or padded with blanks if the value
argument is shorter or longer than the environment variable’s value). If there is

no such variable, there is such a variable but it has no value, or the processor

does not support environment variables, this argument is set to blanks.

length has intent out and is a scalar default integer variable; if the specified

environment variable exists and has a value, the length argument is set to the

length of that value; otherwise it is set to zero.

status has intent out and is a scalar default integer; it receives the value 1 if the

environment variable does not exist, 2 if the processor does not support

environment variables, a number greater than 2 if an error occurs, −1 if the

value argument is present but too short, and zero otherwise (indicating that no

error or warning condition has occurred).

trim_name has intent in and is a scalar of type logical; if this is false, trailing

blanks in name will be considered significant if the processor allows

environment variable names to contain trailing blanks.

308 Modern Fortran Explained

16.6.2 Information about the program invocation

Two different methods of retrieving information about the command are provided, reflecting

the two approaches in common use.

The Unix-like method is provided by two procedures: a function which returns the number

of command arguments and a subroutine which returns an individual argument. These are:

command_argument_count () returns, as a scalar default integer, the number of

command arguments. If the result is zero, either there were no arguments or the

processor does not support the facility. If the command name is available as an

argument, it is not included in this count.

call get_command_argument (number [,value] [,length] [,status])
where the arguments are defined as follows.

number has intent in and is a scalar default integer indicating the number of the

argument to return. If the command name is available as an argument, it is

number zero.

value has intent out and is a scalar default character variable; it receives the value

of the indicated argument (truncated or padded with blanks if the character

variable is shorter or longer than the command argument).

length has intent out and is a scalar default integer variable; it receives the length

of the indicated argument.

status has intent out and is a scalar default integer variable; it receives a positive

value if that argument cannot be retrieved, −1 to indicate that the value variable

was shorter than the command argument, and zero otherwise.

The other paradigm for command processing provides a simple command line, not broken

up into arguments. This is retrieved by the intrinsic subroutine

call get_command ([command] [, length] [, status]) where

command has intent out and is a scalar default character variable; it receives the value

of the command line (truncated or padded with blanks if the variable is shorter or

longer than the actual command line).

length has intent out and is a scalar default integer variable; it receives the length

of the actual command line, or zero if the length cannot be determined.

status has intent out and is a scalar default integer variable; it receives a positive

value if the command line cannot be retrieved, −1 if command was present but

the variable was shorter than the length of the actual command line, and zero

otherwise.

16.7 Support for internationalization

The internationalization capabilities have been improved by additional requirements on the

processor’s basic character set, decimal symbol control for floating-point input/output, and

Miscellaneous enhancements 309

many improvements to the support for other character sets, in particular for the universal

character set ISO/IEC 10646 (also known as Unicode).

16.7.1 Character sets

The Fortran character set now includes all the lower-case letters and many additional special

characters from the ASCII character set. The additional special characters are

~ ^ \ { } ‘ [] | # @

Square brackets may be used to delimit array constructors (see Section 15.9); the others may

appear only in comments, character literals, and character string edit descriptors.

The intrinsic function achar now takes an optional kind argument. This argument

specifies the kind of the result. For instance, if the processor had an extra character kind 37 for

EBCDIC, achar(iachar(’h’),37) would return the EBCDIC lower-case ’h’ character.

Similarly, the intrinsic function iachar now accepts a character of any kind, returning the

ASCII code for that character if it is in the ASCII character set and a processor-dependent

value otherwise.

The new intrinsic function selected_char_kind can be used to select a specific character

set.

selected_char_kind (name) returns the kind value for the character set whose

name is given by the character string name, or −1 if it is not supported (or if the name

is not recognized). In particular, if name is

DEFAULT, the result is the kind of the default character type (equal to kind(’A’));

ASCII, the result is the kind of the ASCII character type;

ISO_10646, the result is the kind of the ISO/IEC 10646 UCS-4 character type.

Other character set names are processor dependent. The character set name is not case

sensitive (lower case is treated as upper case), and any trailing blanks are ignored.

Note that the only character set which is guaranteed to be supported is the default character

set; a processor is not required to support ASCII or ISO 10646.

16.7.2 ASCII character set

If the default character set for a processor is not ASCII, but ASCII is supported on that

processor, intrinsic assignment is defined between them to convert characters appropriately.

For example, on an EBCDIC machine, in

integer, parameter :: ascii = selected_char_kind(’ASCII’)
character :: ce
character(ascii) :: ca
ce = ascii_’X’
ca = ’X’

the first assignment statement will convert the ASCII upper-case X to an EBCDIC upper-case

X, and the second assignment statement will do the reverse.

310 Modern Fortran Explained

16.7.3 ISO 10646 character set

ISO/IEC 10646 UCS-4 is a 4-byte character set designed to be able to represent every

character in every language in the world, including all special characters in use in other coded

character sets. It is a strict superset of 7-bit ASCII; that is, its first 128 characters are the same

as those of ASCII.

Assignment of default characters or ASCII characters to ISO 10646 is allowed, and the

characters are converted appropriately. Assignment of ISO 10646 characters to default or

ASCII characters is also allowed; however, if any ISO 10646 character is not representable

in the destination character set, the result is processor dependent (information will be lost).

For example, in

integer, parameter :: ascii = selected_char_kind(’ASCII’)
integer, parameter :: iso10646 = selected_char_kind(’ISO_10646’)
character(ascii) :: x = ascii_’X’
character(iso10646) :: y
y = x

the ISO 10646 character variable y will be set to the correct value for the upper-case letter X.

ISO 10646 character variables may be used as internal files; numeric, logical, default

character, ASCII character, and ISO 10646 character values may all be read from or written

to such a variable. For example,

subroutine japanese_date_stamp(string)
integer, parameter :: ucs4 = selected_char_kind(’ISO_10646’)
character(*, ucs4), intent(out) :: string
integer :: val(8)
call date_and_time(values=val)
write (string, 10) val(1), ’ ’, val(2), ’ ’, val(3), ’ ’

10 format(i0,a,i0,a,i0,a)
end subroutine japanese_date_stamp

Note that, although reading from an ISO 10646 internal file into a default character

or ASCII character variable is possible, it is only allowed when the data being read is

representable in default character or ASCII character.

16.7.4 UTF-8 files

The ISO 10646 standard specifies a standard encoding of UCS-4 characters into a stream of

bytes, called UTF-8. Formatted files in UTF-8 format are supported in Fortran 2003 by the

encoding= specifier on the open statement. For example,

open (20, name=’output.file’, action=’write’, encoding=’utf-8’)

The encoding= specifier on the inquire statement returns the encoding of a file, which

will be UTF-8 if the file is connected for UTF-8 input/output or the processor can detect

the format in some way, UNKNOWN if the processor cannot detect the format, or a processor-

dependent value if the file is known to be in some other format (for example, UTF-16LE).

Miscellaneous enhancements 311

For the most part, UTF-8 files can be treated as ordinary formatted files. On output, all

data is effectively converted to ISO 10646 characters for UTF-8 encoding.

On input, if data is being read into an ASCII character variable each input character must

be in the range 0−127 (the ASCII subset of ISO 10646); if data is being read into a default

character variable each input character must be representable in the default character set.

These conditions will be satisfied if the data were written by numeric or logical formatting,

or by character formatting from an ASCII or default character value; otherwise it would be

safer to read the data into an ISO 10646 character variable for processing.

Figure 16.5 shows the I/O routines for a data processing application using these facilities.

Figure 16.5
subroutine write_id(unit, name, id)
character(kind=ucs4, len=*), intent(in) :: name
integer, intent(in) :: id, unit
write (unit, ’(1x,a,i6,2a)’) ’Customer number ’, id, ’ is ’, name

end subroutine write_id
:
subroutine read_id(unit, name, id)
character(kind=ucs4, len=*), intent(out) :: name
integer, intent(in) :: unit
integer, intent(out) :: id
character(kind=ucs4, len=20) :: string
integer :: stringlen
read (unit, ’(1x,a16)’, advance=’no’) string
if (string/=ucs4_’Customer number ’) stop ’Bad format’
do stringlen=1, len(string)
read (unit, ’(3x,a)’, advance=’no’) string(stringlen:stringlen)
if (string(stringlen:stringlen)==ucs4_’ ’) exit

end do
read (string(1:stringlen), *) id
read (unit, ’(3x,a)’) name

end subroutine read_id

16.7.5 Decimal comma for input/output

Many countries use a decimal comma instead of a decimal point. Support for this is provided

by the decimal= input/output specifier and by the dc and dp edit descriptors. These affect

the decimal edit mode for the unit. While the decimal edit mode is decimal point, decimal

points are used in input/output just as in Fortran 95.

While the mode is decimal comma, commas are used in place of decimal points both for

input and for output. For example,

x = 22./7

312 Modern Fortran Explained

print ’(1x,f6.2)’, x

would produce the output

3,14

in decimal comma mode.

The decimal= clause may appear on the open, read, and write statements, and has the

form

decimal=scalar-character-expr

where the scalar-character-expr evaluates either to point or to comma. On the open
statement it specifies the default decimal edit mode for the unit. If there is no decimal=
clause on the open statement, the mode for the unit defaults to decimal point. The default for

internal files is also decimal point. For the read and write statements, the decimal= clause

specifies the default mode for the duration of that input/output statement only.

The dc and dp edit descriptors change the decimal edit mode to decimal comma and

decimal point, respectively. They take effect when they are encountered during format

processing and continue in effect until another dc or dp edit descriptor is encountered or

until the end of the current input/output statement. For example,

write (*,10) x, x, x
10 format(1x,’Default ’,f5.2,’, English ’,dp,f5.2,’Français’,dc,f5.2)
would produce the value of x first with the default mode, then with a decimal point for

English, and a decimal comma for French.

If the decimal edit mode is decimal comma during list-directed or namelist input/output, a

semicolon acts as a value separator instead of a comma.

16.8 Lengths of names and statements

The maximum length for names (Section 2.7) and operator tokens (Section 3.8) has been

increased to 63 characters.

Statements were previously limited to 40 lines (20 lines in fixed form, see Appendix C.1.1);

the maximum length in either form is now 256 lines. That is, up to 255 continuation lines are

allowed.

One of the reasons for allowing longer statements is to handle source code that is

automatically generated.

16.9 Binary, octal, and hexadecimal constants

Binary, octal, and hexadecimal (‘boz’) constants, previously only allowed in data statements,

are now also allowed as a principal argument in a call of the intrinsic functions cmplx, dble,

int, and real (not for an optional argument that specifies the kind).

For int, the ‘boz’ constant is treated as if it were an integer constant of the kind with the

largest range supported by the processor. Thus,

Miscellaneous enhancements 313

integer :: i, j
data i/z’3f7’/
j = int(z’3f7’)

gives both i and j the same value (in decimal, 1015).

For dble and real, it is treated as having the value that a variable of the same type

and kind type parameter as the result would have if its internal representation were the bit

pattern specified. This interpretation of the bit pattern is processor dependent. For cmplx
with result of kind value kind, a ‘boz’ argument for either x or y provides the same value

as real(x,kind) or real(y,kind), so that it specifies the internal representation of one

component of the result.

The advantage of allowing ‘boz’ constants in expressions only as arguments to these

intrinsics is that there is no ambiguity in the way they are interpreted. There are vendor

extensions that allow them directly in expressions, but the ways that values are interpreted

differ.

16.10 Other changes to intrinsic procedures

The intrinsic functions max, maxval, min, and minval may now be used on values of type

character.

If a set of array elements examined by maxloc or minloc is empty, the location of its

maximum or minimum element is now deemed to have all subscripts zero (it was processor

dependent in Fortran 95).

The following intrinsic functions now have an optional kind argument at the end of the

argument list: count, iachar, ichar, index, lbound, len, len_trim, maxloc, minloc,

scan, shape, size, ubound, and verify. This argument specifies the kind of integer result

the function returns, in case a default integer is not big enough to contain the correct value

(which may be the case on 64-bit machines).

For example, in the code

real, allocatable :: a(:,:,:,:)
allocate (a(64,1024,1024,1024))
:
print *, size(a, kind=selected_int_kind(12))

the array a has a total of 236 elements; on most machines this is bigger than huge(0), so the

kind argument is needed to get the right answer from the reference to the intrinsic function

size.

The count, count_rate, and count_max arguments of the intrinsic subroutine

system_clock may now be of any kind of integer; this is to accommodate systems with a

clock rate that is too high to be represented in a default integer. Additionally, the count_rate
argument may now be of type real as well as integer; this is to accommodate systems

whose clock does not tick an integral number of times each second.

The character arguments of date_and_time are now assigned their results and are not

required to be long enough to hold the values.

314 Modern Fortran Explained

Changes have been made to the intrinsic functions atan2, log, and sqrt for processors

that distinguish between positive and negative real zero (on most computers, now that IEEE

arithmetic is widespread). The intrinsic function atan2(y, x) now returns an approximation

to −π if x< 0 and y is a negative zero since this is the limit as y→ 0 from below (previously

it returned an approximation to π). For similar reasons, the intrinsic function log(x) now

returns an approximation to −π if x is of type complex with a real part that is less than zero

and a negative zero imaginary part; and the intrinsic function sqrt(x) for complex x now

returns a negative imaginary result if the real part of the result is zero and the imaginary part

of x is less than zero.

16.11 Error message retrieval

The disadvantage of using the stat= clause on an allocate or deallocate statement is that

it is impossible for the program to provide a sensible report of the error, because error codes

are processor dependent.

To overcome this, the errmsg= clause has been added to these two statements. This takes

a scalar default character string variable, and if an error condition occurs that is handled by

stat=, an explanatory message is assigned to the errmsg= variable.

For example,

character(200) :: error_message ! Probably long enough
:
allocate (x(n), stat=allocate_status, errmsg=error_message)
if (allocate_status>0) then
print *, ’Allocation of X failed:’, trim(error_message)
:

end if

16.12 Enhanced complex constants

A complex constant may now be written with a named constant of type real or integer for its

real part, imaginary part, or both. For example,

real, parameter :: zero = 0, one = 1
complex, parameter :: i = (zero, one)

However, no sign is allowed with a name, so although (0,-1) is a perfectly good complex

constant, (zero,-one) is invalid.

Since the intrinsic function cmplx is now permitted to appear in a constant expression, and

provides all this functionality and more, there is very little use for this feature.

16.13 Interface block extensions

The module procedure statement (see Section 5.18) has been changed in Fortran 2003. The

keyword module is now optional; for example,

Miscellaneous enhancements 315

interface gamma
procedure :: sgamma, dgamma

end interface

If the keyword module is omitted, the named procedures need not be module procedures

but may also be external procedures, dummy procedures, or procedure pointers. Each named

procedure must already have an explicit interface to be used in this way.

This can be used to avoid the Fortran 95 limitation that an external procedure could not

appear in more than one interface block. For example, in

type bitstring
:

end type
:
interface operator(*)

elemental type(bitstring) function bitwise_and(a, b)
import :: bitstring
type(bitstring), intent(in) :: a, b

end function bitwise_and
end interface
interface operator(.and.)

procedure :: bitwise_and
end interface

this allows the use of both the * and .and. operators for ‘bitwise and’ on values of type

bitstring.

A generic name is permitted in Fortran 2003 to be the same as a type name. The generic

name takes precedence over the type name; a structure constructor for the type is interpreted

as such only if it cannot be interpreted as a reference to the generic procedure.

16.14 Public entities of private type

Entities of private type are no longer themselves required to be private; this applies equally

to procedures with arguments that have private type. This means that a module writer can

provide very limited access to values or variables without thereby giving the user the power

to create new variables of the type.

For example, the widely used LAPACK library requires character arguments such as uplo,

a character variable that must be given the value ’L’ or ’U’ according to whether the matrix

is upper or lower triangular. The value is checked at run time and an error return occurs if it

is invalid. This could be replaced by values lower and upper of private type. This would be

clearer and the check would be made at compile time.

316 Modern Fortran Explained

Exercises

1. Write a function that formats a real input value, of a kind that has a decimal precision of 15 or more,

in a suitable form for display as a monetary value in Euros. If the magnitude of value is such that the

‘cent’ field is beyond the decimal precision, a string consisting of all asterisks should be returned.

2. Write a program that displays the sum of all the numbers on its command line.

17. Input/output enhancements

17.1 Introduction

In this chapter, we explain the enhancements to input/output processing that have been

made in Fortran 2003. Non-default derived-type input/output (Section 17.2) allows the

programmer to provide formatting specially tailored to a type and to transfer structures

with pointer components. Asynchronous input/output (Sections 17.3 and 17.4) has been

available as compiler extensions for many years and is now standardized. Since the advent of

IEEE arithmetic many compilers have provided facilities for input/output of the exceptional

values; this is now standardized (Section 17.5). Stream access (Section 17.6) allows great

flexibility for both formatted and unformatted input/output. The remaining sections detail

miscellaneous simple enhancements.

17.2 Non-default derived-type input/output

It may be arranged that, when a derived-type object is encountered in an input/output list, a

Fortran subroutine is called. This either reads some data from the file and constructs a value

of the derived type or accepts a value of the derived type and writes some data to the file.

For formatted input/output, the dt edit descriptor specifies a character string and an integer

array to control the action. An example is

dt ’linked-list’ (10, -4, 2)

The character string may be omitted; this case is treated as if a string of length zero had

been given. The parenthetical list of integers may be omitted, in which case an array of length

zero is passed.

Such subroutines may be bound to the type as generic bindings (see Section 14.6.2) of the

forms

generic :: read(formatted) => r1, r2
generic :: read(unformatted) => r3, r4, r5
generic :: write(formatted) => w1
generic :: write(unformatted) => w2, w3

which makes them accessible wherever an object of the type is accessible. An alternative is

an interface block such as

318 Modern Fortran Explained

interface read(formatted)
module procedure r1, r2

end interface

The form of such a subroutine depends on whether it is for formatted or unformatted I/O:

subroutine formatted_io(dtv,unit,iotype,v_list,iostat,iomsg)
subroutine unformatted_io(dtv,unit, iostat,iomsg)

dtv is a scalar of the derived type. It may be polymorphic (so that it can be called for the

type or any extension of it). All length type parameters must be assumed. For output,

it is of intent in and holds the value to be written. For input, it is of intent inout and

is altered in accord with the values read.

unit is a scalar of intent in and type default integer. Its value is the unit on which

input/output is taking place or negative if on an internal file.

iotype is a scalar of intent in and type character(*). Its value is ’LISTDIRECTED’,

’NAMELIST’, or ’DT’//string, where string is the character string from the dt edit

descriptor.

v_list is a rank-one assumed-shape array of intent in and type default integer. Its value

comes from the parenthetical list of the edit descriptor.

iostat is a scalar of intent out and type default integer. If an error condition occurs, it

must be given a positive value. Otherwise, if an end-of-file or end-of-record condition

occurs it must be given, respectively, the value iostat_end or iostat_eor of the

intrinsic module iso_fortran_env (see Section 16.5). Otherwise, it must be given

the value zero.

iomsg is a scalar of intent inout and type character(*). If iostat is given a nonzero

value, iomsg must be set to an explanatory message. Otherwise, it must not be altered.

The names of the subroutine and its arguments are not significant when they are invoked as

part of input/output processing.

Within the subroutine, input/output to external files is limited to the specified unit and in

the specified direction. Such a data transfer statement is called a child data transfer statement

and the original statement is called the parent. No file positioning takes place before or after

the execution of a child data transfer statement (any advance= specifier is ignored). I/O to an

internal file is permitted. An I/O list may include a dt edit descriptor for a component of the

dtv argument, with the obvious meaning. Execution of any of the statements open, close,

backspace, endfile, and rewind is not permitted. Also, the procedure must not alter any

aspect of the parent I/O statement, except through the dtv argument.

The file position on entry is treated as a left tab limit and there is no record termination on

return. Therefore, positioning with rec= (for a direct-access file, Section 9.14) or pos= (for

stream access, Section 17.6) is not permitted in a child data transfer statement.

This feature is not available in combination with asynchronous input/output (Section 17.3).

A simple example of derived-type formatted output follows. The derived-type variable

chairman has two components. The type and an associated write-formatted procedure are

defined in a module called person_module and might be invoked as shown in Figure 17.1.

Input/output enhancements 319

Figure 17.1 A program with a dt edit descriptor.
program
use person_module
integer id, members
type (person) :: chairman
:

write (6, fmt="(i2, dt(15,6), i5)") id, chairman, members
! This writes a record with four fields, with lengths 2, 15, 6, 5,
! respectively
end program

Figure 17.2 A module containing a write(formatted) subroutine.

module person_module
type :: person

character (len=20) :: name
integer :: age

contains
procedure :: pwf
generic :: write(formatted) => pwf

end type person
contains

subroutine pwf (dtv, unit, iotype, vlist, iostat, iomsg)
! Arguments

class(person), intent(in) :: dtv
integer, intent(in) :: unit
character (len=*), intent(in) :: iotype
integer, intent(in) :: vlist(:)
! vlist(1) and (2) are to be used as the field widths
! of the two components of the derived type variable.
integer, intent(out) :: iostat
character (len=*), intent(inout) :: iomsg
! Local variable
character (len=9) :: pfmt
! Set up the format to be used for output
write (pfmt, ’(a,i2,a,i2,a)’) &

’(a’, vlist(1), ’,i’, vlist(2), ’)’
! Now the child output statement
write (unit, fmt=pfmt, iostat=iostat) dtv%name, dtv%age

end subroutine pwf
end module person_module

320 Modern Fortran Explained

The module that implements this is shown in Figure 17.2. From the edit descriptor

dt(15,6), it constructs the format (a15,i 6) in the local character variable pfmt and

applies it. It would also be possible to check that iotype indeed has the value ’DT’ and

to set iostat and iomsg accordingly.

In the following example, Figure 17.3, we illustrate the output of a structure with a pointer

component and show a child data transfer statement itself invoking derived-type input/output.

Here, we show the case where the same (recursive) subroutine is invoked in both cases.

The variables of the derived type node form a chain, with a single value at each node and

terminating with a null pointer. The subroutine pwf is used to write the values in the list, one

per line.

Figure 17.3 A module containing a recursive write(formatted) subroutine.

module list_module
type node

integer :: value = 0
type (node), pointer :: next_node => null ()

contains
procedure :: pwf
generic :: write(formatted) => pwf

end type node
contains

recursive subroutine pwf (dtv, unit, iotype, vlist, iostat, iomsg)
! Write the chain of values, each on a separate line in I9 format.

class(node), intent(in) :: dtv
integer, intent(in) :: unit
character (len=*), intent(in) :: iotype
integer, intent(in) :: vlist(:)
integer, intent(out) :: iostat
character (len=*), intent(inout) :: iomsg
write (unit, ’(i9,/)’, iostat = iostat) dtv%value
if (iostat/=0) return
if (associated(dtv%next_node)) &

write (unit, ’(dt)’, iostat=iostat) dtv%next_node
end subroutine pwf

end module list_module

17.3 Asynchronous input/output

Input/output may be asynchronous, that is, other statements may execute while an in-

put/output statement is in execution. It is permitted only for external files opened with

asynchronous=’yes’ in the open statement and is indicated by an asynchronous=’yes’
specifier in the read or write statement. By default, execution is synchronous even for a

file opened with asynchronous=’yes’, but it may be specified with asynchronous=’no’.

Input/output enhancements 321

Execution of an asynchronous input/output statement initiates a ‘pending’ input/output oper-

ation and execution of other statements continues until it reaches a statement involving a wait

operation for the file. This may be an explicit wait statement such as

wait (10)

or an inquire, a close, or a file positioning statement for the file. The compiler is permitted

to treat each asynchronous input/output statement as an ordinary input/output statement (this,

after all, is just the limiting case of the input/output being fast). The compiler is, of course,

required to recognize all the new syntax.

Here is a simple example

real :: a(100000), b(100000)
open (10, file=’mydata’, asynchronous=’yes’)
read (10, ’(10f8.3)’, asynchronous=’yes’) a

: ! Computation involving the array b
wait (10)

: ! Computation involving the array a

Further asynchronous input/output statements may be executed for the file before the wait
statement is reached. The input/output statements for each file are performed in the same

order as they would have been if they were synchronous.

An execution of an asynchronous input/output statement may be identified by a scalar

integer variable in an id= specifier. It must be of default kind or longer. Successful execution

of the statement causes the variable to be given a processor-dependent value which can be

passed to a subsequent wait or inquire statement as a scalar integer variable in an id=
specifier.

A wait statement may have end=, eor=, err=, and iostat= specifiers. These have the

same meanings as for a data transfer statement and refer to situations that occur while the

input/output operation is pending. If there is also an id= specifier, only the identified pending

operation is terminated and the other specifiers refer to this; otherwise, all pending operations

for the file are terminated in turn.

An inquire statement is permitted to have a pending= specifier for a scalar default logical

variable. If an id= specifier is present, the variable is given the value true if the particular

input/output operation is still pending and false otherwise. If no id= specifier is present, the

variable is given the value true if any input/output operations for the unit are still pending and

false otherwise. In the ‘false’ case, wait operations are performed for the file or files. Wait

operations are not performed in the ‘true’ case, even if some of the input/output operations

are complete.

Execution of a wait statement specifying a unit that does not exist, has no file connected

to it, or was not opened for asynchronous input/output is permitted, provided that the wait
statement has no id= specifier; such a wait statement has no effect.

A file positioning statement (backspace, endfile, rewind) performs wait operations for

all pending input/output operations for the file.

Asynchronous input/output is not permitted in conjunction with user-defined derived-type

input/output (previous section) because it is anticipated that the number of characters actually

written is likely to depend on the values of the variables.

322 Modern Fortran Explained

A variable in a scoping unit is said to be an affector of a pending input/output operation

if any part of it is associated with any part of an item in the input/output list, namelist, or

size= specifier. While an input/output operation is pending, an affector is not permitted to

be redefined, become undefined, or have its pointer association status changed. While an

input operation is pending, an affector is also not permitted to be referenced or associated

with a dummy argument with the value attribute (Section 12.6).

17.4 The asynchronous attribute

The asynchronous attribute for a variable has been introduced to warn the compiler that

optimizations involving movement of code across wait statements (or other statements that

cause wait operations) might lead to incorrect results. If a variable appears in an executable

statement or a specification expression in a scoping unit and any statement of the scoping unit

is executed while the variable is an affector, it must have the asynchronous attribute in the

scoping unit.

A variable is automatically given this attribute if it or a subobject of it is an item in the

input/output list, namelist, or size= specifier of an asynchronous input/output statement. A

named variable may be declared with this attribute:

integer, asynchronous :: int_array(10)

or given it by the asynchronous statement

asynchronous :: int_array, another

This statement may be used to give the attribute to a variable that is accessed by use or host

association.

Like the volatile attribute (Section 16.3), whether an object has the asynchronous
attribute may vary between scoping units. If a variable is accessed by use or host association,

it may gain the attribute, but it never loses it. For dummy and corresponding actual arguments,

there is no requirement for agreement in respect of the asynchronous attribute. This

provides useful flexibility, but needs to be used with care. If the programmer knows that

all asynchronous action will be within the procedure, there is no need for the actual argument

to have the asynchronous attribute. Similarly, if the programmer knows that no operation

will ever be pending when the procedure is called, there is no need for the dummy argument

to have the asynchronous attribute.

All subobjects of a variable with the asynchronous attribute have the attribute.

There are restrictions that avoid any copying of an actual argument when the corresponding

dummy argument has the asynchronous attribute: the actual argument must not be an array

section with a vector subscript; if the actual argument is an array section or an assumed-shape

array, the dummy argument must be an assumed-shape array; and if the actual argument is a

pointer array, the dummy argument must be an assumed-shape or pointer array.

Input/output enhancements 323

17.5 Input and output of IEEE exceptional values

Input and output of IEEE infinities and NaNs, previously done in a variety of ways as

extensions of Fortran 95, is specified. All the edit descriptors for reals treat these values

in the same way and only the field width w is taken into account.

The output forms, each right justified in its field, are

i) -Inf or -Infinity for minus infinity;

ii) Inf, +Inf, Infinity, or +Infinity for plus infinity; and

iii) NaN, optionally followed by alphanumeric characters in parentheses (to hold additional

information).

On input, upper- and lower-case letters are treated as equivalent. The forms are

i) -Inf or -Infinity for minus infinity;

ii) Inf, +Inf, Infinity, or +Infinity for plus infinity; and

iii) NaN, optionally followed by alphanumeric characters in parentheses for a NaN. With

no such alphanumeric characters it is a quiet NaN.

17.6 Stream access input/output

Stream access is a new method of accessing an external file. It is established by specifying

access=’stream’ on the open statement and may be formatted or unformatted.

The file is positioned by ‘file storage units’, normally bytes, starting at position 1. The

current position may be determined from a scalar integer variable in a pos= specifier of an

inquire statement for the unit. A file may have the capability of positioning forwards or

backwards, forwards only, or neither. If it has the capability, a required position may be

indicated in a read or write statement by the pos= specifier, which accepts a scalar integer

expression. In the absence of a pos= specifier, the file position is left unchanged.

It is the intention that unformatted stream input/output will read or write only the data

to/from the file; that is, that there is no ancillary record length information (which is normally

written for unformatted files). This allows easy interoperability with C binary streams, but the

facility to skip or backspace over records is not available. If an output statement overwrites

part of a file, the rest of the file is unchanged

Here is a simple example of unformatted stream input/output:

real :: d
integer :: before_d
:
open (unit, ..., access=’stream’, form=’unformatted’)
:
inquire (unit, pos=before_d)
write (unit) d
:
write (unit, pos=before_d) d + 1

324 Modern Fortran Explained

Assuming d occupies 4 bytes, the user could reasonably expect the first write to write exactly

4 bytes to the file. The use of the pos= specifier ensures that the second write will overwrite

the previously written value of d.

Formatted stream files are very similar to ordinary (record-oriented) sequential files; the

main difference is that there is no preset maximum record length (the recl= specifier in the

open or inquire statements). If the file allows the relevant positioning, the value of a pos=
specifier must be 1 or a value previously returned in an inquire statement for the file. As for

a formatted sequential file, an output statment leaves the file ending with the data transferred.

Another difference from a formatted sequential file is that data-driven record termination

in the style of C text streams is allowed. The intrinsic inquiry function new_line(a) returns

the character that can be used to cause record termination (this is the equivalent of the C

language ’\n’ character):

new_line (a) returns the newline character used for formatted stream output. The

argument a must be of type character. The result is of type character with the same

kind type parameter value as a. In the unlikely event that there is no suitable character

for newline in that character set, a blank is returned.

As an example, the following code will write two lines to the file /dev/tty:

open (28, file=’/dev/tty’, access=’stream’, form=’formatted’)
write (28, ’(a)’) ’Hello’//new_line(’x’)//’World’

17.7 Recursive input/output

A recursive input/output statement is one that is executed while another input/output

statement is in execution. We met this in connection with derived-type input/output (Section

17.2); a child data transfer statement is recursive since it always executes while its parent is in

execution. The only other situation in which execution of a recursive input/output statement

is allowed, and this is an extension from Fortran 95, is for input/output to/from an internal

file where the statement does not modify any internal file other than its own.1

17.8 The flush statement

Execution of a flush statement for an external file causes data written to it to be available to

other processes, or causes data placed in it by means other than Fortran to be available to a

read statement. The syntax is just like that of the file positioning statements.

In combination with advance=’no’ or stream access (Section 17.6), it permits the program

to ensure that data written to one unit are sent to the file before requesting input on another

unit; that is, that ‘prompts’ appear promptly.

17.9 Comma after a P edit descriptor

The comma after a P edit descriptor becomes optional when followed by a repeat specifier.

For example, 1P2E12.4 is permitted (as it was in Fortran 66).

1Fortran 2008 allows additional cases, see Section 20.7.1.

Input/output enhancements 325

17.10 The iomsg= specifier

Any input/output statement is permitted to have an iomsg= specifier. This identifies a scalar

variable of type default character into which the processor places a message if an error,

end-of-file, or end-of-record condition occurs during execution of the statement. If no such

condition occurs, the value of the variable is not changed. Note that this is useful only for

messages concerning error conditions and an iostat= or err= specifier is needed to prevent

an error causing immediate termination.

17.11 The round= specifier

Rounding during formatted input/output may be controlled by the round= specifier on the

open statement, which takes one of the values up, down, zero, nearest, compatible,

or processor_defined. It may be overridden by a round= specifier in a read or write
statement with one of these values. The meanings are obvious except for the difference

between nearest and compatible. Both refer to a closest representable value. If two are

equidistant, which is taken is processor dependent for nearest and the value away from zero

for compatible.

The rounding mode may also be temporarily changed within a read or write statement to

up, down, zero, nearest, compatible, or processor_defined by the ru, rd, rz, rn, rc,

or rp edit descriptor, respectively.

There is a corresponding specifier in the inquire statement that is assigned the value UP,

DOWN, ZERO, NEAREST, COMPATIBLE, PROCESSOR_DEFINED, or UNDEFINED, as appropriate.

The processor returns the value PROCESSOR_DEFINED only if the I/O rounding mode currently

in effect behaves differently from the other rounding modes.

In Section 9.12.2, the formula for n in the g edit descriptor contains, twice, the value 0.5.

This value is altered by some of the rounding modes, becoming 1 for up, and for zero if the

value is positive; 0 for down, and for zero if the value is negative; and −0.5 for nearest if

the lower value is even.

17.12 The sign= specifier

The sign= specifier has been added to the open statement. It can take the value suppress,

plus, or processor_defined and controls the optional plus characters in formatted numeric

output. It may be overridden by a sign= specifier in a write statement with one of these

values. The mode may also be temporarily changed within a write statement by the ss, sp,

and s edit descriptors, which are part of Fortran 95.

There is a corresponding specifier in the inquire statement that is assigned the value PLUS,

SUPPRESS, PROCESSOR_DEFINED, or UNDEFINED, as appropriate.

17.13 Kind type parameters of integer and logical specifiers

The integer and logical specifiers that return a value (such as nextrec=) were limited to

default kind in Fortran 95. Any kind is permitted in Fortran 2003.

326 Modern Fortran Explained

17.14 More specifiers in read and write statements

The inquire statement specifiers blank= and pad= are now also available in the read
statement, and delim= is available in the write statement.

17.15 Intrinsic functions for I/O status testing

Two new elemental intrinsic functions are provided for testing the I/O status value returned

through the iostat= specifier. Both functions accept an argument of type integer, and return

a default logical result.

is_iostat_end(i) returns the value true if i is an I/O status value that corresponds to

an end-of-file condition, and false otherwise.

is_iostat_eor(i) returns the value true if i is an I/O status value that corresponds to

an end-of-record condition, and false otherwise.

17.16 Some inquire statement enhancements

We have already met a number of new specifiers for the inquire statement (Section 10.5):

encoding= (Section 16.7.4), id= and pending= (Section 17.3), pos= (Section 17.6), iomsg=
(Section 17.10), round= (Section 17.11), and sign= (Section 17.12). Further, one existing

specifier, access=, now has the additional possible value for acc of STREAM if the file is

connected for stream access.

The following new, optional specifiers have not so far been described, and complete our

description of the input/output enhancements.

asynchronous= asynch, where asynch is a character variable that is assigned the value

YES if the file is connected and asynchronous input/output on the unit is allowed; it is

assigned the value NO if the file is connected and asynchronous input/output on the unit

is not allowed. If there is no connection, it is assigned the value UNDEFINED.

decimal= dec, where dec is a character variable that is assigned the value COMMA or

POINT, corresponding to the decimal edit mode in effect for a connection for formatted

input/output. If there is no connection, or if the connection is not for formatted

input/output, it is assigned the value UNDEFINED.

size= size, where size is an integer variable that is assigned the size of the file in file storage

units. If the file size cannot be determined, the variable is assigned the value -1. For a

file that may be connected for stream access, the file size is the number of the highest-

numbered file storage unit in the file. For a file that may be connected for sequential

or direct access, the file size may be different from the number of storage units implied

by the data in the records; the exact relationship is processor-dependent.

stream= stm, where stm is a character variable that is assigned the value YES if STREAM is

included in the set of allowed access methods for the file, NO if STREAM is not included

in the set of allowed access methods for the file, and UNKNOWN if the processor is unable

Input/output enhancements 327

to determine whether or not STREAM is included in the set of allowed access methods

for the file.

17.17 Namelist enhancements

Most of the restrictions on variables named in a namelist statement (Section 7.15) have been

removed. The only one that remains is that an assumed-size array is not permitted.

Namelist I/O (see Section 9.10) is now available for internal files.

Exercises

1. Write a program that reads a file (presumed to be a text file) as an unformatted stream, checking for

Unix (LF) and DOS/Windows (CRLF) record terminators.

2. Write a program that displays the effects of the sign= specifier and the ss, sp, and s edit descriptors.

What output would you expect if the file is open with sign=’suppress’?

This page intentionally left blank

18. Enhanced module facilities

18.1 Introduction

The module facilities of Fortran 95, while adequate for programs of modest size, have some

shortcomings for very large programs. The extent of these shortcomings was not properly

appreciated when the main features of Fortran 2003 were chosen and a straightforward

solution was not devised until the development of Fortran 2003 was nearly complete.

Therefore, instead of risking a delay to the whole of Fortran 2003, it was decided to define

the submodule feature as an extension in a Technical Report,1 with the promise that the next

revision of Fortran would include it, apart from correcting any defects found in the field.

Since the formal approval procedures for a Technical Report are simpler than those for a

Standard, this was published in 2005, well ahead of the publication of Fortran 2008, expected

in 2010. This is why this chapter appears here. The features are part of Fortran 2008.

The shortcomings of the module feature all arise from the fact that, although modules are

an aid to modularization of the program, they are themselves difficult to modularize. As a

module grows larger, perhaps because the concept it is encapsulating is large, the only way of

modularization is to break it into several modules. This exposes the internal structure, raising

the potential for unnecessary global name clashes and giving the user of the module access

to what ought to be private data and/or procedures. Worse, if the subfeatures of the module

are interconnected, they must remain together in a single module, however large.

Another significant shortcoming is that if a change is made to the code inside a module

procedure, even a private one, typical use of make or similar tools results in the recompilation

of every file which used that module, directly or indirectly. (A method of avoiding this for

some compilers is described in Appendix D.)

The solution is to allow modules to be split into separate program units called submodules,

which can be in separate files. Module procedures can then be split so that the interface

information remains in the module, but the bodies can be placed in the submodules. A change

in a submodule cannot alter an interface, and so does not cause the recompilation of program

units that use the module.

The introduction of submodules gives other benefits, which we can explain more easily

once we have described the feature.

1Technical Report ISO/IEC TR 19767: 2005(E).

330 Modern Fortran Explained

18.2 Submodules

Submodules provide a way of structuring a module into component parts, which may be in

separate files. All module procedures continue to have their interface defined in the module,

but their implementation can be deferred to a submodule. A submodule has access via host

association to entities in the module, and may have entities of its own in addition to providing

implementations of module procedures.

18.2.1 Separate module procedures

The essence of the feature is to separate the definition of a module procedure into two parts:

the interface, which is defined in the module; and the body, which is defined in the submodule.

Such a module procedure is known as a separate module procedure. A simple example is

shown in Figure 18.1. The keyword module in the prefix of the function statement indicates

in the interface block that this is the interface to a module procedure rather than an external

procedure and in the submodule that this is the implementation part of a module procedure.

The submodule specifies the name of its parent. Both the interface and the submodule gain

access to the type point by host association.

Figure 18.1 A separate module procedure.

module points
type :: point

real :: x, y
end type point
interface

real module function point_dist(a, b)
type(point), intent(in) :: a, b

end function point_dist
end interface

end module points

submodule (points) points_a
contains

real module function point_dist(a, b)
type(point), intent(in) :: a, b
point_dist = sqrt((a%x-b%x)**2+(a%y-b%y)**2)

end function point_dist
end submodule points_a

The interface specified in the submodule must be exactly the same as that specified in the

interface block. For an external procedure, the interface is permitted to differ in respect of

the names of the arguments, whether it is pure, and whether it is recursive (see Section 5.11);

such variations are not permitted for a submodule since the intention is simply to separate the

definition of the procedure into two parts. The name of the result variable is not part of the

Enhanced module facilities 331

interface and so is permitted to be different in the two places; in this case, the name in the

interface block is ignored.

There is also a syntax that avoids the redeclaration altogether:

submodule (points) points_a
contains

module procedure point_dist
point_dist = sqrt((a%x-b%x)**2+(a%y-b%y)**2)

end procedure point_dist
end submodule points_a

In this case, the whole interface is taken from the interface block, including whether it is a

function or a subroutine and the name of the result variable if it is a function.

18.2.2 Submodules of submodules

Submodules are themselves permitted to have submodules, which is useful for very large

programs. The module or submodule of which a submodule is a direct subsidiary is called

its parent and it is called a child of its parent. We do not expect the number of levels

of submodules often to exceed two (that is, a module with submodules that themselves

have submodules) but there is no limit and we refer to ancestors and descendants with the

obvious meanings. Each module or submodule is the root of a tree whose other nodes are

its descendants and have access to it by host association. No other submodules have such

access, which is helpful for developing parts of large modules independently. Furthermore,

there is no mechanism for accessing anything declared in a submodule from elsewhere – it is

effectively private.

If a change is made to a submodule, only it and its descendants will need recompilation.

A submodule is identified by the combination of the name of its ancestor module and the

name of its parent, for example, points:points_a for the submodule of Figure 18.1. This

allows two submodules to have the same name if they are descendants of different modules.

This identifier is needed only to specify it as the parent in the submodule statement of a child,

as in

submodule (points:points_a) points_b

18.2.3 Submodule entities

A submodule can also contain entities of its own. These are not module entities and so are

neither public nor private; they are, however, inaccessible outside of the defining submodule

except to its descendants.

Typically, these will be variables, types, named constants, etc., for use in the implemen-

tation of some separate module procedure. As per the usual rules of host association, if any

submodule entity has the same name as a module entity, the module entity is hidden.

A submodule can also contain procedures, which we will call submodule procedures. A

submodule procedure is only accessible in the submodule and its descendants, and so can

be invoked only there. To ensure this property for a submodule procedure with the bind

332 Modern Fortran Explained

attribute (see Section 12.7), such a procedure does not have a binding label and cannot have

a name= specifier. This is because a user of a module might write a submodule with the

module as its parent and containing a procedure that accesses private module entities by host

association. However, without a binding label, there is no mechanism for the user to invoke

such a procedure.

Like a module procedure, a submodule procedure can also be separate; a separate

submodule procedure has its interface declared in one submodule and its body in a

descendant.

18.2.4 Submodules and use association

A submodule is not permitted to access its ancestor module by use association; there is, after

all, no need since it has access by host association. It may, however, access any other module

by use association. In particular, it is possible for a submodule of module a to access module

b and a submodule of module b to access module a. A simple example is where a procedure

of module a calls a procedure of module b and a procedure of module b calls a procedure

of module a. Because circular dependencies between modules are not permitted, without

submodules this would require that a and b were the same module, or that a third module c
be used (containing those parts which were mutually dependent).

18.3 The advantages of submodules

A major benefit of submodules is that if a change is made to one, only it and its descendants

are affected. Thus, a large module may be divided into small submodule trees, improving

modularity (and thus maintainability) and avoiding unnecessary recompilation cascades (but

see also Appendix D). We now summarize other benefits.

Entities declared in a submodule are private to that submodule and its descendants, which

controls their name management and accidental use within a large module.

Separate concepts with circular dependencies can be separated into different submodules

in the common case where it is just the implementations that reference each other (because

circular dependencies are not permitted between modules, this was impossible before).

Where a large task has been implemented as a set of modules, it may be appropriate to

replace this by a single module and a collection of submodules. Entities that were public

only because they are needed by other modules of the set can become private to the module

or to a submodule and its descendants.

Once the implementation details of a module have been separated into submodules, the text

of the module itself can be published to provide authoritative documentation of the interface

without exposing any trade secrets contained in the implementation.

On many systems, each source file produces a single object file that must be loaded in its

entirety into the executable program. Breaking the module into several files will allow the

loading of only those procedures that are actually invoked into a user program. This makes

modules more attractive for building large libraries.

19. Coarrays

19.1 Introduction

The coarray programming model is designed to provide a simple syntactic extension to

support parallel programming from the point of view of both work distribution and data
distribution.

Firstly, consider work distribution. The coarray extension adopts the Single Program

Multiple Data (SPMD) programming model. A single program is replicated a fixed number

of times, each replication having its own set of data objects. Each replication of the program

is called an image. The number of images could be the same as, or more than or less than,

the number of physical processors. A particular implementation may permit the number of

images to be chosen at compile time, at link time, or at execution time. Each image executes

asynchronously and the normal rules of Fortran apply within each image.1 The execution

sequence can differ from image to image as specified by the programmer who, with the help

of a unique image index, determines the actual path using normal Fortran control constructs

and explicit synchronizations. For code between synchronizations, the compiler is free to use

almost all its normal optimization techniques as if only one image were present.

Secondly, consider data distribution. The coarray extension allows the programmer

to express data distribution by specifying the relationship between memory images in a

syntax very much like normal Fortran array syntax. Objects with the new syntax have an

important property: as well as having access to the local object, each image may access the

corresponding object on any other image. For example, the statements

real, dimension(1000), codimension[*] :: x, y
real, codimension[*] :: z

declare three objects, each as a coarray. x and y are array coarrays and z is a scalar coarray.

A coarray always has the same shape on each image. In this example, each image has two

real array coarrays of size 1000 and a scalar coarray. If an image executes the statement:

x(:) = y(:)[q]

the coarray y on image q is copied into coarray x on the executing image.

Subscripts within parentheses follow the normal Fortran rules within one image. Cosub-
scripts within square brackets provide an equally convenient notation for accessing an object

on another image. Bounds in square brackets in coarray declarations follow the rules of

1Although this is not required, it is anticipated that in early implementations each image will execute the same

executable file on near-identical hardware.

334 Modern Fortran Explained

assumed-size arrays since a coarray always exists on all the images. The upper bound for

the last codimension is never specified, which allows the programmer to write code without

knowing the number of images the code will eventually use.

The programmer uses coarray syntax only where it is needed. A reference to a coarray with

no square brackets attached to it is a reference to the object in the memory of the executing

image. Since it is desirable for most references to data objects in a parallel program to be

local, coarray syntax should appear only in isolated parts of the source code. Coarray syntax

acts as a visual flag to the programmer that communication between images will take place.

It also acts as a flag to the compiler to generate code that avoids latency2 whenever possible.

Because a coarray has the same shape on every image and because allocations and

deallocations of coarrays occur in synchrony across all images, coarrays may be implemented

in such a way that each image can calculate the address of a coarray on another image. This is

sometimes called symmetric memory. On a shared-memory machine, a coarray on an image

and the corresponding coarrays on other images might be implemented as a sequence of

objects with evenly spaced addresses. On a distributed-memory machine with one physical

processor for each image, a coarray might be stored at the same address in each physical

processor. If it is an array coarray, each image can calculate the address of an element on

another image relative to the array start address on that other image.

Because coarrays are integrated into the language, remote references automatically gain

the services of Fortran’s basic data capabilities, including

• the type system;

• automatic conversions in assignments;

• information about structure layout; and

• object-oriented features with some restrictions.

19.2 Referencing images

Data objects on other images are referenced by cosubscripts enclosed in square brackets.

Each valid set of cosubscripts maps to an image index, which is an integer between one and

the number of images, in the same way as a valid set of array subscripts maps to a position in

the array element order.

The number of images is returned by the intrinsic function num_images. The intrinsic

function this_image with no arguments returns the image index of the invoking image. The

set of cosubscripts that corresponds to the invoking image for a coarray z are available as

this_image(z). The image index that corresponds to an array sub of valid cosubscripts for

a coarray z is available as image_index(z, sub).

For example, on image 5, this_image() has the value 5 and for the array coarray declared

as

real :: z(10, 20)[10, 0:9, 0:*]

this_image(z) has the value (/ 5, 0, 0 /), whilst on image 213, this_image(z) has

the value (/ 3, 1, 2 /). On any image, the value of image_index(z, (/ 5, 0, 0 /))
is 5 and the value of image_index(z, (/ 3, 1, 2 /)) is 213.

2Delay while the image waits for data to be transferred to or from another image.

Coarrays 335

19.3 The properties of coarrays

Each image has its own set of data objects, all of which may be accessed in the normal Fortran

way. Some objects are declared with codimensions in square brackets, for example:

real, dimension(20), codimension[20,*] :: a ! An array coarray
real :: c[*], d[*] ! Scalar coarrays
character :: b(20)[20,0:*]
integer :: ib(10)[*]
type(interval) :: s[20,*]

Unless the coarray is allocatable (Section 19.7), the form for the codimensions in square

brackets is the same as that for the dimensions in parentheses for an assumed-size array. The

total number of subscripts plus cosubscripts is limited to 15.

A subobject of a coarray is regarded as a coarray if and only if it has no cosubscripts, no

vector subscripts, no allocatable component selection, and no pointer component selection.

For example, a(1) and a(2:10) are coarrays if a is the coarray declared at the start of this

section. This definition means that passing a coarray subobject to a dummy coarray does not

involve copy-in copy-out (which would be infeasible given the coarray exists on all images).

The term whole coarray is used for the whole of an object that is declared as a coarray or the

whole of a coarray component of a structure.

The corank of a whole coarray is determined by its declaration. Its cobounds are specified

within square brackets in its declaration or allocation. Any subobject of a whole coarray

that is a coarray has the corank, cobounds, and coextents of the whole coarray. The cosize

of a coarray is always equal to the number of images. Even though the final upper bound

is specified as an asterisk, a coarray has a final coextent, and a final upper cobound, which

depend on the number of images. The final upper cobound is the largest value that the final

cobound can have in a valid reference (we discuss this further in Section 19.4). For example,

when the number of images is 128, the coarray declared thus

real :: array(10,20)[10,-1:8,0:*]

has rank 2, corank 3, shape (/10,20/); its lower cobounds are 1, -1, 0 and its upper

cobounds are 10, 8, 1.

A coarray is not permitted to be a named constant, because this would be useless. Each

image would hold exactly the same value so there would be no reason to access its value on

another image.

To ensure that each image initializes only its own data, cosubscripts are not permitted in

data statements. For example:

real :: a(10)[*]
data a(1) /0.0/ ! Permitted
data a(1)[2] /0.0/ ! Not permitted

A coarray may be allocatable, see Section 19.7.

A coarray is not permitted to be a pointer, but a coarray may be of a derived type with

pointer or allocatable components, see Section 19.8. Furthermore, because an object of type

c_ptr or c_funptr has the essence of a pointer, a coarray is not permitted to be of either

of these types. Although a coarray is permitted to have a component of c_ptr or c_funptr,

these are nearly useless, see Appendix B.10.2.

336 Modern Fortran Explained

19.4 Accessing coarrays

A coarray on another image may be addressed by using cosubscripts in square brackets

following any subscripts in parentheses, for example:

a(5)[3,7] = ib(5)[3]
d[3] = c
a(:)[2,3] = c[1]

We call any object whose designator includes cosubscripts a coindexed object. Only one

image may be referenced at a time, so each cosubscript must be a scalar integer expression

(section cosubscripts are not permitted). Subscripts or section subscripts must be used when

the coarray has nonzero rank. For example, a[2,3] is not permitted as a shorthand for

a(:)[2,3].

Any object reference without square brackets is always a reference to the object on the

executing image. For example, in

real :: z(20)[20,*], zmax[*]
:

zmax = maxval(z)

the value of the largest element of the array coarray z on the executing image is placed in the

scalar coarray zmax on the executing image.

For a reference with square brackets, the cosubscript list must map to a valid image index.

For example, if there are 16 images and the coarray z is declared thus

real :: z(10)[5,*]

then a reference to z(:)[1,4] is valid, since it refers to image 16, but a reference to

z(:)[2,4] is invalid, since it refers to image 17. Like array subscripts, it is the programmer’s

responsibility to ensure that cosubscripts are within bounds and refer to a valid image.

Square brackets attached to objects alert the reader to probable communication between

images. However, communication may also take place within a procedure reference, and this

could be via a defined operation or defined assignment.

That an executing image is selected in square brackets has no bearing on whether the

executing image evaluates the expression or assignment. For example, the statement

z[6] = 1

is executed by every image that encounters it, not just image 6. If code is to be executed

selectively, the Fortran if or case construct is needed. An example is

if (this_image()==6) z = 1

A coindexed object is permitted in most contexts, such as intrinsic operations, intrinsic

assignment, input/output lists, and as an actual argument corresponding to a non-coarray

dummy argument.3 On a distributed-memory machine, passing it as an actual argument is

likely to cause a local copy of it to be made before execution of the procedure starts (unless it

has intent out) and the result to be copied back on return (unless it has intent in or the value

3Polymorphic coindexed objects are much more restricted, see Section 19.10.

Coarrays 337

attribute). The rules for argument association have been carefully constructed so that such

copying is always allowed.

Pointers are not allowed to have targets on remote images, because this would break the

requirement for remote access to be obvious. Therefore, the target of a pointer is not permitted

to be a coindexed object:

p => a(n)[p] ! Not allowed (compile-time constraint)

A coindexed object is not permitted as the selector in an associate or select type
statement because that would disguise a reference to a remote image (the associated name is

without square brackets). However, a coarray is permitted as the selector, in which case the

associated entity is also a coarray and its cobounds are those of the selector.

19.5 The sync all statement

Each image executes on its own without regard to the execution of other images except when

it encounters special statements called image control statements. The programmer inserts

image control statements to ensure that, whenever one image alters the value of a coarray

variable or a variable with the target attribute, no other image still wants the old value, and

that whenever an image accesses the value of a variable, it receives the wanted value – either

the old value (before the update) or the new value (from the update). In this section, we

describe the simplest of these image control statements.

The sync all statement provides a barrier where all images synchronize before executing

further statements. All statements executed before the barrier on image P execute before any

statement executes after the barrier on image Q. If the value of a variable is changed by image

P before the barrier, the new value is available to all other images after the barrier. If an image

references the value of a variable before the barrier, it obtains the value before crossing the

barrier.

Figure 19.1 Read on image 1 and broadcast to the others.

real :: z[*]
:
sync all
if (this_image()==1) then

read (*, *) z
do image = 2, num_images()

z[image] = z
end do

end if
sync all
:

Figure 19.1 shows a simple example of the use of sync all. Image 1 reads data and

broadcasts it to other images. The first sync all ensures that image 1 does not interfere with

any previous use of z by another image. The second sync all ensures that another image

does not access z before the new value has been set by image 1.

338 Modern Fortran Explained

Although usually the synchronization will be initiated by the same sync all statement on

all images, this is not a requirement. The additional flexibility may be useful, for example,

when different images are executing different code and need to exchange data.

All images are synchronized at program initiation as if by a sync all statement. This

ensures that initialized coarrays will have their initial values on all images before any image

commences executing its executable statements.

There is an implicit barrier whenever a corray is allocated or deallocated, see Section 19.7.

Other image control statements are described in Sections 19.13 and a complete list is found

in Section 19.13.7.

19.6 Coarrays in procedures

A dummy argument of a procedure is permitted to be a coarray. It may be a scalar, or an array

that is explicit shape, assumed size, assumed shape, or allocatable, see Figure 19.2.

Figure 19.2 Coarray dummy arguments.

subroutine subr(n, p, u, w, x, y, z, a)
integer :: n, p
real :: u[2, p/2, *] ! Scalar
real :: w(n)[p, *] ! Explicit shape
real :: x(n, *)[*] ! Assumed size
real :: y(:, :)[*] ! Assumed shape
real, allocatable :: z(:)[:, :] ! Allocatable
real, allocatable :: a[:] ! Allocatable scalar

When the procedure is called, the corresponding actual argument must be a coarray. The

association is with the coarray itself and not with a copy; the restrictions below ensure that

copy-in copy-out is never needed. (Making a copy would require synchronization on entry

and return to ensure that remote references within the procedure are not to a copy that does

not exist yet or that no longer exists.) Furthermore, the interface is required to be explicit so

that the compiler knows it is passing the coarray and not just the local variable. An example

is shown in Figure 19.3.

The restrictions on coarray dummy arguments are:

• the actual argument must be a coarray (see Section 19.3 for the rules on whether a

subobject is a coarray);

• if the dummy argument is an array, other than an assumed-shape array without

the contiguous attribute (see Section 20.4.2), the actual argument must be simply
contiguous (satisfies conditions given Section 20.4.3, which ensure that the array is

known at compile time to be contiguous); and

• it must not have the value attribute (this also applies to a non-coarray dummy argument

that has an allocatable coarray ultimate component).

If a dummy argument is an allocatable coarray, the corresponding actual argument must

be an allocatable coarray of the same rank and corank. Furthermore, its chain of argument

Coarrays 339

Figure 19.3 Calling a procedure with coarray dummy arguments.

real, allocatable :: a(:)[:], b(:,:)[:]
:

call sub(a(:), b(1,:))
:

contains
subroutine sub(x, y)

real :: x(:)[*], y(:)[*]
:

end subroutine sub

associations, perhaps through many levels of procedure call, must terminate with the same

actual coarray on every image. This allows the coarray to be allocated or deallocated in the

procedure.

If a dummy argument is an allocatable coarray or has a component that is an allocatable

coarray, it must not have intent out. This is because deallocating the coarray would require

an implicit synchronization.

Automatic coarrays are not permitted. For example, the following is invalid:

subroutine solve3(n)
integer :: n
real :: work(n)[*] ! Not permitted

Were automatic coarrays permitted, it would be necessary to require synchronization, both

after memory is allocated on entry and before memory is deallocated on return. Furthermore,

it would mean that the procedure would need to be called on all images concurrently (see

penultimate paragraph of this section).

A function result is not permitted to be a coarray or to have an ultimate component that is a

coarray. Since functions are not invoked in lockstep on every image, it would not make sense

to have a coarray result.

Allocatable coarrays may be declared in a procedure. They are discussed in Section 19.7.

The rules for resolving generic procedure references have not been extended to allow

overloading of array and coarray versions because it would be ambiguous.

A pure or elemental procedure is not permitted to define a coindexed object or contain

any image control statements (Section 19.13.7), since these involve side-effects (defining a

coindexed object is similar to defining a variable from the host or a module). However, it may

reference the value of a coindexed object.

An elemental procedure is not permitted to have a coarray dummy argument.

Unless it is allocatable or a dummy argument, an object that is a coarray or has a coarray

component is required to have the save attribute. Note that in Fortran 2008, variables

declared in the specification part of a module or submodule, as well as main-program

variables, automatically have the save attribute. Again, this is because an unsaved non-

allocatable coarray would be coming into existence on procedure invocation, requiring

synchronization, and this is inappropriate because procedures are not invoked in lockstep

on every image. An allocatable coarray is not required to have the save attribute because

340 Modern Fortran Explained

a recursive procedure may need separate allocatable coarrays at more than one level of

recursion.

A procedure with a non-allocatable coarray dummy argument will often be called on all

images at the same time with the same actual coarray, but this is not a requirement. For

example, the images may be grouped into two teams and the images of one team may be

calling the procedure with one coarray while the images of the other team are calling the

procedure with another coarray or are executing different code.

Each image independently associates its non-allocatable coarray dummy argument with an

actual coarray, perhaps through many levels of procedure call, and defines the corank and

cobounds afresh. It uses these to interpret each reference to a coindexed object, taking no

account of whether a remote image is executing the same procedure with the corresponding

coarray.

19.7 Allocatable coarrays

A coarray may be allocatable. The allocate statement is extended so that the cobounds can

be specified, for example,

real, allocatable :: a(:)[:], s[:, :]
:

allocate (a(10)[*], s[-1:34,0:*])

The cobounds must always be included in the allocate statement and the upper bound

for the final codimension must always be an asterisk. For example, the following are not

permitted (compile-time constraints):

allocate (a(n)) ! Not allowed for a coarray (no cobounds)
allocate (a(n)[p]) ! Not allowed (cobound not *)

Also, the value of each bound, cobound, or length type parameter is required to be the same

on all images. For example, the following is not permitted (run-time constraint)

allocate (a(this_image())[*]) ! Not allowed (varying local bound)

Furthermore, the dynamic types must be the same on all images. Together, these restrictions

ensure that the corrays exist on every image and are consistent.

There is implicit barrier synchronization of all images in association with each allocate
statement that involves one or more coarrays. Images do not commence executing subsequent

statements until all images finish executing the same allocate statement (on the same line

of the source code). Similarly, for deallocate, all images synchronize at the beginning of

the same deallocate statement, and do not continue with the next statement until all images

have finished the deallocation.

When an image executes an allocate statement, communication is needed between

images only for synchronization. The image allocates its local coarray and records how the

corresponding coarrays on other images are to be addressed. The compiler is not required to

check that the bounds and cobounds are the same on all images, although it may do so (or

have an option to do so). Nor is the compiler required to detect when deadlock has occurred;

for example, when one image is executing an allocate statement while another is executing

a deallocate statement.

Coarrays 341

If an unsaved allocatable coarray is local to a procedure or block construct (see Section

20.5.3), and is still allocated when the procedure or block construct completes execution,

implicit deallocation of the coarray and therefore synchronization of all images occurs.

The allocation of a polymorphic coarray is not permitted to create a coarray that is of type

c_ptr, c_funptr, or of a type with a coarray ultimate component.

Fortran 2003 allows the shapes or length parameters to disagree on the two sides of an

intrinsic array assignment to an allocatable array (see Section 15.5.2); the system performs

the appropriate reallocation. Such disagreement is not permitted for an allocatable coarray,

since it would imply synchronization.

For the same reason, intrinsic assignment is not permitted to a polymorphic coarray.

19.8 Coarrays with allocatable or pointer components

A coarray is permitted to be of a derived type with allocatable or pointer components.

19.8.1 Data components

To share data structures with different sizes, length parameter values, or types between

different images, we may declare a coarray of a derived type with a non-coarray component

that is allocatable or a pointer. On each image, the component is allocated locally or is pointer

assigned to a local target, so that it has the desired properties for that image (or is not allocated

or pointer assigned if it is not needed on that image). It is straightforward to access such data

on another image, for example,

x(:) = z[p]%alloc(:)

where the cosubscript is associated with the scalar variable z, not with its component. In

words, this statement means ‘Go to image p, obtain the address of the array component

alloc, and copy the data in the array itself to the local array x’.

If coarray z contains a data pointer component ptr, the appearance of z[q]%ptr in a

context that refers to its target is a reference to the target of component ptr of z on image q.

This target must reside on image q and must have been established by an allocate statement

executed on image q or a pointer assignment executed on image q, for example,

z%ptr => r ! Local association

A local pointer may be associated with a target component on the local image,

r => z%ptr ! Local association

but may not be associated with a target component on another image,

r => z[q]%ptr ! Not allowed (compile-time constraint)

If an association with a target component on another image would otherwise be implied,

the pointer component becomes undefined. For example, this happens when the derived-type

intrinsic assignments

z[q] = z ! The pointer component of z[q] may become undefined
z = z[q] ! The pointer component of z may become undefined

342 Modern Fortran Explained

are executed on an image other than q. It can also happen in a procedure invocation if z[q]
is an actual argument or z[q]%ptr is associated with a pointer dummy argument.

Similarly, for a coarray of a derived type that has a pointer or allocatable component,

allocating one of those components on another image is not allowed:

type(something), allocatable :: t[:]
:
allocate (t[*]) ! Allowed
allocate (t%ptr(n)) ! Allowed
allocate (t[q]%ptr(n)) ! Not allowed (compile-time constraint)

In an intrinsic assignment to a coindexed object that is an allocatable array, the shapes

and length type parameters are required to agree; this prevents any possibility of a remote

allocation. For the same reason, intrinsic assignment to a polymorphic coindexed object or

a coindexed object with an allocatable ultimate component is not permitted. Furthermore,

if an actual argument is a coindexed object with an allocatable ultimate component, the

corresponding dummy argument must be allocatable, a pointer, or have the intent in or value
attribute.

19.8.2 Procedure pointer components

A coarray is permitted to be of a type that has a procedure pointer component or a type-bound

procedure. A procedure reference through a procedure pointer component of a coindexed

object, for example,

call a[p]%proc(x) ! Not allowed

is not permitted since the remote procedure target might be meaningless on the executing

image. However, a reference through a type-bound procedure (Section 14.6) is allowed

provided the type is not polymorphic; this ensures that the type and hence the procedure

is the same on all images.

19.9 Coarray components

A component may be a coarray, and if so must be allocatable. A variable or component

of a type that has an ultimate coarray component cannot itself be a coarray and must be a

non-pointer non-allocatable scalar.4.

If an object with an allocatable coarray ultimate component is declared without the save
attribute in a procedure and the coarray is still allocated on return, there is an implicit

deallocation and associated synchronization. Similarly, if such an object is declared within a

block construct and the coarray is still allocated when the block completes execution, there

is an implicit deallocation and associated synchronization.

To avoid the possibility of implicit reallocation in an intrinsic assignment for a scalar of a

derived type with an allocatable coarray component, no disagreement of allocation status or

shape is permitted for the coarray component.

4Were we to allow a coarray of a type with coarray components, we would be confronted with references such

as z[p]%x[q] A logical way to read such an expression would be: go to image p and find component x on image q.

This is equivalent to z[q]%x.

Coarrays 343

It is not permissible to add a coarray component by type extension unless the type already

has one or more coarray components.

19.10 References to polymorphic subobjects

So that the implementation does not need to query the dynamic type of an object on another

image, no references are permitted to a polymorphic subobject of a coindexed object or to a

coindexed object that has a polymorphic allocatable subcomponent.

19.11 Volatile and asynchronous attributes

If a dummy coarray is volatile, so too must the corresponding actual argument be, and vice

versa. Without this restriction, the value of a non-volatile coarray might be altered via another

image by means not specified by the program, that is, behave as volatile.

Similarly, agreement of the attribute is required when accessing a coarray by use

association, host association, or in a block construct (see Section 20.5.3) from the scope

containing it. Here, the restriction is simple; since the attribute is the same by default, it must

not be respecified for an accessed coarray.

For the same reason, agreement of the volatile attribute is required for pointer

association with any part of a coarray.

An asynchronous or volatile coindexed object is not permitted to be an actual argument

that corresponds to an asynchronous or volatile dummy argument. This is because the copy-

in copy-out mechanism is forbidden when associating an asynchronous or volatile actual

argument with an asynchronous or volatile dummy argument, but passing a coindexed object

as an actual argument virtually requires copy-in copy-out to be done.

19.12 Interoperability

Coarrays are not interoperable, since C does not have the concept of a data object like a

coarray. Interoperability of coarrays with UPC5 might be considered in the future.

19.13 Synchronization

We have encountered barrier synchronization in Sections 19.5 and 19.7. Here, we describe

the image control statements that provide more selective synchronizations and the concept of

the execution segment that underpins the behaviour of programs that employ them.

19.13.1 Execution segments

On each image, the sequence of statements executed before the first execution of an image

control statement or between the execution of two image control statements is known as

5Unified Parallel C, an extension of C which is similar to coarrays in Fortran.

344 Modern Fortran Explained

a segment. The segment executed immediately before the execution of an image control

statement includes the evaluation of all expressions within the statement.

For example, in Figure 19.1, each image executes a segment before executing the first

sync all statement, executes a segment between executing the two sync all statements,

and executes a segment after executing the second sync all statement.

On each image P, the statement execution order determines the segment order, Pi, i=1, 2,

... . Between images, the execution of corresponding image control statements on images

P and Q at the end of segments Pi and Q j may ensure that either Pi precedes Q j+1, or Q j
precedes Pi+1, or both.

A consequence is that the set of all segments on all images is partially ordered: the segment

Pi precedes segment Qj if and only if there is a sequence of segments starting with Pi and

ending with Q j such that each segment of the sequence precedes the next either because they

are on the same image or because of the execution of corresponding image control statements.

A pair of segments Pi and Q j are called unordered if Pi neither precedes nor succeeds Q j .

For example, if the middle segment of Figure 19.1 is Pi on image 1 and Q j on another image

Q, Pi−1 precedes Qj+1 and Pi+1 succeeds Q j−1, but Pi and Qj are unordered.

There are restrictions on what is permitted in a segment that is unordered with respect to

another segment. These provide the compiler with scope for optimization. A coarray may

be defined and referenced during the execution of unordered segments by calls to atomic

subroutines (Appendix B.10.1). Apart from this,

• if a variable is defined in a segment on an image, it must not be referenced, defined, or

become undefined in a segment on another image unless the segments are ordered;

• if the allocation of an allocatable subobject of a coarray or the pointer association of

a pointer subobject of a coarray is changed in a segment on an image, that subobject

shall not be referenced or defined in a segment on another image unless the segments

are ordered; and

• if a procedure invocation on image P is in execution in segments Pi, Pi+1, ..., Pk and

defines a non-coarray dummy argument, the argument associated entity shall not be

referenced or defined on another image Q in a segment Q j unless Qj precedes Pi or

succeeds Pk (because a copy of the actual argument may be passed to the procedure).

It follows that for code in a segment, the compiler is free to use almost all its normal

optimization techniques as if only one image were present.

19.13.2 The sync images statement

For greater flexibility, the sync images statement

sync images (image-set)

performs a synchronization of the image that executes it with each of the other images in

its image set. Here, image-set is either an integer array of rank one holding distinct image

indices or an asterisk indicating all images except the invoking image.

Execution of a sync images statement on image P corresponds to the execution of a sync
images statement on image Q if the number of times image P has executed a sync images

Coarrays 345

statement with Q in its image set is the same as the number of times image Q has executed

a sync images statement with P in its image set. The segments that executed before

the sync images statement on either image precede the segments that execute after the

corresponding sync images statement on the other image. Figure 19.4 shows an example

that imposes the fixed order 1, 2, ... on images.

Figure 19.4 Using sync images to impose an order on images.

me = this_image()
ne = num_images()
if (me==1) then

p = 1
else

sync images (me-1)
p = p[me-1] + 1

end if
if (me<ne) sync images (me+1)

Execution of a sync images(*) statement is not equivalent to the execution of a sync all
statement. A sync all statement causes all images to wait for each other, whereas

sync images statements are not required to specify the same image set on all the images

participating in the synchronization. In the example in Figure 19.5, image 1 will wait for

each of the other images to reach the sync images(1) statement. The other images wait for

image 1 to set up the data, but do not wait for each other.

Figure 19.5 Using sync images to make other images to wait for image 1.

if (this_image() == 1) then
! Set up coarray data needed by all other images
sync images (*)

else
sync images (1)
! Use the data set up by image 1

end if

19.13.3 The lock and unlock statements

Locks provide a mechanism for controlling access to data that are referenced or defined by

more than one image.

A lock is a scalar variable of the derived type lock_type that is defined in the intrinsic

module iso_fortran_env. The type has private components that are not pointers and are not

allocatable. It does not have the bind attribute or any type parameters, and is not a sequence

type. All components have default initialization. A lock must be a coarray or a subobject of a

coarray. It has one of two states: locked and unlocked. The unlocked state is represented by a

346 Modern Fortran Explained

single value and this is the initial value. All other values are locked. The only way to change

the value of a lock is by executing the lock or unlock statement. For example, if a lock is a

dummy argument or a subobject of a dummy argument, the dummy argument must not have

intent out. If a lock variable is locked, it can be unlocked only by the image that locked it.

Figure 19.6 Using lock and unlock to manage stacks.

module stack_manager
use, intrinsic :: iso_fortran_env, only: lock_type
type task

:
end type
type(lock_type), private :: stack_lock[*]
type(task), private :: stack(100)[*]
integer, private :: stack_size[*]
type(task), parameter :: null = task(...)

contains
subroutine get_task(job)
! Get a task from my stack

type(task), intent(out) :: job
lock (stack_lock)
if (stack_size>0) then

job = stack(stack_size)
stack_size = stack_size - 1

else
job = null

end if
unlock (stack_lock)

end subroutine get_task
subroutine put_task(job, image)
! Put a task on the stack of image

type(task), intent(in) :: job
integer, intent(in) :: image
lock (stack_lock[image])

stack_size[image] = stack_size[image] + 1
stack(stack_size[image])[image] = job

unlock (stack_lock[image])
end subroutine put_task

end module stack_manager

Figure 19.6 illustrates the use of lock and unlock statements to manage stacks. Each

image has its own stack; any image can add a task to any stack. If a lock statement is

executed for a lock variable that is locked by another image, the image waits for the lock to

be unlocked by that image. The effect in this example is that get_task has to wait if another

Coarrays 347

image is adding a task to the stack and put_task has to wait if get_task is getting a task

from the stack or another image is executing put_task for the same stack.

There is a form of the lock statement that avoids a wait when the lock variable is locked:

logical :: success
lock (stack_lock, acquired_lock=success)

If the variable is unlocked, it is locked and the value of success is set to true; otherwise,

success is set to false and there is no wait.

An error condition occurs for a lock statement if the lock variable is already locked by the

executing image and for an unlock statement if the lock variable is not already locked by the

executing image. As for the allocate and deallocate statements, the stat= specifier is

available to avoid this causing error termination.

Any particular lock variable is successively locked and unlocked by a sequence of lock
and unlock statements, each of which separates two segments on the executing image. If

execution of such an unlock statement Pu on image P is immediately followed in this

sequence by execution of a lock statement Ql on image Q, the segment that precedes the

execution of Pu on image P precedes the segment that follows the execution of Ql on image

Q.

For a sourced allocation of a coarray (using source= to take its value from another variable

or expression), the source expression is not permitted to be of type lock_type or have a

subcomponent of that type because this would create a new lock that might be locked initially.

19.13.4 Critical sections

Exceptionally, it may be necessary to limit execution of a piece of code to one image at a

time. Such code is called a critical section. There is a new construct to delimit a critical

section:

critical
: ! code that is executed on one image at a time

end critical

No image control statement may be executed during the execution of a critical construct, that

is, the code executed must be a single segment. Branching into or out of a critical section is

not permitted.

If image Q is the next to execute the construct after image P, the segment in the critical

section on image P precedes the segment in the critical section on image Q.

19.13.5 The sync memory statement and atomic subroutines

The execution of a sync memory statement defines a boundary on an image between two

segments, each of which can be ordered in some user-defined way with respect to segments

on other images. One way to effect user-defined ordering between images is by employing

atomic subroutines, that are permitted to break the segment ordering rules of Section 19.13.1.

348 Modern Fortran Explained

We see the construction of reliable and portable code in this way as very difficult – it is all

too easy to introduce subtle bugs that manifest themselves only occasionally. We therefore do

not recommend the use of the sync memory statement or atomic subroutines and defer their

description to Appendix B.10.1.

19.13.6 The stat= and errmsg= specifiers in synchronization statements

All the synchronization statements, that is, sync all, sync images, lock, unlock, and

sync memory, have optional stat= and errmsg= specifiers. They have the same role for

these statements as they do for allocate and deallocate in Fortran 2003 (Section 16.11).

If any of these statements, including allocate and deallocate, encounter an image that

has executed a stop or end program statement and have a stat= specifier, the stat= variable

is given the value of the constant stat_stopped_image in the iso_fortran_env intrinsic

module, and the effect of executing the statement is otherwise the same as that of executing

the sync memory statement. Without a stat= specifier, the execution of such a statement

initiates error termination (Section 19.14).

19.13.7 The image control statements

The full list of image control statements is

• sync all statement;

• sync images statement;

• lock or unlock statement;

• sync memory statement;

• allocate or deallocate statement involving a coarray;

• critical or end critical statement;

• end or return statement that involves an implicit deallocation of a coarray;

• a statement that completes the execution of a block (see Section 20.5.3) and results in

an implicit deallocation of a coarray;

• stop or end program statement.

19.14 Program termination

It seems natural to allow all images to continue executing until they have all executed a stop
or end program statement, provided none of them encounters an error condition that may be

expected to terminate its execution. This is called normal termination. On the other hand, if

such an error condition occurs on one image, the computation is flawed and it is desirable to

stop the other images as soon as is practicable. This is called error termination.

Normal termination occurs in three steps: initiation, synchronization, and completion. An

image initiates normal termination if it executes a stop or end program statement. All

images synchronize execution at the second step so that no image starts the completion step

until all images have finished the initiation step. The synchronization step allows its data to

Coarrays 349

remain accessible to the other images until they all reach the synchronization step. Normal

termination may also be initiated during execution of a procedure defined by a C companion

processor.

An image initiates error termination if it executes a statement that would cause the

termination of a single-image program but is not a stop or end program statement. This

causes all other images that have not already initiated error termination to initiate error

termination. Within the performance limits of the processor’s ability to send signals to other

images, this is expected to terminate all images immediately.

The statement

error stop [stop-code]

has been introduced, where stop-code is an integer or default character constant expression.

When executed on one image, it initiates error termination there and hence causes all other

images that have not already initiated error termination to initiate error termination. It thus

causes the whole calculation to stop as soon as is practicable. The meaning of stop-code is

the same as for the stop statement, see Sections 5.3 and 20.1.6.

The example in Figure 19.7 illustrates the use of stop and error stop in a climate model

that uses two teams, one for the ocean and one for the atmosphere.

If something goes badly wrong in the atmosphere calculation, the whole model is invalid

and a restart is impossible, so all images stop as soon as possible without trying to preserve

any data.

If something goes slightly wrong with the atmosphere calculation, the images in the

atmosphere team write their data to files and stop, but their data remain available to the ocean

images which complete execution of the ocean subroutine. On return from the computation

routines, if something went slightly wrong with the atmosphere calculation, the ocean images

write data to files and stop, ready for a restart in a later run.

19.15 Input/output

Just as each image has its own variables, so it has its own input/output units. Whenever an

input/output statement uses an integer expression to index a unit, it refers to the unit on the

executing image.

The default unit for input (* in a read statement or input_unit in the intrinsic module

iso_fortran_env) is preconnected on image 1 only.

The default unit for output (* in a write statement or output_unit in the intrinsic module

iso_fortran_env) and the unit that is identified by error_unit in the intrinsic module

iso_fortran_env are preconnected on each image. The files to which these are connected

are regarded as separate, but it is expected that the processor will merge their records into a

single stream or a stream for all output_unit files and a stream for all error_unit files. If

the order of writes from images is important, synchronization and the flush statement are

required, since the image is permitted to hold the data in a buffer and delay the transfers until

either it executes a flush statement for the file or the file is closed.

Any other preconnected unit is connected on the executing image only, and the file is

completely separate from any preconnected file on another image.

350 Modern Fortran Explained

Figure 19.7 stop and error stop in a climate model.

program climate_model
use, intrinsic :: iso_fortran_env, only: stat_stopped_image
integer, allocatable :: ocean_team(:), atmosphere_team(:)
integer :: i, sync_stat
:

! Form two teams
ocean_team = [(i,i=1,num_images()/2)]
atmosphere_team = [(i,i=1+num_images()/2,num_images())]
:

! Perform independent calculations
if (this_image() > num_images()/2) then

call atmosphere(atmosphere_team)
else

call ocean(ocean_team)
end if

! Wait for both teams to finish
sync all (stat=sync_stat)
if (sync_stat == stat_stopped_image) then

: ! Preserve data on file
stop

end if
call exchange_data ! Exchange data between teams
:

contains
subroutine atmosphere (team)

integer :: team(:)
: ! Perform atmosphere calculation.
if (...) then ! Something has gone slightly wrong

: ! Preserve data on file
stop

end if
:

if (...) error stop ! Something has gone very badly wrong
:
sync images (team, stat=sync_stat))
if (sync_stat == stat_stopped_image) then

: ! Remaining atmosphere images preserve data in a file
stop

end if
end subroutine atmosphere

Coarrays 351

The open statement connects a file to a unit on the executing image only. Whether a file

with a given name is the same file on all images or varies from one image to the next is

processor dependent.

Although a file is not permitted to be connected to more than one image in Fortran 2008,

it is expected that a forthcoming Technical Report will define such a facility.

19.16 Intrinsic procedures

The following intrinsic procedures are added. None are permitted in a constant expression.

Again, we use italic square brackets [] to indicate optional arguments.

19.16.1 Inquiry functions

image_index (coarray, sub) returns a default integer scalar.

If sub holds a valid sequence of cosubscripts for coarray, the result is the correspond-

ing image index. Otherwise, the result is zero.

coarray is a coarray of any type.

sub is a rank-one integer array of size equal to the corank of coarray.

lcobound (coarray [, dim] [, kind]) returns the lower cobounds of a coarray

in just the same way as lbound returns the lower bounds of an array.

ucobound (coarray [, dim] [, kind]) returns the upper cobounds of a coarray

in just the same way as ubound returns the upper bounds of an array.

19.16.2 Transformational functions

num_images () returns the number of images as a default integer scalar.

this_image () returns the index of the invoking image as a default integer scalar.

this_image (coarray [, dim]) returns the set of cosubscripts of coarray that

denotes data on the invoking image.

coarray is a coarray of any type.

dim is a scalar integer whose value is in the range 1 ≤ dim ≤ n where n is the corank

of coarray.

If dim is absent, the result is a default integer array of rank one and size equal to the

corank of coarray; it holds the set of cosubscripts of coarray for data on the invoking

image. If dim is present, the result is a default integer scalar holding cosubscript dim
of coarray for data on the invoking image.

352 Modern Fortran Explained

Exercises

1. Write a program in which image 1 reads a real value from a file and copies it to the other images,

then all images print their values. Is a sync all statement needed before the printing?

2. Write a program in which there is an allocatable array coarray that is allocated of size 3, given

values on all images by image 1, and then printed by all images. Is a sync all statement needed

after the allocation?

3. Write a subroutine that has a scalar coarray argument and replaces it by the sum of all values across

the images with only τ references to remote images, assuming that the number of images is 2τ.

Hint: Treat the images as in a circle and arrange that at the start of the ith loop, each image holds

the sum of its original value and the next 2i −1 original values.

4. Suppose we have a rectangular grid of size nrow by ncol with a real value at each point and

ncol==num_images(). The first and last rows are regarded as neighbours and the the first and last

columns are regarded as neighbours. If the values are distributed in the coarray u(1:nrow)[*],

write a subroutine with arguments nrow, ncol, and u that replaces each value by the sum of the

values at its four neighbours minus four times its own value.

5. Suppose we have the coarrays a(1:nx,1:ny)[*] and b(1:ny,1:nz)[*]. Assuming that

max(nx,ny,nz) ≤ num_images(), write code to copy the data in b to a with redistribution so

that a(i,j)[k] == b(j,k)[i] for all valid values of the indices.

Does your code have any bottlenecks where the same image is being asked for data by many images?

If so, modify it to avoid this.

6. Adapt your subroutine from Exercise 3 to apply to a team of images by adding an array argument

holding the indices of the team and a scalar argument holding the position of the executing image

in the team, assuming that the size of the team is a power of 2. In a main program, set up two teams

and values in a coarray, then call your subroutine simultaneously for your two teams.

20. Other Fortran 2008 enhancements

Highlights of the other Fortran 2008 enhancements are a large number of new intrinsic

functions, mostly mathematical special functions and bit manipulation, and features aimed at

the high-performance market. The remaining features are all minor, mostly aimed at making

it easier to write programs without providing significant new functionality.

20.1 Trivial syntactic conveniences

20.1.1 Implied-shape arrays

When defining a named constant that is an array, it is no longer necessary to declare the shape

in advance: the shape may be taken from the value. This is called an implied-shape array,

and is specified by an asterisk as upper bound. For example,

character, parameter :: vowels(*) = [’a’, ’e’, ’i’, ’o’, ’u’]

In the case of a named array constant of higher dimension, the asterisk must be specified

for each upper bound, for example

integer, parameter :: powers(0:*,*) = &
reshape([0, 1, 2, 3, 0, 1, 4, 9, 0, 1, 8, 27], [4, 3])

declares powers to have the bounds (0:3, 1:3).

20.1.2 Implied-do loops in data statements

In Fortran standards up to Fortran 2003, expressions used for subscripts and implied-

do bounds within an implied-do loop in a data statement were limited to combinations

of constants, implied-do variables, and intrinsic operations. This was much stricter than

the requirements for constant expressions elsewhere; for example, references to intrinsic

functions were not allowed. These restrictions have now been relaxed, so that the

requirements on these expressions are now identical to those on other constant expressions.

For example,

real :: a(10,7,3)
data ((a(i,i,j),i=1,min(size(a,1),size(a,2))),j=1,size(a,3))/21*1.0/

is valid Fortran 2008; in previous standards the same effect could be achieved by

354 Modern Fortran Explained

real :: a(10,7,3)
integer,parameter :: diagonal_size = min(size(a,1), size(a,2))
integer,parameter :: dim3_size = size(a, 3)
data ((a(i,i,j),i=1,diagonal_size),j=1,dim3_size)/21*1.0/

20.1.3 Type-bound procedures

A type-bound procedure declaration statement now takes a list of procedure bindings, so that

multiple type-bound procedures can be declared in a single statement. For example, instead

of

type mycomplex
:

contains
procedure :: i_plus_myc
procedure :: myc_plus_i
procedure :: myc_plus_myc => myc_plus
procedure :: myc_plus_r
procedure :: r_plus_myc
:

end type

one may write

type mycomplex
:

contains
procedure :: i_plus_myc, myc_plus_i, myc_plus_myc=>myc_plus, &

myc_plus_r, r_plus_myc
:

end type

This can be a significant improvement when a type has many type-bound procedures.

20.1.4 Structure constructors

A structure constructor can omit the value for an allocatable component; this is equivalent to

specifying null() for that component value. For example, given the type definition

type item
character(:), allocatable :: name
integer :: n_in_stock = 0

end type

the structure constructor item() is permitted, and is equivalent to item(null()). The

omission of this feature from Fortran 2003 was really just an oversight.

Other Fortran 2008 enhancements 355

20.1.5 Semicolons

A continuation line in the program is now permitted to begin with a semicolon. For example,

a = 1; b = 2; c = 3&
; d = 4; e = 5

This was invalid according to the Fortran 95 and 2003 standards, but the restriction was

widely agreed to be a mistake and few compilers enforced it. It is now deemed to be

acceptable by Fortran 2008.

20.1.6 The stop statement

The stop statement now accepts any default integer or default character scalar constant

expression as the stop code, instead of only simple literals. For example,

character(*), parameter :: pu_name = ’load_data_type_1’
:
stop pu_name//’: value out of range’

Furthermore, the value of an integer stop code is not limited to the range 0−99999, so the

statement ‘stop -2**20’ is valid.

Finally, the standard recommends that the stop code be written to the error file (unit

error_unit of the intrinsic module iso_fortran_env) and, if it is an integer, that it be

used as the process exit status if the operating system has such a concept (and that an exit

status of zero be supplied if the stop code is of type character or the program is terminated

by an end program statement). However, these are only recommendations, and in any case

operating systems often have only a limited range for the process exit status, so values outside

the range of 0−127 should be avoided for this purpose.

The same recommendations apply to the error stop statement, that is, if it supplies an

integer stop code, that that be used for the exit status, and that otherwise the exit status

should be zero. This is somewhat at odds with typical operating system conventions where

non-zero exit codes conventionally indicate error termination, especially since in other error-

termination situations, such as an unhandled input/output error or allocation failure, the

Fortran standard is silent on what the exit status should be. Again, it seems that this facility

is difficult to use in a portable fashion.

For these reasons, we recommend the use of an informative message rather than an integer,

for both the stop and error stop statements.

20.1.7 Exit from nearly any construct

The exit statement can now be used to transfer control to the end of an enclosing associate,

block, if, select case, or select type construct. In order to do this, the construct must

be named and that name used on the exit statement. An example of this is shown in Figure

20.1.

Note that an exit statement without a construct name still exits the innermost do construct.

Since the different behaviours can easily confuse, we recommend that if this new exit (from

356 Modern Fortran Explained

Figure 20.1 Exit from if construct.

adding_to_set: if (add_x_to_set) then
find_position: do i=1, size(set)
if (x==set(i)) exit adding_to_set
if (x>set(i)) exit find_position

end do find_position
set = [set(:i-1), x, set(i:)]

end if adding_to_set

a non-do construct) is used in proximity to an exit from a do construct, both exit statements

have construct labels.

The constructs that the new exit cannot be used for are the critical and do concurrent
constructs (see Sections 19.13.4 and 20.4.1). It is also prohibited to exit an outer construct

from within a critical or do concurrent construct.

20.2 Limitation changes

20.2.1 64-bit integer support

The maximum integer size is now required to have a range of at least 18 decimal digits; that

is, the declaration

integer(selected_int_kind(18)) :: big_int

will necessarily be accepted, and on a binary machine (all modern computers) this will be a

64-bit integer variable.

20.2.2 Maximum array rank

In accordance with the advent of 64-bit machines and the much larger memory sizes that are

now available, the maximum rank of an array has been increased from 7 to 15. For example,

integer, parameter :: ieee_single = ieee_selected_real_kind(6)
real(ieee_single) :: x(10, 10, 10, 10, 10, 10, 10, 10, 10, 10)

declares an array that has 1010 elements; since the size of a single-precision IEEE floating-

point is four bytes, this requires 40 GB of memory.

If an array is also a coarray, the limit applies to the sum of the rank and corank.

20.3 Data expressiveness

20.3.1 Allocatable components of recursive type

An allocatable component is now permitted to be of any derived type, including the type

being defined or a type defined later in the program unit. This can be used to define

Other Fortran 2008 enhancements 357

dynamic structures without involving pointers, thus gaining the usual benefits of allocatable

variables: no aliasing (except where the target attribute is used), contiguity, and automatic

deallocation. Automatic deallocation means that deallocating the parent variable (or returning

from the procedure in which it is defined) will completely deallocate the entire dynamic

structure.

Figure 20.2 Allocatable list example.

type my_real_list
real value
type(my_real_list), allocatable :: next

end type
type(my_real_list), allocatable, target :: list
type(my_real_list), pointer :: last
real :: x
:
last => null()
do
read (unit, *, iostat=ios) x
if (ios/=0) exit
if (.not.associated(last)) then
allocate (list, source=my_real_list(x))
last => list

else
allocate (last%next, source=my_real_list(x))
last => last%next

end if
end do
! list now contains all the input values, in order of reading.
:
deallocate (list) ! deallocates every element in the list.

Figure 20.2 shows how this can be used to build a list. In building up the list in that

example, it was convenient to use a pointer to the end of the list. If, on the other hand, we

want to insert a new value somewhere else (such as at the beginning of the list), careful use

of the move_alloc intrinsic is recommended to avoid making temporary copies of the entire

list. We illustrate this with the subroutine push for adding an element to the top of a stack

in Figure 20.3. Similar comments apply to element deletion, illustrated by subroutine pop in

Figure 20.3.

One might imagine that the compiler would produce similar code (that is, code avoiding

deep copies) for the much simpler statements

list = my_real_list(newvalue, list)

and

list = list%next

358 Modern Fortran Explained

Figure 20.3 Allocatable stack procedures.

subroutine push(list, newvalue)
type(my_real_list), allocatable :: list, temp
real, intent(in) :: newvalue
call move_alloc(list, temp)
allocate (list, source=my_real_list(x))
call move_alloc(temp, list%next)

end subroutine
subroutine pop(list)
type(my_real_list), allocatable :: list, temp
call move_alloc(list%next, temp)
call move_alloc(temp, list)

end subroutine

as the executable parts of push and pop, respectively, but in fact the model for allocatable

assignment in the standard specifies automatic deallocation only when an array shape, length

type parameter, or dynamic type differs; that is not the case in these examples, so the compiler

is expected to perform deep copying. (A standard-conforming program can only tell the

difference when the type has any final subroutines or the list has the target attribute; so if

the variables involved are not polymorphic and not targets, a compiler might produce more

optimal code.)

20.3.2 Initial pointer association

The initial association status of a pointer can now be defined to be associated with a target, as

long as that target has the save attribute and does not have the allocatable attribute. For

example,

real, target :: x(10,10) = 0
real, pointer :: p(:,:) => x

Furthermore, a pointer can be associated with a part of such a target, including an array

section (but not one with a vector subscript). Any subscript or substring position in the target

specification must be a constant expression. For example,

real, pointer :: column_one(:) => x(:,1)

This also applies to default initialization of structure components. For example, in

type tpc(ipos, jpos)
integer, kind :: ipos, jpos
real, pointer :: pc => x(ipos, jpos)

end type
type(tpc(2, 8)) :: ps28
type(tpc(3, 5)) :: ps35
type(tpc(7, 9)) :: ps79 = tpc(x(1, 1))

Other Fortran 2008 enhancements 359

the pointer component ps28%pc is associated with x(2,8), ps35%pc is associated with

x(3,5), and ps79%pc is associated with x(1,1). However, such fripperies can be a trifle

confusing, so we recommend that this feature be used sparingly, and perhaps only for named

pointers.

20.4 Performance-oriented features

20.4.1 The do concurrent construct

A new form of the do construct, the do concurrent construct, is provided to help improve

performance by enabling parallel execution of the loop iterations. The basic idea is that

by using this construct, the programmer asserts that there are no interdependencies between

loop iterations. The effect is similar to that of various compiler-specific directives such as

‘!dec$ivdep’; such directives have been available for a long time, but often have slightly

different meanings on different compilers.

Use of do concurrent has a long list of requirements which can be grouped into

‘limitations’ on what may appear within the construct and ‘guarantees’ by the programmer

that the computation has certain properties (essentially, no dependencies) that enable

parallelization. Note that in this context parallelization does not necessarily require multiple

processors, or even if multiple processors are available, that they will be used: other

optimizations that improve single-threaded performance are also enabled by these properties,

including vectorization, pipelining, and other possibilities for overlapping the execution of

instructions from more than one iteration on a single processor.

The form of the do concurrent statement is similar to that of the forall construct

statement, including the new enhancements (see Section 20.5.6), namely

do [,] concurrent ([type-spec ::] index-spec-list [, scalar-mask-expr])

where type-spec (if present) specifies the type and kind of the index variables, and index-
spec-list is a list of index specifications of the form

index-variable-name = initial-value : final-value [: step-value]

as in

do concurrent (i=1:n, j=1:m)

Each index-variable-name is local to the loop, so has no affect on any variable with the

same name that might exist outside the loop; however, if type-spec is omitted, it has the type

and kind it would have if it were such a variable. In either case, it must be scalar and have

integer type. Each initial-value, final-value, and step-value is a scalar integer expression.

The optional scalar-mask-expr is of type logical; if it appears, only those iterations that

satisfy the condition are executed. That is,

do concurrent (i=1:n, j=1:m, i/=j)
:
:

end do

360 Modern Fortran Explained

has exactly the same meaning as

do concurrent (i=1:n, j=1:m)
if (i/=j) then
:

end if
end do

A simple example of a do concurrent construct is

do concurrent (i=1:n)
a(i, j) = a(i, j) + alpha*b(i, j)

end do

The following items are all prohibited within a do concurrent construct (and the compiler

is required to detect these):

• a return statement;

• an image control statement (see Chapter 19);

• a branch (for example, go to or err=) with a label that is outside the construct;

• a reference to a procedure that is not pure;

• a reference to one of the procedures ieee_get_flag, ieee_set_halting_mode, or

ieee_get_halting_mode from the intrinsic module ieee_exceptions;

• an exit statement that would exit from the do concurrent construct; and

• a cycle statement that names an outer do construct.

By using do concurrent the programmer guarantees:

• any variable referenced is either previously defined in the same iteration, or its value is

not affected by any other iteration;

• any pointer that is referenced is either previously pointer associated in the same

iteration, or does not have its pointer association changed by any other iteration;

• any allocatable object that is allocated or deallocated in only one iteration is not

referenced or defined by any other iteration;

• any allocatable object that is allocated by more than one iteration is subsequently

deallocated by those same iterations;

• any allocatable object that is allocated or deallocated by more than one iteration is not

referenced, defined or deallocated by any iteration that does not allocate it first; and

• records (or positions) in a file are not both written by one iteration and read back by

another iteration.

If records are written to a sequential file by more than one iteration of the loop, the ordering

between the records written by different iterations is indeterminate. That is, the records

written by one iteration might appear before the records written by the other, after the records

written by the other, or be interspersed.

Furthermore, when execution of the construct has completed,

• any variable whose value is affected by more than one iteration becomes undefined on

termination of the loop; and

Other Fortran 2008 enhancements 361

• any pointer whose association status is changed by more than one iteration has an

association status of undefined.

Note that any ordinary do loop that satisfies the limitations and which obviously has the

required properties can be parallelized, so use of do concurrent is not necessary for parallel

execution. In fact, a compiler that parallelizes do concurrent is likely to treat it as a request

that it should parallelize that loop; if the loop iteration count is very small, this could result in

worse performance than an ordinary do loop due to the overhead of initiating parallel threads

of execution. Thus, even when the programmer-provided guarantees are trivially derived

from the loop body itself, do concurrent is still useful for

• indicating to the compiler that this is likely to have a high enough iteration count to

make parallelization worthwhile;

• documenting the parallelizability for code reading and maintenance; and

• as a crutch to compilers whose analysis capabilities are limited.

20.4.2 The contiguous attribute

The contiguous attribute is a new attribute for array pointers and assumed-shape dummy

arrays. It specifies that the array will always be associated with a contiguous target or

actual argument, and never be associated with a non-contiguous one. The basic idea is

that a contiguous array is one where the elements are not separated by other data objects.

An archetypal non-contiguous array is an array section with more than one element where

adjacent elements in the section are not adjacent in the original (base) array; for example,

vector(::2) ! all the odd-numbered elements
dtarray%re ! the real parts of a complex array

In the first line, adjacent elements of the section are separated by one of the even-numbered

elements of the original vector. In the second line (which uses the syntax of Section 20.5.1),

adjacent elements of the section are separated by the imaginary components of the original

array.

Knowing that an array is contiguous in this sense simplifies array traversal and array

element address calculations, potentially improving performance. Whether this improvement

is significant depends on the fraction of time spent performing traversal and address

calculation operations; in some programs this time is substantial, but in many cases it is

insignificant in the first place.

Traditionally, the Fortran standard has shied away from specifying whether arrays are

contiguous in the sense of occupying sequential memory locations with no intervening

unoccupied spaces. In the past this tradition has enabled high-performance multi-processor

implementations of the language, but the contiguous attribute is a move towards more

specific hardware limitations. Although contiguous arrays are described only in terms of

language restrictions and not in terms of the memory hardware, the interaction between these

and interoperability with the C language means that these arrays will almost certainly be

stored in contiguous memory locations.

Any of the following arrays are considered to be contiguous by the standard:

• an array with the contiguous attribute;

362 Modern Fortran Explained

• a whole array (named array or array component without further qualification) that is

not a pointer or assumed-shape;

• an assumed-shape array that is argument associated with an array that is contiguous;

• an array allocated by an allocate statement;

• a pointer associated with a contiguous target; or

• a nonzero-sized array section provided that

– its base object is contiguous;

– it does not have a vector subscript;

– the elements of the section, in array element order, are elements of the base object

that are consecutive in array element order;

– if the array is of type character and a substring selector appears, the selector

specifies all of the characters of the string;

– it is not a component of an array; and

– it is not the real or imaginary part of an array of type complex.

A subobject (of an array) is definitely not contiguous if all of these conditions apply:

• it (the subobject) has two or more elements;

• its elements in array element order are not consecutive in the elements of the original

array;

• it is not a zero-length character array; and

• it is not of a derived type with no ultimate components other than zero-sized arrays and

zero-length character strings.

Whether an array that is in neither list is contiguous or not is compiler-specific.

The contiguous attribute can be specified with the contiguous keyword on a type

declaration statement, for example

subroutine s(x)
real, contiguous :: x(:,:)
real, pointer, contiguous :: column(:)

It can also be specified by the contiguous statement, which has the form

contiguous [::] object-name-list

Contiguity can be tested with the inquiry function

is_contiguous (a) where a is an array of any type. This returns a default logical scalar

with the value .true. if a is contiguous and .false. otherwise. If a is a pointer, it

must be associated with a target.

Arrays in C are always contiguous, so c_loc was not permitted in Fortran 2003 for an

array pointer or assumed-shape array. In Fortran 2008, c_loc is permitted for any target that

is contiguous (at execution time). The example in Figure 20.4 uses is_contiguous to check

that it is being asked to process a contiguous object, and produces an error message if it is

not. It also makes use of the new c_sizeof function to calculate the size of x in bytes (see

Section 20.13.1).

Other Fortran 2008 enhancements 363

Figure 20.4 Using is_contiguous before using c_loc.

subroutine process(x)
real(c_float), target :: x(:)
interface
subroutine c_routine(a, nbytes)
use iso_c_binding
type(c_ptr), value :: a
integer(c_size_t), value :: nbytes

end subroutine
end interface
:
if (is_contiguous(x)) then
call c_routine(c_loc(x), c_sizeof(x))

else
stop ’x needs to be contiguous’

end if
end subroutine

There is also the concept of simply contiguous; that is, not only is the object contiguous,

but it can be seen to be obviously so at compilation time. Unlike ‘being contiguous’, this is

completely standardized. This is further discussed in the next section.

When dealing with contiguous assumed-shape arrays and array pointers, it is important

to keep in mind the various runtime requirements and restrictions. For assumed-shape

arrays, the contiguous attribute makes no further requirements on the program: if the actual

argument is not contiguous, a local copy is made on entry to the procedure, and any changes

to its value are copied back to the actual argument on exit. Depending on the amount and

manner of the references to the array in the procedure, the cost of copying can be higher than

any putative performance savings given by the contiguous attribute. For example, in

complex function f(v1, v2, v3)
real, contiguous, intent(in) :: v1(:), v2(:), v3(:)
f = cmplx(sum(v1*v2*v3))**(-size(v1))

end function

since the arrays are only accessed once, if any actual argument is non-contiguous this will

almost certainly perform much worse than if the contiguous attribute were not present.

For array pointers, the contiguous attribute has a runtime requirement that it be associated

only with a contiguous target (via pointer assignment). However, it is the programmer’s

responsibility to check this, or to ‘know’ that the pointer will never become associated with a

non-contiguous section. (Such knowledge is prone to becoming false in the course of program

maintenance, so checking on each pointer assignment is recommended.) Similar comments

apply to the use of the c_loc function on an array that might not be contiguous. If these

requirements are violated, the program will almost certainly produce incorrect answers with

no indication of the failure.

364 Modern Fortran Explained

20.4.3 Simply contiguous array designators

A simply contiguous array designator is, in principle, a designator that not only describes an

array (or array section) that is contiguous, but which can been easily seen at compilation time

to be contiguous. Whether a designator is simply contiguous does not depend on the value of

any variable.

A simply contiguous array can be used in the following ways:

• as the target of a rank-remapping pointer assignment (that is, associating a pointer with

a target of a different rank, see Section 15.6) – this previously permitted only rank-one

arrays;

• as an actual argument corresponding to a dummy argument that is not an assumed-

shape array or which is an assumed-shape array with the contiguous attribute, when

both have either the asynchronous or volatile attribute;

• as an actual argument corresponding to a dummy pointer with the contiguous attribute

(this also requires that the actual argument have the pointer or target attribute).

The example in Figure 20.5 ‘flattens’ the matrix a into a simple vector, and then uses that

to associate another pointer with the diagonal of the matrix.

Figure 20.5 Diagonal of contiguous matrix.

real, target :: a(n, m)
real, pointer :: a_flattened(:), a_diagonal(:)
a_flattened(1:n*m) => a
a_diagonal => a_flattened(::n+1)

In Figure 20.6, copy-in copy-out must be avoided in the call of start_bufferin because

it will start an asynchronous input operation to read values into the array and reading will

continue after return. Because both x and y are simply contiguous, copy-in copy-out is

avoided.

Figure 20.6 Contiguous buffer for asynchronous input/output.

interface
subroutine start_bufferin(a, n)
integer, intent(in) :: n
real, intent(out), asynchronous :: a(n)

end subroutine
end interface
real, asynchronous :: x(n), y(n)
:
call start_bufferin(x)
:
call start_bufferin(y)

Other Fortran 2008 enhancements 365

Another example of the use of simply contiguous to enforce contiguity of an actual

argument is explained in Section 20.14.2.

Also, for argument association with a dummy coarray (see Section 19.6) that is an array

with the contiguous attribute or an array that is not assumed-shape, the actual argument

is required to be simply contiguous in order to avoid any possibility of copy-in copy-out

occurring. Unfortunately, the Fortran standard does not require detection of the violation of

this rule, which means that a program that breaks it might crash or produce wrong answers

without any warning.

Also, when a simply contiguous array with the target attribute and not the value attribute

is used as the actual argument corresponding to a dummy argument that has the target
attribute and is an assumed-shape array with the contiguous attribute or is an explicit-shape

array,

• a pointer associated with the actual argument becomes associated with the dummy

argument on invocation of the procedure; and

• when execution of the procedure completes, pointers in other scopes that were

associated with the dummy argument are associated with the actual argument.

However, we do not recommend using this complicated fact, as it is difficult to understand

and program maintenance is quite likely to break one of the essential conditions for its

applicability.

An array designator is simply contiguous if and only if it is

• a whole array that has the contiguous attribute;

• a whole array that is not an assumed-shape array or array pointer; or

• a section of a simply contiguous array that

– is not the real or imaginary part of a complex array (see Section 20.5.1);

– does not have a substring selector;

– is not a component of an array; and

– either does not have a section-subscript-list, or has a section-subscript-list which

specifies a simply contiguous section.

A section-subscript-list specifies a simply contiguous section if and only if

• it does not have a vector subscript;

• all but the last subscript-triplet is a colon;

• the last subscript-triplet does not have a stride; and

• no subscript-triplet is preceded by a section-subscript that is a subscript.

An array variable is simply contiguous if and only if it is a simply contiguous array

designator or a reference to a function that returns a pointer with the contiguous attribute.

20.5 Computational expressiveness

20.5.1 Accessing parts of complex variables

In Fortran 2003 and earlier, the real and imaginary parts of a complex variable were only

accessible by the intrinsic functions real and aimag. This was inconvenient for updating a

366 Modern Fortran Explained

complex variable, so these can now be accessed as the pseudo-components re and im for the

real and imaginary parts, respectively. For example,

complex :: impedance
impedance%re = 1.0

The re and im selectors can also be applied to complex arrays, where they yield an array

section comprising the real or imaginary part of each element of the array. For example,

complex :: x(n), y(n)
x%im = 2.0*y%im

20.5.2 Pointer functions denoting variables

When a pointer function returns an associated pointer, that pointer is always associated with a

variable that has the target attribute, either by pointer assignment or by allocation. Fortran

2008 allows such a reference to a pointer function to be used in contexts that hitherto required

a variable, in particular

• as an actual argument for an intent inout or out dummy argument;

• on the left-hand side of an assignment statement.

In this respect, a pointer function reference can be used exactly as if it were the variable

that is the target of the pointer result.

These are sometimes known as accessor functions; by abstracting the location of the

variable, they enable objects with special features such as sparse storage, instrumented

accesses, and so on, to be used as if they were normal arrays. They also allow changing

the underlying implementation mechanisms without needing to change the code using the

objects. An example of this feature is shown in Figure 20.7.

20.5.3 The block construct

The block construct is a new kind of scoping unit that is an executable construct, providing

the ability to declare entities within the executable part of a subprogram that have the scope of

the construct. Such entities may be variables, types, constants, or even external procedures.

Any entity of the host scoping unit with the same name is hidden by the declaration.

For example, in

do i=1, m
block
real alpha, temp(n)
integer j
:
temp(j) = alpha*a(j, i) + b(j)
:

end block
end do

Other Fortran 2008 enhancements 367

Figure 20.7 Example of accessor functions.

module indexed_store
real, private, pointer :: values(:) => null()
integer, private, pointer :: keys(:) => null()
integer, private :: maxvals = 0

contains
function storage(key)
integer, intent(in) :: key
real, pointer :: storage
integer :: loc
if (.not.associated(values)) then
allocate (values(100), keys(100))
keys(1) = key
storage => values(1)
maxvals = 1

else
loc = findloc(keys(:maxvals), key)
if (loc>0) then
storage => values(loc)

else
: (Code to store new element elided.)

end if
end if

end function
end module
:
storage(13) = 100
print *, storage(13)

the variables alpha, temp, and j are local to the block, and have no effect on any variables

outside the block that might have the same name. Used judiciously, this can make code easier

to understand (there is no need to look through the whole subprogram for later accesses to

alpha, for instance) and since the compiler also knows that these are local to each iteration,

this can aid optimization.

Another example is

block
use convolution_module
intrinsic norm2
:
x = convolute(y)*norm2(z)
:

end block

368 Modern Fortran Explained

Here, the entities brought in by the use statement are visible only within the block, and the

declaration of the norm2 intrinsic avoids clashing with any norm2 that might exist outside

the block. These techniques can be useful in large subprograms, or during code maintenance

when it is desired to access a module or procedure without risking disturbance to the rest of

the subprogram.

Not all declarations are permitted in a block construct. The intent, optional, and

value statements are not available (because a block has no dummy arguments), and the

implicit statement is prohibited because it would be confusing to change the implicit typing

rules in the middle of a subprogram. Statement function definitions, common, equivalence,

and namelist statements are all prohibited because of potential ambiguities or confusion.

Finally, a save statement that specifies entities in the block is permitted, but a global save
is prohibited, again because it would be ambiguous as to just exactly what would be saved.

Like other constructs, the block construct may be given a construct name, and that

construct name may be used in exit statements to exit from the construct (see Section

20.1.7). Similarly, block constructs may be nested the same way that other constructs are

nested. An example of this is shown in Figure 20.8.

Figure 20.8 Nesting block constructs.

find_solution: block
real :: work(n)
:
loop: do i=1, n

block
real :: residual
:
if (residual<epsilon(x)) exit find_solution

end block
end do loop
:

end block find_solution

The block construct is only of limited use in normal programming, but is really useful

when program-generation techniques such as macros are being used, to avoid conflicts with

entities elsewhere in a subprogram. (Macros are not part of Fortran 2008, but various macro

processors are widely used with Fortran.)

20.5.4 Impure elemental procedures

Elemental procedures as defined in Fortran 95 and 2003 are required to be pure, a condition

which aids parallel evaluation. While this is advantageous for performance, it does prevent

other possibilities where one wishes to perform impure processing elementally on arrays

of arbitrary rank. In such cases, one was forced to provide a separate function for each

permutation of conformant ranks; for a procedure with two arguments, that was 22 separate

procedures (8 cases where both arguments had the same rank, 7 where the first was scalar and

Other Fortran 2008 enhancements 369

the second was an array, and 7 where the first was an an array and the second was scalar). With

the increase of maximum rank to 15, this increases to 16+15+15 = 46 separate procedures.

The impure prefix on the procedure heading allows one to define an impure elemental

procedure, which processes array argument elements one by one in array element order. An

example is shown in Figure 20.9. This example is impure in three ways: it counts the number

of overflows in the global variable overflow_count, it logs each overflow on the external

unit error_unit, and it terminates the program with stop when too many errors have been

encountered.

Figure 20.9 An impure elemental function.

module safe_arithmetic
integer :: max_overflows = 1000
integer :: overflow_count = 0

contains
impure elemental integer function square(n)
use iso_fortran_env, only:error_unit
integer, intent(in) :: n
double precision, parameter :: sqrt_huge = &

sqrt(real(huge(n), kind(0d0)))
if (abs(n)>sqrt_huge) then
write (error_unit,*) ’Overflow in square (’, n, ’)’
overflow_count = overflow_count + 1
if (overflow_count>max_overflows) stop ’?Too many overflows’
square = huge(n)

else
square = n**2

end if
end function

end module

Only the requirements relating to ‘purity’ (lack of side-effects) are lifted: the elemental

requirements remain, that is:

• all dummy arguments of an elemental procedure must be scalar non-coarray dummy

data objects and must not have the pointer or allocatable attribute;

• all dummy arguments of an elemental procedure must have specified intent;

• the result variable of an elemental function must be scalar, must not have the pointer
or allocatable attribute, and must not have a type parameter that is defined by an

expression that is not a constant expression;

• in a reference to an elemental procedure, all actual arguments must be conformable;

and

• in a reference to an elemental procedure, actual arguments corresponding to intent out
and inout dummy arguments must either all be arrays or all be scalar.

370 Modern Fortran Explained

20.5.5 Internal procedures as actual arguments

An internal procedure can be used as an actual argument or as the target of a procedure

pointer. When it is invoked via the corresponding dummy argument or procedure pointer, it

has access to the variables of the host procedure as if it had been invoked there. For example,

in Figure 20.10, invocations of the function fun from integrate will use the values for the

variables freq and alpha from the host procedure.

Figure 20.10 Quadrature using internal procedures.

subroutine s(freq, alpha, lower, upper, ...)
real(wp), intent(in) :: freq, alpha, lower, upper
:
z = integrate(fun, lower, upper)
:

contains
real(wp) function f(x)
real(wp), intent(in) :: x
f = x*sin(freq*x)/sqrt(1-alpha*x**2)

end function
end subroutine

Apart from the convenience, this code can safely be part of a multi-threaded program

because the data for the function evaluation is not being passed by global variables.

In the case of a procedure pointer associated with an internal procedure, when the host

procedure returns the procedure pointer will become undefined – because the environment

necessary for the evaluation of the internal procedure will have disappeared. For example, in

Figure 20.11, on return from sub, the variable n no longer exists for f to refer to.

20.5.6 Specifying the kind of a forall index variable

In a forall statement or construct, all the index variables are local to the construct; for

example, in

idx = 3
forall (idx=100:200) a(idx, idx) = idx**2
print *, idx

the value ‘3’ is printed because the idx within the forall is not the same as the idx outside

the forall. However, the idx within the forall has the same type and kind as the one

outside would have if it existed; and if it does exist, it has to be a scalar integer variable.

This is a bit inconvenient, and with implicit none, declaration of the forall index

variable required the creation of a variable outside the forall.

Thus, Fortran 2008 allows the type and kind of the forall index to be specified in the forall
statement itself; for example, in

Other Fortran 2008 enhancements 371

Figure 20.11 Unsafe pointer to internal procedure.

module unsafe
procedure(real), pointer :: funptr

contains
subroutine sub(n)
funptr => f ! Associates funptr with internal function f.
call process ! funptr will remain associated with f during the

! execution of subroutine "process".
return ! Returning from sub makes funptr become undefined.

contains
real function f(x)
real, intent(in) :: x
f = x**n

end function
end subroutine

end module

complex :: i(100)
:
forall (integer(int64) :: i=1:2_int64**32) a(i) = i*2.0**(-32)

the outer variable i is a complex array, but it is completely hidden by the declaration in the

forall statement.

20.5.7 Generic resolution

The set of specific procedures that are identified by the same generic identifier must satisfy

stringent requirements to ensure that all possible references to the generic identifier can be

unambiguously resolved to a specific procedure. For each pair of specific procedures, this

usually requires that there be a dummy argument in one that is distinguishable from the

corresponding dummy argument in the other (see Section 5.18). There are two extensions to

what characteristics make a dummy argument distinguishable:

1) a dummy procedure is considered distinguishable from a dummy variable; and

2) a dummy argument with the allocatable attribute is considered distinguishable from

a dummy argument with the pointer attribute when the pointer does not have intent

in.

The interface block in Figure 20.12 illustrates the first extension: since the compiler

always knows whether an actual argument is a procedure, no reference to g1 could ever

be ambiguous.

The interface block in Figure 20.13 illustrates the second extension: in this case the point

of the interface is to allow switching between using allocatable and pointer, without having

to change the name of the deallocation procedure.

372 Modern Fortran Explained

Figure 20.12 Generic disambiguation based on procedureness.

interface g1
subroutine s1(a)
real a

end subroutine
subroutine s2(a)
real, external :: a

end subroutine
end interface

Figure 20.13 Generic disambiguation based on pointer vs. allocatable.

interface log_deallocate
subroutine log_deallocate_real_pointer_2(a)
real, pointer, intent(inout) :: a(:, :)

end subroutine
subroutine log_deallocate_real_allocatable_2(a)
real, allocatable, intent(inout) :: a(:, :)

end subroutine
end interface

The reason that allocatable and pointer are only considered to be mutually distin-

guishable when the pointer does not have intent in is that there is an interaction with the

automatic targetting feature (see Section 20.14.2) that would have made it possible to write

an ambiguous reference.

20.6 Data usage and computation

20.6.1 Enhancements to the allocate statement

In Fortran 2003, to ‘clone’ an array using the allocate statement with the source= specifier,

the bounds had to be specified on the allocation; for example

real, allocatable :: a(:), b(:)
:
allocate (b(lbound(a, 1):ubound(a, 2)), source=a)

In Fortran 2008 bounds may be omitted, in which case they will be taken from the source=
specifier, allowing the much simpler

allocate (b, source=a)

Fortran 2008 also adds the facility to allocate a variable to the shape, type, and type

parameters of an expression without copying its value. This is done with the mold= specifier,

for example

allocate (b, mold=a)

Other Fortran 2008 enhancements 373

After the allocation any relevant default initialization will be applied to b.

Finally, the restriction in Fortran 2003 that limits the source= specifier to acting on a single

allocation has been lifted: both mold= and source= may be used when allocating multiple

objects, for example,

allocate (a(10), b(20), source=173)

20.6.2 Automatic reallocation

Intrinsic assignment to an allocatable polymorphic variable is now allowed, and this extends

the automatic reallocation feature introduced by Fortran 2003 for array shape and deferred

type parameters to handle types.

If the variable is allocated and its dynamic type differs from that of the expression, the

variable is deallocated (just as if it were an array with different shape or had different deferred

type parameter values). If the variable was unallocated, or is deallocated by the previous step,

it is allocated to have the dynamic type of the expression (and array bounds or type parameter

values, if applicable). Finally, the value is copied just as in normal assignment (with shallow

copying for any pointer components and deep copying for any allocatable components).

An example is

class(*), allocatable :: x
:
x = 3

The effect of automatic reallocation is similar to that of

if (allocated(variable)) deallocate (variable)
allocate (variable, source=expression)

except that, in the intrinsic assignment case,

• the variable may appear in the expression, and any reallocation occurs after evaluation

of the expression and before the copying of the value; and

• if the variable is already allocated with the correct type (and shape and deferred type

parameter values, if applicable), no reallocation is done; apart from performance, this

only matters when the variable also has the target attribute and there is a pointer

associated with it: instead of the pointer becoming undefined, it will remain associated

and will see the new value.

20.6.3 Elemental subprogram restrictions

In Fortran 2003, a dummy argument of an elemental subprogram was not permitted to be

used in a specification expression for a local variable. The purpose of this restriction was

to facilitate optimization of such procedures by ensuring that the space needed by local

variables would be fixed for the whole array. However, the restriction was easily subverted by

using allocatable variables or internal procedures, and proved not to be particularly useful in

practice (it being trivial for the compiler to detect whether such a restriction held and therefore

374 Modern Fortran Explained

whether any relevant optimizations could be applied anyway). Therefore, this restriction has

been removed in Fortran 2008.

Here is a partial example:

elemental real function f(a, b, order)
real, intent (in) :: a, b
integer, intent (in) :: order
real :: temp(order)
:

In this elemental function, the local variable temp is an array whose size depends on the

order argument.

20.7 Input/output

20.7.1 Recursive input/output

A recursive input/output statement is an input/output statement that is executed as a result

of a function reference in an I/O list. In Fortran 2003, recursive input/output was permitted

but only for reading and writing from internal files. In Fortran 2008, recursive input/output

is also permitted for external files, provided only that the same unit is not involved in both

input/output actions. This is particularly useful while debugging and also for logging and

error reporting. For example,

print *, invert_matrix(x)
:

contains
function invert_matrix(a)
:
if (singular) then
write (error_unit,*) &
’Cannot invert singular matrix - continuing!’

return
end if
:

20.7.2 The newunit= specifier

A longstanding inconvenience in Fortran programs has been the need to manually manage

input/output unit numbers. This inconvenience becomes a real problem when using older

third-party libraries that perform input/output and for which the source code is unavailable;

when opening a file, it is not difficult to find a unit number that is not currently in use, but it

may be the same as one that is employed later by other code.

These inconveniences are solved by the newunit= specifier on the open statement. This

returns a unique negative unit number on a successful open. Being negative, it cannot

clash with any user-specified unit number (these being required to be non-negative), and

the processor will choose a value that does not clash with anything it is using internally.

Other Fortran 2008 enhancements 375

An example is:

integer :: in
open (file=’input.dat’, status=’old’, form=’unformatted’, newunit=in)
:
read (in) data

To avoid any confusion in the result of the number= specifier of the inquire statement,

where −1 indicates a file that is not connected, newunit= will never return −1.

20.7.3 Writing comma-separated values

Two extensions have been added to format processing to make the writing of CSV (comma-
separated values) files easier.

The first extension is the g0 edit descriptor; this transfers the user data as follows:

• integer data are transferred as if i0 had been specified;

• real and complex data are transferred as if esw.dee had been specified, where the

compiler chooses the values of w, d, and e depending on the actual value to be output;

• logical data are transferred as if l1 had been specified;

• character data are transferred as if a had been specified.

For example,

print ’(1x, 5(g0, ";"))’, 17, 2.71828, .false., "Hello"

will print something like

17;2.7183e+00;F;Hello;

(depending on the values for w, d, and e chosen by the compiler for the floating-point datum).

The g0.d edit descriptor is similar to the g0 edit descriptor but specifies the value to be

used as d for floating-point data; as seen in the example above, this can be necessary if the

value chosen by the compiler is unsuitable. Unfortunately, the Fortran 2008 standard forbids

the use of g0.d for anything other than floating-point data, even though d is ignored for gw.d
for those data type, removing much of its convenience at a stroke.

Under the second extension, unlimited format repetition can be used to repeat a format

specification without any preset limit, as long as there are still data left to transfer to or from

the I/O list. This is specified by *(format-items), and is permitted only as the last item in a

format specification. It behaves similarly to N(format-items) for a very large integer N, for

example

print ’(4x,"List: ",*(g0,:,","))’, 10, 20, 30

will print

List: 10,20,30

However, due to a wording flaw in the published standard, the behaviour might differ if

there is no colon between the last data edit descriptor and the closing right parenthesis of

the unlimited format control. This flaw is expected to be corrected in due course, but we

recommend that the situation should be avoided – that is, there should be a colon between the

last data edit descriptor and the closing parenthesis.

376 Modern Fortran Explained

20.8 Intrinsic procedures

There are a number of extensions to some existing intrinsic procedures, and a large number

of new intrinsic procedures have been added. This highlights the need for programmers to

use explicit interfaces (and where possible, module procedures) to avoid inadvertant changes

in their programs’ semantics following an upgrade to a new language level in their compiler.

In the new intrinsic procedures described in this chapter, all arguments are intent in
unless otherwise specified. Any argument named kind must (if present) be a scalar integer

initialization expression.

20.9 Mathemetical intrinsic functions

20.9.1 Changes to trigonometric functions

The intrinsic functions acos, asin, atan, cosh, sinh, tan, and tanh now accept arguments

of type complex. In the case of cosh, sinh, tan, and tanh, these were previously available

by using the simple identities

cosh x = cos ix
sinh x = −i sin ix
tan x = (sin x)/(cos x)

tanh x = −i tan ix

or, by using Fortran statement functions (see Appendix C.1.5),

complex :: cosh, sinh, tan, tanh, x
intrinsic :: cos, sin
cosh(x) = cos((0,1)*x)
sinh(x) = (0,-1)*sin((0,1)*x)
tan(x) = sin(x)/cos(x)
tanh(x) = (0,-1)*sin((0,1)*x)/cos((0,1)*x)

20.9.2 New hyperbolic trigonometic functions

Elemental intrinsic functions have been added for the inverse hyperbolic trigonometric

functions:

acosh (x) returns the inverse hyperbolic cosine of x, that is, y such that cosh(y) would

be approximately equal to x.

asinh (x) returns the inverse hyperbolic sine of x.

atanh (x) returns the inverse hyperbolic tangent of x.

In each case, x must be of type real or complex, and the result has the same type and kind.

Note that for complex numbers, these functions are related to the normal trigonometric

functions by simple identities:

Other Fortran 2008 enhancements 377

acosh x = −i acos x
asinh x = −i asin ix
atanh x = atan ix

20.9.3 New special mathematical functions

New elemental intrinsic functions for calculating Bessel functions have been added:

bessel_j0 (x) first kind and order zero;

bessel_j1 (x) first kind and order one;

bessel_jn (n, x) first kind and order n;

bessel_y0 (x) second kind and order zero;

bessel_y1 (x) second kind and order one;

bessel_yn (n, x) second kind and order n.

In each case, x must be of type real, and n must be of type integer with a non-negative value.

Two new transformational functions return vectors of multiple Bessel function values:

bessel_jn (n1, n2, x) first kind and orders n1 to n2;

bessel_yn (n1, n2, x) second kind and orders n1 to n2.

In this case n1 and n2 must be of type integer with non-negative values, and all three

arguments must be scalar. If n2<n1, the result has zero size.

It is potentially more efficient to calculate successive Bessel function values together rather

than separately, so if these are required the transformational forms should be used instead of

multiple calls to the elemental ones.

Three new elemental functions have been added for calculating the error function.

erf (x) returns the value of the error function of x, 2√
π
∫ x

0 e−t2
dt.

erfc (x) returns the complement of the error function, 1−erf(x). This has the

mathematical form 2√
π
∫ ∞
x e−t2

dt.

erfc_scaled (x) returns the exponentially scaled error function, exp(x**2)*erfc(x).

In each case, x must be of type real. Note that for small values of x (approximately 9.0

for IEEE single precision), erf(x) is equal to one and erfc(x) underflows to zero; when

working outside this range, erfc_scaled is more useful.

Two new elemental functions have been added for the gamma function:

gamma (x) returns the value of the gamma function at x.

log_gamma (x) returns the natural logarithm of the absolute value of the gamma

function, log(abs(gamma(x))).

In each case, x must be of type real, with a value that is not zero or a negative whole number.

378 Modern Fortran Explained

20.9.4 Euclidean norms

Two new functions have been added for calculating Euclidean norms (or distance). The first

function is elemental:

hypot (x, y) returns the Euclidean distance, that is
√
x2 +y2, calculated without undue

overflow or underflow. The arguments x and y must be of type real with the same kind

type parameter, and the result is also real of that kind. This addition to the list of

intrinsic functions makes a total of three intrinsic functions that calculate Euclidean

distances, which seems a trifle unnecessary for such a simple thing. (The other two

functions are abs(cmplx(x, y)) and norm2([x, y]) – the former being available

for this purpose since Fortran 90.)

The second function is transformational:

norm2 (x [, dim]) returns the L2 norm of a real array x; the result is a real scalar of

the same kind as x.

The L2 norm is the square root of the sum of the squares of the elements; for a

real vector this is mathematically equal (but not necessarily computationally equal)

to sqrt(dot_product(x, x)).

If the dim argument is present it must be a scalar integer satisfying 1≤dim≤n, where

n is the rank of x; it is not permitted to be an optional dummy argument. In this case,

instead of calculating the L2 norm of the whole array, the array is reduced exactly as for

sum(x, dim) except that instead of summation the values are calculated by applying

norm2 to the vectors being reduced.

For example,

norm2(reshape([1.0, 3.0, 2.0, 4.0], [2, 2]), dim=2)

is approximately equal to [2.236, 5.0].

The standard recommends, but does not require, that norm2 be calculated without

undue overflow or underflow.

20.10 Bit manipulation

A wide range of new intrinsic functions provide additional bit manipulation functionality.

20.10.1 Bitwise (unsigned) comparison

Four new elemental functions have been provided for performing bitwise comparisons,

returning a default logical result. Bitwise comparisons treat integer values as unsigned
integers; that is, the most significant bit is not treated as a sign bit but as having the value

of 2b−1, where b is the number of bits in the integer.

Other Fortran 2008 enhancements 379

bge (i, j) returns the value true if i is bitwise greater than or equal to j, and the value

false otherwise.

bgt (i, j) returns the value true if i is bitwise greater than j, and the value false

otherwise.

ble (i, j) returns the value true if i is bitwise less than or equal to j, and the value false

otherwise.

blt (i, j) returns the value true if i is bitwise less than j, and the value false otherwise.

The arguments i and j must either be of type integer or be binary, octal, or hexadecimal

(‘boz’) literal constants; if of type integer, they need not have the same kind type parameter.

For example, on a two’s-complement processor, -1_int8 has the bit pattern z’ff’, and

this has the value 255 when treated as unsigned, so bge(-1_int8, 255) is true and

blt(-1_int8, 255) is false.

20.10.2 Double-width shifting

Two unusual elemental functions provide double-width shifting. These functions concatenate

i and j and shift the combined value left or right by shift; the result is the most significant

half for a left shift and the least significant half for a right shift.

dshiftl (i, j, shift) returns the most significant half of a double-width left-shift.

dshiftr (i, j, shift) returns the least significant half of double-width right shift.

The arguments i and j must be either ‘boz’ literal constants or of type integer; if they are

of type integer they must have the same kind, if one is a ‘boz’ constant it will be converted

to the type of the other as if by the int function. They cannot both be ‘boz’ constants. The

shift argument must be an integer, but can be of any kind. The result type is integer with

the same kind as either i or j. An example is dshiftl(21_int8, 64_int8, 2), which has

the value 85_int8.

In general, these functions are harder to understand and will perform worse than simply

using ordinary shifts on integers of double the width, so they should be used only if the exact

functionality is really what is required.

20.10.3 Bitwise reductions

Three new transformational functions reduce an array (by one rank, or completely to a scalar,

in exact analogy to sum and product), but using bitwise operations instead of addition or

multiplication (see Section 8.11).

iall (array [, mask]) reduces array to a scalar value using the iand function.

iall (array, dim [, mask]) reduces dimension dim of array using the iand
function.

380 Modern Fortran Explained

iany (array [, mask]) reduces array to a scalar value using the ior function.

iany (array, dim [, mask]) reduces dimension dim of array using the ior
function.

iparity (array [, mask]) reduces array to a scalar value using the ieor function.

iparity (array, dim [, mask]) reduces dimension dim of array using the ieor
function.

The array argument must be an integer array. If present, the mask argument must be a

logical array with the same shape as array, and only those elements for which mask is true

contribute to the final value. The dim argument must be an integer scalar in the range 1 ≤
dim ≤ rank(array); it must not be an optional dummy argument. The result of each function

is of type integer with the same kind as array, and is either scalar or, if dim is specified, has

the shape of array with that dimension eliminated.

If no elements contribute to the result or to an element of the result, the value is zero for

iany and iparity, and not(0_k) for iall, where k = kind(array).

For example, the value of iall([14, 13, 11]) is equal to 8, and the value of iall([14,
13, 11], mask=[.true., .false., .true]) is equal to 10.

20.10.4 Counting bits

Several new elemental functions are provided for counting bits within an integer.

leadz (i) returns the number of leading (most significant) zero bits in i.

popcnt (i) returns the number of nonzero bits in i.

poppar (i) returns the parity of the bit count of an integer, that is, poppar(i) is identical

to iand(popcnt(i), 1).

trailz (i) returns the number of trailing (least significant) zero bits in i.

The argument i may be any kind of integer, and the result is a default integer.

Note that the values of popcnt, poppar, and trailz depend only on the value of the

argument, whereas the value of leadz depends also on the kind of the argument. For example,

leadz(64_int8) has the value 2, while leadz(64_int16) has the value 10; the values of

popcnt(64_k), poppar(64_k), and trailz(64_k) are 1, 1, and 5, respectively, no matter

what the kind value k is.

20.10.5 Producing bitmasks

New elemental functions facilitate producing simple bitmasks:

maskl (i [, kind]) returns an integer with the leftmost i bits set and the rest zero.

Other Fortran 2008 enhancements 381

maskr (i [, kind]) returns an integer with the rightmost i bits set and the rest zero.

This has the same value as ishft(1, i) - 1 on two’s complement machines (all

modern computers).

The result type is integer with the specified kind (or default integer if no kind is specified).

The argument i must be of type integer of any kind (the kind of i has no effect on the result),

and with value in the range 0≤i≤b, where b is the bit size of the result.

For example, maskl(3,int8 is equal to int(b’11100000’,int8) and maskr(3,int8)
is equal to 7_int8.

20.10.6 Merging bits

A new elemental function merges bits from separate integers.

merge_bits (i, j, mask) returns the bits of i and j merged under the control of

mask. The arguments i, j, and mask must be integers of the same kind or be ‘boz’

constants. At least one of i and j must be an integer, and a ‘boz’ constant is converted

to that type as if by the int intrinsic; the result is of type integer with the same kind.

This function is modelled on the merge intrinsic, treating 1 and 0 bits as true and

false, respectively. The value of the result is determined by taking the bit positions

where mask is 1 from i, and the bit positions where mask is 0 from j; this is equal to

ior(iand(i, mask), iand(j, not(mask))).

20.10.7 Additional shift operations

There are three new intrinsic functions for bit shifting:

shifta (i, shift) returns the bits of i shifted right by shift bits, but instead of

shifting in zero bits from the left, the ‘sign bit’ is replicated. On a two’s complement

machine this makes it an arithmetic shift (thus the name shifta), that is division by

a power of two; in the unlikely event of encountering a one’s complement or sign-

magnitude machine, the interpretation of the result value is somewhat different.

shiftl (i, shift) returns the bits of i shifted left, equivalent to ishft(i, shift);

shiftr (i, shift) returns the bits of i shifted right, equivalent to ishft(i,
-shift).

In each case, the i and shift are both of type integer (of any kind), shift must be in the

range 0≤shift≤bit_size(i), and the result is of type integer with the same kind as i.

The only advantages of shiftl and shiftr over ishft are:

• the shift direction is implied by the name, so one doesn’t have to remember that a

positive shift value means ‘shift left’ and a negative shift value means ‘shift right’;

• if the shift amount is variable, the code generated for shifting is theoretically more

efficient (in practice, unless a lot of other things are being done to the values, the

performance is going to be limited by the main memory bandwidth anyway, not the

shift function).

382 Modern Fortran Explained

20.11 Miscellaneous intrinsic procedures

20.11.1 Procedures supporting coarrays

The intrinsic subroutines atomic_define and atomic_ref, and the intrinsic functions

image_index, lcobound, num_images, this_image, and ucobound have been added to

support programming with coarrays. These are described in Chapter 19.

20.11.2 Executing another program

The ability to execute another program from within a Fortran program is provided by the new

intrinsic subroutine execute_command_line; as its name suggests, this passes a ‘command

line’ to the processor which will interpret it in a totally system-dependent manner. For

example,

call execute_command_line(’ls -l’)

is likely to produce a directory listing on Unix and an error message on Windows. The full

syntax is as follows.

call execute_command_line (command [,wait] [,exitstat] [,cmdstat]
[,cmdmsg]) where the arguments are as follows:

command has intent in and is a scalar default character string containing the

command line to be interpreted by the processor.

wait has intent in and is a scalar default logical indicating whether the command

should be executed asynchronously (wait=.false.), or whether the procedure

should wait for it to terminate before returning to the Fortran program (the

default).

exitstat has intent inout and is a scalar default integer variable that, unless wait
is false, will be assigned the ‘process exit status’ from the command (the meaning

of this is also system dependent).

cmdstat has intent out and is a scalar default integer variable that is assigned zero

if execute_command_line itself executed without error, −1 if the processor

does not support command execution, −2 if wait=.true. was specified but

the processor does not support asynchronous command execution, and a positive

value if any other error occurred.

cmdmsg has intent inout and is a scalar default character string that, if cmdstat is

assigned a positive value, is assigned an explanatory message.

If any error occurs (such that a nonzero value would be assigned to cmdstat) and cmdstat
is not present, the program is error-terminated.

Note that even if the processor supports asynchronous command execution, there is

no mechanism provided for finding out later whether the command being executed asyn-

chronously has terminated or what its exit status was.

Other Fortran 2008 enhancements 383

20.11.3 Character comparison

In the unlikely event of the compiler supporting an ASCII character kind but it not being

the default character kind, the intrinsic functions for comparing characters using the ASCII

collating sequence lge, lgt, lle, and llt will also accept arguments of ASCII kind. Both

arguments must have the same kind.

This is unlikely to be useful since ordinary comparison using the relational operators <
etc. has exactly the same results with ASCII kind.

20.11.4 Array searching

The transformational intrinsic functions maxloc and minloc, which search an array for the

maximum or minimum value, respectively, have had an optional back argument added to

indicate whether the first or last occurrence is desired. The back argument is the final

argument in the list, and must be a scalar logical. For example, maxloc([1,4,4,1]) is

equal to 2, whereas maxloc([1,4,4,1],back=.true.) is equal to 3.

The new transformational intrinsic function findloc reduces an array in exactly the same

way as maxloc or minloc, but returning the position of an element with the specified value

instead of the maximum or minimum – or zero if no element was found. Its form is as follows:

findloc (array, value [, mask] [, kind] [, back])
searches the whole of array, possibly masked by mask, for value, and returns the

vector of subscript positions identifying that element. The array argument must be of

intrinsic type, and value must be a scalar of comparable type and kind (not necessarily

the same type). If present, mask must be of type logical with the same shape as array,

kind must be a scalar integer constant expression, and back must be a scalar logical. If

back is present and true, the function finds the last suitable value in array, otherwise

it finds the first such value.

findloc (array, value, dim [, mask] [, kind] [, back])
reduces dimension dim of array, the result being the position in each vector along

dimention dim where the element was found. The arguments are the same as before,

except for dim which must be a scalar integer.

The result type is integer with the specified kind (or default integer if no kind is specified).

For example, findloc([(i, i = 10, 1000, 10)], 470) has the value 47.

Note that because we are searching for equality, any intrinsic type may be used (whereas

maxloc and minloc do not allow complex or logical); for type logical, the .eqv. operation

is used for the comparison.

20.11.5 Logical parity

The new transformational intrinsic function parity reduces the array mask, which must be

of type logical, in the same way as all or any, but with the .neqv. operation instead of the

.and. or .or. operation. It has the form

parity (mask) reduces mask to a scalar, and

384 Modern Fortran Explained

parity (mask, dim) reduces dimension dim of mask.

Its value is identical to that of iand(count(mask [, dim]),1)==1, that is, it tests

whether the number of true values is odd, but it is possibly more efficient as well as clearer.

Note that, as in count, the actual argument corresponding to dim must not itself be an

optional dummy argument.

20.11.6 Decimal arithmetic support

In order to facilitate support of non-binary arithmetics, in particular the decimal arithmetic

specified by the 2008 IEEE 754 floating-point standard, an optional radix argument has been

added to the inquiry function selected_real_kind at the end of its argument list. It must

be a scalar integer, and limits the values returned to floating-point types with that radix; for

example,

selected_real_kind(p=6, radix=10)

will return the kind parameter of a decimal floating-point type with at least six digits of

precision if one is available. A return value of −5 indicates that the processor has no real

kind with that radix.

The radix argument has also been added to the ieee_selected_real_kind function

from the ieee_arithmetic module, with similar semantics.

20.11.7 Size of an object in memory

storage_size (a [, kind]) returns the size, in bits, that would be taken in memory

by an array element with the dynamic type of a.

The argument a may be of any type or rank (including a scalar). It is permitted to be an

undefined pointer unless it is polymorphic, and is permitted to be a disassociated pointer or

unallocated allocatable unless it has a deferred type parameter or is unlimited polymorphic.

The return type is integer with the specified kind, or default kind if kind is not present.

Note that the standard does not require the same size for named variables, array elements

and structure components of the same type; indeed frequently these will have different

padding to improve memory address alignment and thus performance.

Furthermore, if a is of a derived type with allocatable components or components whose

size depends on the value of a length type parameter, the compiler is allowed to store those

components separately from the rest of the variable, with a descriptor in the variable pointing

to the additional storage. It is unclear whether storage_size will include the space taken

up by such components, especially in the length type parameter case. Therefore, use of this

function should be avoided for such problematic cases.

Other Fortran 2008 enhancements 385

20.12 Additions to the iso_fortran_env module

20.12.1 Compilation information

Two inquiry functions have been added to this module to return information about the

compiler (the so-called program translation phase).

compiler_version () returns a string describing the name and version of the compiler

used.

compiler_options () returns a string describing the options used during compilation.

In each case the string is a default character scalar.

These functions may be used in initialization expressions, for example

module my_module
use iso_fortran_env, only: compiler_options, compiler_version
private compiler_options, compiler_version
character(*), parameter :: compiled_by = compiler_version()
character(*), parameter :: compiled_with = compiler_options()
:

end module

There are no actual requirements on the length of these strings or on their contents,

but it is expected that they will contain something useful and informative. For ex-

ample compiler_version() could return the string ’NAG Fortran 6.0(1273)’, and

compiler_options() could return the string ’-C=array -O3’.

20.12.2 Names for common kinds

Named constants for some frequently desired kind values for integer and real types have been

added, these are:

int8 8-bit integer

int16 16-bit integer

int32 32-bit integer

int64 64-bit integer

real32 32-bit real

real64 64-bit real

real128 128-bit real

For example, in

subroutine process(array)
use iso_fortran_env
real array(:, :)
integer(int64) i, j
do j=1, ubound(array, 2, int64)

386 Modern Fortran Explained

do i=1, ubound(array, 1, int64)
: ! do something with array(i, j)

end do
end do

end subroutine

the use of int64 allows this subroutine to process very large arrays.

If the compiler supports more than one kind with a particular size, the standard does not

specify which one will be chosen for the constant. If the compiler does not support a kind

with a particular size, that constant will have a value of −2 if it supports a kind with a larger

size, and −1 if it does not support any larger size.

This can be used together with merge to specify a desired size with a fallback onto other

predetermined sizes if that one is not available, as shown in Figure 20.14.

Figure 20.14 Kind selection with standard named constants.

subroutine process_bytes(bytes)
use iso_fortran_env
integer(merge(int8, merge(int16, int32, int16>=0), int8>=0)) bytes
if (kind(bytes)==int8) then
: ! process 8-bit bytes

else if (kind(bytes)==int16) then
: ! process 8-bit bytes in pairs

else
: ! process quadruples of 8-bit bytes

end if
end subroutine

20.12.3 Kind arrays

Named array constants containing all the kind type parameter values for intrinsic types that

are supported by the processor have been added. The named constants character_kinds,

integer_kinds, logical_kinds, and real_kinds contain the supports kinds of type

character, integer, logical, and real, respectively. These arrays are of type default integer,

and have a lower bound of 1. The order of values in each array is processor dependent.

20.12.4 Coarray support facilities

The module also contains the derived type lock_type, and the named constants

atomic_int_kind, atomic_logical_kind, stat_locked_other_image, stat_stopped-
_image, and stat_unlocked. These are all described in Chapter 19.

Other Fortran 2008 enhancements 387

20.13 Changes to other standard intrinsic modules

20.13.1 The iso_c_binding module

The inquiry function c_sizeof has been added to the intrinsic module iso_c_binding. It

provides similar functionality to that of the sizeof operator in C.

c_sizeof (x) If x is scalar, this returns the value that the companion processor returns

for the C sizeof operator applied to an object of a type that interoperates with the type

and type parameters of x. If x is an array, the result is the value returned for an element

of the array multiplied by its number of elements. x must be interoperable (see Chapter

12), and is not permitted to be an assumed-size array (see Section B.3).

For example,

use iso_c_binding
integer(c_int64_t) x
print *, c_sizeof(x)

will print the value 8 and if n is equal to 10,

subroutine s(y, n)
use iso_c_binding
integer(c_int64_t) y(n)
print *, c_sizeof(y)

end subroutine

will print the value 80.

Caution is required when doing mixed-language programming in both C and Fortran, as

this is not quite what the C sizeof operator does; in many contexts (such as being a dummy

argument) a C array ‘decays’ to a pointer and then sizeof will return the size of the pointer

(not the whole array) in bytes.

20.13.2 The ieee_arithmetic module

For the inquiry function ieee_selected_real_kind, an optional argument radix has been

added at the end of the argument list. It must be a scalar integer, and limits the values returned

to floating-point types with that radix; for example,

ieee_selected_real_kind(p=6, radix=10)

will return the kind parameter of an IEEE decimal floating-point type with at least six digits

of precision if one is available. A return value of −5 indicates that the processor has no IEEE

real type with that radix.

The radix argument has also been added to the intrinsic selected_real_kind function,

with similar semantics (see Section 20.11.6).

388 Modern Fortran Explained

20.14 Programs and procedures

20.14.1 Saved module entities

Variables and procedure pointers declared in the specification part of a module now implicitly

have the save attribute; this may be confirmed by explicit specification. That is, in

module saved2008
real :: x
real, save :: y

end module

the variables x and y both have the save attribute. This means that they will retain their

values even when no procedure is referencing the module; in Fortran 2003, the variable x
would have become undefined at such a time.

Furthermore, compilers were permitted to deallocate unsaved allocatable variables in a

module when the module was not being referenced. As there were no Fortran compilers

which actually took advantage of this licence to deallocate the memory of such variables (so

that in practice all module variables were effectively saved anyway), allowing the user to rely

on the variables being saved is a useful simplification of the language.

20.14.2 Automatic pointer targetting

An actual argument with the target attribute is now permitted to correspond to a dummy

pointer with the intent in attribute. This is illustrated by Figure 20.15; in this case, the

Figure 20.15 Convenient automatic targetting.

module m
real, pointer, protected :: parameter_list(:)

contains
subroutine set_params(list)
real, pointer, intent(in) :: list(:)
parameter_list => list

end subroutine
:

end module
:
subroutine solve(problem, args)
use m
real, target :: args(:)
:
call set_params(args)
:

end subroutine

Other Fortran 2008 enhancements 389

automatic targetting is only being used for convenience, merely saving the hassle of creating

a local pointer, pointing it at args, and passing the local pointer to set_params.

However, automatic targetting can also be used to enforce contiguity requirements; if a

dummy pointer has the contiguous attribute, the actual argument must be simply contiguous

(see Section 20.4.3). This means that the user can be sure that no unintended copying,

by a copy-in copy-out argument passing mechanism, is taking place. This is illustrated by

Figure 20.16, which requires a contiguous array to be used for buffering operations. A call

to set_buffer with an argument that is not simply contiguous would produce an error at

compile time.

Figure 20.16 Automatic targetting of contiguous array.

module buffer_control
character(:), contiguous, pointer, protected :: buffer(:)

contains
subroutine set_buffer(charbuf)
character(*), pointer, intent(in), contiguous :: charbuf(:)
buffer => charbuf

end subroutine
end module
:
character, allocatable, target :: mybuf(:)
:
allocate (mybuf(n))
call set_buffer(mybuf)

20.14.3 Denoting absent arguments

A null pointer or an unallocated allocatable can be used to denote an absent non-allocatable

non-pointer optional argument. For example, in

interface
subroutine s(x)
real, optional :: x

end subroutine
end interface
:
call s(null())

the null() reference is treated as it if were not present.

This is useful in the slightly contrived situation where one has a procedure with many

optional arguments, together with pointers or allocatables to be passed as actual arguments

only if associated or allocated. In the absence of this facility, one needs a 2n-way set of nested

if constructs, where n is the number of local variables in question. Figure 20.17 provides

an outline of how this process works. In that example, the new feature allows the call to

390 Modern Fortran Explained

process_work to be a single statement; without the feature that call would need to be the

unreadably complicated nested if constructs shown in Figure 20.18.

Figure 20.17 Absent optional denotation.

subroutine top(x, a, b)
real :: x
real, optional, target :: a(:), b(:)
real, allocatable :: worka(:), workb1(:), workb2(:)
real, pointer :: pivotptr
: (Code to conditionally allocate worka etc. elided.)
call process_work(x, worka, workb1, workb2, pivot)

end subroutine
subroutine process_work(x, wa, wb1, wb2, pivot)
real :: x
real, optional :: wa(:), wb1(:) , wb2(:), pivot

Figure 20.18 Huge unreadable nested if.

if (allocated(worka)) then
if (allocated(workb1)) then
if (allocated(workb2)) then
if (associated(pivot)) then
call process_work(x, worka, workb1, workb2, pivot)

else
call process_work(x, worka, workb1, workb2)

end if
else if (associated(pivot)) then
call process_work(x, worka, workb1, pivotptr=pivot)

else
call process_work(x, worka, workb1)

end if
: (Remainder of huge nested if construct elided.)

It is true that in this example making the dummy variables in process_work variously

allocatable or pointer would achieve the same ends, but other callers of process_work
might have different mixtures of allocatable and pointer, or indeed wish to pass plain

variables.

Exercises

1. Use pointer functions to implement a vector that counts how many times it is accessed as a whole

vector and how many times a single element from it is accessed.

Other Fortran 2008 enhancements 391

2. Write a module that implements the standard random_number interface, for single and double

precision real numbers, by the ‘good, minimal standard’ generator from Random Number
Generators: Good Ones Are Hard to Find (S. K. Park and K. W. Miller, CACM October 1988,

Volume 31 Number 10, pp 1192− 1201). This is a parametric multiplicative linear congruential

algorithm

xnew = mod(16807xold ,2
31 −1).

This page intentionally left blank

A. Intrinsic procedures

In this appendix, we list all the intrinsic procedures, giving the names of their arguments and

a short description. Where a procedure or procedure argument was added in Fortran 2003,

we place a superscript 3 after its name. Where a procedure or procedure argument was added

in Fortran 2008, we place a superscript 8 after its name.

The names of all the intrinsic procedures are included in the Index, which can therefore be

used to find the full descriptions.

Name Description

abs (a) Absolute value.

achar (i [,kind3]) Character in position i of ASCII collating se-

quence.

acos (x) Arc cosine (inverse cosine) function.

acosh8 (x) Inverse hyperbolic cosine function.

adjustl (string) Adjust left, removing leading blanks and inserting

trailing blanks.

adjustr (string) Adjust right, removing trailing blanks and insert-

ing leading blanks.

aimag (z) Imaginary part of complex number.

aint (a [,kind]) Truncate to a whole number.

all (mask [,dim]) True if all elements are true.

allocated (array) or True if the array is allocated.

allocated3 (scalar) True if the scalar is allocated.

anint (a [,kind]) Nearest whole number.

any (mask [,dim]) True if any element is true.

asin (x) Arcsine (inverse sine) function.

asinh8 (x) Inverse hyperbolic sine function.

associated (pointer [,target]) True if pointer is associated with target.

atan (x) Arctangent (inverse tangent) function.

atan8 (y, x) Argument of complex number (x, y).

atanh8 (x) Inverse hyperbolic tangent function.

atan2 (y, x) Argument of complex number (x, y).

call atomic_define8 (atom,
value)

Define atom atomically with the value value.

call atomic_ref8 (value, atom) Define value atomically with the value of atom.

394 Modern Fortran Explained

bessel_j08 (x) Bessel function of the first kind and order zero.

bessel_j18 (x) Bessel function of the first kind and order one.

bessel_jn8 (n, x) Bessel function of the first kind and order n.

bessel_jn8 (n1, n2, x) Bessel functions of the first kind, orders n1 to n2.

bessel_y08 (x) Bessel function of the second kind and order zero.

bessel_y18 (x) Bessel function of the second kind and order one.

bessel_yn8 (n, x) Bessel function of the second kind and order n.

bessel_yn8 (n1, n2, x) Bessel functions of the second kind, orders n1 to

n2.

bge8 (i, j) True if i is bitwise greater than or equal to j.

bgt8 (i, j) True if i is bitwise greater than j.

ble8 (i, j) True if i is bitwise less than or equal to j.

blt8 (i, j) True if i is bitwise less than j.

bit_size (i) Maximum number of bits that may be held in an

integer.

btest (i, pos) True if bit pos of integer i has value 1.

ceiling (a [, kind]) Least integer greater than or equal to its argument.

char (i [,kind]) Character in position i of the processor collating

sequence.

cmplx (x [,y] [,kind]) Convert to complex type.

command_argument_count3 () Number of command arguments.

conjg (z) Conjugate of a complex number.

cos (x) Cosine function.

cosh (x) Hyperbolic cosine function.

count (mask [,dim] [,kind3]) Number of true elements.

call cpu_time (time) Processor time.

cshift (array, shift [,dim]) Perform circular shift.

call date_and_time ([date]
[,time] [,zone] [,values])

Real-time clock reading date and time.

dble (a) Convert to double precision real.

digits (x) Number of significant digits in the model for x.

dim (x, y) max(x-y, 0).

dot_product (vector_a, vector_b) Dot product.

dprod (x, y) Double precision real product of two default real

scalars.

dshiftl8 (i, j, shift) Most significant half of a double-width left shift.

dshiftr8 (i, j, shift) Least significant half of a double-width right shift.

eoshift (array, shift
[,boundary] [,dim])

Perform end-off shift.

epsilon (x) Number that is almost negligible compared with

one in the model for numbers like x.

erf8 (x) Error function.

erfc8 (x) Complementary error function.

erfc_scaled8 (x) Scaled complementary error function.

Intrinsic procedures 395

call execute_command_line8

(command [, wait]
[,exitstat] [,cmdstat]
[,cmdmsg])

Execute command line.

exp (x) Exponential function.

exponent (x) Exponent part of the model for x.

extends_type_of3 (a, mold) Type extension inquiry.

findloc8 (array, value [,mask]
[,kind] [,back]) or

Find the location in array of an element with

value value.

findloc8 (array, value, dim
[,mask] [,kind] [,back])

floor (a [,kind]) Greatest integer less than or equal to its argument.

fraction (x) Fractional part of the model for x.

gamma8 (x) Gamma function.

call get_command3 ([command]
[,length] [,status])

Get command line.

call get_command_argument3

(number [, value]
[,length] [,status])

Get single command argument.

call get_environment_variable3

(name [, value] [,length]
[,status] [,trim_name])

Get environment variable.

huge (x) Largest number in the model for numbers like x.

hypot8 (x, y) Euclidean distance function
√

x2 + y2.

iachar (c [,kind3]) Position in ASCII collating sequence.

iall8 (array, dim [,mask]) or Perform bitwise and operations.

iall8 (array [,mask])
iand (i, j) Logical and on the bits.

iany8 (array, dim [,mask]) or Perform bitwise or operations.

iany8 (array [,mask])
ibclr (i, pos) Clear bit pos to zero.

ibits (i, pos, len) Extract a sequence of bits.

ibset (i, pos) Set bit pos to one.

ichar (c [,kind3]) Position in the processor collating sequence.

ieor (i, j) Exclusive or on the bits.

image_index8 (coarray, sub) Index of the image given by the cosubscripts sub
for coarray.

index (string, substring
[,back] [,kind3])

Starting position of substring within string.

int (a [,kind]) Convert to integer type.

ior (i, j) Inclusive or on the bits.

iparity8 (array, dim [,mask]) or Perform bitwise exclusive or operations.

iparity8 (array [,mask])
is_contiguous8 (array) True if array is contiguous.

396 Modern Fortran Explained

ishft (i, shift) Logical shift on the bits.

ishftc (i, shift [,size]) Logical circular shift on a set of bits on the right.

is_isostat_end3 (i) Test value for end-of-file condition.

is_isostat_eor3 (i) Test value for end-of-record condition.

kind (x) Kind type parameter value.

lbound (array [,dim] [,kind3]) Array lower bounds.

lcobound8 (coarray [,dim]
[,kind])

Coarray lower cobounds.

leadz8 (i) Number of leading zero bits in i.

len (string [,kind3]) Character length.

len_trim (string [,kind3]) Length of string without trailing blanks.

lge (string_a, string_b) ASCII greater than or equal.

lgt (string_a, string_b) ASCII greater than.

lle (string_a, string_b) ASCII less than or equal.

llt (string_a, string_b) ASCII less than.

log (x) Natural (base e) logarithm function.

log_gamma8 (x) Logarithm of absolute value of gamma function.

log10 (x) Common (base 10) logarithm function.

logical (l, [,kind]) Convert between kinds of logicals.

maskl8 (i [,kind]) Integer with leftmost i bits 1 and the rest 0.

maskr8 (i [,kind]) Integer with rightmost i bits 1 and the rest 0.

matmul (matrix_a, matrix_b) Matrix multiplication.

max (a1, a2 [,a3,...]) Maximum value.

maxexponent (x) Maximum exponent in the model for reals like x.

maxloc (array [,mask]
[,kind3] [,back8]) or

Location of maximum array element.

maxloc (array, dim [,mask]
[,kind3] [,back8])

maxval (array [,mask]) or Value of maximum array element.

maxval (array, dim [,mask])
merge (tsource, fsource, mask) tsource when mask is true; fsource otherwise.

merge_bits8 (i, j, mask) Merge the bits of i and j under control of mask.

min (a1, a2 [,a3,...]) Minimum value.

minexponent (x) Minimum exponent in the model for reals like x.

minloc (array [,mask]
[,kind3] [,back8]) or

Location of minimum array element.

minloc (array, dim [,mask]
[,kind3] [,back8])

minval (array [,mask]) or Value of minimum array element.

minval (array, dim [,mask])
mod (a, p) Remainder modulo p, that is a-int(a/p)*p.

modulo (a, p) a modulo p.

call move_alloc3 (from, to) Move allocation.

call mvbits (from, frompos,
len, to, topos)

Copy bits.

Intrinsic procedures 397

nearest (x, s) Nearest different machine number in the direction

given by the sign of s.

new_line3 (a) Newline character.

nint (a [,kind]) Nearest integer.

norm28 (x[,dim]) Euclidean vector norm.

not (i) Logical complement of the bits.

null([mold]) Disassociated pointer.

num_images8 () Number of images.

pack (array, mask [,vector]) Pack elements corresponding to true elements of

mask into rank-one result.

parity8 (mask [,dim]) True if number of true values is odd.

popcnt8 (i) Number of one bits in i.

poppar8 (i) 1 if popcnt(i) is odd or 0 otherwise.

precision (x) Decimal precision in the model for x.

present (a) True if optional argument is present.

product (array [,mask]) or Product of array elements.

product (array, dim [,mask])
radix (x) Base of the model for numbers like x.

call random_number (harvest) Random numbers in range 0 ≤ x < 1.

call random_seed ([size]
[put] [get])

Initialize or restart random number generator.

range (x) Decimal exponent range in the model for x.

real (a [,kind]) Convert to real type.

repeat (string, ncopies) Concatenates ncopies of string.

reshape (source, shape
[,pad] [,order])

Reshape source to shape shape.

rrspacing (x) Reciprocal of the relative spacing of model num-

bers near x.

same_type_as3 (a, b) Compare dynamic types.

scale (x, i) x×bi, where b=radix(x).

scan (string, set [,back]
[,kind3])

Index of leftmost (rightmost if back is true) char-

acter of string that is in set; zero if none.

selected_char_kind3 (name) Kind of character set called name.

selected_int_kind (r) Kind of type parameter for specified exponent

range.

selected_real_kind ([p]
[,r] [,radix8])

Kind of type parameter for specified precision and

exponent range.

set_exponent (x, i) Model number whose sign and fractional part are

those of x and whose exponent part is i.

shape (source [,kind3]) Array (or scalar) shape.

shifta8 (i, shift) Shift the bits of i right by shift, filling with the

leftmost bit.

shiftl8 (i, shift) Shift the bits of i left by shift, filling with 0.

shiftr8 (i, shift) Shift the bits of i right by shift, filling with 0.

398 Modern Fortran Explained

sign (a, b) Absolute value of a times sign of b.

sin (x) Sine function.

sinh (x) Hyperbolic sine function.

size (array [,dim] [,kind3]) Array size.

spacing (x) Absolute spacing of model numbers near x.

spread (source, dim, ncopies) ncopies copies of source forming an array of

rank one greater.

sqrt (x) Square-root function.

storage_size8 (a, [kind]) Storage size in bits.

sum (array [,mask]) or Sum of array elements.

sum(array, dim [,mask])
call system_clock ([count]

[,count_rate] [,count_max])
Integer data from real-time clock.

tan (x) Tangent function.

tanh (x) Hyperbolic tangent function.

this_image8 () or Index of the invoking image.

this_image8 (coarray [,dim]) Cosubscripts of coarray that denote data on the

invoking image.

tiny (x) Smallest positive number in the model for num-

bers like x.

trailz8 (i) Number of trailing zero bits in i.

transfer (source, mold [,size]) Same physical representation as source, but type

of mold.

transpose (matrix) Matrix transpose.

trim (string) Remove trailing blanks from a single string.

ubound (array [,dim] [,kind3]) Array upper bounds.

ucobound8 (coarray [,dim]
[,kind])

Coarray upper cobounds.

unpack (vector, mask, field) Unpack elements of vector corresponding to true

elements of mask.

verify (string, set [,back]
[,kind3])

Zero if all characters of string belong to set or

index of leftmost (rightmost if back true) that does

not.

B. Deprecated features

B.1 Introduction

This appendix describes features that are redundant within Fortran 95 and whose use we

deprecate. They might become obsolescent in a future revision, but this is a decision that can

be made only within the standardization process. We note that this decision to group certain

features into an appendix and to deprecate their use is ours alone, and does not have the actual

or implied approval of either WG5 or J3.

Each description mentions how the feature concerned may be effectively replaced by a

newer feature.

B.2 Storage association

B.2.1 Storage units

Storage units are the fixed units of physical storage allocated to certain data. There is a storage

unit called numeric for any non-pointer scalar of the default real, default integer, and default

logical types, and a storage unit called character for any non-pointer scalar of type default

character and character length 1. Non-pointer scalars of type default complex or double

precision real (Appendix B.6) occupy two contiguous numeric storage units. Non-pointer

scalars of type default character and length len occupy len contiguous character storage units.

As well as numeric and character storage units, there are a large number of unspecified
storage units. A non-pointer scalar object of type non-default integer, real other than default

or double precision, non-default logical, non-default complex, or non-default character of any

particular length occupies a single unspecified storage unit that is different for each case. A

data object with the pointer attribute has an unspecified storage unit, different from that of

any non-pointer object and different for each combination of type, type parameters, and rank.

The standard makes no statement about the relative sizes of all these storage units and permits

storage association to take place only between objects with the same category of storage unit.

A non-pointer array occupies a sequence of contiguous storage sequences, one for each

element, in array element order.

Objects of derived type have no storage association, each occupying an unspecified storage

unit that is different in each case, except where a given type contains a sequence statement

making it a sequence type:

400 Modern Fortran Explained

type storage
sequence
integer i ! First numeric storage unit;
real a(0:999) ! subsequent 1000 numeric storage units.

end type storage

Should any other derived types appear in such a definition, they too must be sequence types.

In Fortran 2003, the type is allowed to have type parameters (Section 13.4) but no type-bound

procedures (Section 14.6) are permitted.

A sequence type is a numeric sequence type if it has no type parameters, no component is

a pointer or allocatable, and each component is of type default integer, default real, double

precision real, default complex, or default logical. A component may also be of a previously

defined numeric sequence type. This implies that the ultimate components occupy numeric

storage units and the type itself has numeric storage association. Similarly, a sequence type

is a character sequence type if it has no type parameters, no component is a pointer or

allocatable, and each component is of type default character or a previously defined character

sequence type. Such a type has character storage association.

A scalar of numeric or character sequence type occupies a storage sequence that consists of

the concatenation of the storage sequences of its components. A scalar of any other sequence

type occupies a single unspecified storage unit that is unique for each combination of type

and type parameters.

A private statement may be added to a sequence type definition, making its components

private. The private and sequence statements may be interchanged but must be the second

and third statements of the type definition.

Two type definitions in different scoping units define the same data type if they have

the same name,1 both have the sequence attribute, and they have components that are not

private and agree in order, name, and attributes. However, such a practice is prone to error

and offers no advantage over having a single definition in a module that is accessed by use

association.

A sequence type is permitted to have an allocatable component, which permits independent

declarations of the same type in different scopes, but such a type, like a pointer, has an

unspecified storage unit.

B.2.2 The equivalence statement

The equivalence statement specifies that a given storage area may be shared by two or more

objects. For instance,

real aa, angle, alpha, a(3)
equivalence (aa, angle), (alpha, a(1))

allows aa and angle to be used interchangeably in the program text, as both names now refer

to the same storage location. Similarly, alpha and a(1) may be used interchangeably.

It is possible to equivalence arrays together. In

1If one or both types have been accessed by use association and renamed, it is the original names that must agree.

Deprecated features 401

real a(3,3), b(3,3), col1(3), col2(3), col3(3)
equivalence (col1, a, b), (col2, a(1,2)), (col3, a(1,3))

the two arrays a and b are equivalenced, and the columns of a (and hence of b) are

equivalenced to the arrays col1, etc. We note in this example that more than two entities

may be equivalenced together, even in a single declaration.

It is possible to equivalence variables of the same intrinsic type and kind type parameter

or of the same derived type having the sequence attribute. It is also possible to equivalence

variables of different types if both have numeric storage association or both have character

storage association (see Appendix B.2.1). Default character variables need not have the same

length, as in

character(len=4) a
character(len=3) b(2)
equivalence (a, b(1)(3:))

where the character variable a is equivalenced to the last four characters of the six characters

of the character array b. Zero character length is not permitted. An example for different

types is

integer i(100)
real x(100)
equivalence (i, x)

where the arrays i and x are equivalenced. This might be used, for instance, to save storage

space if i is used in one part of a program unit and x separately in another part. This is a

highly dangerous practice, as considerable confusion can arise when one storage area contains

variables of two or more data types, and program changes may be made very difficult if the

two uses of the one area are to be kept distinct.

Types with default initialization are permitted, provided each initialized component has the

same type, type parameters, and value in any pair of equivalenced objects.

All the various combinations of types that may be equivalenced have been described. No

other is allowed. Also, apart from double precision real and the default numeric types,

equivalencing objects that have different kind type parameters is not allowed. The general

form of the statement is

equivalence (object, object-list) [, (object, object-list)]...

where each object is a variable name, array element, or substring. An object must be a

variable and must not be a dummy argument, a function result, a pointer, an object with a

pointer component at any level of component selection, an allocatable object, an automatic

object, a function, a structure component, a structure with an ultimate allocatable component,

or a subobject of such an object. Each array subscript and character substring range must

be a constant expression. The interpretation of an array name is identical to that of its first

element. An equivalence object must not have the target attribute.

The objects in an equivalence set are said to be storage associated. Those of nonzero

length share the same first storage unit. Those of zero length are associated with each other

and with the first storage unit of those of nonzero length. An equivalence statement may

402 Modern Fortran Explained

cause other parts of the objects to be associated, but not such that different subobjects of the

same object share storage. For example,

real a(2), b
equivalence (a(1), b), (a(2), b) ! Prohibited

is not permitted. Also, objects declared in different scoping units must not be equivalenced.

For example,

use my_module, only : xx
real bb
equivalence(xx, bb) ! Prohibited

is not permitted.

The various uses to which the equivalence was put are replaced by automatic arrays,

allocatable arrays, pointers (reuse of storage, Sections 6.4 and 6.5), pointers as aliases

(storage mapping, Section 6.15), and the transfer function (mapping of one data type onto

another, Section 8.9).

B.2.3 The common block

We have seen in Chapter 5 how two program units are able to communicate by passing

variables, or values of expressions between them via argument lists or by using modules.

It is also possible to define areas of storage known as common blocks. Each has a storage

sequence and may be either named or unnamed, as shown by the simplified syntax of the

common specification statement:

common [/ [cname] /] vlist

in which cname is an optional name, and vlist is a list of variable names, each optionally

followed by an array bounds specification. An unnamed common block is known as a blank
common block. Examples of each are

common /hands/ nshuff, nplay, nhand, cards(52)

and

common // buffer(10000)

in which the named common block hands defines a data area containing the quantities which

might be required by the subroutines of a card playing program, and the blank common defines

a large data area which might be used by different routines as a buffer area.

The name of a common block has global scope and must differ from that of any other global

entity (external procedure, program unit, or common block). It may, however, be the same as

that of a local entity other than a named constant or intrinsic procedure.

No object in a common block may have the parameter attribute or be a dummy argument,

an automatic object, an allocatable object, a structure with an ultimate allocatable component,

a polymorphic pointer, or a function. An array may have its bounds declared either in the

common statement or in a type declaration or dimension statement. If it is a non-pointer

Deprecated features 403

array, the bounds must be declared explicitly and with constant expressions. If it is a pointer

array, however, the bounds may not be declared in the common statement itself. If an object is

of derived type, the type must have the sequence or bind attribute and must not have default

initialization.

In order for a subroutine to access the variables in the data area, it is sufficient to insert the

common definition in each scoping unit which requires access to one or more of the entities in

the list. In this fashion, the variables nshuff, nplay, nhand, and cards are made available

to those scoping units. No variable may appear more than once in all the common blocks in a

scoping unit.

Usually, a common block contains identical variable names in all its appearances, but this

is not necessary. In fact, the shared data area may be partitioned in quite different ways in

different routines, using different variable names. They are said to be storage associated. It

is thus possible for one subroutine to contain a declaration

common /coords/ x, y, z, i(10)

and another to contain a declaration

common /coords/ i, j, a(11)

This means that a reference to i(1) in the first routine is equivalent to a reference to a(2) in

the second. Through multiple references via use or host association, this can even happen in

a single routine. This manner of coding is both untidy and dangerous, and every effort should

be made to ensure that all declarations of a given common block declaration are identical in

every respect. In particular, the presence or absence of the target attribute is required to be

consistent, since otherwise a compiler would have to assume that everything in common has

the target attribute, in case it has it in another program unit.

A further practice that is permitted but which we do not recommend is to mix different

storage units in the same common block. When this is done, each position in the storage

sequence must always be occupied by a storage unit of the same category.

The total number of storage units must be the same in each occurrence of a named common
block, but blank common is allowed to vary in size and the longest definition will apply for

the complete program.

Yet another practice to be avoided is to use the full syntax of the common statement:

common [/[cname]/]vlist [[,]/[cname]/vlist]...

which allows several common blocks to be defined in one statement, and a single common
block to be declared in parts. A combined example is

common /pts/x,y,z /matrix/a(10,10),b(5,5) /pts/i,j,k

which is equivalent to

common /pts/ x, y, z, i, j, k
common /matrix/ a(10,10), b(5,5)

which is certainly a more understandable declaration of two shared data areas. The only

need for the piecewise declaration of one block is when the limit of 39 continuation lines is

otherwise too low.

404 Modern Fortran Explained

The common statement may be combined with the equivalence statement, as in the

example

real a(10), b
equivalence (a,b)
common /change/ b

In this case, a is regarded as part of the common block, and its length is extended appropriately.

Such an equivalence must not cause data in two different common blocks to become storage

associated, it must not cause an extension of the common block except at its tail, and two

different objects or subobjects in the same common block must not become storage associated.

It must not cause an object to become associated with an object in a common block if it has

a property that would prevent it being an object in a common block.

A common block may be declared in a module, and its variables accessed by use association.

Variable names in a common block in a module may be declared to have the private attribute,

but this does not prevent associated variables being declared elsewhere through other common
statements.

An individual variable in a common block may not be given the save attribute, but the

whole block may. If a common block has the save attribute in any scoping unit other than the

main program, it must have the save attribute in all such scoping units. The general form of

the save statement is

save [[::] saved-entity-list]

where saved-entity is variable-name or common-block-name. A simple example is

save /change/

A blank common always has the save attribute.

Data in a common block without the save attribute become undefined on return from a

subprogram unless the block is also declared in the main program or in another subprogram

that is in execution.

The use of modules (Section 5.5) obviates the need for common blocks.

B.2.4 The block data program unit

Non-pointer variables in named common blocks may be initialized in data statements, but

such statements must be collected into a special type of program unit, known as a block
data program unit. It must have the form

block data [block-data-name]
[specification-stmt]...

end [block data [block-data-name]]

where each specification-stmt is an implicit, use, type declaration (including double
precision), intrinsic, pointer, target, common, dimension, data, equivalence,

parameter, or save statement or derived-type definition. A type declaration statement must

not specify the allocatable, external, intent, optional, private, or public attributes.

An example is

Deprecated features 405

block data
common /axes/ i,j,k
data i,j,k /1,2,3/

end block data

in which the variables in the common block axes are defined for use in any other scoping unit

which accesses them.

It is possible to collect many common blocks and their corresponding data statements

together in one block data program unit. However, it may be a better practice to have several

different block data program units, each containing common blocks which have some logical

association with one another. To allow for this, block data program units may be named in

order to be able to distinguish them. A complete program may contain any number of block
data program units, but only one of them may be unnamed. A common block must not appear

in more than one block data program unit. It is not possible to initialize blank common.

The name of a block data program unit may appear in an external statement. When a

processor is loading program units from a library, it may need such a statement in order to

load the block data program unit.

The use of modules (Section 5.5) obviates the need for block data.

B.2.5 Coarrays and storage association

Coarrays are not permitted in common and equivalence statements.

B.3 Shape and character length disagreement

In Fortran 77, it was often convenient, when passing an array, not to have to specify the size

of the dummy array. For this case, the assumed-size array declaration is available, where the

last bounds in the bounds-list is

[lower-bound:] *

and the other bounds (if any) must be declared explicitly. Such an array must not be a function

result.

Since an assumed-size array has no bounds in its last dimension, it does not have a shape

and, therefore, must not be used as a whole array in an executable statement, except as an

argument to a procedure that does not require its shape. However, if an array section is

formed with an explicit upper bound in the last dimension, this has a shape and may be used

as a whole array.

An assumed-size array is not permitted to have intent out if it is polymorphic, of a derived

type with default initialization or an ultimate allocatable component, or of a finalizable type.

This is because this would require an action for every element of an array of unknown shape.

An object of one size or rank may be passed to an explicit-shape or assumed-size dummy

argument array that is of another size or rank. If an array element is passed to an array, the

actual argument is regarded as an array with elements that are formed from the parent array

from the given array element onwards, in array element order. Figure B.1 illustrates this.

406 Modern Fortran Explained

Here, only the last 49 elements of a are available to sub, as the first array element of a which

is passed to sub is a(52). Within sub, this element is referenced as b(1).

Figure B.1 Passing an array element to an array.

real a(100)
:
call sub (a(52), 49)
:
subroutine sub(b,n)
:
real b(n)

In the same example, it would also be perfectly legitimate for the declaration of b to be

written as real b(7, 7) and for the last 49 elements of a to be addressed as though they

were ordered as a 7×7 array. The converse is also true. An array dimensioned 10×10 in a

calling subroutine may be dimensioned as a singly dimensioned array of size 100 in the called

subroutine. Within sub, it is illegal to address b(50) in any way, as that would be beyond the

declared length of a in the calling routine. In all cases, the association is by storage sequence,

in array element order.

In the case of default character type, agreement of character length is not required. For

a scalar dummy argument of character length len, the actual argument may have a greater

character length and its leftmost len characters are associated with the dummy argument. For

example, if chasub has a single dummy argument of character length 1,

call chasub(word(3:4))

is a valid call statement. For an array dummy argument, the restriction is on the total

number of characters in the array. An array element or array element substring is regarded

as a sequence of characters from its first character to the last character of the array. For

an assumed-size array, the size is the number of characters in the sequence divided by the

character length of the dummy argument.

Shape or character length disagreement cannot occur when a dummy argument is assumed-

shape (by definition, the shape is assumed from the actual argument). It can occur for

explicit-shape and assumed-size arrays. Implementations usually receive explicit-shape and

assumed-size arrays in contiguous storage, but permit any uniform spacing of the elements

of an assumed-shape array. They will need to make a copy of any array argument that is

not stored contiguously (for example, the section a(1:10:2)), unless the dummy argument

is assumed-shape. To avoid copies of this kind, a scalar actual argument is permitted to

be associated with an array only if the actual argument is an element of an array that is not

polymorphic, an assumed-shaped array, an array pointer, or is a subobject of such an element.

In Fortran 2003, these rules on character length disagreement have been extended to

include character(kind=c_char) (which will often be the same as default character) and to

treat any other scalar actual argument of type default character or character(kind=c_char)
as if it were an array of size one. This includes the case where the argument is an element of

Deprecated features 407

an assumed-shape array or an array pointer, or a subobject thereof; note that just that element

or subobject is passed, not the rest of the array.

When a procedure is invoked through a generic name, as a defined operation, or as a defined

assignment, rank agreement between the actual and the dummy arguments is required. Note

also that only a scalar dummy argument may be associated with a scalar actual argument.

Assumed-shape arrays (Section 6.3) supplant this feature.

B.4 The include line

It is sometimes useful to be able to include source text from somewhere else into the source

stream presented to the compiler. This facility is possible using an include line:

include char-literal-constant

where char-literal-constant must not have a kind parameter that is a named constant. This

line is not a Fortran statement and must appear as a single source line where a statement

may occur. It will be replaced by material in a processor-dependent way determined by the

character string char-literal-constant. The included text may itself contain include lines,

which are similarly replaced. An include line must not reference itself, directly or indirectly.

When an include line is resolved, the first included line must not be a continuation line and

the last line must not be continued. An include line may have a trailing comment, but may

not be labelled nor, when expanded, may it contain incomplete statements.

The include line was available as an extension to many Fortran 77 systems and was

often used to ensure that every occurrence of global data in a common block was identical. In

modern Fortran, the same effect is better achieved by placing global data in a module (Section

5.5). This cannot lead to accidental declarations of local variables in each procedure.

This feature is useful when identical executable statements are needed for more than

one type, for example in a set of procedures for sorting data values of various types. The

executable statements can be maintained in an include file that is referenced inside each

instance of the sort procedure.

B.5 Other forms of loop control

B.5.1 The labelled do construct

A further form of the do construct (Section 4.4) makes use of a statement label to identify the

end of the construct. In this case, the terminating statement may be either a labelled end do
statement or a labelled continue (‘do nothing’) statement.2 The label is, in each case, the

same as that on the do statement itself. The label on the do statement may be followed by a

comma. Simple examples are

do 10 i = 1, n
:

10 end do
2The continue statement is not limited to being the last statement of a do construct; it may appear anywhere

among the executable statements.

408 Modern Fortran Explained

and

do 20 i = 1, j
do 10, k = 1, l

:
10 continue
20 continue

As shown in the second example, each loop must have a separate label. Additional, but also

redundant, do syntax is described in Appendix C.1.8.

B.5.2 The do while

In Section 4.4, a form of the do construct was described that may be written as

do
if (scalar-logical-expr) exit
:

end do

An alternative, but redundant, form of this is its representation using a do while statement:

do [label] [,] while (.not.scalar-logical-expr)

We prefer the form that uses the exit statement because this can be placed anywhere in the

loop, whereas the do while statement always performs its test at the loop start. If the scalar-
logical-expr becomes false in the middle of the loop, the rest of the loop is still executed.

Potential optimization penalties that the use of the do while entails are fully described in

Chapter 10 of Optimizing Supercompilers for Supercomputers, M. Wolfe (Pitman, 1989).

B.6 Double precision real

Another type that may be used in a type declaration, function, implicit, or component

declaration statement is double precision which specifies double precision real. The precision

is greater than that of default real.

Literal constants written with the exponent letter d (or D) are of type double precision real

by default; no kind parameter may be specified if this exponent letter is used. Thus, 1d0 is

of type double precision real. If dp is an integer named constant with the value kind(1d0),

double precision is synonymous with real(kind=dp).

There is a d (or D) edit descriptor that was originally intended for double precision

quantities, but, now, it is identical to the e edit descriptor except that the output form may

have a D instead of an E as its exponent letter. A double precision real literal constant, with

exponent letter d, is acceptable on input whenever any other real literal constant is acceptable.

There are two elemental intrinsic functions which were not described in Chapter 8 because

they have a result of type double precision real.

dble (a) for a of type integer, real, or complex returns the double precision real value

real(a, kind(0d0)).

Deprecated features 409

dprod (x, y) returns the product x*y for x and y of type default real as a double

precision real result.

The double precision real data type has been replaced by the real type of kind kind(0.d0).

B.7 The dimension, codimension, and parameter statements

To declare entities, we normally use type specifications. However, if all the entities involved

are arrays, they may be declared without type specifications in a dimension statement:

dimension i(10), b(50,50), c(n,m) ! n and m are dummy integer
! arguments or named constants

The general form is

dimension [::] array-name(array-spec) [,array-name(array-spec)]...
Here, the type may either be specified in a type declaration statement such as

integer i

that does not specify the dimension information, or may be declared implicitly. Our view is

that neither of these is sound practice; the type declaration statement looks like a declaration

of a scalar and we explained in Section 7.2 that we regard implicit typing as dangerous.

Therefore, the use of the dimension statement is not recommended.

In Fortran 2008, there is the codimension statement for declaring coarrays (Chapter 19)

with the syntax

codimension [::] coarray-decl-list
where each coarray-decl is

coarray-name [(array-spec)][coarray-spec]

An alternative way to specify a named constant is by the parameter statement. It has the

general form

parameter (named-constant-definition-list)

where each named-constant-definition is

constant-name = constant-expr
Each constant named must either have been typed in a previous type declaration statement

in the scoping unit, or take its type from the first letter of its name according to the implicit

typing rule of the scoping unit. In the case of implicit typing, the appearance of the named

constant in a subsequent type declaration statement in the scoping unit must confirm the type

and type parameters, and there must not be an implicit statement for the letter subsequently

in the scoping unit. Similarly, the shape must have been specified previously or be scalar.

Each named constant in the list is defined with the value of the corresponding expression

according to the rules of intrinsic assignment.

An example using implicit typing and a constant expression including a named constant

that is defined in the same statement is

implicit integer (a, p)
parameter (apple = 3, pear = apple**2)

For the same reasons as for dimension, we recommend avoiding the parameter statement.

410 Modern Fortran Explained

B.8 Specific names of intrinsic procedures

While all of the intrinsic procedures are generic, some of the intrinsic functions also have

specific names specific versions, which are listed in Tables B.1 and B.2. In the tables,

‘Character’ stands for default character, ‘Integer’ stands for default integer, ‘Real’ stands

for default real, ‘Double’ stands for double precision real, and ‘Complex’ stands for default

complex. Those functions in Table B.2 may be passed as actual arguments to a subprogram,

provided they are specified in an intrinsic statement (Section 8.1.3).

Table B.1. Specific intrinsic functions not available as actual arguments.

Description Generic Specific Argument Function

Form Name Type Type

Conversion int(a) int Real Integer

to integer ifix Real Integer

idint Double Integer

Conversion real(a) real Integer Real

to real float Integer Real

sngl Double Real

max(a1,a2,...) max(a1,a2,...) max0 Integer Integer

amax1 Real Real

dmax1 Double Double

amax0 Integer Real

max1 Real Integer

min(a1,a2,...) min(a1,a2,...) min0 Integer Integer

amin1 Real Real

dmin1 Double Double

amin0 Integer Real

min1 Real Integer

lge(string_a,string_b) lge(string_a,string_b) lge Character Logical

lgt(string_a,string_b) lgt(string_a,string_b) lgt Character Logical

lle(string_a,string_b) lle(string_a,string_b) lle Character Logical

llt(string_a,string_b) llt(string_a,string_b) llt Character Logical

Deprecated features 411

Table B.2. Specific intrinsic functions available as actual arguments.

Description Generic Specific Argument Function

Form Name Type Type

Absolute value of sign(a,b) isign Integer Integer

a times sign of b sign Real Real

dsign Double Double

max(x-y,0) dim(x,y) idim Integer Integer

dim Real Real

ddim Double Double

x∗y dprod(x,y) Real Double

Truncation aint(a) aint Real Real

dint Double Double

Nearest whole anint(a) anint Real Real

number dnint Double Double

Nearest integer nint(a) nint Real Integer

idnint Double Integer

Absolute value abs(a) iabs Integer Integer

abs Real Real

dabs Double Double

cabs Complex Real

Remainder mod(a,p) mod Integer Integer

modulo p amod Real Real

dmod Double Double

Square root sqrt(x) sqrt Real Real

dsqrt Double Double

csqrt Complex Complex

Exponential exp(x) exp Real Real

dexp Double Double

cexp Complex Complex

Natural logarithm log(x) alog Real Real

dlog Double Double

clog Complex Complex

Common logarithm log10(x) alog10 Real Real

dlog10 Double Double

Sine sin(x) sin Real Real

dsin Double Double

csin Complex Complex

Cosine cos(x) cos Real Real

dcos Double Double

ccos Complex Complex

412 Modern Fortran Explained

Tangent tan(x) tan Real Real

dtan Double Double

Arcsine asin(x) asin Real Real

dasin Double Double

Arccosine acos(x) acos Real Real

dacos Double Double

Arctangent atan(x) atan Real Real

datan Double Double

atan2(y,x) atan2 Real Real

datan2 Double Double

Hyperbolic sine sinh(x) sinh Real Real

dsinh Double Double

Hyperbolic cosine cosh(x) cosh Real Real

dcosh Double Double

Hyperbolic tangent tanh(x) tanh Real Real

dtanh Double Double

Imaginary part aimag(z) aimag Complex Real

Complex conjugate conjg(z) conjg Complex Complex

Character length len(s) len Character Integer

Starting position index(s,t) index Character Integer

B.9 Non-default mapping for implicit typing

The default for implicit typing (Section 7.2) is that entities whose names begin with one of

the letters i, j, ..., n are of type default integer, and variables beginning with the letters a, b,

..., h or o, p, ..., z are of type default real. If implicit typing with a different rule is desired in

a given scoping unit, the implicit statement may be employed. This changes the mapping

between the letters and the types with statements such as

implicit integer (a-h)
implicit real(selected_real_kind(10)) (r,s)
implicit type(entry) (u,x-z)

The letters are specified as a list in which a set of adjacent letters in the alphabet may be

abbreviated, as in a-h. No letter may appear twice in the implicit statements of a scoping

unit and, if there is an implicit none statement, there must be no other implicit statement

in the scoping unit. For a letter not included in the implicit statements, the mapping between

the letter and a type is the default mapping.

In the case of a scoping unit other than a program unit or an interface block, for example

a module subprogram, the default mapping for each letter in an inner scoping unit is the

mapping for the letter in the immediate host. If the host contains an implicit none
statement, the default mapping is null and the effect may be that implicit typing is available

for some letters, because of an additional implicit statement in the inner scope, but not for

all of them. The mapping may be to a derived type even when that type is not otherwise

Deprecated features 413

accessible in the inner scoping unit because of a declaration there of another type with the

same name.

Implicit typing does not apply to an entity accessed by use or host association because its

type is the same as in the module or the host. Figure B.2 provides a comprehensive illustration

of the rules of implicit typing.

The general form of the implicit statement is

implicit none

or

implicit type (letter-spec-list) [,type (letter-spec-list)]...

where type specifies the type and type parameters (Section 7.13) and each letter-spec is

letter [- letter].

The implicit statement may be used for a derived type. For example, given access to the

type

type posn
real :: x, y
integer :: z

end type posn

and given the statement

implicit type(posn) (a,b), integer (c-z)

variables beginning with the letters a and b are implicitly typed posn and variables beginning

with the letters c,d,...,z are implicitly typed integer.

An implicit none statement may be preceded within a scoping unit only by use
(and format) statements, and other implicit statements may be preceded only by use,

parameter, and format statements. We recommend that each implicit none statement be

at the start of the specifications, immediately following any use statements.

B.10 Fortran 2008 deprecated features

B.10.1 The sync memory statement and atomic subroutines

The execution of a sync memory statement defines a boundary on an image between two

segments, each of which can be ordered in some user-defined way with respect to segments

on other images. Unlike the other image control statements, it does not have any in-

built synchronization effect. In case there is some user-defined ordering between images,

the compiler will probably avoid optimizations involving moving statements across the

sync memory statement and will ensure that any changed data that the image holds in

temporary memory such as cache or registers or even packets in transit between images,

are made visible to other images. Also, any data from other images that are held in temporary

memory will be treated as undefined until it is reloaded from its host image.

414 Modern Fortran Explained

Figure B.2
module example_mod

implicit none
:
interface

function fun(i) ! i is implicitly
integer :: fun ! declared integer.

end function fun
end interface

contains
function jfun(j) ! All data entities must

integer :: jfun, j ! be declared explicitly.
:

end function jfun
end module example_mod
subroutine sub

implicit complex (c)
c = (3.0,2.0) ! c is implicitly declared complex
:

contains
subroutine sub1

implicit integer (a,c)
c = (0.0,0.0) ! c is host associated and of type complex
z = 1.0 ! z is implicitly declared real.
a = 2 ! a is implicitly declared integer.
cc = 1.0 ! cc is implicitly declared integer.
:

end subroutine sub1
subroutine sub2

z = 2.0 ! z is implicitly declared real and is
! different from the variable z in sub1.

:
end subroutine sub2
subroutine sub3
use example_mod ! Access the integer function fun.

q = fun(k) ! q is implicitly declared real and
! k is implicitly declared integer.

:
end subroutine sub3

end subroutine sub

Deprecated features 415

We see the construction of reliable and portable code in this way as very difficult – it is all

too easy to introduce subtle bugs that manifest themselves only occasionally.

One way to effect user-defined ordering between images is by employing atomic
subroutines, a new class of intrinsic subroutine. An atomic subroutine acts on a scalar variable

atom of type integer(atomic_int_kind) or logical(atomic_logical_kind), whose

kind value is defined in the intrinsic module iso_fortran_env. The variable atom must be

a coarray or a coindexed object. The effect of executing an atomic subroutine is as if the

action on the argument atom occurs instantaneously, and thus does not overlap with other

atomic actions that might occur asynchronously. To avoid performance loss, the ordering

of interleaved actions on different atomic variables in different images is not defined by the

Standard.

call atomic_define (atom, value) defines atom atomically with the value

value.

atom has intent out and is a scalar coarray or coindexed object of type

integer(atomic_int_kind) or logical(atomic_logical_kind). If its kind

is the same as that of value or its type is logical, it is given the value of value.

Otherwise, it is given the value int(value, atomic_int_kind).

value has intent in and is a scalar of the same type as atom.

call atomic_ref (value, atom) defines value atomically with the value of

atom.

value has intent out and is a scalar of the same type as atom. If its kind is the same

as that of atom or its type is logical, it is given the value of atom. Otherwise, it

is given the value int(atom, kind(value)).

atom has intent in and is a scalar coarray or coindexed object. It has type

integer(atomic_int_kind) or logical(atomic_logical_kind).

For example, consider the code in Figure B.3, which is executed on images p and q. The

do loop is known as a spin-wait loop. Once image q starts executing it, it will continue until it

finds the value .false. for val. The atomic_ref call ensures that the value is refreshed on

each loop execution. The effect is that the segment on image p ahead of the first sync memory
statement precedes the segment on image q that follows the second sync memory statement.

The normative text of the Standard does not specify how resources should be distributed

between images, but a note expects that the sharing should be equitable. It is therefore just

possible that a conforming implementation might give all its resources to the spin loop while

doing nothing on image p, causing the program to hang.

Note that the segment in which locked[q] is altered is unordered with respect to the

segment in which it is referenced. This is permissible by the rules in the penultimate

paragraph of Section 19.13.1.

Given the atomic subroutines and the sync memory statement, customized synchroniza-

tions can be programmed in Fortran as procedures, but it may be difficult for the programmer

to ensure that they will work correctly on all implementations.

All of the image control statements except critical, end critical, lock, and unlock
include the effect of executing a sync memory statement.

416 Modern Fortran Explained

Figure B.3 Spin-wait loop

use, intrinsic :: iso_fortran_env
logical(atomic_logical_kind) :: locked[*] = .true.
logical :: val
integer :: iam, p, q

:
iam = this_image()
if (iam == p) then

sync memory
call atomic_define(locked[q], .false.)
! Has the effect of locked[q]=.false.

else if (iam == q) then
val = .true.

! Spin until val is false
do while (val)

call atomic_ref(val, locked)
! Has the effect of val=locked

end do
sync memory

end if

B.10.2 Components of type c_ptr or c_funptr

A coarray is permitted to have a component of type c_ptr or c_funptr but a coindexed

object is not permitted to be of either of these types because it is almost certain to involve

a remote reference. Furthermore, intrinsic assignment for either of these types causes the

variable to become undefined unless the variable and expression are on the same image. It is

very hard to see good uses for this feature.

B.10.3 Type declarations

The type keyword can be used with an intrinsic type specification instead of a derived type

specification, and this declares the entities to be of that intrinsic type. For example,

type(complex(kind(0d0))) :: a, b, c

declares a, b, and c to be of intrinsic type complex with kind type parameter equal to

kind(0d0), that is double precision complex. This syntax is completely redundant and the

example is equivalent to

complex(kind(0d0)) :: a, b, c

This feature was added for consistency with the type is statement in the select type
construct: in that statement, an intrinsic type is specified by its keyword but a derived type is

specified simply by its type name without the type keyword (or the concomitant parentheses).

Deprecated features 417

We consider that this feature adds nothing to the language; furthermore, it might confuse

a reader into thinking that an intrinsic type is really a derived type, so we do not recommend

its use.

B.10.4 Redundant contains statement

The contains statement in a module, non-module program unit, or type definition is

no longer required to be followed by a module procedure definition, internal procedure

definition, or type-bound procedure declaration. For example,

module trivial
logical :: ok = .true.

contains
! nothing

end module

is permitted. In each case, the appearance of a contains statement without any following

definition or declaration has no effect.

The purported use of this feature is for automatic generation of Fortran program units

where the automatic generator is not clever enough to omit the contains statement in the

case where there is nothing to follow it with. We consider this feature to be confusing and do

not recommend its use.

B.10.5 The end statement

The function and subroutine keywords are now optional on the end statement of a module

or internal subprogram. For example,

module m25
contains
subroutine orbital
...

end
end module

This means that if you have an old Fortran 77 subprogram you can turn it into an internal

or module subprogram by simple inclusion into a source file that has the same source form

(that is, the obsolete fixed source form).

It also means that seeing a bare end no longer necessarily means you are seeing the end

of a program unit (or interface body). It is our opinion that this feature adds nothing to the

language, and that it is better for all end statements to specify what they are ending, for

example end module.

418 Modern Fortran Explained

B.10.6 Referencing atan2 by the name atan

Breaking with 50 years of tradition and nearly every other programming language in

existence, the two-argument form of arctangent can now be referenced by the name atan
instead of atan2.

The name atan2 will forever remain usable for this purpose (for backwards compatibility)

so there is little to gain from this, other than user confusion (‘why is atan being called with

two arguments?’) and compiler and language bloat.

C. Obsolescent features

C.1 Obsolescent in Fortran 95

The features of this section are described by the Fortran 95 standard to be obsolescent. Their

replacements are described in the relevant subsections.

C.1.1 Fixed source form

In the old fixed source form, each statement consists of one or more lines exactly 72 characters

long,1 and each line is divided into three fields. The first field consists of positions 1 to 5 and

may contain a statement label. A Fortran statement may be written in the second fields of up

to 20 consecutive lines. The first line of a multi-line statement is known as the initial line and

the succeeding lines as continuation lines.

A non-comment line is an initial line or a continuation line depending on whether there is

a character, other than zero or blank, in position 6 of the line, which is the second field. The

first field of a continuation line must be blank. The ampersand is not used for continuation.

The third field, from positions 7 to 72, is reserved for the Fortran statements themselves.

Note that if a construct is named, the name must be placed here and not in the label field.

Except in a character context, blanks are insignificant.

The presence of an asterisk (*) or a character c in position 1 of a line indicates that the

whole line is commentary. An exclamation mark indicates the start of commentary, except in

position 6, where it indicates continuation.

Several statements separated by a semicolon (;) may appear on one line. The semicolon

may not, in this case, be in column 6, where it would indicate continuation. Only the first of

the statements on a line may be labelled. A semicolon that is the last non-blank character of

a line, or the last non-blank character ahead of commentary, is ignored.

A program unit end statement must not be continued, and any other statement with an

initial line that appears to be a program unit end statement must not be continued.

A processor may restrict the appearance of its defined control characters, if any, in this

source form.

In applications where a high degree of compatibility between the old and the new source

forms is required, observance of the following rules can be of great help:

• confine statement labels to positions 1 to 5 and statements to positions 7 to 72;

1This limit is processor dependent if the line contains characters other than those of the default type.

420 Modern Fortran Explained

• treat blanks as being significant;

• use only ! to indicate a comment (but not in position 6);

• for continued statements, place an ampersand in both position 73 of a continued line

and position 6 of a continuing line.

The fixed source form has been replaced by the free source form (Section 2.4).

C.1.2 Computed go to

A form of branch statement is the computed go to, which enables one path among many to

be selected, depending on the value of a scalar integer expression. The general form is

go to (sl1, sl2, sl3,...) [,] intexpr

where sl1, sl2, sl3, etc. are labels of statements in the same scoping unit, and intexpr is any

scalar integer expression. The same statement label may appear more than once. An example

is

go to (6,10,20) i(k)**2+j

which references three statement labels. When the statement is executed, if the value of

the integer expression is 1, the first branch will be taken, and control is transferred to the

statement labelled 6. If the value is 2, the second branch will be taken, and so on. If the value

is less than 1, or greater than 3, no branch will be taken, and the next statement following the

go to will be executed.

This statement is replaced by the case construct (Section 4.3).

C.1.3 Character length specification character*

Alternatives for default characters to

character([len=] len-value)

as a type in a type declaration, function, implicit, or component definition statement are

character*(len-value)[,]
and

character*len[,]

where len is an integer literal constant without a specified kind value and the optional comma

is permitted only in a type declaration statement and only when :: is absent:

character*20 word, letter*1

C.1.4 Data statements among executables

The data statement may be placed among the executable statements, but such placement

is rarely used and not recommended, since data initialization properly belongs with the

specification statements.

Obsolescent features 421

C.1.5 Statement functions

It may be that within a single program unit there are repeated occurrences of a computation

which can be represented as a single statement. For instance, to calculate the parabolic

function represented by

y = a+bx+ cx2

for different values of x, but with the same coefficients, there may be references to

y1 = 1. + x1*(2. + 3.*x1)
:
y2 = 1. + x2*(2. + 3.*x2)
:

etc. In Fortran 77, it was more convenient to invoke a so-called statement function (now better

coded as an internal subroutine, Section 5.6), which must appear after any implicit and

other relevant specification statements and before the executable statements. The example

above would become

parab(x) = 1. + x*(2. + 3.*x)
:
y1 = parab(x1)
:
y2 = parab(x2)

Here, x is a dummy argument, which is used in the definition of the statement function. The

variables x1 and x2 are actual arguments to the function.

The general form is

function-name([dummy-argument-list]) = scalar-expr

where the function-name and each dummy-argument must be specified, explicitly or

implicitly, to be scalar data objects. To make it clear that this is a statement function and

not an assignment to a host array element, we recommend declaring the type by placing the

function-name in a type declaration statement; this is required whenever a host entity has the

same name. The scalar-expr must be composed of constants, references to scalar variables,

references to functions, and intrinsic operations. If there is a reference to a function, the

function must not be a transformational intrinsic nor require an explicit interface, the result

must be scalar, and any array argument must be a named array. A reference to a non-intrinsic

function must not require an explicit interface. A named constant that is referenced or an

array of which an element is referenced must be declared earlier in the scoping unit or be

accessed by use or host association. A scalar variable referenced may be a dummy argument

of the statement function or a variable that is accessible in the scoping unit. A dummy

argument of the host procedure must not be referenced unless it is a dummy argument of

the main entry or of an entry that precedes the statement function. If any entity is implicitly

typed, a subsequent type declaration must confirm the type and type parameters. The dummy

arguments are scalar and have a scope of the statement function statement only.

A statement function always has an implicit interface and may not be supplied as a

procedure argument. It may appear within an internal procedure, and may reference other

422 Modern Fortran Explained

statement functions appearing before it in the same scoping unit, but not itself nor any

appearing after. A function reference in the expression must not redefine a dummy argument.

A statement function is pure (Section 6.10) if it references only pure functions.

A statement function statement is not permitted in an interface block.

Note that statement functions are irregular in that use and host association are not available.

C.1.6 Assumed character length of function results

A non-recursive external function whose result is scalar, character, and non-pointer may have

assumed character length, as in Figure C.1. Such a function is not permitted to specify

a defined operation. In a scoping unit that invokes such a function, the interface must be

implicit and there must be a declaration of the length, as in Figure C.2, or such a declaration

must be accessible by use or host association.

Figure C.1 A function whose result is of assumed character length.

function copy(word)
character(len=*) copy, word
copy = word

end function copy

Figure C.2 Calling a function whose result is of assumed character length.

program main
external copy ! Interface block not allowed.
character(len=10) copy
write (*, *) copy(’This message will be truncated’)

end program main

This facility is included only for compatibility with Fortran 77 and is completely at

variance with the philosophy of Fortran 90/95 that the attributes of a function result depend

only on the actual arguments of the invocation and on any data accessible by the function

through host or use association.

This facility may be replaced by use of a subroutine whose arguments correspond to the

function result and the function arguments.

C.1.7 Arithmetic if statement

The arithmetic if provides a three-way branching mechanism, depending on whether an

arithmetic expression has a value which is less than, equal to, or greater than zero. It is

replaced by the if statement and construct (Section 4.2). Its general form is

if (expr) sl1, sl2, sl3

Obsolescent features 423

where expr is any scalar expression of type integer or real, and sl1, sl2, and sl3 are the labels

of statements in the same scoping unit. If the result obtained by evaluating expr is negative

then the branch to sl1 is taken, if the result is zero the branch to sl2 is taken, and if the result

is greater than zero the branch to sl3 is taken. An example is

if (p-q) 1,2,3
1 p = 0.

go to 4
2 p = 1.

q = 1.
go to 4

3 q = 0.
4 ...

in which a branch to 1, 2, or 3 is taken depending on the value of p-q. The arithmetic if may

be used as a two-way branch when two of the labels are identical:

if (x-y) 1,2,1

C.1.8 Shared do-loop termination

A do-loop may be terminated on a labelled statement other than an end do or continue.

Such a statement must be an executable statement other than go to, a return or an end
statement of a subprogram, a stop or an end statement of a main program, exit, cycle,

arithmetic if, or assigned go to statement. Nested do-loops may share the same labelled

terminal statement, in which case all the usual rules for nested blocks hold, but a branch to

the label must be from within the innermost loop. Thus, we may write a matrix multiplication

as

a(1:n, 1:n) = 0.
do 1 i = 1, n

do 1 j = 1, n
do 1 l = 1, n

1 a(i, j) = a(i, j) + b(i, l)*c(l, j)

Execution of a cycle statement restarts the loop without execution of the terminal statement.

This form of do-loop offers no additional functionality but considerable scope for

unexpected mistakes.

C.1.9 Alternate return

When calling certain types of subroutines, it is possible that specific exceptional conditions

will arise, which should cause a break in the normal control flow. It is possible to anticipate

such conditions, and to code different flow paths following a subroutine call, depending on

whether the called subroutine has terminated normally, or has detected an exceptional or

abnormal condition. This is achieved using the alternate return facility which uses the

argument list in the following manner. Let us suppose that a subroutine deal receives in an

424 Modern Fortran Explained

argument list the number of cards in a shuffled deck, the number of players, and the number

of cards to be dealt to each hand. In the interests of generality, it would be a reasonable

precaution for the first executable statement of deal to be a check that there is at least one

player and that there are, in fact, enough cards to satisfy each player’s requirement. If there

are no players or insufficient cards, it can signal this to the main program which should then

take the appropriate action. This may be written in outline as

call deal(nshuff, nplay, nhand, cards, *2, *3)
call play
:

2 ! Handle no-player case
:

3 ! Handle insufficient-cards case
:

If the cards can be dealt, normal control is returned, and the call to play executed. If an

exception occurs, control is passed to the statement labelled 2 or 3, at which point some

action must be taken – to stop the game or shuffle more cards. The relevant statement label

is defined by placing the statement label preceded by an asterisk as an actual argument in the

argument list. It must be a label of an executable statement of the same scoping unit. Any

number of such alternate returns may be specified, and they may appear in any position in

the argument list. Since, however, they are normally used to handle exceptions, they are best

placed at the end of the list.

In the called subroutine, the corresponding dummy arguments are asterisks and the

alternate return is taken by executing a statement of the form

return intexpr

where intexpr is any scalar integer expression. The value of this expression at execution time

defines an index to the alternate return to be taken, according to its position in the argument

list. If intexpr evaluates to 2, the second alternate return will be taken. If intexpr evaluates to

a value which is less than 1, or greater than the number of alternate returns in the argument

list, a normal return will be taken. Thus, in deal, we may write simply

subroutine deal(nshuff, nplay, nhand, cards, *, *)
:
if (nplay.le.0) return 1
if (nshuff .lt. nplay*nhand) return 2

This feature is also available for subroutines defined by entry statements. It is not

available for functions or elemental subroutines.

This feature is replaced by use of an integer argument holding a return code used in a

following case construct.

C.2 Feature obsolescent in Fortran 2008: Entry statement

A subprogram usually defines a single procedure, and the first statement to be executed is the

first executable statement after the header statement. In some cases it is useful to be able to

Obsolescent features 425

define several procedures in one subprogram, particularly when wishing to share access to

some saved local variables or to a section of code. This is possible for external and module

subprograms (but not for internal subprograms) by means of the entry statement. This is a

statement that has the form

entry entry-name [([dummy-argument-list]) [result(result-name)]]

and may appear anywhere between the header line and contains (or end if it has no

contains) statement of a subprogram, except within a construct. The entry statement pro-

vides a procedure with an associated dummy argument list, exactly as does the subroutine
or function statement, and these arguments may be different from those given on the

subroutine or function statement. Execution commences with the first executable state-

ment following the entry statement.

In the case of a function, each entry defines another function, whose characteristics (that

is, shape, type, type parameters, and whether a pointer) are given by specifications for the

result-name (or entry-name if there is no result clause). If the characteristics are the same

as for the main entry, a single variable is used for both results; otherwise, they must not be

allocatable, must not be pointers, must be scalar, and must both be one of the default integer,

default real, double precision real (Appendix B.6), or default complex types, and they are

treated as equivalenced. The result clause plays exactly the same rôle as for the main entry.

Each entry is regarded as defining another procedure, with its own name. The names of

all these procedures and their result variables (if any) must be distinct. The name of an entry

has the same scope as the name of the subprogram. It must not be the name of a dummy

argument of any of the procedures defined by the subprogram. An entry statement is not

permitted in an interface block; there must be another body for each entry whose interface is

wanted, using a subroutine or function statement, rather than an entry statement.

An entry is called in exactly the same manner as a subroutine or function, depending on

whether it appears in a subroutine subprogram or a function subprogram. An example is

given in Figure C.3 which shows a search function with two entry points. We note that looku
and looks are synonymous within the function, so that it is immaterial which value is set

before the return.

None of the procedures defined by a subprogram is permitted to reference itself, unless the

keyword recursive is present on the subroutine or function statement. For a function,

such a reference must be indirect unless there is a result clause on the function or entry
statement. If a procedure may be referenced directly in the subprogram that defines it, the

interface is explicit in the subprogram.

The name of an entry dummy argument that appears in an executable statement preceding

the entry statement in the subprogram must also appear in a function, subroutine, or

entry statement that precedes the executable statement. Also, if a dummy argument is used

to define the array size or character length of an object, the object must not be referenced

unless the argument is present in the procedure reference that is active.

During the execution of one of the procedures defined by a subprogram, a reference to a

dummy argument is permitted only if it is a dummy argument of the procedure referenced.

The entry statement is made unnecessary by the use of modules (Section 5.5), with each

procedure defined by an entry becoming a module procedure.

426 Modern Fortran Explained

Figure C.3 A search function with two entry points.

function looku(list, member)
integer looku, list(:), member, looks

!
! To locate member in an array list.
! If list is unsorted, entry looku is used;
! if list is sorted, entry looks is used.
!
! List is unsorted.

do looku = 1, size(list)
if (list(looku) == member) return

end do
!
! Not found.

looku = 0
return

!
! Entry point for sorted list.
!

entry looks(list, member)
do looks = 1, size(list)

if (list(looks) == member) return
if (list(looks) > member) exit

end do
!
! Not found.

looks = 0
!

end function

C.3 Feature deleted in Fortran 2003: Carriage control

Fortran’s formatted output statements were originally designed for line-printers, with their

concept of lines and pages of output. On such a device, the first character of each output

record must be of default kind. It is not printed but interpreted as a carriage control character.

If it is a blank, no action is taken, and it is good practice to insert a blank as the first character

of each record, either explicitly as ’ ’ or using the t2 edit descriptor (described in Section

9.12.4), in order to avoid inadvertent generation of spurious carriage control characters. This

can happen when the first character in an output record is non-blank, and might occur, for

instance, when printing integer values with the format ’(i5)’. Here, all output values

between −999 and 9999 will have a blank in the first position, but all others will generate a

character there which may be used mistakenly for carriage control.

The carriage control characters defined by the standard are:

Obsolescent features 427

b to start a new line

+ to remain on the same line (overprint)

0 to skip a line

1 to advance to the beginning of the next page

As a precaution, the first character of each record produced by list-directed and namelist
output is a blank, unless it is the continuation of a delimited character constant.

In this context, we note that execution of a print statement does not imply that any printing

will actually occur, and nor does execution of a write statement imply that printing will not

occur.

C.4 Features deleted in Fortran 95

The features listed in this section were deleted from the Fortran 95 language entirely.

Although it can be expected that compilers will continue to support these features for some

period, their use should be completely avoided to ensure very long-term portability and to

avoid unnecessary compiler warning messages. They are fully described in previous editions

of this book.

Non-integer do indices The do variable and the expressions that specify the limits and stride

of a do construct or an implied-do in an I/O statement could be of type default real or

double precision real.

Assigned go to and assigned formats Another form of branch statement is actually written

in two parts, an assign statement and an assigned go to statement. One use of

the assign statement is replaced by character expressions to define format specifiers

(Section 9.4).

Branching to an end if statement It was permissible to branch to an end if statement from

outside the construct that it terminates. A branch to the following statement is a

replacement for this practice.

The pause statement At certain points in the execution of a program it was possible to

pause, in order to allow some possible external intervention in the running conditions

to be made.

H edit descriptor The H (or h) edit descriptor provided an early form of the character string

edit descriptor.

This page intentionally left blank

D. Avoiding compilation cascades

When compiling a module, most compilers produce two files: an object file, and a separate

file containing the information for use of the module (we will call the latter the .mod file, as

that is the most common suffix in use for it).

A program unit that uses a module depends on the .mod file, not on the object file or source

file, but a recompilation cascade arises from any change to the module because

i) the .mod file depends on the source file; and

ii) the compiler updates the .mod file when compiling the source file even if there are no

changes to it.

To avoid this cascade one must both break the connection between the source file and the

.mod file, and avoid updating the .mod file when there are no changes to it.

We will describe how to do this using the make tool. Firstly, the Makefile needs a

description of how to generate the .mod file when it does not exist. This should be done

by a recursive make invocation. Secondly, the compiler needs to be prevented from updating

the .mod file when there are no changes. This can be done by using a shell script to wrap the

compiler invocation. We will show how to do these with the NAGWare f95 compiler.

In the simplest case we have a program, example.exe with two source files, one.f90
containing a module that is used by the other, two.f90. The Makefile is shown in Figure

D.1, and the shell script is shown in Figure D.2 (f95 is the name by which the compiler is

invoked).

The shell script uses the -M and -nomod options which cause the compiler only to produce

the .mod files or not to produce any .mod files, respectively.

In the slightly more complicated case that one uses another module zero and does not

make everything from zero private, then zero.mod must appear as a dependency of one.mod
(as well as of one.o), that is

one.mod: zero.mod

This technique can be used for most compilers that store the module information in a

separate file; for some of them, the time of compilation is written into the .mod file, so a

more intelligent tool must be used to compare the new and old .mod files – this information

can usually be obtained from the compiler vendor or from the World-Wide Web.

430 Modern Fortran Explained

Figure D.1
Makefile for example.exe

Compilation options:
(the -nocheck_modtime option suppresses the compiler’s check for the
.mod file being outofdate - since we are using make, we don’t need
this check.)
F90FLAGS = -O -nocheck_modtime

Linking options:
F90LINKFLAGS =

The executable depends on all the object files:
example.exe: one.o two.o

f95 $F90LINKFLAGS -o example.exe one.o two.o

Use mf95 to avoid .mod file updates
one.o: one.f90

mf95 one one.f90

No module(s) in two.f90, so can just use f95 directly
two.o: two.f90 one.mod

f95 two.f90

If there is no .mod file, ‘make one.f90’ will make sure we
have an uptodate source file, then compile it asking for the
.mod file only to be produced (this is very quick).
one.mod:

make one.f90
f95 -M one.f90

Avoiding compilation cascades 431

Figure D.2

#!/bin/sh
if [-f $1.mod]; then
Just produce the .mod file...

mkdir $1.tmp
f95 -M $F90FLAGS -mdir $1.tmp $2
cmp -s $1.tmp/$1.mod $1.mod
if [$? != 0]; then

Different .mod file contents, so update it
mv $1.tmp/$1.mod $1.mod

fi
rm -r $1.tmp

Now produce the object file and don’t produce a .mod file
f95 $F90FLAGS -nomod $2

else
.mod file does not exist, just compile

f95 $F90FLAGS $2
fi

This page intentionally left blank

E. Object-oriented list example

A recurring problem in computing is the need to manipulate a dynamic data structure. This

might be a simple homogeneous linked list like the one encountered in Section 2.13, but often

a more complex structure is required.

The example in this appendix consists of a module that provides two types – a list type

anylist and an item type anyitem – for building heterogenous doubly linked linear lists,

plus a simple item constructor function newitem. Operations on the list or on items are

provided by type-bound procedures. Each list item has a scalar value which may be of any

type; when creating a new list item, the required value is copied into the item. A list item can

be in at most one list at a time.

List operations include inserting a new item at the beginning or end of the list, returning

the item at the beginning or end of the list, and counting, printing, or deleting the whole list.

Operations on an item include removing it from a list, returning the next or previous item

on the list, changing the value of the item, and printing or deleting the item. When traversing

the list backwards (via the prev function), the list is circular; that is, the last item on the list is

previous to the first. When traversing the list forwards (via the next function), a null pointer

is returned after the last item.

Internally, the module uses private pointer components (firstptr, nextptr, prevptr,

and upptr) to maintain the structure of the lists.

The item print operation may be overridden in an extension to anyitem to provide

printing capability for user-defined types; this is demonstrated by the type myitem. All the

other procedures are non-overridable, so that extending the list type cannot break the list

structure.

The source code is available at ftp://ftp.numerical.rl.ac.uk/pub/MRandC/oo.f90

module anylist_m
!
! Module for a list type that can contain items with any scalar value.
! Values are copied into the list items.
!
! A list item can be in at most one list at a time.
!
implicit none
private
public :: anylist, anyitem, newitem
!
! type(anylist) is the list header type.

434 Modern Fortran Explained

!
type anylist

class(anyitem), pointer, private :: firstptr => null()
contains
procedure, non_overridable :: append
procedure, non_overridable :: count_list
procedure, non_overridable :: delete_list
procedure, non_overridable :: first
procedure, non_overridable :: last
procedure, non_overridable :: prepend
procedure, non_overridable :: print_list

end type
!
! type(anyitem) is the list item type.
! These are allocated by newitem.
!
type anyitem
class(*), allocatable :: value
class(anyitem), pointer, private :: nextptr => null(), prevptr => null()
class(anylist), pointer, private :: upptr => null()

contains
procedure, non_overridable :: change
procedure, non_overridable :: delete
procedure, non_overridable :: list
procedure, non_overridable :: next
procedure, non_overridable :: prev
procedure :: print
procedure, non_overridable :: remove

end type

contains
!
! Create a new (orphaned) list item.
!
function newitem(something)
class(*), intent(in) :: something
class(anyitem), pointer :: newitem
allocate (newitem)
allocate (newitem%value, source=something)
newitem%prevptr => newitem

end function
!
! Append an item to a list.
!
subroutine append(list, item)
class(anylist), intent(inout), target :: list
class(anyitem), target :: item
class(anyitem), pointer :: last
if (associated(item%upptr)) call remove(item)

Object-oriented list example 435

item%upptr => list
if (associated(list%firstptr)) then

last => list%firstptr%prevptr
last%nextptr => item
item%prevptr => last
list%firstptr%prevptr => item

else
list%firstptr => item
item%prevptr => item

end if
end subroutine
!
! Count how many items there are in a list.
!
integer function count_list(list)
class(anylist), intent(in) :: list
class(anyitem), pointer :: p
count_list = 0
p => list%firstptr
do
if (.not.associated(p)) exit
count_list = count_list + 1
p => p%nextptr

end do
end function
!
! Delete the contents of a list.
!
subroutine delete_list(list)
class(anylist), intent(inout) :: list
do
if (.not.associated(list%firstptr)) exit
call delete(list%firstptr)

end do
end subroutine
!
! Return the first element of a list.
!
function first(list)
class(anylist), intent(in) :: list
class(anyitem), pointer :: first
first => list%firstptr

end function
!
! Return the last element of a list
!
function last(list)
class(anylist), intent(in) :: list
class(anyitem), pointer :: last

436 Modern Fortran Explained

last => list%firstptr
if (associated(last)) last => last%prevptr

end function
!
! Insert an item at the beginning of a list.
!
subroutine prepend(list, item)
class(anylist), intent(inout), target :: list
class(anyitem), target :: item
if (associated(item%upptr)) call remove(item)
item%upptr => list
if (associated(list%firstptr)) then
item%prevptr => list%firstptr%prevptr
item%nextptr => list%firstptr
list%firstptr%prevptr => item

else
item%prevptr => item

end if
list%firstptr => item

end subroutine
!
! Print the items in a list.
!
subroutine print_list(list, show_item_numbers, show_empty_list)
class(anylist), intent(in) :: list
logical, intent(in), optional :: show_item_numbers, show_empty_list
class(anyitem), pointer :: p
integer i
logical :: show_numbers
if (present(show_item_numbers)) then
show_numbers = show_item_numbers

else
show_numbers = .true.

end if
p => list%firstptr
if (.not.associated(p)) then
if (present(show_empty_list)) then
if (show_empty_list) print *, ’List is empty.’

else
print *, ’List is empty.’

end if
else
do i=1, huge(i)-1
if (show_numbers) write (*, 1, advance=’no’) i

1 format(1x, ’Item ’, i0, ’:’)
call p%print
p => p%nextptr
if (.not.associated(p)) exit

end do

Object-oriented list example 437

end if
end subroutine
!
! Change the value of an item.
!
subroutine change(item, newvalue)
class(anyitem), intent(inout) :: item
class(*), intent(in) :: newvalue
deallocate (item%value)
allocate (item%value, source=newvalue)

end subroutine
!
! Delete an item: removes it from the list and deallocates it.
!
subroutine delete(item)
class(anyitem), target :: item
class(anyitem), pointer :: temp
temp => item
call remove(item)
deallocate (temp)

end subroutine
!
! Return the list that an item is a member of. Null if an orphan.
!
function list(item)
class(anyitem), intent(in) :: item
class(anylist), pointer :: list
list => item%upptr

end function
!
! Return the next item in the list.
!
function next(item)
class(anyitem), intent(in) :: item
class(anyitem), pointer :: next
next => item%nextptr

end function
!
! Return the previous item in the list,
! or the last item if this one is the first.
!
function prev(item)
class(anyitem), intent(in) :: item
class(anyitem), pointer :: prev
prev => item%prevptr

end function
!
! Print an item. This is overridable.
!

438 Modern Fortran Explained

subroutine print(this)
class(anyitem) :: this
integer length
select type (v=>this%value)
type is (character(*))
length = len(v)
if (length>40) then
print 1, length, v(:36)

1 format(1x, ’character(len=’, i0, ’) = "’, a, ’"...’)
else
print *, ’character = "’, v, ’"’

end if
type is (complex)
print *, ’complex’, v

type is (complex(kind(0d0)))
print 2, kind(v), v

2 format(1x, ’complex(kind=’, i0, ’) = (’, es22.16, ’, ’, es22.16, ’)’)
type is (real(kind(0d0)))

print 3, kind(v), v
3 format(1x, ’real(kind=’, i0, ’) = ’, es22.16)

type is (integer)
print *, ’integer = ’, v

type is (real)
print *, ’real = ’, v

type is (logical)
print *, ’logical = ’, v

class default
print *, ’unrecognised item type - cannot display value’

end select
end subroutine
!
! Remove an item from a list (but keep it and its value).
!
subroutine remove(item)
class(anyitem), intent(inout), target :: item
class(anylist), pointer :: list
list => item%upptr
if (associated(list)) then
if (associated(item%prevptr, item)) then
! Single item in list.
nullify(list%firstptr)

else if (.not.associated(item%nextptr)) then
! Last item in list.
list%firstptr%prevptr => item%prevptr
nullify(item%prevptr%nextptr)
item%prevptr => item

else if (associated(list%firstptr, item)) then
! First item in list.
list%firstptr => item%nextptr ! first = next.

Object-oriented list example 439

item%prevptr%prevptr => item%nextptr ! last%prev = item%next.
item%nextptr%prevptr => item%prevptr ! next%prev = last.

end if
end if
nullify(item%upptr)

end subroutine
end module
!
! Module to demonstrate extending anyitem to handle a user-defined type.
!
module myitem_list_m
use anylist_m
implicit none
type, extends(anyitem) :: myitem
contains
procedure :: print => myprint

end type
type rational
integer :: numerator = 0
integer :: denominator = 1

end type
contains
!
! Version of print that will handle type rational.
!
subroutine myprint(this)
class(myitem), intent(in) :: this
select type (v=>this%value)
class is (rational)
print *, ’rational =’, v%numerator, ’/’, v%denominator

class default
call this%anyitem%print

end select
end subroutine
function new_myitem(anything)
class(*), intent(in) :: anything
class(myitem), pointer :: new_myitem
allocate (new_myitem)
allocate (new_myitem%value, source=anything)

end function
end module
!
! Demonstration program.
!
program demonstration
use myitem_list_m
implicit none
type(anylist) :: list
class(anyitem), pointer :: p

440 Modern Fortran Explained

!
! First demonstrate the most basic workings of a list.
print *, ’The initial list has’, list%count_list(), ’items.’
call list%append(newitem(17))
print *, ’The list now has’, list%count_list(), ’items.’
call list%append(newitem(’world’))
print *, ’The list now has’, list%count_list(), ’items.’
call list%prepend(newitem(’hello’))
print *, ’The list now has’, list%count_list(), ’items.’
call list%append(newitem(2.25))
print *, ’The list now has’, list%count_list(), ’items.’
write (*, ’(1x, a)’, advance=’no’) ’The first element is: ’
p => list%first()
call p%print
write (*, ’(1x, a)’, advance=’no’) ’The last element is: ’
p => list%last()
call p%print
print *, ’After deleting the last element, the list contents are:’
call p%delete
call list%print_list
!
! Now delete the old list and make a new one,
! with some values from myitem_list_m.
!
call list%delete_list
call list%append(new_myitem(’The next value is one third.’))
call list%append(new_myitem(rational(1,3)))
call list%append(new_myitem(’Where did this number come from?’))
call list%append(new_myitem(rational(173,13)))
print *, ’The contents of our new list are:’
call list%print_list
!
! Now test some of the other procedures, just to prove they work.
!
p => list%first()
p => p%prev() ! Test prev(), this will be the last item.
call p%remove ! Remove the last item.
call list%prepend(p) ! Put it back, at the beginning of the list.
p => p%next() ! Test next(), this will be the second item,

! the one with the string "...third.".
call p%change((0,1)) ! Replace it with a complex number.
print *, ’Revised list contents:’
call list%print_list

end program

F. Fortran terms

The following is a list of the principal technical terms used in this book, and their definitions.

To facilitate reference to the standard, we have kept closely to the meanings used there. We

make no reference to deprecated, obsolescent, or deleted features (Appendices B and C) in

this appendix.

abstract interface set of procedure characteristics with dummy argument names

actual argument entity that appears in a procedure reference

allocatable having the allocatable attribute

array set of scalar data, all of the same type and type parameters, whose individual elements

are arranged in a rectangular pattern

array element scalar individual element of an array

array pointer array with the pointer attribute

array section array subobject that is itself an array

assumed-shape array non-allocatable non-pointer dummy argument array that takes

its shape from its effective argument

assumed-size array dummy argument array whose size is assumed from that of its

effective argument

deferred-shape array allocatable array or array pointer

explicit-shape array array declared with explicit values for the bounds in each

dimension of the array

ASCII character character whose representation method corresponds to ISO/IEC 646:1991

associate name name of construct entity associated with a selector of an associate or

select type construct

associating entity (in a dynamically established association) the entity that did not exist

prior to the establishment of the association

association inheritance association, name association, pointer association, or storage asso-

ciation.

442 Modern Fortran Explained

argument association association between an effective argument and a dummy

argument

construct association association between a selector and an associate name in an

associate or select type construct

host association name association, other than argument association, between entities

in a submodule or contained scoping unit and entities in its host

inheritance association association between the inherited components of an extended

type and the components of its parent component

linkage association association between a variable with the bind attribute and a C

global variable

name association argument association, construct association, host association, link-

age association, or use association

pointer association association between a pointer and an entity with the target
attribute

use association association between entities in a module and entities in a scoping unit

or construct that references that module, as specified by a use statement

attribute property of an entity that determines its uses

automatic data object (also automatic object) non-dummy data object with a type param-

eter or array bound that depends on the value of a specification expression that is not a

constant expression

base object (of a subobject) object designated by the leftmost part-name

binding type-bound procedure or final subroutine

binding name name given to a specific or generic type-bound procedure in the type

definition

binding label default character value specifying the name by which a global entity with the

BIND attribute is known to the companion processor

block sequence of executable constructs within an executable construct that is bounded by

statements of the executable construct

bound (also array bound) limit of a dimension of an array

branch target statement statement whose statement label appears as a label in a go to
statement, computed go to statement, end= specifier, eor= specifier, or err= specifier

C address value identifying the location of a data object or procedure either defined by the

companion processor or which might be accessible to the companion processor (this is

the concept that the C standard calls the address)

character context within a character literal constant or within a character string edit

descriptor

Fortran terms 443

characteristics (of a dummy argument) being a dummy data object or dummy procedure

coarray data entity that has nonzero corank

cobound bound (limit) of a codimension

codimension dimension of the pattern formed by a set of corresponding coarrays

coindexed object data object whose designator includes an image selector

collating sequence one-to-one mapping from a character set into the non-negative integers

component part of a derived type, or of an object of derived type, defined in a type

declaration statement

direct component one of the components, or one of the direct components of a non-

pointer non-allocatable component

parent component component of an extended type whose type is that of the parent

type and whose components are inheritance associated with the inherited compo-

nents of the parent type

subcomponent (of a structure) direct component that is a subobject of the structure

ultimate component a component that is of intrinsic type, a pointer, or allocatable;

or an ultimate component of a non-pointer non-allocatable component of derived

type

component order ordering of the non-parent components of a derived type that is used for

intrinsic formatted input/output and structure constructors (where component keywords

are not used)

conformable (of two data entities) having the same shape, or one being an array and the

other being scalar

connected relationship between a unit and a file: each is connected if and only if the unit

refers to the file

constant data object that has a value and which cannot be defined, redefined, or become

undefined during execution of a program

literal constant constant that does not have a name

named constant named data object with the parameter attribute

construct entity entity whose identifier has the scope of a construct

constant expression expression satisfying the requirements specified in Section 7.4, thus

ensuring that its value is constant

contiguous (array) having array elements in order that are not separated by other data

objects, as specified in Section 20.4.2

444 Modern Fortran Explained

contiguous (multi-part data object) that the parts in order are not separated by other data

objects

corank number of codimensions of a coarray (zero for objects that are not coarrays)

cosubscript scalar integer expression in an image selector

data entity data object, result of the evaluation of an expression, or the result of the

execution of a function reference

data object (also object) constant, variable, or subobject of a constant

decimal symbol character that separates the whole and fractional parts in the decimal

representation of a real number in a file

declaration specification of attributes for various program entities (often this involves

specifying the type of a named data object or specifying the shape of a named array

object)

default initialization mechanism for automatically initializing pointer components to have

a defined pointer association status, and non-pointer components to have a particular

value

default-initialized (subcomponent) subject to a default initialization specified in the type

definition for that component

definable capable of definition and permitted to become defined

defined (data object) has a valid value

defined (pointer) has a pointer association status of associated or disassociated

defined assignment assignment defined by a procedure

defined input/output input/output defined by a procedure and accessed via a dt edit

descriptor

defined operation operation defined by a procedure

definition (of a data object) process by which the data object becomes defined

definition (of a derived type, enumeration, or procedure) specification of the type, enumera-

tion, or procedure

descendant (module or submodule) submodule that extends that module or submodule or

that extends another descendant thereof

designator name followed by zero or more component selectors, complex part selectors,

array section selectors, array element selectors, image selectors, and substring selectors

complex part designator designator that designates the real or imaginary part of a

complex data object, independently of the other part

Fortran terms 445

object designator (also data object designator) designator for a data object (an

object name is a special case of an object designator)

procedure designator designator for a procedure

disassociated (pointer association) pointer association status of not being associated with

any target and not being undefined

disassociated (pointer) has a pointer association status of disassociated

dummy argument entity whose identifier appears in a dummy argument list in a function

or subroutine, or whose name can be used as an argument keyword in a reference to an

intrinsic procedure or a procedure in an intrinsic module

dummy data object dummy argument that is a data object

dummy function dummy procedure that is a function

effective argument entity that is argument associated with a dummy argument

effective item scalar object that is associated with an edit descriptor as a result of the rules

for an input/output list

elemental independent scalar application of an action or operation to elements of an array

or corresponding elements of a set of conformable arrays and scalars, or possessing

the capability of elemental operation (combination of scalar and array operands or

arguments combine the scalar operand(s) with each element of the array operand(s))

elemental assignment assignment that operates elementally

elemental operation operation that operates elementally

elemental operator operator in an elemental operation

elemental procedure elemental intrinsic procedure or procedure defined by an ele-

mental subprogram

elemental reference reference to an elemental procedure with at least one array actual

argument

elemental subprogram subprogram with the elemental prefix

explicit initialization initialization of a data object by a specification statement

explicit interface interface of a procedure that includes all the characteristics of the

procedure and names for its dummy arguments

extent number of elements in a single dimension of an array

external file file that exists in a medium external to the program

external unit (also external input/output unit) entity that can be connected to an external

file

file storage unit unit of storage in a stream file or an unformatted record file

446 Modern Fortran Explained

final subroutine subroutine whose name appears in a final statement in a type definition,

and which can be automatically invoked by the processor when an object of that type

is finalized

finalizable (type) has a final subroutine or a non-pointer non-allocatable component of

finalizable type

finalizable (non-pointer data entity) of finalizable type

finalization the process of calling final subroutines when variables are deallocated or

otherwise cease to exist

function procedure that is invoked by an expression

generic identifier lexical token that identifies a generic set of procedures, intrinsic opera-

tions, and/or intrinsic assignments

host instance (of an internal procedure, or dummy procedure or procedure pointer associ-

ated with an internal procedure) instance of the host procedure that supplies the host

environment of the internal procedure

host scoping unit (also host) the scoping unit immediately surrounding another scoping

unit, or the scoping unit extended by a submodule

IEEE infinity IEEE standard conformant infinite floating-point value

IEEE NaN IEEE standard conformant floating-point datum that does not represent a number

image instance of a Fortran program

image index integer value identifying an image

image control statement statement that affects the execution ordering between images

implicit interface interface of a procedure that includes only whether it is a function and if

so, the type and type parameters of its result

inclusive scope non-block scoping unit plus every block scoping unit whose host is that

scoping unit or that is nested within such a block scoping unit (that is, inclusive scope

is the scope as if block constructs were not scoping units)

inherit (for extended type) acquire entities (components, type-bounds procedures, and type

parameters) through type extension from the parent type

inquiry function intrinsic function, or function in an intrinsic module, whose result depends

on the properties of one or more of its arguments instead of their values

interface (of a procedure) name, procedure characteristics, dummy argument names,

binding label, and generic identifiers

generic interface set of procedure interfaces identified by a generic identifier

Fortran terms 447

specific interface interface identified by a non-generic name

interface block abstract interface block, generic interface block, or specific interface

block

abstract interface block interface block with the abstract keyword; collection of

interface bodies that specify named abstract interfaces

generic interface block interface block with a generic-spec; collection of interface

bodies and procedure statements that are to be given that generic identifier

specific interface block interface block with no generic-spec or abstract keyword;

collection of interface bodies that specify the interfaces of procedures

interoperable (Fortran entity) equivalent to an entity defined by or definable by the

companion processor

intrinsic type, procedure, module, assignment, operator, or input/output operation defined in

the Standard and accessible without further definition or specification, or a procedure

or module provided by a processor but not defined in the Standard

standard intrinsic (procedure or module) defined in the Standard

nonstandard intrinsic (procedure or module) provided by a processor but not defined

in the Standard

internal file character variable that is connected to an internal unit

internal unit input/output unit that is connected to an internal file

ISO 10646 character character whose representation method corresponds to UCS-4 in

ISO/IEC 10646

keyword statement keyword, argument keyword, type parameter keyword, or component

keyword

argument keyword word that identifies the corresponding dummy argument in an

actual argument list

component keyword word that identifies a component in a structure constructor

statement keyword word that is part of the syntax of a statement

type parameter keyword word that identifies a type parameter in a type parameter

list

lexical token keyword, name, literal constant other than a complex literal constant, operator,

label, delimiter, comma, =, =>, :, ::, ;, or %

line sequence of zero or more characters

main program program unit that is not a subprogram, module, submodule, or block data

program unit

masked array assignment assignment statement in a where statement or where construct

448 Modern Fortran Explained

module program unit containing (or accessing from other modules) definitions that are to be

made accessible to other program units

name identifier of a program consituent, formed according to the rules given in Section 2.7

operand data value that is the subject of an operator

operator intrinsic operator, defined unary operator, or defined binary operator

passed-object dummy argument dummy argument of a type-bound procedure or proce-

dure pointer component that becomes associated with the object through which the

procedure is invoked

pointer data pointer or procedure pointer

data pointer data entity with the pointer attribute

procedure pointer procedure with the external and pointer attributes

pointer assignment association of a pointer with a target, by execution of a pointer

assignment or an intrinsic assignment statement for a derived-type object that has the

pointer as a subobject

polymorphic (data entity) able to be of differing dynamics types during program execution

preconnected (file or unit) connected at the beginning of execution of the program

procedure entity encapsulating an arbitrary sequence of actions that can be invoked directly

during program execution

dummy procedure procedure that is a dummy argument

external procedure procedure defined by an external subprogram or by means other

than Fortran

internal procedure procedure defined by an internal subprogram

module procedure procedure that is defined by a module subprogram

pure procedure procedure declared or defined to be pure according to the rules in

Section 6.10

type-bound procedure procedure that is bound to a derived type and referenced via

an object of that type

processor combination of a computing system and mechanism by which programs are

transformed for use on that computing system

processor dependent not completely specified in the Standard, having methods and seman-

tics determined by the processor

program set of Fortran program units, and perhaps entities defined by means other than

Fortran, that includes exactly one main program

Fortran terms 449

program unit main program, external subprogram, module, submodule, or block data

program unit

rank number of array dimensions of a data entity (zero for a scalar entity)

record sequence of values or characters in a file

record file file composed of a sequence of records

reference data object reference, procedure reference, or module reference

data object reference appearance of a data object designator in a context requiring its

value at that point during execution

function reference appearance of the procedure designator for a function, or operator

symbol in a context requiring execution of the function during expression

evaluation

module reference appearance of a module name in a use statement

procedure reference appearance of a procedure designator, operator symbol, or

assignment symbol in a context requiring execution of the procedure at that

point during execution; or occurrence of defined input/output or derived-type

finalization

result variable variable that returns the value of a function

saved having the save attribute

scalar data entity that can be represented by a single value of the type and that is not an array

scoping unit block construct, derived-type definition, interface body, program unit, or

subprogram, excluding all nested scoping units in it

block scoping unit scoping unit of a block construct

sequence set of elements ordered by a one-to-one correspondence with the numbers 1,2, . . .n

shape array dimensionality of a data entity, represented as a rank-one array whose size is the

rank of the data entity and whose elements are the extents of the data entity (thus the

shape of a scalar data entity is an array with rank one and size zero)

simply contiguous (array designator or variable) satisfying the conditions specified in

Section 20.4.3 (these conditions are simple ones which make it clear that the designator

or variable designates a contiguous array)

size (array) total number of elements in the array

specification expression expression satisfying the requirements specified in Section 7.14,

thus being suitable for use in specifications

specific name name that is not a generic name

450 Modern Fortran Explained

standard-conforming program program that uses only those forms and relationships

described in, and has an interpretation according to, the Standard

statement sequence of one or more complete or partial lines satisfying the rules of

Section 2.4

executable statement statement that performs or controls one or more actions,

excluding those in the specification-part of a block construct

nonexecutable statement statement that is not an executable statement

statement entity entity whose identifier has the scope of a statement or part of a statement

statement label (also label) unsigned positive number of up to five digits that refers to an

individual statement

stream file file composed of a sequence of file storage units

structure scalar data object of derived type

structure component component of a structure

structure constructor syntax that specifies a structure value or creates such a value

submodule program unit that extends a module or another submodule

subobject portion of data object that can be referenced, and if it is a variable defined,

independently of any other portion

subprogram function subprogram or subroutine subprogram

external subprogram subprogram that is not contained in a main program, module,

submodule, or another subprogram

internal subprogram subprogram that is contained in a main program or another

subprogram

module subprogram subprogram that is contained in a module or submodule but is

not an internal subprogram

subroutine procedure invoked by a call statement, by defined assignment, or by

some operations on derived-type entities

atomic subroutine intrinsic subroutine that performs an action on its atom argument

atomically

target entity that is pointer associated with a pointer, entity on the right-hand side of a pointer

assignment statement, or entity with the target attribute

transformational function intrinsic function, or function in an intrinsic module, that is

neither elemental nor an inquiry function

Fortran terms 451

type (also data type) named category of data characterized by a set of values, a syntax for

denoting these values, and a set of operations that interpret and manipulate the values

abstract type type with the abstract attribute

declared type type that a data entity is declared to have, either explicitly or implicitly

derived type type defined by a type definition or by an intrinsic module

dynamic type type of a data entity at a particular point during execution of a program

extended type type with the extends attribute

extensible type type that does not have the bind attribute and which therefore may be

extended using the extends clause

extension type (of one type with respect to another) is the same type or is an extended

type whose parent type is an extension type of the other type

intrinsic type type defined by the Standard that is always accessible

numeric type one of the types integer, real, and complex

parent type (of an extended type) type named in the extends clause

type compatible compatibility of the type of one entity with respect to another for

purposes such as argument association, pointer association, and allocation

type parameter value used to parameterize a type

assumed type parameter length type parameter that assumes the type parame-

ter value from another entity (the other entity is

• the selector for an associate name;

• the constant-expr for a named constant of type character; or

• the effective argument for a dummy argument).

deferred type parameter length type parameter whose value can change during

execution of a program and whose type parameter value is a colon

kind type parameter type parameter whose value is required to be defaulted or

given by a constant expression

length type parameter type parameter whose value is permitted to be assumed,

deferred, or given by a specification expression

type parameter inquiry syntax that is used to inquire the value of a type

parameter of a data object

type parameter order ordering of the type parameters of a type used for

derived-type specifiers

ultimate argument non-dummy entity with which a dummy argument is associated via a

chain of argument associations

undefined (data object) does not have a valid value

undefined (pointer) does not have a pointer association status of associated or disassociated

unit (also input/output unit) means for referring to a file

452 Modern Fortran Explained

unlimited polymorphic able to have any dynamic type during program execution

unsaved not having the save attribute

variable data entity that can be defined and redefined during execution of a program

local variable variable in a scoping unit that is not a dummy argument or part thereof,

is not a global entity or part thereof, and is not accessible outside that scoping

unit

lock variable scalar variable of the type lock_type that is defined in the intrinsic

module iso_fortran_env

vector subscript section subscript that is an array

whole array array component or array name without further qualification

G. Solutions to exercises

Note: A few exercises have been left to the reader.

Chapter 2
1.

b is less than m true

8 is less than 2 false

* is greater than T not determined

$ is less than / not determined

blank is greater than A false

blank is less than 6 true

2.
x = y correct

3 a = b+c ! add correct, with commentary

word = ’string’ correct

a = 1.0; b = 2.0 correct

a = 15. ! initialize a; b = 22. ! and b
incorrect (embedded commentary)

song = "Life is just& correct, initial line

& a bowl of cherries" correct, continuation

chide = ’Waste not, incorrect, trailing & missing

want not!’ incorrect, leading & missing

0 c(3:4) = ’up" incorrect (invalid statement label;

invalid form of character constant)

3.
-43 integer ’word’ character

4.39 real 1.9-4 not legal

0.0001e+20 real ’stuff & nonsense’ character

4 9 not legal (0.,1.) complex

(1.e3,2) complex ’I can’’t’ character

’(4.3e9, 6.2)’ character .true._1 logical1

e5 not legal ’shouldn’ ’t’ not legal

1_2 integer1 "O.K." character

z10 not legal z’10’ hexadecimal

1Legal provided the kind is available.

454 Modern Fortran Explained

4.
name legal name32 legal

quotient legal 123 not legal

a182c3 legal no-go not legal

stop! not legal burn_ legal

no_go legal long__name legal

5.
real, dimension(11) :: a a(1), a(10), a(11), a(11)
real, dimension(0:11) :: b b(0), b(9), b(10), b(11)
real, dimension(-11:0) :: c c(-11), c(-2), c(-1), c(0)
real, dimension(10,10) :: d d(1,1), d(10,1), d(1,2), d(10,10)
real, dimension(5,9) :: e e(1,1), e(5,2), e(1,3), e(5,9)
real, dimension(5,0:1,4) :: f f(1,0,1), f(5,1,1), f(1,0,2), f(5,1,4)

Array constructor: (/ (i, i = 1,11) /)

6.
c(2,3) legal c(4:3)(2,1) not legal

c(6,2) not legal c(5,3)(9:9) legal

c(0,3) legal c(2,1)(4:8) legal

c(4,3)(:) legal c(3,2)(0:9) not legal

c(5)(2:3) not legal c(5:6) not legal

c(5,3)(9) not legal c(,) not legal

7.
i) type vehicle_registration

character(len=3) :: letters
integer :: digits

end type vehicle_registration

ii) type circle
real :: radius
real, dimension(2) :: centre

end type circle

iii) type book
character(len=20) :: title
character(len=20), dimension(2) :: author
integer :: no_of_pages

end type book

Derived type constants:

vehicle_registration(’PQR’, 123)
circle(15.1, (/ 0., 0. /))
book("Pilgrim’s Progress", (/ ’John ’, ’Bunyan’ /), 250)

8.
t array t(4)%vertex(1) scalar

t(10) scalar t(5:6) array

t(1)%vertex array t(5:5) array (size 1)

Solutions to exercises 455

9.
a) integer, parameter :: twenty = selected_int_kind(20)

integer(kind=twenty) :: counter

b) integer, parameter :: high = selected_real_kind(12,100)
real(kind = high) :: big

c) character(kind=2) :: sign

Chapter 3

1.
a+b valid -c valid

a+-c invalid d+(-f) valid

(a+c)**(p+q) valid (a+c)(p+q) invalid

-(x+y)**i valid 4.((a-d)-(a+4.*x)+1) invalid

2.
c+(4.*f)
((4.*g)-a)+(d/2.)
a**(e**(c**d))
((a*e)-((c**d)/a))+e
(i .and. j) .or. k
((.not. l) .or. ((.not. i) .and. m)) .neqv. n
((b(3).and.b(1)).or.b(6)).or.(.not.b(2))

3.
3+4/2 = 5 6/4/2 = 0

3.*4**2 = 48. 3.**3/2 = 13.5

-1.**2 = -1. (-1.)**3 = -1.

4.
ABCDEFGH
ABCD0123
ABCDEFGu u = unchanged

ABCDbbuu b = blank

5.
.not.b(1).and.b(2) valid .or.b(1) invalid

b(1).or..not.b(4) valid b(2)(.and.b(3).or.b(4)) invalid

6.
d .le. c valid p .lt. t > 0 invalid

x-1 /= y valid x+y < 3 .or. > 4. invalid

d.lt.c.and.3.0 invalid q.eq.r .and. s>t valid

7.
a) 4*l

b) b*h/2.

c) 4./3.*pi*r**3 (assuming pi has value π).

456 Modern Fortran Explained

8.
integer :: n, one, five, ten, twenty_five
twenty_five = (100-n)/25
ten = (100-n-25*twenty_five)/10
five = (100-n-25*twenty_five-10*ten)/5
one = 100-n-25*twenty_five-10*ten-5*five

9.
a = b + c valid

c = b + 1.0 valid

d = b + 1 invalid

r = b + c valid

a = r + 2 valid

10.
a = b valid c = a(:,2) + b(5,:5) valid

a = c+1.0 invalid c = a(2,:) + b(:,5) invalid

a(:,3) = c valid b(2:,3) = c + b(:5,3) invalid

Chapter 4

1.
integer :: i, j, k, temp
integer, dimension(100) :: reverse
do i = 1,100

reverse(i) = i
end do
read *, i, j
do k= i, i+(j-i-1)/2

temp = reverse(k)
reverse(k) = reverse(j-k+i)
reverse(j-k+i) = temp

end do
end

Note: A simpler method for performing this operation will become apparent in Section 6.13.

2.
integer :: limit, f1, f2, f3
read *, limit
f1 = 1
if (limit.ge.1) print *, f1
f2 = 1
if (limit.ge.2) print *, f2
do i = 3, limit

f3 = f1+f2
print *, f3
f1 = f2
f2 = f3

end do
end

Solutions to exercises 457

6.
real x
do

read *, x
if (x /= -1.) exit
print *, ’input value -1. invalid’

end do
print *, x/(1.+x)
end

7.
type(entry), pointer :: first, current, previous
current => first
if (current%index == 10) then

first => first%next
else

do
previous => current
current => current%next
if (current%index == 10) exit

end do
previous%next => current%next

end if

Chapter 5

1.
subroutine calculate(x, n, mean, variance, ok)

integer, intent(in) :: n
real, dimension(n), intent(in) :: x
real, intent(out) :: mean, variance
logical, intent(in) :: ok
integer :: i
mean = 0.
variance = 0.
ok = n > 1
if (ok) then

do i = 1, n
mean = mean + x(i)

end do
mean = mean/n
do i = 1, n

variance = variance + (x(i) - mean)**2
end do
variance = variance/(n-1)

end if
end subroutine calculate

Note: A simpler method will become apparent in Chapter 8.

458 Modern Fortran Explained

2.
subroutine matrix_mult(a, b, c, i, j, k)

integer, intent(in) :: i, j, k
real, dimension(i,j), intent(in) :: a
real, dimension(j,k), intent(in) :: b
real, dimension(i,k), intent(out) :: c
integer :: l, m, n
c(1:i, 1:k) = 0.
do n = 1, k

do l = 1, j
do m = 1, i

c(m, n) = c(m, n) + a(m, l)*b(l, n)
end do

end do
end do

end subroutine matrix_mult

3.
subroutine shuffle(cards)

integer, dimension(52), intent(in) :: cards
integer :: left, choice, i, temp
real :: r
cards = (/ (i, i=1,52) /) ! Initialize deck.
do left = 52,1,-1 ! Loop over number of cards left.

call random_number(r) ! Draw a card
choice = r*left + 1 ! from remaining possibilities
temp = cards(left) ! and swap with last
cards(left) = cards(choice)! one left.
cards(choice) = temp

end do
end subroutine shuffle

4.
character function earliest(string)

character(len=*), intent(in) :: string
integer :: j, length
length = len(string)
if (length <= 0) then

earliest = ’’
else

earliest = string(1:1)
do j = 2, length

if (string(j:j) < earliest) earliest = string(j:j)
end do

end if
end function earliest

Solutions to exercises 459

5.
subroutine sample

real :: r, l, v, pi
pi = acos(-1.)
:
r = 3.
l = 4.
v = volume(r, l)
:

contains
function volume(radius, length)

real, intent(in) :: radius, length
real :: volume
volume = pi*radius**2*length

end function volume
end subroutine sample

7.
module string_type

type string
integer :: length
character(len=80) :: string_data

end type string
interface assignment(=)

module procedure c_to_s_assign, s_to_c_assign
end interface (=)
interface len

module procedure string_len
end interface
interface operator(//)

module procedure string_concat
end interface (//)

contains
subroutine c_to_s_assign(s, c)

type (string), intent(out) :: s
character(len=*), intent(in) :: c
s%string_data = c
s%length = len(c)
if (s%length > 80) s%length = 80

end subroutine c_to_s_assign
subroutine s_to_c_assign(c, s)

type (string), intent(in) :: s
character(len=*), intent(out) :: c
c = s%string_data(1:s%length)

end subroutine s_to_c_assign
function string_len(s)

integer :: string_len
type(string) :: s
string_len = s%length

460 Modern Fortran Explained

end function string_len
function string_concat(s1, s2)

type (string), intent(in) :: s1, s2
type (string) :: string_concat
string_concat%string_data = &

s1%string_data(1:s1%length) // &
s2%string_data(1:s2%length)

string_concat%length = s1%length + s2%length
if (string_concat%length > 80) &

string_concat%length = 80
end function string_concat

end module string_type

Note: The intrinsic len function, used in subroutine c_to_s_assign, is first described in Section

8.6.

Chapter 6

1.
i) a(1, :)

ii) a(:, 20)

iii) a(2:50:2, 2:20:2)

iv) a(50:2:-2, 20:2:-2)

v) a(1:0, 1)

2.
where (z.gt.0) z = 2*z

3.
integer, dimension(16) :: j

4.
w explicit-shape

a, b assumed-shape

d pointer

5.
real, pointer :: x(:, :, :)
x => tar(2:10:2, 2:20:2, 2:30:2)%du(3)

6.
ll = ll + ll
ll = mm + nn + n(j:k+1, j:k+1)

Solutions to exercises 461

7.
program backwards

integer :: i, j
integer, dimension(100) :: reverse
reverse = (/ (i, i=1, 100) /)
read *, i, j
reverse(i:j) = reverse(j:i:-1)

end program backwards

10.
type(stack) a
allocate (a%content(4))
a%index = 1
a%content = (/ 1, 2, 3, 4 /)
a = stack(2, (/a%content, 5, 6 /))

11.
type(emfield) a, temp
allocate (a%strength(4, 6))
a%strength = 1.0
temp = a ! automatic allocation of temp%content
deallocate (a%strength)
allocate (a%strength(0:5, 0:8))
a%strength(1:4, 1:6) = temp%strength
a%strength(0:5:5, :) = 0
a%strength(1:4, 0) = 0
a%strength(1:4, 7:8) = 0

12.
type(emfield) a
allocate (a%strength(4, 6))
a%strength = 1.0
a = emfield(reshape((/ (a%strength(:,i),0.,0.,i=1,6), &

(0.,0.,0.,0.,0.,0.,0.,0.,i=7,9) /), &
(/ 6,9/)))

Chapter 7

1.
i) integer, dimension(100) :: bin

ii) real(selected_real_kind(6, 4)), dimension(0:20, 0:20) :: &
iron_temperature

iii) logical, dimension(20) :: switches

iv) character(len=70), dimension(44) :: page

2.
The value of the first i is 3.1, but may be changed;

the value of the second i is 3.1, but may not be changed.

462 Modern Fortran Explained

3.
i) integer, dimension(100) :: i = (/ (0, k=1, 100) /)

ii) integer, dimension(100) :: i = (/ (0, 1, k=1, 50) /)

iii) real, dimension(10, 10) :: x = reshape((/ (1.0, k=1, 100) /), &
(/10, 10/))

iv) character(len=10) :: string = ’0123456789’

Note: the reshape function will be met in Section 8.13.3.

4.
Scoping unit

Letter mod outer inner fun

a,b character(10,2) — — —

c-e real — — —

f real — — real
g,h real — — —

i-n integer — — —

o-w real — — —

x real — — real
y real — — —

z real — complex —

5.
i) type(person) boss = person(’Smith’, 48.7, 22)

ii) a) This is impossible because a pointer component cannot be a constant.

b) type(entry) current
data current%value, current%index /1.0, 1/

6.
All are constant expressions except for:

iv) because of the real exponent; and

viii) because of the pointer component.

Chapter 8

1.
program qroots ! Solution of quadratic equation.

!
real :: a, b, c, d, x1, x2

!
read (*, *) a, b, c
write (*, *) ’ a = ’, a, ’b = ’, b, ’c = ’, c
if (a == 0.) then

if (b /= 0.) then
write (*, *) ’ Linear: x = ’, -c/b

else
write (*, *) ’ No roots!’

endif

Solutions to exercises 463

else
d = b**2 - 4.*a*c
if (d < 0.) then

write (*, *) ’ Complex’, -b/(2.*a), ’+-’, &
sqrt(-d)/(2.*a)

else
x1 = -(b + sign(sqrt(d), b))/(2.*a)
x2 = c/(x1*a)
write (*, *) ’ Real roots’, x1, x2

endif
endif

end program qroots

Historical note: A similar problem was set in one of the first books on Fortran programming – A
FORTRAN Primer, E. Organick (Addison-Wesley, 1963). It is interesting to compare Organick’s

solution, written in FORTRAN II, on p. 122 of that book, with the one above. (It is reproduced in

the Encyclopedia of Physical Science & Technology (Academic Press, 1987), vol. 5, p. 538.)

2.
subroutine calculate(x, mean, variance, ok)

real, intent(in) :: x(:)
real, intent(out) :: mean, variance
logical, intent(out) :: ok
ok = size(x) > 1
if (ok) then

mean = sum(x)/size(x)
variance = sum((x-mean)**2)/(size(x)-1)

end if
end subroutine calculate

3.
F p1 and p2 are associated with the same array elements, but in reverse order

T p1 and p2(4:1:-1) are associated with exactly the same array elements, a(3), a(5),

a(7), a(9).

4.
5 1 a has bounds 5:10 and a(:) has bounds 1:6.

5 1 p1 has bounds 5:10 and p2 has bounds 1:6.

1 1 x and y both have bounds 1:6.

Chapter 9

1.
i) print ’(a/ (t1, 10f6.1))’, ’ grid’, grid

ii) print ’(a, " ", 25i5)’, ’ list’, (list(i), i = 1, 49, 2)
or

print ’(a, " ", 25i5)’, ’ list’, list(1:49:2)

iii) print ’(a/ (" ", 2a12))’, ’ titles’, titles

464 Modern Fortran Explained

iv) print ’(a/ (t1, 5en15.6))’, ’ power’, power

v) print ’(a, 10l2)’, ’ flags’, flags

vi) print ’(a, 5(" (", 2f6.1, ")"))’, ’ plane’, plane

2.
character, dimension(3,3) :: tic_tac_toe
integer :: unit
:
write (unit, ’(t1, 3a2)’) tic_tac_toe

4.
i) read (*, *) grid

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

ii) read (*, *) list(1:49:2)
25*1

iii) read (*, *) titles
data transfer

iv) read (*, *) power
1.0 1.e-03

v) read (*, *) flags
t f t f t f f t f t

vi) read (*, *) plane
(0.0, 1.0),(2.3, 4)

5.
subroutine get_char(unit, c, end_of_file)

integer, intent(in) :: unit
character, intent(out) :: c
logical, intent(out) :: end_of_file
integer :: ios
end_of_file = .false.
do

read (unit, ’(a1)’, advance=’no’, iostat=ios, end=10) c
if (ios == 0) return

end do
10 c = ’ ’

end_of_file = .true.
end subroutine get_char

Chapter 12

1.
interface erf

function erff(x) bind(c)
use iso_c_binding
real(c_float), value :: x
real(c_float) :: erff

end function

Solutions to exercises 465

function erf(x) bind(c)
use iso_c_binding
real(c_double), value :: x
real(c_double) :: erf

end function
end interface

2.
! float dot_productf(float a[], float b[], size_t n);
!
function dot_productf(a, b, n) bind(c)

use iso_c_binding
integer(c_size_t), value :: n
real(c_float), intent(in) :: a(n), b(n)
dot_productf = dot_product(a, b)

end function

! double dot_product(double a[], double b[], size_t n);
!
function dot_productd(a, b, n) bind(c, name=’dot_product’)
use iso_c_binding
integer(c_size_t), value :: n
real(c_double), intent(in) :: a(n), b(n)
dot_productd = dot_product(a, b)

end function

Chapter 13

1.
type cmplx (kind)

integer :: kind = kind(0.0)
real, private :: r, theta

end type cmplx

2.
function cat(a, b)

type(char_with_max_length(*)), intent(in) :: a, b
type(char_with_max_length(a%len+b%len)) :: cat
cat%value = a%value(1:a%len)//b%value(1:b%len)
cat%len = len(cat%value)

end function cat
integer function indx(string, substring, back)

type (char_with_max_length(*)), intent(in) :: string, substring
logical, optional :: back
indx = index(string%value(1:string%len), &

substring%value(1:substring%len), back)
end function indx

466 Modern Fortran Explained

Chapter 15

1.
b = reshape([(0,i=1,size(b,1)+2), (0,b(:,i),0,i=1,size(b,2)), &

(0,i=1,size(b,1)+2)], [size(b,1)+2, size(b,2)+2])

Chapter 16

1.
!
! Function to format a 15+ digit real value as if it were Euros.
! In particular, we expect a decimal comma, and no negative zero.
!
! The function returns an allocatable deferred-length string.
!
function real_to_estring(value) result(r)

real(kind=selected_real_kind(15)), intent(in) :: value
character(:), allocatable :: r
character(15) :: format
character(precision(value)+2) :: temp
!
! Set the size of the format field so that it will be filled
! with asterisks if the magnitude of the value is such that the
! "cent" field is beyond the decimal precision.
!
write (format, ’("(ss, dc, f", i0, ".2)")’) precision(value) + 1
write (temp, format) abs(value)
if (value<0) then

r = ’-’//trim(adjustl(temp))
else

r = trim(adjustl(temp))
end if

end function

2.
program command_sum

use iso_fortran_env
real(selected_real_kind(15)) :: number, sum
integer :: arglen, i, ios, numbers
character(1024) :: arg, error
intrinsic :: command_argument_count, get_command_argument
sum = 0
numbers = 0
do i=1, command_argument_count()

call get_command_argument(i, arg, arglen)
if (arglen>len(arg)) then

write (error_unit, *) ’Ignoring extremely long argument number’,i
cycle

Solutions to exercises 467

else if (arglen==0) then
write (error_unit, *) ’Ignoring zero-length argument number’,i

end if
if (scan(arg(:arglen), ’0123456789.eEdD+-’)==0) then

write (error_unit, *) ’Invalid character in: "’,arg(:arglen), ’"’
cycle

end if
read (arg(:arglen), *, iostat=ios, iomsg=error) number
if (ios/=0) then

write (error_unit, *) ’Error for "’, arg(:arglen), ’": ’, trim(error)
else

numbers = numbers + 1
sum = sum + number

end if
end do
if (numbers==0) then

print *, ’No numbers found’
else

print *, numbers, ’numbers found, the sum is:’, sum
end if

end program

Chapter 17

1.
program check_file_format

implicit none
character :: ch, file*1024, lastch = ’x’
integer :: crlf_found = 0, lf_found = 0, ios
call get_command_argument(1, file)
open (10, file=file, form=’unformatted’, access=’stream’, action=’read’)
do

read (10, iostat=ios) ch
if (is_iostat_end(ios)) exit
if (ios/=0) stop ’I/O error’
if (ch==achar(10)) then

if (lastch==achar(13)) then
crlf_found = crlf_found + 1

else
lf_found = lf_found + 1

end if
end if
lastch = ch

end do
if (lf_found>0) print *, lf_found, ’Unix record terminators’
if (crlf_found>0) print *, crlf_found, ’DOS/Windows record terminators’
if (lf_found+crlf_found==0) print *, ’No record terminators found’

end program

468 Modern Fortran Explained

2.
program show_sign_effects

write (*, 10) ’default’, 1., 2., 3., 4.
write (*, 10, sign=’suppress’) ’suppress’, 1., 2., 3., 4.
write (*, 10, sign=’plus’) ’plus’, 1., 2., 3., 4.

10 format (1x, a10, ’: ’, f6.2, ss, f6.2, sp, f6.2, s, f6.2)
end program

default: 1.00 2.00 +3.00 4.00
suppress: 1.00 2.00 +3.00 4.00

plus: +1.00 2.00 +3.00 4.00

Chapter 19

1.
program main

implicit none
real :: z[*]
integer :: image
if (this_image()==1) then

open (10, file=’ex1.data’)
read (10, *) z
do image = 2, num_images()

z[image] = z
end do

end if
sync all
write (*, ’(a,f6.3,a,i2)’) ’z=’, z, ’ on image’, this_image()

end program

Without a sync all statement, an image might attempt to write its value before image 1 has set it.

2.
program main

implicit none
real, allocatable :: z(:)[:]
integer :: image
allocate (z(3)[*])
if (this_image()==1) then

z(:) = [1.2, 1.3, 1.4]
do image = 2, num_images()

z(:)[image] = z(:) + image - 1
end do

end if
sync all
write (*, ’(a,3f4.1,a,i2)’) ’z=’, z, ’ on image’, this_image()

end program main

Synchronization is built into the allocate statement for a coarray, so a sync all statement is not

needed.

Solutions to exercises 469

3.
subroutine collective_add(a)

real :: a[*]
real, save :: b[*]
integer :: i, me, ne, you
me = this_image()
ne = num_images()
i = 1
do

sync all
if (i>ne) exit
you = me + i
if (you>ne) you = you - ne
b = a + a[you]
sync all
a = b
i = i*2

end do
end subroutine

4.
subroutine laplace(nrow, ncol, u)

integer, intent(in) :: nrow, ncol
real, intent(inout) :: u(nrow)[*]
real :: new_u(nrow)
integer :: i, me, left, right
me = this_image()
left = merge(ncol, me-1, me==1)
right = merge(1, me+1, me==ncol)
new_u(1) = u(nrow) + u(2)
new_u(nrow) = u(1) + u(nrow-1)
new_u(2:nrow-1) = u(1:nrow-2) + u(3:nrow)
new_u(1:nrow) = new_u(1:nrow) + u(1:nrow)[left] + u(1:nrow)[right]
sync all
u(1:nrow) = new_u(1:nrow) - 4.0*u(1:nrow)

end subroutine laplace

5.
Code with bottlenecks Code without bottlenecks

k = this_image() k = this_image()
if (k<=nz) then if (k<=nz) then

do i = 1, nx do ii = 1, nx
a(i, 1:ny) = b(1:ny, k)[i] i = 1 + mod(k+ii, nx)

end do a(i, 1:ny) = b(1:ny, k)[i]
end if end do

end if

470 Modern Fortran Explained

6.

module teams
contains

subroutine team_add(team, team_position, a)
integer :: team(:), team_position
real :: a[*]
real, save :: b[*]
integer :: i, me, ne, you
me = team_position
ne = size(team)
i = 1
do

sync images (team)
if (i>=ne) exit
you = me + i
if (you>ne) you = you - ne
b = a + a[team(you)]
sync images (team)
a = b
i = i*2

end do
end subroutine

end module

program main
use teams
implicit none
integer, allocatable :: team(:)
real :: a[*]
integer :: i, me, ne, team_position
me = this_image()
ne = num_images()
allocate (team(ne/2))
if (me<=ne/2) then

team = [(i,i=1,ne)]
team_position = me

else
team = [(i,i=ne/2+1,ne)]
team_position = me - ne/2

end if
a = this_image()
sync all
call team_add(team,team_position, a)
write(*,’(a,f6.1,a,i2)’) ’a=’,a,’ on image’, this_image()

end program main

Solutions to exercises 471

Chapter 20

1.
! Module containing a vector type that counts the number of accesses,
! both as a whole vector and by element.

module counting_vector
use iso_fortran_env, only: int64
private
type, public :: realvec_t
private
real, pointer :: value(:)
logical :: allocated = .false.
integer(int64) :: ecount = 0, vcount = 0

contains
procedure :: element, get_usage, new, vector
final :: zap

end type
contains
function element(vec, sub)
type(realvec_t), intent(inout) :: vec
integer, intent(in) :: sub
real, pointer :: element
vec%ecount = vec%ecount + 1
element => vec%value(sub)

end function
subroutine new(this, n)
type(realvec_t), intent(inout) :: this
integer, intent(in) :: n
if (this%allocated) deallocate (this%value)
allocate (this%value(n))
this%allocated = .true.

end subroutine
function vector(vec)
type(realvec_t), intent(inout) :: vec
real, pointer :: vector(:)
vec%vcount = vec%vcount + 1
vector => vec%value

end function
subroutine get_usage(this, ecount, vcount)
type(realvec_t), intent(in) :: this
integer(int64), intent(out), optional :: ecount, vcount
if (present(ecount)) ecount = this%ecount
if (present(vcount)) vcount = this%vcount

end subroutine
elemental subroutine zap(this)
type(realvec_t), intent(inout) :: this
if (this%allocated) deallocate (this%value)
this%allocated = .false.

end subroutine

472 Modern Fortran Explained

end module
:
type(realvec_t) :: a
integer(int64) :: i, nerefs
:
call a%new(n)
do i=1, n

a%element(i) = ...
end do
print *,a%vector()
:
call a%get_usage(ecount=nerefs)

2.
! A pseudo-random number generator module with the same
! interface as the standard intrinsic one.
module prng
use iso_fortran_env, only: int32
private
integer(int32), parameter :: a = 16807_int32
integer(int32), parameter :: m = 2147483647_int32
integer(int32), parameter :: q = m/a
integer(int32), parameter :: r = mod(m, a)
integer :: seed
integer :: init_count = 0
public :: random_number, random_seed
interface random_number
module procedure :: random_number_r, random_number_d

end interface
interface random_seed
module procedure :: random_seed_specific

end interface
contains
subroutine init_random_number
integer :: values(8)
call date_and_time(values=values)
seed = init_count + sum(values)
if (seed<=0 .or. seed>m) seed = 25058 ! Must be in range 1-m.
init_count = init_count + 1

end subroutine
subroutine advance_generator
integer(int32) :: hi, lo, test
if (init_count==0) call init_random_number
!
! Calculate seed = mod(a*seed, m),
! without overflow or higher-precision arithmetic.
!
hi = seed/q
lo = mod(seed, q)

Solutions to exercises 473

test = a*lo - r*hi
seed = merge(test, test+m, test>0)

end subroutine
impure elemental subroutine random_number_r(harvest)
real, intent(out) :: harvest
call advance_generator
!
! Multiply by the reciprocal of m,
! to put the result in the range (0.0,1.0).
!
harvest = seed*(1.0/m)

end subroutine
impure elemental subroutine random_number_d(harvest)
double precision, intent(out) :: harvest
call advance_generator
!
! Multiply by the reciprocal of m,
! to put the result in the range (0.0,1.0).
!
harvest = seed*(1.0d0/m)

end subroutine
subroutine random_seed_specific(size, put, get)
integer, intent(out), optional :: size
integer, intent(in), optional :: put(:)
integer, intent(out), optional :: get(:)
if (count([present(size), present(put), present(get)])>1) &
stop ’?Too many arguments to RANDOM_SEED’

if (present(size)) then
size = 1

else if (present(put)) then
if (ubound(put)<1) stop ’?RANDOM_NUMBER: PUT is too small’
seed = sum(put)
if (seed<=0 .or. seed>m) call init_random

else if (present(get)) then
if (ubound(get)<1) stop ’?RANDOM_NUMBER: GET is too small’
get(1) = seed
get(2:) = 0

else
call init_random

end if
end subroutine

end module

This page intentionally left blank

Index

a edit descriptor, 203, 204

abs, 163

abstract

interface, 259

block, 259

type, 280

abstract keyword, 280

access= specifier, 216, 220, 326

achar, 166, 309

acos, 165, 376

acosh, 376

action= specifier, 217, 221

actual

argument, 74–92, 100, 405, 406,

421, 424, 425

procedure, 82

adjustl, 167

adjustr, 167

advance= specifier, 199, 209, 212

aimag, 163

aint, 163

alias, 124

all, 175

allocatable

coarray, 340
component, 106, 354, 356

of coarray, 341–342

scalar, 294

allocatable attribute, 102, 123, 144,

151

allocatable statement, 144

allocate statement, 28, 102–109, 270,

291, 372

allocated, 176, 293

allocation (sourced), 292

allocation status, 102, 176

alphanumeric characters, 9

alternate return, 423

ampersand, 12, 18

anint, 163

ANSI, 2, 3

any, 175

argument, 67, 73, 78–83, 388, 389, 424

intent, 162

list, 83, 92, 402, 424

arithmetic if statement, 422

array, 23–29, 99–127, 138, 409

allocation, 102

argument, 73, 100

assignment, 48, 111

bounds, 23, 28, 100

constant, 136

constructor, 25, 88, 125–126, 135,

137, 297–298

element, 119

order, 24

expression, 46–48

function, 110

section, 25, 27, 120
subobject, 120–123

subscript, 26, 247

array-valued

function, 105, 110
object, 25

ASCII standard, 19, 166, 309

asin, 165, 376

asinh, 376

assembler, 2

assembly language, 81

assigned go to, 427

assignment, 46

476 Index

assignment statement, 33, 37–42, 121,

135

assignment to allocatable array, 294

assignment(=), 91, 92

associate construct, 271

associate name, 271

associated, 37, 163
association (of pointer), 37, 77, 79, 103,

104, 145, 358

assumed character length, 93, 422

assumed derived type parameter, 258

assumed-shape array, 100

assumed-size array, 405, 406

asynchronous attribute, 322

coarray, 343

asynchronous statement, 322

asynchronous input/output, 320–322

asynchronous= specifier, 320, 326

atan, 165, 376

atan2, 165, 314

atanh, 376

atomic subroutines, 347, 415

atomic_define, 415

atomic_ref, 415

attributes, 145, 219

automatic

array, 100

data object, 100

targetting, 388

b edit descriptor, 202
backspace statement, 214

batch mode, 191

bessel_j0, 377

bessel_j1, 377

bessel_jn, 377

bessel_y0, 377

bessel_y1, 377

bessel_yn, 377

bge, 378

bgt, 378

binary

constant, 15, 312

operation, 46

operator, 33, 39, 43

binding, 279

label, 249, 252

bind attribute, 246, 249, 250, 252

bind statement, 250

bit, 126, 171

manipulation procedure, 171

bit_size, 172

blank

character, 10, 11, 18, 190, 199

common, 402, 403

field, 217

blank= specifier, 205, 217, 221, 326

ble, 378

block, 55

block data, 404, 405

block construct, 366
blt, 378

bn edit descriptor, 205, 217

bound, 23, 28, 103, 122, 136, 176

branch, 63

target statement, 63

btest, 172

byte, 15–17, 19, 126

bz edit descriptor, 205, 217

C array, 247

C function, 249, 251

C pointer, 245

C programming language, 243

C prototype, 251

C struct type, 246

C type, 244, 245

c_alert, 244

c_associated , 245

c_backspace, 244

c_bool, 244

c_carriage_return, 244

c_char, 244

c_double, 244

c_double_complex, 244

c_f_pointer, 245, 253

c_f_procpointer, 246

c_float, 244

c_float_complex, 244

c_form_feed, 244

Index 477

c_funloc, 245

c_funptr, 245

c_horizontal_tab, 244

c_loc, 245, 253

c_long_double, 244

c_long_double_complex, 244

c_new_line, 244

c_null_char, 244

c_ptr, 245

c_sizeof, 387

c_vertical_tab, 244

call statement, 70

carriage control, 426

case construct, 57–58
case (of characters), 9

case default statement, 58

ceiling, 164

char, 166

character, 9, 18, 19, 26, 419

assignment, 41, 196

constant, 195, 196

context, 12

expression, 41, 186, 189

function, 166

literal constant, 17, 18

set, 9, 29, 33, 309

storage

association, 400

unit, 399

string, 205

substring, 26

variable, 26, 186, 194, 204

varying length, 5, 101

character statement, 21, 153, 420

character_kinds, 386

child data transfer statement, 318

class attribute, 268

class default guard, 273

class default statement, 272

class is guard, 273

class is statement, 272

class keyword, 267

clone, 293

close statement, 215, 218, 219

cmplx, 164

coarray, 333–352
allocatable, 340
allocatable component, 342

component, 342

dummy argument, 338

input/output, 349

pointer component, 342

procedure component, 342

with allocatable component, 341

with pointer component, 341

cobound, 335
codimension, 335
coercion, 35

coextent, 335
coindexed object, 336
collating sequence, 18, 19

colon editing, 208

command

argument, 308

line, 308

command_argument_count, 308

comment line, 12

commentary, 12, 419

common block, 251, 284, 402–405, 407

common statement, 402

compilation cascade, 332, 429
compiler, 2, 50, 133

compiler_options, 385

compiler_version, 385

complex

constant, 195, 196, 314

exponentiation, 37

literal constant, 17

operand, 36

parts, 365

values, 203

variable, 20

complex statement, 21, 152
component selector, 22

computed go to, 420

concatenation, 41, 168

conditional compilation, 6

conformance

(of arrays), 46

(to Fortran standard), 3, 7

478 Index

conjg, 164

connection (of file), 213

constant, 13

expression, 134, 135, 137, 163, 166,

168, 298

subobject of a, 137

constraint, 8

construct name, 61

contains statement, 69–73, 190

contiguity, 76

contiguous attribute, 361
continuation

line, 12, 312, 403, 419

mark, 12, 18

continue statement, 407

copy-in copy-out, 77

corank, 335
cos, 165, 376

cosh, 165, 376

count, 175, 313

CPU, 2, 181, 213

cpu_time, 181

critical section, 347
cshift, 178

current record, 199

cycle statement, 60, 423

d edit descriptor, 408

data

abstraction, 13

base, 209

structure, 21

transfer, 211, 318

type, 13, 14, 29

data statement, 15, 138, 312, 404, 420

data statement, 353

date, 180

date_and_time, 180

dble, 408

dc edit descriptor, 311

dead code, 63

deallocate statement, 102, 104
decimal

comma, 311

edit mode, 311

point, 311

decimal= specifier, 311, 326

declared type, 268

deep copying, 108, 358, 373

default

character constant, 19, 205

initialization, 141

real constant, 16

real variable, 20

type parameter value, 258

deferred

binding, 280

type parameter, 255, 258, 291

type-bound procedure, 281

deferred keyword, 280

defined

assignment, 45, 78, 82, 91, 110, 147

operation, 91

operator, 42, 44, 47, 78, 82, 110, 146

variable, 37

definition, 37

definition (of pointer), 79

deleted features, 4, 427

delim= specifier, 217, 221, 326

delimiter, 17, 18, 196, 217

denormalized number, 224

deprecated features, 399

dereferencing, 49

derived type, 21–24, 28, 42, 188, 204,

208, 246, 255, 399

component, 106, 289

definition, 149, 257

input/output, 317–320

literal constant, 22

parameter enquiry, 256, 259

descriptor, 109

designator, 27, 198

dialect, 2

digits, 169

dim argument, 175

dim procedure, 164

dimension attribute, 23, 100

dimension statement, 402, 409

dimensions of array, 23

direct recursion, 88

Index 479

direct-access file, 209, 215–217, 220

direct= specifier, 220

disassociation, 37, 104, 179

disc drive, 190

distinguishable, 270, 371

divide_by_zero, 225

do concurrent construct, 359

do concurrent statement, 359

do construct, 59–62, 125, 135, 408

do construct index, 61

do while, 408

dot product, 237

dot_product, 174

double precision statement, 16, 408

dp edit descriptor, 311

dprod, 409

dshiftl, 379

dshiftr, 379

dt edit descriptor, 317

dummy

argument, 74–78, 92, 93, 100, 144,

163, 405, 406, 421, 424

allocatable, 105

procedure, 82

dyadic operator, 33

dynamic type, 268

e edit descriptor, 202, 206

EBCDIC standard, 309

edit descriptor, 185, 186, 192, 194, 200–
207, 426

elemental

assignment, 110

character function, 166

function, 163, 164, 234

mathematical function, 165

numeric function, 163

operation, 110

procedure, 110, 118–119, 162, 373

subroutine, 230

elemental clause, 118

else statement, 56

elsewhere statement, 112

else if clause, 56

else if statement, 56

embedded blanks, 205, 217

en edit descriptor, 203, 206

encoding= specifier, 310

end statement, 63, 68, 73, 190, 419

end do statement, 59–407

end forall statement, 116

end function statement, 70

end if statement, 427

end interface statement, 81

end program statement, 68

end select statement, 57, 58

end statement, 417

end subroutine statement, 70

end type statement, 22, 149

end where statement, 112, 113

end= specifier, 193, 212, 215

endfile record, 193, 209, 215

endfile statement, 215, 217

entry statement, 424–425

enum statement, 253

enumeration, 253

environment variable, 307

eor= specifier, 199, 212

eoshift, 178

epsilon, 169

equivalence statement, 400–402, 404

erf, 377

erfc, 377

erfc_scaled, 377

err= specifier, 193, 194, 212, 214–220

errmsg= specifier, 314, 348

error

message, 314

recovery, 194

es edit descriptor, 203, 206

exception, 193

flags, 227

handling, 223

executable statement, 63, 421, 424

execute_command_line, 382

exist= specifier, 220

existence (of files), 213, 220

exit statement, 60, 355

exp, 165

explicit interface, 80–82, 85, 90, 100, 110

480 Index

explicit-shape array, 153

exponent, 16

letter, 16, 202, 203, 408

exponent function, 170

exponentiation, 35
expression, 24, 33, 38

extends attribute, 265

extends_type_of, 286

extent, 24, 123

external

medium, 190

representation, 208

subprogram, 67, 69, 70, 72

external attribute, 151

external statement, 81–82, 151

f edit descriptor, 202, 206

field, 185, 419

file, 185

positioning statements, 214

file= specifier, 216, 219

final statement, 281, 284

final subroutine, 281, 284

finalization, 281–282

findloc, 383

flags (IEEE), 225

floor, 164

flush statement, 324

fmt= specifier, 193, 194, 212

forall construct, 115, 116, 370

forall statement, 114, 116, 370

form= specifier, 216, 220

format

specification, 185, 186, 188, 193,

194, 200, 205, 375

statement, 190, 201, 209

formatted

I/O, 185, 208

output, 194

read, 193

formatted= specifier, 220

Fortran 66, 2

Fortran 77, 3–7, 405, 407, 421, 422

Fortran 90, 3

Fortran 95, 4

fraction, 170

function, 78, 410, 421

name, 70, 73, 425

function statement, 95, 425

g edit descriptor, 201, 204, 206, 375

gamma, 377

generic

binding, 317

identifier, 142

interface, 90, 371

name, 82, 87, 90–92
type-bound procedure, 277–280

generic statement, 277

get_command, 308

get_command_argument, 308

get_environment_variable, 307

global

data, 70

name, 88

go to statement, 63

gradual underflow, 229

graphics display, 192, 194

h edit descriptor, 427

halting, 228

header line, 424

heap storage, 102

hexadecimal constant, 15, 312

High Performance Fortran, 4

high-level language, 2

host, 67, 73

association, 86, 149, 413

huge, 169

hypot, 378

hypotenuse function, 238

i edit descriptor, 201
I/O

list, 186

statement, 188

status statement, 213

unit, 190

iachar, 166, 309, 313

iall, 379

Index 481

iand, 172

iany, 379

ibclr, 172

ibits, 172

IBM, 2

ibset, 172

ichar, 166, 313

id= specifier, 321

IEEE

division, 224

exceptional value input/output, 323

flags, 225

square root, 224

standard, 169, 223, 224

ieee_arithmetic, 232, 234–236, 387

ieee_class, 234

ieee_class_type, 232

ieee_copy_sign, 234

ieee_datatype, 226

ieee_denormal, 226

ieee_divide, 226

ieee_exceptions, 229–231

ieee_features_type, 225

ieee_flag_type, 229

ieee_get_flag, 230

ieee_get_halting_mode, 230

ieee_get_rounding_mode, 235

ieee_get_status, 231

ieee_get_underflow_mode, 236

ieee_halting, 226

ieee_inexact_flag, 226

ieee_inf, 226

ieee_invalid_flag, 226

ieee_is_finite, 234

ieee_is_nan, 234

ieee_is_negative, 234

ieee_is_normal, 234

ieee_logb, 234

ieee_nan, 226

ieee_next_after, 235

ieee_rem, 235

ieee_rint, 235

ieee_round_type, 232

ieee_rounding, 226

ieee_scalb, 235

ieee_selected_real_kind, 236, 387

ieee_set_flag, 231

ieee_set_halting_mode, 231

ieee_set_rounding_mode, 236

ieee_set_status, 231

ieee_set_underflow_mode, 236

ieee_sqrt, 226

ieee_status_type, 230

ieee_support_datatype, 233

ieee_support_denormal, 233

ieee_support_divide, 233

ieee_support_flag, 230

ieee_support_halting, 230

ieee_support_inf, 233

ieee_support_io, 233

ieee_support_nan, 233

ieee_support_rounding, 233

ieee_support_sqrt, 233

ieee_support_standard, 233

ieee_support_underflow_control, 233

ieee_underflow_flag, 226

ieee_unordered, 235

ieee_value, 235

ieor, 172

if construct, 55–57, 61

if statement, 56, 80

image, 333
image control statement, 337, 348
image index, 334
image_index, 351

implicit

interface, 81

typing, 133, 412

implicit none statement, 134

implicit statement, 137, 409, 413, 421

implied-do list, 188

implied-do loop, 88, 126, 138, 139, 192–

193

implied-shape array, 353

import statement, 304–305

impure procedure, 368
include line, 407

index, 167, 313

indirect recursion, 89

inexact, 225

482 Index

infinity (signed), 224

inheritance, 265, 267, 279

initial

line, 419

point, 214, 217

value, 137, 358

initialization of components, 141, 358

inquire statement, 217, 219–222, 310,

326

inquiry function, 162, 168–170, 176, 230,

232

instruction, 2, 133

int, 164

int16, 385

int32, 385

int64, 385

int8, 385

integer

division, 35

expression, 24, 420

literal constant, 14

variable, 20, 185

integer statement, 21, 152
integer_kinds, 386

intent attribute, 77–78, 144, 151, 301

intent statement, 144

interface, 80, 330

block, 43–45, 69, 75, 81–85, 90, 304,

425

body, 81, 82, 85, 92

interface statement, 81, 90

internal

file, 191–195, 200, 205, 208

representation, 185, 200, 208

subprogram, 67, 73

internationalization, 308

interoperability with C, 243–254

for coarrays, 343

intrinsic

assignment, 46, 110

data types, 13

function, 410

module, 306

procedure, 161

intrinsic attribute, 151

intrinsic keyword, 306

intrinsic statement, 162
invalid, 225

iolength= specifier, 221

iomsg= specifier, 325

ior, 173

iostat= specifier, 193–194, 212, 214–

216, 218, 220, 306

iparity, 379

is_contiguous, 362

is_iostat_end, 326

is_iostat_eor, 326

ishft, 173

ishftc, 173

ISO/IEC 10646, 309, 310

iso_c_binding, 387

iso_fortran_env, 306, 385

iso_c_binding, 243

iterations, 60

J3, 3, 4, 399

Kanji, 19, 21

keyword

argument, 83, 85, 92, 289

call, 161

for derived type, 257

specifier, 193

kind

parameter value, 14, 16, 19, 20, 37,

41, 93

type parameter, 13–17, 21, 36, 40,

135, 163–168, 173, 209, 325

kind function, 15–17, 19, 20, 163
kind= specifier, 152

l edit descriptor, 203

label, 13, 63, 85

scope of, 85

lbound, 176, 313

lcobound, 351

leading sign, 205

leadz, 380

left tab limit, 206

len, 168, 313

Index 483

len= specifier, 152

len_trim, 167, 313

lexical

comparison, 167

token, 10

lge, 167, 383

lgt, 167, 383

line, 11

linked list, 28, 123

list-directed

I/O, 189, 214, 217

input, 195

output, 190, 195, 427

literal constant, 13, 14

lle, 167, 383

llt, 167, 383

local entity, 85

lock, 345–347
log, 165, 314

log10, 165

log_gamma, 377

logical

array, 126, 175

assignment, 39

expression, 39

literal constant, 19

variable, 19, 20

logical function, 168

logical statement, 21, 152
logical_kinds, 386

loop parameter, 59

lower bound, 23, 99, 149

main program, 67, 68, 403, 424

make tool, 429

many–one section, 121

mask, 112, 126

mask argument, 176

maskl, 380

maskr, 380

mathematical function, 165

matmul, 174

max, 164, 313

maxexponent, 170

maxloc, 179, 313, 383

maxval, 175, 313

memory leakage, 79, 104, 109, 140, 294

merge, 177

merge_bits, 381

method, 274

MIL-STD 1753, 171

min, 164, 313

minexponent, 170

minimal field width edit descriptor, 202

minloc, 179, 313, 383

minval, 175, 313

mixed-mode expression, 35

mnemonic name, 20

mod, 165

model number, 168, 169, 224

module, 43, 45, 67, 70–72, 78–82, 142–

145, 329–332, 388, 407

name, 71, 86

procedure, 90, 330

subprogram, 67

module procedure statement, 46, 90, 91,

314

module statement, 71

modulo, 165

monadic operator, 33

move_alloc, 295

MPI, 303

multiplication, 10

function, 174

mvbits, 173

name, 20, 312

scope of, 85

name= specifier, 220

named

constant, 134–137, 143

object, 27

named= specifier, 220

namelist

comments, 198

data, 197

group, 143, 155, 197

I/O, 197, 327

namelist statement, 155

NaN, 224

484 Index

NCITS, 3

nearest, 170

nesting, 55, 62, 67, 423

new_line, 324

newunit= specifier, 374

nextrec= specifier, 221

nint, 164

nml= specifier, 197, 212

non-advancing I/O, 198, 206, 209

non-elemental subroutine, 231, 235

non-numeric types, 14

non_intrinsic keyword, 306

norm2, 378

not, 173

null, 141, 179

null value, 196, 197

nullify statement, 51

num_images, 351

number

conversion, 185

representation, 185

number= specifier, 220

numeric

assignment, 38

expression, 34

function, 163, 168

intrinsic operator, 34

storage

association, 400

unit, 399

type, 14

o edit descriptor, 202
object, 27

coindexed, 336
object code, 133

object-oriented

example, 433

object-oriented programming, 265–282

obsolescent features, 4, 419, 422

octal constant, 15, 312

only option, 147

open statement, 190, 209, 210, 213, 216–
222, 310

open statement, 374

operating system, 217

operator, 33, 42–47

renaming, 297

token, 42

operator, 91, 92, 297

optional attribute, 83, 84, 85, 144, 289

optional statement, 144

optional attribute, 389

order of evaluation, 40, 80

order of statements, 68, 70, 71, 73, 134,

190, 420, 425

output list, 186, 192

overflow, 225

overloading, 90

override, 279

p edit descriptor, 206, 324

pack, 177

pad= specifier, 218, 221, 326

parallel processing, 114, 333

parameter attribute, 134, 137, 151

parameter statement, 409

parameterized derived type, 256, 257

parent data transfer statement, 318

parentheses, 34

parity, 383

pass attribute, 262, 263

passed-object dummy argument, 263

pause statement, 427

pending= specifier, 321

percent, 22

pointer, 27, 37, 49–50, 60, 75–79, 82,

103–104, 123, 124, 140, 149,

187, 208, 269

allocation, 28, 103

argument, 75, 388

assignment, 42, 48, 50, 79, 115, 270,

296

statement, 49, 124

associated, 37, 103

association, 37, 75, 125, 301

component

of coarray, 341–342

disassociated, 37, 104, 140

expression, 48

Index 485

function, 79, 104, 366

initialization, 140

intent, 301

undefined, 37, 140

pointer attribute, 27, 49, 75, 78, 100,

123, 144, 149, 151, 399

pointer statement, 144

polymorphic entity, 267–269, 292

popcnt, 380

poppar, 380

pos= specifier, 323

position= specifier, 217, 221

positional argument, 83, 92

precedence of operators, 43

precision, 16, 17

precision function, 17, 170

preconnection (of files), 213, 307

present, 84, 163

print statement, 193, 194, 215, 217

private attribute, 142, 143, 289, 315,

404

private statement, 142, 150

procedure, 67

argument, 82, 370

pointer, 261

component, 261, 262

variable, 261

procedure statement, 259–261, 276, 314

processor dependence, 7

product, 175

program, 10, 67

name, 68

termination, 348–349

unit, 10, 67, 70, 74, 216, 402, 403,

405, 421

program statement, 68

protected attribute, 296, 297

prototype, 249

public attribute, 142, 143, 289

public statement, 142, 150

pure procedure, 117–118, 153

radix, 170

random-access file, 209

random_number, 181

random_seed, 181

range, 14–16, 61

range, 15–17, 170
rank, 23–25, 28, 110, 356

read statement, 186, 193, 192–194, 196–

199, 209, 211, 214, 215, 217,

326

read= specifier, 221

readwrite= specifier, 221

real

literal constant, 15, 16

operand, 36

variable, 20, 186

real function, 164

real statement, 21, 152
real-time clock, 180

real128, 385

real32, 385

real64, 385

real_kinds, 386

reallocation, 108, 294, 373

rec= specifier, 209, 212

recl= specifier, 217, 220, 222, 306

record, 185, 193, 195, 198–209, 213–215

length, 217, 220

recursion, 88–89, 145, 425

recursive input/output, 324, 374

register, 2

relational expression, 39

repeat, 168

repeat count, 138, 186, 196, 200, 201, 375

reserved words, 20

reshape, 177

result clause, 88, 425

return statement, 77, 424

reversion, 201

rewind statement, 214

round= specifier, 325

rounding, 228

rounding modes, 224

rrspacing, 171

s edit descriptor, 206

safety, 3, 4

same_type_as, 287

486 Index

save attribute, 137, 145, 404

save statement, 145

save attribute, 388

scale, 171

scale factor, 206

scan, 167, 313

scope, 85, 145

scoping unit, 85, 186, 190

segment, 343–344
unordered, 344

select case statement, 57

select type construct, 268, 270, 272,

274

selected_char_kind, 309

selected_int_kind, 14, 171, 356

selected_real_kind, 16, 171, 384

selector, 58

semantics, 7

semicolon, 12

separator, 10, 196

sequence attribute, 399, 401, 403

sequence statement, 399

sequence type, 399

sequential file, 209, 210, 213, 217, 220

sequential= specifier, 220

set_exponent, 171

shallow copying, 108, 373

shape, 24, 42, 46, 48, 110, 134, 176, 405

shape function, 176, 313

shell script, 429

shifta, 381

shiftl, 381

shiftr, 381

side-effect, 79, 117

sign, 165, 169

sign= specifier, 325

significance, 16

of blanks, 11

simply contiguous, 364
sin, 166, 376

sinh, 166, 376

size, 176, 313

size (of array), 23, 176

size= specifier, 199, 212, 326

slash edit descriptor, 207, 209

source

code, 2, 133, 429

form, 3, 11, 18, 419

source= clause, 291, 293

sp edit descriptor, 206

spaces, 207

spacing, 171

specific name, 82, 90, 410

specific type-bound procedure, 274, 279

specification

expression, 153, 153, 298

function, 153

statement, 68, 133, 421

spread, 178

sqrt, 166, 314

square brackets, 55, 298, 333

ss edit descriptor, 206

stack, 101

stat= specifier, 103, 104, 348

statement, 10–12, 33, 312, 419

function, 421

label, 13, 186, 190, 193, 407, 424

separator, 12

status= specifier, 216, 218

stop statement, 69, 355

stop code, 69, 349, 355

storage, 104

allocation, 2, 103, 104

association, 3, 4, 399
system, 213

unit, 401

storage_size, 384

stream access input/output, 323

stream= specifier, 326

stride, 122

string-handling

function, 167

inquiry function, 168

transformational function, 168

strong typing, 133

structure, 22, 27, 135

component, 123

constructor, 22, 42, 138, 289, 354

of pointers, 123

submodule, 329–332

Index 487

entity, 331

of submodule, 331

procedure, 331

submodule statement, 330, 331

subobject, 27, 120–123

subprogram, 67
subroutine, 67, 145, 423

name, 70, 73

subroutine statement, 70, 95, 425

subscript, 23–26, 29, 120, 125, 271

substring, 8, 26, 120, 123

sum, 175

sync all statement, 337

sync images, 344–345
sync memory, 347, 413–415
synchronization, 302, 337, 343–348
syntax, 9, 20, 33

rules, 7

system_clock, 180, 313

t edit descriptor, 206

tabulation, 206

tan, 166, 376

tanh, 166, 376

target, 28, 48, 50, 103, 104

target attribute, 50, 76, 144, 151, 403,

406

target statement, 144

target attribute, 388

terminal point, 214, 217

termination, 348–349

this_image, 351

time, 180

tiny, 170

tl edit descriptor, 206

token, 10, 12, 13

tr edit descriptor, 206

trailz, 380

transfer, 174

transfer of allocation, 295

transformational function, 162, 236

transpose, 179

trim, 168

type, 133

allocation, 291, 292

conversion, 163

declaration statement, 20–22, 150

extensible, 267

extension, 265–267, 284

name, 69

parameter, 21, 150, 255, 256, 291

enquiry, 256, 259

specification, 152

specification, 152

statement, 150

type statement (see also derived type),

22, 69, 152

type is statement, 272

type is guard, 273

type-bound procedure, 274–280, 354

ubound, 176, 313

ucobound, 351

ultimate component, 187

unary

operation, 46

operator, 33, 39, 43

undefined variable, 37, 145

underflow, 225, 229

underscore, 9, 19, 20

unformatted I/O, 208, 219, 221

unformatted= specifier, 220

Unicode, 309

unit, 190

number, 190, 193, 213, 215, 216,

219, 307

unit= specifier, 193, 194, 212, 214–216,

218, 219

unix, 308

unlimited polymorphic

entity, 274, 292

pointer, 269

unlock, 345–347
unpack, 177

unspecified storage unit, 399

upper bound, 23, 99, 149

use statement, 72, 86, 146, 305

use association, 86, 149, 413

UTF-8 format, 310

value attribute, 248

488 Index

variable, 13, 20, 27, 186

(defined), 37, 153

(undefined), 37, 145, 153

vector subscript, 25, 121, 121
verify, 168, 313

volatile attribute, 301–304

coarray, 343

volatile statement, 301

wait statement, 321, 322

WG5, 3–5, 399

where construct, 111, 112, 115

where statement, 111, 126

while, 408

whole coarray, 335
write statement, 194, 197–200, 211, 215,

217, 326

write= specifier, 221

x edit descriptor, 206, 207

X3J3, 3, 4, 399

z edit descriptor, 202

zero (signed), 224

zero-length string, 18, 26, 39

zero-sized array, 99, 126

	Cover
	Contents
	1 Whence Fortran?
	1.1 Introduction
	1.2 Fortran’s early history
	1.3 The drive for the Fortran 90 standard
	1.4 Language evolution
	1.5 Fortran 95
	1.6 Extensions to Fortran 95
	1.7 Fortran 2003
	1.8 Fortran 2008
	1.9 Conformance

	2 Language elements
	2.1 Introduction
	2.2 Fortran character set
	2.3 Tokens
	2.4 Source form
	2.5 Concept of type
	2.6 Literal constants of intrinsic type
	2.6.1 Integer literal constants
	2.6.2 Real literal constants
	2.6.3 Complex literal constants
	2.6.4 Character literal constants
	2.6.5 Logical literal constants

	2.7 Names
	2.8 Scalar variables of intrinsic type
	2.9 Derived data types
	2.10 Arrays of intrinsic type
	2.11 Character substrings
	2.12 Objects and subobjects
	2.13 Pointers
	2.14 Summary

	3 Expressions and assignments
	3.1 Introduction
	3.2 Scalar numeric expressions
	3.3 Defined and undefined variables
	3.4 Scalar numeric assignment
	3.5 Scalar relational operators
	3.6 Scalar logical expressions and assignments
	3.7 Scalar character expressions and assignments
	3.8 Structure constructors and scalar defined operators
	3.9 Scalar defined assignments
	3.10 Array expressions
	3.11 Array assignment
	3.12 Pointers in expressions and assignments
	3.13 The nullify statement
	3.14 Summary

	4 Control constructs
	4.1 Introduction
	4.2 The if construct and statement
	4.3 The case construct
	4.4 The do construct
	4.5 The go to statement
	4.6 Summary

	5 Program units and procedures
	5.1 Introduction
	5.2 Main program
	5.3 The stop statement
	5.4 External subprograms
	5.5 Modules
	5.6 Internal subprograms
	5.7 Arguments of procedures
	5.7.1 Pointer arguments
	5.7.2 Restrictions on actual arguments
	5.7.3 Arguments with the target attribute
	5.8 The return statement
	5.9 Argument intent
	5.10 Functions
	5.10.1 Prohibited side-effects

	5.11 Explicit and implicit interfaces
	5.12 Procedures as arguments
	5.13 Keyword and optional arguments
	5.14 Scope of labels
	5.15 Scope of names
	5.16 Direct recursion
	5.17 Indirect recursion
	5.18 Overloading and generic interfaces
	5.19 Assumed character length
	5.20 The subroutine and function statements
	5.21 Summary

	6 Array features
	6.1 Introduction
	6.2 Zero-sized arrays
	6.3 Assumed-shape arrays
	6.4 Automatic objects
	6.5 Allocation of data
	6.5.1 The allocatable attribute
	6.5.2 The allocate statement
	6.5.3 The deallocate statement
	6.5.4 Allocatable dummy arguments
	6.5.5 Allocatable functions
	6.5.6 Allocatable components
	6.5.7 Allocatable arrays vs. pointers

	6.6 Elemental operations and assignments
	6.7 Array-valued functions
	6.8 The where statement and construct
	6.9 The forall statement and construct
	6.10 Pure procedures
	6.11 Elemental procedures
	6.12 Array elements
	6.13 Array subobjects
	6.14 Arrays of pointers
	6.15 Pointers as aliases
	6.16 Array constructors
	6.17 Mask arrays
	6.18 Summary

	7 Specification statements
	7.1 Introduction
	7.2 Implicit typing
	7.3 Declaring entities of differing shapes
	7.4 Named constants and constant expressions
	7.5 Initial values for variables
	7.5.1 Initialization in type declaration statements
	7.5.2 The data statement
	7.5.3 Pointer initialization and the function null
	7.5.4 Default initialization of components

	7.6 The public and private attributes
	7.7 The pointer, target, and allocatable statements
	7.8 The intent and optional statements
	7.9 The save attribute
	7.10 The use statement
	7.11 Derived-type definitions
	7.12 The type declaration statement
	7.13 Type and type parameter specification
	7.14 Specification expressions
	7.14.1 Specification functions

	7.15 The namelist statement
	7.16 Summary

	8 Intrinsic procedures
	8.1 Introduction
	8.1.1 Keyword calls
	8.1.2 Categories of intrinsic procedures
	8.1.3 The intrinsic statement
	8.1.4 Argument intents

	8.2 Inquiry functions for any type
	8.3 Elemental numeric functions
	8.3.1 Elemental functions that may convert
	8.3.2 Elemental functions that do not convert

	8.4 Elemental mathematical functions
	8.5 Elemental character and logical functions
	8.5.1 Character–integer conversions
	8.5.2 Lexical comparison functions
	8.5.3 String-handling elemental functions
	8.5.4 Logical conversion

	8.6 Non-elemental string-handling functions
	8.6.1 String-handling inquiry function
	8.6.2 String-handling transformational functions

	8.7 Numeric inquiry and manipulation functions
	8.7.1 Models for integer and real data
	8.7.2 Numeric inquiry functions
	8.7.3 Elemental functions to manipulate reals
	8.7.4 Transformational functions for kind values

	8.8 Bit manipulation procedures
	8.8.1 Inquiry function
	8.8.2 Elemental functions
	8.8.3 Elemental subroutine

	8.9 Transfer function
	8.10 Vector and matrix multiplication functions
	8.11 Transformational functions that reduce arrays
	8.11.1 Single argument case
	8.11.2 Optional argument dim
	8.11.3 Optional argument mask

	8.12 Array inquiry functions
	8.12.1 Allocation status
	8.12.2 Bounds, shape, and size

	8.13 Array construction and manipulation functions
	8.13.1 The merge elemental function
	8.13.2 Packing and unpacking arrays
	8.13.3 Reshaping an array
	8.13.4 Transformational function for replication
	8.13.5 Array shifting functions
	8.13.6 Matrix transpose

	8.14 Transformational functions for geometric location
	8.15 Transformational function for pointer disassociation
	8.16 Non-elemental intrinsic subroutines
	8.16.1 Real-time clock
	8.16.2 CPU time
	8.16.3 Random numbers

	8.17 Summary

	9 Data transfer
	9.1 Introduction
	9.2 Number conversion
	9.3 I/O lists
	9.4 Format definition
	9.5 Unit numbers
	9.6 Internal files
	9.7 Formatted input
	9.8 Formatted output
	9.9 List-directed I/O
	9.10 Namelist I/O
	9.11 Non-advancing I/O
	9.12 Edit descriptors
	9.12.1 Repeat counts
	9.12.2 Data edit descriptors
	9.12.3 Character string edit descriptor
	9.12.4 Control edit descriptors

	9.13 Unformatted I/O
	9.14 Direct-access files
	9.15 Execution of a data transfer statement
	9.16 Summary

	10 Operations on external files
	10.1 Introduction
	10.2 Positioning statements for sequential files
	10.2.1 The backspace statement
	10.2.2 The rewind statement
	10.2.3 The endfile statement
	10.2.4 Data transfer statements

	10.3 The open statement
	10.4 The close statement
	10.5 The inquire statement
	10.6 Summary

	11 Floating-point exception handling
	11.1 Introduction
	11.2 The IEEE standard
	11.3 Access to the features
	11.4 The Fortran flags
	11.5 Halting
	11.6 The rounding mode
	11.7 The underflow mode (Fortran 2003 only)
	11.8 The module ieee_exceptions
	11.8.1 Derived types
	11.8.2 Inquiry functions for IEEE exceptions
	11.8.3 Subroutines for the flags and halting modes
	11.8.4 Subroutines for the whole of the floating-point status

	11.9 The module ieee_arithmetic
	11.9.1 Derived types
	11.9.2 Inquiry functions for IEEE arithmetic
	11.9.3 Elemental functions
	11.9.4 Non-elemental subroutines
	11.9.5 Transformational function for kind value

	11.10 Examples
	11.10.1 Dot product
	11.10.2 Calling alternative procedures
	11.10.3 Calling alternative in-line code
	11.10.4 Reliable hypotenuse function
	11.10.5 Access to IEEE arithmetic values

	12 Interoperability with C
	12.1 Introduction
	12.2 Interoperability of intrinsic types
	12.3 Interoperability with C pointer types
	12.4 Interoperability of derived types
	12.5 Interoperability of variables
	12.6 The value attribute
	12.7 Interoperability of procedures
	12.8 Interoperability of global data
	12.9 Invoking a C function from Fortran
	12.10 Invoking Fortran from C
	12.11 Enumerations

	13 Type parameters and procedure pointers
	13.1 Introduction
	13.2 Deferred type parameters
	13.3 Type parameter enquiry
	13.4 Parameterized derived types
	13.4.1 Defining a parameterized derived type
	13.4.2 Assumed and deferred type parameters
	13.4.3 Default type parameter values
	13.4.4 Derived type parameter enquiry

	13.5 Abstract interfaces
	13.6 Procedure pointers
	13.6.1 Procedure pointer variables
	13.6.2 Procedure pointer components
	13.6.3 The pass attribute

	14 Object-oriented programming
	14.1 Introduction
	14.2 Type extension
	14.2.1 Type extension and type parameters

	14.3 Polymorphic entities
	14.3.1 Establishing the dynamic type
	14.3.2 Limitations on the use of a polymorphic variable
	14.3.3 Polymorphic arrays and scalars
	14.3.4 Unlimited polymorphic entities
	14.3.5 Polymorphic entities and generic resolution

	14.4 The associate construct
	14.5 The select type construct
	14.6 Type-bound procedures
	14.6.1 Specific type-bound procedures
	14.6.2 Generic type-bound procedures
	14.6.3 Type extension and type-bound procedures

	14.7 Deferred bindings and abstract types
	14.8 Finalization
	14.8.1 Type extension and final subroutines

	14.9 Procedure encapsulation example
	14.10 Type inquiry functions

	15 Establishing and moving data
	15.1 Introduction
	15.2 Mixed component accessibility
	15.3 Structure constructors
	15.4 The allocate statement
	15.4.1 Typed allocation and deferred type parameters
	15.4.2 Polymorphic variables and typed allocation
	15.4.3 Sourced allocation

	15.5 Allocatable entities
	15.5.1 Allocatable scalars
	15.5.2 Assignment to an allocatable array
	15.5.3 Transferring an allocation

	15.6 Pointer assignment
	15.7 More control of access from a module
	15.8 Renaming operators on the use statement
	15.9 Array constructor syntax
	15.10 Specification and constant expressions

	16 Miscellaneous enhancements
	16.1 Introduction
	16.2 Pointer intent
	16.3 The volatile attribute
	16.3.1 Volatile semantics
	16.3.2 Volatile scoping
	16.3.3 Volatile arguments

	16.4 The import statement
	16.5 Intrinsic modules
	16.6 Access to the computing environment
	16.6.1 Environment variables
	16.6.2 Information about the program invocation

	16.7 Support for internationalization
	16.7.1 Character sets
	16.7.2 ASCII character set
	16.7.3 ISO 10646 character set
	16.7.4 UTF-8 files
	16.7.5 Decimal comma for input/output

	16.8 Lengths of names and statements
	16.9 Binary, octal, and hexadecimal constants
	16.10 Other changes to intrinsic procedures
	16.11 Error message retrieval
	16.12 Enhanced complex constants
	16.13 Interface block extensions
	16.14 Public entities of private type

	17 Input/output enhancements
	17.1 Introduction
	17.2 Non-default derived-type input/output
	17.3 Asynchronous input/output
	17.4 The asynchronous attribute
	17.5 Input and output of IEEE exceptional values
	17.6 Stream access input/output
	17.7 Recursive input/output
	17.8 The flush statement
	17.9 Comma after a P edit descriptor
	17.10 The iomsg= specifier
	17.11 The round= specifier
	17.12 The sign= specifier
	17.13 Kind type parameters of integer and logical specifiers
	17.14 More specifiers in read and write statements
	17.15 Intrinsic functions for I/O status testing
	17.16 Some inquire statement enhancements
	17.17 Namelist enhancements

	18 Enhanced module facilities
	18.1 Introduction
	18.2 Submodules
	18.2.1 Separate module procedures
	18.2.2 Submodules of submodules
	18.2.3 Submodule entities
	18.2.4 Submodules and use association

	18.3 The advantages of submodules

	19 Coarrays
	19.1 Introduction
	19.2 Referencing images
	19.3 The properties of coarrays
	19.4 Accessing coarrays
	19.5 The sync all statement
	19.6 Coarrays in procedures
	19.7 Allocatable coarrays
	19.8 Coarrays with allocatable or pointer components
	19.8.1 Data components
	19.8.2 Procedure pointer components

	19.9 Coarray components
	19.10 References to polymorphic subobjects
	19.11 Volatile and asynchronous attributes
	19.12 Interoperability
	19.13 Synchronization
	19.13.1 Execution segments
	19.13.2 The sync images statement
	19.13.3 The lock and unlock statements
	19.13.4 Critical sections
	19.13.5 The sync memory statement and atomic subroutines
	19.13.6 The stat= and errmsg= specifiers in synchronization statements
	19.13.7 The image control statements

	19.14 Program termination
	19.15 Input/output
	19.16 Intrinsic procedures
	19.16.1 Inquiry functions
	19.16.2 Transformational functions

	20 Other Fortran 2008 enhancements
	20.1 Trivial syntactic conveniences
	20.1.1 Implied-shape arrays
	20.1.2 Implied-do loops in data statements
	20.1.3 Type-bound procedures
	20.1.4 Structure constructors
	20.1.5 Semicolons
	20.1.6 The stop statement
	20.1.7 Exit from nearly any construct

	20.2 Limitation changes
	20.2.1 64-bit integer support
	20.2.2 Maximum array rank

	20.3 Data expressiveness
	20.3.1 Allocatable components of recursive type
	20.3.2 Initial pointer association

	20.4 Performance-oriented features
	20.4.1 The do concurrent construct
	20.4.2 The contiguous attribute
	20.4.3 Simply contiguous array designators

	20.5 Computational expressiveness
	20.5.1 Accessing parts of complex variables
	20.5.2 Pointer functions denoting variables
	20.5.3 The block construct
	20.5.4 Impure elemental procedures
	20.5.5 Internal procedures as actual arguments
	20.5.6 Specifying the kind of a forall index variable
	20.5.7 Generic resolution

	20.6 Data usage and computation
	20.6.1 Enhancements to the allocate statement
	20.6.2 Automatic reallocation
	20.6.3 Elemental subprogram restrictions

	20.7 Input/output
	20.7.1 Recursive input/output
	20.7.2 The newunit= specifier
	20.7.3 Writing comma-separated values

	20.8 Intrinsic procedures
	20.9 Mathemetical intrinsic functions
	20.9.1 Changes to trigonometric functions
	20.9.2 New hyperbolic trigonometic functions
	20.9.3 New special mathematical functions
	20.9.4 Euclidean norms

	20.10 Bit manipulation
	20.10.1 Bitwise (unsigned) comparison
	20.10.2 Double-width shifting
	20.10.3 Bitwise reductions
	20.10.4 Counting bits
	20.10.5 Producing bitmasks
	20.10.6 Merging bits
	20.10.7 Additional shift operations

	20.11 Miscellaneous intrinsic procedures
	20.11.1 Procedures supporting coarrays
	20.11.2 Executing another program
	20.11.3 Character comparison
	20.11.4 Array searching
	20.11.5 Logical parity
	20.11.6 Decimal arithmetic support
	20.11.7 Size of an object in memory

	20.12 Additions to the iso_fortran_env module
	20.12.1 Compilation information
	20.12.2 Names for common kinds
	20.12.3 Kind arrays
	20.12.4 Coarray support facilities

	20.13 Changes to other standard intrinsic modules
	20.13.1 The iso_c_binding module
	20.13.2 The ieee_arithmetic module

	20.14 Programs and procedures
	20.14.1 Saved module entities
	20.14.2 Automatic pointer targetting
	20.14.3 Denoting absent arguments

	A: Intrinsic procedures
	B: Deprecated features
	B.1 Introduction
	B.2 Storage association
	B.2.1 Storage units
	B.2.2 The equivalence statement
	B.2.3 The common block
	B.2.4 The block data program unit
	B.2.5 Coarrays and storage association

	B.3 Shape and character length disagreement
	B.4 The include line
	B.5 Other forms of loop control
	B.5.1 The labelled do construct
	B.5.2 The do while

	B.6 Double precision real
	B.7 The dimension, codimension, and parameter statements
	B.8 Specific names of intrinsic procedures
	B.9 Non-default mapping for implicit typing
	B.10 Fortran 2008 deprecated features
	B.10.1 The sync memory statement and atomic subroutines
	B.10.2 Components of type c_ptr or c_funptr
	B.10.3 Type declarations
	B.10.4 Redundant contains statement
	B.10.5 The end statement
	B.10.6 Referencing atan2 by the name atan

	C: Obsolescent features
	C.1 Obsolescent in Fortran 95
	C.1.1 Fixed source form
	C.1.2 Computed go to
	C.1.3 Character length specification character*
	C.1.4 Data statements among executables
	C.1.5 Statement functions
	C.1.6 Assumed character length of function results
	C.1.7 Arithmetic if statement
	C.1.8 Shared do-loop termination
	C.1.9 Alternate return

	C.2 Feature obsolescent in Fortran 2008: Entry statement
	C.3 Feature deleted in Fortran 2003: Carriage control
	C.4 Features deleted in Fortran 95

	D: Avoiding compilation cascades
	E: Object-oriented list example
	F: Fortran terms
	G: Solutions to exercises
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

