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 1.1 Introduction 

 The book aims to provide coverage of a reasonable working subset of the Fortran 
programming language. The subset chosen should enable you to solve quite a wide 
range of frequently occurring problems. 

 This book has been written for both complete beginners with little or no pro-
gramming background and experienced Fortran programmers who want to update 
their skills and move to a modern version of the language. 

 Chapters   2     and   3     provide a coverage of problem solving and the history and 
development of programming languages. Chapter   2     is essential for the beginner as 
the concepts introduced there are used and expanded on throughout the rest of the 
book. Chapter   3     should be read at some point but can be omitted initially. 
Programming languages evolve and some understanding of where Fortran has come 
from and where it is going will prove valuable in the longer term.

   Chapter   2     looks at problem solving in some depth, and there is a coverage of the • 
way we defi ne problems, the role of algorithms, the use of both top-down and 
bottom-up methods, and the requirement for formal systems analysis and design 
for more complex problems.  
  Chapter   3     looks at the history and development of programming languages. This • 
is essential as Fortran has evolved considerably from its origins in the mid-1950s, 
through the fi rst standard in 1966, the Fortran 77 standard, the Fortran 90 stan-
dard, the Fortran 95 standard, TR 15580 and TR 15581, Fortran 2003 and Fortran 
2008. It helps to put many of the current and proposed features of Fortran into 

    Chapter 1   
 Overview              

 I don’t know what the language of the year 2000 will look like, 
but it will be called Fortran. 

 C.A.R. Hoare 



2 1 Overview

context. Languages covered include Cobol, Algol, Lisp, Snobol, PL/1, Algol 68, 
Simula, Pascal, APL, Basic, C, Ada, Modula, Modula 2, Logo, Prolog, SQL, 
ICON, Oberon, Oberon 2, Smalltalk, C++, C# and Java.    

 Chapters   4     through   8     cover the major features provided in Fortran for numeric pro-
gramming in the fi rst instance and for general purpose programming in the second. Each 
chapter has a set of problems. It is essential that a reasonable range of problems are 
attempted and completed, as it is impossible to learn any language without practice.

   Chapter   4     provides an introduction to programming with some simple Fortran • 
examples. For people with a knowledge of programming this chapter can be 
covered fairly quickly.  
  Chapter   5     looks at arithmetic in some depth, with a coverage of the various • 
numeric data types, expressions and assignment of scalar variables. There is also 
a thorough coverage of the facilities provided in Fortran to help write programs 
that work on different hardware platforms.  
  Chapter   6     is an introduction to arrays and do loops. The chapter starts with some • 
examples of tabular structures that one should be familiar with. There is then an 
examination of what concepts we need in a programming language to support 
manipulation of tabular data.  
  Chapter   7     takes the ideas introduced in Chap.   6     and extends them to higher-• 
dimensioned arrays, additional forms of the dimension attribute and correspond-
ing form of the do loop, and the use of looping for the control of repetition and 
manipulation of tabular information without the use of arrays.  
  Chapter   8     looks at more of the facilities offered for the manipulation of whole • 
arrays and array sections, ways in which we can initialise arrays using construc-
tors, look more formally at the concepts we need to be able to accurately describe 
and understand arrays, and fi nally look at the differences between the way Fortran 
allows us to use arrays and the mathematical rules governing matrices.    

 Chapters   9    ,   10     and   11     look at input and output (I/O) and fi le handling in Fortran. 
An understanding of I/O is necessary for the development of so-called production, 
non interactive programs. These are essentially fully developed programs that are 
used repeatedly with a variety of data inputs and results.

   Chapter   9     looks at output of results and how to generate something that is more • 
comprehensible and easy to read than what is available with free format output 
and also how to write the results to a fi le rather than the screen.  
  Chapter   10     extends the ideas introduced in Chap.   12     on output to cover input of • 
data, or reading data into a program and also considers fi le I/O.  
  Chapter   11     provides a coverage of fi les.    • 

 Chapter   12     introduces the fi rst building block available in Fortran for the con-
struction of programs for the solution of larger, more complex problems. It looks at 
the functions available in Fortran, the so-called intrinsic functions and procedures 
(over 100 of them) and covers how you can defi ne and use your own functions. 

 It is essential to develop an understanding of the functions provided by the 
language and when it is necessary to write your own. 
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 Chapter   13     introduces more formally the concept of control structures and 
their role in structured programming. Some of the control structures available in 
Fortran are introduced in earlier chapters, but there is a summary here of those 
already covered plus several new ones that complete our coverage of a minimal 
working set. 

 Chapters   14     through   16     complete our coverage of the intrinsic facilities in Fortran 
for data typing.

   Chapter   14     looks at the character data type in Fortran. There is a coverage of I/O • 
again, with the operators available—only one in fact.  
  Chapter   15     looks at the last numeric data type in Fortran, the complex data type. • 
This data type is essential to the solution of a small class of problems in mathe-
matics and engineering.  
  Chapter   16     looks at the logical data type. The material covered here helps con-• 
siderably in increasing the power and sophistication of the way we use and con-
struct logical expressions in Fortran. This proves invaluable in the construction 
and use of logical expressions in control structures.   

   Chapter   17     introduces derived or user defi ned types with a small number of 
examples.  
  Chapter   18     looks at the dynamic data-structuring facilities now available in 
Fortran with the addition of pointers. This chapter looks at the basic syntax of 
pointers. They are used in range of examples in later chapters in the book.  

  The next two chapters look at the second major building block in Fortran—
the subroutine. Chapter   19     provides a gentle introduction to some of the funda-
mental concepts of subroutine defi nition and use and Chapter   20     extends these 
ideas.  
  Chapter   21     introduces one of modern Fortran’s major key features—A Fortran 
module can be thought of as equivalent to a class in C++, Java and C#. the mod-
ule. This chapter looks at the basic syntax, with a couple of simple examples.  
  Chapter   22     looks at simple data structuring in Fortran, as we have now covered 
modules in a bit more depth.  
  Chapter   23     looks briefl y at operator overloading, fi rst introduced in Fortran 90.  
  Chapter   24     looks at generic programming.  
  Chapter   25     has a small set of mathematical examples.  
  Chapter   26     introduces object oriented programming in Fortran.  
  Chapters   27     through   30     look at parallel programming in Fortran with coverage of 
MPI, OpenMP and Coarray Fortran.  
  Chapter   31     looks at C interoperability.  
  Chapter   32     looks at IEEE Arithmetic support in Fortran.  
  Chapter   33     looks at a number of miscellaneous Fortran features.  
  Chapter   34     looks at converting from Fortran 77 to more modern Fortran.    

 Some of the chapters have annotated bibliographies. These often have pointers 
and directions for further reading. The coverage provided cannot be seen in isolation. 
The concepts introduced are by intention brief, and fuller coverage must be sought 
where necessary. 
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 There are several appendices:

   Appendix A—This is a glossary which provides coverage of both the new con-• 
cepts provided by Fortran and a range of computing terms and ideas.  
  Appendix B—The ASCII character set.  • 
  Appendix C—Contains a list of some of the more commonly used intrinsic pro-• 
cedures in Fortran and includes an explanation of each procedure with a cover-
age of the rules and restrictions that apply and examples of use where 
appropriate.  
  Appendix D—Contains the English and Latin text extracts used in one of the • 
problems in the chapter on characters.  
  Appendix E—Contains the coded text extract used in one of the problems in • 
Chapter   17    .  
  Appendix F—Formal syntax  • 
  Appendix G—Sample compiler options    • 

 This book is not and cannot possibly be completely self-contained and exhaustive 
in its coverage of the Fortran language. Our fi rst intention has been to produce a 
coverage of the features that will get you started with Fortran and enable you to 
solve a range of problems successfully. 

 All in all Fortran is an exciting language, and it has caught up with language 
developments of the last 50 years. 

 Several Fortran compilers have been used whilst writing this book. These 
include:

   NAG Fortran Builder 5.1, 5.2, for Windows  • 
  NAG Fortran Compiler 5.1, 5.2, 5.3 for Windows  • 
  NAG Fortran Compiler 5.1, 5.2 for Linux.  • 
  Intel Fortran 11.x, 12.x for Windows.  • 
  Intel Fortran 12.x for Linux.  • 
  gnu gfortran 4.x for Windows.  • 
  gnu gfortran 4.x for Linux.  • 
  g95 for Linux.  • 
  pgi 10.x—Cray Hector service  • 
  Cray 1.0.1—Cray Hector service  • 
  Oracle Solaris Studio 12.0, 12.1, 12.2 for Linux    • 

 Our recommendation is that you use at least two compilers in the development of 
your code. Moving code between compilers and platforms teaches you a lot. 

 We are the current owners of the Fortran 90 list, and quoting the introduction 
“This list covers all aspects of Fortran 90 and HPF, the new standard(s) for Fortran. 
The emphasis should be on the *new* features of Fortran 90. It welcomes contribu-
tions from people who write Fortran 90 applications, teach it in courses, want to port 
programs and use it on (super)computers.” 

 Visit:

     • http://www.jiscmail.ac.uk/lists/comp-fortran-90.html     for more information.    

http://www.jiscmail.ac.uk/lists/comp-fortran-90.html


51.3 Further Reading

 Ian Chivers is also Editor of Fortran Forum, the SIGPLAN Special Interest 
Publication on Fortran, ACM Press. Visit 

   http://portal.acm.org/citation.cfm?id=J286     for more information. 

    1.2   Program Examples 

 All of the program examples are available on line at    http://www.fortranplus.co.uk/       

    1.3   Further Reading 

 Mastery of any programming language requires working with technical documenta-
tion. You will have to refer to or use one or more of the sources below if you want 
to progress as a Fortran programmer. 

    1.3.1   The Fortran Standard 

 The ISO site   http://www.iso.org/iso/search.htm?qt=fortran&sort=rel&type=simple
&pub-lished=on     has details of how to obtain a copy. It is 338 Swiss Francs. 

 In the UK the standard can be obtained from the BSI. Details are given below: 
  http://shop.bsigroup.com/en/ProductDetail/?pid=000000000030185076     It is 356 
UK pounds. 

 You should be able to buy the standard from the standards organisations in your 
country. Google is a good place to start/  

    1.3.2   J3 and WG5 Working Documents 

 Working documents can be found at the J3 and WG5 sites. The last working docu-
ment for the Fortran 2003 standard can be found at both the J3 and WG5 sites. WG5 
have the document available at:   ftp://ftp.nag.co.uk/sc22wg5/N1601-N1650/     and is 
document number n1601. It can also be found at the J3 site.   http://www.j3-fortran.
org/doc/year/04/04-007.pdf      

    1.3.3   Compiler Documentation 

 The compiler may come with documentation. Here are some details for a number of 
compilers. 

http://portal.acm.org/citation.cfm?id=J286
http://www.fortranplus.co.uk/
http://www.iso.org/iso/search.htm?qt=fortran&sort=rel&type=simple&pub-lished=on
http://www.iso.org/iso/search.htm?qt=fortran&sort=rel&type=simple&pub-lished=on
http://shop.bsigroup.com/en/ProductDetail/?pid=000000000030185076
ftp://ftp.nag.co.uk/sc22wg5/N1601-N1650/
http://www.j3-fortran.org/doc/year/04/04-007.pdf
http://www.j3-fortran.org/doc/year/04/04-007.pdf
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    1.3.3.1   g95 

 A manuals is available at

     http://ftp.g95.org/G95Manual.pdf     Visit  
    http://www.g95.org/index.shtm     for up to date information.     

    1.3.3.2   gfortran 

     Manuals are available at

 http://gcc.gnu.org/wiki/GFortran#manuals     The following  
    http://gcc.gnu.org/onlinedocs/gcc-4.5.2/gfortran.pdf     is a 236 page pdf.     

    1.3.3.3   Intel 

 Windows. The following will end up available after a complete install.

   Intel MKL• 

   Release notes  • 
  Reference Manual  • 
  User Guide     • 

  Parallel Debugger Extension• 

   Release Notes     • 

  Compiler• 

   Reference Manual, Visual Studio Help fi les or html.  • 
  User Guide, Visual Studio Help fi les or html. Intel also provide the • 
 following   http://software.intel.com/en-us/articles/intel-software-technical-
documentation/            

    1.3.3.4   Nag 

Windows 

    Fortran Builder Help• 

   Fortran Builder Tutorial—44 pages  • 
  Fortran Builder Operation Guide—67 pages  • 
  Fortran Language Guide—115 pages  • 
  Compiler Manual—149 pages  • 
  LAPACK Guide—70 pages (440MB as PDF!)  • 

http://ftp.g95.org/G95Manual.pdf
http://www.g95.org/index.shtm
http://gcc.gnu.org/wiki/GFortran#manuals
http://gcc.gnu.org/onlinedocs/gcc-4.5.2/gfortran.pdf
http://software.intel.com/en-us/articles/intel-software-technical-documentation/
http://software.intel.com/en-us/articles/intel-software-technical-documentation/


71.3 Further Reading

  GTK + Library—201 pages  • 
  OpenGL/GLUT Library—38 pages  • 
  SIMDEM Library—78 pages        • 

    1.3.3.5   Oracle/Sun 

 Oracle make available a range of documentation. From within Oracle Solaris 
Studio

   Help• 

   Help Contents  • 
  Online Docs and Support  • 
  ..  • 
  ..  • 
  Quick Start Guide and you will get taken to the Oracle site by some of these • 
entries.       

 You can also download a 300+ MB zip fi le which contains loads of Oracle docu-
mentation. You should be able to locate (after some rummaging around)

   Sun Studio 12: Fortran Programming Guide—174 pages  • 
  Sun Studio 12: Fortran User’s Guide—216 pages  • 
  Sun Studio 12: Fortran Library Reference—144 pages  • 
  Fortran 95 Interval Arithmetic Programming Reference—166 pages Happy • 
reading :-)      

    1.3.4   Books 

 Adams, J.C., Brainerd, W.S., Hendrickson, R.A., Maine, R.E., Martin, J.T., Smith, 
B.T.: The Fortran 2003 Handbook: The Complete Syntax, Features and Procedures. 
Springer, London (2008) 31 Oct 2008, ISBN-10: 1846283787, ISBN-13: 978-
1846283789. 

 It covers the whole of the Fortran 2003 standard in a lot of depth. The content and 
structure of the book follows that of the standard directly. A much easier read than 
the standard, and a lot cheaper.        
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 Aims 

 The aims of this chapter are:

   To examine some of the ideas and concepts involved in problem solving.  • 
  To introduce the concept of an algorithm.  • 
  To introduce two ways of approaching algorithmic problem solving.  • 
  To introduce the ideas involved with systems analysis and design, i.e., to show • 
the need for pencil and paper study before using a computer system.    

    Chapter 2   
 Introduction to Problem Solving              

 They constructed ladders to reach to the top of the enemy’s 
wall, and they did this by calculating the height of the wall 
from the number of layers of bricks at a point which was 
facing in their direction and had not been plastered. The 
layers were counted by a lot of people at the same time, and 
though some were likely to get the fi gure wrong the majority 
would get it right… Thus, guessing what the thickness of a 
single brick was, they calculated how long their ladder would 
have to be. 

 Thucydides, The Peloponnesian War 

 ‘When I use a word,’ Humpty Dumpty said, in a rather scornful 
tone, ‘it means just what I choose it to mean—neither more
nor less.’ 
 ‘The question is,’ said Alice, ‘whether you can make words 
mean so many different things.’ 

 Lewis Carroll, Through the Looking Glass 
and What Alice Found There 
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    2.1   Introduction    

 It is informative to consider some of the dictionary defi nitions of problem:

   A matter diffi cult of settlement or solution, Chambers.  • 
  A question or puzzle propounded for solution, Chambers.  • 
  A source of perplexity, Chambers.  • 
  Doubtful or diffi cult question, Oxford.  • 
  Proposition in which something has to be done, Oxford.  • 
  A question raised for enquiry, consideration, or solution, Webster’s.  • 
  An intricate unsettled question, Webster’s.    • 

 A common thread seems to be a question that we would like answered or solved. So 
one of the fi rst things to consider in problem solving is how to pose the problem. This 
is often not as easy as is seems. Two of the most common methods to use here are:

   In natural language.  • 
  In artifi cial or stylised language.    • 

 Both methods have their advantages and disadvantages. 

    2.2   Natural Language 

 Most people use natural language and are familiar with it, and the two most common 
forms are the written and spoken word. Consider the following language usage:

   The difference between a 3 year-old child and an adult describing the world.  • 
  The difference between the way an engineer and a physicist would approach the • 
design of a car engine.  
  The difference between a manager and a worker considering the implications of • 
the introduction of new technology.    

 Great care must be taken when using natural language to defi ne a problem and 
a solution. It is possible that people use the same language to mean completely 
different things, and one must be aware of this when using natural language whilst 
problem solving. 

 Natural language can also be ambiguous: Old men and women eat cheese. Are 
both the men and women old?  

    2.3   Artifi cial Language 

 The two most common forms of artifi cial language are technical terminology and 
notations. Technical terminology generally includes both the use of new words and 
alternate use of existing words. Consider some of the concepts that are useful when 
examining the expansion of gases in both a theoretical and practical fashion:
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   Temperature.  • 
  Pressure.  • 
  Mass.  • 
  Isothermal expansion.  • 
  Adiabatic expansion.    • 

 Now look at the following:

   A chef using a pressure cooker.  • 
  A garage mechanic working on a car engine.  • 
  A doctor monitoring blood pressure.  • 
  An engineer designing a gas turbine.    • 

 Each has a particular problem to solve, and all will approach their problem in their 
own way; thus they will each use the same terminology in slightly different ways. 

    2.3.1   Notations 

 Some examples of notations are:

   Algebra.  • 
  Calculus.  • 
  Logic.    • 

 All of the above have been used as notations for describing both problems and 
their solutions.   

    2.4   Resume 

 We therefore have two ways of describing problems and they both have a learning 
phase until we achieve suffi cient understanding to use them effectively. Having 
arrived at a satisfactory problem statement we next have to consider how we get the 
solution. It is here that the power of the algorithmic approach becomes useful.  

    2.5   Algorithms 

 An algorithm is a sequence of steps that will solve part or all of a problem. One of 
the most easily understood examples of an algorithm is a recipe. Most people have 
done some cooking, if only making toast and boiling an egg. 

 A recipe is made up of two parts:

   A check list of things you need.  • 
  The sequence or order of steps.    • 



12 2 Introduction to Problem Solving

 Problems can occur at both stages, e.g., fi nding out halfway through the recipe that 
you do not have an ingredient or utensil; fi nding out that one stage will take an hour 
when the rest will be ready in 10 min. Note that certain things can be done in any 
order—it may not make any difference if you prepare the potatoes before the carrots. 

 There are two ways of approaching problem solving when using a computer. 
They both involve algorithms, but are very different from one another. They are 
called top-down and bottom-up. 

    2.5.1   Top-Down 

 In a top-down approach the problem is fi rst specifi ed at a high or general level: 
prepare a meal. It is then refi ned until each step in the solution is explicit and in the 
correct sequence, e.g., peel and slice the onions, then brown in a frying pan before 
adding the beef. One drawback to this approach is that it is very diffi cult to teach to 
beginners because they rarely have any idea of what primitive tools they have at 
their disposal. Another drawback is that they often get the sequencing wrong, e.g., 
now place in a moderately hot oven is frustrating because you may not have lit the 
oven (sequencing problem) and secondly because you may have no idea how hot 
moderately hot really is. However, as more and more problems are tackled, 
top-down becomes one of the most effective methods for programming.  

    2.5.2   Bottom-Up 

 Bottom-up is the reverse to top-down! As before you start by defi ning the problem 
at a high level, e.g., prepare a meal. However, now there is an examination of what 
tools, etc. you have available to solve the problem. This method lends itself to teach-
ing since a repertoire of tools can be built up and more complicated problems can 
be tackled. Thinking back to the recipe there is not much point in trying to cook a 
six course meal if the only thing that you can do is boil an egg and open a tin of 
beans. The bottom-up approach thus has advantages for the beginner. However, 
there may be a problem when no suitable tool is available. A colleague and friend 
of the authors learned how to make Bechamel sauce, and was so pleased by his suc-
cess that every other meal had a course with a Bechamel sauce. Try it on your eggs 
one morning. Here is a case of specifying a problem, prepare a meal, and using an 
inappropriate but plausible tool, Bechamel sauce. 

 The effort involved in tackling a realistic problem, introducing the constructs as 
and when they are needed and solving it is considerable. This approach may not 
lead to a reasonably comprehensive coverage of the language, or be particularly 
useful from a teaching point of view. Case studies do have great value, but it helps 
if you know the elementary rules before you start on them. Imagine learning French 
by studying Balzac, before you even look at a French grammar book. You can learn 
this way but even when you have fi nished, you may not be able to speak to a 
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Frenchman and be understood. A good example of the case study approach is given 
in the book Software Tools, by Kernighan and Plauger. 

 In this book our aim is to gradually introduce more and more tools until you 
know enough to approach the problem using the top-down method, and also realise 
from time to time that it will be necessary to develop some new tools.  

    2.5.3   Stepwise Refi nement 

 Both of the above techniques can be combined with what is called stepwise refi nement. 
The original ideas behind this approach are well expressed in a paper by Wirth, entitled 
“program Development by Stepwise Refi nement”, published in 1971. It means that 
you start with a global problem statement and break the problem down in stages, into 
smaller and smaller subproblems that become more and more amenable to solution. 
When you fi rst start programming the problems you can solve are quite simple, but as 
your experience grows you will fi nd that you can handle more complex problems. 

 When you think of the way that you solve problems you will probably realise that 
unless the problem is so simple that you can answer it straightaway some thinking and 
pencil and paper work are required. An example that some may be familiar with is 
in practical work in a scientifi c discipline, where coming unprepared to the situation 
can be very frustrating and unrewarding. It is therefore appropriate to look at ways 
of doing analysis and design before using a computer.   

    2.6   Module Programming 

 As the problems we try solving become more complex we need to look at ways of 
managing the construction of programs that comprise many parts. Modula 2 was 
one of the fi rst languages to support this methodology and we will look at modular 
programming in more depth in a subsequent chapter.  

    2.7   Object Oriented Programming 

 There is a class of problems that are best solved by the treatment of the components 
of these problems as objects. We will look at the concepts involved in object 
oriented programming and object oriented languages in the next chapter.  

    2.8   Systems Analysis and Design 

 When one starts programming it is generally not apparent that one needs a method-
ology to follow to become successful as a programmer. This is usually because the 
problems are reasonably simple, and it is not necessary to be explicit about all of the 
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stages one has gone through in arriving at a solution. As the problems become more 
complex it is necessary to become more rigorous and thorough in one’s approach, 
to keep control in the face of the increasing complexity and to avoid making 
mistakes. It is then that the benefi t of systems analysis and design becomes obvious. 
Broadly we have the following stages in systems analysis and design:

   Problem defi nition.  • 
  Feasibility study and fact fi nding.  • 
  Analysis.  • 
  Initial system design.  • 
  Detailed design.  • 
  Implementation.  • 
  Evaluation.  • 
  Maintenance.   • 

and each problem we address will entail slightly different time spent in each of these 
stages. Let us look at each stage in more detail. 

    2.8.1   Problem Defi nition 

 Here we are interested in defi ning what the problem really is. We should aim at 
providing some restriction on both the scope of the problem, and the objectives we 
set ourselves. We can use the methods mentioned earlier to help us out. It is essen-
tial that the objectives are:

   Clearly defi ned.  • 
  Understood and agreed to by all people concerned, when more than one person • 
is involved.  
  Realistic.     • 

    2.8.2   Feasibility Study and Fact Finding 

 Here we look to see if there is a feasible solution. We would try and estimate the cost 
of solving the problem and see if the investment was warranted by the benefi ts, 
i.e., cost-benefi t analysis.  

    2.8.3   Analysis 

 Here we look at what must be done to solve the problem. Note that we are interested 
in fi nding out what we need to do, but that we do not actually do it at this stage.  
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    2.8.4   Design 

 Once the analysis is complete we know what must be done, and we can proceed to 
the design. We may fi nd there are several alternatives, and we thus examine alternate 
ways in which the problem can be solved. It is here that we use the techniques of 
top-down and bottom-up problem solving, combined with stepwise refi nement to 
generate an algorithm to solve the problem. We are now moving from the logical to 
the physical side of the solution. This stage ends with a choice among several alter-
natives. Note that there is generally not one ideal solution, but several, each with its 
own advantages and disadvantages.  

    2.8.5   Detailed Design 

 Here we move from the general to the specifi c, The end result of this stage should 
be a specifi cation that is suffi ciently tightly defi ned specifi cation to generate actual 
program code. 

 It is at this stage that it is useful to generate pseudocode. This means writing out 
in detail the actions we want carried out at each stage of our overall algorithm. We 
gradually expand each stage (stepwise refi nement) until it becomes Fortran—or 
whatever language we want.  

    2.8.6   Implementation 

 It is at this stage that we actually use a computer system to create the program(s) that 
will solve the problem. It is here that we actually need to know enough about a pro-
gramming language to use it effectively to solve our problem. This is only one stage in 
the overall process, and mistakes at any of the stages can create serious diffi culties.  

    2.8.7   Evaluation and Testing 

 Here we try to see if the program(s) we have produced will actually do what they are 
supposed to. We need to have data sets that enable us to say with confi dence that the 
program really does work. This may not be an easy task, as quite often we only have 
numeric methods to solve the problem, which is why we are using the computer in 
the fi rst place—hence we are relying on the computer to provide the proof; i.e., we 
have to use a computer to determine the veracity of the programs—and as Heller 
says, Catch 22.  
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    2.8.8   Maintenance 

 It is rare that a program is run once and never used again. This means that there will 
be an ongoing task of maintaining the program, generally to make it work with 
different versions of the operating system or compiler, and to incorporate new features 
not included in the original design. It often seems odd when one starts programming 
that a program will need maintenance, as we are reluctant to regard a program in the 
same way as a mechanical object like a car that will eventually fall apart through 
use. Thus maintenance means keeping the program working at some tolerable level, 
often with a high level of investment in manpower and resources. Research in this 
area has shown that anything up to 80% of the manpower investment in a program 
can be in maintenance.   

    2.9   Conclusions 

 A drawback, inherent in all approaches to programming and to problem solving in 
general, is the assumption that a solution is indeed possible. There are problems 
which are simply insoluble—not only problems like balancing a national budget, 
weather forecasting for a year, or predicting which radioactive atom will decay, but 
also problems which are apparently computationally solvable. 

 Knuth gives the example of a chess problem—determining whether the game is 
a forced victory for white. Although there is an algorithm to achieve this, it requires 
an inordinately long time to complete. For practical purposes it is unsolvable. 

 Other problems can be shown mathematically to be undecidable. The work of 
Gödel in this area has been of enormous importance, and the bibliography contains 
a number of references for the more inquisitive and mathematically orientated 
reader. The Hofstader coverage is the easiest, and least mathematical. 

 As far as possible we will restrict ourselves to solvable problems, like learning a 
programming language. 

 Within the formal world of Computer Science our description of an algorithm 
would be considered a little lax. For our introductory needs it is suffi cient, but a 
more rigorous approach is given by Hopcroft and Ullman in Introduction to 
Automata Theory, Languages and Computation, and by Beckman in Mathematical 
Foundations of programming.  

    2.10   Problems 

     1.    What is an algorithm?  
    2.    What distinguishes top-down from bottom-up approaches to problem solving? 

Illustrate your answer with reference to the problem of a car, motor-cycle or 
bicycle having a fl at tire.      
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 Aims 

 The primary aim of this chapter is to provide a short history of program language 
development and give some idea as to the concepts that have had an impact on 
Fortran. It concentrates on some but not all of the major milestones of the last 
40 years, in roughly chronological order. The secondary aim is to show the breadth 
of languages available. The chapter concludes with coverage of a small number of 
more specialised languages. 

    3.1   Introduction 

 It is important to realise that programming languages are a recent invention. They 
have been developed over a relatively short period—55 years—and are still 
undergoing improvement. Time spent gaining some historical perspective will 
help you understand and evaluate future changes. This chapter starts right at the 
beginning and takes you through some, but not all, of the developments during 
this 55 year span. The bulk of the chapter describes languages that are reasonably 
widely available commercially, and therefore ones that you are likely to meet. 
The chapter concludes with a coverage of some more specialised and/or recent 
developments. 

    Chapter 3   
 Introduction to Programming Languages              

 We have to go to another language in order to think clearly 
about the problem. 

 Samuel R. Delany, Babel-17 
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    3.2   Some Early Theoretical Work 

 Some of the most important early theoretical work in computing was that of Turing 
and von Neumann. Turing’s work provided the base from which it could be shown 
that it was possible to get a machine to solve problems. The work of von Neumann 
added the concept of storage and combined with Turing’s work to provide the basis 
for most computers designed to this day.  

    3.3   What Is a Programming Language? 

 For a large number of people a programming language provides the means of getting a 
digital computer to solve a problem. There is a wide range of problems and an equally 
wide range of programming languages, with particular languages being suited to a 
particular class of problems, all of which often appears bewildering to the beginner.  

    3.4   Program Language Development and Engineering 

 There is much in common between the development of programming languages and 
the development of anything from the engineering world. Consider the car: old cars 
offer much of the same functionality as more modern ones, but most people prefer 
driving newer models. The same is true of programming languages, where you can 
achieve much with the older languages, but the newer ones are easier to use.  

    3.5   The Early Days 

 A concept that proves very useful when discussing programming languages is that of 
the level of a machine. By this is meant how close a language is to the underlying 
machine that the program runs on. In the early days of programming (up to 1954) 
there were only two broad categories: machine languages and assemblers. The lan-
guage that digital machines use is that of 0 and 1, i.e., they are binary devices. Writing 
a program in terms of patterns of 0 and 1 was not particularly satisfactory and the 
capability of using more meaningful mnemonics was soon introduced. Thus it was 
realised quite quickly that one of the most important aspects of programming lan-
guages is that they have to be read and understood by both machines and humans. 

    3.5.1   Fortran’s Origins 

 The next stage was the development of higher-level languages. The fi rst of these was 
Fortran and it was developed over a 3 year period from 1954 to 1957 by an IBM team 
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led by John Backus. This group achieved considerable success, and helped to prove 
that the way forward lay with high-level languages for computer-based problem 
solving. Fortran stands for formula translation and was used mainly by people with a 
scientifi c background for solving problems that had a signifi cant arithmetic content. 
It was thus relatively easy, for the time, to express this kind of problem in Fortran. 

 By 1966 and the fi rst standard Fortran:

   Was widely available.  • 
  Was easy to teach.  • 
  Had demonstrated the benefi ts of subroutines and independent compilation.  • 
  Was relatively machine independent.  • 
  Often had very effi cient implementations.    • 

 Possibly the single most important fact about Fortran was, and still is, its wide-
spread usage in the scientifi c community.  

    3.5.2   Fortran 77 

 The next standard in 1977 (actually 1978, and thus out by one—a very common 
programming error, more of this later!) added character handling, but little else in 
the way of major new features, really tidying up some of the defi ciencies of the 1966 
standard. One important feature sometimes overlooked was backwards compatibil-
ity. This meant that the standard did not invalidate any standard conformant Fortran 
66 program. This protected investment in old code.  

    3.5.3   Cobol 

 The business world also realised that computers were useful and several languages 
were developed, including FLOWMATIC, AIMACO, Commercial Translator and 
FACT, leading eventually to Cobol—common Business Orientated Language. There 
is a need in commercial programming to describe data in a much more complex 
fashion than for scientifi c programming, and Cobol had far greater capability in this 
area than Fortran. The language was unique at the time in that a group of competi-
tors worked together with the objective of developing a language that would be 
useful on machines used by other manufacturers. 

 The contributions made by Cobol include:

   Firstly the separation among:• 

   The task to be undertaken.   –
  The description of the data involved.   –
  The working environment in which the task is carried out.      –

  Secondly a data description mechanism that was largely machine independent.  • 
  Thirdly its effectiveness for handling large fi les.  • 
  Fourthly the benefi t to be gained from a programming language that was easy to read.    • 
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 Modern developments in computing—of report generators, fi le-handling soft-
ware, fourth-generation development tools, and especially the increasing availabil-
ity of commercial relational database management systems—are gradually replacing 
the use of Cobol, except where high effi ciency and/or tight control are required.  

    3.5.4   Algol 

 Another important development of the 1950s was Algol. It had a history of develop-
ment from Algol 58, the original Algol language, through Algol 60 eventually to the 
Revised Algol 60 Report. Some of the design criteria for Algol 58 were:

   The language should be as close as possible to standard mathematical notation • 
and should be readable with little further explanation.  
  It should be possible to use it for the description of computing processes in • 
publications.  
  The new language should be mechanically translatable into machine programs.    • 

 A sad feature of Algol 58 was the lack of any input/output facilities, and this 
meant that different implementations often had incompatible features in this area. 

 The next important step for Algol occurred at a UNESCO-sponsored conference 
in June 1959. There was an open discussion on Algol and the outcome was Algol 
60, and eventually the Revised Algol 60 Report. 

 It was at this conference that John Backus gave his now famous paper on a 
method for defi ning the syntax of a language, called Backus Normal Form, or BNF. 
The full signifi cance of the paper was not immediately recognised. However, BNF 
was to prove of enormous value in language defi nition, and helped provide an inter-
face point with computational linguistics. 

 The contributions of Algol to program language development include:

   block structure.  • 
  Scope rules for variables because of block structure.  • 
  The BNF defi nition by Backus—most languages now have a formal defi nition.  • 
  The support of recursion.  • 
  Its offspring.    • 

 Thus Algol was to prove to make a contribution to programming languages that 
was never refl ected in the use of Algol 60 itself, in that it has been the parent of one 
of the main strands of program language development.   

    3.6   Chomsky and Program Language Development 

 Programming languages are of considerable linguistic interest, and the work of 
Chomsky in 1956 in this area was to prove of inestimable value. Chomsky’s system 
of transformational grammar was developed in order to give a precise mathematical 
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description to certain aspects of language. Simplistically, Chomsky describes gram-
mars, and these grammars in turn can be used to defi ne or generate corresponding 
kinds of languages. It can be shown that for each type of grammar and language 
there is a corresponding type of machine. It was quickly realised that there was a 
link with the earlier work of Turing. 

 This link helped provide a fi rm scientifi c base for programming language devel-
opment, and modern compiler writing has come a long way from the early work of 
Backus and his team at IBM. It may seem unimportant when playing a video game 
at home or in an arcade, but for some it is very comforting that there is a fi rm theo-
retical basis behind all that fun.  

    3.7   Lisp 

 There were also developments in very specialized areas. List processing was 
proving to be of great interest in the 1950s and saw the development of IPLV 
between 1954 and 1958. This in turn led to the development of Lisp at the end of 
the 1950s. Lisp has proved to be of considerable use for programming in the 
areas of artifi cial intelligence, playing chess, automatic theorem proving and 
general problem solving. It was one of the fi rst languages to be interpreted rather 
than compiled. Whilst interpreted languages are invariably slower and less effi -
cient in their use of the underlying computer systems than compiled languages, 
they do provide great opportunities for the user to explore and try out ideas whilst 
sitting at a terminal. The power that this gives to the computational problem 
solver is considerable. 

 Possibly the greatest contribution to program language development made by 
Lisp was its functional notation. One of the major problems for the Lisp user has 
been the large number of Lisp fl avours, and this has reduced the impact that the 
language has had and deserved.  

    3.8   Snobol 

 Snobol was developed to aid in string processing, which was seen as an important 
part of many computing tasks, e.g., parsing of a program. Probably the most impor-
tant thing that Snobol demonstrated was the power of pattern matching in a pro-
gramming language, e.g., it is possible to defi ne a pattern for a title that would 
include Mr, Mrs, Ms, Miss, Rev, etc., and search for this pattern in a text using 
Snobol. Like Lisp it is generally available as an interpreter rather than a compiler, 
but compiled versions do exist, and are often called Spitbol. Pattern-matching capa-
bilities are now to be found in many editors and this makes them very powerful and 
useful tools. It is in the area of text manipulation that Snobol’s greatest contribution 
to program language development lies.  
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    3.9   Second-Generation Languages 

    3.9.1   PL/1 and Algol 68 

 It is probably true that Fortran, Algol 60 and Cobol are the three main fi rst-generation 
high-level languages. The 1960s saw the emergence of PL/1 and Algol 68. PL/1 was 
a synthesis of features of Fortran, Algol 60 and Cobol. It was soon realised that 
whilst PL/1 had great richness and power of expression this was in some ways offset 
by the greater diffi culties involved in language defi nition and use. 

 These latter problems were also true of Algol 68. The report introduced its own 
syntactic and semantic conventions and thus forced another stage in the learning 
process on the prospective user. However, it has a small but very committed user 
population who like the very rich facilities provided by the language.  

    3.9.2   Simula 

 Another strand that makes up program language development is provided by Simula, 
a general purpose programming language developed by Dahl, Myhrhaug and 
Nygaard of the Norwegian Computing Centre. The most important contribution that 
Simula makes is the provision of language constructs that aid the programming of 
complex, highly interactive problems. It is thus heavily used in the areas of simulation 
and modelling. It was effectively the fi rst language to offer the opportunity of object 
orientated programming, and we will come back to this very important development 
in programming languages later in this chapter.  

    3.9.3   Pascal 

 The designer of Pascal, Niklaus Wirth, had participated in the early stages of the 
design of Algol 68 but considered that the generality and complexity of Algol 68 
was a move in the wrong direction. Pascal (like Algol 68) had its roots in Algol 60 
but aimed at providing expressive power through a small set of straightforward 
concepts. This set is relatively easy to learn and helps in producing readable and 
hence more comprehensible programs. 

 It became the language of fi rst choice within the fi eld of computer science during 
the 1970s and 1980s, and the comment by Wirth sums up the language very well: 
“although Pascal had no support from industry, professional societies, or govern-
ment agencies, it became widely used. The important reason for this success was 
that many people capable of recognising its potential actively engaged themselves 
in its promotion. As crucial as the existence of good implementations is the avail-
ability of documentation. The conciseness of the original report made it attractive 
for many teachers to expand it into valuable textbooks. Innumerable books appeared 
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between 1977 and 1985, effectively promoting Pascal to become the most wide-
spread language used in introductory programming courses. Good course material 
and implementations are the indispensable prerequisites for such an evolution.”  

    3.9.4   APL 

 APL is another interesting language of the early 1960s. It was developed by Iverson 
early in the decade and was available by the mid to late 1960s. It is an interpretive 
vector and matrix based language with an extensive set of operators for the manipu-
lation of vectors, arrays, etc., of whatever data type. As with Algol 68 it has a small 
but dedicated user population. A possibly unfair comment about APL programs is 
that you do not debug them, but rewrite them!  

    3.9.5   Basic 

 Basic stands for Beginners All Purpose Symbolic Instruction Code, and was devel-
oped by Kemeny and Kurtz at Dartmouth during the 1960s. Its name gives a clue to 
its audience and it is very easy to learn. It is generally interpreted, though compiled 
versions do exist. It has proved to be well suited to the rapid development of small 
programs. It is much criticised because it lacks features that encourage or force the 
adoption of sound programming techniques.  

    3.9.6   C 

 There is a requirement in computing to be able to access the underlying machine 
directly or at least effi ciently. It is therefore not surprising that computer profession-
als have developed high-level languages to do this. This may well seem a contradic-
tion, but it can be done to quite a surprising degree. Some of the earliest published 
work was that of Martin Richards on the development of BCPL. 

 This language directly infl uenced the work of Ken Thompson and can be clearly 
seen in the programming languages B and C. The UNIX operating system is almost 
totally written in C and demonstrates very clearly the benefi ts of the use of high-
level languages wherever possible. 

 With the widespread use of UNIX within the academic world C gained considerable 
ground during the 1970s and 1980s. UNIX systems also offered much to the profes-
sional software developer, and became widely used for large-scale software develop-
ment and as Ritchie says: “C is quirky, fl awed, and an enormous success. While 
accidents of history surely helped, it evidently satisfi ed a need for a system implemen-
tation language effi cient enough to displace assembly language, yet suffi ciently abstract 
and fl uent to describe algorithms and interactions in a wide variety of environments.”   
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    3.10   Some Other Strands in Language Development 

 There are many strands that make up program language development and some of 
them are introduced here. 

    3.10.1   Abstraction, Stepwise Refi nement and Modules 

 Abstraction has proved to be very important in programming. It enables a complex 
task to be broken down into smaller parts concentrating on what we want to happen 
rather than how we want it to happen. This leads almost automatically to the ideas 
of stepwise refi nement and modules, with collections of modules to perform spe-
cifi c tasks or steps.  

    3.10.2   Structured Programming 

 Structured programming in its narrowest sense concerns itself with the development 
of programs using a small but suffi cient set of statements and, in particular, control 
statements. It has had a great effect on program language design, and most lan-
guages now support the minimal set of control structures. 

 In a broader sense structured programming subsumes other objectives, including 
simplicity, comprehensibility, verifi ability, modifi ability and maintenance of programs.  

    3.10.3   Data Structuring and Procedural Programming 

 By the 1970s languages started to emerge that offered the ability to organise data 
logically—so called data structuring, and we will look at two of these in the cover-
age below—C and Pascal. 

 C provided this facility via structs and Pascal did it via records. These languages 
also offered two ways of processing the data—directly or via procedures. The terms 
concrete and abstract data type are sometimes also used in the literature. 

 An example may help here. Consider a date. This is typically made up of three 
components, a day, a month and a year. In C we can create a user defi ned type called 
a date using structs. We can then create variables of this type. This is done in Pascal 
in a similar way using records. 

 Access to the components of a date (day, month and year) can then either be 
direct—an example of a concrete data type, or indirect (via procedures)—an abstract 
data type. 

 Simplistically direct access (or concrete data types) offer the benefi t of effi ciency, 
and the possibility of lack of data integrity. In our date example we may set a day to 
the value 31 when the month is February. 
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 Indirect access (or abstract data types) are slightly less effi cient as we now have 
the overhead of a procedure call to access the data, but better opportunity for data 
integrity as we can provide hidden code within the procedures to ensure that the day, 
month and year combinations are valid. 

 Fortran did not provide this facility until the Fortran 90 standard.  

    3.10.4   Standardisation 

 The purposes of a standard are quite varied and include:

   Investment in people: by this we mean that the time spent in learning a standard • 
language pays off in the long term, as what one learns is applicable on any hard-
ware/software platform that has a standard conformant compiler.  
  Portability: one can take the code one has written for one hardware/software • 
platform and move it to any hardware/software platform that has a standard con-
formant compiler.  
  Known reference point: when making comparisons one starts with reference to • 
the standard fi rst, and then between the additional functionality of the various 
implementations    

 These are some but not all of the reasons for the use of standards. Their impor-
tance is summed up beautifully by Ronald G. Ross in his introduction to the Cannan 
and Otten book on the SQL standard: “Anybody who has ever plugged in an electric 
cord into a wall outlet can readily appreciate the inestimable benefi ts of workable 
standards. Indeed, with respect to electrical power, the very fact that we seldom 
even think about such access (until something goes wrong) is a sure sign of just how 
fundamentally important a successful standard can be.”   

    3.11   Ada 

 Ada represents the culmination of many years of work in program language devel-
opment. It was a collective effort and the main aim was to produce a language suit-
able for programming large-scale and real-time systems. Work started in 1974 with 
the formulation of a series of documents by the American Department of Defence 
(DoD), which led to the Steelman documents. It is a modern algorithmic language 
with the usual control structures and facilities for the use of modules, and allows 
separate compilation with type checking across modules. 

 Ada is a powerful and well-engineered language. Its widespread use is certain as 
it has the backing of the DoD. However, it is a large and complex language and 
consequently requires some effort to learn. It seems unlikely to be widely used 
except by a small number of computer professionals.  
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    3.12   Modula 

 Modula was designed by Wirth during the 1970s at ETH, for the programming of 
embedded real-time systems. It has many of the features of Pascal, and can be taken 
for Pascal at a glance. The key new features that Modula introduced were those of 
processes and monitors. 

 As with Pascal it is relatively easy to learn and this makes it much more attractive 
than Ada for most people, achieving much of the capability without the complexity.  

    3.13   Modula 2 

 Wirth carried on developing his ideas about programming languages and the culmi-
nation of this can be seen in Modula 2. In his words: “In 1977, a research project 
with the goal to design a computer system (hardware and software) in an integrated 
approach, was launched at the Institut fur Informatik of ETH Zurich. This system 
(later to be called Lilith) was to be programmed in a single high level language, 
which therefore had to satisfy requirements of high level system design as well as 
those of low level programming of parts that closely interact with the given hard-
ware. Modula 2 emerged from careful design deliberations as a language that 
includes all aspects of Pascal and extends them with the important module concept 
and those of multi-programming. Since its syntax was more in line with Modula 
than Pascal’s the chosen name was Modula 2.” 

 The language’s main additions with regard to Pascal are:

   The module concept, and in particular the facility to split a module into a • 
defi nition part and an implementation part.  
  A more systematic syntax which facilitates the learning process. In particular, • 
every structure starting with a keyword also ends with a keyword, i.e., is properly 
bracketed.  
  The concept of process as the key to multiprogramming facilities.  • 
  So-called low-level facilities, which make it possible to breach the rigid type • 
consistency rules and allow one to map data with Modula 2 structure onto a store 
without inherent structure.  
  The procedure type, which allows procedures to be dynamically assigned to • 
variables.    

 A sad feature of Modula 2 has been the long time taken to arrive at a standard for 
the language.  

    3.14   Other Language Developments 

 The following is a small selection of language developments that the authors fi nd 
interesting—they may well not be included in other people’s coverage. 
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    3.14.1   Logo 

 Logo is a language that was developed by Papert and colleagues at the Artifi cial 
Intelligence Laboratory at MIT. Papert is a professor of both mathematics and edu-
cation, and has been much infl uenced by the psychologist Piaget. The language is used 
to create learning environments in which children can communicate with a computer. 
The language is primarily used to demonstrate and help children develop fundamental 
concepts of mathematics. Probably the turtle and turtle geometry are known by educa-
tionists outside of the context of Logo. Turtles have been incorporated into the Smalltalk 
computer system developed at Xerox Palo Alto Research Centre—Xerox PARC.  

    3.14.2   Postscript, TeX and LaTeX 

 The 1980s saw a rapid spread in the use of computers for the production of printed 
material. The 3 languages are each used quite extensively in this area. 

 Postscript is a low-level interpretive programming language with good graphics 
capabilities. Its primary purpose is to enable the easy production of pages containing 
text, graphical shapes and images. It is rarely seen by most end users of modern 
desktop publishing systems, but underlies many of these systems. It is supported by 
an increasing number of laser printers and typesetters. 

 TeX is a language designed for the production of mathematical texts, and was 
developed by Donald Knuth. It linearises the production of mathematics using a 
standard computer keyboard. It is widely used in the scientifi c community for the 
production of documents involving mathematical equations. 

 LaTex is Leslie Lamport’s version of TeX, and is regarded by many as more 
friendly. It is basically a set of macros that hide raw TeX from the end user. The 
TeX/LaTeX ratio is probably 1–9 (or so I’m reliably informed by a TeXie).  

    3.14.3   Prolog 

 Prolog was originally developed at Marseille by a group led by Colmerauer in 1972/73. 
It has since been extended and developed by several people, including Pereira (L.M.), 
Pereira (F), Warren and Kowalski. Prolog is unusual in that it is a vehicle for logic pro-
gramming. Most of the languages described here are basically algorithmic languages 
and require a specifi cation of how you want something done. Logic programming con-
centrates on the what rather than the how. The language appears strange at fi rst, but has 
been taught by Kowalski and others to 10-year-old children at schools in London.  

    3.14.4   SQL 

 SQL stands for Structured Query Language, and was originally developed by people 
mainly working for IBM in the San Jose Research Laboratory. It is a relational 
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database language, and enables programmers to defi ne, manipulate and control 
data in a relational database. Simplistically, a relational database is seen by a user 
as a collection of tables, comprising rows and columns. It has become the most 
important language in the whole database fi eld.  

    3.14.5   ICON 

 ICON is in the same family as Snobol, and is a high-level general purpose pro-
gramming language that has most of the features necessary for effi cient processing 
of nonnumeric data. Griswold (one of the original design team for Snobol) has 
learnt much since the design and implementation of Snobol, and the language is a 
joy to use in most areas of text manipulation. 

 It is available for most systems via anonymous FTP from a number of sites on the 
Internet.   

    3.15   Object Oriented Programming 

 Object oriented represents a major advance in program language development. The 
concepts that this introduces include:

   Classes.  • 
  Objects.  • 
  Messages.  • 
  Methods.    • 

 These in turn draw on the ideas found in more conventional programming 
languages and correspond to

   Extensible data types.  • 
  Instances of a class.  • 
  Dynamically bound procedure calls.  • 
  Procedures of a class.  • 
  Inheritance is a very powerful high-level concept introduced with object oriented • 
programming. It enables an existing data type with its range of valid operations 
to form the basis for a new class, with more data types added with corresponding 
operations, and the new type is compatible with the original.    

 Fortran 2003 offered support for object oriented programming. This is achieved 
via the module facility rather than the class facility found in other languages like 
C++, Java and C#. 
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    3.15.1   Simula 

 As was mentioned earlier, the fi rst language to offer functionality in this area was 
Simula, and thus the ideas originated in the 1960s. The book Simula Begin by 
Birtwistle, Dahl, Myhrhaug and Nygaard is well worth a read as it represents one of 
the fi rst books to introduce the concepts of object oriented programming.  

    3.15.2   Smalltalk 

 Language plus use of a computer system. 
 Smalltalk has been under development by the Xerox PARC Learning Research 

Group since the 1970s. In their words: “Smalltalk is a graphical, interactive pro-
gramming environment. As suggested by the personal computer vision, Smalltalk is 
designed so that every component in the system is accessible to the user and can be 
presented in a meaningful way for observation and manipulation. The user interface 
issues in Smalltalk revolve around the attempt to create a visual language for each 
object. The preferred hardware system for Smalltalk includes a high resolution 
graphical display screen and a pointing device such as a graphics pen or mouse. 
With these devices the user can select information viewed on the screen and invoke 
messages in order to interact with the information.” Thus Smalltalk represents a 
very different strand in program language development. The ease of use of a system 
like this has long been appreciated and was fi rst demonstrated commercially in the 
Macintosh microcomputers. 

 Wirth has spent some time at Xerox PARC and has been infl uenced by their 
work. In his own words “the most elating sensation was that after 16 years of work-
ing for computers the computer now seemed to work for me.” This infl uence can be 
seen in the design of the Lilith machine, the original Modula 2 engine, and in the 
development of Oberon as both a language and an operating system.  

    3.15.3   Oberon and Oberon 2 

 As Wirth says: “The programming language Oberon is the result of a concentrated 
effort to increase the power of Modula-2 and simultaneously to reduce its complex-
ity. Several features were eliminated, and a few were added in order to increase the 
expressive power and fl exibility of the language.” 

 Oberon and Oberon 2 are thus developments beyond Modula 2. The main new 
concept added to Oberon was that of type extension. This enables the construction 
of new data types based on existing types and allows one to take advantage of what 
has already been done for that existing type. 
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 Language constructs removed included:

   Variant records.  • 
  Opaque types.  • 
  Enumeration types.  • 
  Subrange types.  • 
  Local modules.  • 
  WITH statement.  • 
  type transfer functions.  • 
  Concurrency.    • 

 The short paper by Wirth provides a fuller coverage. It is available at ETH via 
anonymous FTP.  

    3.15.4   Eiffel 

 Eiffel was originally developed by Interactive Software Engineering Inc. (ISE) 
founded by Bertrand Meyer. Meyer’s book Object-Oriented Software Construction 
contains a detailed treatment of the concepts and theory of the object technology 
that led to Eiffel’s design. 

 The language fi rst became available in 1986, and the fi rst edition of Meyer’s 
book was published in 1988. The following is a quote from the Wikipedia entry. 

 The design goal behind the Eiffel language, libraries, and programming methods 
is to enable programmers to create reliable, reusable software modules. Eiffel sup-
ports multiple inheritance, genericity, polymorphism, encapsulation, type-safe con-
versions, and parameter covariance. Eiffel’s most important contribution to software 
engineering is design by contract (DbC), in which assertions, preconditions, post-
conditions, and class invariants are employed to help ensure program correctness 
without sacrifi cing effi ciency.  

    3.15.5   C++ 

 Stroustrup did his Ph.D thesis at the Computing Laboratory, Cambridge University, 
England, and worked with Simula. He had previously worked with Simula at the 
University of Aarhus in Denmark. His comments are illuminating: “but was pleas-
antly surprised by the way the mechanisms of the Simula language became increas-
ingly helpful as the size of the program increased. The class and co-routine 
mechanisms of Simula and the comprehensive type checking mechanisms ensured 
that problems and errors did not (as I—and I guess most people—would have 
expected) grow linearly with the size of the program. Instead, the total program 
acted like a collection of very small (and therefore easy to write, comprehend and 
debug) programs rather than a single large program.” 
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 He designed C++ to provide Simula’s functionality within the framework of C’s 
effi ciency, and he succeeded in this goal as C++ is a widely used object oriented 
programming language. The major disadvantage now concerns the largely incom-
patible class libraries that exist. It is hoped that the various standards bodies address 
this problem in the immediate future.  

    3.15.6   Java 

 Bill Joy (of Sun fame) had by the late 1980s decided that C++ was too complicated and 
that an object oriented environment based upon C++ would be of use. At around about 
the same time James Gosling (mister emacs) was starting to get frustrated with the imple-
mentation of an SGML editor in C++. Oak was the outcome of Gosling’s frustration. 

 Sun over the next few years ended up developing Oak for a variety of projects. It 
wasn’t until Sun developed their own web browser, Hotjava, that Java as a language 
hit the streets. And as the saying goes  the rest is history.  

 Java is a relatively simple object oriented language. Whilst it has its origins in 
C++ it has dispensed with most of the dangerous features. It is OO throughout. 
Everything is a class. 

 It is interpreted and the intermediate byte code will run on any machine that has 
a Java virtual machine for it. This is portability at the object code level, unlike 
portability at the source code level—which is what we expect with most conven-
tional languages. Some of the safe features of the language include:

   Built in garbage collection.  • 
  No pointers—everything is passed by reference.    • 

 It is multithreaded, which makes it a delight for many applications. It has an 
extensive windows toolkit, the so called AWT that was in the original release of the 
language and Swing that came in later. 

 It is under continual development and at the time of writing was in its seventh 
major release.  

    3.15.7   C# 

 C# is a new language from Microsoft and is a key part of their .net framework. It is 
a modern, well-engineered language in the same family of programming languages 
in terms of syntax as C, C++ and Java. If you have a knowledge of one of these 
languages it will look very familiar. 

 One of the design goals was to produce a component oriented language, and to 
build on the work that Microsoft had done with OLE, ActiveX and COM:

   ActiveX is a set of technologies that enables software components to interact with • 
one another in a networked environment, regardless of the language in which they 
were created. ActiveX was built on the Component Object Model (COM).  
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  COM is the object model on which ActiveX Controls and OLE are built. COM • 
allows an object to expose its functionality to other components and to host 
applications. It defi nes both how the object exposes itself and how this 
exposure works across processes and networks. COM also defi nes the object’s 
life cycle.  
  OLE is a mechanism that allows users to create and edit documents containing • 
items or objects created by multiple applications. OLE was originally an acro-
nym for Object Linking and Embedding. However, it is now referred to simply 
as OLE. Parts of OLE not related to linking and embedding are now part of 
Active technology.    

 Other design goals included creating a language:

   where everything is an object—C# also has a mechanism for going between • 
objects and fundamental types (integers, reals, etc.).  
  Which would enable the construction of robust and reliable software—it has • 
garbage collection, exception handling and type safety.  
  Which would use a C/C++/Java syntax which is already widely known and thus • 
help programmers converting from one of these languages to C#.    

 It has been updated three times since its original release. Some of the more 
important features added in C# 2 were Generics, Iterators, Partial Classes, Nullable 
Types and Static Classes. The major feature that C# 3 added for most people was 
LINQ, a mechanism for data querying. C# 4 was released in 2010 and added a 
number of additional features.   

    3.16   Back to Fortran! 

 We fi nish off with a coverage of the developments since the Fortran 77 standard. 
Practically all of the Fortran compilers available today support the Fortran 90 and 
95 standards. Many also support several features of the 2003 standard, and some 
also implement one or more features from the Fortran 2008 standard. See the fol-
lowing document

     http://www.fortranplus.co.uk/resources/fortran_2003_2008_
compiler_support.pdf       

for up to date information on what each compiler offers in terms of standard support. 

    3.16.1   Fortran 90 

 Almost as soon as the Fortran 77 standard was complete and published, work began 
on the next version. The language drew on many of the ideas covered in this chapter 

http://www.fortranplus.co.uk/resources/fortran
http://www.fortranplus.co.uk/resources/fortran
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and these help to make Fortran 90 a very promising language. Some of the new 
features included:

   New source form, with blanks being signifi cant and names being up to 31 • 
characters.  
  Implicit none  • 
  Better control structures.  • 
  Control of the precision of numerical computation.  • 
  Array processing.  • 
  Pointers.  • 
  User defi ned data types and operators.  • 
  Procedures.  • 
  Modules.  • 
  Recursion.  • 
  Dynamic storage allocation.    • 

 This was the major update that the Fortran community had been waiting a long 
time for. Backwards compatibility was again a key aim. This standard did not invali-
date any standard conformant Fortran 77 program.  

    3.16.2   Fortran 95 

 Fortran was next standardised in 1996—yet again out by one! Firstly we have a 
clear up of some of the areas in the standard that had emerged as requiring clarifi ca-
tion. Secondly Fortran 95 added the following major concepts:

   The forall construct.  • 
  pure and elemental procedures.  • 
  implicit initialisation of derived-type objects.  • 
  Initial association status for pointers.    • 

 The fi rst two help considerably in parallelization of code. Minor features include 
amongst others:

   Automatic deallocation of allocatable arrays.  • 
  intrinsic SIGN function distinguishes between −0 and +0.  • 
  intrinsic function NULL returns disconnected pointer.  • 
  intrinsic function CPU_TIME returns the processor time.  • 
  References to some pure functions are allowed in specifi cation statements.  • 
  Nested where constructs.  • 
  Masked elsewhere construct.  • 
  Small changes to the CEILING, FLOOR, MAXLOC and MINLOC intrinsic • 
functions.    

 Some of these were added to keep Fortran in line with High Performance Fortran 
(HPF). More details are given later. 
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 Part 2 of the standard (ISO/IEC 1539–2:1994) adds the functional specifi cation 
for varying length character data type, and this extends the usefulness of Fortran for 
character applications very considerably.  

    3.16.3   ISO Technical Reports TR15580 and TR15581 

 There are two additional reports that have been published on Fortran. TR 15580 
specifi es three modules that provide access to IEEE fl oating point arithmetic and 
TR15581 allows the use of the allocatable attribute on dummy arguments, function 
results and structure components.  

    3.16.4   Fortran 2003 

 The language is known as Fortran 2003 even though the language did not make it 
through the standardisation process until 2004. It was a major revision.

   Derived-type enhancements: parameterised derived types (allows the kind, • 
length, or shape of a derived type’s components to be chosen when the derived 
type is used), mixed component accessibility (allows different components to 
have different accessibility), public entities of private type, improved structure 
constructors, and fi nalisers.  
  Object oriented programming support: enhanced data abstraction (allows one • 
type to extend the defi nition of another type), polymorphism (allows the type of 
a variable to vary at run time), dynamic type allocation, select type construct 
(allows a choice of execution fl ow depending upon the type a polymorphic object 
currently has), and type-bound procedures.  
  The associate construct (allows a complex expression or object to be denoted by • 
a simple symbol).  
  Data manipulation enhancements: allocatable components, deferred-type param-• 
eters, volatile attribute, explicit type specifi cation in array constructors, intent 
specifi cation of pointer arguments, specifi ed lower bounds of pointer assignment 
and pointer rank remapping, extended initialisation expressions, MAX and MIN 
intrinsics for character type, and enhanced complex constants.  
  Input/output enhancements: asynchronous transfer operations (allow a program to • 
continue to process data while an input/output transfer occurs), stream access 
(allows access to a fi le without reference to any record structure), user specifi ed 
transfer operations for derived types, user specifi ed control of rounding during 
format conversions, the fl ush statement, named constants for preconnected units, 
regularisation of input/output keywords, and access to input/output error messages.  
  Procedure pointers.  • 
  Scoping enhancements: the ability to rename defi ned operators (supports greater • 
data abstraction) and control of host association into interface bodies.  
  Support for IEC 60559 (IEEE 754) exceptions and arithmetic (to the extent a • 
processor’s arithmetic supports the IEC standard).  
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  Interoperability with the C programming language (allows portable access to • 
many libraries and the low-level facilities provided by C and allows the portable 
use of Fortran libraries by programs written in C).  
  Support for international usage: (ISO 10646) and choice of decimal or comma in • 
numeric formatted input/output.  
  Enhanced integration with the host operating system: access to command line • 
arguments and environment variables and access to the processor’s error mes-
sages (improves the ability to handle exceptional conditions).    

 The earlier web address has details of Fortran compiler conformance to this 
standard.  

    3.16.5   DTR 19767 Enhanced Module Facilities 

 The module system in Fortran has a number of shortcomings and this DTR addresses 
some of the issues. 

 One of the major issues was the so-called recompilation cascade. Changes to one 
part of a module forced recompilation of all code that used the module. Modula 2 
addressed this issue by distinguishing between the defi nition or interface and imple-
mentation. This can now be achieved in Fortran via submodules.  

    3.16.6   Fortran 2008 

 The most recent standard, ISO/IEC 1539–1:2010, commonly known as Fortran 
2008, was approved in September 2010. The new features include:

   Submodules—Additional structuring facilities for modules; supersedes ISO/IEC • 
TR 19767:2005  
  Coarray Fortran—a parallel execution model  • 
  The DO CONCURRENT construct—for loop iterations with no interdependencies  • 
  The CONTIGUOUS attribute—to specify storage layout restrictions  • 
  The BLOCK construct—can contain declarations of objects with construct scope  • 
  Recursive allocatable components—as an alternative to recursive pointers in • 
derived types.    

 A more thorough coverage can be found in John Reid’s paper.

      ftp://ftp.nag.co.uk/sc22wg5/N1801-N1850/N1828.pdf          

    3.16.7   The Future 

 The two main work items for WG5 and J3 are shown below. The information is taken 
from the agenda from the Garching meeting—June 27—July 1, 2011 Leibniz 
Supercomputing Centre (LRZ), Boltzmannstr. 1 85748 Garching/Munich, Germany.

ftp://ftp.nag.co.uk/sc22wg5/N18 01-N1850/N1828.pdf
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   Review the PDTR Ballot comments on the draft TR on Further Interoperability • 
with C, decide on changes, and construct a response document.  
  Consider the technical content of the proposed TR on Further Coarray Features.    • 

 There is also an effective permanent work item:

   Consider the Fortran defect reports (interpretations) in J3-006.      • 

    3.17   Internet Resources 

 The Internet provides access to a wealth of information regarding the Fortran family 
of languages. 

    3.17.1   Standards Information 

 The offi cial home of the standard is

     • http://www.nag.co.uk/sc22wg5/        

 We recommend visiting the site to keep up to date with Fortran developments. Their 
offi cial ftp server can be found at

     • ftp://ftp.nag.co.uk/sc22wg5/        

 Copies of all working documents can be found there.  

    3.17.2   Fortran Discussion Lists 

 The fi rst to look at is the Fortran 90 list. Details can be found at

     • http://www.jiscmail.ac.uk/lists/COMP-FORTRAN-90.html    

   if you subscribe you will have access to people involved in Fortran standardisation, 
language implementors for most of the hardware and software platforms, people 
using Fortran in many very specialised areas, people teaching Fortran, etc. 

 There is also a comp.lang.fortran list available via USENET news. This provides 
access to people worldwide with enormous combined expertise in all aspects of 
Fortran. Invariably someone will have encountered your problem or one very much 
like it and have one or more solutions. 

 There are many people on the Internet who will make the time to provide you 
with very valuable advice. As a point of network etiquette please do not waste band-
width with questions that are answered in the FAQ. Please also spend some time 
developing an understanding of your problem and making some attempt to see if the 

http://www.nag.co.uk/sc22wg5/
ftp://ftp.nag.co.uk/sc22wg5/
http://www.jiscmail.ac.uk/lists/COMP-FORTRAN-90.html
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answer lies in the documentation or manuals. In computing services and technical 
support many user problems are labelled RTFM—read the fabulous manual.  

    3.17.3   Other Sources 

 The following URLs are very useful:

   Our Fortran web site.• 
•      http://www.fortranplus.co.uk         

  The Fortran Wiki.• 
•      http://fortranwiki.org/         

  The Fortran Market, maintained by Walt Brainerd.• 
•      http://www.fortran.com/fortran/market.html         

  Fortran FAQ, maintained by Keith Bierman, Sun.• 
•      http://www.fortran.com/fortran/FAQ/cont.html             

    3.18   Summary 

 It is hoped that you now have some idea about the wide variety of uses that program-
ming languages are put to.  
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ftp://ftp.nag.co.uk/sc22wg5/ARCHIVE/Fortran77.html
ftp://ftp.nag.co.uk/sc22wg5/ARCHIVE/Fortran66.pdf
http://www.iso.org/iso/home.htm
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 The J3 home page is:

•      http://j3-fortran.org        

 The WG5 home page is:

•      http://www.nag.co.uk/sc22wg5/        
 Both have copies of working documents.

   Adobe Systems Incorporated, Postscript Language: Tutorial and Cookbook, 
Addison-Wesley, 1985.  
  Adobe Systems Incorporated, Postscript Language: Reference Manual, Addison-
Wesley, 1985.  
  Adobe System Incorporated, Postscript Language: program Design, Addison-
Wesley, 1985.    

 The three books provide a comprehensive coverage of the facilities and capabilities 
of Postscript. 
 ACM SIG PLAN, History of programming Languages Conference—HOPL-II, 
ACM Press, 1993. 

 One of the best sources of information on C++, CLU, Concurrent Pascal, Formac, 
Forth, Icon, Lisp, Pascal, Prolog, Smalltalk and Simulation Languages by the people 
involved in the original design and or implementation. Very highly recommended. 
This is the second in the HOPL series, and the fi rst was edited by Wexelblat. Details 
are given later. 

 Adams, J.C., Brainerd, W.S., Hendrickson, R.A., Maine, R.E., Martin J.T., Smith, 
B.T.: The Fortran 2003 Handbook. Springer, London (2009) 

 Their most recent version, and a complete coverage of the 2003 standard. As 
with the Metcalf, Reid and Cohen book some of the authors were on the J3 commit-
tee. Very thorough. 

 Annals of the History of Computing, Special Issue: Fortran’s 25 Anniversary, ACM, 
Article 6,1, 1984. 

 Very interesting comments, some anecdotal, about the early work on Fortran. 
Barnes, J.: Programming in Ada 95. Addison-Wesley, Reading (1996) 

 One of the best Ada books. He was a member of the original design team 
 Bergin, T.J., Gibson, R.G.: History of Programming Languages. Addison-Wesley, 
New York (1996) 

 This is a formal book publication of the Conference Proceedings of HOPL II. 
The earlier work is based on preprints of the papers. 

 Birtwistle, G.M., Dahl, O. J., Myhrhaug, B., Nygaard, K.: Simula Begin. Chart-
well-Bratt Ltd, Lund (1979) 

 A number of chapters in the book will be of interest to programmers unfamiliar 
with some of the ideas involved in a variety of areas including systems and models, 
simulation, and co-routines. Also has some sound practical advice on problem 
solving. 

 Brinch-Hansen, P.: The programming language concurrent Pascal. IEEE Trans. 
Softw. Eng.  1 (2), 199–207 (June 1975) 

http://j3-fortran.org
http://www.nag.co.uk/sc22wg5/
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 Aims 

 The aims of the chapter are:

   To introduce the idea that there is a wide class of problems that can be solved • 
with a computer and, further, that there is a relationship between the kind of 
problem to be solved and the choice of programming language that is used.  
  To give some of the reasons for the choice of Fortran.  • 
  To introduce the fundamental components or kinds of statements to be found in • 
a general purpose programming language.  
  To introduce the three concepts of name, type and value.  • 
  To illustrate the above with sample programs based on three of the fi ve intrinsic • 
data types:

   character, integer and real      –

  To introduce some of the formal syntactical rules of Fortran.    • 

    4.1   Introduction    

 We have seen that an algorithm is a sequence of steps that will solve a part or the 
whole of a problem. A program is the realisation of an algorithm in a programming 
language, and there are at fi rst sight a surprisingly large number of programming 

    Chapter 4   
 Introduction to Programming              

 “Though this be madness, yet there is method in’t” Shakespeare 
 ‘Plenty of practice’ he went on repeating, all the time that Alice 
was getting him on his feet again. ‘plenty of practice.’ 
 The White Knight, Through the Looking Glass and What Alice 
Found There, 

 Lewis Carroll 
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languages. The reason for this is that there is a wide range of problems that are 
solved using a computer, e.g., the telephone company generating itemised bills or 
the meteorological centre producing a weather forecast. These two problems make 
different demands on a programming language, and it is unlikely that the same 
language would be used to solve both. 

 The range of problems that you want to solve will therefore strongly infl uence 
your choice of programming language. Fortran stands for FORmula TRANslation, 
which gives a hint of the expected range of problems for which it is suitable. 

    4.2   Language Strengths and Weaknesses 

 Some of the reasons for choosing Fortran are:

   It is a modern and expressive language;  • 
  The language is suitable for a wide class of both numeric and nonnumeric • 
problems;  
  The language is widely available on a range of hardware and operating system • 
platforms;  
  A lot of software already exists that has been written in Fortran. Some 15% of • 
code worldwide is estimated to be in Fortran.    

 There are a few warts, however. Given that there has to be backwards compati-
bility with earlier versions some of the syntax is clumsy to say the least. However, 
a considerable range of problems can now be addressed quite cleanly, if one sticks 
to a subset of the language and adopts a consistent style.  

    4.3   Elements of a Programming Language 

 As with ordinary (so-called natural) languages, e.g., English, French, Gaelic, 
German, etc., programming languages have rules of syntax, grammar and spelling. 
The application of these rules in a programming language is more strict. A 
program has to be unambiguous, since it is a precise statement of the actions to be 
taken. Many everyday activities are rather vaguely defi ned—Buy some bread on 
your way home—but we are generally suffi ciently adaptable to cope with the 
variations which occur as a result. if, in a program to calculate wages, we had an 
instruction deduct some money for tax and insurance we could have an awkward 
problem when the program calculated completely different wages for the same 
person for the same amount of work every time it was run. One of the implications 
of the strict syntax of a programming language for the novice is that apparently 
silly error messages will appear when one fi rst starts writing programs. As with 
many other new subjects you will have to learn some of the jargon to understand 
these messages. 
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 Programming languages are made up of statements. We will look at the various 
kinds of statements briefl y below. 

    4.3.1   Data Description Statements 

 These are necessary to describe the kinds of data that are to be processed. In the 
wages program, for example, there is obviously a difference between people’s 
names and the amount of money they earn, i.e., these two things are not the same, 
and it would not make any sense adding your name to your wages. The technical 
term for this is data type—a wage would be of a different data type (a number) to a 
surname (a sequence of characters).  

    4.3.2   Control Structures 

 A program can be regarded as a sequence of statements to solve a particular 
problem, and it is common to fi nd that this sequence needs to be varied in practice. 
Consider again the wages program. It will need to select among a variety of circum-
stances (say married or single, paid weekly or monthly, etc.,), and also to repeat the 
program for everybody employed. So there is the need in a programming language 
for statements to vary and/or repeat a sequence of statements.  

    4.3.3   Data-Processing Statements 

 It is necessary in a programming language to be able to process data. The kind of 
processing required will depend on the kind or type of data. In the wages program, 
for example, you will need to distinguish between names and wages. Therefore 
there must be different kinds of statements to manipulate the different types of data, 
i.e., wages and names.  

    4.3.4   Input and Output (I/O) Statements 

 For fl exibility, programs are generally written so that the data that they work on 
exist outside the program. In the wages example the details for each person 
employed would exist in a fi le somewhere, and there would be a record for each 
person in this fi le. This means that the program would not have to be modifi ed 
each time a person left, was ill, etc., although the individual records might be 
updated. It is easier to modify data than to modify a program, and it is less likely 
to produce unexpected results. To be able to vary the action there must be some 
mechanism in a programming language for getting the data into and out of the 
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program. This is done using input and output statements, sometimes shortened to 
I/O statements. 

 Let us now consider a simple program which will read in somebody’s fi rst name 
and print it out:

    program ch0401   
   !   
   ! This program reads in and prints out a name   
   !   
   implicit none   
   character*20 :: fi rst_name   
   !   
   print *,' type in your fi rst name.'   
   print *,' up to 20 characters'   
   read *,fi rst_name   
   print *,fi rst_name   

   !   
   end program ch0401     

 There are several very important points to be covered here, and they will be taken 
in turn:

   Each line is a statement.  • 
  There is a sequence to the statements. The statements will be processed in the • 
order that they are presented, so in this example the sequence is print, read, 
print.  
  The fi rst statement names the program. It makes sense to choose a name that • 
conveys something about the purpose of the program.  
  The next three lines are comment statements. They are identifi ed by a !. Comments • 
are inserted in a program to explain the purpose of the program. They should be 
regarded as an integral part of all programs. It is essential to get into the habit of 
inserting comments into your programs straightaway.  
  The  • implicit none  statement means that there has to be explicit typing of 
each and every data item used in the program. It is good programming practice 
to include this statement in every program that you write, as it will trap many 
errors, some often very subtle in their effect. Using an analogy with a play, where 
there is always a list of the persona involved before the main text of the play we 
can say that this statement serves the same purpose.    

  The character*20  statement is a type declaration. It was mentioned ear-
lier that there are different kinds of data. There must be some way of telling the 
programming language that these data are of a certain type, and that therefore 
certain kinds of operations are allowed and others are banned or just plain stupid! 
It would not make sense to add a name to a number, e.g., what does Fred + 10 
mean? So this statement defi nes that the variable fi rst_name is to be of type 
 character  and only character operations are permitted. The concept of a vari-
able is covered in the next section. Character variables of this type can hold up to 
20 characters.
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   The  • print  statements print out an informative message to the terminal—in this 
case a guide as to what to type in. The use of informative messages like this 
throughout your programs is strongly recommended.  
  The  • read  statement is one of the I/O statements. It is an instruction to read from 
the terminal or keyboard; whatever is typed in from the terminal will end up 
being associated with the variable fi rst_name. Input/output statements will be 
explained in greater detail in later sections.  
  The  • print  statement is another I/O statement. This statement will print out what 
is associated with the variable fi rst_name and, in this case, what you typed in.  
  The  • end program  statement terminates this program. It can be thought of as 
being similar to a full stop in natural language, in that it fi nishes the program in 
the same way that a period ( . ) ends a sentence. Note the use of the name given 
in the  program  statement at the start of the program.  
  Note also the use of the asterisk in three different contexts.  • 
  Indentation has been used to make the structure of the program easier to • 
determine. Programs have to be read by human beings and we will look at this 
in more depth later.  
  Lastly, when you do run this program, character input will terminate with the • 
fi rst blank character.    

 The above program illustrates the use of some of the statements in the Fortran 
language. Let us consider the action of the  read  * statement in more detail—in 
particular, what is meant by a variable and a value.   

    4.4   Variables—Name, Type and Value 

 The idea of a variable is one that you are likely to have met before, probably in a 
mathematical context. Consider the following:

     =circumference 2 rπ     

 This is an equation for the calculation of the circumference of a circle. The fol-
lowing represents a translation of this into Fortran:

     =circumference 2* pi* radius     

 There are a number of things to note about this equation:

   Each of the variables on the right-hand side of the equals sign (pi and radius) will • 
have a value, which will allow the evaluation of the expression.  
  When the expression is fully evaluated the value is assigned to the variable on the • 
left-hand side of the equals sign.  
  In mathematics the multiplication is implied in Fortran we have to use the * • 
operator to indicate that we want to multiply 2 by pi by the radius.  
  We do not have access to mathematical symbols like  • p  in Fortran but have to use 
variable names based on letters from the Roman alphabet.    
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 The whole line is an example of an arithmetic assignment statement in Fortran. 
 The following arithmetic assignment statement illustrates clearly the concepts of 

name and value, and the difference in the equals sign in mathematics and 
computing:

     = +I I 1     

 In Fortran this reads as take the current value of the variable I and add one to it, 
store the new value back into the variable I, i.e., I takes the value I + 1. 
Algebraically,

     = +I I 1    

does not make any sense. 
 Variables can be of different types. Table  4.1  shows some of those available in 

Fortran.  
 The concept of data type seems a little strange at fi rst, especially as we com-

monly think of integers and reals as numbers. However, the benefi ts to be gained 
from this distinction are considerable. This will become apparent after you have 
written several programs. 

 Let us now consider another program, one that reads in three numbers, adds them 
up and prints out both the total and the average:

    program ch0402   
   !   
   ! This program reads in three numbers and sums   
   ! and averages them   
   !   
   implicit none   
   real :: n1, n2, n3, average  =  0.0, total  =  0.0   
   integer :: n  =  3 

    print *, ' type in three numbers. '   
   print *,' Separated by spaces or commas'   
   read *,n1,n2,n3   
   total  =  n1  +  n2  +  n3   
   average  =  total/n   
   print *,'Total of numbers is ',total   
   print *,'Average of the numbers is ',average 

end program ch0402         

   Table 4.1    Variable, type and value   

 Variable_name  data_type  value_stored 

 temperature   real   28.55 
 number_of_people   integer   100 
 fi rst_name   character   Jane 

   Note the use of underscores to make the variable names easier to read.   
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    4.5   Notes 

 The program has been given a name that means something. 
 There are comments at the start of the program describing what it does. 
 The  implicit none  statement ensures that all data items introduced have to 

occur in a type declaration. 
 The next two statements are type declarations. They defi ne the variables to be of 

real or integer type. Remember integers are whole numbers, whereas real numbers 
are those which have a decimal point. For example, 2 is an integer and 2.7, 
2.00000001, and 2.0 are all real numbers. One of the fundamental distinctions in 
Fortran is between integers and reals. Type declarations must always come at the 
start of a program, before any processing is done. Note that the variables have been 
given sensible names to aid in making the program easier to understand. 

 The variables average, total and n are also given initial values within the type 
declaration. Variables are initially undefi ned in Fortran, so the variables n1, n2, n3 
fall into this category, as they have not been given values at the time that they are 
declared. 

 The fi rst  print  statement makes a text message (in this case what is between 
the apostrophes) appear at the terminal. As was noted earlier, it is good practice to 
put out a message like this so that you have some idea of what you are supposed 
to type in. 

 The  read  statement looks at the input from the keyboard (i.e., what you type) 
and in this instance associates these values with the three variables. These values 
can be separated by commas (,), spaces (), or even by pressing the carriage return 
key, i.e., they can appear on separate lines. 

 The next statement actually does some data processing. It adds up the values of 
the three variables (n1, n2, and n3) and assigns the result to the variable total. This 
statement is called an arithmetic assignment statement, and is covered more fully in 
the next chapter. 

 The next statement is another data-processing statement. It calculates the 
average of the numbers entered and assigns the result to average. We could have 
actually used the value 3 here instead, i.e., written average  =  total/3 and have exactly 
the same effect. This would also have avoided the type declaration for n. However, 
the original example follows established programming practice of declaring all 
variables and establishing their meaning unambiguously. We will see further 
examples of this type throughout the book. 

 Indentation has been used to make the structure of the program easier to 
determine. 

 The sum and average are printed out with suitable captions or headings. Do not 
write programs without putting captions on the results. It is too easy to make 
mistakes when you do this, or even to forget what each number means. 

 Finally we have the end of the program and again we have the use of the name in 
the  program  statement.  
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    4.6   Some More Fortran Rules 

 There are certain things to learn about Fortran which have little immediate meaning 
and some which have no logical justifi cation at all, other than historical precedence. 
Why is a cat called a cat? At the end of several chapters there will be a brief sum-
mary of these rules or regulations when necessary. Here are a few:

   Source is free format.  • 
  Lowercase letters are permitted, but not required to be recognised.  • 
  Multiple statements may appear on one line and are separated by the semicolon • 
character.  
  There is an order to the statements in Fortran. Within the context of what you • 
have covered so far, the order is:

     – Program  statement.  
  Type declarations, e.g.,  –  implicit, integer, real or character.   
  Processing and I/O statements.   –
    – End program  statement.     

  Comments may appear anywhere in the program, after program and before end; • 
they are introduced with a ! character, and can be in line.  
  Names may be up to 63 characters in length and include the underscore character.  • 
  Lines may be up to 132 characters.  • 
  Up to 39 continuation lines are allowed (using the ampersand (&) as the continu-• 
ation character).  
  The syntax of the  • read  and  print  statement introduced in these examples is

     – read  format, input-item-list.  
    – print  format, output-item-list.

   where format is * in the examples and called list directed format ting.  • 
  and input-item-list is a list of variable names separated by commas.  • 
  and output-item-list is a list of variable names and/or a sequence of char-• 
acters enclosed in either ' or ", again separated by commas.     

  if the   – implicit none  statement is not used, variables that are not explic-
itly declared will default to  real  if the fi rst letter of the variable name is A–H 
or O–Z, and to  integer  if the fi rst letter of the variable name is I–N.        

    4.7   Fortran Character Set 

 The following summarises the Fortran character set: 

 Alphanumeric characters

   A–Z: Uppercase letters  
  a–z: Lowercase letters  
  0–9: Digits  
  _: Underscore     



534.7 Fortran Character Set

 Special characters 

 Graphic  Name of character 
 Blank 

 =  Equals 
 +  Plus 
 −  Minus 
 *  Asterisk 
 /  Slash or oblique 
 \  Backslash 
 (  Left parenthesis 
 )  Right parenthesis 
 [  Left square bracket 
 ]  Right square bracket 
 {  Left curly bracket 
 }  Right curly bracket 
 ,  Comma 
 .  Period or decimal point 
 :  Colon 
 ;  Semicolon 
 !  Exclamation mark 
  "   Quotation mark 
 %  Percent 
 &  Ampersand 
 ~  Tilde 
  @   Commercial at 
  <   Less than 
  >   Greater than 
 ?  Question mark 
  '   Apostrophe 
 ̀   Grave accent 
 ̂   Circumfl ex accent 
 |  Vertical bar or line 
 $  Currency symbol 
 #  Number sign 

 The default character type shall support a character set that includes the Fortran 
character set. By supplying non-default character types, the processor may support 
additional character sets. The characters available in the ASCII and ISO 10646 
character sets are specifi ed by ISO/IEC 64 6:1991 (International Reference Version) 
and ISO/IEC 10646–1:2000 UCS-4, respectively; the characters available in other 
non default character types are not specifi ed by the standard, except that one char-
acter in each non-default character type shall be designated as a blank character to 
be used as a padding character. 
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 If you live and work outside of the USA and UK you may well have problems 
with your keyboard when programming. There is a very good entry in Wikipedia on 
keyboards, that is well worth a look at for the curious.  

    4.8   Good Programming Guidelines 

 The following are guidelines, and do not form part of the Fortran language 
defi nition:

   Use comments to clarify the purpose of both sections of the program and the • 
whole program.  
  Choose meaningful names in your programs.  • 
  Use indentation to highlight the structure of the program. Remember that the • 
program has to be read and understood by both humans and a computer.  
  Use implicit none in all programs you write to minimise errors.  • 
  Do not rely on the rules for explicit typing, as this is a major source of errors in • 
programming.     

    4.9   Compilers 

 A number of hardware platforms, operating systems and compilers have been used 
when writing this book and earlier books. The following have been used with this 
book:

   NAG Fortran Builder 5.1, 5.2, 5.3 for Windows  • 
  NAG Fortran Compiler 5.1, 5.2, 5.3 for Linux.  • 
  Intel Fortran 11.x, 12.x for Windows.  • 
  Intel Fortran 12.x for Linux.  • 
  gnu gfortran 4.x for Windows.  • 
  gnu gfortran 4.x for Linux.  • 
  Cray Fortran : Version 7.3.1—Cray Hector service  • 
  g95 for Linux.  • 
  pgi 10.x—Cray Hector service  • 
  IBM XL Fortran for AIX, V13.1 (5724-X15), Version: 13.01.0000.0002  • 
  Oracle Solaris Studio 12.0, 12.1, 12.2 for Linux The following have been used • 
with earlier books:    

 The following have been used with earlier books:

   DEC VAX under VMS and later OPEN VMS with the NAG Fortran 90 compiler.  • 
  DEC Alpha under OPEN VMS using the DEC Fortran 90 compiler.  • 
  Sun Ultra Sparc under Solaris:• 

   NAGACE F90 compiler.   –
  NAG Ware F95 compiler.   –
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  Sun (Release 1 .x) F90 compiler.   –
  Sun (Release 2.x) F90 compiler.      –

  PCs under DOS and Windows:• 

   DEC/Compaq Fortran 90 and Fortran 95 compilers.   –
  Intel Compiler (7.x, 8.x).   –
  Lahey Fujitsu Fortran 95 (5.7).   –
  NAG Fortran 95 Compiler.   –
  NAG Salford Fortran 90 Compiler.   –
  Salford Fortran 95 Compiler.      –

  PCs under Linux:• 

   Intel Compiler.   –
  Lahey Fujitsu Fortran 95 Pro (6.1).   –
  NAG Fortran 95 (4.x, 5.x).        –

 It is very illuminating to use more than one compiler whilst developing programs.  

    4.10   Program Development 

 A number of ways of developing programs have been used, including:

   Using an integrated development environment, including• 

   NAG Fortran Builder under Windows.   –
  Microsoft Visual Studio with the Intel compiler under Windows.   –
  Oracle Sunstudio under SuSe Linux.      –

  Using a DOS box and simple command line prompt under Windows.  • 
  Using ssh to log in to the Hector service.  • 
  Using a VPN, and SSH to log in to the IBM Power 7 system at Slovak • 
Hydrometeorological Institute Jeséniova 17  
  Using a console or terminal window under SuSe Linux.  • 
  Using X-Windows software to log into the SUN Ultra Sparc systems.  • 
  Using terminal emulation software to log into the SUN Ultra Sparc.  • 
  Using DEC terminals to log into the DEC VAX and DEC Alpha systems.  • 
  Using PCs running terminal emulation software to log into the DEC VAX and • 
DEC Alpha systems.    

 It is likely that you will end up doing at least one of the above and probably more. 
The key stages involved are:

   Creating and making changes to the Fortran program source.  • 
  Saving the fi le.  • 
  Compiling the program:• 

   if there are errors you must go back to the Fortran source and make the changes  –
indicated by the compiler error messages.     
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  Linking if successful to generate an executable:• 

   Automatic link. This happens behind the scenes and the executable is gener- –
ated for you immediately.  
  Manual link. You explicitly invoke the linker to generate the executable.      –

  Running the program.  • 
  Determining whether the program actually works and gives the results expected.    • 

 These steps must be taken regardless of the hardware platform, operating system 
and compiler you use. Some people like working at the operating system prompt 
(e.g., DOS, Linux and UNIX), and others prefer working within a development 
environment. Both have their strengths and weaknesses.  

    4.11   Problems 

     1.    Compile and run example 1 in this chapter. Experiment with the following types 
of input. 

 Ian 
 Ian Chivers 
 "Jane Margaret Sleightholme"  

    2.    Compile and run example 2 in this chapter. 
 Think about the following points:

   Is there a difference between separating the input by spaces or commas?  • 
  do you need the decimal point?  • 
  What happens when you type in too many data?  • 
  What happens when you type in too few data? • 

   If you have access to more than one compiler repeat the above and compare the 
results.  

    3.    Write a program that will read in your name and address and print them out in 
reverse order. 

 Think about the following points:

   How many lines are there in your name and address?  • 
  What is the maximum number of characters in the longest line in your • 
name and address?  
  What happens at the fi rst blank character of each input line?  • 
  Which characters can be used in Fortran to enclose each line of text typed • 
in and hence not stop at the fi rst blank character?  
  if you use one of the two special characters to enclose text what happens if • 
you start on one line and then press the return key before terminating the 
text?        

 The action here will vary between Fortran implementations.        
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 Aims

   The aims of this chapter are to introduce:  • 
  The rules for the evaluation of arithmetic expressions to ensure that they are • 
evaluated as you intend.  
  The idea of truncation and rounding applied to reals.  • 
  The use of the  parameter  attribute to defi ne or set up constants.  • 
  The concepts and ideas involved in numerical computation, including:• 

   Specifying data types using kind-type parameters.   –
  The concept of numeric models and positional number systems for integer  –
and real arithmetic and their implementation on binary devices.  
  Testing the numerical representation of different kind types on a system.        –

    Chapter 5   
 Arithmetic             

 Taking Three as the subject to reason about— 
 A convenient number to state— 
 We add Seven, and Ten, and then multiply out 
 By One Thousand diminished by Eight. 
 The result we proceed to divide, as you see, 
 By Nine Hundred and Ninety and Two: 
 then subtract Seventeen, and the answer must be 
 Exactly and perfectly true. 

 Lewis Carroll, The Hunting of the Snark 
 Round numbers are always false. 

 Samuel Johnsons 
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    5.1   An Introduction to Arithmetic in Fortran           

 Most problems in the academic and scientifi c communities require arithmetic 
evaluation as part of the algorithm. As the rules for the evaluation of arithmetic 
in Fortran may differ from those that you are probably familiar with, you need to 
learn the Fortran rules thoroughly. In the previous chapter, we introduced the 
arithmetic assignment statement, emphasising the concepts of name, type and 
value. Here we will consider the way that arithmetic expressions are evaluated in 
Fortran. 

 Table  5.1  lists the fi ve arithmetic operators available in Fortran.  
 Exponentiation is raising to a power. Note that the exponentiation operator is the 

* character twice. 
 The following are some examples of valid arithmetic assignment statements in 

Fortran:

    taxable_income  =  gross_wage − personal_allowance   
   cost  =  bill  +  vat  +  service   
   delta  =  deltax/deltay   
   area  =  pi * radius * radius   
   cube  =  big ** 3     

 The above expressions are all simple, and there are no problems when it comes 
to evaluating them. However, now consider the following:

    tax  =  gross_wage − personal_allowance * tax_rate     

 This is a poorly written arithmetic expression. There is a choice of doing the 
subtraction before or after the multiplication. Our everyday experience says that the 
subtraction should take place before the multiplication. However, if this expression 
were evaluated in Fortran the multiplication would be done before the subtraction.  

    5.2   Example 1: Simple Arithmetic Expressions in Fortran 

 A complete program to show the correct form in Fortran is as follow: 

   Table 5.1    Fortran operators   

 Mathematical operation  Fortran symbol or operator 

 Addition  + 
 Subtraction  − 
 Division  / 
 Multiplication  * 
 Exponentiation  ** 
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 We need to look at three areas here:

   The rules for forming expressions—the syntax.  • 
  The rules for interpreting expressions—the semantics.  • 
  The rules for evaluating expressions—optimisation.    • 

 The syntax rules determine which expressions are valid. The semantics determine 
a valid interpretation, and once this has been done the compiler can replace the expres-
sion with any other one that is mathematically equivalent, generally in the interests 
of optimisation. 

 The rules for the evaluation of expressions in Fortran are as follows:

   Brackets are used to defi ne priority in the evaluation of an expression.  • 
  Operators have a hierarchy of priority—a precedence. The hierarchy of operators is:  • 
  Exponentiation: when the expression has multiple exponentiation, the evaluation • 
is from right to left. For example,

     =L  I ** J ** K    

is evaluated by fi rst raising J to the power K, and then using this result as the 
exponent for I; more explicitly,

     ( )=L  I ** J ** K
    

 Although this is similar to the way in which we might expect an algebraic expres-
sion to be evaluated, it is not consistent with the rules for multiplication and 
division, and may lead to some confusion. When in doubt, use brackets.  
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  Multiplication and division: within successive multiplications and divisions, the • 
rules regarding any mathematically equivalent expression means that you must 
use brackets to ensure the evaluation you want For example, with

     =A  B * C / D* E    

for real and complex numeric types the compiler does not necessarily evaluate 
in a left to right manner, i.e., evaluate B times C, then divide the result by D and 
fi nally take that result and multiply by E.  
  Addition and subtraction: as for multiplication and division the rules regarding • 
any equivalent expression apply. However, it is seldom that the order of addition 
and subtraction is important, unless other operators are involved.    

 The following are all examples of valid arithmetic expressions in Fortran:

    Slope     =  (Y1−Y2)/(X1−X2)   
   X1  =  (−B +   ((B*B−4*A*C)**0.5))/(2*A)   
   Q  =  Mass_D/2*(Mass_A*Veloc_A/Mass_D)**2  +  & 
      ((Mass_A * Veloc_A)**2)/2     

 Note that brackets have been used to make the order of evaluation more obvious. 
It is often possible to write involved expressions without brackets, but, for the sake 
of clarity, it is often best to leave the brackets in, even to the extent of inserting a few 
extra ones to ensure that the expression is evaluated correctly. The expression will 
be evaluated just as quickly with the brackets as without. Also note that none of the 
expressions is particularly complex. The last one is about as complex as you should 
try: with more complexity than this it is easy to make a mistake. 

 The rule regarding any equivalent expression means if A, B and C are numeric 
then the following are true:

     
( )

A  B  B  A

A  B B  A 

A  B  C  A B  C

+ = +
- + = -

+ + = + +
    

 The last is nominally evaluated left to right, as the additions are of equal 
precedence:

     ( )
A *  B  B *  A

A *  B *  C  A * B *  C

=

=
   

and again the last is nominally evaluated left to right, as the multiplications are of 
equal precedence:

     

( )
( )

A *  B  A *C  A * B C

A /  B /  C  A / B *  C

- = -

=
    

 The last is true for real and complex numeric types only. 
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 Problems arise when the value that a faulty expression yields lies within the 
range of expected values and the error may well go undetected. This may appear 
strange at fi rst, but a computer does exactly what it is instructed to do. If, through a 
misunderstanding on the part of a programmer, the program is syntactically correct 
but logically wrong from the point of view of the problem defi nition, then this will 
not be spotted by the compiler. If an expression is complex, break it down into suc-
cessive statements with elements of the expression on each line, e.g.,

    Temp  =  B * B – 4 * A * C   
   X1  =  ( − B  +  ( Temp ** 0.5 )) / ( 2 * A )   
 and
    Moment  =  Mass_A * Veloc_A   
   Q  =   Mass_D / 2 * ( Moment / Mass_D ) **2  +  & 

( Moment **2) / 2      

    5.3   Rounding and Truncation 

 When arithmetic calculations are performed one of the following can occur:

   Truncation. This operation involves throwing away part of the number, e.g., with • 
14.6 truncating the number to two fi gures leaves 14.  
  Rounding. Consider 14.6 again. This is rounded to 15. Basically, the number is • 
changed to the nearest whole number. It is still a real number. What do you think 
will happen with 14.5; will this be rounded up or down?    

 You must be aware of these two operations. They may occasionally cause prob-
lems in division and in expressions with more than one data type. 

    5.3.1   Example 2: Type Conversion and Assignment 

 To see some of the problems that can occur consider the examples below:

    program ch0502   
   implicit none   
   real :: a,b,c   
   integer :: I 
    a  =  1.5   
   b  =  2.0   
   c  =  a / b   
   I  =  a / b   
   print *,a,b   
   print *,c   
   print *,I      

   end program ch0502     
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 After executing these statements  c  has the value 0.75, and  I  has the value zero! 
This is an example of type conversion across the  =  sign. The variables on the right 
are all real, but the last variable on the left is an integer. The value is therefore made 
into an integer by truncation. In this example, 0.75 is real, so I becomes zero when 
truncation takes place.  

    5.3.2   Example 3: Integer Division and Real Assignment 

 Consider now an example where we assign into a real variable (so that no truncation 
due to the assignment will take place), but where part of the expression on the right-
hand side involves integer division:

    program ch0503   
   implicit none   
   integer :: I, J, K   
   real :: Answer 
    I  =  5   
   J  =  2   
   K  =  4   
   Answer  =  I / J * K   
   print *,I   
   print *, J   
   print *,K   
   print *,Answer      

   end program ch0503     

 The value of Answer is 8, because the I/J term involves integer division. The 
expected answer of 10 is not that different from the actual one of 8, and it is cases 
like this that cause problems for the unwary, i.e., where the calculated result may be 
close to the actual one. In complicated expressions it would be easy to miss some-
thing like this. 

 To recap, truncation takes place in Fortran:

   Across an = sign, when a real is assigned to an integer.  • 
  In integer division.    • 

 It is very important to be careful when attempting mixed mode arithmetic—that 
is, when mixing reals and integers. if a real and an integer are together in a division 
or multiplication, the result of that operation will be real; when addition or subtrac-
tion takes place in a similar situation, the result will also be real. The problem arises 
when some parts of an expression are calculated using integer arithmetic and other 
parts with real arithmetic:

     = + -C  A  B I /  J     
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 The integer division is carried out before the addition and subtraction; hence the 
result of I/J is integer, although all the other parts of the expression will be carried 
out with real arithmetic.   

    5.4   Example 4: Time Taken for Light to Travel 
from the Sun to Earth 

 How long does it take for light to reach the Earth from the Sun? Light travels 
9.46·10 12  km in 1 year. We can take a year as being equivalent to 365.25 days. (As 
all school children know, the astronomical year is 365 days, 5 h, 48 min and 
45.9747 s—hardly worth the extra effort.) The distance between the Earth and Sun 
is about 150,000,000 km. There is obviously a bit of imprecision involved in these 
fi gures, not least since the Earth moves in an elliptical orbit, not a circular one. One 
last point to note before presenting the program is that the elapsed time will be given 
in minutes and seconds. Few people readily grasp fractional parts of a year:

    program ch0504   
   implicit none   
   real :: Light_Minute, Distance, Elapse   
   integer :: Minute, Second   
   real , parameter :: Light_Year =   9.46*10**12   
   ! Light_year : Distance travelled by light   
   ! in one year in km   
   ! Light_minute : Distance travelled by light   
   ! in one minute in km   
   ! Distance : Distance from sun to earth in km   
   ! Elapse : Time taken to travel a   
   ! distance (Distance) in minutes   
   ! Minute : integer number part of elapse   
   ! Second : integer number of seconds   
   ! equivalent to fractional part of elapse   
   ! 
    Light_minute  =  Light_Year/(365.25 * 24.0 * 60.0)   
   Distance  =  150.0 * 10 ** 6   
   Elapse  =  Distance / Light_minute   
   Minute  =  Elapse   
   Second  =  (Elapse - Minute) * 60   
   print *, 'Light takes', Minute, 'Minutes'   
   print *,' ' , Second, 'Seconds'   
   print *, 'To reach the earth from the sun'      

   end program ch0504     

 The calculation is straightforward; fi rst we calculate the distance travelled by 
light in 1 min, and then use this value to fi nd out how many minutes it takes for light 
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to travel a set distance. Separating the time taken in minutes into whole-number 
minutes and seconds is accomplished by exploiting the way in which Fortran will 
truncate a real number to an integer on type conversion. The difference between 
these two values is the part of a minute which needs to be converted to seconds. 
Given the inaccuracies already inherent in the exercise, there seems little point in 
giving decimal parts of a second. 

 It is worth noting that some structure has been attempted by using comment lines 
to separate parts of the program into fairly distinct chunks. Note also that the com-
ment lines describe the variables used in the program. 

 Can you see any problems with this example?  

    5.5   The parameter Attribute 

 This statement is used to provide a way of associating a meaningful name with a 
constant in a program. Consider a program where  p  was going to be used a lot. It 
would be silly to have to type in 3.14159265358, etc., every time. There would be a 
lot to type and it is likely that a mistake could be made typing in the correct value. 
It therefore makes sense to set up  p  once and then refer to it by name. However, if 
PI was just a variable then it would be possible to do the following:

    real :: li,pi   
   .   
   pi =   4.0*atan(1.0)   
   .   
   pi =   4*alpha/beta   
   .     

 The pi = 4*alpha/beta statement should have been li = 4*alpha/beta. What has hap-
pened is that, through a typing mistake (p and l are close together on a keyboard), an 
error has crept into the program. It will not be spotted by the compiler. Fortran provides 
a way of helping here with the  parameter  statement, which should be preceded with 
a type declaration. The following are correct examples of the  parameter  attribute:

    real , parameter :: pi =   4.0*atan(1.0) , C =   2.997925    
and
    real , parameter :: Charge =   1.6021917     

 The advantage of the  parameter  attribute is that you could not then assign 
another value to pi, C or Charge. If you tried to do this, the compiler would generate 
an error message. 

 A type statement with a  parameter  attribute may contain an arithmetic expression, 
so that some relatively simple arithmetic may be performed in setting up these constants. 
The evaluation must be confi ned to addition, subtraction, multiplication, division and 
integer exponentiation. The following examples help to demonstrate the possibilities:

    real , parameter :: parsec  =  3.08*10**16 , &    
  pi =  4.0*atan(1.0) , & 
radian  =  360./pi      
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    5.6   Range, Precision and Size of Numbers 

 The range on integer numbers and the precision and the size of fl oating point 
numbers in computing are directly related to the number of bits allocated to their 
internal representation. Tables  5.2  and  5.3  summarise this information for the two 
most common bit sizes in use for integers and reals—32 bits and 64 bits.   

 Table  5.2  looks at integer numbers. 
 Table  5.3  is a corresponding table for real numbers. 
 Precision is not the same as accuracy. In this age of digital timekeeping, it is easy 

to provide an extremely precise answer to the question What time is it? This answer 
need not be accurate, even though it is reported to tenths (or even hundredths!) of a 
second. Do not be fooled into believing that an answer reported to ten places of 
decimals must be accurate to ten places of decimals. The computer can only retain 
a limited precision. When calculations are performed, this limitation will tend to 
generate inaccuracies in the result. The estimation of such inaccuracies is the domain 
of the branch of mathematics known as Numerical Analysis. 

 To give some idea of the problems, consider an imaginary decimal computer 
which retains two signifi cant digits in its calculations. For example, 1.2, 12.0, 120.0 
and 0.12 are all given to two-digit precision. Note therefore that 1234.5 would 
be represented as 1200.0 in this device. When any arithmetic operation is carried 
out, the result (including any intermediate calculations) will have two signifi cant 
digits. Thus:

     ( )130 12 140 rounding down from 142+ =
   

and similarly:

     ( )17 / 3 5.7 rounding up from 5.666666...=
   

   Table 5.2    Word size and 
integer numbers   

 N bits  Maximum integer 

 64  (2**63)–1  9,223,372,036,854,774,807 
 32  (2**31)–1  2,147,483,647 

   Table 5.3    Word size and real 
numbers   

 N bits  Precision  Smallest real largest real 

 64  15–18  ~0.5E–308 
 ~0.8E+308 

 32  6–9  ~0.3E–38 
 ~1.7E38 

  Note that access to what the hardware supports is dependent 
on the operating system and compiler as well  
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and:

     =16*16 260    

where there are more involved calculations, the results can become even less attrac-
tive. Assume we wish to evaluate

     ( )16*16 / 0.14
    

 We would like an answer in the region of 1828.5718, or, to two signifi cant digits, 
1800.0. If we evaluate the terms within the brackets fi rst, the answer is 260/0.14, or 
1857.1428; 1900.0 on the two-digit machine. Thinking that we could do better, we 
could rewrite the fraction as

     ( )16 / 0.14 * 16
    

 Which gives a result of 1800.0. 
 Algebra shows that all these evaluations are equivalent if unlimited precision is 

available. 
 Care should also be taken when is one is near the numerical limits of the machine. 

Consider the following:

    Z  =  B * C / D    

where B, C and D are all 10 30  and we are using 32-bit fl oating point numbers where 
the maximum real is approximately 10 38  . Here the product B * C generates a number 
of 10 60 —beyond the limits of the machine. This is called overfl ow as the number is 
too large. Note that we could avoid this problem by retyping this as

    Z  =  B * C / D)    

where the intermediate result would now be 10 30 /10 30  , i.e., 1. 
 There is an inverse called underfl ow when the number is too small, which is 

illustrated below:

    Z  =  X1 * Y1 * Z1    

where X1 and Y1 are 10 −20  and Z1 is 10 20  . The intermediate result of X1 * Y1 is 
10 −40 —again beyond the limits of the machine. This problem could have been over-
come by retyping as

    Z  =  X1 * (Y1 * Z1)     

 This is a particular problem for many scientists and engineers with all machines 
that use 32-bit arithmetic for integer and real calculations. This is because there are 
a number of physical constants (Plank constant, elementary charge, Bohr magneton 
etc.,) that will cause arithmetic problems due to their size. This is rarely a problem 
with machines with hardware support for 64-bit arithmetic. 

 How we get around this problem and how we move our programs from one 
platform to another making sure that we are working with the same precision and 
same range of numbers are covered in detail in the next section.  
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    5.7   Health Warning: Optional Reading, Beginners 
are Advised to Leave Until Later 

 It is very important in scientifi c programming to know the range and precision of 
data on the hardware platform on which we are working. The facilities provided in 
Fortran now allow programmers to specify the range and precision they wish to use 
and the compiler will choose an appropriate type. 

 If it is not possible to offer the precision and range requested the compiler returns 
an error code. To avoid this happening the programmer needs to query the computer 
fi rst for details of its data representations before trying to run a program which 
specifi es range and precision. 

 In order to do this we use the  kind  intrinsic function, (intrinsic functions are 
covered in depth in Chapter 12 and Appendix C), e.g.:

    real :: x   
   print *, 'Kind number for X  =  ',kind(x)     

 This will print out the  kind  number used by your system to represent default real 
variables. These  kind  numbers are arbitrary and there is usually no meaning attached 
to them. 

    5.7.1   Example 5: Default Kinds 

 Consider the following program, which demonstrates the use of the  kind  function: 
 It is worthwhile actually typing this program in and seeing what answers you get 

for the system you are working on. We have examples of several compilers below.

gfortran 4.3.4, cygwin, Windows.

    integer 4   
   real 4   
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   char 1   
   logical 4   
   complex 4     

 Intel 12.0.1, Windows

    integer 4   
   real 4   
   char 1   
   logical 4   
   complex 4     

 NAG Fortran Builder 5.3, Windows

    integer 3   
   real 1   
   char 1   
   logical 3   
   complex 1     

 Thus it is up to each compiler implementation to decide what  kind  numbers are 
associated with each type and  kind  variation. Thus the  kind  value on its own should 
not be used across platforms to try to achieve portability. 

 In fact, specifying a  kind  number actually is not what is intended by the Fortran 
standard, so two intrinsic functions

    selected_int_kind    

and

    selected_real_kind    

are available instead. They are used to specify the range of numbers for integers and 
the range and precision of numbers for reals, and the compiler will return the 
appropriate  kind  numbers that it has assigned to such representations. These  kind  
numbers can be assigned to parameters called  kind  type parameters, which can be 
used with real and integer type declarations. Let’s consider the two main numeric 
types to see how this works.  

    5.7.2   Selecting Different Integer  Kind  Types 

 The Fortran standard specifi es that only one integer  kind  needs to be available, but 
often a machine’s architecture or compiler implementation will offer more. Most 
compiler implementations will offer the following:

   8-bit or one-byte integers.  • 
  16-bit or two-byte integers.  • 
  32-bit or four-byte integers.   • 

and 64-bit or eight byte integers will be available on certain platforms and imple-
mentations. The most common reason for choosing 8-bit or 16-bit integers is to 
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reduce the memory requirements of your program and the most common reason for 
choosing 64-bit integers is to solve specialised problems in mathematics requiring 
large integer numbers. 

 To choose an integer kind other than the default, you specify the range of the 
numbers you require it to lie in, in terms of a power of 10; e.g.,

    integer, parameter :: First  =  selected_int_kind (2)   
   integer (First) :: I,J    

 selects an integer kind  parameter , First, with representation which includes all inte-
gers between –10 2  and 10 2  , i.e., numbers in the range −100–100. The integer kind 
 parameter  can be used in brackets after the integer type statement to specify vari-
ables of this integer kind, e.g., I and J. 

 If there is no integer kind representation for the range specifi ed, the  selected_
int_kind  function returns −1. Unfortunately it is not possible to then test for −1 in 
a type statement, i.e., you will get a compile time error message. We suggest that you 
run the program in Sect.  5.7.11  to fi nd the limits of your machine’s architecture 
before trying to specify a kind  parameter  that it can’t support.  

    5.7.3   Selecting Different Real Kind Types 

 The Fortran standard specifi es that there must be at least two representations of the real 
type, the default plus one other. Often there are more, depending on what the underlying 
hardware can support. When working with real data there are two things to specify—range 
and precision. The precision is the minimum number of signifi cant digits (all fl oating point 
numbers are normalised) to which real numbers are stored, and the range is the power of 
10 of the largest number to be represented. So, for example, to specify that a variable R has 
a kind type that supports 15 signifi cant fi gures and a range 10 ±307  we defi ne a real kind 
 parameter , Long, and then use this with the real type declaration for R as follows:

    integer, parameter :: Long =   selected_real_kind(15,307)    
   real (Long) :: R     

 The only problem is if the underlying hardware can’t support this specifi cation, in 
which case the function will return −1 if the requested precision is unavailable, −2 if 
the range is unavailable, and −3 if both are unavailable. As we mentioned earlier with 
integer kinds, it is not possible to test for negative values in a type declaration, so 
before trying to use different kind types, or even just the default types, you need to 
know what kind types your machine supports and their range and precision.  

    5.7.4   Specifying Kind Types for Literal Integer and Real 
Constants 

 A literal constant is a data object whose value cannot change. An integer constant 1 is of 
default integer kind and a real constant 10.3 is a default real constant. If in a program you 
have chosen a real kind type, other than the default, then to be consistent and also to make 
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sure that all real arithmetic is done to the precision specifi ed, you need to declare all 
real constants to be of this kind type. This is done by giving the literal constant fol-
lowed by an underscore and a kind number or kind type  parameter , e.g.

    constant_kind     

 For the earlier example with a kind type  parameter  Long, a real literal constant 
of this type would be given as

   − 22.36_Long     

 It is not recommended to use the actual kind number because, as we have seen, 
these are not portable across machines. 

 The convention we use throughout this book if we require a numeric kind type 
other than the defaults is to specify a kind type  parameter , e.g.,

    integer, parameter :: Long  =  selected_real_kind (15,307)  

  and then use it with real type declarations, e.g.,

    real (Long) :: R     

 This still doesn’t make programs completely portable across different hardware 
platforms, so you will fi rstly need to run a program which tests the range of data 
representations. Before doing this we need to know a bit more about the underlying 
representation of numerical data on computer systems.  

    5.7.5   Positional Number Systems 

 Most people take arithmetic completely for granted and rarely think much about the 
subject. It is necessary to look at it in a bit more depth if we are to understand what 
the computer is doing in this area. 

 Our way of working with numbers is essentially a positional one. When we look 
at the number 1,024, for example, we rarely think of it in terms of 1 * 1,000 + 0 * 
100 + 2*10 + 4*1. Thus the normal decimal system we use in everyday life is a posi-
tional one, with a base of 10. 

 We are probably aware that we can use other number bases, and 2, 8 and 16 are fairly 
common alternate number bases. As the computer is a binary device it uses base 2. 

 We are also reasonably familiar with a mantissa exponent or fl oating point com-
bination when the numbers get very large or very small, e.g., a parsec is commonly expressed 
as 3.08 * 10 ** 16, and here the mantissa is 3.08, and the exponent is 10 ** 16. 

 The above information will help in understanding the way in which integers and 
reals are represented on computer systems.  

    5.7.6   Bit Data Type and Representation Model 

 The model is only defi ned for positive integers (or cardinal numbers), where they 
are represented as a sequence of binary digits, and is based on the model:
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where I is the integer value, n is the number of bits, and b 
k
  is a bit value of 0 or 1, 

with bit numbering starting at 0, and reading right to left. Thus the integer 43 and bit 
pattern 101011 is given by:

     ( ) ( ) ( ) ( ) ( ) ( )43 1*32 0*16 1*8 0* 4 1* 2 1*1= + + + + +
    

 Or

     ( ) ( ) ( ) ( ) ( ) ( )4 3 1 05 243 1* 2 0* 2 1* 2 0* 2 1* 2 1* 2= + + + + +      

    5.7.7   Integer Data Type and Representation Model 

 The integer data type is based on the model
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where I is the integer value, s is the sign, q is the number of digits (always positive), r is 
the radix or base (integer greater than 1), and lk is a positive integer (less than r). 

 A base of 2 is typical so 1,023 is

     
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

89 7 6 5 4 3

2 1 0

1023 1* 2 1* 2 1* 2 1* 2 1* 2 1* 2 1* 2

1* 2 1* 2 1* 2

= + + + + + +

+ + +
     

    5.7.8   Real Data Type and Representation Model 

 The real data type is based on the model
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where x is the real number, s is the sign, b is the radix or base (greater than 1), m is 
the number of bits in the mantissa, e is an integer in the range e 

min
  to e 

max
 , and f 

k
  is a 

positive number less than b. 
 This means that with, for example, a 32-bit real there would be 8 bits allocated 

to the exponent and 24 to the mantissa. One of the bits in each part would be used 
to represent the sign and is called the sign bit. This reduces the number of bits that 
can actually be used to represent the mantissa and exponent to 31 and 7, respec-
tively. There is also the concept of normalisation, where the exponent is adjusted so 
that the most signifi cant bit is in position 22—bits are typically numbered 0–22, 
rather than 1–23. This form of representation is not new, and is fi rst documented 
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around 1750 BC, when Babylonian mathematicians used a sexagesimal (radix 60) 
positional notation. It is interesting that the form they used omitted the exponent! 

 This is the theoretical basis of the representation of these three data types in 
Fortran. 

 This information together with the following provide a good basis for writing 
portable code across a range of hardware.  

    5.7.9   IEEE 754 

 The fi rst standard IEEE 754: 1985 covered binary fl oating point arithmetic. The 
later IEEE 754: 1987 standard added decimal arithmetic. 

 A considerable amount of hardware now offers support for the IEEE 754 stan-
dard. The standard can be purchased from

     • http://standards.ieee.org        

 Work is under way on the next version and you can fi nd out details of the current 
state of play at

     • http://grouper.ieee.org/groups/754/        

 There are quite a lot of good links from this site.  

    5.7.10   Testing the Numerical Representation of Different 
Kind Types on a System 

 You are now ready to write or adapt a program to run on your system in order to test 
the range of  integer  kind types and the range and precision of real kind types. 

 The following program selects several integer and real kind types and by calling 
the intrinsic functions KIND, HUGE, PRECISION and EPSILON produces most of 
the information you need to know about for these kind types. Table  5.4  provides 
details of what these functions do.   

    5.7.11   Example 6: Using the Numeric Enquiry Functions 

 Using the numeric enquiry functions A complete program using the above is as follows:

   Table 5.4    Numeric query 
functions   

  function name   Simple explanation 

  kind (x)   Returns the kind type 
  tiny (x)   Returns the smallest number 
  huge (x)   Returns the largest number 
  precision (x)   Returns the decimal precision 
  epsilon (x)   Smallest difference between two reals 

http://standards.ieee.org
http://grouper.ieee.org/groups/754/
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    program ch0506   
   implicit none   
   !   
   ! examples of the use of the kind   
   ! function and the numeric inquiry functions   
   !   
   ! integer arithmetic   
   !   
   ! 32 bits is a common word size,   
   ! and this leads quite cleanly   
   ! to the following   
   ! 8 bit integers   
   ! −128 to 127 10**2   
   ! 16 bit integers   
   ! −32768 to 32767 10**4   
   ! 32 bit integers   
   ! −2147483648 to 2147483647 10**9   
   !   
   ! 64 bit integers are increasingly available.   
   ! this leads to   
   ! −9223372036854775808 to   
   ! 9223372036854775807 10**19   
   !   
   ! you may need to comment out some of the following   
   ! depending on the hardware platform and compiler   
   ! that you use.   

   Integer                :: I   
   integer ( selected_int_kind( 2)) :: i1   
   integer ( selected_int_kind( 4)) :: i2   
   integer ( selected_int_kind( 9)) :: i3   
   integer ( selected_int_kind(10)) :: i4   
   ! real arithmetic   
   !   
   ! 32 and 64 bit reals are normally available.   
   !   
   ! 32 bit reals 8 bit exponent, 24 bit mantissa   
   !   
   ! 64 bit reals 11 bit exponent 53 bit mantissa   
   !   
   real :: r   
   real ( selected_real_kind( 6, 37)) :: r1   
   real ( selected_real_kind(15,307) ) :: r2   
   real ( selected_real_kind(15,310) ) :: r3 
    print *, ' '   
   print *, 'integer values'   
   print *, 'kind   huge'   
   print *,' '   
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   print *,' ',kind(I ),' ',huge(I )   
   print *, ' '   
   print *,' ',kind(i1 ),' ',huge(i1 )   
   print *,' ',kind(i2 ),' ',huge(i2 )   
   print *,' ',kind(i3 ),' ',huge(i3 )   
   print *,' ',kind(i4 ),' ',huge(i4 )   
   print *, ' '   
   print *, ' real values'   
   print *, ' kind huge ' , &   
   'precision epsilon'   
   print *, ' '   
   print *, ' ',kind®,' ' ,huge®,&   
   ' ',precision®,' ',epsilon®   
   print *, ' '   
   print *, ' ',kind(r1 ),' ',huge(r1 ),&   
   ' ',precision(r1),' ',epsilon(r1)   
   print *, ' ',kind(r2 ),' ',huge(r2 ),&   
   ' ',precision(r2),' ',epsilon(r2)   
   print *,' ',kind(r3 ),' ',huge(r3 ),&   
   ' ',precision(r3),' ',epsilon(r3)      

   end program ch0506     

 The output from the Intel compiler under Windows is: 
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 The output from the gfortran (cygwin) compiler under Windows is:       

 The output from the same compiler under SuSe Linux, same dual boot system. 
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 The NAG Fortran Builder output: 
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 The Oracle Solaris Studio output: 

 Run this program on whatever system you have access to and compare the output 
with the above examples.  

    5.7.12   Example 7: Binary Representation of Different Integer 
Kind Type Numbers 

 Binary representation of different integer kind type numbers For those who wish to 
look at the internal binary representation of integer numbers with a variety of kinds, 
we have included the following program

    selected_int_kind ( 2) means provide at least an integer representation with 
numbers between–10 2  and + 10 2 .  
   selected_int_kind ( 4) means provide at least an integer representation with 
numbers between–10 4  and + 10 4 .  
   selected_int_kind ( 9) means provide at least an integer representation with 
numbers between-10 9  and + 10 9 .    

 We use the  int  function to convert from one integer representation to another. 
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 We use the logical function  btest  to determine whether the binary value at that 
position within the number is a zero or a one, i.e., if the bit is set. 

 I_in_Bits is a character string that holds a direct mapping from the internal binary 
form of the integer and a text string that prints as a sequence of zeros or ones:       
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 The do loop indices follow the convention of an 8-bit quantity starting at bit 0 
and ending at bit 7, 16-bit quantities starting at 0 and ending at 15, etc. 

 The numbers written out follow the conventional mathematical notation of hav-
ing the least signifi cant quantity at the right-hand end of the digit sequence, i.e., 
with 127 in decimal we have 1 * 100, 2*10 and 7 * 1, so 00100001 in binary means 
1 * 32 + 1 * 1 decimal. 

 Try running this program on the system you are using. Does it produce the results 
you expect? Experiment with a variety of numbers. Try at least the following 0, + 1, 
–1, –128, 127, 128, –32768, 32767, 32768.  

    5.7.13   Example 8: Binary Representation of a Real Number 

 The following program is a simple variant of the previous one, but we now look at 
a fl oating point number:

    program ch0508   
   !   
   ! use the bit functions in Fortran to write out a   
   ! 32 bit integer number equivalenced to a real   
   ! using the transfer intrinsic as a sequence of   
   ! zeros and ones   
   !   
   implicit none   
   integer :: I, J   
   character (len =   32)  ::I_in_Bits =   " "   
   real  :: x =   −1.0 

    print *,' 1 2 3'      

   print *,'1234567890123456789012345678901234567890'   
   print *,I_in_Bits   
   I =   transfer(x,I)   
   do J =   0,31 
    if (btest(i,J)) then  
   I_in_Bits(32-J:32-J) =   '1'         

   else 
    I_in_Bits(32-J:32-J) =   '0'      

   end if   
   end do   
   print *,x   
   print *,I_in_Bits   

   end program ch0508     

 We use the intrinsic function transfer to help out here. The  btest  intrinsic takes an 
integer argument, so we need to copy the bit pattern of the real number into an 
integer variable.  
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    5.7.14   Summary of How to Select the Appropriate Kind Type 

 To write programs that will perform arithmetically in a similar fashion on a variety 
of hardware requires an understanding of:

   The integer data representation model and in practice the word size of the various • 
integer kind types.  
  The real data representation model and in practice the word size of the various • 
real kind types and the number of bits in both the mantissa and exponent.    

 Armed with this information we can then choose a kind type that will ensure 
minimal problems when moving from one platform to another. End of health 
warning!   

    5.8   Variable Status 

 Fortran has two concepts regarding the status of a variable: defi ned and undefi ned. 
If a program does not provide an initial value (in a type statement) for a variable 
then its status is said to be undefi ned. Consider the following code segment taken 
from the earlier example that calculated the sum and average of three numbers:

    real :: N1, N2, N3, Average =   0.0, Total =   0.0 
integer :: N =   3     

 In the above the variables Average, Total and N all have a defi ned status. However, 
N1, N2 and N3 are said to be undefi ned. The use of undefi ned values is implementa-
tion dependent and therefore not portable. Care must be taken when writing programs 
to ensure that your variables have a defi ned status wherever possible. We will look 
at this area again in subsequent chapters.  

    5.9   Summary 

 The following are some practical rules and guidelines:

   Learn the rules for the evaluation of arithmetic expressions.  • 
  Break expressions down where necessary to ensure that the expressions are eval-• 
uated in the way you want.  
  Take care with truncation owing to integer division in an expression. Note that • 
this will only be a problem where both parts of the division are  integer.   
  Take care with truncation owing to the assignment statement when there is an inte-• 
ger on the left-hand side of the statement, i.e., assigning a real into an  integer.  
variable.  
  When you want to set up constants which will remain unchanged throughout the • 
program, use the  parameter  statement.  
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  do not confuse precision and accuracy.  • 
  Learn what the default  • kinds  are for the numeric types you work with, what the 
maximum and minimum values and precision are for real data, and what the 
maximum and minimum are for  integer  data.  
  You have been introduced to the use of the functions  • digits , huge and  pre-
cision,  and some of the concepts involved in their use. We will look at func-
tions in much greater depth later on.     

    5.10   Problems 

     1.    Compile and run examples 1 through 3 in this chapter.  
    2.    Have another look at example 4. Compile and run it. It will generate an error on 

some systems. Can you see where the error is?  
    3.    Write a program to calculate the period of a pendulum. This is given mathemati-

cally as

     
π= 2

9.81

length
t

   

use the following Fortran arithmetic assignment statement:

    T  =  2 * PI * (LENGTH / 9.81) ** .5     

 The length (LENGTH) is in metres, and the time (T) in seconds.  p  was given a 
value earlier in this chapter. 
 Repeat the above using two other methods. Try a hand-held calculator and a 
spreadsheet. Do you get the same answers?  

    4.    Base conversion. 
 In this chapter you have seen a brief coverage of base conversion. The following 
program illustrates some of the problems that can occur when going from base 
10 to base 2 and back again. Which numbers will convert without loss?

    program base_conversion   
   implicit none   
   real :: x1 =   1.0   
   real :: x2 =   0.1   
   real :: x3 =   0.01   
   real :: x4 =   0.001   
   real :: x5 =   0.0001 
    print *,' ',x1   
   print *,' ',x2   
   print *,' ',x3   
   print *,' ',x4   
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   print *,' ',x5   
   end program base conversion        

 Which do you think will provide the same number as originally entered?  
    5.    Simple subtraction. In this chapter we looked at representing fl oating point num-

bers in a fi nite number of bits. 
 Try the following program:

    program subtract   
   implicit none   
   real :: a =   1.0002   
   real :: b =   1.0001   
   real :: c 

    c =   a-b   
   print *,a   
   print *,b   
   print *,c      

   end program subtract      

    6.    Expression equivalence. We introduced some of the rules that apply in Fortran 
for expression evaluation. In mathematics the following is true:

     ( ) ( ) ( ) ( )- = - = - +2 2x y x * x y * y x y * x y
    

 Try the following program:
    program expression_equivalence   
   !   
   ! simple evaluation of x*x-y*y   
   ! when x and y are similar   
   !   
   ! we will evaluate in three ways.   
   !   
   implicit none   
   real :: x =   1. 002   
   real :: y =   1. 001   
   real :: t1, t2, t3, t4, t5 

    t1 =   x-y   
   t2 =   x +   y   
   print *,t1   
   print *,t2   
   t3 =   t1*t2   
   t4 =   x**2-y**2   
   t5 =   x*x-y*y   
   print *,t3   
   print *,t4   
   print *,t5      

   end program expression_equivalence     
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 Solve the problem with pencil and paper, calculator and Excel. 
 The last three examples show that you must be careful when using a computer to 
solve problems.  

    7.    The following is a simple variant of ch0504. In this case we initialise light year 
in an assignment statement. do you think you will get the same results as from 
running the earlier example?

    program ch0504p   
   implicit none   
   real :: Light_Minute, Distance, Elapse   
   integer :: Minute, Second   
   real :: Light_Year   
   ! Light_year : Distance travelled by light   
   ! in one year in km   
   ! Light_minute : Distance travelled by light   
   ! in one minute in km   
   ! Distance : Distance from sun to earth in km   
   ! Elapse : Time taken to travel a   
   ! distance (Distance) in minutes   
   ! Minute : integer number part of elapse   
   ! Second : integer number of seconds   
   ! equivalent to fractional part of elapse   
   ! 
    Light_Year =   9.46*10**12   
   Light_minute  =  Light_Year/(365.25 * 24.0 * 60.0)   
   Distance  =  150.0 * 10 ** 6   
   Elapse  =  Distance / Light_minute   
   Minute  =  Elapse   
   Second  =  (Elapse - Minute) * 60   
   print *, ' Light takes ' , Minute, ' Minutes'   
   print *,' ' , Second,' Seconds'   
   print *, ' To reach the earth from sun' 

end program ch0504p             

    5.11   Bibliography 

 Some understanding of numerical analysis is essential for successful use of Fortran 
when programming. As Froberg says “numerical analysis is a science—computation 
is an art.” The following are some of the more accessible books available. 

 Froberg, C.E.: Introduction to Numerical Analysis. Addison-Wesley, Reading 
(1969) 

 The short chapter on numerical computation is well worth a read; it covers some 
of the problems of conversion between number bases and some of the errors that are 
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introduced when we compute numerically. The Samuel Johnson quote owes its 
inclusion to Froberg! 

 IEEE, IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 
754–2008, Institute of Electrical and Electronic Engineers Inc. 

 The formal defi nition of IEEE 754. This is available for purchase at   
http://www.techstreet.com/standards/ieee/754_2008?product_id=1745167     
as both a pdf and printed version. 

 Knuth, D.: Seminumerical Algorithms. Addison-Wesley, Reading (1969) 
 A more thorough and mathematical coverage than Wakerly. The chapter on posi-

tional number systems provides a very comprehensive historical coverage of the 
subject. As Knuth points out the fl oating point representation for numbers is very 
old, and is fi rst documented around 1750 B.C. by Babylonian mathematicians. Very 
interesting and worthwhile reading. 

 Sun, Numerical Computation Guide, SunPro (1993) 
 Very good coverage of the numeric formats for IEEE Standard 754 for Binary 
Floating-Point Arithmetic. All SunPro compiler products support the features of 
the IEEE 754 standard. 

 Wakerly, J.F.: Microcomputer Architecture and Programming. Wiley, New York 
(1981) 

 The chapter on number systems and arithmetic is surprisingly easy. There is a 
coverage of positional number systems, octal and hexadecimal number system con-
versions, addition and subtraction of nondecimal numbers, representation of nega-
tive numbers, two’s complement addition and subtraction, one’s complement 
addition and subtraction, binary multiplication, binary division, bcd or binary coded 
decimal representation and fi xed and fl oating point representations. There is also 
coverage of a number of specifi c hardware platforms, including DEC PDP-11, 
Motorola 68000, Zilog Z8000, TI 9900, Motorola 6809 and Intel 8086. A little old 
but quite interesting nevertheless.      
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 Aims 

 The aims of the chapter are to introduce the fundamental concepts of arrays and do 
loops, in particular:

   To introduce the idea of tables of data and some of the formal terms used to • 
describe them:

   Array.   –
  Vector.   –
  List and linear list.      –

  To discuss the array as a random access structure where any element can be • 
accessed as readily as any other and to note that the data in an array are all of the 
same type.  
  To introduce the twin concepts of data structure and corresponding control • 
structure.  
  To introduce the statements necessary in Fortran to support and manipulate these • 
data structures.    

    Chapter 6   
 Arrays 1: Some Fundamentals              

 Thy gifts, thy tables, are within my brain 
 Full charactered with lasting memory. 

 William Shakespeare, The Sonnets 

 Here, take this book, and peruse it well: 
 The iterating of these lines brings gold. 

 Christopher Marlowe, The Tragical History of Doctor Faustus 
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              6.1   Tables of Data 

 Consider the examples below. 

    6.1.1   Telephone Directory 

 A telephone directory consists of the following kinds of entries:  

 Name  Address  Number 

 Adcroft A.  61 Connaught Road, Roath, Cardiff  223309 
 Beale K.  14 Airedale Road, Balham  745 9870 
 Blunt R.U.  81 Stanlake Road, Shepherds Bush  674 4546 
 … 
 … 
 … 
 Sims Tony  99 Andover Road, Twickenham  898 7330 

 This structure can be considered in a variety of ways, but perhaps the most 
common is to regard it as a table of data, where there are three columns and as 
many rows as there are entries in the telephone directory. 

 Consider now the way we extract information from this table. We would scan 
the name column looking for the name we are interested in, and then read along the 
row looking for either the address or telephone number, i.e., we are using the name 
to look up the item of interest.  

    6.1.2   Book Catalogue 

a Catalogue Could Contain:    

 Author(s)  Title  Publisher 

 Carroll L.  Alice through the looking glass  Penguin 
 Steinbeck J.  Sweet Thursday  Penguin 
 Wirth N.  Algorithms plus data structures  =  program  Prentice-Hall 

 Again, this can be regarded as a table of data, having three columns and many rows. 
We would follow the same procedure as with the telephone directory to extract the 
information. We would use the author to look up what books are available.  
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    6.1.3   Examination Marks or Results 

 This could consist of:  

 Name  Physics  Maths  Biology  History  English  French 

 Fowler L.  50  47  28  89  30  46 
 Barron L. W  37  67  34  65  68  98 
 Warren J.  25  45  26  48  10  36 
 Mallory D.  89  56  33  45  30  65 
 Codd S.  68  78  38  76  98  65 

 This can again be regarded as a table of data. This example has seven columns and 
fi ve rows. We would again look up information by using the Name.  

    6.1.4   Monthly Rainfall 

 The following data are a sample of monthly average rainfall for London in inches:  

 Month  Rainfall 

 January  3.1 
 February  2.0 
 March  2.4 
 April  2.1 
 May  2.2 
 June  2.2 
 July  1.8 
 August  2.2 
 September  2.7 
 October  2.9 
 November  3.1 
 December  3.1 

 In this table there are 2 columns and 12 rows. To fi nd out what the rainfall was in 
July, we scan the table for July in the Month column and locate the value in the same 
row, i.e., the rainfall fi gure for July. 

 These are just some of the many examples of problems where the data that are 
being considered have a tabular structure. Most general purpose languages therefore 
have mechanisms for dealing with this kind of structure. Some of the special names 
given to these structures include:

   Linear list.  • 
  List.  • 
  Vector.  • 
  Array.    • 
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 The term used most often here, and in the majority of books on Fortran 
 programming, is array.   

    6.2   Arrays in Fortran 

 There are three key things to consider here:

   The ability to refer to a set or group of items by a single name.  • 
  The ability to refer to individual items or members of this set, i.e., look • 
them up.  
  The choice of a control structure that allows easy manipulation of this set or array.    • 

    6.2.1   The d imension  Attribute 

 The dimension attribute defi nes a variable to be an array. This satisfi es the fi rst 
requirement of being able to refer to a set of items by a single name. Some examples 
are given below:

    real ,      dimension(1:100) :: Wages   
   integer , dimension(1:10000) :: Sample     

 For the variable Wages it is of type  real  and an array of dimension or size 100, i.e., 
the variable array Wages can hold up to 100 real items. 

 For the variable Sample it is of type  integer  and an array of dimension or size 
10,000, i.e., the variable Sample can hold up to 10,000 integer items.  

    6.2.2   An Index 

 An index enables you to refer to or select individual elements of the array. In the 
telephone directory, book catalogue, exam marks table and monthly rainfall examples 
we used the name to index or look up the items of interest. We will give concrete 
Fortran code for this in the example of monthly rain fall.  

    6.2.3   Control Structure 

 The statement that is generally used to manipulate the elements of an array is the 
do statement. It is typical to have several statements controlled by the do statement, 
and the block of repeated statements is often called a  do  loop. Let us look at two 
complete programs that highlight the above.   
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    6.3   Example 1: Monthly Rainfall 

 Let us look at this earlier example in more depth now. Consider the following:  

 Month 
 Associated integer 
representation  Array and index  Rainfall value 

 January  1  RainFall(1)  3.1 
 February  2  RainFall(2)  2.0 
 March  3  RainFall(3)  2.4 
 April  4  RainFall(4)  2.1 
 May  5  RainFall(5)  2.2 
 June  6  RainFall(6)  2.2 
 July  7  RainFall(7)  1.8 
 August  8  RainFall(8)  2.2 
 September  9  RainFall(9)  2.7 
 October  10  RainFall(10)  2.9 
 November  11  RainFall(11)  3.1 
 December  12  RainFall(12)  3.1 

 Most of you should be familiar with the idea of the use of an integer as an alternate 
way of representing a month, e.g., in a date expressed as 1/3/2000, for 1st March 
2000 (anglicised style) or January 3rd (americanised style). Fortran, in common 
with other programming languages, only allows the use of integers as an index into 
an array. Thus when we write a program to use arrays we have to map between 
whatever construct we use in everyday life as our index (names in our examples of 
telephone directory, book catalogue, and exam marks) to an integer representation 
in Fortran. The following is an example of an assignment statement showing the use 
of an index:

    RainFall(1) =   3.1     

 We saw earlier that we could use the  dimension  attribute to indicate that a vari-
able was an array. In the above example Fortran statement our array is called 
RainFall. In this statement we are assigning the value 10.4 to the fi rst element of the 
array; i.e., the rainfall for the month of January is 10.4. We use the index 1 to repre-
sent the fi rst month. Consider the following statement:

    SummerAverage  =  (RainFall(6)  +  RainFall(7)  +   & RainFall(8))/3     

 This statement says take the values of the rainfall for June, July and August, add 
them up and then divide by 3, and assign the result to the variable SummerAverage, 
thus providing us with the rainfall average for the three summer months—Northern 
Hemisphere of course. 

 The following program reads in the 12 monthly values from the terminal, 
computes the sum and average for the year, and prints the average out.
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    program ch0601   
   implicit none   
   real :: Total =   0.0, Average =   0.0   
   real , dimension(1:12) :: RainFall   
   integer :: Month 

    print *,' type in the rainfall values'   
   print *,' one per line'   
   do Month =   1,12 

    read *, RainFall(Month)      
   enddo   
   do Month =   1,12 

    Total  =  Total  +  RainFall(Month)      
   enddo   
   Average  =  Total / 12   
   print *,' Average monthly rainfall was'   
   print *, Average      

   end program ch0601     

 RainFall is the array name. The variable Month in brackets is the index. It takes 
on values from 1 to 12 inclusive, and is used to pick out or select elements of the 
array. The index is thus a variable and this permits dynamic manipulation of the 
array at run time. The general form of the  DO  statement is

    do Counter  =  Start, End, Increment     

 The block of statements that form the loop is contained between the do state-
ment, which marks the beginning of the block or loop, and the  enddo  statement, 
which marks the end of the block or loop. 

 In this program, the do loops take the form:

    do Month =   1,12 start   
     …  body   
   enddo end     

 The body of the loop in the program above has been indented. This is not required 
by Fortran. However it is good practice and will make programs easier to follow. 

 The number of times that the  do loop  is executed is governed by the last part 
of the do statement, i.e., by the

    Counter  =  Start, End, Increment     

 Start as it implies, is the initial value which the counter (or index, or control vari-
able) takes. Each time the loop is executed, the value of the counter will be increased 
by the value of increment, until the value of end is reached. If increment is omitted, 
it is assumed to be 1. No other element of the do statement may be omitted. In order 
to execute the statements within the loop (the body) it must be possible to reach end 
from start. Thus zero is an illegal value of increment. In the event that it is not 
possible to reach end, the loop will not be executed and control will pass to the state-
ment after the end of the loop. 
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 In the example above, both loops would be executed 12 times. In both cases, the 
fi rst time around the loop the variable MONTH would have the value 1, the second 
time around the loop the variable MONTH would have the value 2, etc., and the last 
time around the loop MONTH would have the value 12. 

 A summation:
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x    

is often expressed in Fortran as a loop as in this example:

    do Month =   1,12   
    Total  =  Total  +  RainFall(Month)   
   enddo     

    6.3.1   Possible Missing Data 

 The rainfall data in this example has been taken from the UK Met Offi ce site. Visit

      http://www.metoffi ce.gov.uk/climate/uk/stationdata        

to see where some of the stations are. One of us was born in Wales, the other in 
Yorkshire so we have chosen stations accordingly. 

 The following is one of the mid Wales stations:

      http://www.metoffi ce.gov.uk/climate/uk/stationdata/cwmys 
twythdata.txt         

 Here is a sample of data from this site for 2 years.  

 yyyy  mm 

 tmax  tmin  af   rain    sun  

  degC    degC    days    mm    hours  

  1959    1    4.5    −1.9    20    –––    57.2  
  1959    2    7.3    0.9    15    –––    87.2  
  1959    3    8.4    3.1    3    –––    81.6  
  1959    4    10.8    3.7    1    –––    107.4  
  1959    5    15.8    5.8    1    –––    213.5  
  1959    6    16.9    8.2    0    –––    209.4  
  1959    7    18.5    9.5    0    –––    167.8  
  1959    8    19.C    10.5    0    –––    164.8  
  1959    9    18.3    5.9    0    –––    196.5  
  1959    19    14.8    7.9    1    –––    101.1  
  1959    11    8.8    3.9    3    –––    38.9  
  1959    12    7.2    2.5    3    –––    19.2  
  1961    1    5.4    0.2    11    144.8    31.0  
  1961    2    8.7    2.9    2    112.5    45.2  
  1961    3    10.2    2.1    10    77.2    102.6  
  1961    4    11.9    5.0    1    130.7    83.9  
  1961    5    –––    –––    –––    66.3    173.7  

(continued)

http://www.metoffice.gov.uk/climate/uk/stationdata
http://www.metoffice.gov.uk/climate/uk/stationdata/cwmys twythdata.txt
http://www.metoffice.gov.uk/climate/uk/stationdata/cwmys twythdata.txt
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 yyyy  mm 

 tmax  tmin  af   rain    sun  

  degC    degC    days    mm    hours  

  1961    6    –––    7.4    –––    66.1    190.6  
  1961    7    16.7    8.2    0    141.1    149.2  
  1961    8    16.8    10.1    0    149.5    106.6  
  1961    9    17.4    9.3    0    134.8    79.7  
  1962    5    4.2    3    117.8    102.2  
  1962    6    6.8    1    72.8    163.9  
  1962    7    16.8    9.1    0    56.7    –  
  1962    8    15.6    9.3    0    236.2    –  
  1962    9    14.6    7.8    1    218.C    –  
  1962    19    –––    –––    –––    69.7    –  
  1962    11    7.6    1.8    9    85.2    –  
  1962    12    5.3    −1.0    18    204.4    –  

 Wales is relatively wet for the UK! 
 The following station is Whitby:

      http://www.metoffi ce.gov.uk/climate/uk/stationdata/whitb 
ydata.txt         

 Here is a sample of the Whitby data.  

  YYYY    mm  

  tmax    tmin    af    rain    sun  

  degC    degC    days    mm    hours  

  1968    1    6.9    1.7    12    24.4  
  1968    2    4.3    −0.7    16    45.1  
  1968    3    9.4    3.4    2    34.5  
  1968    4    10.8    1.6    9    28.8  
  1968    5    10.6    2.8    2    37.1  
  1968    6    16.7    6.8    0    58.5  
  1968    7    15.C    8.1    0    81.4  
  1968    8    16.3    9.6    0    28.0  
  1968    9    15.7    –––    –––    66.0  
  1968    10    14.7    –––    –––    35.2  
  1968    11    8.5    5.1    1    35.1  
  1968    12    5.7    1.5    9    –  
  1969    1    7.3    2.2    6    48.4  
  1969    2    3.1    −0.8    14    46.3  
  1969    3    4.5    0.4    9    –  
  1969    4    8.9    2.9    4    52.6  
  1969    5    11.9    6.4    0    73.7  
  1969    6    16.0    8.2    0    53.0  
  1969    7    19.6    11.9    0    39.0  
  1969    8    17.7    12.2    0    20.6  
  1969    9    16.5    10.3    0    49.2  
  1969    10    15.4    9.0    0    9.0  
  1969    11    7.9    2.2    4    77.2  
  1969    12    5.8    1.4    9    64.1  

http://www.metoffice.gov.uk/climate/uk/stationdata/whitb ydata.txt
http://www.metoffice.gov.uk/climate/uk/stationdata/whitb ydata.txt
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 Bram Stoker found some of his inspiration for Dracula after staying in the 
town. 

 If you look at the data for some of these stations you will notice that data is 
missing for some months. 

 How do you think you could cope with missing data in Fortran? 
 The SQL standard has the concept of nulls or missing values, and missing data 

in a statistics package is commonly fl agged by an exceptional value e.g. -999.   

    6.4   Example 2: People’s Weights and Setting 
the Array Size with a Parameter 

 In the table below we have ten people, with their names as shown. We associate each 
name with a number—in this case we have ordered the names alphabetically, and 
the numbers therefore refl ect their ordering. WEIGHT is the array name. The number 
in brackets is called the index and it is used to pick out or select elements of the 
array. The table is read as the fi rst element of the array WEIGHT has the value 85, 
the second element has the value 76, etc.  

 Person 
 Associated integer 
representation  Array and index  Associated value 

 Andy  1  Weight( 1)  85 
 Barry  2  Weight( 2)  76 
 Cathy  3  Weight( 3)  85 
 Dawn  4  Weight( 4)  90 
 Elaine  5  Weight( 5)  69 
 Frank  6  Weight( 6)  83 
 Gordon  7  Weight( 7)  64 
 Hannah  8  Weight( 8)  57 
 Ian  9  Weight( 9)  65 
 Jatinda  10  Weight(10)  76 

 In the fi rst example we so-called hard coded the number 12, which is the number 
of months, into the program. It occurred four times. Modifying the program to work 
with a different number of months would obviously be tedious and potentially error 
prone. 

 In this example we parameterise the size of the array and reduce the effort 
involved in modifying the program to work with a different number of people:

    program ch0602   
   ! The program reads up to number_of_people weights   
   ! into the array Weight   
   ! Variables used   
   ! Weight, holds the weight of the people   
   ! Person, an index into the array   
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   ! Total, total weight   
   ! Average, average weight of the people   
   ! Parameters used   
   ! NumberOfPeople ,10 in this case.   
   ! The weights are written out so that   
   ! they can be checked   
   !   
   implicit none   
   integer , parameter :: number_of_people  =  10   
   real :: total  =  0.0, average  =  0.0   
   integer :: person   
   real , dimension(1:number of people) :: weight 
    do person =   1,number_Of_people 
    print *, ' type in the weight for person ',person   
   read *,weight(person)   
   total  =  total  +  weight(person)      

   enddo   
   average  =  total / number_of_people   
   print *, ' The total of the weights is ',total   
   print *, ' Average Weight is ',average   
   print *,' ',number_of_people,' Weights were '   
   do person =   1,number_of_people 
    print *,weight(person)      

   enddo      
   end program ch0602      

    6.5   Summary 

 The  dimension  attribute declares a variable to be an array, and must come at the 
start of a program unit, with other declarative statements. It has two forms and 
examples of both of them are given below. In the fi rst case we explicitly specify the 
upper and lower :

    real , dimension(1:number_of_people) :: Weight     

 In the second case the lower limit defaults to 1

    real , dimension(number_of_people) :: Weight     

 The latter form will be seen in legacy code, especially Fortran 77 code suites. 
 The  parameter  attribute declares a variable to have a fi xed value that cannot 

be changed during the execution of a program. In our example above note that this 
statement occurs before the other declarative statements that depend on it. To recap 
the statements covered so far, the order is summarised below.  



956.6 Problems

 program  First statement 

 integer  In any order and the 
 real  Declarative  dimension and parameter 
 character  attributes are added here 

 Arithmetic assignment  In any order 
 print * 
 read *  Executable 
 do 
 enddo 

 end program  Last statement 

 We choose individual members using an index, and these are always of integer 
type in Fortran. 

 The do loop is a very convenient control structure for manipulating arrays, and 
we use indentation to clearly identify loops.  

    6.6   Problems 

     1.    Compile and run example 1 from this chapter. If you live in the UK visit the Met 
Offi ce site mentioned earlier and choose a site near you, and a year of interest, 
making sure that the data set is complete for that year. 
 If you don’t live in the UK is there a site similar to the Met Offi ce site that has 
data for the country you are from?  

    2.    Compile and run program 2.  
    3.    Using a do loop and an array rewrite the program which calculated the average 

of three numbers to ten.  
   4.1    Modify the program that calculates the total and average of people’s weights to 

additionally read in their heights and calculate the total and average of their 
heights. Use the data given below, which have been taken from a group of fi rst 
year undergraduates:  

  Height    Weight  

  1.85    85  
  1.80    76  
  1.85    85  
  1.70    90  
  1.75    69  
  1.67    83  
  1.55    64  
  1.63    57  
  1.79    65  
  1.78    76  
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   4.2     Your body mass index is given by your weight (in kilos) divided by your height 
(in metres) squared. Calculate and print out the BMI for each person. 
 Grades of obesity according to Garrow as follows:

   Grade 0 (desirable) 20–24.9  
  Grade 1 (overweight) 25–29.9  
  Grade 2 (obese) 30–40  
  Grad 3 (morbidly obese) >40  
  Ideal BMI range,  
  Men, Range 20.1–25 kg/m 2   
  Women, Range 18.7–23.8 kg/m 2      

   4.3    When working on either a UNIX system or a PC in a DOS box it is possible to 
use the following characters to enable you to read data from a fi le or write output 
to a fi le when running your program:

   character     Meaning  
  <     read from fi le  
  >     write to fi le    

 On a typical UNIX system we could use

    a.out  <  data.txt  >  results.txt    

to read the data from the fi le called data.txt and write the output to a fi le called 
results.txt. 

 On a PC in a DOS box the equivalent would be

    program.exe  <  data.txt  >  results.txt     

 This is a quick and dirty way of developing programs that do simple I/O; 
we don’t have to keep typing in the data and we also have a record of the behav-
iour of the program. Rerun the program that prints out the BMI values to write 
the output to a fi le called results.txt. Examine this fi le in an editor.  

    5.    Modify the program that read in your name to read in ten names. Use an array 
and a do loop. When you have read the names into the array write them out in 
reverse order on separate lines. 

 Hint: Look at the formal syntax of the do statement.  

    6.    Modify the rainfall program (which assumes that the measurement is in inches) 
to convert the values to centimetres. One inch equals 2.54 cm. Print out the two 
sets of values as a table. 

 Hint: use a second array to hold the metric measurements.  

    7.    Combine the programs that read in and calculate the average weight with the 
one that reads in peoples names. The program should read the weights into one 
array and the names into another. Allow 20 characters for the length of a name. 
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print out a table linking names and weights.  
    8.    In an earlier chapter we used the following formula to calculate the period of a 

pendulum:    

     ( )T * PI * LENGTH / 9.81 **.52=    

write a program that uses a do loop to make the length go from 1 to 10 m in 1 m 
increments. 

 Produce a table with two columns, the fi rst of lengths and the second of 
periods.        
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 Aims 

 The aims of the chapter are to extend the concepts introduced in the previous chap-
ter and in particular:

   To set an array size at run time – allocatable arrays.  • 
  To introduce the idea of an array with more than one dimension and the corre-• 
sponding control structure to permit easy manipulation of higher-dimensioned 
arrays.  
  To introduce an extended form of the dimension attribute declaration, and the • 
corresponding alternative form to the do statement, to manipulate the array in 
this new form.  
  To introduce the do loop as a mechanism for the control of repetition in general, • 
not just for manipulating arrays.  
  To formally defi ne the block do syntax.    • 

    Chapter 7   
 Arrays 2: Further Examples             

 Sir, In your otherwise beautiful poem (The Vision of Sin) there 
is a verse which reads 
 Every moment dies a man, 
 every moment one is born. 
 Obviously this cannot be true and I suggest that in the next 
edition you have it read 
 Every moment dies a man, 
 every moment 1 1/16 is born. 
 Even this value is slightly in error but should be suffi ciently 
accurate for poetry. 

 Charles Babbage in a letter to Lord Tennyson 
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             7.1   Varying the Array Size at Run Time 

 The earlier examples set the array size in the following two ways:

   Explicitly using a numeric constant  • 
  Implicitly using a parameterised variable    • 

 In both cases we knew the size of the array at the time we compiled the program. 
We may not know the size of the array at compile time and Fortran provides the 
allocatable attribute to accommodate this kind of problem. 

    7.1.1   Example 1: Allocatable Arrays 

 Consider the following example.

    program ch0701      
   !   
   ! This program is a simple variant of ch0602.   
   ! The array is now allocatable   
   ! and the user is prompted for the   
   ! number of people at run time.   
   !   
   implicit none   
   integer :: Number_Of_People   
   real :: Total =   0.0, Average =   0.0   
   integer :: Person   
   real , dimension(:) , allocatable :: Weight 
    print *, ' How many people?'   
   read *,Number_Of_People   
   allocate (Weight(1:Number_Of_People))   
   do Person =   1,Number_Of_People 
    print *, ' type in the weight for person ', Person   
   read *,Weight(Person)   
   Total =   Total +   Weight(Person)      

   enddo   
   Average =   Total / Number_Of_People   
   print *, ' The total of the weights is ',Total   
   print *, ' Average Weight is ',Average   
   print *, ' ',Number_of_People,' Weights were '   
   do Person =   1,Number_Of_People 
    print *,Weight(Person)      

   enddo      
   end program ch0701     
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 The fi rst statement of interest is the type declaration with the dimension and 
allocatable attributes, e.g.,

    real , dimension(:) , allocatable :: Weight     

 The second is the allocate statement where the value of the variable Number_of_
people is not known until run time, e.g.,

    allocate(Weight(1:Number_Of_People))     

 We will look more formally at these statements in Chap.   8    .   

    7.2   Higher-Dimension Arrays 

 There are many instances where it is necessary to have arrays with more than one 
dimension. Consider the examples below. 

    7.2.1   Example 2: Two Dimensional Arrays and a Map 

 Consider the representation of the height of an area of land expressed as a two 
dimensional table of numbers e.g., we may have some information represented in a 
simple table as follows:  

  Latitude  

  Longitude  

  1    2    3  

  1    10.0    40.0    70.0  
  2    20.0    50.0    80.0  
  3    30.0    60.0    90.0  

 The values in the array are the heights above sea level. The example is obviously 
artifi cial, but it does highlight the concepts involved. For those who have forgotten 
their geography, lines of latitude run east–west (the equator is a line of latitude) and 
lines of longitude run north–south (they go through the poles and are all of the same 
length). In the above table therefore the latitude values are ordered by row and the 
longitude values are ordered by column. 

 A program to manipulate this data structure would involve something like the 
following:

    program ch0702   
   ! Variables used   
   ! Height - used to hold the heights above sea level   
   ! Long - used to represent the longitude   
   ! Lat - used to represent the latitude   
   ! both restricted to integer values.   
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   ! Correct - holds the correction factor   
   implicit none   
   integer , parameter :: n =   3   
   integer :: Lat , Long   
   real , dimension(1:n,1:n) :: Height   
   real , parameter :: Correct =   10.0 
    do Lat =   1, n   
  do Long =   1, n   
  print *, ' type in value at ',Lat,' ',Long   
   read * , Height (Lat, Long)      

   enddo      
   enddo      
  do Lat =   1, n   
  do Long =   1, n   

  Height(Lat,Long) =   Height(Lat, Long) +   Correct      
   enddo      

   enddo    
    print * , ' Corrected data is '   
   do Lat =   1, n 
    do Long =   1, n   
  print * , Height(Lat,Long)      

   enddo      
   enddo      

   end program ch0702     

 Note the way in which indentation has been used to highlight the structure in 
this example. Note also the use of a textual prompt to highlight which data value 
is expected. Running the program highlights some of the problems with the 
simple I/O used in the example above. We will address this issue in the next 
example. 

 The inner loop is said to be nested within the outer one. It is very common to 
encounter problems where nesting is a natural way to express the solution. Nesting 

is permitted to any depth. Here is an example of a valid nested do loop:  
 This example introduces the concept of two indices, and can be thought of as a 

row and column data structure.  
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    7.2.2   Example 3: Sensible Tabular Output 

 The fi rst example had the values printed in a format that wasn’t very easy to work 
with. In this example we introduce a so-called implied do loop, which enables us to 
produce neat and humanly comprehensible output:

    program ch0703   
   ! Variables used   
   ! Height - used to hold the heights above sea level   
   ! Long - used to represent the longitude   
   ! Lat - used to represent the latitude   
   ! both restricted to integer values.   
   implicit none   
   integer , parameter :: n =   3   
   integer :: Lat , Long   
   real , dimension(1:n,1:n) :: Height   
   real , parameter :: Correct =   10.0 

    do Lat =   1,n   
  do Long =   1,n   
  read * , Height (Lat, Long)   
   Height(Lat,Long) =   Height(Lat,Long) +   Correct      

   enddo      
   enddo    
    do Lat =   1,n   
  print * , (Height(Lat,Long),Long =   1,n)      

   enddo      
   end program ch0703     

 The key statement in this example is

    print * , (Height(Lat,Long),Long =   1,n)     

 This is called an implied do loop, as the longitude variable takes on values from 
1 through 3 and will write out all three values on one line. 
 We will see other examples of this statement as we go on.  

    7.2.3   Example 4: Average of Three Sets of Values 

 This example extends the previous one. Now we have three sets of measurements 
and we are interested in calculating the average of these three sets. The two new 
data sets are: 
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 and 

 and we have chosen the values to enable us to quickly check that the calculations for 
the averages are correct. 

 This program also uses implied do loops to read the data, as data in fi les are 
generally tabular:

    program ch0704   
   ! Variables used   
   ! H1,H2,H3 - used to hold the heights above sea level   
   ! H4 - used to hold the average of the above   
   ! Long - used to represent the longitude   
   ! Lat - used to represent the latitude   
   ! both restricted to integer values.   
   implicit none   
   integer , parameter :: n =   3   
   integer :: Lat , Long   
   real , dimension(1:n,1:n) :: H1,H2,H3,H4 

    do Lat =   1,n   
  read * , (H1(Lat,Long), Long =   1,n)      

   enddo    
    do Lat =   1,n   
  read * , (H2(Lat,Long), Long =   1,n)      

   enddo    
    do Lat =   1,n   
  read * , (H3(Lat,Long), Long =   1,n)      

   enddo    
    do Lat =   1,n   
  do Long =   1,n 

    H4(Lat,Long) =   (H1(Lat,Long) +   H2(Lat,Long) +   & 
 H3(Lat,Long)) / n      

   enddo      
   enddo    
    do Lat =   1, n 
    print * , (H4(Lat,Long),Long =   1,n)      

   enddo      
   end program ch0704     

 The original data was accurate to three signifi cant fi gures. The output from the 
above has spurious additional accuracy. We will look at how to correct this in the 
later chapter on output.  
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    7.2.4   Example 5: Booking Arrangements in a Theatre or Cinema 

 A theatre or cinema consists of rows and columns of seats. In a large cinema or a 
typical theatre there would also be more than one level or storey. Thus, a program to 
represent and manipulate this structure would probably have a 2-d or 3-d array. 
Consider the following program extract:  

 Note here the use of the term parameter in conjunction with the integer declara-
tion. This is called an entity orientated declaration. An alternative to this is an attri-
bute-orientated declaration, e.g.,

    integer :: NR,NC,NF   
   parameter :: NR =   5,NC =   10,NF =   3   

 and we will be using the entity-orientated declaration method throughout the rest of 
the book. This is our recommended method as you only have to look in one place to 
determine everything that you need to know about an entity.   
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    7.3   Additional Forms of the Dimension Attribute 
and do Loop Statement 

    7.3.1   Example 6: Voltage from −20 to +20 Volts 

 Consider the problem of an experiment where the independent variable voltage var-
ies from −20 to +20 V and the current is measured at 1-volt intervals. Fortran has a 
mechanism for handling this type of problem:

    program ch0706   
   implicit none   
   real , dimension(-20:20) :: Current   
   real :: Resistance   
   integer :: Voltage 
    print *,' type in the resistance'   
   read *, Resistance   
   do Voltage =   -20,20 
    Current(Voltage) =   Voltage/Resistance   
   print *, Voltage, ' ', Current(Voltage)      

   enddo      
   end program ch0706     

 We appreciate that, due to experimental error, the voltage will not have exact integer 
values. However, we are interested in representing and manipulating a set of values, 
and thus from the point of view of the problem solution and the program this is a 
reasonable assumption. There are several things to note. 

 This form of the dimension attribute

    dimension(First:Last)    

is of considerable use when the problem has an effective index which does not 
start at 1. 

 There is a corresponding form of the do statement which allows processing of 
problems of this nature. This is shown in the above program. The general form of 
the do statement is therefore:

    do counter =   start, end, increment    

where start, end and increment can be positive or negative. Note that zero is a legiti-
mate value of the dimension limits and of a do loop index.  
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    7.3.2   Example 7: Longitude from −180 to +180 

 Consider the problem of the production of a table linking time difference with lon-
gitude. The values of longitude will vary from −180° to +180°, and the time will 
vary from +12 h to −12 h. A possible program segment is:

    program ch0707   
   implicit none   
   real , dimension(-180:180) :: Time =   0   
   integer :: Degree,Strip   
   real :: value 
    do Degree =   -180,165,15   

  value =   Degree/15.   
   do Strip =   0,14 
    Time(Degree +   Strip) =   value      

   enddo      
   enddo    
    do Degree =   -180,180   

  print *,Degree,' ',Time(Degree)      
   end do      

   end program ch0707      

    7.3.3   Notes 

 The values of the time are not being calculated at every degree interval. 
 The variable Time is a real variable. It would be possible to arrange for the time 

to be an integer by expressing it in either minutes or seconds. 
 This example takes no account of all the wiggly bits separating time zones or of 

British Summer Time. 
 What changes would you make to the program to accommodate +180? What is 

the time at −180 and +180?   

    7.4   The Do Loop and Straight Repetition 

    7.4.1   Example 8: Table of Liquid Conversion Measurements 

 Consider the production of a table of liquid measurements. The independent vari-
able is the litre value; the gallon and US gallon are the dependent variables. Strictly 
speaking, a program to do this does not have to have an array, i.e., the DO loop can 
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be used to control the repetition of a set of statements that make no reference to an 
array. The following shows a complete but simple conversion program:

    program ch0708   
   implicit none   
   !   
   ! 1 us gallon =   3.7854118 litres   
   ! 1 uk gallon =   4.545  litres   
   !   
   integer :: litre   
   real  :: gallon,usgallon 

    do litre =   1,10   
  gallon =   litre / 4.545   
   usgallon =   litre / 3.7854118   
   print *,litre, ' ',gallon,' ',usgallon      

   end do      
   end program ch0708     

 Note here that the do statement has been used only to control the repetition of a 
block of statements — there are no arrays at all in this program. 

 This is the other use of the do statement. The do loop thus has two functions — 
its use with arrays as a control structure and its use solely for the repetition of a 
block of statements.  

    7.4.2   Example 9: Means and Standard Deviations 

 In the calculation of the mean and standard deviation of a list of numbers, we can 
use the following formulae. It is not actually necessary to store the values, nor to 
accumulate the sum of the values and their squares. In the fi rst case, we would pos-
sibly require a large array, whereas in the second, it is conceivable that the accumu-
lated values (especially of the squares) might be too large for the machine. The 
following example uses an updating technique which avoids these problems, but is 
still accurate. The do loop is simply a control structure to ensure that all the values 
are read in, with the index being used in the calculation of the updates:    



1097.5 Summary

    7.5   Summary 

 Arrays can have up to fi fteen dimensions. 
 Do loops may be nested, but they must not overlap. 
 The dimension attribute allows limits to be specifi ed for a block of information 

which is to be treated in a common way. The limits must be integer, and the second 
limit must exceed the fi rst, e.g.,

    real , dimension(−123:-10) :: List   
   real , dimension(0:100, 0:100) :: Surface   
   real , dimension(1:100) :: value     

 The last example could equally be written

    real , dimension(100) :: value    

where the fi rst limit is omitted and is given the default value 1. The array LIST 
would contain 114 values, while Surface would contain 10201. 

 A do statement and its corresponding enddo statement defi ne a loop. The do 
statement provides a starting value, terminal value, and optionally, an increment for 
its index or counter. 

 The increment may be negative, but should never be zero. If it is not present, the 
default value is 1. It must be possible for the terminating value to be reached from 
the starting value. 
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 The counter in a do loop is ideally suited for indexing an array, but it may be used 
anywhere that repetition is needed, and of course the index or counter need not be 
used explicitly. 
 The formal syntax of the block do construct is

    [ do-construct-name : ] do [label] [ loop-control ] 
    [execution-part-construct]      

   [ label ] end-do    

where the forms of the loop control are

    [ , ] scalar-variable-name =   
   scalar-numeric-expression ,   
   scalar-numeric-expression   
   [ , scalar-numeric-expression ]    

and the forms of the end-do are

    end do [ do-construct-name ]   
   continue    

and [] identify optional components of the block do construct. This statement is 
looked at in much greater depth in Chap.   13    .  

    7.6   Problems 

     1.    Compile and run all the examples in this chapter, except example 5. This is 
covered separately later.  

    2.    Modify the fi rst example to convert the height in feet to height in metres. The 
conversion factor is one 1 ft equals 0.305 m. 
 Hint: You can either overwrite the height array or introduce a second array.  

    3.    The following are two equations for temperature conversion

     

=
= +

c 5 / 9*(t - 32)

f 32 9 / 5* t     

 Write a complete program where t is an integer do loop variable and loop from 
−50 to 250. Print out the values of c, t and f on one line. What do you notice 
about the c and f values?  

    4.    Write a program to print out the 12 times table. Typical output would be of the form:

     

=
=
=

   

  

1 * 12 12

2 * 12 24

3 * 12

  

  

  

 

  36    

  etc. 
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 Hint: You don’t need to use an array here.  
    5.    Write a program to read the following data into a two-dimensional array:

     

1 2 3

4 5 6

7 8 9     

 Calculate totals for each row and column and produce output similar to that 
shown below:

     

    

    

   

1 2 3 6

4 5 6 15

7 8 9 24

12 15

 

  18     

   Hint 1: Example ch0602 shows how to sum over a loop.  

  Hint 2: You need to introduce two one-dimensional arrays to hold the row and 
column totals. You need to index over the rows to get the column totals and over 
the columns to get the row totals.     

    6.    Modify the above to produce averages for each row and column as well as the 
totals.  

    7.    Using the following data from problem 4.1 in Chap.   6    :       

 Use the program that evaluated the mean and standard deviation to do so for 
these heights and weights. 
 In the fi rst case use the program as is and run it twice, fi rst with the heights then 
with the weights. 
 What changes would you need to make to the program to read a height and a 
weight in a pair? 
 Hint: You could introduce separate scalar variables for the heights and weights.  

    8.    Example 5 looked at seat bookings in a cinema or theatre. Here is an example of 
a sample data fi le for this program           
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 The key for this is as follows:

     

=
=
=

C Confirmed Booking 

P Provisional Booking 

E Seat Empty     

 Compile and run the program. The output would benefi t from adding row and 
column numbers to the information displayed. We will come back to this issue in 
a subsequent chapter on output formatting. 
 The data are in a fi le on the web and the address is given below.

     • http://www.fortranplus.co.uk        

 Problem 4.3 in the last chapter shows how to read data from a fi le.      

http://www.fortranplus.co.uk
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 Aims 

 The aims of the chapter are:

   To look more formally at the terminology required to precisely describe arrays.  • 
  To introduce ways in which we can manipulate whole arrays and parts of arrays • 
(sections).  
  allocatable arrays – ways in which the size of an array can be deferred until • 
execution time.  
  To introduce the concept of array element ordering and physical and virtual • 
memory.  
  To introduce ways in which we can initialise arrays using array constructors.  • 
  To introduce the where statement and array masking.  • 
  To introduce the forall statement and construct.    • 

              8.1   Terminology 

 Fortran supports an abundance of array handling features. In order to make the 
description of these features more precise a number of additional terms have to be 
covered and these are introduced and explained below. 

    Chapter 8   
 Whole Array and Additional Array Features              

 A good notation has a subtlety and suggestiveness which at 
times make it seem almost like a live teacher. 

 Bertrand Russell 
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    8.1.1   Rank 

 The number of dimensions of an array is called its rank. A one-dimensional array 
has rank 1, a two-dimensional array has rank 2 and so on.  

    8.1.2   Bounds 

 An array’s bounds are the upper and lower limits of the index in each dimension.  

    8.1.3   Extent 

 The number of elements along a dimension of an array is called the extent.

    integer, dimension(−10:15):: Current

       has bounds−10 and 15 and an extent of 26.  

    8.1.4   Size 

 The total number of elements in an array is its size.  

    8.1.5   Shape 

 The shape of an array is determined by its rank and its extents in each dimension.  

    8.1.6   Conformable 

 Two arrays are said to be conformable if they have the same shape, that is, they have 
the same rank and the same extent in each dimension.  

    8.1.7   Array Element Ordering 

 Array element ordering states that the elements of an array, regardless of rank, form 
a linear sequence. The sequence is such that the subscripts along the fi rst dimension 
vary most rapidly, and those along the last dimension vary most slowly. This is best 
illustrated by considering, for example, a rank 2 array A defi ned by

    real , dimension(1:4,1:2) :: A     

 A has 8 real elements whose array element order is 
 A(1,1), A(2,1), A(3,1), A(4,1), A(1,2), A(2,2), A(3,2), A(4,2) 
 i.e., mathematically by column and not row.  
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    8.2   Whole Array Manipulation 

 The examples of arrays so far have shown operations on arrays via array elements. 
One of the signifi cant features of Fortran is its ability to manipulate arrays as whole 
objects. This allows arrays to be referenced not just as single elements but also as 
groups of elements. Along with this ability comes a whole host of intrinsic proce-
dures for array processing. These procedures are mentioned in Chap.   12    , and listed 
in alphabetical order with examples in Appendix C.  

    8.2.1   Assignment 

 An array name without any indices can appear on both sides of assignment and 
input and output statements. For example, values can be assigned to all the elements 
of an array in one statement:

    real, dimension(1:12):: Rainfall   
   Rainfall =   0.0     

 The elements of one array can be assigned to another:

    integer, dimension(1:50) :: A,B   
   …   
   A =   B     

 Arrays A and B must be conformable in order to do this. 
 The following example is illegal since X is rank 1 and extent 20, whilst Z is rank 1 

and extent 41.

    real, dimension(1:20) :: X   
   real, dimension(1:41) :: Z   
   X =   50.0 Z =   X     

 But the following is legal because both arrays are now conformable, i.e., they are 
both of rank 1 and extent 41:

    real , dimension (−20:20) :: X   
   real , dimension (1:41) :: Y   
   X =   50.0 
Y =   X       

    8.2.2   Expressions 

 All the arithmetic operators available to scalars are available to arrays, but care must 
be taken because mathematically they may not make sense.

    real , dimension (1:50) :: A,B,C,D,E   
   C =   A +   B    

adds each element of A to the corresponding element of B and assigns the result to C.
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    E =   C*D    

multiplies each element of C by the corresponding element of D. This is not vector mul-
tiplication. To perform a vector dot product there is an intrinsic procedure  dot_prod-
uct , and an example of this is given in a subsequent section on array constructors. 

 For higher dimensions

    real ,dimension (1:10,1:10) :: F,G,H   
   F =   F**0.5    

takes the square root of every element of F.

    H =   F +   G    

adds each element of F to the corresponding element of G.

    H =   F*G

    multiplies each element of F by the corresponding element of G. The last statement 
is not matrix multiplication. An intrinsic procedure  matmul  performs matrix mul-
tiplication; further details are given in Appendix C. 

    8.2.3   Example 1: One Dimensional Whole Arrays in Fortran 

 Consider the following example, which is a solution to a problem set earlier, but is 
now addressed using some of the whole array features of Fortran  
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 The statements

    real , dimension(1:N) :: RainFall_ins =   0.0   
   real , dimension(1:N) :: RainFall_cms =   0.0    

are examples of whole array initialisation. Each element of the arrays is set to 0.0. 

 The statement

    read *, RainFall_ins    

is an example of whole array I/O, where we no longer have to use a do loop to read 
each element in. 

 Finally, we have the statement

    RainFall_cms  =  RainFall_ins * 2.54    

which is an example of whole array arithmetic and assignment.  

    8.2.4   Example 2: Two Dimensional Whole Arrays in Fortran 

 Here is a two-dimensional example:  
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 Note the use of whole arrays in the print statements. The output does look rather 
messy though, and also illustrates array element ordering.   

    8.3   Array Sections 

 Often it is necessary to access part of an array rather than the whole, and this is possible 
with Fortran’s powerful array manipulation features. 

    8.3.1   Example 3: Rank 1 Array Sections 

 Consider the following:

    program ch0803   
   implicit none   
   integer , dimension(−5:5) :: x   
   integer :: I 
    x(−5:−1)  = −1   
   x(0)  = 0   
   x(1:5)  =  1   
   do I =   -5,5 
    print *,' ',I,' ',x(I)      

   end do      
   end program ch0803     

 The statement

    x(−5:−1)  =  −1    

is working with a section of an array. It assigns the value –1 to elements x(–5) 
through x(–l). 

 The statement

    x(1:5)  =  1    

is also working with an array section. It assigns the value 1 to elements x(1) through x(5).  

    8.3.2   Example 4: Rank 2 Array Sections 

 In Chap.   6     we gave an example of a table of examination marks, and this is given 
again below:  

 Name  Physics  Maths  Biology  History  English  French 

 Fowler L.  50  47  28  89  30  46 
 Barron L.W  37  67  34  65  68  98 
 Warren J.  25  45  26  48  10  36 
 Mallory D.  89  56  33  45  30  65 
 Codd S.  68  78  38  76  98  65 
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 The following program reads the data in, scales column 3 by 2.5 as the Biology 
marks were out of 40 (the rest are out of 100), calculates the averages for each 
subject and for each person and prints out the results.  
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 The statement

    read *, exam_results(r, 1:ncol)    

uses sections to replace the implied do loop in the earlier example. 
 The statement

    Exam_Results(1:nrow,3)  =  2.5 * Exam_Results(1:nrow,3)    

uses array sections in the arithmetic and the assignment.   

    8.4   Array Constructors 

 Arrays can be given initial values in Fortran using array constructors. Some exam-
ples are given below. 

    8.4.1   Example 5: Rank 1 Array Initialisation – Explicit Values    

 The statement

    real , dimension(1:n) :: RainFall  =  &   
   (/3.1,2.0,2.4,2.1,2.2,2.2,1.8,2.2,2.7,2.9,3.1,3.1/)    

provides initial values to the elements of the array Rainfall.  
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    8.4.2   Example 6: Rank 1 Array Initialisation Using an Implied 
do Loop 

 The next example uses a simple variant:       

 The statement

    integer , dimension(1:n) :: Litre =   [(i,i =   1,n)]    

initialises the 10 elements of the Litre array to the values 1,2,3,4,5,6,7,8,9,10 
respectively.  

    8.4.3   Example 7: Rank 1 Arrays and the  dot_product  Intrinsic 

 The following example uses an array constructor and the intrinsic procedure  dot_product: 

    program ch0807   
   implicit none   
   integer , dimension(1:3) :: X,Y   
   integer :: result 
    X =   [1,3,5]   
   Y =   [2,4,6]   
   result =   dot_product(X,Y)   
   print *,result      

   end program ch0807    
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and result has the value 44, which is obtained by the normal mathematical dot 
product operation, 1*2 + 3*4 + 5*6. 

 The general form of the array constructor is [ list of expressions ] or (/ a list of 
expressions/) where each expression is of the same type.  

    8.5   Initialising Rank 2 Arrays 

 To construct arrays of higher rank than one the intrinsic function RESHAPE must 
be used. An introduction to intrinsic functions is given in Chap.   12    , and an alpha-
betic list with a full explanation of each function is given in Appendix C. To use it 
in its simplest form:

    Matrix  =  reshape ( Source, Shape)    

where Source is a rank 1 array containing the values of the elements required in the 
new array, Matrix, and Shape is a rank 1 array containing the shape of the new array 
Matrix. 

 We consider the rank 1 array B = (1,3,5,7,9,11), and we wish to store these values 
in a rank 2 array A, such that A is the matrix:

     

1 7

3 9

5 11

A

æ ö
ç ÷= ç ÷
ç ÷
è ø     

 The following code extract is needed:

    integer, dimension(1:6) :: B   
   integer, dimension(1:3, 1:2) :: A 

    B  =  (/1,3,5,7,9,11/)   
   A  =  reshape(B, (/3,2/))        

 Note that the elements of the source array B must be stored in the array element 
order of the required array A.  

    8.5.1   Example 8: Initialising a Two Dimensional Array 

 The following example illustrates the additional forms of the  reshape  function that 
are used when the number of elements in the source array is less than the number of 
elements in the destination. The complete form is

    reshape (source, shape,   pad, order)     
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    8.6   Miscellaneous Array Examples 

 The following are examples of some of the fl exibility of arrays in Fortran.  

    8.6.1   Example 9: Rank 1 Arrays and a Step Size of 2 in Implied 
Do Loop 

 Consider the following example:

    program ch0809   
   implicit none   

  Pad  and  Order  are optional. See Appendix C for a complete explanation of Pad 
and Order:   
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   integer : : I   
   integer , dimension(1:10) :: x =   (/(i,i =   1,10)/)   
   integer , dimension(1:5) :: odd =   (/(i,i =   1,10,2)/)   
   integer , dimension(1:5) :: even 

    even =   x(2:10:2)   
   print *,' x'   
   print *,x   
   print *,' odd'   
   print *,odd   
   print *, ' even'   
   print *,even      

   end program ch0809     

 The statement

    integer , dimension(1:5) :: odd =   (/(i,i =   1,10,2)/)    

steps through the array 2 at a time. 

 The statement

    even =   x(2:10:2)    

shows an array section where we go from elements two through ten in steps of two. 
The 2:10:2 is an example of a subscript triplet in Fortran, and the fi rst 2 is the lower 
bound, the 10 is the upper bound, and the last 2 is the increment. Fortran uses the 
term stride to mean the increment in a subscript triplet.  

    8.6.2   Example 10: Rank 1 Array and the  sum  Intrinsic Function 

 The following example is based on ch0805. It uses the sum intrinsic to calculate the 
sum of all the values in the Rainfall array.

    program ch0810   
   implicit none   
   real :: Total =   0.0, Average =   0.0   
   real , dimension(12) :: RainFall  =  &
(/3.1,2.0,2.4,2.1,2.2,2.2,1.8,2.2,2.7,2.9,3.1,3.1/)   

   integer :: Month 

    Total  =  sum(RainFall)   
   Average  =  Total / 12   
   print *,' Average monthly rainfall was'   
   print *, Average      

   end program ch0810     

 The statement

    Total  =  sum(RainFall)    
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replaces the statements below from the earlier example

    do Month =   1,n     
Total  =  Total  +  RainFall(Month)      

   enddo     

 In this example sum adds up all of the elements of the array Rainfall. 
 So we have three ways of processing arrays:

   Element by element.  • 
  Using sections.  • 
  On a whole array basis.    • 

 The ability to use sections and whole arrays when programming is a major 
advance of the element by element processing supported by Fortran 77.  

    8.6.3   Example 11: Rank 2 Arrays and the  sum  Intrinsic 
Function 

 This example is based on the earlier exam results program:  
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 This example has several interesting array features:

   We initialise a rank 1 array with the values we want in our exam marks array. The data • 
are laid out in the program as they would be in an external fi le in rows and columns.  
  We use  • reshape  to initialise our exam marks array. We use the fourth  parameter 
(/2,1/) to populate the rank 2 array with the data in row order.  
  We use  • sum  with a  dim  of 1 to compute the sums for the subjects.  
  We use  • sum  with a  dim  of 2 to compute the sums for the people.     

    8.6.4   Example 12: Masked Array Assignment and the Where 
Statement 

 Fortran has array assignment both on an element by element basis and on a whole 
array basis. There is an additional form of assignment based on the concept of a 
logical mask. 

 Consider the example of time zones given in Chap.   7    . The Time array will have 
values that are both negative and positive. We can then associate the positive values 
with the concept of east of the Greenwich meridian, and the negative values with the 
concept of west of the Greenwich meridian e.g.:   
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    8.6.5   Notes 

 The arrays must be conformable, i.e., in our example Time and Direction are the 
same shape. 

 The selective assignment is achieved through the where statement. 
 Both the where and elsewhere blocks can be executed. The formal syntax is:

    where (array logical assignment) 
    array assignment block      

   elsewhere 
    array assignment block      

   end where     

 The fi rst array assignment is executed where Time is positive and the is executed 
where Time is negative. For further coverage of logical expressions see Chaps.   15     
and   18    .   
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    8.7   The  forall  Statement and  forall  Construct 

 The  forall  statement and  forall  construct were introduced into Fortran to 
keep it inline with High Performance Fortran – HPF. They indicate to the compiler 
that the code can be optimised on a parallel processor. Consider the following exam-
ple where a value is subtracted from the diagonal elements of a square matrix A:

    forall (I =   1:N)
     A(I, I)  =  A(I,I) – Lamda      

   end forall     

 The forall construct allows the calculations to be carried out simultaneously in a 
multiprocessor environment. 

    8.7.1   Syntax 

     forall ( triplet [ , triplet ] … [ , mask ] )   
   variable  =  expression   
   forall ( triplet [ , triplet ] … [ , mask ] )   
   pointer =  >  target     

 The triplet specifi es a value set for an index variable. It has the following 
syntax:

    index  =  fi rst : last [ : stride ]     

 First, last and stride are scalar integer expressions. 
 Mask is a scalar logical expression:

    [ name : ] forall ( triplet [ , triplet ] . . . [ , mask ] )   
   …   
   end forall [ name ]     

 Name is an optional name, which identifi es the  forall  construct.  

    8.7.2   Array Element Ordering and Physical and Virtual Memory 

 Fortran compilers will store arrays in memory according to the array element order-
ing scheme. Whilst the standard says nothing about how this is implemented it 
generally means in contiguous memory locations. 

 There will be a limit to the amount of physical memory available on any computer 
system. To enable problems that require more than the amount of physical memory 
available to be solved, most implementations will provide access to virtual memory, 
which in reality means access to a portion of a physical disk. 
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 Access to virtual memory is commonly provided by a paging mechanism of 
some description. Paging is a technique whereby fi xed-sized blocks of data are 
swapped between real memory and disk as required. 

 In order to minimise paging (and hence reduce execution time) array operations 
should be performed according to the array element order. 

 Page sizes, past and present, include:

   Sun UltraSparc – 4Kb, 8Kb.  • 
  DEC Alpha – 8Kb, 16Kb, 32Kb, 64Kb.  • 
  Intel 80x86 – 4Kb.  • 
  Intel Pentium PIII – 4Kb, 2Mb, 4Mb.  • 
  AMD64 – 4Kb, 2Mb, 4Mb – legacy mode  • 
  AMD64 – 4Kb, 2Mb, 1Gb – 64 bit mode  • 
  Intel 64 and IA – 32 – 4Kb, 2Mb, 1Gb – depending on mode.    • 

 See the references at the end of the chapter for more details.   

    8.8   Summary 

 We can now perform operations on whole arrays and partial arrays (array sections) 
without having to refer to individual elements. This shortens program development 
time and greatly clarifi es the meaning of programs. 

 Array constructors can be used to assign values to rank 1 arrays within a program 
unit. The  reshape  function allows us to assign values to a two or higher rank array 
when used in conjunction with an array constructor. 

 We have introduced the concept of a deferred-shape array. Arrays do not need to 
have their shape specifi ed at compile time, only their rank. Their actual shape is 
deferred until runtime. We achieve this by the combined use of the allocatable attri-
bute on the variable declaration and the allocate statement, which makes Fortran a 
very fl exible language for array manipulation.  

    8.9   Problems 

     1.    Give the rank, bounds, extent and size of the following arrays:

    real , dimension(1:15) :: A   
   integer , dimension(1:3, 0 : 4) :: B   
   real , dimension(−2:2,0:1,1:4) :: C   
   integer , dimension(0:2,1:5) :: D   

  Which two of these arrays are conformable?     
    2.    Write a program to read in fi ve rank 1 arrays, A, B, C, D, E and then store them 

as fi ve columns in a rank 2 array TABLE.  
    3.    Take the fi rst part of Problem 5 in Chap.   7     and rewrite it using the  sum  intrinsic 

function.      
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 Aims 

 The aims here are to introduce the facilities for producing neat output and to show 
how to write results to a fi le, rather than to the terminal. In particular:

   The A, I, E, F, and X layout or edit descriptors.  • 
  The open, write, and close statements.    • 

    9.1   Introduction    

 When you have used print * a few times it becomes apparent that it is not always as 
useful as it might be. The data are written out in a way which makes some sense, but 
may not be especially easy to read. Real numbers are written out with all their 
signifi cant places, which is very often rather too many, and it is often diffi cult to line 
up the columns for data which are notionally tabular. It is possible to be much more 
precise in describing the way in which information is presented by the program. To 
do this, we use format statements. Through the use of the format we can:

   Specify how many columns a number should take up.  • 
  Specify where a decimal point should lie.  • 
  Specify where there should be white space.  • 
  Specify titles.    • 

 The format statement has a label associated with it; through this label, the print 
statement associates the data to be written with the form in which to write them. 

    Chapter 9   
 Output of Results             

 Why, sometimes I’ve believed as many as six impossible things 
before breakfast. 

 Lewis Carroll, Through the Looking-Glass 
and What Alice Found There 
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    9.2   Example 1: Integers – I Format or Edit Descriptor 

 Integer format is reasonably straightforward, and offers clues for formats used in 
describing other numbers. I3 is an integer taking three columns. The number is right 
justifi ed, a bit of jargon meaning that it is written as far to the right as it will go, so 
that there are no trailing or following blanks. Consider the following example:

    program ch0901      
   implicit none   
   integer :: T 
    print *, ' '   
   print *,' Twelve times table'   
   print *, ' '   
   do T=1,12 
    print 100, T,T*12   
   100 format(' ',I3,' * 12 = ',I3)      

   end do      
   end program ch0901     

 The fi rst statement of interest is

    print 100, T,T*12     

 The 100 is a statement label. There must be a format statement with this label in 
the program. The variables to be written out are T and 12*T. 

 The second statement of interest is

    100 format(' ',I3,' * 12  =  ',I3)     

 Inside the brackets we have

    ''  print out what occurs between the quote marks, in this case one space.  
  , The comma separates items in the format statement.  
  I3 print out the fi rst variable in the print statement right justifi ed in three 
columns  
  , Item separator.  
   '  * 12 =  '  print out what occurs between the quote characters.  
  , Item separator  
  I3 print out the second variable (in this case an expression) right justifi ed in 
three columns.    

 All of the output will appear on one line.  
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    9.3   Example 2: The x Edit Descriptor 

 Now consider the following example:

    program ch0902   
   implicit none   
   integer :: big=10   
   integer :: I 

    do I=1,40 
    print 100,i,big   
   100 format(1x,i3,2x,i12)   
   big=big*10      

   end do      
   end program ch0902     

 The new feature in the format statement is the 1x and 2x edit descriptor. This is 
another way of getting white space into the output, and in this case one space and 
two spaces, respectively. 

 This program will loop and the variable big will overfl ow, i.e., go beyond the 
range of valid values for a 32-bit integer. Does the program crash or generate a run 
time error? This is the output from the NAG and Intel compilers.  

  1       10  
  2    100  
  3    1000  
  4    10000  
  5    100000  
  6    1000000  
  7    10000000  
  8    100000000  
  9    1000000000  
  10    1410065408  
  11    1215752192  
  12    −727379968  
  13    1316134912  
  14    276447232  
  15    −1530494976  
  16    1874919424  
  17    1569325056  
  18    −1486618624  
  19    −1981284352  
  20    1661992960  
  21    −559939584  
  22    −1304428544  
  23    −159383552  
  24    −1593835520  
  25    1241513984  

(continued)
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 (continued) 

  26    −469762048  
  27    −402653184  
  28    268435456  
  29    −1610612736  
  30    1073741824  
  31    −2147483648  
  32    0  
  33    0  
  34    0  
  35    0  
  36    0  
  37    0  
  38    0  
  39    0  
  40    0  

 Is there a compiler switch to trap this kind of error?  

    9.4   Reals – F Format or Edit Descriptor 

 The F format can be seen as an extension of the integer format, but here we have to 
deal with the decimal point. The form of the F format specifi es where the decimal 
point will occur, and how many digits follow it. Thus, F7.4 means:

   There is a total width of seven.  • 
  There is a decimal point  • 
  There are four digits after the decimal point.    • 

 This means that since the decimal point is also written out, there may be up to 
two digits before the decimal point. As in the case of the integer, any minus sign is 
part of the number, and would take up one column. Thus, the format F7.4 may be 
used for numbers in the range 

 −9.9999 to 99.9999    

 Let us look at the last example more closely. When a number is written out, it is 
rounded; that is to say, if we write out 99.99999 in an F7.4 format, the program will 
try to write out 100.0000! This is bad news, since we have not left enough room for 
all those digits before the decimal point. What happens? Asterisks will be printed. 
In the example above, a number out of range of the format’s capabilities would be 
printed as:

    *******     
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 What would a format of F7.0 do? Again, seven columns have been set aside to 
accommodate the number and its decimal point, but this time no digits follow the 
point.

    99.   
   −21375.    

are examples of numbers written in this format. With an F format, there is no way 
of getting rid of the decimal point. 

 The numbers making up the parts of the descriptors must all be positive integers. 
The defi nition of a real format is therefore F followed by two integer numbers, sepa-
rated by a decimal point. The fi rst integer must exceed the second, and the second 
must be greater than or equal to zero. The following are valid examples:

    F4.0   
   F6.2   
   F12.2   
   F16.8    

but these are not valid:

    F4.4   
   F6.8   
   F-3.0   
   F6   
   F.2     

 The program in Section  9.3.1  illustrates the use of both I format and F format. 

    9.4.1   Example 3: Metric and Imperial Conversion 
and the f Edit Descriptor 

     program ch0903   
   implicit none   
   integer :: fl uid   
   real :: litres   
   real :: pints 

    do fl uid=1,10
     litres = fl uid / 1.75   
   pints = fl uid * 1.75   
   print 100 , pints,fl uid,litres   
   100 format(' ',F7.3,' ',I3,' ',F7.3)      

   end do      
   end program ch0903     

 Pints will be printed out in F7.3 format, fl uid will be printed out in I3 format and 
litres will be printed out in F7.3 format.  
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    9.4.2   Example 4: Overfl ow and Underfl ow and the f Edit Descriptor 

 Consider the following program:  

 In this program the variable small will underfl ow and big will overfl ow. The 
output from the Intel compiler is:  

 When the number is too small for the format, the printout is what you would 
probably expect. When the number is too large, you get asterisks. When the num-
ber actually overfl ows the Intel compiler tells you that the number is too big and 
has overfl owed. However the program ran to completion and did not generate a 
run time error.   
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    9.5   Reals – E Format or Edit Descriptor 

 The exponential or scientifi c notation is useful in cases where we need to provide a 
format which may encompass a wide range of values. If likely results lie in a very 
wide range, we can ensure that the most signifi cant part is given. It is possible to 
give a very large F format, but alternatively, the E format may be used. This takes a 
form such as

    E10.4    

which looks something like the F, and may be interpreted in a similar way. The 10 
gives the total width of the number to be printed out, that is, the number of columns 
it will take. The number after the decimal point indicates the number of positions to 
be written after the decimal point. Since all exponent format numbers are written so 
that the number is between 0.1 and 0.9999…, with the exponent taking care of scale 
shifts, this implies that the fi rst four signifi cant digits are to be printed out. 

 Taking a concrete example, 1,000 may be written as 10**3, or as 0.1 * 10**4. 
This gives us the two parts: 0.1 gives the signifi cant digits (in this case only one 
signifi cant digit), while the 10**4 gives the exponent, namely 4 or +4. In a form that 
looks more like Fortran, this would be written .1E+04, where the E+04 means 
10**4. 

 There is a minimum size for an exponential format. Because of all the extra bits 
and pieces it requires:

   The decimal point.  • 
  The sign of the entire number.  • 
  The sign of the exponent.  • 
  The magnitude of the exponent.  • 
  The E.    • 

 The width of the number less the number of signifi cant places should not be less 
than 6. In the example given above, E10.4 meets this requirement. When the exponent 
is in the range 0–99, the E will be printed as part of the number; when the exponent is 
greater, the E is dropped, and its place is taken by a larger value; however, the sign of 
the exponent is always given, whether it is positive or negative. The sign of the whole 
number will usually only be given when it is negative. This means that if the numbers 
are always positive, the rule of six given above can be modifi ed to a rule of fi ve. It is safer 
to allow six places over, since, if the format is insuffi cient, all you will get are asterisks. 

 The most common mistake with an E format is to make the edit descriptor too 
small, so that there is insuffi cient room for all the padding to be printed. Formats 
like E8.4 just don’t work (on output anyway). The following four are valid E 
formats on output:

    E9.3   
   E11.2   
   E18.7   
   E10.4    
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but the next fi ve would not be acceptable as output formats, for a variety of 
reasons:

    E11.7   
   E6.3   
   E4.0   
   E10   
   E7.3     

    9.5.1   Example 5: Simple e Edit Descriptor Usage 

 This is the same as ch0904 except that we have replaced the F formatting with E 
formatting:  

 We now have three ways to print out fl oating point numbers and each has its use. 
The print * is very useful when developing programs.   

    9.6   Spaces 

 You have seen two ways of generating spaces on output. The fi rst is to use  '  
characters to enclose blanks in the format statement. The second is to use the X edit 
descriptor. Consider the following.

    print 100, ALPHA,BETA   
   100 format(1X,F10.4,10X,F10.3)     

 The 10X is read rather like any of the other format elements – logically it should 
have been X10, to correspond to I10 or F10.4, but that would be allowing intuition 
to run away with you. Clearly the X3J3 committee felt it important that Fortran 
should have inconsistencies, just like a natural language. 
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 Remember that these blanks are in addition to any generated as a result of the 
leading blanks on numbers (if any are present). if you wish to leave a single space, 
you must still precede the X by a number (in this case, 1); simply writing X is illegal. 
The general form is therefore a positive integer followed by X.  

    9.7   Characters – A Format or Edit Descriptor 

 This is perhaps the simplest output of all. Since you will already have declared the 
length of a character variable in your declarations,

    character (10) :: B    

when you come to write out B, the length is known – thus you need only specify that 
a character string is to be output:

    print 100,B   
   100 format(1X,A)    

if you feel you need a little extra control, you can append an integer value to the 
A, like A10 (A9 or A1), and so on. if you do this, only the fi rst 10 (9 or 1) characters 
are written out; the remainder are ignored. Do note that 10A1 and A10 are not the 
same thing. 10A1 would be used to print out the fi rst character of ten character vari-
ables, while A10 would write out the fi rst 10 characters of a single character vari-
able. The general form is therefore just A, but if more control is required, this may 
be followed by a positive integer. 

    9.7.1   Example 6: Character Output and the a Edit Descriptor 

 The following program is a simple rewrite of a program from Chap.   4    .

    program ch0906   

   !   
   ! This program reads in and prints out   
   ! your fi rst name   
   !   
   implicit none   
   character (20) :: fi rst_name   
   ! 
    print *,' type in your fi rst name.'   
   print *,' up to 20 characters'   
   read *,fi rst_name   
   print 100,fi rst_name   
   100 format(1x,A)      

   !   
   end program ch0906      
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    9.7.2   Example 7: Headings 

 A simple heading is given in the program below:

    program ch0907   
   implicit none   
   integer :: fl uid   
   real :: litres   
   real : : pints 
    print *,' Pints  Litres'   
   do fl uid=1,10 
    litres = fl uid / 1.75   
   pints = fl uid * 1.75   
   print 100 , pints,fl uid,litres   
   100 format(' ',f7.3,' ',i3,' ',f7.3)      

   end do      
   end program ch0907       

    9.8   Example 8: Mixed Type Output in a Format Statement 

 The following example shows how to mix and match character, integer and real 
output in one format statement:

    program ch0908   
   implicit none   
   character (len=15) :: Firstname   
   integer :: age   
   real :: weight   
   character (len=1) :: sex 
    print *,' type in your fi rst name '   
   read *,Firstname   
   print *,' type in your age in years'   
   read *,age   
   print *,' type in your weight in kilos'   
   read *,weight   
   print *,' type in your sex (f/m)'   
   read *,sex   
   print *,' your personal details are'   
   print *   
   print 100   
   100 format(4x,'fi rst name', 4x , 'age' , 1x , & 'weight' 
, 2x , 'sex')   
   print 200 , fi rstname, age , weight , sex   
   200 format (1x , a , 2x , i3 , 2x , f5.2 , 2x, a)      

   end program ch0908     
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 Take care to match up the variables with the appropriate edit descriptors. You also 
need to count the number of characters and spaces when lining up the heading.  

    9.9   Common Mistakes 

 It must be stressed that an integer can only be printed out with an I format, and a real 
with an F (or E) format. You cannot use integer variables or expressions with F or E 
edit descriptors or real variables and expressions with I edit descriptors. if you do, 
unpredictable results will follow. There are (at least) two other sorts of errors you 
might make in writing out a value. You might try to write out something which has 
never actually been assigned a value; this is termed an indefi nite value. You might 
fi nd that the letter I is written out. In passing, note that many loaders and link editors 
will preset all values to zero – i.e., unset (indefi nite) values are actually set to zero. 
On better systems there is generally some way of turning this facility off, so that 
undefi ned is really indefi nite. More often than not, indefi nite values are the result of 
mistyping rather than of never setting values. It is not uncommon to type O for 0, or 
1 for either I or l. The other likely error is to try to print out a value greater than the 
machine can calculate – out of range values. Some machines will print out such 
values as R, but some will actually print out something which looks right, and 
such overfl ow and underfl ow conditions can go unnoticed. Be wary.  

    9.10   Open (and Close) 

 One of the particularly powerful features of Fortran is the way it allows you to 
manipulate fi les. Up to now, most of the discussion has centred on reading from and 
writing to the terminal. It is also possible to read and write to one or more fi les. This 
is achieved using the open, write, read and close statements. In a later chapter we 
will consider reading from fi les but here we will concentrate on writing. 

    9.10.1   The Open Statement 

 This statement sets up a fi le for either reading or writing. A typical form is

    open (unit =   1,fi le =   'data.txt')     

 The fi le will be known to the operating system as data.txt (or will have data as the 
fi rst part of its name), and can be written to by using the unit number. This statement 
should come before you fi rst read from or write to the fi le data. 

 It is not possible to write to the fi le data.txt directly; it must be referenced through 
its unit number. Within the Fortran program you write to this fi le using a statement 
such as
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    write(unit =   1,fmt =   100) XVAL,YVAL    

or

    write(1,100) XVAL,YVAL     

 These two statements are equivalent. Besides opening a fi le, we really ought to 
close it when we have fi nished writing to it:

    close(unit =   1)     

 In fact, on many systems it is not obligatory to open and close all your fi les. 
Almost certainly, the terminal will not require this, since INPUT and OUTPUT 
units will be there by default. At the end of the job, the system will close all your 
fi les. Nevertheless, explicit open and close cannot hurt, and the added clarity gener-
ally assists in understanding the program.  

    9.10.2   Example 9: Open and Close Usage 

 The following program contains all of the above statements:

    program ch0909   
   implicit none   
   integer :: fl uid   
   real :: litres   
   real :: pints 
    open (unit=1,fi le='ch0909.txt')   
   write(unit=1,fmt=200)   
   200 format(' Pints   Litres')   
   do fl uid=1,10 
    litres = fl uid / 1.75   
   pints = fl uid * 1.75   
   write(unit=1,fmt=100) pints,fl uid,litres   
   100 format(' ',f7.3,' ',i3,' ',f7.3)      

   end do   
   close(1)      

   end program ch0909      

    9.10.3   Writing 

 Print is always directed to the fi le OUTPUT; in the case of interactive working, this 
is the terminal. This is not a very fl exible arrangement. write allows us to direct 
output to any fi le, including OUTPUT. The basic form of the write is

    write(6,100) X,Y,Z    
or

    write(unit =   6,fmt =   100) X,Y,Z     
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 The latter form is more explicit, but the former is probably the one most widely 
used. We have an example here of the use of positionally dependent parameters in 
the fi rst case and equated keywords in the second. With the exceptions of the print 
statement and the read * form of the read, all of the input/output statements allow 
the unit number and the format labels to be specifi ed either by an equated keyword 
(or specifi er) or in a positionally dependent form. if you use the explicit unit = and 
fmt = it does not matter what order the elements are placed in, but if you omit these 
keywords, the unit number must come fi rst, followed by the format label. 

 unit = 6 means that the output will be written to the fi le given the unit number 6. 
In the next chapter we will cover the way in which you may associate fi le names and 
unit numbers, but, for the moment, we will assume that the default is being used. 
The name of the fi le, as defi ned by the system, will depend on the particular system 
you use; a likely name is something like data. A great many of computing’s minor 
complexities can be clarifi ed by simple experimentation.

   fmt = 100 simply gives the label of the format to be used.    

 The overworked asterisk may be used, either for the unit or for the format:

   unit = * will write to OUTPUT (the terminal)  
  fmt = * will produce output controlled by the list of variables, often called list 
directed output.    

 The following three statements are therefore equivalent:

    write(unit=*,fmt=*) X,Y,Z   
   write(*,*) X,Y,Z   
   print*,X,Y,Z     

 There are other controls possible on the write, which will be elaborated later.   

    9.11   Repetition 

 Often we need to print more than one number on a line and want to use the same 
layout descriptor. Consider the following:

    print 100,A,B,C,D    

if each number can be written with the same layout descriptor, we can abbreviate 
the format statement to take account of the pattern:

    100 format(1X,4F8.2)    

is equivalent to

    100 format(1X,F8.2,F8.2,F8.2,F8.2)    

as you might anticipate. If the pattern is more complex, we can extend this approach:

    print 100,I,A,J,B,K,C   
   100 format(1X,3(I3,F8.2))     
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 Bracketing the description ensures that we repeat the whole entity:

    100 format(1X,3(I3,F8.2))    

is equivalent to

    100 format(1X,I3,F8.2, I3,F8.2, I3,F8.2)     

 Repetition with brackets can be rather more complex. In order to give some 
overview of formatted Fortran output, it is helpful to delve a little into the history 
of the language. Many of the attributes of Fortran can be traced back to the days of 
single-user mainframes (with often a fraction of the power of many contemporary 
microcomputers and workstations). These would generally take input from punched 
cards (the traditional 80-column Hollerith card), and would generate output on a line 
printer. In this sort of environment, the individual punched card had a signifi cance 
which lines in a fi le do not have today. Each card could be seen as a single entity – a 
physical record unit. The record was seen as an element of a subdivision within a fi le. 
Even then, there was some confusion between the notion of physical records and fi les 
split into logically distinct subunits, since these sub-units might also be termed 
records. The present Fortran standard merely says that a record does not necessarily 
correspond to a physical entity, although a punched card is usually considered to be 
a record. This leaves us sitting at our terminals in a bemused state, especially since 
we may have no idea what a punched card looks like (an ideal state of affairs!). 

 It is important to have some notion of a record, since most of the formal defi ni-
tions dealing with output (and input) are couched in terms of records. Every time an 
input or output statement is executed your nominal position in the fi le changes. if we 
think in terms of individual records (which may be cards), the notions of current, 
preceding and next record seem fairly straightforward. The current record is simply 
the one we have just read or written, and the other defi nitions follow naturally. 

 The situation becomes less clear when we realise that a single output statement 
may generate many lines of output:

    write(unit =   6,fmt =   101) A,B,C   
   101 format(1X,F10.4)    

writes out three separate lines. Looking at the output alone, there is no way to 
distinguish this from the output generated by

    write(unit =   6,fmt =   101) A   
   write(unit =   6,fmt =   101) B   
   write(unit =   6,fmt =   101) C   
   101 format(1X,F10.4)     

 In the latter case we would probably be happy to consider each line a record, 
although in the previous example we might swither between considering all three 
lines (generated by a single statement) a single record or three records. Consider the 
fi rst of these two examples more closely; each time the format is exhausted – that is 
to say, each time we run out of format description, we start again on a new line 
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(a new record). A new record is begun as each F10.4 is begun. The correct 
interpretation is therefore that three records have been written. 

 The same sort of thing happens in more complex format statements:

    write(unit =   6,fmt =   105) X,I,Y   
   105 format(1X,F8.4,I3,(F8.4))    

would write out a single record containing a real, an integer and a real. Using the 
same format statement with write ( unit = 6, fmt = 105 ) X,I,Y,Z would write out two 
records. The fi rst containing the values of X, I and Y and the second containing 
only Z. if there were still more values

    write(unit =   6,fmt =   105) X,I,Y,Z,A    

would print out three records. The group in brackets – the (F8.4) – is repeated until 
we run out of items.  

    9.12   Some More Examples 

 Since it is the last open bracket which determines the position at which the format 
is repeated, simply writing

    write(unit =   6,fmt =   100) A,I,B,C,J   
   100 format(1X,F8.4,I3,F8.2)    

would imply that A, I and B would be written on one line then, returning to the last 
open brackets (in this case the only open brackets), a new record (or line) is begun 
to write out C and J. A statement like

    100 format(1X,(F8.4),I3,F8.2)    

would return to the (F8.4) group, and then continue to the I3 and F8.2 before repeat-
ing again (if necessary). The same thing happens if the (F8.4) had no brackets 
around it. On the other hand

    100 format(1X,(F8.4),I3,(F8.2))    

contains superfl uous brackets around the F8.4, since the repeat statement will never 
return to that group. Are you confused yet? This all seems very esoteric, and really, 
we have only hinted at the complexity which is possible. It is seldom that you have 
to create complex format statements, and clarity is far more important than brevity. 

 When patterned or repeated output is used, we may want to stop when there are 
no more numbers to write out. Take the following example:

    write(unit =   1,fmt =   100) A,B,C,D   
   100 format(1X,4(F6.1,','))     

 This will give output which looks like

    37.4, 29.4, 14.2, -9.1,     
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 The last comma should not be there. We can suppress these unwanted elements 
by using the colon:

    100 format(1X,4(F6.1:','))    

which would then give us

    37.4, 29.4, 14.2, -9.1     

 Since we run out of data at the fourth item, D, the output following is not written 
out. It is a small point, but it does look a lot tidier. There are other ways of achieving 
the same thing. 

 This helps to illustrate another point, namely that you may have formats which 
are more extensive than the lists which reference them:

    write(unit =   1,fmt =   100) A,B,C   
   write(unit =   1,fmt =   100) X,Y   
   100 format(1X,6 F8.2)     

 Both write statements use the format provided, although they write out different 
numbers of data, and neither uses up the whole format.  

    9.13   Example 10: Implied Do Loops and Array 
Sections for Array Output 

 The following program shows how to use both implied do loops and array sections 
to output an array in a neat fashion: 
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 The print 100 uses an implied do loop and the print 110 uses an array section. 

    9.13.1    Example 11: Whole Array Output 

 Take care when using whole arrays. Consider the following program:

    program ch0911   
   real , dimension(10,10) :: Y   
   integer :: NROWS=6   
   integer :: NCOLS=7   
   integer :: I,J   
   integer :: K=0 
    do I=1,NROWS 
    do J=1,NCOLS 
    K=K+1   
   Y(I,J)=K      

   end do      
   end do   
   write(unit=*,fmt=100)Y   
   100 format(1X,10F10.4)      

   end program ch0911     

 There are several points to note with this example. Firstly, this is a whole array 
reference, and so the entire contents of the array will be written; there is no scope 
for fi ne control. Secondly, the order in which the array elements are written is 
according to Fortran’s array element ordering, i.e., the fi rst subscript varying 1–10 
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(the array bound), with the second subscript as 1, then 1–10 with the second 
subscript as 2 and so on; the sequence is 

 Thirdly we have defi ned values for part of the array.   

    9.14   Formatting for a Line Printer 

 There is one extension to format specifi cations which is relevant to line printers. 
Fortran defi nes four special characters which have an effect on standard line printers 
when they occur in the fi rst character position of a line. This means that a line 
printer which is not under your immediate control can be used to produce neat 
output by sending a fi le to be printed on it. This has a variety of names including, 
spooling, queueing and routing depending on the system. You should check with 
your local system for the exact mechanism to achieve this. 

 The special characters are +, 0, 1 and blank. To be used, they must be the fi rst 
character of the output in each line – as if they were to be printed in column 1. In 
fact, a standard line printer never prints a character that occurs in column 1 at all. 

 Whenever a write statement is begun, the printer advances to a new record; i.e., 
a new line is begun before any data are transferred. if the fi rst character is a special 
character, then this will be interpreted by the line printer. if the fi rst character to be 
printed is a blank, the printer continues printing on that line. The fi rst character is 
also known as the carriage control character. 

 The blank is a do nothing special control. It signifi es that the line is to be printed 
as it is. 

 The zero indicates that you wish to leave an extra line; this is often useful in 
spacing out results to make the output more readable. 

 The 1 makes the output skip down to the top of the next page. This is clearly useful 
for separating logically distinct chunks of output. If you obtain a line printer listing 
of your compiled program, each segment will start at the top of a new page. 

 The plus is a no advance or overprint character. It suppresses the effect of the line 
advance which a write generates. No new line is begun and the previous line is 
overprinted with the new. Overprinting can be useful especially when you wish to 
print out grey scale maps but its use is rather restricted. In particular, it can be a 
dangerous control character. If you have a format starting with a plus in a loop, you 
can make the printer overprint again and again and again . . . and again and again, 
until it has hammered itself into a pulp. This is not a good idea. 

 Similarly, accidental use of the 1 as a control character in a loop will give you 
lots of blank pages. It is just a bit embarrassing to be presented with a 6 in. stack of 
paper which is (almost) blank, because you had a 1 repeatedly in column 1. 
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    9.14.1   Mechanics of Carriage Control 

 The following are all quite reasonable ways of generating the blank in column 1:

    write(unit =   6,fmt =   100)A   
   100 format(' ',F10.4)    

or

    write(unit =   6,fmt =   100)A   
   100 format(1X,F10.4)    

or

    write(unit =   6,fmt =   100)A   
   100 format(' THE ANSWER IS ',F10.4)     

 Note, however, that

    write(unit =   6,fmt =   100)A   
   100 format(F8.4)    

could result in problems. if A contained the value 100.2934, the result on a line 
printer would be

    00.2934    

printed at the top of a new page. The 1 is taken as carriage control, and the rest of 
the line then printed. 

 Accidentally printing zeros in column 1 is a little more diffi cult, but

    write(unit =   6,fmt =   100)I   
   100 format(I1)    

might just do it. Don’t. 
 Remember that this only applies to line printer output, and not to the terminal. 

Since Fortran only defi nes four characters as carriage control, you will fi nd that 
anything else in column 1 will give unpredictable results. On some systems, a fair 
number of alternatives may be defi ned by the installation, and they may do some-
thing useful. On other systems, they may do something, but they may also fail to 
print the rest of the line. This can be very perplexing. Beware.  

    9.14.2   Generating a New Line on Both Line Printers 
and Terminals 

 There are several ways of generating new lines, other than with a 0 in column 1 of 
your line printer output. A more general approach, which works on both terminals 
and line printers, is through the oblique or slash, /. Each time this is encountered in 
a format statement, a new line is begun.
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    print 101,A,B   
   101 format(1X,F10.4/1X,F10.4)    

would give output like

    100.2317   
   −4.0021     

 This is the same as (F10.4) would have given, but clearly it opens up lots of 
possibilities for formatting output more tidily:

 may be easier to read than using only one line, and it is certainly more compact to 
write than using three separate print statements. It is not necessary to separate / by 
commas, although if you do nothing catastrophic will happen. 

 You may also begin a format description with a /, in order to generate an extra 
line or even generate lots of lines with lots of slashes; e.g.,

    write(unit =   6,fmt =   103)A,B   
   103 format(//1X,F10.4,4(/),1X,F10.4)    

will leave two lines before printing A, and then will generate four new lines before 
writing B (i.e., there will be three lines between A and B – the fourth new line will 
contain B). While a slash by itself, or with another slash, does not have to be separated 
by commas from other groups, a more complex grouping, 4(/), does have to have 
commas and brackets to delimit it.   

    9.15   Example 12: Timing of Writing Formatted Files 

 The following example looks at the amount of time spent in different sections of a 
program with the main emphasis on formatted output:

    program ch0912   
   implicit none   
   integer , parameter :: n=1000000   
   integer , dimension(1:n) :: x=0   
   real , dimension(1:n) :: y=0   
   integer :: I   
   real :: t,t1,t2,t3,t4,t5   
   character*10 :: comment 
    open(unit=10,fi le='ch0912.dat')   
   call cpu_time(t)   
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   t1=t   
   comment=' Initial '   
   print 100,comment,t1 
    do i=1,n 
    x(i)=I      

   end do      
   call cpu_time(t)   
   t2=t-t1   
   comment = ' integer '   
   print 100,comment,t2   
   y=real(x)   
   call cpu_time(t)   
   t3=t-t1-t2   
   comment = ' real '   
   print 100,comment,t2   
   do i=1,n 

    Write(10,200) x(I)
200 Format (1x,i10)      

   end do         
   call cpu_time(t)   
   t4=t-t1-t2-t3   
   comment = ' I write '   
   print 100,comment,t4   
   do i=1,n 
    Write(10,300) y(I)
300 Format (1x,f10.0)      

   end do   
   call cpu_time(t)   
   t5=t-t1-t2-t3-t4   
   comment = ' r write '   
   print 100,comment,t5   
   100 format(1x,a,2x,f7.3)      
   end program ch0912     

 There is a call to the built-in intrinsic cpu_time to obtain timing information. Try 
this example out with your compiler. Formatted output takes up a lot of time, as we 
are converting from an internal binary representation to an external decimal form.  

    9.16   Example 13: Timing of Writing Unformatted Files 

 The following program is a variant of the above but now the output is in unformatted 
or binary form:       
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 Try this example out with your compiler. Unformatted is very effi cient in terms of 
time. It also has the benefi t for real or fl oating point numbers of no information loss.  
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    9.17   Summary 

 You have been introduced in this chapter to the use of format or layout descriptors 
which will give you greater control over output. 

 The main features are:

   The I format for integer variables.  • 
  The E and F formats for real numbers.  • 
  The A format for characters.  • 
  The X, which allows insertion of spaces.    • 

 Output can be directed to fi les as well as to the terminal through the write 
statement. 

 The write, together with the open and close statements, also introduces the class 
of Fortran statements which use equated keywords, as well as positionally depen-
dent parameters. 

 The format statement and its associated layout or edit descriptor are powerful 
and allow repetition of patterns of output (both explicitly and implicitly). 

 When output is to be directed to a line printer, the following four characters:

   +  • 
  0  • 
  1  • 
  (blank)   • 

allow reasonable control over the layout. Care must to be taken with these charac-
ters, since it is possible to decimate forests with little effort.  

    9.18   Problems 

     1.    Rewrite the temperature conversion program which was problem 3 in Chap.   7     
to actually produce the output shown.  

    2.    Write a litres and pints conversion program to produce a similar kind of output 
to problem one above. Start at 0 and make the central column go up to 50. One 
pint is 0.568 l.  

    3.    Information on car fuel consumption is usually given in miles per gallon in 
Britain and the United States and in litres per 100 km in Europe. Just to add an 
extra problem US gallons are 0.8 imperial gallons. 

   Prepare a table which allows conversion from either US or imperial fuel con-
sumption fi gures to the metric equivalent. Use the parameter statement where 
appropriate:

     

 1 imperial gallon 4.54596 litres

 1 mile 1.60934 kilometres

=
=      
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    4.    The two most commonly used operating systems for Fortran programming are 
UNIX and DOS. It is possible to use the operating system fi le redirection 
symbols < and > to read from a fi le and write to a fi le, respectively. Rerun the 
program in problem 1 to write to a fi le. Examine the fi le using an editor.  

    5.    Modify any of the above to write to a fi le rather than the terminal. What changes 
are required to produce a general output which will be suitable for both the 
terminal and a line printer? Is this degree of generality worthwhile?  

    6.    To demonstrate your familiarity with formats, reformat problems 1, 2 or 3 to 
use E formats, rather than F (or vice versa).  

    7.    Modify the temperature conversion program to produce output suitable for a line 
printer. Use the local operating system commands to send the fi le to be printed.  

    8.    Repeat for the litres and pints program.  
    9.    What features of Fortran reveal its evolution from punched card input?  
    10.    Try to create a real number greater than the maximum possible on your com-

puter – write it out. Try to repeat this for an integer. You may have to exercise 
some ingenuity.  

    11.    Check what a number too large for the output format will be printed as on your 
local system – is it all asterisks?  

    12.    Write a program which stores litres and corresponding pints in arrays. You should 
now be able to control the output of the table (excluding headings – although this 
could be done too) in a single write or print statement. If you don’t like litres and 
pints, try some other conversion (£ sterling to US dollars, leagues to fathoms, 
Scots miles to Betelgeusian pfnings). The principle remains the same.  

    13.    Fortran is an old programming language and the text formatting functionality 
discussed in this chapter assumes very dumb printing devices.     

 The primary assumption is that we are dealing with so-called monospace fonts, 
i.e., that digits, alphabetic characters, punctuation, etc., all have the same width. 

 If you are using a PC try using:

   Notepad• 

   and

   Word   • 

to open your programs and some of the fi les created in this chapter. What hap-
pens to the layout? 

 If you are using Notepad look at the Word wrap and set Font options under the 
edit menu. 

 What fonts are available? What happens to the layout when you choose another 
font? 

 If you are using Word what fonts are available? What happens when you make 
changes to your fi le and exit Word? Is it sensible to save a Fortran source fi le as a 
Word document?      
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 Aims 

 The aims of this chapter are to introduce some of the ideas involved in reading data 
into a program. In particular, using the following:

   Reading from fi xed fi elds.  • 
  Integers, reals and characters.  • 
  Blanks – nulls or zero?  • 
  read – extensions.• 

   error handling on input.      –

  open – associating unit numbers and fi le names.• 

   close   –
  rewind   –
  backspace        –

    Chapter 10   
 Reading in Data              

 Winnie-the-Pooh read the two notices very carefully, 
 fi rst from left to right, and afterwards, 
 in case he had missed some of it, from right to left. 

 A A Milne, Winnie-the-Pooh 

I. Chivers and J. Sleightholme, Introduction to Programming with Fortran: 
With Coverage of Fortran 90, 95, 2003, 2008 and 77, 
DOI 10.1007/978-0-85729-233-9_10, © Springer-Verlag London Limited 2012



156 10 Reading in Data

             10.1   Reading from the Terminal or Keyboard 
Versus Reading from Files 

 It is unlikely that you would use fi xed formats when reading numeric input from the 
terminal or keyboard; they are more likely to be used when reading data from a fi le. 
However the examples that follow do it. We look at reading from fi les later in this 
chapter.  

    10.2   Fixed Fields on Input 

 All the formats described earlier are available, and again they are limited to particu-
lar types. Integers may only be input by the I format, reals with F and E, and char-
acter (alphanumeric) with A. 

    10.2.1   Integers and the I Format 

 Integers are read in with the I edit descriptor. Whereas, on output, integers appear 
right justifi ed, on input they may appear anywhere in the fi eld you have delimited. 
Blanks (by default) are considered not to exist for the purpose of the value read, 
although they do contribute to the fi eld width. Apart from the digits 0–9, the only 
other characters which may appear in an integer fi eld are − and +.  

    10.2.2   Example 1: Skipping Data Whilst Reading 

 Consider the following 12 times table:

     1 * 12  =   12      
    2 * 12  =   24   
    3 * 12  =   36   
    4 * 12  =   48   
    5 * 12  =   60   
    6 * 12  =   72   
    7 * 12  =   84   
    8 * 12  =   96   
    9 * 12  =  108   
   10 * 12  =  120   
   11 * 12  =  132   
   12 * 12  =  144     
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 The following is a program to read the fi rst and last columns of integer data:

    program ch1001   
   implicit none   
   integer , parameter :: n =   12   
   integer :: I   
   integer , dimension(1:n) :: x   
   integer , dimension(1:n) :: y 
do i =   1,n 

    read 100, x(i),y(I)   
   100 format (2x,i2,9x,i3)   
   print 200,x(i),y(I)   
   200 format(1x,i3,2x,i3) 

end do      
   end program ch1001     

 The
    read 100,x(i),y(I)   

 will try reading values into x(I) and y(I) using format statement

    100 format (2x,i2,9x,i3)    

 which will skip the fi rst two characters on the line or record, read the fi rst value from 
the next two columns, skip the next nine characters and read the last value from the 
next three characters. 

 We recommend that when working with formatted fi les you to use a text editor 
that displays the column and line details. 

 Notepad under Windows has a status bar option under the View menu. Gvim 
under Windows has line and column information available. Under Redhat, vim and 
gedit both display line and column information. User SuSe, kedit and vim display 
line and column information. There should be an editor available on your system 
that has this option.  

    10.2.3   Reals and the F Format 

 Real numbers may be input using a variety of formats and we will look at the F 
format in this example. Consider the following BMI data:

    1.85 85   
   1.80 76   
   1.85 85   
   1.70 90   
   1.75 69   
   1.67 83   
   1.55 64   



158 10 Reading in Data

   1.63 57   
   1.79 65   
   1.78 76     

 The following program will read in the data:

    program ch1002   
   implicit none   
   integer , parameter :: n=10   
   real , dimension(1:n) :: h   
   real , dimension(1:n) :: w   
   real , dimension(1:n) :: bmi   
   integer :: I 
    do i=1,n 
    read 100, h(i),w(I)   
   100 format(f4.2,2x,f3.0)      

   end do    
    bmi=w/(h*h)   
   do i=1,n 
    print 200,bmi(I)   
   200 format (2x, f5. 0)      

   end do      
   end program ch1002     

 To read in the heights we need a total width of four columns with two after the 
decimal point. We then skip two spaces and read in the weights. The data in the fi le 
do not have a decimal point!  

    10.2.4   Reals and the E Format 

 An exponential format number (which may be read in F or E formats) can take a 
number of different forms. The most obvious is the explicit form

   − 1.2E-4    

 where all the components of the value are present – the signifi cant digits to the left 
of the E, the E itself, and the exponent to the right. We can drop (almost) any two of 
these three components, so:

   − 1.2   
   −1.2E   
   −1.2-4   
   −4    

 are all valid values. Only the fi rst two are interpreted as the same numerical value, 
and just giving the exponent part would be interpreted by the format as giving only 
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the signifi cant digits. if the exponent is to be given, there must be some signifi cant 
digits as well. It is not even enough to give the E and assume that the program will 
interpret this as 10 to the power exponent.

    E-4    

 is not an acceptable exponential format value, although

    1E-4   

  would be. 
 There are opportunities for confusion with E formats.

    read(unit =   *,fmt =   102) X,Y   
   102 format(2E10.3)   

 with:

    10.23 -2    

 would be interpreted as X taking the value 10.23E-2 and Y taking the value 0.0, 
while with

    102 format (2F8.3)     

 X would be 10.23, and Y would be −2.0. 
 Although the decimal point may also be dropped, this might generate confusion 

as well. While

    4E3   
   45   
   45E-4   
   45–4    

 are all valid forms, if an E format is used, a special conversion takes place. A format 
like E10.8, when used with integral signifi cant digits (no decimal point), uses the 8 
as a negative power of 10 scaling e.g.’

    3267E05   

  converts to

    3267*10**8*10**5   

 or

    3267*10**3   

 or

   3.267    
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 Therefore, the interpretation of, say, 136, read in E format, would depend on the 
format used:  

 value  format  Interpretation 

 136  E10.0  136.0 
 136  E10.4  136.0*10**−4 

 or  0.0136 
 136  E10.10  136.0*10**−10 

 or  0.0000000136 
 136.  Any above  136.0 

 One implication of all this is that the format you use to input a variable may not 
be suitable to output that same variable. So given the data:

    136   
   136   
   136   
   136   
   136.   
   136.   
   136.   
   136.   

 and the program

    program ch1003   
   implicit none   
   real :: x 
    read 100,x   
   100 format(e10.0)   
   print *,x   
   read 200,x   
   200 format(e10.4)   
   print *,x   
   read 300,x   
   300 format(e10.10)   
   print *,x   
   read *,x   
   print *,x   
   read 100,x   
   print *,x   
   read 200,x   
   print *,x   
   read 300,x   
   print *,x   
   read *,x   
   print *,x      

   end program ch1003     
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 We get the following output when the program is compiled with the Intel 
compiler:  

 Other compilers may give slightly different formatting of the output.   

    10.3   Blanks, Nulls and Zeros 

 You can control how Fortran treats blanks in input through two special format 
instructions, BN and BZ. BN is a shorthand form of blanks become null, that is, a 
blank is treated as if it were not there at all. BZ is therefore blanks become zeros. 

 As we have already seen, 1 4 (i.e., the two digits separated by a blank) read in I3 
format would be read as 14; similarly, 14 (one-four-blank) is also 14 when the BN 
format is in operation. All of the blanks are ignored for the purposes of interpreting 
the number. They help to create the width of the number, but otherwise contribute 
nothing. This is the default, which will be in operation unless you specify 
otherwise. 

 The BZ descriptor turns blanks into zeros. Thus, 1 4 (one-blank-four) read in I3 
format is 104, and 14 (one-four-blank) is 140. 

 There is one place where we must be very careful with the use of the BZ format – 
when using exponent format input. Consider

    5.321E+02   

 read in (BZ,E10.3) format. We have specifi ed a fi eld which is ten characters wide; 
therefore the blank in column 10, which follows the E+02, is read as a zero, making 
this E+020. This is probably not what was required.  

    10.4   Characters 

 When characters are read in, it is suffi cient to use the A format, with no explicit 
mention of the size of the character string, since this size (or length) is determined 
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in the program by the character declaration. This implies that any extra characters 
would not be read in. You may however read in less:

    character (10) :: LIST     

.   

   .   
   read(unit =   5,fmt =   100)LIST   
   100 format(A1)       

 would read only the fi rst character of the input. The remaining nine characters of 
LIST would be set to blank. 

 The notion of blanks as nulls or zeros has no meaning for characters. The blank 
is a legitimate character and is treated as meaningful, completely distinct from the 
notion of a null or a zero. 

 A simple variant on ch1001 which uses the character variable temp to hold the 
text between the two numbers appears below:

    program ch1004   
   implicit none   
   integer , parameter :: n=12   
   integer :: I   
   integer , dimension(1:n) :: x   
   integer , dimension(1:n) :: y   
   character*9 :: temp 
    do i=1,n 
    read 100, x(i),temp,y(I)   
   100 format(2x,i2,a,i3)   
   print 200,x(i),y(I)   
   200 format(1x,i3,2x,i3)      

   end do      
   end program ch1004     

 Note that in the format statement we just use the A edit descriptor and the num-
ber of characters to read is picked up from the variable declaration.  

    10.5   Skipping Spaces and Lines 

 The X format is also useful for input. There may be fi elds in your data which you do 
not wish to read. These are easily omitted by the X format:

    read(unit=*,fmt=100) A,B   
   100 format(F10.4,10X,F8.3)     
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 Similarly, you can jump over or ignore entire records by using the oblique.
Do note, however, that

    read(unit=*,fmt=100) A,B   
   100 format(F10.4/F10.4)  

  would read A from one line (or record) and B from the next. To omit a record 
between A and B, the format would need to be

    100 format(F10.4//F10.4)     

 Another way to skip over a record is

    read(unit=*,fmt=100)   
   100 format()   

  with no variable name at all.  

    10.6   Reading 

 As you have already seen, reading, or the input of information, is accomplished 
through the read statement. We have used

    read *,X,Y    

 for list directed input from the terminal, and

    read(unit=*,fmt=100) X,Y   

 for formatted input from the terminal. These forms may be expanded to

    read(unit=*,fmt=*) X,Y   

  or

    read(unit=*,fmt=100) X,Y    

 for input from the terminal, or to

    read(unit=5,fmt=*) X,Y   

 or

    read(unit=5,fmt=100) X,Y   

  when we wish to associate the read statement with a particular unit number (or for-
mat label, for formatted input). As with the write statement, these last two read 
statements may be abbreviated to

    read(5,*) X,Y    

 and

    read(5,100) X,Y      
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    10.7   File Manipulation Again 

 The open and close statements are also relevant to fi les which are used as input, 
and they may be used in the same ways. Besides introducing the notion of manipu-
lating lots of fi les, the open statement allows you to change the default for the 
treatment of blanks. The default is to treat blanks as null, but the statement 
 blank='zero'  changes the default to treat blanks as zeros. There are other 
parameters on the open, which are considered elsewhere. 

 Once you have opened a fi le, you may not issue another open for the same fi le 
until it has been  closed , except in the case of the  blank  = parameter. You may 
change the default back again with

    open(unit=10,fi le='Example.txt')   
   read(unit=10,fmt=100) A,B   
   …   
   open(unit=10,fi le='Example.txt',blank='zero')
read(unit=10,fmt=100) A,B     

 This implies that, within the same input fi le, you may treat some records as blank 
for null, and some as blank for zero. This sounds very dangerous, and is better done 
by manipulating individual formats if it has to be done at all. 

 Given that you may write a fi le, you may also rewind it, in order to get back to 
the beginning. The syntax is similar to the other commands:

    rewind(unit=1)     

 This often comes in useful as a way of providing backing storage, where inter-
mediate data can be stored on fi le and then used later in the processing. 

 The notion of records in Fortran input and output has been introduced. If you are 
confi dent in your understanding of this ambiguous and nebulous concept, you can 
backspace through a fi le, using the statement

    backspace(unit=1)    

 which moves back over a single record on the designated fi le. There is no point in 
trying to backspace or rewind if the input is from the keyboard or terminal.  

    10.8   Reading Using Array Sections 

 Consider the following output:  
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 A program to read this fi le using array sections is as follows:

    program ch1005   
   implicit none   
   integer , parameter :: nrow=5   
   integer , parameter :: ncol=6   
   real , dimension(1:nrow, 1:ncol) :: & 
    Exam_Results = 0.0      

   real , dimension(1:nrow) :: & 
    People_average = 0.0      

   real , dimension(1:ncol) :: & 
    Subject_Average = 0.0      

   integer :: r,c 
    do r=1,nrow   
   read 100, (exam_results(r,1:ncol)), people_average®) 
100 format(1x,6(1x,f5.1),4x,f6.2)      

   end do    
    read *   
   read 110, subject_average(1:ncol)   
   110 format(1x,6(1x,f5.1))   
   do r=1,nrow   
   print 200,      (exam_results(r,c),c=1,ncol), people_average®)   
   200 format(1x,6(1x,f5.1),' = ',f6.2)      

   end do   
   print *, ' ==== ==== ==== ==== ==== ===='   
   print 210, subject average(1:ncol)   
   210 format(1x,6(1x,f5.1))      

   end program ch1005     

 Note also the use of
    read *    

 to skip a line. 
 If you are on a UNIX or Linux system use diff to compare the input and output 

fi les. They should be the same.  

    10.9   Timing of Reading Formatted Files 

 A program to read a formatted fi le is shown below:

    program ch1006   
   implicit none   
   integer , parameter :: n=1000000   
   integer , dimension(1:n) :: x   
   real , dimension(1:n) :: y   
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   integer : : I   
   real :: t,t1,t2,t3,t4,t5   
   character*10 :: comment 
    open(unit=10,fi le='ch1006.txt',status='old')   
   call cpu_time(t)   
   t1=t   
   comment=' Initial '   
   print 100,comment,t1   
   do i=1,n 
    read(10,200) x(I)   
   200 format(1x, i10)      

   end do   
   call cpu_time(t)   
   t2=t-t1   
   comment = ' I read '   
   print 10 0,comment,t2   
   do i=1,n 
    read(10,300) y(I)   
   300 format(1x,f10.0)      

   end do   
   call cpu_time(t)   
   t3=t-t1−t2   
   comment = ' r read '   
   print 100,comment,t3   
   100 format(1x,a,2x, f7.3)   
   do I=1,10 
    print *,x(I), ' ' , y(I)      

   end do      
   end program ch1006     

 Some timing data from the Intel compiler follows:   
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    10.10   Timing of Reading Unformatted Files 

 The following is a program to read from an unformatted fi le:

    program ch1007   
   implicit none   
   integer , parameter :: n=1000000   
   integer , dimension(1:n) :: x   
   real , dimension(1:n) :: Y   
   integer :: I   
   real :: t, t1, t2, t3, t4,t5   
   character* 10 :: comment 
    open(unit=10,fi le='ch1007.dat',form='unformatted')   
   call cpu_time(t)   
   t1=t   
   comment=' Initial '   
   print 100,comment,t1   
   read(10) x   
   call cpu_time(t)   
   t2=t−t1   
   comment = ' I read '   
   print 100,comment,t2   
   read (10) y   
   call cpu_time(t)   
   t3=t−t1−t2   
   comment = ' r read '   
   print 100,comment,t3   
   100 format(1x,a,2x, f7.3)   
   do I=1,10 
    print *,x(I), ' ' , y(I)      

   end do      
   end program ch1007     

 Some timing data from the Intel compiler follows.   
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    10.11   Errors When Reading 

 In discussing some aspects of input, it has been pointed out that errors may be made. 
Where such errors are noticed, in the sense that something illegal is being attempted, 
there are two options:

   print a diagnostic message, and allow correction of the mistake.  • 
  print a diagnostic message, and terminate the program.    • 

 The only time that the fi rst makes sense is when you are interacting with a pro-
gram at a terminal. Some Fortran implementations provide correction facilities in a 
case like this, but most do not. 

 Chapter 18 looks at how we handle errors in input data, together with a more in-
depth coverage of fi le I/O.  

    10.12   Flexible Input Using Internal Files 

 Sometimes external data does not have a regular structure and it is not possible to use 
the standard mechanisms we have covered so far in this chapter. Fortran provides 
something called internal fi les that allow us to solve this problem. The following 
example is based on a problem encountered whilst working at the following site

      http://www.shmu.sk/sk/?page=1         

 They have data that is in the following format

    #xxxxxxxxxx yyyyyyyyyy  

  where x and y can vary between 1 and 10 digits. The key here is to read the whole 
line (a maximum of 22 characters) and then scan the line for the blank character 
between the x and y digits. 

 We then use the  index  intrinsic to locate the position of the blank character. We 
now have enough information to be able to read the x and y integer data into the 
variables n1 and n2.

    program ch1008   
   implicit none   
   integer:: ib1,ib2   
   integer:: n1, n2   
   character(len=22) :: buffer, buff1, buff2   
   ! program to read a record of the form   
   ! #xxxxxxxxxx yyyyyyyyyy   
   ! so that integers n1 = xxxxxxxxxx n2 = yyyyyyyyyy   
   ! where the number of digits varies from 1 to 10   
   ! use internal fi les 

http://www.shmu.sk/sk/?page=1
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    print *, "input micael's numbers"   
   read(*,'(a)')buffer   
   ib1 = index(buffer, ' ')   
   ib2 = len_trim(buffer) 
    buff1 = buffer(2:ib1-1)   
   buff2 = buffer(ib1+1:ib2)   
   read(buff1, ' (i10) ')n1   
   read(buff2,'(i10)')n2   
   print*, 'n1 = ' ,n1   
   print*, 'n2 = ' ,n2         

   end program ch1008     

 The statement

    read (buff1, ' (i10) ')n1 

   reads from the string  buff1  and extracts the x number into the variable  n1 , and the 
statement

    read (buff2, '(i10)') n2  

  reads from the string  buff 2  and extracts the y number into the variable  n2 . 
 This is a very powerful feature and allows you to manage quite widely varying 

external data formats in fi les.  buff1  and  buff2  are called internal fi les in Fortran 
terminology.  

    10.13   Summary 

 Values may be read in from the keyboard, terminal or from another fi le through 
fi xed formats. 

 Much of the structure of input format statements is very similar to that of the 
output formats. Broadly speaking, data written out in a particular format may be 
read in by the same format. However, there is greater fl exibility, and quite a variety 
of forms can be accepted on input. 

 A key distinction to make is the interpretation of blanks, as either nulls or zeros; 
alternative interpretations can radically alter the structure of the input data. 

 Fortran allows fi le names to be associated with unit numbers through the open 
statement. This statement allows control of the interpretation of blanks, although 
this can also be done through the BN and BZ formats. 

 Files can also be manipulated through rewind and backspace.  
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    10.14   Problems 

    1.    Write a program that will read in two reals and one integer, using

    format(F7.3,I4,F4.1)   

  and that, in one instance treats blanks as zeros and in the second treats them as 
nulls. Use print * to print the numbers out immediately after reading them in. 
What do you notice? Can you think of instances where it is necessary to use one 
rather than the other?  

   2.    Write a program to read in and write out a real number using

    format(F7.2)     

 What is the largest number that you can read in and write out with this format? 
What is the largest negative number that you can read in and write out with this 
format? What is the smallest number, other than zero, that can be read in and 
written out?  

    3.    Rewrite two of the earlier programs that used read,* and print,* to use format 
statements.  

    4.    Write a program to read the fi le created by either the temperature conversion 
program or the litres and pints conversion program. Make sure that the programs 
ignore the line printer control characters and any header and title information. 
This kind of problem is very common in programming (writing a program to 
read and possibly manipulate data created by another program).  

    5.    Use the open, rewind, read and write statements to input a value (or values) as a 
character string, write this to a fi le, rewind the fi le, read in the values again, this 
time as real variables with blanks treated as null, and then repeat with blanks as 
zeros.  

    6.    Demonstrate that input and output formats are not symmetric – i.e., what goes in 
does not necessarily come out.  

    7.    Can you suggest why Fortran treats blanks as null rather than zero?  
    8.    What happens at your terminal when you enter faulty data, inappropriate for the 

formats specifi ed? We will look at how we address this problem in Chapter 18.            
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 Aims 

 The aims of this chapter are:

   To review the process of fi le creation at a terminal.  • 
  To introduce more formally the idea of the fi le as a fundamental entity.  • 
  To show how fi les can be declared explicitly by the open and close statements.  • 
  To introduce the arguments for the open and close statements.  • 
  To demonstrate the interaction between the read/write statements and the open/• 
close statements.    

    11.1   Introduction    

 When you work interactively at a computer, you are working with fi les, fi les that 
contain programs, fi les that contain data, and perhaps fi les that are libraries. The fi le 
is fundamental to most modern operating systems, and almost all operations are 
carried out on fi les. 

 In this chapter we are going to extend some of your ideas about fi les. Let us con-
sider what kinds of fi les you have met so far:

    1.    Text fi les. These are the source of your programs, compilation listings, etc. They 
can be examined by printing them. They can also be transmitted around a com-
puter system fairly easily. A fi le sent to a printer is a text fi le. Mail messages are 
generally plain text fi les. Note that when mail messages arrive in your mail box 
they will then typically contain additional nonprintable information.  

    Chapter 11   
 Files              

 It is a capital mistake to theorise before one has data. 

 Sir Arthur Conan Doyle 
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    2.    Data fi les. These exist in two main forms: fi rstly those prepared by using an 
editor, (hence a text fi le) and those prepared using a package or program, in a 
computer readable form, but not directly readable by a human.  

    3.    Binary, object or relocatable fi les, e.g., output from the compiler, satellite data. 
They cannot be printed. To examine fi les like these you need to use special utili-
ties, provided by most operating systems.     

 The above categories account for the majority of fi les that you have met so far. 
 If you use a word processor then you will also have met fi les that are textual with 

additional nonprintable information. 
 Let us now consider how we can manipulate fi les using Fortran. They will gener-

ally be data fi les, and will thus be text fi les. They can therefore be listed, etc., using 
standard operating system commands. 

    11.2   Data Files in Fortran 

 These allow us to associate a logical unit number with any arbitrary fi le name during 
the running of the program; e.g.,

    open(unit=1,fi le='data.txt')    

would associate the name data and the logical unit 1, so that

    read(unit=1,fmt=100) X    

would read from data. Note that for this to work on some operating systems the fi le 
data must be local to the session; we specify the name as a character variable. If we 
then wanted to use a subsequent data fi le, we could have another open statement, but 
if we want to use the same logical unit number, we must fi rst close the fi le

    close(unit=1)    

before we

    open(unit=1,fi le='data2.txt')     

 In this way we can keep referring to logical unit 1, but change the fi le associated 
with it. This can be useful in interactive programs where we wish to analyse differ-
ent sets of data, e.g.:

    program ch1101   
   implicit none   
   real :: x   
   character (7) :: which 
    open(unit=5,fi le='input')   
   do 
    write(unit=6,fmt='('' data set name, or end'')')   
   read(unit=5,fmt='(a)') which   
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   if(which == 'end') exit   
   open(unit=1,fi le=which)   
   read(unit=1,fmt=100) x   
   ! ...  
   close(unit=1)      

   end do      
   end program ch1101     

 One useful feature of the open statement is that there are other parameters. What 
would happen, for example, if the fi le is not there? To take care of this you can use 
the iostat and status keywords, e.g.,

    open(1,fi le='data.txt',iostat=fi lestat,status='old')    

status can be equated to one of four values:

    status='old'   
   status='new'   
   status='scratch'   
   status='unknown'     

 If we say status = 'new', we are creating a new fi le and it should not matter whether 
a fi le of the same name is present; 'scratch' does not concern us, while 'unknown' 
implies that if a fi le of the correct name is present use it, but if not create a 'new' one. 
if you omit the status = keyword altogether, the value 'unknown' will be assumed, if 
we use status = 'old' and the fi le is not present, this will cause an error which will be 
refl ected in the value associated with the variable  open_fi le_status.  Consider the 
following example:

    ...   
   open(unit=1,fi le='data.txt',iostat=fi lestat,status='old')   
   if (fi lestat > 0) then 
    print *,' error opening fi le, please check'   
   stop      

   end if   
   read(unit=1,fmt=100) x   
   ...     

 The program will terminate after printing an appropriate error message. The 
standard defi nes that if an error occurs then IOSTAT will return a positive integer 
value. A value of zero is returned if there is no error.  

    11.3   Summary of Options on Open 

     unit : The unit number of the fi le to be opened.  

   iostat : The I/O status specifi er designates a variable to store a value indicating the 
status of a data transfer operation. It takes the following form:  
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  iostat= i-var   

  i-var – is a scalar integer variable. When a data transfer statement is executed, i-var 
is set to one of the following values:

   A positive integer indicating that an error condition occurred.  • 
  A negative integer indicating that an end-of-fi le or end-of-record condition • 
occurred. The actual values vary between compilers.  
  Zero indicating no error, end-of-fi le, or end-of-record condition occurred.       • 

 Execution continues with the statement following the data transfer statement or 
the statement identifi ed by a branch specifi er (if any). 

 An end-of-fi le condition occurs only during execution of a sequential read state-
ment; an end-of-record condition occurs only during execution of a non advancing 
read statement.

    fi le : character expression specifying the fi le name.  

   status : character expression specifying the fi le status. It can be one of 'old', 'new', 
'scratch' or 'unknown'.  

   access : character expression specifying whether the fi le is to be used in a sequential 
or random fashion. Valid values are sequential (the default) or direct.    

 The two most common access mechanisms for fi les are sequential and direct. 
Consider a fi le with 1,000 records. to get at record 789 in a sequential fi le means 
reading or processing the fi rst 788 records. to get at record 789 in a direct access fi le 
means using a record number to immediately locate record 789. 

 form: character expression specifying

   formatted if the fi le is opened for formatted i/o   

or

   unformatted if the fi le is opened for unformatted i/o    

 The default is formatted for sequential access fi les and unformatted for direct 
access fi les. If the fi le exists, form must be consistent with its present characteristics. 

 As noted earlier data are maintained internally in a binary format, not immedi-
ately comprehensible by humans. When we wish to look at the data we must write 
it in a formatted fashion, i.e., as a sequence of printable ASCII characters – text, or 
the written word. This formatting will carry with it an overhead in terms of the time 
required to do it. It will also carry with it the penalty of conversion from one number 
base (internally binary) to another and also loss of signifi cance due to rounding with 
whatever edit descriptors are used, e.g., writing out as F7.4. 

 If we are interested in reusing data on the same system and compiler then we can 
use the unformatted option and avoid both the time overhead (as there is no conver-
sion between the internal and external formats) and the loss of signifi cance associ-
ated with formatted data. 
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 Please note that unformatted fi les are rarely portable between different computer 
systems, and sometimes even between different compilers on the same system. 

 We will look again at the use of unformatted fi les in Chapter ?? when we deal 
with effi ciency and the space-time trade-off.

    recl : integer variable or constant specifying the record length for a direct access fi le. 
It is specifi ed in characters for a formatted fi le and words for an unformatted fi le.  

   blank : character expression having one of the following values:
   ‘null’ if blanks are to be ignored on reading. Note that a fi eld of all blanks is treated 
as 0!  
  ‘zero’ if blanks are to be treated as zeros.        

    11.4   More Foolproof I/O 

 Fortran provides a way of writing more foolproof programs involving I/O. This is 
done via the iostat keyword on the read statement. Consider the following:

    program ch1102   
   implicit none   
   integer :: io_stat_number=−1   
   integer :: i 

    do     
print*,'input integer i:'   
   read (unit=*,fmt=10,&   

   iostat=io stat number) i   
   10 format(i3)   
   print *,' iostat=',io_stat_number   
   if (io_stat_number==0) exit      

   end do      
   print*, 'i = ',i,' read successfully'   

   end program ch1102     

 The following data input should be tried and the values of IO_Stat_Number 
should be examined

   A valid three-digit number + [return] key  • 
  A three-digit number with an embedded blank, e.g., 12 + [return] key  • 
  [return] key only  • 
  [CTRL] + Z  • 
  Any other nonnumeric character on the keyboard  • 
  100200300 + [return] key  • 
  [CTRL] + C  • 

  This will then enable you to write programs that handle common I/O errors.    
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 Consider the following:

    program ch1103   
   implicit none   
   integer , dimension(10) :: A =& 
    (/−1,−1,−1,−1,−1,−1,−1,−1,−1,−1/)    

    integer :: io stat _number=0   
   integer :: i 
    open(unit=1,fi le='data.txt',status='old')      

   do i=1,10 
    read (unit=1,fmt=10,iostat=io_stat_number) A(I)   
   10 format(I3)   
   if (io_stat_number == 0) then   
   cycle      

   elseif (io_stat_number == −1) then 
    print *,' end of fi le detected at line ',i   
   print *,' please check data fi le'   
   exit      

   elseif (io_stat_number > 0 ) then 
    print *,' non numeric data at line ',i   
   print *,' please correct data fi le'   
   exit      
   endif      

   end do 
    do I=1, 10   

  print * , ' I = ',I,' A(I) = ',A(I)      
   enddo      

   end program ch1103     

 The above program is system specifi c you will need to try it out with your 
compiler(s). 

 What happens with a completely blank line? 
 Note that in the above example the testing for the various conditions only exits 

the do loop for reading data from the fi le. This means that execution would continue 
with the statement immediately after the end do statement. This may not be what we 
want in all cases, and the exit may be replaced with a stop statement to terminate 
execution immediately.  

    11.5   Summary 

 The fi le is a fundamental entity within the operating system. 
 A fi le may be manipulated in Fortran by associating its name with a unit number. 

All subsequent communication within the program is through the unit number. 
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 When a fi le is opened there are a large number of equatable keywords which may 
be employed to establish its characteristics. 

 The default fi le type used in Fortran is sequential formatted, but several other 
esoteric types may be used.  

    11.6   Problems 

     1.    Write a program to write the fi rst 500 integers to a fi le using formatted I/O. Put 
10 values on a line, with a blank as the fi rst character of the line, and eight col-
umns allowed for each integer, with two spaces between integer fi elds. 

 Now write a program to read this fi le into an array, and write the numbers in 
reverse order over the original data, i.e., the data fi le now contains the fi rst 500 
numbers in descending order. 

 Now modify the fi rst program to add the next 500 integers to the same fi le, so 
that the fi le now comprises the fi rst 500 numbers in descending order, and the 
next 500 numbers in ascending order.  

    2.    To write and maintain a crude database of student details, we might do the fol-
lowing: create separate fi les for each year – CLAS1, CLAS2, CLAS3, or COF84, 
COF85, COF86, and so on. In either case there is an unchanging prefi x, CLAS 
or COF, and a variable suffi x, which identifi es membership within the overall 
group. In each of the fi les we may wish to record details like name, date of birth, 
address, courses taken, etc. Such fi les will require updating as details change or 
as errors are noted. Write (or sketch out) a program which would select and 
maintain such records and would allow corrected fi les to be printed out. While 
you might feel that the most appropriate tool for this job is an editor, you might 
fi nd it too powerful a tool. An editor can leave fi les in a sorry state. Naturally, any 
program like this should be helpful (so called ‘user friendly’). Is this sort of 
information sensitive enough to require security checks and passwords?           
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 Aims 

 The aims of this chapter are:

   To consider some of the reasons for the inclusion of functions in a programming • 
language.  
  To introduce, with examples, some of the predefi ned functions available in • 
Fortran.  
  To introduce a classifi cation of intrinsic functions, generic, elemental, • 
transformational.  
  To introduce the concept of a user defi ned function.  • 
  To introduce the concept of a recursive function.  • 
  To introduce the concept of user defi ned elemental and pure functions.  • 
  To briefl y look at scope rules in Fortran for variables and functions.  • 
  To look at internal user defi ned functions.    • 

    12.1   Introduction    

 The role of functions in a programming language and in the problem-solving 
process is considerable and includes:

   Allowing us to refer to an action using a meaningful name, e.g., sine(x) a very • 
concrete use of abstraction.  

    Chapter 12   
 Functions              

 I can call spirits from the vasty deep. 
 Why so can I, or so can any man; but will they come 
 when you do call for them? 

 William Shakespeare, King Henry IV, part 1 
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  Providing a mechanism that allows us to break a problem down into parts, giving • 
us the opportunity to structure our problem solution.  
  Providing us with the ability to concentrate on one part of a problem at a time and • 
ignore the others.  
  Allowing us to avoid the replication of the same or very similar sections of code • 
when solving the same or a similar subproblem which has the secondary effect 
of reducing the memory requirements of the fi nal program.  
  Allowing us to build up a library of functions or modules for solving particular • 
subproblems, both saving considerable development time and increasing our 
effectiveness and productivity.    

 Some of the underlying attributes of functions are:

   They take parameters or arguments.  • 
  The parameter can be an expression.  • 
  A function will normally return a value and the value returned is normally depen-• 
dent on the parameter(s).  
  They can sometimes take arguments of a variety of types.    • 

 Most languages provide both a range of predefi ned functions and the facility to 
defi ne our own. We will look at the predefi ned functions fi rst. 

    12.2   An Introduction to Predefi ned Functions and Their Use 

 Fortran provides over a hundred intrinsic functions and subroutines. For the pur-
poses of this chapter a subroutine can be regarded as a variation on a function. 
Subroutines are covered in more depth in a later chapter. They are used in a 
straightforward way. if we take the common trigonometric functions, sine, cosine 
and tangent, the appropriate values can be calculated quite simply by:

     

( )
( )
( )

=
=
=

x sin y

z cos y

a tan y
    

 This is in rather the same way that we might say that X is a function of Y, or X is 
sine Y. Note that the argument, Y, is in radians not degrees. 

    12.2.1   Example 1: Simple Function Usage 

 A complete example is given below:

    program ch1201      
   implicit none   
   real :: x 
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    print *, ' type in an angle (in radians) '   
   read *,x   
   print *,' Sine of ', x ,' = ',sin(x)      

   end program ch1201     

 These functions are called intrinsic functions. A selection is follows:  

 function  Action  Example 

 int  Conversion to integer  j=int(x) 
 real  Conversion to real  x=real(j) 
 abs  Absolute value  x=abs(x) 
 mod  Remaindering  k=mod(i,j) 

 Remainder when I divided by j 
 sqrt  Square root  x=sqrt(y) 
 exp  Exponentiation  y=exp(x) 
 log  Natural logarithm  x=log(y) 
 log 10  Common logarithm  x=log10(y) 
 sin  Sine  x=sin(y) 
 cos  Cosine  x=cos(y) 
 tan  Tangent  x=tan(y) 
 asin  Arc sine  y=asin(x) 
 acos  Arccosine  y=acos(x) 
 atan  Arctangent  y=atan(x) 
 atan2  Arctangent(a/b)  y=atan2(a,b) 

 A complete list is given in Appendix C.   

    12.3   Generic Functions 

 All but four of the intrinsic functions and procedures are generic, i.e., they can be 
called with arguments of one of a number of kind types. 

    12.3.1   Example 2: The  abs  Generic Function 

 The following short program illustrates this with the  abs  intrinsic function:       
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 Type this program in and run it on the system you use. 
 It is now possible with Fortran for the arguments to the intrinsic functions to be 

arrays. It is convenient to categorise the functions into either elemental or transfor-
mational, depending on the action performed on the array elements.   

    12.4   Elemental Functions 

 These functions work with both scalar and array arguments, i.e., with arguments 
that are either single or multiple valued. 

    12.4.1   Example 3: Elemental Function Use 

 Taking the earlier example with the evaluation of sine as a basis, we have:

    program ch1203   
   implicit none   
   real , dimension(5) :: x = (/1.0,2.0,3.0,4.0,5.0/) 
    print *,' sine of ', x ,' = ',sin(x)      

   end program ch1203     

 In the above example the sine function of each element of the array x is calcu-
lated and printed.   

    12.5   Transformational Functions 

 Transformational functions are those whose arguments are arrays, and work on 
these arrays to transform them in some way. 

    12.5.1   Example 4: Simple Transformational Use 

 To highlight the difference between an element-by-element function and a transfor-
mational function consider the following examples:

    program ch1204   
   implicit none   
   real , dimension(5) :: x = (/1.0,2.0,3.0,4 . 0,5 . 0/)   
   ! elemental function 
    print *, ' Sine of ' , x , ' = ',sin(x)      

   ! Transformational function 
    print *, ' Sum of ' , x , ' = ',sum(x)      

   end program ch1204     
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 The sum function adds each element of the array and returns the sum as a scalar, 
i.e., the result is single valued and not an array.  

    12.5.2   Example 5: Intrinsic  dot_product  Use 

 The following program uses the transformational function  dot_ product: 

    program ch1205   
   implicit none   
   real , dimension(5) :: x = (/1.0,2.0,3.0,4.0,5.0/) 
    print *,' Dot product of x with x is'   
   print *,' ',dot_product(x,x)      

   end program ch1205     

 Try typing these examples in and running them to highlight the differences 
between elemental and transformational functions.   

    12.6   Notes on Function Usage 

 You should not use variables which have the same name as the intrinsic functions; 
e.g., what does sin(x) mean when you have declared sin to be a real array? 

 When a function has multiple arguments care must be taken to ensure that the 
arguments are in the correct position and of the appropriate kind type. 

 You may also replace arguments for functions by expressions, e.g.,

    x  =  log(2.0)    

or

    x  =  log(abs(y))    

or

    x  =  log(abs(y) +   z/2.0)      

    12.7   Example 6: Easter 

 This example uses only one function, the mod (or modulus). It is used several times, 
helping to emphasise the usefulness of a convenient, easily referenced function. The 
program calculates the date of Easter for a given year. It is derived from an algo-
rithm by Knuth, who also gives a fuller discussion of the importance of its algo-
rithm. He concludes that the calculation of Easter was a key factor in keeping 



184 12 Functions

arithmetic alive during the Middle Ages in Europe. Note that determination of the 
Eastern churches’ Easter requires a different algorithm:       
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 We have introduced a new statement here, the if then endif, and a variant the if 
then else endif. A more complete coverage is given in the chapter on control struc-
tures. The main point of interest is that the normal sequential fl ow from top to bot-
tom can be varied. In the following case,

    if (expression) then   
  block of statements      

   endif    

if the expression is true the block of statements between the if then and the endif 
is executed. If the expression is false then this block is skipped, and execution pro-
ceeds with the statements immediately after the endif. 

 In the following case,

    if (expression) then    
 block 1      

   else 
    block 2      

   endif    

if the expression is true block 1 is executed and block 2 is skipped. if the expression 
is false then block 2 is executed and block 1 is skipped. Execution then proceeds 
normally with the statement immediately after the endif. 

 As well as noting the use of the mod generic function in this program, it is also 
worth noting the structure of the decisions. They are nested, rather like the nested 
do loops we met earlier.  

    12.8   Intrinsic Procedures 

 An alphabetical list of all intrinsic functions and subroutines is given in Appendix 
C. This list provides the following information:

   Function name.  • 
  Description.  • 
  Argument name and type.  • 
  Result type.  • 
  Classifi cation.  • 
  Examples of use.    • 

 This appendix should be consulted for a more complete and thorough under-
standing of intrinsic procedures and their use in Fortran.  

    12.9   Supplying Your Own Functions 

 There are two stages here: fi rstly, to defi ne the function and, secondly, to reference 
or use it. Consider the calculation of the greatest common divisor of two integers. 
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    12.9.1   Example 7: Simple User Defi ned Function 

 The following defi nes a function to achieve this:

    module gcd_module   
   contains   
   integer function gcd(a,b)   
   implicit none   
   integer , intent(in) :: a,b   
   integer :: temp 
    if (a < b) then     
temp=a      

   else 
    temp=b      

   endif   
   do while ((mod(a, temp) /= 0) .or. (mod(b,temp) / = 0)) 
    temp=temp-1      

   end do   
   gcd=temp      

   end function gcd   
   end module gcd module     

 To use this function, you reference or call it with a form like:

    program ch1207   
   use gcd_module   
   implicit none integer :: i,j,result   
   integer :: gcd 
    print *, ' type in two integers'   
   read *,i,j   
   result=gcd(i,j)   
   print *,' gcd is ',result      

   end program ch1207     

 We will start by talking about the actual function and then cover the following 
statements

    module gcd module   
   contains   
   ..   
   end module gcd_module    
and
    use gcd_module    

later. 
 The fi rst line of the function

    integer function gcd(a,b)    
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has a number of items of interest:

   Firstly the function has a type, and in this case the function is of type integer, i.e., • 
it will return an integer value.  
  The function has a name, in this case gcd.  • 
  The function takes arguments or parameters, in this case  • a  and  b .    

 The structure of the rest of the function is the same as that of a program, i.e., we 
have declarations, followed by the executable part. This is because both a program 
and a function can be regarded as a program unit in Fortran terminology. We will 
look into this more fully in later chapters. 

 In the declaration we also have a new attribute for the integer declaration. The two 
parameters  a  and  b  are of type integer, and the  intent  ( in ) attribute means that 
these parameters will NOT be altered by the function. It is good programming practice 
for functions not to have side effects, i.e. not modify their arguments, and do no i/o. 

 The value calculated is returned through the function name somewhere in the 
body of the executable part of the function. In this case  gcd  appears on the left-
hand side of an arithmetic assignment statement at the bottom of the function. The 
end of the function is signifi ed in the same way as the end of a program:

    end function gcd     

 We then have the program which actually uses the function  gcd . In the program 
the function is called or invoked with  I  and  j  as arguments. The variables are called 
 a  and  b  in the function, and references to  a  and  b  in the function will use the values 
that  I  and  j  have respectively in the main program. We cover the area of argument 
association in the next section. 

 Note also a new control statement, the do while enddo. In the following case,

    do while (expression)   
  block of statements      

   enddo    

the block of statements between the do while and the enddo is executed whilst the 
expression is true. There is a more complete coverage in Chap.   13    . 

 We have two options here regarding compilation. Firstly, to make the function 
and the program into one fi le, and invoke the compiler once. Secondly, to make the 
function and program into separate fi les, and invoke the compiler twice, once for 
each fi le. With large programs comprising one program and several functions it is 
probably worthwhile to keep the component parts in different fi les and compile 
individually, whereas if it consists of a simple program and one function then keep-
ing things together in one fi le makes sense.   
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    12.10   An Introduction to the Scope of Variables, Local 
Variables and Interface Checking 

 One of the major strengths of Fortran is the ability to work on parts of a problem at 
a time. This is achieved by the use of program units (a main program, one or more 
functions and one or more subroutines) to solve discrete subproblems. Interaction 
between them is limited and can be isolated, for example, to the arguments of the 
function. Thus variables in the main program can have the same name as variables 
in the function and they are completely separate variables, even though they have 
the same name. Thus we have the concept of a local variable in a program unit. 

 In the example above  I, j, result,  are local to the main program. The 
declaration of  gcd  is to tell the compiler that it is an integer, and in this case it is an 
external function. 

  a  and  b  in the function  gcd  do not exist in any real sense; rather they will be 
replaced by the actual variable values from the calling routine, in this case by what-
ever values  I  and  j  have.  temp  is local to  gcd.  

 A common programming error in Fortran 66 and 77 was mismatches between 
actual and dummy arguments. Problems caused by this were often very subtle and 
hard to fi nd. 

 Fortran 90 introduced a solution to the problem via the use of modules and con-
tains statements. We have added

    module gcd_module   
   contains   
   ..   
   end module gcd_module    

around the function defi nition, which contains the function in a module and the fol-
lowing statement in the main program

    use gcd module    

provides an explicit interface (in Fortran terminology) that requires the compiler to 
check at compile time that the call is correct, i.e. that there are the correct number 
of parameters, they are of the correct type and in this case that the function return 
type is correct. We will cover this area in greater depth in later chapters.  

    12.11   Recursive Functions 

 There is an additional form of the function header that must be used when the func-
tion is recursive. Recursion means the breaking down of a problem into a simpler 
but identical subproblem. The concept is best explained with reference to an actual 
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example. Consider the evaluation of a factorial, e.g., 5!. From simple mathematics 
we know that the following is true:

   5!=5*4!  
  4!=4*3!  
  3!=3*2!  
  2!=2*1!  
  1!=1  
  and thus 5! = 5*4*3*2*1 or 120.    

    12.11.1   Example 8: Recursive Factorial Evaluation 

 Let us look at a program with recursive function to solve the evaluation of 
factorials.

    module factorial_module   
   implicit none   
   contains   
   recursive integer function factorial(I) result(answer)   
   implicit none   
   integer , intent(in)::I 
    if (I==0) then      
answer=1      
   else 
    answer=i*factorial(I-1)      

   end if      
   end function factorial   
   end module factorial_module   
   program ch1208   
   use factorial_module   
   implicit none   
   integer :: I, f 
    print *, ' type in the number, integer only'   
   read *,I   
   do while(i<0) 
    print *,' factorial only defi ned for '   
   print *,' positive integers: re-input'   
   read *,I      

   end do   
   f=factorial(I)   
   print *, ' answer is' , f      

   end program ch1208     
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 What additional information is there? Firstly, we have an additional attribute on 
the function header that declares the function to be recursive. Secondly, we must 
return the result in a variable, in this case  answer . Let us look now at what happens 
when we compile and run the whole program (both function and main program). If 
we type in the number 5 the following will happen:

   The function is fi rst invoked with argument 5. The else block is then taken and • 
the function is invoked again.  
  The function now exists a second time with argument 4. The else block is then • 
taken and the function is invoked again.  
  The function now exists a third time with argument 3. The else block is then • 
taken and the function is invoked again.  
  The function now exists a fourth time with argument 2. The else block is then • 
taken and the function is invoked again.  
  The function now exists a fi fth time with argument 1. The else block is then taken • 
and the function is invoked again.  
  The function now exists a sixth time with argument 0. The if block is executed • 
and Answer = 1. This invocation ends and we return to the previous level, with 
Answer = 1*1.  
  We return to the previous invocation and now answer = 2*1.  • 
  We return to the previous invocation and now answer = 3*2.  • 
  We return to the previous invocation and now answer = 4*6.  • 
  We return to the previous invocation and now answer = 5*24.    • 

 The function now terminates and we return to the main program or calling 
routine. The answer 120 is the printed out. 

 Add a  print *, I  statement to the function after the last declaration and type 
the program in and run it. Try it out with 5 as the input value to verify the above 
statements. 

 Recursion is a very powerful tool in programming, and remarkably simple solu-
tions to quite complex problems are possible using recursive techniques. We will 
look at recursion in much more depth in the later chapters on dynamic data types, 
and subroutines and modules.   

    12.12   Example 9: Recursive Version of gcd 

 The following is another example of the earlier gcd function but with the algorithm 
in the function replaced with an alternate recursive solution:

    module gcd_module   
   implicit none   
   contains   
   recursive integer function gcd(i,j) result(answer)   
   implicit none   
   integer , intent(in) :: i,j 
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    if (j==0) then   
   answer=I   

   else   
   answer=gcd(j,mod(i,j))   

   endif      
   end function gcd   
   endmodule gcd_module   
   program ch1209   
   use gcd_module   
   implicit none   
   integer :: i,j,result   
   print *,' type in two integers'   
   read *,i,j   
   result=gcd(i,j)   
   print *,' gcd is ',result   
   end program ch1209     

 Try this program out on the system you work with, look at the timing information 
provided, and compare the timing with the previous example. The algorithm is a 
much more effi cient algorithm than in the original example, and hence should be 
much faster. On one system there was a 20-fold decrease in execution time between 
the two versions. 

 Recursion is sometimes said to be ineffi cient, and the following example looks at 
a nonrecursive version of the second algorithm.  

    12.13   Example 10: After Removing Recursion 

 The following is a variant of the above, with the same algorithm, but with the recur-
sion removed:

    module gcd_module   
   implicit none   
   contains   
   integer function gcd(i,j)   
   implicit none   
   integer , intent(inout) :: i,j   
   integer :: temp 
    do while (j/=0)
     temp=mod(i,j)   
   i=j   
   j=temp      

   end do   
   gcd=I      

   end function gcd   
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   end module gcd module   
   program ch1210   
   use gcd_module   
   implicit noneinteger :: i,j,result 
    print *,' type in two integers'   
   read *,i,j   
   result=gcd(i,j)   
   print *,' gcd is ',result      

   end program ch1210      

    12.14   Internal Functions 

 An internal function is a more restricted and hidden form of the normal function 
defi nition. 

 Since the internal function is specifi ed within a program segment, it may only be 
used within that segment and cannot be referenced from any other functions or sub-
routines, unlike the intrinsic or other user defi ned functions. 

    12.14.1   Example 11: Stirling’s Approximation 

 In this example we use Stirling’s approximation for large n,

     
π æ ö= ç ÷

è ø
! 2

n
n

n n
e    

and a complete program to use this internal function is given below:

    program ch1211   
   implicit none   
   real :: result,n,r 
    print *, ' type in n and r'   
   read *,n,r      

   ! number of possible combinations that can   
   ! be formed when   
   ! r objects are selected out of a group of n   
   ! n!/r!(n-r)! 
    result=stirling(n)/(stirling(r)*stirling(n-r))   
   print *,result   
   print *,n,r      

   contains   
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   real function stirling (x) 
    real , intent(in) :: x   
   real , parameter :: pi=3.1415927, e =2.7182828   
   stirling=sqrt(2.*pi*x) * (x/e)**x      

   end function stirling   
   end program ch1211     

 The difference between this example and the earlier ones lies in the contains 
statement. The function is now an integral part of the program and could not, for 
example, be used elsewhere in another function. This provides us with a very pow-
erful way of information hiding and making the construction of larger programs 
more secure and bug free.   

    12.15   Pure Functions 

 We mentioned earlier that functions should not have side effects. If your functions 
do have side effects and are running the code on parallel systems we have the addi-
tional problem that it may not actually work! We would also like to be able to take 
advantage of automatic parallelisation if possible. In the following example we 
show how to do this using the  pure  prefi x specifi cation.

    module gcd_module   
   implicit none   
   contains 
    pure integer function gcd(a,b)   
   implicit none   
   integer , intent(in) :: a,b   
   integer :: temp 
    if (a < b) then
     temp=a      

   else 
    temp=b      

   endif   
   do while ( (mod (a, temp) /= 0) & 
.or. (mod(b,temp) /=0)) 
    temp=temp-1      

   end do   
   gcd=temp      

   end function gcd      
   end module gcd_module   
   program ch1212   
   use gcd_module   
   implicit none   
   integer :: i,j,result 
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    print *, ' type in two integers'   
   read *,i,j   
   result=gcd(i,j)   
   print *,' gcd is ',result      

   end program ch1212     

 Subroutines can also be made pure. 

    12.15.1   Pure Constraints 

 The following are some of the constraints on pure procedures

   a dummy argument must be intent(in)  • 
  local variables may not have the save attribute  • 
  no i/o must be done in the procedure  • 
  any procedures referenced must be pure  • 
  you cannot have a stop statement in a pure procedure    • 

 The above information should be enough to write simple pure functions.   

    12.16   Elemental Functions 

 Fortran 77 introduced the concept of generic intrinsic functions. Fortran 90 added 
elemental intrinsic functions and the ability to write generic user defi ned functions. 
Fortran 95 squared the circle and enabled us to write elemental user defi ned func-
tions. Here is an example to illustrate this.

    module reciprocal_module   
   contains   
   real elemental function reciprocal(a)   
   implicit none   
   real , intent(in) :: a   
   reciprocal=1.0/a   

   end function reciprocal   
   end module reciprocal_module   
   program ch1213   
   use reciprocal_module   
   implicit none   
   real : : x=10.0   
   real , dimension(5) :: y=[1.0,2.0,3.0,4.0,5.0] 

    print *, ' reciprocal of x is ', reciprocal (x)   
   print *, ' reciprocal of y is ', reciprocal (y)       

   end program ch1213     
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 Hence we can call our own elemental functions with both scalar and array 
arguments. 

 Elemental functions require the use of explicit interfaces, and we have therefore 
used modules to achieve this.  

    12.17   Resumé 

 There are a large number of Fortran supplied functions and subroutines (intrinsic 
functions) which extend the power and scope of the language. Some of these func-
tions are of generic type, and can take several different types of arguments. Others 
are restricted to a particular type of argument. Appendix C should be consulted for 
a fuller coverage concerning the rules that govern the use of the intrinsic functions 
and procedures. 

 When the intrinsic functions are inadequate, it is possible to write user defi ned 
functions. Besides expanding the scope of computation, such functions aid in prob-
lem visualisation and logical subdivision, may reduce duplication, and generally 
help in avoiding programming errors. 

 In addition to separately defi ned user functions, internal functions may be 
employed. These are functions which are used within a program segment. 

 Although the normal exit from a user defi ned function is through the end, other, 
abnormal, exits may be defi ned through the return statement. 

 Communication with nonrecursive functions is through the function name and 
the function arguments. The function must contain a reference to the function name 
on the left-hand side of an assignment. Results may also be returned through the 
argument list. 

 We have also covered briefl y the concept of scope for a variable, local variables, 
and argument association. This area warrants a much fuller coverage and we will do 
this after we have covered subroutines and modules.  

 Here is the output from one compiler.  
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    12.18   Formal Syntax 

 The syntax of a function is:

    [function prefi x] function_statement &   
   [result (result_name) ]   
   [specifi cation part]   
   [execution_part]   
   [internal sub program part]   
   end [function [function name]]    

and prefi x is:

    [type specifi cation] recursive    

or

    [recursive] type specifi cation    

and the function_statement is:

    function function_name ([dummy argument name list] )     

 [ ] represent optional parts to the specifi cation. 
 The simple syntax for a module as we have used them in this chapter is

    module module_name   
   contains   
   ..   
   end module module_name    

and

    use module_name    

in the calling routine.  

    12.19   Rules and Restrictions 

 The type of the function must only be specifi ed once, either in the function state-
ment or in a type declaration. 

 The names must match between the function header and end function function 
name statement. 

 If there is a result clause, that name must be used as the result variable, so all 
references to the function name are recursive calls. 

 The function name must be used to return a result when there is no result clause. 
We will look at additional rules and restrictions in later chapters.  
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    12.20   Problems 

     1.    Find out the action of the  mod  function when one of the arguments is negative. 
Write your own modulus function to return only a positive remainder. Don’t call 
it  mod !  

    2.    Create a table which gives the sines, cosines and tangents for −1–91° in 1° inter-
vals. Remember that the arguments have to be in radians. What value will you 
give  p ? One possibility is  p  = 4*atan(1.0). Pay particular attention to the follow-
ing angle ranges:

   −1,0,+1  • 
  29,30,31  • 
  44,45,46  • 
  59,60,61  • 
  89,90,91    • 

 What do you notice about sine and cosine at 0 and 90 degrees? What do you 
notice about the tangent of 90 degrees? Why do you think this is? 
 Use a calculator to evaluate the sine, cosine at 0 and 90 degrees. do the same for 
the tangent at 90 degrees. Does this surprise you? 
 Repeat using a spreadsheet, e.g., Excel. 
 Are you surprised? 
 Repeat the Fortran program using one or more real kind types.  

    3.    Write a program that will read in the lengths a and b of a right-angled triangle 
and calculate the hypotenuse c. Use the Fortran  sqrt  intrinsic.  

    4.    Write a program that will read in the lengths a and b of two sides of a triangle and 
the angle between them 9 (in degrees). Calculate the length of the third side c 
using the cosine rule:

     θ= + -2 2 2 2 ( )c a b abcos      

    5.    Write a function to convert an integer to a binary character representation. It 
should take an integer argument and return a character string that is a sequence 
of zeros and ones. Use the program in Chap.   5     as a basis for the solution.      

    12.21   Bibliography 

 Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions. Dover, New 
York (1968)

   This book contains a fairly comprehensive collection of numerical algorithms for 
many mathematical functions of varying degrees of obscurity. It is a widely used 
source.    
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 Association of Computing Machinery (ACM)
   Collected Algorithms, 1960–1974  
  Transactions on Mathematical Software, 1975 – A good source of more special-
ised algorithms. Early algorithms tended to be in Algol, Fortran now 
predominates.    

    12.21.1   Recursion and Problem Solving 

 The following are a number of books that look at the role of recursion in problem 
solving and algorithms. 

 Hofstadter, D.R.: Gödel, Escher, Bach—An Eternal Golden Braid. Harvester Press, 
London (1979   )

   The book provides a stimulating coverage of the problems of paradox and con-
tradiction in art, music and mathematics using the works of Escher, Bach and 
Gödel, and hence the title. There is a whole chapter on recur sive structures and 
processes. The book also covers the work of Church and Turing, both of whom 
have made signifi cant contributions to the theory of computing.    
 Kruse, R.L.: Data Structures and Program Design. Prentice-Hall, Englewood 

Cliffs (1994)
   Quite a gentle introduction to the use of recursion and its role in problem solving. 
Good choice of case studies with explanations of solutions. Pascal is used.    
 Sedgewick, R.: Algorithms in Modula 3. Addison-Wesley, Reading (1993)
   Good source of algorithms. Well written. The gcd algorithm was taken from this 
source.    
 Vowels, R.A.: Algorithms and Data Structures in F and Fortran. Unicomp, 

Tucson (1998)
   The only book currently that uses Fortran 90/95 and F. Visit the Fortran web site 
for more details. They are the publishers.    

   http://www.fortran.com/fortran/market.html     

 Wirth, N.: Algorithms + Data Structures = Programs. Prentice-Hall, Englewood 
Cliffs (1976)

   In the context of this chapter the section on recursive algorithms is a very worth-
while investment in time.    
 Wood, D.: Paradigms and Programming in Pascal. Computer Science Press, 

Rockville (1984)
   contains a number of examples of the use of recursion in problem solving. Also 
provides a number of useful case studies in problem solving.            

http://www.fortran.com/fortran/market.html
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 Aims 

 The aims of this chapter are to introduce:

   Selection among various courses of action as part of the algorithm.  • 
  The concepts and statements in Fortran needed to support the above:• 

   Logical expressions and logical operators.  
  One or more blocks of statements.     

  The if then endif construct.  • 
  The if then else if endif construct.  • 
  To introduce the case statement with examples.  • 
  To introduce the do loop, in three forms with examples, in particular:• 

   The iterative do loop.  
  The do while form.  
  The do … if then exit end do or repeat until form.  
  The cycle statement.  
  The exit statement.       

    Chapter 13   
 Control Structures                 

 Summarizing: as a slow-witted human being I have a very small 
head and I had better learn to live with it and to respect my 
limitations and give them full credit, rather than try to ignore 
them, for the latter vain effort will be punished by failure. 

 Edsger W. Dijkstra, Structured Programming 
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    13.1   Introduction 

 When we look at this area it is useful to gain some historical perspective concerning 
the control structures that are available in a programming language. 

 At the time of the development of Fortran in the 1950s there was little theoretical 
work around and the control structures provided were very primitive and closely 
related to the capability of the hardware. 

 At the time of the fi rst standard in 1966 there was still little published work 
regarding structured programming and control structures. The seminal work by 
Dahl, Dijkstra and Hoare was not published until 1972. 

 By the time of the second standard there was a major controversy regarding 
languages with poor control structures like Fortran which essentially were limited 
to the goto statement. The facilities in the language had led to the development and 
continued existence of major code suites that were unintelligible, and the pejorative 
term spaghetti was applied to these programs. Developing an understanding of what 
a program did became an almost impossible task in many cases. 

 Fortran missed out in 1977 on incorporating some of the more modern and intel-
ligible control structures that had emerged as being of major use in making code 
easier to understand and modify. 

 It was not until the 1990 standard that a reasonable set of control structures 
had emerged and became an accepted part of the language. The more inquisitive 
reader is urged to read at least the work by Dahl, Dijkstra and Hoare to develop 
some understanding of the importance of control structures and the role of struc-
tured programming. The paper by Knuth is also highly recommended as it pro-
vides a very balanced coverage of the controversy of earlier times over the goto 
statement. 

    13.2   Selection Among Courses of Action 

 In most problems you need to choose among various courses of action, e.g.,

   if overdrawn, then do not draw money out of the bank.  • 
  if Monday, Tuesday, Wednesday, Thursday or Friday, then go to work.  • 
  if Saturday, then go to watch Queens Park Rangers.  • 
  if Sunday, then lie in bed for another two hours.    • 

 As most problems involve selection between two or more courses of action it is 
necessary to have the concepts to support this in a programming language. Fortran 
has a variety of selection mechanisms, some of which are introduced below. 
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    13.2.1   The Block if Statement 

 The following short example illustrates the main ideas: 

 If today is Sunday then the block of statements between the if and the endif is 
executed. After this block has been executed the program continues with the state-
ments after the endif. If today is not Sunday the program continues with the state-
ments after the endif immediately. This means that the statements after the endif are 
executed whether or not the expression is true. The general form is: 

 The logical expression is an expression that will be either true or false; hence its 
name. Some examples of logical expressions are given below:

    (Alpha >   = 10.1)       

Test if Alpha is greater than or equal to 10.1     

   (Balance <   = 0.0) 

   Test if overdrawn     

   (( Today == Saturday).OR.( Today == Sunday)) 

   Test if today is Saturday or Sunday     

   ((Actual - Calculated) <   = 1.0E-6) 

   Test if Actual minus Calculated is less than or equal to 1.0E-6       
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 Fortran has the following relational and logical operators:  

 operator  Meaning  type 

 = =  Equal  Relational 
 /=  Not equal  Relational 
  >=   Greater than or equal  Relational 
 <=  Less than or equal  Relational 
  <   Less than  Relational 
  >   Greater than  Relational 
 .AND.  And  Logical 
 .OR.  Or  Logical 
 .NOT.  Not  Logical 

 The fi rst six should be self-explanatory. They enable expressions or variables to 
be compared and tested. The last three enable the construction of quite complex 
comparisons, involving more than one test; in the example given earlier there was a 
test to see whether today was Saturday or Sunday. 

 Use of logical expressions and logical variables (something not mentioned so 
far) is covered again in a later chapter on logical data types. 

 the ‘if expression then statements endif is called a block if construct. There is a 
simple extension to this provided by the else statement. Consider the following 
example:

   if (Balance > 0.0) then
   • draw money out of the bank else     

  else
   • borrow money from a friend     

  endif    

 Buy a round of drinks. 
 In this instance, one or other of the blocks will be executed. then execution will 

continue with the statements after the endif statement (in this case buy a round). 
 There is yet another extension to the block if which allows an elseif statement. 

Consider the following example: 
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 Note that as soon as one of the logical expressions is true, the rest of the test is 
skipped, and execution continues with the statements after the endif. This implies 
that a construction like

    if(I  <  2)then   
  …  

   elseif(I  <  1)then   
  …  

   else   
  …  

   endif    

is inappropriate. if I is less than 2, the latter condition will never be tested. The else 
statement has been used here to aid in trapping errors or exceptions. This is recom-
mended practice. A very common error in programming is to assume that the data 
are in certain well-specifi ed ranges. The program then fails when the data go outside 
this range. It makes no sense to have a day other than Monday, Tuesday, Wednesday, 
Thursday, Friday, Saturday or Sunday. 

      13.2.1.1 Example 1: Quadratic Roots 

 A quadratic equation is:

     + + =2 0ax bx c     

 This program is straightforward, with a simple structure. The roots of the qua-
dratic are either real, equal and real, or complex depending on the magnitude of the 
term B* *2–4 * A * C. The program tests for this term being greater than or less 
than zero: it assumes that the only other case is equality to zero (from the mechanics 
of a computer, fl oating point equality is rare, but we are safe in this instance):  
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      13.2.1.2 Note 

 Given the understanding you now have about real arithmetic and fi nite precision 
will the else block above ever be executed?  

      13.2.1.3 Example 2: Date Calculation 

 This next example is also straightforward. It demonstrates that, even if the condi-
tions on the if statement are involved, the overall structure is easy to determine. The 
comments and the names given to variables should make the program self-explana-
tory. Note the use of integer division to identify leap years:

    program ch1302   
   implicit none   
         integer : : Year , N , Month , Day , T
!   
   ! calculates day and month from year and   
   ! day-within-year   
   ! t is an offset to account for leap years.   
   ! Note that the fi rst criteria is division by 4   
   ! but that centuries are only   
   ! leap years if divisible by 400   
   ! not 100 (4 * 25) alone.
!   
   print*,' year, followed by day within year' 
read*,Year,N

! checking for leap years   
   if ((Year/4)*4 == Year) then
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T=1
if ((Year/400)*400 == Year) then   
   T=1

ELSEIF ((Year/100)*100 == Year) then   
   T=0

endif
else   

   T=0
endif   

   ! accounting for February
if(N > (59+T))then   
   Day=N+2-T

else   
   Day=N

endif   
   Month=(Day+91)*100/3055
day=(day+91)-(month*3055)/100
month=month-2   
   print*, ' calendar date is ', day , month , year

end program ch1302       

    13.2.2   The Case Statement 

 The case statement provides a very clear and expressive selection mechanism 
between two or more courses of action. Strictly speaking it could be constructed 
from the if the else if endif statement, but with considerable loss of clarity. Remember 
that programs have to be read and understood by both humans and compilers! 

      13.2.2.1 Example 3: Simple Calculator 

     Program ch1303 implicit none   
   !   
   ! Simple case statement example   
   !   
   Integer :: I,J,K   
   character :: operator 
    do   
   print *, ' type in two integers'   
   read *, I,J   
   print *,' type in operator'   
   read '(A)',operator Calculator : &   
   select case (operator) 
    case ('+') Calculator   
   K=I + J   
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   print *, ' Sum of numbers is ',K      
   case ('-') Calculator 
    K=I−J   
   print *,' Difference is ',K      

   case ('/') Calculator 
    K=I/J      
   print *,' Division is ',K 

    case ('*') Calculator   
   K =I*J   
   print *,' Multiplication is ',K   

   case default Calculator 
    exit      

   end select Calculator      
   end do      

   end program ch1303     

 The user is prompted to type in two integers and the operation that they would 
like carried out on those two integers. The case statement then ensures that the 
appropriate arithmetic operation is carried out. The program terminates when the 
user types in any character other than +, −, * or /. 

 The case default option introduces the exit statement. This statement is used in 
conjunction with the do statement. When this statement is executed control passes to 
the statement immediately after the matching end do statement. In the example above 
the program terminates, as there are no executable statements after the end do.  

      13.2.2.2 Example 4: Counting Vowels, Consonants, etc 

 This example is more complex, but again is quite easy to understand. The user types 
in a line of text and the program produces a summary of the frequency of the char-
acters typed in:

    program ch1304   
   implicit none   
   !   
   ! Simple counting of vowels, consonants,   
   ! digits, blanks and the rest   
   !   
   integer :: Vowels=0 , Consonants=0, Digits=0   
   integer :: Blank=0, Other=0, I   
   character :: Letter   
   character (LEN=80) :: Line read ' (A) ' , Line 
    do I=1,80    

 Letter=Line(I:I)      
   ! the above extracts one character at position I select case 
(Letter) 
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    case ('A','E','I','O','U', &   
   'a','e','I','o','u') 
    Vowels=Vowels + 1   

  case ('B', 'C', 'D', 'F', 'G', 'H', &   
   'J','K','L','M','N','P', &   
   'Q', 'R', 'S', 'T', 'V', 'W', &   
   'X','Y','Z',   
   'b','c','d','f','g','h', &   
   'j','k','l','m','n','p', &   
   'q','r','s','t','v','w',&   
   'x','y','z')      

   Consonants=Consonants + 1      
   case ('1', '2', '3', '4', '5', '6', '7', '8','9', '0') 
    Digits=Digits + 1      

   case (' ') 
    Blank=Blank + 1      

   case default 
    Other=Other+1      

   end select      
   end do    
    print *, ' Vowels = ', Vowels   
   print *, ' Consonants = ', Consonants   
   print *, ' Digits = ', Digits   
   print *, ' Blanks = ',Blank   
   print *, ' Other characters = ', Other      

   end program ch1304        

    13.3   The Three Forms of the do Statement 

 You have already been introduced in the chapters on arrays to the iterative form of 
the do loop, i.e.,

   do Variable = Start, End, Increment
   block of statements     
  end do    

 A complete coverage of this form is given in the three chapters on arrays. There 
are two additional forms of the block do that complete our requirements: 

 The fi rst form is often called a while loop as the block of statements executes 
whilst the logical expression is true, and the second form is often called a repeat 
until loop as the block of statements executes until the statement is true. 

 Note that the while block of statements may never be executed, and the repeat 
until block will always be executed at least once. 
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    13.3.1   Example 5: Sentinel Usage 

 The following example shows a complete program using this construct:

    program ch1305   
   implicit none   
   ! this program picks up the fi rst occurrence   
   ! of a number in a list.   
   ! a sentinel is used, and the array is 1 more   
   ! than the max size of the list.   
   integer , allocatable , dimension(:) : : A   
   integer :: Mark   
   integer :: I,Howmany 
    open (unit=1,fi le='data.txt' )   
   print *, ' What number are you looking for?'   
   read *, Mark   
   print *, ' How many numbers to search?'   
   read *,Howmany   
   allocate(A(1:Howmany+1) )   
   read(unit=1,fmt=*) (A(i),I=1,Howmany)   
   I = 1   
   A(Howmany+1)= Mark   
   do while(Mark /= A(I)) 
    I = I + 1      

   end do   
   if(I == (Howmany+1)) then 
    print*,' item not in list'      

   else 
    print*,' item is at position ',I      

   endif      
   end program ch1305     

 The repeat until construct is written in Fortran as:

    do   
   …   
   … 
    if (Logical Expression) exit      

   end do     

 There are problems in most disciplines that require a numerical solution. The 
two main reasons for this are either that the problem can only be solved numerically 
or that an analytic solution involves too much work. Solutions to this type of prob-
lem often require the use of the repeat until construct. The problem will typically 
require the repetition of a calculation until the answers from successive evaluations 
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differ by some small amount, decided generally by the nature of the problem. A 
program extract to illustrate this follows: 

 Here the value of the tolerance is set to 1.0E–6. Note again the use of the exit 
statement. The do end do block is terminated and control passes to the statement 
immediately after the matching end do.  

    13.3.2   Cycle and Exit 

 These two statements are used in conjunction with the block do statement. You have 
seen examples above of the use of the exit statement to terminate the block do, and 
pass control to the statement immediately after the corresponding end do 
statement. 

 The cycle statement can appear anywhere in a block do and will immediately 
pass control to the start of the block do. Examples of cycle and exit are given in later 
chapters.  

    13.3.3   Example 6: e**x Evaluation 

 The function etox illustrates one use of the repeat until construct. The function 
evaluates e**x. This may be written as

     
2 31 x / 1! x / 2! x / 3!+ + + …    

or

     

−∞

=

+
−∑

1

1

1
( 1) !

n

n

x x

n n    

Every succeeding term is just the previous term multiplied by x/n. At some point the 
term x/n becomes very small, so that it is not sensibly different from zero, and suc-
cessive terms add little to the value. The function therefore repeats the loop until x/n 
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is smaller than the tolerance. The number of evaluations is not known beforehand, 
since this is dependent on x:

    module etox_module   
   implicit none   
   contains   
   real function etox(x)   
   implicit none   
   real :: term   
   real , intent(in) :: x   
   integer :: nterm   
   real , parameter ::tol = 1.0E-6 
    etox=1.0   
   term=1.0   
   nterm=0   
   do 
    nterm = nterm +1   
   term = ( x / nterm) * term   
   etox = etox + Term   
   if (abs(term) <= tol)exit      

   end do      
   end function etox   
   end module etox module   

   program ch1306   
   use etox module   
   implicit none   
   real , parameter :: x=1.0   
   real : : y 
    print *,' Fortran intrinsic ',exp(x)   
   y=etox(x)   
   print *,' User defi ned etox ',y      

   end program ch1306     

 The whole program compares the user defi ned function with the Fortran intrinsic 
exp function.  

    13.3.4   Example 7: Wave Breaking on an Offshore Reef 

 This example is drawn from a situation where a wave breaks on an offshore reef or 
sand bar, and then reforms in the near-shore zone before breaking again on the 
coast. It is easier to observe the heights of the reformed waves reaching the coast 
than those incident to the terrace edge. 

 Both types of loops are combined in this example. The algorithm employed here 
fi nds the zero of a function. Essentially, it fi nds an interval in which the zero must 
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lie; the evaluations on either side are of different signs. The while loop ensures that 
the evaluations are of different signs, by exploiting the knowledge that the incident 
wave height must be greater than the reformed wave height (to give the lower 
bound). The upper bound is found by experiment, making the interval bigger and 
bigger. Once the interval is found, its mean is used as a new potential bound. The 
zero must lie on one side or the other; in this fashion, the interval containing the zero 
becomes smaller and smaller, until it lies within some tolerance. This approach is 
rather plodding and unexciting, but is suitable for a wide range of problems 

 Here is the program:

    program ch1307   
   implicit none   
   real : : Hi , Hr , Hlow , High , Half , Xl   
   real : : Xh , Xm , D   
   real , parameter :: Tol=1.0E-6   
   ! problem - fi nd hi from expression given   
   ! in function f   
   ! F=A*(1.0-0.8*EXP(-0.6*C/A))-B   
   ! hi is incident wave height (c)   
   ! hr is reformed wave height (b)   
   ! d is water depth at terrace edge (a) 

    print*,' Give reformed wave height, and water depth'   
   read*,Hr,d      

   !   
   ! for Hlow- let Hlow=hr   
   ! for high- let high=Hlow*2.0   
   !   
   ! check that signs of function results are different   
   ! 
    Hlow = hr   
   high = hlow*2.0   
   xl = f( hlow, hr, d)   
   xh = f( high, hr, d)      

   ! 
    do while ( (xl*xh) >= 0.0)   

  high = high*2.0   
   xh = f(high,hr,d)      

   end do      
   ! 
    do   
   half=(hlow+high) *0.5   
   xm=f(half, hr, d)   
   if((xl*xm) < 0.0)then 

    xh=xm   
   high=half      
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   else 
    xl=xm   
   hlow=half   
   endif   
   if(abs(high-hlow)<= tol)exit      

   end do    
    print*,' Incident Wave Height Lies Between'   
   print*,Hlow, ' and ',high,' metres'   

   contains   
   real function f(a,b,c)   
   implicit none   
   real , intent (in) :: a   
   real , intent (in) :: b   
   real , intent (in) :: c 
    f=a*(1.0−0.8*exp(−0.6*c/a))−b      

   end function f      
   end program ch1307       

    13.4   Summary 

 You have been introduced in this chapter to several control structures and these 
include:

   The block if.  • 
  The if then else if.  • 
  The case construct.  • 
  The block do in three forms:• 

   The iterative do or do variable = start,end,increment … end do.   –
  The while construct, or do while … end do.   –
  The repeat until construct, or do … if then exit end do.      –

  The cycle and exit statements, which can be used with do statement in all three • 
forms:

   The do variable   – =  start,end,increment … end do.  
  The while construct, or do while … end do.   –
  The repeat until construct, or do … if then exit end do.        –

 These constructs are suffi cient for solving a wide class of problems. There are 
other control statements available in Fortran, especially those inherited from Fortran 
66 and Fortran 77, but those covered here are the ones preferred. We will look in 
Chap.   35     at one more control statement, the so-called goto statement, with recom-
mendations as to where its use is appropriate. 
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    13.4.1   Control Structure Formal Syntax 

 case

    select case ( case variable )
     [ case case selector   

   [executable construct ]  ...  ]  ...  
   [ case DEFAULT   
   [executable construct]      

   end select    

    do   

   do [ label ] 
    [executable construct ]  ...  

   do termination   
   do [ label ] [ , ] loop variable = initial value , 
fi nal value , [ increment ]   

   [executable construct ]  ...  
   do termination   
   do [ label ] [ , ] while (scalar logical expression )   

   [executable construct ]  ...   
    do termination       

if

    if ( scalar logical expression ) then    
 [executable construct ]  ...     

   [ else if ( scalar logical expression then 
    [executable construct ]  ...  ]  ... ]      

   [ else 
    [executable construct ]  ... ]      

   end if       

    13.5   Problems 

     1.    Rewrite the program for the period of a pendulum. The new program should print 
out the length of the pendulum and period, for pendulum lengths from 0 to 
100 cm in steps of 0.5 cm. The program should incorporate a function for the 
evaluation of the period.  

    2.    Write a program to read an integer that must be positive. Hint. use a do while to 
make the user re-enter the value.  

    3.    Using functions, do the following:
   Evaluate n! from n  • =  0 to n  =  10.  
  Calculate 76!  • 
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  Now calculate (x**n)/n!, with x  • =  13.2 and n  =  20.  
  Now do it another way.     • 

    4.    The program ch1307 is taken from a real example. In the particular problem, the 
reformed wave height was 1 m, and the water depth at the reef edge was 2 m. 
What was the incident wave height? Rather than using an absolute value for the 
tolerance, it might be more realistic to use some value related to the re formed 
wave height. These heights are unlikely to be reported to better than about 5% 
accuracy. Wave energy may be taken as proportional to wave height squared for 
this example. What is the reduction in wave energy as a result of breaking on the 
reef or bar for this particular case.  

    5.    What is the effect of using int on negative real numbers? write a program to 
demonstrate this.  

    6.    How would you fi nd the nearest integer to a real number? Now do it another way. 
Write a program to illustrate both methods. Make sure you test it for negative as 
well as positive values.  

    7.    The function etox has been given in this chapter. The standard Fortran function 
EXP does the same job. do they give the same answers? Curiously the Fortran 
standard does not specify how a standard function should be evaluated, or even 
how accurate it should be. 
 The physical world has many examples in which processes require that some 
threshold be overcome before they begin operation: critical mass in nuclear reac-
tions, a given slope to be exceeded before friction is overcome, and so on. 
Unfortunately, most of these sorts of calculations become rather complex and not 
really appropriate here. The following problem tries to restrict the range of cal-
culation, whilst illustrating the possibilities of decision making.  

    8.    If a cubic equation is expressed as

     + + + =3 2ax  bx cx d 0    

and we let

     Δ = − − −3 2 2 3 2 2 18abcd 4b d + b c 4ac 27a d     

 We can determine the nature of the roots as follows

     Δ > 0 :  three distinct real roots    

     Δ = 0 :  has a multiple root and all roots are real    

     Δ < 0 :  1 real root and 2 non real complex conjugate roots     



21513.6 Bibliography

 Incorporate this into a program, to determine the nature of the roots of a cubic 
from suitable input.  

    9.    The form of breaking waves on beaches is a continuum, but for convenience we 
commonly recognise three major types: surging, plunging and spilling. These 
may be classifi ed empirically by reference to the wave period, T (seconds), the 
breaker wave height, H 

b
  (metres), and the beach slope, m. These three variables 

are combined into a single parameter, B, where    

     = 2
bB H /(gmT )     

 g is the gravitational constant (981 cm s −2  ). if B is less than 0.003, the breakers 
are surging; if B is greater than 0.068, they are spilling, and between these values, 
plunging breakers are observed.

   (i)    On the east coast of New Zealand, the normal pattern is swell waves, with 
wave heights of 1–2 m and wave periods of 10–15 s. During storms, the 
wave period is generally shorter, say 6–8 s, and the wave heights higher, 
3–5 m. The beach slope may be taken as about 0.1. What changes occur in 
breaker characteristics as a storm builds up?  

   (ii)    Similarly, many beaches have a concave profi le. The lower beach generally 
has a very low slope, say less than 1 ° (m  =  0.018), but towards the high-tide 
mark, the slope increases dramatically, to say 10° or more (m  =  0.18). What 
changes in wave type will be observed as the tide comes in?      

    13.6   Bibliography 
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 Aims 

 The aims of this chapter are:

   To extend the ideas about characters introduced in earlier chapters.  • 
  To demonstrate that this enables us to solve a whole new range of problems in a • 
satisfactory way.    

    14.1   Introduction    

 For each type in a programming language there are the following concepts:

   Values are drawn from a fi nite domain.  • 
  There are a restricted number of operations defi ned for each type.    • 

 For the numeric types we have already met, integers and reals:

   The values are either drawn from the domain of integer numbers or the domain • 
of real numbers.  
  The valid operations are addition, subtraction, multiplication, division and • 
exponentiation.    

    Chapter 14   
 Characters              

 These metaphysics of magicians, 
 And necromantic books are heavenly; 
 Lines, circles, letters and characters. 

 Christopher Marlowe, The Tragical History of Doctor Faustus 
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 For the character data type the basic unit is an individual character The complete 
Fortran character set is given in Sect. 4.6 in Chap.   4    . This provides us with 95 print-
ing characters. Other characters may be available. The Wikipedia entry
      http://en.wikipedia.org/wiki/Character_encoding 
          has quite detailed information on how complex this area actually is. 

 As the most common current internal representation for the character data type uses 
8 bits this should provide access to 256 (2 8 ) characters. However, there is little agreement 
over the encoding of these 256 possible characters, and the best you can normally assume 
is access to the ASCII character set, which is given in Appendix B. One of the problems 
at the end of this chapter looks at determining what characters one has available. 

 The only operations defi ned are concatenation (joining character strings together) 
and comparison. 

 We will look into the area of character sets in more depth later in this chapter. We 
can declare our character variables:

    character :: a, string, line     

 Note that there is no default typing of the character variable (unlike integer and 
real data types), and we can use any convenient name within the normal Fortran 
conventions. In the declaration above, each character variable would have been per-
mitted to store one character. This is limiting, and, to allow character strings which 
are several units long, we have to add one item of information:

    character (10) :: A   
   character (16) :: string   
   character (80) :: line     

 This indicates that A holds 10 characters, string holds 16, and line holds 80. if all 
the character variables in a single declaration contain the same number of charac-
ters, we can abbreviate the declaration to

    character(80) :: list, string, line     

 But we cannot mix both forms in the one declaration. We can now assign data to 
these variables, as follows:

    a='fi rst one '   
   string='a longer one '   
   line='the quick brown fox jumps over the lazy dog'     

 The delimiter apostrophe (') or quotation mark (") is needed to indicate that this 
is a character string (otherwise the assignments would have looked like invalid vari-
able names). 

    14.2   Character Input 

 In an earlier chapter we saw how we could use the read * and print * statements to 
do both numeric and character input and output or I/O. When we use this form of 
the statement we have to include any characters we type within delimiters (either the 

http://en.wikipedia.org/wiki/Character_encodingCOMP: Set all programming codes as in MS.
http://en.wikipedia.org/wiki/Character_encodingCOMP: Set all programming codes as in MS.
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apostrophe ' or the quotation mark "). This is a little restricting and there is a slightly 
more complex form of the read statement that allows one to just type the string on 
its own. The following two programs illustrate the differences:

    program ch1401   
   !   
   ! Simple character i/o   
   !   
   character (80) :: line 
    read *, line   
   print *, line      

   end program ch1401     

 This form requires enclosing the string with delimiters. Consider the next form:

    program ch1402   
   !   
   ! Simple character i/o   
   !   
   character (80) :: line 
    read '(a)' , line   
   print *,line      

   end program ch1402     

 With this form one can just type the string in and input terminates with the car-
riage return key. The additional syntax involves '(A)' where '(A)' is a character edit 
descriptor. The simple examples we have used so far have used implied format 
specifi ers and edit descriptors. For each data type we have one or more edit descrip-
tors to choose from. For the character data type only the A edit descriptor is 
available.  

    14.3   Character Operators 

 The fi rst manipulator is a new operator – the concatenation operator //. With this 
operator we can join two character variables to form a third, as in

    character (5) :: fi rst, second   
   character (10) :: third   
   fi rst='three'   
   second='blind'   
   …   
   third=fi rst//second   
   .   
   third=fi rst//'mice'    
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where there is a discrepancy between the created length of the concatenated string and 
the declared lengths of the character strings, truncation will occur. For example,

    third =   fi rst//' blind mice'   

 will only append the fi rst fi ve characters of the string 'blind mice' i.e., 'blin', and 
third will therefore contain 'three blin'. 
 What would happen if we assigned a character variable of length ‘n’ a string which 
was shorter than n? For example,

    character (4) :: c2   
   c2 =   'AB'     

 The remaining two characters are considered to be blank, that is, it is equivalent 
to saying

    C2 =   'AB'     

 However, while the strings 'AB' and 'AB' are equivalent, 'AB' and 'AB' are not. In 
the jargon, the character strings are always left justifi ed, and the unset characters are 
trailing blanks. If we concatenate strings which have ‘trailing blanks’, the blanks, or 
spaces, are considered to be legitimate characters, and the concatenation begins 
after the end of the fi rst string. Thus

    character (4) :: c2,c3   
   character (8) :: jj   
   c2='a'   
   c3='man'   
   jj=c2//c3   
   print*, 'the concatenation of ',c2, 'and',c3, 'is'   
   print*,JJ    

would appear as

    the concatenation of a and man gives   
   a man    

at the terminal. 

 Sometimes we need to be able to extract parts of character variables – substrings. 
The actual notation for doing this is a little strange at fi rst, but it is very powerful. 
To extract a substring we must reference two items:

   The position in the string at which the substring begins,   • 

and

   The position at which it ends.   • 

e.g.,

    string =   'share and enjoy'      
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    14.4   Character Substrings 

 We may extract parts of this string:

    bit =   string(3:5)    

would place the characters 'are' into the variable bit. This may be manipulated 
further:

    bit1 =   string(2:4)//string(9:9)   
   bit2 =   string(5:5) // &   
   string(3:3)//string(1:1)//string(15:15)     

 Note that to extract a single character we reference its beginning position and its 
end (i.e., repeat the same position), so that

    string(3:3)    

gives the single character 'A'. The substring reference can cut out either one of the 
two numerical arguments. if the fi rst is omitted, the characters up to and including 
the reference are selected, so that

    sub =   string(:5)    

would result in sub containing the characters ‘share’. When the second argument is 
omitted, the characters from the reference are selected, so that

    sub =   string(11:)    

would place the characters ‘enjoy’ in the variable sub. In these examples it would 
also be necessary to declare string, sub, bit, bit1 and bit2 to be of character type, of 
some appropriate length.character variables may also form arrays:

    character (10) , dimension(20) :: A    

sets up a character array of 20 elements, where each element contains 10 characters. 
In order to extract substrings from these array elements, we need to know where the 
array reference and the substring reference are placed. The array reference comes 
fi rst, so that

    do I =   1,20     
fi rst =   a(I)(1:1)      

   endo    

places the fi rst character of each element of the array into the variable fi rst. The 
syntax is therefore ‘position in array, followed by position within string’. 

 Any argument can be replaced by a variable:

    string(i:j)     
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 This offers interesting possibilities, since we can, for example, strip blanks out of 
a string:

    program ch1403   
   implicit none 
    character(80) :: String, Strip   
   integer :: ipos,i,length=80   
   ipos=0   
   print *, 'type in a string'   
   read '(a)',string 
    do i=1,length    
 if(string(i:i) /= ' ') then     
ipos=ipos+1   
   strip(ipos:ipos)=string(i:i)      

   endif      
   end do      
   print*,string   
   print*,strip      

   end program ch1403      

    14.5   Character Functions 

 There are special functions available for use with character variables: Index will 
give the starting position of a string within another string. If, for example, we were 
looking for all occurrences of the string 'Geology' in a fi le, we could construct some-
thing like:

    program ch1404   
   implicit none   
   character (80) :: Line   
   integer :: I 
    do     
read '(A)' , Line   
   I=Index(Line,'Geology')   
   if (I /= 0) then 
    print *, 'String Geology found at position',I   
   print *, 'in line', Line   
   exit      

   endif      
   enddo      

   end program ch1404     

 There are two things to note about this program. Firstly the index function will 
only report the fi rst occurrence of the string in the line; any later occurrences in any 
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particular line will go unnoticed, unless you account for them in some way. Secondly, 
if the string does not occur, the result of the index function is zero, and given the 
infi nite loop (do end do) the program will crash at run time with an end of fi le error 
message. This isn’t good programming practice. 

 len provides the length of a character string. This function is not immediately 
useful, since you really ought to know how many characters there are in the string. 

 However, as later examples will show, there are some cases where it can be use-
ful. Remember that trailing blanks do count as part of the character string, and 
contribute to the length. 
 The following example illustrates the use of both len and len_trim:

    program ch1405   
   implicit none   
   character (len=20) :: name   
   integer : : name_length 
    print *, 'type in your name'   
   read '(a)' , name      

   !   
   ! show len fi rst   
   ! 
    Name_length=len(name)   
   print *,' name length is ',name_length   
   print *,' ',name(1:name length),'<-end is here'   
   name_length=len_trim(name)   
   print *,' name length is ',name_length   
   print *,' ',name(1:name length),'<-end is here'      

   end program ch1405      

    14.6   Collating Sequence 

 The next group of functions need to be considered together. They revolve around the 
concept of a collating sequence. In other words, each character used in Fortran is 
ordered as a list and given a corresponding weight. No two weights are equal. 
Although Fortran has only 63 defi ned characters, the machine you use will gener-
ally have more; 95 printing characters is a typical minimum number. On this type of 
machine the weights would vary from 0 to 94. There is a defi ned collating sequence, 
the ASCII sequence, which is likely to be the default. The parts of the collating 
sequence which are of most interest are fairly standard throughout all collating 
sequences. 

 In general, we are interested in the numerals (0–9), the alphabetics (A–Z, 
a–z) and a few odds and ends like the arithmetic operators (+ − / *), some punc-
tuation (. and ,) and perhaps the prime (¢). As you might expect, 0–9 carry 
successively higher weights (though not the weights 0–9), as do A to Z and a to z. 
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The other odds and ends are a little more problematic, but we can fi nd out the 
weights through the function ichar. This function takes a single character as 
argument and returns an integer value. The ASCII weights for the alphanumerics 
are as follows:  

 0–9     48–57 
 A–Z  65–90 

 One of the exercises is to determine the weights for other characters. The reverse 
of this procedure is to determine the character from its weighting, which can be 
achieved through the function char. char takes an integer argument and returns a 
single character. Using the ASCII collating sequence, the alphabet would be gener-
ated from

    do I =   65, 90     
print*,char(I)      

   enddo     

 This idea of a weighting can then be used in four other functions:  

 Function  Action 

 lle  lexically less than or equal to 
 lge  lexically greater than or equal to 
 lgt  lexically greater than 
 llt  Lexically less than 

 In the sequence we have seen before, A is lexically less than B, i.e., its weight is 
less. Clearly, we can use ichar and get the same result. For example,

    if (lgt('a', 'b')) then   

 is equivalent to

    if(ichar('a')  >  ichar('b')) then    

but these functions can take character string arguments of any length. They are not 
restricted to single characters. 

 These functions provide very powerful tools for the manipulation of characters, 
and open up wide areas of nonnumerical computing through Fortran. Text format-
ting and word processing applications may now be tackled (conveniently ignoring 
the fact that lower-case characters may not be available). 

 There are many problems that require the use of character variables. These range 
from the ability to provide simple titles on reports, or graphical output, to the provi-
sion of a natural language interface to one of your programs, i.e., the provision of an 
English-like command language. Software Tools by Kernighan and Plauger con-
tains many interesting uses of characters in Fortran.  
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    14.7   Finding Out About the Character Set Available 

 The following program prints out the characters between 32 and 127.

    program ch1406   
   implicit none   
   integer :: I 
    do I=32,62    
 print*,i,char(i),i+32,char(i+32),i+64,char(I+64)      

   end do   
   I = 63   
   print *,i,char(i),i+32,char(i+32),i+64, 'del'   
   I = 64   
   print *,i,char(i),i+32,char(I+32)      

   end program ch1406     

 This is the output from the Intel compiler under Windows.  

 32  64 @  96 ¢  
 33 !  65 A  97 a 
 34 “  66 B  98 b 
 35 #  67C  99 c 
 36 $  68 D  100 d 
 37%  69 E  101 e 
 38 &  70F  102 f 
 39 '  71 G  103 g 
 40 (  72 H  104 h 
 41 )  73 I  105 I 
 42 *  74 J  106 j 
 43 +  75 K  107 k 
 44 ,  76 L  108 l 
 45 -  77 M  109 m 
 46 .  78 N  110 n 
 47 /  79 O  111 o 
 48 0  80 P  112 p 
 49 1  81 Q  113 q 
 50 2  82 R  114 r 
 51 3  83 S  115 s 
 52 4  84 T  116 t 
 53 5  85 U  117 u 
 54 6  86 V  118 v 
 55 7  87 W  119 w 
 56 8  88 X  120 x 
 57 9  89 Y  121 y 
 58 :  90 Z  122 z 
 59 ;  91 [  123 { 
 60 <  92 \  124 | 

(continued)
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 61 =  93 ]  125 } 
 62 >  94 ^  126 ~ 
 63 ?  95 _  127 del 
 64 @  96 ` 

 Try this program out on the system you use. Do the character sets match?  

    14.8   Scan Function Example 

 The following program uses the scan function to locate the position of all of the 
blanks in a string. The syntax of the simple form we use in the program is given 
below.

   scan(string,set) – Scans a string for any one of the characters in a set of • 
characters.   

    program ch1407   
   implicit none   
   character (1024) :: string01   
   character (1) :: set=' '   
   integer : : I   
   integer : : l   
   integer :: start,end 
    string01 = &   
   "The important issue about a language, is not so"   
   string01 = trim(string01) // " " // &   
   "much what features the language possesses, but"   
   string01 = trim(string01) // " " // &   
   "the features it does possess, are suffi cient, to"   
   string01 = trim(string01) // " " // &   
   "support the desired programming styles, in the"   
   string01 = trim(string01) // " " // &   
   "desired application areas. "   
   l = len(trim(string01))   
   print *,' Length of string is = ',l   
   print *,' String is'   
   print *,trim(string01)   
   start=1   
   end=l   
   print *,' Blanks at positions '    
    do    
 i=scan(string01(start:end),set)   
   start=start+I   

(continued)
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   if (I==0) exit   
   write(*,10,advance='no'),start-1   
   10 format(i5)      

   end do      
   end program ch1407     

 Note the use of the trim function when using the concatenation operator to initia-
lise the string to the text we want. 

 The output from one compiler is given below.

    Length of string is  =  217   
   String is     

  The important issue about a language, is not so much 
what features the language possesses, but the features 
it does possess, are suffi cient, to support the desired 
programming styles, in the desired application areas.   

 The text in this program is used in two problems at the end of this chapter.  

    14.9   Summary 

 Characters represent a different data type to any other in Fortran, and as a conse-
quence there is a restricted range of operations which may be carried out on them. 

 A character variable has a length which must be assigned in a character declara-
tion statement. 

 Character strings are delimited by apostrophes (') or quotation marks ("). Within 
a character string, the blank is a signifi cant character. 

 Character strings may be joined together (concatenated) with the // operator. 
 Substrings occurring within character strings may be also be manipulated. There 

are a number of functions especially for use with characters:

   achar – return the character in the ASCII character set  • 
  adjustl – adjust left, remove leading blanks, add trailing blanks  • 
  adjustr – adjust right – remove trailing blanks, insert leading blanks  • 
  char – return the character in the processor collating sequence  • 
  iachar – as above but in the ASCII character set  • 
  index – locate one string in another  • 
  len – character length including trailing blanks  • 
  len_trim – character length without the trailing blanks  • 
  lle – lexically less than or equal to  • 
  lge – lexically greater than or equal to  • 
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  lgt – lexically greater than  • 
  llt – lexically less than  • 
  repeat – concatenate several copies of a string  • 
  scan – scans a string for anyone of the characters in the set  • 
  trim – remove the trailing blanks  • 
  verify – verify that a set of characters contains all the characters in a string    • 

 A detailed explanation is given in Appendix E.  

    14.10   Problems 

     1.    Suggest some circumstances where PRIME = '''' might be useful. What other 
alternative is there and why do you think we use that instead?  

    2.    Write a program to write out the weights for the Fortran character set. Modify 
this program to print out the weights of the complete implementation defi ned 
character set for your version of Fortran. Is it ASCII? If not, how does it differ?  

    3.    Write a program that produces the following output.

    !   
   "#   
   $%&   
   '()*   
   +,-./   
   012345   
   6789:;<   
   =>?@ABCD   
   EFGHIJKLM   
   NOPQRSTUVW   
   XYZ[\]^_`ab   
   cdefghijklmn   
   opqrstuvwxyz{   
   |}~     

 We assume the ASCII character set in this example.  
    4.    Modify the above program to produce the following output.  

 Again we assume the ASCII character set.  
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     5.    Modify program ch1407 to break the text into phrases, using the comma and 
full stop as breaking characters. The output expected is given below.

    The important issue about a language   
   is not so much what features the language possesses   
   but the features it does possess   
   are suffi cient   
   to support the desired programming styles   
   in the desired application areas      

     6.    Modify the above to break the text into words and count the frequency of occur-
rence of words by length. The output should be similar to that given below.

    1    a 1  
    2    is so it to in 5  
    3    The not the but the are the the 8  
    4    much what does 3  
    5    issue about areas 3  
    6    styles 1  
    7    possess support desired desired 4  
    8    language features language features 4  
    9    important possesses 2  
   10    suffi cient 1  
   11    programming application 2      

     7.    Use the INDEX function in order to fi nd the location of all the strings ‘is’ in the 
following data: 
 If a programmer is found to be indispensable, the best thing to do is to get rid of 
him as quickly as possible.  

     8.    Find the ‘middle’ character in the following strings. Do you include blanks as 
characters? What about punctuation? 
 Practice is the best of all instructors. Experience is a dear teacher, but fools will 
learn at no other.  

     9.    In English, the order of occurrence of the letters, from most frequent to least is 
E, T, A, O, N, R, I, S, H, D, L, F, C, M, U, G, Y, P, W, B, V, K, X, J, Q, Z 
 Use this information to examine the two fi les given in Appendix D (one is a 
translation of the other) to see if this is true for these two extracts of text. The 
second text is in medieval Latin (c. 1320). Note that a fair amount of compres-
sion has been achieved by expressing the passage in Latin rather than modern 
English. Does this provide a possible model for information compression?  

    10.    A very common cypher is the substitution cypher, where, for example, every 
letter A is replaced by (say) an M, every B is replaced by (say) a Y, and so on. 
These enciphered messages can be broken by reference to the frequency of 
occurrence of the letters (given in the previous question). 
 Since we know that (in English) E is the most commonly occurring letter, we 
can assume that the most commonly occurring letter in the enciphered message 
 represents an E; we then repeat the process for the next most common and so 
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on. Of course, these correspondences may not be exact, since the message may 
not be long enough to develop the frequencies fully. 
 However, it may provide suffi cient information to break the cypher. 
 The fi le given in Appendix E contains an encoded message. Break it. Clue – 
Pg + Fybdujuvef jo Tdjfodf, Jorge Luis Borges.  

    11.    Write a program that counts the total number of vowels in a sentence or text. 
Output the frequency of occurrence of each vowel.            
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 Aims 

 The aims of this chapter are:

   To introduce the last predefi ned numeric data type in Fortran.  • 
  To illustrate with examples how to use this type.    • 

    15.1   Introduction    

 This variable type refl ects an extension of the real data type available in Fortran – 
the complex data type, where we can store and manipulate complex variables. 
Problems that require this data type are restricted to certain branches of mathemat-
ics, physics and engineering. Complex numbers are defi ned as having a real and 
imaginary part, i.e.,

     = +a x iy    

where I is the square root of−1. 
 They are not supported in many programming languages as a base type which 

makes Fortran the language of fi rst choice for many people. 
 To use this variable type we have to write the number as two parts, the real and 

imaginary elements of the number, for example,

    complex :: U    
 U =   cmplx(1.0,2.0)       

    Chapter 15   
 Complex              

 Make it as simple as possible, but no simpler. 

 Albert Einstein 
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represents the complex number 1 + i2. Note that the complex number is enclosed in 
brackets. We can do arithmetic on variables like this, and most of the intrinsic func-
tions such as  log, sin, cos , etc., accept a complex data type as argument. 

 All the usual rules about mixing different variable types, like reals and integers, 
also apply to complex. Complex numbers are read in and written out in a similar 
way to real numbers, but with the provision that, for each single complex value, two 
format descriptors must be given. You may use either E or F formats (or indeed, mix 
them), as long as there are enough of them. Although you use brackets around the 
pairs of numbers in a program, these must not appear in any input, nor will they 
appear on the output. 

 Fortran has a number of functions which help to clarify the intent of mixed mode 
expressions. The functions real,  cmplx  and  int  can be used to ‘force’ any variable 
to real, complex or integer type. 

 There are a number of intrinsic functions to enable complex calculations to be 
performed. The program segment below uses some of them:

    complex:: z, z1,z2,z3,zbar   
   real :: x,y,x1,y1,  x  2,y2,x3,y3,zmod 
    z1  =  cmplx (1.0, 2.0) ! 1  +  I2   
   z2  =  cmplx (  x  2, y2) !   x  2  +  I y2   
   z3  =  cmplx (x3, y3) ! x3  +  I y3   
   Z  =  Z1*Z2 / Z3   
   x  =  real(z) ! real part of z   
   y  =  aimag (z) ! imaginary part of z   
   zmod  =  abs(z) ! modulus of z   
   ZBAR  =  CONJG(Z) ! complex conjugate of Z        

    15.2   Example 1 

 The second order differential equation:

     
+ + =

2

2
2 ( )

d y dy
y x t

dtdt    

could describe the behaviour of an electrical system, where x(t) is the input voltage 
and y(t) is the output voltage and dy/dt is the current. The complex ratio

     
= − + +2( )

1 / ( 2 1)
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y w
w j w

x w    

is called the frequency response of the system because it describes the relationship 
between input and output for sinusoidal excitation at a frequency of w and where j 
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is     −1   . The following program segment reads in a value of w and evaluates the 
frequency response for this value of w together with its polar form (magnitude and 
phase):

    program ch1501      
   implicit none i   
   !   
   ! program to calculate frequency response of a system   
   ! for a given Omega   
   ! and its polar form (magnitude and phase).   
   !   
   real :: Omega ,real_part , Imag_part , Magnitude, Phase   
   complex:: Frequency_response   
   !   
   ! Input frequency Omega   
   ! 
    print *, 'Input frequency'   
   read *,Omega      

   ! 
    Frequency_response = 1.0 / &     
cmplx ( - Omega * Omega + 1.0 , 2.0 * Omega) 

real_part = real(Frequency_response) 
Imag_part = aimag(Frequency_response)         

   !   
   ! Calculate polar coordinates (magnitude and phase)   
   ! 
    magnitude = abs(frequency_response)   
   phase = atan2 (imag_part, real_part)      

   ! 
    print *, ' at frequency ',omega   
   print *, 'response = ', real_part,' + I ',imag_part   
   print *, 'in polar form'   
   print *, ' magnitude = ', magnitude   
   print *, ' phase = ', phase      

   end program ch1501      



234 15 Complex

    15.3   Example 2 

 Here is a complete example of using some of the intrinsics with complex numbers.

    program ch1502   
   implicit none   
   real:: x,y,x1,y1,  x  2,y2,x3,y3,zmod   
   complex:: z,z1,z2,z3,zbar 
    print*,'input x1,y1,  x  2,y2,x3, y3'   
   read*,x1,y1,  x  2,y2,x3,y3   
   z1  =  cmplx(1.0,2.0)   
   z2  =  cmplx(  x  2,y2)   
   print*, 'z2  =  ',z2   
   z3  =  cmplx(x3−x1, (y3 +   y1)**2)   
   print*, 'z3  =  ',z3   
   z  =  z1*z2/z3   
   x  =  real (z)   
   y  =  aimag(z)   
   zmod  =  abs(z)   
   zbar  =  conjg(z)   
   print*,'z =   ',z   
   print*,'modulus of z =   ',zmod   
   print*,'complex conjugate of z  =  ',zbar      

   end program ch1502      

    15.4   Complex and Kind Type 

 The standard requires that there be a minimum of two kind types for real numbers 
and this is also true of the complex data type. Chap.   5     must be consulted for a full 
coverage of real kind types. We would therefore use something like the following to 
select a complex kind type other than the default:

    integer , parameter :: &     
Long_complex =   selected_real_kind(15,307)      

   complex (Long_complex) :: Z     

 Chapter   21     includes a good example of how to use modules to defi ne and use 
precision throughout a program and subprogram units.  

    15.5   Summary 

 Complex is used to store and manipulate complex numbers: those with a real and an 
imaginary part. 
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 There are standard functions which allow conversion between the numerical data 
types –  cmplx, real  and  int .  

    15.6   Problem 

     1.    The program used in Chap.   12     which calculated the roots of a quadratic had to 
abandon the calculation if the roots were complex. You should now be able to 
remedy this, remembering that it is necessary to declare any complex variables. 
Instead of raising the expression to the power 0.5 in order to take its square root, 
use the function  sqrt . The formulae for the complex roots are    

     

− − −±
2( 4 )

2 2

b b ac
i

a a     

 If you manage this to your satisfaction, try your skills on the roots of a cubic (see 
the problems in Chap.   12    ).        
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 Aims 

 The aims of this chapter are:

   To examine the last predefi ned type available in Fortran: logical.  • 
  To introduce the concepts necessary to use logical expressions effectively, • 
namely:

   Logical variables.   –
  Logical operators.   –
  The hierarchy of operations.   –
  Truth tables.        –

    16.1   Introduction 

 Often we have situations where we need ON/OFF, TRUE/FALSE or YES/NO 
switches, and in such circumstances we can use  logical  type variables, e.g.,

    logical :: fl ag        

 Logicals may take only two possible values, as shown in the following:

    Flag=.true.    

or

    fl ag=.false.     

    Chapter 16   
 Logical              

 A messenger yes/no semaphore 
 her black/white keys in/out whirl of morse 
 hoopooe signals salvation deviously. 

 Nathaniel Tarn, The Laurel Tree 
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 Note the full stops, which are essential. With a little thought you can see why 
they are needed. You will already have met some of the ideas associated with logical 
variables from if statements:

    if (a == b) then     
.      
   else 
    .      
   endif     

 The logical expression  (a == b)  returns a value true or false, which then deter-
mines the route to be followed; if the quantity is true, then we execute the next state-
ment, else we take the other route. 

 Similarly, the following example is also legitimate:

    logical :: answer     
answer=.true.   
   …   
   if (answer) then 
    …      

   else 
    …      

   endif        

 Again the expression if  (answer)  is evaluated; here the variable  answer  has 
been set to  .true ., and therefore the statements following the then are executed. 
Clearly, conventional arithmetic is inappropriate with logicals. What does two times 
true mean? (very true?). There are a number of special operators for logicals:

    .not.  which negates a logical value (i.e., changes true to false or vice versa).  
   .and.  logical intersection.  
   .or.  logical union.    

 To illustrate the use of these operators, consider the following program extract:        

 To gauge the effect of these operators on logicals, we can consult a truth table:  

 x1  x2  .not.x1  x1.and.x2  x1.or.x2 

 true  true  false  true  true 
 true  false  false  false  true 
 false  true  true  false  true 
 false  false  true  false  false 
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 As with arithmetic operators, there is an order of precedence associated with the 
logical operators:

    .and.  is carried out before  
   .or.  and  .not.     

 In dealing with logicals, the operations are carried out within a given level, from 
left to right. Any expressions in brackets would be dealt with fi rst. The logical oper-
ators are a lower order of precedence than the arithmetic operators, i.e., they are 
carried out later. A more complete operator hierarchy is therefore:

   Expressions within brackets.  • 
  Exponentiation.  • 
  Multiplication/division.  • 
  Addition/subtraction.  • 
  Relational logical ( = =, >, <, >=, <= /=).  • 
   .and.   • 
   .or.  • and  .not.     

 Although you can build up complicated expressions with mixtures of operators, 
these are often diffi cult to comprehend, and it is generally more straightforward to 
break ‘big’ expressions down into smaller ones whose purpose is more readily 
appreciated. 

 Historically, logicals have not been in evidence extensively in Fortran programs, 
although clearly there are occasions on which they are of considerable use. Their 
use often aids signifi cantly in making programs more modular and comprehensible. 
They can be used to make a complex section of code involving several choices much 
more transparent by the use of one logical function, with an appropriate name. 
Logicals may be used to control output; e.g.,

    logical :: debug    

 …   
   debug=.true.   
   …   
   if(debug)then 
    …   
   print *,'lots of printout'   
   …      

   endif       

ensures that, while debugging a program you have more output. then, when the 
program is correct, run with  debug=.false . 

 Note that Fortran does try to protect you while you use logical variables. You 
cannot do the following:

    logical :: up, down     
up=down+.false.      
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  or  

   logical :: a2 

    real dimension(10) :: omega    
    .        
a2=omega(3)        

 The compiler will note that this is an error, and will not permit you to run the 
program. This is an example of strong typing, since only a limited number of prede-
termined operations are permitted. The real, integer and complex variable types are 
much more weakly typed (which helps lead to the confusion inherent in mixing 
variable types in arithmetic assignments). 

    16.2   I/O 

 Since logicals may take only the values  .true.  and  .false. , the possibilities in 
reading and writing logical values are clearly limited. The L edit descriptor or for-
mat allows logicals to be input and output. On input, if the fi rst nonblank characters 
are either T or .T, the logical value  .true.  is stored in the corresponding list item; 
if the fi rst nonblank characters are F or .F, then  .false.  is stored. (Note therefore 
that reading, say,  ted  and  fahr  in an L4 format would be acceptable.) if the fi rst 
nonblank character is not F, T, .F or .T, then an error message will be generated. On 
output, the value T or F is written out, right justifi ed, with blanks (if appropriate). 
Thus,

    logical :: fl ag     
fl ag=.true.   
   print 100, fl ag, .not.fl ag   
   100 format(2L3)       

would produce

    T   F    

at the terminal. 
 Assigning a logical variable to anything other than a  .true.  or  .false.  

value in your program will result in errors. The ‘shorthand’ forms of .T, .F, F and T 
are not acceptable in the program.  
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    16.3   Summary 

 Another type of data – logical – is also recognised. A  logical  variable may take 
one of two values – true or false.

   There are special operators for manipulating logicals:• 

     – .not.   
   .and. –    
   .or – .      

  Logical operators have a lower order of precedence than any others.     • 

    16.4   Problems 

     1.    Why are the full stops needed in a statement like A =  .true. ?  
    2.    Generate a truth table like the one given in this chapter.  
    3.    Write a program which will read in numerical data from the terminal, but will 

fl ag any data which is negative, and will also turn these negative values into posi-
tive ones.            
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 Aims 

 The aim of this chapter is to introduce the concepts and ideas involved in using the 
facilities offered in Fortran 90 for the construction and use of user defi ned types:

   The way in which we defi ne our own types.  • 
  The way in which we declare variables to be of a user defi ned type.  • 
  The way in which we manipulate variables of our own types.  • 
  The way in which we can nest types within types.    • 

 The examples are simple and are designed to highlight the syntax. More complex 
and realistic examples of the use of user defi ned data types are to be found in later 
chapters. 

    17.1   Introduction 

 In the coverage so far we have used the intrinsic types provided by Fortran. The only 
data structuring technique available has been to construct arrays of these intrinsic 
types. Whilst this enables us to solve a reasonable variety of problems, it is 

    Chapter 17   
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 Russell’s theory of types leads to certain complexities in the 
foundations of mathematics… Its interesting features for our 
purposes are that types are used to prevent certain erroneous 
expressions from being used in logical and mathematical 
formulae; and that a check against violation of type constraints 
can be made purely by scanning the text, without any 
knowledge of the value which a particular symbol might 
happen to have. 

 C.A.R. Hoare, Structured Programming 
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 inadequate for many purposes. In this chapter we look at the facilities offered by 
Fortran for the construction of our own types and how we manipulate data of these 
new, user defi ned types. 

 With the ability to defi ne our own types we can now construct aggregate data 
types that have components of a variety of base types. These are given a variety of 
names including

   Record in the Pascal family of languages and in many older books on computing • 
and data structuring;  
  Structs in C;  • 
  Classes in C++, Java, C# and Eiffel;  • 
  Cartesian product is often used in mathematics and this is the terminology • 
adopted by Hoare;    

 We will the term user defi ned type and derived types interchangeably. 
 There are two stages in the process of creating and using our own data types: we 

must fi rst defi ne the type, and then create variables of this type. 

    17.2   Example 1: Dates 

     program ch1701      
   implicit none   
   type date 
    integer :: day=1   
   integer :: month=1   
   integer :: year=2000      

   end type date   
   type (date) :: d 
    print *,d%day, d%month, d%year   
   print *, 'type in the date, day, month, year'   
   read *,d%day, d%month, d%year   
   print *,d%day, d%month, d%year      

   end program ch1701     

 This complete program illustrates both the defi nition and use of the type. It also 
shows how you can defi ne initial values within the type defi nition.  

    17.3   Type Defi nition 

 The type  date  is defi ned to have three component parts, comprising a  day,  a 
 month  and a  year,  all of integer type. The syntax of a type construction 
comprises:
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   type Typename
   data type :: Component_name  
  etc.     

  end type Typename    

 Reference can then be made to this new type by the use of a single word,  date , 
and we have a very powerful example of the use of abstraction.  

    17.4   Variable Defi nition 

 This is done by

    type (Typename) :: Variablename    

and we then defi ne a variable D to be of this new type. The next thing we do is 
have a  read *  statement that prompts the user to type in three integer values, and 
the data are then echoed straight back to the user. We use the notation 
 Variablename%Component_Name  to refer to each component of the new 
data type. 

    17.4.1   Example 1 Variant Using Modules 

 The following is a variant on the above and achieves the same result with a small 
amount of additional syntax.

    module date_module     

type date     

integer :: day=1   
   integer :: month=1   
   integer :: year=2000      

   end type date      
   end module date_module   
   program ch1702   
   use date_module   
   implicit none   
   type (date) :: d 
    print *,d%day, d%month, d%year   
   print *, 'type in the date, day, month, year'   
   read *,d%day, d%month, d%year   
   print *,d%day, d%month, d%year      

   end program ch1702     

 The key here is that we have embedded the type declaration inside a module, and 
then used the module in the main program. 
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 If you are only using the type within one program unit then the fi rst form is sat-
isfactory, but if you are going to use the type in several program units the second is 
the required form. 

 We will use the second form in the examples that follow.   

    17.5   Example 2: Address Lists 

     module address_module     
type address     
character (len=40) :: name   
   character (len=60) :: street   
   character (len=60) :: district   
   character (len=60) :: city   
   character (len=8) :: post_code      

   end type address      
   end module address_module   

   program ch1703   
   use address_module   
   implicit none   
   integer :: n_of_address   
   type (address) , dimension(:), allocatable:: 
addr   
   integer :: I 

    print *, 'input number of addresses'   
   read *,n_of_address   
   allocate(addr(1:n_of_address))   
   open(unit=1,fi le="address.txt")   
   do i=1,n_of_address 
    read(unit=1,fmt='(a40)') addr (i)%name   
   read(unit=1,fmt='(a60)') addr (i)%street   
   read(unit=1,fmt='(a60)') addr (i)%district   
   read(unit=1,fmt='(a60)') addr (i)%city   
   read(unit=1,fmt='(a8)') addr(i)%post_code      

   end do   
   do i=1,n_ of_address 
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    print *,addr(i)% name   
   print *,addr(i)% street   
   print *,addr(i)% district   
   print *,addr(i)% city   
   print *,addr(i)% post_code      

   end do      

   end program ch1703     

 In this example we defi ne a type Address which has components that one would 
expect for a person’s address. We then defi ne an array Addr of this type. Thus we 
are now creating arrays of our own user defi ned types. We index into the array in the 
way we would expect from our experience with integer, real and character arrays. 
The complete example is rather trivial in a sense in that the program merely reads 
from one fi le and prints the fi le out to the screen. However, it highlights many of the 
important ideas of the defi nition and use of user defi ned types.  

    17.6   Example 3: Nested User Defi ned Types 

 The following example builds on the two data types already introduced. Here we 
construct nested user defi ned data types based on them and construct a new data 
type containing them both plus additional information. 
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 Here we have a date of birth data type ( Date_Of_Birth ) based on the  Date  
data type from the fi rst example, plus a slightly modifi ed address data type, incor-
porated into a new data type comprising personal details. Note the way in which we 
reference the component parts of this new, aggregate data type.  

    17.7   Problem 

     1.    Modify the last example to include a more elegant printed name. The current 
example will pad with blanks the fi rst name, other names and surname and span 
80 characters on one line, which looks rather ugly.     

 Add a new variable name which will comprise all three subcomponents and write 
out this new variable, instead of the three subcomponents.  

    17.8   Bibliography 

 Dahl   , O.J., Dijkstra, E.W., Hoare, C.A.R.: Structured Programming. Academic 
Press, London (1972)

   This is one of the earliest and best introductions to data structures and structured 
programming. The whole book hangs together very well, and the section on data 
structures is a must for serious programmers.    
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 Vowels, R.A.: Algorithms and Data Structures in F and Fortran. Unicomp, 
Tucson (1989)

   One of the few books looking at algorithms and data structures using Fortran.    
 Wirth, N.: Algorithms + Data Structures = Programs. Prentice-Hall, Englewood 

Cliffs (1976) 
 Wirth, N.: Algorithms + Data Structures. Prentice-Hall, Englewood Cliffs 

(1986)
   The fi rst is in Pascal, and the second in Modula 2.    
 Wood, D.: Paradigms and Programming in Pascal. Computer Science Press, 

Rockville (1984)
   contains a number of examples of the use of recursion in problem solving. Also 
provides a number of useful case studies in problem solving.           
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 Aim 

 The primary aim of the chapter is to introduce some of the key concepts of pointers 
in Fortran. 

    18.1   Introduction 

 All of the data types introduced so far, with the exception of the allocatable array, 
have been static. Even with the allocatable array a size has to be set at some stage 
during program execution. The facilities provided in Fortran by the concept of a 
pointer combined with those offered by a user defi ned type enable us to address a 
completely new problem area, previously extremely diffi cult to solve in Fortran. 
There are many problems where one genuinely does not know what requirements 
there are on the size of a data structure. Linked lists allow sparse matrix problems 
to be solved with minimal storage requirements, two-dimensional spatial problems 
can be addressed with quad-trees and three-dimensional spatial problems can be 
addressed with oct-trees. Many problems also have an irregular nature, and pointer 
arrays address this problem. 

 First we need to cover some of the technical aspects of pointers. A pointer is a 
variable that has the pointer attribute. A pointer is associated with a target by alloca-
tion or pointer assignment. A pointer becomes associated as follows:

   The pointer is allocated as the result of the successful execution of an allocate • 
statement referencing the pointer

    Chapter 18   
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 Not to put too fi ne a point on it. 

 Charles Dickens, Bleak House. 
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or   

   The pointer is pointer-assigned to a target that is associated or is specifi ed with • 
the target attribute and, if allocatable, is currently allocated.    

 A pointer shall neither be referenced nor defi ned until it is associated. A pointer 
is disassociated following execution of a deallocate or nullify statement, following 
pointer association with a disassociated pointer, or initially through pointer 
initialisation. 

 A pointer may have a pointer association status of associated, disassociated, or 
undefi ned. Its association status may change during execution of a program. Unless 
a pointer is initialised (explicitly or by default), it has an initial association status of 
undefi ned. A pointer may be initialised to have an association status of 
disassociated. 

 Let us look at some examples to clarify these points. 

    18.2   Some Basic Pointer Concepts 

 With the introduction of pointers as a data type into Fortran we also have the intro-
duction of a new assignment statement – the pointer assignment statement. Consider 
the following example:

    program ch1801      
   implicit none   
   integer , pointer :: a=>null(),b=>null ()   
   integer , target :: c   
   integer :: d 
    c = 1   
   a => c   
   c = 2   
   b => c   
   d = a + b   
   print *,a,b,c,d      

   end program ch1801     

 The following

    integer , pointer :: a=>null(),b=>null()    

is a declaration statement that defi nes  a  and  b  to be variables, with the pointer attri-
bute. This means we can use  a  and  b  to refer or point to integer values. We also use 
the  null  intrinsic to set the status of the pointers  a  and  b  to disassociated. Using 
the  null  intrinsic means that we can test the status of a pointer variable and avoid 
making a number of common pointer programming errors. Note that in this case no 
space is set aside for the pointer variables  a  and  b , i.e.  a  and  b  should not be refer-
enced in this state. 
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 The second declaration defi nes  c  to be an integer, with the target attribute, i.e., 
we can use pointers to refer or point to the value of the variable  c . 

 The last declaration defi nes  d  to be an ordinary integer variable. 
 In the case of the last two declarations space is set aside to hold two integers. 
 Let us now look at the various executable statements in the program, one at a 

time:  

  c  =  1   This is an example of the normal assignment statement with which we are 
already familiar. We use the variable name  c  in our program and whenever 
we use that name we get the value of the variable  c  

  a = >  c   This is an example of a pointer assignment statement. This means that both  a  
and  c  now refer to the same value, in this case 1.  a  becomes associated 
with the target c  .  a  can now be referenced 

  c = 2   Conventional assignment statement, and  c  now has the value 2 
  b = > c   Second example of pointer assignment.  b  now points to the value that  c  has, in 

this case 2.  b  becomes associated with the target  c .  b  can now be 
referenced 

  d = a + b   Simple arithmetic assignment statement. The value that a points to is added to 
the value that  b  points to and the result is assigned to  d  

 The last statement prints out the values of  a, b, c  and  d . 
 The output is

   2 2 2 4     

    18.3   The associated Intrinsic Function 

 The  associated  intrinsic returns the association status of a pointer variable. 
Consider the following example which is a simple variant on the fi rst.

    program ch1802   
   integer , pointer :: a=>null(),b=>null()   
   integer , target :: c   
   integer :: d 
    print *,associated(a)   
   print *,associated(b)   
   c = 1   
   a => c   
   c = 2   
   b => c   
   d = a + b   
   print *,a,b,c,d   
   print *,associated(a)   
   print *,associated(b)      

   end program ch1802     
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 The output from running this program is shown below

    F   
   F   
   2 2 2 4   
   T    

   T   

and as you can see we therefore have a mechanism to test pointers to see if they are 
in a valid state before use.  

    18.4   Referencing a and b Before Allocation or Pointer 
Assignment 

 Consider the following example:

    program ch1803   
   integer , pointer :: a=>null(),b=>null()   
   integer , target :: c   
   integer :: d 
    print *,a   
   print *,b   
   c = 1   
   a => c   
   c = 2   
   b => c   
   d = a + b   
   print *,a,b,c,d      

   end program ch1803     

 Here we are actually referencing the pointers  a  and  b , even though their status is 
disassociated. Most compilers generate a run time error with this example with the 
default compiler options, and the error message tends to be a little cryptic. It is rec-
ommended that you look at the diagnostic compilation switches for you compiler. 
We include some sample output below from gfortran, Intel and Nag. The error mes-
sages are now much more meaningful. 

    18.4.1   gfortran 

 Switches are

    gfortran -W -Wall -fbounds-check -pedantic-errors   
   -std=f2003 -Wunderfl ow -O –fbacktrace   
   -ffpe-trap=zero,overfl ow,underfl ow -g     
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 The program runs to completion with no error message. Here is the output.         

    18.4.2   Intel 

 Switches are

    /check:all /traceback     

 Here is the output.         

    18.4.3   Nag 

 Switches are

    -C=all -C=undefi ned -info -g –gline     

 Here is the output.

    Runtime Error: ch1803.f90, line 5: Reference to   
   disassociated POINTER A   
   Program terminated by fatal error   
   ch1803.f90, line 5: Error occurred in CH1803       

    18.5   Pointer Allocation and Assignment 

 Consider the following example:

    program ch1804   
   integer , pointer :: a=>null(),b=>null()   
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   integer , target :: c   
   integer :: d 
    allocate(a)   
   a = 1   
   c = 2   
   b => c   
   d = a + b   
   print *,a,b,c,d   
   deallocate(a)      

   end program ch1804     

 In this example we allocate  a  and then can do conventional assignment. If we had 
not allocated  a  the assignment would be illegal. Try out problem 2 to see what will 
happen with your compiler. 

 Our simple recommendation when using pointers is to nullify them when declar-
ing them and to explicitly allocate them before conventional assignment.  

    18.6   Memory Leak Examples 

 Dynamic memory brings greater versatility but requires greater responsibility. 
Consider the following example:

    program ch1805   
   integer , pointer :: a=>null(),b=>null()   
   integer , target :: c   
   integer :: d 
    allocate(a)   
   allocate(b)   
   a=100   
   b=200   
   print *,a,b   
   c = 1   
   a => c   
   c = 2   
   b => c   
   d = a + b   
   print *,a,b,c,d      

   end program ch1805     

 What has happened to the memory allocated to  a  and  b ? 
 Now consider the following example.        
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 Before running the above example we recommend starting up a memory moni-
toring program. 

 Under Microsoft Windows XP Professional holding [CTRL] + [ALT] + [DEL] 
will bring up the Windows Task Manager. Choose the [Performance] tab to get a 
screen which will show CPU usage, PF Usage, CPU Usage History and Page File 
Usage History. You will also get details of Physical and Kernel memory usage. 

 Under Linux type

    top    

in a terminal window. 
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 In these examples we also see the recommended form of the allocate statement 
when working with arrays. This enables us to test if the allocation has worked and 
take action accordingly. A positive value indicates an allocation error, zero indicates 
OK. 

 The second program can require a power off on a Windows operating system 
with a compiler that will remain anonymous!  

    18.7   Non-standard Pointer Example 

 Some Fortran compilers provide a non-standard  loc  intrinsic. This can be used to 
print out the address of the variable passed as an argument. Here is the program.

    program ch1807   
   integer , pointer :: a=>null(),b=>null()   
   integer , target :: c   
   integer :: d 
    allocate(a)   
   allocate(b)   
   a=100   
   b=200   
   print *,a,b   
   print *,loc(a)   
   print *,loc(b)   
   print *,loc(c)   
   print *,loc(d)   
   c = 1   
   a => c   
   c = 2   
   b => c   
   d = a + b   
   print *,a,b,c,d   
   print *,loc(a)   
   print *,loc(b)   
   print *,loc(c)   
   print *,loc(d)      

   end program ch1807     

 Here is the output from a compiler with  loc  support.        
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 This program clearly shows the memory leak.  

    18.8   Problems 

     1.    Compile and run all of the example programs in this chapter with your compiler 
and examine the output.  

    2.    Compile and run example 4 without the  allocate (a)  statement. See what 
happens with your compiler.     

 Here is the output from the Nag compiler. The fi rst run is with the default 
options.

    nagfor ch1804p.f90   
   NAG Fortran Compiler: Release 5.2(722)   
   [NAG Fortran Compiler normal termination]   
   a.exe     

 There is no meaningful output. 
 The following adds the -C=all compilation option.

    nagfor ch1804p.f90 -C=all   
   NAG Fortran Compiler: Release 5.2(722)   
   [NAG Fortran Compiler normal termination]   
   a.exe   
   Runtime Error: ch1804p.f90, line 5: Reference to   
   disassociated POINTER A   
   Program terminated by fatal error     

 We now get a meaningful error message.        





261

 Aims 

 The aims of this chapter are:

   To consider some of the reasons for the inclusion of subroutines in a program-• 
ming language.  
  To introduce with a concrete example some of the concepts and ideas involved • 
with the defi nition and use of subroutines.

   Arguments or parameters.   –
  The intent attribute for parameters.   –
  The call statement.   –
  Scope of variables.   –
  Local variables and the save attribute.   –
  The use of parameters to report on the status of the action carried out in the  –
subroutine.     

  Module procedures to provide interfaces.    • 

    Chapter 19   
 Introduction    to Subroutines              

 A man should keep his brain attic stacked with all the furniture 
he is likely to use, and the rest he can put away in the lumber 
room of his library, where he can get at it if he wants. 

 Sir Arthur Conan Doyle, Five Orange Pips 

I. Chivers and J. Sleightholme, Introduction to Programming with Fortran: 
With Coverage of Fortran 90, 95, 2003, 2008 and 77, 
DOI 10.1007/978-0-85729-233-9_19, © Springer-Verlag London Limited 2012
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    19.1   Introduction 

 In the earlier chapter on functions we introduced two types of function

   Intrinsic functions – which are part of the language.  • 
  User defi ned functions – by which we extend the language.    • 

 We now introduce subroutines which collectively with functions are given the 
name procedures. 

 Procedures provide a very powerful extension to the language by:

   Providing us with the ability to break problems down into simpler more easily • 
solvable subproblems.  
  Allowing us to concentrate on one aspect of a problem at a time.  • 
  Avoiding duplication of code.  • 
  Hiding away messy code so that a main program is a sequence of calls to • 
procedures.  
  Providing us with the ability to put together collections of procedures that solve • 
commonly occurring subproblems, often given the name libraries, and generally 
compiled.  
  Allowing us to call procedures from libraries written, tested and documented by • 
experts in a particular fi eld. There is no point in reinventing the wheel!    

 There are a number of concepts required for the successful use of subroutines 
and we met some of them in Chap.   12     when we looked at user defi ned functions. We 
will extend the ideas introduced there of parameters and introduce the additional 
concept of an interface via the use of modules. The ideas are best explained with a 
concrete example. 

 Note that we use the terms parameters and arguments interchangeably. 

    19.2   Example 1 

 This example is one we met earlier that solves a quadratic equation, i.e., solves

     + + =2 0ax bx c     

 The program to do this originally was just one program. In the example below we 
break that problem down into smaller parts and make each part a subroutine. The 
components are:

   Main program or driving routine.  • 
  Interaction with user to get the coeffi cients of the equation.  • 
  Solution of the quadratic.    • 
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 Let us look now at how we do this with the use of subroutines:  
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    19.2.1   Defi ning a Subroutine 

 A subroutine is defi ned as

   subroutine subroutine_name (optional list of dummy arguments)  
  implicit none  
  dummy argument type defi nitions with intent  
   …   
  end subroutine subroutine_name   

and from the earlier example we have the subroutine

    subroutine interact(a,b,c,ok)    
    implicit none   
   real , intent(out) :: a   
   real , intent(out) :: b   
   real , intent(out) :: c   
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   logical , intent(out) :: ok   
   integer :: io_status=0   
   print*,' type in the coeffi cients a, b and c'   
   read(unit=*,fmt=*,iostat=io_status)a,b,c   
   if (io_status == 0) then 

    ok=.true.      

   else 
    ok=.false.      

   endif      
   end subroutine interact      

    19.2.2   Referencing a Subroutine 

 To reference a subroutine you use the  call  statement:

   call subroutine_name(optional list of actual arguments)   

and from the earlier example the call to subroutine interact was of the form:

    call interact(p,q,r,ok)     

 When a subroutine returns to the calling program unit control is passed to the 
statement following the  call  statement.  

    19.2.3   Dummy Arguments or Parameters and Actual Arguments 

 Procedures and their calling program units communicate through their arguments. 
We often use the terms parameter and arguments interchangeably throughout this 
text. The  subroutine  statement normally contains a list of dummy arguments, 
separated by commas and enclosed in brackets. The dummy arguments have a type 
associated with them; for example, in subroutine solve x is of type  real , but no 
space is put aside for this in memory. When the subroutine is referenced e.g.,  call  
solve(p,q,r,root1,root2,ifail), then the dummy argument points to the actual argu-
ment p, which is a variable in the calling program unit. The dummy argument and 
the actual argument must be of the same type – in this case  real .  

    19.2.4   Intent 

 It is recommended that dummy arguments have an  intent  attribute. In the earlier 
example subroutine  solve  has a dummy argument  e  with  intent (in),  which 
means that when the subroutine is referenced or called it is expecting  e  to have a 
value, but its value cannot be changed inside the subroutine. This acts as an extra 
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security measure besides making the program easier to understand. For each param-
eter it may have one of three attributes:

    intent (in)•  , where the parameter already has a value and cannot be altered 
in the called routine.  
   intent (out)•  , where the parameter does not have a value, and is given one 
in the called routine.  
   intent (inout• ) , where the parameter already has a value and this is changed 
in the called routine.     

    19.2.5   Local Variables 

 We saw with functions that variables could be essentially local to the function and un 
available elsewhere. The concept of local variables also applies to subroutines. In the 
example above term and a2 are both local variables to the subroutine  solve .  

    19.2.6   Local Variables and the Save Attribute 

 Local variables are usually created when a procedure is called and their value lost 
when execution returns to the calling program unit. To make sure that a local vari-
able retains its values between calls to a subprogram the save attribute can be used 
on a type statement; e.g.,

    integer , save :: I   

 means that when this statement appears in a subprogram the value of the local vari-
able  I  is saved between calls.  

    19.2.7   Scope of Variables 

 In most cases variables are only available within the program unit that defi nes them. 
The introduction of argument lists to procedures immediately opens up the possibil-
ity of data within one program unit becoming available in one or more other pro-
gram units. 

 In the main program we declare the variables  p, q, r, root1, root2, 
ifail  and  ok . 

 Subroutine  interact  has no variables locally declared. It works on the argu-
ments  a, b, c  and  ok ; which map onto  p, q, r  and  ok  from the main pro-
gram, i.e., it works with those variables. 

 Subroutine solve has two locally defi ned variables,  term  and  a2 . It works with 
the variables  e, f, g, root1, root2  and  ifail , which map onto  p, q, 
r, root1, root2  and  ifail  from the main program.  
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    19.2.8   Status of the Action Carried Out in the Subroutine 

 It is also useful to use parameters that carry information regarding the status of the 
action carried out by the subroutine. With the subroutine  interact  we use a logi-
cal variable  ok  to report on the status of the interaction with the user. In the subrou-
tine  solve  we use the status of the integer variable  ifail  to report on the status 
of the solution of the equation.  

    19.2.9   Modules ‘containing’ Procedures 

 At the same time as introducing procedures we have ‘contained’ them in a module 
and then the main program ‘uses’ the module in order to make the procedure avail-
able. Procedures ‘contained’ in modules are called module procedures. 

 With the ‘use’ statement the interface to the procedure is available to the com-
piler so that the types and positions of the actual and dummy arguments can be 
checked. This was a major source of errors with Fortran 77. 

 The  use  statement must be the fi rst statement in the main program or calling 
unit, also the modules must be compiled before the program or calling unit. 

 We will cover modules in more depth in later chapters. 
 There are times when an interface is mandatory in Fortran so it’s good practice 

to use module procedures from the start. There are other ways of providing explicit 
interfaces and we will cover them later.   

    19.3   Why Bother with Subroutines? 

 Given the increase in the complexity of the overall program to solve a relatively 
straightforward problem, one must ask why bother. The answer lies in our abil-
ity to manage the solution of larger and larger problems. We need all the help 
we can get if we are to succeed in our task of developing large-scale reliable 
programs. 

 We need to be able to break our problems down into manageable subcompo-
nents and solve each in turn. We are now in a very good position to be able to do 
this. Given a problem that requires a main program, one or more functions and 
one or more subroutines we can work on each subcomponent in relative isolation, 
and know that by using features like module procedures we will be able to glue all 
of the components together into a stable structure at the end. We can indepen-
dently compile the main program and the modules containing the functions and 
subroutines and use the linker to generate the overall executable, and then test 
that. 
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 Providing we keep our interfaces the same we can alter the actual implementa-
tions of the functions and subroutines and just recompile the changed procedures.  

    19.4   Summary 

 We now have the following concepts for the use of subroutines:

   Module procedures providing interfaces.  • 
  Intent attribute for parameters.  • 
  Dummy parameters.  • 
  The use of the call statement to invoke a subroutine.  • 
  The concepts of variables that are local to the called routines and are unavailable • 
elsewhere in the overall program.  
  Communication between program units via the argument list.  • 
  The concept of parameters on the call that enable us to report back on the status • 
of the called routine.     

    19.5   Problems 

     1.    Type the program and module procedures for example 1 into one fi le. Compile, 
link and run providing data for complex roots to test this part of the code.  

    2.    Split the main program and modules up into three separate fi les. Compile the 
modules and then compile the main program and link the object fi les to create 
one executable. Look at the fi le size of the executable and the individual object 
fi les. What do you notice? 

   The development of large programs is eased considerably by the ability to com-
pile small program units and eradicate the compilation errors from one unit at a 
time. The linker obviously also has an important role to play in the development 
process.  

    3.    Write a subroutine to calculate new coordinates (x' , y' ) from (x, y) when the 
axes are rotated counter clockwise through an angle of a radians using:    

     

'

'

x xcos a ysin a 

y xsin a ycos a

= +
= - +     

 Hint: 

 The subroutine would look something like subroutine ChangeCoordinate(x, y, a, 
xd, yd) 
 Write a main program to read in values of x, y and a and then call the subroutine 
and print out the new coordinates. Use a module procedure.        
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 Aims 

 The aims of this chapter are to extend the ideas in the earlier chapter on subroutines 
and look in more depth at parameter passing, in particular using a variety of ways of 
passing arrays. 

          20.1   More on Parameter Passing 

 So far we have seen scalar parameters of type real, integer and logical. We will now 
look at numeric array parameters and character parameters. We need to introduce 
some technical terminology fi rst. Don’t panic if you don’t fully understand the ter-
minology as the examples should clarify things. 

    20.1.1   Assumed-Shape Array 

 An assumed-shape array is a nonpointer dummy argument array that takes its shape 
from the associated actual argument array.  

    Chapter 20   
 Subroutines   : 2              

 It is one thing to show a man he is in error, and another to 
put him in possession of the truth. 

 John Locke 
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    20.1.2   Deferred-Shape Array 

 A deferred-shape array is an allocatable array or an array pointer. An allocatable 
array is an array that has the allocatable attribute and a specifi ed rank, but its bounds, 
and hence shape, are determined by allocation or argument association.  

    20.1.3   Automatic Arrays 

 An automatic array is an explicit-shape array that is a local variable. Automatic 
arrays are only allowed in function and subroutine subprograms, and are declared in 
the specifi cation part of the subprogram. At least one bound of an automatic array 
must be a nonconstant specifi cation expression. The bounds are determined when 
the subprogram is called.   

    20.2   Example 1 – Assumed Shape Parameter Passing 

 We are going to use an example based on a main program and a subroutine that 
calculates the mean and standard deviation of an array of numbers. The subroutine 
has the following parameters:

   x – the array containing the real numbers.  • 
  n – the number of elements in the array.  • 
  mean – the mean of the numbers.  • 
  std_dev – the standard deviation of the numbers.    • 

 Consider the following program and subroutine.

    module statistics_module      
   implicit none   
   contains 
    subroutine stats(x,n,mean,std_dev)   
   implicit none   
   integer, intent (in) :: n   
   real, intent (in), dimension (:) :: x   
   real, intent (out) :: mean   
   real, intent (out) :: std_dev   
   real :: variance   
   real :: sumxi, sumxi2   
   integer :: I 
    variance = 0.0   
   sumxi = 0.0   
   sumxi2 = 0.0   



27120.2 Example 1 – Assumed Shape Parameter Passing

   do I=1, n 
    sumxi = sumxi + x(I)   
   sumxi2 = sumxi2 + x(i)*x(I)      

   end do   
   mean = sumxi/n   
   variance = (sumxi2-sumxi*sumxi/n)/(n-1)   
   std_dev = sqrt(variance)      

   end subroutine stats      
   end module statistics_module   
   program ch2001   
   use statistics_module   
   implicit none   
   integer, parameter :: n = 10   
   real, dimension (1:n) :: x   
   real, dimension (-4:5) :: y   
   real, dimension (10) :: z   
   real, allocatable, dimension (:) :: t   
   real : : m, sd   
   integer :: I 
    do I=1, n 
    x(I) = real(I)      

   end do   
   call stats(x,n,m,sd)   
   print *, ' x'   
   print *, ' Mean = ', m   
   print *, ' Standard deviation = ', sd   
   y = x   
   call stats(y,n,m,sd)   
   print *, ' y'   
   print *, ' Mean = ' , m   
   print *, ' Standard deviation = ', sd   
   z = x   
   call stats(z,10,m,sd)   
   print *, ' z '   
   print *, ' Mean = ' ,   
   m print *, ' Standard deviation = ', sd allocate (t(n))   
   t = x   
   call stats(t,10,m,sd)   
   print *, ' t'   
   print *, ' Mean = ' , m   
   print *, ' Standard deviation = ', sd      

   end program ch2001     

 A fundamental rule in modern Fortran is that the shape of an actual array argu-
ment and its associated dummy arguments are the same, i.e., they both must have 
the same rank and the same extents in each dimension. The best way to apply this 
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rule is to use assumed-shape dummy array arguments as shown in the example 
above. 

 In the subroutine we have

    real , intent (in) , dimension (:) :: x 

   where x is an assumed-shape dummy array argument, and it will assume the shape 
of the actual argument when the subroutine is called. 

 In two of the calls we have passed a variable  n  as the size of the array and used 
a literal integer constant (10) in the other two cases. Both parameter passing mecha-
nisms work. 

    20.2.1   Notes 

 There are several restrictions when using assumed-shape arrays:

   The rank is equal to the number of colons, in this case 1.  • 
  The lower bounds of the assumed-shape array are the specifi ed lower bounds, if • 
present, and 1 otherwise. In the example above it is 1 because we haven’t speci-
fi ed a lower bound.  
  The upper bounds will be determined on entry to the procedure and will be what-• 
ever values are needed to make sure that the extents along each dimension of the 
dummy argument are the same as the actual argument. In this case the upper 
bound will be n.  
  An assumed-shape array must not be defi ned with the pointer or allocatable attri-• 
bute in Fortran.  
  When using an assumed-shape array an interface is mandatory. In this example • 
it is provided by the stats subroutine being a contained subroutine in a module, 
and the use of the module in the main program.      

    20.3   Character Arguments and Assumed-Length 
Dummy Arguments 

 The types of parameters considered so far have been  real, integer  and  logi-
cal . Character variables are slightly different because they have a length associated 
with them. Consider the following program and subroutine which, given the name 
of a fi le, opens it and reads values into the  real  array  x :

    module read_module   
   implicit none   
   contains   
   subroutine readin(name,x,n)   
   implicit none   
   integer , intent(in) :: n   
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   real,dimension(:),intent(out)::x   
   character (len=*),intent(in)::name   
   integer::I 
    open(unit=10,status='old',fi le=name)   
   do i=1,n 
    read(10,*)x(I)      

   end do   
   close(unit=10)      

   end subroutine reading   
   end module read_module   
   program ch2002   
   use read_module   
   implicit none   
   real , allocatable , dimension(:) :: a   
   integer :: nos,i   
   character(len=20)::fi lename 
    print *,' Type in the name of the data fi le'   
   read ' (a) ' , fi lename   
   print *,' Input the number of items'   
   read * , nos   
   allocate (a(1:nos))   
   call readin(fi lename,a,nos)   
   print * , ' data read in was'   
   do i=1,nos 
    print *, ' ' ,a(I)      

   enddo      
   end program ch2002     

 The main program reads the fi le name from the user and passes it to the subrou-
tine that reads in the data. The dummy argument  name  is of type assumed-length, 
and picks up the length from the actual argument  fi lename  in the calling routine, 
which is in this case 20 characters. An interface must be provided with assumed-
shape dummy arguments, and this is achieved in this case by the subroutine being 
in a module.  

    20.4   Rank 2 and Higher Arrays as Parameters 

 The following example illustrates the modern way of passing rank 2 and higher 
arrays as parameters. We start with a simple rank 2 example.

    module matrix_module 
    implicit none      

   contains 
    subroutine matrix_bits(a,b,c,a_t,n)   
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   implicit none   
   integer, intent (in) :: n   
   real, dimension (:,:), intent (in) : : a, b 
real, dimension (:,:), intent (out) :: c, 
a_t   
   integer :: I, j , k   
   real :: temp      

   ! matrix multiplication c=ab 
    do I = 1, n 
    do j = 1, n 
    temp = 0.0   
   do k = 1, n 
    temp = temp + a (i, k) *b (k, j )      

   end do   
   c(i,j) = temp      

   end do      
   end do      

   ! calculate a_t transpose of a   
   ! set a_t to be transpose matrix a 

    do I=1, n 
    do j = 1, n 
    a_t(i,j) = a(j,i)      

   end do      
   end do    

    end subroutine matrix bits      
   end module matrix module   
   program ch2003 
    use matrix module   
   implicit none   
   real, allocatable, dimension (:,:) :: & 
    one, two, three, one_t      

   integer :: I, n   
   print *, 'input size of matrices'   
   read *, n   
   allocate (one(1:n,1:n))   
   allocate (two(1:n,1:n))   
   allocate (three(1:n,1:n))   
   allocate (one_t(1:n,1:n))   
   do I=1, n 
    print *, 'input row ', I, ' of one'   
   read *, one(i,1:n)      

   end do   
   do I=1, n 
    print *, 'input row ', I, ' of two'   
   read *, two(i,1:n)      

   end do   
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   call matrix bits(one,two,three,one t,n) 
print *, ' matrix three:'   
   do I=1, n 
    print *, three(i,1:n)      

   end do   
   print *, ' matrix one t:'   
   do I=1, n 
    print *, one t(i,1:n)      

   end do      
   end program ch2003     

 The subroutine is doing a matrix multiplication and transpose. There are intrinsic 
functions in Fortran called  matmul  and  transpose  that provide the same func-
tionality as the subroutine. One of the problems at the end of the chapter is to replace 
the code in the subroutine with calls to the intrinsic functions. 

    20.4.1   Notes 

 The dummy array and actual array arguments look the same but there is a difference:

   The dummy array arguments  • a, b, c, a_t  are all assumed-shape arrays and 
take the shape of the actual array arguments  one, two, three  and  one_t , 
respectively.  
  The actual array arguments  • one, two, three  and  one_t  in the main pro-
gram are allocatable arrays or deferred-shape arrays. An allocatable array is an 
array that has an allocatable attribute. Its bounds and shape are declared when the 
array is allocated, hence deferred-shape.      

    20.5   Automatic Arrays and Median Calculation 

 This example looks at the calculation of the median of a set of numbers and also 
illustrates the use of an automatic array. 

 The median is the middle value of a list, i.e., the smallest number such that at 
least half the numbers in the list are no greater. if the list has an odd number of 
entries, the median is the middle entry in the list after sorting the list into ascending 
order, if the list has an even number of entries, the median is equal to the sum of the 
two middle (after sorting) numbers divided by two. One way to determine the 
median computationally is to sort the numbers and choose the item in the middle. 

 Wirth classifi es sorting into simple and advanced, and his three simple methods 
are as follows:

   Insertion sorting – The items are considered one at a time and each new item is • 
inserted into the appropriate position relative to the previously sorted item. If you 
have ever played bridge then you have probably used this method.  
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  Selection sorting – First the smallest (or largest) item is chosen and is set aside • 
from the rest. Then the process is repeated for the next smallest item and set aside 
in the next position. This process is repeated until all items are sorted.  
  Exchange sorting – if two items are found to be out of order they are inter-• 
changed. This process is repeated until no more exchanges take place.    

 Knuth also identifi es the above three sorting methods. For more information on 
sorting the Knuth and Wirth books are good starting places. Knuth is a little old 
(1973) compared to Wirth (1986), but it is still a very good coverage. Knuth uses 
mix assembler to code the examples whilst the Wirth book uses Modula 2, and is 
therefore easier to translate into modern Fortran. 

 In the example below we use an exchange sort:

    module statistics_module 
    implicit none      

   contains 
    subroutine stats(x,n,mean,std_dev,median)
implicit none   
   integer, intent (in) :: n   
   real, intent (in), dimension (:) :: x   
   real,intent (out) :: mean   
   real, intent (out) :: std_dev   
   real, intent (out) :: median   
   real, dimension (1:n) :: y   
   real :: variance   
   real :: sumxi, sumxi2   
   integer :: k   
   sumxi = 0.0   
   sumxi 2 = 0.0   
   variance = 0.0   
   sumxi = sum(x)   
   sumxi2 = sum(x*x)   
   mean = sumxi/n   
   variance = (sumxi2-sumxi*sumxi/n)/(-1)   
   std_dev = sqrt(variance)   
   y = x   
   if (mod(n,2)==0) then 
    median = (fi nd(n/2)+fi nd((n/2)+1))/2      

   else 
    median = fi nd((n/2) +1)      

   end if      
   contains 

    real function fi nd(k)     implicit none   
   integer, intent (in) :: k   
   integer :: l, r, I, j   
   real :: t1, t2   
   l = 1   
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   r = n   
   do while (l<r) 
    t1 = y(k)   
   I = l   
   j = r   
   do 
    do while (y(i)<t1) 
    I = I + 1      

   end do   
   do while (t1<y(j)) 
    j = j – 1      

   end do   
   if (i<=j) then 
    t2 = y(I)   
   y(I) = y(j)   
   y(j) = t2   
   I = I + 1   
   j = j - 1      

   end if   
   if (i>j) exit      

   end do   
   if (j<k) then 
    l = I      

   end if   
   if (k<i) then 
    r = j      

   end if      
   end do   
   fi nd = y(k)      

   end function fi nd    
    end subroutine stats      

   end module statistics_module   
   program ch2004 

    use statistics_module   
   implicit none   
   integer :: n   
   integer :: I   
   real, allocatable, dimension (:) :: x   
   real :: m, sd, median   
   integer, dimension (8) :: timing   
   n = 1000000   
   do I = 1, 3 
    print *, ' n = ', n   
   allocate (x(1:n))   
   call random number(x)   
   x = x*1000   



278 20 Subroutines: 2

   call date and time(values=timing)   
   print *, ' initial '   
   print *, timing (6), timing (7), timing (8)   
   call stats(x,n,m,sd,median)   
   print *, ' Mean = ', m   
   print *, ' Standard deviation = ', sd   
   print *, ' Median is = ', median   
   call date and time(values=timing)   
   print *, timing(6), timing(7), timing(8)   
   n = n*10   
   deallocate (x)      

   end do      
   end program ch2004     

 In the subroutine stats the array y is automatic. It will be allocated automatically 
when we call the subroutine. We use this array as a work array to hold the sorted 
data. We then use this sorted array to determine the median. 

 Note the use of the  sum  intrinsic in this example:

    sumxi=sum(x)   
   sumxi2=sum(x*x)     

 These statements replace the  do  loop from the earlier example. A good optimis-
ing compiler would not make two passes over the data with these two statements. 

    20.5.1   Internal Subroutines and Scope 

 The stats subroutine contains the fi nd subroutine. The stats subroutine has access to 
the following variables

   x,n,mean,std_dev, median — these are made available as they are passed in as • 
parameters.  
  y, variance, sumxi, sumxi2 — are local to the subroutine stats.    • 

 The subroutine fi nd has access to the above as it is contained within subroutine 
stats. It also has the following local variables that are only available within subrou-
tine selection

   i,j,k, minimum    • 

 This program uses an algorithm developed by Hoare to determine the median. 
The number of computations required to fi nd the median is approximately 2 * n. 

 The limiting factor with this algorithm on these systems is the amount of installed 
memory. The program crashes on both systems with a failure to allocate the auto-
matic array. This is a drawback of automatic arrays in that there is no mechanism to 
handle this failure gracefully. You would then need to use allocatable local work 
arrays. The drawback here is that the programmer is then responsible for the deal-
location of these arrays. Memory leaks are then possible.   
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    20.6   Recursive Subroutines – Quicksort 

 In Chap.   12     we saw an example of recursive functions. This example illustrates the 
use of recursive subroutines. It uses a simple implementation of Hoare’s Quicksort. 
References are given in the bibliography. The overall problem is broken down into:

   A main program that prompts the user for the name of the data fi le and n. The • 
allocation of the array is carried out in the main program.  
  A subroutine to read the data.  • 
  A subroutine to sort the data. This subroutine contains the recursive sub routine • 
Quicksort.  
  A subroutine to write the sorted data to a fi le.    • 

 Below is the complete program:

    module read_data_module 
    implicit none      

   contains 
    subroutine read_data(fi le_name,raw_data,how_ many) 
    implicit none   
   character (len=*), intent (in) :: fi le_ name   
   integer, intent (in) :: how_many   
   real, intent (out), dimension (:) :: raw_ data         

   ! local variables 
       integer : : I   
   open (fi le=fi le _name,unit=1)   
   do I=1, how many 
    read (unit=1,fmt=*) raw_data(I)      

   end do      
   end subroutine read_data      

   end module read_data_module   
   module sort_data_module 
    implicit none      

   contains 
    subroutine sort_data(raw_data,how_many) 
    implicit none   
   integer, intent (in) :: how_many   
   real, intent (inout) , dimension (:) :: raw_data   
   call quicksort(1,how many)      

   contains 
    recursive subroutine quicksort(l,r) 
    implicit none   
   integer, intent (in) :: l, r            

   ! local variables 
       integer :: I, j   
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   real :: v, t   
   I = l   
   j = r   
   v = raw_data(int((l+r)/2))   
   do 
    do while (raw data(i)<v) 
    I = I + 1      

   end do   
   do while (v<raw data(j)) 
    j = j – 1      

   end do   
   if (i<=j) then 
    t = raw data (I)   
   raw_data(I) = raw_data(j)   
   raw_data(j) = t   
   I = I + 1   
   j = j – 1      

   end if   
   if (i>j) exit      

   end do   
   if (l<j) then 
    call quicksort(l,j)      

   end if   
   if (i<r) then 
    call quicksort(i, r)      

   end if      
   end subroutine quicksort   

   end subroutine sort_data      
   end module sort_data_module   
   module print data module 
    implicit none      

   contains 
    subroutine print_data(raw_data,how_many) 
    implicit none   
   integer, intent (in) :: how_many   
   real, intent (in), dimension (:) :: raw_data         

   ! local variables 
    integer :: I   
   open (fi le='sorted.txt',unit=2)   
   do I=1, how many 
    write (unit=2,fmt=*) raw_data(I)      

   end do 
    close (2)      

   end subroutine print_data      
   end module print_data_module   
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   program ch2005 
    use read_data_module   
   use sort_data_module   
   use print_data_module   
   implicit none   
   integer :: how many   
   character (len=20) :: fi le name   
   real, allocatable, dimension (:) :: raw_data   
   integer, dimension (8) :: timing   
   print *, ' how many data items are there?'   
   read *, how_many   
   print *, ' what is the fi le name?'   
   read '(a)', fi le name   
   call date_and_time(values=timing)   
   print *, ' initial'   
   print *, timing (6), timing (7), timing(8)   
   allocate (raw_data(how_many))   
   call date_and_time(values=timing)   
   print *, ' allocate'   
   print *, timing (6), timing (7), timing (8)   
   call read_data(fi le_name,raw_data,how_many)   
   call date_and_time(values=timing)   
   print *, ' read'   
   print *, timing(6), timing (7), timing(8)   
   call sort_data(raw_data,how_many)   
   call date_and_time(values=timing)   
   print *, ' sort'   
   print *, timing (6), timing (7), timing (8)   
   call print_data(raw_data,how_many)   
   call date_and_time(values=timing)   
   print *, ' print'   
   print *, timing (6), timing (7), timing (8)   
   print *,   '   '   
   print *, ' data written to fi le sorted.txt'      

   end program ch2005     

    20.6.1   Note – Recursive Subroutine 

 The actual sorting is done in the recursive subroutine  QuickSort . The actual 
algorithm is taken from the Wirth book. See the bibliography for a reference. 

 Recursion provides us with a very clean and expressive way of solving many 
problems. There will be instances where it is worthwhile removing the overhead of 
recursion, but the fi rst priority is the production of a program that is correct. It is 
pointless having a very effi cient but incorrect solution. 
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 We will look again at recursion and effi ciency in a later chapter and see under 
what criteria we can replace recursion with iteration.  

    20.6.2   Note – Flexible Design 

 The QuickSort recursive routine can be replaced with another sorting algorithm and 
we can maintain the interface to Sort_data. We can thus decouple the implementa-
tion of the actual sorting routine from the defi ned interface. We would only need to 
recompile the Sort_data routine and we could relink using the already compiled 
main, read data and print data routines. 

 A later chapter looks at a non recursive implementation of quicksort where we 
look at some of the ways of rewriting the above program by replacing the recursive 
quicksort with the non recursive version.  

    20.6.3   Note – Timing Information 

 We call the date_and_time intrinsic subroutine to get timing information. 
 As can be seen it is the I/O that dominates the overall running time of the pro-

gram. In the 10 years since fi rst running this program we have seen the data set size 
increase from tens of thousands to tens and hundreds of millions.   

    20.7   Elemental Subroutines 

 We saw an example in Chap.   12     of elemental functions. Here is an example of an 
elemental subroutine.

    module swap_module   
   implicit none   
   contains 
    elemental subroutine swap(x,y)   
   integer , intent(inout) :: x,y   
   integer :: temp 
    temp=x   
   x=y   
   y=temp      

   end subroutine swap      
   end module swap_module   
   program ch2006   
   use swap_module   
   implicit none   
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   integer , dimension(10) :: a,b   
   integer :: I 
    do I=1, 10 
    a(i)=I   
   b(i)=i*I      

   end do 
    print *,a   
   print *,b   
   call swap(a,b)   
   print *,a   
   print *,b         

   end program ch2006     

 The subroutine is written as if the arguments are scalar, but work with arrays! 
User defi ned elemental procedures came in with Fortran 95.  

    20.8   Summary 

 We now have a lot of the tools to start tackling problems in a structured and modular 
way, breaking problems down into manageable chunks and designing subprograms 
for each of the tasks.  

    20.9   Problems 

     1.    Below is the random number program that was used to generate the data sets for 
the Quicksort example:

    program ch2007   
   implicit none   
   integer :: n   
   integer :: I   
   real , allocatable , dimension (:) :: x 
    print *, ' how many values ?'   
   read *,n   
   allocate(x(1:n))   
   call random_number(x)   
   x=x*1000   
   open(unit=10,fi le='random.txt')   
   do i=1,n 
    write(10, 100)x(I)   
   100 format(f8.3)      

   end do      
   end program ch2007     
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    Run the Quick_Sort program in this chapter with the data fi le as input. Obtain 
timing details. 

    What percentage of the time does the program spend in each subroutine? Is it 
worth trying to make the sort much more effi cient given these timings?  

    2.    Find out if there is a subroutine library like the NAG library available. if there is 
replace the Quick_Sort recursive subroutine with a suitable routine from that 
library. What times do you obtain?  

    3.    Try using the operating system SORT command to sort the fi le. What timing 
fi gures do you get now? 
 Was it worth writing a program?  

    4.    Consider the following program:

    program ch2008   
   !   
   ! program to test array subscript checking   
   ! when the array is passed as an argument.   
   !   
   implicit none   
   integer , parameter :: array_size=10   
   integer :: I   
   integer , dimension(array_size) :: a 
    do i=1,array_size 
    a(i)=I      

   end do   
   call sub01(a,array size)      

   end program ch2008   
   subroutine sub01(a,array_size)   
   implicit none   
   integer , intent(in) :: array_size   
   integer , intent(in) , dimension(array_size) :: a   
   integer :: I   
   integer :: atotal=0   
   integer :: rtotal=0 
    do i=1,array_size 
    rtotal=rtotal+a(I)      

   end do   
   do i=1,array_size+1 
    atotal=atotal+a(I)      

   end do   
   print *, ' Apparent total is ' , atotal   
   print *,' real total is ' , rtotal      

   end subroutine sub01     

    The key thing to note is that we haven’t used interface blocks and we have an 
error in the subroutine where we go outside the array. Run this program. What 
answer do you get for the apparent total? 
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    Are there any compiler fl ags or switches which will enable you to trap this 
error?  

    5.    Use the intrinsic functions  matmul  and  transfer  in program ch2003 to 
replace the current Fortran 77 style code.      

    20.10   Bibliography 
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    20.11   Commercial Numerical and Statistical Subroutine 
Libraries 

 There are two major suppliers of commercial libraries:

   NAG: Numerical Algorithms Group  • 

 and

   Rogue Wave Software    • 

 They can be found at:

     • http://www.nag.co.uk/      

 and

     • http://www.roguewave.com/ 

      respectively. Their libraries are written by numerical analysts, and are fully tested 
and well documented. They are under constant development and available for a wide 
range of hardware platforms and compilers. Parallel versions are also available.        

http://www.nag.co.uk/
http://www.roguewave.com/
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 Aims 

 The aims of this chapter are to look at the facilities found in Fortran provided by 
modules, in particular:

   The use of a module to aid in the consistent defi nition of precision throughout a • 
program and subprograms.  
  The use of modules for global data.  • 
  The use of modules for derived data types.  • 
  Modules containing procedures  • 
  Public, private and protected attributes  • 
  The use statement and its extensions    • 

    21.1   Introduction 

 We have now covered the major executable building blocks in Fortran and they are

   The main program unit  • 
  Functions  • 
  Subroutines   • 

and these provide us with the tools to solve many problems using just a main pro-
gram and one or more external and internal procedures. Both external and internal 
procedures communicate through their argument lists, whilst internal procedures 
have access to data in their host program units. 

    Chapter 21   
 Modules                

 Common sense is the best distributed commodity in the world, 
for every man is convinced that he is well supplied with it. 

 Descartes 
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 We have also introduced modules. The fi rst set of examples was in the chapter on 
functions. The second set were in the chapter on derived types and the third set were 
in the subroutine chapters. 

 We will now look at examples of modules for

   Precision defi nition.  • 
  Global data  • 
  Modules containing procedures  • 
  Derived type defi nition.    • 

 Modules provide  the  code organisational mechanism in Fortran and can be 
thought of as the equivalent of classes in C++, Java and C#. They are one of the 
most important features of modern Fortran. 

    21.2   Basic Module Syntax 

 The form of a module is

    module module_name   
   …   
   end module module_name    

and the specifi cations and defi nitions contained within it is made available in the 
program units that need to access it by

    use module_name     

 The  use  statement must be the fi rst statement after the program, function or sub-
routine statement.  

    21.3   Modules for Global Data 

 So far the only way that a program unit can communicate with a procedure is through the 
argument list. Sometimes this is very cumbersome, especially if a number of procedures 
want access to the same data, and it means long argument lists. The problem can be 
solved using modules; e.g., by defi ning the precision to which you wish to work and any 
constants defi ned to that precision which may be needed by a number of procedures.  

    21.4   Modules for Precision Specifi cation and Constant 
Defi nition 

 In the following example we use a module to defi ne a parameter  long  to specify 
the precision to which we wish to work, and another for a range of mathematical 
 constants including a value for the parameter  p . Note that the parameter  p  is defi ned 
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to this working precision. We then import the module defi ning these parameters into 
the program units that need them. We also use a module procedure.

    module precision_module 
       implicit none   
   integer, parameter :: &      

   long=selected_real_kind(15,307)   
   end module precision_module    

    module maths_module   
  use precision_module   
   implicit none   
   real (long), parameter :: c = 299792458.0_long   
   ! units ms-1   
   real (long), parameter :: & 
    e = 2.71828182845904523_long      

   real (long), parameter :: g = 9.812420_long   
   ! 9.780 356ms-2 at sea level on the equator   
   ! 9.812 420ms-2 at sea level in london   
   ! 9.832 079ms-2 at sea level at the poles   
   real (long), parameter :: & 
    pi = 3.14159265358979323_long         

   end module maths_module    

    module sub1_module   
   implicit none   
   contains   
   subroutine sub1(radius,area,circum) 
    use precision_module   
   use maths_module   
   implicit none   
   real(long),intent(in)::radius   
   real(long),intent(out)::area,circum   
   area=pi*radius*radius   
   circum=2.0_long*pi*radius      

   end subroutine sub1   
   end module sub1_module    

    program ch2101   
  use precision_module   
   use sub1_module   
   implicit none   
   real(long)::r,a,c   
   integer : :I   
   do I=1,5 
    print*, 'radius?'   
   read*,r   
   call sub1(r,a,c)   
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   print *, 'for radius = ', r   
   print *, 'area = ',a   
   print *, 'circumference = ',c      

   end do      
   end program ch2101     

    21.4.1   Note 

 In this example we wish to work with the precision specifi ed by the kind type 
parameter  long  in the module  precision_module . In order to do this we use 
the statement

    use precision_module    

inside the program units before any declarations. The kind type parameter  long  is 
then used with all the real type declaration e.g.,

    real (long):: r,a,c     

 To make sure that all fl oating point calculations are performed to the working preci-
sion specifi ed by  long  any constants such as 2.0 in subroutine  Sub1  are specifi ed 
as  const_long  e.g.,

    2.0_long     

 Note also that we defi ne things once and use them on two occasions, i.e., we defi ne 
the precision once and use this defi nition in both the main program and the 
subroutine.   

    21.5   Modules for Sharing Arrays of Data 

 The following example uses a module to defi ne a parameter and two arrays. The 
module also contains three subroutines that have access to the data in the module. 
The main program has the statement

    use data_module    

which interfaces to the three subroutines. 
 Note that in this example the calls to the subroutines have no parameters. They 

work with the data contained in the module.

    module data_module 
    implicit none   
   integer, parameter : : n=12   
   real, dimension(1:n) :: rainfall   
   real, dimension(1:n) :: sorted      



29121.5 Modules for Sharing Arrays of Data

   contains   
   subroutine readdata   
   implicit none   
   integer :: I   
   character (len=40) :: fi lename 
    print *, 'What is the fi lename ?'   
   read *,fi lename   
   open(unit=100,fi le=fi lename)   
   do i=1,n 
    read (100,*) rainfall(I)      

   end do      
   end subroutine readdata   
   subroutine sortdata   
   implicit none 
    sorted=rainfall   
   call selection   

   contains 
    subroutine selection      
   implicit none   
   integer :: i, j, k   
   real :: minimum    
    do i=1,n-1   
  k=I   
   minimum=sorted(I)   
   do j=i+1,n 
    if (sorted(j) < minimum) then   
  k=j   
   minimum=sorted(k)      

   end if      
   end do   
   sorted(k)=sorted(I)   
   sorted(i)=minimum      

   end do   
   end subroutine selection      

   end subroutine sortdata    

    subroutine printdata   
   implicit none   
   integer :: I 
    print *, 'original data is'   
   do i=1,n 
    print 100,rainfall(I)   
   100 format(1x, f7.1)      

   end do   
   print *, 'Sorted data is'   
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   do i=1,n 
    print 100,sorted(I)      

   end do      
   end subroutine printdata   
   end module data_module    

    program ch2102   
   use data_module   
   implicit none 

    call readdata   
   call sortdata   
   call printdata      

   end program ch2102      

    21.6   Modules for Derived Data Types 

 When using derived data types and passing them as arguments to procedures, both 
the actual arguments and dummy arguments must be of the same type, i.e., they 
must be declared with reference to the same type defi nition. The only way this can 
be achieved is by using modules. The user defi ned type is declared in a module and 
each program unit that requires that type uses the module. 

    21.6.1   Person Data Type 

 In this example we have a user defi ned type  person  which we wish to use in the 
main program and pass arguments of this type to the subroutines  read_data  and 
stats. In order to have the type  person  available to two subroutines and the 
main program we have defi ned person in a module  personal_module  and 
then made the module available to each program unit with the statement

    use personal_module     

 Note that we have put both subroutines in one module.

    module personal_module 
    implicit none   
   type person 
    real:: weight   
   integer :: age   
   character :: sex      

   end type person      
   end module personal_module    
    module subs_module   
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   use personal_module   
   implicit none   
   contains   
   subroutine read_data(data,max_no,no) 
    implicit none   
   type (person), dimension (:), intent(out)::data   
   integer, intent(out):: no   
   integer, intent(in):: max_no   
   integer :: I   
   do 
    print *, 'input number of patients'   
   read *,no   
   if (no  >  0 .and. no < = max_no) exit      

   end do   
   do i=1,no 

    print *, 'for person',I   
   print *, 'weight ?'   
   read*,data(i)%weight   
   print*, 'age ?'   
   read*,data(i)%age   
   print*, 'sex ?'   
   read*,data(i)%sex      

   end do      
   end subroutine read_data    

    subroutine stats(data,no,m_a,f_a)   
  implicit none   
   type(person), dimension(:), intent(in) ::data   
   real, intent(out) :: m_a,f_a   
   integer, intent(in):: no   
   integer :: i,no_f,no_m   
   m_a=0.0; f_a=0.0;no_f=0; no_m =0   
   do i=1,no 
    if (data(i)%sex == 'M' &   
   .or. data(i)%sex == 'm') then 
    m_a=m_a+data(i)%weight   
   no_m=no_m+1       

    elseif(data(i)%sex == 'F' &   
  .or. data(i)%sex == 'f') then   
   f_a=f_a+data(i)%weight   
   no_f=no_f+1       

    endif      
   end do   
   if (no_m  >  0) then 
    m_a = m_a/no_m      
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   endif   
   if (no_f  >  0) then 
    f_a = f_a/no_f      

   endif      
   end subroutine stats   
   end module subs_module    

    program ch2103   
  use personal_module   
   use subs_module   
   implicit none   
   integer,parameter:: max _no=100   
   type (person), dimension(1:max_no) :: patient   
   integer :: no_of_patients   
   real :: male_average, female_average      

   ! 
    call read_data(patient,max_no,no_of patients)   
   call stats(patient, no_of_patients, &   
   male_average, female_average)   
   print*, 'average male weight is ',male_average   
   print*, 'average female weight is ',female_average      

   end program ch2103       

    21.7   Private, Public and Protected Attributes 

 With the examples of modules so far every entity in a module has been accessible to 
each program unit that ‘uses’ the module. By default all entities in a module have 
the public attribute, but sometimes it is desirable to limit the access. If entities have 
the private attribute this limits the possibility of inadvertent changes to a variable by 
another program unit. 

 Example of using public and private attributes:

    real, public :: a, b, c   
   integer, private :: I, j, k     

 If a variable in a module is declared to be public, its access can be partially restricted 
by also giving it the protected attribute. This means that the variable can still be seen 
by program units that use the module but its value cannot be changed e.g.

    integer, public, protected:: I      
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    21.8   The Use Statement 

 In its simplest form the use statement is

    use module_name    

which then makes all the module’s public entities available to the program unit. 
There may be times when only certain entities should be available to a particular 
program unit. In Example 1 subroutine sub1 ‘uses’ maths_module but 
only needs pi and not c, e and g. The use statement could therefore be

    use maths_module, only: pi     

 There are also times when an entity in a module needs to have its name changed 
when used in a program unit. For example variable g in  maths_module  needs to 
be called  gravity  in subroutine  sub1  so the use statement becomes

    use maths_module, gravity=  >  g      

    21.9   Notes on Module Usage and Compilation 

 If we only have one fi le comprising all of the program units (main program, mod-
ules, functions and subroutines) then there is little to worry about. However, it is 
recommended that larger-scale programs be developed as a collection of fi les with 
related program units in each fi le, or even one program unit per fi le. This is more 
productive in the longer term, but it will lead to problems with modules unless we 
compile each module before we use it in other program units.  

    21.10   Formal Syntax 

 The following is taken from the standard and describes more fully requirements in 
the interface area. 

    21.10.1   Interface 

 The interface of a procedure determines the forms of reference through which it 
may be invoked. The procedure’s interface consists of its name, binding label, 
generic identifi ers, characteristics, and the names of its dummy arguments. The 
characteristics and binding label of a procedure are fi xed, but the remainder of the 
interface may differ in differing contexts.  
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    21.10.2   Implicit and Explicit Interfaces 

 Within the scope of a procedure identifi er, the interface of the procedure is either 
explicit or implicit. The interface of an internal procedure, module procedure, or 
intrinsic procedure is always explicit in such a scope. 

 The interface of a subroutine or a function with a separate result name is explicit 
within the subprogram where the name is accessible.  

    21.10.3   Explicit Interface 

 A procedure other than a statement function shall have an explicit interface if it is 
referenced and

   a reference to the procedure appears• 

   with an argument keyword, or   –
  in a context that requires it to be pure,      –

  the procedure has a dummy argument that• 

   has the ALLOCATABLE, OPTIONAL, POINTER, TARGET, VALUE  –
attribute,  
  is an assumed-shape array,   –
  is a coarray,   –
  is polymorphic,      –

  the procedure has a result that• 

   is an array,   –
  is a pointer or is allocatable, or   –
  has a nonassumed type parameter value that is not a constant expression,      –

  the procedure is elemental      • 

    21.11   Summary 

 We have now introduced the concept of a module, another type of program unit, 
probably one of the most important features of Fortran 90. We have seen in this 
chapter how they can be used:

   Defi ne global data.  • 
  Defi ne derived data types.  • 
  Contain explicit procedure interfaces.  • 
  Package together procedures.    • 
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 This is a very powerful addition to the language, especially when constructing 
large programs and procedure libraries.  

    21.12   Problems 

 1. Write two functions, one to calculate the volume of a cylinder  p  r   2    l  where the 
radius is r and the length is l, and the other to calculate the area of the base of the 
cylinder  p   r  2 . Defi ne  p  as a parameter in a module which is used by the two func-
tions. Now write a main program which prompts the user for the values of r and 
l, calls the two functions and prints out the results. 

 2. Make all the real variables in the above problem have 15 signifi cant digits and a 
range of 10 −307  to 10 +307  . Use a module.      
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 Aims 

 The aims of this chapter are to look at several complete examples illustrating data 
structuring in Fortran.

   Singly linked list: reading in an arbitrary amount of text  • 
  Singly linked list: reading in an arbitrary quantity of numeric data  • 
  Ragged arrays – lower triangular matrix  • 
  Ragged arrays – variable sized data sets  • 
  Perfectly balanced tree  • 
  Date derived type    • 

    22.1   Introduction 

 This chapter looks at simple data structuring in Fortran using a range of examples. 
We use modules throughout to defi ne the data structures that we will be working 
with. The chapter starts with a number of pointer examples. 

    Chapter 22   
 Simple    Data Structuring in Fortran              

 The good teacher is a guide who helps others to dispense 
with his services. 

 R. S. Peters, Ethics and Education 
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    22.2   Singly Linked List: Reading in an Arbitrary 
Amount of Text 

 Conceptually a singly linked list consists of a sequence of boxes with compartments. 
In the simplest case the fi rst compartment holds a data item and the second contains 
directions to the next box. 

 In the diagram below we have a singly linked list that holds three characters I, a 
and n. Element 1 is at address 100 and holds the letter I and a pointer to the next 
element – at address 104. Element 2 holds the letter a and a pointer to the next element 
– at address 108. Element 3 holds the letter n, and does not point to anything – we 
use the null pointer.  

 I     104  →  a  108  →  n  null 

 We can construct a data structure in Fortran to work with a singly linked list by 
defi ning a link data type with two components, a character and a pointer to a link 
data type. A complete program to do this is given below:

    module link_module 
       type link 
    character :: c   
   type (link) , pointer :: next => null()      

   end type link      

   end module link_module   
   program ch2201   
   use link_module   
   implicit none   
   type (link) , pointer :: root , current   
   integer :: io_stat_number=0 
    allocate(root)   
   print *,' type in some text'   
   read (unit = *, fmt = '(a)' , advance = 'no' , & 
    iostat = io_stat_number) root%c      

   if (io_stat_number == –1) then 
    nullify(root%next)      

   else 
    allocate(root%next)      

   endif   
   current => root   
   do while (associated(current%next)) 
    current => current%next   
   read (unit=*,fmt='(a)',advance='no', &   
   iostat=io_stat_number) current%c   
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   if (io_stat_number == -1) then 
    nullify(current%next)      

   else 
    allocate(current%next)      

   endif      
   end do   
   current => root   
   do while (associated(current%next)) 
    print * , current%c   
   current => current%next      

   end do      
   end program ch2201     

 The behaviour of this program is system specifi c. You will have to look at your 
compiler documentation regarding the IO_Stat_Number. The fi rst thing of interest 
is the type defi nition for the singly linked list. We have

    module link_module 
    type link 
    character :: c   
   type (link) , pointer :: next => null()      

   end type link      
   end module link_module    

and we call the new type  link . It comprises two component parts: the fi rst holds a 
character C, and the second holds a pointer called  next  to allow us to refer to 
another instance of type  link . Remember we are interested in joining together 
several boxes or  links . 

 The next item of interest is the variable defi nition. Here we defi ne two variables 
 root  and  current  to be pointers that point to items of type  link . In Fortran when 
we defi ne a variable to be a pointer we also have to defi ne what it is allowed to point to. 
This is a very useful restriction on pointers, and helps make using them more secure. 

 The fi rst executable statement

    allocate(root)    

requests that the variable  root  be allocated memory. At this time the contents of 
the character component is undefi ned and the pointer component is disassociated. 

 The next statement reads a character from the keyboard. We are using a number 
of additional features of the read statement, including

    advance='no'   
   iostat=io_stat_number    

and the two options combine to provide the ability to read an arbitrary amount of 
text from the user per line, and terminate only when end of fi le is encountered as the 
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only input on a line, typically by typing CTRL Z. Note that the numbers returned by 
the iostat option are implementation specifi c. A small program would have to be 
written to test the values returned for each platform. 

 If an end of fi le is reached then the pointer  root%next  is nullifi ed using the 
nullify statement. This gives the pointer a status of disassociated, and this is a 
convenient way of saying that it doesn’t point to anything valid. 

 If the end of fi le is not detected then the next link in the chain is created.The 
statement

    Current => Root    

means that both  Current  and  Root  point to the same physical memory location, 
and this holds a character data item and a pointer. We must do this as we have to 
know where the start of the list is. This is now our responsibility, not the compilers. 
Without this statement we are not able to do anything with the list except fi ll it up 
— hardly very useful. 

 The while loop is then repeated until end of fi le is reached. if the user had typed 
an end of fi le immediately then  Current%Next  would not be associated, and 
the while loop would be skipped. 

 This loop allocates memory and moves down the chain of boxes one character at 
a time fi lling in the links between the boxes as we go. We then have

    Current => Root    

and this now means that we are back at the start of the list, and in a position to traverse 
the list and print out each character in the list. 

 There is thus the concept with the pointer variable current of it providing us 
with a window into memory where the complete linked list is held, and we look at 
one part of the list at a time. 

 Both while loops use the intrinsic function  associated  to check the association 
status of a pointer. 

 It is recommended that this program be typed in, compiled and executed. It is 
surprisingly diffi cult to believe that it will actually read in a completely arbitrary 
number of characters from the user. Seeing is believing.  

    22.3   Singly Linked List: Reading in an Arbitrary Quantity 
of Numeric Data 

 In this example we will look at using a singly linked list to read in an arbitrary 
quantity of data and then allocating an array to copy it to for normal numeric 
calculations at run time:

    module link_module 
    type link 
    real :: n   
   type (link) , pointer :: next      
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   end type link      
   end module link_module   
   program ch2202_1   
   use link_module   
   implicit none   
   type (link) , pointer :: root, current   
   integer :: I=0   
   integer :: error=0   
   integer :: io_stat_number=0   
   integer :: blank_lines=0   
   real , allocatable , dimension (:) :: x 
    allocate(root)   
   print *,' Type in some numbers'   
   read (unit = *, fmt = *, & 
iostat = io_stat_number)          root%n 
    if (io_stat_number > 0) then 
    error=error+1      

   else if (io_stat_number == –1) then 
    nullify(root%next)      

   else if (io_stat_number == -2) then 
    blank_lines=blank_lines+1      

   else 
    i=I+1   
   allocate(root%next)      

   endif   
   current => root   
   do while (associated(current%next)) 
    current => current%next   
   read (unit = * , fmt=*, & iostat = io_stat_number)         

   current%n 
       if (io_stat_number > 0) then     
error=error+1      

   else if (io_stat_number == -1) then 
    nullify(current%next)      

   else if (io_stat_number == -2) then 
    blank_lines=blank_lines+1      

   else 
    i=I+1   
   allocate(current%next)      

   endif       
    end do   
   print *,I,' items read'   
   print *,blank_lines,' blank lines'   
   print *,error,' items in error'   
   allocate(x(1:i))   



304 22 Simple    Data Structuring in Fortran

   I=1   
   current => root   
   do while (associated(current%next)) 
    x(i)=current%n   
   i=I+1   
   print * , current%n   
   current => current%next      

   end do   
   print *,x      

   end program ch2202_1     

 Below is a variant on this using the NAG compiler. Note the use of a module 
(f90_iostat) and meaningful names for the status of the read:

    module link_module   
   type link 
    real :: n   
   type (link) , pointer :: next      

   end type link   
   end module link module   
   program ch2202_2   
   use link_module   
   use f90_iostat   
   type (link) , pointer :: root, current   
   integer :: I=0   
   integer :: io_stat_number=0 

    allocate(root)   
   print *,' Type in some numbers'   
   read (unit = *, fmt = *, iostat = io_stat_number) & 
    root%n      

   if (io_stat_number == ioerr_eof) then 
    nullify(root%next)      

   else if(io_stat_number == ioerr_ok) then 
    i=I+1   
   allocate(root%next)      

   endif   
   current => root   
   do while (associated(current%next)) 
    current => current%next   
   read (unit=*,fmt=*, iostat=io_stat_number) & 
    current%n      

   if (io_stat_number == ioerr_eof) then 
    nullify(current%next)      

   else if(io_stat_number == ioerr_ok) then 
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    i=I+1   
   allocate(current%next)      

   endif      
   end do   
   print *,I,' items read'   
   current => root   
   do while (associated(current%next)) 
    print * , current%n   
   current => current%next      

   end do      

   end program ch2202_2      

    22.4   Ragged Arrays 

 Arrays in Fortran are rectangular, even when allocatable. However if you wish to 
set up a lower triangular matrix that uses minimal memory Fortran provides a 
number of ways of doing this. The following example achieves it using allocatable 
components.

    module ragged_module   
   implicit none   
   type ragged 
    real , dimension(:) , allocatable :: ragged_row      

   end type ragged   
   end module ragged_module   
   program ch2203   
   use ragged_module   
   implicit none   
   integer :: I   
   integer , parameter :: n=3   
   type (ragged) , dimension(1:n) :: lower_diag 
    do i=1,n 
    allocate(lower_diag(i)%ragged_row(1:i))   
   print *,' type in the values for row ' , I   
   read *,lower_diag(i)%ragged_row(1:i)      

   end do   
   do i=1,n 
    print *,lower_diag(i)%ragged_row(1:i)      

   end do      
   end program ch2203     

 Within the fi rst do loop we allocate a row at a time and each time we go around 
the loop the array allocated increases in size.  
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    22.5   Ragged Arrays and Variable Sized Data Sets 

 The previous example showed how to use allocatable components in a derived type 
to achieve ragged arrays. We extend this simple idea in the example below. In this 
example both the number of stations and the number of data items for each station 
is read in at run time and allocated accordingly. Notice that 0 is valid as the number 
of data items for a station.

    module ragged_module 
    type ragged 
    real, allocatable, dimension (:) :: rainfall      

   end type ragged      
   end module ragged_module   
   program ch2204 
    use ragged_module   
   implicit none   
   integer :: I   
   integer :: nr   
   integer, allocatable, dimension (:) :: nc   
   type (ragged), allocatable, dimension (:) :: station   
   print *,' enter number of stations'   
   read *, nr   
   allocate (station(1:nr))   
   allocate (nc(1:nr))   
   do I = 1, nr 
    print *,' enter the number of data values '         
   print *, 'for station, i 
       read *, nc(I)   
   allocate (station(i)%rainfall(1:nc(I)))   
   if (nc(I)==0) then 
    cycle      

   end if   
   print *,' Type in the values for station ', I   
   read *, station(I) %rainfall(1:nc(I))       

    end do   
   do I = 1, nr 
    print *,' Row ',i, ' Data = ', &          
   station(i)%rainfall(1:nc(i)) 

    end do      
   end program ch2204      
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    22.6   Perfectly Balanced Tree 

 Let us now look at a more complex example that builds a perfectly balanced tree and 
prints it out. A loose defi nition of a perfectly balanced tree is one that has minimum 
depth for n nodes. More accurately a tree is perfectly balanced if for each node the 
number of nodes in its left and right subtrees differ by at most 1:

    module tree_node_module 
    implicit none   
   type tree_node 
    integer :: number   
   type (tree_node), pointer :: left, right      

   end type tree_node      
   end module tree_node_module   
   module tree_module 
    implicit none      

   contains 
    recursive function tree(n) result (answer) 
    use tree_node_module   
   implicit none   
   integer, intent (in) :: n   
   type (tree_node), pointer :: answer   
   type (tree_node), pointer :: new_node   
   integer :: l, r, x   
   if (n==0) then 
    print *,' terminate tree'   
   nullify (answer)      

   else 
    l = n/2   
   r = n - l – 1   
   print *, l, r, n   
   print *,' next item'   
   read *, x   
   allocate (new node)   
   new_node%number = x   
   print *,' left branch'   
   new_node%left => tree(l)   
   print *,' right branch'   
   new_node%right => tree(r)   
   answer => new_node      

   end if   
   print *,' function tree ends'      

   end function tree      
   end module tree_module   
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   module print_tree_module 
    implicit none      

   contains 
    recursive subroutine print_tree(t,h) 
    use tree_node_module   
   implicit none   
   type (tree_node), pointer :: t   
   integer :: I   
   integer :: h   
   if (associated(t)) then 
    call print_tree(t%left,h+1)   
   do I = 1, h 

    write (unit=*,fmt=10,advance='no')   
   10 format (' ')      

   end do   
   print *, t%number   
   call print_tree(t%right,h+1)      
   end if      

   end subroutine print_tree      
   end module print_tree_module   
   program ch2205   
   ! construction of a perfectly balanced tree 
    use tree_node_module   
   use tree_module   
   use print_tree_module   
   implicit none   
   type (tree_node), pointer :: root   
   integer :: n_of_items   
   print *, 'enter number of items'   
   read *, n_of_items   
   root => tree(n_of_items)   
   call print_tree(root,0)      

   end program ch2205     

 There are a number of very important concepts contained in this example and 
they include:

   The use of a module to defi ne a type. For user defi ned data types we must create • 
a module to defi ne the data type if we want it to be available in more than one 
program unit.  
  The use of a function that returns a pointer as a result.  • 
  As the function returns a pointer we must determine the allocation status before • 
the function terminates. This means that in the above case we use the 
nullify(result) statement. The other option is to target the pointer.  
  The use of  • associated  to determine if the node of the tree is terminated or 
points to another node.    



30922.7 Date Class

 Type the program in and compile, link and run it. Note that the tree only has the 
minimal depth necessary to store all of the items. Experiment with the number of 
items and watch the tree change its depth to match the number of items.  

    22.7   Date Class 

 The following is a complete manual rewrite of Skip Noble and Alan Millers date 
module. The original worked with the built-in Fortran intrinsic data types. It has 
been rewritten to work with a derived date data type. 

 The fi rst key code segment is

    type, public :: date 
    private   
   integer :: day   
   integer :: month   
   integer :: year      

   end type date    

where the date data type is public but its components are private. This means that 
access to the components must be done via subroutines and functions within the 
date_module module. 

 The next key code segment is

    public :: calendar_to_julian, & 
    date_, &   
   date_stamp, &   
   date_to_day_in_year, &   
   date_to_weekday_number, &   
   get_day, &   
   get_month, &   
   get_year, &   
   julian_to_date, &   
   julian_to_date_and_week_and_day, &   
   ndays, &   
   year_and_day_to_date       

where we explicitly make the listed subroutines and functions public, as the code 
segment from the top of the module,

    ! ..   
   ! .. Default Accessibility .. 
    private       

defi nes everything to be private. 
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 We have to provide a user defi ned constructor when the components of the 
derived type are private. This is given below:        

 This in turn calls the built-in constructor date. As the  date_  function is now an 
executable statement we cannot initialise in a declaration, i.e. the following is not 
allowed.

    type (date) :: date1_(11,2,1952)     

 We also provide three additional procedures to access the components of the 
date class:

    get_day   
   get month   
   get_year     

 This is common programming practice in object oriented and object based 
programming. 

 The program has also been through the Nag tool suite and this has helped to 
systematically lay out the code.  
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 There are wrap problems with some of the complex arithmetic expressions. 
The version on the web site is obviously correct. 

 We also have an alternate form of array declaration in this program, which is 
given below. It is common in Fortran 77 style code:

    integer :: val(8)     

 The next major addition to this code would be a date checking routine to test the 
validity of dates. This would be called from within our constructor date_. This 
would mean that we could never have an invalid date when using the date_module. 
This is left as a programming exercise. 

    22.7.1   Notes: DST in the USA 

 The above program is no longer correct. Beginning in 2007, Daylight Saving Time 
was brought forward by 3 or 4 weeks in Spring and extended by 1 week in the Fall. 
Daylight Saving Time begins for most of the United States at 2 a.m. on the second 
Sunday of March. Time reverts to standard time at 2 a.m. on the fi rst Sunday in 
November.   

    22.8   Problems 

     1.    Compile and run the examples in this chapter with your compiler. Do they all 
work with your compiler? You may have problems with the examples that use 
allocatable components. Not all compilers support this feature at this time.  

    2.    Modify the ragged array example that processes a lower triangular matrix to 
work with an upper triangular matrix.  

    3.    Using the balanced tree example as a basis and modify it to work with a character 
array rather than an integer. The routine that prints the tree will also have to be 
modifi ed to refl ect this.  

    4.    Modify the Date program to account for the current DST in the USA.      

    22.9   Bibliography 
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        Aims 

 The aims of this chapter are to look at operator overloading in Fortran. 

    23.1   Introduction 

 In programming operator overloading can be regarded as a way of achieving poly-
morphism in that operators (e.g. +,−,*,/ or =) can have different implementations 
depending on the types of their arguments. 

 In some programming languages overloading is defi ned by the language. In 
Fortran for example, the addition + operator invokes quite different code when used 
with integer, real or complex types. 

 Some languages allow the programmer to implement support for user defi ned 
types. Fortran introduced support for operator and assignment overloading in the 
1990 standard. 

    23.2   Other Languages 

 Operator overloading is not new and several languages offer support for the feature 
including:

   Algol 68 – 1968  • 
  Ada – Ada 83  • 

    Chapter 23   
 Operator    Overloading       

 All the persons in this book are real and none is fi ctitious even 
in part. 

 Flann O’Brien, The Hard Life 
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  C++ – First standard, 1998  • 
  Eiffel – 1986  • 
  C# – 2001    • 

 Java, however does not.  

    23.3   Example 

 The following example overloads the addition operator.

    module T_Position      
   implicit none   
   type Position 
    integer :: X   
   integer :: Y   
   integer :: Z      

   end type Position   
   interface operator (+) 
    module procedure New_Position      

   end interface   
   contains   
   function New_Position(A,B)   
   type (Position) ,intent(in) :: A,B   
   type (Position) :: New_Position 
    New_Position % X = A % X + B % X   
   New_Position % Y = A % Y + B % Y   
   New_Position % Z = A % Z + B % Z      

   end function New_Position   
   end module T_Position   
   program ch2301   
   use T_Position   
   implicit none   
   type (Position) :: A,B,C 
    A%X=10   
   A%Y=10   
   A%Z=10   
   B%X=20   
   B%Y=20   
   B%Z=20   
   C=A+B   
   print *,A   
   print *,B   
   print *,C      

   end program ch2301     
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 We have extended the meaning of the addition operator so that we can write 
simple expressions in Fortran based on it and have our new position calculated 
using a user supplied function that actually implements the calculation of the new 
position.  

    23.4   Problem 

     1.    Compile and run this example. Overload the subtraction operator as well.            
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 Aims 

 This chapter looks at an example that implements generic programming in 
Fortran. 

    24.1   Introduction 

 Fortran 77 had several generic functions, e.g. the sine function could be called with 
arguments of type real, double precision or complex. Fortran 90 extended the idea 
so that a programmer could write their own generic functions or subroutines. For 
example we can now write a sort routine works with arguments of a variety of types, 
e.g. integer, real etc. 

    24.2   Generic Programming and Other Languages 

 Generic programming has a wider meaning in computer science and effectively is a 
style of computer programming in which an algorithm is written once, but can be 
made to work with a variety of types. 

    Chapter 24   
 Generic    Programming              

 General notions are generally wrong. 

 Letter to Mr. Wortley Montegu, 28 th  March 1710. 

I. Chivers and J. Sleightholme, Introduction to Programming with Fortran: 
With Coverage of Fortran 90, 95, 2003, 2008 and 77, 
DOI 10.1007/978-0-85729-233-9_24, © Springer-Verlag London Limited 2012
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 This style of programming is provided in several programming languages and in 
a variety of ways. 
 Languages that support generics include

   Ada  • 
  C#  • 
  Eiffel  • 
  Java    • 

 C++ supports the functionality via templates. 
 To quote the generic programming pioneer Alexander Stepanov;

   Generic programming is about abstracting and classifying algorithms and data • 
structures. It gets its inspiration from Knuth and not from type theory. Its goal is 
the incremental construction of systematic catalogs of useful, effi cient and 
abstract algorithms and data structures. Such an undertaking is still a dream.   

and quoting Bjarne Stroustrup:

   lift algorithms and data structures from concrete examples to their most general • 
and abstract form.    

 It is called parametric polymorphism in the languages ML and Haskell. 
 The term parameterised type is used in the book Design Patterns: Elements of 

Reusable Object-Oriented Software. The authors, sometimes called the Gang of 
Four, or GoF, also state that 

 dynamic, highly parameterized software is harder to understand and build than • 
more static software. 

 Ada was one of the fi rst languages to support generic programming, and the paper 

 David R. Musser and Alexander A. Stepanov: A library of generic algorithms in • 
Ada. Proceedings of the 1987 Annual ACM SIGAda international conference on 
Ada, pages 216–225. 

 shows how old the ideas are. 
 We'll look at a concrete example in Fortran next.  

    24.3   Generic Example 

 Simplistically, a procedure is generic if it can handle arguments of more than one 
data type. The example we will use is based on the earlier one of sorting. In the 
original example the program worked with real data. In the example below we have 
extended the program to handle both integer and real data. 

 What is not obvious from our use of the internal procedures is that there will be 
specifi c procedures to handle each data type, i.e., if a function can take integer, real 
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and complex arguments then there will be one implementation of that function for 
each data type, i.e., three separate functions. 

 In the example below we add the ability to handle integer data. This means that 
where we had:

   read data  • 
  sort data  • 
  print data   • 

and one subroutine to implement the above we now have two subroutines to do each 
of the above, one to handle integers and one to handle reals:  
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 The key code is given below for each module:

    interface read data      
  module procedure read integer   
   module procedure read real      

   end interface read data   
   interface sort_data 

    module procedure sort_integer   
   module procedure sort_real      

   end interface sort data   
   interface print_data 

    module procedure print_integer   
   module procedure print_real      

   end interface print_data     
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 The interface block name is used in the calling routine and the appropriate 
module procedure will be called, based on a signature match of the actual and 
dummy parameters. 

 This is quite useful, but not as useful as the functionality provided in other lan-
guages. Have a look at the following two examples which show the code for a 
generic quicksort in C++ and C#. 

    24.3.1   Generic Quicksort in C++ 

     template <class Type>   
   void swap(Type array[],int i, int j)   
   { 
    Type tmp=array[i] ;   
   array[i]=array[ j ] ;   
   array[j]=tmp;      

   }   
   template <class Type>   
   void quicksort( Type array[], int l, int r)   
   { 
    int i=l;   
   int j=r;   
   Type v=array[int((l + r) /2) ] ;   
   for (;;)   
  {

    while (array[i] < v) i=i + 1;   
   while (v < array[j]) j =j — 1;   
   if (i<=j) { swap(array, i, j) ; i=i + 1 ; j=j-1; }   
   if (i>j) goto ended ;      

   }       
    ended  :   ; 

    if (l<j) quicksort(array,l, j);   
   if (i<r) quicksort(array,i, r) ;      

   }   
   template <class Type>   
   void print(Type array[],int size)   
   { 
    cout << " [ " ;   
   for (int ix=0;ix<size; ++ix)   

   cout << array [ix] << " ";   
   cout << "] \n";      

   }   
   #include <iostream>   
   using namespace std;   
   int main()   
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   { 
    double da[]={1.9,8.2,3.7,6.4,5.5,1.8,9.2,3.6,7.4,5.5}
;   
   int ia[]={1,10,2,9,3,8,4,7,6,5};   
   int size=sizeof(da)/sizeof(double);   
   cout << " Quicksort of double array is \n";   
   quicksort(da,0,size-1);   
   print(da,size);   
   size=sizeof(ia)/sizeof(int);   
   cout << " Quicksort of integer array is \n";   
   quicksort(ia,0,size-1);   
   print(ia,size);   
   return(0);      

   }      

    24.3.2    Generic Quicksort in C#      
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    24.3.3   Summary 

 Note in both the C++ and C# case we only have one version of the algorithm. 
Fortran still has a way to go! Maybe Fortran 2020?   

    24.4   Problem 

     1.    Write a generic swap routine, that swaps two rank 1 integer arrays and two rank 
1 real arrays.      
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    24.5   Bibliography 

 This site is a collection of Alex Stepanov’s papers, class notes, and source code, 
covering generic programming and other topics. 

   http://www.stepanovpapers.com/     
 C++ 
 C++ Templates: The Complete Guide, David Vandevoorde, Nicolai M Josuttis, 
2003 Addison-Wesley. ISBN 0–201–73484–2 
 C# 
 Visit the following site 
   http://msdn.microsoft.com/en-us/library/512aeb7t(v=vs    . 80). aspx for a very good 
coverage of generics and C#.       

http://www.stepanovpapers.com/
http://msdn.microsoft.com/en-us/library/512aeb7t(v=vs


343I. Chivers and J. Sleightholme, Introduction to Programming with Fortran: 
With Coverage of Fortran 90, 95, 2003, 2008 and 77, 
DOI 10.1007/978-0-85729-233-9_25, © Springer-Verlag London Limited 2012

 Aims 

 The aims of this chapter are to look at several mathematical examples in Fortran.

   Using linked lists for sparse matrix problems.  • 
  The solution of a set of ordinary differential equations using the Runge–Kutta–• 
Merson method, with the use of a procedure as a parameter, and the use of work 
arrays.  
  Diagonal extraction of a matrix.  • 
  The solution of linear equations using Gaussian elimination  • 
  An elemental e**x function    • 

    25.1   Introduction 

 This chapter looks at a small number of mathematical examples in Fortran. 

    Chapter 25   
 Mathematical    Examples              

 You look at science (or at least talk of it) as some sort of 
demoralising invention of man, something apart from real life, 
and which must be cautiously guarded and kept separate from 
everyday existence. But science and everyday life cannot and 
should not be separated. Science, for me, gives a partial 
explanation for life. In so far as it goes, it is based on fact, 
experience and experiment. 

 Rosalind Franklin. 
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    25.2   Using Linked Lists for Sparse Matrix Problems 

 A matrix is said to be sparse if many of its elements are zero. Mathematical models 
in areas such as management science, power systems analysis, circuit theory and 
structural analysis consist of very large sparse systems of linear equations. It is not 
possible to solve these systems with classical methods because the sparsity would 
be lost and the eventual system would become too large to solve. Many of these 
systems consist of tens of thousands, hundreds of thousands and millions of equations. 
As computer systems become ever more powerful with massive amounts of mem-
ory the solution of even larger problems becomes feasible. 

 Direct Methods for Sparse Matrices, by Duff I.S., Erismon A.M. and Reid J.K., 
looks at direct methods for solving sparse systems of linear equations. 

 Sparse matrix techniques lend themselves to the use of dynamic data structures 
in Fortran. Only the nonzero elements of a sparse matrix need be stored, together 
with their positions in the matrix. Other information also needs to be stored so that 
row or column manipulation can be performed without repeated scanning of a 
potentially very large data structure. Sparse methods may involve introducing some 
new nonzero elements, and a way is needed of inserting them into the data structure. 
This is where the Fortran pointer construct can be used. The sparse matrix can be 
implemented using a linked list to which entries can be easily added and from which 
they can be easily deleted. 

 As a simple introduction, consider the storage of sparse vectors. What we learn 
here can easily be applied to sparse matrices, which can be thought of as sets of 
sparse vectors. 

    25.2.1   Inner Product of Two Sparse Vectors 

 Assume that we have two sparse vectors  x  and  y , for example:
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of approaches to doing this and the one we use in the program below stores 
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them as two linked lists. Only the nonzero elements are stored (together with 
their indices):  

 Here is the program.

    program ch2501   
   ! this program reads the non-zero elements of   
   ! two sparse vectors x and y together with their   
   ! indices, and stores them in two linked lists.   
   ! using these linked lists it then calculates   
   ! and prints out the inner product.   
   ! it also prints the values.   
   ! updated 21/3/00 to initialise pointers to   
   ! be disassociated using intrinsic function null   
   ! plus minor updates   
   implicit none   
   character (len=30) :: fi lename   
   type sparse_vector 
    integer :: index   
   real :: value   
   type (sparse_vector), pointer :: next => null()      

   end type sparse_vector   
   type (sparse_vector), pointer :: &   
   root_x, current_x,root_y, current_y   
   real :: inner_prod = 0.0   
   integer :: io_status   
   ! read non-zero elements of vector x together   
   ! with indices into a linked list 
    print *, 'input fi le name for vector x'   
   read '(a)', fi lename   
   open (unit=1, fi le=fi lename &      
   ,status='old',iostat=io_status) 
    if (io_status/=0) then 
    print *, 'error opening fi le ', fi lename   
   stop      

   end if   
   allocate (root_x)   
   read (unit=1,fmt=*,iostat=io_status)&       
   root_x%value, root_x%index 
    if (io_status/=0) then 
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    print *, ' error reading from fi le ', &   
   fi lename, ' or fi le empty'       

       stop      
   end if      

   ! read data for vector x from fi le until eof 
    current_x => root_x   
   allocate (current_x%next)   
   do while (associated(current_x%next)) 
    current_x => current_x%next   
   read (unit=1,fmt=*,iostat=io_status) &         

   current_x%value, current_x%index 
    if (io_status==0) then 
    allocate (current_x%next)   
   cycle      

   else if (io_status>0) then      
   ! error on reading 

       print *, 'error occurred when reading from 
', &

fi lename   
   stop      

   else      
   ! end of fi le 

          nullify (current_x%next)      
   end if      

   end do   
   close (unit=1)      

   ! read non-zero elements of vector y together   
   ! with indices into a linked list 
    print *, 'input fi le name for vector y'   
   read '(a)', fi lename   
   open (unit=1,fi le=fi lename, &      

   status='old',iostat=io_status) 
    if (io_status/=0) then 
    print *, 'error opening fi le ', fi lename   
   stop      

   end if   
   allocate (root_y)   
   read (unit=1,fmt=*,iostat=io_status) &       

   root_y%value,root_y%index 
    if (io_status/=0) then 
    print *, ' error when reading from ', &
fi lename, 'or fi le empty'
     stop      

   end if         
   ! read data for vector y from fi le until eof 
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    current_y => root_y   
   allocate (current_y%next)   
   do while (associated(current_y%next)) 
    current_y => current_y%next   
   read (unit=1,fmt=*,iostat=io_status) &         

   current_y%value, current_y%index 
    if (io_status==0) then
     allocate (current_y%next)   
   cycle      

   else if (io_status>0) then      
   ! error on reading 

       print *, 'error occurred when reading from' &
, fi lename   
   stop      

   else      
   ! end of fi le 

          nullify (current_y%next)      
   end if      

   end do      
   ! data has now been read and stored in 2 linked lists   
   ! start at the beginning of x linked list and   
   ! y linked list and compare indices   
   ! in order to perform inner product 
    current_x => root_x   
   current_y => root_y   
   do while (associated(current_x%next)) 
    do while             (associated(current_y%next) &
.and.current_y%index<current_x%index)   

   ! move through 2nd list 
       current_y => current_y%next      

   end do      
   ! at this point current_y%index >= current_x%index   
   ! or 2nd list is exhausted 

       if (current_y%index==current_x%index) then
     inner_prod = inner_prod + &

current_x%value*current_y%value      
   end if   
   current_x' => current_x%next      

   end do      
   ! print out inner product 
    print *, 'inner product of two sparse vectors is :'&

, inner_prod      
   ! print non-zero values of vector x and indices 
    print *, 'non-zero values of vector x and indices:'   
   current_x => root_x   



348 25 Mathematical    Examples

   do while (associated(current_x%next)) 
    print *, current_x%value, current_x%index   
   current_x => current_x%next      

   end do      
   ! print non-zero values of vector y and indices 
    print *, 'non-zero values of vector y and indices:'   
   current_y => root_y   
   do while (associated(current_y%next)) 
    print *, current_y%value, current_y%index   
   current_y => current_y%next      

   end do      
   end program ch2501       

    25.3   Solving a System of First-Order Ordinary Differential 
Equations Using Runge–Kutta–Merson 

 Simulation and mathematical modelling of a wide range of physical processes often 
leads to a system of ordinary differential equations to be solved. Such equations also 
occur when approximate techniques are applied to more complex problems. We will 
restrict ourselves to a class of ordinary differential equations called initial value 
problems. These are systems for which all conditions are given at the same value of 
the independent variable. We will further restrict ourselves to fi rst-order initial value 
problems of the form:
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with initial conditions

    (0)y t y( 0) =_ _   

where
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if we have a system of ordinary differential equations of higher order then they can 
be reformulated to a system of order one. See the NAG library documentation for 
solving ordinary differential equations. 

 One well-known class of methods for solving initial value ordinary differential 
equations is Runge–Kutta. In this example we have coded the Runge–Kutta–Merson 
algorithm, which is a fourth-order method and solves ( 25.1 ) from a point t  =  A to a 
point t  =  B. 

 It starts with a step length  h  = ( B  −  A )/100 and includes a local error control 
strategy such that the solution at t + h is accepted if:

    error estimate user defined tolerance<     

 If this isn’t satisfi ed the step length h is halved and the solution attempt is repeated 
until the above is satisfi ed or the step length is too small and the problem is left 
unsolved. If the error criterion is satisfi ed the algorithm progresses with a suitable 
step length solving the equations at intermediate points until the end point B is 
reached. For a full discussion of the algorithm and the error control mechanism used 
see Numerical Methods in Practice by Tim Hopkins and Chris Phillips:  
 A main program to use this subroutine is of the form:
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    program ch2502   
   use precision_module   
   use rkm_module   
   use fun1_module   
   implicit none   
   real(long),dimension(:),allocatable::y   
   real(long)::a,b,tol   
   integer::n,ifail,all_stat   
   ! 
    print *,'input no of equations'   
   read*,n      

   !   
   ! allocate space for y - checking to see that it   
   ! allocates properly   
   ! 
    allocate(y(1:n),stat=all_stat)   
   if(all_stat /= 0) then 
    print * , ' not enough memory'   
   print * , ' array y is not allocated'   
   stop      

   endif   
   print *,' input start and end of interval over'   
   print *,' which equations to be solved'   
   read *,a,b   
   print *,"input initial conditions"   
   read *,y(1:n)   
   print *,'input tolerance'   
   read *,tol   
   print 100,a   
   100 format('at t= ',f5.2,' initial conditions are :')   
   print 200,y(1:n)   
   200 format(4(f5.2,2x))   
   call runge_kutta_merson(y,fun1,ifail,n,a,b,tol)   
   if(ifail /= 0) then 
    print *,'integration stopped with ifail = ',ifail      

   else 
    print 300,b   
   300 format('at t= ',f5.2,' solution is:')   
   print 200,y(1:n)      

   endif      
   end program ch2502     
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 Consider trying to solve the following system of fi rst-order ordinary differential 
equations:
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over an interval  t  = 0.0 to  t  = 8.0 with initial conditions

     = = =1 0 2 0.5 3  
5

 y y y
π    

 The user supplied subroutine, packaged as a module procedure, is:

    module fun1_module   
   implicit none   
   contains   
   subroutine fun1(t,y,f,n) 
    use precision_module   
   implicit none   
   real(long),intent(in),dimension(:)::y   
   real(long),intent(out),dimension(:)::f   
   real(long),intent(in)::t   
   integer,intent(in)::n      

   ! 
    f(1)=tan(y(3))   
   f(2)=-0.032_long*f(1)/y(2)-0.02_long*y(2)/cos(y(3))   
   f(3)=-0.032_long/(y(2)*y(2))      

   end subroutine fun1   
   end module fun1_module     

    25.3.1   Note: Alternative Form of the Allocate Statement 

 In the main program Odes we have defi ned Y to be a deferred-shape array, allocating 
it space after the variable N is read in. In order to make sure that enough memory is 
available to allocate space to array Y the allocate statement is used as follows: 

 allocate(Y(1:N),STAT = All_stat) 

 if the allocation is successful variable All_stat returns zero; otherwise it is given a 
processor dependent positive value. We have included code to check for this and 
the program stops if All_stat is not zero.  
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    25.3.2   Note: Automatic Arrays 

 The subroutine  runge_kutta_merson  needs a number of local rank 1 arrays 
S1, S2, S3, S4 and S5 for workspace, their shape and size being the same as the 
dummy argument Y. Fortran supplies automatic arrays for this purpose and can be 
declared as

    real(Long), dimension (1:SIZE(Y)) :: S1, S2, S3, S4, S5     

 The size of automatic arrays can depend on the size of actual arrays: in our 
example they are the same shape and size as the dummy array Y, or some other 
dummy arguments. Automatic arrays are created when the procedure is called 
and destroyed when control passes back to the calling program unit. They may 
have different shapes and sizes with different calls to the procedure, and because of 
this automatic arrays cannot be saved or initialised. 

 A word of warning should be given at this point. If there isn’t enough memory 
available when an automatic array needs to be created problems will occur. Unlike 
allocatable arrays there is no way of testing to see if an automatic array has been 
created successfully. The general feeling is that even though they are nice, automatic 
arrays should be used with care and perhaps shouldn’t be used in production code!  

    25.3.3   Note: Subroutine as a Dummy Procedure Argument 

 In order to make the use of subroutine  runge_kutta_merson  as general as 
possible the user can choose the name of the subroutine in which the actual system 
of equations to be solved is defi ned. In this case we have chosen  fun1  as the name 
of the subroutine, which is then used as an actual argument when calling  runge_
kutta_merson  from the main program e.g.

    call runge_kutta_merson(y,fun1,ifail,n,a,b,tol)     

 An explicit interface for subroutine  fun1  is provided by it being contained in a 
module. 

 The equivalent dummy subroutine argument is  fun  and this needs an explicit 
interface in the subroutine  runge_kutta_merson .  

    25.3.4   Note: Compilation When Using Modules 

 When compiling this program and the modules they must be done in the correct order:

   precision_module  • 
  rkm_module  • 
  fun1_module   • 

and then

   the main program.      • 
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    25.4   A Subroutine to Extract the Diagonal Elements 
of a Matrix 

 A common task mathematically is to extract the diagonal elements of a matrix. For 
example if

    

21 6 7

9 3 2

4 1 8

   

   

   

A

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟⎝ ⎠   

the diagonal elements are ( 21, 3, 8 ). 
 This can be thought of as extracting an array section, but the intrinsic function 

 pack  is needed. In its simplest form  pack (array,vector)  packs an array, 
Array, into a rank 1 array, Vector, according to Array’s array element order. 

 Below is a complete program to demonstrate this:

    module md_module   
   implicit none   
   contains   
   subroutine matrix_diagonal(a,diag,n)   
   implicit none   
   real, intent (in), dimension (:,:) :: a   
   real, intent (out), dimension (:) :: diag   
   integer, intent (in) :: n   
   real, dimension(1:size(a,1)*size(a,1)):: temp   
   !   
   ! subroutine to extract the diagonal   
   ! elements of an n*n matrix A   
   ! 

    temp = pack(a, .true.)   
   diag = temp(1:n*n:n+1)      

   end subroutine matrix_diagonal   
   end module md_module   
   program ch2503   
   ! program reads the n * n matrix from a fi le   
   use md_module   
   implicit none   
   integer :: I, n   
   real, allocatable, dimension (:,:) :: a   
   real, allocatable, dimension (:) :: adiag   
   character (len=20) :: fi lename 
    print *, 'input name of data fi le'   
   read '(a)', fi lename   
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   open (unit=1,fi le=fi lename)   
   read (1,*) n   
   allocate (a(1:n,1:n),adiag(1:n))   
   do I = 1, n 
    read (1,*) a(i,1:n)      

   end do   
   call matrix_diagonal(a,adiag,n)   
   print *, ' diagonal elements of a are:'   
   print *, adiag      

   end program ch2503      

    25.5   The Solution of Linear Equations Using Gaussian 
Elimination 

 At this stage we have introduced many of the concepts needed to write numerical 
code, and have included a popular algorithm, Gaussian elimination, together with a 
main program which uses it and a module to bring together many of the features 
covered so far. 

 Finding the solution of a system of linear equations is very common in scientifi c 
and engineering problems, either as a direct physical problem or indirectly, for 
example, as the result of using fi nite difference methods to solve a partial differen-
tial equation. We will restrict ourselves to the case where the number of equations 
and the number of unknowns are the same. The problem can be defi ned as:
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or
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 which can be written as: 

     
=A x b

   (25.2)  

where A is the n x n coeffi cient matrix, b is the right-hand-side vector and x is the 
vector of unknowns. We will also restrict ourselves to the case where A is a general 
real matrix. 
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 Note that there is a unique solution to ( 25.2 ) if the inverse, A −1 , of the coeffi cient 
matrix A, exists. However, the system should never be solved by fi nding A −1  and 
then solving  A  −1   b  =  x  because of the problems of rounding error and the computa-
tional costs. 

 A well-known method for solving ( 25.2 ) is Gaussian elimination, where 
multiples of equations are subtracted from others so that the coeffi cients below the 
diagonal become zero, producing a system of the form:
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where A has been transformed into an upper triangular matrix. By a process of 
backward substitution the values of x drop out. 

 The subroutine  gaussian_elimination  implements the Gaussian elimi-
nation algorithm with partial pivoting, which ensure that the multipliers are less 
than 1 in magnitude, by interchanging rows if necessary. This is to try and prevent 
the buildup of errors. 

 This implementation is based on two LINPACK routines SGEFA and SGESL 
and a Fortran 77 subroutine written by Tim Hopkins and Chris Phillips and found in 
their book Numerical Methods in Practice. 

 The matrix A and vector B are passed to the subroutine  Gaussian_
Elimination  and on exit both A and B are overwritten. Mathematically Gaussian 
elimination is described as working on rows, and using partial pivoting row inter-
changes may be necessary. Due to Fortran’s row element ordering, to implement 
this algorithm effi ciently it works on columns rather than rows by interchanging 
elements within a column if necessary.  
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    25.5.1   Notes 

      25.5.1.1 Module for Kind Type 

 A module,  precision_module , has been used to defi ne a kind type parameter, 
 Long , to specify the fl oating point precision to which we wish to work. This 
module is then used by the main program and the subroutine, and the kind type 
parameter  Long  is used with all the real type defi nitions and with any constants, e.g.,

    real(Long), parameter :: Eps=1.E-13_Long      
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      25.5.1.2 Deferred-Shape Arrays 

 In the main program matrix A and vectors B and X are declared as deferred-shape 
arrays, by specifying their rank only and using the allocatable attribute. Their 
shape is determined at run time when the variable N is read in and then the 
statement

    allocate(A(1:N,1:N), B(1:N), X(1:N))    

is used.  

      25.5.1.3 Intrinsic Functions  maxval  and  maxloc  

 In the context of subroutine  gaussian_elimination  we have used:

    maxval ( maxloc (abs ( a ( k:n,k ) ) ) )  +  k – 1     

 Breaking this down,

    maxloc ( abs ( a (k:n,k) ) )    

takes the rank 1 array

     + …(| ( , ) |,| ( 1, ) |, | ( , ) |)A K K A K K A N K    (25.3)  

where |  A ( K , K ) |  =  ABS(A(K,K)) and of length N− K + 1. It returns the position of 
the largest element as a rank 1 array of size one, e.g., (L) 

 Applying  maxval  to this rank 1 array (L) returns L as a scalar, L being the posi-
tion of the largest element of array ( 25.3 ). 

 What we actually want is the position of the largest element of ( 25.3 ), but in the 
Kth column of matrix A. We therefore have to add K-1 to L to give the actual 
position in column K of A.    

    25.6   Allocatable Function Results 

 A function may return an array, and in this example the array allocation takes place 
in the function.        
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 This facility was introduced in Fortran 95.  
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    25.7   Elemental e**x Function 

 The following is an elemental version of the etox function covered in an earlier 
chapter.

    module etox_module   
   implicit none   
   contains 

    elemental real function etox(x)   
   implicit none   
   real , intent(in) :: x   
   real :: term   
   integer :: nterm   
   real , parameter :: tol =1.0e-6 
    etox=1.0   
   term=1.0   
   nterm=0   
   do 
    nterm=nterm+1   
   term=(x/nterm)*term   
   etox=etox+term   
   if (term<=tol) exit      

   end do      
   end function etox      

   end module etox_module   
   program ch2506   
   use etox_module   
   implicit none   
   integer :: I   
   real :: x   
   real , dimension(10) :: y 
    x=1.0   
   do I=1, 10 
    y(i)=I      

   end do   
   print *,y   
   x=etox(x)   
   print *,x   
   y=etox(y)   
   print *,y      

   end program ch2506     

 Elemental functions require the use of explicit interfaces, and we have therefore 
used modules to achieve this.  
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    25.8   Problems 

    1.    Compile and run the sparse matrix example with the data provided.  
   2.    Compile and run the Runge Kutta Merson example with the data provided.  
   3.    Compile and run the Gaussian Elimination example with the following data.    
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and the solution is
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 Aims 

 The aims of this chapter are to look at object oriented programming in Fortran. 

    26.1   Introduction 

 This chapter looks at object oriented programming in Fortran. The chapter on pro-
gramming languages covers the topic in a broader context. 

    26.2   Brief Review of the History of Object Oriented 
Programming 

 Object oriented programming is not new. One of the fi rst languages to offer support 
was Simula 67, a language designed for discrete event simulation by Ole Johan 
Dahl, Bjorn Myhrhaug and Kristen Nygaard whilst working at the Norwegian 
Computing Centre in Oslo in the 1960s. 

 One of the next major developments was in the 1970s at the Xerox Palo Alto 
Research Centre Learning Research Group who began working on a vision of the 
ways different people might effectively use computing power. One of the outcomes 
of their work was the Smalltalk 80 system. Objects are at the core of the Smalltalk 
80 system. 

    Chapter 26   
 Object    Oriented Programming              

 “For Madmen only” 

 Hermann Hesse, Steppenwolf 
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 The 1980s and 1990s saw a number of object oriented programming languages 
emerge. They include

   Eiffel. Bertrand Meyer, Eiffel Software.  • 
  C++ from C with classes. Bjarne Stroustrup at Bell Labs.  • 
  Oberon 2. Niklaus Wirth at ETH in Zurich.  • 
  Java. James Gosling, originally Sun, now Oracle.    • 

 C# is a recent Microsoft addition to the list. 
 Object-oriented programming is effectively a programming methodology or 

paradigm using objects (data structures made up of data and methods). We will use 
the concept of a shape class in our explanation and examples. The Simula Begin 
book starts with shapes, and it is often used in introductions to object oriented pro-
gramming in other languages. 

 Some of the key concepts are

   encapsulation or information hiding – the implementation of the data is hidden • 
inside an object and clients or users of the data only have access to an abstract 
view of it. Methods are used to access and manipulate the data. For example a 
shape class may have an x and y position, and methods exist to get and set the 
positions and draw and move the shape.  
  data abstraction – if we have an abstract shape data type we can create multiple • 
variables of that type.  
  inheritance – an existing abstract data type can be extended. It will inherit the • 
data and methods from the base type and add additional data and methods. A key 
to inheritance is that the extended type is compatible with the base type. Anything 
that works with objects or variables of the base type also work with objects of the 
extended type. A circle would have a radius in addition to an x and y position, a 
rectangle would have a width and height.  
  dynamic binding – if we have a base shape class and derive circles and rectangles • 
from it dynamic binding ensures that the correct method to calculate the area is 
called at run time.  
  polymorphism- variables can therefore be polymorphic. Using the shape exam-• 
ple we can therefore create an array of shapes, one may be a shape, one may be 
a circle and another may be a rectangle.    

 Extensible abstract data types with dynamically bound methods are often called 
classes. This is the terminology we will use in what follows.  

    26.3   Background Technical Material 

 We need to look more formally at a number of concepts so that we can actually do 
object oriented programming in Fortran. The following sections cover some of the 
introductory material we need, and are taken from the standard.  
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    26.4   Type Declaration Statements 

 Every data object has a type and rank and may have type parameters and other attri-
butes that determine the uses of the object. Collectively, these properties are the 
attributes of the object. The type of a named data object is normally specifi ed explic-
itly in a type declaration statement. All of its attributes may be included in a type 
declaration statement or may be specifi ed individually in separate specifi cation 
statements. 

    26.4.1   TYPE 

 A TYPE type specifi er is used to declare entities of a derived type. Section 1.3.147 
of the standard defi nes it as follows:

   type: data type – named category of data characterized by a set of values, a syn-• 
tax for denoting these values, and a set of operations that interpret and manipu-
late the values (4.1)    

 A scalar entity of derived type is a structure.  

    26.4.2   CLASS 

 A polymorphic entity is a data entity that is able to be of differing types during pro-
gram execution. The type of a data entity at a particular point during execution of a 
program is its dynamic type. The declared type of a data entity is the type that it is 
declared to have, either explicitly or implicitly. 

 A CLASS type specifi er is used to declare polymorphic objects. The declared 
type of a polymorphic object is the specifi ed type if the CLASS type specifi er con-
tains a type name.  

    26.4.3   Attributes 

 The additional attributes that may appear in the attribute specifi cation of a type 
declaration statement further specify the nature of the entities being declared or 
specify restrictions on their use in the program. 

      26.4.3.1 Accessibility Attribute 

 The accessibility attribute specifi es the accessibility of an entity via a particular 
identifi er. 
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 The following is taken from Sect. 5.3.2 of the Fortran 2008 standard.

   access-spec is PUBLIC or PRIVATE  • 
  An access-spec shall appear only in the specifi cation-part of a module.    • 

 Identifi ers that are specifi ed in a module or accessible in that module by use associa-
tion have either the PUBLIC or PRIVATE attribute. Identifi ers for which an access-spec 
is not explicitly specifi ed in that module have the default accessibility attribute for that 
module. The default accessibility attribute for a module is PUBLIC unless it has been 
changed by a PRIVATE statement. Only identifi ers that have the PUBLIC attribute in 
that module are available to be accessed from that module by use association.   

    26.4.4   Passed Object Dummy Arguments 

 Section 4.5.4.5 of the Fortran 2008 standard introduces the concept of passed object 
dummy argument. Here is an extract from the standard:

   A passed-object dummy argument is a distinguished dummy argument of a pro-• 
cedure pointer component or type-bound procedure. It affects procedure overrid-
ing (4.5.7.3) and argument association (12.5.2.2).  
  If NOPASS is specifi ed, the procedure pointer component or type-bound proce-• 
dure has no passed-object dummy argument.  
  If neither PASS nor NOPASS is specifi ed or PASS is specifi ed without arg-name, • 
the fi rst dummy argument of a procedure pointer component or type-bound pro-
cedure is its passed-object dummy argument.  
  If PASS (arg-name) is specifi ed, the dummy argument named arg-name is the • 
passed-object dummy argument of the procedure pointer component or named 
type-bound procedure.  
  C456 The passed-object dummy argument shall be a scalar, nonpointer, nonal-• 
locatable dummy data object with the same declared type as the type being 
defi ned; all of its length type parameters shall be assumed; it shall be polymor-
phic (4.3.1.3) if and only if the type being defi ned is extensible (4.5.7). It shall 
not have the VALUE attribute.  
  NOTE 4.32: If a procedure is bound to several types as a type-bound procedure, • 
different dummy arguments might be the passed-object dummy argument in dif-
ferent contexts.    

 The key here is that we are going to use the PASS and NOPASS attributes with 
type bound procedures – a component of object oriented programming in Fortran.  

    26.4.5   Derived Types and Structure Constructors 

 A derived type is a type that is not defi ned by the language but requires a type defi ni-
tion to declare its components. A scalar object of such a derived type is called a 
structure. Assignment of structures is defi ned intrinsically, but there are no intrinsic 
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operations for structures. For each derived type, a structure constructor is available 
to provide values. 

 A derived-type defi nition implicitly defi nes a corresponding structure construc-
tor that allows construction of values of that derived type.  

    26.4.6   Structure Constructors and Generic Names 

 A generic name may be the same as a type name. This can be used to emulate user-
defi ned structure constructors for that type, even if the type has private components. 
The following example is taken from the standard to illustrate this.

    module mytype_module      
   type mytype   
   private   
   complex value   
   logical exact   
   end type   
   interface mytype   
   module procedure int_to_mytype   
   end interface   
   ! Operator defi nitions etc.   
   …   
   contains   
   type(mytype) function int_to_mytype(I)   
   integer,intent(in) :: I   
   int_to_mytype%value = I   
   int_to_mytype%exact = .true.   
   end function   
   ! Procedures to support operators etc.   
   …   
   end      

    26.4.7   Assignment 

 Execution of an assignment statement causes a variable to become defi ned or rede-
fi ned. Simplistically

   variable = expression     

    26.4.8   Intrinsic Assignment Statement 

 An intrinsic assignment statement is an assignment statement that is not a defi ned 
assignment statement. In an intrinsic assignment statement, variable shall not be 
polymorphic.  
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    26.4.9   Defi ned Assignment Statement 

 A defi ned assignment statement is an assignment statement that is defi ned by a sub-
routine and a generic interface that specifi es ASSIGNMENT (=).  

    26.4.10   Polymorphic Variables 

 Here is the defi nition of polymorphic taken from the standard.

   polymorphic – Able to be of differing types during program execution. An object • 
declared with the CLASS keyword is polymorphic.    

 A polymorphic variable must be a pointer or allocatable variable. We will use 
allocatable variables to achieve polymorphism in our examples.  

    26.4.11   Executable Constructs Containing Blocks 

 The following are executable constructs that contain blocks:

   ASSOCIATE construct  • 
  CASE construct  • 
  DO construct  • 
  IF construct  • 
  SELECT TYPE construct    • 

 We will look at the ASSOCIATE construct and SELECT TYPE construct next.  

    26.4.12   ASSOCIATE Construct 

 The ASSOCIATE construct associates named entities with expressions or variables 
during the execution of its block. These named construct entities are associating 
entities. The names are associate names. 

 The following example illustrates an association with a derived-type variable.

    ASSOCIATE ( XC => AX%B(I,J)%C )   
   XC%DV = XC%DV + PRODUCT(XC%EV(1:N))   
   end ASSOCIATE      

    26.4.13   Select Type Construct 

 The SELECT TYPE construct selects for execution at most one of its constitu-
ent blocks. The selection is based on the dynamic type of an expression. A name 
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is associated with the expression, in the same way as for the ASSOCIATE 
construct. 

 Quite a lot to take in! Let’s illustrate the use of the above in some actual examples.   

    26.5   Example 1 – The Basic Shape Class 

 The code for the base shape class is given below.

   shape class data: integer variables x and y for the position.  • 
  shape class methods: get and set for the x and y values, and moveto and draw.    • 

 We have used an include statement in the examples that follow to reduce code 
duplication. 

 We have used the default accessibility for the data and methods in the shape_
module.

    module shape_module 
    type shape_type    

 integer :: x_ = 0   
   integer :: y_ = 0      

   contains 
    procedure, pass(this) :: getx   
   procedure, pass(this) :: gety   
   procedure, pass(this) :: setx   
   procedure, pass(this) :: sety   
   procedure, pass(this) :: moveto   
   procedure, pass(this) :: draw      

   end type shape_type      
   contains   
   include "shape_module_common_code.f90"   
   end module shape_module     

 Here is the code in the include fi le.

    integer function getx(this) 
    implicit none   
   class (shape_type), intent (in) : : this   
   getx = this%x      

   end function getx   
   integer function gety(this) 

    implicit none   
   class (shape_type), intent (in) : : this   
   gety = this%y_      

   end function gety   
   subroutine setx(this,x) 

    implicit none   
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   class (shape_type), intent (inout) :: this   
   integer, intent (in) :: x   
   this%x_ = x      

   end subroutine setx   
   subroutine sety(this,y) 

    implicit none   
   class (shape_type), intent (inout) :: this   
   integer, intent (in) :: y   
   this%y_ = y      

   end subroutine sety   
   subroutine moveto(this,newx, newy) 

    implicit none   
   class (shape_type), intent (inout) :: this   
   integer, intent (in) :: newx   
   integer, intent (in) :: newy   
   this%x_ = newx   
   this%y_ = newy      

   end subroutine moveto   
   subroutine draw(this) 

    implicit none   
   class (shape_type), intent (in) :: this   
   print *, ' x = ', this%x_   
   print *, ' y = ', this%y_      

   end subroutine draw     

    26.5.1   Key Points 

 Some of the key concepts are:

   We use a module as the organisational unit for the class.  • 
  We use type and end type to contain the data and the procedures – called type • 
bound procedures in Fortran terminology.  
  The data in the base class is an x and y position.  • 
  The type bound methods within the class are• 

   getx and setx   –
  gety and sety   –
  draw   –
  moveto      –

  We have used the default accessibility for the data and methods in the type.    • 

 Let us look at the code in stages.

    module shape_module     
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 The module is called shape_module

    type shape_type     

 The type is called shape_type

    integer :: x_ = 0   
   integer :: y_ = 0     

 The data associated with the shape type are integer variables that are the x and y 
coordinates of the shape. We initialise to zero.

    contains     

 The type also contains procedures or methods.

    procedure, pass(this) :: getx   
   procedure, pass(this) :: gety   
   procedure, pass(this) :: setx   
   procedure, pass(this) :: sety   
   procedure, pass(this) :: moveto   
   procedure, pass(this) :: draw     

 These are called type bound procedures in Fortran terminology. It is common in 
object oriented programming to have get and set methods for each of the data com-
ponents of the type or object. We also have a moveto and draw method. 

 Each of these methods has the pass attribute. When a type bound procedure is called 
or invoked the object through which is invoked is normally passed as a hidden parame-
ter. We have used the pass attribute to explicitly confi rm the default behaviour of passing 
the invoking object as the fi rst parameter. We have also followed the convention in object 
oriented programming of using the word  this  to refer to the current object.

    end type shape_type     

 This is the end of the type defi nition.

    contains     

 The module then contains the actual implementation of the type bound proce-
dures. We will look at a couple of these.

    integer function getx(this) 
    implicit none   
   class (shape_type), intent (in) :: this   
   getx = this%x      

   end function getx     

 As we stated earlier it is common in object oriented programming to have get and 
set methods for each data item in an object. This function implements the getx method. 
The fi rst argument is the current object, referred to as this. We then have the type 
declaration for this parameter. We declare the variable using class rather than type as 
we want the variable to be polymorphic. The rest of the function is self explanatory.
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    subroutine setx(this,x) 
    implicit none   
   class (shape_type), intent (inout) :: this   
   integer, intent (in) :: x   
   this%x_ = x      

   end subroutine setx     

 The setx procedure is a subroutine. It takes two parameters, the current object 
and the new x value. Again we use the class declaration mechanism as we want the 
variable to be polymorphic. 

 Here is a program to test the above class out.

    program test_ch2601 
    use shape_module   
   implicit none   

   type (shape_type) :: s1 = shape_type(10,20)   

   integer :: x1 = 100   
   integer :: y1 = 200   

   print *, ' get '   
   print *, s1%getx(), ' ', s1%gety()   
   print *, ' draw '   
   call s1%draw()   
   print *, ' moveto '   
   call s1%moveto (x1,y1)   
   print *, ' draw '   
   call s1%draw()   
   print *, ' set '   
   call s1%setx(99)   
   call s1%sety(99)   
   print *, ' draw'   
   call s1%draw()      

   end program test_ch2601     

 The fi rst statement of interest is the use statement, where we make available the 
shape_module to the test program. The next statement of interest is

    type (shape_type) :: s1 = shape_type(10,20)     

 We then have a type declaration for the variable s1. We also have the use of what 
Fortran calls a structure constructor  shape_type  to provide initial values to the x 
and y positions. The term constructor is used in other object oriented programming 
languages, e.g. C++, Java, C#. It has the same name as the type or class and is cre-
ated automatically for us by the compiler in this example. 

 The

    print *, s1%getx(), ' ', s1%gety()   
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 statement prints out the x and y values for the object s1. We use the standard % nota-
tion that we used in derived types, to separate the components of the derived types. 
If one looks at the implementation of the getx function and examines the fi rst line, 
repeated below

    integer function getx(this)   

 how we refer to the current object, s1, through the syntax s1%getx(). The following 
call:

   call s1%draw()  

 shows how to invoke the draw method for the s1 object, using the s1%draw() syn-
tax. The fi rst line of the draw subroutine

    subroutine draw(this)   

 shows how the current object is passed as the fi rst argument. 
 Here is the output from the Nag compiler.

    d:\document\fortran\newbook\examples\ch26\ex01>nag_
test_ch2601.exe     

get   
   10 20   
   draw   
   x = 10   
   y = 20   
   moveto   
   draw   
   x = 100   
   y = 200   
   set   
   draw   
   x = 99   
   y = 99         

    26.5.2   Notes 

 In this example we have not used the public, private or protected attributes on the 
data or methods, we have just accepted the default Fortran accessibility behaviour. 
This means that we can use the compiler provided structure constructor  shape_
type ()  as shown below

    type (shape_type) :: s1 = shape_type(10,20)   

 in the type declaration to provide initial values, as they are public by default. 
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 We have direct access to the data and methods as they are public by default in 
Fortran. This is often not a good idea for the data, as it is possible to makes changes 
to the data anywhere in the program. The next example makes the data private.  

    26.5.3   Example 1 with Private Data 

 Here is the modifi ed base class. This example will now not compile as the default 
compiler provided structure constructor does not have access to the private data.

    module shape_module 
    type shape_type 
    integer, private : : x = C   
   integer, private :: y = C      

   contains 
    procedure, pass(this) :: getx   
   procedure, pass(this) :: gety   
   procedure, pass(this) :: setx   
   procedure, pass(this) :: sety   
   procedure, pass(this) :: moveto   
   procedure, pass(this) :: draw         

   end type shape_type   
   contains   
   include "shape_module_common_code.f90"   
   end module shape_module     

 Here is the same test program as in the fi rst example.

    program test_ch2602    
 use shape_module   
   implicit none   
   type (shape_type) :: s1 = shape_type(10,20)   
   integer :: x1 = 100   
   integer :: y1 = 200   
   print *, ' get '   
   print *, s1%getx(), ' ', s1%gety()   
   print *, ' draw '   
   call s1%draw()   
   print *, ' moveto '   
   call s1%moveto (x1,y1)   
   print *, ' draw '   
   call s1%draw()   
   print *, ' set '   
   call s1%setx(99)   
   call s1%sety(99)   
   print *, ' draw'   
   call s1%draw()      

   end program test ch2602     
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 Here is the output from trying to compile this example.

    d:\document\fortran\newbook\examples\ch26\ex01>nagfor   
   -f2003 ch2602.f90 test_ch2   
   602.f90 -o nag_test_ch2602.exe   
   NAG Fortran Compiler: Release 5.2(722)   
   Evaluation trial version of NAG Fortran Compiler   
   Release 5.2(722)   
   ch2602.f90:   
   [NAG Fortran Compiler normal termination]   
   test_ch2602.f90:   
   Error: test_ch2602.f90, line 5: Constructor for type   
   SHAPE_TYPE which has PRIVATE component X_   
   Errors in declarations, no further processing for 
TEST_CH2602   
   [NAG Fortran Compiler error termination, 1 error]   
   d:\document\fortran\newbook\examples\ch26\ex01>     

 An earlier solution to this type of problem can be found in the date class in 
Chap.   22    , where we provide our own structure constructor  date_() . Most object 
oriented programming languages provide the ability to use the same name as a class 
as a constructor name even if the data is private. Fortran 2003 provides another solu-
tion to this problem. In the example below we will provide our own structure con-
structor inside an interface.  

    26.5.4   Solution 1 with an Interface to Use the Class Name 
for the Structure Constructor 

 Here is the modifi ed base class.

    module shape_module    
 type shape_type    
 integer, private :: x_=0   
   integer, private :: y_=0      

   contains 
    procedure, pass(this) :: getx   
   procedure, pass(this) :: gety   
   procedure, pass(this) :: setx   
   procedure, pass(this) :: sety   
   procedure, pass(this) :: moveto   
   procedure, pass(this) :: draw      

   end type shape_type   
   interface shape_type 
    module procedure shape_type_constructor      

   end interface      
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   contains 
    type (shape_type) function &       

   shape_type_constructor(x,y) 
       implicit none   
   integer, intent (in) :: x   
   integer, intent (in) :: y   
   shape_type_constructor%x_ = x   
   shape_type_constructor%y_ = y      

   end function shape_type_constructor      
   include "shape_module_common_code.f90"   
   end module shape_module     

 The key statements are

    interface shape_type    
 module procedure shape_type_constructor      

   end interface   

 which enables us to map a call or reference to shape_type (our structure constructor 
name) to our implementation of shape_type_constructor. Here is the implementa-
tion of this structure constructor.

    type (shape_type) function &   
   shape_type_constructor(x, y) 

    implicit none   
   integer, intent (in) :: x   
   integer, intent (in) :: y   
   shape_type_constructor%x_ = x
shape_type_constructor%y_ = y      

   end function shape_type_constructor     

 The function is called shape_type_constructor hence we use this name to initialise 
the components of the type, and the function returns a value of type shape_type. 

 Here is the program to test the above out.

    program ch2603    
 use shape_module   
   implicit none   
   type (shape_type) :: s1   
   integer :: x1 = 100   
   integer :: y1 = 200   
   s1 = shape_type(10,20)   
   print *, ' get '   
   print *, s1%getx(), ' ', s1%gety()   
   print *, ' draw '   
   call s1%draw()   
   print *, ' moveto '   
   call s1%moveto (x1, y1)   
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   print *, ' draw '   
   call s1%draw()   
   print *, ' set '   
   call s1%setx(99)   
   call s1%sety(99)   
   print *, ' draw'   
   call s1%draw()      

   end program ch2603     

 Note that in this example we cannot initialise  s1  at defi nition time using our own 
(user defi ned) structure constructor. This must now be done within the execution 
part of the program. This is a Fortran restriction, and makes it consistent with the 
rest of the language. 

 These examples illustrate some of the basics of object oriented programming in 
Fortran. To summarise

   the data in our class is private;  • 
  access to the data is via get and set methods;  • 
  the data and methods are within the derived type defi nition – the methods are • 
called type bound procedures in Fortran terminology;  
  we can use interfaces to provide user defi ned structure constructors, which have • 
the same name as the class – this is a common practice in object oriented 
programming;  
  we have used class to declare the variables within the type bound methods. We • 
need to use class when we want to use polymorphic variables in Fortran.     

    26.5.5   Public and Private Accessibility 

 We have only made the internal data in the class private in the above example. There 
will be cases where some of the methods are only used within the class, in which 
case they can be made private.   

    26.6   Example 2 – Simple Inheritance 

 In this example we look at inheritance. We use the same base shape class and derive 
two classes from it – circle and rectangle. 

 A circle has a radius. This is the additional data component of the derived class. 
We also have get and set methods. 

 A rectangle has a width and height. These are the additional data components of 
the derived rectangle class. We also have get and set methods. 
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    26.6.1   Base Shape Class 

     module shape_module    
 type shape_type    

 integer, private :: x_ = 0   
   integer, private :: y_ = 0      

   contains 
    procedure, pass(this) :: getx   
   procedure, pass(this) :: gety   
   procedure, pass(this) :: setx   
   procedure, pass(this) :: sety   
   procedure, pass(this) :: moveto   
   procedure, pass(this) :: draw      

   end type shape_type   
   interface shape_type 
    module procedure shape_type_constructor      

   end interface      
   contains 
    type (shape_type) function &      

   shape_type_constructor(x,y) 
       implicit none   
   integer, intent (in) :: x   
   integer, intent (in) :: y   
   shape_type_constructor%x_ = x 
shape_type_constructor%y_ = y      

   end function shape_type_constructor      
   include "shape_module_common_code.f90"   
   end module shape_module     

 The include fi le is the same as in the previous example.  

    26.6.2   Circle – Derived Type 1 

 Here is the fi rst derived type.

    module circle_module   
   use shape_module   
   type , extends(shape_type) :: circle_type 
    integer , private :: radius_   
   contains   
   procedure , pass(this) :: getradius   
   procedure , pass(this) :: setradius   
   procedure , pass (this) :: draw => draw_circle      

   end type circle_type 
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    interface circle_type    
 module procedure circle_type_constructor      

   end interface   
   contains   
   type (circle_type) function &      

   circle_type_constructor(x,y,radius) 
       implicit none   
   integer, intent (in) :: x   
   integer, intent (in) :: y   
   integer, intent (in) :: radius   
   call circle_type_constructor%setx(x)   
   call circle_type_constructor%sety(y)   
   circle_type_constructor%radius_=radius      

   end function circle_type_constructor   
   integer function getradius(this)   
   implicit none   
   class (circle_type) , intent(in) :: this 
    getradius=this%radius_      

   end function getradius   
   subroutine setradius(this,radius)   
   implicit none   
   class (circle_type) , intent(inout) :: this   
   integer , intent(in) :: radius 
    this%radius_=radius      

   end subroutine setradius   
   subroutine draw_circle(this)   
   implicit none 
    class (circle_type), intent(in) :: this   
   print *,' x =   ' ,   this%getx()   
   print *,' y = ' , this%gety()   
   print *,' radius = ' , this%radius_      

   end subroutine draw_circle      
   end module circle_module     

 Let us look more closely at the statements within this class. Firstly we have

    module circle_module    

which introduces our circle module. 
 We then

    use shape_module   

 within this module to make available the shape class. The next statement

    type , extends(shape_type) :: circle_type   

 is the key statement in inheritance. What this statement says is base our new circle_
type on the base shape_type. It is an extension of the shape_type. We then have the 
additional data in our circle_type
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    integer , private :: radius_   

 and the following additional type bound procedures.

    procedure , pass(this) :: getradius   
   procedure , pass(this) :: setradius   
   procedure , pass(this) :: draw => draw_circle   

 and we have the simple get and set methods for the radius, and a type specifi c draw 
method for our circle_type. It is this method that will be called when drawing with 
a circle, rather than the draw method in the base shape_type. 

 We then have an interface

    interface circle_type    
 module procedure circle_type_constructor      

   end interface    

to provide us with our own user defi ned structure constructor for our circle_type. 
 As has been stated earlier it is common practice in object oriented programming 

to use the same name as the type for constructors. 
 We then have the implementation of the constructor.

       type (circle_type) function &      
   circle_type_constructor(x,y,radius) 
    implicit none integer, intent (in) :: x   
   integer, intent (in) :: y   
   integer, intent (in) :: radius   
   call circle_type_constructor%setx(x)   
   call circle_type_constructor%sety(y)   
   circle_type_constructor%radius_=radius      

   end function circle_type_constructor     

 Note that we use the setx and sety methods to provide initial values to the x and y 
values. They are private in the base class so we need to use these methods. 

 We can directly initialise the radius as this is a data component of this class, and 
we have access to it. 

 We next have the get and set methods for the radius. 
 Finally we have the implementation for the draw circle method.

    subroutine draw_circle(this)   
   implicit none 
    class (circle_type), intent(in) :: this   
   print *, ' x = ' , this%getx()   
   print *, ' y = ' , this%gety()   
   print *, ' radius = ' , this%radius_      

   end subroutine draw_circle     

 Notice again that we use the getx and gety methods to access the x and y private 
data from the base shape class.  
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    26.6.3   Rectangle – Derived Type 2 

 Here is the code for the second derived type.

    module rectangle_module   
   use shape_module   
   type , extends(shape_type) :: rectangle_type 
    integer , private :: width_   
   integer , private :: height_   
   contains   
   procedure , pass(this) :: getwidth   
   procedure , pass(this) :: setwidth   
   procedure , pass(this) :: getheight   
   procedure , pass(this) :: setheight   
   procedure , pass(this) :: draw => draw_rectangle      

   end type rectangle_type 
    interface rectangle_type    
 module procedure rectangle_type_constructor      

   end interface      
   contains 
    type (rectangle_type) function &      

   rectangle_type_constructor(x,y,width, height) 
       implicit none   
   integer, intent (in) :: x   
   integer, intent (in) :: y   
   integer, intent (in) :: width   
   integer, intent (in) :: height   
   call rectangle_type_constructor%setx(x)   
   call rectangle_type_constructor%sety(y)   
   rectangle_type_constructor%width_ = width   
   rectangle_type_constructor%height_ = height      

   end function rectangle_type_constructor   
   integer function getwidth(this)   
   implicit none   
   class (rectangle_type) , intent(in) :: this 
    getwidth=this%width_      

   end function getwidth   
   subroutine setwidth(this,width)   
   implicit none   
   class (rectangle_type) , intent(inout) :: this   
   integer , intent(in) :: width 
    this%width_=width      

   end subroutine setwidth   
   integer function getheight(this)   
   implicit none   
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   class (rectangle_type) , intent(in) :: this 
    getheight=this%height_      

   end function getheight   
   subroutine setheight(this,height)   
   implicit none   
   class (rectangle_type) , intent(inout) :: this   
   integer , intent(in) :: height 
    this%height_=height      

   end subroutine setheight   
   subroutine draw_rectangle(this)   
   implicit none 
    class (rectangle_type) , intent(in) :: this   
   print *, ' x = ' , this%getx()   
   print *, ' y = ' , this%gety()   
   print *, ' width = ' , this%width_   
   print *, ' height = ' , this%height_      

   end subroutine draw_rectangle      
   end module rectangle_module     

 The code is obviously very similar to that of the fi rst derived type.  

    26.6.4   Simple Inheritance Test Program 

 Here is a test program that illustrates the use of the shape type, circle type and rect-
angle type.

    program ch2604   
   use shape module use circle module use rectangle module   
   implicit none   
   type (shape_type) :: vs type (circle_type) : : vc type 
(rectangle_type) :: vr   
   vs = shape type(10,20)   
   vc = circle_type(100, 200, 300)   
   vr = rectangle_type(1000,2000, 3000, 4000)   
   print *,' get '   
   print *,' circle ', vc%getx(),' ',vc%gety(),&
' radius = ',vc%getradius()
print *,' rectangle ', vr%getx(),' ',vr%gety(),&
' width = ',vr%getwidth(),' height ',vr%getheight()   
   print *,' draw '   
   call vs%draw() call vc%draw() call vr%draw()   
   print *,' set '   
   call vs%setx(19) call vs%sety(19)   
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   call vc%setx(199) call vc%sety(199) call 
vc%setradius(199)   
   call vr%setx(1999) call vr%sety(1999) call vr%
setwidth(1999) call vr%setheight(1999)   
   print *,' draw '   
   call vs%draw() call vc%draw() call vr%draw()   
   end program ch2604     

 The fi rst statements of note are

    use shape_module   
   use circle_module   
   use rectangle_module   

 which make available the shape, circle and rectangle types within the program. The 
following statements

    type (shape_type) :: vs   
   type (circle_type) :: vc   
   type (rectangle_type) :: vr   

 declare vs, vc and vr to be of type shape, circle and rectangle respectively. The fol-
lowing three statements

    vs = shape_type(10,20)   
   vc = circle_type(100, 200, 300)   
   vr = rectangle_type(1000,2000, 3000, 4000)   

 call the three user defi ned structure constructor functions. 
 We then use the get functions to print out the values of the private data in each 

object. 

 We then call the draw method for each type.

    call vs%draw()   
   call vc%draw()   
   call vr%draw()   

 and the appropriate draw method is called for each type. 
 We fi nally call the set functions for each variable and repeat the calls to the draw 

methods. 
 The draw methods in the derived types override the draw method in the base 

shape class.   



388 26 Object Oriented Programming

    26.7   Example 3 – Polymorphism and Dynamic Binding 

 An inheritance hierarchy can provide considerable fl exibility in our ability to manip-
ulate objects, whilst still taking advantage of static or compile time type checking. If 
we combine inheritance with polymorphism and dynamic binding we have a very 
powerful programming tool. We will illustrate this with a concrete example. 

    26.7.1   Base Shape Class 

 This is our base class. A polymorphic variable is a variable whose data type may 
vary at run time. It must be a pointer or allocatable variable, and it must be declared 
using the class keyword. Our original base class declared variables using the class 
keyword from the beginning as we always intended to design a class that could be 
polymorphic. 

 We have had to make one change to the previous one. To make the polymor-
phism work we have had to provide our own assignment operator. So we have

    interface assignment (=)    
 module procedure generic_shape_assign      

   end interface   

 which means that our implementation of the procedure generic_shape_assign will 
replace the intrinsic assignment. Here is the actual implementation.

    subroutine generic_shape_assign(lhs,rhs)    
 implicit none   
   class (shape_type), intent (out), allocatable :: lhs   
   class (shape_type), intent (in) : : rhs   
   allocate (lhs,source=rhs)      

   end subroutine generic_shape_assign     

 In an assignment we obviously have

    left_hand_side = right_hand_side   

 and in our code we have variables lhs and rhs to clarify what is happening. We also 
have an enhanced form of allocation statement:

    allocate (lhs,source=rhs)   

 and the key is that the left hand side variable is allocated with the values and type of 
the right hand side variable. Here is the complete code.

    module shape_module    
 type shape_type    
 integer, private :: x_ = 0   
   integer, private :: y_ = 0      

   contains 
    procedure, pass(this) :: getx   
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   procedure, pass(this) :: gety   
   procedure, pass(this) :: setx   
   procedure, pass(this) :: sety   
   procedure, pass(this) :: moveto   
   procedure, pass(this) :: draw      

   end type shape_type   
   interface shape_type 
    module procedure shape_type_constructor      

   end interface   
   interface assignment (=) 
    module procedure generic_shape_assign      

   end interface      
   contains 
    type (shape_type) function &      

   shape_type_constructor(x,y) 
       implicit none   
   integer, intent (in) :: x   
   integer, intent (in) :: y   
   shape_type_constructor%x_ = x   
   shape_type_constructor%y_ = y      

   end function shape_type_constructor   
   integer function getx(this) 
    implicit none   
   class (shape_type), intent (in) :: this   
   getx = this%x_      

   end function getx   
   integer function gety(this) 
    implicit none   
   class (shape_type), intent (in) :: this   
   gety = this%y_      

   end function gety   
   subroutine setx(this,x) 
    implicit none   
   class (shape_type), intent (inout) :: this   
   integer, intent (in) :: x   
   this%x_ = x      

   end subroutine setx   
   subroutine sety(this,y) 
    implicit none   
   class (shape_type), intent (inout) :: this 
integer, intent (in) :: y   
   this%y_ = y      

   end subroutine sety   
   subroutine moveto(this,newx,newy) 
    implicit none   
   class (shape_type), intent (inout) :: this   
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   integer, intent (in) :: newx   
   integer, intent (in) :: newy   
   this%x_ = newx   
   this%y_ = newy      

   end subroutine moveto   
   subroutine draw(this) 
    implicit none   
   class (shape_type), intent (in):: this   
   print *, ' x = ', this%x_   
   print *, ' y = ', this%y_      

   end subroutine draw   
   subroutine generic_shape_assign(lhs, rhs) 
    implicit none   
   class (shape_type), intent (out), allocatable :: lhs   
   class (shape_type), intent (in) :: rhs   
   allocate (lhs,source=rhs)      

   end subroutine generic_shape_assign      
   end module shape_module      

    26.7.2   Circle – Derived Type 1 

 The circle code is the same as before.  

    26.7.3    Rectangle – Derived Type 2 

 The rectangle code is as before.  

    26.7.4   Shape Wrapper Module 

 As was stated earlier a polymorphic variable must be a pointer or allocatable vari-
able. We have chosen to go the allocatable route. The following is a wrapper routine 
to allow us to have a derived type whose types can be polymorphic.
    module shape_wrapper_module    

 use shape_module   
   use circle_module   
   use rectangle_module   
   type shape_wrapper 
    class (shape_type), allocatable :: x   
   end type shape_wrapper         

   end module shape_wrapper_module     

 So in this case x can be of shape_type or of any type derived from shape_type. 
Don’t panic if this isn’t clear at the moment, the complete program should help out!  
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    26.7.5   Display Subroutine 

 This is the key subroutine in this example. We can pass into this routine an array of 
type shape_wrapper. In the code so far we have variables of type

   shape_type  • 
  circle_type  • 
  rectangle_type   • 

and we are passing in an array of elements and each element can be of any of these 
types, i.e. the shape_array is polymorphic. 

 We next statement of interest is

    call shape_array(i)%x%draw()   

 and at run time the correct draw method will be called. This is called dynamic bind-
ing. Here is the complete code.

    module display_module   
   contains 
    subroutine display(n_shapes,shape_array)    
 use shape_wrapper_module   
   implicit none   
   integer, intent (in) :: n_shapes   
   type (shape_wrapper), &          

   dimension (n_shapes) :: shape_array 
       integer :: I   
   do I = 1, n_shapes   
   call shape_array(I) %x%draw()   

   end do      
   end subroutine display      

   end module display_module      

    26.7.6   Test Program 

 We now have the complete program that illustrates polymorphism and dynamic 
binding in action.  
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 Let us look at the key statements in more detail.

    type (shape wrapper), dimension (n) :: s     

 This is the key declaration statement. S will be our polymorphic array. The fol-
lowing six assignment statements

    s(1) %x = shape_type(10, 20)   
   s(2) %x = circle_type(100,200,300)   
   s(3) %x = rectangle_type(1000,2000, 3000, 4000)   
   s(4) %x = s(1)%x   
   s(5) %x = s(2)%x   
   s(6) %x = s(3)%x   

 will call our own assignment subroutine to do the assignment. The allocation is hid-
den in the implementation. We then have

    call display(n,s)   

 which calls the display subroutine. The compiler at run time works out which draw 
method to call depending of the type of the elements in the shape_wrapper array. 

 Imagine now adding another shape type, let us say a triangle. We need to do the 
following

   inherit from the base shape type  • 
  add the additional data to defi ne a triangle  • 
  add the appropriate get and set methods  • 
  add a draw triangle method  • 
  add a use statement to the shape_wrapper_module  • 
  add a use statement to the main program   • 

and we now can work with the new triangle shape type. The display subroutine is 
unchanged! We can repeat the above steps for any additional shape type we 
want. 

 Polymorphism and dynamic binding thus shorten our development and mainte-
nance time, as it reduces the amount of code we need to write and test. 

 We then have an example of the use of the SELECT TYPE statement. The compiler 
determines the type of the elements in the array and then executes the matching block.  
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 Now imagine adding support for the new triangle type. Anywhere we have select 
type constructs we have to add support for our new triangle shape. There is obvi-
ously more work involved when we use the select type construct in our polymorphic 
code. However some problems will be amenable to polymorphism and dynamic 
binding, others will require the explicit use of select type statements. This example 
illustrates the use of both.  

    26.7.7   Program Output 

 Try running the program. Here is the output from one compiler.    
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    26.8   Summary 

 This chapter has introduced some of the essentials of object oriented programming. 
The fi rst example looked at object oriented programming as an extension of basic 
data structuring. We used type bound procedures to implement our shape class. We 
used methods to access the internal data of the shape object. 

 The second example looked at simple inheritance. We saw in this example how 
we could reuse the methods from the base class and also add new data and methods 
specifi c to the new shapes – circles and rectangles. 

 The third example then looked at how to achieve polymorphism in Fortran. We 
could then create arrays of our base type and dynamically bind the appropriate 
methods at run rime. Dynamic binding is needed when multiple classes contain dif-
ferent implementations of the same method, i.e. to ensure in the following code

    call shape_array(I) %x%draw()   

 that the correct draw method is invoked on the shape object.  
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    26.9   Problems 

     1.    Compile and run all of the examples in this chapter with your compiler. At the 
time of writing this book not all compilers compiled and ran these examples. 
This situation will improve with time. If your compiler doesn’t complain!  

    2.    Add a triangle type to the simple inheritance example.  
    3.    Add a triangle type to the polymorphic example.      
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 Aim 

 The aims of this chapter is to provide a short introduction to parallel programming. 

    27.1   Introduction 

 Parallel programming involves breaking a program down into parts that can be executed 
concurrently. Here is a simple diagram to illustrate the idea.  

    Chapter 27   
 Introduction    to Parallel Programming       

       

 ‘Can you do addition?’ the White Queen asked. ‘What’s one 
and one and one and one and one and one and one and one and 
one and one?’ 
 ‘I don’t know’ said Alice. ‘I lost count.’ 
 ‘She can’t do addition,’ the Red Queen interrupted. 

 Lewis Carroll, Through the Looking Glass and What Alice 
Found There. 
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 On the left hand side we have a sequential program and this steps through linearly 
from beginning to end. The right hand side has the same program that has been 
partially parallelised. There are two parallel regions and the work here is now shared 
between two processes or threads. At each parallel part of the program we have the 
following  

 The theory is that the overall run time of the program will have been reduced or 
we will have been able to solve a larger problem by parallelising our code. In the 
above example we have divided the work between two processes or threads. Here 
are some details of a range of processors which support multiple cores.  

 Visit the AMD and Intel sites for up to date information. 
 There are several ways of doing parallel programming, and this chapter will look at 

three ways of doing this in Fortran. There are a common set of concepts and terminology 
that are useful to know about, whichever method we use, and we will cover these fi rst. 
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    27.2   Parallel Computing Classifi cation 

 Parallel computing is often classifi ed by the way the hardware supports parallelism. 
Two of the most common are:

   multi-processor and multi-core computers having multiple processing elements • 
within a single system  
  clusters or grids with multiple computers connected to work together. Modern • 
large systems are increasingly hybrids of the two above.     

    27.3   Amdahl’s Law 

 Amdahl’s law is a simple equation for the speedup of a program when parallelised. 
It assumes that the problem size remains the same when parallelized. 

 In the equation below

   P is the proportion of the program that can be parallelised  • 
  (1-P) is the serial proportion  • 
  N is the number of processors• 

   and we have

   speedup = 1/((1-P) + P/N)    • 

 We have included a couple of graphs to illustrate the above. We have used the 
dislin graphics library to do the plots. It is available from

      http://www.mps.mpg.de/dislin/         

http://www.mps.mpg.de/dislin/
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    27.3.1   Amdahl’s Law Graph 1–8 Processors or Cores  

    27.3.2   Amdahl’s Law Graph 2–64 Processors or Cores 
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 Here is the source code for one of the programs. It is for the 8 processor version.  
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 We use the dislin graphics library in this example. More information about the 
dislin software can be found in Chap.   33    .   

    27.4   Gustafson’s Law 

 Gustafson’s Law is often seen as a contradiction of Amdahl’s Law. Simplistically it 
states that programmers solve larger problems when parallelising programs. 

 The equation for Gustafson’s Law is given below.

   N is the number of processors  • 
  Serial is the proportion that remains serial   • 

and

   Speedup(N) = N – serial * (N – 1 )    • 

 We have again included a graph to illustrate the above. 

    27.4.1   Gustafson’s Law Graph 1–64 Processors or Cores 
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 Here is the source code for the program. This is for the 64 processor version.  
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 The programs are obviously very similar!   
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    27.5   Memory Access 

 Memory access times fall into two main categories that are of interest in parallel 
computing

   uma – uniform memory access. Each element of main memory can be accessed • 
with the same latency and bandwidth. Multi-processor and multi-core computers 
typically have this behaviour.  
  numa – non uniform memory access. Distributed memory systems have non-• 
uniform memory access. Clusters or grids with multiple computers connected to 
work together have this behaviour.     

    27.6   Cache 

 Modern processors have a memory hierarchy. They typically have two or more 
levels:

   main memory  • 
  cpu memory   • 

and there is a speed and cost link. Main memory is cheap and relatively slow in com-
parison to the cpu memory. 

 The cpu memory or cache is used to reduce the effective access time to memory. 
If the information that the program requires is in the cpu cache then the average 
latency of memory accesses will be closer to the cache latency than to the latency of 
main memory. Getting high performance from a computer normally means writing 
cache friendly programs. This means that the data and instructions that the program 
needs are already in the cache and don’t need to be accessed from the much slower 
main memory. 

 In a multi-core and multi-cpu system each core and cpu will have their own 
memory or cache. This introduces the problem of cache coherency – i.e. the consis-
tency of data stored in local caches compared to the data in the common shared 
memory. This problem must obviously be addressed when doing parallel 
programming.  

    27.7   Bandwidth and Latency 

 Bandwidth is the rate at which data can be transferred. Latency is the start up time 
for a data transfer. We normally want a high bandwidth and low latency. Here are 
some fi gures for several interconnects.   
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    27.8   Flynn’s Taxonomy 

 Flynn’s taxonomy is an old, but still widely used, classifi cation scheme for com-
puter architecture.

   Single Instruction, Single Data stream (SISD) A sequential computer which • 
exploits no parallelism in either the instruction or data streams. Term rarely 
used.  
  Single Instruction, Multiple Data streams (SIMD) A computer which exploits • 
multiple data streams against a single instruction stream to perform operations 
which may be naturally parallelized. For example, an array processor or GPU.  
  Multiple Instruction, Single Data stream (MISD) Multiple instructions operate • 
on a single data stream. Term rarely used.  
  Multiple Instruction, Multiple Data streams (MIMD) Multiple autonomous pro-• 
cessors simultaneously executing different instructions on different data. 
Distributed systems are generally recognized to be MIMD architectures; either 
exploiting a single shared memory space or a distributed memory space. 
Essentially separate computers working together to solve a problem.    

 We also have the term

   Single Program Multiple Data – An identical program executes on a MIMD • 
computer system. Conditional statements in the code mean that different parts of 
the program execute on each system.     

    27.9   Consistency Models 

 Parallel programming languages and parallel computers must have a consistency 
model (also known as a memory model). The consistency model defi nes rules for 
how operations on computer memory occur and how results are produced.  
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    27.10   Threads and Threading 

 In computing a thread of execution is often regarded as the smallest unit of processing 
that can be scheduled by an operating system. The implementation of threads and 
processes generally varies with operating system.  

    27.11   Threads and Processes 

 From a strict computer science point of view threads and processes are different. 
However when looking simply at parallel programming the term can often be used 
interchangeably. In the following we use the term thread.  

    27.12   Data Dependencies 

 A data dependency is when one statement in a program depends on a calculation 
from a previous statement. This will obviously hinder parallelism.  

    27.13   Race Conditions 

 Race conditions can occur in programs when separate threads depend on a shared 
state or variable.  

    27.14   Mutual Exclusion – Mutex 

 A mutex is a programming construct that is used to allow multiple threads to share 
a resource. The sharing is not simultaneous. One thread will acquire the mutex and 
then lock the other threads from accessing it until it has completed.  

    27.15   Monitors 

 In concurrent programming, a monitor is an object or module intended to be used 
safely by more than one thread. The defi ning characteristic of a monitor is that its 
methods are executed with mutual exclusion. That is, at each point in time, at most 
one thread may be executing any of its methods. This mutual exclusion greatly 
simplifi es reasoning about the implementation of monitors compared with code that 
may be executed in parallel.  
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    27.16   Locks 

 In computing a lock is a synchronization mechanism for enforcing limits on access 
to a resource in an environment where there are many threads of execution. Locks 
are one way of enforcing concurrency control policies.  

    27.17   Synchronization 

 The concept of synchronisation is often split into process and data synchronisation. 
 In process synchronisation several processes or threads come together at a cer-

tain part of a program. 
 Data synchronisation is concerned with keeping data consistent.  

    27.18   Granularity and Types of Parallelism 

 Granularity is a useful concept in parallel programming. A common classifi cation is

   Fine-grained – a lot of small components, larger amounts of communication and • 
synchronisation  
  Coarse-grained – a small number of larger components, hence smaller amounts • 
of communication and less synchronisation    

 The terms are of course relative. 
 We also have the concept of

   Embarrassingly parallel – very little effort is required to partition the task and • 
there is little or no communication and synchronisation.    

 A simple example of this would be a graphics processor processing individual 
pixels.  

    27.19   Partitioned Global Address Space – PGAS 

 PGAS is a parallel programming model. It assumes a global memory address space 
that is logically partitioned and a portion of it is local to each processor. The PGAS 
model is the basis of Unifi ed Parallel C, Coarray Fortran, Titanium, Fortress, Chapel 
and X10.  
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    27.20   Fortran and Parallel Programming 

 Most Fortran compilers now offer support for parallel programming. We next 
 provide a brief coverage of three methods

   MPI – Message Passing Interface  • 
  OpenMP – Open Multi-Processing  • 
  CoArray Fortran    • 

 Subsequent chapters look at simple examples using each method.  

    27.21   MPI 

 MPI started with a meeting that was held at the Supercomputing 92 conference. The 
attendants agreed to develop and implement a common standard for message pass-
ing. The fi rst MPI standard, called MPI-1 was completed in May 1994. The second 
MPI standard, MPI-2, was completed in 1998. 

 MPI is effectively a library of C and Fortran callable routines. It has become 
widely used and is available on a number of platforms. Some useful web addresses 
are given below. 

 The fi rst is hosted at Argonne National Laboratory.
      http://www.mcs.anl.gov/research/projects/mpi/         

 MPI was designed by a broad group of parallel computer users, vendors, and 
software writers. These included

   Vendors – IBM, Intel, TMC, Meiko, Cray, Convex, Ncube  • 
  Library writers – PVM, p4, Zipcode, TCGMSG, Chameleon, Express, Linda  • 
  Companies – ARCO, Convex, Cray Research, IBM, Intel, KAI, Meiko, NAG, • 
nCUBE, Parasoft, Shell, TMC  
  Laboratories – ANL, GMD, LANL, LLNL, NOAA, NSF, ORNL, PNL, Sandia, • 
SDSC, SRC  
  Universities – UC Santa Barbara, Syracuse University, Michigan State University, • 
Oregon Grad Inst, University of New Mexico, Mississippi State University, U of 
Southampton, University of Colorado, Yale University, University of Tennessee, 
University of Maryland, Western Michigan University, University of Edinburgh, 
Cornell University, Rice University, University of San Francisco    

 So whilst MPI is not a formal standard like Fortran, C or C++, its development 
has involved quite a wide range of people. 

 The following site has details of MPI meetings.

      http://meetings.mpi-forum.org/         

http://www.mcs.anl.gov/research/projects/mpi/
http://meetings.mpi-forum.org/
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 The steering committee (as of April 2011) and affi liations are given below

   Jack Dongarra – Computer Science Department, University of Tennessee  • 
  Al Geist – Group Leader, Computer Science Research Group, Oak Ridge • 
National Laboratory  
  Richard Graham  • 
  Bill Gropp – Computer Science Department, University of Illinois Urbana- • 
Champaign  
  Andrew Lumsdaine – Computer Science Department, Indianna University  • 
  Ewing Lusk – Mathematics and Computer Science Division, Argonne National • 
Laboratory  
  Rolf Rabenseifner – High Performance Computing Center, Germany    • 

 The meeting coordinators and associated work areas as of April 2011 are given 
below

   Richard Graham, Convener and Meeting Chair  • 
  Jeff Squyres, Meeting Secretary  • 
  Bill Gropp, Ballots  • 
  Rolf Rabenseifner, MPI 2.1  • 
  Bill Gropp, MPI 2.2  • 
  Torsten Hoefl er, Andrew Lumsdaine, MPI 3.0 – Collective Communications  • 
  Richard Graham, MPI 3.0 – Fault Tolerance  • 
  Craig Rasmussen, MPI 3.0 – Fortran Bindings  • 
  Bill Gropp and Rajeev Thakur, MPI 3.0 – Remote Memory Access  • 
  Martin Schulz and Bronis de Supinski, MPI 3.0 – Tools support  • 
  Pavan Balaji, MPI 3.0 – Hybrid Programming  • 
  Anthony Skjellum, MPI 3.0 – Persistence  • 
  Ron Brightwell – MPI 3.0 – Point-To-Point Communications   and this provides • 
an idea of the work currently in progress. 

 Another useful site is the Open MPI site.

      http://www.open-mpi.org/         

 The following is taken from their site. 
 The Open MPI Project is an open source MPI-2 implementation that is devel-

oped and maintained by a consortium of academic, research, and industry partners. 
Open MPI is therefore able to combine the expertise, technologies, and resources 
from all across the High Performance Computing community in order to build the 
best MPI library available. Open MPI offers advantages for system and software 
vendors, application developers and computer science researchers. 

 Features implemented or in short-term development for Open MPI include:

   Full MPI-2 standards conformance  • 
  Thread safety and concurrency  • 
  Dynamic process spawning  • 
  Network and process fault tolerance  • 

http://www.open-mpi.org/
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  Support network heterogeneity  • 
  Single library supports all networks  • 
  Run-time instrumentation  • 
  Many job schedulers supported  • 
  Many OS’s supported (32 and 64 bit)  • 
  Production quality software  • 
  High performance on all platforms  • 
  Portable and maintainable  • 
  Tunable by installers and end-users  • 
  Component-based design, documented APIs  • 
  Active, responsive mailing list  • 
  Open source license based on the BSD license    • 

 Both sites provide free downloadable implementations. 
 Commercial implementations are available from

   Cray  • 
  IBM  • 
  Intel  • 
  Microsoft    • 

amongst others. 
 MPI is, at the time of writing, the dominant parallel programming method used 

in Fortran. MPI and Fortran currently account for over 80% of the code running on 
the HECToR Service in Edinburgh. HECToR is the UK’s high-end computing 
resource, funded by the UK Research Councils. Visit

      http://www.hector.ac.uk        

for more information.  

    27.22   OpenMP 

 OpenMP (Open Multi-Processing) is an application programming interface that 
supports shared memory multiprocessing programming in three main languages (C, 
C++, and Fortran) on a range of hardware platforms and operating systems. It con-
sists of a set of compiler directives, library routines, and environment variables that 
determine the run time behaviour of a program. 

 The OpenMP Architecture Review Board (ARB) has published several versions

   October 1997 – OpenMP for Fortran 1.0. October the following year they released • 
the C/C++ standard.  
  2000 – Fortran version  • 
  2005 – Fortran 2.5  • 

http://www.hector.ac.uk
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  2008 – OpenMP 3.0. Included in the new features in 3.0 is the concept of tasks • 
and the task construct.  
  2011-OpenMP 3.1    • 

 A number of compilers from various vendors or open source communities imple-
ment the OpenMP API, including

   Absoft  • 
  Cray  • 
  gnu  • 
  Hewlett Packard  • 
  IBM  • 
  Intel  • 
  Lahey/Fujitsu  • 
  Oracle/Sun  • 
  PGI    • 

 The main OpenMP web site is:

      http://www.openmp.org/          

    27.23   Coarray Fortran 

 Coarrays became part of Fortran in the 2008 standard. The original ideas came from 
work by Robert Numrich and John Reid in the 1990s. They are based on a single 
program multiple data model. A coarray Fortran program is interpreted as if it were 
duplicated several times and all copies execute asynchronously. Each copy has its 
own set of data objects and is termed an image. The array syntax of Fortran is 
extended with additional trailing subscripts in square brackets to provide a concise 
representation of references to data that is spread across images. 

 The syntax is architecture independent and may be implemented on:

   Distributed memory machines.  • 
  Shared memory machines.  • 
  Clustered machines.    • 

 Work is underway for additional Coarray functionality for the next standard.  

    27.24   Other Parallel Options 

 There are a number of additional parallel methods. They are covered for 
completeness. 

http://www.openmp.org/
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    27.24.1   PVM 

 Parallel Virtual Machine consists of a library and a run-time environment which 
allow the distribution of a program over a network of (even heterogeneous) comput-
ers. Visit

     • http://www.epm.ornl.gov/pvm/      
    • http://www.netlib.org/pvm3/       

for more details.  

    27.24.2   HPF 

 To quote their home page

     • http://hpff.rice.edu/index.htm        

 ‘The High Performance Fortran Forum (HPFF), a coalition of industry, academic and 
laboratory representatives, works to defi ne a set of extensions to Fortran 90 known col-
lectively as High Performance Fortran (HPF). HPF extensions provide access to high-
performance architecture features while maintaining portability across platforms.’ 

 They also provide details of:

   Surveys of HPF compilers and tools.  • 
  Currently available commercial HPF compilers.  • 
  public domain HPF compilation systems.  • 
  Research prototypes of HPF and HPF-related compilation systems.  • 
  Mailing list.      • 

    27.25   Top 500 Supercomputers 

 Have a look at

     • http://www.top500.org/       

for a lot of links to supercomputing centres and information on parallel computing 
in general. 

 To see what can be done with all this processing power visit:

     • http://www.met-offi ce.gov.uk/         

http://www.epm.ornl.gov/pvm/
http://www.netlib.org/pvm3/
http://hpff.rice.edu/index.htm
http://www.top500.org/
http://www.met-office.gov.uk/
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    27.26   Summary 

 Fortran has long been one of the main languages used in parallel programming. This 
chapter has provided a brief coverage of some of the background to parallel pro-
gramming in general, and Fortran in particular. 

 In the next three chapters we will look at a small number of programs that 
 introduce some of the basic syntax of parallel programming with MPI, OpenMP and 
Coarray Fortran. We will also look at solving one problem serially and then solve it 
using the parallel features provided by MPI, OpenMP and Coarray Fortran. We 
provide timing details so that we can see the benefi ts that parallel solutions offer.  

    27.27   Bibliography 

 The ideas involved in parallel computing are not new and we’ve included a couple 
of references about computer hardware and operating systems, which provide infor-
mation for the more inquisitive reader. Wikipedia is an on-line source of informa-
tion in this area. 

    27.27.1   Computer Hardware 

 Baer   , J.L.: Computer Systems Architecture. Computer Science Press, Rockville 
(1980) 

 The chapters on the memory hierarchy and memory management are old, but 
well written. Up to date hardware information can be found at most hardware ven-
dor sites. A few are given below. 

      27.27.1.1 AMD 

       http://developer.amd.com/pages/default.aspx          

      27.27.1.2 IBM 

       http://www.ibm.com/products/us/en/           

    27.27.2   Intel 

       http://www.intel.com/en      
 UK/products/processor/index.htm      

http://developer.amd.com/pages/default.aspx
http://www.ibm.com/products/us/en/
http://www.intel.com/en


416 27 Introduction    to Parallel Programming

    27.27.3   Computer Operating Systems 

 Deitel, H.M.: Operating Systems. Addison Wesley, Reading (1990) 
 Part two of the book (process management) has chapters on process concepts, 

asynchronous concurrent processes, concurrent programming and deadlock and 
indefi nite postponement. The bibliographies at the end of each chapter are quite 
extensive.  

    27.27.4   Parallel Programming 

 Chandra   , R., Dagum, L., Kohr, D., Maydan, D., McDonald, J., Menon, R.: Parallel Programming 
in OpenMP. Morgan Kaufmann, San Francisco 

 Chapman, B., Jost, G., Van Der Pas, R.: Using OpenMP. MIT Press, Cambridge 
 Gropp, W., Lusk, E., Skjellum, A.: Using MPI: Portable Parallel Programming with the Message 

Passing Interface. MIT Press, Cambridge 
 Pacheco, P.: Parallel Programming with MPI. Morgan Kaufmann, San Francisco        
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        Aim 

 The aims of this chapter is to provide a short introduction to MPI programming in 
Fortran. 

    28.1   Introduction 

 Documents for the MPI standard are available from the MPI Forum. Their web 
address is

     http://www.mpi-forum.org        

 If you are going to do MPI programming we recommend getting hold of the 
document that refers to your implementation. 

    28.2   MPI Programming 

 MPI programming typically requires two components, a compiler and an MPI 
implementation. 

    Chapter 28   
 MPI    – Message Passing Interface       

 In almost every computation a great variety of arrangements 
for the succession of the processes is possible, and various 
considerations must infl uence the selections amongst them for 
the purposes of a calculating engine. One essential object is to 
choose that arrangement which shall tend to reduce to a 
minimum the time necessary for completing the calculation. 

 Ada Lovelace 

http://www.mpi-forum.org


418 28 MPI    – Message Passing Interface

 There are also two ways of doing MPI programming

   a cluster or multiple systems running MPI  • 
  a single system running MPI    • 

 In both cases an MPI installation will normally provide an MPI daemon or ser-
vice that can then be called from an MPI program.  

    28.3   Compiler and Implementation Combination 

 A number of commercial companies provide a combined bundle including

   Cray  • 
  IBM  • 
  Intel  • 
  PGI    • 

 The Cray and IBM offerings will most likely be for a cluster. Intel and PGI 
provide products for both clusters and single systems. You should check their sites 
for up to date information.  

    28.4   Individual Implementation 

 A low cost option is to get hold of an MPI implementation that works with your 
existing compiler, and install it yourself on your own system. 

 The Intel MPI product is available as a free download for evaluation purposes. 
 There are a number of free MPI implementations, and details are given below for 

two of them. 

    28.4.1   MPICH2 

 They are based at Argonne National Laboratory

     http://www.mcs.anl.gov/research/projects/mpich2/        

 MPICH2 is distributed as source (with an open-source, freely available license). 
It has been tested on several platforms, including Linux (on IA32 and x86–64), Mac 
OS/X (PowerPC and Intel), Solaris (32- and 64-bit), and Windows.  

    28.4.2   Open MPI 

 They can be found at 

http://www.mcs.anl.gov/research/projects/mpich2/
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   http://www.open-mpi.org/     

 They develop Open MPI on Linux, OS X, Solaris (both 32 and 64 on all plat-
forms) and Windows (Windows XP, Windows HPC Server 2003/2008 and also 
Windows 7 RC).   

    28.5   Compiler and MPI Combinations Used in the Book 

 The examples in this chapter have been tried out with a variety of compilers and 
implementations, including

   Intel compiler + mpich2, Windows  • 
  Intel compiler + Intel MPI, Windows  • 
  Gfortran + openmpi, SuSe Linux 11.x  • 
  Cray compiler, Hector Service  • 
  PGI compiler, Hector Service  • 
  IBM compiler, Met Offi ce Slovakia    • 

 We haven’t tried out all of the examples with all of the compiler and MPI 
implementations.  

    28.6   The MPI Memory Model 

 MPI is characterised generally by distributed memory and

   All threads/processes have access to their own private memory only  • 
  Data transfer and most synchronization has to be programmed explicitly  • 
  All data is private  • 
  Data is shared explicitly by exchanging buffers in MPI terminology   • 

but in this chapter we will also show the use of MPI on one system.  

    28.7   Example 1 – Hello World 

 The fi rst example is the classic hello world program. This example has been run on 
the following systems:

   Single system, Intel compiler and mpich2, Windows  • 
  Single system, Intel compiler and Intel MPI, Windows  • 
  Single system, gfortran and openmpi, SuSe linux  • 
  Cray HECToR service, Edinburgh    • 

http://www.open-mpi.org/
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 Here is the program.

    program ch2801      
   use mpi   
   implicit none   
   integer :: error number   
   integer :: this process number   
   integer :: number_of_processes 

    call MPI_INIT( error_number )   
   call MPI_COMM_SIZE( MPI_COMM_WORLD, &      

   number_of_processes , error_number ) 

    call MPI_COMM_RANK( &
MPI_COMM_WORLD, &      

   this_process_number , &
error_number ) 
    print *, " Hello from process " ,&      

   this_process_number , &
" of ", number_of_processes , &
" processes!" 
    call MPI_Finalize(error_number)      

   end program ch2801     

 Let us look at each statement in turn.

    use mpi     

 With most modern MPI implementations we can make available the MPI setup 
with a use statement. Older implementations required an include fi le option.

    call MPI_INIT( error_number )     

 This must be the fi rst MPI routine called. The Fortran binding only takes one 
argument, an integer variable that is used to return an error number. It sets up the 
MPI environment.

    call MPI_COMM_SIZE( MPI_COMM_WORLD, &
number_of_processes , error_number )    

is typically the second MPI routine called. All MPI communication is associated 
with a so called communicator that describes the communication context and an 
associated set of processes. In this simple example we use the default communicator, 
called MPI_COMM_WORLD. The number of processes available is returned via 
the second argument. This means that the above program is duplicated on each 
process, i.e. number_of_processes determines how many copies are running.

    call MPI_COMM_RANK( MPI_COMM_WORLD, &
this_process_number , error_number )     

 The call above returns the process number for this process or copy of the 
program.
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       print *, " Hello from process " , &      
   this_process_number , " of ", number_of_processes , &
" processes!"     

 Each copy of the program will print out this message.

    call MPI_Finalize(error_number)     

 The call to MPI_Finalize is the last call to the MPI system we need to make. 
 Here is the output from the Intel compiler and Intel MPI option under Windows 

XP64.  

 Notice that process numbering starts at 0. Note also that there is no particular 
order to the process numbers. 

 Here is the output from gfortran and openmpi on a SuSe 11.2 Linux box. This is 
the same system as the above, as it is dual boot.  
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 Now the ordering is sequential. 
 Here is the output from the Cray HECToR service. This uses 64 processes. 

The job is submitted as a batch job, via a queueing mechanism. This is a common 
mechanism on larger multi user systems.

    Hello from process 3 of 64 processes!   
   Hello from process 0 of 64 processes!   
   Hello from process 1 of 64 processes!   
   Hello from process 2 of 64 processes!   
   Hello from process 61 of 64 processes!   
   Hello from process 60 of 64 processes!   
   Hello from process 63 of 64 processes!   
   Hello from process 62 of 64 processes!   
   Hello from process 56 of 64 processes!   
   Hello from process 59 of 64 processes!   
   Hello from process 57 of 64 processes!   
   Hello from process 58 of 64 processes!   
   Hello from process 40 of 64 processes!    

    …   
   …lines deleted   
   … 

    Hello from process 33 of 64 processes!   
   Hello from process 46 of 64 processes!   
   Hello from process 45 of 64 processes!   
   Hello from process 47 of 64 processes!   
   Hello from process 44 of 64 processes!   
   Hello from process 4 of 64 processes!   
   Hello from process 7 of 64 processes!   
   Hello from process 5 of 64 processes!   
   Hello from process 6 of 64 processes!        

 The order appears to be pretty random!  

    28.8   Example 2 – Hello World Using Send and Receive 

 The following is a variation of the above. In the fi rst example we had no communi-
cation between processes. Sending and receiving of messages by processes is the 
basic MPI communication mechanism. The basic point-to-point communication 
operations are send and receive. Their use is shown in the example below. These are 
blocking send and receive operations. A blocking send does not return until the 
message data and envelope have been safely stored away so that the sender is free 
to modify the send buffer. The message might be copied directly into the matching 
receive buffer, or it might be copied into a temporary system buffer. 
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 In this example process 0 is the master process and this communicates with every 
other process or program.

    program ch2802   
   use mpi   
   implicit none   
   integer :: error_number   
   integer :: this_process_number   
   integer :: number_of_processes   
   integer :: I   
   integer , dimension(MPI_STATUS_SIZE) :: status 
    call MPI_INIT( error_number )   
   call MPI_COMM_SIZE( MPI_COMM_WORLD, &      

   number_of_processes , error_number ) 
    call MPI_COMM_RANK( MPI_COMM_WORLD, &      

   this_process_number , error_number ) 
    if ( this_process_number == 0 ) then    

 print *, " Hello from process " , &         
   this_process_number , " of ", number_of_processes , &
" processes." 
    do I = 1 , number_of_processes - 1   

  call MPI_RECV(this_process_number , &         
   1 , MPI_INTEGER , I , 1 , MPI_COMM_WORLD , status , & 
error_number) 
    print *, " Hello from process " , &      

   this_process_number , " of ", number_of_processes , &
" processes." 
       end do      
   else 
    call MPI_SEND(this_process_number , 1 , &
MPI_INTEGER , 0 , 1 , MPI_COMM_WORLD , &
error_number)      

   end if   
   call MPI_Finalize(error_number)      
   end program ch2802     

 The calls to MPI_INIT, MPI_COMM_SIZE, MPI_COMM_RANK, MPI_
Finalize are the same as in the fi rst example. We have the additional code

   A test to see if we are process 0. If we are we then print out a message saying that • 
we are process 0. We next loop from 1 to number_of_processes −1 and call 
MPI_RECV.  
  If we are not process 0 we make a call to MPI_SEND – remember that the pro-• 
gram executes on all processes.    

 Let us look at the calls to MPI_RECV and MPI_SEND in more depth. Here is an 
extract from the 2.2 specifi cation describing MPI_RECV
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   <type> BUF(*), initial address of receive buffer  • 
  INTEGER COUNT , Number of elements in the receive buffer  • 
  DATATYPE , data type of each receive buffer element  • 
  SOURCE , rank of source  • 
  TAG , message tag  • 
  COMM , communicator  • 
  STATUS(MPI_STATUS_SIZE),  • 
  IERROR    • 

 The following shows the mapping between MPI data types and Fortran data 
types.  

 MPI datatype  Fortran datatype 

 MPI_INTEGER  INTEGER 
 MPI_REAL  REAL 
 MPI_DOUBLE_PRECISION  DOUBLE PRECISION 
 MPI_COMPLEX  COMPLEX 
 MPI_LOGICAL  LOGICAL 
 MPI_CHARACTER  CHARACTER(1) 

 Our arguments to MPI_RECV are

   this_process_number - process 0 is doing the receiving  • 
  1 item  • 
  MPI_INTEGER – an MPI_INTEGER variable  • 
  I – receive from this process  • 
  1 – tag  • 
  MPI_COMM_WORLD - the communicator  • 
  status – an integer array of size MPI_STATUS_SIZE  • 
  error_number    • 

 Here is an extract from the 2.2 specifi cation regarding MPI_SEND

   <type> BUF(*) – initial address of send buffer  • 
  INTEGER COUNT – number of elements in send buffer  • 
  DATATYPE – data type of each send buffer element  • 
  DEST – rank of destination  • 
  TAG – message tag  • 
  COMM – communicator  • 
  IERROR – error number    • 

 The arguments to our MPI_SEND are

   this_process_number – send from this process  • 
  1  • 
  MPI_INTEGER  • 
  0 – send to this process number  • 
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  1  • 
  MPI_COMM_WORLD – the communicator  • 
  error_number   • 

and as you can see the sends and receives are in matching pairs. 

 The output from this program will be similar to the previous example.  

    28.9   Example 3 – Serial Solution for pi Calculation 

 We choose numerical integration in this example. The following integral

     +∫
1

20

4

1
dx

x    

is one way of calculating an approximation to  p , and is a problem that is easy to 
parallelise. The integral can be approximated by

     

−⎛ ⎞+ ⎜ ⎟⎝ ⎠

∑ 21

1 4

0.5
1

n

n i

n    

 p  to 50 digits is
3.14159265358979323846264338327950288419716939937510
according to Wikipedia 

 Another way of calculating  p  is using the formula 4 tan −1  (1), and in Fortran this is

    4.0*atan(1.0).     
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 Consider the following plot of the above equation. 
 To do the evaluation numerically we divide the interval between 0 and 1 into n 

sub intervals. The higher the value of n the more accurate our value of  p  will be, or 
should be. 

 Here is a serial program to do this calculation. The program is in three main 
parts. These are

   precision module – to set the precision throughout the whole code.  • 
  timing module – a timing module to enable us to time parts of the program. We • 
will be using this module throughout the parallel examples to provide informa-
tion about the performance of the algorithms.  
  the program – that actually does the integration.    • 

 The fi rst two modules are straightforward and we will only cover the integration 
solution in depth. We will be using this integration example in this chapter on MPI 
and the subsequent two on OpenMP and coarray Fortran.

    module precision_module  
   implicit none   
   integer, parameter :: long = &      

   selected_real_kind(15,307)   
   end module precision_module   
   module timing_module 

    implicit none   
   integer, dimension (8), private :: dt   
   real, private :: h, m, s, ms, tt   
   real, private :: last_tt      

   contains 
    subroutine start_timing()
     implicit none   
   call date_and_time(values=dt)   
   print 100, dt(1:3), dt(5:8)   
   100 format &   
   (1x,i4,'/',i2,'/',i2,1x,i2,':',i2,':',i2,1x,i3)   
   h = real(dt(5))   
   m = real(dt(6))   
   s = real(dt(7))   
   ms = real(dt(8))   
   last_tt = 60*(60*h+m) + s + ms/1000.0         

   end subroutine start_timing   
   subroutine print_date_and_time 

    implicit none   
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   call date_and_time(values=dt)   
   print 100, dt(1:3), dt(5:8)   
   100 format &   
   (1x,i4,'/',i2,'/',i2,1x,i2,':',i2,':',i2,1x,i3)      

   end subroutine print_date_and_time   
   subroutine print_hms 
    implicit none   
   call date_and_time(values=dt)   
   print 100, dt(5:8)   
   100 format (1x,i2,':',i2,':',i2,1x,i3)      

   end subroutine print_hms   

   subroutine print_ms 
    implicit none   
   call date_and_time(values=dt) 

    h = real(dt(5))   
   m = real(dt(6))   
   s = real(dt(7))   
   ms = real(dt(8))   
   tt = 60*(60*h+m) + s + ms/1000.0   
   print 100, tt   
   100 format (1x,f14.3)      

   end subroutine print_ms   
   subroutine print_time_difference 
    implicit none   
   call date_and_time(values=dt)   
   h = real(dt(5))   
   m = real(dt(6))   
   s = real(dt(7))   
   ms = real(dt(8))   
   tt = 60*(60*h+m) + s + ms/1000.0   
   print 100, (tt-last_tt)   
   100 format (1x,f14.3)   
   last_tt = tt      

   end subroutine print_time_difference   
   real function time_difference() 

    implicit none   

   tt = 0.0   
   call date_and_time(values=dt)   
   h = real(dt(5))   
   m = real(dt(6))   
   s = real(dt(7))   
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   ms = real(dt(8))   
   tt = 60*(60*h+m) + s + ms/1000.0   
   time_difference = tt - last_tt      

   end function time_difference      
   end module timing_module   
   program ch2803 

    use precision_module   
   use timing_module   
   implicit none   
   integer :: I, j   
   integer :: n_intervals   
   real (long) :: interval_width, x, total, pi   
   real (long) :: fortran_internal_pi   

   call start_timing()   
   n_intervals = 10   
   fortran_internal_pi = 4.0_long*atan(1.0_long)   
   print *, ' fortran_internal_pi = ', &   
   fortran_internal_pi   
   print *, ' '   
   do j = 1, 9 
    interval_width = 1.0_long/n_intervals   
   total = 0.0_long   
   do I = 1, n_intervals 
    x = interval_width*(real(i,long)-0.5_long)   
   total = total + f(x)      

   end do   
   pi = interval_width*total   
   print 20, n_intervals, time_difference()   
   20 format (' N intervals = ',i12,' time = ',f8.3)   
   print 30, pi, abs(pi-fortran_internal_pi)   
   30 format (' pi = ',f20.16,/, &   
   ' difference = ',f20.16)   
   n_intervals = n_intervals*10      

   end do      
   contains 
    real (long) function f(x)
     implicit none   
   real (long), intent (in) :: x   
   f = 4.0_long/(1.0_long+x*x)      

   end function f      
   end program ch2803     
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 The fi rst part of the code has the declarations for the variables we will be using. 
These are

    integer :: n_intervals   
   real (long) :: interval_width, x, total, pi   
   real (long) :: fortran_internal_pi     

 We have an integer variable for the number of intervals we will be using. We 
have made this of default integer type, which will be 32 bit on most platforms, and 
will be up to 2,147,483,647. 

 We then have the following variables

   interval_width  • 
  x – the variable we will be calculating numerically  • 
  total – our total for the integration  • 
  pi – our calculated value of pi  • 
  fortran_internal_pi – we use a common way of defi ning this using the internal • 
atan function.    

 We then call the start_timing routine to print out details of the start time. 
 We next set the number of intervals. We choose 10 as an initial value. We will be 

doing the calculation for a number of interval sizes. 
 We calculate pi using the atan intrinsic and print out its value. We will be using 

this value to determine the accuracy of our calculations. 
 We then have the loop that does the calculations for nine values of the interval 

size from 10 to 1,000,000,000. 
 We calculate the interval width at the start of each loop and reset the total to zero 

at the start of each loop. 
 The following

    do I = 1, n_intervals
     x = interval width*(real(i,long)-0.5_long)   
   total = total + f(x)      
   end do    

is the code that actually does the integration. We calculate x each time round the 
loop and then use this calculated value in our call to our function, summing up as 
we go along. We need to subtract a ½ as we need the midpoint of the interval for our 
value of x. 

 The loop fi nishes and we then calculate the value of pi and print out details of the 
number of intervals, the calculated value of pi and the difference between the inter-
nal value of pi and the calculated value. 
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 We also print out timing information about this calculation. We then increment 
the number of intervals and repeat the above. 

 We need to know how long the serial version takes and how accurate our calcu-
lated value for pi is. 

 Here is output from this program on a couple of systems and compilers.  
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 The three sample runs provide us with information that we can use as a basis for 
an analysis of our parallel solution. We have information about the accuracy of the 
solution and timing details.  

    28.10   Example 4 – Parallel Solution for pi Calculation 

 This example is a parallel solution to the above problem using mpi. We only show 
the parallel program. The precision and timing modules are the same as in the previ-
ous example.  
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 The fi rst difference is the

    use mpi    

statement. This makes available the mpi functionality. We next have several vari-
able declarations.

    real (long) :: fortran_internal_pi   
   real (long) :: partial_pi   
   real (long) :: total_pi   
   real (long) :: width   
   real (long) :: partial_sum   
   real (long) :: x   
   integer :: n   
   integer :: this process   
   integer :: n_processes   
   integer :: I   
   integer :: j   
   integer :: error_number     

 The variables partial_pi, total_pi and partial_sum are required by our parallel 
algorithm. The variable n is the number of intervals and we start this at 100,000 
rather than 10 as we have seen from the serial solution that there are quite large dif-
ferences between the internal value of pi and the calculated value below 100,000. 
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 The variables this _process, n_processes and error_number are required for the 
mpi solution. 

 The real work is done in the following do loop.

    do I = this_process + 1, n, n_processes    
 x = width*(real(i,long)-0.5 long)   
   partial_sum = partial_sum + f(x)      

   end do     

 The key is to split up the work of the calculation between the processes we have 
available. The following shows how the work will be split up for n = 10 and with the 
number of processes ranging from 1 to 8.  

 The above also shows how the algorithm balances the load of the computation 
across the processes. 

 Each process has its own partial_sum and partial_pi. We then use the call to the 
MPI subroutine mpi_reduce to calculate the total value of pi from the partial values 
of pi. Here is the MPI description of the mpi_reduce routine

   MPI_REDUCE( sendbuf, recvbuf, count, datatype, op, root, comm)  
  IN sendbuf address of send buffer (choice)  
  OUT recvbuf address of receive buffer (choice, signifi cant only at root)  
  IN count number of elements in send buffer (non-negative integer)  
  IN datatype data type of elements of send buffer (handle)  
  IN op reduce operation (handle)  
  IN root rank of root process (integer)  
  IN comm communicator (handle)   

and
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   partial_pi is our send buffer  
  total_pi is our receive buffer  
  1 – the number of elements  
  mpi_double_precision – the type of the elements  
  mpi_sum – the reduction operation  
  0 – the root process  
  mpi_comm_world – the communicator  
  error_number – the error number    

 We then control the printing from process 0. 
 Here is sample output from the Intel compiler for 1, 4, 8 and 32 processes. Results 

are similar from gfortran. We can control how many processes are available from 
the command line. We will look at the Cray compiler and the Hector service later.  



43728.10 Example 4 – Parallel Solution for pi Calculation



438 28 MPI    – Message Passing Interface

 The system that the above output is from has an Intel Core i7 920 processor. This 
processor has four cores and each core is hyper threaded. We get a nearly linear 
speed up to four processes, which shows how good the parallel solution is. Note that 
the time value is not the total time taken by all processes, but rather the effective 
running time of the program. If we are sat in front of the pc the program would 
complete in about a quarter of the time of the serial version. The numerical results 
are similar to the serial solution. The eight and thirty two process versions have 
similar times to the four process version. 

 Here is the output from the Cray at the Hector service. This is for 64 processes 
running on 16 nodes. Each compute node contains two AMD 2.1 GHz 12 core 
processors.  

 As can be seen this represents a major time reduction over the serial version from 
4.297 to 0.180 s – a factor of approximately 24. 
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 Here is the output from 96 processes on 4 nodes. 

      

 Again we have a considerable speed up, a factor of approximately 35.  

    28.11   Example 5 – Work Sharing Between Processes 

 This example looks at one way of splitting work up between processes. We use the 
process number of determine which process does which work.

    program ch2805   
   use mpi   
   implicit none   
   integer :: error_number   
   integer :: this_process_number   
   integer :: number_of_processes   
   integer, dimension (mpi_status_size) :: status   
   integer, allocatable, dimension (:)::x   
   integer :: n   
   integer, parameter :: factor = 5   
   integer :: i, j, k   
   integer :: start   
   integer :: end   
   integer : recv_start 
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    call mpi_init(error_number)   
   call mpi_comm_size(mpi_comm_world, & 
    number_of_processes,error_number)      

   call mpi_comm_rank(mpi_comm_world,& 
    this_process_number,error_number)      

   n = number_of_processes*factor   
   allocate (x(1:n))   
   x = 0   
   start = (factor*this_process_number) + 1   
   end = factor*(this_process_number+1)   
   print 10,this_process_number, start, end   
   10 format(' Process number = ',i3,' start ', & 
    i3,' end ',i3)      

   do i = start, end 
    x(i) = i*factor      

   end do   
   do i = 1, n 
    print 20 , this_process_number, i, x(i)   
   20 format(1x,i4, ' i ',i4,' x(i) ',i4)      

   end do   
   if (this_process_number==0) then 
    do i = 1, number_of_processes – 1    
    recv_start = (factor*i)+ 1   
   call mpi_recv(x(recv_start),& 
    factor,mpi_integer,i,1,mpi_comm_world, &   
   status ,error_number)       

    end do      
   else 
    call mpi_send(x(start) , factor, &    
    mpi_integer,0,1,mpi_comm_world,error_number)      

   end if   
   if (this_process_number==0) then 
    do i = 1, n    
 print 30, I, factor, x(i)   
   30 format (1x,i4,' * ',i2,' = ',i5)      

   end do      
   end if   
   call mpi_fi nalize(error_number)      

   end program ch2805     

 What we are going to do is allocate an array based on the number of processes 
and then split the (simple) work on the array up between the processes. We will 
calculate array indices from the process numbers.
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    n = number_of_processes*factor     

 This statement calculates the array size based on the number of processes and a 
constant factor.

    allocate (x(1:n))     

 This statement allocates the array.

    x = 0     

 This statement initialises the whole array to zero. The following statements 
defi ne the start and end points for the array processing for each process.

    start = (factor*this_process_number) + 1   
   end = factor*(this_process_number+1)    

and partition the work up between the processes. Each process will have its own 
start and end values. The following do loop does the work:

    do I = start, end    
 x(i) = i*factor      

   end do    

and all we are doing as this is fi lling sections of the array up with data based in 
process numbers. 

 The following

    if (this_process_number==0) then 
    do i = 1, number_of_processes – 1 

    recv_start = (factor*i) + 1   
   call mpi_recv(x(recv_start), & 

    factor,mpi_integer,i,1,mpi_comm_world,&   
   status ,error_number)         

   end do      
   else 

    call mpi_send(x(start) , factor, & 
    mpi_integer,0,1,mpi_comm_world,error_number)         

   end if    

uses sends and receives to transfer the updated array sections back to process zero. 
We are using recv_start to specify the starting point for the array transfer, and 
x(start) is the starting point for the transfer from the x array to process zero. 
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 Here is sample output from the program when the number of processes is three.  
 So with three processes we have an array of size 15, and the work that each pro-

cess does is

   Process number  • =  0 start 1 end 5  
  Process number = 1 start 6 end 10  • 
  Process number  • =  2 start 11 end 15   

and each process works on its own section of the array. At the end we use the 
sends and receives to make sure that the x array on process zero now has all of 
the updated values. 
 This code achieves load balancing across the processes.  

    28.12   Summary 

 The programs in this chapter provide an introduction to the use of MPI to achieve 
parallel programs in Fortran. We have also seen some of the timing benefi ts of paral-
lel programming with MPI.  
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    28.13   Problem 

     1.    Compile and run the programs with your compiler and implementation of MPI. 
You should get similar results.             
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 Aim 

 The aims of this chapter is to provide a short introduction to OpenMP programming 
in Fortran. 

    29.1   Introduction 

 The main site is

      http://openmp.org/wp/           

and this site has details about the various specifi cations

      http://openmp.org/wp/openmp-specifi cations/         

 We recommend downloading the documentation if you are going to do OpenMP 
programming. You should visit

      http://openmp.org/wp/openmp-compilers/        

to see an up to date list of what compilers support the OpenMP specifi cation, and at 
what level. 

 The OpenMP site has a range of resources available, check out

      http://openmp.org/wp/resources        

for more information. 

    Chapter 29   
 OpenMP                 

 The best way to have a good idea is to have a lot of ideas. 

 Linus Pauling 

http://openmp.org/wp/COMP: Set all programming codes as in MS.
http://openmp.org/wp/openmp-specifications/
http://openmp.org/wp/openmp-compilers/
http://openmp.org/wp/resources
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 We’ve run the examples in this chapter with one or more of the following compilers

   Cray  • 
  Gfortran  • 
  Intel    • 

    29.2   OpenMP Memory Model 

 OpenMP is a shared memory programming model. It has several features including

   All threads have access to the same shared memory  • 
  Data can be shared or private  • 
  Data transfer is transparent to the programmer  • 
  Synchronization takes place and is generally implicit    • 

 We will look at a small number of examples to highlight some of the key fea-
tures. We provide a brief coverage of some of the OpenMP glossary to provide a 
basic background to OpenMP.

   Threading Concepts• 

   Thread – An execution entity with a stack and associated static memory,  –
called threadprivate memory.  
  OpenMP thread – A thread that is managed by the OpenMP runtime system.   –
  Thread-safe routine – A routine that performs the intended function even  –
when executed concurrently (by more than one thread).     

  OpenMP language terminology• 

   Structured block – For Fortran, a block of executable statements with a single  –
entry at the top and a single exit at the bottom.  
  Loop directive – An OpenMP executable directive whose associated user  –
code must be a loop that is a structured block. For Fortran, only the do direc-
tive and the optional end do directive are loop directives.  
  Master thread – The thread that encounters a parallel construct, creates a team,  –
generates a set of tasks, then executes one of those tasks as thread number 0.  
  Worksharing construct – A construct that defi nes units of work, each of which is  –
executed exactly once by one of the threads in the team executing the construct. 
For Fortran, worksharing constructs are do, sections, single and workshare.  
  Barrier – A point in the execution of a program encountered by a team of  –
threads, beyond which no thread in the team may execute until all threads in 
the team have reached the barrier and all explicit tasks generated by the team 
have executed to completion.     

  Data Terminology• 

   Variable – A named data object, whose value can be defi ned and re defi ned  –
during the execution of a program. Only an object that is not part of another 
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object is considered a variable. For example, array elements, structure compo-
nents, array sections and substrings are not considered variables.  
  Private variable – With respect to a given set of task regions that bind to the  –
same parallel region, a variable whose name provides access to a different 
block of storage for each task region.  
  Shared variable – With respect to a given set of task regions that bind to the  –
same parallel region, a variable whose name provides access to the same 
block of storage for each task region.     

  Execution Model• 

   The OpenMP API uses the fork-join model of parallel execution. Multiple  –
threads of execution perform tasks defi ned implicitly or explicitly by OpenMP 
directives. OpenMP is intended to support programs that will execute correctly 
both as parallel programs (multiple threads of execution and a full OpenMP 
support library) and as sequential programs (directives ignored and a simple 
OpenMP stubs library).       

 The above coverage should be enough to get started with OpenMP and under-
stand the examples that follow.  

    29.3   Example 1 – Hello World 

 This is the classic hello world program.

    program ch2901   
   use omp_lib   
   implicit none   
   integer :: nthreads   
   integer :: thread_number   
   integer :: I 
    nthreads = omp_get_max_threads()   
   print *, ' Number of threads = ', nthreads 

!$omp parallel do    
    do I=1, nthreads
     print *, ' Hello from thread ',&

     omp_get_thread_num()      
   end do      

   !$omp end parallel do   
   end program ch2901        

 Let us go through the program one statement at a time.

    use omp_lib     

 This use statement makes available the OpenMP environment. OpenMP state-
ments are treated as comments without this statement.
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    nthreads = omp_get_max_threads()   
   print *, ' Number of threads = ', nthreads     

 The fi rst statement sets the variable nthread to the value returned by the OpenMP 
function omp_get_max_threads(). We then print out this value.

    !$omp parallel do     

 OpenMP directives in Fortran start with the comment character (!), followed by 
a $ symbol and the characters omp. We use this form as it is works with both free 
format and fi xed format Fortran source code. 

 The parallel do words indicate that the code that follows is a parallel region 
construct. In this case a do loop. Here is a small table listing some of the OpenMP 
directives.  

 Parallel    region construct 

 !$omp parallel [clause] 
     structured block 
 !$omp end parallel 

 Work sharing constructs 

 !$omp do [clause] … 
     do loop 
 !$omp end parallel 

 !$omp sections [clause] … 
 [!$omp section 
     structured block ] … 
 !$omp end sections [nowait] 

 !$omp single [clause] 
     structured block 
 !$omp end single [nowait] 

 Combined parallel work sharing constructs 

 !$omp parallel do [clause] 
     structured block 
 !$omp end parallel do 

 !$omp parallel sections [clause] … 
 [!$omp section 
     structured block ] … 
 !$omp end parallel sections 

 Synchronisation constructs 

 !$omp master 
     structured block 
 ! $omp end master 

 !$omp critical [(name)] 
     structured block 
 !$omp end critical [(name)] 

 !$omp barrier 

 $omp atomic 
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     expression list 

 !$omp fl ush 

 !$omp ordered 
     structured block 
 !$omp end ordered 

 Data environment 

 !$omp threadprivate (/c1/,/c2/) 

 We next have the parallel do.

       do I=1, nthreads    
 print *, ' Hello from thread ', &         

   omp_get_thread_num() 
    end do        

 This loop prints out a message from each thread showing the thread number.

    !$omp end parallel do     

 This marks the end of the OpenMP parallel loop. 
 So at the start of the loop the OpenMP run time system does a fork and creates 

multiple threads. At the end of the loop we have a join operation and we are back to 
one thread of execution. 

 Here is the output from the Intel compiler on an Intel i7 system.  

 These Intel systems have four real cores and each core supports hyper threading 
in Intel terminology. So the OpenMP system sees eight threads. 

 Here is the output from the gfortran compiler on the same system.  

 The output is very similar, as one would expect.  
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    29.4   Example 2 – Hello World Using Default Variable 
Data Scoping 

 This is a simple variation on the fi rst example. At fi rst sight it appears to be identical 
in effect to example one

    program ch2902   
   use omp_lib   
   implicit none   
   integer :: nthreads   
   integer :: thread_number   
   integer :: I 

    nthreads = omp_get_max_threads()   
   print *, ' Number of threads = ', nthreads    

    !$omp parallel do
     do I = 1, nthreads

     thread_number = omp_get_thread_num()   
   print *, ' Hello from thread ', 

thread_number      
   end do      

   !$omp end parallel do   
   end program ch2902        

 However we have introduced a variable thread_number and are using the 
OpenMP default data scoping rules, i.e. we have said nothing. Here is the output 
from the Intel compiler.  

 We appear to have a working program. Here is the output from the gfortran compiler.  
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 Now something appears to be not quite right! The default variable scoping rules 
mean that the variable  thread_number  is available to all threads – in OpenMP termi-
nology it is shared. The opposite of shared is private and each thread has their own 
copy. Example 3 corrects this problem.  

    29.5   Example 3 – Hello World with Private  thread_number  
Variable 

     program ch2903   
   use omp_lib   
   implicit none   
   integer :: nthreads   
   integer :: thread_number   
   integer :: I 

    nthreads = omp_get_max_threads()   
   print *, ' Number of threads = ', nthreads    

    !$omp parallel do private(thread_number)
     do I = 1, nthreads
     thread_number = omp_get_thread_num()   
   print *, ' Hello from thread ', 

thread_number         
   end do      

   !$omp end parallel do   
   end program ch2903     

 Here is the output from the gfortran compiler.  

 Care must be taken with variables in OpenMP to ensure they have the correct 
data scoping state.  
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    29.6   Example 4 – Parallel Solution for pi Calculation 

 This is an OpenMP parallel implementation of the integration problem (example 
three) from the previous chapter. You should compare it with the MPI solution – 
example four in the last chapter.

    program ch2904   
   use precision_module   
   use timing_module   
   use omp_lib   
   implicit none   
   real (long) :: fortran_internal_pi   
   real (long) :: partial_pi   
   real (long) :: openmp_pi   
   real (long) :: width   
   real (long) :: x   
   integer : : nthreads   
   integer : :   
   integer : : j   
   integer : : k   
   integer : : n 

    nthreads = omp_get_max_threads()   
   fortran_internal_pi = 4 . 

0_long*atan(1.0_long)   
   print *, ' Maximum number of threads is ', 

nthreads   
   k=1   
   do 
    call start_timing()   
   n = 100000   
   call omp_set_num_threads(k)   
   print *, ' Number of threads = ', k   
   do j = 1, 5 

    width = 1.0_long/n   
   partial_pi = 0.0_long   
   !$OMP parallel do private(x) 

shared(width)            

   reduction(+:partial_pi) 
    do I = 1, n

     x = width*(real(i,long)-0.5_long)   
   partial_pi = partial_pi + f (x)      

   end do   
   !$omp end parallel do   
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   openmp_pi = width*partial_pi   
   print 20, n, time_difference()   
   20 format (' N intervals = ',i12, & 

    ' time =',f8.3)      
   print 30, openmp_pi , & 

    abs(openmp_pi-fortran_internal_pi)      
   30 format (' openmp_pi = ' , & 

    f20.16,/,'difference = ',f20.16)      
   n = n*10    

    end do   
   k=k*2   
   if (k>nthreads) exit    

    end do      
   contains   
   real (long) function f (x)   
   implicit none   
   real (long), intent (in) : : x 

    f = 4.0_long/(1.0_long+x*x)      
   end function f   
   end program ch2904     

 Here is the output from the Intel compiler. 
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 We have similar timing improvements to the MPI solutions.  

    29.7   Summary 

 This chapter briefl y introduced the essentials of OpenMP programming. We have 
also seen the timing benefi ts that OpenMP programming can offer in the solution of 
the same problem  

    29.8   Problem 

     1.    Compile and run the examples in this chapter with your compiler and compare 
the results.           
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 Aim 

 The aims of this chapter is to provide a short introduction to coarray programming 
in Fortran. 

    30.1   Introduction 

 Coarrays were the major component of the Fortran 2008 standard. As stated earlier 
they are based on a single program multiple data model. Coarrays are a simple parallel 
programming extension to Fortran. They are effectively variables that can be shared 
across multiple instances of the same program or images in Fortran terminology. 

 Coarray variables look like conventional Fortran arrays, except that they use [] 
brackets instead of () brackets. In the simple declaration below

    character(len=20) :: name[*]='*****'       

we declare name to be a  character  coarray and the * in the [] brackets means that the 
bounds of the coarray are calculated at run time, rather than compile time.

    read *, name    

is a reference to the coarray on the current image. 
 We can then use the following statement

    name [i]  =  name    

to broadcast the value read in to each of the other images. 

    Chapter 30   
 Coarray    Fortran              

 Science is a wonderful thing if one does not have to earn one’s 
living at it. 

 Einstein 
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 Note the Fortran coarray syntax here. We use the [] brackets to reference the 
coarray variable on other images and the omission of the [] brackets is a reference 
to the coarray variable on the current image. 

    30.2   Coarray Terminology 

 The following is taken from the standard and covers some of the basic coarray 
terminology.

   CODIMENSION attribute – The CODIMENSION attribute species that an entity • 
is a coarray. The coarray-spec specifi es its corank or corank and cobounds.  
  Allocatable coarray – A coarray with the ALLOCATABLE attribute has a speci-• 
fi ed corank, but its cobounds are determined by allocation or argument 
association.  
  Explicit-coshape coarray – An explicit-coshape coarray is a named coarray that • 
has its corank and cobounds declared by an explicit-coshape-spec.  
  Coindexed named objects – A coindexed-named-object is a named scalar coar-• 
ray variable followed by an image selector.  
  Image selectors – An image selector determines the image index for a coindexed • 
object.  
  Image execution control and image control statements – The execution sequence • 
on each image is specifi ed in 2.3.5 of the standard.  
  Execution of an image control statement divides the execution sequence on an • 
image into segments. Each of the following is an image control statement:

   SYNC ALL statement;   –
  SYNC IMAGES statement;   –
  SYNC MEMORY statement;   –
  ALLOCATE or DEALLOCATE statement that has a coarray allocate-object;   –
  CRITICAL or END CRITICAL;   –
  LOCK or UNLOCK statement;   –
  Any statement that completes execution of a block or procedure and which  –
results in the implicit deallocation of a coarray;  
  STOP statement;   –
  END statement of a main program.      –

  Coarray – A coarray is a data entity that has nonzero corank; it can be directly • 
referenced or defi ned by any image. It may be a scalar or an array.  
  Coarray dummy variables – If the dummy argument is a coarray, the correspond-• 
ing actual argument shall be a coarray and shall have the VOLATILE attribute if 
and only if the dummy argument has the VOLATILE at tribute.  
  Coarray intrinsics• 

   image_index – convert a cosubscript to an image index   –
  lcobound – cobounds of a coarray   –
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  num_images – the number of images   –
  this_image – image index or cosubscripts   –
  ucobound – cobounds of a coarray        –

 Let us look now at some simple examples.  

    30.3   Example 1 – Hello World 

 The fi rst is the classic Hello world.

    program ch3001   
   implicit none 
    print *,' Hello world from image ', this_image()      

   end program ch3001     

 Here is the output from the Intel compiler.  

 The output is obviously very similar to the corresponding MPI and OpenMP 
versions.  

    30.4   Example 2 – Broadcasting Data 

 Here is a simple program that broadcasts data from one image to the rest. This is a 
common requirement in parallel programming.

    program ch3002   
   implicit none   
   integer :: I   
   character(len=20) :: name[*]='*****' 
    print 10,name,this_image()   
   10 format(1x,' Hello ', a20,' from image ',i3)   
   if (this_image() == 1) then 
    print *,' Type in your name'   
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   read *, name   
   do I = 2, num_images() 
    name [i] = name      

   end do      
   end if   
   sync all   
   print 10,name,this_image()      

   end program ch3002     

 Here is the output from the Intel compiler.  

 Again no particular ordering of the image numbers.  

    30.5   Example 3 – Parallel Solution for Pi Calculation 

     program ch3003   
   use precision_module   
   use timing_module   
   implicit none   
   real (long) :: fortran_internal_pi   
   real (long) :: partial_pi   
   real (long) :: coarray_pi   
   real (long) :: width   
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   real (long) :: total_sum   
   real (long) :: x   
   real (long) , codimension[*] :: partial_sum   
   integer :: n_intervals   
   integer :: I   
   integer :: j   
   integer :: current_image   
   integer :: n_images 

    fortran_internal_pi = 4.0_long*atan(1.0_long)   
   n_images=num_images()   
   current_image=this_image()   
   if (current_image == 1) then 

    print *,' Number of images = ',n_images      
   end if    
    n_intervals=100000   
   do j=1,5 

    if (current_image == 1) then
     call start_timing()      

   end if   
   width = 1.0_long/real(n_intervals, long)   
   total_sum=0.0_long   
   partial_sum= 0.0_long   
   do i=current_image,n_intervals,n_images 

    x = (real(i,long) - 0.5_long)*width   
   partial_sum = partial_sum + f(x)      

   end do    
    partial_sum=partial_sum*width   
   sync all   
   if (current_image==1) then 

    do i=1,n_images
     total_sum=total_sum+partial_sum[i]      

   end do   
   coarray_pi = total_sum   
   print 20, n_intervals, time_difference()   
   20 format (' n intervals = ',i12,' time =',f8.3)   
   print 30, coarray_pi , & 

    abs(coarray_pi-fortran_internal_pi)      
   30 format (' pi = ',f20.16,/, & 

    ' difference = ',f20.16)         
   end if   
   n_intervals=n_intervals*10   
   sync all      

   end do      
   contains   
   real (long) function f(x)   
   implicit none   
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   real (long), intent (in) :: x 
    f = 4.0_long/(1.0_long+x*x)      

   end function f   
   end program ch3003     

 Here is the output from the Intel compiler.

       Number of images = 8      

   2011/ 6/10 13:40:48 479   
   n intervals = 100000 time = 0.004   
   pi = 3.1415926535981260   
   difference = 0.0000000000083329   

   2011/ 6/10 13:40:48 486   
   n intervals = 1000000 time = 0.004   
   pi = 3.1415926535898802   
   difference = 0.0000000000000870   

   2011/ 6/10 13:40:48 490   
   n intervals = 10000000 time = 0.012   
   pi = 3.1415926535897936   
   difference = 0.0000000000000004   

   2011/ 6/10 13:40:48 500   
   n intervals = 100000000 time = 0.105   
   pi = 3.1415926535897749   
   difference = 0.0000000000000182   

   2011/ 6/10 13:40:48 605   
   n intervals = 1000000000 time = 0.992   
   pi = 3.1415926535898455   
   difference = 0.0000000000000524     

 Here is the output from the Cray compiler.

       Number of images = 96      

   2011/ 6/10 13:35: 7 419   
   n intervals = 100000 time = 0.004   
   pi = 3.1415926535981265   
   difference = 0.0000000000083333   

   2011/ 6/10 13:35: 7 421   
   n intervals = 1000000 time = 0.000   
   pi = 3.1415926535898766   
   difference = 0.0000000000000835   

   2011/ 6/10 13:35: 7 422   
   n intervals = 10000000 time = 0.004   
   pi = 3.1415926535897949   
   difference = 0.0000000000000018   



46330.6 Example 4 – Work Sharing

   2011/ 6/10 13:35: 7 424   
   n intervals = 100000000 time = 0.012   
   pi = 3.1415926535897913   
   difference = 0.0000000000000018   

   2011/ 6/10 13:35: 7 436   
   n intervals = 1000000000 time = 0.105   
   pi = 3.1415926535897949   
   difference = 0.0000000000000018     

 We get the time improvement we have seen with both the MPI and OpenMP 
solutions.  

    30.6   Example 4 – Work Sharing 

 This example looks at one way of splitting work up between images. We use the 
image number to determine which image does which work. It is a coarray version 
of the MPI work sharing example.

    program ch3004   
   implicit none   
   integer:: n, i,j   
   integer:: me, nim, start,end   
   integer, parameter:: factor=5   
   integer, dimension(1:factor), codimension[*]:: x 

    nim = num_images()   
   me = this_image()   
   n = nim*factor   
   x = 0   
   start = factor*(me-1) + 1   
   end = factor*me   
   j = 1   
   do i=start,end 

    x(j) = i*factor   
   print*,'on image ',me, 'j = ',j,' x(j) = ',x(j)   
   j = j + 1      

   end do    
    sync all   
   if (me == 1) then 

    print *,'coarray x on image ',me,' is: ' ,x   
   do i=2,nim 
    print*, 'coarray x on image ',I,' is: ',x(:) [I]      

   end do      
   endif      

   end program ch3004     



464 30 Coarray    Fortran

 The following statements defi ne the start and end points for the array processing 
for each image:

    start = factor*(me-1) + 1   
   end = factor*me    

and partitions the work between the images. Each image will have its own start 
and end values. The following do loop does the work:

    do i=start,end    
 x(j) = i*factor   
   print*,'on image ',me, 'j = ',j,' x(j) = ',x(j)   
   j = j + 1      

   end do     

 We need the

    sync all    

to ensure that each image has completed before further processing, and we then 
print out the data from each image on image 1. 

 Here is a subset of the output from the Intel compiler. This example runs on eight 
images.  
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 Here is a sample of the output from the Cray compiler on the Hector service. 
This example runs on 96 images.

    on image 2 j = 1 x(j) = 30   
   on image 4 j = 1 x(j) = 80   
   on image 2 j = 2 x(j) = 35   
   on image 4 j = 2 x(j) = 85   
   on image 2 j = 3 x(j) = 40   
   on image 4 j = 3 x(j) = 90   
   on image 77 j = 1 x(j) = 1905   
   on image 74 j = 1 x(j) = 1830   
   on image 77 j = 2 x(j) = 1910    
    …   
   … 
    on image 64 j = 2 x(j) = 1585   
   on image 60 j = 2 x(j) = 1485   
   on image 39 j = 5 x(j) = 975   
   on image 30 j = 1 x(j) = 730      
   …   
   … 
    on image 31 j = 1 x(j) = 755   
   on image 42 j = 1 x(j) = 1030   
   on image 31 j = 2 x(j) = 760      
   …   
   … 
    on image 41 j = 1 x(j) = 1005   
   on image 27 j = 3 x(j) = 665      
   …   
   … 
    on image 44 j = 1 x(j) = 1080   
   on image 46 j = 4 x(j) = 1145      
   …   
   … 
    coarray x on image 1 is: 5, 10, 15, 20, 25   
   coarray x on image 2 is: 30, 35, 40, 45, 50   
   coarray x on image 3 is: 55, 60, 65, 70, 75   
   coarray x on image 4 is: 80, 85, 90, 95, 100   
   coarray x on image 5 is: 105, 110, 115, 120, 125   
   coarray x on image 6 is: 130, 135, 140, 145, 150   
   coarray x on image 7 is: 155, 160, 165, 170, 175   
   coarray x on image 8 is: 180, 185, 190, 195, 200      
   …   
   … 
    coarray x on image 88 is: 2180, 2185, 2190, 2195, 2200   
   coarray x on image 89 is: 2205, 2210, 2215, 2220, 2225   
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   coarray x on image 90 is: 2230, 2235, 2240, 2245, 2250   
   coarray x on image 91 is: 2255, 2260, 2265, 2270, 2275   
   coarray x on image 92 is: 2280, 2285, 2290, 2295, 2300   
   coarray x on image 93 is: 2305, 2310, 2315, 2320, 2325   
   coarray x on image 94 is: 2330, 2335, 2340, 2345, 2350   
   coarray x on image 95 is: 2355, 2360, 2365, 2370, 2375   
   coarray x on image 96 is: 2380, 2385, 2390, 2395, 2400         

    30.7   Summary 

 This chapter has looked briefl y at some of the simple syntax of coarrays using a 
small set of examples. We have also seen the timing benefi ts that coarray program-
ming can offer in the solution of the same problem.  

    30.8   Problem 

     1.    Compile and run the examples in this chapter with your compiler.           
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 Aim 

 This chapter looks briefl y at C interoperability. 

    31.1   Introduction 

 C is a widely used programming languages and there is a considerable amount of 
software written in C. Fortran 2003 introduced a standardised mechanism for inter-
operating with C. 

 In this chapter we provide a brief coverage of some of the technical details 
required for interoperability and then have a look at a couple of examples. 

    31.2   ISO_C_BINDING Module 

 There is an intrinsic module called ISO_C_BINDING that contains named con-
stants, derived types and module procedures to support interoperability.  

    31.3   Named Constants and Derived Types in the Module 

 The entities listed in the second column of Table  31.1 , are named constants of type 
default integer.   

    Chapter 31   
 C    Interop              

 We can’t solve problems by using the same kind of thinking we 
used when we created them. 

 Einstein 
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    31.4   Character Interoperability 

 The following maps between Fortran and C character types. The semantics of these 
values are explained in 5.2.1 and 5.2.2 of the C International Standard.  

 Names of C characters with special semantics 

 Name  C defi nition  C_CHAR =  −1 C_CHAR/=−1 
 C_NULL_CHAR  Null character  CHAR(0)  '\0' 
 C_ALERT  Alert  ACHAR(7)  '\a' 
 C_BACKSPACE  Backspace  ACHAR(8)  '\b' 
 C_FORM_FEED  Form feed  ACHAR(12)  '\f' 
 C_NEW_LINE  New line  ACHAR(10)  '\n' 
 C_CARRIAGE_RETURN  Carriage return  ACHAR(13)  '\r' 
 C_HORIZONTAL_TAB  Horizontal tab  ACHAR(9)  '\t' 
 C_VERTICAL_TAB  Vertical tab  ACHAR(11)  '\v' 

   Table 31.1            

 Fortran type 
 Named constant from the ISO_C_BINDING 
module (kind type parameter if value is positive)  C type 

 INTEGER  C_INT  Int 
 C_SHORT  short int 
 C_LONG  long int 
 C_LONG_LONG  long long int 
 C_SIGNED_CHAR  signed char 

 unsigned char 
 C_SIZE_T  size t 
 C_INT8_T  int8 t 
 C_INT16_T  int16 t 
 C_INT32_T  int32 t 
 C_INT64_T  int64 t 
 C_INT_LEAST8_T  int least8 t 
 C_INT_LEAST16_T  int least 16 t 
 C_INT_LEAST32_T  int least32 t 
 C_INT_LEAST64_T  int least64 t 
 C_INT_FAST8_T  int fast8 t 
 C_INT_FAST16_T  int fast16 t 
 C_INT_FAST32_T  int fast32 t 
 C_INT_FAST64_T  int fast64 t 
 C_INTMAX_T  intmax t 
 C_INTPTR_T  intptr t 

 REAL  C_FLOAT  Float 
 C_DOUBLE  Double 
 C_LONG_DOUBLE  long double 

 COMPLEX  COMPLEX_C_DOUBLE _COMPLEX  Double Complex 
 C_LONG_DOUBLE_COMPLEX  long double Complex 

 LOGICAL  C_BOOL  Bool 
 CHARACTER  C_CHAR  char 

  The above mentioned C types are defi ned in the C International Standard, clauses 6.2.5, 7.17, and 7.18.1  



47131.7 Other Aspects of Interoperability

    31.5   Procedures in the Module 

 There are several procedures in this module. In the descriptions below, procedure 
names are generic and not specifi c. 

 A C procedure argument is often defi ned in terms of a C address. The C_LOC 
and C_FUNLOC functions are provided so that Fortran applications can determine 
the appropriate value to use with C facilities. 

 The C_ASSOCIATED function is provided so that Fortran programs can com-
pare C addresses. 

 The C_F_POINTER and C_F_PROCPOINTER subroutines provide a means of 
associating a Fortran pointer with the target of a C pointer. 

 More information can be found in Chap.   15     of the standard.  

    31.6   Interoperability of Intrinsic Types 

 Table  31.1  shows the interoperability between Fortran intrinsic types and C types. 
A Fortran intrinsic type with particular type parameter values is interoperable with 
a C type if the type and kind type parameter value are listed in the table on the same 
row as that C type; if the type is character, interoperability also requires that the 
length type parameter be omitted or be specifi ed by an initialization expression 
whose value is one. A combination of Fortran type and type parameters that is 
interoperable with a C type listed in the table is also interoperable with any unquali-
fi ed C type that is compatible with the listed C type. 

 The second column of the table refers to the named constants made accessible by 
the ISO_C_BINDING intrinsic module. 

 A combination of intrinsic type and type parameters is interoperable if it is 
interoperable with a C type.  

    31.7   Other Aspects of Interoperability 

 There are considerable restrictions on other aspects of interoperability. The follow-
ing provides some brief details of other areas:

   Interoperability with C pointer types• 

   C_PTR and C_FUNPTR shall be derived types with private components.  –
C_PTR is interoperable with any C object pointer type. C_FUNPTR is 
interoperable with any C function pointer type.     

  Interoperability of scalar variables• 

   A scalar Fortran variable is interoperable if its type and type parameters are  –
interoperable and it has neither the pointer nor the allocatable attribute.  
  An interoperable scalar Fortran variable is interoperable with a scalar C entity  –
if their types and type parameters are interoperable.     
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  Interoperability of array variables• 

   An array Fortran variable is interoperable if its type and type parameters are  –
interoperable and it is of explicit shape or assumed size.     

  Interoperability of procedures and procedure interfaces• 

   A Fortran procedure is interoperable if it has the BIND attribute, that is, if its  –
interface is specifi ed with a proc-language-binding-spec.     

  Interoperation with C global variables• 

   AC variable with external linkage may interoperate with a common block or  –
with a variable declared in the scope of a module. The common block or vari-
able shall be specifi ed to have the BIND attribute.     

  Binding labels for common blocks and variables• 

   The binding label of a variable or common block is a value of type default  –
character that specifi es the name by which the variable or common block is 
known to the companion processor.     

  Interoperation with C functions• 

   A procedure that is interoperable may be defi ned either by means other than  –
Fortran or by means of a Fortran subprogram, but not both.       

 Another useful source can be found in the December 2009 edition of Fortran 
Forum. Details are given at the end of the chapter.  

    31.8   C_LOC Examples 

 We include a small number of examples using the C_LOC function. Here is some of 
the technical information on C_LOC from the standard.

   C_LOC (X)

   Description.• 
   Returns the C address of the argument.     

  Class.• 
   Inquiry function.     

  Argument.• 
   X shall either

   1.    have interoperable type and type parameters and be

   (a)    a variable that has the TARGET attribute and is interoperable,   
  (b)    an allocated allocatable variable that has the TARGET attribute and 

is not an array of zero size, or  
   (c)    an associated scalar pointer, or      



47331.9 Example 1

   2.    be a nonpolymorphic scalar, have no length type parameters, and be

   (a)    a nonallocatable, nonpointer variable that has the TARGET attribute,  
   (b)    an allocated allocatable variable that has the TARGET attribute, or  
   (c)    an associated pointer.             

  Result Characteristics.• 
   Scalar of type C_PTR.     

  Result Value. • 

 The result value will be described using the result name CPTR.

   1.    If X is a scalar data entity, the result is determined as if C_PTR were a 
derived type containing a scalar pointer component PX of the type and 
type parameters of X and the pointer assignment CPTR%PX => X were 
executed.  

   2.    If X is an array data entity, the result is determined as if C_PTR were a 
derived type containing a scalar pointer component PX of the type and 
type parameters of X and the pointer assignment of CPTR%PX to the 
fi rst element of X were executed.      

  If X is a data entity that is interoperable or has interoperable type and type • 
parameters, the result is the value that the C processor returns as the result of 
applying the unary “&” operator (as defi ned in the C International Standard, 
6.5.3.2) to the target of CPTR  
  The result is a value that can be used as an actual CPTR argument in a call to • 
C_F_POINTER where FPTR has attributes that would allow the pointer 
assignment FPTR => X. Such a call to C_F_POINTER shall have the effect 
of the pointer assignment FPTR => X.  
  NOTE 15.6 – Where the actual argument is of noninteroperable type or type • 
parameters, the result of C_LOC provides an opaque “handle” for it. In an 
actual implementation, this handle may be the C address of the argument; 
however, portable C functions should treat it as a void (generic) C pointer that 
cannot be dereferenced (6.5.3.2 in the C International Standard).       

 The key issues are that we must take care with the argument to the function, the 
return value is of type C_PTR, and that this is an opaque type. Let us now look at 
some examples using this function.  

    31.9   Example 1 

 The arguments x1 and x2 to c_loc are variables with the target attribute. The argu-
ments p_x1 and p_x2 are both pointers. 

 The return values from the c_loc function must be of type c_ptr. In the fi rst call 
to c_loc these pointers are not associated. 

 We can’t print variables of type c_ptr so we use the transfer intrinsic to convert 
to an integer value that we can print.  

 Here is the output from three compilers. 
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    31.9.1   Gfortran Output 

   

 The program prints out 0 for i3 and i4 initially. At this point the pointers c_ptr3 and 
c_ptr4 are not associated, i.e. they do not point to anything.  

    31.9.2   Intel Output 

   

 Intel does something similar to gfortran and the program prints out 0 for i3 and i4 
initially. At this point the pointers c_ptr3 and c_ptr4 are not associated, i.e. they do 
not point to anything.  
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    31.9.3   Nag Output 

   

 The Nag program prints out −1 for i3 and i4 initially. At this point the pointers 
c_ptr3 and c_ptr4 are not associated, i.e. they do not point to anything. 

 The value zero is often used to signify a special memory value in computing and 
this is chosen by the gfortran and Intel compilers. The Nag compiler chooses −1, 
again a special value.   

    31.10   Example 2 

 In this example we use the null () intrinsic to provide initial values for the two 
pointer variables p_x1 and p_x2.

    program ch3102      
   use iso_c_binding   
   implicit none   

   integer , target :: x1 = 20   
   integer , target :: x2 = 30   
   integer , pointer :: p_x1=>null()   
   integer , pointer :: p_x2=>null()   

   type (c_ptr) :: c_ptr1,c_ptr2,c_ptr3,c_ptr4   

   integer :: i1,i2,i3,i4 

    c_ptr1=c_loc (x1)   
   c_ptr2=c_loc(x2)   
   c_ptr3=c_loc(p_x1)   
   c_ptr4=c_loc(p_x2)   

   i1=transfer(c_ptr1,i1)   
   i2=transfer(c_ptr2,i2)   



47731.10 Example 2

   i3=transfer(c_ptr3,i3)   
   i4=transfer(c_ptr4,i4)   

   print *, ' i1 ' ,i1   
   print *, ' i2 ' ,i2   
   print *, ' i3 ' ,i3   
   print *, ' i4 ' ,i4   

   p_x1 => x1   
   p_x2 => x2   

   c_ptr3=c_loc(p_x1)   
   c_ptr4=c_loc(p_x2)   

   i1=transfer(c_ptr1,i1)   
   i2=transfer(c_ptr2,i2)   
   i3=transfer(c_ptr3,i3)   
   i4=transfer(c_ptr4,i4)   

   print *, ' xl ',x1   
   print *, ' x2 ',x2   
   print *, ' P_x1 ',p_x1   
   print *, ' P_x2 ',p_x2   
   print *, ' il ',il   
   print *, ' i2 ',i2   
   print *, ' i3 ',i3   
   print *, ' i4 ',i4      

   end program ch3102     

 The output for the gfortran and Intel compilers is as before. The Nag output is 
given below.

  

 The Nag compiler therefore distinguishes between pointers that are uninitialised 
(−1) and initialised (0) to the null value, i.e. not associated. This kind of bug is quite 
hard to fi nd!  
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    31.11   Bibliography 

 Einarsson, B., Hanson, R.J., Hopkins, T.: Standardized mixed language program-
ming for Fortran and C. Fortran Forum,  28 (3), (December 2009)  

    31.12   Problem 

     1.    Compile and run the example programs in this chapter with your compiler and 
examine the output.           
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 Aims 

 The aims of this chapter are to look in more depth at arithmetic and in particular at the 
support that Fortran provides for the IEEE 754 standard. There is a coverage of:

   Hardware support for arithmetic.  • 
  Integer formats.  • 
  Floating point formats: single and double.  • 
  Special values: denormal, infi nity and not a number – NAN.  • 
  Exceptions and fl ags: divide by zero, inexact, invalid, overfl ow, under fl ow.    • 

    32.1   Introduction 

 The literature contains details of the IEEE 754 standard and the bibliography contains 
details of a number of printed and on-line sources. 

    Chapter 32   
 ISOTR    15580 IEEE Arithmetic              

 Any effectively generated theory capable of expressing 
elementary arithmetic cannot be both consistent and complete. 
In particular, for any consistent, effectively generated formal 
theory that proves certain basic arithmetic truths, there is an 
arithmetical statement that is true, but not provable in the 
theory. 

 Godel, First incompleteness theorem 
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    32.2   History 

 When we use programming languages to do arithmetic two major concerns are the 
ability to develop reliable and portable numerical software. Arithmetic is done in 
hardware and there are a number of things to consider:

   The range of hardware available both now and in the past.  • 
  The evolution of hardware.    • 

 There has been a very considerable change in arithmetic units since the fi rst 
computers. The following is a list of hardware and computing systems that the 
authors have used or have heard of. It is not exhaustive or defi nitive, but rather 
refl ects the authors’ age and experience:

   CDC  • 
  Cray  • 
  IBM  • 
  ICL  • 
  Fujitsu  • 
  DEC  • 
  Compaq  • 
  Gateway  • 
  Sun  • 
  Silicon Graphics  • 
  Hewlett Packard  • 
  Data General  • 
  Honeywell  • 
  Elliot  • 
  Mostek  • 
  National Semiconductors  • 
  Intel  • 
  Zilog  • 
  Motorola  • 
  Signetics  • 
  Amdahl  • 
  Texas Instruments  • 
  Cyrix  • 
  AMD    • 

 Some of the operating systems include:

   NOS  • 
  NOS/BE  • 
  Kronos  • 
  UNIX  • 
  VMS  • 
  Dos  • 
  Windows 3.x  • 
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  Windows 95  • 
  Windows 98  • 
  Windows NT  • 
  Windows 2000  • 
  Windows XP  • 
  Windows Vista  • 
  MVS  • 
  VM  • 
  CP/M  • 
  Macintosh  • 
  OS/2  • 
  Linux, a multitude!    • 

 Again the list is not exhaustive or defi nitive. The intention is simply to provide 
some idea of the wide range of hardware, computer manufacturers and operating 
systems that have been around in the past 50 years. 

 To cope with the anarchy in this area Doctor Robert Stewart (acting on behalf of 
the IEEE) convened a meeting which led to the birth of IEEE 754. 

 The fi rst draft, which was prepared by William Kahan, Jerome Coonen and Harold 
Stone, was called the KCS draft and eventually adopted as IEEE 754. A fascinating 
account of the development of this standard can be found in An Interview with the Old 
Man of Floating Point, and the bibliography provides a web address for this interview. 
Kahan went on to get the ACM Turing Award in 1989 for his work in this area. 

 This has become a de facto standard amongst arithmetic units in modern hard-
ware. Note that it is not possible to describe precisely the answers a program will 
give, and the authors of the standard knew this. This goal is virtually impossible to 
achieve when one considers fl oating point arithmetic. Reasons for this include:

   The conversions of numbers between decimal and binary formats.  • 
  The use of elementary library functions.  • 
  Results of calculations may be in hardware inaccessible to the programmer.  • 
  Intermediate results in subexpressions or arguments to procedures.    • 

 The bibliography contains details of a paper that addresses this issue in much 
greater depth – Differences Among IEEE 754 Implementations. 

 Fortran is one of a small number of languages that provides access to IEEE arith-
metic, and it achieves this via TR1880 which is an integral part of Fortran 2003. The 
C standard (C9X) addresses this issue and Java offers limited IEEE arithmetic sup-
port. More information can be found in the references at the end of the chapter.  

    32.3   IEEE 754 Specifi cations 

 The standard specifi es a number of things including:

   Single precision fl oating point format.  • 
  Double precision fl oating point format.  • 
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  Two classes of extended fl oating point formats.  • 
  Accuracy requirements on the following fl oating point operations:• 

   Add.   –
  Subtract.   –
  Multiply.   –
  Divide.   –
  Square root.   –
  Remainder.   –
  Round numbers in fl oating point format to integer values.   –
  Convert between different fl oating point formats.   –
  Convert between fl oating point and integer format.   –
  Compare.      –

  Base conversion, i.e., when converting between decimal and binary fl oating point • 
formats and vice versa.  
  Exception handling for:• 

   Divide by zero.   –
  Overfl ow.   –
  Underfl ow.   –
  Invalid operation.   –
  Inexact.      –

  Rounding directions.  • 
  Rounding precisions.    • 

 We will look briefl y at each of these requirements. 

    32.3.1   Single Precision Floating Point Format 

 This is a 32-bit quantity made up of a sign bit, 8-bit biased exponent and 23-bit mantissa. 
The standard also specifi es that certain of the bit patterns are set aside and do not represent 
normal numbers. This means that valid numbers are in the range 3.40282347E + 38 to 
1.17549435E-38 and the precision is between 6 and 9 digits depending on the numbers. 

 The special bit patterns provide the following:

   +0  • 
  −0  • 
  subnormal numbers in the range 1.17549421E-38 to 1.40129846E-45  • 
  + infi nity  • 
  − infi nity  • 
  quiet NaN (Not a Number)  • 
  signalling NaN    • 
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 One of the fi rst systems that the authors worked with that had special bit patterns 
set aside was the CDC 6000 range of computers that had negative indefi nite and 
infi nity. Thus the ideas are not new, as this was in the late 1970s. 

 The support of positive and negative zero means that certain problems can be 
handled correctly including:

   The evaluation of the log function which has a discontinuity at zero.  • 
  The equation  •    =1 1

z z    can be solved when z = −1.    

 See also the Kahan paper Branch Cuts for complex Elementary Functions, or 
Much Ado About Nothing’s Sign Bit for more details. 

 Subnormals, which permit gradual underfl ow, fi ll the gap between 0 and the 
smallest normal number. 

 Simply stated underfl ow occurs when the result of an arithmetic operation is so 
small that it is subject to a larger than normal rounding error when stored. The exis-
tence of subnormals means that greater precision is available with these small num-
bers than with normal numbers. The key features of gradual underfl ow are:

   When underfl ow does occur there should never be a loss of accuracy any greater • 
than that from ordinary roundoff.  
  The operations of addition, subtraction, comparison and remainder are always • 
exact.  
  Algorithms written to take advantage of subnormal numbers have smaller error • 
bounds than other systems.  
  if x and y are within a factor of 2 then x-y is error free, which is used in a number • 
of algorithms that increase the precision at critical regions.    

 The combination of positive and negative zero and subnormal numbers means 
that when x and y are small and x-y has been fl ushed to zero the evaluation of

    •    −
1

( )x y      

can be fl agged and located.
Certain arithmetic operations cause problems including:

   0* • ∞  
  0/0  • 
   •    x   when x < 0   

and the support for NaN handles these cases. 
 The support for positive and negative infi nity allows the handling of

   x/0 when x is nonzero and of either sign   • 

and the outcome of this means that we write our programs to take the appropriate 
action. In some cases this would mean recalculating using another approach. 

 For more information see the references in the bibliography.  
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    32.3.2   Double Precision Floating Point Format 

 This is a 64-bit quantity made up of a sign bit, 11-bit biased exponent and 52-bit 
mantissa. As with single precision the standard specifi es that certain of the bit patterns 
are set aside and do not represent normal numbers. This means we have valid 
 numbers in the range 1.7976931348623157E308 to 2.2250738585072014E-308 
and precision between 15 and 17 digits depending on the numbers. 

 As with single precision there are bit patterns set aside for the same special 
conditions. 

 Note that this does not mean that the hardware has to handle the manipulation of 
this 64-bit quantity in an identical fashion. The Sparc and Intel family handle the 
above as two 32-bit quantities but the order of the two component parts is reversed 
– so-called big endian and little endian.  

    32.3.3   Two Classes of Extended Floating Point Formats 

 These formats are not mandatory. A number of variants of double extended exist 
including:

   Sun – four 32-bit words, one sign bit, 15-bit biased exponent and 112-bit mantissa, • 
numbers in the range 3.362E-4932 to 1.189E4932, 33–36 digits of signifi cance.  
  Intel – 10 bytes – one sign bit, 15-bit biased exponent, 63-bit mantissa, numbers • 
in the range 3.362E-4932 to 1.189E4932, 18–21 digits of signifi cance.  
  PowerPC – as Sun.     • 

    32.3.4   Accuracy Requirements 

 Remainder and compare must be exact. The rest should return the exact result if 
possible; if not, there are well-defi ned rounding rules to apply.  

    32.3.5   Base Conversion – Converting Between Decimal and 
Binary Floating Point Formats and Vice Versa 

 These results should be exact if possible; if not the results must differ by tolerances 
that depend on the rounding mode.  
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    32.3.6   Exception Handling 

 It must be possible to signal to the user the occurrence of the following conditions 
or exceptions:

   Divide by zero.  • 
  Overfl ow.  • 
  Underfl ow.  • 
  Invalid operation.  • 
  Inexact.    • 

 The ability to detect the above is a big step forward in our ability to write robust 
and portable code. These operations do occur in calculations and it is essential to 
have user programmer control over what action to take.  

    32.3.7   Rounding Directions 

 Four rounding directions are available:

   Nearest – the default.  • 
  Down.  • 
  Up.  • 
  Chop.    • 

 Access to directed rounding can be used to implement interval arithmetic, for 
example.  

    32.3.8   Rounding Precisions 

 The only mandatory part here is that machines that perform computations in extended 
mode let the programmer control the precision via a control word. This means that if 
software is being developed on machines that support extended modes those machines 
can be switched to a mode that would enable the software to run on a system that 
didn’t support extended modes. This area looks like a can of worms. Look at the 
Kahan paper for more information – Lecture Notes on the Status of IEEE 754.   

    32.4   Resumé 

 The above has provided a quick tour of IEEE 754. We’ll now look at what Fortran 
has to offer to support it.  
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    32.5   ISO TR 15580 

 Fortran provides access to the facilities via the use statement. The current standard 
does not have the concept of an intrinsic module. TR 15580 introduces this concept. 
Three modules are provided:

   ieee_features  • 
  ieee_exceptions  • 
  ieee_arithmetic    • 

 The fi rst thing to consider is the degree of conformance to the IEEE standard. It 
is possible that not all of the features are supported. Thus the fi rst thing to do is to 
run one or more test programs to determine the degree of support for a particular 
system. 

    32.5.1   IEEE_FEATURES Module 

 This module defi nes a derived type, IEEE_FEATURES_type, and up to 11 con-
stants of that type representing IEEE features:

   IEEE_DATATYPE – whether any IEEE data types are available.  • 
  IEEE_DENORMAL – whether IEEE denormal values are available.  • 
  IEEE_DIVIDE – whether division has the accuracy required by IEEE.  • 
  IEEE_HALTING – whether control of halting is supported.  • 
  IEEE_INEXACT_FLAG – whether the inexact exception is supported.  • 
  IEEE_INF – whether IEEE positive and negative infi nities are available.  • 
  IEEE_INVALID_FLAG – whether the invalid exception is supported.  • 
  IEEE_NAN – whether IEEE NaNs are available.  • 
  IEEE_ROUNDING – whether all IEEE rounding modes are available.  • 
  IEEE_SQRT – whether SQRT conforms to the IEEE standard.  • 
  IEEE_UNDERFLOW_FLAG – whether underfl ow is supported.     • 

    32.5.2   IEEE_EXCEPTIONS Module 

 This module provides data types, constants and generic procedures for IEEE 
exceptions:

   type IEEE_STATUS_TYPE  

  Variables of this type can hold a fl oating point status value.  

  subroutine IEEE_GET_STATUS(STATUS_VALUE)  

  type(IEEE_STATUS_TYPE),intent(out) :: STATUS_VALUE  
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  Stores the current fl oating point status into the STATUS_VALUE argument.  

  subroutine IEEE_SET_STATUS(STATUS_VALUE)  

  type(IEEE_STATUS_TYPE),intent(in) :: STATUS_VALUE  

  Sets the current fl oating point status from the STATUS_VALUE argument.  

  type IEEE_FLAG_TYPE    

 Values of this type specify individual IEEE exception fl ags; constants for these 
are available as follows:

   type(IEEE_FLAG_TYPE),parameter :: IEEE_DIVIDE_BY_ZERO  

  type(IEEE_FLAG_TYPE),parameter :: IEEE_INEXACT  

  type(IEEE_FLAG_TYPE),parameter :: IEEE_INVALID  

  type(IEEE_FLAG_TYPE),parameter :: IEEE_OVERFLOW  

  type(IEEE_FLAG_TYPE),parameter :: IEEE_UNDERFLOW    

 In addition, two array constants are available for indicating common combinations 
of fl ags:

   type(IEEE_FLAG_TYPE),parameter :: & 

IEEE_USUAL(3) = (/& 

IEEE_DIVIDE_BY_ZERO,& 

IEEE_INVALID, & 

IEEE_OVERFLOW /), & 

IEEE_ALL(5)  =  ( / & 

IEEE_DIVIDE_BY_ZERO,& 

IEEE_INEXACT, & 

IEEE_INVALID,& 

IEEE_OVERFLOW, & 

IEEE_UNDERFLOW /) 

LOGICAL function IEEE_SUPPORT_FLAG(FLAG,X)  

  type(IEEE_FLAG_TYPE),intent(in) :: FLAG  

  real(kind),intent(in),optional :: X  

  Returns TRUE if detection of the specifi ed IEEE exception is supported for the real 
kind of X (if X is present), or for all real kinds (if X is absent).  

  LOGICAL function IEEE_SUPPORT_HALTING(FLAG) 
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type(IEEE_FLAG_TYPE),intent(in) :: FLAG  

  Returns TRUE if IEEE_SET_HALTING_MODE can be used to change whether 
the processor terminates the program on receiving the specifi ed exception.   

  elemental subroutine & 
IEEE_GET_FLAG(FLAG,FLAG_VALUE)  

  type(IEEE_FLAG_TYPE),intent(in) :: FLAG 

LOGICAL,intent(out) :: FLAG_VALUE  

  Sets (each element of) FLAG_VALUE to TRUE if the corresponding exception 
specifi ed by FLAG is signalling, and to FALSE otherwise.  

  elemental subroutine & 
IEEE_GET_HALTING_MODE(FLAG,HALTING)  

  type(IEEE_FLAG_TYPE),intent(in) :: FLAG 

LOGICAL,intent(out) :: HALTING  

  Sets (each element of) HALTING to TRUE if the corresponding exception specifi ed by 
FLAG is signalling, and to FALSE otherwise.  

  elemental subroutine IEEE_SET_FLAG(FLAG,FLAG_VALUE) 

type(IEEE_FLAG_TYPE),intent(out) :: FLAG

LOGICAL,intent(in) :: FLAG_VALUE  

  Sets the exception fl ag specifi ed by (each element of) FLAG to signalling or quiet 
according to the corresponding element of FLAG_VALUE.  

  elemental subroutine & 
IEEE_SET_HALTING_MODE(FLAG,HALTING)  

  type(IEEE_FLAG_TYPE),intent(out) :: FLAG  

  LOGICAL,intent(in) :: HALTING  

  Sets the halting mode for each exception specifi ed by FLAG to the value of the cor-
responding element of HALTING (TRUE  =  halt).     

    32.5.3   IEEE_ARITHMETIC Module 

These are given below 

      32.5.3.1 IEEE Data Type Selection 

Integer Function SELECTED_real_KIND(P,R) 
    integer(kind1),optional :: P  
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  integer(kind2),optional :: R    

 The same as the SELECTED_real_KIND intrinsic, but only returns information 
about the IEEE kinds of reals.  

      32.5.3.2 General Support Enquiry Functions

LOGICAL Function IEEE_SUPPORT_DATATYPE(X) 

 real(kind),optional :: X 

 Whether IEEE arithmetic is supported for the same kind of real as X (or for all real 
kinds if X is absent).

   LOGICAL function IEEE_SUPPORT_DENORMAL(X) 

real(kind),optional :: X  

  Whether IEEE denormal values are supported for the same kind of real as X (or for 
all real kinds if X is absent).  

  LOGICAL function IEEE_SUPPORT_DIVIDE(X) 

real(kind),optional :: X  

  Whether division is carried out to the accuracy specifi ed by the IEEE standard for 
the same kind of real as X (or for all real kinds if X is absent).  

  LOGICAL function IEEE_SUPPORT_INF(X) 

real(kind),optional :: X  

  Whether IEEE infi nite values are supported for the same kind of real as X (or for all 
real kinds if X is absent).  

  LOGICAL function IEEE_SUPPORT_NAN(X) 

real(kind),optional :: X  

  Whether IEEE NaN (Not-a-Number) values are supported for the same kind of real 
as X (or for all real kinds if X is absent).  

  LOGICAL function IEEE_SUPPORT_SQRT(X) 

real(kind),optional :: X  

  Whether SQRT conforms to the IEEE standard for the same kind of real as X (or for 
all real kinds if X is absent).  

  LOGICAL function IEEE_SUPPORT_STANDARD(X) 

real(kind),optional :: X    

 Whether all the IEEE facilities specifi ed by the TR are supported for the same kind 
of real as X (or for all real kinds if X is absent).  
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      32.5.3.3 Rounding Modes 

Type IEEE_ROUND_type 

 Values of this type specify the IEEE rounding mode.

   type (IEEE_ROUND_type) , parameter :: IEEE_DOWN  

  type (IEEE_ROUND_type) , parameter :: IEEE_NEAREST  

  type (IEEE_ROUND_type) , parameter :: IEEE_TO_ZERO  

  type (IEEE_ROUND_type) , parameter :: IEEE_UP  

  LOGICAL function IEEE_SUPPORT_ROUNDING(ROUND_VALUE,X) type
(IEEE_ROUND_type),intent(in) :: ROUND_VALUE 

real(kind),optional :: X  

  Whether the specifi ed IEEE rounding mode is supported for the same kind of 
real as X (or for all real kinds if X is absent).  

  subroutine IEEE_GET_ROUNDING_MODE(ROUND_VALUE)  

  type(IEEE_ROUND_type),intent(out) :: ROUND_VALUE  

  Sets the ROUND_VALUE argument to the current IEEE rounding mode.  

  subroutine IEEE_SET_ROUNDING_MODE(ROUND_VALUE)  

  type (IEEE_ROUND_type) , intent(in) :: ROUND_VALUE  

  Sets the current IEEE rounding mode to that specifi ed by ROUND_VALUE.     

   32.5.3.4 Number Classifi cation 

Type IEEE_CLASS_TYPE 

 Values of this type indicate the IEEE class of a number.

   type (IEEE_CLASS_TYPE) , &  

  parameter :: IEEE_NEGATIVE_DENORMAL  

  type (IEEE_CLASS_TYPE) , parameter:: IEEE_NEGATIVE_INF  

  type (IEEE_CLASS_TYPE) , parameter:: IEEE_NEGATIVE_NORMAL  

  type (IEEE_CLASS_TYPE) , parameter:: IEEE_NEGATIVE_ZERO  

  type (IEEE_CLASS_TYPE) , parameter:: IEEE_POSITIVE_DENORMAL  

  type (IEEE_CLASS_TYPE) , parameter:: IEEE_POSITIVE_INF  

  type (IEEE_CLASS_TYPE) , parameter::IEEE_POSITIVE_NORMAL  
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  type (IEEE_CLASS_TYPE) , parameter::IEEE_POSITIVE_ZERO  

  type (IEEE_CLASS_TYPE) , parameter::IEEE_QUIET_NAN  

  type (IEEE_CLASS_TYPE) , parameter::IEEE_signalling_NAN  

  elemental type(IEEE_CLASS_TYPE) function IEEE_class(X) 

real(kind),intent(in) :: X    

 Returns the appropriate value of IEEE_CLASS_TYPE for the number X, which 
may be of any IEEE kind. 

 In addition to ISO/IEC TR 15580:1998(E), the module IEEE_ARITHMETIC 
defi nes the “==“ and “/=“ operators for the IEEE_CLASS_TYPE. These may be 
used to test the return value of the IEEE_class function, e.g.,

   use,intrinsic :: IEEE_ARITHMETIC, only: IEEE_class, & 

IEEE_QUIET_NAN, operator(==)  

  . . .  

  if (IEEE_class(X)== IEEE_QUIET_NAN) then  

  . . .  

  elemental real(kind) function IEEE_VALUE(X,class) 

real(kind),intent(in) :: X 

type(IEEE_CLASS_TYPE),intent(in) :: class    

 Returns a sample value of the specifi ed class for the same kind of real as X, 
which may be of any IEEE kind.

   elemental LOGICAL function IEEE_IS_FINITE(X)  

  real(kind),intent(in) :: X  

  Returns TRUE if X is not infi nite or NaN.  

  elemental LOGICAL function IEEE_IS_NAN(X)  

  real(kind),intent(in) :: X  

  Returns TRUE if X is either a signalling or quiet NaN.  

  elemental LOGICAL function IEEE_IS_NEGATIVE(X)  

  real(kind),intent(in) :: X  

  Returns TRUE if X is negative, including negative zero.  

  elemental LOGICAL function IEEE_IS_NORMAL(X)  

  real(kind),intent(in) :: X  

  Returns TRUE if X is not an infi nity, NaN, or denormal.  



492 32 ISOTR    15580 IEEE Arithmetic

  elemental LOGICAL function IEEE_UNORDERED(X,Y)  

  real(kind),intent(in) :: X,Y  

  Returns TRUE if X is a NaN or if Y is a NaN.     

      32.5.3.5 Arithmetic Operations 

    elemental real(kind) function IEEE_COPY_SIGN(X,Y)  

  real (kind) , intent(in) :: X,Y  

  Returns X with the sign of Y, even for NaNs and infi nities.  

  elemental real (kind) function IEEE_LOGB(X)  

  real (kind) , intent(in) :: X  

  Returns the unbiased exponent as a real value:  

  if X is zero, IEEE_DIVIDE_BY_ZERO signals and the result is –infi nity if IEEE 
infi nities are supported for that kind, and –HUGE(X) if not.  

  if X is infi nite, the result is + infi nity.  

  if X is a NaN, the result is a quiet NaN (the same one if X is a quiet NaN); otherwise 
the result is EXPONENT(X)-1.  

  elemental real (kind) function IEEE_NEXT_AFTER(X,Y)  

  real (kind) , intent(in) :: X,Y  

  The same as NEAREST(X,1.0_kind) for Y > X and NEAREST(X,-1.0_kind) for Y 
< X; if Y==X, the result is X, if either X or Y are NaNs the result is one of these  

  NaNs.  

  elemental real (kind) function IEEE_REM(X,Y) 

real (kind) , intent(in) :: X,Y  

  X-Y*N exactly, where N is the integer nearest to the exact value X/Y. if the result is 
zero, it has the same sign as X. This function is not affected by the rounding mode.  

  elemental real (kind) function IEEE_RINT(X)  

  real (kind) , intent(in) :: X  

  Round to an integer according to the current rounding mode.  

  elemental real (kind) function IEEE_SCALB(X,I)  

  real (kind1) , intent(in) :: X  

  integer (kind2) , intent(in) :: I  

  The same as SCALE(X,I).       
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    32.6   Summary 

 Support for the above is relatively limited at the time of writing this book. There is 
always a time lag between the formal publication of a standard and the implementa-
tion in production compilers. As compiler support improves examples will be added 
to our web site. Our home page is:

     • http://www.fortranplus.co.uk/         
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    32.7.1   Web-Based Sources 

   http://validgh.com/goldberg/addendum.html    

   Differences Among IEEE 754 Implementations. The material in this paper will • 
eventually be included in the Sun Numerical Computation Guide as an adden-
dum to Appendix C, David Goldberg’s What Every Computer Scientist Should 
Know about Floating Point Arithmetic.   

http ://docs. sun.com/

   Follow the links to the Floating Point and common Tools AnswerBook. The • 
Numerical Computation Guide can be browsed on-line or down loaded as a pdf 
fi le. The last time we checked it was about 260 pages. Good source of informa-
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   http ://www.validgh.com/    
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larly the CPU and memory systems.    

   http://www.nag.co.uk/nagware/NP/TR.html    
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Fortran has for IEEE arithmetic.    

   http://www.cs.berkeley.edu/~wkahan/    

   Willam Kahan home page.    • 

   http://www.cs.berkeley.edu/~wkahan/ieee754status/754story.html    

   An Interview with the Old Man of Floating Point. Reminiscences elicited from • 
William Kahan by Charles Severance, which appeared in an issue of IEEE 
Computer – March 1998.    

   http://www.cs.berkeley.edu/~wkahan/ieee754status/ieee754.ps    

   Lecture Notes on the Status of IEEE Standard 754 for Binary Floating-Point • 
Arithmetic. Well worth a read.    

   http://www.stewart.cs.sdsu.edu/cs575/labs/l3fl oatpt.html    

   CS 575 Supercomputing – Lab 3: Floating Point Arithmetic. CS 575 is an inter-• 
disciplinary course to introduce students in the sciences and engineering to 
advanced computing techniques using the supercomputers at the San Diego 
Supercomputer Center (SDSC).    

http://validgh.com/goldberg/addendum.html
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    32.7.2   Hardware Sources 

 Amd 

 Visit 

 http://developer.amd.com/documentation/guides/pages/default.aspx    

for details of the AMD manuals. The following fi ve manuals are available for down-
load as pdf s from the above site.

   AMD64 Architecture Programmer’s Manual Volume 1: Application Programming  • 
  AMD64 Architecture Programmer’s Manual Volume 2: System Programming  • 
  AMD64 Architecture Programmer’s Manual Volume 3: General Purpose and • 
System Instructions  
  AMD64 Architecture Programmer’s Manual Volume 4: 128-bit and 256 bit • 
media instructions  
  AMD64 Architecture Programmer’s Manual Volume 5: 64-Bit Media and x87 • 
Floating-Point Instructions    

 Intel 

 Visit 

   http://www.intel.com/products/processor/manuals/index.htm     

 for a list of manuals. The following three manuals are available for download as pdf 
s from the above site.

   Intel® 64 and IA-32 Architectures Software Developer’s Manual. Volume 1: • 
Basic Architecture  
  Intel® 64 and IA-32 Architectures Software Developer’s Manual. Combined • 
Volumes 2A and 2B: Instruction Set Reference, A-Z.  
  Intel® 64 and IA-32 Architectures Software Developer’s Manual. Combined • 
Volumes 3A and 3B: System Programming Guide, Parts 1 and 2    
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 Osbourne, A., Kane, G.: 4-bit and 8-bit Microprocessor Handbook. Osbourne/
McGraw-Hill, Berkeley (1981)

   Good source of information on 4-bit and 8-bit microprocessors. Osbourne, A., • 
Kane, G.: 16-Bit Microprocessor Handbook. Osbourne/McGraw-Hill, Berkely 
(1981)  
  Ditto 16-bit microprocessors.    • 

 Bhandarkar, D.P.: Alpha Implementations and Architecture: Complete Reference 
and Guide. Digital Press, Boston (1996)

   Looks at some of the trade-offs and design philosophy behind the alpha chip. • 
The author worked with VAX, Micro VAX and VAX vectors as well as the Prism. 
Also looks at the GEM compiler technology that DEC/Compaq use.    

   http://www.digital.com/alphaserver/workstations/    

   Home page for the Compaq/DEC Alpha systems.    • 

   http://www.sgi.com/    

   Silicon Graphics home page.    • 

   http://www.sun.com/    

   Sun home page.   • 

http ://  www.ibm.com/      

 IBM home page.     • 

    32.7.3   Operating Systems 

 Deitel, H.M.: An Introduction to Operating Systems. Addison-Wesley, Reading 
(1990) 

 The revised fi rst edition includes case studies of UNIX, VMS, CP/M, MVS and 
VM. The second edition adds OS/2 and the Macintosh operating systems. There is 
a coverage of hardware, software, fi rmware, process management, process concepts, 
asynchronous concurrent processes, concurrent programming, deadlock and indefi -
nite postponement, storage management, real storage, virtual storage, processor 
management, distributed computing, disk performance optimisation, fi le and data-
base systems, performance, coprocessors, risc, data fl ow, analytic modelling, net-
works, security and it concludes with case studies of the these operating systems. 
The book is well written and an easy read.  

http://www.digital.com/alphaserver/workstations/
http://www.sgi.com/
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    32.7.4   Java and IEEE 754 

   http://www.cs.berkeley.edu/~darcy/Borneo/    

   Borneo Language Homepage: Borneo is a dialect of the Java language designed • 
to have true support for the IEEE 754 fl oating point standard. The status of arith-
metic in Java is fl uid. At the time of writing this book Sun had withdrawn from 
the formal language standardisation process. Sun have a publication at their web 
site that addresses changes to the Java language specifi cation for JDK Release 
1.2 fl oating point arithmetic. Their home Java page is  
    • http://www.java.sun.com/         

    32.7.5   C and IEEE 754 

   http://wwwold.dkuug.dk/JTC1/SC22/WG14/    

   The offi cial home of JTC1/SC22/WG14 – C. The C programming language stan-• 
dard ISO/IEC 9899 was adopted by ISO in 1990. ANSI then replaced their fi rst 
standard X3.159 by the ANSI/ISO 9899 standard identical to ISO/IEC 9899:1990.           
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 Aims 

 The aims of this chapter are to look at some additional features of Fortran and also 
provide coverage of a small number of other areas including

   keyword and optional arguments  • 
  Non recursive quicksort  • 
  Simple graphics programming – dislin    • 

    33.1   Introduction 

 This chapter looks at a small number of additional examples that don’t really fi t 
anywhere else. We also cover a small number of additional Fortran concepts. 

    33.2   Keyword and Optional Arguments 

 The examples of procedures so far have assumed that the dummy arguments and the 
corresponding arguments are in the same position, i.e., we are using positional argu-
ments. Fortran also provides the ability to supply the actual arguments to a proce-
dure by keyword, and hence in any order. 

    Chapter 33   
 Miscellaneous    Features and Examples              

 The Analytical Engine weaves algebraic patterns, just as the 
Jacquard loom weaves fl owers and leaves. 

 Ada Lovelace 
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 To do this the name of the dummy argument is referred to as the keyword and is 
specifi ed in the actual argument list in the form

    dummy-argument = actual-argument        

 To illustrate this, let us consider a subroutine to solve ordinary differential equa-
tions. The full subroutine and explanation are given in Chap.   25    :

    subroutine Runge_Kutta_Merson(Y,FUN,IFAIL,N,A,B,TOL)    

where A is the initial point, B is the end point at which the solution is required, TOL 
is the accuracy to which the solution is required and N is the number of equations. 

 The subroutine can be called as follows:

    call Runge_Kutta_Merson ( Y , Fun1 , IFAIL , A=0.0 , & 
B=8.0 , Tol=1.0E-6 , N=3)    

where the dummy arguments A, B, Tol and N are now being used as keywords. The 
use of keyword arguments makes the code easier to read and decreases the need to 
remember their precise position in the argument list. 

 Also with Fortran comes the ability to specify that an argument is optional. This 
is very useful when designing procedures for use by a range of programmers. Inside 
a procedure defaults can be set for the optional arguments providing an easy-to-use 
interface, while at the same time allowing sophisticated users a more comprehen-
sive one. 

 To declare a dummy argument to be optional the optional attribute can be used. 
For example, the last dummy argument Tol for the subroutine Runge_Kutta_Merson 
could be declared to be optional (although internally in the subroutine the code 
would have to be changed to allow for this), e.g.,

    Subroutine Runge_Kutta_Merson(Y,FUN,IFAIL,N,A,B,Tol) 
use Precision_module     

real(Long), intent(inout), optional :: Tol      

 and because it is at the end of the dummy argument list, calling the subroutine with 
a positional argument list, Tol can be omitted, e.g.,

    call Runge_Kutta_Merson(Y,Fun1,IFAIL,N,A,B)     

 The code of the subroutine will need to be changed to check to see if the argu-
ment Tol is supplied, the intrinsic function PRESENT being available for this pur-
pose. Sample code is given below:

    subroutine Runge_Kutta_Merson(Y, FUN, IFAIL, N,A,B,Tol) 
use Precision_module   
   ! code left out   
   real(Long),intent(in),optional::Tol   
   real(Long)::Internal_tol = 1.0D-3 
    if(PRESENT(Tol)) then     
Internal_tol=Tol   
   print*, 'Tol = ', Internal_tol,' is       supplied'      
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   else 
    print*,"Tol isn't supplied, default tolerance = "   
   print *,Internal_tol,' is used'      

   endif      
   ! code left out but all references to tol   
   ! would have to be changed to   
   internal_tol   
   end subroutine Runge_Kutta_Merson     

 A number of points need to be noted when using keyword and optional 
arguments:

   if all the actual arguments use keywords, they may appear in any order.  • 
  When only some of the actual arguments use keywords, the fi rst part of the list • 
must be positional followed by keyword arguments in any order.  
  When using a mixture of positional and keyword arguments, once a keyword • 
argument is used all subsequent arguments must be specifi ed by keyword.  
  if an actual argument is omitted the corresponding optional dummy argument • 
must not be redefi ned or referenced, except as an argument to the PRESENT 
intrinsic function.  
  if an optional dummy argument is at the end of the argument list then it can just • 
be omitted from the actual argument list.  
  Keyword arguments are needed when an optional argument not at the end of an • 
argument list is omitted, unless all the remaining arguments are omitted as well.  
  Keyword and optional arguments require explicit procedure interfaces, i.e., the • 
procedure must be internal, a module procedure or have an interface block avail-
able in the calling program unit.    

 A number of the intrinsic procedures we have used have optional arguments. 
Consult Appendix C for details.  

    33.3   Allocatable Dummy Arrays 

 In the recursive subroutine example using quicksort in Chap.   20     the allocation took 
place in the main program. In this example the allocation takes place in the read_
data subroutine.

    module read_data_module     
implicit none      

   contains 
    subroutine read_data(fi le_name,raw_data,how_many)     
implicit none   
   character (len=*), intent (in) :: fi le_name   
   integer, intent (in) :: how_many   

   real, intent (out), allocatable, &
dimension (:) :: raw_data         
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   ! local variables 
       integer : : I   
   allocate(raw_data(1:how_many))   
   open (fi le=fi le_name,unit=1)   
   do I = 1, how_many 
    read (unit=1,fmt=*) raw_data(I)      

   end do      
   end subroutine read_data      
   end module read_data_module   
   module sort_data_module 

    implicit none      
   contains 
    subroutine sort_data(raw_data,how_many)     
implicit none   
   integer, intent (in) :: how_many   
   real, intent (inout), dimension (:) :: raw_data   
   call quicksort(1,how_many)      

   contains 
    recursive subroutine quicksort(l,r)     
implicit none      

   integer, intent (in) :: l, r         
   ! local variables 
       integer :: I, j   
   real : : v, t   
   I = l   
   j = r   
   v = raw_data(int((l+r)/2))   
   do 
    do while (raw_data(i)<v)
     I = I + 1      

   end do   
   do while (v<raw_data(j) ) 
    j = j – 1      

   end do   
   if (i<=j) then 
    t = raw_data(I)   
   raw_data(I) = raw_data(j)   
   raw_data(j) = t   
   I = I + 1   
   j = j – 1      

   end if   
   if (i>j) exit      
   end do   
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   if (l<j) then 
    call quicksort(l,j)      

   end if   
   if (i<r) then 
    call quicksort(i, r)      

   end if   
   end subroutine quicksort      

   end subroutine sort_data      
   end module sort_data_module   
   module print_data_module 

    implicit none      
   contains 
    subroutine print_data(raw_data,how_many)     
implicit none   
   integer, intent (in) :: how_many   
   real, intent (in), dimension (:) :: raw_data         

   ! local variables 

       integer : : I   
   open (fi le='sorted.txt',unit=2)   
   do I = 1, how_many 

    write (unit=2,fmt=*) raw_data(I)      

   end do   
   close (2)      

   end subroutine print_data      

   end module print_data_module    

    program ch3301     
use read_data_module   
   use sort_data_module   
   use print_data_module   
   implicit none   
   integer :: how_many   
   character (len=20) :: fi le_name   
   real, allocatable, dimension (:) :: raw_data   
   integer, dimension (8) :: timing   
   print *, ' how many data items are there?'   
   read *, how_many   
   print *, ' what is the fi le name?'   
   read ' (a) ', fi le_name   
   call date_and_time(values=timing)   
   print *, ' initial'   
   print *, timing(6), timing(7), timing(8)   
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   call read_data(fi le_name,raw_data,how_many)   
   call date_and_time(values=timing)   
   print *, ' allocate and read'   
   print *, timing(6), timing(7), timing(8)   
   call sort_data(raw_data,how_many)   
   call date_and_time(values=timing)   
   print *, ' sort'   
   print *, timing (6), timing (7), timing (8)   
   call print_data(raw_data,how_many)   
   call date_and_time(values=timing)   
   print *, ' print'   
   print *, timing (6), timing (7), timing (8)   
   print *, ' '   
   print *, ' data written to fi le sorted.txt'      

   end program ch3301     

 We now have a choice of where we do the allocation. This is more fl exible than 
having to do the allocation in the main program, which is effectively a more Fortran 
77 style of programming.  

    33.4   Non Recursive Quicksort 

 The following subroutine is a non recursive Fortran 77 implementation of quicksort. 
It is taken from the Netlib site. Their web address is

      http://www.netlib.org/         

 The following is taken directly from their FAQ.

  What is Netlib? The Netlib repository contains freely available software, documents, and 
databases of interest to the numerical, scientifi c computing, and other communities. The 
repository is maintained by AT&T Bell Laboratories, the University of Tennessee and Oak 
Ridge National Laboratory, and by colleagues world-wide. The collection is replicated at 
several sites around the world, automatically synchronized, to provide reliable and network 
effi cient service to the global community.   

 We located the subroutine by doing a search at the Netlib site on sort. One of the 
entries returned is to the routine dsort.f 

 Here is this subroutine.  

http://www.netlib.org/
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 We will look at the ways that we can replace our call to quicksort in ch2005 with 
a call to dsort. Here is the header for the dsort routine.

    SUBROUTINE DSORT (DX, DY, N, KFLAG)     

 The routine takes 4 parameters and we look at the implementation of the dsort 
routine to fi nd out more details about each parameter. This line 

provides the fi rst clue as to the nature of the parameters. The following provide 
some more.  
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 The following lines then complete the information.  

 So we have a type mismatch between the array argument to our  quicksort  
and the netlib  dsort . All we need to do here is a global search and replace of 
 double precision  with  real  in  dsort .  f  in our favourite editor. 

 The second problem is what to do about the second argument the  DY  array. One 
solution to this problem is to use the same  raw_data  array and set  KFLAG  to 1. 
This ignores the  DY  array. 

 The next problem we have are the calls to the external routines shown below.   

 and 



51533.4 Non Recursive Quicksort

 The simple solution here is just to comment out the calls to XERMSG as we 
know the errors cannot occur. We also need to comment out the external statement 
referencing XERMSG. 

 The following lines 

provide details about the algorithm and its revision history. This information is 
extremely use when working with the subroutine. 

 We are now going to look at one solution to the problem of how to integrate the 
original program and the  dsort.f  routine. We can independently compile the 
dsort.f routine as a Fortran 77 style routine and generate an object fi le. We can then 
compile the program and add the object fi le to the compilation line. 

 Here are solutions using a variety of compilers. 
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    33.4.1   Gfortran     

    33.4.2   Intel     
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    33.4.3   Nag 

     >nagfor -c dsort.f   
   >nagfor ch2005.f90 dsort.o   
   >a.exe 
    how many data items are there?      

   10000000 
    what is the fi le name?      

   random.txt 
    initial      
    1 4 970 
    allocate      
    1 4 975 
    read      
    1 8 721 
    sort      
    1 11 135 
    print      
    1 20 378 
    data written to fi le sorted.txt         

    33.4.4   Notes – Version Control Systems 

 The original program had the following statement

   *DECK DSORT   

and this statement was one used in version control or revision control software of 
the time. Two that were available on CDC systems from the 1970s to 1980s were 
called update and modify and they used so called  deck names  as seen in this exam-
ple. In computer programming, revision control is any practice that tracks and pro-
vides control over changes to source code. Software developers also use revision 
control software to maintain documentation and confi guration fi les as well as source 
code. 

 The use of this kind of software is common for medium to large scale program 
development. 

 Wikipedia provides a comparison of what is currently available. See

      http:/en.wikipedia.org/wiki/Comparison_of_revision_control_
software        

for more information.   

http://en.wikipedia.org/wiki/Comparison_of_revision_control_software
http://en.wikipedia.org/wiki/Comparison_of_revision_control_software
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    33.5   Simple Graphics Programming – Dislin 

 We have already used the dislin graphics library in earlier chapters. Our resource 
fi le

      http://www.fortranplus.co.uk/resources/fortran_
resources.pdf        

provides details of some of the graphics libraries available. This is the dislin home 
page.

      http://www.mps.mpg.de/dislin/         

 Here is a description of the software from the above page.

   The software is available for several C, Fortran 77 and Fortran 90/95 compilers • 
on the operating systems UNIX, Linux, FreeBSD, Open VMS, Windows, Mac 
OSX and MS-DOS. DISLIN programs are very system-independent, they can be 
ported from one operating system to another with out any changes.    

 The original program on which this is based was written by Ian whilst he was on 
secondment to the United Nations Environment Programme. Section 9 of their 
Environmental Data Reports cover natural disasters and these include

   Earthquakes  • 
  Volcanoes  • 
  Tsunamis  • 
  Floods  • 
  Landslides  • 
  Natural dams  • 
  Droughts  • 
  Wildfi res    • 

 See the bibliography for more details of these publications. The tsunami data sets 
are from this chapter. 
 The tsunami data fi le can be found at:

      http://www.fortranplus.co.uk/         

http://www.fortranplus.co.uk/resources/fortran_resources.pdf
http://www.fortranplus.co.uk/resources/fortran_resources.pdf
http://www.mps.mpg.de/dislin/
http://www.fortranplus.co.uk/
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 There are some minor wrap problems with the code:  
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 Here is the plot produced by this program. 
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 As you can see there are a lot of tsunami events in the Pacifi c area. A colour A4 
pdf of the plot can be found at the Fortranplus website. 

 It is a common requirement in science and engineering to have to produce graph-
ical output and we have now briefl y covered some of the capability of the dislin 
library. Most graphics libraries will offer similar functionality.  

    33.6   Problem 

     1.    The complete working version of the non recursive version of quicksort has not 
been included. The source fi les (Netlib dsort.f and our ch2005.f90) required are 
available at the Fortranplus website.     

 Download them and make the changes necessary to replace the call to quicksort 
with a call to dsort with your compiler. What timing information do you get? 

    33.6.1   Hint 

 diff is a Unix command that compares text fi les. Here is the diff output from com-
paring the original dsort.f fi le with a working version. 
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diff is a very useful utility for comparing different versions of your programs!   
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 Aim 

 This chapter looks at some of the options available when working with older 
Fortran code. 

    34.1   Introduction 

 This chapter looks at converting Fortran 77 code to a modern Fortran style. 
 The aim is to provide the Fortran 77 programmer (and in particular the person 

with legacy code) with some simple guidelines for conversion. 
 The fi rst thing that one must have is a thorough understanding of the newer, better 

language features of Fortran. It is essential that the material in the earlier chapters 
of this book are covered, and some of the problems attempted. This will provide a 
feel for modern Fortran. 

 The second thing one must have is a thorough understanding of the language 
constructs used in your legacy code. Use should be made of the compiler documen-
tation for whatever Fortran 77 compiler you are using, as this will provide the 
detailed (often system specifi c) information required. The recommendations below 
are therefore brief. 

    Chapter 34   
 Converting    from Fortran 77              

 Twas brillig, and the slithy toves 
 did gyre and gimble in the wabe; 
 All mimsy were the borogoves, 
 And the mome raths outgrabe. 

 Lewis Carroll 
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 It is possible to move gradually from Fortran 77 to modern Fortran. In many 
cases existing code can be quite simply recompiled by a suitable choice of compiler 
options. This enables us to mix and match old and new in one program. This process 
is likely to highlight nonstandard language features in your old code. There will 
inevitably be some problems here. 

 The standard identifi es two kinds of decremented features; deleted and obso-
lescent. It is extremely unwise to consider the long-term use of these features as 
they are candidates for removal from future standards. 

    34.2   Deleted Features 

 The list of deleted features for Fortran 2008 is empty, i.e., there are none.  

    34.3   Obsolescent Features 

 The obsolescent features are those for which better methods are available. They are 
given below with alternatives. 

    34.3.1   Arithmetic if 

 Use the if statement.  

    34.3.2   Real and Double Precision Do Control Variables 

 Use integer.  

    34.3.3   Shared Do Termination and Non-enddo Termination 

 Use an end do.  

    34.3.4   Alternate Return 

 Use a case statement on return. An error code has to be returned.  
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    34.3.5   Pause Statement 

 System specifi c. Normally easily replaced with a suitable read statement.  

    34.3.6   Assign and Assigned Goto Statements 

 Fortunately rarely used.  

    34.3.7   Assigned Format Statements 

 Use character arrays, arrays and constants.  

    34.3.8   H Editing 

 Use character edit descriptor.   

    34.4   Better Alternatives 

 Below we are looking at the new features of the Fortran standard, and how we can 
replace our current coding practices with the better facilities that now exist.

   Double precision – use KIND, see Chap.   5    , and examples throughout the book.  • 
  Fixed format – use free format  • 
  Implicit typing – use implicit none  • 
  Block data – use modules  • 
  Common statement – use modules  • 
  Equivalence – Invariably the use of this feature requires considerable system • 
specifi c knowledge. There will be cases where there have been extremely good 
reasons why this feature has been used, normally effi ciency related. However 
with the rapid changes taking place in the power and speed of hardware these 
reasons are diminishing.  
  Assumed-size/explicit-shape dummy array arguments – if a dummy argument is • 
assumed-size or explicit-shape (the only ones available in Fortran 77) then the 
ranks of the actual argument and the associated argument don’t have to be the 
same. With Fortran arrays are now objects instead of a linear sequence of ele-
ments, as was the case with Fortran 77, and now for array arguments the funda-
mental rule is that actual and dummy arguments have the same rank and same 



534 34 Converting    from Fortran 77

extents in each dimension, i.e., the same shape, and this is done using assumed-
shape dummy array arguments. An explicit interface is mandatory for assumed-
shape arrays.  
  Entry statement – use module plus use statement.  • 
  Statement functions – use internal function, see Chap.   12    .  • 
  Computed goto – use case statement, see Chap.   13    .  • 
  Alternate return – use error fl ags on calling routine.  • 
  external statement for dummy procedure arguments – use modules and interface • 
blocks. See the Runge-Kutta-Merson example in Chap.   25    .    

 Use explicit interfaces everywhere, i.e. use module procedures. This also pro-
vides argument checking and other benefi ts.  

    34.5   Commercial Conversion Tools 

 At the time of writing there are several options. Have a look at our Fortran 
resource fi le: 

   http://www.fortranplus.co.uk/resources/fortran_resources.pdf    

for up to date information. 
 Here are brief details of the tools currently available. 

    34.5.1   Convert 

 Fortran 77 to Fortran 90 converter by Mike Metcalf. 

   http://www.nag.co.uk/nagware/Examples/convert.f90      

    34.5.2   Forcheck 

 A Fortran analyzer and programming aid. 

   http://www.forcheck.nl/      

    34.5.3   Forstruct 

 Restructures FORTRAN into Clean, Maintainable Code. 

   http://www.cobalt-blue.com/fs/fsmain.htm      

http://www.fortranplus.co.uk/resources/fortran_resources.pdf
http://www.nag.co.uk/nagware/Examples/convert.f90
http://www.forcheck.nl/
http://www.cobalt-blue.com/fs/fsmain.htm
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    34.5.4   Forstudy 

 Analyzes and Documents your FORTRAN code. 

   http://www.cobalt-blue.com/      

    34.5.5   Fortran90-Lint 

 For Fortran 90 program analysis 

   http://legacy.cleanscape.net/products/downloads/ftpfl int.html      

    34.5.6   Plusfort 

 Fortran 77 to Fortran 90 converter. 

   http://www.polyhedron.com/      

    34.5.7   VAST/77to90 

 Fortran 77 to Fortran 90 translator 

   http://www.crescentbaysoftware.com/vast_77to90.html       

    34.6   Example of plusFORT Capability 
from Polyhedron Software 

 Below is an example from their site that looks at the same subroutine in Fortran 66, 
77 and 90 styles. 

    34.6.1   Original Fortran 66 

 This subroutine picks off digits from an integer and branches depending on 
their value.

http://www.cobalt-blue.com/
http://legacy.cleanscape.net/products/downloads/ftpflint.html
http://www.polyhedron.com/
http://www.crescentbaysoftware.com/vast_77to90.html
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       subroutine OBACT(TODO)      
   integer TODO,DONE,IP,BASE   
   common /EG1/N,L,DONE   
   parameter (BASE=10)      

   13 if(TODO.EQ.0) GO TO 12 
    I=MOD(TODO,BASE)   
   TODO=TODO/BASE   
   GO TO(62,42,43,62,404,45,62,62,62),I   
   GO TO 13      

   42 call COPY 
    GO TO 127      

   43 call MOVE 
    GO TO 144      

   404 N=-N   
   44 call DELETE 
    GO TO 127      

   45 call print 
    GO TO 144      

   62 call BADACT(I) 
    GO TO 12      

   127 L=L+N   
   144 DONE=DONE+1 
    call RESYNC   
   GO TO 13      

   12 return   
   end      

    34.6.2   Fortran 77 Version 

 In addition to restructuring, SPAG has renamed some variables, removed the unused 
variable IP, inserted declarations, and used upper and lower case to distinguish dif-
ferent types of variable:         
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    34.6.3   Fortran 90 Version 

 SPAG has used do while, select case, exit and cycle. No GOTOs or labels remain.        
 This tool suite can also be used in the maintenance of code during 

development.   
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    34.7   Summary 

 This chapter has shown some of the options open to you when working with legacy 
code. The emphasis has been on relatively straightforward code restructuring. The 
use of software tools to aid in this is highly recommended as converting manually 
using an editor is obviously going to involve much more work.        
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Glossary      

  Abstract interface    Set of procedure characteristics with dummy argument names   
  Actual argument    A value (variable, expression or procedure) passed from a calling 

program unit to a subprogram unit.   
  Adjustable array    An explicit-shape array that is a dummy argument to a subprogram.   
  Algorithm    Derived from the name of the ninth century Persian mathematician 

Abu Ja’far Mohammed ibn Musa al-Kuwarizmi (father of Ja’far Mohammed, 
son of Moses, native of Kuwarizmi), corrupted through western culture as Al-
Kuwarizmi. Now a sequence of computations.   

  Allocatable    Having the allocatable attribute   
  Allocatable array    An array that has the allocatable attribute.   
  Argument    Exists in two forms; actual argument, which is in the calling routine 

and is one of a variable, expression or procedure, and dummy argument, which 
is in the called routine.   

  Argument association    The process of matching up an actual argument and dum-
my argument during program execution.   

  Array    An array is a data structure where each scalar element has the same type 
and kind. An array may be up to rank 7. It may be referenced by element 
(via subscripts), by section or as a whole.   

  Array constructor    A mechanism used to initialise or give values to a one-
 dimensional array. The RESHAPE function can then be used to handle rank 2 
and above arrays.   

  Array element    A scalar item of an array. An array element is picked out by a 
subscript.   

  Array element ordering    The elements of an array, regardless of rank, form a 
 linear sequence. The sequence is such that the subscripts along the fi rst dimen-
sion vary most rapidly.   

  Array section    A part of an array. The actual set depends on the subscripts.   

         Appendix A



540 Appendix A

  ASCII    American Standard Code for Information Interchange. See Appendix 3.   
  Associate name    Name of construct entity associated with a selector of an associate 

or select type construct   
  Association    The means by which an entity can be referenced by different names in 

one scoping unit, or one or more names in multiple scoping units.   
  Assumed-length dummy argument    A dummy argument that inherits the length 

attribute of the actual argument.   
  Assumed-shape array    A dummy argument that inherits the shape of the associ-

ated argument.   
  Assumed-size array    A dummy array whose size is inherited from the associated 

actual argument.   
  Atomic subroutine    Intrinsic subroutine that performs an action on its atom argu-

ment atomically   
  Attribute    A property of a data type, and specifi ed in a type declaration statement.   
  Automatic array    This is an explicit-shape array that is a local variable in a sub-

program unit.   
  Binding    Type-bound procedure or fi nal subroutine   
  Binding name    Name given to a specifi c or generic type-bound procedure in the 

type defi nition   
  Block    Sequence of executable constructs formed by the syntactic class block and 

which is treated as a unit   
  Bound    The bounds of an array are the upper and lower limits of the index in each 

dimension.   
  Character constant    A constant that is a string of one or more printable ASCII 

characters, enclosed in apostrophes (') or quotation mark (").   
  Character string    A sequence of one or more characters. These are contiguous.   
  Coarray    Data entity that has nonzero corank   
  Cobound    Bound of a codimension   
  Codimension    Dimension of the pattern formed by a set of corresponding 

 coarrays   
  Collating sequence    The order in which a set of characters is sorted by default. The 

standard does not require that a processor provide the ASCII encoding, but does 
require intrinsic functions that convert between the processor encoding and the 
ASCII encoding.   

  Compilation unit    One or more source fi les that are compiled to form one object 
fi le.   

  Component    Part of a derived type defi nition.   
  Concatenate    Join together two or more character items using the character con-

catenation operator //.   
  Conformable    Two arrays are said to be conformable if they have the same shape.   
  Constant    A constant is a data object whose value cannot be changed. There are 

two kinds in Fortran: one is obtained using the parameter statement; the other is 
a literal constant in an expression; e.g., with the expression 4*ATAN(1) both 4 
and 1 are literal constants. It may be a scalar or an array.   
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  Contiguous    Normally applied to items that are adjacent in memory, e.g., charac-
ters in a character variable.   

  Corank    Number of codimensions of a coarray   
  Cosubcript    Scalar integer expression   
  Data entity    A data object that has a specifi c type.   
  Data object    A data object is a constant, variable or part of a constant or variable.   
  Data type    For each data type there are the following: 0. a name 1. a set of val-

ues from a domain; 2. a set of valid operations upon these values; 3. a display 
method. There are fi ve predefi ned data types in Fortran and these are integer, 
real, complex, character and logical. 

 For integers the values are drawn from the domain of integer numbers, the 
valid operations are addition, subtraction, multiplication, division and exponen-
tiation, and they are displayed as a sequence of digits.   

  Declaration    A declaration is a nonexecutable statement that specifi es attributes of 
a program element, e.g., specifying the dimension of an array and the type of a 
variable.   

  Default initialization    Mechanism for automatically initializing pointer compo-
nents to have a defi ned pointer association status, and nonpointer components to 
have a particular value.   

  Default kind    The kind type parameter which is used for one of Fortran’s base 
types (integer, real, complex, character or logical) if one is not specifi ed.   

  Deferred-shape array    An allocatable array or an array pointer. The bounds are 
specifi ed with a colon, (:).   

  Defi ned    For a data object having a valid value.   
  Defi ned assignment    Assignment defi ned by a procedure   
  Derived type    A data type that is user defi ned and not one of the fi ve intrinsic 

types.   
  Dimension    An array can be from one to seven dimensioned inclusive. Also called 

the rank.   
  Disassociated    (Pointer association) Pointer association status of not being associ-

ated with any target and not being undefi ned.   
  Dummy argument    A variable name that appears in the bracketed or parenthesised 

list following the procedure name. (e.g., function or subroutine name). Dummy 
arguments take on the actual values of the corresponding arguments in the call-
ing routine.   

  Dynamic type    Type of a data entity at a particular point during execution of a 
program   

  Elemental    An operation that applies independently to each element in an array.   
  Elemental assignment    Assignment that operates elementally.   
  Elemental procedure    Elemental intrinsic procedure or procedure defi ned by an 

elemental subprogram   
  Entity    Rather vague term covering a constant, variable, program unit, etc.   
  Exceptional values    Normally restricted to real numbers and typically one of 

 nonnormalised numbers, infi nity, not-a-number (NaN) values, etc.   
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  Explicit interface    A mechanism to make information available between the call-
ing routine and the called routine. This information includes the names of the 
procedures, the dummy arguments, the attributes of the arguments, the attributes 
of functions, and the order of the arguments.   

  Explicit-shape array    A named array that has its bounds specifi ed in each 
 dimension.   

  Expression    An expression is a sequence of operands and operators that specifi es 
a computation.   

  Extended type    Type with the extends attribute   
  Extent    The number of elements of one dimension of an array. Also called the size.   
  External subprogram    An external subprogram is one that is global to the whole 

program.   
  Function    One of the two procedure mechanisms available in Fortran along with 

the subroutine. They effectively provide a way of invoking a computation by 
 using the function name, and return a result. There is the concept of type and 
kind for the result.   

  Function reference    A function is invoked by the use of its name in an 
 expression.   

  Function result    The result value(s) from invoking a function.   
  Generic    Simplistically the ability of a procedure to accept arguments of more than 

type. This facility is taken for granted with the intrinsic procedures, and users can 
now create their own generic procedures.   

  Global    An entity that is available throughout the executable program. A global 
entity has global scope. See also scope and local scope.   

  Host association    The mechanism by which a module procedure, internal proce-
dure or derived type defi nition accesses entities of the host.   

  Image    Instance of a Fortran program   
  Image control statement    Statement that affects the execution ordering between 

images   
  Image index    Integer value identifying an image   
  Implicit interface    A procedure interface whose properties are not known within 

the scope of the calling routine.   
  Inherit    (Extended type) acquire entities through type extension from the parent 

type   
  Inheritance association    Association between the inherited components of an 

 extended type and the components of its parent component   
  Inquiry function    A function whose result depends on the properties of the 

 argument.   
  Interface    (Procedure) name, procedure characteristics, dummy argument names, 

binding label, and generic identifi ers   
  Interface block    A sequence of statements starting with an interface statement and 

ending with an end interface statement.   
  Interface body    The sequence of statements in an interface block between either a 

function or subroutine statement and the corresponding end statement.   
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  Internal procedure    A procedure that is contained within an internal subprogram. 
The program unit containing the internal procedure is called the host. The inter-
nal procedure is local to the host and inherits the host environment through host 
association.   

  Intrinsic procedure    One of the standard supplied procedures.   
  Keyword    Statement keyword, argument keyword, type parameter keyword, or 

component keyword   
  Kind    For each of the fi ve Fortran types (integer, real, complex, logical and char-

acter) there is the concept of kind. For example for integers it is common to fi nd 
8-bit, 16-bit and 32-bit implementations. Each of these has an associated kind 
type. 

 For real and complex types this enables us to choose both the range and preci-
sion of the numbers we work with. 

 For characters we can choose between character sets, which is of considerable 
use for working with different languages.   

  Kind type parameter    An integer value used to identify the kind of one of the fi ve 
base types, see above.   

  Language extension    Most compiler implementations will provide language exten-
sions. These are NOT part of the standard, and make porting code suites between 
different hardware and software platforms diffi cult and sometimes impossible.   

  Linker    A program that is normally the fi nal stage in the process of going from 
Fortran source to executable.   

  Local entity    An entity that is only available within the context of a subprogram.   
  Main program    A program unit that contains a program statement.   
  Module    A program unit that contains specifi cations and defi nitions that other pro-

gram units can access and use.   
  Module procedure    A function or subroutine defi ned within a module   
  Name    An entity with a program, e.g., constant, variable, function result, proce-

dure, program unit, dummy argument.   
  Name association    This provides access to the same entity (either data or a proce-

dure) from different scoping units by the same or a different name.   
  Nesting    The placing of one entity within another, e.g., one loop within another or 

one subprogram within another.   
  Nonexecutable statement    A language statement that describes program attributes, 

but does not cause any action when the program is executed.   
  Object fi le    File created after successful compilation. Used by the linker to generate 

an executable.   
  Parameter    Term used to describe two completely different things. 1. a named 

constant—and hence the parameter attribute. 2. more generally equivalent to 
 argument.   

  Parent type    (Extended type) Type named in the extends clause   
  Pointer    A data object that has the pointer attribute.   
  Pointer assignment    Association of a pointer with a target, by execution of a 

 pointer assignment statement or an intrinsic assignment statement for a derived-
type object that has the pointer as a subobject   
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  Pointer association    The association of a part of memory to a pointer by means of 
a target.   

  Precision    The number of signifi cant digits in a real number.   
  Procedure    A function or subroutine.   
  Procedure interface    The statements that specify the name of a procedure, the char-

acteristics of that procedure, the name of the dummy arguments, the attributes of 
the dummy arguments the generic identifi er (optional) for the procedure.   

  Program    A program is an entity that can be compiled and executed on its own. 
There must be at least a declaration block and execution block.   

  Program unit    A main program or a subprogram. The subprogram can be a func-
tion, subroutine or module.   

  Rank    The rank of an array is the number of dimensions.   
  Recursion    A property of a function or subroutine, and it means that the function or 

subroutine references itself directly or indirectly.   
  Reference    A data object reference is the appearance of a named entity in an 

 executable statement requiring the value of the object.   
  Relational expression    An expression containing one or more of the relational 

 operators and operands of numeric or character type.   
  Scalar    A single data object of any type. A scalar has a rank of zero.   
  Scalar variable    A variable of scalar type.   
  Scope and scoping unit    The part of a program in which a name has a defi ned 

meaning. The name may be a named constant, a variable, a function, a proce-
dure, or dummy argument. The part of the program is one of a program unit or 
subprogram, a derived type defi nition or a procedure interface body. Scoping 
units cannot overlap, but one scoping unit may be contained in another. In the 
latter case we have an example of host association.   

  Shape    The rank and extents of an array.   
  Shape conformance    Generally means that two or more arrays have the same rank 

and extent.   
  Size    The total number of elements in an array—the product of the extents.   
  Source fi le    A fi le known to the operating system that contains the Fortran state-

ments.   
  Statement    An instruction in a programming language, normally classifi ed as ex-

ecutable and nonexecutable.   
  Stride    The increment in a subscript triplet.   
  Structure    Either a scalar data object of derived type or a composite entity contain-

ing one or more subcomponents.   
  Structure component    Component of a structure   
  Structure constructor    Syntax that specifi es a structure value or creates such a 

value   
  Subprogram    A user written or supplied function or subroutine.   
  Subroutine    A user subprogram that is invoked with the call statement. It can return one 

value, many values or no value at all to the calling program through the argu-
ments.   

  Subscript    A scalar integer expression used to select an element of an array   
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  Subscript triplet    A subscript triplet is a set of three values representing the lower 
bound of the array section, the upper bound of the array section, and the incre-
ment (stride) between them.   

  Substring    A contiguous set of characters in a string.   
  Target    A named data object associated with a pointer.   
  Transformational function    An intrinsic function that is not elemental or inquiry.   
  Truncation    For real numbers the approximation obtained by chopping off the frac-

tional part of the number and working with the integer part. 
 For character variables removing one or more characters from a string.   

  Type-bound procedure    Procedure that is bound to a derived type and referenced 
via an object of that type   

  Type compatible    Compatibility of the type of one entity with respect to another 
for purposes such as argument association, pointer association, and allocation   

  Type declaration    One of the nonexecutable statements in Fortran, and one of inte-
ger, real, complex, character, logical or type.   

  Underfl ow    A condition where the result of an arithmetic expression is smaller than 
the minimum value in the range for that data type.   

  Use association    Association between entities in a module and entities in a scoping 
unit or construct that references that module as specifi ed by a USE statement   

  User defi ned type    A data type that is defi ned by the user and not one of the  intrinsic 
types.   

  Variable    A data object that has an associated memory location whose value can be 
changed during program execution. A variable may be a scalar or an array.      
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   Appendix B

ASCII Character Set    

 0  nul  32  64  @  96  ' 
 1  soh  33  !  65  A  97  a 
 2  stx  34  "  66  B  98  b 
 3  etx  35  #  67  C  99  c 
 4  eot  36  $  68  D  100  d 
 5  enq  37  %  69  E  101  e 
 6  ack  38  &  70  F  102  f 
 7  bel  39  '  71  G  103  g 
 8  bs  40  (  72  H  104  h 
 9  ht  41  )  73  I  105  i 
 10  lf  42  *  74  J  106  j 
 11  vt  43  +  75  K  107  k 
 12  ff  44  ,  76  L  108  1 
 13  cr  45  –  77  M  109  m 
 14  so  46.  .  78  N  110  n 
 15  si  47  /  79  O  111  o 
 16  dle  48  0  80  P  112  P 
 17  dc1  49  1  81  Q  113  q 
 18  dc2  50  2  82  R  114  r 
 19  dc3  51  3  83  S  115  s 
 20  dc4  52  4  84  T  116  t 
 21  nak  53  5  85  U  117  u 
 22  syn  54  6  86  V  118  v 
 23  etb  55  7  87  W  119  w 
 24  can  56  8  88  X  120  x 
 25  em  57  9  89  Y  121  y 
 26  sub  58  :  90  Z  122  z 
 27  esc  59  ;  91  [  123  { 
 28  fs  60  <  92  \  124  | 
 29  gs  61  =  93  ]  125  } 
 30  rs  62  >  94  ̂   126  ~ 
 31  us  63  ?  95  _  127  del 
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   Appendix C

Intrinsic Functions and Procedures 

 This appendix has a brief coverage of some of the more commonly used intrinsic 
functions and procedures. Chap.   13     of the standard should be consulted for exhaus-
tive coverage. 

 The following abbreviations and typographic conventions are used in this 
appendix. 

 Argument type and result type:  

 I  integer 
 R  real 
 C  complex 
 N  Numeric (any of integer, real, complex) 
 L  Logical 
 P  pointer 
 P*  polymorphic 
 T  target 
 DP  double precision 
 Char  character, length  =  1. 
 S  character 
 Boz  boz-literal-constant 
 Co  coarray or coindexed object 

 Class 
 A  indicates that the procedure is an atomic subroutine 
 E  indicates that the procedure is an elemental function 
 ES  indicates that the procedure is an elemental subroutine 
 I  indicates that the procedure is an inquiry function 
 PS  indicates that the procedure is a pure subroutine 
 S  indicates that the procedure is an impure subroutine 
 T  indicates that the procedure in a transformational function 
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 See Chap.   12     for more information on these classifi cations. 
 Arguments in italics 
  ALL(Mask, Dim ) 
 are optional arguments, i.e., Dim may be omitted in the example above. 

 Double precision 

 Before Fortran 90 if you required real variables to have greater precision than the 
default real then the only option available was to declare them as double precision. 
With the introduction of kind types with Fortran 90 the use of double precision 
declarations is not recommended, and instead real entities with a kind type offering 
more than the default precision should be used. 

 Kind optional argument 

 There are several functions that have an optional argument Kind, e.g., AINT(A, Kind ). 
if Kind is absent the result is the same kind type as the fi rst argument, in this case A. 
if Kind is present the result has the kind type specifi ed by this argument. 

 Result type 

 When the result type is the same as the argument type then the result is not just the 
same type as the argument but also the same kind. 

 Miscellaneous rules 

 When the argument is Back it is of logical type. 
 When the argument is Count_Rate, Count_Max, Dim, Kind, Len, Order, N_Copies, 
Shape, Shift, Values it is of integer type. 
 When the argument is Mask it is of logical type. 
 When the argument is target it is of pointer or target type. 
 Fortran 2008 contained several changes to Fortran 2003 that affects intrinsic procedures.

   The following functions can now have arguments of type complex, ACOS, ASIN, 
ATAN, COSH, SINH, TAN and TANH.  

  The intrinsic function ATAN2 can be referenced by the name ATAN.  
  The intrinsic functions LGE, LGT, LLE and LLT can have arguments of ASCII kind.  
  A BACK= argument has been added to the intrinsic functions MAXLOC and 

MINLOC.  
  A RADIX= argument has been added to the intrinsic function SELECTED_REAL_

KIND.    

 ABS(A) 

 Yields the absolute value unless A is complex; see below.  

 Argument: A     Type: N 
 Result: As argument  Class: E 

 Note: if A is complex (x,y) then the functions returns     +2 2x y    
 Example: R1=ABS(A) 
 ACHAR(I) 
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 Returns character in the ASCII character set.  

 Argument: I  Type: I 
 Result: Char  Class: E 

 Example: C=ACHAR(I) 
 ACOS(X) 
 Arccosine (inverse cosine).  

 Argument: X  Type: R 
 Result: As argument  Class: E 

 Note: |  x  |  £  1 
 Example: Y=ACOS(X) 
 ACOSH(X) 
 Inverse hyperbolic cosine function.  

 Argument: X  Type: R,C 
 Result: As argument  Class: E 

 Example: Y = ACOSH(X) 
 ADJUSTL(String) 
 Adjust string left, removing leading blanks and inserting trailing blanks.  

 Argument: String  Type: S 
 Result: As argument  Class: E 

 Example: S=ADJUSTL(S) 
 ADJUSTR(String) 
 Adjust string right, removing trailing blanks and inserting leading blanks.  

 Argument: String  Type: S 
 Result: As argument  Class: E 

 Example: S=ADJUSTR(S) 
 AIMAG(Z) 
 Imaginary part of complex argument.  

 Argument: Z  Type: C 
 Result: As argument  Class: E 

 Example: Y=AIMAG(Z) 
 AINT(A, Kind ) 
 Truncation.  

 Argument: A  Type: R 
 Result: As A  Class: E 
 Argument: Kind  Type: I 
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 Example: Y=AINT(Z) and when Z=0.3 Y=0, when Z=2.73 Y=2.0, when Z=−2.73 
Y=−2.0 

 ALL(Mask, Dim ) 
 Determines whether all values are true in Mask along dimension Dim.  

 Argument: Mask  Type: L 
 Result: L  Class: T 

 Note: Dim must be a scalar in the range 1  £   Dim   £   n  where n is the rank of Mask. 
The result is scalar if Dim is absent or Mask has rank 1. Otherwise it works on the 
dimension Dim of Mask and the result is an array of rank n−1. 

 Example: T=ALL(M) 
 ALLOCATED(Array) 
 Returns true if array is allocated.  

 Argument: Array  Type: Any 
 Result: L  Class: I 

 Note: Array must be declared with the allocatable attribute. 
 Example: if (ALLOCATED(Array) ) then … 
 ANINT(A, Kind ) 
 Rounds reals, i.e., returns nearest whole number.  

 Argument: A  Type: R 
 Result: As A  Class: E 

 Example: Z=ANINT(A), if A = 5.63 Z = 6, if A = −5.7 Z = −6.0 
 ANY(Mask, Dim ) 
 Determines whether any value is true in Mask along dimension Dim.  

 Argument: Mask  Type: L 
 Result: L  Class: T 

 Note: Mask must be an array. The result is a scalar if Dim is absent or if Mask is 
of rank 1. Otherwise it works on the dimension Dim of Mask and the result is an 
array of rank n−1. 

 Example: T=ANY(A) 
 ASIN(X) 
 Arcsine.  

 Argument: X  Type: R,C 
 Result: As argument  Class: E 

 Example: Z=ASIN(X) 
 ASINH(X) 
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 Inverse hyperbolic sine function.  

 Argument: X  Type: R,C 
 Result: As argument  Class: E 

 Example: Y=ASINH(X) 
 ASSOCIATED(pointer,  target ) 
 Returns the association status of the pointer.  

 Argument: pointer  Type: P 
 Result: L  Class: I 

  Note: 

     1.    if target is absent then the result is true if pointer is associated with a target, oth-
erwise false.  

    2.    if target is present and is a target, the result is true if pointer is currently associ-
ated with target and false if it is not.  

    3.    if target is present and is a pointer, the result is true if both pointer and target are 
currently associated with the same target, and is false otherwise. if either pointer 
or target is disassociated the result is false.      

 Example: T=ASSOCIATED(P) 
 ATAN(X) 
 Arctangent.  

 Argument: X  Type: R,C 
 Result: As argument  Class: E 

 Example: Z=ATAN(X) 
 ATAN2(Y,X) 
 Arctangent of Y/X.  

 Arguments: Y  Type: R 
 Result: As arguments  Class: E 

 Example: Z=ATAN2(Y,X) 
 ATANH(X) 
 Inverse hyperbolic tangent function.  

 Argument: X  Type: R,C 
 Result: As argument  Class: E 

 Example: Y = ATANH(X) 
 ATOMIC_DEFINE (ATOM, VALUE) 
 Defi ne a variable atomically.  



554 Appendix C

 Arguments: ATOM  Type: Co 
 VALUE  scalar and same type as ATOM 
 Result: N/A  Class: A 

  Note: 

     1.    ATOM shall be a scalar coarray or coindexed object and of type integer with kind 
ATOMIC_INT_KIND or of type logical with kind ATOMIC_LOGICAL_KIND, 
where ATOMIC_INT_KIND and ATOMIC_LOGICAL_KIND are the named 
constants in the intrinsic module ISO_FORTRAN_ENV. It is an INTENT (OUT) 
argument. If its kind is the same as that of VALUE or its type is logical, it becomes 
defi ned with the value of VALUE. Otherwise, it becomes defi ned with the value 
of INT (VALUE, ATOMIC_INT_KIND).  

    2.    VALUE shall be scalar and of the same type as ATOM. It is an INTENT (IN) 
argument.      

 Example: CALL ATOMIC_DEFINE (I[2], 4) causes I on image 2 to become 
defi ned with the value 4. 

 ATOMIC_REF (VALUE, ATOM) 
 Reference a variable atomically.  

 Arguments: VALUE  Type: scalar and same type as ATOM 
 ATOM  Co 
 Result: N/A  Class: A 

  Note: 

     1.    VALUE shall be scalar and of the same type as ATOM. It is an INTENT (OUT) 
argument. If its kind is the same as that of ATOM or its type is logical, it becomes 
defi ned with the value of ATOM. Otherwise, it is defi ned with the value of INT 
(ATOM, KIND (VALUE)).  

    2.    ATOM shall be a scalar coarray or coindexed object and of type integer with kind 
ATOMIC_INT_KIND or of type logical with kind ATOMIC_LOGICAL_KIND, 
where ATOMIC_INT_KIND and ATOMIC_LOGICAL_KIND are the named 
constants in the intrinsic module ISO_FORTRAN_ENV. It is an INTENT (IN) 
argument.      

 BESSEL_J0(X) 
 Bessel function of the 1st kind, order 0.  

 Argument: X  Type: R 
 Result: As argument  Class: E 

 Example: Y = BESSEL_J0(1.0) has the value 0.765 (approximately) 
 BESSEL_J1(X) 
 Bessel function of the 1st kind, order 1.  
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 Argument: X  Type: R 
 Result: As argument  Class: E 

 Example: Y = BESSEL_J1(1.0) has the value 0.440 (approximately). 
 BESSEL_JN (N, X) 
 Bessel functions of the 1st kind.  

 Arguments: N, X  Type: N is I, X is R 
 Result: as X  Class: E 

 Example: Y = BESSEL_JN (2, 1.0) has the value 0.115 (approximately). 
 BESSEL_JN (N1, N2, X) Bessel functions of the 1st kind.  

 Arguments: N1, N2, X  Type: N1, N2 are I, X is R 
 Result: is a real rank-one array with extent MAX(N2-N1+1, 0). 

Element I of the result value is a processor-dependent approxima-
tion to the Bessel function of the 1st kind and order N1+I−1 of X. 

               Class: T 

 BESSEL_Y0(X) 
 Bessel function of the 2nd kind, order 0.  

 Argument: X  Type: R 
 Result: As argument  Class: E 

 Example: Y = BESSEL_Y0(1.0) has the value 0.088 (approximately). 
 BESSEL_Y1(X) 
 Bessel function of the 2nd kind, order 1.  

 Argument: X  Type: R 
 Result: As argument  Class: E 

 Example: Y = BESSEL_Y 1(1.0) has the value −0.781 (approximately). 
 BESSEL_YN (N, X) 
 Bessel functions of the 2nd kind.  

 Arguments: N, X  Type: N is I, X is R 
 Result: Is same type and kind as X. 

 Class: E 

 Example: Y = BESSEL_YN (2, 1.0) has the value −1.651 (approximately). 
 BESSEL_YN (N1, N2, X) 
 Bessel functions of the 2nd kind.  
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 Arguments: N1, N2, X  Type: N1, N2 are I, X is R 
 Result: is a real rank-one array with extent MAX(N2-N1+1, 0). Element I of the result value 

is a processor-dependent approximation to the Bessel function of the 2nd kind and order 
N1+I−1 of X. 

              Class: T 

 BGE(I, J) 
 Bitwise greater than or equal to.  

 Arguments: I,J  Type: I or Boz 
 Result: L  Class: E 

 The result is true if the sequence of bits represented by I is greater than or equal 
to the sequence of bits represented by J, according to the method of bit sequence 
comparison in 13.3.2 of Fortran 2008 standard; otherwise the result is false. 

 Example: If BIT SIZE (J) has the value 8, BGE (Z'FF', J) has the value true for 
any value of J. BGE (0,−1) has the value false. 

 BGT (I, J) 
 Bitwise greater than.  

 Arguments: I,J  Type: I or Boz 
 Result: L  Class: E 

 The result is true if the sequence of bits represented by I is greater than the 
sequence of bits represented by J, according to the method of bit sequence compari-
son in 13.3.2 of Fortran 2008 standard; otherwise the result is false. 

 Example: BGT (Z'FF', Z'FC') has the value true. BGT (0, -1) has the value 
false. 

 BLE (I, J) 
 Bitwise less than or equal to.  

 Arguments: I,J  Type: I or Boz 
 Result: L  Class: E 

 The result is true if the sequence of bits represented by I is less than or equal to 
the sequence of bits represented by J, according to the method of bit sequence com-
parison in 13.3.2 of Fortran 2008 standard; otherwise the result is false. 

 Example. BLE (0, J) has the value true for any value of J. BLE (−1, 0) has the 
value false. 

 BLT (I, J) 
 Bitwise less than.  

 Arguments: I,J  Type: I or Boz 
 Result: L  Class: E 
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 The result is true if the sequence of bits represented by I is less than the sequence 
of bits represented by J, according to the method of bit sequence comparison in 
13.3.2 of Fortran 2008 standard; otherwise the result is false. 

 Example: Example. BLT (0,−1) has the value true. BLT (Z'FF', Z'FC') has the 
value false. 

 BIT_SIZE(I) 
 Returns the number of bits, as defi ned by the numeric model for integer numbers 

in Chap.   5    .  

 Argument: I  Type: I 
 Result: As argument  Class: I 

 Example: N_Bits=SIZE(I) 
 BTEST(I,Pos) 
 Returns true if the bit is set in the integer argument at the position given by the 

second argument.  

 Argument: I  Type: I 
 Result: L  Class: E 

 Example: T=BTEST(I,Pos) 
 CEILING(A, Kind ) 
 Returns the smallest integer greater than or equal to the argument.  

 Argument: A  Type: R 
 Result: I  Class: E 

  Note: 
 if kind is present the result has the kind type parameter Kind. 
 Otherwise the result is of type default integer.  

 Example: I=CEILING(A) if A=12.21 then I=13, if A=−3.16 then I=−3 
 CHAR(I, Kind ) 
 Returns the character in a given position in the processor collating sequence 

associated with the specifi ed kind type parameter. Normally ASCII.  

 Argument: I  Type: I 
 Result: CHAR  Class: E 

 Example: C=CHAR(65) and for the ASCII character set C='A'. 
 CMPLX(X,Y, Kind ) 
 Converts to complex from integer, real and complex.  

 Argument: X  Type: N 
 Result: C  Class: E 
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  Note: 

     1.    if X is complex and Y is absent it is as if Y were present with the value 
AIMAG(X).  

    2.    if X is not complex and Y is absent, it is as if Y were present with the value 0.      

 Example: Z=CMPLX(X,Y) 
 COMMAND_ARGUMENT_COUNT ( ) 
 Number of command arguments.  

 Arguments  None 
 Result: I  Class: T 

 The result value is equal to the number of command arguments available. If there 
are no command arguments available or if the processor does not support command 
arguments, then the result has the value zero. If the processor has a concept of a 
command name, the command name does not count as one of the command 
arguments. 

 Example: I = COMMAND_ARGUMENT_COUNT ( ) 
 CONJG(Z) 
 Conjugate of a complex argument.  

 Argument: Z  Type: C 
 Result: As Z  Class: E 

 Example: Z1=CONJG(Z) 
 COS(X) 
 Cosine.  

 Argument: X  Type: R, C 
 Result: As argument  Class: E 

 Note: The arguments of all trigonometric functions should be in radians, not 
degrees. 

 Example: A=COS(X) 
 COSH(X) 
 Hyperbolic cosine.  

 Argument: X  Type: R,C 
 Result: As argument  Class: E 

 Example: Z=COSH(X) 
 COUNT(Mask, Dim ) 
 Returns the number of true elements in Mask along dimension Dim.  

 Argument: Mask  Type: L 
 Result: I  Class: T 
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 Note: Dim must be a scalar in the range 1  £   Dim  £  n , where n is the rank of Mask. 
The result is scalar if Dim is absent or Mask has rank 1. Otherwise it works on the 
dimension Dim of Mask and the result is an array of rank n−1. 

 Example: N=COUNT(A) 
 CPU_TIME(Time) 
 Returns the processor time.  

 Argument: Time  Type: R 
 Result: N/A  Class: S 

 Example: call CPU_TIME(Time) 
 CSHIFT(Array,Shift, Dim ) 
 Circular shift on a rank 1 array or rank 1 sections of higher-rank arrays.  

 Argument: Array  Type: Any 
 Result: As Array  Class: T 

 Note: Array must be an array, Shift must be a scalar if Array has rank 1, other-
wise it is an array of rank n−1, where n is the rank of Array. Dim must be a scalar 
with a value in the range 1  £   Dim  £  n . 

 Example: Array=CSHIFT(Array,10) 
 DATE_AND_TIME( Date,Time,Zone,Values ) 
 Returns the current date and time (compatible with ISO 8601:1988).  

 Argument: Date  Type: S 
 Result: N/A  Class: S 

 Time and Zone are of type S. 
  Note: 

     1.    Date is optional and must be scalar and 8 characters long in order to return the 
complete value of the form CCYYMMDD, where CC is the century, YY is the 
year, MM is the month and DD is the day. It is intent(out).  

    2.    Time is optional and must be scalar and 10 characters long in order to return the 
complete value of the form hhmmss.sss where hh is the hour, mm is the minutes 
and ss.sss is the seconds and milliseconds. It is intent(out).  

    3.    Zone is optional and must be scalar and must be 5 characters long in order to 
return the complete value of the form hhmm where hh and mm are the time dif-
ferences with respect to Coordinated Universal Time in hours and minutes. It is 
intent(out).  

    4.    Values is optional and a rank 1 array of size 8. It is intent(out). The values re 
turned are as follows:
   Values(1) = the year  
  Values(2) = the month  
  Values(3) = the day  
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  Values(4) = the time with respect to Coordinated Universal Time in minutes.  
  Values(5) = the hour (24 hour clock)  
  Values(6) = the minutes  
  Values(7) = the seconds  
  Values(8) = the milliseconds in the range 0–999.         

 Example: call DATE_TIME(D,T,Z,V) 
 DBLE(A) 
 Converts to double precision from integer, real, and complex  

 Argument: A  Type: N 
 Result: DP  Class: E 

 Example: D=DBLE(A) 
 DIGITS(X) 
 Returns the number of signifi cant digits of the argument as defi ned in the numeric 

models for integer and reals in Chap.   5    .  

 Argument: X  Type: I,R 
 Result: I  Class: I 

 Example: I=DIGITS(X) 
 DIM(X,Y) 
 Returns fi rst argument minus minimum of the two arguments: X -MIN(X,Y).  

 Argument: X  Type: I 
 Result: As arguments  Class: E 

 Example: Z=DIM(X,Y) 
 DOT_PRODUCT(Vector_1,Vector_2) 
 Performs the mathematical dot product of two rank 1 arrays.  

 Argument: Vector_1  Type: N 
 Result: As arguments  Class: T 

 Vector_2 is as Vector_1. 
  Note: 

     1.    if Vector_1 is of type integer or real the result has the value 
 SUM(Vector_1*Vector_2).  

    2.    if Vector_1 is complex the result has the value 
 SUM(CONJG(Vector_1)*Vector_2).  

    3.    if Vector_1 is logical the result has the value ANY(Vector_1 .AND. Vector_2).      
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 Example: A=DOT_PRODUCT(X,Y) 
 DPROD(X,Y) 
 double precision product of two reals.  

 Argument: X  Type: R 
 Result: DP  Class: E 

 Example: D=DPROD(X,Y) 
 DSHIFTL (I, J, SHIFT) 
 Combined left shift.  

 Arguments: I,J  Type: I or Boz 
    SHIFT  Type: I 

 Result: Same as I if I is of type integer; otherwise, same as J. If either I or J is a boz-literal-
constant, it is fi rst converted as if by the intrinsic function INT to type integer with the 
kind type parameter of the other. The rightmost SHIFT bits of the result value are the 
same as the leftmost bits of J, and the remaining bits of the result value are the same as 
the rightmost bits of I. This is equal to IOR (SHIFTL (I, SHIFT), SHIFTR (J, BIT SIZE 
(J)-SHIFT)). The model for the interpretation of an integer value as a sequence of bits is 
in section 13.3 of Fortran 2008 standard. 

              Class: E 

 Examples: DSHIFTL (1, 2**30, 2) has the value 5 if default integer has 32 bits. 
 DSHIFTL (I, I, SHIFT) has the same result value as ISHFTC (I, SHIFT). 
 DSHIFTR (I, J, SHIFT) 
 Combined right shift.  

 Arguments: I,J  Type: I or Boz 
 SHIFT  Type: I 

 Result: Same as I if I is of type integer; otherwise, same as J. If either I or J is a boz-literal-
constant, it is fi rst converted as if by the intrinsic function INT to type integer with the 
kind type parameter of the other. The leftmost SHIFT bits of the result value are the 
same as the rightmost bits of I, and the remaining bits of the result value are the same 
as the leftmost bits of J. This is equal to IOR (SHIFTL (I, BIT SIZE (I)-SHIFT), 
SHIFTR (J, SHIFT)). The model for the interpretation of an integer value as a sequence 
of bits is in 13.3 of Fortran 2008 standard. 

              Class: E 

 Examples. DSHIFTR (1, 16, 3) has the value 229 +2 if default integer has 32 
bits. 

 DSHIFTR (I, I, SHIFT) has the same result value as ISHFTC (I,-SHIFT). 
 EOSHIFT(Array, Shift,  Boundary, Dim ) 
 End of shift of a rank 1 array or rank 1 section of a higher-rank array.  

 Argument: Array  Type: Any 
 Result: As Array  Class: T 
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 Boundary is as Array. 
 Note: Array must be an array, Shift must be a scalar if Array has rank 1, other-

wise it is an array of rank n−1, where n is the rank of Array. Boundary must be 
scalar if Array has rank 1, otherwise it must be either scalar or of rank −1. Dim must 
be a scalar with a value in the range 1  £   Dim  £  n . 

 Example: A=EOSHIFT(A,Shift) 
 EPSILON(X) 
 Smallest difference between two reals of that kind. See Chap.   5     and real numeric 

model.  

 Argument: X  Type: R 
 Result: As argument  Class: I 

 Example: Tiny=EPSILON(X) 
 ERF (X) 
 Error function.  

 Argument: X  Type: R 
 Result: As X  Class: E 

 Example: Y = ERF(1.0) has the value 0.843 (approximately). 
 ERFC (X) 
 Complementary error function.  

 Argument: X  Type: R 
 Result: As X  Class: E 

 Example: Y = ERFC (1.0) has the value 0.157 (approximately). 
 ERFC_SCALED (X) 
 Scaled complementary error function.  

 Argument: X  Type: R 
 Result: As X  Class: E 

 Example: Y = ERFC_SCALED (20.0) has the value 0.0282 (approximately). 
 EXECUTE_COMMAND_LINE(COMMAND, WAIT,EXITSTAT,CMDSTAT.

CMDMSG ) 
 Execute a command line.

   Argument: COMMAND – shall be a default character scalar. It is an INTENT 
(IN) argument. Its value is the command line to be executed. The interpretation 
is processor dependent.  
  Argument: WAIT – (optional) shall be a default logical scalar. It is an INTENT 
(IN) argument. If WAIT is present with the value false, and the processor sup-
ports asynchronous execution of the command, the command is executed 
 asynchronously; otherwise it is executed synchronously.  
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  Argument: EXITSTAT – (optional) shall be a default integer scalar. It is an 
INTENT (INOUT) argument. If the command is executed synchronously, it is 
assigned the value of the processor-dependent exit status. Otherwise, the value of 
EXITSTAT is unchanged.  
  Argument: CMDSTAT – (optional) shall be a default integer scalar. It is an 
INTENT (OUT) argument. It is assigned the value −1 if the processor does not 
support command line execution, a processor-dependent positive value if an 
error condition occurs, or the value −2 if no error condition occurs but WAIT is 
present with the value false and the processor does not support asynchronous 
execution. Otherwise it is assigned the value 0.  
  Argument: CMDMSG – (optional) shall be a default character scalar. It is an 
INTENT (INOUT) argument. If an error condition occurs, it is assigned a 
 processor-dependent explanatory message. Otherwise, it is unchanged.

           Class: S       

 Example: CALL EXECUTE_COMMAND_LINE('pwd') will print the full 
pathname of the current directory under Unix and an error message from 
Windows. 

 EXP(X) 
 Exponential, e x .  

 Argument: X  Type: R, C 
 Result: As argument  Class: E 

 Example: Y=EXP(X) 
 EXPONENT(X) 
 Returns the exponent component of the argument. See Chap.   5     and the real 

numeric model.  

 Argument: X  Type: R 
 Result: I  Class: E 

 Example: I=EXPONENT(X) 
 EXTENDS_TYPE_OF (A, MOLD) 
 Query dynamic type for extension.  

 Arguments: A, Mold  Type: P* 
 Result: L  Class: I 

 If MOLD is unlimited polymorphic and is either a disassociated pointer or unal-
located allocatable variable, the result is true; otherwise if A is unlimited polymor-
phic and is either a disassociated pointer or unallocated allocatable variable, the 
result is false; otherwise if the dynamic type of A or MOLD is extensible, the result 
is true if and only if the dynamic type of A is an extension type of the dynamic type 
of MOLD; otherwise the result is processor dependent. 
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 Example:

   if (extends_type_of(a, mold) then  
  print*,'dynamic type of a is an extension of dynamic type of mold'  
  endif   

   FINDLOC (ARRAY, VALUE,  DIM, MASK, KIND, BACK )  
  FINDLOC (ARRAY, VALUE,  MASK, KIND, BACK )    

 Location(s) of a specifi ed value.  

 Argument: ARRAY  Type: shall be an array of intrinsic type 
 Argument: VALUE  Type: shall be scalar and in type conformance with ARRAY, as 

specifi ed in Table 7.2 for relational intrinsic operations 
7.1.5.5.2). 

 Argument: DIM  Type: shall be an integer scalar with a value in the range 1 DIM 
 n , where  n  is the rank of ARRAY. The corresponding actual 
argument shall not be an optional dummy argument. 

 Argument: MASK  Type: (optional) shall be of type logical and shall be conform-
able with ARRAY. 

 Argument: KIND  Type: (optional) shall be a scalar integer constant expression. 
 Argument: BACK  Type:(optional) shall be a logical scalar. 

               Class: T 

 FLOOR(A,  Kind ). 
 Returns the greatest integer less than or equal to the argument  

 Argument: A  Type: R 
 Result: I  Class: E 

  Note: 

 If kind is present the result has the kind type parameter Kind, otherwise the result 
is of type default integer.  

 Example: I=FLOOR(A) and when A=5.2 I has the value 5, when A=−9.7 I has 
the value −10 

 FRACTION(X) 
 Returns the fractional part of the real numeric model of the argument See Chap.   5     

and the real numeric model.  

 Argument: X  Type: R 
 Result: As X  Class: E 

 Example: F=FRACTION(X) 
 GAMMA (X) 
 Gamma function.  
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 Argument: X  Type: R 
 Result: As X  Class: E 

 Example: Y = GAMMA(1.0) has the value 1.000 (approximately). 
 GET_COMMAND ( COMMAND, LENGTH, STATUS ) 
 Query program invocation command. 
 GET_COMMAND_ARGUMENT (NUMBER,  VALUE, LENGTH, STATUS ) 
 Query arguments from program invocation. 
 GET_ENVIRONMENT_VARIABLE (NAME,  VALUE, LENGTH, STATUS, 

TRIM_NAME ) 
 Query environment variable. 
 HUGE(X) 
 Returns the largest number for the kind type of the argument. See Chap.   5     and 

the real and integer numeric models.  

 Argument: X  Type: I,R 
 Result: As argument  Class: I 

 Example: H=HUGE(X) 
 HYPOT (X, Y) 
 Euclidean distance function.  

 Arguments: X,Y  Type: R 
 Result: R  Class: E 

 Example: H = HYPOT(3.0, 4.0) has the value 5.0 (approximately). 
 IACHAR(C) 
 Returns the position of the character argument in the ASCII collating sequence.  

 Argument: C  Type: Char 
 Result: I  Class: E 

 Example: I=IACHAR('A') returns the value 65. 
 IALL (ARRAY,  DIM, MASK ) or IALL (ARRAY,  MASK ) 
 Reduce array with bitwise AND operation. 
 IAND(I,J) 
 Performs a logical AND on the arguments.  

 Argument: I  Type: I 
 Result: As arguments  Class: E 

 Example: K=IAND(I,J) 
 IANY (ARRAY,  DIM, MASK ) or IANY (ARRAY,  MASK ) 
 Reduce array with bitwise OR operation. 
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 IBCLR(I,Pos) 
 Clears one bit of the argument to zero.  

 Argument: I  Type: I 
 Result: As I  Class: E 

 Note: 0  £   Pos < BIT_SIZE ( I ) 
 Example: I=IBCLR(I,Pos) 
 IBITS(I,Pos,Len) 
 Returns a sequence of bits.  

 Argument: I  Type: I 
 Result: As I  Class: E 

 Note: 0  £   Pos  and ( Pos + Len )  £   BIT_SIZE ( I ) and  Len   ³  0. 
 Example: Slice=IBITS(I,Pos,Len) 
 IBSET(I,Pos) 
 Sets one bit of the argument to one.  

 Argument: I  Type: I 
 Result: As I  Class: E 

 Note: 0  £   Pos < BIT_SIZE ( I ). 
 Example: I=IBSET(I,Pos) 
 ICHAR(C) 
 Returns the position of a character in the processor collating sequence associated 

with the kind type parameter of the argument. Normally the position in the ASCII 
collating sequence.  

 Argument: C  Type: CHAR 
 Result: I  Class: E 

 Example: I=ICHAR('A') would return the value 65 for the ASCII character set. 
 IEOR(I,J) 
 Performs an exclusive OR on the arguments.  

 Argument: I  Type: I 
 Result: As I  Class: E 

 Example: I=IEOR(I,J) 
 IMAGE_INDEX (COARRAY, SUB) 
 Convert cosubscripts to image index.  

 Argument: COARRAY  Type: Co 
 Argument: SUB  Rank-one integer array 
 Result: I  Class: I 
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 Example:

   integer, codimension[0:*]:: x  
  integer, dimension(10,15), codimension[3,0:1,−1:*]:: z

   print*, image_index(x,(/0/)); print*, image_index(z,(/2,0,−1/))     

  would print 1 and 2 respectively.    

 INDEX(String,Substring, Back ) 
 Locates one substring in another, i.e., returns position of Substring in character 

expression String.  

 Argument: String  Type: S 
 Result: I  Class: E 

 Substring is of type S. 
  Note: 

     1.    if Back is absent or present with the value .FALSE. then the function returns the 
start position of the fi rst occurrence of the substring. if LEN(Substring) = 0 then 
one is returned.  

    2.    if Back is present with the value .TRUE. then the function returns the start posi-
tion of the last occurrence of the substring. if LEN(Substring) = 0 then the value 
(LEN(String) + 1) is returned.  

    3.    if the substring is not found the result is zero.  
    4.    if LEN(String) < LEN(Substring) the result is zero.      

 Example: 
 where=INDEX('Hello world Hello','Hello') 
 The result 2 is returned. 
 where=INDEX('Hello world Hello','Hello',.TRUE.) 
 The result 14 is returned. 
 INT(A, Kind ) 
 Converts to integer from integer, real, and complex.  

 Argument: A  Type: N 
 Result: I  Class: E 

 Example: I=INT(F) 
 IOR(I,J) 
 Performs an inclusive OR on the arguments.  

 Argument: I  Type: I 
 Result: As I  Class: E 

 Example: I=IOR(I,J) 
 IPARITY (ARRAY, DIM,  MASK ) or IPARITY (ARRAY,  MASK ) 
 Reduce array with bitwise exclusive OR operation. 
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 ISHFT(I, Shift) 
 Performs a logical shift. The bits of I are shifted by Shift positions.  

 Argument: I  Type: I 
 Result: As I  Class: E 

 Note: |  Shift |  £  BIT_SIZE ( I ) 
 Example: I=ISHIFT(I,Shift). 
 ISHFTC(I,Shift, Size ) 
 Performs a circular shift of the rightmost bits. The Size rightmost bits of I are 

circularly shifted by Shift positions.  

 Argument: I  type: I 
 Result: I  Class: E 

  Note: 

 |  Shift  | <  Size  
 0  £   Size  £  BIT_SIZE ( I ). 
 if Size is absent it is as if it were present with the value of  BIT_SIZE ( I ). 
 if Shift is positive the shift is to the left. 
 if Shift is negative the shift is to the right. 
 if Shift is zero no shift is performed.  
 Example: I=ISHFTC(I,Shift,Size) 
 IS_CONTIGUOUS (ARRAY) 
 Test contiguity of an array.  

 Argument: ARRAY  Type: any 
 Result: L  Class: I 

 Example: 
 integer,target, dimension(10)::a 
 integer,pointer,dimension(:) :: p 
   p=> a(1:10:2); print*,is_contiguous(p) 
 would print 'F' 
 IS_IOSTAT_END (I) 
 Test IOSTAT value for end-of-fi le.  

 Argument: I  Type: I 
 Result: L  Class: E 

 Example: 
 IS_IOSTAT_END(I) returns value true if I is an I/O status value that corresponds 

to an end-of-fi le condition, and false otherwise.
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   read(unit= 1, fmt=*, iostat=ist)y(I)  
  …  
  if(is_iostat_end(ist)) then
      print*,'end of fi le!'     
  endif    

 IS_IOSTAT_EOR (I) 
 Test IOSTAT value for end-of-record.  

 Argument: I  Type: I 
 Result: L  Class: E 

 Example: IS_IOSTAT_EOR(I) returns value true if I is an I/O status value that 
corresponds to an end-of-record condition, and false otherwise. 

 KIND(X) 
 Returns the KIND type parameter of the argument.  

 Argument: X  Type: Any 
 Result: I  Class: I 

 Example: I=KIND(X) 
 LBOUND(Array, Dim ) 
 Returns the lower bounds for each dimension of the array argument or a specifi ed 

lower bound.  

 Argument: Array  Type: Any 
 Result: I  Class: I 

  Note: 

 1  £   Dim  £  n , where n is the rank of Array. The result is scalar if Dim is present 
otherwise the result is an array of rank 1 and size n. 

 The result is scalar if Dim is present, otherwise a rank 1 array and size n.  
 Example: I=LBOUND(Array) 
 LCOBOUND (COARRAY,  DIM, KIND ) 
 Lower cobound(s) of a coarray.  

 Argument: COARRAY  Type: co 
 Argument: DIM (optional)  Type: I 
 Argument: KIND (optional)  Type: I 
 Result: I  Class: I 

 Example:

   INTEGER, CODIMENSION[:,:], ALLOCATABLE::A
    ALLOCATE(A[2:3,7:*])  
   LCBOUND (A) is [2,7] and LCOBOUND(A,DIM=2) is 7     
  LEADZ (I)    
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 Number of leading zero bits.  

 Argument: I  Type: I 
 Result: I  Class: E 

 Example: LEADZ (1) has the value 31 if BIT SIZE (1) has the value 32. 
 LEN(String) 
 Length of a character entity.  

 Argument: String  Type: S 
 Result: I  Class: I 

 Example: I=LEN(String) 
 LEN_TRIM(String) 
 Length of character argument less the number of trailing blanks.  

 Argument: String  Type: S 
 Result: I  Class: E 

 Example: I=LEN_TRIM(String) 
 LGE(String_1,String_2) 
 Lexically greater than or equal to and this is based on the ASCII collating 

sequence.  

 Argument: String_1  Type: S 
 Result: L  Class: E 

 String_2 is of type S. 
 Example: L=LGE(S1,S2) 
 LGT(String_1 ,String_2) 
 Lexically greater than and this is based on the ASCII collating sequence.  

 Argument: String_1  Type: S 
 Result: L  Class: E 

 Example: L=LGT(S1,S2) 
 LLE(String_1, String_2) 
 Lexically less than or equal to and this is based on the ASCII collating 

sequence.  

 Argument: String_1  Type: S 
 Result: L  Class: E 

 String_2 is of type S. 
 Example: L=LLE(S1,S2) 
 LLT(String_ 1, String_2) 
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 Lexically less than and this is based on the ASCII collating sequence.  

 Argument: String_1  Type: S 
 Result: L  Class: E 

 Example: L=LLT(S1,S2) 
 LOG(X) 
 Natural logarithm, loge x.  

 Argument: X  Type: R, C 
 Result: As argument  Class: E 

 Example: Y=LOG(X) 
 LOG_GAMMA (X) 
 Logarithm of the absolute value of the gamma function.  

 Argument: X  Type: R 
 Result: R  Class: E 

 Example: LOG_GAMMA (3.0) has the value 0.693 (approximately) 
 LOG10(X) 
 common logarithm, log 10.  

 Argument: X  Type: R 
 Result: As argument  Class: E 

 Example: Y=LOG10(X) 
 LOGICAL(L,Kind) 
 Converts between different logical kind types, i.e., performs a type cast.  

 Argument: L  Type: L 
 Result: L  Class: E 

 Example: L=LOGICAL(K, Kind ) 
 MASKL (I,  KIND ) 
 Left justifi ed mask.  

 Argument: I  Type: I 
 Result: I  Class: E 

 Example: MASKL (4) has the value SHIFTL (15, BIT_SIZE (0) - 4) 
 MASKR (I,  KIND ) 
 Right justifi ed mask.  
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 Argument: I  Type: I 
 Result: I  Class: E 

 Example: MASKR(4) has the value 15. 
 MATMUL(Matrix_1 ,Matrix_2) 
 Performs mathematical matrix multiplication of the array arguments.  

 Argument: Matrix_1  Type: N,L 
 Result: As arguments  Class: T 

 Matrix_2 is as Matrix_1. 
  Note: 

     1.    Matrix_1 and Matrix_2 must be arrays of rank 1 or 2. if Matrix_1 is of numeric 
type so must Matrix_2.  

    2.    if Matrix_1 has rank 1, Matrix_2 must have rank 2.  
    3.    if Matrix_2 has rank 1, Matrix_1 must have rank 2.  
    4.    The size of the fi rst dimension of Matrix_2 must equal the size of the last dimen-

sion of Matrix_1.  
    5.    if Matrix_1 has shape (n,m) and Matrix_2 has shape (m,k) the result has shape 

(n,k).  
    6.    if Matrix_1 has shape (m) and Matrix_2 has shape (m,k) the result has shape (k). 
7. if Matrix_1 has shape (n,m) and Matrix_2 has shape (m) the result has shape (n).      

 Example: R=MATMUL(M_1,M_2) 
 MAX(A1,A2,A3,…) 
 Returns the largest value.  

 Argument: A1  Type: I,R,S 
 Result: As arguments  Class: E 

 A2, A3,.. are as A1. 
 Example: A=MAX(A1,A2,A3,A4) 
 MAXEPONENT(X) 
 Returns the maximum exponent. See Chap.   5     and numeric models.  

 Argument: X  Type: R 
 Result: I  Class: I 

 Example: I=MAXEXPONENT(X) 
 MAXLOC(ARRAY, Dim, Mask, Kind, Back ) 
 Determine the location of the fi rst element of Array having the maximum value 

of the elements identifi ed by Mask if present.  

 Argument: Array  Type: I,R 
 Result: I  Class: T 
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  Note: 

     0.    Normally in Fortran if you omit an optional argument you must use keywords for 
the rest. This intrinsic breaks this rule and DIM can be omitted and it is not nec-
essary to use a keyword with Mask.  

    1.    Array must be an array.  
    2.    Mask must be conformable with Array  
    3.    The result is an array of rank 1 and of size equal to the rank of Array.  
    4.    if Dim is present the result is an array of the rank of Array reduced by one and 

with the shape of Array without the dimension Dim.      

 Example: 
 A=(/5,6,7,8/) 
 I=MAXLOC(A) 
 is (4), which is the subscript of the location of the fi rst occurrence of the  maximum 

value in the rank 1 array. 

 if     

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟⎝ ⎠

1 8 5

9 3 6

4 2 7

A    

 I = MAXLOC(A,dim=1) 
 is (2,1,3) returning the position of the largest in each column. 
 I = MAXLOC(A,dim=2) 
 is (2,1,3) returning the position of the largest in each row. 
 MAXVAL(Array, Dim,Mask ) 
 Returns the maximum value of the elements of Array along dimension Dim 

 corresponding to the true elements of Mask.  

 Argument: Array  Type: I,R,S 
 Result: As argument  Class: T 

  Note: 

 1  £   Dim  £  n , where n is the rank of Array. The result is scalar if Dim is absent, or 
Array has rank 1. Otherwise the result is an array of rank −1. 

 if Array has size zero then the result is the largest negative number supported by 
the processor for the corresponding type and kind of Array.  

 Example: 
 MAXVAL((/1,2,3/)) returns the value 3. 
 MAXVAL(C,MASK=C < 0.0) returns the maximum of the negative elements of C. 

 For     
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

1 3 5

2 4 6
B    
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 MAXVAL(B,DIM=1) returns (2,4,6) 
 MAXVAL(B,DIM=2) returns (5,6) 
 MERGE(True,False,Mask) 
 Chooses alternative values according to the value of a mask.  

 Argument: True  Type: Any 
 Result: As True  Class: E 

 Example: for 

 For     
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

2 6 10

4 8 12
True   ,     

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

1 5 9

3 7 11
False   and     

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

T F T
Mask

F T F
   

 The result is     
⎛ ⎞
⎜ ⎟
⎝ ⎠

2 5 10

3 8 11
   

 MERGE_BITS (I, J, MASK) 
 Merge of bits under mask.  

 Argument: I  Type: I or Boz 
 Argument: J  I or Boz 
 Argument: MASK  I or Boz 
 Result: same as I if Integer, otherwise same as J. 
                      Class: E 

 Example: MERGE_BITS(14,18,22) has the value 6. 
 MIN(A1,A2,A3,…) 
 Chooses the smallest value.  

 Argument: A1  Type: I,R,S 
 Result: As arguments  Class: E 

   ww
 Example: Y=MIN(X1, X 2,X3,X4,X5) 
 MINEXPONENT(X) 
 Returns the minimum exponent. See Chap.   5     and numeric models.  

 Argument: X  Type: R 
 Result: I  Class: I 

 Example: I=MINEXPONENT(X) 
 MINLOC(Array, Dim, Mask, Kind, Back ) 
 Determine the location of the fi rst element of Array having the minimum value 

of the elements identifi ed by Mask.  

 Argument: Array  Type: I,R 
 Result: I  Class: T 
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  Note: 

     0.    Normally in Fortran if you omit an optional argument you must use keywords for 
the rest. This intrinsic breaks this rule and Dim can be omitted and it is not neces-
sary to use a keyword with Mask.  

    1.    Array must be an array.  
    2.    Mask much be conformable with Array.  
    3.    The result is an array of rank 1 and of size equal to the rank of Array.  
    4.    if DIM is present the result is an array of the rank of Array reduced by one and 

with the shape of Array without the dimension DIM.      

 Example: I=MINLOC(Array) 

 In the above example if Array is a rank 2 array of shape (5,10) and the smallest 
value is in position (2,1) then the result is the rank 1 array I with shape (2) and 
I(1)=2 and I(2)=1. 

 See MAXLOC for further examples. 
 MINVAL(Array, Dim,Mask ) 
 Returns the minimum value of the elements of Array along dimension Dim cor-

responding to the true elements of Mask.  

 Argument: Array  Type: I,R,S 
 Result: As Array  Class: T 

 Note:l  £   Dim  £  n , where n is the rank of Array. The result is scalar if Dim is 
absent, or Array has rank 1. Otherwise the result is an array of rank n–1. 

 if Array has size zero then the result is the largest negative number supported by 
the processor for the corresponding type and kind of Array. 

 Example: 

 MINAL((/1,2,3/)) returns the value 1. 
 MINVAL(C,MASK=C > 0.0) returns the minimum of the positive elements of C. 

 For     
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

1 3 5

2 4 6
B    

 MINVAL(B,DIM=1) returns (1,3,5). 
 MINVAL(B,DIM=2) returns (1,2). 
 MOD(A,B) 
 Returns the remainder when fi rst argument divided by second.  

 Argument: A  Type: I, R 
 Result: As arguments  Class: E 

 Note: if B=0 the result is processor dependent. For B ¹ 0 the result is A - INT
(A/B) * B. 
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 Example: R=MOD(A,B) 
 if A=8 and B=5 then R=3 
 if A=−8 and B=5 then R=−3 
 if A=8 and B=−5 then R=3 
 if A=−8 and B=−5 then R=−3 
 MODULO(A,B) 
 Returns the modulo of the arguments.  

 Argument: A  Type: I,R 
 Result: As A  Class: E 

  Note: 

     1.    if B=0 then the result is processor dependent.  
    2.    integer A 

 The result is R where A= Q * B + R and Q is integer 
 for B>0, 0  £  R < B 
 for B < 0, B < R  £  0  

    3.    real A     

 The result is A - FLOOR(A/B) * B.  
 Example: R=MODULO(A,B) 
 if A=8 and B=5 then R=3 
 if A=−8 and B=5 then R=2 
 if A=8 and B=−5 then R=−2 
 if A=−8 and B=−5 then R=−3 
 MOVE_ALLOC (FROM, TO) 
 Move an allocation.  

 Argument: FROM  May be any type and rank. It shall be allocatable. It is 
INTENT(INOUT). 

 Argument: TO  Type compatible with FROM and same rank. It shall 
be allocatable. 

 Class: Pure subroutine 

 Example:

   integer, dimension(:), allocatable:: b,c
    allocate(b(1:12))  
   b(2) = 24  
   call mov_alloc(from=b, to=c)     
  ! b is unallocated  
  ! c is allocated with bounds (1:12) and c(2) == 24    

 MVBITS(From,F_Pos,Len,To,T_Pos) 
 Copies a sequence of bits from one data object to another.  



577Appendix C

 Argument: From  Type: I 
 Result: N/A  Class: S 

 All arguments are of integer type. 
  Note: 

 From must be intent(in). 
 F_Pos must be intent(in), F_Pos  ³  0, F_Pos+Len  £  BIT_SIZE(From). 
 Len must be intent(in), Len  ³  0. 
 To must be intent(inout). 
 T_Pos must be intent(in), T_Pos  ³  0, T_Pos + Len  £  BIT_SIZE(To).  

 Example: call MVBITS(F,FP,L,T,TP) 
 NEAREST(X,Next) 
 Returns the nearest different number. See Chap.   5     and the real numeric model.  

 Argument: X  Type: R 
 Result: As X  Class: E 

 Next is of type R. 
 Example: N=NEAREST(X,Next) 
 NEW_LINE (A) 
 Returns newline character used for formatted stream output.  

 Argument: A  Type: Char 
 Result: Char  Class: I 

 Example:

   open(2,fi le='nline.txt', access='stream', form='formatted')  
  write(2,'(a)')'hola'//new_line('a')//'mundo'  
 will write 2 lines to the fi le nline.txt. 

 NINT(A, Kind ) 
 Yields nearest integer.  

 Argument: A  Type: RI 
 Result: I  Class: E 

  Note: 

     1.    A > 0, the result is INT(A+0.5).  
    2.    A  £  0, the result is INT(A−0.5).      

 Example: I=NINT(X) 
 NORM2 (X,  DIM ) 
 L2 norm of an array.  
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 Argument: X  Type: R array 
 Argument: DIM  Type: DIM (optional) shall be an integer scalar with a value in the 

range 1 <= DIM <= n, where n is the rank of X. The correspond-
ing actual argument shall not be an optional dummy argument. 

 Result: R  Class: T 

  Note: 

    Case (i):    The result of NORM2 (X) has a value equal to a processor-dependent 
approximation to the generalized L2 norm of X, which is the square root of the 
sum of the squares of the elements of X.  
  Case (ii): If DIM is present the array is reduced as for SUM(X,DIM) except that 
NORM2 is applied to the reduced vectors.     

 Examples: 
 NORM2([3.0, 4.0]) is 5.0. 
 If X has the value 1.0 2.0 3.0 4.0 
 then NORM2(X,DIM=1) is [3.162, 4.472] and NORM2(X,DIM=2) is [2.236,5.0] 

approximately. 
 NOT(I) 
 Returns the logical complement of the argument.  

 Argument: I  Type: I 
 Result: As I  Class: E 

 Example: I=NOT(I) 
 NULL(Mold) 
 Returns a disassociated pointer.  

 Argument: Mold  Type: P 
 Result: As argument  Class: T 

  Note: 

 if the argument Mold is present the result is the same as Mold. 
 Otherwise it is determined by context.  

 Example: real, pointer :: P=>NULL() 
 NUM_IMAGES ( ) 
 Number of images. 
 Argument: None 
 Result: I 
 Class: T 

 Example:
   PRINT*, 'number of images =',NUM_IMAGES( )    

 PACK(Array,Mask,  Vector ) 
 Packs an array into an array of rank 1, under the control of a mask.  
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 Argument: Array  Type: Any 
 Result: As Array  Class: T 

  Note: 

     1.    Array must be an array.  
    2.    Mask be conformable with Array.  
    3.    Vector must have rank 1 and have at least as many elements as there are TRUE 

elements in Mask.  
    4.    if Mask is scalar with the value TRUE. Vector must have at least as many ele-

ments as there are in Array.  
    5.    The result is an array of rank 1.  
    6.    if Vector is present the result size is that of Vector.  
    7.    if Vector is not present the result size is t, the number of TRUE elements in Mask, 

unless Mask is scalar with a value TRUE in which case the result size is the size 
of Array.      

 Example: R=PACK(A,M) 
 PARITY (MASK,  DIM ) 
 Reduce array with .NEQV. operation.  

 Argument: MASK  Type: L array 
 Argument: DIM  I scalar in the range 1 <= DIM <=n where n is rank of MASK. 

 Example: 
 If T has the value true and F has the value false 
 PARITY([T,T,T,F]) is true. 
 POPCNT (I) 
 Number of one bits in the sequence of bits of I.  

 Argument: I  Type: I 
 Result: I  Class: E 

 Example: 
 POPCNT ([1, 2, 3, 4, 5, 6, 7]) has the value [1, 1, 2, 1, 2, 2, 3]. 
 POPPAR (I) 
 Returns the parity of the bit count of an integer expressed as 0 or 1. POPPAR (I) 

has the value 1 if POPCNT (I) is odd, and 0 if POPCNT (I) is even.  

 Argument: I  Type: I 
 Result: I  Type: E 

 Example: 
 POPPAR ([1, 2, 3, 4, 5, 6, 7]) has the value [1, 1, 0, 1, 0, 0, 1]. 
 PRECISION(X) 
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 Returns the decimal precision of the argument. See Chap.   5     and numeric 
models.  

 Argument: X  Type: R, C 
 Result: I  Class: I 

 Example: I=PRECISION(X) 
 PRESENT(A) 
 Returns whether an optional argument is present.  

 Argument: A  Type: Any 
 Result: L  Class: I 

 Note: A must be an optional argument of the procedure in which the PRESENT 
function reference appears. 

 Example: if (PRESENT(X)) then … 
 PRODUCT(Array, Dim,Mask ) 
 The product of all of the elements of Array along the dimension Dim corre-

sponding to the TRUE elements of Mask.  

 Argument: Array  Type: N 
 Result: As Array  Class: T 

  Note: 

     1.    Array must be an array.  
    2.    1  £  Dim  £  n where n is the rank of Array.  
    3.    Mask must be conformable with Array.  
    4.    result is scalar if Dim is absent, or Array has rank 1, otherwise the result is an 

array of rank n–1.      

 Example:

    1.    PRODUCT((/1,2,3/)) the result is 6.  
    2.    PRODUCT(C,Mask=C > 0.0) forms the product of the positive elements of C.  

    3.    if     
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

1 3 5

2 4 6
B       

   PRODUCT(B,DIM=1) is (2,12,30) and  
  PRODUCT(B,DIM=2) is (15,48)  
  RADIX(X)    

 Returns the base of the numeric argument. See Chap.   5     and numeric models.  

 Argument: X  Type: I,R 
 Result: I  Class: I 
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 Example: Base=RADIX(X) 
 RANDOM_NUMBER(X) 
 Returns one pseudorandom number or an array of pseudorandom numbers from 

the uniform distribution over the range 0  £  x < 1  

 Argument: X  Type: R 
 Result: N/A  Class: S 

 Note: X is intent(out). 
 Example: call RANDOM_NUMBER(X) 
 RANDOM_SEED( Size,Put,Get ) 
 Restarts (seeds) or queries the pseudorandom generator used by RANDOM_

NUMBER.  

 Argument: Size  Type: I 
 Result: N/A  Class: S 

 All arguments are of integer type. 

  Note: 

     1.    Size is intent(out). It is set to the number N of integers that the processor uses to 
hold the value of the seed.  

    2.    Put is intent(in). It is an array of rank 1 and size  ³  N. It is used by the processor 
to set the seed value.  

    3.    Get is intent(out). It is an array of rank 1 and size  ³  N. It is set by the processor 
to the current value of the seed.      

 Example: call RANDOM_SEED 
 RANGE(X) 
 Returns the decimal exponent range of the real argument. See Chap.   5     and the 

numeric model representing the argument.  

 Argument: X  Type: N 
 Result: I  Class: I 

 Example: I=RANGE(N) 
 REAL(A, Kind ) 
 Converts to real from integer, real or complex.  

 Argument: A  Type: N 
 Result: R  Class: E 

 Example: X=real(A) 
 REPEAT(String,N_Copies) 
 Concatenates several copies of a string.  
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 Argument: String  Type: S 
 Result: S  Class: T 

 Example: New_S=REPEAT(S,10) 
 RESHAPE(Source,Shape, Pad,Order ) 
 Constructs an array of a specifi ed shape from the elements of a given array.  

 Argument: Source  Type: Any 
 Result: As Source  Class: T 

  Note: 

     1.    Source must be an array. if Pad is absent or of size zero the size of Source must 
be  ³  PRODUCT(Shape).  

    2.    Shape must be a rank 1 array and 0  £  size < 8.  
    3.    Pad must be an array.  
    4.    Order must have the same shape as Shape and its value must be a permutation of 

(1,2,… ,n) where n is the size of Shape. if absent it is as if it were present with 
the value (1,2,…,n).  

    5.    The result is an array of shape, Shape.      

 Example: 

 RESHAPE((/1,2,3,4,5,6/),(/2,3/)) has the value     
⎛ ⎞
⎜ ⎟
⎝ ⎠

1 3 5

2 4 6
   

 RESHAPE((/1,2,3,4,5,6/) , (/2,4/) , (/0,0/) , (/2,1/)) has the value     
⎛ ⎞
⎜ ⎟
⎝ ⎠

1 2 3 4

5 6 0 0
   

 RRSPACING(X) 
 Returns the reciprocal of the relative spacing of model numbers near the argu-

ment value. See Chap.   5     and the real numeric model.  

 Argument: X  Type: R 
 Result: As X  Class: E 

 Example: Z=RRSPACING(X) 
 SAME_TYPE_AS (A, B) 
 Query dynamic types for equality. If the dynamic type of A or B is extensible, the 

result is true if and only if the dynamic type of A is the same as the dynamic type of 
B. If neither A nor B has extensible dynamic type, the result is processor dependent.  

 Argument: A  An object of extensible declared type or unlimited polymorphic. If 
it is a pointer, it shall not have an undefi ned association status. 

 Argument: B  An object of extensible declared type or unlimited polymorphic. If 
it is a pointer, it shall not have an undefi ned association status. 

 Result: L  Type: I 
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 SCALE(X,I) 
 Returns X * b I  where b is the base in the model representation of X. See Chap.   5     

and the real numeric model.  

 Argument: X  Type: R 
 Result: As X  Class: E 

 I is of integer type. 
 Example: Z=SCALE(X,I) 
 SCAN(String,Set, Back ) 
 Scans a string for any one of the characters in a set of characters.  

 Argument: String  Type: S 
 Result: I  Class: E 

  Note: 

     1.    The default is to scan from the left, and will only be from the right when Back is 
present and has the value TRUE.  

    2.    Zero is returned if the scan fails.      

 Example: W=SCAN(String,Set) 
 SELECTED_CHAR_KIND (NAME) 
 Returns the kind value for the character set whose name is given by the character 

string NAME or −1 if not supported.  

 Argument: NAME  Type: Char 
 Result: I  Class: T 

 Note: 

 If NAME has the value:  

 DEFAULT:  The result is the kind of the default character type. 
 ASCII:  The result is the kind of the ASCII character type. 
 ISO_10646:  The result is the kind of the ISO/IEC 10646 UCS-4 character type. 

 SELECTED_INT_KIND(R) 
 Returns a value of the kind type parameter of an integer data type that represents 

all integer values n with −10 R  < n < 10 R   

 Argument: R  Type: I 
 Result: I  Class: T 

  Note: 

 R must be scalar. 
 if a kind type parameter is not available then the value −1 is returned.  
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 Example: I=SELECTED_INT_KIND(2) 
 SELECTED_REAL_KIND( P,R,Radix ) 
 Returns a value of the kind type parameter of a real data type with decimal preci-

sion of at least P digits and a decimal exponent range of at least R.  

 Argument: P and R  Type: I 
 Result: I  Class: T 

  Note: 

     1.    P and R must be scalar.  
    2.    The value −1 is returned if the precision is not available, the value −2 if the expo-

nent range is not available, and −3 if neither is available.      

 Example: I=SELECTED_REAL_KIND(P,R) 
 SET_EXPONENT(X,I) 
 Returns the model number whose fractional part is the fractional part of the 

model representation of X and whose exponent part is I.  

 Argument: X  Type: R 
 Result: As X  Class: E 

 I is of integer type. 
 Example: Exp_Part=SET_EXPONENT(X,I) 
 SHAPE(Source) 
 Returns the shape of the array argument or scalar.  

 Argument: Source  Type: Any 
 Result: I  Class: I 

  Note: 

     1.    Source may be array valued or scalar. It must not be a pointer that is disassoci-
ated or an allocatable array that is not allocated. It must not be an assumed-size 
array.  

    2.    The result is an array of rank 1 whose size is equal to the rank of Source.      

 Example: S=SHAPE(A(2:5,-1:1)) yields S=(4,3) 
 SHIFTA (I, SHIFT) 
 The result has the value obtained by shifting the bits of I to the right by SHIFT 

bits and replicating the leftmost bit of I in the left SHIFT bits.  

 Arguments: I  Type: I 
 Argument: SHIFT  Type: I (non-negative and <= BIT_SIZE(I)). 
 Result: Same as I  Class: E 

 Example: SHIFTA (IBSET (0, BIT_SIZE (0) -1), 2) is equal to 
 SHIFTL (7, BIT_SIZE (0) - 3). 
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 SHIFTL (I, SHIFT) 
 Left shift. Returns the bits of I shifted left.  

 Arguments: I  Type: I 
 Argument: SHIFT  Type: I (non-negative and <= BIT_SIZE(I)). 
 Result: same as I  Class: E 

 Example: SHIFTL (4, 1) is 8 
 SHIFTR (I, SHIFT) 
 Right shift. Returns the bits of I shifted right.  

 Arguments: I  Type: I 
 Argument: SHIFT  Type: I (non-negative and <= BIT_SIZE(I)). 
 Result: same as I  Class: E 

 Example: SHIFTR (4, 1) is 2. 
 SIGN(A,B) 
 Absolute value of A times the sign of B.  

 Argument: A  Type: I, R 
 Result: As A  Class: E 

  Note: 

 In the special case where B is zero normally the result would have the value 
ABS(A), but if B is one of the real kind types and the processor is able to distinguish 
between plus zero and minus zero then the result is ABS(A) if B is plus zero and the 
result is –ABS(A) if B is minus zero. 

 B is as A.  

 Example: A=SIGN(A,B) 
 SIN(X) 
 Sine.  

 Argument: X  Type: R, C 
 Result: As argument  Class: E 

 Note: The argument is in radians. 
 Example: Z=SIN(X) 
 SINH(X) 
 Hyperbolic sine.  

 Argument: X  Type: R,C 
 Result: As argument  Class: E 

 Example: Z=SINH(X) 
 SIZE(Array, Dim ) 
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 Returns the extent of an array along a specifi ed dimension or the total number of 
elements in an array.  

 Argument: Array  Type: Any 
 Result: I  Class: I 

  Note: 

     1.    Array must be an array. It must not be a pointer that is disassociated or an allocat-
able array that is not allocated. if Array is an assumed-size array Dim must be 
present with a value less than the rank of Array.  

    2.    Dim must be scalar and in the range 1  £  Dim  £  n where n is the rank of Array.  
    3.    result is equal to the extent of dimension Dim of Array, or if Dim is absent, the 

total number of elements of Array.      

 Example: A=SIZE(Array) 
 SPACING(X) 
 Returns the absolute spacing of model numbers near the argument value. See 

Chap.   5     and the real numeric model.  

 Argument: X  Type: R 
 Result: As X  Class: E 

 Example: S=SPACING(X) 
 SPREAD(Source,Dim,N_Copies) 
 Creates an array with an additional dimension, replicating the values in the origi-

nal array.  

 Argument: Source  Type: Any 
 Result: As Source  Class: T 

  Note: 

     1.    Source may be array valued or scalar, with rank less than 7.  
    2.    Dim must be scalar and in the range 1  £  Dim  £  n+1 where n is the rank of 

Source.  
    3.    N_Copies must be scalar.  
    4.    The result is an array of rank n+1.      

 Example: 
 if A is the array (2,3,4) then SPREAD(A,DIM=1,NCOPIES=3) then the result is 

the array     
2 3 4

2 3 4

2 3 4

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

   



587Appendix C

 SQRT(X) 
 Square root.  

 Argument: X  Type: R, C 
 Result: As argument  Class: E 

 Example A=SQRT(B) 
 STORAGE_SIZE (A,  KIND ) 
 Storage size in bits. Returns the size, in bits, that would be taken in memory by 

an array element with the dynamic type of A.  

 Argument: A  Type: scalar or array of any type. 
 Argument: KIND (optional) 
 Result: I  Class: I 

 Example: STORAGE_SIZE (1.0) has the same value as the named constant 
NUMERIC_STORAGE_SIZE in the intrinsic module ISO_FORTRAN_ENV. 

 SUM(Array, Dim,Mask ) 
 Returns the sum of all elements of Array along the dimension Dim correspond-

ing to the true elements of Mask.  

 Argument: Array  Type: N 
 Result: As Array  Class: T 

  Note: 

     1.    Array must be an array.  
    2.    1  £  Dim  £  n where n is the rank of Array.  
    3.    Mask must be conformable with Array.  
    4.    result is scalar if Dim is absent, or Array has rank 1, otherwise the result is an 

array of rank n–1.      

 Example:

    1.    SUM((/1,2,3/)) the result is 6.  
    2.    SUM(C,Mask=C > 0.0) forms the arithmetic sum of the positive elements of C.  

    3.    if      
1 3 5

2 4 6
B

⎛ ⎞
= ⎜ ⎟⎝ ⎠

      

   SUM(B,Dim=1) is (3,7,11)  
  SUM(B,Dim=2) is (9,12)  
  SYSTEM_CLOCK( Count,Count_Rate,Count_Max )    

 Returns integer data from a real time clock.  

 Argument: Count  Type: I 
 Result: N/A  Class: S 
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  Note: 

     1.    Count is intent(out) and is set to a processor dependent value based on the cur-
rent value of the processor clock or to -HUGE(0) if there is no clock. 0  £  Count 
 £  Count_Max.  

    2.    Count_Rate is intent(out) and it is set to the number of processor clock counts 
per second, or zero if there is no clock.  

    3.    Count_max is intent(out) and is set to the maximum value that Count can have or 
to zero if there is no clock.      

 Example: call SYSTEM_CLOCK(C,R,M) 
 TAN(X) 
 Tangent.  

 Argument: X  Type: R,C 
 Result: As argument  Class: E 

 Note: X must be in radians. 

 Example: Y=TAN(X) 
 TANH(X) 
 Hyperbolic tangent.  

 Argument: X  Type: R,C 
 Result: As argument  Class: E 

 Example: Y=TANH(X) 
 THIS_IMAGE () 
 THIS_IMAGE (COARRAY, DIM ) 
 Cosubscript(s) for this image.  

 Argument: COARRAY  Shall be a coarray of any type. If it is allocatable it 
shall be allocated. 

 Argument: DIM (optional)  Shall be a default integer scalar. Its value shall be in 
the range 1 <=DIM <= n, where n is the corank of 
COARRAY. The corresponding actual argument 
shall not be an optional dummy argument. 

 Class: T 

 Results:

   case (i)    The result of THIS_IMAGE ( ) is a scalar with a value equal to the 
index of the invoking image.  
  case (ii) The result of THIS_IMAGE (COARRAY) is the sequence of cosub-
script values for COARRAY that would specify the invoking image.  
  case (iii) The result of THIS_IMAGE (COARRAY, DIM) is the value of 
cosubscript DIM in the sequence of cosubscript values for COARRAY that 
would specify the invoking image.    
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 Examples: 
 integer, dimension( 10,20), codimension[2,0:9,0:*] :: A 
 integer, codimension [0:*] :: IA 
 for image 5: 
 this_image(IA)  ==  4 and this_image(A) = [1, 2, 0] 
 for image 96: 
 this_image(A) == [2, 7, 4] 
 TINY(X) 
 Returns the smallest positive number in the model representing numbers of the 

same type and kind type parameter as the argument.  

 Argument: X  Type: R 
 Result: As X  Class: I 

 Example: T=TINY(X) 
 TRAILZ (I) 
 Number of trailing zero bits. If all of the bits of I are zero, the result value is 

BIT_SIZE (I). Otherwise, the result value is the position of the rightmost 1 bit in I.  

 Argument: I  Type: I 
 Result: I  Class: E 

 Example: TRAILZ(4) has the value 2. 
 TRANSFER(Source,Mold,  Size ) 
 Returns a result with a physical representation identical to that of Source, but 

interpreted with the type and type parameters of Mold.  

 Argument: Source  Type: Any 
 Result: As Mold  Class: T 

 Warning: A thorough understanding of the implementation specifi c internal rep-
resentation of the data types involved is necessary for successful use of this func-
tion. Consult the documentation that accompanies the compiler that you work with 
before using this function. 

 TRANSPOSE(Matrix) 
 Transposes an array of rank 2.  

 Argument: Matrix  Type: Any 
 Result: As argument  Class: T 

 Note: Matrix must be of rank 2. if its shape is (n,m) then the resultant matrix has 
shape (m,n). 

 Example: For  A  =     
1 2 3
4 5 6
7 8 9

⎛ ⎞
⎜ ⎟
⎜ ⎟⎝ ⎠

   TRANSPOSE(A) yields     

1 4 7
2 5 8
3 6 9

⎛ ⎞
⎜ ⎟
⎜ ⎟⎝ ⎠
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 TRIM(String) 
 Returns the argument with trailing blanks removed.  

 Argument: String  Type: S 
 Result: As String  Class: T 

 Note: String must be a scalar. 
 Example: T_S=TRIM(S) 
 UBOUND(Array, Dim ) 
 Returns all the upper bounds of an array or a specifi ed upper bound.  

 Argument: Array  Type: Any 
 Result: I  Class: I 

  Note: 
 1  £   Dim   £   n,  where n is the rank of Array. The result is scalar if Dim is present 

otherwise the result is an array of rank 1 and size n. 
 the result is a scalar if Dim is present otherwise is an array of rank 1, and size n.  

 Example: Z=UBOUND(A) 
 UCOBOUND (COARRAY,  DIM, KIND ) 
 Upper cobound(s) of a coarray.  

 Argument: COARRAY  Type: co 
 Argument: DIM (optional)  Type: I 
 Argument: KIND (optional)  Type: I 
 Result: I  Class: I 

 Example: 
 If NUM_IMAGES() == 24 
 INTEGER, CODIMENSION[:,:], ALLOCATABLE::A 
   ALLOCATE(A[1:10,*]) 
   UCBOUND (A) is [10,3] and UCOBOUND(A,DIM=2) is 3 
 UNPACK(Vector,Mask,Field) 
 Unpacks an array of rank 1 into an array under the control of a mask.  

 Argument: Vector  Type: Any 
 Result: As Vector  Class: T 

  Note: 
     1.    Vector must have rank 1. Its size must be at least t, where t is the number of true 

elements in Mask.  
    2.    Mask must be array valued.  
    3.    Field must be conformable with Mask. Result is an array with the same shape as 

Mask.      
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 Example: 

 With  Vector  = (1,2,3) and  Mask =      
⎛ ⎞
⎜ ⎟
⎜ ⎟⎝ ⎠

F T F
T F F
F F T

   and  Field  =     
1 0 0
0 1 0
0 0 1

⎛ ⎞
⎜ ⎟
⎜ ⎟⎝ ⎠

   

 The result is     
1 2 0
11 0
0 0 3

⎛ ⎞
⎜ ⎟
⎜ ⎟⎝ ⎠

   

 VERIFY(String,Set, Back ) 
 Verify that a set of characters contains all the characters in a string by identifying 

the position of the fi rst character in a string of characters that does not appear in a 
given set of characters.  

 Argument: String  Type: S 
 Result: I  Class: E 

  Note: 
     1.    The default is to scan from the left, and will only be from the right when Back is 

present and has the value TRUE.  
    2.    The value of the result is zero if each character in String is in Set, or if String has 

zero length.      
 Example: I=VERIFY(String,Set)  
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English and Latin Texts 

 YET IF HE SHOULD GIVE UP WHAT HE HAS BEGUN, AND AGREE TO 
MAKE US OR OUR KINGDOM SUBJECT TO THE KING OF ENGLAND OR 
THE ENGLISH, WE SHOULD EXERT OURSELVES AT ONCE TO DRIVE HIM 
OUT AS OUR ENEMY AND A SUBVERTER OF HIS OWN RIGHTS AND 
OURS, AND MAKE SOME OTHER MAN WHO WAS ABLE TO DEFEND US 
OUR KING; FOR, AS LONG AS BUT A HUNDRED OF US REMAIN ALIVE, 
NEVER WILL WE ON ANY CONDITIONS BE BROUGHT UNDER ENGLISH 
RULE. IT IS IN TRUTH NOT FOR GLORY, NOR RICHES, NOR HONOURS 
THAT WE ARE FIGHTING, BUT FOR FREEDOM - FOR THAT ALONE, 
WHICH NO HONEST MAN GIVES UP BUT WITH LIFE ITSELF. 

 QUEM SI AB INCEPTIS DIESISTERET, REGI ANGLORUM AUT ANGLICIS 
NOS AUT REGNUM NOSTRUM VOLENS SUBICERE, TANQUAM INIMICUM 
NOSTRUM ET SUI NOSTRIQUE JURIS SUBUERSOREM STATIM EXPELLERE 
NITEREMUR ET ALIUM REGEM NOSTRUM QUI AD DEFENSIONEM 
NOSTRAM SUFFICERET FACEREMUS. QUIA QUANDIU CENTUM EX NOBIS 
VIUI REMANSERINT, NUCQUAM ANGLORUM DOMINIO ALIQUATENUS 
VOLUMUS SUBIUGARI. NON ENIM PROPTER GLORIAM, DIUICIAS AUT 
HONORES PUGNAMUS SET PROPTER LIBERATEM SOLUMMODO QUAM 
NEMO BONUS NISI SIMUL CUM VITA AMITTIT. 

 from ‘The Declaration of Arbroath’ c.1320. The English translation is by Sir 
James Fergusson.  





595

   Appendix E 

Coded Text Extract 

 OH YABY NSFOUN, YAN DUBZY LZ DBUYLTUBFAJ BYYBOHNX GPDA 
FNUZNDYOLH YABY YAN SBF LZ B GOHTMN FULWOHDN DLWNUNX YAN 
GFBDN LZ BH NHYOUN DOYJ, BHX YAN SBF LZ YAN NSFOUN OYGNMZ 
BH NHYOUN FULWOHDN. OH YAN DLPUGN LZ YOSN, YANGN NKYNHGOWN 
SBFG VNUN ZLPHX GLSNALV VBHYOHT, BHX GL YAN DLMMNTN LZ 
DBUYLTUBFANUG NWLMWNX B SBF LZ YAN NSFOUN YABY VBG YAN 
GBSN GDBMN BG YAN NSFOUN BHX YABY DLOHDOXNX VOYA OY FLOHY 
ZLU FLOHY. MNGG BYYNHYOWN YL YAN GYPXJ LZ DBUYLTUBFAJ, 
GPDDNNXOHT TNHNUBYOLHG DBSN YL RPXTN B SBF LZ GPDA 
SBTHOYPXN DPSENUGLSN, BHX, HLY VOYALPY OUUNWNUNHDN, YANJ 
BEBHXLHNX OY YL YAN UOTLPUG LZ GPH BHX UBOH. OH YAN VNGYNUH 
XNGNUYG, YBYYNUNX ZUBTSNHYG LZ YAN SBF BUN GYOMM YL EN 
ZLPHX, GANMYNUOHT BH LDDBGOLHBM ENBGY LU ENTTBU; OH YAN 
VALMN HBYOLH, HL LYANU UNMOD OG MNZY LZ YAN XOGDOFMOHN 
LZ TNLTUBFAJ.  
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Formal Syntax 

 Statement ordering 
 format statements may appear anywhere between the use statement and the 

 contains statement. 
 The following table summarises the usage of the various statements within indi-

vidual scoping units.  

 Kind of scoping 
unit 

 Main 
program  module 

 external sub 
program 

 module sub 
program 

 Internal sub 
program 

 interface 
body 

 use  Y  Y  Y  Y  Y  Y 
 format  Y  N  Y  Y  Y  N 
 Misc Dec a   Y  Y  Y  Y  Y  Y 
 Derived type 

defi nition 
 Y  Y  Y  Y  Y  Y 

 interface block  Y  Y  Y  Y  Y  Y 
 Executable 

statement 
 Y  N  Y  Y  Y  N 

 contains Y  Y  Y  Y  Y  N 

  a Misc Dec (Miscellaneous declaration) are parameter statements, implicit state-
ments, type declaration statements and specifi cation statements 

 Syntax summary of some frequently used Fortran constructs 
 The following provides simple syntactical defi nitions of some of the more fre-

quently used parts of Fortran. 

 Main program
    program [ program-name ] 
     [ specifi cation-construct ] …   
    [ executable-construct ] …   
    [contains   
    [ internal procedure ] … ]      

   end [ program [ program-name ] ]     
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  Subprogram 

    procedure heading 
     [ specifi cation-construct ] …   
    [ executable-construct ] …   
    [contains   
    [ internal procedure ] … ]      

   procedure ending 

    module 

    module name 
     [ specifi cation-construct ] …   
    [contains   
    Subprogram   
    [ subprogram ] … ]      

   end [ module [ module-name ]     

 Internal procedure

      procedure heading 
     [ specifi cation construct ] …   
    [ executable construct ] …      

   procedure ending 

    procedure heading

     [ recursive ] [ type specifi cation ] function   
   function-name & 
     ( [ dummy argument list ] ) [ result ( result name      

   ) ]   
   [ recursive ] subroutine subroutine name & 
     [ ( [ dummy argument list ] ) ] 

       procedure ending

     end [ function [ function name ] ]   
   end [ subroutine [ subroutine name ] ]     

 Specifi cation construct

      derived type defi nition   
   interface block   
   specifi cation statement     

 Derived type defi nition

      type [ [ , access specifi cation ] :: ] type name 
     [ private ]   
    [ sequence ]   
    [ type specifi cation [[ , pointer ] :: ] component      
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   specifi cation list ] 
     . . .   
    end type [ type name ] 

       interface block

     interface [ generic specifi cation ] 
     [ procedure heading 
      [ specifi cation construct ] …      
   procedure ending ] …   
    [ module procedure module procedure name list ] …      

   end interface     

 Specifi cation statement

      allocatable [ :: ] allocatable array list   
   dimension array dimension list   
   external external name list   
   format ( [ format specifi cation list ] )   
   implicit implicit specifi cation   
   intent ( intent specifi cation ) :: dummy argument name   
   list   
   intrinsic intrinsic procedure name list   
   optional [ :: ] optional object list   
   parameter ( named constant defi nition list )   
   pointer [ :: ] pointer name list   
   public [ [ :: ] module entity name list ]   
   private[ [ :: ] module entity name list ]   
   save [ [ :: ] saved object list ]   
   target [ :: ] target name list   
   use module name [ , rename list ]   
   use module name , only : [ access list ]   
   type specifi cation [ [ , attribute specifi cation 
]      & 
    …::object declaration list 

       type specifi cation

     integer [ ( [ KIND= ] kind parameter ) ]   
   real[ ( [ KIND= ] kind parameter ) ]   
   complex[ ( [ KIND= ] kind parameter ) ]   
   character[ ( [ KIND= ] kind parameter ) ]   
   character[ ( [ KIND= ] kind parameter ) ] & 
     [ LEN= ] length parameter )      

   LOGICAL[ ( [ KIND= ] kind parameter ) ]   
   type ( type name )     
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 Attribute specifi cation

      allocatable   
   dimension ( array specifi cation )   
   external   
   intent ( intent specifi cation )   
   intrinsic   
   optional   
   parameter   
   pointer   
   private   
   public   
   save   
   target     

 Executable construct

      action statement   
   case construct   
   do construct   
   if construct   
   where construct     

 Action statement

      allocate ( allocation list ) [ ,STAT= scalar integer 
variable ] )   
   call subroutinename [ ( [ actual argument 
specifi cation   
   list] ) ]   
   close ( close specifi cation list )   
   cycle [ do construct name ]   
   deallocate( name list ) [ , STAT= scalar integer vari-
able ] )   
   endfi le external fi le unit   
   exit [ do construct name ]   
   goto label   
   if ( scalar logical expression ) action statement   
   inquire ( inquire specifi cation list ) [ output item   
   list ]   
   nullify ( pointer object list )   
   open ( connect specifi cation list )   
   print format [ , output item list ]   
   read (i/o control specifi cation list ) [ input item list 
]   
   read format [ , output item list ]   
   return [ scalar integer expression ]   
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   rewind ( position specifi cation list )   
   stop [ access code ]   
   where ( array logical expression ) array assignment   
   expression   
   write ( i/o control specifi cation list ) [ output item 
list ]   
   pointer variable => target expression   
   variable = expression      
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   Appendix G 

Compiler Options 

 In this appendix we look at some of compiler options we have used during the 
development of the programs in the book. 

   Cray 

 This compiler was available on the Hector Service and several compilers are avail-
able and the default is the Portland Group compiler. To make the Cray compiler 
available one had to use the following commands 
 module swap PrgEnv-pgi PrdEnv-cray 
 and then 
 ftn -h caf compiler options source fi les -o executable 

 gfortran 

 gfortran

   -W  
  -Wall  
  -fbounds-check  
  -pedantic-errors  
  -std=f2003  
  -Wunderfl ow -O  
  -fbacktrace  
  -ffpe-trap=zero,overfl ow,underfl ow  
  -fopenmp  
  -g    
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 g95 

 g95

   -Wall  
  -std=f2003  
  -fbounds-check  
  -ftrace    

 IBM 

 (Power 7) 
 xlf

   -qlanglvl=2003pure  
  -qxlf2003=polymorphic    

 Intel 

 ifort 
 /check: all 
 Determines whether several run time conditions are checked. keyword: all, none, 
[no]arg_temp_created, [no]bounds, [no]format, [no]output_conversion 
 /coarray 
 /debug: full 
 Determines the type of debugging information generated by the compiler in the 
object fi le. keyword: minimal, partial, full, none. 
 /exe:% 1intel 
 /[no]fl tconsistency 
 Determines whether improved fl oating point consistency is used. 
 /fpe:0 
 Specifi es fl oating point exception handling at run time for the main program; n  =  0, 
1, or 3. 0 - fl oating underfl ow results in zero; all other fl oating point exceptions abort 
execution 
 /gen-interfaces 
 /heap-arrays

   /inline: all  
  /list    

 /[no]map[:name] 
 Determines whether the compiler generates a link map (optionally, named name ). 
 /O 
 /openmp  /Qopenmp 
 /parallel  /Qparallel 
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 /Qcoarray 
 /Qfp-stack-check 
 /recursive 
 /stand: f03  /std03 
 /[no]traceback 
 Specifi es whether the compiler should generate extra information in the object fi le 
that allows the display of source fi le traceback information at run time when a severe 
error occurs. 
 /warn: all

   /tcheck  
  /traceback  
  /warn:all,nodec,interfaces    

 Nag 

 nagfor 
 -C=all 
 Compile code with all possible run time checks. all array calls do none present 
pointer 
 -C=undefi ned 
 -f2003 
 -info 
 -g 
 -gline 
 include line number information in run time error messages. 
 -ieee=stop 
 Enables all IEEE arithmetic facilities except for nonstop arithmetic. Execution is 
terminated on fl oating overfl ow, divide by zero or invalid operand. 

 sun 

 f95 
 -ansi 
 -w4 
 -xcheck=%all 
 -C 
 -ftrap=common,overfl ow,underfl ow          
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