

 Introduction to Programming with Fortran

Ian Chivers • Jane Sleightholme

Introduction to Programming
with Fortran

With Coverage of Fortran
90, 95, 2003, 2008 and 77

Ian Chivers
Rhymney Consulting
UK

Jane Sleightholme
Fortranplus
UK

ISBN 978-0-85729-232-2 e-ISBN 978-0-85729-233-9
DOI 10.1007/978-0-85729-233-9
Springer London Dordrecht Heidelberg New York

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2011941580

© Springer-Verlag London Limited 2012
Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted
under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or
transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case
of reprographic reproduction in accordance with the terms of licenses issued by the Copyright Licensing
Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers.
The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of
a specifi c statement, that such names are exempt from the relevant laws and regulations and therefore free
for general use.
The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

v

 The material in the book has evolved fi rstly from our combined experience of working
in Computing Services within the University of London at

 King’s College, IDC (1986–2002) and JS (1985–2008) •
 Chelsea College, JS (1978–1985) •
 Imperial College, IDC (1978–1986) •

in the teaching, advice and support of Fortran and related areas, and secondly in the
provision of commercial training courses. The following are some of the organisa-
tions we’ve provided training for:

 AWE, Aldermaston. •
 Centre for Ecology and Hydrology, Wallingford. •
 DTU – Danish Technical University. •
 Environment Agency, Worthing. •
 JET – Joint European Torus. •
 The Met Offi ce, Bracknell and Exeter. •
 Natural Resources Canada, Ottowa. •
 QinetiQ, Farnborough. •
 Rolls Royce, Derby. •
 SHMU, Slovak Hydrometeorological Institute, Bratislava, Slovakia. •
 University of Ulster, Jordanstown, Northern Ireland. •
 Veritas DGC Ltd., Crawley. •
 Westland Helicopters, Yeovil. •

 The examples in the book are based on what will work with compilers that support
the Fortran 2008 standard.

 Thanks are due to:

 The staff and students at King’s College, Chelsea College and Imperial College. •
 The people who have attended the commercial courses. Its been great fun teaching •
you and things have been very lively at times.

 Acknowledgement

vi Acknowledgement

 The people on the Fortran 90 list and comp.lang.fortran. Access to the expertise •
of several hundred people involved in the use and development of Fortran on a
daily basis across a wide range of disciplines is inestimable.
 The people at NAG for the provision of beta test versions of their Fortran •
compilers.
 The people at Intel for the provision of beta test versions of their Fortran •
compilers.
 The staff and facilities at PTR Associates. It is a pleasure training there. •
 Helmut Michels at the Max-Planck-Institut for permission to use the dislin •
library.
 The patience of our families during the time required to develop the courses upon •
which this book is based and whilst preparing the camera-ready copy.
 Finally Helen Desmond and Beverley Ford at Springer for their enthusiasm and •
encouragement!

 Our Fortran home page is:

 • http://www.fortranplus.co.uk/

 All of the program examples can be found there.
 If you would like to contact us our email addresses are:
 Ian D Chivers: ian@rhymneyconsulting.co.uk
 Jane Sleightholme: jane@fortranplus.co.uk

http://www.fortranplus.co.uk/

vii

 1 Overview .. 1
1.1 Introduction .. 1
1.2 Program Examples ... 5
1.3 Further Reading ... 5

1.3.1 The Fortran Standard ... 5
1.3.2 J3 and WG5 Working Documents 5
1.3.3 Compiler Documentation ... 5
1.3.4 Books ... 7

 2 Introduction to Problem Solving ... 9
2.1 Introduction .. 10
2.2 Natural Language ... 10
2.3 Artifi cial Language .. 10

2.3.1 Notations .. 11
2.4 Resume ... 11
2.5 Algorithms ... 11

2.5.1 Top-Down .. 12
2.5.2 Bottom-Up ... 12
2.5.3 Stepwise Refi nement .. 13

2.6 Module Programming .. 13
2.7 Object Oriented Programming ... 13
2.8 Systems Analysis and Design .. 13

2.8.1 Problem Defi nition ... 14
2.8.2 Feasibility Study and Fact Finding 14
2.8.3 Analysis .. 14
2.8.4 Design .. 15
2.8.5 Detailed Design .. 15
2.8.6 Implementation .. 15
2.8.7 Evaluation and Testing ... 15
2.8.8 Maintenance ... 16

2.9 Conclusions .. 16

 Contents

viii Contents

2.10 Problems .. 16
2.11 Bibliography .. 17

 3 Introduction to Programming Languages .. 19
 3.1 Introduction .. 19
 3.2 Some Early Theoretical Work .. 20
 3.3 What Is a Programming Language? ... 20
 3.4 Program Language Development and Engineering 20
 3.5 The Early Days .. 20

 3.5.1 Fortran’s Origins .. 20
 3.5.2 Fortran 77 ... 21
 3.5.3 Cobol .. 21
 3.5.4 Algol ... 22

 3.6 Chomsky and Program Language Development 22
 3.7 Lisp .. 23
 3.8 Snobol .. 23
 3.9 Second-Generation Languages .. 24

 3.9.1 PL/1 and Algol 68 .. 24
 3.9.2 Simula .. 24
 3.9.3 Pascal .. 24
 3.9.4 APL .. 25
 3.9.5 Basic ... 25
 3.9.6 C ... 25

3.10 Some Other Strands in Language Development 26
3.10.1 Abstraction, Stepwise Refi nement and Modules 26
3.10.2 Structured Programming .. 26
3.10.3 Data Structuring and Procedural Programming 26
3.10.4 Standardisation ... 27

3.11 Ada ... 27
3.12 Modula ... 28
3.13 Modula 2 .. 28
3.14 Other Language Developments .. 28

3.14.1 Logo ... 29
3.14.2 Postscript, TeX and LaTeX .. 29
3.14.3 Prolog ... 29
3.14.4 SQL .. 29
3.14.5 ICON .. 30

3.15 Object Oriented Programming ... 30
3.15.1 Simula .. 31
3.15.2 Smalltalk .. 31
3.15.3 Oberon and Oberon 2 ... 31
3.15.4 Eiffel ... 32
3.15.5 C++ ... 32
3.15.6 Java ... 33
3.15.7 C# ... 33

ixContents

3.16 Back to Fortran! ... 34
3.16.1 Fortran 90 ... 34
3.16.2 Fortran 95 ... 35
3.16.3 ISO Technical Reports TR15580 and TR15581 36
3.16.4 Fortran 2003 ... 36
3.16.5 DTR 19767 Enhanced Module Facilities 37
3.16.6 Fortran 2008 ... 37
3.16.7 The Future .. 37

3.17 Internet Resources .. 38
3.17.1 Standards Information .. 38
3.17.2 Fortran Discussion Lists ... 38
3.17.3 Other Sources ... 39

3.18 Summary .. 39
3.19 Bibliography .. 39

 4 Introduction to Programming .. 45
 4.1 Introduction .. 45
 4.2 Language Strengths and Weaknesses ... 46
 4.3 Elements of a Programming Language .. 46

 4.3.1 Data Description Statements .. 47
 4.3.2 Control Structures .. 47
 4.3.3 Data-Processing Statements ... 47
 4.3.4 Input and Output (I/O) Statements 47

 4.4 Variables—Name, Type and Value .. 49
 4.5 Notes .. 51
 4.6 Some More Fortran Rules .. 52
 4.7 Fortran Character Set ... 52
 4.8 Good Programming Guidelines ... 54
 4.9 Compilers ... 54
4.10 Program Development ... 55
4.11 Problems .. 56

 5 Arithmetic .. 57
 5.1 An Introduction to Arithmetic in Fortran 58
 5.2 Example 1: Simple Arithmetic Expressions in Fortran 58
 5.3 Rounding and Truncation ... 61

 5.3.1 Example 2: Type Conversion and Assignment 61
 5.3.2 Example 3: Integer Division and Real Assignment 62

 5.4 Example 4: Time Taken for Light to Travel
from the Sun to Earth ... 63

 5.5 The parameter Attribute ... 64
 5.6 Range, Precision and Size of Numbers .. 65
 5.7 Health Warning: Optional Reading, Beginners are Advised

to Leave Until Later ... 67
 5.7.1 Example 5: Default Kinds .. 67
 5.7.2 Selecting Different Integer Kind Types 68

x Contents

 5.7.3 Selecting Different Real Kind Types................................ 69
 5.7.4 Specifying Kind Types for Literal Integer

and Real Constants ... 69
 5.7.5 Positional Number Systems ... 70
 5.7.6 Bit Data Type and Representation Model 70
 5.7.7 Integer Data Type and Representation Model 71
 5.7.8 Real Data Type and Representation Model 71
 5.7.9 IEEE 754 .. 72
5.7.10 Testing the Numerical Representation of Different

Kind Types on a System ... 72
5.7.11 Example 6: Using the Numeric Enquiry Functions 72
5.7.12 Example 7: Binary Representation of Different Integer

Kind Type Numbers ... 77
5.7.13 Example 8: Binary Representation of a Real Number 79
5.7.14 Summary of How to Select the Appropriate Kind Type ... 80

 5.8 Variable Status............................ ... 80
 5.9 Summary.................................... .. 80
5.10 Problems................................... ... 81
5.11 Bibliography... 83

 6 Arrays 1: Some Fundamentals .. 85
 6.1 Tables of Data .. 86

 6.1.1 Telephone Directory ... 86
 6.1.2 Book Catalogue .. 86
 6.1.3 Examination Marks or Results ... 87
 6.1.4 Monthly Rainfall .. 87

 6.2 Arrays in Fortran .. 88
 6.2.1 The dimension Attribute .. 88
 6.2.2 An Index ... 88
 6.2.3 Control Structure .. 88

 6.3 Example 1: Monthly Rainfall .. 89
 6.3.1 Possible Missing Data .. 91

 6.4 Example 2: People’s Weights and Setting the Array Size
with a Parameter .. 93

 6.5 Summary .. 94
 6.6 Problems .. 95

 7 Arrays 2: Further Examples .. 99
 7.1 Varying the Array Size at Run Time .. 100

 7.1.1 Example 1: Allocatable Arrays .. 100
 7.2 Higher-Dimension Arrays .. 101

 7.2.1 Example 2: Two Dimensional Arrays and a Map 101
 7.2.2 Example 3: Sensible Tabular Output 103
 7.2.3 Example 4: Average of Three Sets of Values 103
 7.2.4 Example 5: Booking Arrangements in a Theatre

or Cinema ... 105
 7.3 Additional Forms of the Dimension Attribute

and do Loop Statement .. 106

xiContents

7.3.1 Example 6: Voltage from −20 to +20 Volts.......................... 106
7.3.2 Example 7: Longitude from −180 to +180 107
7.3.3 Notes .. 107

7.4 The Do Loop and Straight Repetition .. 107
7.4.1 Example 8: Table of Liquid Conversion Measurements 107
7.4.2 Example 9: Means and Standard Deviations 108

7.5 Summary .. 109
7.6 Problems .. 110

 8 Whole Array and Additional Array Features 113
8.1 Terminology ... 113

8.1.1 Rank ... 114
8.1.2 Bounds ... 114
8.1.3 Extent ... 114
8.1.4 Size ... 114
8.1.5 Shape .. 114
8.1.6 Conformable .. 114
8.1.7 Array Element Ordering .. 114

8.2 Whole Array Manipulation .. 115
8.2.1 Assignment .. 115
8.2.2 Expressions .. 115
8.2.3 Example 1: One Dimensional Whole Arrays in Fortran 116
8.2.4 Example 2: Two Dimensional Whole Arrays in Fortran 117

8.3 Array Sections .. 118
8.3.1 Example 3: Rank 1 Array Sections 118
8.3.2 Example 4: Rank 2 Array Sections 118

8.4 Array Constructors ... 120
8.4.1 Example 5: Rank 1 Array Initialisation – Explicit Values 120
8.4.2 Example 6: Rank 1 Array Initialisation Using

an Implied do Loop .. 121
8.4.3 Example 7: Rank 1 Arrays and the dot_product Intrinsic 121

8.5 Initialising Rank 2 Arrays .. 122
8.5.1 Example 8: Initialising a Two Dimensional Array 122

8.6 Miscellaneous Array Examples ... 123
8.6.1 Example 9: Rank 1 Arrays and a Step Size

of 2 in Implied Do Loop .. 123
8.6.2 Example 10: Rank 1 Array and the sum

Intrinsic Function ... 124
8.6.3 Example 11: Rank 2 Arrays and the sum

Intrinsic Function ... 125
8.6.4 Example 12: Masked Array Assignment

and the Where Statement ... 126
8.6.5 Notes .. 127

8.7 The forall Statement and forall Construct 128
8.7.1 Syntax .. 128
8.7.2 Array Element Ordering and Physical

and Virtual Memory ... 128

xii Contents

 8.8 Summary .. 129
 8.9 Problems .. 129
8.10 Bibliography .. 130

 9 Output of Results .. 131
 9.1 Introduction .. 131
 9.2 Example 1: Integers – I Format or Edit Descriptor 132
 9.3 Example 2: The x Edit Descriptor ... 133
 9.4 Reals – F Format or Edit Descriptor .. 134

 9.4.1 Example 3: Metric and Imperial Conversion
and the f Edit Descriptor .. 135

 9.4.2 Example 4: Overfl ow and Underfl ow and the f Edit
Descriptor ... 136

 9.5 Reals – E Format or Edit Descriptor .. 137
 9.5.1 Example 5: Simple e Edit Descriptor Usage 138

 9.6 Spaces .. 138
 9.7 Characters – A Format or Edit Descriptor 139

 9.7.1 Example 6: Character Output and the a Edit Descriptor 139
 9.7.2 Example 7: Headings ... 140

 9.8 Example 8: Mixed Type Output in a Format Statement 140
 9.9 Common Mistakes ... 141
9.10 Open (and Close) ... 141

9.10.1 The Open Statement ... 141
9.10.2 Example 9: Open and Close Usage 142
9.10.3 Writing ... 142

9.11 Repetition ... 143
9.12 Some More Examples .. 145
9.13 Example 10: Implied Do Loops and Array Sections

for Array Output .. 146
9.13.1 Example 11: Whole Array Output 147

9.14 Formatting for a Line Printer ... 148
9.14.1 Mechanics of Carriage Control .. 149
9.14.2 Generating a New Line on Both Line Printers

and Terminals ... 149
9.15 Example 12: Timing of Writing Formatted Files 150
9.16 Example 13: Timing of Writing Unformatted Files 151
9.17 Summary .. 153
9.18 Problems .. 153

10 Reading in Data ... 155
10.1 Reading from the Terminal or Keyboard Versus Reading

from Files ... 156
10.2 Fixed Fields on Input ... 156

10.2.1 Integers and the I Format ... 156
10.2.2 Example 1: Skipping Data Whilst Reading 156
10.2.3 Reals and the F Format .. 157
10.2.4 Reals and the E Format .. 158

xiiiContents

 10.3 Blanks, Nulls and Zeros ... 161
 10.4 Characters .. 161
 10.5 Skipping Spaces and Lines .. 162
 10.6 Reading .. 163
 10.7 File Manipulation Again .. 164
 10.8 Reading Using Array Sections ... 164
 10.9 Timing of Reading Formatted Files ... 165
10.10 Timing of Reading Unformatted Files ... 167
10.11 Errors When Reading ... 168
10.12 Flexible Input Using Internal Files .. 168
10.13 Summary .. 169
10.14 Problems .. 170

11 Files ... 171
 11.1 Introduction .. 171
 11.2 Data Files in Fortran .. 172
 11.3 Summary of Options on Open ... 173
 11.4 More Foolproof I/O .. 175
 11.5 Summary .. 176
 11.6 Problems .. 177

12 Functions .. 179
 12.1 Introduction .. 179
 12.2 An Introduction to Predefi ned Functions and Their Use 180

 12.2.1 Example 1: Simple Function Usage 180
 12.3 Generic Functions .. 181

 12.3.1 Example 2: The abs Generic Function 181
 12.4 Elemental Functions ... 182

 12.4.1 Example 3: Elemental Function Use 182
 12.5 Transformational Functions ... 182

 12.5.1 Example 4: Simple Transformational Use 182
 12.5.2 Example 5: Intrinsic dot_product Use 183

 12.6 Notes on Function Usage ... 183
 12.7 Example 6: Easter .. 183
 12.8 Intrinsic Procedures ... 185
 12.9 Supplying Your Own Functions ... 185

 12.9.1 Example 7: Simple User Defi ned Function 186
12.10 An Introduction to the Scope of Variables, Local Variables

and Interface Checking .. 188
12.11 Recursive Functions ... 188

12.11.1 Example 8: Recursive Factorial Evaluation 189
12.12 Example 9: Recursive Version of gcd .. 190
12.13 Example 10: After Removing Recursion 191
12.14 Internal Functions .. 192

12.14.1 Example 11: Stirling’s Approximation 192
12.15 Pure Functions ... 193

12.15.1 Pure Constraints ... 194

xiv Contents

12.16 Elemental Functions ... 194
12.17 Resumé ... 195
12.18 Formal Syntax .. 196
12.19 Rules and Restrictions .. 196
12.20 Problems .. 197
12.21 Bibliography .. 197

12.21.1 Recursion and Problem Solving 198

13 Control Structures .. 199
 13.1 Introduction .. 200
 13.2 Selection Among Courses of Action .. 200

 13.2.1 The Block if Statement ... 201
 13.2.2 The Case Statement .. 205

 13.3 The Three Forms of the do Statement .. 207
 13.3.1 Example 5: Sentinel Usage... 208
 13.3.2 Cycle and Exit .. 209
 13.3.3 Example 6: e**x Evaluation ... 209
 13.3.4 Example 7: Wave Breaking on an Offshore Reef 210

 13.4 Summary .. 212
 13.4.1 Control Structure Formal Syntax 213

 13.5 Problems .. 213
 13.6 Bibliography .. 215

14 Characters ... 217
 14.1 Introduction .. 217
 14.2 Character Input ... 218
 14.3 Character Operators ... 219
 14.4 Character Substrings .. 221
 14.5 Character Functions ... 222
 14.6 Collating Sequence .. 223
 14.7 Finding Out About the Character Set Available 225
 14.8 Scan Function Example ... 226
 14.9 Summary .. 227
14.10 Problems .. 228

15 Complex ... 231
 15.1 Introduction .. 231
 15.2 Example 1 .. 232
 15.3 Example 2 .. 234
 15.4 Complex and Kind Type .. 234
 15.5 Summary .. 234
 15.6 Problem .. 235

16 Logical .. 237
 16.1 Introduction .. 237
 16.2 I/O .. 240
 16.3 Summary .. 241
 16.4 Problems .. 241

xvContents

17 Introduction to Derived Types ... 243
17.1 Introduction .. 243
17.2 Example 1: Dates ... 244
17.3 Type Defi nition .. 244
17.4 Variable Defi nition ... 245

17.4.1 Example 1 Variant Using Modules 245
17.5 Example 2: Address Lists .. 246
17.6 Example 3: Nested User Defi ned Types .. 247
17.7 Problem .. 249
17.8 Bibliography .. 249

18 An Introduction to Pointers ... 251
18.1 Introduction .. 251
18.2 Some Basic Pointer Concepts .. 252
18.3 The associated Intrinsic Function ... 253
18.4 Referencing a and b Before Allocation or Pointer

Assignment .. 254
18.4.1 gfortran .. 254
18.4.2 Intel .. 255
18.4.3 Nag .. 255

18.5 Pointer Allocation and Assignment ... 255
18.6 Memory Leak Examples .. 256
18.7 Non-standard Pointer Example .. 258
18.8 Problems .. 259

19 Introduction to Subroutines ... 261
19.1 Introduction .. 262
19.2 Example 1 .. 262

19.2.1 Defi ning a Subroutine .. 264
19.2.2 Referencing a Subroutine .. 265
19.2.3 Dummy Arguments or Parameters

and Actual Arguments ... 265
19.2.4 Intent .. 265
19.2.5 Local Variables .. 266
19.2.6 Local Variables and the Save Attribute 266
19.2.7 Scope of Variables ... 266
19.2.8 Status of the Action Carried Out in the Subroutine......... 267
19.2.9 Modules ‘containing’ Procedures 267

19.3 Why Bother with Subroutines? .. 267
19.4 Summary .. 268
19.5 Problems .. 268

20 Subroutines: 2 .. 269
20.1 More on Parameter Passing ... 269

20.1.1 Assumed-Shape Array ... 269
20.1.2 Deferred-Shape Array ... 270
20.1.3 Automatic Arrays .. 270

xvi Contents

 20.2 Example 1 – Assumed Shape Parameter Passing 270
 20.2.1 Notes ... 272

 20.3 Character Arguments and Assumed-Length
Dummy Arguments .. 272

 20.4 Rank 2 and Higher Arrays as Parameters 273
 20.4.1 Notes ... 275

 20.5 Automatic Arrays and Median Calculation 275
 20.5.1 Internal Subroutines and Scope 278

 20.6 Recursive Subroutines – Quicksort .. 279
 20.6.1 Note – Recursive Subroutine .. 281
 20.6.2 Note – Flexible Design ... 282
 20.6.3 Note – Timing Information .. 282

 20.7 Elemental Subroutines ... 282
 20.8 Summary .. 283
 20.9 Problems .. 283
20.10 Bibliography .. 285
20.11 Commercial Numerical and Statistical Subroutine Libraries 285

21 Modules .. 287
 21.1 Introduction .. 287
 21.2 Basic Module Syntax ... 288
 21.3 Modules for Global Data ... 288
 21.4 Modules for Precision Specifi cation and Constant Defi nition 288

 21.4.1 Note .. 290
 21.5 Modules for Sharing Arrays of Data .. 290
 21.6 Modules for Derived Data Types ... 292

 21.6.1 Person Data Type .. 292
 21.7 Private, Public and Protected Attributes 294
 21.8 The Use Statement ... 295
 21.9 Notes on Module Usage and Compilation 295
21.10 Formal Syntax .. 295

21.10.1 Interface .. 295
21.10.2 Implicit and Explicit Interfaces 296
21.10.3 Explicit Interface .. 296

21.11 Summary .. 296
21.12 Problems .. 297

22 Simple Data Structuring in Fortran .. 299
 22.1 Introduction .. 299
 22.2 Singly Linked List: Reading in an Arbitrary Amount of Text 300
 22.3 Singly Linked List: Reading in an Arbitrary Quantity

of Numeric Data ... 302
 22.4 Ragged Arrays ... 305
 22.5 Ragged Arrays and Variable Sized Data Sets 306
 22.6 Perfectly Balanced Tree ... 307

xviiContents

22.7 Date Class .. 309
22.7.1 Notes: DST in the USA ... 324

22.8 Problems .. 324
22.9 Bibliography .. 324

23 Operator Overloading .. 327
23.1 Introduction .. 327
23.2 Other Languages .. 327
23.3 Example ... 328
23.4 Problem .. 329

24 Generic Programming .. 331
24.1 Introduction .. 331
24.2 Generic Programming and Other Languages 331
24.3 Generic Example ... 332

24.3.1 Generic Quicksort in C++ ... 339
24.3.2 Generic Quicksort in C# .. 340
24.3.3 Summary ... 341

24.4 Problem .. 341
24.5 Bibliography .. 342

25 Mathematical Examples ... 343
25.1 Introduction .. 343
25.2 Using Linked Lists for Sparse Matrix Problems 344

25.2.1 Inner Product of Two Sparse Vectors 344
25.3 Solving a System of First-Order Ordinary Differential

Equations Using Runge–Kutta–Merson .. 348
25.3.1 Note: Alternative Form of the Allocate Statement 354
25.3.2 Note: Automatic Arrays .. 355
25.3.3 Note: Subroutine as a Dummy Procedure Argument 355
25.3.4 Note: Compilation When Using Modules 355

25.4 A Subroutine to Extract the Diagonal Elements of a Matrix 356
25.5 The Solution of Linear Equations Using Gaussian

Elimination .. 357
25.5.1 Notes .. 361

25.6 Allocatable Function Results ... 362
25.7 Elemental e**x Function ... 364
25.8 Problems .. 365
25.9 Bibliography .. 365

26 Object Oriented Programming .. 367
26.1 Introduction .. 367
26.2 Brief Review of the History of Object Oriented Programming 367
26.3 Background Technical Material ... 368
26.4 Type Declaration Statements ... 369

26.4.1 TYPE ... 369
26.4.2 CLASS .. 369

xviii Contents

 26.4.3 Attributes .. 369
 26.4.4 Passed Object Dummy Arguments 370
 26.4.5 Derived Types and Structure Constructors 370
 26.4.6 Structure Constructors and Generic Names 371
 26.4.7 Assignment ... 371
 26.4.8 Intrinsic Assignment Statement 371
 26.4.9 Defi ned Assignment Statement 372
26.4.10 Polymorphic Variables ... 372
26.4.11 Executable Constructs Containing Blocks 372
26.4.12 ASSOCIATE Construct .. 372
26.4.13 Select Type Construct ... 372

 26.5 Example 1 – The Basic Shape Class .. 373
 26.5.1 Key Points .. 374
 26.5.2 Notes ... 377
 26.5.3 Example 1 with Private Data .. 378
 26.5.4 Solution 1 with an Interface to Use the Class

Name for the Structure Constructor 379
 26.5.5 Public and Private Accessibility 381

 26.6 Example 2 – Simple Inheritance .. 381
 26.6.1 Base Shape Class .. 382
 26.6.2 Circle – Derived Type 1 .. 382
 26.6.3 Rectangle – Derived Type 2 ... 385
 26.6.4 Simple Inheritance Test Program 386

 26.7 Example 3 – Polymorphism and Dynamic Binding 388
 26.7.1 Base Shape Class .. 388
 26.7.2 Circle – Derived Type 1 .. 390
 26.7.3 Rectangle – Derived Type 2 ... 390
 26.7.4 Shape Wrapper Module .. 390
 26.7.5 Display Subroutine ... 391
 26.7.6 Test Program ... 391
 26.7.7 Program Output .. 394

 26.8 Summary .. 395
 26.9 Problems .. 396
26.10 Bibliography .. 396

27 Introduction to Parallel Programming ... 397
 27.1 Introduction .. 397
 27.2 Parallel Computing Classifi cation .. 399
 27.3 Amdahl’s Law .. 399

 27.3.1 Amdahl’s Law Graph 1–8 Processors or Cores 400
 27.3.2 Amdahl’s Law Graph 2–64 Processors or Cores 400

 27.4 Gustafson’s Law ... 403
 27.4.1 Gustafson’s Law Graph 1–64 Processors or Cores 403

 27.5 Memory Access ... 406
 27.6 Cache .. 406
 27.7 Bandwidth and Latency ... 406
 27.8 Flynn’s Taxonomy.. 407

xixContents

 27.9 Consistency Models ... 407
27.10 Threads and Threading .. 408
27.11 Threads and Processes ... 408
27.12 Data Dependencies ... 408
27.13 Race Conditions ... 408
27.14 Mutual Exclusion – Mutex ... 408
27.15 Monitors ... 408
27.16 Locks .. 409
27.17 Synchronization ... 409
27.18 Granularity and Types of Parallelism ... 409
27.19 Partitioned Global Address Space – PGAS 409
27.20 Fortran and Parallel Programming ... 410
27.21 MPI .. 410
27.22 OpenMP ... 412
27.23 Coarray Fortran .. 413
27.24 Other Parallel Options .. 413

27.24.1 PVM ... 414
27.24.2 HPF ... 414

27.25 Top 500 Supercomputers ... 414
27.26 Summary .. 415
27.27 Bibliography .. 415

27.27.1 Computer Hardware ... 415
27.27.2 Intel ... 415
27.27.3 Computer Operating Systems 416
27.27.4 Parallel Programming ... 416

28 MPI – Message Passing Interface .. 417
 28.1 Introduction .. 417
 28.2 MPI Programming ... 417
 28.3 Compiler and Implementation Combination 418
 28.4 Individual Implementation ... 418

 28.4.1 MPICH2 ... 418
 28.4.2 Open MPI ... 418

 28.5 Compiler and MPI Combinations Used in the Book 419
 28.6 The MPI Memory Model ... 419
 28.7 Example 1 – Hello World... 419
 28.8 Example 2 – Hello World Using Send and Receive 422
 28.9 Example 3 – Serial Solution for pi Calculation 425
28.10 Example 4 – Parallel Solution for pi Calculation 432
28.11 Example 5 – Work Sharing Between Processes 439
28.12 Summary .. 443
28.13 Problem .. 444

29 OpenMP ... 445
 29.1 Introduction .. 445
 29.2 OpenMP Memory Model ... 446
 29.3 Example 1 – Hello World... 447

xx Contents

 29.4 Example 2 – Hello World Using Default Variable Data Scoping 450
 29.5 Example 3 – Hello World with Private

thread_number Variable .. 451
 29.6 Example 4 – Parallel Solution for pi Calculation 452
 29.7 Summary .. 455
 29.8 Problem .. 455

30 Coarray Fortran .. 457
 30.1 Introduction .. 457
 30.2 Coarray Terminology ... 458
 30.3 Example 1 – Hello World... 459
 30.4 Example 2 – Broadcasting Data ... 459
 30.5 Example 3 – Parallel Solution for Pi Calculation 460
 30.6 Example 4 – Work Sharing .. 463
 30.7 Summary .. 467
 30.8 Problem .. 467

31 C Interop .. 469
 31.1 Introduction .. 469
 31.2 ISO_C_BINDING Module .. 469
 31.3 Named Constants and Derived Types in the Module 469
 31.4 Character Interoperability .. 470
 31.5 Procedures in the Module .. 471
 31.6 Interoperability of Intrinsic Types.. 471
 31.7 Other Aspects of Interoperability ... 471
 31.8 C_LOC Examples .. 472
 31.9 Example 1 .. 473

31.9.1 Gfortran Output ... 475
31.9.2 Intel Output .. 475
31.9.3 Nag Output ... 476

31.10 Example 2 .. 476
31.11 Bibliography .. 478
31.12 Problem .. 478

32 ISOTR 15580 IEEE Arithmetic ... 479
 32.1 Introduction .. 479
 32.2 History .. 480
 32.3 IEEE 754 Specifi cations .. 481

32.3.1 Single Precision Floating Point Format 482
32.3.2 Double Precision Floating Point Format 484
32.3.3 Two Classes of Extended Floating Point Formats 484
32.3.4 Accuracy Requirements ... 484
32.3.5 Base Conversion – Converting Between Decimal

and Binary Floating Point Formats and Vice Versa 484
32.3.6 Exception Handling ... 485
32.3.7 Rounding Directions .. 485
32.3.8 Rounding Precisions .. 485

xxiContents

32.4 Resumé .. 485
32.5 ISO TR 15580 .. 486

32.5.1 IEEE_FEATURES Module ... 486
32.5.2 IEEE_EXCEPTIONS Module .. 486
32.5.3 IEEE_ARITHMETIC Module 488

32.6 Summary .. 493
32.7 Bibliography .. 493

32.7.1 Web-Based Sources ... 494
32.7.2 Hardware Sources .. 495
32.7.3 Operating Systems ... 496
32.7.4 Java and IEEE 754 ... 497
32.7.5 C and IEEE 754 ... 497

33 Miscellaneous Features and Examples .. 499
33.1 Introduction .. 499
33.2 Keyword and Optional Arguments .. 499
33.3 Allocatable Dummy Arrays ... 501
33.4 Non Recursive Quicksort ... 504

33.4.1 Gfortran ... 516
33.4.2 Intel .. 516
33.4.3 Nag .. 517
33.4.4 Notes – Version Control Systems 517

33.5 Simple Graphics Programming – Dislin .. 518
33.6 Problem .. 529

33.6.1 Hint .. 529
33.7 Bibliography .. 530

34 Converting from Fortran 77 ... 531
34.1 Introduction .. 531
34.2 Deleted Features .. 532
34.3 Obsolescent Features ... 532

34.3.1 Arithmetic if .. 532
34.3.2 Real and Double Precision Do Control Variables 532
34.3.3 Shared Do Termination and Non-enddo Termination 532
34.3.4 Alternate Return .. 532
34.3.5 Pause Statement ... 533
34.3.6 Assign and Assigned Goto Statements 533
34.3.7 Assigned Format Statements ... 533
34.3.8 H Editing ... 533

34.4 Better Alternatives ... 533
34.5 Commercial Conversion Tools ... 534

34.5.1 Convert .. 534
34.5.2 Forcheck .. 534
34.5.3 Forstruct ... 534
34.5.4 Forstudy ... 535

xxii Contents

34.5.5 Fortran90-Lint ... 535
34.5.6 Plusfort .. 535
34.5.7 VAST/77to90 ... 535

34.6 Example of plusFORT Capability from Polyhedron Software 535
34.6.1 Original Fortran 66 .. 535
34.6.2 Fortran 77 Version ... 536
34.6.3 Fortran 90 Version ... 537

34.7 Summary .. 538

Appendix A: Glossary ... 539

Appendix B: ASCII Character Set .. 547

Appendix C: Intrinsic Functions and Procedures .. 549

Appendix D: English and Latin Texts ... 593

Appendix E: Coded Text Extract ... 595

Appendix F: Formal Syntax ... 597

Appendix G: Compiler Options ... 603

Index ... 607

1I. Chivers and J. Sleightholme, Introduction to Programming with Fortran:
With Coverage of Fortran 90, 95, 2003, 2008 and 77,
DOI 10.1007/978-0-85729-233-9_1, © Springer-Verlag London Limited 2012

 1.1 Introduction

 The book aims to provide coverage of a reasonable working subset of the Fortran
programming language. The subset chosen should enable you to solve quite a wide
range of frequently occurring problems.

 This book has been written for both complete beginners with little or no pro-
gramming background and experienced Fortran programmers who want to update
their skills and move to a modern version of the language.

 Chapters 2 and 3 provide a coverage of problem solving and the history and
development of programming languages. Chapter 2 is essential for the beginner as
the concepts introduced there are used and expanded on throughout the rest of the
book. Chapter 3 should be read at some point but can be omitted initially.
Programming languages evolve and some understanding of where Fortran has come
from and where it is going will prove valuable in the longer term.

 Chapter 2 looks at problem solving in some depth, and there is a coverage of the •
way we defi ne problems, the role of algorithms, the use of both top-down and
bottom-up methods, and the requirement for formal systems analysis and design
for more complex problems.
 Chapter 3 looks at the history and development of programming languages. This •
is essential as Fortran has evolved considerably from its origins in the mid-1950s,
through the fi rst standard in 1966, the Fortran 77 standard, the Fortran 90 stan-
dard, the Fortran 95 standard, TR 15580 and TR 15581, Fortran 2003 and Fortran
2008. It helps to put many of the current and proposed features of Fortran into

 Chapter 1
 Overview

 I don’t know what the language of the year 2000 will look like,
but it will be called Fortran.

 C.A.R. Hoare

2 1 Overview

context. Languages covered include Cobol, Algol, Lisp, Snobol, PL/1, Algol 68,
Simula, Pascal, APL, Basic, C, Ada, Modula, Modula 2, Logo, Prolog, SQL,
ICON, Oberon, Oberon 2, Smalltalk, C++, C# and Java.

 Chapters 4 through 8 cover the major features provided in Fortran for numeric pro-
gramming in the fi rst instance and for general purpose programming in the second. Each
chapter has a set of problems. It is essential that a reasonable range of problems are
attempted and completed, as it is impossible to learn any language without practice.

 Chapter 4 provides an introduction to programming with some simple Fortran •
examples. For people with a knowledge of programming this chapter can be
covered fairly quickly.
 Chapter 5 looks at arithmetic in some depth, with a coverage of the various •
numeric data types, expressions and assignment of scalar variables. There is also
a thorough coverage of the facilities provided in Fortran to help write programs
that work on different hardware platforms.
 Chapter 6 is an introduction to arrays and do loops. The chapter starts with some •
examples of tabular structures that one should be familiar with. There is then an
examination of what concepts we need in a programming language to support
manipulation of tabular data.
 Chapter 7 takes the ideas introduced in Chap. 6 and extends them to higher-•
dimensioned arrays, additional forms of the dimension attribute and correspond-
ing form of the do loop, and the use of looping for the control of repetition and
manipulation of tabular information without the use of arrays.
 Chapter 8 looks at more of the facilities offered for the manipulation of whole •
arrays and array sections, ways in which we can initialise arrays using construc-
tors, look more formally at the concepts we need to be able to accurately describe
and understand arrays, and fi nally look at the differences between the way Fortran
allows us to use arrays and the mathematical rules governing matrices.

 Chapters 9 , 10 and 11 look at input and output (I/O) and fi le handling in Fortran.
An understanding of I/O is necessary for the development of so-called production,
non interactive programs. These are essentially fully developed programs that are
used repeatedly with a variety of data inputs and results.

 Chapter 9 looks at output of results and how to generate something that is more •
comprehensible and easy to read than what is available with free format output
and also how to write the results to a fi le rather than the screen.
 Chapter 10 extends the ideas introduced in Chap. 12 on output to cover input of •
data, or reading data into a program and also considers fi le I/O.
 Chapter 11 provides a coverage of fi les. •

 Chapter 12 introduces the fi rst building block available in Fortran for the con-
struction of programs for the solution of larger, more complex problems. It looks at
the functions available in Fortran, the so-called intrinsic functions and procedures
(over 100 of them) and covers how you can defi ne and use your own functions.

 It is essential to develop an understanding of the functions provided by the
language and when it is necessary to write your own.

31.1 Introduction

 Chapter 13 introduces more formally the concept of control structures and
their role in structured programming. Some of the control structures available in
Fortran are introduced in earlier chapters, but there is a summary here of those
already covered plus several new ones that complete our coverage of a minimal
working set.

 Chapters 14 through 16 complete our coverage of the intrinsic facilities in Fortran
for data typing.

 Chapter 14 looks at the character data type in Fortran. There is a coverage of I/O •
again, with the operators available—only one in fact.
 Chapter 15 looks at the last numeric data type in Fortran, the complex data type. •
This data type is essential to the solution of a small class of problems in mathe-
matics and engineering.
 Chapter 16 looks at the logical data type. The material covered here helps con-•
siderably in increasing the power and sophistication of the way we use and con-
struct logical expressions in Fortran. This proves invaluable in the construction
and use of logical expressions in control structures.

 Chapter 17 introduces derived or user defi ned types with a small number of
examples.
 Chapter 18 looks at the dynamic data-structuring facilities now available in
Fortran with the addition of pointers. This chapter looks at the basic syntax of
pointers. They are used in range of examples in later chapters in the book.

 The next two chapters look at the second major building block in Fortran—
the subroutine. Chapter 19 provides a gentle introduction to some of the funda-
mental concepts of subroutine defi nition and use and Chapter 20 extends these
ideas.
 Chapter 21 introduces one of modern Fortran’s major key features—A Fortran
module can be thought of as equivalent to a class in C++, Java and C#. the mod-
ule. This chapter looks at the basic syntax, with a couple of simple examples.
 Chapter 22 looks at simple data structuring in Fortran, as we have now covered
modules in a bit more depth.
 Chapter 23 looks briefl y at operator overloading, fi rst introduced in Fortran 90.
 Chapter 24 looks at generic programming.
 Chapter 25 has a small set of mathematical examples.
 Chapter 26 introduces object oriented programming in Fortran.
 Chapters 27 through 30 look at parallel programming in Fortran with coverage of
MPI, OpenMP and Coarray Fortran.
 Chapter 31 looks at C interoperability.
 Chapter 32 looks at IEEE Arithmetic support in Fortran.
 Chapter 33 looks at a number of miscellaneous Fortran features.
 Chapter 34 looks at converting from Fortran 77 to more modern Fortran.

 Some of the chapters have annotated bibliographies. These often have pointers
and directions for further reading. The coverage provided cannot be seen in isolation.
The concepts introduced are by intention brief, and fuller coverage must be sought
where necessary.

4 1 Overview

 There are several appendices:

 Appendix A—This is a glossary which provides coverage of both the new con-•
cepts provided by Fortran and a range of computing terms and ideas.
 Appendix B—The ASCII character set. •
 Appendix C—Contains a list of some of the more commonly used intrinsic pro-•
cedures in Fortran and includes an explanation of each procedure with a cover-
age of the rules and restrictions that apply and examples of use where
appropriate.
 Appendix D—Contains the English and Latin text extracts used in one of the •
problems in the chapter on characters.
 Appendix E—Contains the coded text extract used in one of the problems in •
Chapter 17 .
 Appendix F—Formal syntax •
 Appendix G—Sample compiler options •

 This book is not and cannot possibly be completely self-contained and exhaustive
in its coverage of the Fortran language. Our fi rst intention has been to produce a
coverage of the features that will get you started with Fortran and enable you to
solve a range of problems successfully.

 All in all Fortran is an exciting language, and it has caught up with language
developments of the last 50 years.

 Several Fortran compilers have been used whilst writing this book. These
include:

 NAG Fortran Builder 5.1, 5.2, for Windows •
 NAG Fortran Compiler 5.1, 5.2, 5.3 for Windows •
 NAG Fortran Compiler 5.1, 5.2 for Linux. •
 Intel Fortran 11.x, 12.x for Windows. •
 Intel Fortran 12.x for Linux. •
 gnu gfortran 4.x for Windows. •
 gnu gfortran 4.x for Linux. •
 g95 for Linux. •
 pgi 10.x—Cray Hector service •
 Cray 1.0.1—Cray Hector service •
 Oracle Solaris Studio 12.0, 12.1, 12.2 for Linux •

 Our recommendation is that you use at least two compilers in the development of
your code. Moving code between compilers and platforms teaches you a lot.

 We are the current owners of the Fortran 90 list, and quoting the introduction
“This list covers all aspects of Fortran 90 and HPF, the new standard(s) for Fortran.
The emphasis should be on the *new* features of Fortran 90. It welcomes contribu-
tions from people who write Fortran 90 applications, teach it in courses, want to port
programs and use it on (super)computers.”

 Visit:

 • http://www.jiscmail.ac.uk/lists/comp-fortran-90.html for more information.

http://www.jiscmail.ac.uk/lists/comp-fortran-90.html

51.3 Further Reading

 Ian Chivers is also Editor of Fortran Forum, the SIGPLAN Special Interest
Publication on Fortran, ACM Press. Visit

 http://portal.acm.org/citation.cfm?id=J286 for more information.

 1.2 Program Examples

 All of the program examples are available on line at http://www.fortranplus.co.uk/

 1.3 Further Reading

 Mastery of any programming language requires working with technical documenta-
tion. You will have to refer to or use one or more of the sources below if you want
to progress as a Fortran programmer.

 1.3.1 The Fortran Standard

 The ISO site http://www.iso.org/iso/search.htm?qt=fortran&sort=rel&type=simple
&pub-lished=on has details of how to obtain a copy. It is 338 Swiss Francs.

 In the UK the standard can be obtained from the BSI. Details are given below:
 http://shop.bsigroup.com/en/ProductDetail/?pid=000000000030185076 It is 356
UK pounds.

 You should be able to buy the standard from the standards organisations in your
country. Google is a good place to start/

 1.3.2 J3 and WG5 Working Documents

 Working documents can be found at the J3 and WG5 sites. The last working docu-
ment for the Fortran 2003 standard can be found at both the J3 and WG5 sites. WG5
have the document available at: ftp://ftp.nag.co.uk/sc22wg5/N1601-N1650/ and is
document number n1601. It can also be found at the J3 site. http://www.j3-fortran.
org/doc/year/04/04-007.pdf

 1.3.3 Compiler Documentation

 The compiler may come with documentation. Here are some details for a number of
compilers.

http://portal.acm.org/citation.cfm?id=J286
http://www.fortranplus.co.uk/
http://www.iso.org/iso/search.htm?qt=fortran&sort=rel&type=simple&pub-lished=on
http://www.iso.org/iso/search.htm?qt=fortran&sort=rel&type=simple&pub-lished=on
http://shop.bsigroup.com/en/ProductDetail/?pid=000000000030185076
ftp://ftp.nag.co.uk/sc22wg5/N1601-N1650/
http://www.j3-fortran.org/doc/year/04/04-007.pdf
http://www.j3-fortran.org/doc/year/04/04-007.pdf

6 1 Overview

 1.3.3.1 g95

 A manuals is available at

 http://ftp.g95.org/G95Manual.pdf Visit
 http://www.g95.org/index.shtm for up to date information.

 1.3.3.2 gfortran

 Manuals are available at

 http://gcc.gnu.org/wiki/GFortran#manuals The following
 http://gcc.gnu.org/onlinedocs/gcc-4.5.2/gfortran.pdf is a 236 page pdf.

 1.3.3.3 Intel

 Windows. The following will end up available after a complete install.

 Intel MKL•

 Release notes •
 Reference Manual •
 User Guide •

 Parallel Debugger Extension•

 Release Notes •

 Compiler•

 Reference Manual, Visual Studio Help fi les or html. •
 User Guide, Visual Studio Help fi les or html. Intel also provide the •
 following http://software.intel.com/en-us/articles/intel-software-technical-
documentation/

 1.3.3.4 Nag

Windows

 Fortran Builder Help•

 Fortran Builder Tutorial—44 pages •
 Fortran Builder Operation Guide—67 pages •
 Fortran Language Guide—115 pages •
 Compiler Manual—149 pages •
 LAPACK Guide—70 pages (440MB as PDF!) •

http://ftp.g95.org/G95Manual.pdf
http://www.g95.org/index.shtm
http://gcc.gnu.org/wiki/GFortran#manuals
http://gcc.gnu.org/onlinedocs/gcc-4.5.2/gfortran.pdf
http://software.intel.com/en-us/articles/intel-software-technical-documentation/
http://software.intel.com/en-us/articles/intel-software-technical-documentation/

71.3 Further Reading

 GTK + Library—201 pages •
 OpenGL/GLUT Library—38 pages •
 SIMDEM Library—78 pages •

 1.3.3.5 Oracle/Sun

 Oracle make available a range of documentation. From within Oracle Solaris
Studio

 Help•

 Help Contents •
 Online Docs and Support •
 .. •
 .. •
 Quick Start Guide and you will get taken to the Oracle site by some of these •
entries.

 You can also download a 300+ MB zip fi le which contains loads of Oracle docu-
mentation. You should be able to locate (after some rummaging around)

 Sun Studio 12: Fortran Programming Guide—174 pages •
 Sun Studio 12: Fortran User’s Guide—216 pages •
 Sun Studio 12: Fortran Library Reference—144 pages •
 Fortran 95 Interval Arithmetic Programming Reference—166 pages Happy •
reading :-)

 1.3.4 Books

 Adams, J.C., Brainerd, W.S., Hendrickson, R.A., Maine, R.E., Martin, J.T., Smith,
B.T.: The Fortran 2003 Handbook: The Complete Syntax, Features and Procedures.
Springer, London (2008) 31 Oct 2008, ISBN-10: 1846283787, ISBN-13: 978-
1846283789.

 It covers the whole of the Fortran 2003 standard in a lot of depth. The content and
structure of the book follows that of the standard directly. A much easier read than
the standard, and a lot cheaper.

9I. Chivers and J. Sleightholme, Introduction to Programming with Fortran:
With Coverage of Fortran 90, 95, 2003, 2008 and 77,
DOI 10.1007/978-0-85729-233-9_2, © Springer-Verlag London Limited 2012

 Aims

 The aims of this chapter are:

 To examine some of the ideas and concepts involved in problem solving. •
 To introduce the concept of an algorithm. •
 To introduce two ways of approaching algorithmic problem solving. •
 To introduce the ideas involved with systems analysis and design, i.e., to show •
the need for pencil and paper study before using a computer system.

 Chapter 2
 Introduction to Problem Solving

 They constructed ladders to reach to the top of the enemy’s
wall, and they did this by calculating the height of the wall
from the number of layers of bricks at a point which was
facing in their direction and had not been plastered. The
layers were counted by a lot of people at the same time, and
though some were likely to get the fi gure wrong the majority
would get it right… Thus, guessing what the thickness of a
single brick was, they calculated how long their ladder would
have to be.

 Thucydides, The Peloponnesian War

 ‘When I use a word,’ Humpty Dumpty said, in a rather scornful
tone, ‘it means just what I choose it to mean—neither more
nor less.’
 ‘The question is,’ said Alice, ‘whether you can make words
mean so many different things.’

 Lewis Carroll, Through the Looking Glass
and What Alice Found There

10 2 Introduction to Problem Solving

 2.1 Introduction

 It is informative to consider some of the dictionary defi nitions of problem:

 A matter diffi cult of settlement or solution, Chambers. •
 A question or puzzle propounded for solution, Chambers. •
 A source of perplexity, Chambers. •
 Doubtful or diffi cult question, Oxford. •
 Proposition in which something has to be done, Oxford. •
 A question raised for enquiry, consideration, or solution, Webster’s. •
 An intricate unsettled question, Webster’s. •

 A common thread seems to be a question that we would like answered or solved. So
one of the fi rst things to consider in problem solving is how to pose the problem. This
is often not as easy as is seems. Two of the most common methods to use here are:

 In natural language. •
 In artifi cial or stylised language. •

 Both methods have their advantages and disadvantages.

 2.2 Natural Language

 Most people use natural language and are familiar with it, and the two most common
forms are the written and spoken word. Consider the following language usage:

 The difference between a 3 year-old child and an adult describing the world. •
 The difference between the way an engineer and a physicist would approach the •
design of a car engine.
 The difference between a manager and a worker considering the implications of •
the introduction of new technology.

 Great care must be taken when using natural language to defi ne a problem and
a solution. It is possible that people use the same language to mean completely
different things, and one must be aware of this when using natural language whilst
problem solving.

 Natural language can also be ambiguous: Old men and women eat cheese. Are
both the men and women old?

 2.3 Artifi cial Language

 The two most common forms of artifi cial language are technical terminology and
notations. Technical terminology generally includes both the use of new words and
alternate use of existing words. Consider some of the concepts that are useful when
examining the expansion of gases in both a theoretical and practical fashion:

112.5 Algorithms

 Temperature. •
 Pressure. •
 Mass. •
 Isothermal expansion. •
 Adiabatic expansion. •

 Now look at the following:

 A chef using a pressure cooker. •
 A garage mechanic working on a car engine. •
 A doctor monitoring blood pressure. •
 An engineer designing a gas turbine. •

 Each has a particular problem to solve, and all will approach their problem in their
own way; thus they will each use the same terminology in slightly different ways.

 2.3.1 Notations

 Some examples of notations are:

 Algebra. •
 Calculus. •
 Logic. •

 All of the above have been used as notations for describing both problems and
their solutions.

 2.4 Resume

 We therefore have two ways of describing problems and they both have a learning
phase until we achieve suffi cient understanding to use them effectively. Having
arrived at a satisfactory problem statement we next have to consider how we get the
solution. It is here that the power of the algorithmic approach becomes useful.

 2.5 Algorithms

 An algorithm is a sequence of steps that will solve part or all of a problem. One of
the most easily understood examples of an algorithm is a recipe. Most people have
done some cooking, if only making toast and boiling an egg.

 A recipe is made up of two parts:

 A check list of things you need. •
 The sequence or order of steps. •

12 2 Introduction to Problem Solving

 Problems can occur at both stages, e.g., fi nding out halfway through the recipe that
you do not have an ingredient or utensil; fi nding out that one stage will take an hour
when the rest will be ready in 10 min. Note that certain things can be done in any
order—it may not make any difference if you prepare the potatoes before the carrots.

 There are two ways of approaching problem solving when using a computer.
They both involve algorithms, but are very different from one another. They are
called top-down and bottom-up.

 2.5.1 Top-Down

 In a top-down approach the problem is fi rst specifi ed at a high or general level:
prepare a meal. It is then refi ned until each step in the solution is explicit and in the
correct sequence, e.g., peel and slice the onions, then brown in a frying pan before
adding the beef. One drawback to this approach is that it is very diffi cult to teach to
beginners because they rarely have any idea of what primitive tools they have at
their disposal. Another drawback is that they often get the sequencing wrong, e.g.,
now place in a moderately hot oven is frustrating because you may not have lit the
oven (sequencing problem) and secondly because you may have no idea how hot
moderately hot really is. However, as more and more problems are tackled,
top-down becomes one of the most effective methods for programming.

 2.5.2 Bottom-Up

 Bottom-up is the reverse to top-down! As before you start by defi ning the problem
at a high level, e.g., prepare a meal. However, now there is an examination of what
tools, etc. you have available to solve the problem. This method lends itself to teach-
ing since a repertoire of tools can be built up and more complicated problems can
be tackled. Thinking back to the recipe there is not much point in trying to cook a
six course meal if the only thing that you can do is boil an egg and open a tin of
beans. The bottom-up approach thus has advantages for the beginner. However,
there may be a problem when no suitable tool is available. A colleague and friend
of the authors learned how to make Bechamel sauce, and was so pleased by his suc-
cess that every other meal had a course with a Bechamel sauce. Try it on your eggs
one morning. Here is a case of specifying a problem, prepare a meal, and using an
inappropriate but plausible tool, Bechamel sauce.

 The effort involved in tackling a realistic problem, introducing the constructs as
and when they are needed and solving it is considerable. This approach may not
lead to a reasonably comprehensive coverage of the language, or be particularly
useful from a teaching point of view. Case studies do have great value, but it helps
if you know the elementary rules before you start on them. Imagine learning French
by studying Balzac, before you even look at a French grammar book. You can learn
this way but even when you have fi nished, you may not be able to speak to a

132.8 Systems Analysis and Design

Frenchman and be understood. A good example of the case study approach is given
in the book Software Tools, by Kernighan and Plauger.

 In this book our aim is to gradually introduce more and more tools until you
know enough to approach the problem using the top-down method, and also realise
from time to time that it will be necessary to develop some new tools.

 2.5.3 Stepwise Refi nement

 Both of the above techniques can be combined with what is called stepwise refi nement.
The original ideas behind this approach are well expressed in a paper by Wirth, entitled
“program Development by Stepwise Refi nement”, published in 1971. It means that
you start with a global problem statement and break the problem down in stages, into
smaller and smaller subproblems that become more and more amenable to solution.
When you fi rst start programming the problems you can solve are quite simple, but as
your experience grows you will fi nd that you can handle more complex problems.

 When you think of the way that you solve problems you will probably realise that
unless the problem is so simple that you can answer it straightaway some thinking and
pencil and paper work are required. An example that some may be familiar with is
in practical work in a scientifi c discipline, where coming unprepared to the situation
can be very frustrating and unrewarding. It is therefore appropriate to look at ways
of doing analysis and design before using a computer.

 2.6 Module Programming

 As the problems we try solving become more complex we need to look at ways of
managing the construction of programs that comprise many parts. Modula 2 was
one of the fi rst languages to support this methodology and we will look at modular
programming in more depth in a subsequent chapter.

 2.7 Object Oriented Programming

 There is a class of problems that are best solved by the treatment of the components
of these problems as objects. We will look at the concepts involved in object
oriented programming and object oriented languages in the next chapter.

 2.8 Systems Analysis and Design

 When one starts programming it is generally not apparent that one needs a method-
ology to follow to become successful as a programmer. This is usually because the
problems are reasonably simple, and it is not necessary to be explicit about all of the

14 2 Introduction to Problem Solving

stages one has gone through in arriving at a solution. As the problems become more
complex it is necessary to become more rigorous and thorough in one’s approach,
to keep control in the face of the increasing complexity and to avoid making
mistakes. It is then that the benefi t of systems analysis and design becomes obvious.
Broadly we have the following stages in systems analysis and design:

 Problem defi nition. •
 Feasibility study and fact fi nding. •
 Analysis. •
 Initial system design. •
 Detailed design. •
 Implementation. •
 Evaluation. •
 Maintenance. •

and each problem we address will entail slightly different time spent in each of these
stages. Let us look at each stage in more detail.

 2.8.1 Problem Defi nition

 Here we are interested in defi ning what the problem really is. We should aim at
providing some restriction on both the scope of the problem, and the objectives we
set ourselves. We can use the methods mentioned earlier to help us out. It is essen-
tial that the objectives are:

 Clearly defi ned. •
 Understood and agreed to by all people concerned, when more than one person •
is involved.
 Realistic. •

 2.8.2 Feasibility Study and Fact Finding

 Here we look to see if there is a feasible solution. We would try and estimate the cost
of solving the problem and see if the investment was warranted by the benefi ts,
i.e., cost-benefi t analysis.

 2.8.3 Analysis

 Here we look at what must be done to solve the problem. Note that we are interested
in fi nding out what we need to do, but that we do not actually do it at this stage.

152.8 Systems Analysis and Design

 2.8.4 Design

 Once the analysis is complete we know what must be done, and we can proceed to
the design. We may fi nd there are several alternatives, and we thus examine alternate
ways in which the problem can be solved. It is here that we use the techniques of
top-down and bottom-up problem solving, combined with stepwise refi nement to
generate an algorithm to solve the problem. We are now moving from the logical to
the physical side of the solution. This stage ends with a choice among several alter-
natives. Note that there is generally not one ideal solution, but several, each with its
own advantages and disadvantages.

 2.8.5 Detailed Design

 Here we move from the general to the specifi c, The end result of this stage should
be a specifi cation that is suffi ciently tightly defi ned specifi cation to generate actual
program code.

 It is at this stage that it is useful to generate pseudocode. This means writing out
in detail the actions we want carried out at each stage of our overall algorithm. We
gradually expand each stage (stepwise refi nement) until it becomes Fortran—or
whatever language we want.

 2.8.6 Implementation

 It is at this stage that we actually use a computer system to create the program(s) that
will solve the problem. It is here that we actually need to know enough about a pro-
gramming language to use it effectively to solve our problem. This is only one stage in
the overall process, and mistakes at any of the stages can create serious diffi culties.

 2.8.7 Evaluation and Testing

 Here we try to see if the program(s) we have produced will actually do what they are
supposed to. We need to have data sets that enable us to say with confi dence that the
program really does work. This may not be an easy task, as quite often we only have
numeric methods to solve the problem, which is why we are using the computer in
the fi rst place—hence we are relying on the computer to provide the proof; i.e., we
have to use a computer to determine the veracity of the programs—and as Heller
says, Catch 22.

16 2 Introduction to Problem Solving

 2.8.8 Maintenance

 It is rare that a program is run once and never used again. This means that there will
be an ongoing task of maintaining the program, generally to make it work with
different versions of the operating system or compiler, and to incorporate new features
not included in the original design. It often seems odd when one starts programming
that a program will need maintenance, as we are reluctant to regard a program in the
same way as a mechanical object like a car that will eventually fall apart through
use. Thus maintenance means keeping the program working at some tolerable level,
often with a high level of investment in manpower and resources. Research in this
area has shown that anything up to 80% of the manpower investment in a program
can be in maintenance.

 2.9 Conclusions

 A drawback, inherent in all approaches to programming and to problem solving in
general, is the assumption that a solution is indeed possible. There are problems
which are simply insoluble—not only problems like balancing a national budget,
weather forecasting for a year, or predicting which radioactive atom will decay, but
also problems which are apparently computationally solvable.

 Knuth gives the example of a chess problem—determining whether the game is
a forced victory for white. Although there is an algorithm to achieve this, it requires
an inordinately long time to complete. For practical purposes it is unsolvable.

 Other problems can be shown mathematically to be undecidable. The work of
Gödel in this area has been of enormous importance, and the bibliography contains
a number of references for the more inquisitive and mathematically orientated
reader. The Hofstader coverage is the easiest, and least mathematical.

 As far as possible we will restrict ourselves to solvable problems, like learning a
programming language.

 Within the formal world of Computer Science our description of an algorithm
would be considered a little lax. For our introductory needs it is suffi cient, but a
more rigorous approach is given by Hopcroft and Ullman in Introduction to
Automata Theory, Languages and Computation, and by Beckman in Mathematical
Foundations of programming.

 2.10 Problems

 1. What is an algorithm?
 2. What distinguishes top-down from bottom-up approaches to problem solving?

Illustrate your answer with reference to the problem of a car, motor-cycle or
bicycle having a fl at tire.

172.11 Bibliography

 2.11 Bibliography

 Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading (1982)

 Theoretical coverage of the design and analysis of computer algorithms.
 Beckman, F.S.: Mathematical Foundations of Programming, Addison-Wesley, Reading (1981)

Good clear coverage of the theoretical basis of computing.
 Bulloff, J.J., Holyoke, T.C., Hahn, S.W.: Foundations of mathematics—symposium papers com-

memorating the 60th birthday of Kurt Gödel, Springer-Verlag, Berlin/Heidelberg/New York
(1969)

 The comment by John von Neumann highlights the importance of Gödel’s work, Kurt Gödel’s
achievement in modern logic is singular and monumental—indeed it is more than a monument,
it is a landmark which will remain visible far in space and time. Whether anything comparable
to it has occurred in the logic of modern times may be debated. In any case, the conceivable
proxima are very, very few. The subject of logic has certainly changed its nature and possibili-
ties with Gödel’s achievement.

 Dahl, O.J., Dijkstra, E.W., Hoare, C.A.R.: Structured Programming, Academic Press, London,
New York (1972)

 This is the seminal book on structured programming.
 Davis, M.: Computability and Unsolvability, Dover, New York (1982)
 The book is an introduction to the theory of computability and noncomputability—the theory of

recursive functions in mathematics. Not for the mathematically faint hearted!
 Davis, W.S.: Systems Analysis and Design, Addison-Wesley, Reading (1983)
 Good introduction to systems analysis and design, with a variety of case studies. Also looks at

some of the tools available to the systems analyst.
 Fogelin, R.J.: Wittgenstein, Routledge and Kegan Paul (1980)
 The book provides a gentle introduction to the work of the philosopher Wittgenstein, who exam-

ined some of the philosophical problems associated with logic and reason.
 Gödel, K.: On Formally Undecidable Propositions of Principia Mathematica and Related Systems.

Oliver and Boyd, New York (1962)
 An English translation of Gödel’s original paper by Meltzer, with quite a lengthy introduction by

R.B. Braithwaite, then Knightbridge Professor of Moral Philosophy at Cambridge University,
England, and classifi ed under philosophy at the library at King’s, rather than mathematics.

 Hofstadter, D.: The Eternal Golden Braid, Harvester Press, Hassocks (1979)
 A very readable coverage of paradox and contradiction in art, music and logic, looking at the work

of Escher, Bach and Gödel, respectively.
 Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and Computation.

Addison-Wesley, Reading (1979)
 Comprehensive coverage of the theoretical basis of computing.
 Kernighan, B.W., Plauger, P.J., Software Tools. Addison-Wesley, Reading (1976)
 Interesting essays on the program development process, originally using a nonstandard variant of

Fortran. Also available using Pascal.
 Knuth, D.E.: The Art of Computer Programming, Addison-Wesley, Reading
 vol 1. Fundamental Algorithms (1974)
 vol 2. Semi-numerical Algorithms (1978)
 vol 3. Sorting and Searching (1972) contains interesting insights into many aspects of algorithm

design. Good source of specialist algorithms, and Knuth writes with obvious and infectious
enthusiasm (and erudition).

 Millington, D.: Systems Analysis and Design for Computer Applications. Ellis Horwood,
Chichester (1981)

 Short and readable introduction to systems analysis and design.
 Wirth, N.: Program development by stepwise refi nement. Commun. ACM. 14(4) , 221–227 (1971)
 Clear and simple exposition of the ideas of stepwise refi nement.

19I. Chivers and J. Sleightholme, Introduction to Programming with Fortran:
With Coverage of Fortran 90, 95, 2003, 2008 and 77,
DOI 10.1007/978-0-85729-233-9_3, © Springer-Verlag London Limited 2012

 Aims

 The primary aim of this chapter is to provide a short history of program language
development and give some idea as to the concepts that have had an impact on
Fortran. It concentrates on some but not all of the major milestones of the last
40 years, in roughly chronological order. The secondary aim is to show the breadth
of languages available. The chapter concludes with coverage of a small number of
more specialised languages.

 3.1 Introduction

 It is important to realise that programming languages are a recent invention. They
have been developed over a relatively short period—55 years—and are still
undergoing improvement. Time spent gaining some historical perspective will
help you understand and evaluate future changes. This chapter starts right at the
beginning and takes you through some, but not all, of the developments during
this 55 year span. The bulk of the chapter describes languages that are reasonably
widely available commercially, and therefore ones that you are likely to meet.
The chapter concludes with a coverage of some more specialised and/or recent
developments.

 Chapter 3
 Introduction to Programming Languages

 We have to go to another language in order to think clearly
about the problem.

 Samuel R. Delany, Babel-17

20 3 Introduction to Programming Languages

 3.2 Some Early Theoretical Work

 Some of the most important early theoretical work in computing was that of Turing
and von Neumann. Turing’s work provided the base from which it could be shown
that it was possible to get a machine to solve problems. The work of von Neumann
added the concept of storage and combined with Turing’s work to provide the basis
for most computers designed to this day.

 3.3 What Is a Programming Language?

 For a large number of people a programming language provides the means of getting a
digital computer to solve a problem. There is a wide range of problems and an equally
wide range of programming languages, with particular languages being suited to a
particular class of problems, all of which often appears bewildering to the beginner.

 3.4 Program Language Development and Engineering

 There is much in common between the development of programming languages and
the development of anything from the engineering world. Consider the car: old cars
offer much of the same functionality as more modern ones, but most people prefer
driving newer models. The same is true of programming languages, where you can
achieve much with the older languages, but the newer ones are easier to use.

 3.5 The Early Days

 A concept that proves very useful when discussing programming languages is that of
the level of a machine. By this is meant how close a language is to the underlying
machine that the program runs on. In the early days of programming (up to 1954)
there were only two broad categories: machine languages and assemblers. The lan-
guage that digital machines use is that of 0 and 1, i.e., they are binary devices. Writing
a program in terms of patterns of 0 and 1 was not particularly satisfactory and the
capability of using more meaningful mnemonics was soon introduced. Thus it was
realised quite quickly that one of the most important aspects of programming lan-
guages is that they have to be read and understood by both machines and humans.

 3.5.1 Fortran’s Origins

 The next stage was the development of higher-level languages. The fi rst of these was
Fortran and it was developed over a 3 year period from 1954 to 1957 by an IBM team

213.5 The Early Days

led by John Backus. This group achieved considerable success, and helped to prove
that the way forward lay with high-level languages for computer-based problem
solving. Fortran stands for formula translation and was used mainly by people with a
scientifi c background for solving problems that had a signifi cant arithmetic content.
It was thus relatively easy, for the time, to express this kind of problem in Fortran.

 By 1966 and the fi rst standard Fortran:

 Was widely available. •
 Was easy to teach. •
 Had demonstrated the benefi ts of subroutines and independent compilation. •
 Was relatively machine independent. •
 Often had very effi cient implementations. •

 Possibly the single most important fact about Fortran was, and still is, its wide-
spread usage in the scientifi c community.

 3.5.2 Fortran 77

 The next standard in 1977 (actually 1978, and thus out by one—a very common
programming error, more of this later!) added character handling, but little else in
the way of major new features, really tidying up some of the defi ciencies of the 1966
standard. One important feature sometimes overlooked was backwards compatibil-
ity. This meant that the standard did not invalidate any standard conformant Fortran
66 program. This protected investment in old code.

 3.5.3 Cobol

 The business world also realised that computers were useful and several languages
were developed, including FLOWMATIC, AIMACO, Commercial Translator and
FACT, leading eventually to Cobol—common Business Orientated Language. There
is a need in commercial programming to describe data in a much more complex
fashion than for scientifi c programming, and Cobol had far greater capability in this
area than Fortran. The language was unique at the time in that a group of competi-
tors worked together with the objective of developing a language that would be
useful on machines used by other manufacturers.

 The contributions made by Cobol include:

 Firstly the separation among:•

 The task to be undertaken. –
 The description of the data involved. –
 The working environment in which the task is carried out. –

 Secondly a data description mechanism that was largely machine independent. •
 Thirdly its effectiveness for handling large fi les. •
 Fourthly the benefi t to be gained from a programming language that was easy to read. •

22 3 Introduction to Programming Languages

 Modern developments in computing—of report generators, fi le-handling soft-
ware, fourth-generation development tools, and especially the increasing availabil-
ity of commercial relational database management systems—are gradually replacing
the use of Cobol, except where high effi ciency and/or tight control are required.

 3.5.4 Algol

 Another important development of the 1950s was Algol. It had a history of develop-
ment from Algol 58, the original Algol language, through Algol 60 eventually to the
Revised Algol 60 Report. Some of the design criteria for Algol 58 were:

 The language should be as close as possible to standard mathematical notation •
and should be readable with little further explanation.
 It should be possible to use it for the description of computing processes in •
publications.
 The new language should be mechanically translatable into machine programs. •

 A sad feature of Algol 58 was the lack of any input/output facilities, and this
meant that different implementations often had incompatible features in this area.

 The next important step for Algol occurred at a UNESCO-sponsored conference
in June 1959. There was an open discussion on Algol and the outcome was Algol
60, and eventually the Revised Algol 60 Report.

 It was at this conference that John Backus gave his now famous paper on a
method for defi ning the syntax of a language, called Backus Normal Form, or BNF.
The full signifi cance of the paper was not immediately recognised. However, BNF
was to prove of enormous value in language defi nition, and helped provide an inter-
face point with computational linguistics.

 The contributions of Algol to program language development include:

 block structure. •
 Scope rules for variables because of block structure. •
 The BNF defi nition by Backus—most languages now have a formal defi nition. •
 The support of recursion. •
 Its offspring. •

 Thus Algol was to prove to make a contribution to programming languages that
was never refl ected in the use of Algol 60 itself, in that it has been the parent of one
of the main strands of program language development.

 3.6 Chomsky and Program Language Development

 Programming languages are of considerable linguistic interest, and the work of
Chomsky in 1956 in this area was to prove of inestimable value. Chomsky’s system
of transformational grammar was developed in order to give a precise mathematical

233.8 Snobol

description to certain aspects of language. Simplistically, Chomsky describes gram-
mars, and these grammars in turn can be used to defi ne or generate corresponding
kinds of languages. It can be shown that for each type of grammar and language
there is a corresponding type of machine. It was quickly realised that there was a
link with the earlier work of Turing.

 This link helped provide a fi rm scientifi c base for programming language devel-
opment, and modern compiler writing has come a long way from the early work of
Backus and his team at IBM. It may seem unimportant when playing a video game
at home or in an arcade, but for some it is very comforting that there is a fi rm theo-
retical basis behind all that fun.

 3.7 Lisp

 There were also developments in very specialized areas. List processing was
proving to be of great interest in the 1950s and saw the development of IPLV
between 1954 and 1958. This in turn led to the development of Lisp at the end of
the 1950s. Lisp has proved to be of considerable use for programming in the
areas of artifi cial intelligence, playing chess, automatic theorem proving and
general problem solving. It was one of the fi rst languages to be interpreted rather
than compiled. Whilst interpreted languages are invariably slower and less effi -
cient in their use of the underlying computer systems than compiled languages,
they do provide great opportunities for the user to explore and try out ideas whilst
sitting at a terminal. The power that this gives to the computational problem
solver is considerable.

 Possibly the greatest contribution to program language development made by
Lisp was its functional notation. One of the major problems for the Lisp user has
been the large number of Lisp fl avours, and this has reduced the impact that the
language has had and deserved.

 3.8 Snobol

 Snobol was developed to aid in string processing, which was seen as an important
part of many computing tasks, e.g., parsing of a program. Probably the most impor-
tant thing that Snobol demonstrated was the power of pattern matching in a pro-
gramming language, e.g., it is possible to defi ne a pattern for a title that would
include Mr, Mrs, Ms, Miss, Rev, etc., and search for this pattern in a text using
Snobol. Like Lisp it is generally available as an interpreter rather than a compiler,
but compiled versions do exist, and are often called Spitbol. Pattern-matching capa-
bilities are now to be found in many editors and this makes them very powerful and
useful tools. It is in the area of text manipulation that Snobol’s greatest contribution
to program language development lies.

24 3 Introduction to Programming Languages

 3.9 Second-Generation Languages

 3.9.1 PL/1 and Algol 68

 It is probably true that Fortran, Algol 60 and Cobol are the three main fi rst-generation
high-level languages. The 1960s saw the emergence of PL/1 and Algol 68. PL/1 was
a synthesis of features of Fortran, Algol 60 and Cobol. It was soon realised that
whilst PL/1 had great richness and power of expression this was in some ways offset
by the greater diffi culties involved in language defi nition and use.

 These latter problems were also true of Algol 68. The report introduced its own
syntactic and semantic conventions and thus forced another stage in the learning
process on the prospective user. However, it has a small but very committed user
population who like the very rich facilities provided by the language.

 3.9.2 Simula

 Another strand that makes up program language development is provided by Simula,
a general purpose programming language developed by Dahl, Myhrhaug and
Nygaard of the Norwegian Computing Centre. The most important contribution that
Simula makes is the provision of language constructs that aid the programming of
complex, highly interactive problems. It is thus heavily used in the areas of simulation
and modelling. It was effectively the fi rst language to offer the opportunity of object
orientated programming, and we will come back to this very important development
in programming languages later in this chapter.

 3.9.3 Pascal

 The designer of Pascal, Niklaus Wirth, had participated in the early stages of the
design of Algol 68 but considered that the generality and complexity of Algol 68
was a move in the wrong direction. Pascal (like Algol 68) had its roots in Algol 60
but aimed at providing expressive power through a small set of straightforward
concepts. This set is relatively easy to learn and helps in producing readable and
hence more comprehensible programs.

 It became the language of fi rst choice within the fi eld of computer science during
the 1970s and 1980s, and the comment by Wirth sums up the language very well:
“although Pascal had no support from industry, professional societies, or govern-
ment agencies, it became widely used. The important reason for this success was
that many people capable of recognising its potential actively engaged themselves
in its promotion. As crucial as the existence of good implementations is the avail-
ability of documentation. The conciseness of the original report made it attractive
for many teachers to expand it into valuable textbooks. Innumerable books appeared

253.9 Second-Generation Languages

between 1977 and 1985, effectively promoting Pascal to become the most wide-
spread language used in introductory programming courses. Good course material
and implementations are the indispensable prerequisites for such an evolution.”

 3.9.4 APL

 APL is another interesting language of the early 1960s. It was developed by Iverson
early in the decade and was available by the mid to late 1960s. It is an interpretive
vector and matrix based language with an extensive set of operators for the manipu-
lation of vectors, arrays, etc., of whatever data type. As with Algol 68 it has a small
but dedicated user population. A possibly unfair comment about APL programs is
that you do not debug them, but rewrite them!

 3.9.5 Basic

 Basic stands for Beginners All Purpose Symbolic Instruction Code, and was devel-
oped by Kemeny and Kurtz at Dartmouth during the 1960s. Its name gives a clue to
its audience and it is very easy to learn. It is generally interpreted, though compiled
versions do exist. It has proved to be well suited to the rapid development of small
programs. It is much criticised because it lacks features that encourage or force the
adoption of sound programming techniques.

 3.9.6 C

 There is a requirement in computing to be able to access the underlying machine
directly or at least effi ciently. It is therefore not surprising that computer profession-
als have developed high-level languages to do this. This may well seem a contradic-
tion, but it can be done to quite a surprising degree. Some of the earliest published
work was that of Martin Richards on the development of BCPL.

 This language directly infl uenced the work of Ken Thompson and can be clearly
seen in the programming languages B and C. The UNIX operating system is almost
totally written in C and demonstrates very clearly the benefi ts of the use of high-
level languages wherever possible.

 With the widespread use of UNIX within the academic world C gained considerable
ground during the 1970s and 1980s. UNIX systems also offered much to the profes-
sional software developer, and became widely used for large-scale software develop-
ment and as Ritchie says: “C is quirky, fl awed, and an enormous success. While
accidents of history surely helped, it evidently satisfi ed a need for a system implemen-
tation language effi cient enough to displace assembly language, yet suffi ciently abstract
and fl uent to describe algorithms and interactions in a wide variety of environments.”

26 3 Introduction to Programming Languages

 3.10 Some Other Strands in Language Development

 There are many strands that make up program language development and some of
them are introduced here.

 3.10.1 Abstraction, Stepwise Refi nement and Modules

 Abstraction has proved to be very important in programming. It enables a complex
task to be broken down into smaller parts concentrating on what we want to happen
rather than how we want it to happen. This leads almost automatically to the ideas
of stepwise refi nement and modules, with collections of modules to perform spe-
cifi c tasks or steps.

 3.10.2 Structured Programming

 Structured programming in its narrowest sense concerns itself with the development
of programs using a small but suffi cient set of statements and, in particular, control
statements. It has had a great effect on program language design, and most lan-
guages now support the minimal set of control structures.

 In a broader sense structured programming subsumes other objectives, including
simplicity, comprehensibility, verifi ability, modifi ability and maintenance of programs.

 3.10.3 Data Structuring and Procedural Programming

 By the 1970s languages started to emerge that offered the ability to organise data
logically—so called data structuring, and we will look at two of these in the cover-
age below—C and Pascal.

 C provided this facility via structs and Pascal did it via records. These languages
also offered two ways of processing the data—directly or via procedures. The terms
concrete and abstract data type are sometimes also used in the literature.

 An example may help here. Consider a date. This is typically made up of three
components, a day, a month and a year. In C we can create a user defi ned type called
a date using structs. We can then create variables of this type. This is done in Pascal
in a similar way using records.

 Access to the components of a date (day, month and year) can then either be
direct—an example of a concrete data type, or indirect (via procedures)—an abstract
data type.

 Simplistically direct access (or concrete data types) offer the benefi t of effi ciency,
and the possibility of lack of data integrity. In our date example we may set a day to
the value 31 when the month is February.

273.11 Ada

 Indirect access (or abstract data types) are slightly less effi cient as we now have
the overhead of a procedure call to access the data, but better opportunity for data
integrity as we can provide hidden code within the procedures to ensure that the day,
month and year combinations are valid.

 Fortran did not provide this facility until the Fortran 90 standard.

 3.10.4 Standardisation

 The purposes of a standard are quite varied and include:

 Investment in people: by this we mean that the time spent in learning a standard •
language pays off in the long term, as what one learns is applicable on any hard-
ware/software platform that has a standard conformant compiler.
 Portability: one can take the code one has written for one hardware/software •
platform and move it to any hardware/software platform that has a standard con-
formant compiler.
 Known reference point: when making comparisons one starts with reference to •
the standard fi rst, and then between the additional functionality of the various
implementations

 These are some but not all of the reasons for the use of standards. Their impor-
tance is summed up beautifully by Ronald G. Ross in his introduction to the Cannan
and Otten book on the SQL standard: “Anybody who has ever plugged in an electric
cord into a wall outlet can readily appreciate the inestimable benefi ts of workable
standards. Indeed, with respect to electrical power, the very fact that we seldom
even think about such access (until something goes wrong) is a sure sign of just how
fundamentally important a successful standard can be.”

 3.11 Ada

 Ada represents the culmination of many years of work in program language devel-
opment. It was a collective effort and the main aim was to produce a language suit-
able for programming large-scale and real-time systems. Work started in 1974 with
the formulation of a series of documents by the American Department of Defence
(DoD), which led to the Steelman documents. It is a modern algorithmic language
with the usual control structures and facilities for the use of modules, and allows
separate compilation with type checking across modules.

 Ada is a powerful and well-engineered language. Its widespread use is certain as
it has the backing of the DoD. However, it is a large and complex language and
consequently requires some effort to learn. It seems unlikely to be widely used
except by a small number of computer professionals.

28 3 Introduction to Programming Languages

 3.12 Modula

 Modula was designed by Wirth during the 1970s at ETH, for the programming of
embedded real-time systems. It has many of the features of Pascal, and can be taken
for Pascal at a glance. The key new features that Modula introduced were those of
processes and monitors.

 As with Pascal it is relatively easy to learn and this makes it much more attractive
than Ada for most people, achieving much of the capability without the complexity.

 3.13 Modula 2

 Wirth carried on developing his ideas about programming languages and the culmi-
nation of this can be seen in Modula 2. In his words: “In 1977, a research project
with the goal to design a computer system (hardware and software) in an integrated
approach, was launched at the Institut fur Informatik of ETH Zurich. This system
(later to be called Lilith) was to be programmed in a single high level language,
which therefore had to satisfy requirements of high level system design as well as
those of low level programming of parts that closely interact with the given hard-
ware. Modula 2 emerged from careful design deliberations as a language that
includes all aspects of Pascal and extends them with the important module concept
and those of multi-programming. Since its syntax was more in line with Modula
than Pascal’s the chosen name was Modula 2.”

 The language’s main additions with regard to Pascal are:

 The module concept, and in particular the facility to split a module into a •
defi nition part and an implementation part.
 A more systematic syntax which facilitates the learning process. In particular, •
every structure starting with a keyword also ends with a keyword, i.e., is properly
bracketed.
 The concept of process as the key to multiprogramming facilities. •
 So-called low-level facilities, which make it possible to breach the rigid type •
consistency rules and allow one to map data with Modula 2 structure onto a store
without inherent structure.
 The procedure type, which allows procedures to be dynamically assigned to •
variables.

 A sad feature of Modula 2 has been the long time taken to arrive at a standard for
the language.

 3.14 Other Language Developments

 The following is a small selection of language developments that the authors fi nd
interesting—they may well not be included in other people’s coverage.

293.14 Other Language Developments

 3.14.1 Logo

 Logo is a language that was developed by Papert and colleagues at the Artifi cial
Intelligence Laboratory at MIT. Papert is a professor of both mathematics and edu-
cation, and has been much infl uenced by the psychologist Piaget. The language is used
to create learning environments in which children can communicate with a computer.
The language is primarily used to demonstrate and help children develop fundamental
concepts of mathematics. Probably the turtle and turtle geometry are known by educa-
tionists outside of the context of Logo. Turtles have been incorporated into the Smalltalk
computer system developed at Xerox Palo Alto Research Centre—Xerox PARC.

 3.14.2 Postscript, TeX and LaTeX

 The 1980s saw a rapid spread in the use of computers for the production of printed
material. The 3 languages are each used quite extensively in this area.

 Postscript is a low-level interpretive programming language with good graphics
capabilities. Its primary purpose is to enable the easy production of pages containing
text, graphical shapes and images. It is rarely seen by most end users of modern
desktop publishing systems, but underlies many of these systems. It is supported by
an increasing number of laser printers and typesetters.

 TeX is a language designed for the production of mathematical texts, and was
developed by Donald Knuth. It linearises the production of mathematics using a
standard computer keyboard. It is widely used in the scientifi c community for the
production of documents involving mathematical equations.

 LaTex is Leslie Lamport’s version of TeX, and is regarded by many as more
friendly. It is basically a set of macros that hide raw TeX from the end user. The
TeX/LaTeX ratio is probably 1–9 (or so I’m reliably informed by a TeXie).

 3.14.3 Prolog

 Prolog was originally developed at Marseille by a group led by Colmerauer in 1972/73.
It has since been extended and developed by several people, including Pereira (L.M.),
Pereira (F), Warren and Kowalski. Prolog is unusual in that it is a vehicle for logic pro-
gramming. Most of the languages described here are basically algorithmic languages
and require a specifi cation of how you want something done. Logic programming con-
centrates on the what rather than the how. The language appears strange at fi rst, but has
been taught by Kowalski and others to 10-year-old children at schools in London.

 3.14.4 SQL

 SQL stands for Structured Query Language, and was originally developed by people
mainly working for IBM in the San Jose Research Laboratory. It is a relational

30 3 Introduction to Programming Languages

database language, and enables programmers to defi ne, manipulate and control
data in a relational database. Simplistically, a relational database is seen by a user
as a collection of tables, comprising rows and columns. It has become the most
important language in the whole database fi eld.

 3.14.5 ICON

 ICON is in the same family as Snobol, and is a high-level general purpose pro-
gramming language that has most of the features necessary for effi cient processing
of nonnumeric data. Griswold (one of the original design team for Snobol) has
learnt much since the design and implementation of Snobol, and the language is a
joy to use in most areas of text manipulation.

 It is available for most systems via anonymous FTP from a number of sites on the
Internet.

 3.15 Object Oriented Programming

 Object oriented represents a major advance in program language development. The
concepts that this introduces include:

 Classes. •
 Objects. •
 Messages. •
 Methods. •

 These in turn draw on the ideas found in more conventional programming
languages and correspond to

 Extensible data types. •
 Instances of a class. •
 Dynamically bound procedure calls. •
 Procedures of a class. •
 Inheritance is a very powerful high-level concept introduced with object oriented •
programming. It enables an existing data type with its range of valid operations
to form the basis for a new class, with more data types added with corresponding
operations, and the new type is compatible with the original.

 Fortran 2003 offered support for object oriented programming. This is achieved
via the module facility rather than the class facility found in other languages like
C++, Java and C#.

313.15 Object Oriented Programming

 3.15.1 Simula

 As was mentioned earlier, the fi rst language to offer functionality in this area was
Simula, and thus the ideas originated in the 1960s. The book Simula Begin by
Birtwistle, Dahl, Myhrhaug and Nygaard is well worth a read as it represents one of
the fi rst books to introduce the concepts of object oriented programming.

 3.15.2 Smalltalk

 Language plus use of a computer system.
 Smalltalk has been under development by the Xerox PARC Learning Research

Group since the 1970s. In their words: “Smalltalk is a graphical, interactive pro-
gramming environment. As suggested by the personal computer vision, Smalltalk is
designed so that every component in the system is accessible to the user and can be
presented in a meaningful way for observation and manipulation. The user interface
issues in Smalltalk revolve around the attempt to create a visual language for each
object. The preferred hardware system for Smalltalk includes a high resolution
graphical display screen and a pointing device such as a graphics pen or mouse.
With these devices the user can select information viewed on the screen and invoke
messages in order to interact with the information.” Thus Smalltalk represents a
very different strand in program language development. The ease of use of a system
like this has long been appreciated and was fi rst demonstrated commercially in the
Macintosh microcomputers.

 Wirth has spent some time at Xerox PARC and has been infl uenced by their
work. In his own words “the most elating sensation was that after 16 years of work-
ing for computers the computer now seemed to work for me.” This infl uence can be
seen in the design of the Lilith machine, the original Modula 2 engine, and in the
development of Oberon as both a language and an operating system.

 3.15.3 Oberon and Oberon 2

 As Wirth says: “The programming language Oberon is the result of a concentrated
effort to increase the power of Modula-2 and simultaneously to reduce its complex-
ity. Several features were eliminated, and a few were added in order to increase the
expressive power and fl exibility of the language.”

 Oberon and Oberon 2 are thus developments beyond Modula 2. The main new
concept added to Oberon was that of type extension. This enables the construction
of new data types based on existing types and allows one to take advantage of what
has already been done for that existing type.

32 3 Introduction to Programming Languages

 Language constructs removed included:

 Variant records. •
 Opaque types. •
 Enumeration types. •
 Subrange types. •
 Local modules. •
 WITH statement. •
 type transfer functions. •
 Concurrency. •

 The short paper by Wirth provides a fuller coverage. It is available at ETH via
anonymous FTP.

 3.15.4 Eiffel

 Eiffel was originally developed by Interactive Software Engineering Inc. (ISE)
founded by Bertrand Meyer. Meyer’s book Object-Oriented Software Construction
contains a detailed treatment of the concepts and theory of the object technology
that led to Eiffel’s design.

 The language fi rst became available in 1986, and the fi rst edition of Meyer’s
book was published in 1988. The following is a quote from the Wikipedia entry.

 The design goal behind the Eiffel language, libraries, and programming methods
is to enable programmers to create reliable, reusable software modules. Eiffel sup-
ports multiple inheritance, genericity, polymorphism, encapsulation, type-safe con-
versions, and parameter covariance. Eiffel’s most important contribution to software
engineering is design by contract (DbC), in which assertions, preconditions, post-
conditions, and class invariants are employed to help ensure program correctness
without sacrifi cing effi ciency.

 3.15.5 C++

 Stroustrup did his Ph.D thesis at the Computing Laboratory, Cambridge University,
England, and worked with Simula. He had previously worked with Simula at the
University of Aarhus in Denmark. His comments are illuminating: “but was pleas-
antly surprised by the way the mechanisms of the Simula language became increas-
ingly helpful as the size of the program increased. The class and co-routine
mechanisms of Simula and the comprehensive type checking mechanisms ensured
that problems and errors did not (as I—and I guess most people—would have
expected) grow linearly with the size of the program. Instead, the total program
acted like a collection of very small (and therefore easy to write, comprehend and
debug) programs rather than a single large program.”

333.15 Object Oriented Programming

 He designed C++ to provide Simula’s functionality within the framework of C’s
effi ciency, and he succeeded in this goal as C++ is a widely used object oriented
programming language. The major disadvantage now concerns the largely incom-
patible class libraries that exist. It is hoped that the various standards bodies address
this problem in the immediate future.

 3.15.6 Java

 Bill Joy (of Sun fame) had by the late 1980s decided that C++ was too complicated and
that an object oriented environment based upon C++ would be of use. At around about
the same time James Gosling (mister emacs) was starting to get frustrated with the imple-
mentation of an SGML editor in C++. Oak was the outcome of Gosling’s frustration.

 Sun over the next few years ended up developing Oak for a variety of projects. It
wasn’t until Sun developed their own web browser, Hotjava, that Java as a language
hit the streets. And as the saying goes the rest is history.

 Java is a relatively simple object oriented language. Whilst it has its origins in
C++ it has dispensed with most of the dangerous features. It is OO throughout.
Everything is a class.

 It is interpreted and the intermediate byte code will run on any machine that has
a Java virtual machine for it. This is portability at the object code level, unlike
portability at the source code level—which is what we expect with most conven-
tional languages. Some of the safe features of the language include:

 Built in garbage collection. •
 No pointers—everything is passed by reference. •

 It is multithreaded, which makes it a delight for many applications. It has an
extensive windows toolkit, the so called AWT that was in the original release of the
language and Swing that came in later.

 It is under continual development and at the time of writing was in its seventh
major release.

 3.15.7 C#

 C# is a new language from Microsoft and is a key part of their .net framework. It is
a modern, well-engineered language in the same family of programming languages
in terms of syntax as C, C++ and Java. If you have a knowledge of one of these
languages it will look very familiar.

 One of the design goals was to produce a component oriented language, and to
build on the work that Microsoft had done with OLE, ActiveX and COM:

 ActiveX is a set of technologies that enables software components to interact with •
one another in a networked environment, regardless of the language in which they
were created. ActiveX was built on the Component Object Model (COM).

34 3 Introduction to Programming Languages

 COM is the object model on which ActiveX Controls and OLE are built. COM •
allows an object to expose its functionality to other components and to host
applications. It defi nes both how the object exposes itself and how this
exposure works across processes and networks. COM also defi nes the object’s
life cycle.
 OLE is a mechanism that allows users to create and edit documents containing •
items or objects created by multiple applications. OLE was originally an acro-
nym for Object Linking and Embedding. However, it is now referred to simply
as OLE. Parts of OLE not related to linking and embedding are now part of
Active technology.

 Other design goals included creating a language:

 where everything is an object—C# also has a mechanism for going between •
objects and fundamental types (integers, reals, etc.).
 Which would enable the construction of robust and reliable software—it has •
garbage collection, exception handling and type safety.
 Which would use a C/C++/Java syntax which is already widely known and thus •
help programmers converting from one of these languages to C#.

 It has been updated three times since its original release. Some of the more
important features added in C# 2 were Generics, Iterators, Partial Classes, Nullable
Types and Static Classes. The major feature that C# 3 added for most people was
LINQ, a mechanism for data querying. C# 4 was released in 2010 and added a
number of additional features.

 3.16 Back to Fortran!

 We fi nish off with a coverage of the developments since the Fortran 77 standard.
Practically all of the Fortran compilers available today support the Fortran 90 and
95 standards. Many also support several features of the 2003 standard, and some
also implement one or more features from the Fortran 2008 standard. See the fol-
lowing document

 http://www.fortranplus.co.uk/resources/fortran_2003_2008_
compiler_support.pdf

for up to date information on what each compiler offers in terms of standard support.

 3.16.1 Fortran 90

 Almost as soon as the Fortran 77 standard was complete and published, work began
on the next version. The language drew on many of the ideas covered in this chapter

http://www.fortranplus.co.uk/resources/fortran
http://www.fortranplus.co.uk/resources/fortran

353.16 Back to Fortran!

and these help to make Fortran 90 a very promising language. Some of the new
features included:

 New source form, with blanks being signifi cant and names being up to 31 •
characters.
 Implicit none •
 Better control structures. •
 Control of the precision of numerical computation. •
 Array processing. •
 Pointers. •
 User defi ned data types and operators. •
 Procedures. •
 Modules. •
 Recursion. •
 Dynamic storage allocation. •

 This was the major update that the Fortran community had been waiting a long
time for. Backwards compatibility was again a key aim. This standard did not invali-
date any standard conformant Fortran 77 program.

 3.16.2 Fortran 95

 Fortran was next standardised in 1996—yet again out by one! Firstly we have a
clear up of some of the areas in the standard that had emerged as requiring clarifi ca-
tion. Secondly Fortran 95 added the following major concepts:

 The forall construct. •
 pure and elemental procedures. •
 implicit initialisation of derived-type objects. •
 Initial association status for pointers. •

 The fi rst two help considerably in parallelization of code. Minor features include
amongst others:

 Automatic deallocation of allocatable arrays. •
 intrinsic SIGN function distinguishes between −0 and +0. •
 intrinsic function NULL returns disconnected pointer. •
 intrinsic function CPU_TIME returns the processor time. •
 References to some pure functions are allowed in specifi cation statements. •
 Nested where constructs. •
 Masked elsewhere construct. •
 Small changes to the CEILING, FLOOR, MAXLOC and MINLOC intrinsic •
functions.

 Some of these were added to keep Fortran in line with High Performance Fortran
(HPF). More details are given later.

36 3 Introduction to Programming Languages

 Part 2 of the standard (ISO/IEC 1539–2:1994) adds the functional specifi cation
for varying length character data type, and this extends the usefulness of Fortran for
character applications very considerably.

 3.16.3 ISO Technical Reports TR15580 and TR15581

 There are two additional reports that have been published on Fortran. TR 15580
specifi es three modules that provide access to IEEE fl oating point arithmetic and
TR15581 allows the use of the allocatable attribute on dummy arguments, function
results and structure components.

 3.16.4 Fortran 2003

 The language is known as Fortran 2003 even though the language did not make it
through the standardisation process until 2004. It was a major revision.

 Derived-type enhancements: parameterised derived types (allows the kind, •
length, or shape of a derived type’s components to be chosen when the derived
type is used), mixed component accessibility (allows different components to
have different accessibility), public entities of private type, improved structure
constructors, and fi nalisers.
 Object oriented programming support: enhanced data abstraction (allows one •
type to extend the defi nition of another type), polymorphism (allows the type of
a variable to vary at run time), dynamic type allocation, select type construct
(allows a choice of execution fl ow depending upon the type a polymorphic object
currently has), and type-bound procedures.
 The associate construct (allows a complex expression or object to be denoted by •
a simple symbol).
 Data manipulation enhancements: allocatable components, deferred-type param-•
eters, volatile attribute, explicit type specifi cation in array constructors, intent
specifi cation of pointer arguments, specifi ed lower bounds of pointer assignment
and pointer rank remapping, extended initialisation expressions, MAX and MIN
intrinsics for character type, and enhanced complex constants.
 Input/output enhancements: asynchronous transfer operations (allow a program to •
continue to process data while an input/output transfer occurs), stream access
(allows access to a fi le without reference to any record structure), user specifi ed
transfer operations for derived types, user specifi ed control of rounding during
format conversions, the fl ush statement, named constants for preconnected units,
regularisation of input/output keywords, and access to input/output error messages.
 Procedure pointers. •
 Scoping enhancements: the ability to rename defi ned operators (supports greater •
data abstraction) and control of host association into interface bodies.
 Support for IEC 60559 (IEEE 754) exceptions and arithmetic (to the extent a •
processor’s arithmetic supports the IEC standard).

373.16 Back to Fortran!

 Interoperability with the C programming language (allows portable access to •
many libraries and the low-level facilities provided by C and allows the portable
use of Fortran libraries by programs written in C).
 Support for international usage: (ISO 10646) and choice of decimal or comma in •
numeric formatted input/output.
 Enhanced integration with the host operating system: access to command line •
arguments and environment variables and access to the processor’s error mes-
sages (improves the ability to handle exceptional conditions).

 The earlier web address has details of Fortran compiler conformance to this
standard.

 3.16.5 DTR 19767 Enhanced Module Facilities

 The module system in Fortran has a number of shortcomings and this DTR addresses
some of the issues.

 One of the major issues was the so-called recompilation cascade. Changes to one
part of a module forced recompilation of all code that used the module. Modula 2
addressed this issue by distinguishing between the defi nition or interface and imple-
mentation. This can now be achieved in Fortran via submodules.

 3.16.6 Fortran 2008

 The most recent standard, ISO/IEC 1539–1:2010, commonly known as Fortran
2008, was approved in September 2010. The new features include:

 Submodules—Additional structuring facilities for modules; supersedes ISO/IEC •
TR 19767:2005
 Coarray Fortran—a parallel execution model •
 The DO CONCURRENT construct—for loop iterations with no interdependencies •
 The CONTIGUOUS attribute—to specify storage layout restrictions •
 The BLOCK construct—can contain declarations of objects with construct scope •
 Recursive allocatable components—as an alternative to recursive pointers in •
derived types.

 A more thorough coverage can be found in John Reid’s paper.

 ftp://ftp.nag.co.uk/sc22wg5/N1801-N1850/N1828.pdf

 3.16.7 The Future

 The two main work items for WG5 and J3 are shown below. The information is taken
from the agenda from the Garching meeting—June 27—July 1, 2011 Leibniz
Supercomputing Centre (LRZ), Boltzmannstr. 1 85748 Garching/Munich, Germany.

ftp://ftp.nag.co.uk/sc22wg5/N18 01-N1850/N1828.pdf

38 3 Introduction to Programming Languages

 Review the PDTR Ballot comments on the draft TR on Further Interoperability •
with C, decide on changes, and construct a response document.
 Consider the technical content of the proposed TR on Further Coarray Features. •

 There is also an effective permanent work item:

 Consider the Fortran defect reports (interpretations) in J3-006. •

 3.17 Internet Resources

 The Internet provides access to a wealth of information regarding the Fortran family
of languages.

 3.17.1 Standards Information

 The offi cial home of the standard is

 • http://www.nag.co.uk/sc22wg5/

 We recommend visiting the site to keep up to date with Fortran developments. Their
offi cial ftp server can be found at

 • ftp://ftp.nag.co.uk/sc22wg5/

 Copies of all working documents can be found there.

 3.17.2 Fortran Discussion Lists

 The fi rst to look at is the Fortran 90 list. Details can be found at

 • http://www.jiscmail.ac.uk/lists/COMP-FORTRAN-90.html

 if you subscribe you will have access to people involved in Fortran standardisation,
language implementors for most of the hardware and software platforms, people
using Fortran in many very specialised areas, people teaching Fortran, etc.

 There is also a comp.lang.fortran list available via USENET news. This provides
access to people worldwide with enormous combined expertise in all aspects of
Fortran. Invariably someone will have encountered your problem or one very much
like it and have one or more solutions.

 There are many people on the Internet who will make the time to provide you
with very valuable advice. As a point of network etiquette please do not waste band-
width with questions that are answered in the FAQ. Please also spend some time
developing an understanding of your problem and making some attempt to see if the

http://www.nag.co.uk/sc22wg5/
ftp://ftp.nag.co.uk/sc22wg5/
http://www.jiscmail.ac.uk/lists/COMP-FORTRAN-90.html

393.19 Bibliography

answer lies in the documentation or manuals. In computing services and technical
support many user problems are labelled RTFM—read the fabulous manual.

 3.17.3 Other Sources

 The following URLs are very useful:

 Our Fortran web site.•
• http://www.fortranplus.co.uk

 The Fortran Wiki.•
• http://fortranwiki.org/

 The Fortran Market, maintained by Walt Brainerd.•
• http://www.fortran.com/fortran/market.html

 Fortran FAQ, maintained by Keith Bierman, Sun.•
• http://www.fortran.com/fortran/FAQ/cont.html

 3.18 Summary

 It is hoped that you now have some idea about the wide variety of uses that program-
ming languages are put to.

 3.19 Bibliography

 Fortran 2008 Standard, ISO/IEC 1539–1:2010, price CHF 338. Publication date:
2010-10-06.

 ht tp:/ /www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail .
htm?csnumber=50459

 Fortran 2003 Standard, ISO/IEC DIS 1539–1:2004(E)

 DTR 19767: Enhanced module Facilities: ISO/IEC TR 19767:2004(E)

 Fortran 77 Standard

 ftp://ftp.nag.co.uk/sc22wg5/ARCHIVE/Fortran77.html

 Fortran 66 Standard

 ftp://ftp.nag.co.uk/sc22wg5/ARCHIVE/Fortran66.pdf

 The ISO home page is

• http://www.iso.org/iso/home.htm

http://www.fortranplus.co.uk
http://fortranwiki.org/
http://www.fortran.com/fortran/market.html
http://www.fortran.com/fortran/FAQ/cont.html
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50459
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50459
ftp://ftp.nag.co.uk/sc22wg5/ARCHIVE/Fortran77.html
ftp://ftp.nag.co.uk/sc22wg5/ARCHIVE/Fortran66.pdf
http://www.iso.org/iso/home.htm

40 3 Introduction to Programming Languages

 The J3 home page is:

• http://j3-fortran.org

 The WG5 home page is:

• http://www.nag.co.uk/sc22wg5/
 Both have copies of working documents.

 Adobe Systems Incorporated, Postscript Language: Tutorial and Cookbook,
Addison-Wesley, 1985.
 Adobe Systems Incorporated, Postscript Language: Reference Manual, Addison-
Wesley, 1985.
 Adobe System Incorporated, Postscript Language: program Design, Addison-
Wesley, 1985.

 The three books provide a comprehensive coverage of the facilities and capabilities
of Postscript.
 ACM SIG PLAN, History of programming Languages Conference—HOPL-II,
ACM Press, 1993.

 One of the best sources of information on C++, CLU, Concurrent Pascal, Formac,
Forth, Icon, Lisp, Pascal, Prolog, Smalltalk and Simulation Languages by the people
involved in the original design and or implementation. Very highly recommended.
This is the second in the HOPL series, and the fi rst was edited by Wexelblat. Details
are given later.

 Adams, J.C., Brainerd, W.S., Hendrickson, R.A., Maine, R.E., Martin J.T., Smith,
B.T.: The Fortran 2003 Handbook. Springer, London (2009)

 Their most recent version, and a complete coverage of the 2003 standard. As
with the Metcalf, Reid and Cohen book some of the authors were on the J3 commit-
tee. Very thorough.

 Annals of the History of Computing, Special Issue: Fortran’s 25 Anniversary, ACM,
Article 6,1, 1984.

 Very interesting comments, some anecdotal, about the early work on Fortran.
Barnes, J.: Programming in Ada 95. Addison-Wesley, Reading (1996)

 One of the best Ada books. He was a member of the original design team
 Bergin, T.J., Gibson, R.G.: History of Programming Languages. Addison-Wesley,
New York (1996)

 This is a formal book publication of the Conference Proceedings of HOPL II.
The earlier work is based on preprints of the papers.

 Birtwistle, G.M., Dahl, O. J., Myhrhaug, B., Nygaard, K.: Simula Begin. Chart-
well-Bratt Ltd, Lund (1979)

 A number of chapters in the book will be of interest to programmers unfamiliar
with some of the ideas involved in a variety of areas including systems and models,
simulation, and co-routines. Also has some sound practical advice on problem
solving.

 Brinch-Hansen, P.: The programming language concurrent Pascal. IEEE Trans.
Softw. Eng. 1 (2), 199–207 (June 1975)

http://j3-fortran.org
http://www.nag.co.uk/sc22wg5/

413.19 Bibliography

 Looks at the extensions to Pascal necessary to support concurrent processes. Cannan,
S., Otten, G.: SQL—The Standard Handbook. McGraw-Hill, McGraw-Hill (1993)

 Very thorough coverage of the SQL standard, ISO 9075:1992(E).
 Chivers , I.D., Clark, M.W.: History and future of Fortran. Data Process. 27 (1),
(January/February 1985)

 Short article on an early draft of the standard, around version 90.
Chivers Ian, Essential C# Fast, Springer, ISBN 1-85233-562-9

 A quick introduction to the C# programming language.
Chivers, I.D.: A Practical Introduction to Standard Pascal. Ellis Horwood, Chichester
(1986)

 A short introduction to Pascal.
Date, C.J.: A Guide to the SQL Standard. Addison-Wesley, Reading (1997)

 Date has written extensively on the whole database fi eld, and this book looks at
the SQL language itself. As with many of Date’s works quite easy to read. Appendix
F provides a useful SQL bibliography.

 Deitel, H.M., Deitel, P.J.: Java: How to Program. Prentice-Hall, Upper Saddle River
(1999)

 A very good introduction to Java.
Deitel, H.M., Deitel, P.J., Nieto, T.R.: Simply Visual Basic .Net. Prentice-Hall,
Upper Saddle River (2003)

 Good practical introduction to VB .NET.
Eckstein, R., Loy, M., Wood, D.: Java Swing. O’Reilly, Sebastopol (1998)

 Comprehensive coverage of the visual interface features available in Java.
Flanagan, D.: Java in a Nutshell. O’Reilly, Sebastopol (1996)

 Just what you would expect from this series. Very useful reference text.
 Geissman, L.B., Separate Compilation in Modula 2 and the Structure of the Modula
2 Compiler on the Personal Computer Lilith, Dissertation 7286, ETH Zurich.
 Goldberg, A., Robson, D.: Smalltalk-80, The Language and Its Implementation.
Addison Wesley, Reading (1983)
 Harbison, S.P., Steele, G.L.: A C Reference Manual. Prentice-Hall, Englewood
Cliffs (2002)

 Very good coverage of the various fl avours of C, including K&R C, Standard C
1989, Standard C 1995, Standard C 1999 and Standard C++

 Jacobi, C.: Code Generation and the Lilith Architecture, Dissertation 7195, ETH
Zurich

 Fascinating background reading concerning Modula 2 and the Lilith architecture.
 Goldberg, A., Robson, D.: Smalltalk 80: The Language and Its Implementation.
Addison-Wesley, Reading (1983)

 Written by some of the Xerox PARC people who have been involved with the
development of Smalltalk. Provides a good introduction (if that is possible with the
written word) of the capabilities of Smalltalk.

 Goos, G., Hartmanis, J. (eds.), The programming Language Ada—Reference
Manual. Springer Verlag, New York (1981)

 The defi nition of the language.

42 3 Introduction to Programming Languages

 Griswold, R.E., Poage, J.F., Polonsky, I.P.: The Snobol4 Programming Language.
Prentice-Hall, Englewood Cliffs (1971)

 The original book on the language. Also provides some short historical material
on the language.

 Griswold, R.E., Griswold, M.T.: The Icon Programming Language. Prentice-Hall,
Englewood Cliffs (1983)

 The defi nition of the language with a lot of good examples. Also contains infor-
mation on how to obtain public domain versions of the language for a variety of
machines and operating systems.

 Hoare, C.A.R.: Hints on programming Language Design, SIGACT/SIGPLAN
Symposium on Principles of programming Languages, October 1973.

 The fi rst sentence of the introduction sums it up beautifully: “I would like in this
paper to present a philosophy of the design and evaluation of programming lan-
guages which I have adopted and developed over a number of years, namely that the
primary purpose of a programming language is to help the programmer in the prac-
tice of his art.”

 Jenson, K., Wirth, N.: Pascal: User Manual and Report. Springer-Verlag, New York
(1975)

 The original defi nition of the Pascal language. Understandably dated when one
looks at more recent expositions on programming in Pascal.

 Kemeny, J.G., Kurtz, T.E.: Basic Programming. Wiley, New York (1971)
 The original book on Basic by its designers.

 Kernighan, B.W., Ritchie D.M.: The C Programming Language. Prentice-Hall,
Englewood Cliffs (1978)

 The original work on the C language, and thus essential for serious work with C.
 Kowalski, R.: Logic Programming in the Fifth Generation, The Knowledge
Engineering Review, The BCS Specialist Group on Expert Systems.

 A short paper providing a good background to Prolog and logic programming,
with an extensive bibliography.

 Knuth, D.E.: The TeXbook. Addison-Wesley, Reading (1986)
 Knuth writes with an tremendous enthusiasm and perhaps this is understandable

as he did design TeX. Has to be read from cover to cover for a full understanding of
the capability of TeX.

 Lyons, J., Chomsky. Fontana/Collins, London (1982)
 A good introduction to the work of Chomsky, with the added benefi t that

Chomsky himself read and commented on it for Lyons. Very readable.

 Malpas, J.: Prolog: A Relational Language and Its Applications. Prentice-Hall,
Englewood Cliffs (1987)

 A good introduction to Prolog for people with some programming background.
Good bibliography. Looks at a variety of versions of Prolog.

 Marcus, C.: Prolog programming: Applications for Database Systems, Expert
Systems and Natural Language Systems. Addison-Wesley, Reading (1986)

433.19 Bibliography

 Coverage of the use of Prolog in the above areas. As with the previous book
aimed mainly at programmers, and hence not suitable as an introduction to Prolog
as only two chapters are devoted to introducing Prolog.

 Metcalf, M., Reid, J., Cohen, M.: Modern Fortran Explained. Oxford University
Press, Oxford (2011)

 A clear compact coverage of the main features of Fortran. John Reid is Convener
of the WG5 committee and Malcolm Cohen was the editor of Fortran 2008.
 Mossenbeck, H.: Object-Orientated Programming in Oberon-2. Springer-Verlag,
New York (1995)

 One of the best introductions to object oriented programming. Uses Oberon-2 as
the implementation language. Highly recommended.

 Papert, S.: Mindstorms—Children, Computers and Powerful Ideas. Harvester Press,
Brighton (1980)

 Very personal vision of the uses of computers by children. It challenges many
conventional ideas in this area.

 Sammet, J.: Programming Languages: History and Fundamentals. Prentice-Hall,
Englewood Cliffs (1969)

 Possibly the most comprehensive introduction to the history of program lan-
guage development—ends unfortunately before the 1980s.

 Sethi, R.: Programming Languages: Concepts and Constructs. Addison-Wesley,
Reading (1989)

 The annotated bibliographic notes at the end of each chapter and the extensive
bibliography make it a useful book.

 Reiser, M., Wirth, N.: Programming in Oberon—Steps Beyond Pascal and Modula.
Addison-Wesley, Reading (1992)

 Good introduction to Oberon. Revealing history of the developments behind
Oberon.

 Reiser, M.: The Oberon System: User Guide and Programmer’s Manual. Addison-
Wesley, Reading (1991)

 How to use the Oberon system, rather than the language.
 Stroustroup, B.: The C++ Programming Language, 3rd edn. Addison-Wesley,
Reading (1997)

 The C++ book. Written by the designer of the language. Massive improvement
over the earlier editions.

 Young, S.J.: An Introduction to Ada, 2nd edn. Ellis Horwood, Chichester (1984)
 A readable introduction to Ada. Greater clarity than the fi rst edition.

 Wexelblat, R.L.: History of Programming Languages, HOPL I, ACM Monograph
Series. Academic Press, New York (1978)

 Very thorough coverage of the development of programming languages up to
June 1978. Sessions on Fortran, Algol, Lisp, Cobol, APT, Jovial, GPSS, Simula,
JOSS, Basic, PL/I, Snobol and APL, with speakers involved in the original lan-
guages. Very highly recommended.

44 3 Introduction to Programming Languages

 Wiener, R.: Software Development Using Eiffel. Prentice Hall, Englewood Cliffs (1995)
 Wirth, N.: An assessment of the programming language Pascal. IEEE Trans. Softw.
Eng. SE-1 (2), 192–198 (June 1975)
 Wirth, N.: History and Goals of Modula 2. In: Byte, vol 9, 145–152. McGraw-Hill,
Inc., Peterborough (August 1984)

 Straight from the horse’s mouth!
 Wirth, N.: On the design of programming languages. In: Proceedings of the IFIP
Congress, vol. 74, pp. 386–393. North-Holland, Amsterdam (1974)
 Wirth, N.: The programming language Pascal. Acta Inform. 1 , 35–63 (1971)
 Wirth, N.: Modula: a language for modular multiprogramming. Softw. Pract. Exp.
 7 (1), 3–35 (1977)
 Wirth, N.: Programming in Modula 2. Springer-Verlag, Berlin (1983)

 The original defi nition of the language. Essential reading for anyone considering
programming in Modula 2 on a long term basis.

 Wirth, N.: Type extensions. ACM Trans. Program. Languages Syst. 10 (2), 204–214
(April 1988)
 Wirth, N.: From Modula 2 to Oberon. Softw. Pract. Exp. 18 (7), 661–670 (July
1988)
 Wirth, N., Gutknecht, J.: Project Oberon: The Design of an Operating System and
Compiler. Addison-Wesley, Reading (1992)

 Fascinating background to the development of Oberon. Highly recommended for
anyone involved in large scale program development, not only in the areas of pro-
gramming languages and operating systems, but more generally.

45I. Chivers and J. Sleightholme, Introduction to Programming with Fortran:
With Coverage of Fortran 90, 95, 2003, 2008 and 77,
DOI 10.1007/978-0-85729-233-9_4, © Springer-Verlag London Limited 2012

 Aims

 The aims of the chapter are:

 To introduce the idea that there is a wide class of problems that can be solved •
with a computer and, further, that there is a relationship between the kind of
problem to be solved and the choice of programming language that is used.
 To give some of the reasons for the choice of Fortran. •
 To introduce the fundamental components or kinds of statements to be found in •
a general purpose programming language.
 To introduce the three concepts of name, type and value. •
 To illustrate the above with sample programs based on three of the fi ve intrinsic •
data types:

 character, integer and real –

 To introduce some of the formal syntactical rules of Fortran. •

 4.1 Introduction

 We have seen that an algorithm is a sequence of steps that will solve a part or the
whole of a problem. A program is the realisation of an algorithm in a programming
language, and there are at fi rst sight a surprisingly large number of programming

 Chapter 4
 Introduction to Programming

 “Though this be madness, yet there is method in’t” Shakespeare
 ‘Plenty of practice’ he went on repeating, all the time that Alice
was getting him on his feet again. ‘plenty of practice.’
 The White Knight, Through the Looking Glass and What Alice
Found There,

 Lewis Carroll

46 4 Introduction to Programming

languages. The reason for this is that there is a wide range of problems that are
solved using a computer, e.g., the telephone company generating itemised bills or
the meteorological centre producing a weather forecast. These two problems make
different demands on a programming language, and it is unlikely that the same
language would be used to solve both.

 The range of problems that you want to solve will therefore strongly infl uence
your choice of programming language. Fortran stands for FORmula TRANslation,
which gives a hint of the expected range of problems for which it is suitable.

 4.2 Language Strengths and Weaknesses

 Some of the reasons for choosing Fortran are:

 It is a modern and expressive language; •
 The language is suitable for a wide class of both numeric and nonnumeric •
problems;
 The language is widely available on a range of hardware and operating system •
platforms;
 A lot of software already exists that has been written in Fortran. Some 15% of •
code worldwide is estimated to be in Fortran.

 There are a few warts, however. Given that there has to be backwards compati-
bility with earlier versions some of the syntax is clumsy to say the least. However,
a considerable range of problems can now be addressed quite cleanly, if one sticks
to a subset of the language and adopts a consistent style.

 4.3 Elements of a Programming Language

 As with ordinary (so-called natural) languages, e.g., English, French, Gaelic,
German, etc., programming languages have rules of syntax, grammar and spelling.
The application of these rules in a programming language is more strict. A
program has to be unambiguous, since it is a precise statement of the actions to be
taken. Many everyday activities are rather vaguely defi ned—Buy some bread on
your way home—but we are generally suffi ciently adaptable to cope with the
variations which occur as a result. if, in a program to calculate wages, we had an
instruction deduct some money for tax and insurance we could have an awkward
problem when the program calculated completely different wages for the same
person for the same amount of work every time it was run. One of the implications
of the strict syntax of a programming language for the novice is that apparently
silly error messages will appear when one fi rst starts writing programs. As with
many other new subjects you will have to learn some of the jargon to understand
these messages.

474.3 Elements of a Programming Language

 Programming languages are made up of statements. We will look at the various
kinds of statements briefl y below.

 4.3.1 Data Description Statements

 These are necessary to describe the kinds of data that are to be processed. In the
wages program, for example, there is obviously a difference between people’s
names and the amount of money they earn, i.e., these two things are not the same,
and it would not make any sense adding your name to your wages. The technical
term for this is data type—a wage would be of a different data type (a number) to a
surname (a sequence of characters).

 4.3.2 Control Structures

 A program can be regarded as a sequence of statements to solve a particular
problem, and it is common to fi nd that this sequence needs to be varied in practice.
Consider again the wages program. It will need to select among a variety of circum-
stances (say married or single, paid weekly or monthly, etc.,), and also to repeat the
program for everybody employed. So there is the need in a programming language
for statements to vary and/or repeat a sequence of statements.

 4.3.3 Data-Processing Statements

 It is necessary in a programming language to be able to process data. The kind of
processing required will depend on the kind or type of data. In the wages program,
for example, you will need to distinguish between names and wages. Therefore
there must be different kinds of statements to manipulate the different types of data,
i.e., wages and names.

 4.3.4 Input and Output (I/O) Statements

 For fl exibility, programs are generally written so that the data that they work on
exist outside the program. In the wages example the details for each person
employed would exist in a fi le somewhere, and there would be a record for each
person in this fi le. This means that the program would not have to be modifi ed
each time a person left, was ill, etc., although the individual records might be
updated. It is easier to modify data than to modify a program, and it is less likely
to produce unexpected results. To be able to vary the action there must be some
mechanism in a programming language for getting the data into and out of the

48 4 Introduction to Programming

program. This is done using input and output statements, sometimes shortened to
I/O statements.

 Let us now consider a simple program which will read in somebody’s fi rst name
and print it out:

 program ch0401
 !
 ! This program reads in and prints out a name
 !
 implicit none
 character*20 :: fi rst_name
 !
 print *,' type in your fi rst name.'
 print *,' up to 20 characters'
 read *,fi rst_name
 print *,fi rst_name

 !
 end program ch0401

 There are several very important points to be covered here, and they will be taken
in turn:

 Each line is a statement. •
 There is a sequence to the statements. The statements will be processed in the •
order that they are presented, so in this example the sequence is print, read,
print.
 The fi rst statement names the program. It makes sense to choose a name that •
conveys something about the purpose of the program.
 The next three lines are comment statements. They are identifi ed by a !. Comments •
are inserted in a program to explain the purpose of the program. They should be
regarded as an integral part of all programs. It is essential to get into the habit of
inserting comments into your programs straightaway.
 The • implicit none statement means that there has to be explicit typing of
each and every data item used in the program. It is good programming practice
to include this statement in every program that you write, as it will trap many
errors, some often very subtle in their effect. Using an analogy with a play, where
there is always a list of the persona involved before the main text of the play we
can say that this statement serves the same purpose.

 The character*20 statement is a type declaration. It was mentioned ear-
lier that there are different kinds of data. There must be some way of telling the
programming language that these data are of a certain type, and that therefore
certain kinds of operations are allowed and others are banned or just plain stupid!
It would not make sense to add a name to a number, e.g., what does Fred + 10
mean? So this statement defi nes that the variable fi rst_name is to be of type
 character and only character operations are permitted. The concept of a vari-
able is covered in the next section. Character variables of this type can hold up to
20 characters.

494.4 Variables—Name, Type and Value

 The • print statements print out an informative message to the terminal—in this
case a guide as to what to type in. The use of informative messages like this
throughout your programs is strongly recommended.
 The • read statement is one of the I/O statements. It is an instruction to read from
the terminal or keyboard; whatever is typed in from the terminal will end up
being associated with the variable fi rst_name. Input/output statements will be
explained in greater detail in later sections.
 The • print statement is another I/O statement. This statement will print out what
is associated with the variable fi rst_name and, in this case, what you typed in.
 The • end program statement terminates this program. It can be thought of as
being similar to a full stop in natural language, in that it fi nishes the program in
the same way that a period (.) ends a sentence. Note the use of the name given
in the program statement at the start of the program.
 Note also the use of the asterisk in three different contexts. •
 Indentation has been used to make the structure of the program easier to •
determine. Programs have to be read by human beings and we will look at this
in more depth later.
 Lastly, when you do run this program, character input will terminate with the •
fi rst blank character.

 The above program illustrates the use of some of the statements in the Fortran
language. Let us consider the action of the read * statement in more detail—in
particular, what is meant by a variable and a value.

 4.4 Variables—Name, Type and Value

 The idea of a variable is one that you are likely to have met before, probably in a
mathematical context. Consider the following:

 =circumference 2 rπ

 This is an equation for the calculation of the circumference of a circle. The fol-
lowing represents a translation of this into Fortran:

 =circumference 2* pi* radius

 There are a number of things to note about this equation:

 Each of the variables on the right-hand side of the equals sign (pi and radius) will •
have a value, which will allow the evaluation of the expression.
 When the expression is fully evaluated the value is assigned to the variable on the •
left-hand side of the equals sign.
 In mathematics the multiplication is implied in Fortran we have to use the * •
operator to indicate that we want to multiply 2 by pi by the radius.
 We do not have access to mathematical symbols like • p in Fortran but have to use
variable names based on letters from the Roman alphabet.

50 4 Introduction to Programming

 The whole line is an example of an arithmetic assignment statement in Fortran.
 The following arithmetic assignment statement illustrates clearly the concepts of

name and value, and the difference in the equals sign in mathematics and
computing:

 = +I I 1

 In Fortran this reads as take the current value of the variable I and add one to it,
store the new value back into the variable I, i.e., I takes the value I + 1.
Algebraically,

 = +I I 1

does not make any sense.
 Variables can be of different types. Table 4.1 shows some of those available in

Fortran.
 The concept of data type seems a little strange at fi rst, especially as we com-

monly think of integers and reals as numbers. However, the benefi ts to be gained
from this distinction are considerable. This will become apparent after you have
written several programs.

 Let us now consider another program, one that reads in three numbers, adds them
up and prints out both the total and the average:

 program ch0402
 !
 ! This program reads in three numbers and sums
 ! and averages them
 !
 implicit none
 real :: n1, n2, n3, average = 0.0, total = 0.0
 integer :: n = 3

 print *, ' type in three numbers. '
 print *,' Separated by spaces or commas'
 read *,n1,n2,n3
 total = n1 + n2 + n3
 average = total/n
 print *,'Total of numbers is ',total
 print *,'Average of the numbers is ',average

end program ch0402

 Table 4.1 Variable, type and value

 Variable_name data_type value_stored

 temperature real 28.55
 number_of_people integer 100
 fi rst_name character Jane

 Note the use of underscores to make the variable names easier to read.

514.5 Notes

 4.5 Notes

 The program has been given a name that means something.
 There are comments at the start of the program describing what it does.
 The implicit none statement ensures that all data items introduced have to

occur in a type declaration.
 The next two statements are type declarations. They defi ne the variables to be of

real or integer type. Remember integers are whole numbers, whereas real numbers
are those which have a decimal point. For example, 2 is an integer and 2.7,
2.00000001, and 2.0 are all real numbers. One of the fundamental distinctions in
Fortran is between integers and reals. Type declarations must always come at the
start of a program, before any processing is done. Note that the variables have been
given sensible names to aid in making the program easier to understand.

 The variables average, total and n are also given initial values within the type
declaration. Variables are initially undefi ned in Fortran, so the variables n1, n2, n3
fall into this category, as they have not been given values at the time that they are
declared.

 The fi rst print statement makes a text message (in this case what is between
the apostrophes) appear at the terminal. As was noted earlier, it is good practice to
put out a message like this so that you have some idea of what you are supposed
to type in.

 The read statement looks at the input from the keyboard (i.e., what you type)
and in this instance associates these values with the three variables. These values
can be separated by commas (,), spaces (), or even by pressing the carriage return
key, i.e., they can appear on separate lines.

 The next statement actually does some data processing. It adds up the values of
the three variables (n1, n2, and n3) and assigns the result to the variable total. This
statement is called an arithmetic assignment statement, and is covered more fully in
the next chapter.

 The next statement is another data-processing statement. It calculates the
average of the numbers entered and assigns the result to average. We could have
actually used the value 3 here instead, i.e., written average = total/3 and have exactly
the same effect. This would also have avoided the type declaration for n. However,
the original example follows established programming practice of declaring all
variables and establishing their meaning unambiguously. We will see further
examples of this type throughout the book.

 Indentation has been used to make the structure of the program easier to
determine.

 The sum and average are printed out with suitable captions or headings. Do not
write programs without putting captions on the results. It is too easy to make
mistakes when you do this, or even to forget what each number means.

 Finally we have the end of the program and again we have the use of the name in
the program statement.

52 4 Introduction to Programming

 4.6 Some More Fortran Rules

 There are certain things to learn about Fortran which have little immediate meaning
and some which have no logical justifi cation at all, other than historical precedence.
Why is a cat called a cat? At the end of several chapters there will be a brief sum-
mary of these rules or regulations when necessary. Here are a few:

 Source is free format. •
 Lowercase letters are permitted, but not required to be recognised. •
 Multiple statements may appear on one line and are separated by the semicolon •
character.
 There is an order to the statements in Fortran. Within the context of what you •
have covered so far, the order is:

 – Program statement.
 Type declarations, e.g., – implicit, integer, real or character.
 Processing and I/O statements. –
 – End program statement.

 Comments may appear anywhere in the program, after program and before end; •
they are introduced with a ! character, and can be in line.
 Names may be up to 63 characters in length and include the underscore character. •
 Lines may be up to 132 characters. •
 Up to 39 continuation lines are allowed (using the ampersand (&) as the continu-•
ation character).
 The syntax of the • read and print statement introduced in these examples is

 – read format, input-item-list.
 – print format, output-item-list.

 where format is * in the examples and called list directed format ting. •
 and input-item-list is a list of variable names separated by commas. •
 and output-item-list is a list of variable names and/or a sequence of char-•
acters enclosed in either ' or ", again separated by commas.

 if the – implicit none statement is not used, variables that are not explic-
itly declared will default to real if the fi rst letter of the variable name is A–H
or O–Z, and to integer if the fi rst letter of the variable name is I–N.

 4.7 Fortran Character Set

 The following summarises the Fortran character set:

 Alphanumeric characters

 A–Z: Uppercase letters
 a–z: Lowercase letters
 0–9: Digits
 _: Underscore

534.7 Fortran Character Set

 Special characters

 Graphic Name of character
 Blank

 = Equals
 + Plus
 − Minus
 * Asterisk
 / Slash or oblique
 \ Backslash
 (Left parenthesis
) Right parenthesis
 [Left square bracket
] Right square bracket
 { Left curly bracket
 } Right curly bracket
 , Comma
 . Period or decimal point
 : Colon
 ; Semicolon
 ! Exclamation mark
 " Quotation mark
 % Percent
 & Ampersand
 ~ Tilde
 @ Commercial at
 < Less than
 > Greater than
 ? Question mark
 ' Apostrophe
 ̀ Grave accent
 ̂ Circumfl ex accent
 | Vertical bar or line
 $ Currency symbol
 # Number sign

 The default character type shall support a character set that includes the Fortran
character set. By supplying non-default character types, the processor may support
additional character sets. The characters available in the ASCII and ISO 10646
character sets are specifi ed by ISO/IEC 64 6:1991 (International Reference Version)
and ISO/IEC 10646–1:2000 UCS-4, respectively; the characters available in other
non default character types are not specifi ed by the standard, except that one char-
acter in each non-default character type shall be designated as a blank character to
be used as a padding character.

54 4 Introduction to Programming

 If you live and work outside of the USA and UK you may well have problems
with your keyboard when programming. There is a very good entry in Wikipedia on
keyboards, that is well worth a look at for the curious.

 4.8 Good Programming Guidelines

 The following are guidelines, and do not form part of the Fortran language
defi nition:

 Use comments to clarify the purpose of both sections of the program and the •
whole program.
 Choose meaningful names in your programs. •
 Use indentation to highlight the structure of the program. Remember that the •
program has to be read and understood by both humans and a computer.
 Use implicit none in all programs you write to minimise errors. •
 Do not rely on the rules for explicit typing, as this is a major source of errors in •
programming.

 4.9 Compilers

 A number of hardware platforms, operating systems and compilers have been used
when writing this book and earlier books. The following have been used with this
book:

 NAG Fortran Builder 5.1, 5.2, 5.3 for Windows •
 NAG Fortran Compiler 5.1, 5.2, 5.3 for Linux. •
 Intel Fortran 11.x, 12.x for Windows. •
 Intel Fortran 12.x for Linux. •
 gnu gfortran 4.x for Windows. •
 gnu gfortran 4.x for Linux. •
 Cray Fortran : Version 7.3.1—Cray Hector service •
 g95 for Linux. •
 pgi 10.x—Cray Hector service •
 IBM XL Fortran for AIX, V13.1 (5724-X15), Version: 13.01.0000.0002 •
 Oracle Solaris Studio 12.0, 12.1, 12.2 for Linux The following have been used •
with earlier books:

 The following have been used with earlier books:

 DEC VAX under VMS and later OPEN VMS with the NAG Fortran 90 compiler. •
 DEC Alpha under OPEN VMS using the DEC Fortran 90 compiler. •
 Sun Ultra Sparc under Solaris:•

 NAGACE F90 compiler. –
 NAG Ware F95 compiler. –

554.10 Program Development

 Sun (Release 1 .x) F90 compiler. –
 Sun (Release 2.x) F90 compiler. –

 PCs under DOS and Windows:•

 DEC/Compaq Fortran 90 and Fortran 95 compilers. –
 Intel Compiler (7.x, 8.x). –
 Lahey Fujitsu Fortran 95 (5.7). –
 NAG Fortran 95 Compiler. –
 NAG Salford Fortran 90 Compiler. –
 Salford Fortran 95 Compiler. –

 PCs under Linux:•

 Intel Compiler. –
 Lahey Fujitsu Fortran 95 Pro (6.1). –
 NAG Fortran 95 (4.x, 5.x). –

 It is very illuminating to use more than one compiler whilst developing programs.

 4.10 Program Development

 A number of ways of developing programs have been used, including:

 Using an integrated development environment, including•

 NAG Fortran Builder under Windows. –
 Microsoft Visual Studio with the Intel compiler under Windows. –
 Oracle Sunstudio under SuSe Linux. –

 Using a DOS box and simple command line prompt under Windows. •
 Using ssh to log in to the Hector service. •
 Using a VPN, and SSH to log in to the IBM Power 7 system at Slovak •
Hydrometeorological Institute Jeséniova 17
 Using a console or terminal window under SuSe Linux. •
 Using X-Windows software to log into the SUN Ultra Sparc systems. •
 Using terminal emulation software to log into the SUN Ultra Sparc. •
 Using DEC terminals to log into the DEC VAX and DEC Alpha systems. •
 Using PCs running terminal emulation software to log into the DEC VAX and •
DEC Alpha systems.

 It is likely that you will end up doing at least one of the above and probably more.
The key stages involved are:

 Creating and making changes to the Fortran program source. •
 Saving the fi le. •
 Compiling the program:•

 if there are errors you must go back to the Fortran source and make the changes –
indicated by the compiler error messages.

56 4 Introduction to Programming

 Linking if successful to generate an executable:•

 Automatic link. This happens behind the scenes and the executable is gener- –
ated for you immediately.
 Manual link. You explicitly invoke the linker to generate the executable. –

 Running the program. •
 Determining whether the program actually works and gives the results expected. •

 These steps must be taken regardless of the hardware platform, operating system
and compiler you use. Some people like working at the operating system prompt
(e.g., DOS, Linux and UNIX), and others prefer working within a development
environment. Both have their strengths and weaknesses.

 4.11 Problems

 1. Compile and run example 1 in this chapter. Experiment with the following types
of input.

 Ian
 Ian Chivers
 "Jane Margaret Sleightholme"

 2. Compile and run example 2 in this chapter.
 Think about the following points:

 Is there a difference between separating the input by spaces or commas? •
 do you need the decimal point? •
 What happens when you type in too many data? •
 What happens when you type in too few data? •

 If you have access to more than one compiler repeat the above and compare the
results.

 3. Write a program that will read in your name and address and print them out in
reverse order.

 Think about the following points:

 How many lines are there in your name and address? •
 What is the maximum number of characters in the longest line in your •
name and address?
 What happens at the fi rst blank character of each input line? •
 Which characters can be used in Fortran to enclose each line of text typed •
in and hence not stop at the fi rst blank character?
 if you use one of the two special characters to enclose text what happens if •
you start on one line and then press the return key before terminating the
text?

 The action here will vary between Fortran implementations.

57I. Chivers and J. Sleightholme, Introduction to Programming with Fortran:
With Coverage of Fortran 90, 95, 2003, 2008 and 77,
DOI 10.1007/978-0-85729-233-9_5, © Springer-Verlag London Limited 2012

 Aims

 The aims of this chapter are to introduce: •
 The rules for the evaluation of arithmetic expressions to ensure that they are •
evaluated as you intend.
 The idea of truncation and rounding applied to reals. •
 The use of the parameter attribute to defi ne or set up constants. •
 The concepts and ideas involved in numerical computation, including:•

 Specifying data types using kind-type parameters. –
 The concept of numeric models and positional number systems for integer –
and real arithmetic and their implementation on binary devices.
 Testing the numerical representation of different kind types on a system. –

 Chapter 5
 Arithmetic

 Taking Three as the subject to reason about—
 A convenient number to state—
 We add Seven, and Ten, and then multiply out
 By One Thousand diminished by Eight.
 The result we proceed to divide, as you see,
 By Nine Hundred and Ninety and Two:
 then subtract Seventeen, and the answer must be
 Exactly and perfectly true.

 Lewis Carroll, The Hunting of the Snark
 Round numbers are always false.

 Samuel Johnsons

58 5 Arithmetic

 5.1 An Introduction to Arithmetic in Fortran

 Most problems in the academic and scientifi c communities require arithmetic
evaluation as part of the algorithm. As the rules for the evaluation of arithmetic
in Fortran may differ from those that you are probably familiar with, you need to
learn the Fortran rules thoroughly. In the previous chapter, we introduced the
arithmetic assignment statement, emphasising the concepts of name, type and
value. Here we will consider the way that arithmetic expressions are evaluated in
Fortran.

 Table 5.1 lists the fi ve arithmetic operators available in Fortran.
 Exponentiation is raising to a power. Note that the exponentiation operator is the

* character twice.
 The following are some examples of valid arithmetic assignment statements in

Fortran:

 taxable_income = gross_wage − personal_allowance
 cost = bill + vat + service
 delta = deltax/deltay
 area = pi * radius * radius
 cube = big ** 3

 The above expressions are all simple, and there are no problems when it comes
to evaluating them. However, now consider the following:

 tax = gross_wage − personal_allowance * tax_rate

 This is a poorly written arithmetic expression. There is a choice of doing the
subtraction before or after the multiplication. Our everyday experience says that the
subtraction should take place before the multiplication. However, if this expression
were evaluated in Fortran the multiplication would be done before the subtraction.

 5.2 Example 1: Simple Arithmetic Expressions in Fortran

 A complete program to show the correct form in Fortran is as follow:

 Table 5.1 Fortran operators

 Mathematical operation Fortran symbol or operator

 Addition +
 Subtraction −
 Division /
 Multiplication *
 Exponentiation **

595.2 Example 1: Simple Arithmetic Expressions in Fortran

 We need to look at three areas here:

 The rules for forming expressions—the syntax. •
 The rules for interpreting expressions—the semantics. •
 The rules for evaluating expressions—optimisation. •

 The syntax rules determine which expressions are valid. The semantics determine
a valid interpretation, and once this has been done the compiler can replace the expres-
sion with any other one that is mathematically equivalent, generally in the interests
of optimisation.

 The rules for the evaluation of expressions in Fortran are as follows:

 Brackets are used to defi ne priority in the evaluation of an expression. •
 Operators have a hierarchy of priority—a precedence. The hierarchy of operators is: •
 Exponentiation: when the expression has multiple exponentiation, the evaluation •
is from right to left. For example,

 =L I ** J ** K

is evaluated by fi rst raising J to the power K, and then using this result as the
exponent for I; more explicitly,

 ()=L I ** J ** K

 Although this is similar to the way in which we might expect an algebraic expres-
sion to be evaluated, it is not consistent with the rules for multiplication and
division, and may lead to some confusion. When in doubt, use brackets.

60 5 Arithmetic

 Multiplication and division: within successive multiplications and divisions, the •
rules regarding any mathematically equivalent expression means that you must
use brackets to ensure the evaluation you want For example, with

 =A B * C / D* E

for real and complex numeric types the compiler does not necessarily evaluate
in a left to right manner, i.e., evaluate B times C, then divide the result by D and
fi nally take that result and multiply by E.
 Addition and subtraction: as for multiplication and division the rules regarding •
any equivalent expression apply. However, it is seldom that the order of addition
and subtraction is important, unless other operators are involved.

 The following are all examples of valid arithmetic expressions in Fortran:

 Slope = (Y1−Y2)/(X1−X2)
 X1 = (−B + ((B*B−4*A*C)**0.5))/(2*A)
 Q = Mass_D/2*(Mass_A*Veloc_A/Mass_D)**2 + &
 ((Mass_A * Veloc_A)**2)/2

 Note that brackets have been used to make the order of evaluation more obvious.
It is often possible to write involved expressions without brackets, but, for the sake
of clarity, it is often best to leave the brackets in, even to the extent of inserting a few
extra ones to ensure that the expression is evaluated correctly. The expression will
be evaluated just as quickly with the brackets as without. Also note that none of the
expressions is particularly complex. The last one is about as complex as you should
try: with more complexity than this it is easy to make a mistake.

 The rule regarding any equivalent expression means if A, B and C are numeric
then the following are true:

()

A B B A

A B B A

A B C A B C

+ = +
- + = -

+ + = + +

 The last is nominally evaluated left to right, as the additions are of equal
precedence:

 ()
A * B B * A

A * B * C A * B * C

=

=

and again the last is nominally evaluated left to right, as the multiplications are of
equal precedence:

()
()

A * B A *C A * B C

A / B / C A / B * C

- = -

=

 The last is true for real and complex numeric types only.

615.3 Rounding and Truncation

 Problems arise when the value that a faulty expression yields lies within the
range of expected values and the error may well go undetected. This may appear
strange at fi rst, but a computer does exactly what it is instructed to do. If, through a
misunderstanding on the part of a programmer, the program is syntactically correct
but logically wrong from the point of view of the problem defi nition, then this will
not be spotted by the compiler. If an expression is complex, break it down into suc-
cessive statements with elements of the expression on each line, e.g.,

 Temp = B * B – 4 * A * C
 X1 = (− B + (Temp ** 0.5)) / (2 * A)
 and
 Moment = Mass_A * Veloc_A
 Q = Mass_D / 2 * (Moment / Mass_D) **2 + &

(Moment **2) / 2

 5.3 Rounding and Truncation

 When arithmetic calculations are performed one of the following can occur:

 Truncation. This operation involves throwing away part of the number, e.g., with •
14.6 truncating the number to two fi gures leaves 14.
 Rounding. Consider 14.6 again. This is rounded to 15. Basically, the number is •
changed to the nearest whole number. It is still a real number. What do you think
will happen with 14.5; will this be rounded up or down?

 You must be aware of these two operations. They may occasionally cause prob-
lems in division and in expressions with more than one data type.

 5.3.1 Example 2: Type Conversion and Assignment

 To see some of the problems that can occur consider the examples below:

 program ch0502
 implicit none
 real :: a,b,c
 integer :: I
 a = 1.5
 b = 2.0
 c = a / b
 I = a / b
 print *,a,b
 print *,c
 print *,I

 end program ch0502

62 5 Arithmetic

 After executing these statements c has the value 0.75, and I has the value zero!
This is an example of type conversion across the = sign. The variables on the right
are all real, but the last variable on the left is an integer. The value is therefore made
into an integer by truncation. In this example, 0.75 is real, so I becomes zero when
truncation takes place.

 5.3.2 Example 3: Integer Division and Real Assignment

 Consider now an example where we assign into a real variable (so that no truncation
due to the assignment will take place), but where part of the expression on the right-
hand side involves integer division:

 program ch0503
 implicit none
 integer :: I, J, K
 real :: Answer
 I = 5
 J = 2
 K = 4
 Answer = I / J * K
 print *,I
 print *, J
 print *,K
 print *,Answer

 end program ch0503

 The value of Answer is 8, because the I/J term involves integer division. The
expected answer of 10 is not that different from the actual one of 8, and it is cases
like this that cause problems for the unwary, i.e., where the calculated result may be
close to the actual one. In complicated expressions it would be easy to miss some-
thing like this.

 To recap, truncation takes place in Fortran:

 Across an = sign, when a real is assigned to an integer. •
 In integer division. •

 It is very important to be careful when attempting mixed mode arithmetic—that
is, when mixing reals and integers. if a real and an integer are together in a division
or multiplication, the result of that operation will be real; when addition or subtrac-
tion takes place in a similar situation, the result will also be real. The problem arises
when some parts of an expression are calculated using integer arithmetic and other
parts with real arithmetic:

 = + -C A B I / J

635.4 Example 4: Time Taken for Light to Travel from the Sun to Earth

 The integer division is carried out before the addition and subtraction; hence the
result of I/J is integer, although all the other parts of the expression will be carried
out with real arithmetic.

 5.4 Example 4: Time Taken for Light to Travel
from the Sun to Earth

 How long does it take for light to reach the Earth from the Sun? Light travels
9.46·10 12 km in 1 year. We can take a year as being equivalent to 365.25 days. (As
all school children know, the astronomical year is 365 days, 5 h, 48 min and
45.9747 s—hardly worth the extra effort.) The distance between the Earth and Sun
is about 150,000,000 km. There is obviously a bit of imprecision involved in these
fi gures, not least since the Earth moves in an elliptical orbit, not a circular one. One
last point to note before presenting the program is that the elapsed time will be given
in minutes and seconds. Few people readily grasp fractional parts of a year:

 program ch0504
 implicit none
 real :: Light_Minute, Distance, Elapse
 integer :: Minute, Second
 real , parameter :: Light_Year = 9.46*10**12
 ! Light_year : Distance travelled by light
 ! in one year in km
 ! Light_minute : Distance travelled by light
 ! in one minute in km
 ! Distance : Distance from sun to earth in km
 ! Elapse : Time taken to travel a
 ! distance (Distance) in minutes
 ! Minute : integer number part of elapse
 ! Second : integer number of seconds
 ! equivalent to fractional part of elapse
 !
 Light_minute = Light_Year/(365.25 * 24.0 * 60.0)
 Distance = 150.0 * 10 ** 6
 Elapse = Distance / Light_minute
 Minute = Elapse
 Second = (Elapse - Minute) * 60
 print *, 'Light takes', Minute, 'Minutes'
 print *,' ' , Second, 'Seconds'
 print *, 'To reach the earth from the sun'

 end program ch0504

 The calculation is straightforward; fi rst we calculate the distance travelled by
light in 1 min, and then use this value to fi nd out how many minutes it takes for light

64 5 Arithmetic

to travel a set distance. Separating the time taken in minutes into whole-number
minutes and seconds is accomplished by exploiting the way in which Fortran will
truncate a real number to an integer on type conversion. The difference between
these two values is the part of a minute which needs to be converted to seconds.
Given the inaccuracies already inherent in the exercise, there seems little point in
giving decimal parts of a second.

 It is worth noting that some structure has been attempted by using comment lines
to separate parts of the program into fairly distinct chunks. Note also that the com-
ment lines describe the variables used in the program.

 Can you see any problems with this example?

 5.5 The parameter Attribute

 This statement is used to provide a way of associating a meaningful name with a
constant in a program. Consider a program where p was going to be used a lot. It
would be silly to have to type in 3.14159265358, etc., every time. There would be a
lot to type and it is likely that a mistake could be made typing in the correct value.
It therefore makes sense to set up p once and then refer to it by name. However, if
PI was just a variable then it would be possible to do the following:

 real :: li,pi
 .
 pi = 4.0*atan(1.0)
 .
 pi = 4*alpha/beta
 .

 The pi = 4*alpha/beta statement should have been li = 4*alpha/beta. What has hap-
pened is that, through a typing mistake (p and l are close together on a keyboard), an
error has crept into the program. It will not be spotted by the compiler. Fortran provides
a way of helping here with the parameter statement, which should be preceded with
a type declaration. The following are correct examples of the parameter attribute:

 real , parameter :: pi = 4.0*atan(1.0) , C = 2.997925
and
 real , parameter :: Charge = 1.6021917

 The advantage of the parameter attribute is that you could not then assign
another value to pi, C or Charge. If you tried to do this, the compiler would generate
an error message.

 A type statement with a parameter attribute may contain an arithmetic expression,
so that some relatively simple arithmetic may be performed in setting up these constants.
The evaluation must be confi ned to addition, subtraction, multiplication, division and
integer exponentiation. The following examples help to demonstrate the possibilities:

 real , parameter :: parsec = 3.08*10**16 , &
 pi = 4.0*atan(1.0) , &
radian = 360./pi

655.6 Range, Precision and Size of Numbers

 5.6 Range, Precision and Size of Numbers

 The range on integer numbers and the precision and the size of fl oating point
numbers in computing are directly related to the number of bits allocated to their
internal representation. Tables 5.2 and 5.3 summarise this information for the two
most common bit sizes in use for integers and reals—32 bits and 64 bits.

 Table 5.2 looks at integer numbers.
 Table 5.3 is a corresponding table for real numbers.
 Precision is not the same as accuracy. In this age of digital timekeeping, it is easy

to provide an extremely precise answer to the question What time is it? This answer
need not be accurate, even though it is reported to tenths (or even hundredths!) of a
second. Do not be fooled into believing that an answer reported to ten places of
decimals must be accurate to ten places of decimals. The computer can only retain
a limited precision. When calculations are performed, this limitation will tend to
generate inaccuracies in the result. The estimation of such inaccuracies is the domain
of the branch of mathematics known as Numerical Analysis.

 To give some idea of the problems, consider an imaginary decimal computer
which retains two signifi cant digits in its calculations. For example, 1.2, 12.0, 120.0
and 0.12 are all given to two-digit precision. Note therefore that 1234.5 would
be represented as 1200.0 in this device. When any arithmetic operation is carried
out, the result (including any intermediate calculations) will have two signifi cant
digits. Thus:

 ()130 12 140 rounding down from 142+ =

and similarly:

 ()17 / 3 5.7 rounding up from 5.666666...=

 Table 5.2 Word size and
integer numbers

 N bits Maximum integer

 64 (2**63)–1 9,223,372,036,854,774,807
 32 (2**31)–1 2,147,483,647

 Table 5.3 Word size and real
numbers

 N bits Precision Smallest real largest real

 64 15–18 ~0.5E–308
 ~0.8E+308

 32 6–9 ~0.3E–38
 ~1.7E38

 Note that access to what the hardware supports is dependent
on the operating system and compiler as well

66 5 Arithmetic

and:

 =16*16 260

where there are more involved calculations, the results can become even less attrac-
tive. Assume we wish to evaluate

 ()16*16 / 0.14

 We would like an answer in the region of 1828.5718, or, to two signifi cant digits,
1800.0. If we evaluate the terms within the brackets fi rst, the answer is 260/0.14, or
1857.1428; 1900.0 on the two-digit machine. Thinking that we could do better, we
could rewrite the fraction as

 ()16 / 0.14 * 16

 Which gives a result of 1800.0.
 Algebra shows that all these evaluations are equivalent if unlimited precision is

available.
 Care should also be taken when is one is near the numerical limits of the machine.

Consider the following:

 Z = B * C / D

where B, C and D are all 10 30 and we are using 32-bit fl oating point numbers where
the maximum real is approximately 10 38 . Here the product B * C generates a number
of 10 60 —beyond the limits of the machine. This is called overfl ow as the number is
too large. Note that we could avoid this problem by retyping this as

 Z = B * C / D)

where the intermediate result would now be 10 30 /10 30 , i.e., 1.
 There is an inverse called underfl ow when the number is too small, which is

illustrated below:

 Z = X1 * Y1 * Z1

where X1 and Y1 are 10 −20 and Z1 is 10 20 . The intermediate result of X1 * Y1 is
10 −40 —again beyond the limits of the machine. This problem could have been over-
come by retyping as

 Z = X1 * (Y1 * Z1)

 This is a particular problem for many scientists and engineers with all machines
that use 32-bit arithmetic for integer and real calculations. This is because there are
a number of physical constants (Plank constant, elementary charge, Bohr magneton
etc.,) that will cause arithmetic problems due to their size. This is rarely a problem
with machines with hardware support for 64-bit arithmetic.

 How we get around this problem and how we move our programs from one
platform to another making sure that we are working with the same precision and
same range of numbers are covered in detail in the next section.

675.7 Health Warning: Optional Reading, Beginners are Advised to Leave Until Later

 5.7 Health Warning: Optional Reading, Beginners
are Advised to Leave Until Later

 It is very important in scientifi c programming to know the range and precision of
data on the hardware platform on which we are working. The facilities provided in
Fortran now allow programmers to specify the range and precision they wish to use
and the compiler will choose an appropriate type.

 If it is not possible to offer the precision and range requested the compiler returns
an error code. To avoid this happening the programmer needs to query the computer
fi rst for details of its data representations before trying to run a program which
specifi es range and precision.

 In order to do this we use the kind intrinsic function, (intrinsic functions are
covered in depth in Chapter 12 and Appendix C), e.g.:

 real :: x
 print *, 'Kind number for X = ',kind(x)

 This will print out the kind number used by your system to represent default real
variables. These kind numbers are arbitrary and there is usually no meaning attached
to them.

 5.7.1 Example 5: Default Kinds

 Consider the following program, which demonstrates the use of the kind function:
 It is worthwhile actually typing this program in and seeing what answers you get

for the system you are working on. We have examples of several compilers below.

gfortran 4.3.4, cygwin, Windows.

 integer 4
 real 4

68 5 Arithmetic

 char 1
 logical 4
 complex 4

 Intel 12.0.1, Windows

 integer 4
 real 4
 char 1
 logical 4
 complex 4

 NAG Fortran Builder 5.3, Windows

 integer 3
 real 1
 char 1
 logical 3
 complex 1

 Thus it is up to each compiler implementation to decide what kind numbers are
associated with each type and kind variation. Thus the kind value on its own should
not be used across platforms to try to achieve portability.

 In fact, specifying a kind number actually is not what is intended by the Fortran
standard, so two intrinsic functions

 selected_int_kind

and

 selected_real_kind

are available instead. They are used to specify the range of numbers for integers and
the range and precision of numbers for reals, and the compiler will return the
appropriate kind numbers that it has assigned to such representations. These kind
numbers can be assigned to parameters called kind type parameters, which can be
used with real and integer type declarations. Let’s consider the two main numeric
types to see how this works.

 5.7.2 Selecting Different Integer Kind Types

 The Fortran standard specifi es that only one integer kind needs to be available, but
often a machine’s architecture or compiler implementation will offer more. Most
compiler implementations will offer the following:

 8-bit or one-byte integers. •
 16-bit or two-byte integers. •
 32-bit or four-byte integers. •

and 64-bit or eight byte integers will be available on certain platforms and imple-
mentations. The most common reason for choosing 8-bit or 16-bit integers is to

695.7 Health Warning: Optional Reading, Beginners are Advised to Leave Until Later

reduce the memory requirements of your program and the most common reason for
choosing 64-bit integers is to solve specialised problems in mathematics requiring
large integer numbers.

 To choose an integer kind other than the default, you specify the range of the
numbers you require it to lie in, in terms of a power of 10; e.g.,

 integer, parameter :: First = selected_int_kind (2)
 integer (First) :: I,J

 selects an integer kind parameter , First, with representation which includes all inte-
gers between –10 2 and 10 2 , i.e., numbers in the range −100–100. The integer kind
 parameter can be used in brackets after the integer type statement to specify vari-
ables of this integer kind, e.g., I and J.

 If there is no integer kind representation for the range specifi ed, the selected_
int_kind function returns −1. Unfortunately it is not possible to then test for −1 in
a type statement, i.e., you will get a compile time error message. We suggest that you
run the program in Sect. 5.7.11 to fi nd the limits of your machine’s architecture
before trying to specify a kind parameter that it can’t support.

 5.7.3 Selecting Different Real Kind Types

 The Fortran standard specifi es that there must be at least two representations of the real
type, the default plus one other. Often there are more, depending on what the underlying
hardware can support. When working with real data there are two things to specify—range
and precision. The precision is the minimum number of signifi cant digits (all fl oating point
numbers are normalised) to which real numbers are stored, and the range is the power of
10 of the largest number to be represented. So, for example, to specify that a variable R has
a kind type that supports 15 signifi cant fi gures and a range 10 ±307 we defi ne a real kind
 parameter , Long, and then use this with the real type declaration for R as follows:

 integer, parameter :: Long = selected_real_kind(15,307)
 real (Long) :: R

 The only problem is if the underlying hardware can’t support this specifi cation, in
which case the function will return −1 if the requested precision is unavailable, −2 if
the range is unavailable, and −3 if both are unavailable. As we mentioned earlier with
integer kinds, it is not possible to test for negative values in a type declaration, so
before trying to use different kind types, or even just the default types, you need to
know what kind types your machine supports and their range and precision.

 5.7.4 Specifying Kind Types for Literal Integer and Real
Constants

 A literal constant is a data object whose value cannot change. An integer constant 1 is of
default integer kind and a real constant 10.3 is a default real constant. If in a program you
have chosen a real kind type, other than the default, then to be consistent and also to make

70 5 Arithmetic

sure that all real arithmetic is done to the precision specifi ed, you need to declare all
real constants to be of this kind type. This is done by giving the literal constant fol-
lowed by an underscore and a kind number or kind type parameter , e.g.

 constant_kind

 For the earlier example with a kind type parameter Long, a real literal constant
of this type would be given as

 − 22.36_Long

 It is not recommended to use the actual kind number because, as we have seen,
these are not portable across machines.

 The convention we use throughout this book if we require a numeric kind type
other than the defaults is to specify a kind type parameter , e.g.,

 integer, parameter :: Long = selected_real_kind (15,307)

 and then use it with real type declarations, e.g.,

 real (Long) :: R

 This still doesn’t make programs completely portable across different hardware
platforms, so you will fi rstly need to run a program which tests the range of data
representations. Before doing this we need to know a bit more about the underlying
representation of numerical data on computer systems.

 5.7.5 Positional Number Systems

 Most people take arithmetic completely for granted and rarely think much about the
subject. It is necessary to look at it in a bit more depth if we are to understand what
the computer is doing in this area.

 Our way of working with numbers is essentially a positional one. When we look
at the number 1,024, for example, we rarely think of it in terms of 1 * 1,000 + 0 *
100 + 2*10 + 4*1. Thus the normal decimal system we use in everyday life is a posi-
tional one, with a base of 10.

 We are probably aware that we can use other number bases, and 2, 8 and 16 are fairly
common alternate number bases. As the computer is a binary device it uses base 2.

 We are also reasonably familiar with a mantissa exponent or fl oating point com-
bination when the numbers get very large or very small, e.g., a parsec is commonly expressed
as 3.08 * 10 ** 16, and here the mantissa is 3.08, and the exponent is 10 ** 16.

 The above information will help in understanding the way in which integers and
reals are represented on computer systems.

 5.7.6 Bit Data Type and Representation Model

 The model is only defi ned for positive integers (or cardinal numbers), where they
are represented as a sequence of binary digits, and is based on the model:

715.7 Health Warning: Optional Reading, Beginners are Advised to Leave Until Later

-

=

= å
1

0

2
n

k
k

k

i b

where I is the integer value, n is the number of bits, and b
k
 is a bit value of 0 or 1,

with bit numbering starting at 0, and reading right to left. Thus the integer 43 and bit
pattern 101011 is given by:

 () () () () () ()43 1*32 0*16 1*8 0* 4 1* 2 1*1= + + + + +

 Or

 () () () () () ()4 3 1 05 243 1* 2 0* 2 1* 2 0* 2 1* 2 1* 2= + + + + +

 5.7.7 Integer Data Type and Representation Model

 The integer data type is based on the model

=

=

= å 1

1

q
k

k
k

i s l r

where I is the integer value, s is the sign, q is the number of digits (always positive), r is
the radix or base (integer greater than 1), and lk is a positive integer (less than r).

 A base of 2 is typical so 1,023 is

() () () () () () ()
() () ()

89 7 6 5 4 3

2 1 0

1023 1* 2 1* 2 1* 2 1* 2 1* 2 1* 2 1* 2

1* 2 1* 2 1* 2

= + + + + + +

+ + +

 5.7.8 Real Data Type and Representation Model

 The real data type is based on the model

-

=

= å
1

m
e k

k
k

x sb f b

where x is the real number, s is the sign, b is the radix or base (greater than 1), m is
the number of bits in the mantissa, e is an integer in the range e

min
 to e

max
 , and f

k
 is a

positive number less than b.
 This means that with, for example, a 32-bit real there would be 8 bits allocated

to the exponent and 24 to the mantissa. One of the bits in each part would be used
to represent the sign and is called the sign bit. This reduces the number of bits that
can actually be used to represent the mantissa and exponent to 31 and 7, respec-
tively. There is also the concept of normalisation, where the exponent is adjusted so
that the most signifi cant bit is in position 22—bits are typically numbered 0–22,
rather than 1–23. This form of representation is not new, and is fi rst documented

72 5 Arithmetic

around 1750 BC, when Babylonian mathematicians used a sexagesimal (radix 60)
positional notation. It is interesting that the form they used omitted the exponent!

 This is the theoretical basis of the representation of these three data types in
Fortran.

 This information together with the following provide a good basis for writing
portable code across a range of hardware.

 5.7.9 IEEE 754

 The fi rst standard IEEE 754: 1985 covered binary fl oating point arithmetic. The
later IEEE 754: 1987 standard added decimal arithmetic.

 A considerable amount of hardware now offers support for the IEEE 754 stan-
dard. The standard can be purchased from

 • http://standards.ieee.org

 Work is under way on the next version and you can fi nd out details of the current
state of play at

 • http://grouper.ieee.org/groups/754/

 There are quite a lot of good links from this site.

 5.7.10 Testing the Numerical Representation of Different
Kind Types on a System

 You are now ready to write or adapt a program to run on your system in order to test
the range of integer kind types and the range and precision of real kind types.

 The following program selects several integer and real kind types and by calling
the intrinsic functions KIND, HUGE, PRECISION and EPSILON produces most of
the information you need to know about for these kind types. Table 5.4 provides
details of what these functions do.

 5.7.11 Example 6: Using the Numeric Enquiry Functions

 Using the numeric enquiry functions A complete program using the above is as follows:

 Table 5.4 Numeric query
functions

 function name Simple explanation

 kind (x) Returns the kind type
 tiny (x) Returns the smallest number
 huge (x) Returns the largest number
 precision (x) Returns the decimal precision
 epsilon (x) Smallest difference between two reals

http://standards.ieee.org
http://grouper.ieee.org/groups/754/

735.7 Health Warning: Optional Reading, Beginners are Advised to Leave Until Later

 program ch0506
 implicit none
 !
 ! examples of the use of the kind
 ! function and the numeric inquiry functions
 !
 ! integer arithmetic
 !
 ! 32 bits is a common word size,
 ! and this leads quite cleanly
 ! to the following
 ! 8 bit integers
 ! −128 to 127 10**2
 ! 16 bit integers
 ! −32768 to 32767 10**4
 ! 32 bit integers
 ! −2147483648 to 2147483647 10**9
 !
 ! 64 bit integers are increasingly available.
 ! this leads to
 ! −9223372036854775808 to
 ! 9223372036854775807 10**19
 !
 ! you may need to comment out some of the following
 ! depending on the hardware platform and compiler
 ! that you use.

 Integer :: I
 integer (selected_int_kind(2)) :: i1
 integer (selected_int_kind(4)) :: i2
 integer (selected_int_kind(9)) :: i3
 integer (selected_int_kind(10)) :: i4
 ! real arithmetic
 !
 ! 32 and 64 bit reals are normally available.
 !
 ! 32 bit reals 8 bit exponent, 24 bit mantissa
 !
 ! 64 bit reals 11 bit exponent 53 bit mantissa
 !
 real :: r
 real (selected_real_kind(6, 37)) :: r1
 real (selected_real_kind(15,307)) :: r2
 real (selected_real_kind(15,310)) :: r3
 print *, ' '
 print *, 'integer values'
 print *, 'kind huge'
 print *,' '

74 5 Arithmetic

 print *,' ',kind(I),' ',huge(I)
 print *, ' '
 print *,' ',kind(i1),' ',huge(i1)
 print *,' ',kind(i2),' ',huge(i2)
 print *,' ',kind(i3),' ',huge(i3)
 print *,' ',kind(i4),' ',huge(i4)
 print *, ' '
 print *, ' real values'
 print *, ' kind huge ' , &
 'precision epsilon'
 print *, ' '
 print *, ' ',kind®,' ' ,huge®,&
 ' ',precision®,' ',epsilon®
 print *, ' '
 print *, ' ',kind(r1),' ',huge(r1),&
 ' ',precision(r1),' ',epsilon(r1)
 print *, ' ',kind(r2),' ',huge(r2),&
 ' ',precision(r2),' ',epsilon(r2)
 print *,' ',kind(r3),' ',huge(r3),&
 ' ',precision(r3),' ',epsilon(r3)

 end program ch0506

 The output from the Intel compiler under Windows is:

755.7 Health Warning: Optional Reading, Beginners are Advised to Leave Until Later

 The output from the gfortran (cygwin) compiler under Windows is:

 The output from the same compiler under SuSe Linux, same dual boot system.

76 5 Arithmetic

 The NAG Fortran Builder output:

775.7 Health Warning: Optional Reading, Beginners are Advised to Leave Until Later

 The Oracle Solaris Studio output:

 Run this program on whatever system you have access to and compare the output
with the above examples.

 5.7.12 Example 7: Binary Representation of Different Integer
Kind Type Numbers

 Binary representation of different integer kind type numbers For those who wish to
look at the internal binary representation of integer numbers with a variety of kinds,
we have included the following program

 selected_int_kind (2) means provide at least an integer representation with
numbers between–10 2 and + 10 2 .
 selected_int_kind (4) means provide at least an integer representation with
numbers between–10 4 and + 10 4 .
 selected_int_kind (9) means provide at least an integer representation with
numbers between-10 9 and + 10 9 .

 We use the int function to convert from one integer representation to another.

78 5 Arithmetic

 We use the logical function btest to determine whether the binary value at that
position within the number is a zero or a one, i.e., if the bit is set.

 I_in_Bits is a character string that holds a direct mapping from the internal binary
form of the integer and a text string that prints as a sequence of zeros or ones:

795.7 Health Warning: Optional Reading, Beginners are Advised to Leave Until Later

 The do loop indices follow the convention of an 8-bit quantity starting at bit 0
and ending at bit 7, 16-bit quantities starting at 0 and ending at 15, etc.

 The numbers written out follow the conventional mathematical notation of hav-
ing the least signifi cant quantity at the right-hand end of the digit sequence, i.e.,
with 127 in decimal we have 1 * 100, 2*10 and 7 * 1, so 00100001 in binary means
1 * 32 + 1 * 1 decimal.

 Try running this program on the system you are using. Does it produce the results
you expect? Experiment with a variety of numbers. Try at least the following 0, + 1,
–1, –128, 127, 128, –32768, 32767, 32768.

 5.7.13 Example 8: Binary Representation of a Real Number

 The following program is a simple variant of the previous one, but we now look at
a fl oating point number:

 program ch0508
 !
 ! use the bit functions in Fortran to write out a
 ! 32 bit integer number equivalenced to a real
 ! using the transfer intrinsic as a sequence of
 ! zeros and ones
 !
 implicit none
 integer :: I, J
 character (len = 32) ::I_in_Bits = " "
 real :: x = −1.0

 print *,' 1 2 3'

 print *,'1234567890123456789012345678901234567890'
 print *,I_in_Bits
 I = transfer(x,I)
 do J = 0,31
 if (btest(i,J)) then
 I_in_Bits(32-J:32-J) = '1'

 else
 I_in_Bits(32-J:32-J) = '0'

 end if
 end do
 print *,x
 print *,I_in_Bits

 end program ch0508

 We use the intrinsic function transfer to help out here. The btest intrinsic takes an
integer argument, so we need to copy the bit pattern of the real number into an
integer variable.

80 5 Arithmetic

 5.7.14 Summary of How to Select the Appropriate Kind Type

 To write programs that will perform arithmetically in a similar fashion on a variety
of hardware requires an understanding of:

 The integer data representation model and in practice the word size of the various •
integer kind types.
 The real data representation model and in practice the word size of the various •
real kind types and the number of bits in both the mantissa and exponent.

 Armed with this information we can then choose a kind type that will ensure
minimal problems when moving from one platform to another. End of health
warning!

 5.8 Variable Status

 Fortran has two concepts regarding the status of a variable: defi ned and undefi ned.
If a program does not provide an initial value (in a type statement) for a variable
then its status is said to be undefi ned. Consider the following code segment taken
from the earlier example that calculated the sum and average of three numbers:

 real :: N1, N2, N3, Average = 0.0, Total = 0.0
integer :: N = 3

 In the above the variables Average, Total and N all have a defi ned status. However,
N1, N2 and N3 are said to be undefi ned. The use of undefi ned values is implementa-
tion dependent and therefore not portable. Care must be taken when writing programs
to ensure that your variables have a defi ned status wherever possible. We will look
at this area again in subsequent chapters.

 5.9 Summary

 The following are some practical rules and guidelines:

 Learn the rules for the evaluation of arithmetic expressions. •
 Break expressions down where necessary to ensure that the expressions are eval-•
uated in the way you want.
 Take care with truncation owing to integer division in an expression. Note that •
this will only be a problem where both parts of the division are integer.
 Take care with truncation owing to the assignment statement when there is an inte-•
ger on the left-hand side of the statement, i.e., assigning a real into an integer.
variable.
 When you want to set up constants which will remain unchanged throughout the •
program, use the parameter statement.

815.10 Problems

 do not confuse precision and accuracy. •
 Learn what the default • kinds are for the numeric types you work with, what the
maximum and minimum values and precision are for real data, and what the
maximum and minimum are for integer data.
 You have been introduced to the use of the functions • digits , huge and pre-
cision, and some of the concepts involved in their use. We will look at func-
tions in much greater depth later on.

 5.10 Problems

 1. Compile and run examples 1 through 3 in this chapter.
 2. Have another look at example 4. Compile and run it. It will generate an error on

some systems. Can you see where the error is?
 3. Write a program to calculate the period of a pendulum. This is given mathemati-

cally as

π= 2

9.81

length
t

use the following Fortran arithmetic assignment statement:

 T = 2 * PI * (LENGTH / 9.81) ** .5

 The length (LENGTH) is in metres, and the time (T) in seconds. p was given a
value earlier in this chapter.
 Repeat the above using two other methods. Try a hand-held calculator and a
spreadsheet. Do you get the same answers?

 4. Base conversion.
 In this chapter you have seen a brief coverage of base conversion. The following
program illustrates some of the problems that can occur when going from base
10 to base 2 and back again. Which numbers will convert without loss?

 program base_conversion
 implicit none
 real :: x1 = 1.0
 real :: x2 = 0.1
 real :: x3 = 0.01
 real :: x4 = 0.001
 real :: x5 = 0.0001
 print *,' ',x1
 print *,' ',x2
 print *,' ',x3
 print *,' ',x4

82 5 Arithmetic

 print *,' ',x5
 end program base conversion

 Which do you think will provide the same number as originally entered?
 5. Simple subtraction. In this chapter we looked at representing fl oating point num-

bers in a fi nite number of bits.
 Try the following program:

 program subtract
 implicit none
 real :: a = 1.0002
 real :: b = 1.0001
 real :: c

 c = a-b
 print *,a
 print *,b
 print *,c

 end program subtract

 6. Expression equivalence. We introduced some of the rules that apply in Fortran
for expression evaluation. In mathematics the following is true:

 () () () ()- = - = - +2 2x y x * x y * y x y * x y

 Try the following program:
 program expression_equivalence
 !
 ! simple evaluation of x*x-y*y
 ! when x and y are similar
 !
 ! we will evaluate in three ways.
 !
 implicit none
 real :: x = 1. 002
 real :: y = 1. 001
 real :: t1, t2, t3, t4, t5

 t1 = x-y
 t2 = x + y
 print *,t1
 print *,t2
 t3 = t1*t2
 t4 = x**2-y**2
 t5 = x*x-y*y
 print *,t3
 print *,t4
 print *,t5

 end program expression_equivalence

835.11 Bibliography

 Solve the problem with pencil and paper, calculator and Excel.
 The last three examples show that you must be careful when using a computer to
solve problems.

 7. The following is a simple variant of ch0504. In this case we initialise light year
in an assignment statement. do you think you will get the same results as from
running the earlier example?

 program ch0504p
 implicit none
 real :: Light_Minute, Distance, Elapse
 integer :: Minute, Second
 real :: Light_Year
 ! Light_year : Distance travelled by light
 ! in one year in km
 ! Light_minute : Distance travelled by light
 ! in one minute in km
 ! Distance : Distance from sun to earth in km
 ! Elapse : Time taken to travel a
 ! distance (Distance) in minutes
 ! Minute : integer number part of elapse
 ! Second : integer number of seconds
 ! equivalent to fractional part of elapse
 !
 Light_Year = 9.46*10**12
 Light_minute = Light_Year/(365.25 * 24.0 * 60.0)
 Distance = 150.0 * 10 ** 6
 Elapse = Distance / Light_minute
 Minute = Elapse
 Second = (Elapse - Minute) * 60
 print *, ' Light takes ' , Minute, ' Minutes'
 print *,' ' , Second,' Seconds'
 print *, ' To reach the earth from sun'

end program ch0504p

 5.11 Bibliography

 Some understanding of numerical analysis is essential for successful use of Fortran
when programming. As Froberg says “numerical analysis is a science—computation
is an art.” The following are some of the more accessible books available.

 Froberg, C.E.: Introduction to Numerical Analysis. Addison-Wesley, Reading
(1969)

 The short chapter on numerical computation is well worth a read; it covers some
of the problems of conversion between number bases and some of the errors that are

84 5 Arithmetic

introduced when we compute numerically. The Samuel Johnson quote owes its
inclusion to Froberg!

 IEEE, IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std
754–2008, Institute of Electrical and Electronic Engineers Inc.

 The formal defi nition of IEEE 754. This is available for purchase at
http://www.techstreet.com/standards/ieee/754_2008?product_id=1745167
as both a pdf and printed version.

 Knuth, D.: Seminumerical Algorithms. Addison-Wesley, Reading (1969)
 A more thorough and mathematical coverage than Wakerly. The chapter on posi-

tional number systems provides a very comprehensive historical coverage of the
subject. As Knuth points out the fl oating point representation for numbers is very
old, and is fi rst documented around 1750 B.C. by Babylonian mathematicians. Very
interesting and worthwhile reading.

 Sun, Numerical Computation Guide, SunPro (1993)
 Very good coverage of the numeric formats for IEEE Standard 754 for Binary
Floating-Point Arithmetic. All SunPro compiler products support the features of
the IEEE 754 standard.

 Wakerly, J.F.: Microcomputer Architecture and Programming. Wiley, New York
(1981)

 The chapter on number systems and arithmetic is surprisingly easy. There is a
coverage of positional number systems, octal and hexadecimal number system con-
versions, addition and subtraction of nondecimal numbers, representation of nega-
tive numbers, two’s complement addition and subtraction, one’s complement
addition and subtraction, binary multiplication, binary division, bcd or binary coded
decimal representation and fi xed and fl oating point representations. There is also
coverage of a number of specifi c hardware platforms, including DEC PDP-11,
Motorola 68000, Zilog Z8000, TI 9900, Motorola 6809 and Intel 8086. A little old
but quite interesting nevertheless.

85I. Chivers and J. Sleightholme, Introduction to Programming with Fortran:
With Coverage of Fortran 90, 95, 2003, 2008 and 77,
DOI 10.1007/978-0-85729-233-9_6, © Springer-Verlag London Limited 2012

 Aims

 The aims of the chapter are to introduce the fundamental concepts of arrays and do
loops, in particular:

 To introduce the idea of tables of data and some of the formal terms used to •
describe them:

 Array. –
 Vector. –
 List and linear list. –

 To discuss the array as a random access structure where any element can be •
accessed as readily as any other and to note that the data in an array are all of the
same type.
 To introduce the twin concepts of data structure and corresponding control •
structure.
 To introduce the statements necessary in Fortran to support and manipulate these •
data structures.

 Chapter 6
 Arrays 1: Some Fundamentals

 Thy gifts, thy tables, are within my brain
 Full charactered with lasting memory.

 William Shakespeare, The Sonnets

 Here, take this book, and peruse it well:
 The iterating of these lines brings gold.

 Christopher Marlowe, The Tragical History of Doctor Faustus

86 6 Arrays 1: Some Fundamentals

 6.1 Tables of Data

 Consider the examples below.

 6.1.1 Telephone Directory

 A telephone directory consists of the following kinds of entries:

 Name Address Number

 Adcroft A. 61 Connaught Road, Roath, Cardiff 223309
 Beale K. 14 Airedale Road, Balham 745 9870
 Blunt R.U. 81 Stanlake Road, Shepherds Bush 674 4546
 …
 …
 …
 Sims Tony 99 Andover Road, Twickenham 898 7330

 This structure can be considered in a variety of ways, but perhaps the most
common is to regard it as a table of data, where there are three columns and as
many rows as there are entries in the telephone directory.

 Consider now the way we extract information from this table. We would scan
the name column looking for the name we are interested in, and then read along the
row looking for either the address or telephone number, i.e., we are using the name
to look up the item of interest.

 6.1.2 Book Catalogue

a Catalogue Could Contain:

 Author(s) Title Publisher

 Carroll L. Alice through the looking glass Penguin
 Steinbeck J. Sweet Thursday Penguin
 Wirth N. Algorithms plus data structures = program Prentice-Hall

 Again, this can be regarded as a table of data, having three columns and many rows.
We would follow the same procedure as with the telephone directory to extract the
information. We would use the author to look up what books are available.

876.1 Tables of Data

 6.1.3 Examination Marks or Results

 This could consist of:

 Name Physics Maths Biology History English French

 Fowler L. 50 47 28 89 30 46
 Barron L. W 37 67 34 65 68 98
 Warren J. 25 45 26 48 10 36
 Mallory D. 89 56 33 45 30 65
 Codd S. 68 78 38 76 98 65

 This can again be regarded as a table of data. This example has seven columns and
fi ve rows. We would again look up information by using the Name.

 6.1.4 Monthly Rainfall

 The following data are a sample of monthly average rainfall for London in inches:

 Month Rainfall

 January 3.1
 February 2.0
 March 2.4
 April 2.1
 May 2.2
 June 2.2
 July 1.8
 August 2.2
 September 2.7
 October 2.9
 November 3.1
 December 3.1

 In this table there are 2 columns and 12 rows. To fi nd out what the rainfall was in
July, we scan the table for July in the Month column and locate the value in the same
row, i.e., the rainfall fi gure for July.

 These are just some of the many examples of problems where the data that are
being considered have a tabular structure. Most general purpose languages therefore
have mechanisms for dealing with this kind of structure. Some of the special names
given to these structures include:

 Linear list. •
 List. •
 Vector. •
 Array. •

88 6 Arrays 1: Some Fundamentals

 The term used most often here, and in the majority of books on Fortran
 programming, is array.

 6.2 Arrays in Fortran

 There are three key things to consider here:

 The ability to refer to a set or group of items by a single name. •
 The ability to refer to individual items or members of this set, i.e., look •
them up.
 The choice of a control structure that allows easy manipulation of this set or array. •

 6.2.1 The d imension Attribute

 The dimension attribute defi nes a variable to be an array. This satisfi es the fi rst
requirement of being able to refer to a set of items by a single name. Some examples
are given below:

 real , dimension(1:100) :: Wages
 integer , dimension(1:10000) :: Sample

 For the variable Wages it is of type real and an array of dimension or size 100, i.e.,
the variable array Wages can hold up to 100 real items.

 For the variable Sample it is of type integer and an array of dimension or size
10,000, i.e., the variable Sample can hold up to 10,000 integer items.

 6.2.2 An Index

 An index enables you to refer to or select individual elements of the array. In the
telephone directory, book catalogue, exam marks table and monthly rainfall examples
we used the name to index or look up the items of interest. We will give concrete
Fortran code for this in the example of monthly rain fall.

 6.2.3 Control Structure

 The statement that is generally used to manipulate the elements of an array is the
do statement. It is typical to have several statements controlled by the do statement,
and the block of repeated statements is often called a do loop. Let us look at two
complete programs that highlight the above.

896.3 Example 1: Monthly Rainfall

 6.3 Example 1: Monthly Rainfall

 Let us look at this earlier example in more depth now. Consider the following:

 Month
 Associated integer
representation Array and index Rainfall value

 January 1 RainFall(1) 3.1
 February 2 RainFall(2) 2.0
 March 3 RainFall(3) 2.4
 April 4 RainFall(4) 2.1
 May 5 RainFall(5) 2.2
 June 6 RainFall(6) 2.2
 July 7 RainFall(7) 1.8
 August 8 RainFall(8) 2.2
 September 9 RainFall(9) 2.7
 October 10 RainFall(10) 2.9
 November 11 RainFall(11) 3.1
 December 12 RainFall(12) 3.1

 Most of you should be familiar with the idea of the use of an integer as an alternate
way of representing a month, e.g., in a date expressed as 1/3/2000, for 1st March
2000 (anglicised style) or January 3rd (americanised style). Fortran, in common
with other programming languages, only allows the use of integers as an index into
an array. Thus when we write a program to use arrays we have to map between
whatever construct we use in everyday life as our index (names in our examples of
telephone directory, book catalogue, and exam marks) to an integer representation
in Fortran. The following is an example of an assignment statement showing the use
of an index:

 RainFall(1) = 3.1

 We saw earlier that we could use the dimension attribute to indicate that a vari-
able was an array. In the above example Fortran statement our array is called
RainFall. In this statement we are assigning the value 10.4 to the fi rst element of the
array; i.e., the rainfall for the month of January is 10.4. We use the index 1 to repre-
sent the fi rst month. Consider the following statement:

 SummerAverage = (RainFall(6) + RainFall(7) + & RainFall(8))/3

 This statement says take the values of the rainfall for June, July and August, add
them up and then divide by 3, and assign the result to the variable SummerAverage,
thus providing us with the rainfall average for the three summer months—Northern
Hemisphere of course.

 The following program reads in the 12 monthly values from the terminal,
computes the sum and average for the year, and prints the average out.

90 6 Arrays 1: Some Fundamentals

 program ch0601
 implicit none
 real :: Total = 0.0, Average = 0.0
 real , dimension(1:12) :: RainFall
 integer :: Month

 print *,' type in the rainfall values'
 print *,' one per line'
 do Month = 1,12

 read *, RainFall(Month)
 enddo
 do Month = 1,12

 Total = Total + RainFall(Month)
 enddo
 Average = Total / 12
 print *,' Average monthly rainfall was'
 print *, Average

 end program ch0601

 RainFall is the array name. The variable Month in brackets is the index. It takes
on values from 1 to 12 inclusive, and is used to pick out or select elements of the
array. The index is thus a variable and this permits dynamic manipulation of the
array at run time. The general form of the DO statement is

 do Counter = Start, End, Increment

 The block of statements that form the loop is contained between the do state-
ment, which marks the beginning of the block or loop, and the enddo statement,
which marks the end of the block or loop.

 In this program, the do loops take the form:

 do Month = 1,12 start
 … body
 enddo end

 The body of the loop in the program above has been indented. This is not required
by Fortran. However it is good practice and will make programs easier to follow.

 The number of times that the do loop is executed is governed by the last part
of the do statement, i.e., by the

 Counter = Start, End, Increment

 Start as it implies, is the initial value which the counter (or index, or control vari-
able) takes. Each time the loop is executed, the value of the counter will be increased
by the value of increment, until the value of end is reached. If increment is omitted,
it is assumed to be 1. No other element of the do statement may be omitted. In order
to execute the statements within the loop (the body) it must be possible to reach end
from start. Thus zero is an illegal value of increment. In the event that it is not
possible to reach end, the loop will not be executed and control will pass to the state-
ment after the end of the loop.

916.3 Example 1: Monthly Rainfall

 In the example above, both loops would be executed 12 times. In both cases, the
fi rst time around the loop the variable MONTH would have the value 1, the second
time around the loop the variable MONTH would have the value 2, etc., and the last
time around the loop MONTH would have the value 12.

 A summation:

=

=
∑

12

1

·
i

i
i

x

is often expressed in Fortran as a loop as in this example:

 do Month = 1,12
 Total = Total + RainFall(Month)
 enddo

 6.3.1 Possible Missing Data

 The rainfall data in this example has been taken from the UK Met Offi ce site. Visit

 http://www.metoffi ce.gov.uk/climate/uk/stationdata

to see where some of the stations are. One of us was born in Wales, the other in
Yorkshire so we have chosen stations accordingly.

 The following is one of the mid Wales stations:

 http://www.metoffi ce.gov.uk/climate/uk/stationdata/cwmys
twythdata.txt

 Here is a sample of data from this site for 2 years.

 yyyy mm

 tmax tmin af rain sun

 degC degC days mm hours

 1959 1 4.5 −1.9 20 ––– 57.2
 1959 2 7.3 0.9 15 ––– 87.2
 1959 3 8.4 3.1 3 ––– 81.6
 1959 4 10.8 3.7 1 ––– 107.4
 1959 5 15.8 5.8 1 ––– 213.5
 1959 6 16.9 8.2 0 ––– 209.4
 1959 7 18.5 9.5 0 ––– 167.8
 1959 8 19.C 10.5 0 ––– 164.8
 1959 9 18.3 5.9 0 ––– 196.5
 1959 19 14.8 7.9 1 ––– 101.1
 1959 11 8.8 3.9 3 ––– 38.9
 1959 12 7.2 2.5 3 ––– 19.2
 1961 1 5.4 0.2 11 144.8 31.0
 1961 2 8.7 2.9 2 112.5 45.2
 1961 3 10.2 2.1 10 77.2 102.6
 1961 4 11.9 5.0 1 130.7 83.9
 1961 5 ––– ––– ––– 66.3 173.7

(continued)

http://www.metoffice.gov.uk/climate/uk/stationdata
http://www.metoffice.gov.uk/climate/uk/stationdata/cwmys twythdata.txt
http://www.metoffice.gov.uk/climate/uk/stationdata/cwmys twythdata.txt

92 6 Arrays 1: Some Fundamentals

 yyyy mm

 tmax tmin af rain sun

 degC degC days mm hours

 1961 6 ––– 7.4 ––– 66.1 190.6
 1961 7 16.7 8.2 0 141.1 149.2
 1961 8 16.8 10.1 0 149.5 106.6
 1961 9 17.4 9.3 0 134.8 79.7
 1962 5 4.2 3 117.8 102.2
 1962 6 6.8 1 72.8 163.9
 1962 7 16.8 9.1 0 56.7 –
 1962 8 15.6 9.3 0 236.2 –
 1962 9 14.6 7.8 1 218.C –
 1962 19 ––– ––– ––– 69.7 –
 1962 11 7.6 1.8 9 85.2 –
 1962 12 5.3 −1.0 18 204.4 –

 Wales is relatively wet for the UK!
 The following station is Whitby:

 http://www.metoffi ce.gov.uk/climate/uk/stationdata/whitb
ydata.txt

 Here is a sample of the Whitby data.

 YYYY mm

 tmax tmin af rain sun

 degC degC days mm hours

 1968 1 6.9 1.7 12 24.4
 1968 2 4.3 −0.7 16 45.1
 1968 3 9.4 3.4 2 34.5
 1968 4 10.8 1.6 9 28.8
 1968 5 10.6 2.8 2 37.1
 1968 6 16.7 6.8 0 58.5
 1968 7 15.C 8.1 0 81.4
 1968 8 16.3 9.6 0 28.0
 1968 9 15.7 ––– ––– 66.0
 1968 10 14.7 ––– ––– 35.2
 1968 11 8.5 5.1 1 35.1
 1968 12 5.7 1.5 9 –
 1969 1 7.3 2.2 6 48.4
 1969 2 3.1 −0.8 14 46.3
 1969 3 4.5 0.4 9 –
 1969 4 8.9 2.9 4 52.6
 1969 5 11.9 6.4 0 73.7
 1969 6 16.0 8.2 0 53.0
 1969 7 19.6 11.9 0 39.0
 1969 8 17.7 12.2 0 20.6
 1969 9 16.5 10.3 0 49.2
 1969 10 15.4 9.0 0 9.0
 1969 11 7.9 2.2 4 77.2
 1969 12 5.8 1.4 9 64.1

http://www.metoffice.gov.uk/climate/uk/stationdata/whitb ydata.txt
http://www.metoffice.gov.uk/climate/uk/stationdata/whitb ydata.txt

936.4 Example 2: People’s Weights and Setting the Array Size with a Parameter

 Bram Stoker found some of his inspiration for Dracula after staying in the
town.

 If you look at the data for some of these stations you will notice that data is
missing for some months.

 How do you think you could cope with missing data in Fortran?
 The SQL standard has the concept of nulls or missing values, and missing data

in a statistics package is commonly fl agged by an exceptional value e.g. -999.

 6.4 Example 2: People’s Weights and Setting
the Array Size with a Parameter

 In the table below we have ten people, with their names as shown. We associate each
name with a number—in this case we have ordered the names alphabetically, and
the numbers therefore refl ect their ordering. WEIGHT is the array name. The number
in brackets is called the index and it is used to pick out or select elements of the
array. The table is read as the fi rst element of the array WEIGHT has the value 85,
the second element has the value 76, etc.

 Person
 Associated integer
representation Array and index Associated value

 Andy 1 Weight(1) 85
 Barry 2 Weight(2) 76
 Cathy 3 Weight(3) 85
 Dawn 4 Weight(4) 90
 Elaine 5 Weight(5) 69
 Frank 6 Weight(6) 83
 Gordon 7 Weight(7) 64
 Hannah 8 Weight(8) 57
 Ian 9 Weight(9) 65
 Jatinda 10 Weight(10) 76

 In the fi rst example we so-called hard coded the number 12, which is the number
of months, into the program. It occurred four times. Modifying the program to work
with a different number of months would obviously be tedious and potentially error
prone.

 In this example we parameterise the size of the array and reduce the effort
involved in modifying the program to work with a different number of people:

 program ch0602
 ! The program reads up to number_of_people weights
 ! into the array Weight
 ! Variables used
 ! Weight, holds the weight of the people
 ! Person, an index into the array

94 6 Arrays 1: Some Fundamentals

 ! Total, total weight
 ! Average, average weight of the people
 ! Parameters used
 ! NumberOfPeople ,10 in this case.
 ! The weights are written out so that
 ! they can be checked
 !
 implicit none
 integer , parameter :: number_of_people = 10
 real :: total = 0.0, average = 0.0
 integer :: person
 real , dimension(1:number of people) :: weight
 do person = 1,number_Of_people
 print *, ' type in the weight for person ',person
 read *,weight(person)
 total = total + weight(person)

 enddo
 average = total / number_of_people
 print *, ' The total of the weights is ',total
 print *, ' Average Weight is ',average
 print *,' ',number_of_people,' Weights were '
 do person = 1,number_of_people
 print *,weight(person)

 enddo
 end program ch0602

 6.5 Summary

 The dimension attribute declares a variable to be an array, and must come at the
start of a program unit, with other declarative statements. It has two forms and
examples of both of them are given below. In the fi rst case we explicitly specify the
upper and lower :

 real , dimension(1:number_of_people) :: Weight

 In the second case the lower limit defaults to 1

 real , dimension(number_of_people) :: Weight

 The latter form will be seen in legacy code, especially Fortran 77 code suites.
 The parameter attribute declares a variable to have a fi xed value that cannot

be changed during the execution of a program. In our example above note that this
statement occurs before the other declarative statements that depend on it. To recap
the statements covered so far, the order is summarised below.

956.6 Problems

 program First statement

 integer In any order and the
 real Declarative dimension and parameter
 character attributes are added here

 Arithmetic assignment In any order
 print *
 read * Executable
 do
 enddo

 end program Last statement

 We choose individual members using an index, and these are always of integer
type in Fortran.

 The do loop is a very convenient control structure for manipulating arrays, and
we use indentation to clearly identify loops.

 6.6 Problems

 1. Compile and run example 1 from this chapter. If you live in the UK visit the Met
Offi ce site mentioned earlier and choose a site near you, and a year of interest,
making sure that the data set is complete for that year.
 If you don’t live in the UK is there a site similar to the Met Offi ce site that has
data for the country you are from?

 2. Compile and run program 2.
 3. Using a do loop and an array rewrite the program which calculated the average

of three numbers to ten.
 4.1 Modify the program that calculates the total and average of people’s weights to

additionally read in their heights and calculate the total and average of their
heights. Use the data given below, which have been taken from a group of fi rst
year undergraduates:

 Height Weight

 1.85 85
 1.80 76
 1.85 85
 1.70 90
 1.75 69
 1.67 83
 1.55 64
 1.63 57
 1.79 65
 1.78 76

96 6 Arrays 1: Some Fundamentals

 4.2 Your body mass index is given by your weight (in kilos) divided by your height
(in metres) squared. Calculate and print out the BMI for each person.
 Grades of obesity according to Garrow as follows:

 Grade 0 (desirable) 20–24.9
 Grade 1 (overweight) 25–29.9
 Grade 2 (obese) 30–40
 Grad 3 (morbidly obese) >40
 Ideal BMI range,
 Men, Range 20.1–25 kg/m 2
 Women, Range 18.7–23.8 kg/m 2

 4.3 When working on either a UNIX system or a PC in a DOS box it is possible to
use the following characters to enable you to read data from a fi le or write output
to a fi le when running your program:

 character Meaning
 < read from fi le
 > write to fi le

 On a typical UNIX system we could use

 a.out < data.txt > results.txt

to read the data from the fi le called data.txt and write the output to a fi le called
results.txt.

 On a PC in a DOS box the equivalent would be

 program.exe < data.txt > results.txt

 This is a quick and dirty way of developing programs that do simple I/O;
we don’t have to keep typing in the data and we also have a record of the behav-
iour of the program. Rerun the program that prints out the BMI values to write
the output to a fi le called results.txt. Examine this fi le in an editor.

 5. Modify the program that read in your name to read in ten names. Use an array
and a do loop. When you have read the names into the array write them out in
reverse order on separate lines.

 Hint: Look at the formal syntax of the do statement.

 6. Modify the rainfall program (which assumes that the measurement is in inches)
to convert the values to centimetres. One inch equals 2.54 cm. Print out the two
sets of values as a table.

 Hint: use a second array to hold the metric measurements.

 7. Combine the programs that read in and calculate the average weight with the
one that reads in peoples names. The program should read the weights into one
array and the names into another. Allow 20 characters for the length of a name.

976.6 Problems

print out a table linking names and weights.
 8. In an earlier chapter we used the following formula to calculate the period of a

pendulum:

 ()T * PI * LENGTH / 9.81 **.52=

write a program that uses a do loop to make the length go from 1 to 10 m in 1 m
increments.

 Produce a table with two columns, the fi rst of lengths and the second of
periods.

99I. Chivers and J. Sleightholme, Introduction to Programming with Fortran:
With Coverage of Fortran 90, 95, 2003, 2008 and 77,
DOI 10.1007/978-0-85729-233-9_7, © Springer-Verlag London Limited 2012

 Aims

 The aims of the chapter are to extend the concepts introduced in the previous chap-
ter and in particular:

 To set an array size at run time – allocatable arrays. •
 To introduce the idea of an array with more than one dimension and the corre-•
sponding control structure to permit easy manipulation of higher-dimensioned
arrays.
 To introduce an extended form of the dimension attribute declaration, and the •
corresponding alternative form to the do statement, to manipulate the array in
this new form.
 To introduce the do loop as a mechanism for the control of repetition in general, •
not just for manipulating arrays.
 To formally defi ne the block do syntax. •

 Chapter 7
 Arrays 2: Further Examples

 Sir, In your otherwise beautiful poem (The Vision of Sin) there
is a verse which reads
 Every moment dies a man,
 every moment one is born.
 Obviously this cannot be true and I suggest that in the next
edition you have it read
 Every moment dies a man,
 every moment 1 1/16 is born.
 Even this value is slightly in error but should be suffi ciently
accurate for poetry.

 Charles Babbage in a letter to Lord Tennyson

100 7 Arrays 2: Further Examples

 7.1 Varying the Array Size at Run Time

 The earlier examples set the array size in the following two ways:

 Explicitly using a numeric constant •
 Implicitly using a parameterised variable •

 In both cases we knew the size of the array at the time we compiled the program.
We may not know the size of the array at compile time and Fortran provides the
allocatable attribute to accommodate this kind of problem.

 7.1.1 Example 1: Allocatable Arrays

 Consider the following example.

 program ch0701
 !
 ! This program is a simple variant of ch0602.
 ! The array is now allocatable
 ! and the user is prompted for the
 ! number of people at run time.
 !
 implicit none
 integer :: Number_Of_People
 real :: Total = 0.0, Average = 0.0
 integer :: Person
 real , dimension(:) , allocatable :: Weight
 print *, ' How many people?'
 read *,Number_Of_People
 allocate (Weight(1:Number_Of_People))
 do Person = 1,Number_Of_People
 print *, ' type in the weight for person ', Person
 read *,Weight(Person)
 Total = Total + Weight(Person)

 enddo
 Average = Total / Number_Of_People
 print *, ' The total of the weights is ',Total
 print *, ' Average Weight is ',Average
 print *, ' ',Number_of_People,' Weights were '
 do Person = 1,Number_Of_People
 print *,Weight(Person)

 enddo
 end program ch0701

1017.2 Higher-Dimension Arrays

 The fi rst statement of interest is the type declaration with the dimension and
allocatable attributes, e.g.,

 real , dimension(:) , allocatable :: Weight

 The second is the allocate statement where the value of the variable Number_of_
people is not known until run time, e.g.,

 allocate(Weight(1:Number_Of_People))

 We will look more formally at these statements in Chap. 8 .

 7.2 Higher-Dimension Arrays

 There are many instances where it is necessary to have arrays with more than one
dimension. Consider the examples below.

 7.2.1 Example 2: Two Dimensional Arrays and a Map

 Consider the representation of the height of an area of land expressed as a two
dimensional table of numbers e.g., we may have some information represented in a
simple table as follows:

 Latitude

 Longitude

 1 2 3

 1 10.0 40.0 70.0
 2 20.0 50.0 80.0
 3 30.0 60.0 90.0

 The values in the array are the heights above sea level. The example is obviously
artifi cial, but it does highlight the concepts involved. For those who have forgotten
their geography, lines of latitude run east–west (the equator is a line of latitude) and
lines of longitude run north–south (they go through the poles and are all of the same
length). In the above table therefore the latitude values are ordered by row and the
longitude values are ordered by column.

 A program to manipulate this data structure would involve something like the
following:

 program ch0702
 ! Variables used
 ! Height - used to hold the heights above sea level
 ! Long - used to represent the longitude
 ! Lat - used to represent the latitude
 ! both restricted to integer values.

102 7 Arrays 2: Further Examples

 ! Correct - holds the correction factor
 implicit none
 integer , parameter :: n = 3
 integer :: Lat , Long
 real , dimension(1:n,1:n) :: Height
 real , parameter :: Correct = 10.0
 do Lat = 1, n
 do Long = 1, n
 print *, ' type in value at ',Lat,' ',Long
 read * , Height (Lat, Long)

 enddo
 enddo
 do Lat = 1, n
 do Long = 1, n

 Height(Lat,Long) = Height(Lat, Long) + Correct
 enddo

 enddo
 print * , ' Corrected data is '
 do Lat = 1, n
 do Long = 1, n
 print * , Height(Lat,Long)

 enddo
 enddo

 end program ch0702

 Note the way in which indentation has been used to highlight the structure in
this example. Note also the use of a textual prompt to highlight which data value
is expected. Running the program highlights some of the problems with the
simple I/O used in the example above. We will address this issue in the next
example.

 The inner loop is said to be nested within the outer one. It is very common to
encounter problems where nesting is a natural way to express the solution. Nesting

is permitted to any depth. Here is an example of a valid nested do loop:
 This example introduces the concept of two indices, and can be thought of as a

row and column data structure.

1037.2 Higher-Dimension Arrays

 7.2.2 Example 3: Sensible Tabular Output

 The fi rst example had the values printed in a format that wasn’t very easy to work
with. In this example we introduce a so-called implied do loop, which enables us to
produce neat and humanly comprehensible output:

 program ch0703
 ! Variables used
 ! Height - used to hold the heights above sea level
 ! Long - used to represent the longitude
 ! Lat - used to represent the latitude
 ! both restricted to integer values.
 implicit none
 integer , parameter :: n = 3
 integer :: Lat , Long
 real , dimension(1:n,1:n) :: Height
 real , parameter :: Correct = 10.0

 do Lat = 1,n
 do Long = 1,n
 read * , Height (Lat, Long)
 Height(Lat,Long) = Height(Lat,Long) + Correct

 enddo
 enddo
 do Lat = 1,n
 print * , (Height(Lat,Long),Long = 1,n)

 enddo
 end program ch0703

 The key statement in this example is

 print * , (Height(Lat,Long),Long = 1,n)

 This is called an implied do loop, as the longitude variable takes on values from
1 through 3 and will write out all three values on one line.
 We will see other examples of this statement as we go on.

 7.2.3 Example 4: Average of Three Sets of Values

 This example extends the previous one. Now we have three sets of measurements
and we are interested in calculating the average of these three sets. The two new
data sets are:

104 7 Arrays 2: Further Examples

 and

 and we have chosen the values to enable us to quickly check that the calculations for
the averages are correct.

 This program also uses implied do loops to read the data, as data in fi les are
generally tabular:

 program ch0704
 ! Variables used
 ! H1,H2,H3 - used to hold the heights above sea level
 ! H4 - used to hold the average of the above
 ! Long - used to represent the longitude
 ! Lat - used to represent the latitude
 ! both restricted to integer values.
 implicit none
 integer , parameter :: n = 3
 integer :: Lat , Long
 real , dimension(1:n,1:n) :: H1,H2,H3,H4

 do Lat = 1,n
 read * , (H1(Lat,Long), Long = 1,n)

 enddo
 do Lat = 1,n
 read * , (H2(Lat,Long), Long = 1,n)

 enddo
 do Lat = 1,n
 read * , (H3(Lat,Long), Long = 1,n)

 enddo
 do Lat = 1,n
 do Long = 1,n

 H4(Lat,Long) = (H1(Lat,Long) + H2(Lat,Long) + &
 H3(Lat,Long)) / n

 enddo
 enddo
 do Lat = 1, n
 print * , (H4(Lat,Long),Long = 1,n)

 enddo
 end program ch0704

 The original data was accurate to three signifi cant fi gures. The output from the
above has spurious additional accuracy. We will look at how to correct this in the
later chapter on output.

1057.2 Higher-Dimension Arrays

 7.2.4 Example 5: Booking Arrangements in a Theatre or Cinema

 A theatre or cinema consists of rows and columns of seats. In a large cinema or a
typical theatre there would also be more than one level or storey. Thus, a program to
represent and manipulate this structure would probably have a 2-d or 3-d array.
Consider the following program extract:

 Note here the use of the term parameter in conjunction with the integer declara-
tion. This is called an entity orientated declaration. An alternative to this is an attri-
bute-orientated declaration, e.g.,

 integer :: NR,NC,NF
 parameter :: NR = 5,NC = 10,NF = 3

 and we will be using the entity-orientated declaration method throughout the rest of
the book. This is our recommended method as you only have to look in one place to
determine everything that you need to know about an entity.

106 7 Arrays 2: Further Examples

 7.3 Additional Forms of the Dimension Attribute
and do Loop Statement

 7.3.1 Example 6: Voltage from −20 to +20 Volts

 Consider the problem of an experiment where the independent variable voltage var-
ies from −20 to +20 V and the current is measured at 1-volt intervals. Fortran has a
mechanism for handling this type of problem:

 program ch0706
 implicit none
 real , dimension(-20:20) :: Current
 real :: Resistance
 integer :: Voltage
 print *,' type in the resistance'
 read *, Resistance
 do Voltage = -20,20
 Current(Voltage) = Voltage/Resistance
 print *, Voltage, ' ', Current(Voltage)

 enddo
 end program ch0706

 We appreciate that, due to experimental error, the voltage will not have exact integer
values. However, we are interested in representing and manipulating a set of values,
and thus from the point of view of the problem solution and the program this is a
reasonable assumption. There are several things to note.

 This form of the dimension attribute

 dimension(First:Last)

is of considerable use when the problem has an effective index which does not
start at 1.

 There is a corresponding form of the do statement which allows processing of
problems of this nature. This is shown in the above program. The general form of
the do statement is therefore:

 do counter = start, end, increment

where start, end and increment can be positive or negative. Note that zero is a legiti-
mate value of the dimension limits and of a do loop index.

1077.4 The Do Loop and Straight Repetition

 7.3.2 Example 7: Longitude from −180 to +180

 Consider the problem of the production of a table linking time difference with lon-
gitude. The values of longitude will vary from −180° to +180°, and the time will
vary from +12 h to −12 h. A possible program segment is:

 program ch0707
 implicit none
 real , dimension(-180:180) :: Time = 0
 integer :: Degree,Strip
 real :: value
 do Degree = -180,165,15

 value = Degree/15.
 do Strip = 0,14
 Time(Degree + Strip) = value

 enddo
 enddo
 do Degree = -180,180

 print *,Degree,' ',Time(Degree)
 end do

 end program ch0707

 7.3.3 Notes

 The values of the time are not being calculated at every degree interval.
 The variable Time is a real variable. It would be possible to arrange for the time

to be an integer by expressing it in either minutes or seconds.
 This example takes no account of all the wiggly bits separating time zones or of

British Summer Time.
 What changes would you make to the program to accommodate +180? What is

the time at −180 and +180?

 7.4 The Do Loop and Straight Repetition

 7.4.1 Example 8: Table of Liquid Conversion Measurements

 Consider the production of a table of liquid measurements. The independent vari-
able is the litre value; the gallon and US gallon are the dependent variables. Strictly
speaking, a program to do this does not have to have an array, i.e., the DO loop can

108 7 Arrays 2: Further Examples

be used to control the repetition of a set of statements that make no reference to an
array. The following shows a complete but simple conversion program:

 program ch0708
 implicit none
 !
 ! 1 us gallon = 3.7854118 litres
 ! 1 uk gallon = 4.545 litres
 !
 integer :: litre
 real :: gallon,usgallon

 do litre = 1,10
 gallon = litre / 4.545
 usgallon = litre / 3.7854118
 print *,litre, ' ',gallon,' ',usgallon

 end do
 end program ch0708

 Note here that the do statement has been used only to control the repetition of a
block of statements — there are no arrays at all in this program.

 This is the other use of the do statement. The do loop thus has two functions —
its use with arrays as a control structure and its use solely for the repetition of a
block of statements.

 7.4.2 Example 9: Means and Standard Deviations

 In the calculation of the mean and standard deviation of a list of numbers, we can
use the following formulae. It is not actually necessary to store the values, nor to
accumulate the sum of the values and their squares. In the fi rst case, we would pos-
sibly require a large array, whereas in the second, it is conceivable that the accumu-
lated values (especially of the squares) might be too large for the machine. The
following example uses an updating technique which avoids these problems, but is
still accurate. The do loop is simply a control structure to ensure that all the values
are read in, with the index being used in the calculation of the updates:

1097.5 Summary

 7.5 Summary

 Arrays can have up to fi fteen dimensions.
 Do loops may be nested, but they must not overlap.
 The dimension attribute allows limits to be specifi ed for a block of information

which is to be treated in a common way. The limits must be integer, and the second
limit must exceed the fi rst, e.g.,

 real , dimension(−123:-10) :: List
 real , dimension(0:100, 0:100) :: Surface
 real , dimension(1:100) :: value

 The last example could equally be written

 real , dimension(100) :: value

where the fi rst limit is omitted and is given the default value 1. The array LIST
would contain 114 values, while Surface would contain 10201.

 A do statement and its corresponding enddo statement defi ne a loop. The do
statement provides a starting value, terminal value, and optionally, an increment for
its index or counter.

 The increment may be negative, but should never be zero. If it is not present, the
default value is 1. It must be possible for the terminating value to be reached from
the starting value.

110 7 Arrays 2: Further Examples

 The counter in a do loop is ideally suited for indexing an array, but it may be used
anywhere that repetition is needed, and of course the index or counter need not be
used explicitly.
 The formal syntax of the block do construct is

 [do-construct-name :] do [label] [loop-control]
 [execution-part-construct]

 [label] end-do

where the forms of the loop control are

 [,] scalar-variable-name =
 scalar-numeric-expression ,
 scalar-numeric-expression
 [, scalar-numeric-expression]

and the forms of the end-do are

 end do [do-construct-name]
 continue

and [] identify optional components of the block do construct. This statement is
looked at in much greater depth in Chap. 13 .

 7.6 Problems

 1. Compile and run all the examples in this chapter, except example 5. This is
covered separately later.

 2. Modify the fi rst example to convert the height in feet to height in metres. The
conversion factor is one 1 ft equals 0.305 m.
 Hint: You can either overwrite the height array or introduce a second array.

 3. The following are two equations for temperature conversion

=
= +

c 5 / 9*(t - 32)

f 32 9 / 5* t

 Write a complete program where t is an integer do loop variable and loop from
−50 to 250. Print out the values of c, t and f on one line. What do you notice
about the c and f values?

 4. Write a program to print out the 12 times table. Typical output would be of the form:

=
=
=

1 * 12 12

2 * 12 24

3 * 12

 36

 etc.

1117.6 Problems

 Hint: You don’t need to use an array here.
 5. Write a program to read the following data into a two-dimensional array:

1 2 3

4 5 6

7 8 9

 Calculate totals for each row and column and produce output similar to that
shown below:

1 2 3 6

4 5 6 15

7 8 9 24

12 15

 18

 Hint 1: Example ch0602 shows how to sum over a loop.

 Hint 2: You need to introduce two one-dimensional arrays to hold the row and
column totals. You need to index over the rows to get the column totals and over
the columns to get the row totals.

 6. Modify the above to produce averages for each row and column as well as the
totals.

 7. Using the following data from problem 4.1 in Chap. 6 :

 Use the program that evaluated the mean and standard deviation to do so for
these heights and weights.
 In the fi rst case use the program as is and run it twice, fi rst with the heights then
with the weights.
 What changes would you need to make to the program to read a height and a
weight in a pair?
 Hint: You could introduce separate scalar variables for the heights and weights.

 8. Example 5 looked at seat bookings in a cinema or theatre. Here is an example of
a sample data fi le for this program

112 7 Arrays 2: Further Examples

 The key for this is as follows:

=
=
=

C Confirmed Booking

P Provisional Booking

E Seat Empty

 Compile and run the program. The output would benefi t from adding row and
column numbers to the information displayed. We will come back to this issue in
a subsequent chapter on output formatting.
 The data are in a fi le on the web and the address is given below.

 • http://www.fortranplus.co.uk

 Problem 4.3 in the last chapter shows how to read data from a fi le.

http://www.fortranplus.co.uk

113I. Chivers and J. Sleightholme, Introduction to Programming with Fortran:
With Coverage of Fortran 90, 95, 2003, 2008 and 77,
DOI 10.1007/978-0-85729-233-9_8, © Springer-Verlag London Limited 2012

 Aims

 The aims of the chapter are:

 To look more formally at the terminology required to precisely describe arrays. •
 To introduce ways in which we can manipulate whole arrays and parts of arrays •
(sections).
 allocatable arrays – ways in which the size of an array can be deferred until •
execution time.
 To introduce the concept of array element ordering and physical and virtual •
memory.
 To introduce ways in which we can initialise arrays using array constructors. •
 To introduce the where statement and array masking. •
 To introduce the forall statement and construct. •

 8.1 Terminology

 Fortran supports an abundance of array handling features. In order to make the
description of these features more precise a number of additional terms have to be
covered and these are introduced and explained below.

 Chapter 8
 Whole Array and Additional Array Features

 A good notation has a subtlety and suggestiveness which at
times make it seem almost like a live teacher.

 Bertrand Russell

114 8 Whole Array and Additional Array Features

 8.1.1 Rank

 The number of dimensions of an array is called its rank. A one-dimensional array
has rank 1, a two-dimensional array has rank 2 and so on.

 8.1.2 Bounds

 An array’s bounds are the upper and lower limits of the index in each dimension.

 8.1.3 Extent

 The number of elements along a dimension of an array is called the extent.

 integer, dimension(−10:15):: Current

 has bounds−10 and 15 and an extent of 26.

 8.1.4 Size

 The total number of elements in an array is its size.

 8.1.5 Shape

 The shape of an array is determined by its rank and its extents in each dimension.

 8.1.6 Conformable

 Two arrays are said to be conformable if they have the same shape, that is, they have
the same rank and the same extent in each dimension.

 8.1.7 Array Element Ordering

 Array element ordering states that the elements of an array, regardless of rank, form
a linear sequence. The sequence is such that the subscripts along the fi rst dimension
vary most rapidly, and those along the last dimension vary most slowly. This is best
illustrated by considering, for example, a rank 2 array A defi ned by

 real , dimension(1:4,1:2) :: A

 A has 8 real elements whose array element order is
 A(1,1), A(2,1), A(3,1), A(4,1), A(1,2), A(2,2), A(3,2), A(4,2)
 i.e., mathematically by column and not row.

1158.2 Whole Array Manipulation

 8.2 Whole Array Manipulation

 The examples of arrays so far have shown operations on arrays via array elements.
One of the signifi cant features of Fortran is its ability to manipulate arrays as whole
objects. This allows arrays to be referenced not just as single elements but also as
groups of elements. Along with this ability comes a whole host of intrinsic proce-
dures for array processing. These procedures are mentioned in Chap. 12 , and listed
in alphabetical order with examples in Appendix C.

 8.2.1 Assignment

 An array name without any indices can appear on both sides of assignment and
input and output statements. For example, values can be assigned to all the elements
of an array in one statement:

 real, dimension(1:12):: Rainfall
 Rainfall = 0.0

 The elements of one array can be assigned to another:

 integer, dimension(1:50) :: A,B
 …
 A = B

 Arrays A and B must be conformable in order to do this.
 The following example is illegal since X is rank 1 and extent 20, whilst Z is rank 1

and extent 41.

 real, dimension(1:20) :: X
 real, dimension(1:41) :: Z
 X = 50.0 Z = X

 But the following is legal because both arrays are now conformable, i.e., they are
both of rank 1 and extent 41:

 real , dimension (−20:20) :: X
 real , dimension (1:41) :: Y
 X = 50.0
Y = X

 8.2.2 Expressions

 All the arithmetic operators available to scalars are available to arrays, but care must
be taken because mathematically they may not make sense.

 real , dimension (1:50) :: A,B,C,D,E
 C = A + B

adds each element of A to the corresponding element of B and assigns the result to C.

116 8 Whole Array and Additional Array Features

 E = C*D

multiplies each element of C by the corresponding element of D. This is not vector mul-
tiplication. To perform a vector dot product there is an intrinsic procedure dot_prod-
uct , and an example of this is given in a subsequent section on array constructors.

 For higher dimensions

 real ,dimension (1:10,1:10) :: F,G,H
 F = F**0.5

takes the square root of every element of F.

 H = F + G

adds each element of F to the corresponding element of G.

 H = F*G

 multiplies each element of F by the corresponding element of G. The last statement
is not matrix multiplication. An intrinsic procedure matmul performs matrix mul-
tiplication; further details are given in Appendix C.

 8.2.3 Example 1: One Dimensional Whole Arrays in Fortran

 Consider the following example, which is a solution to a problem set earlier, but is
now addressed using some of the whole array features of Fortran

1178.2 Whole Array Manipulation

 The statements

 real , dimension(1:N) :: RainFall_ins = 0.0
 real , dimension(1:N) :: RainFall_cms = 0.0

are examples of whole array initialisation. Each element of the arrays is set to 0.0.

 The statement

 read *, RainFall_ins

is an example of whole array I/O, where we no longer have to use a do loop to read
each element in.

 Finally, we have the statement

 RainFall_cms = RainFall_ins * 2.54

which is an example of whole array arithmetic and assignment.

 8.2.4 Example 2: Two Dimensional Whole Arrays in Fortran

 Here is a two-dimensional example:

118 8 Whole Array and Additional Array Features

 Note the use of whole arrays in the print statements. The output does look rather
messy though, and also illustrates array element ordering.

 8.3 Array Sections

 Often it is necessary to access part of an array rather than the whole, and this is possible
with Fortran’s powerful array manipulation features.

 8.3.1 Example 3: Rank 1 Array Sections

 Consider the following:

 program ch0803
 implicit none
 integer , dimension(−5:5) :: x
 integer :: I
 x(−5:−1) = −1
 x(0) = 0
 x(1:5) = 1
 do I = -5,5
 print *,' ',I,' ',x(I)

 end do
 end program ch0803

 The statement

 x(−5:−1) = −1

is working with a section of an array. It assigns the value –1 to elements x(–5)
through x(–l).

 The statement

 x(1:5) = 1

is also working with an array section. It assigns the value 1 to elements x(1) through x(5).

 8.3.2 Example 4: Rank 2 Array Sections

 In Chap. 6 we gave an example of a table of examination marks, and this is given
again below:

 Name Physics Maths Biology History English French

 Fowler L. 50 47 28 89 30 46
 Barron L.W 37 67 34 65 68 98
 Warren J. 25 45 26 48 10 36
 Mallory D. 89 56 33 45 30 65
 Codd S. 68 78 38 76 98 65

1198.3 Array Sections

 The following program reads the data in, scales column 3 by 2.5 as the Biology
marks were out of 40 (the rest are out of 100), calculates the averages for each
subject and for each person and prints out the results.

120 8 Whole Array and Additional Array Features

 The statement

 read *, exam_results(r, 1:ncol)

uses sections to replace the implied do loop in the earlier example.
 The statement

 Exam_Results(1:nrow,3) = 2.5 * Exam_Results(1:nrow,3)

uses array sections in the arithmetic and the assignment.

 8.4 Array Constructors

 Arrays can be given initial values in Fortran using array constructors. Some exam-
ples are given below.

 8.4.1 Example 5: Rank 1 Array Initialisation – Explicit Values

 The statement

 real , dimension(1:n) :: RainFall = &
 (/3.1,2.0,2.4,2.1,2.2,2.2,1.8,2.2,2.7,2.9,3.1,3.1/)

provides initial values to the elements of the array Rainfall.

1218.4 Array Constructors

 8.4.2 Example 6: Rank 1 Array Initialisation Using an Implied
do Loop

 The next example uses a simple variant:

 The statement

 integer , dimension(1:n) :: Litre = [(i,i = 1,n)]

initialises the 10 elements of the Litre array to the values 1,2,3,4,5,6,7,8,9,10
respectively.

 8.4.3 Example 7: Rank 1 Arrays and the dot_product Intrinsic

 The following example uses an array constructor and the intrinsic procedure dot_product:

 program ch0807
 implicit none
 integer , dimension(1:3) :: X,Y
 integer :: result
 X = [1,3,5]
 Y = [2,4,6]
 result = dot_product(X,Y)
 print *,result

 end program ch0807

122 8 Whole Array and Additional Array Features

and result has the value 44, which is obtained by the normal mathematical dot
product operation, 1*2 + 3*4 + 5*6.

 The general form of the array constructor is [list of expressions] or (/ a list of
expressions/) where each expression is of the same type.

 8.5 Initialising Rank 2 Arrays

 To construct arrays of higher rank than one the intrinsic function RESHAPE must
be used. An introduction to intrinsic functions is given in Chap. 12 , and an alpha-
betic list with a full explanation of each function is given in Appendix C. To use it
in its simplest form:

 Matrix = reshape (Source, Shape)

where Source is a rank 1 array containing the values of the elements required in the
new array, Matrix, and Shape is a rank 1 array containing the shape of the new array
Matrix.

 We consider the rank 1 array B = (1,3,5,7,9,11), and we wish to store these values
in a rank 2 array A, such that A is the matrix:

1 7

3 9

5 11

A

æ ö
ç ÷= ç ÷
ç ÷
è ø

 The following code extract is needed:

 integer, dimension(1:6) :: B
 integer, dimension(1:3, 1:2) :: A

 B = (/1,3,5,7,9,11/)
 A = reshape(B, (/3,2/))

 Note that the elements of the source array B must be stored in the array element
order of the required array A.

 8.5.1 Example 8: Initialising a Two Dimensional Array

 The following example illustrates the additional forms of the reshape function that
are used when the number of elements in the source array is less than the number of
elements in the destination. The complete form is

 reshape (source, shape, pad, order)

1238.6 Miscellaneous Array Examples

 8.6 Miscellaneous Array Examples

 The following are examples of some of the fl exibility of arrays in Fortran.

 8.6.1 Example 9: Rank 1 Arrays and a Step Size of 2 in Implied
Do Loop

 Consider the following example:

 program ch0809
 implicit none

 Pad and Order are optional. See Appendix C for a complete explanation of Pad
and Order:

124 8 Whole Array and Additional Array Features

 integer : : I
 integer , dimension(1:10) :: x = (/(i,i = 1,10)/)
 integer , dimension(1:5) :: odd = (/(i,i = 1,10,2)/)
 integer , dimension(1:5) :: even

 even = x(2:10:2)
 print *,' x'
 print *,x
 print *,' odd'
 print *,odd
 print *, ' even'
 print *,even

 end program ch0809

 The statement

 integer , dimension(1:5) :: odd = (/(i,i = 1,10,2)/)

steps through the array 2 at a time.

 The statement

 even = x(2:10:2)

shows an array section where we go from elements two through ten in steps of two.
The 2:10:2 is an example of a subscript triplet in Fortran, and the fi rst 2 is the lower
bound, the 10 is the upper bound, and the last 2 is the increment. Fortran uses the
term stride to mean the increment in a subscript triplet.

 8.6.2 Example 10: Rank 1 Array and the sum Intrinsic Function

 The following example is based on ch0805. It uses the sum intrinsic to calculate the
sum of all the values in the Rainfall array.

 program ch0810
 implicit none
 real :: Total = 0.0, Average = 0.0
 real , dimension(12) :: RainFall = &
(/3.1,2.0,2.4,2.1,2.2,2.2,1.8,2.2,2.7,2.9,3.1,3.1/)

 integer :: Month

 Total = sum(RainFall)
 Average = Total / 12
 print *,' Average monthly rainfall was'
 print *, Average

 end program ch0810

 The statement

 Total = sum(RainFall)

1258.6 Miscellaneous Array Examples

replaces the statements below from the earlier example

 do Month = 1,n
Total = Total + RainFall(Month)

 enddo

 In this example sum adds up all of the elements of the array Rainfall.
 So we have three ways of processing arrays:

 Element by element. •
 Using sections. •
 On a whole array basis. •

 The ability to use sections and whole arrays when programming is a major
advance of the element by element processing supported by Fortran 77.

 8.6.3 Example 11: Rank 2 Arrays and the sum Intrinsic
Function

 This example is based on the earlier exam results program:

126 8 Whole Array and Additional Array Features

 This example has several interesting array features:

 We initialise a rank 1 array with the values we want in our exam marks array. The data •
are laid out in the program as they would be in an external fi le in rows and columns.
 We use • reshape to initialise our exam marks array. We use the fourth parameter
(/2,1/) to populate the rank 2 array with the data in row order.
 We use • sum with a dim of 1 to compute the sums for the subjects.
 We use • sum with a dim of 2 to compute the sums for the people.

 8.6.4 Example 12: Masked Array Assignment and the Where
Statement

 Fortran has array assignment both on an element by element basis and on a whole
array basis. There is an additional form of assignment based on the concept of a
logical mask.

 Consider the example of time zones given in Chap. 7 . The Time array will have
values that are both negative and positive. We can then associate the positive values
with the concept of east of the Greenwich meridian, and the negative values with the
concept of west of the Greenwich meridian e.g.:

1278.6 Miscellaneous Array Examples

 8.6.5 Notes

 The arrays must be conformable, i.e., in our example Time and Direction are the
same shape.

 The selective assignment is achieved through the where statement.
 Both the where and elsewhere blocks can be executed. The formal syntax is:

 where (array logical assignment)
 array assignment block

 elsewhere
 array assignment block

 end where

 The fi rst array assignment is executed where Time is positive and the is executed
where Time is negative. For further coverage of logical expressions see Chaps. 15
and 18 .

128 8 Whole Array and Additional Array Features

 8.7 The forall Statement and forall Construct

 The forall statement and forall construct were introduced into Fortran to
keep it inline with High Performance Fortran – HPF. They indicate to the compiler
that the code can be optimised on a parallel processor. Consider the following exam-
ple where a value is subtracted from the diagonal elements of a square matrix A:

 forall (I = 1:N)
 A(I, I) = A(I,I) – Lamda

 end forall

 The forall construct allows the calculations to be carried out simultaneously in a
multiprocessor environment.

 8.7.1 Syntax

 forall (triplet [, triplet] … [, mask])
 variable = expression
 forall (triplet [, triplet] … [, mask])
 pointer = > target

 The triplet specifi es a value set for an index variable. It has the following
syntax:

 index = fi rst : last [: stride]

 First, last and stride are scalar integer expressions.
 Mask is a scalar logical expression:

 [name :] forall (triplet [, triplet] . . . [, mask])
 …
 end forall [name]

 Name is an optional name, which identifi es the forall construct.

 8.7.2 Array Element Ordering and Physical and Virtual Memory

 Fortran compilers will store arrays in memory according to the array element order-
ing scheme. Whilst the standard says nothing about how this is implemented it
generally means in contiguous memory locations.

 There will be a limit to the amount of physical memory available on any computer
system. To enable problems that require more than the amount of physical memory
available to be solved, most implementations will provide access to virtual memory,
which in reality means access to a portion of a physical disk.

1298.9 Problems

 Access to virtual memory is commonly provided by a paging mechanism of
some description. Paging is a technique whereby fi xed-sized blocks of data are
swapped between real memory and disk as required.

 In order to minimise paging (and hence reduce execution time) array operations
should be performed according to the array element order.

 Page sizes, past and present, include:

 Sun UltraSparc – 4Kb, 8Kb. •
 DEC Alpha – 8Kb, 16Kb, 32Kb, 64Kb. •
 Intel 80x86 – 4Kb. •
 Intel Pentium PIII – 4Kb, 2Mb, 4Mb. •
 AMD64 – 4Kb, 2Mb, 4Mb – legacy mode •
 AMD64 – 4Kb, 2Mb, 1Gb – 64 bit mode •
 Intel 64 and IA – 32 – 4Kb, 2Mb, 1Gb – depending on mode. •

 See the references at the end of the chapter for more details.

 8.8 Summary

 We can now perform operations on whole arrays and partial arrays (array sections)
without having to refer to individual elements. This shortens program development
time and greatly clarifi es the meaning of programs.

 Array constructors can be used to assign values to rank 1 arrays within a program
unit. The reshape function allows us to assign values to a two or higher rank array
when used in conjunction with an array constructor.

 We have introduced the concept of a deferred-shape array. Arrays do not need to
have their shape specifi ed at compile time, only their rank. Their actual shape is
deferred until runtime. We achieve this by the combined use of the allocatable attri-
bute on the variable declaration and the allocate statement, which makes Fortran a
very fl exible language for array manipulation.

 8.9 Problems

 1. Give the rank, bounds, extent and size of the following arrays:

 real , dimension(1:15) :: A
 integer , dimension(1:3, 0 : 4) :: B
 real , dimension(−2:2,0:1,1:4) :: C
 integer , dimension(0:2,1:5) :: D

 Which two of these arrays are conformable?
 2. Write a program to read in fi ve rank 1 arrays, A, B, C, D, E and then store them

as fi ve columns in a rank 2 array TABLE.
 3. Take the fi rst part of Problem 5 in Chap. 7 and rewrite it using the sum intrinsic

function.

130 8 Whole Array and Additional Array Features

 8.10 Bibliography

 Bhandarkar, D.P.: Alpha Implementation and Architecture: Complete Reference
and Guide. Digital Press, Newton (1996)

 Amd
 Visit

 http://developer.amd.com/documentation/guides/pages/default.aspx

for details of the AMD manuals. The following fi ve manuals are available for down-
load as pdf s from the above site.

 AMD64 Architecture Programmer’s Manual Volume 1: Application Pro •
gramming
 AMD64 Architecture Programmer’s Manual Volume 2: System Program ming •
 AMD64 Architecture Programmer’s Manual Volume 3: General Purpose and •
System Instructions
 AMD64 Architecture Programmer’s Manual Volume 4: 128-bit and 256 bit •
media instructions
 AMD64 Architecture Programmer’s Manual Volume 5: 64-Bit Media and x87 •
Floating-Point Instructions

 Intel
 Visit

 http://www.intel.com/products/processor/manuals/index.htm

for a list of manuals. The following three manuals are available for download as
pdf’s from the above site.

 Intel® 64 and IA-32 Architectures Software Developer’s Manual. Volume 1: •
Basic Architecture
 Intel® 64 and IA-32 Architectures Software Developer’s Manual. Combined •
Volumes 2A and 2B: Instruction Set Reference, A-Z.
 Intel® 64 and IA-32 Architectures Software Developer’s Manual. Combined •
Volumes 3A and 3B: System Programming Guide, Parts 1 and 2

http://developer.amd.com/documentation/guides/pages/default.aspx
http://www.intel.com/products/processor/manuals/index.htm

131I. Chivers and J. Sleightholme, Introduction to Programming with Fortran:
With Coverage of Fortran 90, 95, 2003, 2008 and 77,
DOI 10.1007/978-0-85729-233-9_9, © Springer-Verlag London Limited 2012

 Aims

 The aims here are to introduce the facilities for producing neat output and to show
how to write results to a fi le, rather than to the terminal. In particular:

 The A, I, E, F, and X layout or edit descriptors. •
 The open, write, and close statements. •

 9.1 Introduction

 When you have used print * a few times it becomes apparent that it is not always as
useful as it might be. The data are written out in a way which makes some sense, but
may not be especially easy to read. Real numbers are written out with all their
signifi cant places, which is very often rather too many, and it is often diffi cult to line
up the columns for data which are notionally tabular. It is possible to be much more
precise in describing the way in which information is presented by the program. To
do this, we use format statements. Through the use of the format we can:

 Specify how many columns a number should take up. •
 Specify where a decimal point should lie. •
 Specify where there should be white space. •
 Specify titles. •

 The format statement has a label associated with it; through this label, the print
statement associates the data to be written with the form in which to write them.

 Chapter 9
 Output of Results

 Why, sometimes I’ve believed as many as six impossible things
before breakfast.

 Lewis Carroll, Through the Looking-Glass
and What Alice Found There

132 9 Output of Results

 9.2 Example 1: Integers – I Format or Edit Descriptor

 Integer format is reasonably straightforward, and offers clues for formats used in
describing other numbers. I3 is an integer taking three columns. The number is right
justifi ed, a bit of jargon meaning that it is written as far to the right as it will go, so
that there are no trailing or following blanks. Consider the following example:

 program ch0901
 implicit none
 integer :: T
 print *, ' '
 print *,' Twelve times table'
 print *, ' '
 do T=1,12
 print 100, T,T*12
 100 format(' ',I3,' * 12 = ',I3)

 end do
 end program ch0901

 The fi rst statement of interest is

 print 100, T,T*12

 The 100 is a statement label. There must be a format statement with this label in
the program. The variables to be written out are T and 12*T.

 The second statement of interest is

 100 format(' ',I3,' * 12 = ',I3)

 Inside the brackets we have

 '' print out what occurs between the quote marks, in this case one space.
 , The comma separates items in the format statement.
 I3 print out the fi rst variable in the print statement right justifi ed in three
columns
 , Item separator.
 ' * 12 = ' print out what occurs between the quote characters.
 , Item separator
 I3 print out the second variable (in this case an expression) right justifi ed in
three columns.

 All of the output will appear on one line.

1339.3 Example 2: The x Edit Descriptor

 9.3 Example 2: The x Edit Descriptor

 Now consider the following example:

 program ch0902
 implicit none
 integer :: big=10
 integer :: I

 do I=1,40
 print 100,i,big
 100 format(1x,i3,2x,i12)
 big=big*10

 end do
 end program ch0902

 The new feature in the format statement is the 1x and 2x edit descriptor. This is
another way of getting white space into the output, and in this case one space and
two spaces, respectively.

 This program will loop and the variable big will overfl ow, i.e., go beyond the
range of valid values for a 32-bit integer. Does the program crash or generate a run
time error? This is the output from the NAG and Intel compilers.

 1 10
 2 100
 3 1000
 4 10000
 5 100000
 6 1000000
 7 10000000
 8 100000000
 9 1000000000
 10 1410065408
 11 1215752192
 12 −727379968
 13 1316134912
 14 276447232
 15 −1530494976
 16 1874919424
 17 1569325056
 18 −1486618624
 19 −1981284352
 20 1661992960
 21 −559939584
 22 −1304428544
 23 −159383552
 24 −1593835520
 25 1241513984

(continued)

134 9 Output of Results

 (continued)

 26 −469762048
 27 −402653184
 28 268435456
 29 −1610612736
 30 1073741824
 31 −2147483648
 32 0
 33 0
 34 0
 35 0
 36 0
 37 0
 38 0
 39 0
 40 0

 Is there a compiler switch to trap this kind of error?

 9.4 Reals – F Format or Edit Descriptor

 The F format can be seen as an extension of the integer format, but here we have to
deal with the decimal point. The form of the F format specifi es where the decimal
point will occur, and how many digits follow it. Thus, F7.4 means:

 There is a total width of seven. •
 There is a decimal point •
 There are four digits after the decimal point. •

 This means that since the decimal point is also written out, there may be up to
two digits before the decimal point. As in the case of the integer, any minus sign is
part of the number, and would take up one column. Thus, the format F7.4 may be
used for numbers in the range

 −9.9999 to 99.9999

 Let us look at the last example more closely. When a number is written out, it is
rounded; that is to say, if we write out 99.99999 in an F7.4 format, the program will
try to write out 100.0000! This is bad news, since we have not left enough room for
all those digits before the decimal point. What happens? Asterisks will be printed.
In the example above, a number out of range of the format’s capabilities would be
printed as:

1359.4 Reals – F Format or Edit Descriptor

 What would a format of F7.0 do? Again, seven columns have been set aside to
accommodate the number and its decimal point, but this time no digits follow the
point.

 99.
 −21375.

are examples of numbers written in this format. With an F format, there is no way
of getting rid of the decimal point.

 The numbers making up the parts of the descriptors must all be positive integers.
The defi nition of a real format is therefore F followed by two integer numbers, sepa-
rated by a decimal point. The fi rst integer must exceed the second, and the second
must be greater than or equal to zero. The following are valid examples:

 F4.0
 F6.2
 F12.2
 F16.8

but these are not valid:

 F4.4
 F6.8
 F-3.0
 F6
 F.2

 The program in Section 9.3.1 illustrates the use of both I format and F format.

 9.4.1 Example 3: Metric and Imperial Conversion
and the f Edit Descriptor

 program ch0903
 implicit none
 integer :: fl uid
 real :: litres
 real :: pints

 do fl uid=1,10
 litres = fl uid / 1.75
 pints = fl uid * 1.75
 print 100 , pints,fl uid,litres
 100 format(' ',F7.3,' ',I3,' ',F7.3)

 end do
 end program ch0903

 Pints will be printed out in F7.3 format, fl uid will be printed out in I3 format and
litres will be printed out in F7.3 format.

136 9 Output of Results

 9.4.2 Example 4: Overfl ow and Underfl ow and the f Edit Descriptor

 Consider the following program:

 In this program the variable small will underfl ow and big will overfl ow. The
output from the Intel compiler is:

 When the number is too small for the format, the printout is what you would
probably expect. When the number is too large, you get asterisks. When the num-
ber actually overfl ows the Intel compiler tells you that the number is too big and
has overfl owed. However the program ran to completion and did not generate a
run time error.

1379.5 Reals – E Format or Edit Descriptor

 9.5 Reals – E Format or Edit Descriptor

 The exponential or scientifi c notation is useful in cases where we need to provide a
format which may encompass a wide range of values. If likely results lie in a very
wide range, we can ensure that the most signifi cant part is given. It is possible to
give a very large F format, but alternatively, the E format may be used. This takes a
form such as

 E10.4

which looks something like the F, and may be interpreted in a similar way. The 10
gives the total width of the number to be printed out, that is, the number of columns
it will take. The number after the decimal point indicates the number of positions to
be written after the decimal point. Since all exponent format numbers are written so
that the number is between 0.1 and 0.9999…, with the exponent taking care of scale
shifts, this implies that the fi rst four signifi cant digits are to be printed out.

 Taking a concrete example, 1,000 may be written as 10**3, or as 0.1 * 10**4.
This gives us the two parts: 0.1 gives the signifi cant digits (in this case only one
signifi cant digit), while the 10**4 gives the exponent, namely 4 or +4. In a form that
looks more like Fortran, this would be written .1E+04, where the E+04 means
10**4.

 There is a minimum size for an exponential format. Because of all the extra bits
and pieces it requires:

 The decimal point. •
 The sign of the entire number. •
 The sign of the exponent. •
 The magnitude of the exponent. •
 The E. •

 The width of the number less the number of signifi cant places should not be less
than 6. In the example given above, E10.4 meets this requirement. When the exponent
is in the range 0–99, the E will be printed as part of the number; when the exponent is
greater, the E is dropped, and its place is taken by a larger value; however, the sign of
the exponent is always given, whether it is positive or negative. The sign of the whole
number will usually only be given when it is negative. This means that if the numbers
are always positive, the rule of six given above can be modifi ed to a rule of fi ve. It is safer
to allow six places over, since, if the format is insuffi cient, all you will get are asterisks.

 The most common mistake with an E format is to make the edit descriptor too
small, so that there is insuffi cient room for all the padding to be printed. Formats
like E8.4 just don’t work (on output anyway). The following four are valid E
formats on output:

 E9.3
 E11.2
 E18.7
 E10.4

138 9 Output of Results

but the next fi ve would not be acceptable as output formats, for a variety of
reasons:

 E11.7
 E6.3
 E4.0
 E10
 E7.3

 9.5.1 Example 5: Simple e Edit Descriptor Usage

 This is the same as ch0904 except that we have replaced the F formatting with E
formatting:

 We now have three ways to print out fl oating point numbers and each has its use.
The print * is very useful when developing programs.

 9.6 Spaces

 You have seen two ways of generating spaces on output. The fi rst is to use '
characters to enclose blanks in the format statement. The second is to use the X edit
descriptor. Consider the following.

 print 100, ALPHA,BETA
 100 format(1X,F10.4,10X,F10.3)

 The 10X is read rather like any of the other format elements – logically it should
have been X10, to correspond to I10 or F10.4, but that would be allowing intuition
to run away with you. Clearly the X3J3 committee felt it important that Fortran
should have inconsistencies, just like a natural language.

1399.7 Characters – A Format or Edit Descriptor

 Remember that these blanks are in addition to any generated as a result of the
leading blanks on numbers (if any are present). if you wish to leave a single space,
you must still precede the X by a number (in this case, 1); simply writing X is illegal.
The general form is therefore a positive integer followed by X.

 9.7 Characters – A Format or Edit Descriptor

 This is perhaps the simplest output of all. Since you will already have declared the
length of a character variable in your declarations,

 character (10) :: B

when you come to write out B, the length is known – thus you need only specify that
a character string is to be output:

 print 100,B
 100 format(1X,A)

if you feel you need a little extra control, you can append an integer value to the
A, like A10 (A9 or A1), and so on. if you do this, only the fi rst 10 (9 or 1) characters
are written out; the remainder are ignored. Do note that 10A1 and A10 are not the
same thing. 10A1 would be used to print out the fi rst character of ten character vari-
ables, while A10 would write out the fi rst 10 characters of a single character vari-
able. The general form is therefore just A, but if more control is required, this may
be followed by a positive integer.

 9.7.1 Example 6: Character Output and the a Edit Descriptor

 The following program is a simple rewrite of a program from Chap. 4 .

 program ch0906

 !
 ! This program reads in and prints out
 ! your fi rst name
 !
 implicit none
 character (20) :: fi rst_name
 !
 print *,' type in your fi rst name.'
 print *,' up to 20 characters'
 read *,fi rst_name
 print 100,fi rst_name
 100 format(1x,A)

 !
 end program ch0906

140 9 Output of Results

 9.7.2 Example 7: Headings

 A simple heading is given in the program below:

 program ch0907
 implicit none
 integer :: fl uid
 real :: litres
 real : : pints
 print *,' Pints Litres'
 do fl uid=1,10
 litres = fl uid / 1.75
 pints = fl uid * 1.75
 print 100 , pints,fl uid,litres
 100 format(' ',f7.3,' ',i3,' ',f7.3)

 end do
 end program ch0907

 9.8 Example 8: Mixed Type Output in a Format Statement

 The following example shows how to mix and match character, integer and real
output in one format statement:

 program ch0908
 implicit none
 character (len=15) :: Firstname
 integer :: age
 real :: weight
 character (len=1) :: sex
 print *,' type in your fi rst name '
 read *,Firstname
 print *,' type in your age in years'
 read *,age
 print *,' type in your weight in kilos'
 read *,weight
 print *,' type in your sex (f/m)'
 read *,sex
 print *,' your personal details are'
 print *
 print 100
 100 format(4x,'fi rst name', 4x , 'age' , 1x , & 'weight'
, 2x , 'sex')
 print 200 , fi rstname, age , weight , sex
 200 format (1x , a , 2x , i3 , 2x , f5.2 , 2x, a)

 end program ch0908

1419.10 Open (and Close)

 Take care to match up the variables with the appropriate edit descriptors. You also
need to count the number of characters and spaces when lining up the heading.

 9.9 Common Mistakes

 It must be stressed that an integer can only be printed out with an I format, and a real
with an F (or E) format. You cannot use integer variables or expressions with F or E
edit descriptors or real variables and expressions with I edit descriptors. if you do,
unpredictable results will follow. There are (at least) two other sorts of errors you
might make in writing out a value. You might try to write out something which has
never actually been assigned a value; this is termed an indefi nite value. You might
fi nd that the letter I is written out. In passing, note that many loaders and link editors
will preset all values to zero – i.e., unset (indefi nite) values are actually set to zero.
On better systems there is generally some way of turning this facility off, so that
undefi ned is really indefi nite. More often than not, indefi nite values are the result of
mistyping rather than of never setting values. It is not uncommon to type O for 0, or
1 for either I or l. The other likely error is to try to print out a value greater than the
machine can calculate – out of range values. Some machines will print out such
values as R, but some will actually print out something which looks right, and
such overfl ow and underfl ow conditions can go unnoticed. Be wary.

 9.10 Open (and Close)

 One of the particularly powerful features of Fortran is the way it allows you to
manipulate fi les. Up to now, most of the discussion has centred on reading from and
writing to the terminal. It is also possible to read and write to one or more fi les. This
is achieved using the open, write, read and close statements. In a later chapter we
will consider reading from fi les but here we will concentrate on writing.

 9.10.1 The Open Statement

 This statement sets up a fi le for either reading or writing. A typical form is

 open (unit = 1,fi le = 'data.txt')

 The fi le will be known to the operating system as data.txt (or will have data as the
fi rst part of its name), and can be written to by using the unit number. This statement
should come before you fi rst read from or write to the fi le data.

 It is not possible to write to the fi le data.txt directly; it must be referenced through
its unit number. Within the Fortran program you write to this fi le using a statement
such as

142 9 Output of Results

 write(unit = 1,fmt = 100) XVAL,YVAL

or

 write(1,100) XVAL,YVAL

 These two statements are equivalent. Besides opening a fi le, we really ought to
close it when we have fi nished writing to it:

 close(unit = 1)

 In fact, on many systems it is not obligatory to open and close all your fi les.
Almost certainly, the terminal will not require this, since INPUT and OUTPUT
units will be there by default. At the end of the job, the system will close all your
fi les. Nevertheless, explicit open and close cannot hurt, and the added clarity gener-
ally assists in understanding the program.

 9.10.2 Example 9: Open and Close Usage

 The following program contains all of the above statements:

 program ch0909
 implicit none
 integer :: fl uid
 real :: litres
 real :: pints
 open (unit=1,fi le='ch0909.txt')
 write(unit=1,fmt=200)
 200 format(' Pints Litres')
 do fl uid=1,10
 litres = fl uid / 1.75
 pints = fl uid * 1.75
 write(unit=1,fmt=100) pints,fl uid,litres
 100 format(' ',f7.3,' ',i3,' ',f7.3)

 end do
 close(1)

 end program ch0909

 9.10.3 Writing

 Print is always directed to the fi le OUTPUT; in the case of interactive working, this
is the terminal. This is not a very fl exible arrangement. write allows us to direct
output to any fi le, including OUTPUT. The basic form of the write is

 write(6,100) X,Y,Z
or

 write(unit = 6,fmt = 100) X,Y,Z

1439.11 Repetition

 The latter form is more explicit, but the former is probably the one most widely
used. We have an example here of the use of positionally dependent parameters in
the fi rst case and equated keywords in the second. With the exceptions of the print
statement and the read * form of the read, all of the input/output statements allow
the unit number and the format labels to be specifi ed either by an equated keyword
(or specifi er) or in a positionally dependent form. if you use the explicit unit = and
fmt = it does not matter what order the elements are placed in, but if you omit these
keywords, the unit number must come fi rst, followed by the format label.

 unit = 6 means that the output will be written to the fi le given the unit number 6.
In the next chapter we will cover the way in which you may associate fi le names and
unit numbers, but, for the moment, we will assume that the default is being used.
The name of the fi le, as defi ned by the system, will depend on the particular system
you use; a likely name is something like data. A great many of computing’s minor
complexities can be clarifi ed by simple experimentation.

 fmt = 100 simply gives the label of the format to be used.

 The overworked asterisk may be used, either for the unit or for the format:

 unit = * will write to OUTPUT (the terminal)
 fmt = * will produce output controlled by the list of variables, often called list
directed output.

 The following three statements are therefore equivalent:

 write(unit=*,fmt=*) X,Y,Z
 write(*,*) X,Y,Z
 print*,X,Y,Z

 There are other controls possible on the write, which will be elaborated later.

 9.11 Repetition

 Often we need to print more than one number on a line and want to use the same
layout descriptor. Consider the following:

 print 100,A,B,C,D

if each number can be written with the same layout descriptor, we can abbreviate
the format statement to take account of the pattern:

 100 format(1X,4F8.2)

is equivalent to

 100 format(1X,F8.2,F8.2,F8.2,F8.2)

as you might anticipate. If the pattern is more complex, we can extend this approach:

 print 100,I,A,J,B,K,C
 100 format(1X,3(I3,F8.2))

144 9 Output of Results

 Bracketing the description ensures that we repeat the whole entity:

 100 format(1X,3(I3,F8.2))

is equivalent to

 100 format(1X,I3,F8.2, I3,F8.2, I3,F8.2)

 Repetition with brackets can be rather more complex. In order to give some
overview of formatted Fortran output, it is helpful to delve a little into the history
of the language. Many of the attributes of Fortran can be traced back to the days of
single-user mainframes (with often a fraction of the power of many contemporary
microcomputers and workstations). These would generally take input from punched
cards (the traditional 80-column Hollerith card), and would generate output on a line
printer. In this sort of environment, the individual punched card had a signifi cance
which lines in a fi le do not have today. Each card could be seen as a single entity – a
physical record unit. The record was seen as an element of a subdivision within a fi le.
Even then, there was some confusion between the notion of physical records and fi les
split into logically distinct subunits, since these sub-units might also be termed
records. The present Fortran standard merely says that a record does not necessarily
correspond to a physical entity, although a punched card is usually considered to be
a record. This leaves us sitting at our terminals in a bemused state, especially since
we may have no idea what a punched card looks like (an ideal state of affairs!).

 It is important to have some notion of a record, since most of the formal defi ni-
tions dealing with output (and input) are couched in terms of records. Every time an
input or output statement is executed your nominal position in the fi le changes. if we
think in terms of individual records (which may be cards), the notions of current,
preceding and next record seem fairly straightforward. The current record is simply
the one we have just read or written, and the other defi nitions follow naturally.

 The situation becomes less clear when we realise that a single output statement
may generate many lines of output:

 write(unit = 6,fmt = 101) A,B,C
 101 format(1X,F10.4)

writes out three separate lines. Looking at the output alone, there is no way to
distinguish this from the output generated by

 write(unit = 6,fmt = 101) A
 write(unit = 6,fmt = 101) B
 write(unit = 6,fmt = 101) C
 101 format(1X,F10.4)

 In the latter case we would probably be happy to consider each line a record,
although in the previous example we might swither between considering all three
lines (generated by a single statement) a single record or three records. Consider the
fi rst of these two examples more closely; each time the format is exhausted – that is
to say, each time we run out of format description, we start again on a new line

1459.12 Some More Examples

(a new record). A new record is begun as each F10.4 is begun. The correct
interpretation is therefore that three records have been written.

 The same sort of thing happens in more complex format statements:

 write(unit = 6,fmt = 105) X,I,Y
 105 format(1X,F8.4,I3,(F8.4))

would write out a single record containing a real, an integer and a real. Using the
same format statement with write (unit = 6, fmt = 105) X,I,Y,Z would write out two
records. The fi rst containing the values of X, I and Y and the second containing
only Z. if there were still more values

 write(unit = 6,fmt = 105) X,I,Y,Z,A

would print out three records. The group in brackets – the (F8.4) – is repeated until
we run out of items.

 9.12 Some More Examples

 Since it is the last open bracket which determines the position at which the format
is repeated, simply writing

 write(unit = 6,fmt = 100) A,I,B,C,J
 100 format(1X,F8.4,I3,F8.2)

would imply that A, I and B would be written on one line then, returning to the last
open brackets (in this case the only open brackets), a new record (or line) is begun
to write out C and J. A statement like

 100 format(1X,(F8.4),I3,F8.2)

would return to the (F8.4) group, and then continue to the I3 and F8.2 before repeat-
ing again (if necessary). The same thing happens if the (F8.4) had no brackets
around it. On the other hand

 100 format(1X,(F8.4),I3,(F8.2))

contains superfl uous brackets around the F8.4, since the repeat statement will never
return to that group. Are you confused yet? This all seems very esoteric, and really,
we have only hinted at the complexity which is possible. It is seldom that you have
to create complex format statements, and clarity is far more important than brevity.

 When patterned or repeated output is used, we may want to stop when there are
no more numbers to write out. Take the following example:

 write(unit = 1,fmt = 100) A,B,C,D
 100 format(1X,4(F6.1,','))

 This will give output which looks like

 37.4, 29.4, 14.2, -9.1,

146 9 Output of Results

 The last comma should not be there. We can suppress these unwanted elements
by using the colon:

 100 format(1X,4(F6.1:','))

which would then give us

 37.4, 29.4, 14.2, -9.1

 Since we run out of data at the fourth item, D, the output following is not written
out. It is a small point, but it does look a lot tidier. There are other ways of achieving
the same thing.

 This helps to illustrate another point, namely that you may have formats which
are more extensive than the lists which reference them:

 write(unit = 1,fmt = 100) A,B,C
 write(unit = 1,fmt = 100) X,Y
 100 format(1X,6 F8.2)

 Both write statements use the format provided, although they write out different
numbers of data, and neither uses up the whole format.

 9.13 Example 10: Implied Do Loops and Array
Sections for Array Output

 The following program shows how to use both implied do loops and array sections
to output an array in a neat fashion:

1479.13 Example 10: Implied Do Loops and Array Sections for Array Output

 The print 100 uses an implied do loop and the print 110 uses an array section.

 9.13.1 Example 11: Whole Array Output

 Take care when using whole arrays. Consider the following program:

 program ch0911
 real , dimension(10,10) :: Y
 integer :: NROWS=6
 integer :: NCOLS=7
 integer :: I,J
 integer :: K=0
 do I=1,NROWS
 do J=1,NCOLS
 K=K+1
 Y(I,J)=K

 end do
 end do
 write(unit=*,fmt=100)Y
 100 format(1X,10F10.4)

 end program ch0911

 There are several points to note with this example. Firstly, this is a whole array
reference, and so the entire contents of the array will be written; there is no scope
for fi ne control. Secondly, the order in which the array elements are written is
according to Fortran’s array element ordering, i.e., the fi rst subscript varying 1–10

148 9 Output of Results

(the array bound), with the second subscript as 1, then 1–10 with the second
subscript as 2 and so on; the sequence is

 Thirdly we have defi ned values for part of the array.

 9.14 Formatting for a Line Printer

 There is one extension to format specifi cations which is relevant to line printers.
Fortran defi nes four special characters which have an effect on standard line printers
when they occur in the fi rst character position of a line. This means that a line
printer which is not under your immediate control can be used to produce neat
output by sending a fi le to be printed on it. This has a variety of names including,
spooling, queueing and routing depending on the system. You should check with
your local system for the exact mechanism to achieve this.

 The special characters are +, 0, 1 and blank. To be used, they must be the fi rst
character of the output in each line – as if they were to be printed in column 1. In
fact, a standard line printer never prints a character that occurs in column 1 at all.

 Whenever a write statement is begun, the printer advances to a new record; i.e.,
a new line is begun before any data are transferred. if the fi rst character is a special
character, then this will be interpreted by the line printer. if the fi rst character to be
printed is a blank, the printer continues printing on that line. The fi rst character is
also known as the carriage control character.

 The blank is a do nothing special control. It signifi es that the line is to be printed
as it is.

 The zero indicates that you wish to leave an extra line; this is often useful in
spacing out results to make the output more readable.

 The 1 makes the output skip down to the top of the next page. This is clearly useful
for separating logically distinct chunks of output. If you obtain a line printer listing
of your compiled program, each segment will start at the top of a new page.

 The plus is a no advance or overprint character. It suppresses the effect of the line
advance which a write generates. No new line is begun and the previous line is
overprinted with the new. Overprinting can be useful especially when you wish to
print out grey scale maps but its use is rather restricted. In particular, it can be a
dangerous control character. If you have a format starting with a plus in a loop, you
can make the printer overprint again and again and again . . . and again and again,
until it has hammered itself into a pulp. This is not a good idea.

 Similarly, accidental use of the 1 as a control character in a loop will give you
lots of blank pages. It is just a bit embarrassing to be presented with a 6 in. stack of
paper which is (almost) blank, because you had a 1 repeatedly in column 1.

1499.14 Formatting for a Line Printer

 9.14.1 Mechanics of Carriage Control

 The following are all quite reasonable ways of generating the blank in column 1:

 write(unit = 6,fmt = 100)A
 100 format(' ',F10.4)

or

 write(unit = 6,fmt = 100)A
 100 format(1X,F10.4)

or

 write(unit = 6,fmt = 100)A
 100 format(' THE ANSWER IS ',F10.4)

 Note, however, that

 write(unit = 6,fmt = 100)A
 100 format(F8.4)

could result in problems. if A contained the value 100.2934, the result on a line
printer would be

 00.2934

printed at the top of a new page. The 1 is taken as carriage control, and the rest of
the line then printed.

 Accidentally printing zeros in column 1 is a little more diffi cult, but

 write(unit = 6,fmt = 100)I
 100 format(I1)

might just do it. Don’t.
 Remember that this only applies to line printer output, and not to the terminal.

Since Fortran only defi nes four characters as carriage control, you will fi nd that
anything else in column 1 will give unpredictable results. On some systems, a fair
number of alternatives may be defi ned by the installation, and they may do some-
thing useful. On other systems, they may do something, but they may also fail to
print the rest of the line. This can be very perplexing. Beware.

 9.14.2 Generating a New Line on Both Line Printers
and Terminals

 There are several ways of generating new lines, other than with a 0 in column 1 of
your line printer output. A more general approach, which works on both terminals
and line printers, is through the oblique or slash, /. Each time this is encountered in
a format statement, a new line is begun.

150 9 Output of Results

 print 101,A,B
 101 format(1X,F10.4/1X,F10.4)

would give output like

 100.2317
 −4.0021

 This is the same as (F10.4) would have given, but clearly it opens up lots of
possibilities for formatting output more tidily:

 may be easier to read than using only one line, and it is certainly more compact to
write than using three separate print statements. It is not necessary to separate / by
commas, although if you do nothing catastrophic will happen.

 You may also begin a format description with a /, in order to generate an extra
line or even generate lots of lines with lots of slashes; e.g.,

 write(unit = 6,fmt = 103)A,B
 103 format(//1X,F10.4,4(/),1X,F10.4)

will leave two lines before printing A, and then will generate four new lines before
writing B (i.e., there will be three lines between A and B – the fourth new line will
contain B). While a slash by itself, or with another slash, does not have to be separated
by commas from other groups, a more complex grouping, 4(/), does have to have
commas and brackets to delimit it.

 9.15 Example 12: Timing of Writing Formatted Files

 The following example looks at the amount of time spent in different sections of a
program with the main emphasis on formatted output:

 program ch0912
 implicit none
 integer , parameter :: n=1000000
 integer , dimension(1:n) :: x=0
 real , dimension(1:n) :: y=0
 integer :: I
 real :: t,t1,t2,t3,t4,t5
 character*10 :: comment
 open(unit=10,fi le='ch0912.dat')
 call cpu_time(t)

1519.16 Example 13: Timing of Writing Unformatted Files

 t1=t
 comment=' Initial '
 print 100,comment,t1
 do i=1,n
 x(i)=I

 end do
 call cpu_time(t)
 t2=t-t1
 comment = ' integer '
 print 100,comment,t2
 y=real(x)
 call cpu_time(t)
 t3=t-t1-t2
 comment = ' real '
 print 100,comment,t2
 do i=1,n

 Write(10,200) x(I)
200 Format (1x,i10)

 end do
 call cpu_time(t)
 t4=t-t1-t2-t3
 comment = ' I write '
 print 100,comment,t4
 do i=1,n
 Write(10,300) y(I)
300 Format (1x,f10.0)

 end do
 call cpu_time(t)
 t5=t-t1-t2-t3-t4
 comment = ' r write '
 print 100,comment,t5
 100 format(1x,a,2x,f7.3)
 end program ch0912

 There is a call to the built-in intrinsic cpu_time to obtain timing information. Try
this example out with your compiler. Formatted output takes up a lot of time, as we
are converting from an internal binary representation to an external decimal form.

 9.16 Example 13: Timing of Writing Unformatted Files

 The following program is a variant of the above but now the output is in unformatted
or binary form:

152 9 Output of Results

 Try this example out with your compiler. Unformatted is very effi cient in terms of
time. It also has the benefi t for real or fl oating point numbers of no information loss.

1539.18 Problems

 9.17 Summary

 You have been introduced in this chapter to the use of format or layout descriptors
which will give you greater control over output.

 The main features are:

 The I format for integer variables. •
 The E and F formats for real numbers. •
 The A format for characters. •
 The X, which allows insertion of spaces. •

 Output can be directed to fi les as well as to the terminal through the write
statement.

 The write, together with the open and close statements, also introduces the class
of Fortran statements which use equated keywords, as well as positionally depen-
dent parameters.

 The format statement and its associated layout or edit descriptor are powerful
and allow repetition of patterns of output (both explicitly and implicitly).

 When output is to be directed to a line printer, the following four characters:

 + •
 0 •
 1 •
 (blank) •

allow reasonable control over the layout. Care must to be taken with these charac-
ters, since it is possible to decimate forests with little effort.

 9.18 Problems

 1. Rewrite the temperature conversion program which was problem 3 in Chap. 7
to actually produce the output shown.

 2. Write a litres and pints conversion program to produce a similar kind of output
to problem one above. Start at 0 and make the central column go up to 50. One
pint is 0.568 l.

 3. Information on car fuel consumption is usually given in miles per gallon in
Britain and the United States and in litres per 100 km in Europe. Just to add an
extra problem US gallons are 0.8 imperial gallons.

 Prepare a table which allows conversion from either US or imperial fuel con-
sumption fi gures to the metric equivalent. Use the parameter statement where
appropriate:

 1 imperial gallon 4.54596 litres

 1 mile 1.60934 kilometres

=
=

154 9 Output of Results

 4. The two most commonly used operating systems for Fortran programming are
UNIX and DOS. It is possible to use the operating system fi le redirection
symbols < and > to read from a fi le and write to a fi le, respectively. Rerun the
program in problem 1 to write to a fi le. Examine the fi le using an editor.

 5. Modify any of the above to write to a fi le rather than the terminal. What changes
are required to produce a general output which will be suitable for both the
terminal and a line printer? Is this degree of generality worthwhile?

 6. To demonstrate your familiarity with formats, reformat problems 1, 2 or 3 to
use E formats, rather than F (or vice versa).

 7. Modify the temperature conversion program to produce output suitable for a line
printer. Use the local operating system commands to send the fi le to be printed.

 8. Repeat for the litres and pints program.
 9. What features of Fortran reveal its evolution from punched card input?
 10. Try to create a real number greater than the maximum possible on your com-

puter – write it out. Try to repeat this for an integer. You may have to exercise
some ingenuity.

 11. Check what a number too large for the output format will be printed as on your
local system – is it all asterisks?

 12. Write a program which stores litres and corresponding pints in arrays. You should
now be able to control the output of the table (excluding headings – although this
could be done too) in a single write or print statement. If you don’t like litres and
pints, try some other conversion (£ sterling to US dollars, leagues to fathoms,
Scots miles to Betelgeusian pfnings). The principle remains the same.

 13. Fortran is an old programming language and the text formatting functionality
discussed in this chapter assumes very dumb printing devices.

 The primary assumption is that we are dealing with so-called monospace fonts,
i.e., that digits, alphabetic characters, punctuation, etc., all have the same width.

 If you are using a PC try using:

 Notepad•

 and

 Word •

to open your programs and some of the fi les created in this chapter. What hap-
pens to the layout?

 If you are using Notepad look at the Word wrap and set Font options under the
edit menu.

 What fonts are available? What happens to the layout when you choose another
font?

 If you are using Word what fonts are available? What happens when you make
changes to your fi le and exit Word? Is it sensible to save a Fortran source fi le as a
Word document?

155

 Aims

 The aims of this chapter are to introduce some of the ideas involved in reading data
into a program. In particular, using the following:

 Reading from fi xed fi elds. •
 Integers, reals and characters. •
 Blanks – nulls or zero? •
 read – extensions.•

 error handling on input. –

 open – associating unit numbers and fi le names.•

 close –
 rewind –
 backspace –

 Chapter 10
 Reading in Data

 Winnie-the-Pooh read the two notices very carefully,
 fi rst from left to right, and afterwards,
 in case he had missed some of it, from right to left.

 A A Milne, Winnie-the-Pooh

I. Chivers and J. Sleightholme, Introduction to Programming with Fortran:
With Coverage of Fortran 90, 95, 2003, 2008 and 77,
DOI 10.1007/978-0-85729-233-9_10, © Springer-Verlag London Limited 2012

156 10 Reading in Data

 10.1 Reading from the Terminal or Keyboard
Versus Reading from Files

 It is unlikely that you would use fi xed formats when reading numeric input from the
terminal or keyboard; they are more likely to be used when reading data from a fi le.
However the examples that follow do it. We look at reading from fi les later in this
chapter.

 10.2 Fixed Fields on Input

 All the formats described earlier are available, and again they are limited to particu-
lar types. Integers may only be input by the I format, reals with F and E, and char-
acter (alphanumeric) with A.

 10.2.1 Integers and the I Format

 Integers are read in with the I edit descriptor. Whereas, on output, integers appear
right justifi ed, on input they may appear anywhere in the fi eld you have delimited.
Blanks (by default) are considered not to exist for the purpose of the value read,
although they do contribute to the fi eld width. Apart from the digits 0–9, the only
other characters which may appear in an integer fi eld are − and +.

 10.2.2 Example 1: Skipping Data Whilst Reading

 Consider the following 12 times table:

 1 * 12 = 12
 2 * 12 = 24
 3 * 12 = 36
 4 * 12 = 48
 5 * 12 = 60
 6 * 12 = 72
 7 * 12 = 84
 8 * 12 = 96
 9 * 12 = 108
 10 * 12 = 120
 11 * 12 = 132
 12 * 12 = 144

15710.2 Fixed Fields on Input

 The following is a program to read the fi rst and last columns of integer data:

 program ch1001
 implicit none
 integer , parameter :: n = 12
 integer :: I
 integer , dimension(1:n) :: x
 integer , dimension(1:n) :: y
do i = 1,n

 read 100, x(i),y(I)
 100 format (2x,i2,9x,i3)
 print 200,x(i),y(I)
 200 format(1x,i3,2x,i3)

end do
 end program ch1001

 The
 read 100,x(i),y(I)

 will try reading values into x(I) and y(I) using format statement

 100 format (2x,i2,9x,i3)

 which will skip the fi rst two characters on the line or record, read the fi rst value from
the next two columns, skip the next nine characters and read the last value from the
next three characters.

 We recommend that when working with formatted fi les you to use a text editor
that displays the column and line details.

 Notepad under Windows has a status bar option under the View menu. Gvim
under Windows has line and column information available. Under Redhat, vim and
gedit both display line and column information. User SuSe, kedit and vim display
line and column information. There should be an editor available on your system
that has this option.

 10.2.3 Reals and the F Format

 Real numbers may be input using a variety of formats and we will look at the F
format in this example. Consider the following BMI data:

 1.85 85
 1.80 76
 1.85 85
 1.70 90
 1.75 69
 1.67 83
 1.55 64

158 10 Reading in Data

 1.63 57
 1.79 65
 1.78 76

 The following program will read in the data:

 program ch1002
 implicit none
 integer , parameter :: n=10
 real , dimension(1:n) :: h
 real , dimension(1:n) :: w
 real , dimension(1:n) :: bmi
 integer :: I
 do i=1,n
 read 100, h(i),w(I)
 100 format(f4.2,2x,f3.0)

 end do
 bmi=w/(h*h)
 do i=1,n
 print 200,bmi(I)
 200 format (2x, f5. 0)

 end do
 end program ch1002

 To read in the heights we need a total width of four columns with two after the
decimal point. We then skip two spaces and read in the weights. The data in the fi le
do not have a decimal point!

 10.2.4 Reals and the E Format

 An exponential format number (which may be read in F or E formats) can take a
number of different forms. The most obvious is the explicit form

 − 1.2E-4

 where all the components of the value are present – the signifi cant digits to the left
of the E, the E itself, and the exponent to the right. We can drop (almost) any two of
these three components, so:

 − 1.2
 −1.2E
 −1.2-4
 −4

 are all valid values. Only the fi rst two are interpreted as the same numerical value,
and just giving the exponent part would be interpreted by the format as giving only

15910.2 Fixed Fields on Input

the signifi cant digits. if the exponent is to be given, there must be some signifi cant
digits as well. It is not even enough to give the E and assume that the program will
interpret this as 10 to the power exponent.

 E-4

 is not an acceptable exponential format value, although

 1E-4

 would be.
 There are opportunities for confusion with E formats.

 read(unit = *,fmt = 102) X,Y
 102 format(2E10.3)

 with:

 10.23 -2

 would be interpreted as X taking the value 10.23E-2 and Y taking the value 0.0,
while with

 102 format (2F8.3)

 X would be 10.23, and Y would be −2.0.
 Although the decimal point may also be dropped, this might generate confusion

as well. While

 4E3
 45
 45E-4
 45–4

 are all valid forms, if an E format is used, a special conversion takes place. A format
like E10.8, when used with integral signifi cant digits (no decimal point), uses the 8
as a negative power of 10 scaling e.g.’

 3267E05

 converts to

 3267*10**8*10**5

 or

 3267*10**3

 or

 3.267

160 10 Reading in Data

 Therefore, the interpretation of, say, 136, read in E format, would depend on the
format used:

 value format Interpretation

 136 E10.0 136.0
 136 E10.4 136.0*10**−4

 or 0.0136
 136 E10.10 136.0*10**−10

 or 0.0000000136
 136. Any above 136.0

 One implication of all this is that the format you use to input a variable may not
be suitable to output that same variable. So given the data:

 136
 136
 136
 136
 136.
 136.
 136.
 136.

 and the program

 program ch1003
 implicit none
 real :: x
 read 100,x
 100 format(e10.0)
 print *,x
 read 200,x
 200 format(e10.4)
 print *,x
 read 300,x
 300 format(e10.10)
 print *,x
 read *,x
 print *,x
 read 100,x
 print *,x
 read 200,x
 print *,x
 read 300,x
 print *,x
 read *,x
 print *,x

 end program ch1003

16110.4 Characters

 We get the following output when the program is compiled with the Intel
compiler:

 Other compilers may give slightly different formatting of the output.

 10.3 Blanks, Nulls and Zeros

 You can control how Fortran treats blanks in input through two special format
instructions, BN and BZ. BN is a shorthand form of blanks become null, that is, a
blank is treated as if it were not there at all. BZ is therefore blanks become zeros.

 As we have already seen, 1 4 (i.e., the two digits separated by a blank) read in I3
format would be read as 14; similarly, 14 (one-four-blank) is also 14 when the BN
format is in operation. All of the blanks are ignored for the purposes of interpreting
the number. They help to create the width of the number, but otherwise contribute
nothing. This is the default, which will be in operation unless you specify
otherwise.

 The BZ descriptor turns blanks into zeros. Thus, 1 4 (one-blank-four) read in I3
format is 104, and 14 (one-four-blank) is 140.

 There is one place where we must be very careful with the use of the BZ format –
when using exponent format input. Consider

 5.321E+02

 read in (BZ,E10.3) format. We have specifi ed a fi eld which is ten characters wide;
therefore the blank in column 10, which follows the E+02, is read as a zero, making
this E+020. This is probably not what was required.

 10.4 Characters

 When characters are read in, it is suffi cient to use the A format, with no explicit
mention of the size of the character string, since this size (or length) is determined

162 10 Reading in Data

in the program by the character declaration. This implies that any extra characters
would not be read in. You may however read in less:

 character (10) :: LIST

.

 .
 read(unit = 5,fmt = 100)LIST
 100 format(A1)

 would read only the fi rst character of the input. The remaining nine characters of
LIST would be set to blank.

 The notion of blanks as nulls or zeros has no meaning for characters. The blank
is a legitimate character and is treated as meaningful, completely distinct from the
notion of a null or a zero.

 A simple variant on ch1001 which uses the character variable temp to hold the
text between the two numbers appears below:

 program ch1004
 implicit none
 integer , parameter :: n=12
 integer :: I
 integer , dimension(1:n) :: x
 integer , dimension(1:n) :: y
 character*9 :: temp
 do i=1,n
 read 100, x(i),temp,y(I)
 100 format(2x,i2,a,i3)
 print 200,x(i),y(I)
 200 format(1x,i3,2x,i3)

 end do
 end program ch1004

 Note that in the format statement we just use the A edit descriptor and the num-
ber of characters to read is picked up from the variable declaration.

 10.5 Skipping Spaces and Lines

 The X format is also useful for input. There may be fi elds in your data which you do
not wish to read. These are easily omitted by the X format:

 read(unit=*,fmt=100) A,B
 100 format(F10.4,10X,F8.3)

16310.6 Reading

 Similarly, you can jump over or ignore entire records by using the oblique.
Do note, however, that

 read(unit=*,fmt=100) A,B
 100 format(F10.4/F10.4)

 would read A from one line (or record) and B from the next. To omit a record
between A and B, the format would need to be

 100 format(F10.4//F10.4)

 Another way to skip over a record is

 read(unit=*,fmt=100)
 100 format()

 with no variable name at all.

 10.6 Reading

 As you have already seen, reading, or the input of information, is accomplished
through the read statement. We have used

 read *,X,Y

 for list directed input from the terminal, and

 read(unit=*,fmt=100) X,Y

 for formatted input from the terminal. These forms may be expanded to

 read(unit=*,fmt=*) X,Y

 or

 read(unit=*,fmt=100) X,Y

 for input from the terminal, or to

 read(unit=5,fmt=*) X,Y

 or

 read(unit=5,fmt=100) X,Y

 when we wish to associate the read statement with a particular unit number (or for-
mat label, for formatted input). As with the write statement, these last two read
statements may be abbreviated to

 read(5,*) X,Y

 and

 read(5,100) X,Y

164 10 Reading in Data

 10.7 File Manipulation Again

 The open and close statements are also relevant to fi les which are used as input,
and they may be used in the same ways. Besides introducing the notion of manipu-
lating lots of fi les, the open statement allows you to change the default for the
treatment of blanks. The default is to treat blanks as null, but the statement
 blank='zero' changes the default to treat blanks as zeros. There are other
parameters on the open, which are considered elsewhere.

 Once you have opened a fi le, you may not issue another open for the same fi le
until it has been closed , except in the case of the blank = parameter. You may
change the default back again with

 open(unit=10,fi le='Example.txt')
 read(unit=10,fmt=100) A,B
 …
 open(unit=10,fi le='Example.txt',blank='zero')
read(unit=10,fmt=100) A,B

 This implies that, within the same input fi le, you may treat some records as blank
for null, and some as blank for zero. This sounds very dangerous, and is better done
by manipulating individual formats if it has to be done at all.

 Given that you may write a fi le, you may also rewind it, in order to get back to
the beginning. The syntax is similar to the other commands:

 rewind(unit=1)

 This often comes in useful as a way of providing backing storage, where inter-
mediate data can be stored on fi le and then used later in the processing.

 The notion of records in Fortran input and output has been introduced. If you are
confi dent in your understanding of this ambiguous and nebulous concept, you can
backspace through a fi le, using the statement

 backspace(unit=1)

 which moves back over a single record on the designated fi le. There is no point in
trying to backspace or rewind if the input is from the keyboard or terminal.

 10.8 Reading Using Array Sections

 Consider the following output:

16510.9 Timing of Reading Formatted Files

 A program to read this fi le using array sections is as follows:

 program ch1005
 implicit none
 integer , parameter :: nrow=5
 integer , parameter :: ncol=6
 real , dimension(1:nrow, 1:ncol) :: &
 Exam_Results = 0.0

 real , dimension(1:nrow) :: &
 People_average = 0.0

 real , dimension(1:ncol) :: &
 Subject_Average = 0.0

 integer :: r,c
 do r=1,nrow
 read 100, (exam_results(r,1:ncol)), people_average®)
100 format(1x,6(1x,f5.1),4x,f6.2)

 end do
 read *
 read 110, subject_average(1:ncol)
 110 format(1x,6(1x,f5.1))
 do r=1,nrow
 print 200, (exam_results(r,c),c=1,ncol), people_average®)
 200 format(1x,6(1x,f5.1),' = ',f6.2)

 end do
 print *, ' ==== ==== ==== ==== ==== ===='
 print 210, subject average(1:ncol)
 210 format(1x,6(1x,f5.1))

 end program ch1005

 Note also the use of
 read *

 to skip a line.
 If you are on a UNIX or Linux system use diff to compare the input and output

fi les. They should be the same.

 10.9 Timing of Reading Formatted Files

 A program to read a formatted fi le is shown below:

 program ch1006
 implicit none
 integer , parameter :: n=1000000
 integer , dimension(1:n) :: x
 real , dimension(1:n) :: y

166 10 Reading in Data

 integer : : I
 real :: t,t1,t2,t3,t4,t5
 character*10 :: comment
 open(unit=10,fi le='ch1006.txt',status='old')
 call cpu_time(t)
 t1=t
 comment=' Initial '
 print 100,comment,t1
 do i=1,n
 read(10,200) x(I)
 200 format(1x, i10)

 end do
 call cpu_time(t)
 t2=t-t1
 comment = ' I read '
 print 10 0,comment,t2
 do i=1,n
 read(10,300) y(I)
 300 format(1x,f10.0)

 end do
 call cpu_time(t)
 t3=t-t1−t2
 comment = ' r read '
 print 100,comment,t3
 100 format(1x,a,2x, f7.3)
 do I=1,10
 print *,x(I), ' ' , y(I)

 end do
 end program ch1006

 Some timing data from the Intel compiler follows:

16710.10 Timing of Reading Unformatted Files

 10.10 Timing of Reading Unformatted Files

 The following is a program to read from an unformatted fi le:

 program ch1007
 implicit none
 integer , parameter :: n=1000000
 integer , dimension(1:n) :: x
 real , dimension(1:n) :: Y
 integer :: I
 real :: t, t1, t2, t3, t4,t5
 character* 10 :: comment
 open(unit=10,fi le='ch1007.dat',form='unformatted')
 call cpu_time(t)
 t1=t
 comment=' Initial '
 print 100,comment,t1
 read(10) x
 call cpu_time(t)
 t2=t−t1
 comment = ' I read '
 print 100,comment,t2
 read (10) y
 call cpu_time(t)
 t3=t−t1−t2
 comment = ' r read '
 print 100,comment,t3
 100 format(1x,a,2x, f7.3)
 do I=1,10
 print *,x(I), ' ' , y(I)

 end do
 end program ch1007

 Some timing data from the Intel compiler follows.

168 10 Reading in Data

 10.11 Errors When Reading

 In discussing some aspects of input, it has been pointed out that errors may be made.
Where such errors are noticed, in the sense that something illegal is being attempted,
there are two options:

 print a diagnostic message, and allow correction of the mistake. •
 print a diagnostic message, and terminate the program. •

 The only time that the fi rst makes sense is when you are interacting with a pro-
gram at a terminal. Some Fortran implementations provide correction facilities in a
case like this, but most do not.

 Chapter 18 looks at how we handle errors in input data, together with a more in-
depth coverage of fi le I/O.

 10.12 Flexible Input Using Internal Files

 Sometimes external data does not have a regular structure and it is not possible to use
the standard mechanisms we have covered so far in this chapter. Fortran provides
something called internal fi les that allow us to solve this problem. The following
example is based on a problem encountered whilst working at the following site

 http://www.shmu.sk/sk/?page=1

 They have data that is in the following format

 #xxxxxxxxxx yyyyyyyyyy

 where x and y can vary between 1 and 10 digits. The key here is to read the whole
line (a maximum of 22 characters) and then scan the line for the blank character
between the x and y digits.

 We then use the index intrinsic to locate the position of the blank character. We
now have enough information to be able to read the x and y integer data into the
variables n1 and n2.

 program ch1008
 implicit none
 integer:: ib1,ib2
 integer:: n1, n2
 character(len=22) :: buffer, buff1, buff2
 ! program to read a record of the form
 ! #xxxxxxxxxx yyyyyyyyyy
 ! so that integers n1 = xxxxxxxxxx n2 = yyyyyyyyyy
 ! where the number of digits varies from 1 to 10
 ! use internal fi les

http://www.shmu.sk/sk/?page=1

16910.13 Summary

 print *, "input micael's numbers"
 read(*,'(a)')buffer
 ib1 = index(buffer, ' ')
 ib2 = len_trim(buffer)
 buff1 = buffer(2:ib1-1)
 buff2 = buffer(ib1+1:ib2)
 read(buff1, ' (i10) ')n1
 read(buff2,'(i10)')n2
 print*, 'n1 = ' ,n1
 print*, 'n2 = ' ,n2

 end program ch1008

 The statement

 read (buff1, ' (i10) ')n1

 reads from the string buff1 and extracts the x number into the variable n1 , and the
statement

 read (buff2, '(i10)') n2

 reads from the string buff 2 and extracts the y number into the variable n2 .
 This is a very powerful feature and allows you to manage quite widely varying

external data formats in fi les. buff1 and buff2 are called internal fi les in Fortran
terminology.

 10.13 Summary

 Values may be read in from the keyboard, terminal or from another fi le through
fi xed formats.

 Much of the structure of input format statements is very similar to that of the
output formats. Broadly speaking, data written out in a particular format may be
read in by the same format. However, there is greater fl exibility, and quite a variety
of forms can be accepted on input.

 A key distinction to make is the interpretation of blanks, as either nulls or zeros;
alternative interpretations can radically alter the structure of the input data.

 Fortran allows fi le names to be associated with unit numbers through the open
statement. This statement allows control of the interpretation of blanks, although
this can also be done through the BN and BZ formats.

 Files can also be manipulated through rewind and backspace.

170 10 Reading in Data

 10.14 Problems

 1. Write a program that will read in two reals and one integer, using

 format(F7.3,I4,F4.1)

 and that, in one instance treats blanks as zeros and in the second treats them as
nulls. Use print * to print the numbers out immediately after reading them in.
What do you notice? Can you think of instances where it is necessary to use one
rather than the other?

 2. Write a program to read in and write out a real number using

 format(F7.2)

 What is the largest number that you can read in and write out with this format?
What is the largest negative number that you can read in and write out with this
format? What is the smallest number, other than zero, that can be read in and
written out?

 3. Rewrite two of the earlier programs that used read,* and print,* to use format
statements.

 4. Write a program to read the fi le created by either the temperature conversion
program or the litres and pints conversion program. Make sure that the programs
ignore the line printer control characters and any header and title information.
This kind of problem is very common in programming (writing a program to
read and possibly manipulate data created by another program).

 5. Use the open, rewind, read and write statements to input a value (or values) as a
character string, write this to a fi le, rewind the fi le, read in the values again, this
time as real variables with blanks treated as null, and then repeat with blanks as
zeros.

 6. Demonstrate that input and output formats are not symmetric – i.e., what goes in
does not necessarily come out.

 7. Can you suggest why Fortran treats blanks as null rather than zero?
 8. What happens at your terminal when you enter faulty data, inappropriate for the

formats specifi ed? We will look at how we address this problem in Chapter 18.

171I. Chivers and J. Sleightholme, Introduction to Programming with Fortran:
With Coverage of Fortran 90, 95, 2003, 2008 and 77,
DOI 10.1007/978-0-85729-233-9_11, © Springer-Verlag London Limited 2012

 Aims

 The aims of this chapter are:

 To review the process of fi le creation at a terminal. •
 To introduce more formally the idea of the fi le as a fundamental entity. •
 To show how fi les can be declared explicitly by the open and close statements. •
 To introduce the arguments for the open and close statements. •
 To demonstrate the interaction between the read/write statements and the open/•
close statements.

 11.1 Introduction

 When you work interactively at a computer, you are working with fi les, fi les that
contain programs, fi les that contain data, and perhaps fi les that are libraries. The fi le
is fundamental to most modern operating systems, and almost all operations are
carried out on fi les.

 In this chapter we are going to extend some of your ideas about fi les. Let us con-
sider what kinds of fi les you have met so far:

 1. Text fi les. These are the source of your programs, compilation listings, etc. They
can be examined by printing them. They can also be transmitted around a com-
puter system fairly easily. A fi le sent to a printer is a text fi le. Mail messages are
generally plain text fi les. Note that when mail messages arrive in your mail box
they will then typically contain additional nonprintable information.

 Chapter 11
 Files

 It is a capital mistake to theorise before one has data.

 Sir Arthur Conan Doyle

172 11 Files

 2. Data fi les. These exist in two main forms: fi rstly those prepared by using an
editor, (hence a text fi le) and those prepared using a package or program, in a
computer readable form, but not directly readable by a human.

 3. Binary, object or relocatable fi les, e.g., output from the compiler, satellite data.
They cannot be printed. To examine fi les like these you need to use special utili-
ties, provided by most operating systems.

 The above categories account for the majority of fi les that you have met so far.
 If you use a word processor then you will also have met fi les that are textual with

additional nonprintable information.
 Let us now consider how we can manipulate fi les using Fortran. They will gener-

ally be data fi les, and will thus be text fi les. They can therefore be listed, etc., using
standard operating system commands.

 11.2 Data Files in Fortran

 These allow us to associate a logical unit number with any arbitrary fi le name during
the running of the program; e.g.,

 open(unit=1,fi le='data.txt')

would associate the name data and the logical unit 1, so that

 read(unit=1,fmt=100) X

would read from data. Note that for this to work on some operating systems the fi le
data must be local to the session; we specify the name as a character variable. If we
then wanted to use a subsequent data fi le, we could have another open statement, but
if we want to use the same logical unit number, we must fi rst close the fi le

 close(unit=1)

before we

 open(unit=1,fi le='data2.txt')

 In this way we can keep referring to logical unit 1, but change the fi le associated
with it. This can be useful in interactive programs where we wish to analyse differ-
ent sets of data, e.g.:

 program ch1101
 implicit none
 real :: x
 character (7) :: which
 open(unit=5,fi le='input')
 do
 write(unit=6,fmt='('' data set name, or end'')')
 read(unit=5,fmt='(a)') which

17311.3 Summary of Options on Open

 if(which == 'end') exit
 open(unit=1,fi le=which)
 read(unit=1,fmt=100) x
 ! ...
 close(unit=1)

 end do
 end program ch1101

 One useful feature of the open statement is that there are other parameters. What
would happen, for example, if the fi le is not there? To take care of this you can use
the iostat and status keywords, e.g.,

 open(1,fi le='data.txt',iostat=fi lestat,status='old')

status can be equated to one of four values:

 status='old'
 status='new'
 status='scratch'
 status='unknown'

 If we say status = 'new', we are creating a new fi le and it should not matter whether
a fi le of the same name is present; 'scratch' does not concern us, while 'unknown'
implies that if a fi le of the correct name is present use it, but if not create a 'new' one.
if you omit the status = keyword altogether, the value 'unknown' will be assumed, if
we use status = 'old' and the fi le is not present, this will cause an error which will be
refl ected in the value associated with the variable open_fi le_status. Consider the
following example:

 ...
 open(unit=1,fi le='data.txt',iostat=fi lestat,status='old')
 if (fi lestat > 0) then
 print *,' error opening fi le, please check'
 stop

 end if
 read(unit=1,fmt=100) x
 ...

 The program will terminate after printing an appropriate error message. The
standard defi nes that if an error occurs then IOSTAT will return a positive integer
value. A value of zero is returned if there is no error.

 11.3 Summary of Options on Open

 unit : The unit number of the fi le to be opened.

 iostat : The I/O status specifi er designates a variable to store a value indicating the
status of a data transfer operation. It takes the following form:

174 11 Files

 iostat= i-var

 i-var – is a scalar integer variable. When a data transfer statement is executed, i-var
is set to one of the following values:

 A positive integer indicating that an error condition occurred. •
 A negative integer indicating that an end-of-fi le or end-of-record condition •
occurred. The actual values vary between compilers.
 Zero indicating no error, end-of-fi le, or end-of-record condition occurred. •

 Execution continues with the statement following the data transfer statement or
the statement identifi ed by a branch specifi er (if any).

 An end-of-fi le condition occurs only during execution of a sequential read state-
ment; an end-of-record condition occurs only during execution of a non advancing
read statement.

 fi le : character expression specifying the fi le name.

 status : character expression specifying the fi le status. It can be one of 'old', 'new',
'scratch' or 'unknown'.

 access : character expression specifying whether the fi le is to be used in a sequential
or random fashion. Valid values are sequential (the default) or direct.

 The two most common access mechanisms for fi les are sequential and direct.
Consider a fi le with 1,000 records. to get at record 789 in a sequential fi le means
reading or processing the fi rst 788 records. to get at record 789 in a direct access fi le
means using a record number to immediately locate record 789.

 form: character expression specifying

 formatted if the fi le is opened for formatted i/o

or

 unformatted if the fi le is opened for unformatted i/o

 The default is formatted for sequential access fi les and unformatted for direct
access fi les. If the fi le exists, form must be consistent with its present characteristics.

 As noted earlier data are maintained internally in a binary format, not immedi-
ately comprehensible by humans. When we wish to look at the data we must write
it in a formatted fashion, i.e., as a sequence of printable ASCII characters – text, or
the written word. This formatting will carry with it an overhead in terms of the time
required to do it. It will also carry with it the penalty of conversion from one number
base (internally binary) to another and also loss of signifi cance due to rounding with
whatever edit descriptors are used, e.g., writing out as F7.4.

 If we are interested in reusing data on the same system and compiler then we can
use the unformatted option and avoid both the time overhead (as there is no conver-
sion between the internal and external formats) and the loss of signifi cance associ-
ated with formatted data.

17511.4 More Foolproof I/O

 Please note that unformatted fi les are rarely portable between different computer
systems, and sometimes even between different compilers on the same system.

 We will look again at the use of unformatted fi les in Chapter ?? when we deal
with effi ciency and the space-time trade-off.

 recl : integer variable or constant specifying the record length for a direct access fi le.
It is specifi ed in characters for a formatted fi le and words for an unformatted fi le.

 blank : character expression having one of the following values:
 ‘null’ if blanks are to be ignored on reading. Note that a fi eld of all blanks is treated
as 0!
 ‘zero’ if blanks are to be treated as zeros.

 11.4 More Foolproof I/O

 Fortran provides a way of writing more foolproof programs involving I/O. This is
done via the iostat keyword on the read statement. Consider the following:

 program ch1102
 implicit none
 integer :: io_stat_number=−1
 integer :: i

 do
print*,'input integer i:'
 read (unit=*,fmt=10,&

 iostat=io stat number) i
 10 format(i3)
 print *,' iostat=',io_stat_number
 if (io_stat_number==0) exit

 end do
 print*, 'i = ',i,' read successfully'

 end program ch1102

 The following data input should be tried and the values of IO_Stat_Number
should be examined

 A valid three-digit number + [return] key •
 A three-digit number with an embedded blank, e.g., 12 + [return] key •
 [return] key only •
 [CTRL] + Z •
 Any other nonnumeric character on the keyboard •
 100200300 + [return] key •
 [CTRL] + C •

 This will then enable you to write programs that handle common I/O errors.

176 11 Files

 Consider the following:

 program ch1103
 implicit none
 integer , dimension(10) :: A =&
 (/−1,−1,−1,−1,−1,−1,−1,−1,−1,−1/)

 integer :: io stat _number=0
 integer :: i
 open(unit=1,fi le='data.txt',status='old')

 do i=1,10
 read (unit=1,fmt=10,iostat=io_stat_number) A(I)
 10 format(I3)
 if (io_stat_number == 0) then
 cycle

 elseif (io_stat_number == −1) then
 print *,' end of fi le detected at line ',i
 print *,' please check data fi le'
 exit

 elseif (io_stat_number > 0) then
 print *,' non numeric data at line ',i
 print *,' please correct data fi le'
 exit
 endif

 end do
 do I=1, 10

 print * , ' I = ',I,' A(I) = ',A(I)
 enddo

 end program ch1103

 The above program is system specifi c you will need to try it out with your
compiler(s).

 What happens with a completely blank line?
 Note that in the above example the testing for the various conditions only exits

the do loop for reading data from the fi le. This means that execution would continue
with the statement immediately after the end do statement. This may not be what we
want in all cases, and the exit may be replaced with a stop statement to terminate
execution immediately.

 11.5 Summary

 The fi le is a fundamental entity within the operating system.
 A fi le may be manipulated in Fortran by associating its name with a unit number.

All subsequent communication within the program is through the unit number.

17711.6 Problems

 When a fi le is opened there are a large number of equatable keywords which may
be employed to establish its characteristics.

 The default fi le type used in Fortran is sequential formatted, but several other
esoteric types may be used.

 11.6 Problems

 1. Write a program to write the fi rst 500 integers to a fi le using formatted I/O. Put
10 values on a line, with a blank as the fi rst character of the line, and eight col-
umns allowed for each integer, with two spaces between integer fi elds.

 Now write a program to read this fi le into an array, and write the numbers in
reverse order over the original data, i.e., the data fi le now contains the fi rst 500
numbers in descending order.

 Now modify the fi rst program to add the next 500 integers to the same fi le, so
that the fi le now comprises the fi rst 500 numbers in descending order, and the
next 500 numbers in ascending order.

 2. To write and maintain a crude database of student details, we might do the fol-
lowing: create separate fi les for each year – CLAS1, CLAS2, CLAS3, or COF84,
COF85, COF86, and so on. In either case there is an unchanging prefi x, CLAS
or COF, and a variable suffi x, which identifi es membership within the overall
group. In each of the fi les we may wish to record details like name, date of birth,
address, courses taken, etc. Such fi les will require updating as details change or
as errors are noted. Write (or sketch out) a program which would select and
maintain such records and would allow corrected fi les to be printed out. While
you might feel that the most appropriate tool for this job is an editor, you might
fi nd it too powerful a tool. An editor can leave fi les in a sorry state. Naturally, any
program like this should be helpful (so called ‘user friendly’). Is this sort of
information sensitive enough to require security checks and passwords?

179I. Chivers and J. Sleightholme, Introduction to Programming with Fortran:
With Coverage of Fortran 90, 95, 2003, 2008 and 77,
DOI 10.1007/978-0-85729-233-9_12, © Springer-Verlag London Limited 2012

 Aims

 The aims of this chapter are:

 To consider some of the reasons for the inclusion of functions in a programming •
language.
 To introduce, with examples, some of the predefi ned functions available in •
Fortran.
 To introduce a classifi cation of intrinsic functions, generic, elemental, •
transformational.
 To introduce the concept of a user defi ned function. •
 To introduce the concept of a recursive function. •
 To introduce the concept of user defi ned elemental and pure functions. •
 To briefl y look at scope rules in Fortran for variables and functions. •
 To look at internal user defi ned functions. •

 12.1 Introduction

 The role of functions in a programming language and in the problem-solving
process is considerable and includes:

 Allowing us to refer to an action using a meaningful name, e.g., sine(x) a very •
concrete use of abstraction.

 Chapter 12
 Functions

 I can call spirits from the vasty deep.
 Why so can I, or so can any man; but will they come
 when you do call for them?

 William Shakespeare, King Henry IV, part 1

180 12 Functions

 Providing a mechanism that allows us to break a problem down into parts, giving •
us the opportunity to structure our problem solution.
 Providing us with the ability to concentrate on one part of a problem at a time and •
ignore the others.
 Allowing us to avoid the replication of the same or very similar sections of code •
when solving the same or a similar subproblem which has the secondary effect
of reducing the memory requirements of the fi nal program.
 Allowing us to build up a library of functions or modules for solving particular •
subproblems, both saving considerable development time and increasing our
effectiveness and productivity.

 Some of the underlying attributes of functions are:

 They take parameters or arguments. •
 The parameter can be an expression. •
 A function will normally return a value and the value returned is normally depen-•
dent on the parameter(s).
 They can sometimes take arguments of a variety of types. •

 Most languages provide both a range of predefi ned functions and the facility to
defi ne our own. We will look at the predefi ned functions fi rst.

 12.2 An Introduction to Predefi ned Functions and Their Use

 Fortran provides over a hundred intrinsic functions and subroutines. For the pur-
poses of this chapter a subroutine can be regarded as a variation on a function.
Subroutines are covered in more depth in a later chapter. They are used in a
straightforward way. if we take the common trigonometric functions, sine, cosine
and tangent, the appropriate values can be calculated quite simply by:

()
()
()

=
=
=

x sin y

z cos y

a tan y

 This is in rather the same way that we might say that X is a function of Y, or X is
sine Y. Note that the argument, Y, is in radians not degrees.

 12.2.1 Example 1: Simple Function Usage

 A complete example is given below:

 program ch1201
 implicit none
 real :: x

18112.3 Generic Functions

 print *, ' type in an angle (in radians) '
 read *,x
 print *,' Sine of ', x ,' = ',sin(x)

 end program ch1201

 These functions are called intrinsic functions. A selection is follows:

 function Action Example

 int Conversion to integer j=int(x)
 real Conversion to real x=real(j)
 abs Absolute value x=abs(x)
 mod Remaindering k=mod(i,j)

 Remainder when I divided by j
 sqrt Square root x=sqrt(y)
 exp Exponentiation y=exp(x)
 log Natural logarithm x=log(y)
 log 10 Common logarithm x=log10(y)
 sin Sine x=sin(y)
 cos Cosine x=cos(y)
 tan Tangent x=tan(y)
 asin Arc sine y=asin(x)
 acos Arccosine y=acos(x)
 atan Arctangent y=atan(x)
 atan2 Arctangent(a/b) y=atan2(a,b)

 A complete list is given in Appendix C.

 12.3 Generic Functions

 All but four of the intrinsic functions and procedures are generic, i.e., they can be
called with arguments of one of a number of kind types.

 12.3.1 Example 2: The abs Generic Function

 The following short program illustrates this with the abs intrinsic function:

182 12 Functions

 Type this program in and run it on the system you use.
 It is now possible with Fortran for the arguments to the intrinsic functions to be

arrays. It is convenient to categorise the functions into either elemental or transfor-
mational, depending on the action performed on the array elements.

 12.4 Elemental Functions

 These functions work with both scalar and array arguments, i.e., with arguments
that are either single or multiple valued.

 12.4.1 Example 3: Elemental Function Use

 Taking the earlier example with the evaluation of sine as a basis, we have:

 program ch1203
 implicit none
 real , dimension(5) :: x = (/1.0,2.0,3.0,4.0,5.0/)
 print *,' sine of ', x ,' = ',sin(x)

 end program ch1203

 In the above example the sine function of each element of the array x is calcu-
lated and printed.

 12.5 Transformational Functions

 Transformational functions are those whose arguments are arrays, and work on
these arrays to transform them in some way.

 12.5.1 Example 4: Simple Transformational Use

 To highlight the difference between an element-by-element function and a transfor-
mational function consider the following examples:

 program ch1204
 implicit none
 real , dimension(5) :: x = (/1.0,2.0,3.0,4 . 0,5 . 0/)
 ! elemental function
 print *, ' Sine of ' , x , ' = ',sin(x)

 ! Transformational function
 print *, ' Sum of ' , x , ' = ',sum(x)

 end program ch1204

18312.7 Example 6: Easter

 The sum function adds each element of the array and returns the sum as a scalar,
i.e., the result is single valued and not an array.

 12.5.2 Example 5: Intrinsic dot_product Use

 The following program uses the transformational function dot_ product:

 program ch1205
 implicit none
 real , dimension(5) :: x = (/1.0,2.0,3.0,4.0,5.0/)
 print *,' Dot product of x with x is'
 print *,' ',dot_product(x,x)

 end program ch1205

 Try typing these examples in and running them to highlight the differences
between elemental and transformational functions.

 12.6 Notes on Function Usage

 You should not use variables which have the same name as the intrinsic functions;
e.g., what does sin(x) mean when you have declared sin to be a real array?

 When a function has multiple arguments care must be taken to ensure that the
arguments are in the correct position and of the appropriate kind type.

 You may also replace arguments for functions by expressions, e.g.,

 x = log(2.0)

or

 x = log(abs(y))

or

 x = log(abs(y) + z/2.0)

 12.7 Example 6: Easter

 This example uses only one function, the mod (or modulus). It is used several times,
helping to emphasise the usefulness of a convenient, easily referenced function. The
program calculates the date of Easter for a given year. It is derived from an algo-
rithm by Knuth, who also gives a fuller discussion of the importance of its algo-
rithm. He concludes that the calculation of Easter was a key factor in keeping

184 12 Functions

arithmetic alive during the Middle Ages in Europe. Note that determination of the
Eastern churches’ Easter requires a different algorithm:

18512.9 Supplying Your Own Functions

 We have introduced a new statement here, the if then endif, and a variant the if
then else endif. A more complete coverage is given in the chapter on control struc-
tures. The main point of interest is that the normal sequential fl ow from top to bot-
tom can be varied. In the following case,

 if (expression) then
 block of statements

 endif

if the expression is true the block of statements between the if then and the endif
is executed. If the expression is false then this block is skipped, and execution pro-
ceeds with the statements immediately after the endif.

 In the following case,

 if (expression) then
 block 1

 else
 block 2

 endif

if the expression is true block 1 is executed and block 2 is skipped. if the expression
is false then block 2 is executed and block 1 is skipped. Execution then proceeds
normally with the statement immediately after the endif.

 As well as noting the use of the mod generic function in this program, it is also
worth noting the structure of the decisions. They are nested, rather like the nested
do loops we met earlier.

 12.8 Intrinsic Procedures

 An alphabetical list of all intrinsic functions and subroutines is given in Appendix
C. This list provides the following information:

 Function name. •
 Description. •
 Argument name and type. •
 Result type. •
 Classifi cation. •
 Examples of use. •

 This appendix should be consulted for a more complete and thorough under-
standing of intrinsic procedures and their use in Fortran.

 12.9 Supplying Your Own Functions

 There are two stages here: fi rstly, to defi ne the function and, secondly, to reference
or use it. Consider the calculation of the greatest common divisor of two integers.

186 12 Functions

 12.9.1 Example 7: Simple User Defi ned Function

 The following defi nes a function to achieve this:

 module gcd_module
 contains
 integer function gcd(a,b)
 implicit none
 integer , intent(in) :: a,b
 integer :: temp
 if (a < b) then
temp=a

 else
 temp=b

 endif
 do while ((mod(a, temp) /= 0) .or. (mod(b,temp) / = 0))
 temp=temp-1

 end do
 gcd=temp

 end function gcd
 end module gcd module

 To use this function, you reference or call it with a form like:

 program ch1207
 use gcd_module
 implicit none integer :: i,j,result
 integer :: gcd
 print *, ' type in two integers'
 read *,i,j
 result=gcd(i,j)
 print *,' gcd is ',result

 end program ch1207

 We will start by talking about the actual function and then cover the following
statements

 module gcd module
 contains
 ..
 end module gcd_module
and
 use gcd_module

later.
 The fi rst line of the function

 integer function gcd(a,b)

18712.9 Supplying Your Own Functions

has a number of items of interest:

 Firstly the function has a type, and in this case the function is of type integer, i.e., •
it will return an integer value.
 The function has a name, in this case gcd. •
 The function takes arguments or parameters, in this case • a and b .

 The structure of the rest of the function is the same as that of a program, i.e., we
have declarations, followed by the executable part. This is because both a program
and a function can be regarded as a program unit in Fortran terminology. We will
look into this more fully in later chapters.

 In the declaration we also have a new attribute for the integer declaration. The two
parameters a and b are of type integer, and the intent (in) attribute means that
these parameters will NOT be altered by the function. It is good programming practice
for functions not to have side effects, i.e. not modify their arguments, and do no i/o.

 The value calculated is returned through the function name somewhere in the
body of the executable part of the function. In this case gcd appears on the left-
hand side of an arithmetic assignment statement at the bottom of the function. The
end of the function is signifi ed in the same way as the end of a program:

 end function gcd

 We then have the program which actually uses the function gcd . In the program
the function is called or invoked with I and j as arguments. The variables are called
 a and b in the function, and references to a and b in the function will use the values
that I and j have respectively in the main program. We cover the area of argument
association in the next section.

 Note also a new control statement, the do while enddo. In the following case,

 do while (expression)
 block of statements

 enddo

the block of statements between the do while and the enddo is executed whilst the
expression is true. There is a more complete coverage in Chap. 13 .

 We have two options here regarding compilation. Firstly, to make the function
and the program into one fi le, and invoke the compiler once. Secondly, to make the
function and program into separate fi les, and invoke the compiler twice, once for
each fi le. With large programs comprising one program and several functions it is
probably worthwhile to keep the component parts in different fi les and compile
individually, whereas if it consists of a simple program and one function then keep-
ing things together in one fi le makes sense.

188 12 Functions

 12.10 An Introduction to the Scope of Variables, Local
Variables and Interface Checking

 One of the major strengths of Fortran is the ability to work on parts of a problem at
a time. This is achieved by the use of program units (a main program, one or more
functions and one or more subroutines) to solve discrete subproblems. Interaction
between them is limited and can be isolated, for example, to the arguments of the
function. Thus variables in the main program can have the same name as variables
in the function and they are completely separate variables, even though they have
the same name. Thus we have the concept of a local variable in a program unit.

 In the example above I, j, result, are local to the main program. The
declaration of gcd is to tell the compiler that it is an integer, and in this case it is an
external function.

 a and b in the function gcd do not exist in any real sense; rather they will be
replaced by the actual variable values from the calling routine, in this case by what-
ever values I and j have. temp is local to gcd.

 A common programming error in Fortran 66 and 77 was mismatches between
actual and dummy arguments. Problems caused by this were often very subtle and
hard to fi nd.

 Fortran 90 introduced a solution to the problem via the use of modules and con-
tains statements. We have added

 module gcd_module
 contains
 ..
 end module gcd_module

around the function defi nition, which contains the function in a module and the fol-
lowing statement in the main program

 use gcd module

provides an explicit interface (in Fortran terminology) that requires the compiler to
check at compile time that the call is correct, i.e. that there are the correct number
of parameters, they are of the correct type and in this case that the function return
type is correct. We will cover this area in greater depth in later chapters.

 12.11 Recursive Functions

 There is an additional form of the function header that must be used when the func-
tion is recursive. Recursion means the breaking down of a problem into a simpler
but identical subproblem. The concept is best explained with reference to an actual

18912.11 Recursive Functions

example. Consider the evaluation of a factorial, e.g., 5!. From simple mathematics
we know that the following is true:

 5!=5*4!
 4!=4*3!
 3!=3*2!
 2!=2*1!
 1!=1
 and thus 5! = 5*4*3*2*1 or 120.

 12.11.1 Example 8: Recursive Factorial Evaluation

 Let us look at a program with recursive function to solve the evaluation of
factorials.

 module factorial_module
 implicit none
 contains
 recursive integer function factorial(I) result(answer)
 implicit none
 integer , intent(in)::I
 if (I==0) then
answer=1
 else
 answer=i*factorial(I-1)

 end if
 end function factorial
 end module factorial_module
 program ch1208
 use factorial_module
 implicit none
 integer :: I, f
 print *, ' type in the number, integer only'
 read *,I
 do while(i<0)
 print *,' factorial only defi ned for '
 print *,' positive integers: re-input'
 read *,I

 end do
 f=factorial(I)
 print *, ' answer is' , f

 end program ch1208

190 12 Functions

 What additional information is there? Firstly, we have an additional attribute on
the function header that declares the function to be recursive. Secondly, we must
return the result in a variable, in this case answer . Let us look now at what happens
when we compile and run the whole program (both function and main program). If
we type in the number 5 the following will happen:

 The function is fi rst invoked with argument 5. The else block is then taken and •
the function is invoked again.
 The function now exists a second time with argument 4. The else block is then •
taken and the function is invoked again.
 The function now exists a third time with argument 3. The else block is then •
taken and the function is invoked again.
 The function now exists a fourth time with argument 2. The else block is then •
taken and the function is invoked again.
 The function now exists a fi fth time with argument 1. The else block is then taken •
and the function is invoked again.
 The function now exists a sixth time with argument 0. The if block is executed •
and Answer = 1. This invocation ends and we return to the previous level, with
Answer = 1*1.
 We return to the previous invocation and now answer = 2*1. •
 We return to the previous invocation and now answer = 3*2. •
 We return to the previous invocation and now answer = 4*6. •
 We return to the previous invocation and now answer = 5*24. •

 The function now terminates and we return to the main program or calling
routine. The answer 120 is the printed out.

 Add a print *, I statement to the function after the last declaration and type
the program in and run it. Try it out with 5 as the input value to verify the above
statements.

 Recursion is a very powerful tool in programming, and remarkably simple solu-
tions to quite complex problems are possible using recursive techniques. We will
look at recursion in much more depth in the later chapters on dynamic data types,
and subroutines and modules.

 12.12 Example 9: Recursive Version of gcd

 The following is another example of the earlier gcd function but with the algorithm
in the function replaced with an alternate recursive solution:

 module gcd_module
 implicit none
 contains
 recursive integer function gcd(i,j) result(answer)
 implicit none
 integer , intent(in) :: i,j

19112.13 Example 10: After Removing Recursion

 if (j==0) then
 answer=I

 else
 answer=gcd(j,mod(i,j))

 endif
 end function gcd
 endmodule gcd_module
 program ch1209
 use gcd_module
 implicit none
 integer :: i,j,result
 print *,' type in two integers'
 read *,i,j
 result=gcd(i,j)
 print *,' gcd is ',result
 end program ch1209

 Try this program out on the system you work with, look at the timing information
provided, and compare the timing with the previous example. The algorithm is a
much more effi cient algorithm than in the original example, and hence should be
much faster. On one system there was a 20-fold decrease in execution time between
the two versions.

 Recursion is sometimes said to be ineffi cient, and the following example looks at
a nonrecursive version of the second algorithm.

 12.13 Example 10: After Removing Recursion

 The following is a variant of the above, with the same algorithm, but with the recur-
sion removed:

 module gcd_module
 implicit none
 contains
 integer function gcd(i,j)
 implicit none
 integer , intent(inout) :: i,j
 integer :: temp
 do while (j/=0)
 temp=mod(i,j)
 i=j
 j=temp

 end do
 gcd=I

 end function gcd

192 12 Functions

 end module gcd module
 program ch1210
 use gcd_module
 implicit noneinteger :: i,j,result
 print *,' type in two integers'
 read *,i,j
 result=gcd(i,j)
 print *,' gcd is ',result

 end program ch1210

 12.14 Internal Functions

 An internal function is a more restricted and hidden form of the normal function
defi nition.

 Since the internal function is specifi ed within a program segment, it may only be
used within that segment and cannot be referenced from any other functions or sub-
routines, unlike the intrinsic or other user defi ned functions.

 12.14.1 Example 11: Stirling’s Approximation

 In this example we use Stirling’s approximation for large n,

π æ ö= ç ÷

è ø
! 2

n
n

n n
e

and a complete program to use this internal function is given below:

 program ch1211
 implicit none
 real :: result,n,r
 print *, ' type in n and r'
 read *,n,r

 ! number of possible combinations that can
 ! be formed when
 ! r objects are selected out of a group of n
 ! n!/r!(n-r)!
 result=stirling(n)/(stirling(r)*stirling(n-r))
 print *,result
 print *,n,r

 contains

19312.15 Pure Functions

 real function stirling (x)
 real , intent(in) :: x
 real , parameter :: pi=3.1415927, e =2.7182828
 stirling=sqrt(2.*pi*x) * (x/e)**x

 end function stirling
 end program ch1211

 The difference between this example and the earlier ones lies in the contains
statement. The function is now an integral part of the program and could not, for
example, be used elsewhere in another function. This provides us with a very pow-
erful way of information hiding and making the construction of larger programs
more secure and bug free.

 12.15 Pure Functions

 We mentioned earlier that functions should not have side effects. If your functions
do have side effects and are running the code on parallel systems we have the addi-
tional problem that it may not actually work! We would also like to be able to take
advantage of automatic parallelisation if possible. In the following example we
show how to do this using the pure prefi x specifi cation.

 module gcd_module
 implicit none
 contains
 pure integer function gcd(a,b)
 implicit none
 integer , intent(in) :: a,b
 integer :: temp
 if (a < b) then
 temp=a

 else
 temp=b

 endif
 do while ((mod (a, temp) /= 0) &
.or. (mod(b,temp) /=0))
 temp=temp-1

 end do
 gcd=temp

 end function gcd
 end module gcd_module
 program ch1212
 use gcd_module
 implicit none
 integer :: i,j,result

194 12 Functions

 print *, ' type in two integers'
 read *,i,j
 result=gcd(i,j)
 print *,' gcd is ',result

 end program ch1212

 Subroutines can also be made pure.

 12.15.1 Pure Constraints

 The following are some of the constraints on pure procedures

 a dummy argument must be intent(in) •
 local variables may not have the save attribute •
 no i/o must be done in the procedure •
 any procedures referenced must be pure •
 you cannot have a stop statement in a pure procedure •

 The above information should be enough to write simple pure functions.

 12.16 Elemental Functions

 Fortran 77 introduced the concept of generic intrinsic functions. Fortran 90 added
elemental intrinsic functions and the ability to write generic user defi ned functions.
Fortran 95 squared the circle and enabled us to write elemental user defi ned func-
tions. Here is an example to illustrate this.

 module reciprocal_module
 contains
 real elemental function reciprocal(a)
 implicit none
 real , intent(in) :: a
 reciprocal=1.0/a

 end function reciprocal
 end module reciprocal_module
 program ch1213
 use reciprocal_module
 implicit none
 real : : x=10.0
 real , dimension(5) :: y=[1.0,2.0,3.0,4.0,5.0]

 print *, ' reciprocal of x is ', reciprocal (x)
 print *, ' reciprocal of y is ', reciprocal (y)

 end program ch1213

19512.17 Resumé

 Hence we can call our own elemental functions with both scalar and array
arguments.

 Elemental functions require the use of explicit interfaces, and we have therefore
used modules to achieve this.

 12.17 Resumé

 There are a large number of Fortran supplied functions and subroutines (intrinsic
functions) which extend the power and scope of the language. Some of these func-
tions are of generic type, and can take several different types of arguments. Others
are restricted to a particular type of argument. Appendix C should be consulted for
a fuller coverage concerning the rules that govern the use of the intrinsic functions
and procedures.

 When the intrinsic functions are inadequate, it is possible to write user defi ned
functions. Besides expanding the scope of computation, such functions aid in prob-
lem visualisation and logical subdivision, may reduce duplication, and generally
help in avoiding programming errors.

 In addition to separately defi ned user functions, internal functions may be
employed. These are functions which are used within a program segment.

 Although the normal exit from a user defi ned function is through the end, other,
abnormal, exits may be defi ned through the return statement.

 Communication with nonrecursive functions is through the function name and
the function arguments. The function must contain a reference to the function name
on the left-hand side of an assignment. Results may also be returned through the
argument list.

 We have also covered briefl y the concept of scope for a variable, local variables,
and argument association. This area warrants a much fuller coverage and we will do
this after we have covered subroutines and modules.

 Here is the output from one compiler.

196 12 Functions

 12.18 Formal Syntax

 The syntax of a function is:

 [function prefi x] function_statement &
 [result (result_name)]
 [specifi cation part]
 [execution_part]
 [internal sub program part]
 end [function [function name]]

and prefi x is:

 [type specifi cation] recursive

or

 [recursive] type specifi cation

and the function_statement is:

 function function_name ([dummy argument name list])

 [] represent optional parts to the specifi cation.
 The simple syntax for a module as we have used them in this chapter is

 module module_name
 contains
 ..
 end module module_name

and

 use module_name

in the calling routine.

 12.19 Rules and Restrictions

 The type of the function must only be specifi ed once, either in the function state-
ment or in a type declaration.

 The names must match between the function header and end function function
name statement.

 If there is a result clause, that name must be used as the result variable, so all
references to the function name are recursive calls.

 The function name must be used to return a result when there is no result clause.
We will look at additional rules and restrictions in later chapters.

19712.21 Bibliography

 12.20 Problems

 1. Find out the action of the mod function when one of the arguments is negative.
Write your own modulus function to return only a positive remainder. Don’t call
it mod !

 2. Create a table which gives the sines, cosines and tangents for −1–91° in 1° inter-
vals. Remember that the arguments have to be in radians. What value will you
give p ? One possibility is p = 4*atan(1.0). Pay particular attention to the follow-
ing angle ranges:

 −1,0,+1 •
 29,30,31 •
 44,45,46 •
 59,60,61 •
 89,90,91 •

 What do you notice about sine and cosine at 0 and 90 degrees? What do you
notice about the tangent of 90 degrees? Why do you think this is?
 Use a calculator to evaluate the sine, cosine at 0 and 90 degrees. do the same for
the tangent at 90 degrees. Does this surprise you?
 Repeat using a spreadsheet, e.g., Excel.
 Are you surprised?
 Repeat the Fortran program using one or more real kind types.

 3. Write a program that will read in the lengths a and b of a right-angled triangle
and calculate the hypotenuse c. Use the Fortran sqrt intrinsic.

 4. Write a program that will read in the lengths a and b of two sides of a triangle and
the angle between them 9 (in degrees). Calculate the length of the third side c
using the cosine rule:

 θ= + -2 2 2 2 ()c a b abcos

 5. Write a function to convert an integer to a binary character representation. It
should take an integer argument and return a character string that is a sequence
of zeros and ones. Use the program in Chap. 5 as a basis for the solution.

 12.21 Bibliography

 Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions. Dover, New
York (1968)

 This book contains a fairly comprehensive collection of numerical algorithms for
many mathematical functions of varying degrees of obscurity. It is a widely used
source.

198 12 Functions

 Association of Computing Machinery (ACM)
 Collected Algorithms, 1960–1974
 Transactions on Mathematical Software, 1975 – A good source of more special-
ised algorithms. Early algorithms tended to be in Algol, Fortran now
predominates.

 12.21.1 Recursion and Problem Solving

 The following are a number of books that look at the role of recursion in problem
solving and algorithms.

 Hofstadter, D.R.: Gödel, Escher, Bach—An Eternal Golden Braid. Harvester Press,
London (1979)

 The book provides a stimulating coverage of the problems of paradox and con-
tradiction in art, music and mathematics using the works of Escher, Bach and
Gödel, and hence the title. There is a whole chapter on recur sive structures and
processes. The book also covers the work of Church and Turing, both of whom
have made signifi cant contributions to the theory of computing.
 Kruse, R.L.: Data Structures and Program Design. Prentice-Hall, Englewood

Cliffs (1994)
 Quite a gentle introduction to the use of recursion and its role in problem solving.
Good choice of case studies with explanations of solutions. Pascal is used.
 Sedgewick, R.: Algorithms in Modula 3. Addison-Wesley, Reading (1993)
 Good source of algorithms. Well written. The gcd algorithm was taken from this
source.
 Vowels, R.A.: Algorithms and Data Structures in F and Fortran. Unicomp,

Tucson (1998)
 The only book currently that uses Fortran 90/95 and F. Visit the Fortran web site
for more details. They are the publishers.

 http://www.fortran.com/fortran/market.html

 Wirth, N.: Algorithms + Data Structures = Programs. Prentice-Hall, Englewood
Cliffs (1976)

 In the context of this chapter the section on recursive algorithms is a very worth-
while investment in time.
 Wood, D.: Paradigms and Programming in Pascal. Computer Science Press,

Rockville (1984)
 contains a number of examples of the use of recursion in problem solving. Also
provides a number of useful case studies in problem solving.

http://www.fortran.com/fortran/market.html

199I. Chivers and J. Sleightholme, Introduction to Programming with Fortran:
With Coverage of Fortran 90, 95, 2003, 2008 and 77,
DOI 10.1007/978-0-85729-233-9_13, © Springer-Verlag London Limited 2012

 Aims

 The aims of this chapter are to introduce:

 Selection among various courses of action as part of the algorithm. •
 The concepts and statements in Fortran needed to support the above:•

 Logical expressions and logical operators.
 One or more blocks of statements.

 The if then endif construct. •
 The if then else if endif construct. •
 To introduce the case statement with examples. •
 To introduce the do loop, in three forms with examples, in particular:•

 The iterative do loop.
 The do while form.
 The do … if then exit end do or repeat until form.
 The cycle statement.
 The exit statement.

 Chapter 13
 Control Structures

 Summarizing: as a slow-witted human being I have a very small
head and I had better learn to live with it and to respect my
limitations and give them full credit, rather than try to ignore
them, for the latter vain effort will be punished by failure.

 Edsger W. Dijkstra, Structured Programming

200 13 Control Structures

 13.1 Introduction

 When we look at this area it is useful to gain some historical perspective concerning
the control structures that are available in a programming language.

 At the time of the development of Fortran in the 1950s there was little theoretical
work around and the control structures provided were very primitive and closely
related to the capability of the hardware.

 At the time of the fi rst standard in 1966 there was still little published work
regarding structured programming and control structures. The seminal work by
Dahl, Dijkstra and Hoare was not published until 1972.

 By the time of the second standard there was a major controversy regarding
languages with poor control structures like Fortran which essentially were limited
to the goto statement. The facilities in the language had led to the development and
continued existence of major code suites that were unintelligible, and the pejorative
term spaghetti was applied to these programs. Developing an understanding of what
a program did became an almost impossible task in many cases.

 Fortran missed out in 1977 on incorporating some of the more modern and intel-
ligible control structures that had emerged as being of major use in making code
easier to understand and modify.

 It was not until the 1990 standard that a reasonable set of control structures
had emerged and became an accepted part of the language. The more inquisitive
reader is urged to read at least the work by Dahl, Dijkstra and Hoare to develop
some understanding of the importance of control structures and the role of struc-
tured programming. The paper by Knuth is also highly recommended as it pro-
vides a very balanced coverage of the controversy of earlier times over the goto
statement.

 13.2 Selection Among Courses of Action

 In most problems you need to choose among various courses of action, e.g.,

 if overdrawn, then do not draw money out of the bank. •
 if Monday, Tuesday, Wednesday, Thursday or Friday, then go to work. •
 if Saturday, then go to watch Queens Park Rangers. •
 if Sunday, then lie in bed for another two hours. •

 As most problems involve selection between two or more courses of action it is
necessary to have the concepts to support this in a programming language. Fortran
has a variety of selection mechanisms, some of which are introduced below.

20113.2 Selection Among Courses of Action

 13.2.1 The Block if Statement

 The following short example illustrates the main ideas:

 If today is Sunday then the block of statements between the if and the endif is
executed. After this block has been executed the program continues with the state-
ments after the endif. If today is not Sunday the program continues with the state-
ments after the endif immediately. This means that the statements after the endif are
executed whether or not the expression is true. The general form is:

 The logical expression is an expression that will be either true or false; hence its
name. Some examples of logical expressions are given below:

 (Alpha > = 10.1)

Test if Alpha is greater than or equal to 10.1

 (Balance < = 0.0)

 Test if overdrawn

 ((Today == Saturday).OR.(Today == Sunday))

 Test if today is Saturday or Sunday

 ((Actual - Calculated) < = 1.0E-6)

 Test if Actual minus Calculated is less than or equal to 1.0E-6

202 13 Control Structures

 Fortran has the following relational and logical operators:

 operator Meaning type

 = = Equal Relational
 /= Not equal Relational
 >= Greater than or equal Relational
 <= Less than or equal Relational
 < Less than Relational
 > Greater than Relational
 .AND. And Logical
 .OR. Or Logical
 .NOT. Not Logical

 The fi rst six should be self-explanatory. They enable expressions or variables to
be compared and tested. The last three enable the construction of quite complex
comparisons, involving more than one test; in the example given earlier there was a
test to see whether today was Saturday or Sunday.

 Use of logical expressions and logical variables (something not mentioned so
far) is covered again in a later chapter on logical data types.

 the ‘if expression then statements endif is called a block if construct. There is a
simple extension to this provided by the else statement. Consider the following
example:

 if (Balance > 0.0) then
 • draw money out of the bank else

 else
 • borrow money from a friend

 endif

 Buy a round of drinks.
 In this instance, one or other of the blocks will be executed. then execution will

continue with the statements after the endif statement (in this case buy a round).
 There is yet another extension to the block if which allows an elseif statement.

Consider the following example:

20313.2 Selection Among Courses of Action

 Note that as soon as one of the logical expressions is true, the rest of the test is
skipped, and execution continues with the statements after the endif. This implies
that a construction like

 if(I < 2)then
 …

 elseif(I < 1)then
 …

 else
 …

 endif

is inappropriate. if I is less than 2, the latter condition will never be tested. The else
statement has been used here to aid in trapping errors or exceptions. This is recom-
mended practice. A very common error in programming is to assume that the data
are in certain well-specifi ed ranges. The program then fails when the data go outside
this range. It makes no sense to have a day other than Monday, Tuesday, Wednesday,
Thursday, Friday, Saturday or Sunday.

 13.2.1.1 Example 1: Quadratic Roots

 A quadratic equation is:

 + + =2 0ax bx c

 This program is straightforward, with a simple structure. The roots of the qua-
dratic are either real, equal and real, or complex depending on the magnitude of the
term B* *2–4 * A * C. The program tests for this term being greater than or less
than zero: it assumes that the only other case is equality to zero (from the mechanics
of a computer, fl oating point equality is rare, but we are safe in this instance):

204 13 Control Structures

 13.2.1.2 Note

 Given the understanding you now have about real arithmetic and fi nite precision
will the else block above ever be executed?

 13.2.1.3 Example 2: Date Calculation

 This next example is also straightforward. It demonstrates that, even if the condi-
tions on the if statement are involved, the overall structure is easy to determine. The
comments and the names given to variables should make the program self-explana-
tory. Note the use of integer division to identify leap years:

 program ch1302
 implicit none
 integer : : Year , N , Month , Day , T
!
 ! calculates day and month from year and
 ! day-within-year
 ! t is an offset to account for leap years.
 ! Note that the fi rst criteria is division by 4
 ! but that centuries are only
 ! leap years if divisible by 400
 ! not 100 (4 * 25) alone.
!
 print*,' year, followed by day within year'
read*,Year,N

! checking for leap years
 if ((Year/4)*4 == Year) then

20513.2 Selection Among Courses of Action

T=1
if ((Year/400)*400 == Year) then
 T=1

ELSEIF ((Year/100)*100 == Year) then
 T=0

endif
else

 T=0
endif

 ! accounting for February
if(N > (59+T))then
 Day=N+2-T

else
 Day=N

endif
 Month=(Day+91)*100/3055
day=(day+91)-(month*3055)/100
month=month-2
 print*, ' calendar date is ', day , month , year

end program ch1302

 13.2.2 The Case Statement

 The case statement provides a very clear and expressive selection mechanism
between two or more courses of action. Strictly speaking it could be constructed
from the if the else if endif statement, but with considerable loss of clarity. Remember
that programs have to be read and understood by both humans and compilers!

 13.2.2.1 Example 3: Simple Calculator

 Program ch1303 implicit none
 !
 ! Simple case statement example
 !
 Integer :: I,J,K
 character :: operator
 do
 print *, ' type in two integers'
 read *, I,J
 print *,' type in operator'
 read '(A)',operator Calculator : &
 select case (operator)
 case ('+') Calculator
 K=I + J

206 13 Control Structures

 print *, ' Sum of numbers is ',K
 case ('-') Calculator
 K=I−J
 print *,' Difference is ',K

 case ('/') Calculator
 K=I/J
 print *,' Division is ',K

 case ('*') Calculator
 K =I*J
 print *,' Multiplication is ',K

 case default Calculator
 exit

 end select Calculator
 end do

 end program ch1303

 The user is prompted to type in two integers and the operation that they would
like carried out on those two integers. The case statement then ensures that the
appropriate arithmetic operation is carried out. The program terminates when the
user types in any character other than +, −, * or /.

 The case default option introduces the exit statement. This statement is used in
conjunction with the do statement. When this statement is executed control passes to
the statement immediately after the matching end do statement. In the example above
the program terminates, as there are no executable statements after the end do.

 13.2.2.2 Example 4: Counting Vowels, Consonants, etc

 This example is more complex, but again is quite easy to understand. The user types
in a line of text and the program produces a summary of the frequency of the char-
acters typed in:

 program ch1304
 implicit none
 !
 ! Simple counting of vowels, consonants,
 ! digits, blanks and the rest
 !
 integer :: Vowels=0 , Consonants=0, Digits=0
 integer :: Blank=0, Other=0, I
 character :: Letter
 character (LEN=80) :: Line read ' (A) ' , Line
 do I=1,80

 Letter=Line(I:I)
 ! the above extracts one character at position I select case
(Letter)

20713.3 The Three Forms of the do Statement

 case ('A','E','I','O','U', &
 'a','e','I','o','u')
 Vowels=Vowels + 1

 case ('B', 'C', 'D', 'F', 'G', 'H', &
 'J','K','L','M','N','P', &
 'Q', 'R', 'S', 'T', 'V', 'W', &
 'X','Y','Z',
 'b','c','d','f','g','h', &
 'j','k','l','m','n','p', &
 'q','r','s','t','v','w',&
 'x','y','z')

 Consonants=Consonants + 1
 case ('1', '2', '3', '4', '5', '6', '7', '8','9', '0')
 Digits=Digits + 1

 case (' ')
 Blank=Blank + 1

 case default
 Other=Other+1

 end select
 end do
 print *, ' Vowels = ', Vowels
 print *, ' Consonants = ', Consonants
 print *, ' Digits = ', Digits
 print *, ' Blanks = ',Blank
 print *, ' Other characters = ', Other

 end program ch1304

 13.3 The Three Forms of the do Statement

 You have already been introduced in the chapters on arrays to the iterative form of
the do loop, i.e.,

 do Variable = Start, End, Increment
 block of statements
 end do

 A complete coverage of this form is given in the three chapters on arrays. There
are two additional forms of the block do that complete our requirements:

 The fi rst form is often called a while loop as the block of statements executes
whilst the logical expression is true, and the second form is often called a repeat
until loop as the block of statements executes until the statement is true.

 Note that the while block of statements may never be executed, and the repeat
until block will always be executed at least once.

208 13 Control Structures

 13.3.1 Example 5: Sentinel Usage

 The following example shows a complete program using this construct:

 program ch1305
 implicit none
 ! this program picks up the fi rst occurrence
 ! of a number in a list.
 ! a sentinel is used, and the array is 1 more
 ! than the max size of the list.
 integer , allocatable , dimension(:) : : A
 integer :: Mark
 integer :: I,Howmany
 open (unit=1,fi le='data.txt')
 print *, ' What number are you looking for?'
 read *, Mark
 print *, ' How many numbers to search?'
 read *,Howmany
 allocate(A(1:Howmany+1))
 read(unit=1,fmt=*) (A(i),I=1,Howmany)
 I = 1
 A(Howmany+1)= Mark
 do while(Mark /= A(I))
 I = I + 1

 end do
 if(I == (Howmany+1)) then
 print*,' item not in list'

 else
 print*,' item is at position ',I

 endif
 end program ch1305

 The repeat until construct is written in Fortran as:

 do
 …
 …
 if (Logical Expression) exit

 end do

 There are problems in most disciplines that require a numerical solution. The
two main reasons for this are either that the problem can only be solved numerically
or that an analytic solution involves too much work. Solutions to this type of prob-
lem often require the use of the repeat until construct. The problem will typically
require the repetition of a calculation until the answers from successive evaluations

20913.3 The Three Forms of the do Statement

differ by some small amount, decided generally by the nature of the problem. A
program extract to illustrate this follows:

 Here the value of the tolerance is set to 1.0E–6. Note again the use of the exit
statement. The do end do block is terminated and control passes to the statement
immediately after the matching end do.

 13.3.2 Cycle and Exit

 These two statements are used in conjunction with the block do statement. You have
seen examples above of the use of the exit statement to terminate the block do, and
pass control to the statement immediately after the corresponding end do
statement.

 The cycle statement can appear anywhere in a block do and will immediately
pass control to the start of the block do. Examples of cycle and exit are given in later
chapters.

 13.3.3 Example 6: e**x Evaluation

 The function etox illustrates one use of the repeat until construct. The function
evaluates e**x. This may be written as

2 31 x / 1! x / 2! x / 3!+ + + …

or

−∞

=

+
−∑

1

1

1
(1) !

n

n

x x

n n

Every succeeding term is just the previous term multiplied by x/n. At some point the
term x/n becomes very small, so that it is not sensibly different from zero, and suc-
cessive terms add little to the value. The function therefore repeats the loop until x/n

210 13 Control Structures

is smaller than the tolerance. The number of evaluations is not known beforehand,
since this is dependent on x:

 module etox_module
 implicit none
 contains
 real function etox(x)
 implicit none
 real :: term
 real , intent(in) :: x
 integer :: nterm
 real , parameter ::tol = 1.0E-6
 etox=1.0
 term=1.0
 nterm=0
 do
 nterm = nterm +1
 term = (x / nterm) * term
 etox = etox + Term
 if (abs(term) <= tol)exit

 end do
 end function etox
 end module etox module

 program ch1306
 use etox module
 implicit none
 real , parameter :: x=1.0
 real : : y
 print *,' Fortran intrinsic ',exp(x)
 y=etox(x)
 print *,' User defi ned etox ',y

 end program ch1306

 The whole program compares the user defi ned function with the Fortran intrinsic
exp function.

 13.3.4 Example 7: Wave Breaking on an Offshore Reef

 This example is drawn from a situation where a wave breaks on an offshore reef or
sand bar, and then reforms in the near-shore zone before breaking again on the
coast. It is easier to observe the heights of the reformed waves reaching the coast
than those incident to the terrace edge.

 Both types of loops are combined in this example. The algorithm employed here
fi nds the zero of a function. Essentially, it fi nds an interval in which the zero must

21113.3 The Three Forms of the do Statement

lie; the evaluations on either side are of different signs. The while loop ensures that
the evaluations are of different signs, by exploiting the knowledge that the incident
wave height must be greater than the reformed wave height (to give the lower
bound). The upper bound is found by experiment, making the interval bigger and
bigger. Once the interval is found, its mean is used as a new potential bound. The
zero must lie on one side or the other; in this fashion, the interval containing the zero
becomes smaller and smaller, until it lies within some tolerance. This approach is
rather plodding and unexciting, but is suitable for a wide range of problems

 Here is the program:

 program ch1307
 implicit none
 real : : Hi , Hr , Hlow , High , Half , Xl
 real : : Xh , Xm , D
 real , parameter :: Tol=1.0E-6
 ! problem - fi nd hi from expression given
 ! in function f
 ! F=A*(1.0-0.8*EXP(-0.6*C/A))-B
 ! hi is incident wave height (c)
 ! hr is reformed wave height (b)
 ! d is water depth at terrace edge (a)

 print*,' Give reformed wave height, and water depth'
 read*,Hr,d

 !
 ! for Hlow- let Hlow=hr
 ! for high- let high=Hlow*2.0
 !
 ! check that signs of function results are different
 !
 Hlow = hr
 high = hlow*2.0
 xl = f(hlow, hr, d)
 xh = f(high, hr, d)

 !
 do while ((xl*xh) >= 0.0)

 high = high*2.0
 xh = f(high,hr,d)

 end do
 !
 do
 half=(hlow+high) *0.5
 xm=f(half, hr, d)
 if((xl*xm) < 0.0)then

 xh=xm
 high=half

212 13 Control Structures

 else
 xl=xm
 hlow=half
 endif
 if(abs(high-hlow)<= tol)exit

 end do
 print*,' Incident Wave Height Lies Between'
 print*,Hlow, ' and ',high,' metres'

 contains
 real function f(a,b,c)
 implicit none
 real , intent (in) :: a
 real , intent (in) :: b
 real , intent (in) :: c
 f=a*(1.0−0.8*exp(−0.6*c/a))−b

 end function f
 end program ch1307

 13.4 Summary

 You have been introduced in this chapter to several control structures and these
include:

 The block if. •
 The if then else if. •
 The case construct. •
 The block do in three forms:•

 The iterative do or do variable = start,end,increment … end do. –
 The while construct, or do while … end do. –
 The repeat until construct, or do … if then exit end do. –

 The cycle and exit statements, which can be used with do statement in all three •
forms:

 The do variable – = start,end,increment … end do.
 The while construct, or do while … end do. –
 The repeat until construct, or do … if then exit end do. –

 These constructs are suffi cient for solving a wide class of problems. There are
other control statements available in Fortran, especially those inherited from Fortran
66 and Fortran 77, but those covered here are the ones preferred. We will look in
Chap. 35 at one more control statement, the so-called goto statement, with recom-
mendations as to where its use is appropriate.

21313.5 Problems

 13.4.1 Control Structure Formal Syntax

 case

 select case (case variable)
 [case case selector

 [executable construct] ...] ...
 [case DEFAULT
 [executable construct]

 end select

 do

 do [label]
 [executable construct] ...

 do termination
 do [label] [,] loop variable = initial value ,
fi nal value , [increment]

 [executable construct] ...
 do termination
 do [label] [,] while (scalar logical expression)

 [executable construct] ...
 do termination

if

 if (scalar logical expression) then
 [executable construct] ...

 [else if (scalar logical expression then
 [executable construct] ...] ...]

 [else
 [executable construct] ...]

 end if

 13.5 Problems

 1. Rewrite the program for the period of a pendulum. The new program should print
out the length of the pendulum and period, for pendulum lengths from 0 to
100 cm in steps of 0.5 cm. The program should incorporate a function for the
evaluation of the period.

 2. Write a program to read an integer that must be positive. Hint. use a do while to
make the user re-enter the value.

 3. Using functions, do the following:
 Evaluate n! from n • = 0 to n = 10.
 Calculate 76! •

214 13 Control Structures

 Now calculate (x**n)/n!, with x • = 13.2 and n = 20.
 Now do it another way. •

 4. The program ch1307 is taken from a real example. In the particular problem, the
reformed wave height was 1 m, and the water depth at the reef edge was 2 m.
What was the incident wave height? Rather than using an absolute value for the
tolerance, it might be more realistic to use some value related to the re formed
wave height. These heights are unlikely to be reported to better than about 5%
accuracy. Wave energy may be taken as proportional to wave height squared for
this example. What is the reduction in wave energy as a result of breaking on the
reef or bar for this particular case.

 5. What is the effect of using int on negative real numbers? write a program to
demonstrate this.

 6. How would you fi nd the nearest integer to a real number? Now do it another way.
Write a program to illustrate both methods. Make sure you test it for negative as
well as positive values.

 7. The function etox has been given in this chapter. The standard Fortran function
EXP does the same job. do they give the same answers? Curiously the Fortran
standard does not specify how a standard function should be evaluated, or even
how accurate it should be.
 The physical world has many examples in which processes require that some
threshold be overcome before they begin operation: critical mass in nuclear reac-
tions, a given slope to be exceeded before friction is overcome, and so on.
Unfortunately, most of these sorts of calculations become rather complex and not
really appropriate here. The following problem tries to restrict the range of cal-
culation, whilst illustrating the possibilities of decision making.

 8. If a cubic equation is expressed as

 + + + =3 2ax bx cx d 0

and we let

 Δ = − − −3 2 2 3 2 2 18abcd 4b d + b c 4ac 27a d

 We can determine the nature of the roots as follows

 Δ > 0 : three distinct real roots

 Δ = 0 : has a multiple root and all roots are real

 Δ < 0 : 1 real root and 2 non real complex conjugate roots

21513.6 Bibliography

 Incorporate this into a program, to determine the nature of the roots of a cubic
from suitable input.

 9. The form of breaking waves on beaches is a continuum, but for convenience we
commonly recognise three major types: surging, plunging and spilling. These
may be classifi ed empirically by reference to the wave period, T (seconds), the
breaker wave height, H

b
 (metres), and the beach slope, m. These three variables

are combined into a single parameter, B, where

 = 2
bB H /(gmT)

 g is the gravitational constant (981 cm s −2). if B is less than 0.003, the breakers
are surging; if B is greater than 0.068, they are spilling, and between these values,
plunging breakers are observed.

 (i) On the east coast of New Zealand, the normal pattern is swell waves, with
wave heights of 1–2 m and wave periods of 10–15 s. During storms, the
wave period is generally shorter, say 6–8 s, and the wave heights higher,
3–5 m. The beach slope may be taken as about 0.1. What changes occur in
breaker characteristics as a storm builds up?

 (ii) Similarly, many beaches have a concave profi le. The lower beach generally
has a very low slope, say less than 1 ° (m = 0.018), but towards the high-tide
mark, the slope increases dramatically, to say 10° or more (m = 0.18). What
changes in wave type will be observed as the tide comes in?

 13.6 Bibliography

 Dahl, O.J., Dijkstra, E.W., Hoare, C.A.R.: Structured Programming. Academic
Press, London (1972)

 This is the original text, and a must. The quote at the start of the chapter by •
Dijkstra summarises beautifully our limitations when programming and the dis-
cipline we must have to master programming successfully.

 Knuth, D.E.: Structured Programming with goto Statements, in Current Trends in
Programming Methodology, vol 1. Prentice-Hall (1977)

 The chapter by Knuth provides a very succinct coverage of the arguments for the •
adoption of structured programming, and dispels many of the myths concerning
the use of the goto statement. Highly recommended.

217I. Chivers and J. Sleightholme, Introduction to Programming with Fortran:
With Coverage of Fortran 90, 95, 2003, 2008 and 77,
DOI 10.1007/978-0-85729-233-9_14, © Springer-Verlag London Limited 2012

 Aims

 The aims of this chapter are:

 To extend the ideas about characters introduced in earlier chapters. •
 To demonstrate that this enables us to solve a whole new range of problems in a •
satisfactory way.

 14.1 Introduction

 For each type in a programming language there are the following concepts:

 Values are drawn from a fi nite domain. •
 There are a restricted number of operations defi ned for each type. •

 For the numeric types we have already met, integers and reals:

 The values are either drawn from the domain of integer numbers or the domain •
of real numbers.
 The valid operations are addition, subtraction, multiplication, division and •
exponentiation.

 Chapter 14
 Characters

 These metaphysics of magicians,
 And necromantic books are heavenly;
 Lines, circles, letters and characters.

 Christopher Marlowe, The Tragical History of Doctor Faustus

218 14 Characters

 For the character data type the basic unit is an individual character The complete
Fortran character set is given in Sect. 4.6 in Chap. 4 . This provides us with 95 print-
ing characters. Other characters may be available. The Wikipedia entry
 http://en.wikipedia.org/wiki/Character_encoding
 has quite detailed information on how complex this area actually is.

 As the most common current internal representation for the character data type uses
8 bits this should provide access to 256 (2 8) characters. However, there is little agreement
over the encoding of these 256 possible characters, and the best you can normally assume
is access to the ASCII character set, which is given in Appendix B. One of the problems
at the end of this chapter looks at determining what characters one has available.

 The only operations defi ned are concatenation (joining character strings together)
and comparison.

 We will look into the area of character sets in more depth later in this chapter. We
can declare our character variables:

 character :: a, string, line

 Note that there is no default typing of the character variable (unlike integer and
real data types), and we can use any convenient name within the normal Fortran
conventions. In the declaration above, each character variable would have been per-
mitted to store one character. This is limiting, and, to allow character strings which
are several units long, we have to add one item of information:

 character (10) :: A
 character (16) :: string
 character (80) :: line

 This indicates that A holds 10 characters, string holds 16, and line holds 80. if all
the character variables in a single declaration contain the same number of charac-
ters, we can abbreviate the declaration to

 character(80) :: list, string, line

 But we cannot mix both forms in the one declaration. We can now assign data to
these variables, as follows:

 a='fi rst one '
 string='a longer one '
 line='the quick brown fox jumps over the lazy dog'

 The delimiter apostrophe (') or quotation mark (") is needed to indicate that this
is a character string (otherwise the assignments would have looked like invalid vari-
able names).

 14.2 Character Input

 In an earlier chapter we saw how we could use the read * and print * statements to
do both numeric and character input and output or I/O. When we use this form of
the statement we have to include any characters we type within delimiters (either the

http://en.wikipedia.org/wiki/Character_encodingCOMP: Set all programming codes as in MS.
http://en.wikipedia.org/wiki/Character_encodingCOMP: Set all programming codes as in MS.

21914.3 Character Operators

apostrophe ' or the quotation mark "). This is a little restricting and there is a slightly
more complex form of the read statement that allows one to just type the string on
its own. The following two programs illustrate the differences:

 program ch1401
 !
 ! Simple character i/o
 !
 character (80) :: line
 read *, line
 print *, line

 end program ch1401

 This form requires enclosing the string with delimiters. Consider the next form:

 program ch1402
 !
 ! Simple character i/o
 !
 character (80) :: line
 read '(a)' , line
 print *,line

 end program ch1402

 With this form one can just type the string in and input terminates with the car-
riage return key. The additional syntax involves '(A)' where '(A)' is a character edit
descriptor. The simple examples we have used so far have used implied format
specifi ers and edit descriptors. For each data type we have one or more edit descrip-
tors to choose from. For the character data type only the A edit descriptor is
available.

 14.3 Character Operators

 The fi rst manipulator is a new operator – the concatenation operator //. With this
operator we can join two character variables to form a third, as in

 character (5) :: fi rst, second
 character (10) :: third
 fi rst='three'
 second='blind'
 …
 third=fi rst//second
 .
 third=fi rst//'mice'

220 14 Characters

where there is a discrepancy between the created length of the concatenated string and
the declared lengths of the character strings, truncation will occur. For example,

 third = fi rst//' blind mice'

 will only append the fi rst fi ve characters of the string 'blind mice' i.e., 'blin', and
third will therefore contain 'three blin'.
 What would happen if we assigned a character variable of length ‘n’ a string which
was shorter than n? For example,

 character (4) :: c2
 c2 = 'AB'

 The remaining two characters are considered to be blank, that is, it is equivalent
to saying

 C2 = 'AB'

 However, while the strings 'AB' and 'AB' are equivalent, 'AB' and 'AB' are not. In
the jargon, the character strings are always left justifi ed, and the unset characters are
trailing blanks. If we concatenate strings which have ‘trailing blanks’, the blanks, or
spaces, are considered to be legitimate characters, and the concatenation begins
after the end of the fi rst string. Thus

 character (4) :: c2,c3
 character (8) :: jj
 c2='a'
 c3='man'
 jj=c2//c3
 print*, 'the concatenation of ',c2, 'and',c3, 'is'
 print*,JJ

would appear as

 the concatenation of a and man gives
 a man

at the terminal.

 Sometimes we need to be able to extract parts of character variables – substrings.
The actual notation for doing this is a little strange at fi rst, but it is very powerful.
To extract a substring we must reference two items:

 The position in the string at which the substring begins, •

and

 The position at which it ends. •

e.g.,

 string = 'share and enjoy'

22114.4 Character Substrings

 14.4 Character Substrings

 We may extract parts of this string:

 bit = string(3:5)

would place the characters 'are' into the variable bit. This may be manipulated
further:

 bit1 = string(2:4)//string(9:9)
 bit2 = string(5:5) // &
 string(3:3)//string(1:1)//string(15:15)

 Note that to extract a single character we reference its beginning position and its
end (i.e., repeat the same position), so that

 string(3:3)

gives the single character 'A'. The substring reference can cut out either one of the
two numerical arguments. if the fi rst is omitted, the characters up to and including
the reference are selected, so that

 sub = string(:5)

would result in sub containing the characters ‘share’. When the second argument is
omitted, the characters from the reference are selected, so that

 sub = string(11:)

would place the characters ‘enjoy’ in the variable sub. In these examples it would
also be necessary to declare string, sub, bit, bit1 and bit2 to be of character type, of
some appropriate length.character variables may also form arrays:

 character (10) , dimension(20) :: A

sets up a character array of 20 elements, where each element contains 10 characters.
In order to extract substrings from these array elements, we need to know where the
array reference and the substring reference are placed. The array reference comes
fi rst, so that

 do I = 1,20
fi rst = a(I)(1:1)

 endo

places the fi rst character of each element of the array into the variable fi rst. The
syntax is therefore ‘position in array, followed by position within string’.

 Any argument can be replaced by a variable:

 string(i:j)

222 14 Characters

 This offers interesting possibilities, since we can, for example, strip blanks out of
a string:

 program ch1403
 implicit none
 character(80) :: String, Strip
 integer :: ipos,i,length=80
 ipos=0
 print *, 'type in a string'
 read '(a)',string
 do i=1,length
 if(string(i:i) /= ' ') then
ipos=ipos+1
 strip(ipos:ipos)=string(i:i)

 endif
 end do
 print*,string
 print*,strip

 end program ch1403

 14.5 Character Functions

 There are special functions available for use with character variables: Index will
give the starting position of a string within another string. If, for example, we were
looking for all occurrences of the string 'Geology' in a fi le, we could construct some-
thing like:

 program ch1404
 implicit none
 character (80) :: Line
 integer :: I
 do
read '(A)' , Line
 I=Index(Line,'Geology')
 if (I /= 0) then
 print *, 'String Geology found at position',I
 print *, 'in line', Line
 exit

 endif
 enddo

 end program ch1404

 There are two things to note about this program. Firstly the index function will
only report the fi rst occurrence of the string in the line; any later occurrences in any

22314.6 Collating Sequence

particular line will go unnoticed, unless you account for them in some way. Secondly,
if the string does not occur, the result of the index function is zero, and given the
infi nite loop (do end do) the program will crash at run time with an end of fi le error
message. This isn’t good programming practice.

 len provides the length of a character string. This function is not immediately
useful, since you really ought to know how many characters there are in the string.

 However, as later examples will show, there are some cases where it can be use-
ful. Remember that trailing blanks do count as part of the character string, and
contribute to the length.
 The following example illustrates the use of both len and len_trim:

 program ch1405
 implicit none
 character (len=20) :: name
 integer : : name_length
 print *, 'type in your name'
 read '(a)' , name

 !
 ! show len fi rst
 !
 Name_length=len(name)
 print *,' name length is ',name_length
 print *,' ',name(1:name length),'<-end is here'
 name_length=len_trim(name)
 print *,' name length is ',name_length
 print *,' ',name(1:name length),'<-end is here'

 end program ch1405

 14.6 Collating Sequence

 The next group of functions need to be considered together. They revolve around the
concept of a collating sequence. In other words, each character used in Fortran is
ordered as a list and given a corresponding weight. No two weights are equal.
Although Fortran has only 63 defi ned characters, the machine you use will gener-
ally have more; 95 printing characters is a typical minimum number. On this type of
machine the weights would vary from 0 to 94. There is a defi ned collating sequence,
the ASCII sequence, which is likely to be the default. The parts of the collating
sequence which are of most interest are fairly standard throughout all collating
sequences.

 In general, we are interested in the numerals (0–9), the alphabetics (A–Z,
a–z) and a few odds and ends like the arithmetic operators (+ − / *), some punc-
tuation (. and ,) and perhaps the prime (¢). As you might expect, 0–9 carry
successively higher weights (though not the weights 0–9), as do A to Z and a to z.

224 14 Characters

The other odds and ends are a little more problematic, but we can fi nd out the
weights through the function ichar. This function takes a single character as
argument and returns an integer value. The ASCII weights for the alphanumerics
are as follows:

 0–9 48–57
 A–Z 65–90

 One of the exercises is to determine the weights for other characters. The reverse
of this procedure is to determine the character from its weighting, which can be
achieved through the function char. char takes an integer argument and returns a
single character. Using the ASCII collating sequence, the alphabet would be gener-
ated from

 do I = 65, 90
print*,char(I)

 enddo

 This idea of a weighting can then be used in four other functions:

 Function Action

 lle lexically less than or equal to
 lge lexically greater than or equal to
 lgt lexically greater than
 llt Lexically less than

 In the sequence we have seen before, A is lexically less than B, i.e., its weight is
less. Clearly, we can use ichar and get the same result. For example,

 if (lgt('a', 'b')) then

 is equivalent to

 if(ichar('a') > ichar('b')) then

but these functions can take character string arguments of any length. They are not
restricted to single characters.

 These functions provide very powerful tools for the manipulation of characters,
and open up wide areas of nonnumerical computing through Fortran. Text format-
ting and word processing applications may now be tackled (conveniently ignoring
the fact that lower-case characters may not be available).

 There are many problems that require the use of character variables. These range
from the ability to provide simple titles on reports, or graphical output, to the provi-
sion of a natural language interface to one of your programs, i.e., the provision of an
English-like command language. Software Tools by Kernighan and Plauger con-
tains many interesting uses of characters in Fortran.

22514.7 Finding Out About the Character Set Available

 14.7 Finding Out About the Character Set Available

 The following program prints out the characters between 32 and 127.

 program ch1406
 implicit none
 integer :: I
 do I=32,62
 print*,i,char(i),i+32,char(i+32),i+64,char(I+64)

 end do
 I = 63
 print *,i,char(i),i+32,char(i+32),i+64, 'del'
 I = 64
 print *,i,char(i),i+32,char(I+32)

 end program ch1406

 This is the output from the Intel compiler under Windows.

 32 64 @ 96 ¢
 33 ! 65 A 97 a
 34 “ 66 B 98 b
 35 # 67C 99 c
 36 $ 68 D 100 d
 37% 69 E 101 e
 38 & 70F 102 f
 39 ' 71 G 103 g
 40 (72 H 104 h
 41) 73 I 105 I
 42 * 74 J 106 j
 43 + 75 K 107 k
 44 , 76 L 108 l
 45 - 77 M 109 m
 46 . 78 N 110 n
 47 / 79 O 111 o
 48 0 80 P 112 p
 49 1 81 Q 113 q
 50 2 82 R 114 r
 51 3 83 S 115 s
 52 4 84 T 116 t
 53 5 85 U 117 u
 54 6 86 V 118 v
 55 7 87 W 119 w
 56 8 88 X 120 x
 57 9 89 Y 121 y
 58 : 90 Z 122 z
 59 ; 91 [123 {
 60 < 92 \ 124 |

(continued)

226 14 Characters

 61 = 93] 125 }
 62 > 94 ^ 126 ~
 63 ? 95 _ 127 del
 64 @ 96 `

 Try this program out on the system you use. Do the character sets match?

 14.8 Scan Function Example

 The following program uses the scan function to locate the position of all of the
blanks in a string. The syntax of the simple form we use in the program is given
below.

 scan(string,set) – Scans a string for any one of the characters in a set of •
characters.

 program ch1407
 implicit none
 character (1024) :: string01
 character (1) :: set=' '
 integer : : I
 integer : : l
 integer :: start,end
 string01 = &
 "The important issue about a language, is not so"
 string01 = trim(string01) // " " // &
 "much what features the language possesses, but"
 string01 = trim(string01) // " " // &
 "the features it does possess, are suffi cient, to"
 string01 = trim(string01) // " " // &
 "support the desired programming styles, in the"
 string01 = trim(string01) // " " // &
 "desired application areas. "
 l = len(trim(string01))
 print *,' Length of string is = ',l
 print *,' String is'
 print *,trim(string01)
 start=1
 end=l
 print *,' Blanks at positions '
 do
 i=scan(string01(start:end),set)
 start=start+I

(continued)

22714.9 Summary

 if (I==0) exit
 write(*,10,advance='no'),start-1
 10 format(i5)

 end do
 end program ch1407

 Note the use of the trim function when using the concatenation operator to initia-
lise the string to the text we want.

 The output from one compiler is given below.

 Length of string is = 217
 String is

 The important issue about a language, is not so much
what features the language possesses, but the features
it does possess, are suffi cient, to support the desired
programming styles, in the desired application areas.

 The text in this program is used in two problems at the end of this chapter.

 14.9 Summary

 Characters represent a different data type to any other in Fortran, and as a conse-
quence there is a restricted range of operations which may be carried out on them.

 A character variable has a length which must be assigned in a character declara-
tion statement.

 Character strings are delimited by apostrophes (') or quotation marks ("). Within
a character string, the blank is a signifi cant character.

 Character strings may be joined together (concatenated) with the // operator.
 Substrings occurring within character strings may be also be manipulated. There

are a number of functions especially for use with characters:

 achar – return the character in the ASCII character set •
 adjustl – adjust left, remove leading blanks, add trailing blanks •
 adjustr – adjust right – remove trailing blanks, insert leading blanks •
 char – return the character in the processor collating sequence •
 iachar – as above but in the ASCII character set •
 index – locate one string in another •
 len – character length including trailing blanks •
 len_trim – character length without the trailing blanks •
 lle – lexically less than or equal to •
 lge – lexically greater than or equal to •

228 14 Characters

 lgt – lexically greater than •
 llt – lexically less than •
 repeat – concatenate several copies of a string •
 scan – scans a string for anyone of the characters in the set •
 trim – remove the trailing blanks •
 verify – verify that a set of characters contains all the characters in a string •

 A detailed explanation is given in Appendix E.

 14.10 Problems

 1. Suggest some circumstances where PRIME = '''' might be useful. What other
alternative is there and why do you think we use that instead?

 2. Write a program to write out the weights for the Fortran character set. Modify
this program to print out the weights of the complete implementation defi ned
character set for your version of Fortran. Is it ASCII? If not, how does it differ?

 3. Write a program that produces the following output.

 !
 "#
 $%&
 '()*
 +,-./
 012345
 6789:;<
 =>?@ABCD
 EFGHIJKLM
 NOPQRSTUVW
 XYZ[\]^_`ab
 cdefghijklmn
 opqrstuvwxyz{
 |}~

 We assume the ASCII character set in this example.
 4. Modify the above program to produce the following output.

 Again we assume the ASCII character set.

22914.10 Problems

 5. Modify program ch1407 to break the text into phrases, using the comma and
full stop as breaking characters. The output expected is given below.

 The important issue about a language
 is not so much what features the language possesses
 but the features it does possess
 are suffi cient
 to support the desired programming styles
 in the desired application areas

 6. Modify the above to break the text into words and count the frequency of occur-
rence of words by length. The output should be similar to that given below.

 1 a 1
 2 is so it to in 5
 3 The not the but the are the the 8
 4 much what does 3
 5 issue about areas 3
 6 styles 1
 7 possess support desired desired 4
 8 language features language features 4
 9 important possesses 2
 10 suffi cient 1
 11 programming application 2

 7. Use the INDEX function in order to fi nd the location of all the strings ‘is’ in the
following data:
 If a programmer is found to be indispensable, the best thing to do is to get rid of
him as quickly as possible.

 8. Find the ‘middle’ character in the following strings. Do you include blanks as
characters? What about punctuation?
 Practice is the best of all instructors. Experience is a dear teacher, but fools will
learn at no other.

 9. In English, the order of occurrence of the letters, from most frequent to least is
E, T, A, O, N, R, I, S, H, D, L, F, C, M, U, G, Y, P, W, B, V, K, X, J, Q, Z
 Use this information to examine the two fi les given in Appendix D (one is a
translation of the other) to see if this is true for these two extracts of text. The
second text is in medieval Latin (c. 1320). Note that a fair amount of compres-
sion has been achieved by expressing the passage in Latin rather than modern
English. Does this provide a possible model for information compression?

 10. A very common cypher is the substitution cypher, where, for example, every
letter A is replaced by (say) an M, every B is replaced by (say) a Y, and so on.
These enciphered messages can be broken by reference to the frequency of
occurrence of the letters (given in the previous question).
 Since we know that (in English) E is the most commonly occurring letter, we
can assume that the most commonly occurring letter in the enciphered message
 represents an E; we then repeat the process for the next most common and so

230 14 Characters

on. Of course, these correspondences may not be exact, since the message may
not be long enough to develop the frequencies fully.
 However, it may provide suffi cient information to break the cypher.
 The fi le given in Appendix E contains an encoded message. Break it. Clue –
Pg + Fybdujuvef jo Tdjfodf, Jorge Luis Borges.

 11. Write a program that counts the total number of vowels in a sentence or text.
Output the frequency of occurrence of each vowel.

231I. Chivers and J. Sleightholme, Introduction to Programming with Fortran:
With Coverage of Fortran 90, 95, 2003, 2008 and 77,
DOI 10.1007/978-0-85729-233-9_15, © Springer-Verlag London Limited 2012

 Aims

 The aims of this chapter are:

 To introduce the last predefi ned numeric data type in Fortran. •
 To illustrate with examples how to use this type. •

 15.1 Introduction

 This variable type refl ects an extension of the real data type available in Fortran –
the complex data type, where we can store and manipulate complex variables.
Problems that require this data type are restricted to certain branches of mathemat-
ics, physics and engineering. Complex numbers are defi ned as having a real and
imaginary part, i.e.,

 = +a x iy

where I is the square root of−1.
 They are not supported in many programming languages as a base type which

makes Fortran the language of fi rst choice for many people.
 To use this variable type we have to write the number as two parts, the real and

imaginary elements of the number, for example,

 complex :: U
 U = cmplx(1.0,2.0)

 Chapter 15
 Complex

 Make it as simple as possible, but no simpler.

 Albert Einstein

232 15 Complex

represents the complex number 1 + i2. Note that the complex number is enclosed in
brackets. We can do arithmetic on variables like this, and most of the intrinsic func-
tions such as log, sin, cos , etc., accept a complex data type as argument.

 All the usual rules about mixing different variable types, like reals and integers,
also apply to complex. Complex numbers are read in and written out in a similar
way to real numbers, but with the provision that, for each single complex value, two
format descriptors must be given. You may use either E or F formats (or indeed, mix
them), as long as there are enough of them. Although you use brackets around the
pairs of numbers in a program, these must not appear in any input, nor will they
appear on the output.

 Fortran has a number of functions which help to clarify the intent of mixed mode
expressions. The functions real, cmplx and int can be used to ‘force’ any variable
to real, complex or integer type.

 There are a number of intrinsic functions to enable complex calculations to be
performed. The program segment below uses some of them:

 complex:: z, z1,z2,z3,zbar
 real :: x,y,x1,y1, x 2,y2,x3,y3,zmod
 z1 = cmplx (1.0, 2.0) ! 1 + I2
 z2 = cmplx (x 2, y2) ! x 2 + I y2
 z3 = cmplx (x3, y3) ! x3 + I y3
 Z = Z1*Z2 / Z3
 x = real(z) ! real part of z
 y = aimag (z) ! imaginary part of z
 zmod = abs(z) ! modulus of z
 ZBAR = CONJG(Z) ! complex conjugate of Z

 15.2 Example 1

 The second order differential equation:

+ + =

2

2
2 ()

d y dy
y x t

dtdt

could describe the behaviour of an electrical system, where x(t) is the input voltage
and y(t) is the output voltage and dy/dt is the current. The complex ratio

= − + +2()

1 / (2 1)
()

y w
w j w

x w

is called the frequency response of the system because it describes the relationship
between input and output for sinusoidal excitation at a frequency of w and where j

23315.2 Example 1

is −1 . The following program segment reads in a value of w and evaluates the
frequency response for this value of w together with its polar form (magnitude and
phase):

 program ch1501
 implicit none i
 !
 ! program to calculate frequency response of a system
 ! for a given Omega
 ! and its polar form (magnitude and phase).
 !
 real :: Omega ,real_part , Imag_part , Magnitude, Phase
 complex:: Frequency_response
 !
 ! Input frequency Omega
 !
 print *, 'Input frequency'
 read *,Omega

 !
 Frequency_response = 1.0 / &
cmplx (- Omega * Omega + 1.0 , 2.0 * Omega)

real_part = real(Frequency_response)
Imag_part = aimag(Frequency_response)

 !
 ! Calculate polar coordinates (magnitude and phase)
 !
 magnitude = abs(frequency_response)
 phase = atan2 (imag_part, real_part)

 !
 print *, ' at frequency ',omega
 print *, 'response = ', real_part,' + I ',imag_part
 print *, 'in polar form'
 print *, ' magnitude = ', magnitude
 print *, ' phase = ', phase

 end program ch1501

234 15 Complex

 15.3 Example 2

 Here is a complete example of using some of the intrinsics with complex numbers.

 program ch1502
 implicit none
 real:: x,y,x1,y1, x 2,y2,x3,y3,zmod
 complex:: z,z1,z2,z3,zbar
 print*,'input x1,y1, x 2,y2,x3, y3'
 read*,x1,y1, x 2,y2,x3,y3
 z1 = cmplx(1.0,2.0)
 z2 = cmplx(x 2,y2)
 print*, 'z2 = ',z2
 z3 = cmplx(x3−x1, (y3 + y1)**2)
 print*, 'z3 = ',z3
 z = z1*z2/z3
 x = real (z)
 y = aimag(z)
 zmod = abs(z)
 zbar = conjg(z)
 print*,'z = ',z
 print*,'modulus of z = ',zmod
 print*,'complex conjugate of z = ',zbar

 end program ch1502

 15.4 Complex and Kind Type

 The standard requires that there be a minimum of two kind types for real numbers
and this is also true of the complex data type. Chap. 5 must be consulted for a full
coverage of real kind types. We would therefore use something like the following to
select a complex kind type other than the default:

 integer , parameter :: &
Long_complex = selected_real_kind(15,307)

 complex (Long_complex) :: Z

 Chapter 21 includes a good example of how to use modules to defi ne and use
precision throughout a program and subprogram units.

 15.5 Summary

 Complex is used to store and manipulate complex numbers: those with a real and an
imaginary part.

23515.6 Problem

 There are standard functions which allow conversion between the numerical data
types – cmplx, real and int .

 15.6 Problem

 1. The program used in Chap. 12 which calculated the roots of a quadratic had to
abandon the calculation if the roots were complex. You should now be able to
remedy this, remembering that it is necessary to declare any complex variables.
Instead of raising the expression to the power 0.5 in order to take its square root,
use the function sqrt . The formulae for the complex roots are

− − −±
2(4)

2 2

b b ac
i

a a

 If you manage this to your satisfaction, try your skills on the roots of a cubic (see
the problems in Chap. 12).

237I. Chivers and J. Sleightholme, Introduction to Programming with Fortran:
With Coverage of Fortran 90, 95, 2003, 2008 and 77,
DOI 10.1007/978-0-85729-233-9_16, © Springer-Verlag London Limited 2012

 Aims

 The aims of this chapter are:

 To examine the last predefi ned type available in Fortran: logical. •
 To introduce the concepts necessary to use logical expressions effectively, •
namely:

 Logical variables. –
 Logical operators. –
 The hierarchy of operations. –
 Truth tables. –

 16.1 Introduction

 Often we have situations where we need ON/OFF, TRUE/FALSE or YES/NO
switches, and in such circumstances we can use logical type variables, e.g.,

 logical :: fl ag

 Logicals may take only two possible values, as shown in the following:

 Flag=.true.

or

 fl ag=.false.

 Chapter 16
 Logical

 A messenger yes/no semaphore
 her black/white keys in/out whirl of morse
 hoopooe signals salvation deviously.

 Nathaniel Tarn, The Laurel Tree

238 16 Logical

 Note the full stops, which are essential. With a little thought you can see why
they are needed. You will already have met some of the ideas associated with logical
variables from if statements:

 if (a == b) then
.
 else
 .
 endif

 The logical expression (a == b) returns a value true or false, which then deter-
mines the route to be followed; if the quantity is true, then we execute the next state-
ment, else we take the other route.

 Similarly, the following example is also legitimate:

 logical :: answer
answer=.true.
 …
 if (answer) then
 …

 else
 …

 endif

 Again the expression if (answer) is evaluated; here the variable answer has
been set to .true ., and therefore the statements following the then are executed.
Clearly, conventional arithmetic is inappropriate with logicals. What does two times
true mean? (very true?). There are a number of special operators for logicals:

 .not. which negates a logical value (i.e., changes true to false or vice versa).
 .and. logical intersection.
 .or. logical union.

 To illustrate the use of these operators, consider the following program extract:

 To gauge the effect of these operators on logicals, we can consult a truth table:

 x1 x2 .not.x1 x1.and.x2 x1.or.x2

 true true false true true
 true false false false true
 false true true false true
 false false true false false

23916.1 Introduction

 As with arithmetic operators, there is an order of precedence associated with the
logical operators:

 .and. is carried out before
 .or. and .not.

 In dealing with logicals, the operations are carried out within a given level, from
left to right. Any expressions in brackets would be dealt with fi rst. The logical oper-
ators are a lower order of precedence than the arithmetic operators, i.e., they are
carried out later. A more complete operator hierarchy is therefore:

 Expressions within brackets. •
 Exponentiation. •
 Multiplication/division. •
 Addition/subtraction. •
 Relational logical (= =, >, <, >=, <= /=). •
 .and. •
 .or. • and .not.

 Although you can build up complicated expressions with mixtures of operators,
these are often diffi cult to comprehend, and it is generally more straightforward to
break ‘big’ expressions down into smaller ones whose purpose is more readily
appreciated.

 Historically, logicals have not been in evidence extensively in Fortran programs,
although clearly there are occasions on which they are of considerable use. Their
use often aids signifi cantly in making programs more modular and comprehensible.
They can be used to make a complex section of code involving several choices much
more transparent by the use of one logical function, with an appropriate name.
Logicals may be used to control output; e.g.,

 logical :: debug

 …
 debug=.true.
 …
 if(debug)then
 …
 print *,'lots of printout'
 …

 endif

ensures that, while debugging a program you have more output. then, when the
program is correct, run with debug=.false .

 Note that Fortran does try to protect you while you use logical variables. You
cannot do the following:

 logical :: up, down
up=down+.false.

240 16 Logical

 or

 logical :: a2

 real dimension(10) :: omega
 .
a2=omega(3)

 The compiler will note that this is an error, and will not permit you to run the
program. This is an example of strong typing, since only a limited number of prede-
termined operations are permitted. The real, integer and complex variable types are
much more weakly typed (which helps lead to the confusion inherent in mixing
variable types in arithmetic assignments).

 16.2 I/O

 Since logicals may take only the values .true. and .false. , the possibilities in
reading and writing logical values are clearly limited. The L edit descriptor or for-
mat allows logicals to be input and output. On input, if the fi rst nonblank characters
are either T or .T, the logical value .true. is stored in the corresponding list item;
if the fi rst nonblank characters are F or .F, then .false. is stored. (Note therefore
that reading, say, ted and fahr in an L4 format would be acceptable.) if the fi rst
nonblank character is not F, T, .F or .T, then an error message will be generated. On
output, the value T or F is written out, right justifi ed, with blanks (if appropriate).
Thus,

 logical :: fl ag
fl ag=.true.
 print 100, fl ag, .not.fl ag
 100 format(2L3)

would produce

 T F

at the terminal.
 Assigning a logical variable to anything other than a .true. or .false.

value in your program will result in errors. The ‘shorthand’ forms of .T, .F, F and T
are not acceptable in the program.

24116.4 Problems

 16.3 Summary

 Another type of data – logical – is also recognised. A logical variable may take
one of two values – true or false.

 There are special operators for manipulating logicals:•

 – .not.
 .and. –
 .or – .

 Logical operators have a lower order of precedence than any others. •

 16.4 Problems

 1. Why are the full stops needed in a statement like A = .true. ?
 2. Generate a truth table like the one given in this chapter.
 3. Write a program which will read in numerical data from the terminal, but will

fl ag any data which is negative, and will also turn these negative values into posi-
tive ones.

243I. Chivers and J. Sleightholme, Introduction to Programming with Fortran:
With Coverage of Fortran 90, 95, 2003, 2008 and 77,
DOI 10.1007/978-0-85729-233-9_17, © Springer-Verlag London Limited 2012

 Aims

 The aim of this chapter is to introduce the concepts and ideas involved in using the
facilities offered in Fortran 90 for the construction and use of user defi ned types:

 The way in which we defi ne our own types. •
 The way in which we declare variables to be of a user defi ned type. •
 The way in which we manipulate variables of our own types. •
 The way in which we can nest types within types. •

 The examples are simple and are designed to highlight the syntax. More complex
and realistic examples of the use of user defi ned data types are to be found in later
chapters.

 17.1 Introduction

 In the coverage so far we have used the intrinsic types provided by Fortran. The only
data structuring technique available has been to construct arrays of these intrinsic
types. Whilst this enables us to solve a reasonable variety of problems, it is

 Chapter 17
 Introduction to Derived Types

 Russell’s theory of types leads to certain complexities in the
foundations of mathematics… Its interesting features for our
purposes are that types are used to prevent certain erroneous
expressions from being used in logical and mathematical
formulae; and that a check against violation of type constraints
can be made purely by scanning the text, without any
knowledge of the value which a particular symbol might
happen to have.

 C.A.R. Hoare, Structured Programming

244 17 Introduction to Derived Types

 inadequate for many purposes. In this chapter we look at the facilities offered by
Fortran for the construction of our own types and how we manipulate data of these
new, user defi ned types.

 With the ability to defi ne our own types we can now construct aggregate data
types that have components of a variety of base types. These are given a variety of
names including

 Record in the Pascal family of languages and in many older books on computing •
and data structuring;
 Structs in C; •
 Classes in C++, Java, C# and Eiffel; •
 Cartesian product is often used in mathematics and this is the terminology •
adopted by Hoare;

 We will the term user defi ned type and derived types interchangeably.
 There are two stages in the process of creating and using our own data types: we

must fi rst defi ne the type, and then create variables of this type.

 17.2 Example 1: Dates

 program ch1701
 implicit none
 type date
 integer :: day=1
 integer :: month=1
 integer :: year=2000

 end type date
 type (date) :: d
 print *,d%day, d%month, d%year
 print *, 'type in the date, day, month, year'
 read *,d%day, d%month, d%year
 print *,d%day, d%month, d%year

 end program ch1701

 This complete program illustrates both the defi nition and use of the type. It also
shows how you can defi ne initial values within the type defi nition.

 17.3 Type Defi nition

 The type date is defi ned to have three component parts, comprising a day, a
 month and a year, all of integer type. The syntax of a type construction
comprises:

24517.4 Variable Defi nition

 type Typename
 data type :: Component_name
 etc.

 end type Typename

 Reference can then be made to this new type by the use of a single word, date ,
and we have a very powerful example of the use of abstraction.

 17.4 Variable Defi nition

 This is done by

 type (Typename) :: Variablename

and we then defi ne a variable D to be of this new type. The next thing we do is
have a read * statement that prompts the user to type in three integer values, and
the data are then echoed straight back to the user. We use the notation
 Variablename%Component_Name to refer to each component of the new
data type.

 17.4.1 Example 1 Variant Using Modules

 The following is a variant on the above and achieves the same result with a small
amount of additional syntax.

 module date_module

type date

integer :: day=1
 integer :: month=1
 integer :: year=2000

 end type date
 end module date_module
 program ch1702
 use date_module
 implicit none
 type (date) :: d
 print *,d%day, d%month, d%year
 print *, 'type in the date, day, month, year'
 read *,d%day, d%month, d%year
 print *,d%day, d%month, d%year

 end program ch1702

 The key here is that we have embedded the type declaration inside a module, and
then used the module in the main program.

246 17 Introduction to Derived Types

 If you are only using the type within one program unit then the fi rst form is sat-
isfactory, but if you are going to use the type in several program units the second is
the required form.

 We will use the second form in the examples that follow.

 17.5 Example 2: Address Lists

 module address_module
type address
character (len=40) :: name
 character (len=60) :: street
 character (len=60) :: district
 character (len=60) :: city
 character (len=8) :: post_code

 end type address
 end module address_module

 program ch1703
 use address_module
 implicit none
 integer :: n_of_address
 type (address) , dimension(:), allocatable::
addr
 integer :: I

 print *, 'input number of addresses'
 read *,n_of_address
 allocate(addr(1:n_of_address))
 open(unit=1,fi le="address.txt")
 do i=1,n_of_address
 read(unit=1,fmt='(a40)') addr (i)%name
 read(unit=1,fmt='(a60)') addr (i)%street
 read(unit=1,fmt='(a60)') addr (i)%district
 read(unit=1,fmt='(a60)') addr (i)%city
 read(unit=1,fmt='(a8)') addr(i)%post_code

 end do
 do i=1,n_ of_address

24717.6 Example 3: Nested User Defi ned Types

 print *,addr(i)% name
 print *,addr(i)% street
 print *,addr(i)% district
 print *,addr(i)% city
 print *,addr(i)% post_code

 end do

 end program ch1703

 In this example we defi ne a type Address which has components that one would
expect for a person’s address. We then defi ne an array Addr of this type. Thus we
are now creating arrays of our own user defi ned types. We index into the array in the
way we would expect from our experience with integer, real and character arrays.
The complete example is rather trivial in a sense in that the program merely reads
from one fi le and prints the fi le out to the screen. However, it highlights many of the
important ideas of the defi nition and use of user defi ned types.

 17.6 Example 3: Nested User Defi ned Types

 The following example builds on the two data types already introduced. Here we
construct nested user defi ned data types based on them and construct a new data
type containing them both plus additional information.

248 17 Introduction to Derived Types

24917.8 Bibliography

 Here we have a date of birth data type (Date_Of_Birth) based on the Date
data type from the fi rst example, plus a slightly modifi ed address data type, incor-
porated into a new data type comprising personal details. Note the way in which we
reference the component parts of this new, aggregate data type.

 17.7 Problem

 1. Modify the last example to include a more elegant printed name. The current
example will pad with blanks the fi rst name, other names and surname and span
80 characters on one line, which looks rather ugly.

 Add a new variable name which will comprise all three subcomponents and write
out this new variable, instead of the three subcomponents.

 17.8 Bibliography

 Dahl , O.J., Dijkstra, E.W., Hoare, C.A.R.: Structured Programming. Academic
Press, London (1972)

 This is one of the earliest and best introductions to data structures and structured
programming. The whole book hangs together very well, and the section on data
structures is a must for serious programmers.

250 17 Introduction to Derived Types

 Vowels, R.A.: Algorithms and Data Structures in F and Fortran. Unicomp,
Tucson (1989)

 One of the few books looking at algorithms and data structures using Fortran.
 Wirth, N.: Algorithms + Data Structures = Programs. Prentice-Hall, Englewood

Cliffs (1976)
 Wirth, N.: Algorithms + Data Structures. Prentice-Hall, Englewood Cliffs

(1986)
 The fi rst is in Pascal, and the second in Modula 2.
 Wood, D.: Paradigms and Programming in Pascal. Computer Science Press,

Rockville (1984)
 contains a number of examples of the use of recursion in problem solving. Also
provides a number of useful case studies in problem solving.

251I. Chivers and J. Sleightholme, Introduction to Programming with Fortran:
With Coverage of Fortran 90, 95, 2003, 2008 and 77,
DOI 10.1007/978-0-85729-233-9_18, © Springer-Verlag London Limited 2012

 Aim

 The primary aim of the chapter is to introduce some of the key concepts of pointers
in Fortran.

 18.1 Introduction

 All of the data types introduced so far, with the exception of the allocatable array,
have been static. Even with the allocatable array a size has to be set at some stage
during program execution. The facilities provided in Fortran by the concept of a
pointer combined with those offered by a user defi ned type enable us to address a
completely new problem area, previously extremely diffi cult to solve in Fortran.
There are many problems where one genuinely does not know what requirements
there are on the size of a data structure. Linked lists allow sparse matrix problems
to be solved with minimal storage requirements, two-dimensional spatial problems
can be addressed with quad-trees and three-dimensional spatial problems can be
addressed with oct-trees. Many problems also have an irregular nature, and pointer
arrays address this problem.

 First we need to cover some of the technical aspects of pointers. A pointer is a
variable that has the pointer attribute. A pointer is associated with a target by alloca-
tion or pointer assignment. A pointer becomes associated as follows:

 The pointer is allocated as the result of the successful execution of an allocate •
statement referencing the pointer

 Chapter 18
 An Introduction to Pointers

 Not to put too fi ne a point on it.

 Charles Dickens, Bleak House.

252 18 An Introduction to Pointers

or

 The pointer is pointer-assigned to a target that is associated or is specifi ed with •
the target attribute and, if allocatable, is currently allocated.

 A pointer shall neither be referenced nor defi ned until it is associated. A pointer
is disassociated following execution of a deallocate or nullify statement, following
pointer association with a disassociated pointer, or initially through pointer
initialisation.

 A pointer may have a pointer association status of associated, disassociated, or
undefi ned. Its association status may change during execution of a program. Unless
a pointer is initialised (explicitly or by default), it has an initial association status of
undefi ned. A pointer may be initialised to have an association status of
disassociated.

 Let us look at some examples to clarify these points.

 18.2 Some Basic Pointer Concepts

 With the introduction of pointers as a data type into Fortran we also have the intro-
duction of a new assignment statement – the pointer assignment statement. Consider
the following example:

 program ch1801
 implicit none
 integer , pointer :: a=>null(),b=>null ()
 integer , target :: c
 integer :: d
 c = 1
 a => c
 c = 2
 b => c
 d = a + b
 print *,a,b,c,d

 end program ch1801

 The following

 integer , pointer :: a=>null(),b=>null()

is a declaration statement that defi nes a and b to be variables, with the pointer attri-
bute. This means we can use a and b to refer or point to integer values. We also use
the null intrinsic to set the status of the pointers a and b to disassociated. Using
the null intrinsic means that we can test the status of a pointer variable and avoid
making a number of common pointer programming errors. Note that in this case no
space is set aside for the pointer variables a and b , i.e. a and b should not be refer-
enced in this state.

25318.3 The associated Intrinsic Function

 The second declaration defi nes c to be an integer, with the target attribute, i.e.,
we can use pointers to refer or point to the value of the variable c .

 The last declaration defi nes d to be an ordinary integer variable.
 In the case of the last two declarations space is set aside to hold two integers.
 Let us now look at the various executable statements in the program, one at a

time:

 c = 1 This is an example of the normal assignment statement with which we are
already familiar. We use the variable name c in our program and whenever
we use that name we get the value of the variable c

 a = > c This is an example of a pointer assignment statement. This means that both a
and c now refer to the same value, in this case 1. a becomes associated
with the target c . a can now be referenced

 c = 2 Conventional assignment statement, and c now has the value 2
 b = > c Second example of pointer assignment. b now points to the value that c has, in

this case 2. b becomes associated with the target c . b can now be
referenced

 d = a + b Simple arithmetic assignment statement. The value that a points to is added to
the value that b points to and the result is assigned to d

 The last statement prints out the values of a, b, c and d .
 The output is

 2 2 2 4

 18.3 The associated Intrinsic Function

 The associated intrinsic returns the association status of a pointer variable.
Consider the following example which is a simple variant on the fi rst.

 program ch1802
 integer , pointer :: a=>null(),b=>null()
 integer , target :: c
 integer :: d
 print *,associated(a)
 print *,associated(b)
 c = 1
 a => c
 c = 2
 b => c
 d = a + b
 print *,a,b,c,d
 print *,associated(a)
 print *,associated(b)

 end program ch1802

254 18 An Introduction to Pointers

 The output from running this program is shown below

 F
 F
 2 2 2 4
 T

 T

and as you can see we therefore have a mechanism to test pointers to see if they are
in a valid state before use.

 18.4 Referencing a and b Before Allocation or Pointer
Assignment

 Consider the following example:

 program ch1803
 integer , pointer :: a=>null(),b=>null()
 integer , target :: c
 integer :: d
 print *,a
 print *,b
 c = 1
 a => c
 c = 2
 b => c
 d = a + b
 print *,a,b,c,d

 end program ch1803

 Here we are actually referencing the pointers a and b , even though their status is
disassociated. Most compilers generate a run time error with this example with the
default compiler options, and the error message tends to be a little cryptic. It is rec-
ommended that you look at the diagnostic compilation switches for you compiler.
We include some sample output below from gfortran, Intel and Nag. The error mes-
sages are now much more meaningful.

 18.4.1 gfortran

 Switches are

 gfortran -W -Wall -fbounds-check -pedantic-errors
 -std=f2003 -Wunderfl ow -O –fbacktrace
 -ffpe-trap=zero,overfl ow,underfl ow -g

25518.5 Pointer Allocation and Assignment

 The program runs to completion with no error message. Here is the output.

 18.4.2 Intel

 Switches are

 /check:all /traceback

 Here is the output.

 18.4.3 Nag

 Switches are

 -C=all -C=undefi ned -info -g –gline

 Here is the output.

 Runtime Error: ch1803.f90, line 5: Reference to
 disassociated POINTER A
 Program terminated by fatal error
 ch1803.f90, line 5: Error occurred in CH1803

 18.5 Pointer Allocation and Assignment

 Consider the following example:

 program ch1804
 integer , pointer :: a=>null(),b=>null()

256 18 An Introduction to Pointers

 integer , target :: c
 integer :: d
 allocate(a)
 a = 1
 c = 2
 b => c
 d = a + b
 print *,a,b,c,d
 deallocate(a)

 end program ch1804

 In this example we allocate a and then can do conventional assignment. If we had
not allocated a the assignment would be illegal. Try out problem 2 to see what will
happen with your compiler.

 Our simple recommendation when using pointers is to nullify them when declar-
ing them and to explicitly allocate them before conventional assignment.

 18.6 Memory Leak Examples

 Dynamic memory brings greater versatility but requires greater responsibility.
Consider the following example:

 program ch1805
 integer , pointer :: a=>null(),b=>null()
 integer , target :: c
 integer :: d
 allocate(a)
 allocate(b)
 a=100
 b=200
 print *,a,b
 c = 1
 a => c
 c = 2
 b => c
 d = a + b
 print *,a,b,c,d

 end program ch1805

 What has happened to the memory allocated to a and b ?
 Now consider the following example.

25718.6 Memory Leak Examples

 Before running the above example we recommend starting up a memory moni-
toring program.

 Under Microsoft Windows XP Professional holding [CTRL] + [ALT] + [DEL]
will bring up the Windows Task Manager. Choose the [Performance] tab to get a
screen which will show CPU usage, PF Usage, CPU Usage History and Page File
Usage History. You will also get details of Physical and Kernel memory usage.

 Under Linux type

 top

in a terminal window.

258 18 An Introduction to Pointers

 In these examples we also see the recommended form of the allocate statement
when working with arrays. This enables us to test if the allocation has worked and
take action accordingly. A positive value indicates an allocation error, zero indicates
OK.

 The second program can require a power off on a Windows operating system
with a compiler that will remain anonymous!

 18.7 Non-standard Pointer Example

 Some Fortran compilers provide a non-standard loc intrinsic. This can be used to
print out the address of the variable passed as an argument. Here is the program.

 program ch1807
 integer , pointer :: a=>null(),b=>null()
 integer , target :: c
 integer :: d
 allocate(a)
 allocate(b)
 a=100
 b=200
 print *,a,b
 print *,loc(a)
 print *,loc(b)
 print *,loc(c)
 print *,loc(d)
 c = 1
 a => c
 c = 2
 b => c
 d = a + b
 print *,a,b,c,d
 print *,loc(a)
 print *,loc(b)
 print *,loc(c)
 print *,loc(d)

 end program ch1807

 Here is the output from a compiler with loc support.

25918.8 Problems

 This program clearly shows the memory leak.

 18.8 Problems

 1. Compile and run all of the example programs in this chapter with your compiler
and examine the output.

 2. Compile and run example 4 without the allocate (a) statement. See what
happens with your compiler.

 Here is the output from the Nag compiler. The fi rst run is with the default
options.

 nagfor ch1804p.f90
 NAG Fortran Compiler: Release 5.2(722)
 [NAG Fortran Compiler normal termination]
 a.exe

 There is no meaningful output.
 The following adds the -C=all compilation option.

 nagfor ch1804p.f90 -C=all
 NAG Fortran Compiler: Release 5.2(722)
 [NAG Fortran Compiler normal termination]
 a.exe
 Runtime Error: ch1804p.f90, line 5: Reference to
 disassociated POINTER A
 Program terminated by fatal error

 We now get a meaningful error message.

261

 Aims

 The aims of this chapter are:

 To consider some of the reasons for the inclusion of subroutines in a program-•
ming language.
 To introduce with a concrete example some of the concepts and ideas involved •
with the defi nition and use of subroutines.

 Arguments or parameters. –
 The intent attribute for parameters. –
 The call statement. –
 Scope of variables. –
 Local variables and the save attribute. –
 The use of parameters to report on the status of the action carried out in the –
subroutine.

 Module procedures to provide interfaces. •

 Chapter 19
 Introduction to Subroutines

 A man should keep his brain attic stacked with all the furniture
he is likely to use, and the rest he can put away in the lumber
room of his library, where he can get at it if he wants.

 Sir Arthur Conan Doyle, Five Orange Pips

I. Chivers and J. Sleightholme, Introduction to Programming with Fortran:
With Coverage of Fortran 90, 95, 2003, 2008 and 77,
DOI 10.1007/978-0-85729-233-9_19, © Springer-Verlag London Limited 2012

262 19 Introduction to Subroutines

 19.1 Introduction

 In the earlier chapter on functions we introduced two types of function

 Intrinsic functions – which are part of the language. •
 User defi ned functions – by which we extend the language. •

 We now introduce subroutines which collectively with functions are given the
name procedures.

 Procedures provide a very powerful extension to the language by:

 Providing us with the ability to break problems down into simpler more easily •
solvable subproblems.
 Allowing us to concentrate on one aspect of a problem at a time. •
 Avoiding duplication of code. •
 Hiding away messy code so that a main program is a sequence of calls to •
procedures.
 Providing us with the ability to put together collections of procedures that solve •
commonly occurring subproblems, often given the name libraries, and generally
compiled.
 Allowing us to call procedures from libraries written, tested and documented by •
experts in a particular fi eld. There is no point in reinventing the wheel!

 There are a number of concepts required for the successful use of subroutines
and we met some of them in Chap. 12 when we looked at user defi ned functions. We
will extend the ideas introduced there of parameters and introduce the additional
concept of an interface via the use of modules. The ideas are best explained with a
concrete example.

 Note that we use the terms parameters and arguments interchangeably.

 19.2 Example 1

 This example is one we met earlier that solves a quadratic equation, i.e., solves

 + + =2 0ax bx c

 The program to do this originally was just one program. In the example below we
break that problem down into smaller parts and make each part a subroutine. The
components are:

 Main program or driving routine. •
 Interaction with user to get the coeffi cients of the equation. •
 Solution of the quadratic. •

26319.2 Example 1

 Let us look now at how we do this with the use of subroutines:

264 19 Introduction to Subroutines

 19.2.1 Defi ning a Subroutine

 A subroutine is defi ned as

 subroutine subroutine_name (optional list of dummy arguments)
 implicit none
 dummy argument type defi nitions with intent
 …
 end subroutine subroutine_name

and from the earlier example we have the subroutine

 subroutine interact(a,b,c,ok)
 implicit none
 real , intent(out) :: a
 real , intent(out) :: b
 real , intent(out) :: c

26519.2 Example 1

 logical , intent(out) :: ok
 integer :: io_status=0
 print*,' type in the coeffi cients a, b and c'
 read(unit=*,fmt=*,iostat=io_status)a,b,c
 if (io_status == 0) then

 ok=.true.

 else
 ok=.false.

 endif
 end subroutine interact

 19.2.2 Referencing a Subroutine

 To reference a subroutine you use the call statement:

 call subroutine_name(optional list of actual arguments)

and from the earlier example the call to subroutine interact was of the form:

 call interact(p,q,r,ok)

 When a subroutine returns to the calling program unit control is passed to the
statement following the call statement.

 19.2.3 Dummy Arguments or Parameters and Actual Arguments

 Procedures and their calling program units communicate through their arguments.
We often use the terms parameter and arguments interchangeably throughout this
text. The subroutine statement normally contains a list of dummy arguments,
separated by commas and enclosed in brackets. The dummy arguments have a type
associated with them; for example, in subroutine solve x is of type real , but no
space is put aside for this in memory. When the subroutine is referenced e.g., call
solve(p,q,r,root1,root2,ifail), then the dummy argument points to the actual argu-
ment p, which is a variable in the calling program unit. The dummy argument and
the actual argument must be of the same type – in this case real .

 19.2.4 Intent

 It is recommended that dummy arguments have an intent attribute. In the earlier
example subroutine solve has a dummy argument e with intent (in), which
means that when the subroutine is referenced or called it is expecting e to have a
value, but its value cannot be changed inside the subroutine. This acts as an extra

266 19 Introduction to Subroutines

security measure besides making the program easier to understand. For each param-
eter it may have one of three attributes:

 intent (in)• , where the parameter already has a value and cannot be altered
in the called routine.
 intent (out)• , where the parameter does not have a value, and is given one
in the called routine.
 intent (inout•) , where the parameter already has a value and this is changed
in the called routine.

 19.2.5 Local Variables

 We saw with functions that variables could be essentially local to the function and un
available elsewhere. The concept of local variables also applies to subroutines. In the
example above term and a2 are both local variables to the subroutine solve .

 19.2.6 Local Variables and the Save Attribute

 Local variables are usually created when a procedure is called and their value lost
when execution returns to the calling program unit. To make sure that a local vari-
able retains its values between calls to a subprogram the save attribute can be used
on a type statement; e.g.,

 integer , save :: I

 means that when this statement appears in a subprogram the value of the local vari-
able I is saved between calls.

 19.2.7 Scope of Variables

 In most cases variables are only available within the program unit that defi nes them.
The introduction of argument lists to procedures immediately opens up the possibil-
ity of data within one program unit becoming available in one or more other pro-
gram units.

 In the main program we declare the variables p, q, r, root1, root2,
ifail and ok .

 Subroutine interact has no variables locally declared. It works on the argu-
ments a, b, c and ok ; which map onto p, q, r and ok from the main pro-
gram, i.e., it works with those variables.

 Subroutine solve has two locally defi ned variables, term and a2 . It works with
the variables e, f, g, root1, root2 and ifail , which map onto p, q,
r, root1, root2 and ifail from the main program.

26719.3 Why Bother with Subroutines?

 19.2.8 Status of the Action Carried Out in the Subroutine

 It is also useful to use parameters that carry information regarding the status of the
action carried out by the subroutine. With the subroutine interact we use a logi-
cal variable ok to report on the status of the interaction with the user. In the subrou-
tine solve we use the status of the integer variable ifail to report on the status
of the solution of the equation.

 19.2.9 Modules ‘containing’ Procedures

 At the same time as introducing procedures we have ‘contained’ them in a module
and then the main program ‘uses’ the module in order to make the procedure avail-
able. Procedures ‘contained’ in modules are called module procedures.

 With the ‘use’ statement the interface to the procedure is available to the com-
piler so that the types and positions of the actual and dummy arguments can be
checked. This was a major source of errors with Fortran 77.

 The use statement must be the fi rst statement in the main program or calling
unit, also the modules must be compiled before the program or calling unit.

 We will cover modules in more depth in later chapters.
 There are times when an interface is mandatory in Fortran so it’s good practice

to use module procedures from the start. There are other ways of providing explicit
interfaces and we will cover them later.

 19.3 Why Bother with Subroutines?

 Given the increase in the complexity of the overall program to solve a relatively
straightforward problem, one must ask why bother. The answer lies in our abil-
ity to manage the solution of larger and larger problems. We need all the help
we can get if we are to succeed in our task of developing large-scale reliable
programs.

 We need to be able to break our problems down into manageable subcompo-
nents and solve each in turn. We are now in a very good position to be able to do
this. Given a problem that requires a main program, one or more functions and
one or more subroutines we can work on each subcomponent in relative isolation,
and know that by using features like module procedures we will be able to glue all
of the components together into a stable structure at the end. We can indepen-
dently compile the main program and the modules containing the functions and
subroutines and use the linker to generate the overall executable, and then test
that.

268 19 Introduction to Subroutines

 Providing we keep our interfaces the same we can alter the actual implementa-
tions of the functions and subroutines and just recompile the changed procedures.

 19.4 Summary

 We now have the following concepts for the use of subroutines:

 Module procedures providing interfaces. •
 Intent attribute for parameters. •
 Dummy parameters. •
 The use of the call statement to invoke a subroutine. •
 The concepts of variables that are local to the called routines and are unavailable •
elsewhere in the overall program.
 Communication between program units via the argument list. •
 The concept of parameters on the call that enable us to report back on the status •
of the called routine.

 19.5 Problems

 1. Type the program and module procedures for example 1 into one fi le. Compile,
link and run providing data for complex roots to test this part of the code.

 2. Split the main program and modules up into three separate fi les. Compile the
modules and then compile the main program and link the object fi les to create
one executable. Look at the fi le size of the executable and the individual object
fi les. What do you notice?

 The development of large programs is eased considerably by the ability to com-
pile small program units and eradicate the compilation errors from one unit at a
time. The linker obviously also has an important role to play in the development
process.

 3. Write a subroutine to calculate new coordinates (x' , y') from (x, y) when the
axes are rotated counter clockwise through an angle of a radians using:

'

'

x xcos a ysin a

y xsin a ycos a

= +
= - +

 Hint:

 The subroutine would look something like subroutine ChangeCoordinate(x, y, a,
xd, yd)
 Write a main program to read in values of x, y and a and then call the subroutine
and print out the new coordinates. Use a module procedure.

269I. Chivers and J. Sleightholme, Introduction to Programming with Fortran:
With Coverage of Fortran 90, 95, 2003, 2008 and 77,
DOI 10.1007/978-0-85729-233-9_20, © Springer-Verlag London Limited 2012

 Aims

 The aims of this chapter are to extend the ideas in the earlier chapter on subroutines
and look in more depth at parameter passing, in particular using a variety of ways of
passing arrays.

 20.1 More on Parameter Passing

 So far we have seen scalar parameters of type real, integer and logical. We will now
look at numeric array parameters and character parameters. We need to introduce
some technical terminology fi rst. Don’t panic if you don’t fully understand the ter-
minology as the examples should clarify things.

 20.1.1 Assumed-Shape Array

 An assumed-shape array is a nonpointer dummy argument array that takes its shape
from the associated actual argument array.

 Chapter 20
 Subroutines : 2

 It is one thing to show a man he is in error, and another to
put him in possession of the truth.

 John Locke

270 20 Subroutines: 2

 20.1.2 Deferred-Shape Array

 A deferred-shape array is an allocatable array or an array pointer. An allocatable
array is an array that has the allocatable attribute and a specifi ed rank, but its bounds,
and hence shape, are determined by allocation or argument association.

 20.1.3 Automatic Arrays

 An automatic array is an explicit-shape array that is a local variable. Automatic
arrays are only allowed in function and subroutine subprograms, and are declared in
the specifi cation part of the subprogram. At least one bound of an automatic array
must be a nonconstant specifi cation expression. The bounds are determined when
the subprogram is called.

 20.2 Example 1 – Assumed Shape Parameter Passing

 We are going to use an example based on a main program and a subroutine that
calculates the mean and standard deviation of an array of numbers. The subroutine
has the following parameters:

 x – the array containing the real numbers. •
 n – the number of elements in the array. •
 mean – the mean of the numbers. •
 std_dev – the standard deviation of the numbers. •

 Consider the following program and subroutine.

 module statistics_module
 implicit none
 contains
 subroutine stats(x,n,mean,std_dev)
 implicit none
 integer, intent (in) :: n
 real, intent (in), dimension (:) :: x
 real, intent (out) :: mean
 real, intent (out) :: std_dev
 real :: variance
 real :: sumxi, sumxi2
 integer :: I
 variance = 0.0
 sumxi = 0.0
 sumxi2 = 0.0

27120.2 Example 1 – Assumed Shape Parameter Passing

 do I=1, n
 sumxi = sumxi + x(I)
 sumxi2 = sumxi2 + x(i)*x(I)

 end do
 mean = sumxi/n
 variance = (sumxi2-sumxi*sumxi/n)/(n-1)
 std_dev = sqrt(variance)

 end subroutine stats
 end module statistics_module
 program ch2001
 use statistics_module
 implicit none
 integer, parameter :: n = 10
 real, dimension (1:n) :: x
 real, dimension (-4:5) :: y
 real, dimension (10) :: z
 real, allocatable, dimension (:) :: t
 real : : m, sd
 integer :: I
 do I=1, n
 x(I) = real(I)

 end do
 call stats(x,n,m,sd)
 print *, ' x'
 print *, ' Mean = ', m
 print *, ' Standard deviation = ', sd
 y = x
 call stats(y,n,m,sd)
 print *, ' y'
 print *, ' Mean = ' , m
 print *, ' Standard deviation = ', sd
 z = x
 call stats(z,10,m,sd)
 print *, ' z '
 print *, ' Mean = ' ,
 m print *, ' Standard deviation = ', sd allocate (t(n))
 t = x
 call stats(t,10,m,sd)
 print *, ' t'
 print *, ' Mean = ' , m
 print *, ' Standard deviation = ', sd

 end program ch2001

 A fundamental rule in modern Fortran is that the shape of an actual array argu-
ment and its associated dummy arguments are the same, i.e., they both must have
the same rank and the same extents in each dimension. The best way to apply this

272 20 Subroutines: 2

rule is to use assumed-shape dummy array arguments as shown in the example
above.

 In the subroutine we have

 real , intent (in) , dimension (:) :: x

 where x is an assumed-shape dummy array argument, and it will assume the shape
of the actual argument when the subroutine is called.

 In two of the calls we have passed a variable n as the size of the array and used
a literal integer constant (10) in the other two cases. Both parameter passing mecha-
nisms work.

 20.2.1 Notes

 There are several restrictions when using assumed-shape arrays:

 The rank is equal to the number of colons, in this case 1. •
 The lower bounds of the assumed-shape array are the specifi ed lower bounds, if •
present, and 1 otherwise. In the example above it is 1 because we haven’t speci-
fi ed a lower bound.
 The upper bounds will be determined on entry to the procedure and will be what-•
ever values are needed to make sure that the extents along each dimension of the
dummy argument are the same as the actual argument. In this case the upper
bound will be n.
 An assumed-shape array must not be defi ned with the pointer or allocatable attri-•
bute in Fortran.
 When using an assumed-shape array an interface is mandatory. In this example •
it is provided by the stats subroutine being a contained subroutine in a module,
and the use of the module in the main program.

 20.3 Character Arguments and Assumed-Length
Dummy Arguments

 The types of parameters considered so far have been real, integer and logi-
cal . Character variables are slightly different because they have a length associated
with them. Consider the following program and subroutine which, given the name
of a fi le, opens it and reads values into the real array x :

 module read_module
 implicit none
 contains
 subroutine readin(name,x,n)
 implicit none
 integer , intent(in) :: n

27320.4 Rank 2 and Higher Arrays as Parameters

 real,dimension(:),intent(out)::x
 character (len=*),intent(in)::name
 integer::I
 open(unit=10,status='old',fi le=name)
 do i=1,n
 read(10,*)x(I)

 end do
 close(unit=10)

 end subroutine reading
 end module read_module
 program ch2002
 use read_module
 implicit none
 real , allocatable , dimension(:) :: a
 integer :: nos,i
 character(len=20)::fi lename
 print *,' Type in the name of the data fi le'
 read ' (a) ' , fi lename
 print *,' Input the number of items'
 read * , nos
 allocate (a(1:nos))
 call readin(fi lename,a,nos)
 print * , ' data read in was'
 do i=1,nos
 print *, ' ' ,a(I)

 enddo
 end program ch2002

 The main program reads the fi le name from the user and passes it to the subrou-
tine that reads in the data. The dummy argument name is of type assumed-length,
and picks up the length from the actual argument fi lename in the calling routine,
which is in this case 20 characters. An interface must be provided with assumed-
shape dummy arguments, and this is achieved in this case by the subroutine being
in a module.

 20.4 Rank 2 and Higher Arrays as Parameters

 The following example illustrates the modern way of passing rank 2 and higher
arrays as parameters. We start with a simple rank 2 example.

 module matrix_module
 implicit none

 contains
 subroutine matrix_bits(a,b,c,a_t,n)

274 20 Subroutines: 2

 implicit none
 integer, intent (in) :: n
 real, dimension (:,:), intent (in) : : a, b
real, dimension (:,:), intent (out) :: c,
a_t
 integer :: I, j , k
 real :: temp

 ! matrix multiplication c=ab
 do I = 1, n
 do j = 1, n
 temp = 0.0
 do k = 1, n
 temp = temp + a (i, k) *b (k, j)

 end do
 c(i,j) = temp

 end do
 end do

 ! calculate a_t transpose of a
 ! set a_t to be transpose matrix a

 do I=1, n
 do j = 1, n
 a_t(i,j) = a(j,i)

 end do
 end do

 end subroutine matrix bits
 end module matrix module
 program ch2003
 use matrix module
 implicit none
 real, allocatable, dimension (:,:) :: &
 one, two, three, one_t

 integer :: I, n
 print *, 'input size of matrices'
 read *, n
 allocate (one(1:n,1:n))
 allocate (two(1:n,1:n))
 allocate (three(1:n,1:n))
 allocate (one_t(1:n,1:n))
 do I=1, n
 print *, 'input row ', I, ' of one'
 read *, one(i,1:n)

 end do
 do I=1, n
 print *, 'input row ', I, ' of two'
 read *, two(i,1:n)

 end do

27520.5 Automatic Arrays and Median Calculation

 call matrix bits(one,two,three,one t,n)
print *, ' matrix three:'
 do I=1, n
 print *, three(i,1:n)

 end do
 print *, ' matrix one t:'
 do I=1, n
 print *, one t(i,1:n)

 end do
 end program ch2003

 The subroutine is doing a matrix multiplication and transpose. There are intrinsic
functions in Fortran called matmul and transpose that provide the same func-
tionality as the subroutine. One of the problems at the end of the chapter is to replace
the code in the subroutine with calls to the intrinsic functions.

 20.4.1 Notes

 The dummy array and actual array arguments look the same but there is a difference:

 The dummy array arguments • a, b, c, a_t are all assumed-shape arrays and
take the shape of the actual array arguments one, two, three and one_t ,
respectively.
 The actual array arguments • one, two, three and one_t in the main pro-
gram are allocatable arrays or deferred-shape arrays. An allocatable array is an
array that has an allocatable attribute. Its bounds and shape are declared when the
array is allocated, hence deferred-shape.

 20.5 Automatic Arrays and Median Calculation

 This example looks at the calculation of the median of a set of numbers and also
illustrates the use of an automatic array.

 The median is the middle value of a list, i.e., the smallest number such that at
least half the numbers in the list are no greater. if the list has an odd number of
entries, the median is the middle entry in the list after sorting the list into ascending
order, if the list has an even number of entries, the median is equal to the sum of the
two middle (after sorting) numbers divided by two. One way to determine the
median computationally is to sort the numbers and choose the item in the middle.

 Wirth classifi es sorting into simple and advanced, and his three simple methods
are as follows:

 Insertion sorting – The items are considered one at a time and each new item is •
inserted into the appropriate position relative to the previously sorted item. If you
have ever played bridge then you have probably used this method.

276 20 Subroutines: 2

 Selection sorting – First the smallest (or largest) item is chosen and is set aside •
from the rest. Then the process is repeated for the next smallest item and set aside
in the next position. This process is repeated until all items are sorted.
 Exchange sorting – if two items are found to be out of order they are inter-•
changed. This process is repeated until no more exchanges take place.

 Knuth also identifi es the above three sorting methods. For more information on
sorting the Knuth and Wirth books are good starting places. Knuth is a little old
(1973) compared to Wirth (1986), but it is still a very good coverage. Knuth uses
mix assembler to code the examples whilst the Wirth book uses Modula 2, and is
therefore easier to translate into modern Fortran.

 In the example below we use an exchange sort:

 module statistics_module
 implicit none

 contains
 subroutine stats(x,n,mean,std_dev,median)
implicit none
 integer, intent (in) :: n
 real, intent (in), dimension (:) :: x
 real,intent (out) :: mean
 real, intent (out) :: std_dev
 real, intent (out) :: median
 real, dimension (1:n) :: y
 real :: variance
 real :: sumxi, sumxi2
 integer :: k
 sumxi = 0.0
 sumxi 2 = 0.0
 variance = 0.0
 sumxi = sum(x)
 sumxi2 = sum(x*x)
 mean = sumxi/n
 variance = (sumxi2-sumxi*sumxi/n)/(-1)
 std_dev = sqrt(variance)
 y = x
 if (mod(n,2)==0) then
 median = (fi nd(n/2)+fi nd((n/2)+1))/2

 else
 median = fi nd((n/2) +1)

 end if
 contains

 real function fi nd(k) implicit none
 integer, intent (in) :: k
 integer :: l, r, I, j
 real :: t1, t2
 l = 1

27720.5 Automatic Arrays and Median Calculation

 r = n
 do while (l<r)
 t1 = y(k)
 I = l
 j = r
 do
 do while (y(i)<t1)
 I = I + 1

 end do
 do while (t1<y(j))
 j = j – 1

 end do
 if (i<=j) then
 t2 = y(I)
 y(I) = y(j)
 y(j) = t2
 I = I + 1
 j = j - 1

 end if
 if (i>j) exit

 end do
 if (j<k) then
 l = I

 end if
 if (k<i) then
 r = j

 end if
 end do
 fi nd = y(k)

 end function fi nd
 end subroutine stats

 end module statistics_module
 program ch2004

 use statistics_module
 implicit none
 integer :: n
 integer :: I
 real, allocatable, dimension (:) :: x
 real :: m, sd, median
 integer, dimension (8) :: timing
 n = 1000000
 do I = 1, 3
 print *, ' n = ', n
 allocate (x(1:n))
 call random number(x)
 x = x*1000

278 20 Subroutines: 2

 call date and time(values=timing)
 print *, ' initial '
 print *, timing (6), timing (7), timing (8)
 call stats(x,n,m,sd,median)
 print *, ' Mean = ', m
 print *, ' Standard deviation = ', sd
 print *, ' Median is = ', median
 call date and time(values=timing)
 print *, timing(6), timing(7), timing(8)
 n = n*10
 deallocate (x)

 end do
 end program ch2004

 In the subroutine stats the array y is automatic. It will be allocated automatically
when we call the subroutine. We use this array as a work array to hold the sorted
data. We then use this sorted array to determine the median.

 Note the use of the sum intrinsic in this example:

 sumxi=sum(x)
 sumxi2=sum(x*x)

 These statements replace the do loop from the earlier example. A good optimis-
ing compiler would not make two passes over the data with these two statements.

 20.5.1 Internal Subroutines and Scope

 The stats subroutine contains the fi nd subroutine. The stats subroutine has access to
the following variables

 x,n,mean,std_dev, median — these are made available as they are passed in as •
parameters.
 y, variance, sumxi, sumxi2 — are local to the subroutine stats. •

 The subroutine fi nd has access to the above as it is contained within subroutine
stats. It also has the following local variables that are only available within subrou-
tine selection

 i,j,k, minimum •

 This program uses an algorithm developed by Hoare to determine the median.
The number of computations required to fi nd the median is approximately 2 * n.

 The limiting factor with this algorithm on these systems is the amount of installed
memory. The program crashes on both systems with a failure to allocate the auto-
matic array. This is a drawback of automatic arrays in that there is no mechanism to
handle this failure gracefully. You would then need to use allocatable local work
arrays. The drawback here is that the programmer is then responsible for the deal-
location of these arrays. Memory leaks are then possible.

27920.6 Recursive Subroutines – Quicksort

 20.6 Recursive Subroutines – Quicksort

 In Chap. 12 we saw an example of recursive functions. This example illustrates the
use of recursive subroutines. It uses a simple implementation of Hoare’s Quicksort.
References are given in the bibliography. The overall problem is broken down into:

 A main program that prompts the user for the name of the data fi le and n. The •
allocation of the array is carried out in the main program.
 A subroutine to read the data. •
 A subroutine to sort the data. This subroutine contains the recursive sub routine •
Quicksort.
 A subroutine to write the sorted data to a fi le. •

 Below is the complete program:

 module read_data_module
 implicit none

 contains
 subroutine read_data(fi le_name,raw_data,how_ many)
 implicit none
 character (len=*), intent (in) :: fi le_ name
 integer, intent (in) :: how_many
 real, intent (out), dimension (:) :: raw_ data

 ! local variables
 integer : : I
 open (fi le=fi le _name,unit=1)
 do I=1, how many
 read (unit=1,fmt=*) raw_data(I)

 end do
 end subroutine read_data

 end module read_data_module
 module sort_data_module
 implicit none

 contains
 subroutine sort_data(raw_data,how_many)
 implicit none
 integer, intent (in) :: how_many
 real, intent (inout) , dimension (:) :: raw_data
 call quicksort(1,how many)

 contains
 recursive subroutine quicksort(l,r)
 implicit none
 integer, intent (in) :: l, r

 ! local variables
 integer :: I, j

280 20 Subroutines: 2

 real :: v, t
 I = l
 j = r
 v = raw_data(int((l+r)/2))
 do
 do while (raw data(i)<v)
 I = I + 1

 end do
 do while (v<raw data(j))
 j = j – 1

 end do
 if (i<=j) then
 t = raw data (I)
 raw_data(I) = raw_data(j)
 raw_data(j) = t
 I = I + 1
 j = j – 1

 end if
 if (i>j) exit

 end do
 if (l<j) then
 call quicksort(l,j)

 end if
 if (i<r) then
 call quicksort(i, r)

 end if
 end subroutine quicksort

 end subroutine sort_data
 end module sort_data_module
 module print data module
 implicit none

 contains
 subroutine print_data(raw_data,how_many)
 implicit none
 integer, intent (in) :: how_many
 real, intent (in), dimension (:) :: raw_data

 ! local variables
 integer :: I
 open (fi le='sorted.txt',unit=2)
 do I=1, how many
 write (unit=2,fmt=*) raw_data(I)

 end do
 close (2)

 end subroutine print_data
 end module print_data_module

28120.6 Recursive Subroutines – Quicksort

 program ch2005
 use read_data_module
 use sort_data_module
 use print_data_module
 implicit none
 integer :: how many
 character (len=20) :: fi le name
 real, allocatable, dimension (:) :: raw_data
 integer, dimension (8) :: timing
 print *, ' how many data items are there?'
 read *, how_many
 print *, ' what is the fi le name?'
 read '(a)', fi le name
 call date_and_time(values=timing)
 print *, ' initial'
 print *, timing (6), timing (7), timing(8)
 allocate (raw_data(how_many))
 call date_and_time(values=timing)
 print *, ' allocate'
 print *, timing (6), timing (7), timing (8)
 call read_data(fi le_name,raw_data,how_many)
 call date_and_time(values=timing)
 print *, ' read'
 print *, timing(6), timing (7), timing(8)
 call sort_data(raw_data,how_many)
 call date_and_time(values=timing)
 print *, ' sort'
 print *, timing (6), timing (7), timing (8)
 call print_data(raw_data,how_many)
 call date_and_time(values=timing)
 print *, ' print'
 print *, timing (6), timing (7), timing (8)
 print *, ' '
 print *, ' data written to fi le sorted.txt'

 end program ch2005

 20.6.1 Note – Recursive Subroutine

 The actual sorting is done in the recursive subroutine QuickSort . The actual
algorithm is taken from the Wirth book. See the bibliography for a reference.

 Recursion provides us with a very clean and expressive way of solving many
problems. There will be instances where it is worthwhile removing the overhead of
recursion, but the fi rst priority is the production of a program that is correct. It is
pointless having a very effi cient but incorrect solution.

282 20 Subroutines: 2

 We will look again at recursion and effi ciency in a later chapter and see under
what criteria we can replace recursion with iteration.

 20.6.2 Note – Flexible Design

 The QuickSort recursive routine can be replaced with another sorting algorithm and
we can maintain the interface to Sort_data. We can thus decouple the implementa-
tion of the actual sorting routine from the defi ned interface. We would only need to
recompile the Sort_data routine and we could relink using the already compiled
main, read data and print data routines.

 A later chapter looks at a non recursive implementation of quicksort where we
look at some of the ways of rewriting the above program by replacing the recursive
quicksort with the non recursive version.

 20.6.3 Note – Timing Information

 We call the date_and_time intrinsic subroutine to get timing information.
 As can be seen it is the I/O that dominates the overall running time of the pro-

gram. In the 10 years since fi rst running this program we have seen the data set size
increase from tens of thousands to tens and hundreds of millions.

 20.7 Elemental Subroutines

 We saw an example in Chap. 12 of elemental functions. Here is an example of an
elemental subroutine.

 module swap_module
 implicit none
 contains
 elemental subroutine swap(x,y)
 integer , intent(inout) :: x,y
 integer :: temp
 temp=x
 x=y
 y=temp

 end subroutine swap
 end module swap_module
 program ch2006
 use swap_module
 implicit none

28320.9 Problems

 integer , dimension(10) :: a,b
 integer :: I
 do I=1, 10
 a(i)=I
 b(i)=i*I

 end do
 print *,a
 print *,b
 call swap(a,b)
 print *,a
 print *,b

 end program ch2006

 The subroutine is written as if the arguments are scalar, but work with arrays!
User defi ned elemental procedures came in with Fortran 95.

 20.8 Summary

 We now have a lot of the tools to start tackling problems in a structured and modular
way, breaking problems down into manageable chunks and designing subprograms
for each of the tasks.

 20.9 Problems

 1. Below is the random number program that was used to generate the data sets for
the Quicksort example:

 program ch2007
 implicit none
 integer :: n
 integer :: I
 real , allocatable , dimension (:) :: x
 print *, ' how many values ?'
 read *,n
 allocate(x(1:n))
 call random_number(x)
 x=x*1000
 open(unit=10,fi le='random.txt')
 do i=1,n
 write(10, 100)x(I)
 100 format(f8.3)

 end do
 end program ch2007

284 20 Subroutines: 2

 Run the Quick_Sort program in this chapter with the data fi le as input. Obtain
timing details.

 What percentage of the time does the program spend in each subroutine? Is it
worth trying to make the sort much more effi cient given these timings?

 2. Find out if there is a subroutine library like the NAG library available. if there is
replace the Quick_Sort recursive subroutine with a suitable routine from that
library. What times do you obtain?

 3. Try using the operating system SORT command to sort the fi le. What timing
fi gures do you get now?
 Was it worth writing a program?

 4. Consider the following program:

 program ch2008
 !
 ! program to test array subscript checking
 ! when the array is passed as an argument.
 !
 implicit none
 integer , parameter :: array_size=10
 integer :: I
 integer , dimension(array_size) :: a
 do i=1,array_size
 a(i)=I

 end do
 call sub01(a,array size)

 end program ch2008
 subroutine sub01(a,array_size)
 implicit none
 integer , intent(in) :: array_size
 integer , intent(in) , dimension(array_size) :: a
 integer :: I
 integer :: atotal=0
 integer :: rtotal=0
 do i=1,array_size
 rtotal=rtotal+a(I)

 end do
 do i=1,array_size+1
 atotal=atotal+a(I)

 end do
 print *, ' Apparent total is ' , atotal
 print *,' real total is ' , rtotal

 end subroutine sub01

 The key thing to note is that we haven’t used interface blocks and we have an
error in the subroutine where we go outside the array. Run this program. What
answer do you get for the apparent total?

28520.11 Commercial Numerical and Statistical Subroutine Libraries

 Are there any compiler fl ags or switches which will enable you to trap this
error?

 5. Use the intrinsic functions matmul and transfer in program ch2003 to
replace the current Fortran 77 style code.

 20.10 Bibliography

 Hoare, C.A.R.: Algorithm 63, partition; algorithm 64, quicksort, p.321; algorithm
65: FIND. Commun. ACM. 4 , 321–322 (1961)
 Hoare, C.A.R.: Proof of a program: FIND. Commun. ACM. 13 (1), 39–45 (1970)
 Hoare, C.A.R.: Proof of a recursive program: quicksort. Comput. J. 14 (4), 391–395
(1971)
 Knuth , D.E.: The Art of Computer programming. Sorting and Searching, vol. 3.
Addison-Wesley, Reading (1973)
 Wirth, N.: Algorithms and Data Structures. Prentice-Hall, Upper Saddle River
(1986)

 20.11 Commercial Numerical and Statistical Subroutine
Libraries

 There are two major suppliers of commercial libraries:

 NAG: Numerical Algorithms Group •

 and

 Rogue Wave Software •

 They can be found at:

 • http://www.nag.co.uk/

 and

 • http://www.roguewave.com/

 respectively. Their libraries are written by numerical analysts, and are fully tested
and well documented. They are under constant development and available for a wide
range of hardware platforms and compilers. Parallel versions are also available.

http://www.nag.co.uk/
http://www.roguewave.com/

287I. Chivers and J. Sleightholme, Introduction to Programming with Fortran:
With Coverage of Fortran 90, 95, 2003, 2008 and 77,
DOI 10.1007/978-0-85729-233-9_21, © Springer-Verlag London Limited 2012

 Aims

 The aims of this chapter are to look at the facilities found in Fortran provided by
modules, in particular:

 The use of a module to aid in the consistent defi nition of precision throughout a •
program and subprograms.
 The use of modules for global data. •
 The use of modules for derived data types. •
 Modules containing procedures •
 Public, private and protected attributes •
 The use statement and its extensions •

 21.1 Introduction

 We have now covered the major executable building blocks in Fortran and they are

 The main program unit •
 Functions •
 Subroutines •

and these provide us with the tools to solve many problems using just a main pro-
gram and one or more external and internal procedures. Both external and internal
procedures communicate through their argument lists, whilst internal procedures
have access to data in their host program units.

 Chapter 21
 Modules

 Common sense is the best distributed commodity in the world,
for every man is convinced that he is well supplied with it.

 Descartes

288 21 Modules

 We have also introduced modules. The fi rst set of examples was in the chapter on
functions. The second set were in the chapter on derived types and the third set were
in the subroutine chapters.

 We will now look at examples of modules for

 Precision defi nition. •
 Global data •
 Modules containing procedures •
 Derived type defi nition. •

 Modules provide the code organisational mechanism in Fortran and can be
thought of as the equivalent of classes in C++, Java and C#. They are one of the
most important features of modern Fortran.

 21.2 Basic Module Syntax

 The form of a module is

 module module_name
 …
 end module module_name

and the specifi cations and defi nitions contained within it is made available in the
program units that need to access it by

 use module_name

 The use statement must be the fi rst statement after the program, function or sub-
routine statement.

 21.3 Modules for Global Data

 So far the only way that a program unit can communicate with a procedure is through the
argument list. Sometimes this is very cumbersome, especially if a number of procedures
want access to the same data, and it means long argument lists. The problem can be
solved using modules; e.g., by defi ning the precision to which you wish to work and any
constants defi ned to that precision which may be needed by a number of procedures.

 21.4 Modules for Precision Specifi cation and Constant
Defi nition

 In the following example we use a module to defi ne a parameter long to specify
the precision to which we wish to work, and another for a range of mathematical
 constants including a value for the parameter p . Note that the parameter p is defi ned

28921.4 Modules for Precision Specifi cation and Constant Defi nition

to this working precision. We then import the module defi ning these parameters into
the program units that need them. We also use a module procedure.

 module precision_module
 implicit none
 integer, parameter :: &

 long=selected_real_kind(15,307)
 end module precision_module

 module maths_module
 use precision_module
 implicit none
 real (long), parameter :: c = 299792458.0_long
 ! units ms-1
 real (long), parameter :: &
 e = 2.71828182845904523_long

 real (long), parameter :: g = 9.812420_long
 ! 9.780 356ms-2 at sea level on the equator
 ! 9.812 420ms-2 at sea level in london
 ! 9.832 079ms-2 at sea level at the poles
 real (long), parameter :: &
 pi = 3.14159265358979323_long

 end module maths_module

 module sub1_module
 implicit none
 contains
 subroutine sub1(radius,area,circum)
 use precision_module
 use maths_module
 implicit none
 real(long),intent(in)::radius
 real(long),intent(out)::area,circum
 area=pi*radius*radius
 circum=2.0_long*pi*radius

 end subroutine sub1
 end module sub1_module

 program ch2101
 use precision_module
 use sub1_module
 implicit none
 real(long)::r,a,c
 integer : :I
 do I=1,5
 print*, 'radius?'
 read*,r
 call sub1(r,a,c)

290 21 Modules

 print *, 'for radius = ', r
 print *, 'area = ',a
 print *, 'circumference = ',c

 end do
 end program ch2101

 21.4.1 Note

 In this example we wish to work with the precision specifi ed by the kind type
parameter long in the module precision_module . In order to do this we use
the statement

 use precision_module

inside the program units before any declarations. The kind type parameter long is
then used with all the real type declaration e.g.,

 real (long):: r,a,c

 To make sure that all fl oating point calculations are performed to the working preci-
sion specifi ed by long any constants such as 2.0 in subroutine Sub1 are specifi ed
as const_long e.g.,

 2.0_long

 Note also that we defi ne things once and use them on two occasions, i.e., we defi ne
the precision once and use this defi nition in both the main program and the
subroutine.

 21.5 Modules for Sharing Arrays of Data

 The following example uses a module to defi ne a parameter and two arrays. The
module also contains three subroutines that have access to the data in the module.
The main program has the statement

 use data_module

which interfaces to the three subroutines.
 Note that in this example the calls to the subroutines have no parameters. They

work with the data contained in the module.

 module data_module
 implicit none
 integer, parameter : : n=12
 real, dimension(1:n) :: rainfall
 real, dimension(1:n) :: sorted

29121.5 Modules for Sharing Arrays of Data

 contains
 subroutine readdata
 implicit none
 integer :: I
 character (len=40) :: fi lename
 print *, 'What is the fi lename ?'
 read *,fi lename
 open(unit=100,fi le=fi lename)
 do i=1,n
 read (100,*) rainfall(I)

 end do
 end subroutine readdata
 subroutine sortdata
 implicit none
 sorted=rainfall
 call selection

 contains
 subroutine selection
 implicit none
 integer :: i, j, k
 real :: minimum
 do i=1,n-1
 k=I
 minimum=sorted(I)
 do j=i+1,n
 if (sorted(j) < minimum) then
 k=j
 minimum=sorted(k)

 end if
 end do
 sorted(k)=sorted(I)
 sorted(i)=minimum

 end do
 end subroutine selection

 end subroutine sortdata

 subroutine printdata
 implicit none
 integer :: I
 print *, 'original data is'
 do i=1,n
 print 100,rainfall(I)
 100 format(1x, f7.1)

 end do
 print *, 'Sorted data is'

292 21 Modules

 do i=1,n
 print 100,sorted(I)

 end do
 end subroutine printdata
 end module data_module

 program ch2102
 use data_module
 implicit none

 call readdata
 call sortdata
 call printdata

 end program ch2102

 21.6 Modules for Derived Data Types

 When using derived data types and passing them as arguments to procedures, both
the actual arguments and dummy arguments must be of the same type, i.e., they
must be declared with reference to the same type defi nition. The only way this can
be achieved is by using modules. The user defi ned type is declared in a module and
each program unit that requires that type uses the module.

 21.6.1 Person Data Type

 In this example we have a user defi ned type person which we wish to use in the
main program and pass arguments of this type to the subroutines read_data and
stats. In order to have the type person available to two subroutines and the
main program we have defi ned person in a module personal_module and
then made the module available to each program unit with the statement

 use personal_module

 Note that we have put both subroutines in one module.

 module personal_module
 implicit none
 type person
 real:: weight
 integer :: age
 character :: sex

 end type person
 end module personal_module
 module subs_module

29321.6 Modules for Derived Data Types

 use personal_module
 implicit none
 contains
 subroutine read_data(data,max_no,no)
 implicit none
 type (person), dimension (:), intent(out)::data
 integer, intent(out):: no
 integer, intent(in):: max_no
 integer :: I
 do
 print *, 'input number of patients'
 read *,no
 if (no > 0 .and. no < = max_no) exit

 end do
 do i=1,no

 print *, 'for person',I
 print *, 'weight ?'
 read*,data(i)%weight
 print*, 'age ?'
 read*,data(i)%age
 print*, 'sex ?'
 read*,data(i)%sex

 end do
 end subroutine read_data

 subroutine stats(data,no,m_a,f_a)
 implicit none
 type(person), dimension(:), intent(in) ::data
 real, intent(out) :: m_a,f_a
 integer, intent(in):: no
 integer :: i,no_f,no_m
 m_a=0.0; f_a=0.0;no_f=0; no_m =0
 do i=1,no
 if (data(i)%sex == 'M' &
 .or. data(i)%sex == 'm') then
 m_a=m_a+data(i)%weight
 no_m=no_m+1

 elseif(data(i)%sex == 'F' &
 .or. data(i)%sex == 'f') then
 f_a=f_a+data(i)%weight
 no_f=no_f+1

 endif
 end do
 if (no_m > 0) then
 m_a = m_a/no_m

294 21 Modules

 endif
 if (no_f > 0) then
 f_a = f_a/no_f

 endif
 end subroutine stats
 end module subs_module

 program ch2103
 use personal_module
 use subs_module
 implicit none
 integer,parameter:: max _no=100
 type (person), dimension(1:max_no) :: patient
 integer :: no_of_patients
 real :: male_average, female_average

 !
 call read_data(patient,max_no,no_of patients)
 call stats(patient, no_of_patients, &
 male_average, female_average)
 print*, 'average male weight is ',male_average
 print*, 'average female weight is ',female_average

 end program ch2103

 21.7 Private, Public and Protected Attributes

 With the examples of modules so far every entity in a module has been accessible to
each program unit that ‘uses’ the module. By default all entities in a module have
the public attribute, but sometimes it is desirable to limit the access. If entities have
the private attribute this limits the possibility of inadvertent changes to a variable by
another program unit.

 Example of using public and private attributes:

 real, public :: a, b, c
 integer, private :: I, j, k

 If a variable in a module is declared to be public, its access can be partially restricted
by also giving it the protected attribute. This means that the variable can still be seen
by program units that use the module but its value cannot be changed e.g.

 integer, public, protected:: I

29521.10 Formal Syntax

 21.8 The Use Statement

 In its simplest form the use statement is

 use module_name

which then makes all the module’s public entities available to the program unit.
There may be times when only certain entities should be available to a particular
program unit. In Example 1 subroutine sub1 ‘uses’ maths_module but
only needs pi and not c, e and g. The use statement could therefore be

 use maths_module, only: pi

 There are also times when an entity in a module needs to have its name changed
when used in a program unit. For example variable g in maths_module needs to
be called gravity in subroutine sub1 so the use statement becomes

 use maths_module, gravity= > g

 21.9 Notes on Module Usage and Compilation

 If we only have one fi le comprising all of the program units (main program, mod-
ules, functions and subroutines) then there is little to worry about. However, it is
recommended that larger-scale programs be developed as a collection of fi les with
related program units in each fi le, or even one program unit per fi le. This is more
productive in the longer term, but it will lead to problems with modules unless we
compile each module before we use it in other program units.

 21.10 Formal Syntax

 The following is taken from the standard and describes more fully requirements in
the interface area.

 21.10.1 Interface

 The interface of a procedure determines the forms of reference through which it
may be invoked. The procedure’s interface consists of its name, binding label,
generic identifi ers, characteristics, and the names of its dummy arguments. The
characteristics and binding label of a procedure are fi xed, but the remainder of the
interface may differ in differing contexts.

296 21 Modules

 21.10.2 Implicit and Explicit Interfaces

 Within the scope of a procedure identifi er, the interface of the procedure is either
explicit or implicit. The interface of an internal procedure, module procedure, or
intrinsic procedure is always explicit in such a scope.

 The interface of a subroutine or a function with a separate result name is explicit
within the subprogram where the name is accessible.

 21.10.3 Explicit Interface

 A procedure other than a statement function shall have an explicit interface if it is
referenced and

 a reference to the procedure appears•

 with an argument keyword, or –
 in a context that requires it to be pure, –

 the procedure has a dummy argument that•

 has the ALLOCATABLE, OPTIONAL, POINTER, TARGET, VALUE –
attribute,
 is an assumed-shape array, –
 is a coarray, –
 is polymorphic, –

 the procedure has a result that•

 is an array, –
 is a pointer or is allocatable, or –
 has a nonassumed type parameter value that is not a constant expression, –

 the procedure is elemental •

 21.11 Summary

 We have now introduced the concept of a module, another type of program unit,
probably one of the most important features of Fortran 90. We have seen in this
chapter how they can be used:

 Defi ne global data. •
 Defi ne derived data types. •
 Contain explicit procedure interfaces. •
 Package together procedures. •

29721.12 Problems

 This is a very powerful addition to the language, especially when constructing
large programs and procedure libraries.

 21.12 Problems

 1. Write two functions, one to calculate the volume of a cylinder p r 2 l where the
radius is r and the length is l, and the other to calculate the area of the base of the
cylinder p r 2 . Defi ne p as a parameter in a module which is used by the two func-
tions. Now write a main program which prompts the user for the values of r and
l, calls the two functions and prints out the results.

 2. Make all the real variables in the above problem have 15 signifi cant digits and a
range of 10 −307 to 10 +307 . Use a module.

299I. Chivers and J. Sleightholme, Introduction to Programming with Fortran:
With Coverage of Fortran 90, 95, 2003, 2008 and 77,
DOI 10.1007/978-0-85729-233-9_22, © Springer-Verlag London Limited 2012

 Aims

 The aims of this chapter are to look at several complete examples illustrating data
structuring in Fortran.

 Singly linked list: reading in an arbitrary amount of text •
 Singly linked list: reading in an arbitrary quantity of numeric data •
 Ragged arrays – lower triangular matrix •
 Ragged arrays – variable sized data sets •
 Perfectly balanced tree •
 Date derived type •

 22.1 Introduction

 This chapter looks at simple data structuring in Fortran using a range of examples.
We use modules throughout to defi ne the data structures that we will be working
with. The chapter starts with a number of pointer examples.

 Chapter 22
 Simple Data Structuring in Fortran

 The good teacher is a guide who helps others to dispense
with his services.

 R. S. Peters, Ethics and Education

300 22 Simple Data Structuring in Fortran

 22.2 Singly Linked List: Reading in an Arbitrary
Amount of Text

 Conceptually a singly linked list consists of a sequence of boxes with compartments.
In the simplest case the fi rst compartment holds a data item and the second contains
directions to the next box.

 In the diagram below we have a singly linked list that holds three characters I, a
and n. Element 1 is at address 100 and holds the letter I and a pointer to the next
element – at address 104. Element 2 holds the letter a and a pointer to the next element
– at address 108. Element 3 holds the letter n, and does not point to anything – we
use the null pointer.

 I 104 → a 108 → n null

 We can construct a data structure in Fortran to work with a singly linked list by
defi ning a link data type with two components, a character and a pointer to a link
data type. A complete program to do this is given below:

 module link_module
 type link
 character :: c
 type (link) , pointer :: next => null()

 end type link

 end module link_module
 program ch2201
 use link_module
 implicit none
 type (link) , pointer :: root , current
 integer :: io_stat_number=0
 allocate(root)
 print *,' type in some text'
 read (unit = *, fmt = '(a)' , advance = 'no' , &
 iostat = io_stat_number) root%c

 if (io_stat_number == –1) then
 nullify(root%next)

 else
 allocate(root%next)

 endif
 current => root
 do while (associated(current%next))
 current => current%next
 read (unit=*,fmt='(a)',advance='no', &
 iostat=io_stat_number) current%c

30122.2 Singly Linked List: Reading in an Arbitrary Amount of Text

 if (io_stat_number == -1) then
 nullify(current%next)

 else
 allocate(current%next)

 endif
 end do
 current => root
 do while (associated(current%next))
 print * , current%c
 current => current%next

 end do
 end program ch2201

 The behaviour of this program is system specifi c. You will have to look at your
compiler documentation regarding the IO_Stat_Number. The fi rst thing of interest
is the type defi nition for the singly linked list. We have

 module link_module
 type link
 character :: c
 type (link) , pointer :: next => null()

 end type link
 end module link_module

and we call the new type link . It comprises two component parts: the fi rst holds a
character C, and the second holds a pointer called next to allow us to refer to
another instance of type link . Remember we are interested in joining together
several boxes or links .

 The next item of interest is the variable defi nition. Here we defi ne two variables
 root and current to be pointers that point to items of type link . In Fortran when
we defi ne a variable to be a pointer we also have to defi ne what it is allowed to point to.
This is a very useful restriction on pointers, and helps make using them more secure.

 The fi rst executable statement

 allocate(root)

requests that the variable root be allocated memory. At this time the contents of
the character component is undefi ned and the pointer component is disassociated.

 The next statement reads a character from the keyboard. We are using a number
of additional features of the read statement, including

 advance='no'
 iostat=io_stat_number

and the two options combine to provide the ability to read an arbitrary amount of
text from the user per line, and terminate only when end of fi le is encountered as the

302 22 Simple Data Structuring in Fortran

only input on a line, typically by typing CTRL Z. Note that the numbers returned by
the iostat option are implementation specifi c. A small program would have to be
written to test the values returned for each platform.

 If an end of fi le is reached then the pointer root%next is nullifi ed using the
nullify statement. This gives the pointer a status of disassociated, and this is a
convenient way of saying that it doesn’t point to anything valid.

 If the end of fi le is not detected then the next link in the chain is created.The
statement

 Current => Root

means that both Current and Root point to the same physical memory location,
and this holds a character data item and a pointer. We must do this as we have to
know where the start of the list is. This is now our responsibility, not the compilers.
Without this statement we are not able to do anything with the list except fi ll it up
— hardly very useful.

 The while loop is then repeated until end of fi le is reached. if the user had typed
an end of fi le immediately then Current%Next would not be associated, and
the while loop would be skipped.

 This loop allocates memory and moves down the chain of boxes one character at
a time fi lling in the links between the boxes as we go. We then have

 Current => Root

and this now means that we are back at the start of the list, and in a position to traverse
the list and print out each character in the list.

 There is thus the concept with the pointer variable current of it providing us
with a window into memory where the complete linked list is held, and we look at
one part of the list at a time.

 Both while loops use the intrinsic function associated to check the association
status of a pointer.

 It is recommended that this program be typed in, compiled and executed. It is
surprisingly diffi cult to believe that it will actually read in a completely arbitrary
number of characters from the user. Seeing is believing.

 22.3 Singly Linked List: Reading in an Arbitrary Quantity
of Numeric Data

 In this example we will look at using a singly linked list to read in an arbitrary
quantity of data and then allocating an array to copy it to for normal numeric
calculations at run time:

 module link_module
 type link
 real :: n
 type (link) , pointer :: next

30322.3 Singly Linked List: Reading in an Arbitrary Quantity of Numeric Data

 end type link
 end module link_module
 program ch2202_1
 use link_module
 implicit none
 type (link) , pointer :: root, current
 integer :: I=0
 integer :: error=0
 integer :: io_stat_number=0
 integer :: blank_lines=0
 real , allocatable , dimension (:) :: x
 allocate(root)
 print *,' Type in some numbers'
 read (unit = *, fmt = *, &
iostat = io_stat_number) root%n
 if (io_stat_number > 0) then
 error=error+1

 else if (io_stat_number == –1) then
 nullify(root%next)

 else if (io_stat_number == -2) then
 blank_lines=blank_lines+1

 else
 i=I+1
 allocate(root%next)

 endif
 current => root
 do while (associated(current%next))
 current => current%next
 read (unit = * , fmt=*, & iostat = io_stat_number)

 current%n
 if (io_stat_number > 0) then
error=error+1

 else if (io_stat_number == -1) then
 nullify(current%next)

 else if (io_stat_number == -2) then
 blank_lines=blank_lines+1

 else
 i=I+1
 allocate(current%next)

 endif
 end do
 print *,I,' items read'
 print *,blank_lines,' blank lines'
 print *,error,' items in error'
 allocate(x(1:i))

304 22 Simple Data Structuring in Fortran

 I=1
 current => root
 do while (associated(current%next))
 x(i)=current%n
 i=I+1
 print * , current%n
 current => current%next

 end do
 print *,x

 end program ch2202_1

 Below is a variant on this using the NAG compiler. Note the use of a module
(f90_iostat) and meaningful names for the status of the read:

 module link_module
 type link
 real :: n
 type (link) , pointer :: next

 end type link
 end module link module
 program ch2202_2
 use link_module
 use f90_iostat
 type (link) , pointer :: root, current
 integer :: I=0
 integer :: io_stat_number=0

 allocate(root)
 print *,' Type in some numbers'
 read (unit = *, fmt = *, iostat = io_stat_number) &
 root%n

 if (io_stat_number == ioerr_eof) then
 nullify(root%next)

 else if(io_stat_number == ioerr_ok) then
 i=I+1
 allocate(root%next)

 endif
 current => root
 do while (associated(current%next))
 current => current%next
 read (unit=*,fmt=*, iostat=io_stat_number) &
 current%n

 if (io_stat_number == ioerr_eof) then
 nullify(current%next)

 else if(io_stat_number == ioerr_ok) then

30522.4 Ragged Arrays

 i=I+1
 allocate(current%next)

 endif
 end do
 print *,I,' items read'
 current => root
 do while (associated(current%next))
 print * , current%n
 current => current%next

 end do

 end program ch2202_2

 22.4 Ragged Arrays

 Arrays in Fortran are rectangular, even when allocatable. However if you wish to
set up a lower triangular matrix that uses minimal memory Fortran provides a
number of ways of doing this. The following example achieves it using allocatable
components.

 module ragged_module
 implicit none
 type ragged
 real , dimension(:) , allocatable :: ragged_row

 end type ragged
 end module ragged_module
 program ch2203
 use ragged_module
 implicit none
 integer :: I
 integer , parameter :: n=3
 type (ragged) , dimension(1:n) :: lower_diag
 do i=1,n
 allocate(lower_diag(i)%ragged_row(1:i))
 print *,' type in the values for row ' , I
 read *,lower_diag(i)%ragged_row(1:i)

 end do
 do i=1,n
 print *,lower_diag(i)%ragged_row(1:i)

 end do
 end program ch2203

 Within the fi rst do loop we allocate a row at a time and each time we go around
the loop the array allocated increases in size.

306 22 Simple Data Structuring in Fortran

 22.5 Ragged Arrays and Variable Sized Data Sets

 The previous example showed how to use allocatable components in a derived type
to achieve ragged arrays. We extend this simple idea in the example below. In this
example both the number of stations and the number of data items for each station
is read in at run time and allocated accordingly. Notice that 0 is valid as the number
of data items for a station.

 module ragged_module
 type ragged
 real, allocatable, dimension (:) :: rainfall

 end type ragged
 end module ragged_module
 program ch2204
 use ragged_module
 implicit none
 integer :: I
 integer :: nr
 integer, allocatable, dimension (:) :: nc
 type (ragged), allocatable, dimension (:) :: station
 print *,' enter number of stations'
 read *, nr
 allocate (station(1:nr))
 allocate (nc(1:nr))
 do I = 1, nr
 print *,' enter the number of data values '
 print *, 'for station, i
 read *, nc(I)
 allocate (station(i)%rainfall(1:nc(I)))
 if (nc(I)==0) then
 cycle

 end if
 print *,' Type in the values for station ', I
 read *, station(I) %rainfall(1:nc(I))

 end do
 do I = 1, nr
 print *,' Row ',i, ' Data = ', &
 station(i)%rainfall(1:nc(i))

 end do
 end program ch2204

30722.6 Perfectly Balanced Tree

 22.6 Perfectly Balanced Tree

 Let us now look at a more complex example that builds a perfectly balanced tree and
prints it out. A loose defi nition of a perfectly balanced tree is one that has minimum
depth for n nodes. More accurately a tree is perfectly balanced if for each node the
number of nodes in its left and right subtrees differ by at most 1:

 module tree_node_module
 implicit none
 type tree_node
 integer :: number
 type (tree_node), pointer :: left, right

 end type tree_node
 end module tree_node_module
 module tree_module
 implicit none

 contains
 recursive function tree(n) result (answer)
 use tree_node_module
 implicit none
 integer, intent (in) :: n
 type (tree_node), pointer :: answer
 type (tree_node), pointer :: new_node
 integer :: l, r, x
 if (n==0) then
 print *,' terminate tree'
 nullify (answer)

 else
 l = n/2
 r = n - l – 1
 print *, l, r, n
 print *,' next item'
 read *, x
 allocate (new node)
 new_node%number = x
 print *,' left branch'
 new_node%left => tree(l)
 print *,' right branch'
 new_node%right => tree(r)
 answer => new_node

 end if
 print *,' function tree ends'

 end function tree
 end module tree_module

308 22 Simple Data Structuring in Fortran

 module print_tree_module
 implicit none

 contains
 recursive subroutine print_tree(t,h)
 use tree_node_module
 implicit none
 type (tree_node), pointer :: t
 integer :: I
 integer :: h
 if (associated(t)) then
 call print_tree(t%left,h+1)
 do I = 1, h

 write (unit=*,fmt=10,advance='no')
 10 format (' ')

 end do
 print *, t%number
 call print_tree(t%right,h+1)
 end if

 end subroutine print_tree
 end module print_tree_module
 program ch2205
 ! construction of a perfectly balanced tree
 use tree_node_module
 use tree_module
 use print_tree_module
 implicit none
 type (tree_node), pointer :: root
 integer :: n_of_items
 print *, 'enter number of items'
 read *, n_of_items
 root => tree(n_of_items)
 call print_tree(root,0)

 end program ch2205

 There are a number of very important concepts contained in this example and
they include:

 The use of a module to defi ne a type. For user defi ned data types we must create •
a module to defi ne the data type if we want it to be available in more than one
program unit.
 The use of a function that returns a pointer as a result. •
 As the function returns a pointer we must determine the allocation status before •
the function terminates. This means that in the above case we use the
nullify(result) statement. The other option is to target the pointer.
 The use of • associated to determine if the node of the tree is terminated or
points to another node.

30922.7 Date Class

 Type the program in and compile, link and run it. Note that the tree only has the
minimal depth necessary to store all of the items. Experiment with the number of
items and watch the tree change its depth to match the number of items.

 22.7 Date Class

 The following is a complete manual rewrite of Skip Noble and Alan Millers date
module. The original worked with the built-in Fortran intrinsic data types. It has
been rewritten to work with a derived date data type.

 The fi rst key code segment is

 type, public :: date
 private
 integer :: day
 integer :: month
 integer :: year

 end type date

where the date data type is public but its components are private. This means that
access to the components must be done via subroutines and functions within the
date_module module.

 The next key code segment is

 public :: calendar_to_julian, &
 date_, &
 date_stamp, &
 date_to_day_in_year, &
 date_to_weekday_number, &
 get_day, &
 get_month, &
 get_year, &
 julian_to_date, &
 julian_to_date_and_week_and_day, &
 ndays, &
 year_and_day_to_date

where we explicitly make the listed subroutines and functions public, as the code
segment from the top of the module,

 ! ..
 ! .. Default Accessibility ..
 private

defi nes everything to be private.

310 22 Simple Data Structuring in Fortran

 We have to provide a user defi ned constructor when the components of the
derived type are private. This is given below:

 This in turn calls the built-in constructor date. As the date_ function is now an
executable statement we cannot initialise in a declaration, i.e. the following is not
allowed.

 type (date) :: date1_(11,2,1952)

 We also provide three additional procedures to access the components of the
date class:

 get_day
 get month
 get_year

 This is common programming practice in object oriented and object based
programming.

 The program has also been through the Nag tool suite and this has helped to
systematically lay out the code.

31122.7 Date Class

312 22 Simple Data Structuring in Fortran

31322.7 Date Class

314 22 Simple Data Structuring in Fortran

31522.7 Date Class

316 22 Simple Data Structuring in Fortran

31722.7 Date Class

318 22 Simple Data Structuring in Fortran

31922.7 Date Class

320 22 Simple Data Structuring in Fortran

32122.7 Date Class

322 22 Simple Data Structuring in Fortran

32322.7 Date Class

324 22 Simple Data Structuring in Fortran

 There are wrap problems with some of the complex arithmetic expressions.
The version on the web site is obviously correct.

 We also have an alternate form of array declaration in this program, which is
given below. It is common in Fortran 77 style code:

 integer :: val(8)

 The next major addition to this code would be a date checking routine to test the
validity of dates. This would be called from within our constructor date_. This
would mean that we could never have an invalid date when using the date_module.
This is left as a programming exercise.

 22.7.1 Notes: DST in the USA

 The above program is no longer correct. Beginning in 2007, Daylight Saving Time
was brought forward by 3 or 4 weeks in Spring and extended by 1 week in the Fall.
Daylight Saving Time begins for most of the United States at 2 a.m. on the second
Sunday of March. Time reverts to standard time at 2 a.m. on the fi rst Sunday in
November.

 22.8 Problems

 1. Compile and run the examples in this chapter with your compiler. Do they all
work with your compiler? You may have problems with the examples that use
allocatable components. Not all compilers support this feature at this time.

 2. Modify the ragged array example that processes a lower triangular matrix to
work with an upper triangular matrix.

 3. Using the balanced tree example as a basis and modify it to work with a character
array rather than an integer. The routine that prints the tree will also have to be
modifi ed to refl ect this.

 4. Modify the Date program to account for the current DST in the USA.

 22.9 Bibliography

 Schneider , G.M., Bruell, S.C.: Advanced Programming and Problem Solving with
Pascal. Wiley, New York (1981)

 The book is aimed at computer science students and follows the curriculum
guidelines laid down in Communications of the ACM, August 1985, Course
CS2. The book is very good for the complete beginner as the examples are very
clearly laid out and well explained. There is a coverage of data structures, abstract

32522.9 Bibliography

data types and their implementation, algorithms for sorting and searching, the
principles of software development as they relate to the specifi cation, design,
implementation and verifi cation of programs in an orderly and disciplined fash-
ion – their words.

 Vowels, R.A.: Algorithms and Data Structures in F and Fortran. Unicomp, Tucson
(1998)

 The only book currently that uses Fortran 90/95 and F. Visit the Fortran web site
for more details. They are the publishers.
 http://www.fortran.com/fortran/market.html

 Wirth, N.: Algorithms + Data Structures = Programs. Prentice-Hall, Englewood
Cliffs (1976)

 An early but illuminating book on the subject. Well worth a read. Pascal is
used.

 Wirth, N.: Algorithms + Data Structures. Prentice-Hall, Englewood Cliffs (1986)
 This is the Modula 2 version. Closer to Fortran than the Pascal version.

327I. Chivers and J. Sleightholme, Introduction to Programming with Fortran:
With Coverage of Fortran 90, 95, 2003, 2008 and 77,
DOI 10.1007/978-0-85729-233-9_23, © Springer-Verlag London Limited 2012

 Aims

 The aims of this chapter are to look at operator overloading in Fortran.

 23.1 Introduction

 In programming operator overloading can be regarded as a way of achieving poly-
morphism in that operators (e.g. +,−,*,/ or =) can have different implementations
depending on the types of their arguments.

 In some programming languages overloading is defi ned by the language. In
Fortran for example, the addition + operator invokes quite different code when used
with integer, real or complex types.

 Some languages allow the programmer to implement support for user defi ned
types. Fortran introduced support for operator and assignment overloading in the
1990 standard.

 23.2 Other Languages

 Operator overloading is not new and several languages offer support for the feature
including:

 Algol 68 – 1968 •
 Ada – Ada 83 •

 Chapter 23
 Operator Overloading

 All the persons in this book are real and none is fi ctitious even
in part.

 Flann O’Brien, The Hard Life

328 23 Operator Overloading

 C++ – First standard, 1998 •
 Eiffel – 1986 •
 C# – 2001 •

 Java, however does not.

 23.3 Example

 The following example overloads the addition operator.

 module T_Position
 implicit none
 type Position
 integer :: X
 integer :: Y
 integer :: Z

 end type Position
 interface operator (+)
 module procedure New_Position

 end interface
 contains
 function New_Position(A,B)
 type (Position) ,intent(in) :: A,B
 type (Position) :: New_Position
 New_Position % X = A % X + B % X
 New_Position % Y = A % Y + B % Y
 New_Position % Z = A % Z + B % Z

 end function New_Position
 end module T_Position
 program ch2301
 use T_Position
 implicit none
 type (Position) :: A,B,C
 A%X=10
 A%Y=10
 A%Z=10
 B%X=20
 B%Y=20
 B%Z=20
 C=A+B
 print *,A
 print *,B
 print *,C

 end program ch2301

32923.4 Problem

 We have extended the meaning of the addition operator so that we can write
simple expressions in Fortran based on it and have our new position calculated
using a user supplied function that actually implements the calculation of the new
position.

 23.4 Problem

 1. Compile and run this example. Overload the subtraction operator as well.

331

 Aims

 This chapter looks at an example that implements generic programming in
Fortran.

 24.1 Introduction

 Fortran 77 had several generic functions, e.g. the sine function could be called with
arguments of type real, double precision or complex. Fortran 90 extended the idea
so that a programmer could write their own generic functions or subroutines. For
example we can now write a sort routine works with arguments of a variety of types,
e.g. integer, real etc.

 24.2 Generic Programming and Other Languages

 Generic programming has a wider meaning in computer science and effectively is a
style of computer programming in which an algorithm is written once, but can be
made to work with a variety of types.

 Chapter 24
 Generic Programming

 General notions are generally wrong.

 Letter to Mr. Wortley Montegu, 28 th March 1710.

I. Chivers and J. Sleightholme, Introduction to Programming with Fortran:
With Coverage of Fortran 90, 95, 2003, 2008 and 77,
DOI 10.1007/978-0-85729-233-9_24, © Springer-Verlag London Limited 2012

332 24 Generic Programming

 This style of programming is provided in several programming languages and in
a variety of ways.
 Languages that support generics include

 Ada •
 C# •
 Eiffel •
 Java •

 C++ supports the functionality via templates.
 To quote the generic programming pioneer Alexander Stepanov;

 Generic programming is about abstracting and classifying algorithms and data •
structures. It gets its inspiration from Knuth and not from type theory. Its goal is
the incremental construction of systematic catalogs of useful, effi cient and
abstract algorithms and data structures. Such an undertaking is still a dream.

and quoting Bjarne Stroustrup:

 lift algorithms and data structures from concrete examples to their most general •
and abstract form.

 It is called parametric polymorphism in the languages ML and Haskell.
 The term parameterised type is used in the book Design Patterns: Elements of

Reusable Object-Oriented Software. The authors, sometimes called the Gang of
Four, or GoF, also state that

 dynamic, highly parameterized software is harder to understand and build than •
more static software.

 Ada was one of the fi rst languages to support generic programming, and the paper

 David R. Musser and Alexander A. Stepanov: A library of generic algorithms in •
Ada. Proceedings of the 1987 Annual ACM SIGAda international conference on
Ada, pages 216–225.

 shows how old the ideas are.
 We'll look at a concrete example in Fortran next.

 24.3 Generic Example

 Simplistically, a procedure is generic if it can handle arguments of more than one
data type. The example we will use is based on the earlier one of sorting. In the
original example the program worked with real data. In the example below we have
extended the program to handle both integer and real data.

 What is not obvious from our use of the internal procedures is that there will be
specifi c procedures to handle each data type, i.e., if a function can take integer, real

33324.3 Generic Example

and complex arguments then there will be one implementation of that function for
each data type, i.e., three separate functions.

 In the example below we add the ability to handle integer data. This means that
where we had:

 read data •
 sort data •
 print data •

and one subroutine to implement the above we now have two subroutines to do each
of the above, one to handle integers and one to handle reals:

334 24 Generic Programming

33524.3 Generic Example

336 24 Generic Programming

33724.3 Generic Example

338 24 Generic Programming

 The key code is given below for each module:

 interface read data
 module procedure read integer
 module procedure read real

 end interface read data
 interface sort_data

 module procedure sort_integer
 module procedure sort_real

 end interface sort data
 interface print_data

 module procedure print_integer
 module procedure print_real

 end interface print_data

33924.3 Generic Example

 The interface block name is used in the calling routine and the appropriate
module procedure will be called, based on a signature match of the actual and
dummy parameters.

 This is quite useful, but not as useful as the functionality provided in other lan-
guages. Have a look at the following two examples which show the code for a
generic quicksort in C++ and C#.

 24.3.1 Generic Quicksort in C++

 template <class Type>
 void swap(Type array[],int i, int j)
 {
 Type tmp=array[i] ;
 array[i]=array[j] ;
 array[j]=tmp;

 }
 template <class Type>
 void quicksort(Type array[], int l, int r)
 {
 int i=l;
 int j=r;
 Type v=array[int((l + r) /2)] ;
 for (;;)
 {

 while (array[i] < v) i=i + 1;
 while (v < array[j]) j =j — 1;
 if (i<=j) { swap(array, i, j) ; i=i + 1 ; j=j-1; }
 if (i>j) goto ended ;

 }
 ended : ;

 if (l<j) quicksort(array,l, j);
 if (i<r) quicksort(array,i, r) ;

 }
 template <class Type>
 void print(Type array[],int size)
 {
 cout << " [" ;
 for (int ix=0;ix<size; ++ix)

 cout << array [ix] << " ";
 cout << "] \n";

 }
 #include <iostream>
 using namespace std;
 int main()

340 24 Generic Programming

 {
 double da[]={1.9,8.2,3.7,6.4,5.5,1.8,9.2,3.6,7.4,5.5}
;
 int ia[]={1,10,2,9,3,8,4,7,6,5};
 int size=sizeof(da)/sizeof(double);
 cout << " Quicksort of double array is \n";
 quicksort(da,0,size-1);
 print(da,size);
 size=sizeof(ia)/sizeof(int);
 cout << " Quicksort of integer array is \n";
 quicksort(ia,0,size-1);
 print(ia,size);
 return(0);

 }

 24.3.2 Generic Quicksort in C#

34124.4 Problem

 24.3.3 Summary

 Note in both the C++ and C# case we only have one version of the algorithm.
Fortran still has a way to go! Maybe Fortran 2020?

 24.4 Problem

 1. Write a generic swap routine, that swaps two rank 1 integer arrays and two rank
1 real arrays.

342 24 Generic Programming

 24.5 Bibliography

 This site is a collection of Alex Stepanov’s papers, class notes, and source code,
covering generic programming and other topics.

 http://www.stepanovpapers.com/
 C++
 C++ Templates: The Complete Guide, David Vandevoorde, Nicolai M Josuttis,
2003 Addison-Wesley. ISBN 0–201–73484–2
 C#
 Visit the following site
 http://msdn.microsoft.com/en-us/library/512aeb7t(v=vs . 80). aspx for a very good
coverage of generics and C#.

http://www.stepanovpapers.com/
http://msdn.microsoft.com/en-us/library/512aeb7t(v=vs

343I. Chivers and J. Sleightholme, Introduction to Programming with Fortran:
With Coverage of Fortran 90, 95, 2003, 2008 and 77,
DOI 10.1007/978-0-85729-233-9_25, © Springer-Verlag London Limited 2012

 Aims

 The aims of this chapter are to look at several mathematical examples in Fortran.

 Using linked lists for sparse matrix problems. •
 The solution of a set of ordinary differential equations using the Runge–Kutta–•
Merson method, with the use of a procedure as a parameter, and the use of work
arrays.
 Diagonal extraction of a matrix. •
 The solution of linear equations using Gaussian elimination •
 An elemental e**x function •

 25.1 Introduction

 This chapter looks at a small number of mathematical examples in Fortran.

 Chapter 25
 Mathematical Examples

 You look at science (or at least talk of it) as some sort of
demoralising invention of man, something apart from real life,
and which must be cautiously guarded and kept separate from
everyday existence. But science and everyday life cannot and
should not be separated. Science, for me, gives a partial
explanation for life. In so far as it goes, it is based on fact,
experience and experiment.

 Rosalind Franklin.

344 25 Mathematical Examples

 25.2 Using Linked Lists for Sparse Matrix Problems

 A matrix is said to be sparse if many of its elements are zero. Mathematical models
in areas such as management science, power systems analysis, circuit theory and
structural analysis consist of very large sparse systems of linear equations. It is not
possible to solve these systems with classical methods because the sparsity would
be lost and the eventual system would become too large to solve. Many of these
systems consist of tens of thousands, hundreds of thousands and millions of equations.
As computer systems become ever more powerful with massive amounts of mem-
ory the solution of even larger problems becomes feasible.

 Direct Methods for Sparse Matrices, by Duff I.S., Erismon A.M. and Reid J.K.,
looks at direct methods for solving sparse systems of linear equations.

 Sparse matrix techniques lend themselves to the use of dynamic data structures
in Fortran. Only the nonzero elements of a sparse matrix need be stored, together
with their positions in the matrix. Other information also needs to be stored so that
row or column manipulation can be performed without repeated scanning of a
potentially very large data structure. Sparse methods may involve introducing some
new nonzero elements, and a way is needed of inserting them into the data structure.
This is where the Fortran pointer construct can be used. The sparse matrix can be
implemented using a linked list to which entries can be easily added and from which
they can be easily deleted.

 As a simple introduction, consider the storage of sparse vectors. What we learn
here can easily be applied to sparse matrices, which can be thought of as sets of
sparse vectors.

 25.2.1 Inner Product of Two Sparse Vectors

 Assume that we have two sparse vectors x and y , for example:

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

3 0

0 1

5 3

0 0

0 2

4 1

x y

and we wish to calculate the inner product
=

≡ ∑
1

n
T

i i
i

x y x y . There are a number

of approaches to doing this and the one we use in the program below stores

34525.2 Using Linked Lists for Sparse Matrix Problems

them as two linked lists. Only the nonzero elements are stored (together with
their indices):

 Here is the program.

 program ch2501
 ! this program reads the non-zero elements of
 ! two sparse vectors x and y together with their
 ! indices, and stores them in two linked lists.
 ! using these linked lists it then calculates
 ! and prints out the inner product.
 ! it also prints the values.
 ! updated 21/3/00 to initialise pointers to
 ! be disassociated using intrinsic function null
 ! plus minor updates
 implicit none
 character (len=30) :: fi lename
 type sparse_vector
 integer :: index
 real :: value
 type (sparse_vector), pointer :: next => null()

 end type sparse_vector
 type (sparse_vector), pointer :: &
 root_x, current_x,root_y, current_y
 real :: inner_prod = 0.0
 integer :: io_status
 ! read non-zero elements of vector x together
 ! with indices into a linked list
 print *, 'input fi le name for vector x'
 read '(a)', fi lename
 open (unit=1, fi le=fi lename &
 ,status='old',iostat=io_status)
 if (io_status/=0) then
 print *, 'error opening fi le ', fi lename
 stop

 end if
 allocate (root_x)
 read (unit=1,fmt=*,iostat=io_status)&
 root_x%value, root_x%index
 if (io_status/=0) then

346 25 Mathematical Examples

 print *, ' error reading from fi le ', &
 fi lename, ' or fi le empty'

 stop
 end if

 ! read data for vector x from fi le until eof
 current_x => root_x
 allocate (current_x%next)
 do while (associated(current_x%next))
 current_x => current_x%next
 read (unit=1,fmt=*,iostat=io_status) &

 current_x%value, current_x%index
 if (io_status==0) then
 allocate (current_x%next)
 cycle

 else if (io_status>0) then
 ! error on reading

 print *, 'error occurred when reading from
', &

fi lename
 stop

 else
 ! end of fi le

 nullify (current_x%next)
 end if

 end do
 close (unit=1)

 ! read non-zero elements of vector y together
 ! with indices into a linked list
 print *, 'input fi le name for vector y'
 read '(a)', fi lename
 open (unit=1,fi le=fi lename, &

 status='old',iostat=io_status)
 if (io_status/=0) then
 print *, 'error opening fi le ', fi lename
 stop

 end if
 allocate (root_y)
 read (unit=1,fmt=*,iostat=io_status) &

 root_y%value,root_y%index
 if (io_status/=0) then
 print *, ' error when reading from ', &
fi lename, 'or fi le empty'
 stop

 end if
 ! read data for vector y from fi le until eof

34725.2 Using Linked Lists for Sparse Matrix Problems

 current_y => root_y
 allocate (current_y%next)
 do while (associated(current_y%next))
 current_y => current_y%next
 read (unit=1,fmt=*,iostat=io_status) &

 current_y%value, current_y%index
 if (io_status==0) then
 allocate (current_y%next)
 cycle

 else if (io_status>0) then
 ! error on reading

 print *, 'error occurred when reading from' &
, fi lename
 stop

 else
 ! end of fi le

 nullify (current_y%next)
 end if

 end do
 ! data has now been read and stored in 2 linked lists
 ! start at the beginning of x linked list and
 ! y linked list and compare indices
 ! in order to perform inner product
 current_x => root_x
 current_y => root_y
 do while (associated(current_x%next))
 do while (associated(current_y%next) &
.and.current_y%index<current_x%index)

 ! move through 2nd list
 current_y => current_y%next

 end do
 ! at this point current_y%index >= current_x%index
 ! or 2nd list is exhausted

 if (current_y%index==current_x%index) then
 inner_prod = inner_prod + &

current_x%value*current_y%value
 end if
 current_x' => current_x%next

 end do
 ! print out inner product
 print *, 'inner product of two sparse vectors is :'&

, inner_prod
 ! print non-zero values of vector x and indices
 print *, 'non-zero values of vector x and indices:'
 current_x => root_x

348 25 Mathematical Examples

 do while (associated(current_x%next))
 print *, current_x%value, current_x%index
 current_x => current_x%next

 end do
 ! print non-zero values of vector y and indices
 print *, 'non-zero values of vector y and indices:'
 current_y => root_y
 do while (associated(current_y%next))
 print *, current_y%value, current_y%index
 current_y => current_y%next

 end do
 end program ch2501

 25.3 Solving a System of First-Order Ordinary Differential
Equations Using Runge–Kutta–Merson

 Simulation and mathematical modelling of a wide range of physical processes often
leads to a system of ordinary differential equations to be solved. Such equations also
occur when approximate techniques are applied to more complex problems. We will
restrict ourselves to a class of ordinary differential equations called initial value
problems. These are systems for which all conditions are given at the same value of
the independent variable. We will further restrict ourselves to fi rst-order initial value
problems of the form:

=

=

…

=

1
1

2
2

(,)

(,)

(,)n
n

dy
f y t

dt
dy

f y t
dt

dy
f y t

dt

or

= __ _(,)y f y t

(25.1)

with initial conditions

 (0)y t y(0) =_ _

where

34925.3 Solving a System of First-Order Ordinary Differential Equations…

1 1 1 0

0

0

()

()n n n

y f y t

y f y

y f y t

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟= = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

� � �

if we have a system of ordinary differential equations of higher order then they can
be reformulated to a system of order one. See the NAG library documentation for
solving ordinary differential equations.

 One well-known class of methods for solving initial value ordinary differential
equations is Runge–Kutta. In this example we have coded the Runge–Kutta–Merson
algorithm, which is a fourth-order method and solves (25.1) from a point t = A to a
point t = B.

 It starts with a step length h = (B − A)/100 and includes a local error control
strategy such that the solution at t + h is accepted if:

 error estimate user defined tolerance<

 If this isn’t satisfi ed the step length h is halved and the solution attempt is repeated
until the above is satisfi ed or the step length is too small and the problem is left
unsolved. If the error criterion is satisfi ed the algorithm progresses with a suitable
step length solving the equations at intermediate points until the end point B is
reached. For a full discussion of the algorithm and the error control mechanism used
see Numerical Methods in Practice by Tim Hopkins and Chris Phillips:
 A main program to use this subroutine is of the form:

350 25 Mathematical Examples

35125.3 Solving a System of First-Order Ordinary Differential Equations…

352 25 Mathematical Examples

35325.3 Solving a System of First-Order Ordinary Differential Equations…

 program ch2502
 use precision_module
 use rkm_module
 use fun1_module
 implicit none
 real(long),dimension(:),allocatable::y
 real(long)::a,b,tol
 integer::n,ifail,all_stat
 !
 print *,'input no of equations'
 read*,n

 !
 ! allocate space for y - checking to see that it
 ! allocates properly
 !
 allocate(y(1:n),stat=all_stat)
 if(all_stat /= 0) then
 print * , ' not enough memory'
 print * , ' array y is not allocated'
 stop

 endif
 print *,' input start and end of interval over'
 print *,' which equations to be solved'
 read *,a,b
 print *,"input initial conditions"
 read *,y(1:n)
 print *,'input tolerance'
 read *,tol
 print 100,a
 100 format('at t= ',f5.2,' initial conditions are :')
 print 200,y(1:n)
 200 format(4(f5.2,2x))
 call runge_kutta_merson(y,fun1,ifail,n,a,b,tol)
 if(ifail /= 0) then
 print *,'integration stopped with ifail = ',ifail

 else
 print 300,b
 300 format('at t= ',f5.2,' solution is:')
 print 200,y(1:n)

 endif
 end program ch2502

354 25 Mathematical Examples

 Consider trying to solve the following system of fi rst-order ordinary differential
equations:

=

−
= −

= −

1 3

3 2
2

2 3

3 2
2

tan

0.032tan 0.02

cos

0.032

�

�

�

y y

y y
y

y y

y
y

over an interval t = 0.0 to t = 8.0 with initial conditions

 = = =1 0 2 0.5 3
5

 y y y
π

 The user supplied subroutine, packaged as a module procedure, is:

 module fun1_module
 implicit none
 contains
 subroutine fun1(t,y,f,n)
 use precision_module
 implicit none
 real(long),intent(in),dimension(:)::y
 real(long),intent(out),dimension(:)::f
 real(long),intent(in)::t
 integer,intent(in)::n

 !
 f(1)=tan(y(3))
 f(2)=-0.032_long*f(1)/y(2)-0.02_long*y(2)/cos(y(3))
 f(3)=-0.032_long/(y(2)*y(2))

 end subroutine fun1
 end module fun1_module

 25.3.1 Note: Alternative Form of the Allocate Statement

 In the main program Odes we have defi ned Y to be a deferred-shape array, allocating
it space after the variable N is read in. In order to make sure that enough memory is
available to allocate space to array Y the allocate statement is used as follows:

 allocate(Y(1:N),STAT = All_stat)

 if the allocation is successful variable All_stat returns zero; otherwise it is given a
processor dependent positive value. We have included code to check for this and
the program stops if All_stat is not zero.

35525.3 Solving a System of First-Order Ordinary Differential Equations…

 25.3.2 Note: Automatic Arrays

 The subroutine runge_kutta_merson needs a number of local rank 1 arrays
S1, S2, S3, S4 and S5 for workspace, their shape and size being the same as the
dummy argument Y. Fortran supplies automatic arrays for this purpose and can be
declared as

 real(Long), dimension (1:SIZE(Y)) :: S1, S2, S3, S4, S5

 The size of automatic arrays can depend on the size of actual arrays: in our
example they are the same shape and size as the dummy array Y, or some other
dummy arguments. Automatic arrays are created when the procedure is called
and destroyed when control passes back to the calling program unit. They may
have different shapes and sizes with different calls to the procedure, and because of
this automatic arrays cannot be saved or initialised.

 A word of warning should be given at this point. If there isn’t enough memory
available when an automatic array needs to be created problems will occur. Unlike
allocatable arrays there is no way of testing to see if an automatic array has been
created successfully. The general feeling is that even though they are nice, automatic
arrays should be used with care and perhaps shouldn’t be used in production code!

 25.3.3 Note: Subroutine as a Dummy Procedure Argument

 In order to make the use of subroutine runge_kutta_merson as general as
possible the user can choose the name of the subroutine in which the actual system
of equations to be solved is defi ned. In this case we have chosen fun1 as the name
of the subroutine, which is then used as an actual argument when calling runge_
kutta_merson from the main program e.g.

 call runge_kutta_merson(y,fun1,ifail,n,a,b,tol)

 An explicit interface for subroutine fun1 is provided by it being contained in a
module.

 The equivalent dummy subroutine argument is fun and this needs an explicit
interface in the subroutine runge_kutta_merson .

 25.3.4 Note: Compilation When Using Modules

 When compiling this program and the modules they must be done in the correct order:

 precision_module •
 rkm_module •
 fun1_module •

and then

 the main program. •

356 25 Mathematical Examples

 25.4 A Subroutine to Extract the Diagonal Elements
of a Matrix

 A common task mathematically is to extract the diagonal elements of a matrix. For
example if

21 6 7

9 3 2

4 1 8

A

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟⎝ ⎠

the diagonal elements are (21, 3, 8).
 This can be thought of as extracting an array section, but the intrinsic function

 pack is needed. In its simplest form pack (array,vector) packs an array,
Array, into a rank 1 array, Vector, according to Array’s array element order.

 Below is a complete program to demonstrate this:

 module md_module
 implicit none
 contains
 subroutine matrix_diagonal(a,diag,n)
 implicit none
 real, intent (in), dimension (:,:) :: a
 real, intent (out), dimension (:) :: diag
 integer, intent (in) :: n
 real, dimension(1:size(a,1)*size(a,1)):: temp
 !
 ! subroutine to extract the diagonal
 ! elements of an n*n matrix A
 !

 temp = pack(a, .true.)
 diag = temp(1:n*n:n+1)

 end subroutine matrix_diagonal
 end module md_module
 program ch2503
 ! program reads the n * n matrix from a fi le
 use md_module
 implicit none
 integer :: I, n
 real, allocatable, dimension (:,:) :: a
 real, allocatable, dimension (:) :: adiag
 character (len=20) :: fi lename
 print *, 'input name of data fi le'
 read '(a)', fi lename

35725.5 The Solution of Linear Equations Using Gaussian Elimination

 open (unit=1,fi le=fi lename)
 read (1,*) n
 allocate (a(1:n,1:n),adiag(1:n))
 do I = 1, n
 read (1,*) a(i,1:n)

 end do
 call matrix_diagonal(a,adiag,n)
 print *, ' diagonal elements of a are:'
 print *, adiag

 end program ch2503

 25.5 The Solution of Linear Equations Using Gaussian
Elimination

 At this stage we have introduced many of the concepts needed to write numerical
code, and have included a popular algorithm, Gaussian elimination, together with a
main program which uses it and a module to bring together many of the features
covered so far.

 Finding the solution of a system of linear equations is very common in scientifi c
and engineering problems, either as a direct physical problem or indirectly, for
example, as the result of using fi nite difference methods to solve a partial differen-
tial equation. We will restrict ourselves to the case where the number of equations
and the number of unknowns are the same. The problem can be defi ned as:

+ +…+ =
+ +…+ =

… … … … = …
+ +…+ =

11 1 12 2 1 1

12 2 22 2 2 2

1 1 2 2

n n

n n

n n nn n n

a x a x a x b

a x a x a x b

a x a x a x b

 (25.1)

or

11 12 1 1 1

21 22 2 2 2

1 2

n

n

n n nn n n

a a a x b

a a a x b

a a a x b

…⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟…⎜ ⎟ ⎜ ⎟ ⎜ ⎟=⎜ ⎟ ⎜ ⎟ ⎜ ⎟… … … … … …
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟…⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 which can be written as:

=A x b

 (25.2)

where A is the n x n coeffi cient matrix, b is the right-hand-side vector and x is the
vector of unknowns. We will also restrict ourselves to the case where A is a general
real matrix.

358 25 Mathematical Examples

 Note that there is a unique solution to (25.2) if the inverse, A −1 , of the coeffi cient
matrix A, exists. However, the system should never be solved by fi nding A −1 and
then solving A −1 b = x because of the problems of rounding error and the computa-
tional costs.

 A well-known method for solving (25.2) is Gaussian elimination, where
multiples of equations are subtracted from others so that the coeffi cients below the
diagonal become zero, producing a system of the form:

* * * *
111 12 1 1

* * *
222 2 2

* *

0

0 0 0

n

n

nnn n

xa a a b

xa a b

xa b

⎛ ⎞ ⎛ ⎞… ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟…⎜ ⎟ ⎜ ⎟⎜ ⎟ =⎜ ⎟ ⎜ ⎟⎜ ⎟…… … … … …
⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

where A has been transformed into an upper triangular matrix. By a process of
backward substitution the values of x drop out.

 The subroutine gaussian_elimination implements the Gaussian elimi-
nation algorithm with partial pivoting, which ensure that the multipliers are less
than 1 in magnitude, by interchanging rows if necessary. This is to try and prevent
the buildup of errors.

 This implementation is based on two LINPACK routines SGEFA and SGESL
and a Fortran 77 subroutine written by Tim Hopkins and Chris Phillips and found in
their book Numerical Methods in Practice.

 The matrix A and vector B are passed to the subroutine Gaussian_
Elimination and on exit both A and B are overwritten. Mathematically Gaussian
elimination is described as working on rows, and using partial pivoting row inter-
changes may be necessary. Due to Fortran’s row element ordering, to implement
this algorithm effi ciently it works on columns rather than rows by interchanging
elements within a column if necessary.

35925.5 The Solution of Linear Equations Using Gaussian Elimination

360 25 Mathematical Examples

36125.5 The Solution of Linear Equations Using Gaussian Elimination

 25.5.1 Notes

 25.5.1.1 Module for Kind Type

 A module, precision_module , has been used to defi ne a kind type parameter,
 Long , to specify the fl oating point precision to which we wish to work. This
module is then used by the main program and the subroutine, and the kind type
parameter Long is used with all the real type defi nitions and with any constants, e.g.,

 real(Long), parameter :: Eps=1.E-13_Long

362 25 Mathematical Examples

 25.5.1.2 Deferred-Shape Arrays

 In the main program matrix A and vectors B and X are declared as deferred-shape
arrays, by specifying their rank only and using the allocatable attribute. Their
shape is determined at run time when the variable N is read in and then the
statement

 allocate(A(1:N,1:N), B(1:N), X(1:N))

is used.

 25.5.1.3 Intrinsic Functions maxval and maxloc

 In the context of subroutine gaussian_elimination we have used:

 maxval (maxloc (abs (a (k:n,k)))) + k – 1

 Breaking this down,

 maxloc (abs (a (k:n,k)))

takes the rank 1 array

 + …(| (,) |,| (1,) |, | (,) |)A K K A K K A N K (25.3)

where | A (K , K) | = ABS(A(K,K)) and of length N− K + 1. It returns the position of
the largest element as a rank 1 array of size one, e.g., (L)

 Applying maxval to this rank 1 array (L) returns L as a scalar, L being the posi-
tion of the largest element of array (25.3).

 What we actually want is the position of the largest element of (25.3), but in the
Kth column of matrix A. We therefore have to add K-1 to L to give the actual
position in column K of A.

 25.6 Allocatable Function Results

 A function may return an array, and in this example the array allocation takes place
in the function.

36325.6 Allocatable Function Results

 This facility was introduced in Fortran 95.

364 25 Mathematical Examples

 25.7 Elemental e**x Function

 The following is an elemental version of the etox function covered in an earlier
chapter.

 module etox_module
 implicit none
 contains

 elemental real function etox(x)
 implicit none
 real , intent(in) :: x
 real :: term
 integer :: nterm
 real , parameter :: tol =1.0e-6
 etox=1.0
 term=1.0
 nterm=0
 do
 nterm=nterm+1
 term=(x/nterm)*term
 etox=etox+term
 if (term<=tol) exit

 end do
 end function etox

 end module etox_module
 program ch2506
 use etox_module
 implicit none
 integer :: I
 real :: x
 real , dimension(10) :: y
 x=1.0
 do I=1, 10
 y(i)=I

 end do
 print *,y
 x=etox(x)
 print *,x
 y=etox(y)
 print *,y

 end program ch2506

 Elemental functions require the use of explicit interfaces, and we have therefore
used modules to achieve this.

36525.9 Bibliography

 25.8 Problems

 1. Compile and run the sparse matrix example with the data provided.
 2. Compile and run the Runge Kutta Merson example with the data provided.
 3. Compile and run the Gaussian Elimination example with the following data.

33 16 72

24 10 57

8 4 17

359

281

85

A

b

⎛ ⎞
⎜ ⎟= − − −⎜ ⎟
⎜ ⎟− − −⎝ ⎠
−⎛ ⎞

⎜ ⎟= ⎜ ⎟
⎜ ⎟⎝ ⎠

and the solution is

1

2

5

x

⎛ ⎞
⎜ ⎟= −⎜ ⎟
⎜ ⎟−⎝ ⎠

 25.9 Bibliography

 Duff , I.S., Erismon, A.M., Reid, J.K.: Direct Methods for Sparse Matrices. Oxford
Science Publications, Oxford (1986)

 Authoritative coverage of this area. Relatively old, but well regarded. Code seg-•
ments and examples are a mixture of Fortran 77 and Algol 60 (which of course
do not support pointers) and therefore the implementation of linked lists is done
using the existing features of these languages. The onus is on the programmer to
correctly implement linked lists using fi xed size arrays rather than using the fea-
tures provided by pointers in a language. It is remarkable how elegant these
solutions are, given the lack of dynamic data structures in these two languages.

 Hopkins, T., Phillips, C.: Numerical Methods in Practice, Using the NAG Library.
Addison-Wesley, Wokingham/Reading (1988)

 Good adjunct to the NAG library documentation for the less numerate user. •

 Schneider, G.M., Bruell, S.C.: Advanced Programming and Problem Solving with
Pascal. Wiley, New York (1981)

 The book is aimed at computer science students and follows the curriculum •
guidelines laid down in Communications of the ACM, August 1985, Course
CS2. The book is very good for the complete beginner as the examples are very

366 25 Mathematical Examples

clearly laid out and well explained. There is a coverage of data structures, abstract
data types and their implementation, algorithms for sorting and searching, the
principles of software development as they relate to the specifi cation, design,
implementation and verifi cation of programs in an orderly and disciplined fash-
ion — their words.

 Vowels, R.A.: Algorithms and Data Structures in F and Fortran. Unicomp, Tucson
(1998)

 The only book currently that uses Fortran 90/95 and F. Visit the Fortran web site •
for more details. They are the publishers.
 • http://www.fortran.com/fortran/market.html

 Wirth, N.: Algorithms + Data Structures = Programs. Prentice-Hall, Englewood
Cliffs (1976)

 An early but illuminating book on the subject. Well worth a read. Pascal is •
used.

 Wirth, N.: Algorithms + Data Structures. Prentice-Hall, Englewood Cliffs (1986)

 This is the Modula 2 version. Closer to Fortran than the Pascal version. •

 Commercial numerical libraries
 NAG. Visit their web site for up to date details of their products:

 • http://www.nag.co.uk/

 Rogue Wave Software. Visit their web site for details of their products:

 • http://www.roguewave.com/

http://www.fortran.com/fortran/market.html
http://www.nag.co.uk/
http://www.roguewave.com/

367I. Chivers and J. Sleightholme, Introduction to Programming with Fortran:
With Coverage of Fortran 90, 95, 2003, 2008 and 77,
DOI 10.1007/978-0-85729-233-9_26, © Springer-Verlag London Limited 2012

 Aims

 The aims of this chapter are to look at object oriented programming in Fortran.

 26.1 Introduction

 This chapter looks at object oriented programming in Fortran. The chapter on pro-
gramming languages covers the topic in a broader context.

 26.2 Brief Review of the History of Object Oriented
Programming

 Object oriented programming is not new. One of the fi rst languages to offer support
was Simula 67, a language designed for discrete event simulation by Ole Johan
Dahl, Bjorn Myhrhaug and Kristen Nygaard whilst working at the Norwegian
Computing Centre in Oslo in the 1960s.

 One of the next major developments was in the 1970s at the Xerox Palo Alto
Research Centre Learning Research Group who began working on a vision of the
ways different people might effectively use computing power. One of the outcomes
of their work was the Smalltalk 80 system. Objects are at the core of the Smalltalk
80 system.

 Chapter 26
 Object Oriented Programming

 “For Madmen only”

 Hermann Hesse, Steppenwolf

368 26 Object Oriented Programming

 The 1980s and 1990s saw a number of object oriented programming languages
emerge. They include

 Eiffel. Bertrand Meyer, Eiffel Software. •
 C++ from C with classes. Bjarne Stroustrup at Bell Labs. •
 Oberon 2. Niklaus Wirth at ETH in Zurich. •
 Java. James Gosling, originally Sun, now Oracle. •

 C# is a recent Microsoft addition to the list.
 Object-oriented programming is effectively a programming methodology or

paradigm using objects (data structures made up of data and methods). We will use
the concept of a shape class in our explanation and examples. The Simula Begin
book starts with shapes, and it is often used in introductions to object oriented pro-
gramming in other languages.

 Some of the key concepts are

 encapsulation or information hiding – the implementation of the data is hidden •
inside an object and clients or users of the data only have access to an abstract
view of it. Methods are used to access and manipulate the data. For example a
shape class may have an x and y position, and methods exist to get and set the
positions and draw and move the shape.
 data abstraction – if we have an abstract shape data type we can create multiple •
variables of that type.
 inheritance – an existing abstract data type can be extended. It will inherit the •
data and methods from the base type and add additional data and methods. A key
to inheritance is that the extended type is compatible with the base type. Anything
that works with objects or variables of the base type also work with objects of the
extended type. A circle would have a radius in addition to an x and y position, a
rectangle would have a width and height.
 dynamic binding – if we have a base shape class and derive circles and rectangles •
from it dynamic binding ensures that the correct method to calculate the area is
called at run time.
 polymorphism- variables can therefore be polymorphic. Using the shape exam-•
ple we can therefore create an array of shapes, one may be a shape, one may be
a circle and another may be a rectangle.

 Extensible abstract data types with dynamically bound methods are often called
classes. This is the terminology we will use in what follows.

 26.3 Background Technical Material

 We need to look more formally at a number of concepts so that we can actually do
object oriented programming in Fortran. The following sections cover some of the
introductory material we need, and are taken from the standard.

36926.4 Type Declaration Statements

 26.4 Type Declaration Statements

 Every data object has a type and rank and may have type parameters and other attri-
butes that determine the uses of the object. Collectively, these properties are the
attributes of the object. The type of a named data object is normally specifi ed explic-
itly in a type declaration statement. All of its attributes may be included in a type
declaration statement or may be specifi ed individually in separate specifi cation
statements.

 26.4.1 TYPE

 A TYPE type specifi er is used to declare entities of a derived type. Section 1.3.147
of the standard defi nes it as follows:

 type: data type – named category of data characterized by a set of values, a syn-•
tax for denoting these values, and a set of operations that interpret and manipu-
late the values (4.1)

 A scalar entity of derived type is a structure.

 26.4.2 CLASS

 A polymorphic entity is a data entity that is able to be of differing types during pro-
gram execution. The type of a data entity at a particular point during execution of a
program is its dynamic type. The declared type of a data entity is the type that it is
declared to have, either explicitly or implicitly.

 A CLASS type specifi er is used to declare polymorphic objects. The declared
type of a polymorphic object is the specifi ed type if the CLASS type specifi er con-
tains a type name.

 26.4.3 Attributes

 The additional attributes that may appear in the attribute specifi cation of a type
declaration statement further specify the nature of the entities being declared or
specify restrictions on their use in the program.

 26.4.3.1 Accessibility Attribute

 The accessibility attribute specifi es the accessibility of an entity via a particular
identifi er.

370 26 Object Oriented Programming

 The following is taken from Sect. 5.3.2 of the Fortran 2008 standard.

 access-spec is PUBLIC or PRIVATE •
 An access-spec shall appear only in the specifi cation-part of a module. •

 Identifi ers that are specifi ed in a module or accessible in that module by use associa-
tion have either the PUBLIC or PRIVATE attribute. Identifi ers for which an access-spec
is not explicitly specifi ed in that module have the default accessibility attribute for that
module. The default accessibility attribute for a module is PUBLIC unless it has been
changed by a PRIVATE statement. Only identifi ers that have the PUBLIC attribute in
that module are available to be accessed from that module by use association.

 26.4.4 Passed Object Dummy Arguments

 Section 4.5.4.5 of the Fortran 2008 standard introduces the concept of passed object
dummy argument. Here is an extract from the standard:

 A passed-object dummy argument is a distinguished dummy argument of a pro-•
cedure pointer component or type-bound procedure. It affects procedure overrid-
ing (4.5.7.3) and argument association (12.5.2.2).
 If NOPASS is specifi ed, the procedure pointer component or type-bound proce-•
dure has no passed-object dummy argument.
 If neither PASS nor NOPASS is specifi ed or PASS is specifi ed without arg-name, •
the fi rst dummy argument of a procedure pointer component or type-bound pro-
cedure is its passed-object dummy argument.
 If PASS (arg-name) is specifi ed, the dummy argument named arg-name is the •
passed-object dummy argument of the procedure pointer component or named
type-bound procedure.
 C456 The passed-object dummy argument shall be a scalar, nonpointer, nonal-•
locatable dummy data object with the same declared type as the type being
defi ned; all of its length type parameters shall be assumed; it shall be polymor-
phic (4.3.1.3) if and only if the type being defi ned is extensible (4.5.7). It shall
not have the VALUE attribute.
 NOTE 4.32: If a procedure is bound to several types as a type-bound procedure, •
different dummy arguments might be the passed-object dummy argument in dif-
ferent contexts.

 The key here is that we are going to use the PASS and NOPASS attributes with
type bound procedures – a component of object oriented programming in Fortran.

 26.4.5 Derived Types and Structure Constructors

 A derived type is a type that is not defi ned by the language but requires a type defi ni-
tion to declare its components. A scalar object of such a derived type is called a
structure. Assignment of structures is defi ned intrinsically, but there are no intrinsic

37126.4 Type Declaration Statements

operations for structures. For each derived type, a structure constructor is available
to provide values.

 A derived-type defi nition implicitly defi nes a corresponding structure construc-
tor that allows construction of values of that derived type.

 26.4.6 Structure Constructors and Generic Names

 A generic name may be the same as a type name. This can be used to emulate user-
defi ned structure constructors for that type, even if the type has private components.
The following example is taken from the standard to illustrate this.

 module mytype_module
 type mytype
 private
 complex value
 logical exact
 end type
 interface mytype
 module procedure int_to_mytype
 end interface
 ! Operator defi nitions etc.
 …
 contains
 type(mytype) function int_to_mytype(I)
 integer,intent(in) :: I
 int_to_mytype%value = I
 int_to_mytype%exact = .true.
 end function
 ! Procedures to support operators etc.
 …
 end

 26.4.7 Assignment

 Execution of an assignment statement causes a variable to become defi ned or rede-
fi ned. Simplistically

 variable = expression

 26.4.8 Intrinsic Assignment Statement

 An intrinsic assignment statement is an assignment statement that is not a defi ned
assignment statement. In an intrinsic assignment statement, variable shall not be
polymorphic.

372 26 Object Oriented Programming

 26.4.9 Defi ned Assignment Statement

 A defi ned assignment statement is an assignment statement that is defi ned by a sub-
routine and a generic interface that specifi es ASSIGNMENT (=).

 26.4.10 Polymorphic Variables

 Here is the defi nition of polymorphic taken from the standard.

 polymorphic – Able to be of differing types during program execution. An object •
declared with the CLASS keyword is polymorphic.

 A polymorphic variable must be a pointer or allocatable variable. We will use
allocatable variables to achieve polymorphism in our examples.

 26.4.11 Executable Constructs Containing Blocks

 The following are executable constructs that contain blocks:

 ASSOCIATE construct •
 CASE construct •
 DO construct •
 IF construct •
 SELECT TYPE construct •

 We will look at the ASSOCIATE construct and SELECT TYPE construct next.

 26.4.12 ASSOCIATE Construct

 The ASSOCIATE construct associates named entities with expressions or variables
during the execution of its block. These named construct entities are associating
entities. The names are associate names.

 The following example illustrates an association with a derived-type variable.

 ASSOCIATE (XC => AX%B(I,J)%C)
 XC%DV = XC%DV + PRODUCT(XC%EV(1:N))
 end ASSOCIATE

 26.4.13 Select Type Construct

 The SELECT TYPE construct selects for execution at most one of its constitu-
ent blocks. The selection is based on the dynamic type of an expression. A name

37326.5 Example 1 – The Basic Shape Class

is associated with the expression, in the same way as for the ASSOCIATE
construct.

 Quite a lot to take in! Let’s illustrate the use of the above in some actual examples.

 26.5 Example 1 – The Basic Shape Class

 The code for the base shape class is given below.

 shape class data: integer variables x and y for the position. •
 shape class methods: get and set for the x and y values, and moveto and draw. •

 We have used an include statement in the examples that follow to reduce code
duplication.

 We have used the default accessibility for the data and methods in the shape_
module.

 module shape_module
 type shape_type

 integer :: x_ = 0
 integer :: y_ = 0

 contains
 procedure, pass(this) :: getx
 procedure, pass(this) :: gety
 procedure, pass(this) :: setx
 procedure, pass(this) :: sety
 procedure, pass(this) :: moveto
 procedure, pass(this) :: draw

 end type shape_type
 contains
 include "shape_module_common_code.f90"
 end module shape_module

 Here is the code in the include fi le.

 integer function getx(this)
 implicit none
 class (shape_type), intent (in) : : this
 getx = this%x

 end function getx
 integer function gety(this)

 implicit none
 class (shape_type), intent (in) : : this
 gety = this%y_

 end function gety
 subroutine setx(this,x)

 implicit none

374 26 Object Oriented Programming

 class (shape_type), intent (inout) :: this
 integer, intent (in) :: x
 this%x_ = x

 end subroutine setx
 subroutine sety(this,y)

 implicit none
 class (shape_type), intent (inout) :: this
 integer, intent (in) :: y
 this%y_ = y

 end subroutine sety
 subroutine moveto(this,newx, newy)

 implicit none
 class (shape_type), intent (inout) :: this
 integer, intent (in) :: newx
 integer, intent (in) :: newy
 this%x_ = newx
 this%y_ = newy

 end subroutine moveto
 subroutine draw(this)

 implicit none
 class (shape_type), intent (in) :: this
 print *, ' x = ', this%x_
 print *, ' y = ', this%y_

 end subroutine draw

 26.5.1 Key Points

 Some of the key concepts are:

 We use a module as the organisational unit for the class. •
 We use type and end type to contain the data and the procedures – called type •
bound procedures in Fortran terminology.
 The data in the base class is an x and y position. •
 The type bound methods within the class are•

 getx and setx –
 gety and sety –
 draw –
 moveto –

 We have used the default accessibility for the data and methods in the type. •

 Let us look at the code in stages.

 module shape_module

37526.5 Example 1 – The Basic Shape Class

 The module is called shape_module

 type shape_type

 The type is called shape_type

 integer :: x_ = 0
 integer :: y_ = 0

 The data associated with the shape type are integer variables that are the x and y
coordinates of the shape. We initialise to zero.

 contains

 The type also contains procedures or methods.

 procedure, pass(this) :: getx
 procedure, pass(this) :: gety
 procedure, pass(this) :: setx
 procedure, pass(this) :: sety
 procedure, pass(this) :: moveto
 procedure, pass(this) :: draw

 These are called type bound procedures in Fortran terminology. It is common in
object oriented programming to have get and set methods for each of the data com-
ponents of the type or object. We also have a moveto and draw method.

 Each of these methods has the pass attribute. When a type bound procedure is called
or invoked the object through which is invoked is normally passed as a hidden parame-
ter. We have used the pass attribute to explicitly confi rm the default behaviour of passing
the invoking object as the fi rst parameter. We have also followed the convention in object
oriented programming of using the word this to refer to the current object.

 end type shape_type

 This is the end of the type defi nition.

 contains

 The module then contains the actual implementation of the type bound proce-
dures. We will look at a couple of these.

 integer function getx(this)
 implicit none
 class (shape_type), intent (in) :: this
 getx = this%x

 end function getx

 As we stated earlier it is common in object oriented programming to have get and
set methods for each data item in an object. This function implements the getx method.
The fi rst argument is the current object, referred to as this. We then have the type
declaration for this parameter. We declare the variable using class rather than type as
we want the variable to be polymorphic. The rest of the function is self explanatory.

376 26 Object Oriented Programming

 subroutine setx(this,x)
 implicit none
 class (shape_type), intent (inout) :: this
 integer, intent (in) :: x
 this%x_ = x

 end subroutine setx

 The setx procedure is a subroutine. It takes two parameters, the current object
and the new x value. Again we use the class declaration mechanism as we want the
variable to be polymorphic.

 Here is a program to test the above class out.

 program test_ch2601
 use shape_module
 implicit none

 type (shape_type) :: s1 = shape_type(10,20)

 integer :: x1 = 100
 integer :: y1 = 200

 print *, ' get '
 print *, s1%getx(), ' ', s1%gety()
 print *, ' draw '
 call s1%draw()
 print *, ' moveto '
 call s1%moveto (x1,y1)
 print *, ' draw '
 call s1%draw()
 print *, ' set '
 call s1%setx(99)
 call s1%sety(99)
 print *, ' draw'
 call s1%draw()

 end program test_ch2601

 The fi rst statement of interest is the use statement, where we make available the
shape_module to the test program. The next statement of interest is

 type (shape_type) :: s1 = shape_type(10,20)

 We then have a type declaration for the variable s1. We also have the use of what
Fortran calls a structure constructor shape_type to provide initial values to the x
and y positions. The term constructor is used in other object oriented programming
languages, e.g. C++, Java, C#. It has the same name as the type or class and is cre-
ated automatically for us by the compiler in this example.

 The

 print *, s1%getx(), ' ', s1%gety()

37726.5 Example 1 – The Basic Shape Class

 statement prints out the x and y values for the object s1. We use the standard % nota-
tion that we used in derived types, to separate the components of the derived types.
If one looks at the implementation of the getx function and examines the fi rst line,
repeated below

 integer function getx(this)

 how we refer to the current object, s1, through the syntax s1%getx(). The following
call:

 call s1%draw()

 shows how to invoke the draw method for the s1 object, using the s1%draw() syn-
tax. The fi rst line of the draw subroutine

 subroutine draw(this)

 shows how the current object is passed as the fi rst argument.
 Here is the output from the Nag compiler.

 d:\document\fortran\newbook\examples\ch26\ex01>nag_
test_ch2601.exe

get
 10 20
 draw
 x = 10
 y = 20
 moveto
 draw
 x = 100
 y = 200
 set
 draw
 x = 99
 y = 99

 26.5.2 Notes

 In this example we have not used the public, private or protected attributes on the
data or methods, we have just accepted the default Fortran accessibility behaviour.
This means that we can use the compiler provided structure constructor shape_
type () as shown below

 type (shape_type) :: s1 = shape_type(10,20)

 in the type declaration to provide initial values, as they are public by default.

378 26 Object Oriented Programming

 We have direct access to the data and methods as they are public by default in
Fortran. This is often not a good idea for the data, as it is possible to makes changes
to the data anywhere in the program. The next example makes the data private.

 26.5.3 Example 1 with Private Data

 Here is the modifi ed base class. This example will now not compile as the default
compiler provided structure constructor does not have access to the private data.

 module shape_module
 type shape_type
 integer, private : : x = C
 integer, private :: y = C

 contains
 procedure, pass(this) :: getx
 procedure, pass(this) :: gety
 procedure, pass(this) :: setx
 procedure, pass(this) :: sety
 procedure, pass(this) :: moveto
 procedure, pass(this) :: draw

 end type shape_type
 contains
 include "shape_module_common_code.f90"
 end module shape_module

 Here is the same test program as in the fi rst example.

 program test_ch2602
 use shape_module
 implicit none
 type (shape_type) :: s1 = shape_type(10,20)
 integer :: x1 = 100
 integer :: y1 = 200
 print *, ' get '
 print *, s1%getx(), ' ', s1%gety()
 print *, ' draw '
 call s1%draw()
 print *, ' moveto '
 call s1%moveto (x1,y1)
 print *, ' draw '
 call s1%draw()
 print *, ' set '
 call s1%setx(99)
 call s1%sety(99)
 print *, ' draw'
 call s1%draw()

 end program test ch2602

37926.5 Example 1 – The Basic Shape Class

 Here is the output from trying to compile this example.

 d:\document\fortran\newbook\examples\ch26\ex01>nagfor
 -f2003 ch2602.f90 test_ch2
 602.f90 -o nag_test_ch2602.exe
 NAG Fortran Compiler: Release 5.2(722)
 Evaluation trial version of NAG Fortran Compiler
 Release 5.2(722)
 ch2602.f90:
 [NAG Fortran Compiler normal termination]
 test_ch2602.f90:
 Error: test_ch2602.f90, line 5: Constructor for type
 SHAPE_TYPE which has PRIVATE component X_
 Errors in declarations, no further processing for
TEST_CH2602
 [NAG Fortran Compiler error termination, 1 error]
 d:\document\fortran\newbook\examples\ch26\ex01>

 An earlier solution to this type of problem can be found in the date class in
Chap. 22 , where we provide our own structure constructor date_() . Most object
oriented programming languages provide the ability to use the same name as a class
as a constructor name even if the data is private. Fortran 2003 provides another solu-
tion to this problem. In the example below we will provide our own structure con-
structor inside an interface.

 26.5.4 Solution 1 with an Interface to Use the Class Name
for the Structure Constructor

 Here is the modifi ed base class.

 module shape_module
 type shape_type
 integer, private :: x_=0
 integer, private :: y_=0

 contains
 procedure, pass(this) :: getx
 procedure, pass(this) :: gety
 procedure, pass(this) :: setx
 procedure, pass(this) :: sety
 procedure, pass(this) :: moveto
 procedure, pass(this) :: draw

 end type shape_type
 interface shape_type
 module procedure shape_type_constructor

 end interface

380 26 Object Oriented Programming

 contains
 type (shape_type) function &

 shape_type_constructor(x,y)
 implicit none
 integer, intent (in) :: x
 integer, intent (in) :: y
 shape_type_constructor%x_ = x
 shape_type_constructor%y_ = y

 end function shape_type_constructor
 include "shape_module_common_code.f90"
 end module shape_module

 The key statements are

 interface shape_type
 module procedure shape_type_constructor

 end interface

 which enables us to map a call or reference to shape_type (our structure constructor
name) to our implementation of shape_type_constructor. Here is the implementa-
tion of this structure constructor.

 type (shape_type) function &
 shape_type_constructor(x, y)

 implicit none
 integer, intent (in) :: x
 integer, intent (in) :: y
 shape_type_constructor%x_ = x
shape_type_constructor%y_ = y

 end function shape_type_constructor

 The function is called shape_type_constructor hence we use this name to initialise
the components of the type, and the function returns a value of type shape_type.

 Here is the program to test the above out.

 program ch2603
 use shape_module
 implicit none
 type (shape_type) :: s1
 integer :: x1 = 100
 integer :: y1 = 200
 s1 = shape_type(10,20)
 print *, ' get '
 print *, s1%getx(), ' ', s1%gety()
 print *, ' draw '
 call s1%draw()
 print *, ' moveto '
 call s1%moveto (x1, y1)

38126.6 Example 2 – Simple Inheritance

 print *, ' draw '
 call s1%draw()
 print *, ' set '
 call s1%setx(99)
 call s1%sety(99)
 print *, ' draw'
 call s1%draw()

 end program ch2603

 Note that in this example we cannot initialise s1 at defi nition time using our own
(user defi ned) structure constructor. This must now be done within the execution
part of the program. This is a Fortran restriction, and makes it consistent with the
rest of the language.

 These examples illustrate some of the basics of object oriented programming in
Fortran. To summarise

 the data in our class is private; •
 access to the data is via get and set methods; •
 the data and methods are within the derived type defi nition – the methods are •
called type bound procedures in Fortran terminology;
 we can use interfaces to provide user defi ned structure constructors, which have •
the same name as the class – this is a common practice in object oriented
programming;
 we have used class to declare the variables within the type bound methods. We •
need to use class when we want to use polymorphic variables in Fortran.

 26.5.5 Public and Private Accessibility

 We have only made the internal data in the class private in the above example. There
will be cases where some of the methods are only used within the class, in which
case they can be made private.

 26.6 Example 2 – Simple Inheritance

 In this example we look at inheritance. We use the same base shape class and derive
two classes from it – circle and rectangle.

 A circle has a radius. This is the additional data component of the derived class.
We also have get and set methods.

 A rectangle has a width and height. These are the additional data components of
the derived rectangle class. We also have get and set methods.

382 26 Object Oriented Programming

 26.6.1 Base Shape Class

 module shape_module
 type shape_type

 integer, private :: x_ = 0
 integer, private :: y_ = 0

 contains
 procedure, pass(this) :: getx
 procedure, pass(this) :: gety
 procedure, pass(this) :: setx
 procedure, pass(this) :: sety
 procedure, pass(this) :: moveto
 procedure, pass(this) :: draw

 end type shape_type
 interface shape_type
 module procedure shape_type_constructor

 end interface
 contains
 type (shape_type) function &

 shape_type_constructor(x,y)
 implicit none
 integer, intent (in) :: x
 integer, intent (in) :: y
 shape_type_constructor%x_ = x
shape_type_constructor%y_ = y

 end function shape_type_constructor
 include "shape_module_common_code.f90"
 end module shape_module

 The include fi le is the same as in the previous example.

 26.6.2 Circle – Derived Type 1

 Here is the fi rst derived type.

 module circle_module
 use shape_module
 type , extends(shape_type) :: circle_type
 integer , private :: radius_
 contains
 procedure , pass(this) :: getradius
 procedure , pass(this) :: setradius
 procedure , pass (this) :: draw => draw_circle

 end type circle_type

38326.6 Example 2 – Simple Inheritance

 interface circle_type
 module procedure circle_type_constructor

 end interface
 contains
 type (circle_type) function &

 circle_type_constructor(x,y,radius)
 implicit none
 integer, intent (in) :: x
 integer, intent (in) :: y
 integer, intent (in) :: radius
 call circle_type_constructor%setx(x)
 call circle_type_constructor%sety(y)
 circle_type_constructor%radius_=radius

 end function circle_type_constructor
 integer function getradius(this)
 implicit none
 class (circle_type) , intent(in) :: this
 getradius=this%radius_

 end function getradius
 subroutine setradius(this,radius)
 implicit none
 class (circle_type) , intent(inout) :: this
 integer , intent(in) :: radius
 this%radius_=radius

 end subroutine setradius
 subroutine draw_circle(this)
 implicit none
 class (circle_type), intent(in) :: this
 print *,' x = ' , this%getx()
 print *,' y = ' , this%gety()
 print *,' radius = ' , this%radius_

 end subroutine draw_circle
 end module circle_module

 Let us look more closely at the statements within this class. Firstly we have

 module circle_module

which introduces our circle module.
 We then

 use shape_module

 within this module to make available the shape class. The next statement

 type , extends(shape_type) :: circle_type

 is the key statement in inheritance. What this statement says is base our new circle_
type on the base shape_type. It is an extension of the shape_type. We then have the
additional data in our circle_type

384 26 Object Oriented Programming

 integer , private :: radius_

 and the following additional type bound procedures.

 procedure , pass(this) :: getradius
 procedure , pass(this) :: setradius
 procedure , pass(this) :: draw => draw_circle

 and we have the simple get and set methods for the radius, and a type specifi c draw
method for our circle_type. It is this method that will be called when drawing with
a circle, rather than the draw method in the base shape_type.

 We then have an interface

 interface circle_type
 module procedure circle_type_constructor

 end interface

to provide us with our own user defi ned structure constructor for our circle_type.
 As has been stated earlier it is common practice in object oriented programming

to use the same name as the type for constructors.
 We then have the implementation of the constructor.

 type (circle_type) function &
 circle_type_constructor(x,y,radius)
 implicit none integer, intent (in) :: x
 integer, intent (in) :: y
 integer, intent (in) :: radius
 call circle_type_constructor%setx(x)
 call circle_type_constructor%sety(y)
 circle_type_constructor%radius_=radius

 end function circle_type_constructor

 Note that we use the setx and sety methods to provide initial values to the x and y
values. They are private in the base class so we need to use these methods.

 We can directly initialise the radius as this is a data component of this class, and
we have access to it.

 We next have the get and set methods for the radius.
 Finally we have the implementation for the draw circle method.

 subroutine draw_circle(this)
 implicit none
 class (circle_type), intent(in) :: this
 print *, ' x = ' , this%getx()
 print *, ' y = ' , this%gety()
 print *, ' radius = ' , this%radius_

 end subroutine draw_circle

 Notice again that we use the getx and gety methods to access the x and y private
data from the base shape class.

38526.6 Example 2 – Simple Inheritance

 26.6.3 Rectangle – Derived Type 2

 Here is the code for the second derived type.

 module rectangle_module
 use shape_module
 type , extends(shape_type) :: rectangle_type
 integer , private :: width_
 integer , private :: height_
 contains
 procedure , pass(this) :: getwidth
 procedure , pass(this) :: setwidth
 procedure , pass(this) :: getheight
 procedure , pass(this) :: setheight
 procedure , pass(this) :: draw => draw_rectangle

 end type rectangle_type
 interface rectangle_type
 module procedure rectangle_type_constructor

 end interface
 contains
 type (rectangle_type) function &

 rectangle_type_constructor(x,y,width, height)
 implicit none
 integer, intent (in) :: x
 integer, intent (in) :: y
 integer, intent (in) :: width
 integer, intent (in) :: height
 call rectangle_type_constructor%setx(x)
 call rectangle_type_constructor%sety(y)
 rectangle_type_constructor%width_ = width
 rectangle_type_constructor%height_ = height

 end function rectangle_type_constructor
 integer function getwidth(this)
 implicit none
 class (rectangle_type) , intent(in) :: this
 getwidth=this%width_

 end function getwidth
 subroutine setwidth(this,width)
 implicit none
 class (rectangle_type) , intent(inout) :: this
 integer , intent(in) :: width
 this%width_=width

 end subroutine setwidth
 integer function getheight(this)
 implicit none

386 26 Object Oriented Programming

 class (rectangle_type) , intent(in) :: this
 getheight=this%height_

 end function getheight
 subroutine setheight(this,height)
 implicit none
 class (rectangle_type) , intent(inout) :: this
 integer , intent(in) :: height
 this%height_=height

 end subroutine setheight
 subroutine draw_rectangle(this)
 implicit none
 class (rectangle_type) , intent(in) :: this
 print *, ' x = ' , this%getx()
 print *, ' y = ' , this%gety()
 print *, ' width = ' , this%width_
 print *, ' height = ' , this%height_

 end subroutine draw_rectangle
 end module rectangle_module

 The code is obviously very similar to that of the fi rst derived type.

 26.6.4 Simple Inheritance Test Program

 Here is a test program that illustrates the use of the shape type, circle type and rect-
angle type.

 program ch2604
 use shape module use circle module use rectangle module
 implicit none
 type (shape_type) :: vs type (circle_type) : : vc type
(rectangle_type) :: vr
 vs = shape type(10,20)
 vc = circle_type(100, 200, 300)
 vr = rectangle_type(1000,2000, 3000, 4000)
 print *,' get '
 print *,' circle ', vc%getx(),' ',vc%gety(),&
' radius = ',vc%getradius()
print *,' rectangle ', vr%getx(),' ',vr%gety(),&
' width = ',vr%getwidth(),' height ',vr%getheight()
 print *,' draw '
 call vs%draw() call vc%draw() call vr%draw()
 print *,' set '
 call vs%setx(19) call vs%sety(19)

38726.6 Example 2 – Simple Inheritance

 call vc%setx(199) call vc%sety(199) call
vc%setradius(199)
 call vr%setx(1999) call vr%sety(1999) call vr%
setwidth(1999) call vr%setheight(1999)
 print *,' draw '
 call vs%draw() call vc%draw() call vr%draw()
 end program ch2604

 The fi rst statements of note are

 use shape_module
 use circle_module
 use rectangle_module

 which make available the shape, circle and rectangle types within the program. The
following statements

 type (shape_type) :: vs
 type (circle_type) :: vc
 type (rectangle_type) :: vr

 declare vs, vc and vr to be of type shape, circle and rectangle respectively. The fol-
lowing three statements

 vs = shape_type(10,20)
 vc = circle_type(100, 200, 300)
 vr = rectangle_type(1000,2000, 3000, 4000)

 call the three user defi ned structure constructor functions.
 We then use the get functions to print out the values of the private data in each

object.

 We then call the draw method for each type.

 call vs%draw()
 call vc%draw()
 call vr%draw()

 and the appropriate draw method is called for each type.
 We fi nally call the set functions for each variable and repeat the calls to the draw

methods.
 The draw methods in the derived types override the draw method in the base

shape class.

388 26 Object Oriented Programming

 26.7 Example 3 – Polymorphism and Dynamic Binding

 An inheritance hierarchy can provide considerable fl exibility in our ability to manip-
ulate objects, whilst still taking advantage of static or compile time type checking. If
we combine inheritance with polymorphism and dynamic binding we have a very
powerful programming tool. We will illustrate this with a concrete example.

 26.7.1 Base Shape Class

 This is our base class. A polymorphic variable is a variable whose data type may
vary at run time. It must be a pointer or allocatable variable, and it must be declared
using the class keyword. Our original base class declared variables using the class
keyword from the beginning as we always intended to design a class that could be
polymorphic.

 We have had to make one change to the previous one. To make the polymor-
phism work we have had to provide our own assignment operator. So we have

 interface assignment (=)
 module procedure generic_shape_assign

 end interface

 which means that our implementation of the procedure generic_shape_assign will
replace the intrinsic assignment. Here is the actual implementation.

 subroutine generic_shape_assign(lhs,rhs)
 implicit none
 class (shape_type), intent (out), allocatable :: lhs
 class (shape_type), intent (in) : : rhs
 allocate (lhs,source=rhs)

 end subroutine generic_shape_assign

 In an assignment we obviously have

 left_hand_side = right_hand_side

 and in our code we have variables lhs and rhs to clarify what is happening. We also
have an enhanced form of allocation statement:

 allocate (lhs,source=rhs)

 and the key is that the left hand side variable is allocated with the values and type of
the right hand side variable. Here is the complete code.

 module shape_module
 type shape_type
 integer, private :: x_ = 0
 integer, private :: y_ = 0

 contains
 procedure, pass(this) :: getx

38926.7 Example 3 – Polymorphism and Dynamic Binding

 procedure, pass(this) :: gety
 procedure, pass(this) :: setx
 procedure, pass(this) :: sety
 procedure, pass(this) :: moveto
 procedure, pass(this) :: draw

 end type shape_type
 interface shape_type
 module procedure shape_type_constructor

 end interface
 interface assignment (=)
 module procedure generic_shape_assign

 end interface
 contains
 type (shape_type) function &

 shape_type_constructor(x,y)
 implicit none
 integer, intent (in) :: x
 integer, intent (in) :: y
 shape_type_constructor%x_ = x
 shape_type_constructor%y_ = y

 end function shape_type_constructor
 integer function getx(this)
 implicit none
 class (shape_type), intent (in) :: this
 getx = this%x_

 end function getx
 integer function gety(this)
 implicit none
 class (shape_type), intent (in) :: this
 gety = this%y_

 end function gety
 subroutine setx(this,x)
 implicit none
 class (shape_type), intent (inout) :: this
 integer, intent (in) :: x
 this%x_ = x

 end subroutine setx
 subroutine sety(this,y)
 implicit none
 class (shape_type), intent (inout) :: this
integer, intent (in) :: y
 this%y_ = y

 end subroutine sety
 subroutine moveto(this,newx,newy)
 implicit none
 class (shape_type), intent (inout) :: this

390 26 Object Oriented Programming

 integer, intent (in) :: newx
 integer, intent (in) :: newy
 this%x_ = newx
 this%y_ = newy

 end subroutine moveto
 subroutine draw(this)
 implicit none
 class (shape_type), intent (in):: this
 print *, ' x = ', this%x_
 print *, ' y = ', this%y_

 end subroutine draw
 subroutine generic_shape_assign(lhs, rhs)
 implicit none
 class (shape_type), intent (out), allocatable :: lhs
 class (shape_type), intent (in) :: rhs
 allocate (lhs,source=rhs)

 end subroutine generic_shape_assign
 end module shape_module

 26.7.2 Circle – Derived Type 1

 The circle code is the same as before.

 26.7.3 Rectangle – Derived Type 2

 The rectangle code is as before.

 26.7.4 Shape Wrapper Module

 As was stated earlier a polymorphic variable must be a pointer or allocatable vari-
able. We have chosen to go the allocatable route. The following is a wrapper routine
to allow us to have a derived type whose types can be polymorphic.
 module shape_wrapper_module

 use shape_module
 use circle_module
 use rectangle_module
 type shape_wrapper
 class (shape_type), allocatable :: x
 end type shape_wrapper

 end module shape_wrapper_module

 So in this case x can be of shape_type or of any type derived from shape_type.
Don’t panic if this isn’t clear at the moment, the complete program should help out!

39126.7 Example 3 – Polymorphism and Dynamic Binding

 26.7.5 Display Subroutine

 This is the key subroutine in this example. We can pass into this routine an array of
type shape_wrapper. In the code so far we have variables of type

 shape_type •
 circle_type •
 rectangle_type •

and we are passing in an array of elements and each element can be of any of these
types, i.e. the shape_array is polymorphic.

 We next statement of interest is

 call shape_array(i)%x%draw()

 and at run time the correct draw method will be called. This is called dynamic bind-
ing. Here is the complete code.

 module display_module
 contains
 subroutine display(n_shapes,shape_array)
 use shape_wrapper_module
 implicit none
 integer, intent (in) :: n_shapes
 type (shape_wrapper), &

 dimension (n_shapes) :: shape_array
 integer :: I
 do I = 1, n_shapes
 call shape_array(I) %x%draw()

 end do
 end subroutine display

 end module display_module

 26.7.6 Test Program

 We now have the complete program that illustrates polymorphism and dynamic
binding in action.

392 26 Object Oriented Programming

39326.7 Example 3 – Polymorphism and Dynamic Binding

 Let us look at the key statements in more detail.

 type (shape wrapper), dimension (n) :: s

 This is the key declaration statement. S will be our polymorphic array. The fol-
lowing six assignment statements

 s(1) %x = shape_type(10, 20)
 s(2) %x = circle_type(100,200,300)
 s(3) %x = rectangle_type(1000,2000, 3000, 4000)
 s(4) %x = s(1)%x
 s(5) %x = s(2)%x
 s(6) %x = s(3)%x

 will call our own assignment subroutine to do the assignment. The allocation is hid-
den in the implementation. We then have

 call display(n,s)

 which calls the display subroutine. The compiler at run time works out which draw
method to call depending of the type of the elements in the shape_wrapper array.

 Imagine now adding another shape type, let us say a triangle. We need to do the
following

 inherit from the base shape type •
 add the additional data to defi ne a triangle •
 add the appropriate get and set methods •
 add a draw triangle method •
 add a use statement to the shape_wrapper_module •
 add a use statement to the main program •

and we now can work with the new triangle shape type. The display subroutine is
unchanged! We can repeat the above steps for any additional shape type we
want.

 Polymorphism and dynamic binding thus shorten our development and mainte-
nance time, as it reduces the amount of code we need to write and test.

 We then have an example of the use of the SELECT TYPE statement. The compiler
determines the type of the elements in the array and then executes the matching block.

394 26 Object Oriented Programming

 Now imagine adding support for the new triangle type. Anywhere we have select
type constructs we have to add support for our new triangle shape. There is obvi-
ously more work involved when we use the select type construct in our polymorphic
code. However some problems will be amenable to polymorphism and dynamic
binding, others will require the explicit use of select type statements. This example
illustrates the use of both.

 26.7.7 Program Output

 Try running the program. Here is the output from one compiler.

39526.8 Summary

 26.8 Summary

 This chapter has introduced some of the essentials of object oriented programming.
The fi rst example looked at object oriented programming as an extension of basic
data structuring. We used type bound procedures to implement our shape class. We
used methods to access the internal data of the shape object.

 The second example looked at simple inheritance. We saw in this example how
we could reuse the methods from the base class and also add new data and methods
specifi c to the new shapes – circles and rectangles.

 The third example then looked at how to achieve polymorphism in Fortran. We
could then create arrays of our base type and dynamically bind the appropriate
methods at run rime. Dynamic binding is needed when multiple classes contain dif-
ferent implementations of the same method, i.e. to ensure in the following code

 call shape_array(I) %x%draw()

 that the correct draw method is invoked on the shape object.

396 26 Object Oriented Programming

 26.9 Problems

 1. Compile and run all of the examples in this chapter with your compiler. At the
time of writing this book not all compilers compiled and ran these examples.
This situation will improve with time. If your compiler doesn’t complain!

 2. Add a triangle type to the simple inheritance example.
 3. Add a triangle type to the polymorphic example.

 26.10 Bibliography

 Birtwistle , G.M., Dahl, O.J., Myhrhaug, B., Nygaard, K.: SIMULA BEGIN. Chart-
well-Bratt Ltd, Bromley (1979)

 Goldberg, A., Robson, D.: Smalltalk-80. The Language and Its Implementation.
Addison Wesley, Reading (1983)

 ISO/IEC 1539–1:2010 Information technology – Programming languages – Fortran
– Part 1: Base language

 Meyer, B.: Object-Oriented Software Construction. Prentice Hall, Upper Saddle
River (1997)

 Mossenbeck, H.: Object-Orientated Programming in Oberon-2. Springer-Verlag,
Berlin/New York (1995)

 Stroustroup, B.: The C++ Programming Language, 3rd edn. Addison-Wesley,
Reading (1997)

 Wiener, R.: Software Development Using Eiffel. Prentice Hall, Englewood Cliffs
(1995)

397I. Chivers and J. Sleightholme, Introduction to Programming with Fortran:
With Coverage of Fortran 90, 95, 2003, 2008 and 77,
DOI 10.1007/978-0-85729-233-9_27, © Springer-Verlag London Limited 2012

 Aim

 The aims of this chapter is to provide a short introduction to parallel programming.

 27.1 Introduction

 Parallel programming involves breaking a program down into parts that can be executed
concurrently. Here is a simple diagram to illustrate the idea.

 Chapter 27
 Introduction to Parallel Programming

 ‘Can you do addition?’ the White Queen asked. ‘What’s one
and one and one and one and one and one and one and one and
one and one?’
 ‘I don’t know’ said Alice. ‘I lost count.’
 ‘She can’t do addition,’ the Red Queen interrupted.

 Lewis Carroll, Through the Looking Glass and What Alice
Found There.

398 27 Introduction to Parallel Programming

 On the left hand side we have a sequential program and this steps through linearly
from beginning to end. The right hand side has the same program that has been
partially parallelised. There are two parallel regions and the work here is now shared
between two processes or threads. At each parallel part of the program we have the
following

 The theory is that the overall run time of the program will have been reduced or
we will have been able to solve a larger problem by parallelising our code. In the
above example we have divided the work between two processes or threads. Here
are some details of a range of processors which support multiple cores.

 Visit the AMD and Intel sites for up to date information.
 There are several ways of doing parallel programming, and this chapter will look at

three ways of doing this in Fortran. There are a common set of concepts and terminology
that are useful to know about, whichever method we use, and we will cover these fi rst.

39927.3 Amdahl’s Law

 27.2 Parallel Computing Classifi cation

 Parallel computing is often classifi ed by the way the hardware supports parallelism.
Two of the most common are:

 multi-processor and multi-core computers having multiple processing elements •
within a single system
 clusters or grids with multiple computers connected to work together. Modern •
large systems are increasingly hybrids of the two above.

 27.3 Amdahl’s Law

 Amdahl’s law is a simple equation for the speedup of a program when parallelised.
It assumes that the problem size remains the same when parallelized.

 In the equation below

 P is the proportion of the program that can be parallelised •
 (1-P) is the serial proportion •
 N is the number of processors•

 and we have

 speedup = 1/((1-P) + P/N) •

 We have included a couple of graphs to illustrate the above. We have used the
dislin graphics library to do the plots. It is available from

 http://www.mps.mpg.de/dislin/

http://www.mps.mpg.de/dislin/

400 27 Introduction to Parallel Programming

 27.3.1 Amdahl’s Law Graph 1–8 Processors or Cores

 27.3.2 Amdahl’s Law Graph 2–64 Processors or Cores

40127.3 Amdahl’s Law

 Here is the source code for one of the programs. It is for the 8 processor version.

402 27 Introduction to Parallel Programming

40327.4 Gustafson’s Law

 We use the dislin graphics library in this example. More information about the
dislin software can be found in Chap. 33 .

 27.4 Gustafson’s Law

 Gustafson’s Law is often seen as a contradiction of Amdahl’s Law. Simplistically it
states that programmers solve larger problems when parallelising programs.

 The equation for Gustafson’s Law is given below.

 N is the number of processors •
 Serial is the proportion that remains serial •

and

 Speedup(N) = N – serial * (N – 1) •

 We have again included a graph to illustrate the above.

 27.4.1 Gustafson’s Law Graph 1–64 Processors or Cores

404 27 Introduction to Parallel Programming

 Here is the source code for the program. This is for the 64 processor version.

40527.4 Gustafson’s Law

 The programs are obviously very similar!

406 27 Introduction to Parallel Programming

 27.5 Memory Access

 Memory access times fall into two main categories that are of interest in parallel
computing

 uma – uniform memory access. Each element of main memory can be accessed •
with the same latency and bandwidth. Multi-processor and multi-core computers
typically have this behaviour.
 numa – non uniform memory access. Distributed memory systems have non-•
uniform memory access. Clusters or grids with multiple computers connected to
work together have this behaviour.

 27.6 Cache

 Modern processors have a memory hierarchy. They typically have two or more
levels:

 main memory •
 cpu memory •

and there is a speed and cost link. Main memory is cheap and relatively slow in com-
parison to the cpu memory.

 The cpu memory or cache is used to reduce the effective access time to memory.
If the information that the program requires is in the cpu cache then the average
latency of memory accesses will be closer to the cache latency than to the latency of
main memory. Getting high performance from a computer normally means writing
cache friendly programs. This means that the data and instructions that the program
needs are already in the cache and don’t need to be accessed from the much slower
main memory.

 In a multi-core and multi-cpu system each core and cpu will have their own
memory or cache. This introduces the problem of cache coherency – i.e. the consis-
tency of data stored in local caches compared to the data in the common shared
memory. This problem must obviously be addressed when doing parallel
programming.

 27.7 Bandwidth and Latency

 Bandwidth is the rate at which data can be transferred. Latency is the start up time
for a data transfer. We normally want a high bandwidth and low latency. Here are
some fi gures for several interconnects.

40727.9 Consistency Models

 27.8 Flynn’s Taxonomy

 Flynn’s taxonomy is an old, but still widely used, classifi cation scheme for com-
puter architecture.

 Single Instruction, Single Data stream (SISD) A sequential computer which •
exploits no parallelism in either the instruction or data streams. Term rarely
used.
 Single Instruction, Multiple Data streams (SIMD) A computer which exploits •
multiple data streams against a single instruction stream to perform operations
which may be naturally parallelized. For example, an array processor or GPU.
 Multiple Instruction, Single Data stream (MISD) Multiple instructions operate •
on a single data stream. Term rarely used.
 Multiple Instruction, Multiple Data streams (MIMD) Multiple autonomous pro-•
cessors simultaneously executing different instructions on different data.
Distributed systems are generally recognized to be MIMD architectures; either
exploiting a single shared memory space or a distributed memory space.
Essentially separate computers working together to solve a problem.

 We also have the term

 Single Program Multiple Data – An identical program executes on a MIMD •
computer system. Conditional statements in the code mean that different parts of
the program execute on each system.

 27.9 Consistency Models

 Parallel programming languages and parallel computers must have a consistency
model (also known as a memory model). The consistency model defi nes rules for
how operations on computer memory occur and how results are produced.

408 27 Introduction to Parallel Programming

 27.10 Threads and Threading

 In computing a thread of execution is often regarded as the smallest unit of processing
that can be scheduled by an operating system. The implementation of threads and
processes generally varies with operating system.

 27.11 Threads and Processes

 From a strict computer science point of view threads and processes are different.
However when looking simply at parallel programming the term can often be used
interchangeably. In the following we use the term thread.

 27.12 Data Dependencies

 A data dependency is when one statement in a program depends on a calculation
from a previous statement. This will obviously hinder parallelism.

 27.13 Race Conditions

 Race conditions can occur in programs when separate threads depend on a shared
state or variable.

 27.14 Mutual Exclusion – Mutex

 A mutex is a programming construct that is used to allow multiple threads to share
a resource. The sharing is not simultaneous. One thread will acquire the mutex and
then lock the other threads from accessing it until it has completed.

 27.15 Monitors

 In concurrent programming, a monitor is an object or module intended to be used
safely by more than one thread. The defi ning characteristic of a monitor is that its
methods are executed with mutual exclusion. That is, at each point in time, at most
one thread may be executing any of its methods. This mutual exclusion greatly
simplifi es reasoning about the implementation of monitors compared with code that
may be executed in parallel.

40927.19 Partitioned Global Address Space – PGAS

 27.16 Locks

 In computing a lock is a synchronization mechanism for enforcing limits on access
to a resource in an environment where there are many threads of execution. Locks
are one way of enforcing concurrency control policies.

 27.17 Synchronization

 The concept of synchronisation is often split into process and data synchronisation.
 In process synchronisation several processes or threads come together at a cer-

tain part of a program.
 Data synchronisation is concerned with keeping data consistent.

 27.18 Granularity and Types of Parallelism

 Granularity is a useful concept in parallel programming. A common classifi cation is

 Fine-grained – a lot of small components, larger amounts of communication and •
synchronisation
 Coarse-grained – a small number of larger components, hence smaller amounts •
of communication and less synchronisation

 The terms are of course relative.
 We also have the concept of

 Embarrassingly parallel – very little effort is required to partition the task and •
there is little or no communication and synchronisation.

 A simple example of this would be a graphics processor processing individual
pixels.

 27.19 Partitioned Global Address Space – PGAS

 PGAS is a parallel programming model. It assumes a global memory address space
that is logically partitioned and a portion of it is local to each processor. The PGAS
model is the basis of Unifi ed Parallel C, Coarray Fortran, Titanium, Fortress, Chapel
and X10.

410 27 Introduction to Parallel Programming

 27.20 Fortran and Parallel Programming

 Most Fortran compilers now offer support for parallel programming. We next
 provide a brief coverage of three methods

 MPI – Message Passing Interface •
 OpenMP – Open Multi-Processing •
 CoArray Fortran •

 Subsequent chapters look at simple examples using each method.

 27.21 MPI

 MPI started with a meeting that was held at the Supercomputing 92 conference. The
attendants agreed to develop and implement a common standard for message pass-
ing. The fi rst MPI standard, called MPI-1 was completed in May 1994. The second
MPI standard, MPI-2, was completed in 1998.

 MPI is effectively a library of C and Fortran callable routines. It has become
widely used and is available on a number of platforms. Some useful web addresses
are given below.

 The fi rst is hosted at Argonne National Laboratory.
 http://www.mcs.anl.gov/research/projects/mpi/

 MPI was designed by a broad group of parallel computer users, vendors, and
software writers. These included

 Vendors – IBM, Intel, TMC, Meiko, Cray, Convex, Ncube •
 Library writers – PVM, p4, Zipcode, TCGMSG, Chameleon, Express, Linda •
 Companies – ARCO, Convex, Cray Research, IBM, Intel, KAI, Meiko, NAG, •
nCUBE, Parasoft, Shell, TMC
 Laboratories – ANL, GMD, LANL, LLNL, NOAA, NSF, ORNL, PNL, Sandia, •
SDSC, SRC
 Universities – UC Santa Barbara, Syracuse University, Michigan State University, •
Oregon Grad Inst, University of New Mexico, Mississippi State University, U of
Southampton, University of Colorado, Yale University, University of Tennessee,
University of Maryland, Western Michigan University, University of Edinburgh,
Cornell University, Rice University, University of San Francisco

 So whilst MPI is not a formal standard like Fortran, C or C++, its development
has involved quite a wide range of people.

 The following site has details of MPI meetings.

 http://meetings.mpi-forum.org/

http://www.mcs.anl.gov/research/projects/mpi/
http://meetings.mpi-forum.org/

41127.21 MPI

 The steering committee (as of April 2011) and affi liations are given below

 Jack Dongarra – Computer Science Department, University of Tennessee •
 Al Geist – Group Leader, Computer Science Research Group, Oak Ridge •
National Laboratory
 Richard Graham •
 Bill Gropp – Computer Science Department, University of Illinois Urbana- •
Champaign
 Andrew Lumsdaine – Computer Science Department, Indianna University •
 Ewing Lusk – Mathematics and Computer Science Division, Argonne National •
Laboratory
 Rolf Rabenseifner – High Performance Computing Center, Germany •

 The meeting coordinators and associated work areas as of April 2011 are given
below

 Richard Graham, Convener and Meeting Chair •
 Jeff Squyres, Meeting Secretary •
 Bill Gropp, Ballots •
 Rolf Rabenseifner, MPI 2.1 •
 Bill Gropp, MPI 2.2 •
 Torsten Hoefl er, Andrew Lumsdaine, MPI 3.0 – Collective Communications •
 Richard Graham, MPI 3.0 – Fault Tolerance •
 Craig Rasmussen, MPI 3.0 – Fortran Bindings •
 Bill Gropp and Rajeev Thakur, MPI 3.0 – Remote Memory Access •
 Martin Schulz and Bronis de Supinski, MPI 3.0 – Tools support •
 Pavan Balaji, MPI 3.0 – Hybrid Programming •
 Anthony Skjellum, MPI 3.0 – Persistence •
 Ron Brightwell – MPI 3.0 – Point-To-Point Communications and this provides •
an idea of the work currently in progress.

 Another useful site is the Open MPI site.

 http://www.open-mpi.org/

 The following is taken from their site.
 The Open MPI Project is an open source MPI-2 implementation that is devel-

oped and maintained by a consortium of academic, research, and industry partners.
Open MPI is therefore able to combine the expertise, technologies, and resources
from all across the High Performance Computing community in order to build the
best MPI library available. Open MPI offers advantages for system and software
vendors, application developers and computer science researchers.

 Features implemented or in short-term development for Open MPI include:

 Full MPI-2 standards conformance •
 Thread safety and concurrency •
 Dynamic process spawning •
 Network and process fault tolerance •

http://www.open-mpi.org/

412 27 Introduction to Parallel Programming

 Support network heterogeneity •
 Single library supports all networks •
 Run-time instrumentation •
 Many job schedulers supported •
 Many OS’s supported (32 and 64 bit) •
 Production quality software •
 High performance on all platforms •
 Portable and maintainable •
 Tunable by installers and end-users •
 Component-based design, documented APIs •
 Active, responsive mailing list •
 Open source license based on the BSD license •

 Both sites provide free downloadable implementations.
 Commercial implementations are available from

 Cray •
 IBM •
 Intel •
 Microsoft •

amongst others.
 MPI is, at the time of writing, the dominant parallel programming method used

in Fortran. MPI and Fortran currently account for over 80% of the code running on
the HECToR Service in Edinburgh. HECToR is the UK’s high-end computing
resource, funded by the UK Research Councils. Visit

 http://www.hector.ac.uk

for more information.

 27.22 OpenMP

 OpenMP (Open Multi-Processing) is an application programming interface that
supports shared memory multiprocessing programming in three main languages (C,
C++, and Fortran) on a range of hardware platforms and operating systems. It con-
sists of a set of compiler directives, library routines, and environment variables that
determine the run time behaviour of a program.

 The OpenMP Architecture Review Board (ARB) has published several versions

 October 1997 – OpenMP for Fortran 1.0. October the following year they released •
the C/C++ standard.
 2000 – Fortran version •
 2005 – Fortran 2.5 •

http://www.hector.ac.uk

41327.24 Other Parallel Options

 2008 – OpenMP 3.0. Included in the new features in 3.0 is the concept of tasks •
and the task construct.
 2011-OpenMP 3.1 •

 A number of compilers from various vendors or open source communities imple-
ment the OpenMP API, including

 Absoft •
 Cray •
 gnu •
 Hewlett Packard •
 IBM •
 Intel •
 Lahey/Fujitsu •
 Oracle/Sun •
 PGI •

 The main OpenMP web site is:

 http://www.openmp.org/

 27.23 Coarray Fortran

 Coarrays became part of Fortran in the 2008 standard. The original ideas came from
work by Robert Numrich and John Reid in the 1990s. They are based on a single
program multiple data model. A coarray Fortran program is interpreted as if it were
duplicated several times and all copies execute asynchronously. Each copy has its
own set of data objects and is termed an image. The array syntax of Fortran is
extended with additional trailing subscripts in square brackets to provide a concise
representation of references to data that is spread across images.

 The syntax is architecture independent and may be implemented on:

 Distributed memory machines. •
 Shared memory machines. •
 Clustered machines. •

 Work is underway for additional Coarray functionality for the next standard.

 27.24 Other Parallel Options

 There are a number of additional parallel methods. They are covered for
completeness.

http://www.openmp.org/

414 27 Introduction to Parallel Programming

 27.24.1 PVM

 Parallel Virtual Machine consists of a library and a run-time environment which
allow the distribution of a program over a network of (even heterogeneous) comput-
ers. Visit

 • http://www.epm.ornl.gov/pvm/
 • http://www.netlib.org/pvm3/

for more details.

 27.24.2 HPF

 To quote their home page

 • http://hpff.rice.edu/index.htm

 ‘The High Performance Fortran Forum (HPFF), a coalition of industry, academic and
laboratory representatives, works to defi ne a set of extensions to Fortran 90 known col-
lectively as High Performance Fortran (HPF). HPF extensions provide access to high-
performance architecture features while maintaining portability across platforms.’

 They also provide details of:

 Surveys of HPF compilers and tools. •
 Currently available commercial HPF compilers. •
 public domain HPF compilation systems. •
 Research prototypes of HPF and HPF-related compilation systems. •
 Mailing list. •

 27.25 Top 500 Supercomputers

 Have a look at

 • http://www.top500.org/

for a lot of links to supercomputing centres and information on parallel computing
in general.

 To see what can be done with all this processing power visit:

 • http://www.met-offi ce.gov.uk/

http://www.epm.ornl.gov/pvm/
http://www.netlib.org/pvm3/
http://hpff.rice.edu/index.htm
http://www.top500.org/
http://www.met-office.gov.uk/

41527.27 Bibliography

 27.26 Summary

 Fortran has long been one of the main languages used in parallel programming. This
chapter has provided a brief coverage of some of the background to parallel pro-
gramming in general, and Fortran in particular.

 In the next three chapters we will look at a small number of programs that
 introduce some of the basic syntax of parallel programming with MPI, OpenMP and
Coarray Fortran. We will also look at solving one problem serially and then solve it
using the parallel features provided by MPI, OpenMP and Coarray Fortran. We
provide timing details so that we can see the benefi ts that parallel solutions offer.

 27.27 Bibliography

 The ideas involved in parallel computing are not new and we’ve included a couple
of references about computer hardware and operating systems, which provide infor-
mation for the more inquisitive reader. Wikipedia is an on-line source of informa-
tion in this area.

 27.27.1 Computer Hardware

 Baer , J.L.: Computer Systems Architecture. Computer Science Press, Rockville
(1980)

 The chapters on the memory hierarchy and memory management are old, but
well written. Up to date hardware information can be found at most hardware ven-
dor sites. A few are given below.

 27.27.1.1 AMD

 http://developer.amd.com/pages/default.aspx

 27.27.1.2 IBM

 http://www.ibm.com/products/us/en/

 27.27.2 Intel

 http://www.intel.com/en
 UK/products/processor/index.htm

http://developer.amd.com/pages/default.aspx
http://www.ibm.com/products/us/en/
http://www.intel.com/en

416 27 Introduction to Parallel Programming

 27.27.3 Computer Operating Systems

 Deitel, H.M.: Operating Systems. Addison Wesley, Reading (1990)
 Part two of the book (process management) has chapters on process concepts,

asynchronous concurrent processes, concurrent programming and deadlock and
indefi nite postponement. The bibliographies at the end of each chapter are quite
extensive.

 27.27.4 Parallel Programming

 Chandra , R., Dagum, L., Kohr, D., Maydan, D., McDonald, J., Menon, R.: Parallel Programming
in OpenMP. Morgan Kaufmann, San Francisco

 Chapman, B., Jost, G., Van Der Pas, R.: Using OpenMP. MIT Press, Cambridge
 Gropp, W., Lusk, E., Skjellum, A.: Using MPI: Portable Parallel Programming with the Message

Passing Interface. MIT Press, Cambridge
 Pacheco, P.: Parallel Programming with MPI. Morgan Kaufmann, San Francisco

417I. Chivers and J. Sleightholme, Introduction to Programming with Fortran:
With Coverage of Fortran 90, 95, 2003, 2008 and 77,
DOI 10.1007/978-0-85729-233-9_28, © Springer-Verlag London Limited 2012

 Aim

 The aims of this chapter is to provide a short introduction to MPI programming in
Fortran.

 28.1 Introduction

 Documents for the MPI standard are available from the MPI Forum. Their web
address is

 http://www.mpi-forum.org

 If you are going to do MPI programming we recommend getting hold of the
document that refers to your implementation.

 28.2 MPI Programming

 MPI programming typically requires two components, a compiler and an MPI
implementation.

 Chapter 28
 MPI – Message Passing Interface

 In almost every computation a great variety of arrangements
for the succession of the processes is possible, and various
considerations must infl uence the selections amongst them for
the purposes of a calculating engine. One essential object is to
choose that arrangement which shall tend to reduce to a
minimum the time necessary for completing the calculation.

 Ada Lovelace

http://www.mpi-forum.org

418 28 MPI – Message Passing Interface

 There are also two ways of doing MPI programming

 a cluster or multiple systems running MPI •
 a single system running MPI •

 In both cases an MPI installation will normally provide an MPI daemon or ser-
vice that can then be called from an MPI program.

 28.3 Compiler and Implementation Combination

 A number of commercial companies provide a combined bundle including

 Cray •
 IBM •
 Intel •
 PGI •

 The Cray and IBM offerings will most likely be for a cluster. Intel and PGI
provide products for both clusters and single systems. You should check their sites
for up to date information.

 28.4 Individual Implementation

 A low cost option is to get hold of an MPI implementation that works with your
existing compiler, and install it yourself on your own system.

 The Intel MPI product is available as a free download for evaluation purposes.
 There are a number of free MPI implementations, and details are given below for

two of them.

 28.4.1 MPICH2

 They are based at Argonne National Laboratory

 http://www.mcs.anl.gov/research/projects/mpich2/

 MPICH2 is distributed as source (with an open-source, freely available license).
It has been tested on several platforms, including Linux (on IA32 and x86–64), Mac
OS/X (PowerPC and Intel), Solaris (32- and 64-bit), and Windows.

 28.4.2 Open MPI

 They can be found at

http://www.mcs.anl.gov/research/projects/mpich2/

41928.7 Example 1 – Hello World

 http://www.open-mpi.org/

 They develop Open MPI on Linux, OS X, Solaris (both 32 and 64 on all plat-
forms) and Windows (Windows XP, Windows HPC Server 2003/2008 and also
Windows 7 RC).

 28.5 Compiler and MPI Combinations Used in the Book

 The examples in this chapter have been tried out with a variety of compilers and
implementations, including

 Intel compiler + mpich2, Windows •
 Intel compiler + Intel MPI, Windows •
 Gfortran + openmpi, SuSe Linux 11.x •
 Cray compiler, Hector Service •
 PGI compiler, Hector Service •
 IBM compiler, Met Offi ce Slovakia •

 We haven’t tried out all of the examples with all of the compiler and MPI
implementations.

 28.6 The MPI Memory Model

 MPI is characterised generally by distributed memory and

 All threads/processes have access to their own private memory only •
 Data transfer and most synchronization has to be programmed explicitly •
 All data is private •
 Data is shared explicitly by exchanging buffers in MPI terminology •

but in this chapter we will also show the use of MPI on one system.

 28.7 Example 1 – Hello World

 The fi rst example is the classic hello world program. This example has been run on
the following systems:

 Single system, Intel compiler and mpich2, Windows •
 Single system, Intel compiler and Intel MPI, Windows •
 Single system, gfortran and openmpi, SuSe linux •
 Cray HECToR service, Edinburgh •

http://www.open-mpi.org/

420 28 MPI – Message Passing Interface

 Here is the program.

 program ch2801
 use mpi
 implicit none
 integer :: error number
 integer :: this process number
 integer :: number_of_processes

 call MPI_INIT(error_number)
 call MPI_COMM_SIZE(MPI_COMM_WORLD, &

 number_of_processes , error_number)

 call MPI_COMM_RANK(&
MPI_COMM_WORLD, &

 this_process_number , &
error_number)
 print *, " Hello from process " ,&

 this_process_number , &
" of ", number_of_processes , &
" processes!"
 call MPI_Finalize(error_number)

 end program ch2801

 Let us look at each statement in turn.

 use mpi

 With most modern MPI implementations we can make available the MPI setup
with a use statement. Older implementations required an include fi le option.

 call MPI_INIT(error_number)

 This must be the fi rst MPI routine called. The Fortran binding only takes one
argument, an integer variable that is used to return an error number. It sets up the
MPI environment.

 call MPI_COMM_SIZE(MPI_COMM_WORLD, &
number_of_processes , error_number)

is typically the second MPI routine called. All MPI communication is associated
with a so called communicator that describes the communication context and an
associated set of processes. In this simple example we use the default communicator,
called MPI_COMM_WORLD. The number of processes available is returned via
the second argument. This means that the above program is duplicated on each
process, i.e. number_of_processes determines how many copies are running.

 call MPI_COMM_RANK(MPI_COMM_WORLD, &
this_process_number , error_number)

 The call above returns the process number for this process or copy of the
program.

42128.7 Example 1 – Hello World

 print *, " Hello from process " , &
 this_process_number , " of ", number_of_processes , &
" processes!"

 Each copy of the program will print out this message.

 call MPI_Finalize(error_number)

 The call to MPI_Finalize is the last call to the MPI system we need to make.
 Here is the output from the Intel compiler and Intel MPI option under Windows

XP64.

 Notice that process numbering starts at 0. Note also that there is no particular
order to the process numbers.

 Here is the output from gfortran and openmpi on a SuSe 11.2 Linux box. This is
the same system as the above, as it is dual boot.

422 28 MPI – Message Passing Interface

 Now the ordering is sequential.
 Here is the output from the Cray HECToR service. This uses 64 processes.

The job is submitted as a batch job, via a queueing mechanism. This is a common
mechanism on larger multi user systems.

 Hello from process 3 of 64 processes!
 Hello from process 0 of 64 processes!
 Hello from process 1 of 64 processes!
 Hello from process 2 of 64 processes!
 Hello from process 61 of 64 processes!
 Hello from process 60 of 64 processes!
 Hello from process 63 of 64 processes!
 Hello from process 62 of 64 processes!
 Hello from process 56 of 64 processes!
 Hello from process 59 of 64 processes!
 Hello from process 57 of 64 processes!
 Hello from process 58 of 64 processes!
 Hello from process 40 of 64 processes!

 …
 …lines deleted
 …

 Hello from process 33 of 64 processes!
 Hello from process 46 of 64 processes!
 Hello from process 45 of 64 processes!
 Hello from process 47 of 64 processes!
 Hello from process 44 of 64 processes!
 Hello from process 4 of 64 processes!
 Hello from process 7 of 64 processes!
 Hello from process 5 of 64 processes!
 Hello from process 6 of 64 processes!

 The order appears to be pretty random!

 28.8 Example 2 – Hello World Using Send and Receive

 The following is a variation of the above. In the fi rst example we had no communi-
cation between processes. Sending and receiving of messages by processes is the
basic MPI communication mechanism. The basic point-to-point communication
operations are send and receive. Their use is shown in the example below. These are
blocking send and receive operations. A blocking send does not return until the
message data and envelope have been safely stored away so that the sender is free
to modify the send buffer. The message might be copied directly into the matching
receive buffer, or it might be copied into a temporary system buffer.

42328.8 Example 2 – Hello World Using Send and Receive

 In this example process 0 is the master process and this communicates with every
other process or program.

 program ch2802
 use mpi
 implicit none
 integer :: error_number
 integer :: this_process_number
 integer :: number_of_processes
 integer :: I
 integer , dimension(MPI_STATUS_SIZE) :: status
 call MPI_INIT(error_number)
 call MPI_COMM_SIZE(MPI_COMM_WORLD, &

 number_of_processes , error_number)
 call MPI_COMM_RANK(MPI_COMM_WORLD, &

 this_process_number , error_number)
 if (this_process_number == 0) then

 print *, " Hello from process " , &
 this_process_number , " of ", number_of_processes , &
" processes."
 do I = 1 , number_of_processes - 1

 call MPI_RECV(this_process_number , &
 1 , MPI_INTEGER , I , 1 , MPI_COMM_WORLD , status , &
error_number)
 print *, " Hello from process " , &

 this_process_number , " of ", number_of_processes , &
" processes."
 end do
 else
 call MPI_SEND(this_process_number , 1 , &
MPI_INTEGER , 0 , 1 , MPI_COMM_WORLD , &
error_number)

 end if
 call MPI_Finalize(error_number)
 end program ch2802

 The calls to MPI_INIT, MPI_COMM_SIZE, MPI_COMM_RANK, MPI_
Finalize are the same as in the fi rst example. We have the additional code

 A test to see if we are process 0. If we are we then print out a message saying that •
we are process 0. We next loop from 1 to number_of_processes −1 and call
MPI_RECV.
 If we are not process 0 we make a call to MPI_SEND – remember that the pro-•
gram executes on all processes.

 Let us look at the calls to MPI_RECV and MPI_SEND in more depth. Here is an
extract from the 2.2 specifi cation describing MPI_RECV

424 28 MPI – Message Passing Interface

 <type> BUF(*), initial address of receive buffer •
 INTEGER COUNT , Number of elements in the receive buffer •
 DATATYPE , data type of each receive buffer element •
 SOURCE , rank of source •
 TAG , message tag •
 COMM , communicator •
 STATUS(MPI_STATUS_SIZE), •
 IERROR •

 The following shows the mapping between MPI data types and Fortran data
types.

 MPI datatype Fortran datatype

 MPI_INTEGER INTEGER
 MPI_REAL REAL
 MPI_DOUBLE_PRECISION DOUBLE PRECISION
 MPI_COMPLEX COMPLEX
 MPI_LOGICAL LOGICAL
 MPI_CHARACTER CHARACTER(1)

 Our arguments to MPI_RECV are

 this_process_number - process 0 is doing the receiving •
 1 item •
 MPI_INTEGER – an MPI_INTEGER variable •
 I – receive from this process •
 1 – tag •
 MPI_COMM_WORLD - the communicator •
 status – an integer array of size MPI_STATUS_SIZE •
 error_number •

 Here is an extract from the 2.2 specifi cation regarding MPI_SEND

 <type> BUF(*) – initial address of send buffer •
 INTEGER COUNT – number of elements in send buffer •
 DATATYPE – data type of each send buffer element •
 DEST – rank of destination •
 TAG – message tag •
 COMM – communicator •
 IERROR – error number •

 The arguments to our MPI_SEND are

 this_process_number – send from this process •
 1 •
 MPI_INTEGER •
 0 – send to this process number •

42528.9 Example 3 – Serial Solution for pi Calculation

 1 •
 MPI_COMM_WORLD – the communicator •
 error_number •

and as you can see the sends and receives are in matching pairs.

 The output from this program will be similar to the previous example.

 28.9 Example 3 – Serial Solution for pi Calculation

 We choose numerical integration in this example. The following integral

 +∫
1

20

4

1
dx

x

is one way of calculating an approximation to p , and is a problem that is easy to
parallelise. The integral can be approximated by

−⎛ ⎞+ ⎜ ⎟⎝ ⎠

∑ 21

1 4

0.5
1

n

n i

n

 p to 50 digits is
3.14159265358979323846264338327950288419716939937510
according to Wikipedia

 Another way of calculating p is using the formula 4 tan −1 (1), and in Fortran this is

 4.0*atan(1.0).

426 28 MPI – Message Passing Interface

 Consider the following plot of the above equation.
 To do the evaluation numerically we divide the interval between 0 and 1 into n

sub intervals. The higher the value of n the more accurate our value of p will be, or
should be.

 Here is a serial program to do this calculation. The program is in three main
parts. These are

 precision module – to set the precision throughout the whole code. •
 timing module – a timing module to enable us to time parts of the program. We •
will be using this module throughout the parallel examples to provide informa-
tion about the performance of the algorithms.
 the program – that actually does the integration. •

 The fi rst two modules are straightforward and we will only cover the integration
solution in depth. We will be using this integration example in this chapter on MPI
and the subsequent two on OpenMP and coarray Fortran.

 module precision_module
 implicit none
 integer, parameter :: long = &

 selected_real_kind(15,307)
 end module precision_module
 module timing_module

 implicit none
 integer, dimension (8), private :: dt
 real, private :: h, m, s, ms, tt
 real, private :: last_tt

 contains
 subroutine start_timing()
 implicit none
 call date_and_time(values=dt)
 print 100, dt(1:3), dt(5:8)
 100 format &
 (1x,i4,'/',i2,'/',i2,1x,i2,':',i2,':',i2,1x,i3)
 h = real(dt(5))
 m = real(dt(6))
 s = real(dt(7))
 ms = real(dt(8))
 last_tt = 60*(60*h+m) + s + ms/1000.0

 end subroutine start_timing
 subroutine print_date_and_time

 implicit none

42728.9 Example 3 – Serial Solution for pi Calculation

 call date_and_time(values=dt)
 print 100, dt(1:3), dt(5:8)
 100 format &
 (1x,i4,'/',i2,'/',i2,1x,i2,':',i2,':',i2,1x,i3)

 end subroutine print_date_and_time
 subroutine print_hms
 implicit none
 call date_and_time(values=dt)
 print 100, dt(5:8)
 100 format (1x,i2,':',i2,':',i2,1x,i3)

 end subroutine print_hms

 subroutine print_ms
 implicit none
 call date_and_time(values=dt)

 h = real(dt(5))
 m = real(dt(6))
 s = real(dt(7))
 ms = real(dt(8))
 tt = 60*(60*h+m) + s + ms/1000.0
 print 100, tt
 100 format (1x,f14.3)

 end subroutine print_ms
 subroutine print_time_difference
 implicit none
 call date_and_time(values=dt)
 h = real(dt(5))
 m = real(dt(6))
 s = real(dt(7))
 ms = real(dt(8))
 tt = 60*(60*h+m) + s + ms/1000.0
 print 100, (tt-last_tt)
 100 format (1x,f14.3)
 last_tt = tt

 end subroutine print_time_difference
 real function time_difference()

 implicit none

 tt = 0.0
 call date_and_time(values=dt)
 h = real(dt(5))
 m = real(dt(6))
 s = real(dt(7))

428 28 MPI – Message Passing Interface

 ms = real(dt(8))
 tt = 60*(60*h+m) + s + ms/1000.0
 time_difference = tt - last_tt

 end function time_difference
 end module timing_module
 program ch2803

 use precision_module
 use timing_module
 implicit none
 integer :: I, j
 integer :: n_intervals
 real (long) :: interval_width, x, total, pi
 real (long) :: fortran_internal_pi

 call start_timing()
 n_intervals = 10
 fortran_internal_pi = 4.0_long*atan(1.0_long)
 print *, ' fortran_internal_pi = ', &
 fortran_internal_pi
 print *, ' '
 do j = 1, 9
 interval_width = 1.0_long/n_intervals
 total = 0.0_long
 do I = 1, n_intervals
 x = interval_width*(real(i,long)-0.5_long)
 total = total + f(x)

 end do
 pi = interval_width*total
 print 20, n_intervals, time_difference()
 20 format (' N intervals = ',i12,' time = ',f8.3)
 print 30, pi, abs(pi-fortran_internal_pi)
 30 format (' pi = ',f20.16,/, &
 ' difference = ',f20.16)
 n_intervals = n_intervals*10

 end do
 contains
 real (long) function f(x)
 implicit none
 real (long), intent (in) :: x
 f = 4.0_long/(1.0_long+x*x)

 end function f
 end program ch2803

42928.9 Example 3 – Serial Solution for pi Calculation

 The fi rst part of the code has the declarations for the variables we will be using.
These are

 integer :: n_intervals
 real (long) :: interval_width, x, total, pi
 real (long) :: fortran_internal_pi

 We have an integer variable for the number of intervals we will be using. We
have made this of default integer type, which will be 32 bit on most platforms, and
will be up to 2,147,483,647.

 We then have the following variables

 interval_width •
 x – the variable we will be calculating numerically •
 total – our total for the integration •
 pi – our calculated value of pi •
 fortran_internal_pi – we use a common way of defi ning this using the internal •
atan function.

 We then call the start_timing routine to print out details of the start time.
 We next set the number of intervals. We choose 10 as an initial value. We will be

doing the calculation for a number of interval sizes.
 We calculate pi using the atan intrinsic and print out its value. We will be using

this value to determine the accuracy of our calculations.
 We then have the loop that does the calculations for nine values of the interval

size from 10 to 1,000,000,000.
 We calculate the interval width at the start of each loop and reset the total to zero

at the start of each loop.
 The following

 do I = 1, n_intervals
 x = interval width*(real(i,long)-0.5_long)
 total = total + f(x)
 end do

is the code that actually does the integration. We calculate x each time round the
loop and then use this calculated value in our call to our function, summing up as
we go along. We need to subtract a ½ as we need the midpoint of the interval for our
value of x.

 The loop fi nishes and we then calculate the value of pi and print out details of the
number of intervals, the calculated value of pi and the difference between the inter-
nal value of pi and the calculated value.

430 28 MPI – Message Passing Interface

 We also print out timing information about this calculation. We then increment
the number of intervals and repeat the above.

 We need to know how long the serial version takes and how accurate our calcu-
lated value for pi is.

 Here is output from this program on a couple of systems and compilers.

43128.9 Example 3 – Serial Solution for pi Calculation

432 28 MPI – Message Passing Interface

 The three sample runs provide us with information that we can use as a basis for
an analysis of our parallel solution. We have information about the accuracy of the
solution and timing details.

 28.10 Example 4 – Parallel Solution for pi Calculation

 This example is a parallel solution to the above problem using mpi. We only show
the parallel program. The precision and timing modules are the same as in the previ-
ous example.

43328.10 Example 4 – Parallel Solution for pi Calculation

434 28 MPI – Message Passing Interface

 The fi rst difference is the

 use mpi

statement. This makes available the mpi functionality. We next have several vari-
able declarations.

 real (long) :: fortran_internal_pi
 real (long) :: partial_pi
 real (long) :: total_pi
 real (long) :: width
 real (long) :: partial_sum
 real (long) :: x
 integer :: n
 integer :: this process
 integer :: n_processes
 integer :: I
 integer :: j
 integer :: error_number

 The variables partial_pi, total_pi and partial_sum are required by our parallel
algorithm. The variable n is the number of intervals and we start this at 100,000
rather than 10 as we have seen from the serial solution that there are quite large dif-
ferences between the internal value of pi and the calculated value below 100,000.

43528.10 Example 4 – Parallel Solution for pi Calculation

 The variables this _process, n_processes and error_number are required for the
mpi solution.

 The real work is done in the following do loop.

 do I = this_process + 1, n, n_processes
 x = width*(real(i,long)-0.5 long)
 partial_sum = partial_sum + f(x)

 end do

 The key is to split up the work of the calculation between the processes we have
available. The following shows how the work will be split up for n = 10 and with the
number of processes ranging from 1 to 8.

 The above also shows how the algorithm balances the load of the computation
across the processes.

 Each process has its own partial_sum and partial_pi. We then use the call to the
MPI subroutine mpi_reduce to calculate the total value of pi from the partial values
of pi. Here is the MPI description of the mpi_reduce routine

 MPI_REDUCE(sendbuf, recvbuf, count, datatype, op, root, comm)
 IN sendbuf address of send buffer (choice)
 OUT recvbuf address of receive buffer (choice, signifi cant only at root)
 IN count number of elements in send buffer (non-negative integer)
 IN datatype data type of elements of send buffer (handle)
 IN op reduce operation (handle)
 IN root rank of root process (integer)
 IN comm communicator (handle)

and

436 28 MPI – Message Passing Interface

 partial_pi is our send buffer
 total_pi is our receive buffer
 1 – the number of elements
 mpi_double_precision – the type of the elements
 mpi_sum – the reduction operation
 0 – the root process
 mpi_comm_world – the communicator
 error_number – the error number

 We then control the printing from process 0.
 Here is sample output from the Intel compiler for 1, 4, 8 and 32 processes. Results

are similar from gfortran. We can control how many processes are available from
the command line. We will look at the Cray compiler and the Hector service later.

43728.10 Example 4 – Parallel Solution for pi Calculation

438 28 MPI – Message Passing Interface

 The system that the above output is from has an Intel Core i7 920 processor. This
processor has four cores and each core is hyper threaded. We get a nearly linear
speed up to four processes, which shows how good the parallel solution is. Note that
the time value is not the total time taken by all processes, but rather the effective
running time of the program. If we are sat in front of the pc the program would
complete in about a quarter of the time of the serial version. The numerical results
are similar to the serial solution. The eight and thirty two process versions have
similar times to the four process version.

 Here is the output from the Cray at the Hector service. This is for 64 processes
running on 16 nodes. Each compute node contains two AMD 2.1 GHz 12 core
processors.

 As can be seen this represents a major time reduction over the serial version from
4.297 to 0.180 s – a factor of approximately 24.

43928.11 Example 5 – Work Sharing Between Processes

 Here is the output from 96 processes on 4 nodes.

 Again we have a considerable speed up, a factor of approximately 35.

 28.11 Example 5 – Work Sharing Between Processes

 This example looks at one way of splitting work up between processes. We use the
process number of determine which process does which work.

 program ch2805
 use mpi
 implicit none
 integer :: error_number
 integer :: this_process_number
 integer :: number_of_processes
 integer, dimension (mpi_status_size) :: status
 integer, allocatable, dimension (:)::x
 integer :: n
 integer, parameter :: factor = 5
 integer :: i, j, k
 integer :: start
 integer :: end
 integer : recv_start

440 28 MPI – Message Passing Interface

 call mpi_init(error_number)
 call mpi_comm_size(mpi_comm_world, &
 number_of_processes,error_number)

 call mpi_comm_rank(mpi_comm_world,&
 this_process_number,error_number)

 n = number_of_processes*factor
 allocate (x(1:n))
 x = 0
 start = (factor*this_process_number) + 1
 end = factor*(this_process_number+1)
 print 10,this_process_number, start, end
 10 format(' Process number = ',i3,' start ', &
 i3,' end ',i3)

 do i = start, end
 x(i) = i*factor

 end do
 do i = 1, n
 print 20 , this_process_number, i, x(i)
 20 format(1x,i4, ' i ',i4,' x(i) ',i4)

 end do
 if (this_process_number==0) then
 do i = 1, number_of_processes – 1
 recv_start = (factor*i)+ 1
 call mpi_recv(x(recv_start),&
 factor,mpi_integer,i,1,mpi_comm_world, &
 status ,error_number)

 end do
 else
 call mpi_send(x(start) , factor, &
 mpi_integer,0,1,mpi_comm_world,error_number)

 end if
 if (this_process_number==0) then
 do i = 1, n
 print 30, I, factor, x(i)
 30 format (1x,i4,' * ',i2,' = ',i5)

 end do
 end if
 call mpi_fi nalize(error_number)

 end program ch2805

 What we are going to do is allocate an array based on the number of processes
and then split the (simple) work on the array up between the processes. We will
calculate array indices from the process numbers.

44128.11 Example 5 – Work Sharing Between Processes

 n = number_of_processes*factor

 This statement calculates the array size based on the number of processes and a
constant factor.

 allocate (x(1:n))

 This statement allocates the array.

 x = 0

 This statement initialises the whole array to zero. The following statements
defi ne the start and end points for the array processing for each process.

 start = (factor*this_process_number) + 1
 end = factor*(this_process_number+1)

and partition the work up between the processes. Each process will have its own
start and end values. The following do loop does the work:

 do I = start, end
 x(i) = i*factor

 end do

and all we are doing as this is fi lling sections of the array up with data based in
process numbers.

 The following

 if (this_process_number==0) then
 do i = 1, number_of_processes – 1

 recv_start = (factor*i) + 1
 call mpi_recv(x(recv_start), &

 factor,mpi_integer,i,1,mpi_comm_world,&
 status ,error_number)

 end do
 else

 call mpi_send(x(start) , factor, &
 mpi_integer,0,1,mpi_comm_world,error_number)

 end if

uses sends and receives to transfer the updated array sections back to process zero.
We are using recv_start to specify the starting point for the array transfer, and
x(start) is the starting point for the transfer from the x array to process zero.

442 28 MPI – Message Passing Interface

44328.12 Summary

 Here is sample output from the program when the number of processes is three.
 So with three processes we have an array of size 15, and the work that each pro-

cess does is

 Process number • = 0 start 1 end 5
 Process number = 1 start 6 end 10 •
 Process number • = 2 start 11 end 15

and each process works on its own section of the array. At the end we use the
sends and receives to make sure that the x array on process zero now has all of
the updated values.
 This code achieves load balancing across the processes.

 28.12 Summary

 The programs in this chapter provide an introduction to the use of MPI to achieve
parallel programs in Fortran. We have also seen some of the timing benefi ts of paral-
lel programming with MPI.

444 28 MPI – Message Passing Interface

 28.13 Problem

 1. Compile and run the programs with your compiler and implementation of MPI.
You should get similar results.

445I. Chivers and J. Sleightholme, Introduction to Programming with Fortran:
With Coverage of Fortran 90, 95, 2003, 2008 and 77,
DOI 10.1007/978-0-85729-233-9_29, © Springer-Verlag London Limited 2012

 Aim

 The aims of this chapter is to provide a short introduction to OpenMP programming
in Fortran.

 29.1 Introduction

 The main site is

 http://openmp.org/wp/

and this site has details about the various specifi cations

 http://openmp.org/wp/openmp-specifi cations/

 We recommend downloading the documentation if you are going to do OpenMP
programming. You should visit

 http://openmp.org/wp/openmp-compilers/

to see an up to date list of what compilers support the OpenMP specifi cation, and at
what level.

 The OpenMP site has a range of resources available, check out

 http://openmp.org/wp/resources

for more information.

 Chapter 29
 OpenMP

 The best way to have a good idea is to have a lot of ideas.

 Linus Pauling

http://openmp.org/wp/COMP: Set all programming codes as in MS.
http://openmp.org/wp/openmp-specifications/
http://openmp.org/wp/openmp-compilers/
http://openmp.org/wp/resources

446 29 OpenMP

 We’ve run the examples in this chapter with one or more of the following compilers

 Cray •
 Gfortran •
 Intel •

 29.2 OpenMP Memory Model

 OpenMP is a shared memory programming model. It has several features including

 All threads have access to the same shared memory •
 Data can be shared or private •
 Data transfer is transparent to the programmer •
 Synchronization takes place and is generally implicit •

 We will look at a small number of examples to highlight some of the key fea-
tures. We provide a brief coverage of some of the OpenMP glossary to provide a
basic background to OpenMP.

 Threading Concepts•

 Thread – An execution entity with a stack and associated static memory, –
called threadprivate memory.
 OpenMP thread – A thread that is managed by the OpenMP runtime system. –
 Thread-safe routine – A routine that performs the intended function even –
when executed concurrently (by more than one thread).

 OpenMP language terminology•

 Structured block – For Fortran, a block of executable statements with a single –
entry at the top and a single exit at the bottom.
 Loop directive – An OpenMP executable directive whose associated user –
code must be a loop that is a structured block. For Fortran, only the do direc-
tive and the optional end do directive are loop directives.
 Master thread – The thread that encounters a parallel construct, creates a team, –
generates a set of tasks, then executes one of those tasks as thread number 0.
 Worksharing construct – A construct that defi nes units of work, each of which is –
executed exactly once by one of the threads in the team executing the construct.
For Fortran, worksharing constructs are do, sections, single and workshare.
 Barrier – A point in the execution of a program encountered by a team of –
threads, beyond which no thread in the team may execute until all threads in
the team have reached the barrier and all explicit tasks generated by the team
have executed to completion.

 Data Terminology•

 Variable – A named data object, whose value can be defi ned and re defi ned –
during the execution of a program. Only an object that is not part of another

44729.3 Example 1 – Hello World

object is considered a variable. For example, array elements, structure compo-
nents, array sections and substrings are not considered variables.
 Private variable – With respect to a given set of task regions that bind to the –
same parallel region, a variable whose name provides access to a different
block of storage for each task region.
 Shared variable – With respect to a given set of task regions that bind to the –
same parallel region, a variable whose name provides access to the same
block of storage for each task region.

 Execution Model•

 The OpenMP API uses the fork-join model of parallel execution. Multiple –
threads of execution perform tasks defi ned implicitly or explicitly by OpenMP
directives. OpenMP is intended to support programs that will execute correctly
both as parallel programs (multiple threads of execution and a full OpenMP
support library) and as sequential programs (directives ignored and a simple
OpenMP stubs library).

 The above coverage should be enough to get started with OpenMP and under-
stand the examples that follow.

 29.3 Example 1 – Hello World

 This is the classic hello world program.

 program ch2901
 use omp_lib
 implicit none
 integer :: nthreads
 integer :: thread_number
 integer :: I
 nthreads = omp_get_max_threads()
 print *, ' Number of threads = ', nthreads

!$omp parallel do
 do I=1, nthreads
 print *, ' Hello from thread ',&

 omp_get_thread_num()
 end do

 !$omp end parallel do
 end program ch2901

 Let us go through the program one statement at a time.

 use omp_lib

 This use statement makes available the OpenMP environment. OpenMP state-
ments are treated as comments without this statement.

448 29 OpenMP

 nthreads = omp_get_max_threads()
 print *, ' Number of threads = ', nthreads

 The fi rst statement sets the variable nthread to the value returned by the OpenMP
function omp_get_max_threads(). We then print out this value.

 !$omp parallel do

 OpenMP directives in Fortran start with the comment character (!), followed by
a $ symbol and the characters omp. We use this form as it is works with both free
format and fi xed format Fortran source code.

 The parallel do words indicate that the code that follows is a parallel region
construct. In this case a do loop. Here is a small table listing some of the OpenMP
directives.

 Parallel region construct

 !$omp parallel [clause]
 structured block
 !$omp end parallel

 Work sharing constructs

 !$omp do [clause] …
 do loop
 !$omp end parallel

 !$omp sections [clause] …
 [!$omp section
 structured block] …
 !$omp end sections [nowait]

 !$omp single [clause]
 structured block
 !$omp end single [nowait]

 Combined parallel work sharing constructs

 !$omp parallel do [clause]
 structured block
 !$omp end parallel do

 !$omp parallel sections [clause] …
 [!$omp section
 structured block] …
 !$omp end parallel sections

 Synchronisation constructs

 !$omp master
 structured block
 ! $omp end master

 !$omp critical [(name)]
 structured block
 !$omp end critical [(name)]

 !$omp barrier

 $omp atomic

44929.3 Example 1 – Hello World

 expression list

 !$omp fl ush

 !$omp ordered
 structured block
 !$omp end ordered

 Data environment

 !$omp threadprivate (/c1/,/c2/)

 We next have the parallel do.

 do I=1, nthreads
 print *, ' Hello from thread ', &

 omp_get_thread_num()
 end do

 This loop prints out a message from each thread showing the thread number.

 !$omp end parallel do

 This marks the end of the OpenMP parallel loop.
 So at the start of the loop the OpenMP run time system does a fork and creates

multiple threads. At the end of the loop we have a join operation and we are back to
one thread of execution.

 Here is the output from the Intel compiler on an Intel i7 system.

 These Intel systems have four real cores and each core supports hyper threading
in Intel terminology. So the OpenMP system sees eight threads.

 Here is the output from the gfortran compiler on the same system.

 The output is very similar, as one would expect.

450 29 OpenMP

 29.4 Example 2 – Hello World Using Default Variable
Data Scoping

 This is a simple variation on the fi rst example. At fi rst sight it appears to be identical
in effect to example one

 program ch2902
 use omp_lib
 implicit none
 integer :: nthreads
 integer :: thread_number
 integer :: I

 nthreads = omp_get_max_threads()
 print *, ' Number of threads = ', nthreads

 !$omp parallel do
 do I = 1, nthreads

 thread_number = omp_get_thread_num()
 print *, ' Hello from thread ',

thread_number
 end do

 !$omp end parallel do
 end program ch2902

 However we have introduced a variable thread_number and are using the
OpenMP default data scoping rules, i.e. we have said nothing. Here is the output
from the Intel compiler.

 We appear to have a working program. Here is the output from the gfortran compiler.

45129.5 Example 3 – Hello World with Private thread _ number Variable

 Now something appears to be not quite right! The default variable scoping rules
mean that the variable thread_number is available to all threads – in OpenMP termi-
nology it is shared. The opposite of shared is private and each thread has their own
copy. Example 3 corrects this problem.

 29.5 Example 3 – Hello World with Private thread_number
Variable

 program ch2903
 use omp_lib
 implicit none
 integer :: nthreads
 integer :: thread_number
 integer :: I

 nthreads = omp_get_max_threads()
 print *, ' Number of threads = ', nthreads

 !$omp parallel do private(thread_number)
 do I = 1, nthreads
 thread_number = omp_get_thread_num()
 print *, ' Hello from thread ',

thread_number
 end do

 !$omp end parallel do
 end program ch2903

 Here is the output from the gfortran compiler.

 Care must be taken with variables in OpenMP to ensure they have the correct
data scoping state.

452 29 OpenMP

 29.6 Example 4 – Parallel Solution for pi Calculation

 This is an OpenMP parallel implementation of the integration problem (example
three) from the previous chapter. You should compare it with the MPI solution –
example four in the last chapter.

 program ch2904
 use precision_module
 use timing_module
 use omp_lib
 implicit none
 real (long) :: fortran_internal_pi
 real (long) :: partial_pi
 real (long) :: openmp_pi
 real (long) :: width
 real (long) :: x
 integer : : nthreads
 integer : :
 integer : : j
 integer : : k
 integer : : n

 nthreads = omp_get_max_threads()
 fortran_internal_pi = 4 .

0_long*atan(1.0_long)
 print *, ' Maximum number of threads is ',

nthreads
 k=1
 do
 call start_timing()
 n = 100000
 call omp_set_num_threads(k)
 print *, ' Number of threads = ', k
 do j = 1, 5

 width = 1.0_long/n
 partial_pi = 0.0_long
 !$OMP parallel do private(x)

shared(width)

 reduction(+:partial_pi)
 do I = 1, n

 x = width*(real(i,long)-0.5_long)
 partial_pi = partial_pi + f (x)

 end do
 !$omp end parallel do

45329.6 Example 4 – Parallel Solution for pi Calculation

 openmp_pi = width*partial_pi
 print 20, n, time_difference()
 20 format (' N intervals = ',i12, &

 ' time =',f8.3)
 print 30, openmp_pi , &

 abs(openmp_pi-fortran_internal_pi)
 30 format (' openmp_pi = ' , &

 f20.16,/,'difference = ',f20.16)
 n = n*10

 end do
 k=k*2
 if (k>nthreads) exit

 end do
 contains
 real (long) function f (x)
 implicit none
 real (long), intent (in) : : x

 f = 4.0_long/(1.0_long+x*x)
 end function f
 end program ch2904

 Here is the output from the Intel compiler.

454 29 OpenMP

45529.8 Problem

 We have similar timing improvements to the MPI solutions.

 29.7 Summary

 This chapter briefl y introduced the essentials of OpenMP programming. We have
also seen the timing benefi ts that OpenMP programming can offer in the solution of
the same problem

 29.8 Problem

 1. Compile and run the examples in this chapter with your compiler and compare
the results.

457I. Chivers and J. Sleightholme, Introduction to Programming with Fortran:
With Coverage of Fortran 90, 95, 2003, 2008 and 77,
DOI 10.1007/978-0-85729-233-9_30, © Springer-Verlag London Limited 2012

 Aim

 The aims of this chapter is to provide a short introduction to coarray programming
in Fortran.

 30.1 Introduction

 Coarrays were the major component of the Fortran 2008 standard. As stated earlier
they are based on a single program multiple data model. Coarrays are a simple parallel
programming extension to Fortran. They are effectively variables that can be shared
across multiple instances of the same program or images in Fortran terminology.

 Coarray variables look like conventional Fortran arrays, except that they use []
brackets instead of () brackets. In the simple declaration below

 character(len=20) :: name[*]='*****'

we declare name to be a character coarray and the * in the [] brackets means that the
bounds of the coarray are calculated at run time, rather than compile time.

 read *, name

is a reference to the coarray on the current image.
 We can then use the following statement

 name [i] = name

to broadcast the value read in to each of the other images.

 Chapter 30
 Coarray Fortran

 Science is a wonderful thing if one does not have to earn one’s
living at it.

 Einstein

458 30 Coarray Fortran

 Note the Fortran coarray syntax here. We use the [] brackets to reference the
coarray variable on other images and the omission of the [] brackets is a reference
to the coarray variable on the current image.

 30.2 Coarray Terminology

 The following is taken from the standard and covers some of the basic coarray
terminology.

 CODIMENSION attribute – The CODIMENSION attribute species that an entity •
is a coarray. The coarray-spec specifi es its corank or corank and cobounds.
 Allocatable coarray – A coarray with the ALLOCATABLE attribute has a speci-•
fi ed corank, but its cobounds are determined by allocation or argument
association.
 Explicit-coshape coarray – An explicit-coshape coarray is a named coarray that •
has its corank and cobounds declared by an explicit-coshape-spec.
 Coindexed named objects – A coindexed-named-object is a named scalar coar-•
ray variable followed by an image selector.
 Image selectors – An image selector determines the image index for a coindexed •
object.
 Image execution control and image control statements – The execution sequence •
on each image is specifi ed in 2.3.5 of the standard.
 Execution of an image control statement divides the execution sequence on an •
image into segments. Each of the following is an image control statement:

 SYNC ALL statement; –
 SYNC IMAGES statement; –
 SYNC MEMORY statement; –
 ALLOCATE or DEALLOCATE statement that has a coarray allocate-object; –
 CRITICAL or END CRITICAL; –
 LOCK or UNLOCK statement; –
 Any statement that completes execution of a block or procedure and which –
results in the implicit deallocation of a coarray;
 STOP statement; –
 END statement of a main program. –

 Coarray – A coarray is a data entity that has nonzero corank; it can be directly •
referenced or defi ned by any image. It may be a scalar or an array.
 Coarray dummy variables – If the dummy argument is a coarray, the correspond-•
ing actual argument shall be a coarray and shall have the VOLATILE attribute if
and only if the dummy argument has the VOLATILE at tribute.
 Coarray intrinsics•

 image_index – convert a cosubscript to an image index –
 lcobound – cobounds of a coarray –

45930.4 Example 2 – Broadcasting Data

 num_images – the number of images –
 this_image – image index or cosubscripts –
 ucobound – cobounds of a coarray –

 Let us look now at some simple examples.

 30.3 Example 1 – Hello World

 The fi rst is the classic Hello world.

 program ch3001
 implicit none
 print *,' Hello world from image ', this_image()

 end program ch3001

 Here is the output from the Intel compiler.

 The output is obviously very similar to the corresponding MPI and OpenMP
versions.

 30.4 Example 2 – Broadcasting Data

 Here is a simple program that broadcasts data from one image to the rest. This is a
common requirement in parallel programming.

 program ch3002
 implicit none
 integer :: I
 character(len=20) :: name[*]='*****'
 print 10,name,this_image()
 10 format(1x,' Hello ', a20,' from image ',i3)
 if (this_image() == 1) then
 print *,' Type in your name'

460 30 Coarray Fortran

 read *, name
 do I = 2, num_images()
 name [i] = name

 end do
 end if
 sync all
 print 10,name,this_image()

 end program ch3002

 Here is the output from the Intel compiler.

 Again no particular ordering of the image numbers.

 30.5 Example 3 – Parallel Solution for Pi Calculation

 program ch3003
 use precision_module
 use timing_module
 implicit none
 real (long) :: fortran_internal_pi
 real (long) :: partial_pi
 real (long) :: coarray_pi
 real (long) :: width

46130.5 Example 3 – Parallel Solution for Pi Calculation

 real (long) :: total_sum
 real (long) :: x
 real (long) , codimension[*] :: partial_sum
 integer :: n_intervals
 integer :: I
 integer :: j
 integer :: current_image
 integer :: n_images

 fortran_internal_pi = 4.0_long*atan(1.0_long)
 n_images=num_images()
 current_image=this_image()
 if (current_image == 1) then

 print *,' Number of images = ',n_images
 end if
 n_intervals=100000
 do j=1,5

 if (current_image == 1) then
 call start_timing()

 end if
 width = 1.0_long/real(n_intervals, long)
 total_sum=0.0_long
 partial_sum= 0.0_long
 do i=current_image,n_intervals,n_images

 x = (real(i,long) - 0.5_long)*width
 partial_sum = partial_sum + f(x)

 end do
 partial_sum=partial_sum*width
 sync all
 if (current_image==1) then

 do i=1,n_images
 total_sum=total_sum+partial_sum[i]

 end do
 coarray_pi = total_sum
 print 20, n_intervals, time_difference()
 20 format (' n intervals = ',i12,' time =',f8.3)
 print 30, coarray_pi , &

 abs(coarray_pi-fortran_internal_pi)
 30 format (' pi = ',f20.16,/, &

 ' difference = ',f20.16)
 end if
 n_intervals=n_intervals*10
 sync all

 end do
 contains
 real (long) function f(x)
 implicit none

462 30 Coarray Fortran

 real (long), intent (in) :: x
 f = 4.0_long/(1.0_long+x*x)

 end function f
 end program ch3003

 Here is the output from the Intel compiler.

 Number of images = 8

 2011/ 6/10 13:40:48 479
 n intervals = 100000 time = 0.004
 pi = 3.1415926535981260
 difference = 0.0000000000083329

 2011/ 6/10 13:40:48 486
 n intervals = 1000000 time = 0.004
 pi = 3.1415926535898802
 difference = 0.0000000000000870

 2011/ 6/10 13:40:48 490
 n intervals = 10000000 time = 0.012
 pi = 3.1415926535897936
 difference = 0.0000000000000004

 2011/ 6/10 13:40:48 500
 n intervals = 100000000 time = 0.105
 pi = 3.1415926535897749
 difference = 0.0000000000000182

 2011/ 6/10 13:40:48 605
 n intervals = 1000000000 time = 0.992
 pi = 3.1415926535898455
 difference = 0.0000000000000524

 Here is the output from the Cray compiler.

 Number of images = 96

 2011/ 6/10 13:35: 7 419
 n intervals = 100000 time = 0.004
 pi = 3.1415926535981265
 difference = 0.0000000000083333

 2011/ 6/10 13:35: 7 421
 n intervals = 1000000 time = 0.000
 pi = 3.1415926535898766
 difference = 0.0000000000000835

 2011/ 6/10 13:35: 7 422
 n intervals = 10000000 time = 0.004
 pi = 3.1415926535897949
 difference = 0.0000000000000018

46330.6 Example 4 – Work Sharing

 2011/ 6/10 13:35: 7 424
 n intervals = 100000000 time = 0.012
 pi = 3.1415926535897913
 difference = 0.0000000000000018

 2011/ 6/10 13:35: 7 436
 n intervals = 1000000000 time = 0.105
 pi = 3.1415926535897949
 difference = 0.0000000000000018

 We get the time improvement we have seen with both the MPI and OpenMP
solutions.

 30.6 Example 4 – Work Sharing

 This example looks at one way of splitting work up between images. We use the
image number to determine which image does which work. It is a coarray version
of the MPI work sharing example.

 program ch3004
 implicit none
 integer:: n, i,j
 integer:: me, nim, start,end
 integer, parameter:: factor=5
 integer, dimension(1:factor), codimension[*]:: x

 nim = num_images()
 me = this_image()
 n = nim*factor
 x = 0
 start = factor*(me-1) + 1
 end = factor*me
 j = 1
 do i=start,end

 x(j) = i*factor
 print*,'on image ',me, 'j = ',j,' x(j) = ',x(j)
 j = j + 1

 end do
 sync all
 if (me == 1) then

 print *,'coarray x on image ',me,' is: ' ,x
 do i=2,nim
 print*, 'coarray x on image ',I,' is: ',x(:) [I]

 end do
 endif

 end program ch3004

464 30 Coarray Fortran

 The following statements defi ne the start and end points for the array processing
for each image:

 start = factor*(me-1) + 1
 end = factor*me

and partitions the work between the images. Each image will have its own start
and end values. The following do loop does the work:

 do i=start,end
 x(j) = i*factor
 print*,'on image ',me, 'j = ',j,' x(j) = ',x(j)
 j = j + 1

 end do

 We need the

 sync all

to ensure that each image has completed before further processing, and we then
print out the data from each image on image 1.

 Here is a subset of the output from the Intel compiler. This example runs on eight
images.

46530.6 Example 4 – Work Sharing

466 30 Coarray Fortran

 Here is a sample of the output from the Cray compiler on the Hector service.
This example runs on 96 images.

 on image 2 j = 1 x(j) = 30
 on image 4 j = 1 x(j) = 80
 on image 2 j = 2 x(j) = 35
 on image 4 j = 2 x(j) = 85
 on image 2 j = 3 x(j) = 40
 on image 4 j = 3 x(j) = 90
 on image 77 j = 1 x(j) = 1905
 on image 74 j = 1 x(j) = 1830
 on image 77 j = 2 x(j) = 1910
 …
 …
 on image 64 j = 2 x(j) = 1585
 on image 60 j = 2 x(j) = 1485
 on image 39 j = 5 x(j) = 975
 on image 30 j = 1 x(j) = 730
 …
 …
 on image 31 j = 1 x(j) = 755
 on image 42 j = 1 x(j) = 1030
 on image 31 j = 2 x(j) = 760
 …
 …
 on image 41 j = 1 x(j) = 1005
 on image 27 j = 3 x(j) = 665
 …
 …
 on image 44 j = 1 x(j) = 1080
 on image 46 j = 4 x(j) = 1145
 …
 …
 coarray x on image 1 is: 5, 10, 15, 20, 25
 coarray x on image 2 is: 30, 35, 40, 45, 50
 coarray x on image 3 is: 55, 60, 65, 70, 75
 coarray x on image 4 is: 80, 85, 90, 95, 100
 coarray x on image 5 is: 105, 110, 115, 120, 125
 coarray x on image 6 is: 130, 135, 140, 145, 150
 coarray x on image 7 is: 155, 160, 165, 170, 175
 coarray x on image 8 is: 180, 185, 190, 195, 200
 …
 …
 coarray x on image 88 is: 2180, 2185, 2190, 2195, 2200
 coarray x on image 89 is: 2205, 2210, 2215, 2220, 2225

46730.8 Problem

 coarray x on image 90 is: 2230, 2235, 2240, 2245, 2250
 coarray x on image 91 is: 2255, 2260, 2265, 2270, 2275
 coarray x on image 92 is: 2280, 2285, 2290, 2295, 2300
 coarray x on image 93 is: 2305, 2310, 2315, 2320, 2325
 coarray x on image 94 is: 2330, 2335, 2340, 2345, 2350
 coarray x on image 95 is: 2355, 2360, 2365, 2370, 2375
 coarray x on image 96 is: 2380, 2385, 2390, 2395, 2400

 30.7 Summary

 This chapter has looked briefl y at some of the simple syntax of coarrays using a
small set of examples. We have also seen the timing benefi ts that coarray program-
ming can offer in the solution of the same problem.

 30.8 Problem

 1. Compile and run the examples in this chapter with your compiler.

469I. Chivers and J. Sleightholme, Introduction to Programming with Fortran:
With Coverage of Fortran 90, 95, 2003, 2008 and 77,
DOI 10.1007/978-0-85729-233-9_31, © Springer-Verlag London Limited 2012

 Aim

 This chapter looks briefl y at C interoperability.

 31.1 Introduction

 C is a widely used programming languages and there is a considerable amount of
software written in C. Fortran 2003 introduced a standardised mechanism for inter-
operating with C.

 In this chapter we provide a brief coverage of some of the technical details
required for interoperability and then have a look at a couple of examples.

 31.2 ISO_C_BINDING Module

 There is an intrinsic module called ISO_C_BINDING that contains named con-
stants, derived types and module procedures to support interoperability.

 31.3 Named Constants and Derived Types in the Module

 The entities listed in the second column of Table 31.1 , are named constants of type
default integer.

 Chapter 31
 C Interop

 We can’t solve problems by using the same kind of thinking we
used when we created them.

 Einstein

470 31 C Interop

 31.4 Character Interoperability

 The following maps between Fortran and C character types. The semantics of these
values are explained in 5.2.1 and 5.2.2 of the C International Standard.

 Names of C characters with special semantics

 Name C defi nition C_CHAR = −1 C_CHAR/=−1
 C_NULL_CHAR Null character CHAR(0) '\0'
 C_ALERT Alert ACHAR(7) '\a'
 C_BACKSPACE Backspace ACHAR(8) '\b'
 C_FORM_FEED Form feed ACHAR(12) '\f'
 C_NEW_LINE New line ACHAR(10) '\n'
 C_CARRIAGE_RETURN Carriage return ACHAR(13) '\r'
 C_HORIZONTAL_TAB Horizontal tab ACHAR(9) '\t'
 C_VERTICAL_TAB Vertical tab ACHAR(11) '\v'

 Table 31.1

 Fortran type
 Named constant from the ISO_C_BINDING
module (kind type parameter if value is positive) C type

 INTEGER C_INT Int
 C_SHORT short int
 C_LONG long int
 C_LONG_LONG long long int
 C_SIGNED_CHAR signed char

 unsigned char
 C_SIZE_T size t
 C_INT8_T int8 t
 C_INT16_T int16 t
 C_INT32_T int32 t
 C_INT64_T int64 t
 C_INT_LEAST8_T int least8 t
 C_INT_LEAST16_T int least 16 t
 C_INT_LEAST32_T int least32 t
 C_INT_LEAST64_T int least64 t
 C_INT_FAST8_T int fast8 t
 C_INT_FAST16_T int fast16 t
 C_INT_FAST32_T int fast32 t
 C_INT_FAST64_T int fast64 t
 C_INTMAX_T intmax t
 C_INTPTR_T intptr t

 REAL C_FLOAT Float
 C_DOUBLE Double
 C_LONG_DOUBLE long double

 COMPLEX COMPLEX_C_DOUBLE _COMPLEX Double Complex
 C_LONG_DOUBLE_COMPLEX long double Complex

 LOGICAL C_BOOL Bool
 CHARACTER C_CHAR char

 The above mentioned C types are defi ned in the C International Standard, clauses 6.2.5, 7.17, and 7.18.1

47131.7 Other Aspects of Interoperability

 31.5 Procedures in the Module

 There are several procedures in this module. In the descriptions below, procedure
names are generic and not specifi c.

 A C procedure argument is often defi ned in terms of a C address. The C_LOC
and C_FUNLOC functions are provided so that Fortran applications can determine
the appropriate value to use with C facilities.

 The C_ASSOCIATED function is provided so that Fortran programs can com-
pare C addresses.

 The C_F_POINTER and C_F_PROCPOINTER subroutines provide a means of
associating a Fortran pointer with the target of a C pointer.

 More information can be found in Chap. 15 of the standard.

 31.6 Interoperability of Intrinsic Types

 Table 31.1 shows the interoperability between Fortran intrinsic types and C types.
A Fortran intrinsic type with particular type parameter values is interoperable with
a C type if the type and kind type parameter value are listed in the table on the same
row as that C type; if the type is character, interoperability also requires that the
length type parameter be omitted or be specifi ed by an initialization expression
whose value is one. A combination of Fortran type and type parameters that is
interoperable with a C type listed in the table is also interoperable with any unquali-
fi ed C type that is compatible with the listed C type.

 The second column of the table refers to the named constants made accessible by
the ISO_C_BINDING intrinsic module.

 A combination of intrinsic type and type parameters is interoperable if it is
interoperable with a C type.

 31.7 Other Aspects of Interoperability

 There are considerable restrictions on other aspects of interoperability. The follow-
ing provides some brief details of other areas:

 Interoperability with C pointer types•

 C_PTR and C_FUNPTR shall be derived types with private components. –
C_PTR is interoperable with any C object pointer type. C_FUNPTR is
interoperable with any C function pointer type.

 Interoperability of scalar variables•

 A scalar Fortran variable is interoperable if its type and type parameters are –
interoperable and it has neither the pointer nor the allocatable attribute.
 An interoperable scalar Fortran variable is interoperable with a scalar C entity –
if their types and type parameters are interoperable.

472 31 C Interop

 Interoperability of array variables•

 An array Fortran variable is interoperable if its type and type parameters are –
interoperable and it is of explicit shape or assumed size.

 Interoperability of procedures and procedure interfaces•

 A Fortran procedure is interoperable if it has the BIND attribute, that is, if its –
interface is specifi ed with a proc-language-binding-spec.

 Interoperation with C global variables•

 AC variable with external linkage may interoperate with a common block or –
with a variable declared in the scope of a module. The common block or vari-
able shall be specifi ed to have the BIND attribute.

 Binding labels for common blocks and variables•

 The binding label of a variable or common block is a value of type default –
character that specifi es the name by which the variable or common block is
known to the companion processor.

 Interoperation with C functions•

 A procedure that is interoperable may be defi ned either by means other than –
Fortran or by means of a Fortran subprogram, but not both.

 Another useful source can be found in the December 2009 edition of Fortran
Forum. Details are given at the end of the chapter.

 31.8 C_LOC Examples

 We include a small number of examples using the C_LOC function. Here is some of
the technical information on C_LOC from the standard.

 C_LOC (X)

 Description.•
 Returns the C address of the argument.

 Class.•
 Inquiry function.

 Argument.•
 X shall either

 1. have interoperable type and type parameters and be

 (a) a variable that has the TARGET attribute and is interoperable,
 (b) an allocated allocatable variable that has the TARGET attribute and

is not an array of zero size, or
 (c) an associated scalar pointer, or

47331.9 Example 1

 2. be a nonpolymorphic scalar, have no length type parameters, and be

 (a) a nonallocatable, nonpointer variable that has the TARGET attribute,
 (b) an allocated allocatable variable that has the TARGET attribute, or
 (c) an associated pointer.

 Result Characteristics.•
 Scalar of type C_PTR.

 Result Value. •

 The result value will be described using the result name CPTR.

 1. If X is a scalar data entity, the result is determined as if C_PTR were a
derived type containing a scalar pointer component PX of the type and
type parameters of X and the pointer assignment CPTR%PX => X were
executed.

 2. If X is an array data entity, the result is determined as if C_PTR were a
derived type containing a scalar pointer component PX of the type and
type parameters of X and the pointer assignment of CPTR%PX to the
fi rst element of X were executed.

 If X is a data entity that is interoperable or has interoperable type and type •
parameters, the result is the value that the C processor returns as the result of
applying the unary “&” operator (as defi ned in the C International Standard,
6.5.3.2) to the target of CPTR
 The result is a value that can be used as an actual CPTR argument in a call to •
C_F_POINTER where FPTR has attributes that would allow the pointer
assignment FPTR => X. Such a call to C_F_POINTER shall have the effect
of the pointer assignment FPTR => X.
 NOTE 15.6 – Where the actual argument is of noninteroperable type or type •
parameters, the result of C_LOC provides an opaque “handle” for it. In an
actual implementation, this handle may be the C address of the argument;
however, portable C functions should treat it as a void (generic) C pointer that
cannot be dereferenced (6.5.3.2 in the C International Standard).

 The key issues are that we must take care with the argument to the function, the
return value is of type C_PTR, and that this is an opaque type. Let us now look at
some examples using this function.

 31.9 Example 1

 The arguments x1 and x2 to c_loc are variables with the target attribute. The argu-
ments p_x1 and p_x2 are both pointers.

 The return values from the c_loc function must be of type c_ptr. In the fi rst call
to c_loc these pointers are not associated.

 We can’t print variables of type c_ptr so we use the transfer intrinsic to convert
to an integer value that we can print.

 Here is the output from three compilers.

474 31 C Interop

47531.9 Example 1

 31.9.1 Gfortran Output

 The program prints out 0 for i3 and i4 initially. At this point the pointers c_ptr3 and
c_ptr4 are not associated, i.e. they do not point to anything.

 31.9.2 Intel Output

 Intel does something similar to gfortran and the program prints out 0 for i3 and i4
initially. At this point the pointers c_ptr3 and c_ptr4 are not associated, i.e. they do
not point to anything.

476 31 C Interop

 31.9.3 Nag Output

 The Nag program prints out −1 for i3 and i4 initially. At this point the pointers
c_ptr3 and c_ptr4 are not associated, i.e. they do not point to anything.

 The value zero is often used to signify a special memory value in computing and
this is chosen by the gfortran and Intel compilers. The Nag compiler chooses −1,
again a special value.

 31.10 Example 2

 In this example we use the null () intrinsic to provide initial values for the two
pointer variables p_x1 and p_x2.

 program ch3102
 use iso_c_binding
 implicit none

 integer , target :: x1 = 20
 integer , target :: x2 = 30
 integer , pointer :: p_x1=>null()
 integer , pointer :: p_x2=>null()

 type (c_ptr) :: c_ptr1,c_ptr2,c_ptr3,c_ptr4

 integer :: i1,i2,i3,i4

 c_ptr1=c_loc (x1)
 c_ptr2=c_loc(x2)
 c_ptr3=c_loc(p_x1)
 c_ptr4=c_loc(p_x2)

 i1=transfer(c_ptr1,i1)
 i2=transfer(c_ptr2,i2)

47731.10 Example 2

 i3=transfer(c_ptr3,i3)
 i4=transfer(c_ptr4,i4)

 print *, ' i1 ' ,i1
 print *, ' i2 ' ,i2
 print *, ' i3 ' ,i3
 print *, ' i4 ' ,i4

 p_x1 => x1
 p_x2 => x2

 c_ptr3=c_loc(p_x1)
 c_ptr4=c_loc(p_x2)

 i1=transfer(c_ptr1,i1)
 i2=transfer(c_ptr2,i2)
 i3=transfer(c_ptr3,i3)
 i4=transfer(c_ptr4,i4)

 print *, ' xl ',x1
 print *, ' x2 ',x2
 print *, ' P_x1 ',p_x1
 print *, ' P_x2 ',p_x2
 print *, ' il ',il
 print *, ' i2 ',i2
 print *, ' i3 ',i3
 print *, ' i4 ',i4

 end program ch3102

 The output for the gfortran and Intel compilers is as before. The Nag output is
given below.

 The Nag compiler therefore distinguishes between pointers that are uninitialised
(−1) and initialised (0) to the null value, i.e. not associated. This kind of bug is quite
hard to fi nd!

478 31 C Interop

 31.11 Bibliography

 Einarsson, B., Hanson, R.J., Hopkins, T.: Standardized mixed language program-
ming for Fortran and C. Fortran Forum, 28 (3), (December 2009)

 31.12 Problem

 1. Compile and run the example programs in this chapter with your compiler and
examine the output.

479I. Chivers and J. Sleightholme, Introduction to Programming with Fortran:
With Coverage of Fortran 90, 95, 2003, 2008 and 77,
DOI 10.1007/978-0-85729-233-9_32, © Springer-Verlag London Limited 2012

 Aims

 The aims of this chapter are to look in more depth at arithmetic and in particular at the
support that Fortran provides for the IEEE 754 standard. There is a coverage of:

 Hardware support for arithmetic. •
 Integer formats. •
 Floating point formats: single and double. •
 Special values: denormal, infi nity and not a number – NAN. •
 Exceptions and fl ags: divide by zero, inexact, invalid, overfl ow, under fl ow. •

 32.1 Introduction

 The literature contains details of the IEEE 754 standard and the bibliography contains
details of a number of printed and on-line sources.

 Chapter 32
 ISOTR 15580 IEEE Arithmetic

 Any effectively generated theory capable of expressing
elementary arithmetic cannot be both consistent and complete.
In particular, for any consistent, effectively generated formal
theory that proves certain basic arithmetic truths, there is an
arithmetical statement that is true, but not provable in the
theory.

 Godel, First incompleteness theorem

480 32 ISOTR 15580 IEEE Arithmetic

 32.2 History

 When we use programming languages to do arithmetic two major concerns are the
ability to develop reliable and portable numerical software. Arithmetic is done in
hardware and there are a number of things to consider:

 The range of hardware available both now and in the past. •
 The evolution of hardware. •

 There has been a very considerable change in arithmetic units since the fi rst
computers. The following is a list of hardware and computing systems that the
authors have used or have heard of. It is not exhaustive or defi nitive, but rather
refl ects the authors’ age and experience:

 CDC •
 Cray •
 IBM •
 ICL •
 Fujitsu •
 DEC •
 Compaq •
 Gateway •
 Sun •
 Silicon Graphics •
 Hewlett Packard •
 Data General •
 Honeywell •
 Elliot •
 Mostek •
 National Semiconductors •
 Intel •
 Zilog •
 Motorola •
 Signetics •
 Amdahl •
 Texas Instruments •
 Cyrix •
 AMD •

 Some of the operating systems include:

 NOS •
 NOS/BE •
 Kronos •
 UNIX •
 VMS •
 Dos •
 Windows 3.x •

48132.3 IEEE 754 Specifi cations

 Windows 95 •
 Windows 98 •
 Windows NT •
 Windows 2000 •
 Windows XP •
 Windows Vista •
 MVS •
 VM •
 CP/M •
 Macintosh •
 OS/2 •
 Linux, a multitude! •

 Again the list is not exhaustive or defi nitive. The intention is simply to provide
some idea of the wide range of hardware, computer manufacturers and operating
systems that have been around in the past 50 years.

 To cope with the anarchy in this area Doctor Robert Stewart (acting on behalf of
the IEEE) convened a meeting which led to the birth of IEEE 754.

 The fi rst draft, which was prepared by William Kahan, Jerome Coonen and Harold
Stone, was called the KCS draft and eventually adopted as IEEE 754. A fascinating
account of the development of this standard can be found in An Interview with the Old
Man of Floating Point, and the bibliography provides a web address for this interview.
Kahan went on to get the ACM Turing Award in 1989 for his work in this area.

 This has become a de facto standard amongst arithmetic units in modern hard-
ware. Note that it is not possible to describe precisely the answers a program will
give, and the authors of the standard knew this. This goal is virtually impossible to
achieve when one considers fl oating point arithmetic. Reasons for this include:

 The conversions of numbers between decimal and binary formats. •
 The use of elementary library functions. •
 Results of calculations may be in hardware inaccessible to the programmer. •
 Intermediate results in subexpressions or arguments to procedures. •

 The bibliography contains details of a paper that addresses this issue in much
greater depth – Differences Among IEEE 754 Implementations.

 Fortran is one of a small number of languages that provides access to IEEE arith-
metic, and it achieves this via TR1880 which is an integral part of Fortran 2003. The
C standard (C9X) addresses this issue and Java offers limited IEEE arithmetic sup-
port. More information can be found in the references at the end of the chapter.

 32.3 IEEE 754 Specifi cations

 The standard specifi es a number of things including:

 Single precision fl oating point format. •
 Double precision fl oating point format. •

482 32 ISOTR 15580 IEEE Arithmetic

 Two classes of extended fl oating point formats. •
 Accuracy requirements on the following fl oating point operations:•

 Add. –
 Subtract. –
 Multiply. –
 Divide. –
 Square root. –
 Remainder. –
 Round numbers in fl oating point format to integer values. –
 Convert between different fl oating point formats. –
 Convert between fl oating point and integer format. –
 Compare. –

 Base conversion, i.e., when converting between decimal and binary fl oating point •
formats and vice versa.
 Exception handling for:•

 Divide by zero. –
 Overfl ow. –
 Underfl ow. –
 Invalid operation. –
 Inexact. –

 Rounding directions. •
 Rounding precisions. •

 We will look briefl y at each of these requirements.

 32.3.1 Single Precision Floating Point Format

 This is a 32-bit quantity made up of a sign bit, 8-bit biased exponent and 23-bit mantissa.
The standard also specifi es that certain of the bit patterns are set aside and do not represent
normal numbers. This means that valid numbers are in the range 3.40282347E + 38 to
1.17549435E-38 and the precision is between 6 and 9 digits depending on the numbers.

 The special bit patterns provide the following:

 +0 •
 −0 •
 subnormal numbers in the range 1.17549421E-38 to 1.40129846E-45 •
 + infi nity •
 − infi nity •
 quiet NaN (Not a Number) •
 signalling NaN •

48332.3 IEEE 754 Specifi cations

 One of the fi rst systems that the authors worked with that had special bit patterns
set aside was the CDC 6000 range of computers that had negative indefi nite and
infi nity. Thus the ideas are not new, as this was in the late 1970s.

 The support of positive and negative zero means that certain problems can be
handled correctly including:

 The evaluation of the log function which has a discontinuity at zero. •
 The equation • =1 1

z z can be solved when z = −1.

 See also the Kahan paper Branch Cuts for complex Elementary Functions, or
Much Ado About Nothing’s Sign Bit for more details.

 Subnormals, which permit gradual underfl ow, fi ll the gap between 0 and the
smallest normal number.

 Simply stated underfl ow occurs when the result of an arithmetic operation is so
small that it is subject to a larger than normal rounding error when stored. The exis-
tence of subnormals means that greater precision is available with these small num-
bers than with normal numbers. The key features of gradual underfl ow are:

 When underfl ow does occur there should never be a loss of accuracy any greater •
than that from ordinary roundoff.
 The operations of addition, subtraction, comparison and remainder are always •
exact.
 Algorithms written to take advantage of subnormal numbers have smaller error •
bounds than other systems.
 if x and y are within a factor of 2 then x-y is error free, which is used in a number •
of algorithms that increase the precision at critical regions.

 The combination of positive and negative zero and subnormal numbers means
that when x and y are small and x-y has been fl ushed to zero the evaluation of

 • −
1

()x y

can be fl agged and located.
Certain arithmetic operations cause problems including:

 0* • ∞
 0/0 •
 • x when x < 0

and the support for NaN handles these cases.
 The support for positive and negative infi nity allows the handling of

 x/0 when x is nonzero and of either sign •

and the outcome of this means that we write our programs to take the appropriate
action. In some cases this would mean recalculating using another approach.

 For more information see the references in the bibliography.

484 32 ISOTR 15580 IEEE Arithmetic

 32.3.2 Double Precision Floating Point Format

 This is a 64-bit quantity made up of a sign bit, 11-bit biased exponent and 52-bit
mantissa. As with single precision the standard specifi es that certain of the bit patterns
are set aside and do not represent normal numbers. This means we have valid
 numbers in the range 1.7976931348623157E308 to 2.2250738585072014E-308
and precision between 15 and 17 digits depending on the numbers.

 As with single precision there are bit patterns set aside for the same special
conditions.

 Note that this does not mean that the hardware has to handle the manipulation of
this 64-bit quantity in an identical fashion. The Sparc and Intel family handle the
above as two 32-bit quantities but the order of the two component parts is reversed
– so-called big endian and little endian.

 32.3.3 Two Classes of Extended Floating Point Formats

 These formats are not mandatory. A number of variants of double extended exist
including:

 Sun – four 32-bit words, one sign bit, 15-bit biased exponent and 112-bit mantissa, •
numbers in the range 3.362E-4932 to 1.189E4932, 33–36 digits of signifi cance.
 Intel – 10 bytes – one sign bit, 15-bit biased exponent, 63-bit mantissa, numbers •
in the range 3.362E-4932 to 1.189E4932, 18–21 digits of signifi cance.
 PowerPC – as Sun. •

 32.3.4 Accuracy Requirements

 Remainder and compare must be exact. The rest should return the exact result if
possible; if not, there are well-defi ned rounding rules to apply.

 32.3.5 Base Conversion – Converting Between Decimal and
Binary Floating Point Formats and Vice Versa

 These results should be exact if possible; if not the results must differ by tolerances
that depend on the rounding mode.

48532.4 Resumé

 32.3.6 Exception Handling

 It must be possible to signal to the user the occurrence of the following conditions
or exceptions:

 Divide by zero. •
 Overfl ow. •
 Underfl ow. •
 Invalid operation. •
 Inexact. •

 The ability to detect the above is a big step forward in our ability to write robust
and portable code. These operations do occur in calculations and it is essential to
have user programmer control over what action to take.

 32.3.7 Rounding Directions

 Four rounding directions are available:

 Nearest – the default. •
 Down. •
 Up. •
 Chop. •

 Access to directed rounding can be used to implement interval arithmetic, for
example.

 32.3.8 Rounding Precisions

 The only mandatory part here is that machines that perform computations in extended
mode let the programmer control the precision via a control word. This means that if
software is being developed on machines that support extended modes those machines
can be switched to a mode that would enable the software to run on a system that
didn’t support extended modes. This area looks like a can of worms. Look at the
Kahan paper for more information – Lecture Notes on the Status of IEEE 754.

 32.4 Resumé

 The above has provided a quick tour of IEEE 754. We’ll now look at what Fortran
has to offer to support it.

486 32 ISOTR 15580 IEEE Arithmetic

 32.5 ISO TR 15580

 Fortran provides access to the facilities via the use statement. The current standard
does not have the concept of an intrinsic module. TR 15580 introduces this concept.
Three modules are provided:

 ieee_features •
 ieee_exceptions •
 ieee_arithmetic •

 The fi rst thing to consider is the degree of conformance to the IEEE standard. It
is possible that not all of the features are supported. Thus the fi rst thing to do is to
run one or more test programs to determine the degree of support for a particular
system.

 32.5.1 IEEE_FEATURES Module

 This module defi nes a derived type, IEEE_FEATURES_type, and up to 11 con-
stants of that type representing IEEE features:

 IEEE_DATATYPE – whether any IEEE data types are available. •
 IEEE_DENORMAL – whether IEEE denormal values are available. •
 IEEE_DIVIDE – whether division has the accuracy required by IEEE. •
 IEEE_HALTING – whether control of halting is supported. •
 IEEE_INEXACT_FLAG – whether the inexact exception is supported. •
 IEEE_INF – whether IEEE positive and negative infi nities are available. •
 IEEE_INVALID_FLAG – whether the invalid exception is supported. •
 IEEE_NAN – whether IEEE NaNs are available. •
 IEEE_ROUNDING – whether all IEEE rounding modes are available. •
 IEEE_SQRT – whether SQRT conforms to the IEEE standard. •
 IEEE_UNDERFLOW_FLAG – whether underfl ow is supported. •

 32.5.2 IEEE_EXCEPTIONS Module

 This module provides data types, constants and generic procedures for IEEE
exceptions:

 type IEEE_STATUS_TYPE

 Variables of this type can hold a fl oating point status value.

 subroutine IEEE_GET_STATUS(STATUS_VALUE)

 type(IEEE_STATUS_TYPE),intent(out) :: STATUS_VALUE

48732.5 ISO TR 15580

 Stores the current fl oating point status into the STATUS_VALUE argument.

 subroutine IEEE_SET_STATUS(STATUS_VALUE)

 type(IEEE_STATUS_TYPE),intent(in) :: STATUS_VALUE

 Sets the current fl oating point status from the STATUS_VALUE argument.

 type IEEE_FLAG_TYPE

 Values of this type specify individual IEEE exception fl ags; constants for these
are available as follows:

 type(IEEE_FLAG_TYPE),parameter :: IEEE_DIVIDE_BY_ZERO

 type(IEEE_FLAG_TYPE),parameter :: IEEE_INEXACT

 type(IEEE_FLAG_TYPE),parameter :: IEEE_INVALID

 type(IEEE_FLAG_TYPE),parameter :: IEEE_OVERFLOW

 type(IEEE_FLAG_TYPE),parameter :: IEEE_UNDERFLOW

 In addition, two array constants are available for indicating common combinations
of fl ags:

 type(IEEE_FLAG_TYPE),parameter :: &

IEEE_USUAL(3) = (/&

IEEE_DIVIDE_BY_ZERO,&

IEEE_INVALID, &

IEEE_OVERFLOW /), &

IEEE_ALL(5) = (/ &

IEEE_DIVIDE_BY_ZERO,&

IEEE_INEXACT, &

IEEE_INVALID,&

IEEE_OVERFLOW, &

IEEE_UNDERFLOW /)

LOGICAL function IEEE_SUPPORT_FLAG(FLAG,X)

 type(IEEE_FLAG_TYPE),intent(in) :: FLAG

 real(kind),intent(in),optional :: X

 Returns TRUE if detection of the specifi ed IEEE exception is supported for the real
kind of X (if X is present), or for all real kinds (if X is absent).

 LOGICAL function IEEE_SUPPORT_HALTING(FLAG)

488 32 ISOTR 15580 IEEE Arithmetic

type(IEEE_FLAG_TYPE),intent(in) :: FLAG

 Returns TRUE if IEEE_SET_HALTING_MODE can be used to change whether
the processor terminates the program on receiving the specifi ed exception.

 elemental subroutine &
IEEE_GET_FLAG(FLAG,FLAG_VALUE)

 type(IEEE_FLAG_TYPE),intent(in) :: FLAG

LOGICAL,intent(out) :: FLAG_VALUE

 Sets (each element of) FLAG_VALUE to TRUE if the corresponding exception
specifi ed by FLAG is signalling, and to FALSE otherwise.

 elemental subroutine &
IEEE_GET_HALTING_MODE(FLAG,HALTING)

 type(IEEE_FLAG_TYPE),intent(in) :: FLAG

LOGICAL,intent(out) :: HALTING

 Sets (each element of) HALTING to TRUE if the corresponding exception specifi ed by
FLAG is signalling, and to FALSE otherwise.

 elemental subroutine IEEE_SET_FLAG(FLAG,FLAG_VALUE)

type(IEEE_FLAG_TYPE),intent(out) :: FLAG

LOGICAL,intent(in) :: FLAG_VALUE

 Sets the exception fl ag specifi ed by (each element of) FLAG to signalling or quiet
according to the corresponding element of FLAG_VALUE.

 elemental subroutine &
IEEE_SET_HALTING_MODE(FLAG,HALTING)

 type(IEEE_FLAG_TYPE),intent(out) :: FLAG

 LOGICAL,intent(in) :: HALTING

 Sets the halting mode for each exception specifi ed by FLAG to the value of the cor-
responding element of HALTING (TRUE = halt).

 32.5.3 IEEE_ARITHMETIC Module

These are given below

 32.5.3.1 IEEE Data Type Selection

Integer Function SELECTED_real_KIND(P,R)
 integer(kind1),optional :: P

48932.5 ISO TR 15580

 integer(kind2),optional :: R

 The same as the SELECTED_real_KIND intrinsic, but only returns information
about the IEEE kinds of reals.

 32.5.3.2 General Support Enquiry Functions

LOGICAL Function IEEE_SUPPORT_DATATYPE(X)

 real(kind),optional :: X

 Whether IEEE arithmetic is supported for the same kind of real as X (or for all real
kinds if X is absent).

 LOGICAL function IEEE_SUPPORT_DENORMAL(X)

real(kind),optional :: X

 Whether IEEE denormal values are supported for the same kind of real as X (or for
all real kinds if X is absent).

 LOGICAL function IEEE_SUPPORT_DIVIDE(X)

real(kind),optional :: X

 Whether division is carried out to the accuracy specifi ed by the IEEE standard for
the same kind of real as X (or for all real kinds if X is absent).

 LOGICAL function IEEE_SUPPORT_INF(X)

real(kind),optional :: X

 Whether IEEE infi nite values are supported for the same kind of real as X (or for all
real kinds if X is absent).

 LOGICAL function IEEE_SUPPORT_NAN(X)

real(kind),optional :: X

 Whether IEEE NaN (Not-a-Number) values are supported for the same kind of real
as X (or for all real kinds if X is absent).

 LOGICAL function IEEE_SUPPORT_SQRT(X)

real(kind),optional :: X

 Whether SQRT conforms to the IEEE standard for the same kind of real as X (or for
all real kinds if X is absent).

 LOGICAL function IEEE_SUPPORT_STANDARD(X)

real(kind),optional :: X

 Whether all the IEEE facilities specifi ed by the TR are supported for the same kind
of real as X (or for all real kinds if X is absent).

490 32 ISOTR 15580 IEEE Arithmetic

 32.5.3.3 Rounding Modes

Type IEEE_ROUND_type

 Values of this type specify the IEEE rounding mode.

 type (IEEE_ROUND_type) , parameter :: IEEE_DOWN

 type (IEEE_ROUND_type) , parameter :: IEEE_NEAREST

 type (IEEE_ROUND_type) , parameter :: IEEE_TO_ZERO

 type (IEEE_ROUND_type) , parameter :: IEEE_UP

 LOGICAL function IEEE_SUPPORT_ROUNDING(ROUND_VALUE,X) type
(IEEE_ROUND_type),intent(in) :: ROUND_VALUE

real(kind),optional :: X

 Whether the specifi ed IEEE rounding mode is supported for the same kind of
real as X (or for all real kinds if X is absent).

 subroutine IEEE_GET_ROUNDING_MODE(ROUND_VALUE)

 type(IEEE_ROUND_type),intent(out) :: ROUND_VALUE

 Sets the ROUND_VALUE argument to the current IEEE rounding mode.

 subroutine IEEE_SET_ROUNDING_MODE(ROUND_VALUE)

 type (IEEE_ROUND_type) , intent(in) :: ROUND_VALUE

 Sets the current IEEE rounding mode to that specifi ed by ROUND_VALUE.

 32.5.3.4 Number Classifi cation

Type IEEE_CLASS_TYPE

 Values of this type indicate the IEEE class of a number.

 type (IEEE_CLASS_TYPE) , &

 parameter :: IEEE_NEGATIVE_DENORMAL

 type (IEEE_CLASS_TYPE) , parameter:: IEEE_NEGATIVE_INF

 type (IEEE_CLASS_TYPE) , parameter:: IEEE_NEGATIVE_NORMAL

 type (IEEE_CLASS_TYPE) , parameter:: IEEE_NEGATIVE_ZERO

 type (IEEE_CLASS_TYPE) , parameter:: IEEE_POSITIVE_DENORMAL

 type (IEEE_CLASS_TYPE) , parameter:: IEEE_POSITIVE_INF

 type (IEEE_CLASS_TYPE) , parameter::IEEE_POSITIVE_NORMAL

49132.5 ISO TR 15580

 type (IEEE_CLASS_TYPE) , parameter::IEEE_POSITIVE_ZERO

 type (IEEE_CLASS_TYPE) , parameter::IEEE_QUIET_NAN

 type (IEEE_CLASS_TYPE) , parameter::IEEE_signalling_NAN

 elemental type(IEEE_CLASS_TYPE) function IEEE_class(X)

real(kind),intent(in) :: X

 Returns the appropriate value of IEEE_CLASS_TYPE for the number X, which
may be of any IEEE kind.

 In addition to ISO/IEC TR 15580:1998(E), the module IEEE_ARITHMETIC
defi nes the “==“ and “/=“ operators for the IEEE_CLASS_TYPE. These may be
used to test the return value of the IEEE_class function, e.g.,

 use,intrinsic :: IEEE_ARITHMETIC, only: IEEE_class, &

IEEE_QUIET_NAN, operator(==)

 . . .

 if (IEEE_class(X)== IEEE_QUIET_NAN) then

 . . .

 elemental real(kind) function IEEE_VALUE(X,class)

real(kind),intent(in) :: X

type(IEEE_CLASS_TYPE),intent(in) :: class

 Returns a sample value of the specifi ed class for the same kind of real as X,
which may be of any IEEE kind.

 elemental LOGICAL function IEEE_IS_FINITE(X)

 real(kind),intent(in) :: X

 Returns TRUE if X is not infi nite or NaN.

 elemental LOGICAL function IEEE_IS_NAN(X)

 real(kind),intent(in) :: X

 Returns TRUE if X is either a signalling or quiet NaN.

 elemental LOGICAL function IEEE_IS_NEGATIVE(X)

 real(kind),intent(in) :: X

 Returns TRUE if X is negative, including negative zero.

 elemental LOGICAL function IEEE_IS_NORMAL(X)

 real(kind),intent(in) :: X

 Returns TRUE if X is not an infi nity, NaN, or denormal.

492 32 ISOTR 15580 IEEE Arithmetic

 elemental LOGICAL function IEEE_UNORDERED(X,Y)

 real(kind),intent(in) :: X,Y

 Returns TRUE if X is a NaN or if Y is a NaN.

 32.5.3.5 Arithmetic Operations

 elemental real(kind) function IEEE_COPY_SIGN(X,Y)

 real (kind) , intent(in) :: X,Y

 Returns X with the sign of Y, even for NaNs and infi nities.

 elemental real (kind) function IEEE_LOGB(X)

 real (kind) , intent(in) :: X

 Returns the unbiased exponent as a real value:

 if X is zero, IEEE_DIVIDE_BY_ZERO signals and the result is –infi nity if IEEE
infi nities are supported for that kind, and –HUGE(X) if not.

 if X is infi nite, the result is + infi nity.

 if X is a NaN, the result is a quiet NaN (the same one if X is a quiet NaN); otherwise
the result is EXPONENT(X)-1.

 elemental real (kind) function IEEE_NEXT_AFTER(X,Y)

 real (kind) , intent(in) :: X,Y

 The same as NEAREST(X,1.0_kind) for Y > X and NEAREST(X,-1.0_kind) for Y
< X; if Y==X, the result is X, if either X or Y are NaNs the result is one of these

 NaNs.

 elemental real (kind) function IEEE_REM(X,Y)

real (kind) , intent(in) :: X,Y

 X-Y*N exactly, where N is the integer nearest to the exact value X/Y. if the result is
zero, it has the same sign as X. This function is not affected by the rounding mode.

 elemental real (kind) function IEEE_RINT(X)

 real (kind) , intent(in) :: X

 Round to an integer according to the current rounding mode.

 elemental real (kind) function IEEE_SCALB(X,I)

 real (kind1) , intent(in) :: X

 integer (kind2) , intent(in) :: I

 The same as SCALE(X,I).

49332.7 Bibliography

 32.6 Summary

 Support for the above is relatively limited at the time of writing this book. There is
always a time lag between the formal publication of a standard and the implementa-
tion in production compilers. As compiler support improves examples will be added
to our web site. Our home page is:

 • http://www.fortranplus.co.uk/

 32.7 Bibliography

 Hauser , J.R.: Handling fl oating point exceptions in numeric programs. ACM Trans.
Program. Lang. Syst. 18 (2), 139–174 (1996)

 The paper looks at a number of techniques for handling fl oating point exceptions •
in numeric code. One of the conclusions is for better structured support for fl oat-
ing point exception handling in new programming languages, or of course better
standards for existing languages.

 IEEE, IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-
2008, Institute of Electrical and Electronic Engineers Inc.

 The formal defi nition of IEEE 754. This is available for purchase at http://www.
techstreet.com/standards/ieee/754_2008?product_id=1 745167 as both a pdf and
printed version.

 This standard specifi es formats and methods for fl oating-point arithmetic in
computer systems: standard and extended functions with single, double, extended,
and extendable precision, and recommends formats for data interchange. Exception
conditions are defi ned and standard handling of these conditions is specifi ed.
Keywords: 754-2008,arithmetic,binary,computer,decimal, exponent, fl oating-point,
format,interchange,NaN,number,rounding,signifi cand,subnormal. Product Code(s):
STDPD95802,STD95802

 Knuth, D.: Seminumerical Algorithms. Addison-Wesley, Reading (1969)

 There is a coverage of fl oating point arithmetic, multiple precision arithmetic, •
radix conversion and rational arithmetic.

 Sun: Numerical Computation Guide. SunPro, Mountain View (1995)

 Very good coverage of the numeric formats for IEEE Standard 754 for Binary •
Floating-Point Arithmetic. All SunPro compiler products support the features of
the IEEE 754 standard.

http://www.fortranplus.co.uk/
http://www.techstreet.com/standards/ieee/754_2008?product_id=1
http://www.techstreet.com/standards/ieee/754_2008?product_id=1

494 32 ISOTR 15580 IEEE Arithmetic

 32.7.1 Web-Based Sources

 http://validgh.com/goldberg/addendum.html

 Differences Among IEEE 754 Implementations. The material in this paper will •
eventually be included in the Sun Numerical Computation Guide as an adden-
dum to Appendix C, David Goldberg’s What Every Computer Scientist Should
Know about Floating Point Arithmetic.

http ://docs. sun.com/

 Follow the links to the Floating Point and common Tools AnswerBook. The •
Numerical Computation Guide can be browsed on-line or down loaded as a pdf
fi le. The last time we checked it was about 260 pages. Good source of informa-
tion if you have Sun equipment.

 http ://www.validgh.com/

 This web site contains technical and business information relating to the validgh •
professional consulting practice of David G. Hough. Contains links to the
Goldberg paper and the above addendum by Doug Priest.

 http://babbage.cs.qc.edu/courses/cs341/IEEE-754references.html

 Brief coverage of IEEE arithmetic with pointers to further sources. There is also •
a coverage of the storage layout and ranges of fl oating point numbers. Computer
Science 341 is an introduction to the design of a computer’s hardware, particu-
larly the CPU and memory systems.

 http://www.nag.co.uk/nagware/NP/TR.html

 NAG provide coverage of TR 15580 and TR 15581. The fi rst is the support •
Fortran has for IEEE arithmetic.

 http://www.cs.berkeley.edu/~wkahan/

 Willam Kahan home page. •

 http://www.cs.berkeley.edu/~wkahan/ieee754status/754story.html

 An Interview with the Old Man of Floating Point. Reminiscences elicited from •
William Kahan by Charles Severance, which appeared in an issue of IEEE
Computer – March 1998.

 http://www.cs.berkeley.edu/~wkahan/ieee754status/ieee754.ps

 Lecture Notes on the Status of IEEE Standard 754 for Binary Floating-Point •
Arithmetic. Well worth a read.

 http://www.stewart.cs.sdsu.edu/cs575/labs/l3fl oatpt.html

 CS 575 Supercomputing – Lab 3: Floating Point Arithmetic. CS 575 is an inter-•
disciplinary course to introduce students in the sciences and engineering to
advanced computing techniques using the supercomputers at the San Diego
Supercomputer Center (SDSC).

http://validgh.com/goldberg/addendum.html
http://http ://www.validgh.com/
http://babbage.cs.qc.edu/courses/cs341/IEEE-754references.html
http://www.nag.co.uk/nagware/NP/TR.html
http://www.cs.berkeley.edu/~wkahan/
http://www.cs.berkeley.edu/~wkahan/ieee754status/754story.html
http://www.cs.berkeley.edu/~wkahan/ieee754status/ieee754.ps
http://www.stewart.cs.sdsu.edu/cs575/labs/l3floatpt.html

49532.7 Bibliography

 http://www.mathcom.com/nafaq/index.html

 FAQ: Numerical Analysis and Associated Fields Resource Guide. A summary of •
Internet resources for a number of fi elds related to numerical analysis.

 http://www.math.psu.edu/dna/disasters/ariadne.html

 The Explosion of the Ariane 5: A 64-bit fl oating point number relating to the •
horizontal velocity of the rocket with respect to the platform was converted to a
16-bit signed integer. The number was larger than 32,768, the largest integer
storeable in a 16-bit signed integer, and thus the conversion failed.

 32.7.2 Hardware Sources

 Amd

 Visit

 http://developer.amd.com/documentation/guides/pages/default.aspx

for details of the AMD manuals. The following fi ve manuals are available for down-
load as pdf s from the above site.

 AMD64 Architecture Programmer’s Manual Volume 1: Application Programming •
 AMD64 Architecture Programmer’s Manual Volume 2: System Programming •
 AMD64 Architecture Programmer’s Manual Volume 3: General Purpose and •
System Instructions
 AMD64 Architecture Programmer’s Manual Volume 4: 128-bit and 256 bit •
media instructions
 AMD64 Architecture Programmer’s Manual Volume 5: 64-Bit Media and x87 •
Floating-Point Instructions

 Intel

 Visit

 http://www.intel.com/products/processor/manuals/index.htm

 for a list of manuals. The following three manuals are available for download as pdf
s from the above site.

 Intel® 64 and IA-32 Architectures Software Developer’s Manual. Volume 1: •
Basic Architecture
 Intel® 64 and IA-32 Architectures Software Developer’s Manual. Combined •
Volumes 2A and 2B: Instruction Set Reference, A-Z.
 Intel® 64 and IA-32 Architectures Software Developer’s Manual. Combined •
Volumes 3A and 3B: System Programming Guide, Parts 1 and 2

http://www.mathcom.com/nafaq/index.html
http://www.math.psu.edu/dna/disasters/ariadne.html
http://developer.amd.com/documentation/guides/pages/default.aspx
http://www.intel.com/products/processor/manuals/index.htm

496 32 ISOTR 15580 IEEE Arithmetic

 Osbourne, A., Kane, G.: 4-bit and 8-bit Microprocessor Handbook. Osbourne/
McGraw-Hill, Berkeley (1981)

 Good source of information on 4-bit and 8-bit microprocessors. Osbourne, A., •
Kane, G.: 16-Bit Microprocessor Handbook. Osbourne/McGraw-Hill, Berkely
(1981)
 Ditto 16-bit microprocessors. •

 Bhandarkar, D.P.: Alpha Implementations and Architecture: Complete Reference
and Guide. Digital Press, Boston (1996)

 Looks at some of the trade-offs and design philosophy behind the alpha chip. •
The author worked with VAX, Micro VAX and VAX vectors as well as the Prism.
Also looks at the GEM compiler technology that DEC/Compaq use.

 http://www.digital.com/alphaserver/workstations/

 Home page for the Compaq/DEC Alpha systems. •

 http://www.sgi.com/

 Silicon Graphics home page. •

 http://www.sun.com/

 Sun home page. •

http :// www.ibm.com/

 IBM home page. •

 32.7.3 Operating Systems

 Deitel, H.M.: An Introduction to Operating Systems. Addison-Wesley, Reading
(1990)

 The revised fi rst edition includes case studies of UNIX, VMS, CP/M, MVS and
VM. The second edition adds OS/2 and the Macintosh operating systems. There is
a coverage of hardware, software, fi rmware, process management, process concepts,
asynchronous concurrent processes, concurrent programming, deadlock and indefi -
nite postponement, storage management, real storage, virtual storage, processor
management, distributed computing, disk performance optimisation, fi le and data-
base systems, performance, coprocessors, risc, data fl ow, analytic modelling, net-
works, security and it concludes with case studies of the these operating systems.
The book is well written and an easy read.

http://www.digital.com/alphaserver/workstations/
http://www.sgi.com/
http://www.sun.com/
http://www.ibm.com/

49732.7 Bibliography

 32.7.4 Java and IEEE 754

 http://www.cs.berkeley.edu/~darcy/Borneo/

 Borneo Language Homepage: Borneo is a dialect of the Java language designed •
to have true support for the IEEE 754 fl oating point standard. The status of arith-
metic in Java is fl uid. At the time of writing this book Sun had withdrawn from
the formal language standardisation process. Sun have a publication at their web
site that addresses changes to the Java language specifi cation for JDK Release
1.2 fl oating point arithmetic. Their home Java page is
 • http://www.java.sun.com/

 32.7.5 C and IEEE 754

 http://wwwold.dkuug.dk/JTC1/SC22/WG14/

 The offi cial home of JTC1/SC22/WG14 – C. The C programming language stan-•
dard ISO/IEC 9899 was adopted by ISO in 1990. ANSI then replaced their fi rst
standard X3.159 by the ANSI/ISO 9899 standard identical to ISO/IEC 9899:1990.

http://www.cs.berkeley.edu/~darcy/Borneo/
http://www.java.sun.com/
http://wwwold.dkuug.dk/JTC1/SC22/WG14/

499I. Chivers and J. Sleightholme, Introduction to Programming with Fortran:
With Coverage of Fortran 90, 95, 2003, 2008 and 77,
DOI 10.1007/978-0-85729-233-9_33, © Springer-Verlag London Limited 2012

 Aims

 The aims of this chapter are to look at some additional features of Fortran and also
provide coverage of a small number of other areas including

 keyword and optional arguments •
 Non recursive quicksort •
 Simple graphics programming – dislin •

 33.1 Introduction

 This chapter looks at a small number of additional examples that don’t really fi t
anywhere else. We also cover a small number of additional Fortran concepts.

 33.2 Keyword and Optional Arguments

 The examples of procedures so far have assumed that the dummy arguments and the
corresponding arguments are in the same position, i.e., we are using positional argu-
ments. Fortran also provides the ability to supply the actual arguments to a proce-
dure by keyword, and hence in any order.

 Chapter 33
 Miscellaneous Features and Examples

 The Analytical Engine weaves algebraic patterns, just as the
Jacquard loom weaves fl owers and leaves.

 Ada Lovelace

500 33 Miscellaneous Features and Examples

 To do this the name of the dummy argument is referred to as the keyword and is
specifi ed in the actual argument list in the form

 dummy-argument = actual-argument

 To illustrate this, let us consider a subroutine to solve ordinary differential equa-
tions. The full subroutine and explanation are given in Chap. 25 :

 subroutine Runge_Kutta_Merson(Y,FUN,IFAIL,N,A,B,TOL)

where A is the initial point, B is the end point at which the solution is required, TOL
is the accuracy to which the solution is required and N is the number of equations.

 The subroutine can be called as follows:

 call Runge_Kutta_Merson (Y , Fun1 , IFAIL , A=0.0 , &
B=8.0 , Tol=1.0E-6 , N=3)

where the dummy arguments A, B, Tol and N are now being used as keywords. The
use of keyword arguments makes the code easier to read and decreases the need to
remember their precise position in the argument list.

 Also with Fortran comes the ability to specify that an argument is optional. This
is very useful when designing procedures for use by a range of programmers. Inside
a procedure defaults can be set for the optional arguments providing an easy-to-use
interface, while at the same time allowing sophisticated users a more comprehen-
sive one.

 To declare a dummy argument to be optional the optional attribute can be used.
For example, the last dummy argument Tol for the subroutine Runge_Kutta_Merson
could be declared to be optional (although internally in the subroutine the code
would have to be changed to allow for this), e.g.,

 Subroutine Runge_Kutta_Merson(Y,FUN,IFAIL,N,A,B,Tol)
use Precision_module

real(Long), intent(inout), optional :: Tol

 and because it is at the end of the dummy argument list, calling the subroutine with
a positional argument list, Tol can be omitted, e.g.,

 call Runge_Kutta_Merson(Y,Fun1,IFAIL,N,A,B)

 The code of the subroutine will need to be changed to check to see if the argu-
ment Tol is supplied, the intrinsic function PRESENT being available for this pur-
pose. Sample code is given below:

 subroutine Runge_Kutta_Merson(Y, FUN, IFAIL, N,A,B,Tol)
use Precision_module
 ! code left out
 real(Long),intent(in),optional::Tol
 real(Long)::Internal_tol = 1.0D-3
 if(PRESENT(Tol)) then
Internal_tol=Tol
 print*, 'Tol = ', Internal_tol,' is supplied'

50133.3 Allocatable Dummy Arrays

 else
 print*,"Tol isn't supplied, default tolerance = "
 print *,Internal_tol,' is used'

 endif
 ! code left out but all references to tol
 ! would have to be changed to
 internal_tol
 end subroutine Runge_Kutta_Merson

 A number of points need to be noted when using keyword and optional
arguments:

 if all the actual arguments use keywords, they may appear in any order. •
 When only some of the actual arguments use keywords, the fi rst part of the list •
must be positional followed by keyword arguments in any order.
 When using a mixture of positional and keyword arguments, once a keyword •
argument is used all subsequent arguments must be specifi ed by keyword.
 if an actual argument is omitted the corresponding optional dummy argument •
must not be redefi ned or referenced, except as an argument to the PRESENT
intrinsic function.
 if an optional dummy argument is at the end of the argument list then it can just •
be omitted from the actual argument list.
 Keyword arguments are needed when an optional argument not at the end of an •
argument list is omitted, unless all the remaining arguments are omitted as well.
 Keyword and optional arguments require explicit procedure interfaces, i.e., the •
procedure must be internal, a module procedure or have an interface block avail-
able in the calling program unit.

 A number of the intrinsic procedures we have used have optional arguments.
Consult Appendix C for details.

 33.3 Allocatable Dummy Arrays

 In the recursive subroutine example using quicksort in Chap. 20 the allocation took
place in the main program. In this example the allocation takes place in the read_
data subroutine.

 module read_data_module
implicit none

 contains
 subroutine read_data(fi le_name,raw_data,how_many)
implicit none
 character (len=*), intent (in) :: fi le_name
 integer, intent (in) :: how_many

 real, intent (out), allocatable, &
dimension (:) :: raw_data

502 33 Miscellaneous Features and Examples

 ! local variables
 integer : : I
 allocate(raw_data(1:how_many))
 open (fi le=fi le_name,unit=1)
 do I = 1, how_many
 read (unit=1,fmt=*) raw_data(I)

 end do
 end subroutine read_data
 end module read_data_module
 module sort_data_module

 implicit none
 contains
 subroutine sort_data(raw_data,how_many)
implicit none
 integer, intent (in) :: how_many
 real, intent (inout), dimension (:) :: raw_data
 call quicksort(1,how_many)

 contains
 recursive subroutine quicksort(l,r)
implicit none

 integer, intent (in) :: l, r
 ! local variables
 integer :: I, j
 real : : v, t
 I = l
 j = r
 v = raw_data(int((l+r)/2))
 do
 do while (raw_data(i)<v)
 I = I + 1

 end do
 do while (v<raw_data(j))
 j = j – 1

 end do
 if (i<=j) then
 t = raw_data(I)
 raw_data(I) = raw_data(j)
 raw_data(j) = t
 I = I + 1
 j = j – 1

 end if
 if (i>j) exit
 end do

50333.3 Allocatable Dummy Arrays

 if (l<j) then
 call quicksort(l,j)

 end if
 if (i<r) then
 call quicksort(i, r)

 end if
 end subroutine quicksort

 end subroutine sort_data
 end module sort_data_module
 module print_data_module

 implicit none
 contains
 subroutine print_data(raw_data,how_many)
implicit none
 integer, intent (in) :: how_many
 real, intent (in), dimension (:) :: raw_data

 ! local variables

 integer : : I
 open (fi le='sorted.txt',unit=2)
 do I = 1, how_many

 write (unit=2,fmt=*) raw_data(I)

 end do
 close (2)

 end subroutine print_data

 end module print_data_module

 program ch3301
use read_data_module
 use sort_data_module
 use print_data_module
 implicit none
 integer :: how_many
 character (len=20) :: fi le_name
 real, allocatable, dimension (:) :: raw_data
 integer, dimension (8) :: timing
 print *, ' how many data items are there?'
 read *, how_many
 print *, ' what is the fi le name?'
 read ' (a) ', fi le_name
 call date_and_time(values=timing)
 print *, ' initial'
 print *, timing(6), timing(7), timing(8)

504 33 Miscellaneous Features and Examples

 call read_data(fi le_name,raw_data,how_many)
 call date_and_time(values=timing)
 print *, ' allocate and read'
 print *, timing(6), timing(7), timing(8)
 call sort_data(raw_data,how_many)
 call date_and_time(values=timing)
 print *, ' sort'
 print *, timing (6), timing (7), timing (8)
 call print_data(raw_data,how_many)
 call date_and_time(values=timing)
 print *, ' print'
 print *, timing (6), timing (7), timing (8)
 print *, ' '
 print *, ' data written to fi le sorted.txt'

 end program ch3301

 We now have a choice of where we do the allocation. This is more fl exible than
having to do the allocation in the main program, which is effectively a more Fortran
77 style of programming.

 33.4 Non Recursive Quicksort

 The following subroutine is a non recursive Fortran 77 implementation of quicksort.
It is taken from the Netlib site. Their web address is

 http://www.netlib.org/

 The following is taken directly from their FAQ.

 What is Netlib? The Netlib repository contains freely available software, documents, and
databases of interest to the numerical, scientifi c computing, and other communities. The
repository is maintained by AT&T Bell Laboratories, the University of Tennessee and Oak
Ridge National Laboratory, and by colleagues world-wide. The collection is replicated at
several sites around the world, automatically synchronized, to provide reliable and network
effi cient service to the global community.

 We located the subroutine by doing a search at the Netlib site on sort. One of the
entries returned is to the routine dsort.f

 Here is this subroutine.

http://www.netlib.org/

50533.4 Non Recursive Quicksort

506 33 Miscellaneous Features and Examples

50733.4 Non Recursive Quicksort

508 33 Miscellaneous Features and Examples

50933.4 Non Recursive Quicksort

510 33 Miscellaneous Features and Examples

51133.4 Non Recursive Quicksort

512 33 Miscellaneous Features and Examples

51333.4 Non Recursive Quicksort

 We will look at the ways that we can replace our call to quicksort in ch2005 with
a call to dsort. Here is the header for the dsort routine.

 SUBROUTINE DSORT (DX, DY, N, KFLAG)

 The routine takes 4 parameters and we look at the implementation of the dsort
routine to fi nd out more details about each parameter. This line

provides the fi rst clue as to the nature of the parameters. The following provide
some more.

514 33 Miscellaneous Features and Examples

 The following lines then complete the information.

 So we have a type mismatch between the array argument to our quicksort
and the netlib dsort . All we need to do here is a global search and replace of
 double precision with real in dsort . f in our favourite editor.

 The second problem is what to do about the second argument the DY array. One
solution to this problem is to use the same raw_data array and set KFLAG to 1.
This ignores the DY array.

 The next problem we have are the calls to the external routines shown below.

 and

51533.4 Non Recursive Quicksort

 The simple solution here is just to comment out the calls to XERMSG as we
know the errors cannot occur. We also need to comment out the external statement
referencing XERMSG.

 The following lines

provide details about the algorithm and its revision history. This information is
extremely use when working with the subroutine.

 We are now going to look at one solution to the problem of how to integrate the
original program and the dsort.f routine. We can independently compile the
dsort.f routine as a Fortran 77 style routine and generate an object fi le. We can then
compile the program and add the object fi le to the compilation line.

 Here are solutions using a variety of compilers.

516 33 Miscellaneous Features and Examples

 33.4.1 Gfortran

 33.4.2 Intel

51733.4 Non Recursive Quicksort

 33.4.3 Nag

 >nagfor -c dsort.f
 >nagfor ch2005.f90 dsort.o
 >a.exe
 how many data items are there?

 10000000
 what is the fi le name?

 random.txt
 initial
 1 4 970
 allocate
 1 4 975
 read
 1 8 721
 sort
 1 11 135
 print
 1 20 378
 data written to fi le sorted.txt

 33.4.4 Notes – Version Control Systems

 The original program had the following statement

 *DECK DSORT

and this statement was one used in version control or revision control software of
the time. Two that were available on CDC systems from the 1970s to 1980s were
called update and modify and they used so called deck names as seen in this exam-
ple. In computer programming, revision control is any practice that tracks and pro-
vides control over changes to source code. Software developers also use revision
control software to maintain documentation and confi guration fi les as well as source
code.

 The use of this kind of software is common for medium to large scale program
development.

 Wikipedia provides a comparison of what is currently available. See

 http:/en.wikipedia.org/wiki/Comparison_of_revision_control_
software

for more information.

http://en.wikipedia.org/wiki/Comparison_of_revision_control_software
http://en.wikipedia.org/wiki/Comparison_of_revision_control_software

518 33 Miscellaneous Features and Examples

 33.5 Simple Graphics Programming – Dislin

 We have already used the dislin graphics library in earlier chapters. Our resource
fi le

 http://www.fortranplus.co.uk/resources/fortran_
resources.pdf

provides details of some of the graphics libraries available. This is the dislin home
page.

 http://www.mps.mpg.de/dislin/

 Here is a description of the software from the above page.

 The software is available for several C, Fortran 77 and Fortran 90/95 compilers •
on the operating systems UNIX, Linux, FreeBSD, Open VMS, Windows, Mac
OSX and MS-DOS. DISLIN programs are very system-independent, they can be
ported from one operating system to another with out any changes.

 The original program on which this is based was written by Ian whilst he was on
secondment to the United Nations Environment Programme. Section 9 of their
Environmental Data Reports cover natural disasters and these include

 Earthquakes •
 Volcanoes •
 Tsunamis •
 Floods •
 Landslides •
 Natural dams •
 Droughts •
 Wildfi res •

 See the bibliography for more details of these publications. The tsunami data sets
are from this chapter.
 The tsunami data fi le can be found at:

 http://www.fortranplus.co.uk/

http://www.fortranplus.co.uk/resources/fortran_resources.pdf
http://www.fortranplus.co.uk/resources/fortran_resources.pdf
http://www.mps.mpg.de/dislin/
http://www.fortranplus.co.uk/

51933.5 Simple Graphics Programming – Dislin

 There are some minor wrap problems with the code:

520 33 Miscellaneous Features and Examples

52133.5 Simple Graphics Programming – Dislin

522 33 Miscellaneous Features and Examples

52333.5 Simple Graphics Programming – Dislin

524 33 Miscellaneous Features and Examples

52533.5 Simple Graphics Programming – Dislin

526 33 Miscellaneous Features and Examples

52733.5 Simple Graphics Programming – Dislin

528 33 Miscellaneous Features and Examples

 Here is the plot produced by this program.

52933.6 Problem

 As you can see there are a lot of tsunami events in the Pacifi c area. A colour A4
pdf of the plot can be found at the Fortranplus website.

 It is a common requirement in science and engineering to have to produce graph-
ical output and we have now briefl y covered some of the capability of the dislin
library. Most graphics libraries will offer similar functionality.

 33.6 Problem

 1. The complete working version of the non recursive version of quicksort has not
been included. The source fi les (Netlib dsort.f and our ch2005.f90) required are
available at the Fortranplus website.

 Download them and make the changes necessary to replace the call to quicksort
with a call to dsort with your compiler. What timing information do you get?

 33.6.1 Hint

 diff is a Unix command that compares text fi les. Here is the diff output from com-
paring the original dsort.f fi le with a working version.

530 33 Miscellaneous Features and Examples

diff is a very useful utility for comparing different versions of your programs!

 33.7 Bibliography

 United Nations Environment Programme: Environmental Data Report: 1989–1990,
Second Edition, Blackwell Reference, Oxford (1989)

 United Nations Environment Programme: Environmental Data Report: 1991–1992,
Third Edition, Blackwell Reference, Oxford (1991)

531I. Chivers and J. Sleightholme, Introduction to Programming with Fortran:
With Coverage of Fortran 90, 95, 2003, 2008 and 77,
DOI 10.1007/978-0-85729-233-9_34, © Springer-Verlag London Limited 2012

 Aim

 This chapter looks at some of the options available when working with older
Fortran code.

 34.1 Introduction

 This chapter looks at converting Fortran 77 code to a modern Fortran style.
 The aim is to provide the Fortran 77 programmer (and in particular the person

with legacy code) with some simple guidelines for conversion.
 The fi rst thing that one must have is a thorough understanding of the newer, better

language features of Fortran. It is essential that the material in the earlier chapters
of this book are covered, and some of the problems attempted. This will provide a
feel for modern Fortran.

 The second thing one must have is a thorough understanding of the language
constructs used in your legacy code. Use should be made of the compiler documen-
tation for whatever Fortran 77 compiler you are using, as this will provide the
detailed (often system specifi c) information required. The recommendations below
are therefore brief.

 Chapter 34
 Converting from Fortran 77

 Twas brillig, and the slithy toves
 did gyre and gimble in the wabe;
 All mimsy were the borogoves,
 And the mome raths outgrabe.

 Lewis Carroll

532 34 Converting from Fortran 77

 It is possible to move gradually from Fortran 77 to modern Fortran. In many
cases existing code can be quite simply recompiled by a suitable choice of compiler
options. This enables us to mix and match old and new in one program. This process
is likely to highlight nonstandard language features in your old code. There will
inevitably be some problems here.

 The standard identifi es two kinds of decremented features; deleted and obso-
lescent. It is extremely unwise to consider the long-term use of these features as
they are candidates for removal from future standards.

 34.2 Deleted Features

 The list of deleted features for Fortran 2008 is empty, i.e., there are none.

 34.3 Obsolescent Features

 The obsolescent features are those for which better methods are available. They are
given below with alternatives.

 34.3.1 Arithmetic if

 Use the if statement.

 34.3.2 Real and Double Precision Do Control Variables

 Use integer.

 34.3.3 Shared Do Termination and Non-enddo Termination

 Use an end do.

 34.3.4 Alternate Return

 Use a case statement on return. An error code has to be returned.

53334.4 Better Alternatives

 34.3.5 Pause Statement

 System specifi c. Normally easily replaced with a suitable read statement.

 34.3.6 Assign and Assigned Goto Statements

 Fortunately rarely used.

 34.3.7 Assigned Format Statements

 Use character arrays, arrays and constants.

 34.3.8 H Editing

 Use character edit descriptor.

 34.4 Better Alternatives

 Below we are looking at the new features of the Fortran standard, and how we can
replace our current coding practices with the better facilities that now exist.

 Double precision – use KIND, see Chap. 5 , and examples throughout the book. •
 Fixed format – use free format •
 Implicit typing – use implicit none •
 Block data – use modules •
 Common statement – use modules •
 Equivalence – Invariably the use of this feature requires considerable system •
specifi c knowledge. There will be cases where there have been extremely good
reasons why this feature has been used, normally effi ciency related. However
with the rapid changes taking place in the power and speed of hardware these
reasons are diminishing.
 Assumed-size/explicit-shape dummy array arguments – if a dummy argument is •
assumed-size or explicit-shape (the only ones available in Fortran 77) then the
ranks of the actual argument and the associated argument don’t have to be the
same. With Fortran arrays are now objects instead of a linear sequence of ele-
ments, as was the case with Fortran 77, and now for array arguments the funda-
mental rule is that actual and dummy arguments have the same rank and same

534 34 Converting from Fortran 77

extents in each dimension, i.e., the same shape, and this is done using assumed-
shape dummy array arguments. An explicit interface is mandatory for assumed-
shape arrays.
 Entry statement – use module plus use statement. •
 Statement functions – use internal function, see Chap. 12 . •
 Computed goto – use case statement, see Chap. 13 . •
 Alternate return – use error fl ags on calling routine. •
 external statement for dummy procedure arguments – use modules and interface •
blocks. See the Runge-Kutta-Merson example in Chap. 25 .

 Use explicit interfaces everywhere, i.e. use module procedures. This also pro-
vides argument checking and other benefi ts.

 34.5 Commercial Conversion Tools

 At the time of writing there are several options. Have a look at our Fortran
resource fi le:

 http://www.fortranplus.co.uk/resources/fortran_resources.pdf

for up to date information.
 Here are brief details of the tools currently available.

 34.5.1 Convert

 Fortran 77 to Fortran 90 converter by Mike Metcalf.

 http://www.nag.co.uk/nagware/Examples/convert.f90

 34.5.2 Forcheck

 A Fortran analyzer and programming aid.

 http://www.forcheck.nl/

 34.5.3 Forstruct

 Restructures FORTRAN into Clean, Maintainable Code.

 http://www.cobalt-blue.com/fs/fsmain.htm

http://www.fortranplus.co.uk/resources/fortran_resources.pdf
http://www.nag.co.uk/nagware/Examples/convert.f90
http://www.forcheck.nl/
http://www.cobalt-blue.com/fs/fsmain.htm

53534.6 Example of plusFORT Capability from Polyhedron Software

 34.5.4 Forstudy

 Analyzes and Documents your FORTRAN code.

 http://www.cobalt-blue.com/

 34.5.5 Fortran90-Lint

 For Fortran 90 program analysis

 http://legacy.cleanscape.net/products/downloads/ftpfl int.html

 34.5.6 Plusfort

 Fortran 77 to Fortran 90 converter.

 http://www.polyhedron.com/

 34.5.7 VAST/77to90

 Fortran 77 to Fortran 90 translator

 http://www.crescentbaysoftware.com/vast_77to90.html

 34.6 Example of plusFORT Capability
from Polyhedron Software

 Below is an example from their site that looks at the same subroutine in Fortran 66,
77 and 90 styles.

 34.6.1 Original Fortran 66

 This subroutine picks off digits from an integer and branches depending on
their value.

http://www.cobalt-blue.com/
http://legacy.cleanscape.net/products/downloads/ftpflint.html
http://www.polyhedron.com/
http://www.crescentbaysoftware.com/vast_77to90.html

536 34 Converting from Fortran 77

 subroutine OBACT(TODO)
 integer TODO,DONE,IP,BASE
 common /EG1/N,L,DONE
 parameter (BASE=10)

 13 if(TODO.EQ.0) GO TO 12
 I=MOD(TODO,BASE)
 TODO=TODO/BASE
 GO TO(62,42,43,62,404,45,62,62,62),I
 GO TO 13

 42 call COPY
 GO TO 127

 43 call MOVE
 GO TO 144

 404 N=-N
 44 call DELETE
 GO TO 127

 45 call print
 GO TO 144

 62 call BADACT(I)
 GO TO 12

 127 L=L+N
 144 DONE=DONE+1
 call RESYNC
 GO TO 13

 12 return
 end

 34.6.2 Fortran 77 Version

 In addition to restructuring, SPAG has renamed some variables, removed the unused
variable IP, inserted declarations, and used upper and lower case to distinguish dif-
ferent types of variable:

53734.6 Example of plusFORT Capability from Polyhedron Software

 34.6.3 Fortran 90 Version

 SPAG has used do while, select case, exit and cycle. No GOTOs or labels remain.
 This tool suite can also be used in the maintenance of code during

development.

538 34 Converting from Fortran 77

 34.7 Summary

 This chapter has shown some of the options open to you when working with legacy
code. The emphasis has been on relatively straightforward code restructuring. The
use of software tools to aid in this is highly recommended as converting manually
using an editor is obviously going to involve much more work.

539I. Chivers and J. Sleightholme, Introduction to Programming with Fortran:
With Coverage of Fortran 90, 95, 2003, 2008 and 77,
DOI 10.1007/978-0-85729-233-9, © Springer-Verlag London Limited 2012

Glossary

 Abstract interface Set of procedure characteristics with dummy argument names
 Actual argument A value (variable, expression or procedure) passed from a calling

program unit to a subprogram unit.
 Adjustable array An explicit-shape array that is a dummy argument to a subprogram.
 Algorithm Derived from the name of the ninth century Persian mathematician

Abu Ja’far Mohammed ibn Musa al-Kuwarizmi (father of Ja’far Mohammed,
son of Moses, native of Kuwarizmi), corrupted through western culture as Al-
Kuwarizmi. Now a sequence of computations.

 Allocatable Having the allocatable attribute
 Allocatable array An array that has the allocatable attribute.
 Argument Exists in two forms; actual argument, which is in the calling routine

and is one of a variable, expression or procedure, and dummy argument, which
is in the called routine.

 Argument association The process of matching up an actual argument and dum-
my argument during program execution.

 Array An array is a data structure where each scalar element has the same type
and kind. An array may be up to rank 7. It may be referenced by element
(via subscripts), by section or as a whole.

 Array constructor A mechanism used to initialise or give values to a one-
 dimensional array. The RESHAPE function can then be used to handle rank 2
and above arrays.

 Array element A scalar item of an array. An array element is picked out by a
subscript.

 Array element ordering The elements of an array, regardless of rank, form a
 linear sequence. The sequence is such that the subscripts along the fi rst dimen-
sion vary most rapidly.

 Array section A part of an array. The actual set depends on the subscripts.

 Appendix A

540 Appendix A

 ASCII American Standard Code for Information Interchange. See Appendix 3.
 Associate name Name of construct entity associated with a selector of an associate

or select type construct
 Association The means by which an entity can be referenced by different names in

one scoping unit, or one or more names in multiple scoping units.
 Assumed-length dummy argument A dummy argument that inherits the length

attribute of the actual argument.
 Assumed-shape array A dummy argument that inherits the shape of the associ-

ated argument.
 Assumed-size array A dummy array whose size is inherited from the associated

actual argument.
 Atomic subroutine Intrinsic subroutine that performs an action on its atom argu-

ment atomically
 Attribute A property of a data type, and specifi ed in a type declaration statement.
 Automatic array This is an explicit-shape array that is a local variable in a sub-

program unit.
 Binding Type-bound procedure or fi nal subroutine
 Binding name Name given to a specifi c or generic type-bound procedure in the

type defi nition
 Block Sequence of executable constructs formed by the syntactic class block and

which is treated as a unit
 Bound The bounds of an array are the upper and lower limits of the index in each

dimension.
 Character constant A constant that is a string of one or more printable ASCII

characters, enclosed in apostrophes (') or quotation mark (").
 Character string A sequence of one or more characters. These are contiguous.
 Coarray Data entity that has nonzero corank
 Cobound Bound of a codimension
 Codimension Dimension of the pattern formed by a set of corresponding

 coarrays
 Collating sequence The order in which a set of characters is sorted by default. The

standard does not require that a processor provide the ASCII encoding, but does
require intrinsic functions that convert between the processor encoding and the
ASCII encoding.

 Compilation unit One or more source fi les that are compiled to form one object
fi le.

 Component Part of a derived type defi nition.
 Concatenate Join together two or more character items using the character con-

catenation operator //.
 Conformable Two arrays are said to be conformable if they have the same shape.
 Constant A constant is a data object whose value cannot be changed. There are

two kinds in Fortran: one is obtained using the parameter statement; the other is
a literal constant in an expression; e.g., with the expression 4*ATAN(1) both 4
and 1 are literal constants. It may be a scalar or an array.

541Appendix A

 Contiguous Normally applied to items that are adjacent in memory, e.g., charac-
ters in a character variable.

 Corank Number of codimensions of a coarray
 Cosubcript Scalar integer expression
 Data entity A data object that has a specifi c type.
 Data object A data object is a constant, variable or part of a constant or variable.
 Data type For each data type there are the following: 0. a name 1. a set of val-

ues from a domain; 2. a set of valid operations upon these values; 3. a display
method. There are fi ve predefi ned data types in Fortran and these are integer,
real, complex, character and logical.

 For integers the values are drawn from the domain of integer numbers, the
valid operations are addition, subtraction, multiplication, division and exponen-
tiation, and they are displayed as a sequence of digits.

 Declaration A declaration is a nonexecutable statement that specifi es attributes of
a program element, e.g., specifying the dimension of an array and the type of a
variable.

 Default initialization Mechanism for automatically initializing pointer compo-
nents to have a defi ned pointer association status, and nonpointer components to
have a particular value.

 Default kind The kind type parameter which is used for one of Fortran’s base
types (integer, real, complex, character or logical) if one is not specifi ed.

 Deferred-shape array An allocatable array or an array pointer. The bounds are
specifi ed with a colon, (:).

 Defi ned For a data object having a valid value.
 Defi ned assignment Assignment defi ned by a procedure
 Derived type A data type that is user defi ned and not one of the fi ve intrinsic

types.
 Dimension An array can be from one to seven dimensioned inclusive. Also called

the rank.
 Disassociated (Pointer association) Pointer association status of not being associ-

ated with any target and not being undefi ned.
 Dummy argument A variable name that appears in the bracketed or parenthesised

list following the procedure name. (e.g., function or subroutine name). Dummy
arguments take on the actual values of the corresponding arguments in the call-
ing routine.

 Dynamic type Type of a data entity at a particular point during execution of a
program

 Elemental An operation that applies independently to each element in an array.
 Elemental assignment Assignment that operates elementally.
 Elemental procedure Elemental intrinsic procedure or procedure defi ned by an

elemental subprogram
 Entity Rather vague term covering a constant, variable, program unit, etc.
 Exceptional values Normally restricted to real numbers and typically one of

 nonnormalised numbers, infi nity, not-a-number (NaN) values, etc.

542 Appendix A

 Explicit interface A mechanism to make information available between the call-
ing routine and the called routine. This information includes the names of the
procedures, the dummy arguments, the attributes of the arguments, the attributes
of functions, and the order of the arguments.

 Explicit-shape array A named array that has its bounds specifi ed in each
 dimension.

 Expression An expression is a sequence of operands and operators that specifi es
a computation.

 Extended type Type with the extends attribute
 Extent The number of elements of one dimension of an array. Also called the size.
 External subprogram An external subprogram is one that is global to the whole

program.
 Function One of the two procedure mechanisms available in Fortran along with

the subroutine. They effectively provide a way of invoking a computation by
 using the function name, and return a result. There is the concept of type and
kind for the result.

 Function reference A function is invoked by the use of its name in an
 expression.

 Function result The result value(s) from invoking a function.
 Generic Simplistically the ability of a procedure to accept arguments of more than

type. This facility is taken for granted with the intrinsic procedures, and users can
now create their own generic procedures.

 Global An entity that is available throughout the executable program. A global
entity has global scope. See also scope and local scope.

 Host association The mechanism by which a module procedure, internal proce-
dure or derived type defi nition accesses entities of the host.

 Image Instance of a Fortran program
 Image control statement Statement that affects the execution ordering between

images
 Image index Integer value identifying an image
 Implicit interface A procedure interface whose properties are not known within

the scope of the calling routine.
 Inherit (Extended type) acquire entities through type extension from the parent

type
 Inheritance association Association between the inherited components of an

 extended type and the components of its parent component
 Inquiry function A function whose result depends on the properties of the

 argument.
 Interface (Procedure) name, procedure characteristics, dummy argument names,

binding label, and generic identifi ers
 Interface block A sequence of statements starting with an interface statement and

ending with an end interface statement.
 Interface body The sequence of statements in an interface block between either a

function or subroutine statement and the corresponding end statement.

543Appendix A

 Internal procedure A procedure that is contained within an internal subprogram.
The program unit containing the internal procedure is called the host. The inter-
nal procedure is local to the host and inherits the host environment through host
association.

 Intrinsic procedure One of the standard supplied procedures.
 Keyword Statement keyword, argument keyword, type parameter keyword, or

component keyword
 Kind For each of the fi ve Fortran types (integer, real, complex, logical and char-

acter) there is the concept of kind. For example for integers it is common to fi nd
8-bit, 16-bit and 32-bit implementations. Each of these has an associated kind
type.

 For real and complex types this enables us to choose both the range and preci-
sion of the numbers we work with.

 For characters we can choose between character sets, which is of considerable
use for working with different languages.

 Kind type parameter An integer value used to identify the kind of one of the fi ve
base types, see above.

 Language extension Most compiler implementations will provide language exten-
sions. These are NOT part of the standard, and make porting code suites between
different hardware and software platforms diffi cult and sometimes impossible.

 Linker A program that is normally the fi nal stage in the process of going from
Fortran source to executable.

 Local entity An entity that is only available within the context of a subprogram.
 Main program A program unit that contains a program statement.
 Module A program unit that contains specifi cations and defi nitions that other pro-

gram units can access and use.
 Module procedure A function or subroutine defi ned within a module
 Name An entity with a program, e.g., constant, variable, function result, proce-

dure, program unit, dummy argument.
 Name association This provides access to the same entity (either data or a proce-

dure) from different scoping units by the same or a different name.
 Nesting The placing of one entity within another, e.g., one loop within another or

one subprogram within another.
 Nonexecutable statement A language statement that describes program attributes,

but does not cause any action when the program is executed.
 Object fi le File created after successful compilation. Used by the linker to generate

an executable.
 Parameter Term used to describe two completely different things. 1. a named

constant—and hence the parameter attribute. 2. more generally equivalent to
 argument.

 Parent type (Extended type) Type named in the extends clause
 Pointer A data object that has the pointer attribute.
 Pointer assignment Association of a pointer with a target, by execution of a

 pointer assignment statement or an intrinsic assignment statement for a derived-
type object that has the pointer as a subobject

544 Appendix A

 Pointer association The association of a part of memory to a pointer by means of
a target.

 Precision The number of signifi cant digits in a real number.
 Procedure A function or subroutine.
 Procedure interface The statements that specify the name of a procedure, the char-

acteristics of that procedure, the name of the dummy arguments, the attributes of
the dummy arguments the generic identifi er (optional) for the procedure.

 Program A program is an entity that can be compiled and executed on its own.
There must be at least a declaration block and execution block.

 Program unit A main program or a subprogram. The subprogram can be a func-
tion, subroutine or module.

 Rank The rank of an array is the number of dimensions.
 Recursion A property of a function or subroutine, and it means that the function or

subroutine references itself directly or indirectly.
 Reference A data object reference is the appearance of a named entity in an

 executable statement requiring the value of the object.
 Relational expression An expression containing one or more of the relational

 operators and operands of numeric or character type.
 Scalar A single data object of any type. A scalar has a rank of zero.
 Scalar variable A variable of scalar type.
 Scope and scoping unit The part of a program in which a name has a defi ned

meaning. The name may be a named constant, a variable, a function, a proce-
dure, or dummy argument. The part of the program is one of a program unit or
subprogram, a derived type defi nition or a procedure interface body. Scoping
units cannot overlap, but one scoping unit may be contained in another. In the
latter case we have an example of host association.

 Shape The rank and extents of an array.
 Shape conformance Generally means that two or more arrays have the same rank

and extent.
 Size The total number of elements in an array—the product of the extents.
 Source fi le A fi le known to the operating system that contains the Fortran state-

ments.
 Statement An instruction in a programming language, normally classifi ed as ex-

ecutable and nonexecutable.
 Stride The increment in a subscript triplet.
 Structure Either a scalar data object of derived type or a composite entity contain-

ing one or more subcomponents.
 Structure component Component of a structure
 Structure constructor Syntax that specifi es a structure value or creates such a

value
 Subprogram A user written or supplied function or subroutine.
 Subroutine A user subprogram that is invoked with the call statement. It can return one

value, many values or no value at all to the calling program through the argu-
ments.

 Subscript A scalar integer expression used to select an element of an array

545Appendix A

 Subscript triplet A subscript triplet is a set of three values representing the lower
bound of the array section, the upper bound of the array section, and the incre-
ment (stride) between them.

 Substring A contiguous set of characters in a string.
 Target A named data object associated with a pointer.
 Transformational function An intrinsic function that is not elemental or inquiry.
 Truncation For real numbers the approximation obtained by chopping off the frac-

tional part of the number and working with the integer part.
 For character variables removing one or more characters from a string.

 Type-bound procedure Procedure that is bound to a derived type and referenced
via an object of that type

 Type compatible Compatibility of the type of one entity with respect to another
for purposes such as argument association, pointer association, and allocation

 Type declaration One of the nonexecutable statements in Fortran, and one of inte-
ger, real, complex, character, logical or type.

 Underfl ow A condition where the result of an arithmetic expression is smaller than
the minimum value in the range for that data type.

 Use association Association between entities in a module and entities in a scoping
unit or construct that references that module as specifi ed by a USE statement

 User defi ned type A data type that is defi ned by the user and not one of the intrinsic
types.

 Variable A data object that has an associated memory location whose value can be
changed during program execution. A variable may be a scalar or an array.

547

 Appendix B

ASCII Character Set

 0 nul 32 64 @ 96 '
 1 soh 33 ! 65 A 97 a
 2 stx 34 " 66 B 98 b
 3 etx 35 # 67 C 99 c
 4 eot 36 $ 68 D 100 d
 5 enq 37 % 69 E 101 e
 6 ack 38 & 70 F 102 f
 7 bel 39 ' 71 G 103 g
 8 bs 40 (72 H 104 h
 9 ht 41) 73 I 105 i
 10 lf 42 * 74 J 106 j
 11 vt 43 + 75 K 107 k
 12 ff 44 , 76 L 108 1
 13 cr 45 – 77 M 109 m
 14 so 46. . 78 N 110 n
 15 si 47 / 79 O 111 o
 16 dle 48 0 80 P 112 P
 17 dc1 49 1 81 Q 113 q
 18 dc2 50 2 82 R 114 r
 19 dc3 51 3 83 S 115 s
 20 dc4 52 4 84 T 116 t
 21 nak 53 5 85 U 117 u
 22 syn 54 6 86 V 118 v
 23 etb 55 7 87 W 119 w
 24 can 56 8 88 X 120 x
 25 em 57 9 89 Y 121 y
 26 sub 58 : 90 Z 122 z
 27 esc 59 ; 91 [123 {
 28 fs 60 < 92 \ 124 |
 29 gs 61 = 93] 125 }
 30 rs 62 > 94 ̂ 126 ~
 31 us 63 ? 95 _ 127 del

549

 Appendix C

Intrinsic Functions and Procedures

 This appendix has a brief coverage of some of the more commonly used intrinsic
functions and procedures. Chap. 13 of the standard should be consulted for exhaus-
tive coverage.

 The following abbreviations and typographic conventions are used in this
appendix.

 Argument type and result type:

 I integer
 R real
 C complex
 N Numeric (any of integer, real, complex)
 L Logical
 P pointer
 P* polymorphic
 T target
 DP double precision
 Char character, length = 1.
 S character
 Boz boz-literal-constant
 Co coarray or coindexed object

 Class
 A indicates that the procedure is an atomic subroutine
 E indicates that the procedure is an elemental function
 ES indicates that the procedure is an elemental subroutine
 I indicates that the procedure is an inquiry function
 PS indicates that the procedure is a pure subroutine
 S indicates that the procedure is an impure subroutine
 T indicates that the procedure in a transformational function

550 Appendix C

 See Chap. 12 for more information on these classifi cations.
 Arguments in italics
 ALL(Mask, Dim)
 are optional arguments, i.e., Dim may be omitted in the example above.

 Double precision

 Before Fortran 90 if you required real variables to have greater precision than the
default real then the only option available was to declare them as double precision.
With the introduction of kind types with Fortran 90 the use of double precision
declarations is not recommended, and instead real entities with a kind type offering
more than the default precision should be used.

 Kind optional argument

 There are several functions that have an optional argument Kind, e.g., AINT(A, Kind).
if Kind is absent the result is the same kind type as the fi rst argument, in this case A.
if Kind is present the result has the kind type specifi ed by this argument.

 Result type

 When the result type is the same as the argument type then the result is not just the
same type as the argument but also the same kind.

 Miscellaneous rules

 When the argument is Back it is of logical type.
 When the argument is Count_Rate, Count_Max, Dim, Kind, Len, Order, N_Copies,
Shape, Shift, Values it is of integer type.
 When the argument is Mask it is of logical type.
 When the argument is target it is of pointer or target type.
 Fortran 2008 contained several changes to Fortran 2003 that affects intrinsic procedures.

 The following functions can now have arguments of type complex, ACOS, ASIN,
ATAN, COSH, SINH, TAN and TANH.

 The intrinsic function ATAN2 can be referenced by the name ATAN.
 The intrinsic functions LGE, LGT, LLE and LLT can have arguments of ASCII kind.
 A BACK= argument has been added to the intrinsic functions MAXLOC and

MINLOC.
 A RADIX= argument has been added to the intrinsic function SELECTED_REAL_

KIND.

 ABS(A)

 Yields the absolute value unless A is complex; see below.

 Argument: A Type: N
 Result: As argument Class: E

 Note: if A is complex (x,y) then the functions returns +2 2x y
 Example: R1=ABS(A)
 ACHAR(I)

551Appendix C

 Returns character in the ASCII character set.

 Argument: I Type: I
 Result: Char Class: E

 Example: C=ACHAR(I)
 ACOS(X)
 Arccosine (inverse cosine).

 Argument: X Type: R
 Result: As argument Class: E

 Note: | x | £ 1
 Example: Y=ACOS(X)
 ACOSH(X)
 Inverse hyperbolic cosine function.

 Argument: X Type: R,C
 Result: As argument Class: E

 Example: Y = ACOSH(X)
 ADJUSTL(String)
 Adjust string left, removing leading blanks and inserting trailing blanks.

 Argument: String Type: S
 Result: As argument Class: E

 Example: S=ADJUSTL(S)
 ADJUSTR(String)
 Adjust string right, removing trailing blanks and inserting leading blanks.

 Argument: String Type: S
 Result: As argument Class: E

 Example: S=ADJUSTR(S)
 AIMAG(Z)
 Imaginary part of complex argument.

 Argument: Z Type: C
 Result: As argument Class: E

 Example: Y=AIMAG(Z)
 AINT(A, Kind)
 Truncation.

 Argument: A Type: R
 Result: As A Class: E
 Argument: Kind Type: I

552 Appendix C

 Example: Y=AINT(Z) and when Z=0.3 Y=0, when Z=2.73 Y=2.0, when Z=−2.73
Y=−2.0

 ALL(Mask, Dim)
 Determines whether all values are true in Mask along dimension Dim.

 Argument: Mask Type: L
 Result: L Class: T

 Note: Dim must be a scalar in the range 1 £ Dim £ n where n is the rank of Mask.
The result is scalar if Dim is absent or Mask has rank 1. Otherwise it works on the
dimension Dim of Mask and the result is an array of rank n−1.

 Example: T=ALL(M)
 ALLOCATED(Array)
 Returns true if array is allocated.

 Argument: Array Type: Any
 Result: L Class: I

 Note: Array must be declared with the allocatable attribute.
 Example: if (ALLOCATED(Array)) then …
 ANINT(A, Kind)
 Rounds reals, i.e., returns nearest whole number.

 Argument: A Type: R
 Result: As A Class: E

 Example: Z=ANINT(A), if A = 5.63 Z = 6, if A = −5.7 Z = −6.0
 ANY(Mask, Dim)
 Determines whether any value is true in Mask along dimension Dim.

 Argument: Mask Type: L
 Result: L Class: T

 Note: Mask must be an array. The result is a scalar if Dim is absent or if Mask is
of rank 1. Otherwise it works on the dimension Dim of Mask and the result is an
array of rank n−1.

 Example: T=ANY(A)
 ASIN(X)
 Arcsine.

 Argument: X Type: R,C
 Result: As argument Class: E

 Example: Z=ASIN(X)
 ASINH(X)

553Appendix C

 Inverse hyperbolic sine function.

 Argument: X Type: R,C
 Result: As argument Class: E

 Example: Y=ASINH(X)
 ASSOCIATED(pointer, target)
 Returns the association status of the pointer.

 Argument: pointer Type: P
 Result: L Class: I

 Note:

 1. if target is absent then the result is true if pointer is associated with a target, oth-
erwise false.

 2. if target is present and is a target, the result is true if pointer is currently associ-
ated with target and false if it is not.

 3. if target is present and is a pointer, the result is true if both pointer and target are
currently associated with the same target, and is false otherwise. if either pointer
or target is disassociated the result is false.

 Example: T=ASSOCIATED(P)
 ATAN(X)
 Arctangent.

 Argument: X Type: R,C
 Result: As argument Class: E

 Example: Z=ATAN(X)
 ATAN2(Y,X)
 Arctangent of Y/X.

 Arguments: Y Type: R
 Result: As arguments Class: E

 Example: Z=ATAN2(Y,X)
 ATANH(X)
 Inverse hyperbolic tangent function.

 Argument: X Type: R,C
 Result: As argument Class: E

 Example: Y = ATANH(X)
 ATOMIC_DEFINE (ATOM, VALUE)
 Defi ne a variable atomically.

554 Appendix C

 Arguments: ATOM Type: Co
 VALUE scalar and same type as ATOM
 Result: N/A Class: A

 Note:

 1. ATOM shall be a scalar coarray or coindexed object and of type integer with kind
ATOMIC_INT_KIND or of type logical with kind ATOMIC_LOGICAL_KIND,
where ATOMIC_INT_KIND and ATOMIC_LOGICAL_KIND are the named
constants in the intrinsic module ISO_FORTRAN_ENV. It is an INTENT (OUT)
argument. If its kind is the same as that of VALUE or its type is logical, it becomes
defi ned with the value of VALUE. Otherwise, it becomes defi ned with the value
of INT (VALUE, ATOMIC_INT_KIND).

 2. VALUE shall be scalar and of the same type as ATOM. It is an INTENT (IN)
argument.

 Example: CALL ATOMIC_DEFINE (I[2], 4) causes I on image 2 to become
defi ned with the value 4.

 ATOMIC_REF (VALUE, ATOM)
 Reference a variable atomically.

 Arguments: VALUE Type: scalar and same type as ATOM
 ATOM Co
 Result: N/A Class: A

 Note:

 1. VALUE shall be scalar and of the same type as ATOM. It is an INTENT (OUT)
argument. If its kind is the same as that of ATOM or its type is logical, it becomes
defi ned with the value of ATOM. Otherwise, it is defi ned with the value of INT
(ATOM, KIND (VALUE)).

 2. ATOM shall be a scalar coarray or coindexed object and of type integer with kind
ATOMIC_INT_KIND or of type logical with kind ATOMIC_LOGICAL_KIND,
where ATOMIC_INT_KIND and ATOMIC_LOGICAL_KIND are the named
constants in the intrinsic module ISO_FORTRAN_ENV. It is an INTENT (IN)
argument.

 BESSEL_J0(X)
 Bessel function of the 1st kind, order 0.

 Argument: X Type: R
 Result: As argument Class: E

 Example: Y = BESSEL_J0(1.0) has the value 0.765 (approximately)
 BESSEL_J1(X)
 Bessel function of the 1st kind, order 1.

555Appendix C

 Argument: X Type: R
 Result: As argument Class: E

 Example: Y = BESSEL_J1(1.0) has the value 0.440 (approximately).
 BESSEL_JN (N, X)
 Bessel functions of the 1st kind.

 Arguments: N, X Type: N is I, X is R
 Result: as X Class: E

 Example: Y = BESSEL_JN (2, 1.0) has the value 0.115 (approximately).
 BESSEL_JN (N1, N2, X) Bessel functions of the 1st kind.

 Arguments: N1, N2, X Type: N1, N2 are I, X is R
 Result: is a real rank-one array with extent MAX(N2-N1+1, 0).

Element I of the result value is a processor-dependent approxima-
tion to the Bessel function of the 1st kind and order N1+I−1 of X.

 Class: T

 BESSEL_Y0(X)
 Bessel function of the 2nd kind, order 0.

 Argument: X Type: R
 Result: As argument Class: E

 Example: Y = BESSEL_Y0(1.0) has the value 0.088 (approximately).
 BESSEL_Y1(X)
 Bessel function of the 2nd kind, order 1.

 Argument: X Type: R
 Result: As argument Class: E

 Example: Y = BESSEL_Y 1(1.0) has the value −0.781 (approximately).
 BESSEL_YN (N, X)
 Bessel functions of the 2nd kind.

 Arguments: N, X Type: N is I, X is R
 Result: Is same type and kind as X.

 Class: E

 Example: Y = BESSEL_YN (2, 1.0) has the value −1.651 (approximately).
 BESSEL_YN (N1, N2, X)
 Bessel functions of the 2nd kind.

556 Appendix C

 Arguments: N1, N2, X Type: N1, N2 are I, X is R
 Result: is a real rank-one array with extent MAX(N2-N1+1, 0). Element I of the result value

is a processor-dependent approximation to the Bessel function of the 2nd kind and order
N1+I−1 of X.

 Class: T

 BGE(I, J)
 Bitwise greater than or equal to.

 Arguments: I,J Type: I or Boz
 Result: L Class: E

 The result is true if the sequence of bits represented by I is greater than or equal
to the sequence of bits represented by J, according to the method of bit sequence
comparison in 13.3.2 of Fortran 2008 standard; otherwise the result is false.

 Example: If BIT SIZE (J) has the value 8, BGE (Z'FF', J) has the value true for
any value of J. BGE (0,−1) has the value false.

 BGT (I, J)
 Bitwise greater than.

 Arguments: I,J Type: I or Boz
 Result: L Class: E

 The result is true if the sequence of bits represented by I is greater than the
sequence of bits represented by J, according to the method of bit sequence compari-
son in 13.3.2 of Fortran 2008 standard; otherwise the result is false.

 Example: BGT (Z'FF', Z'FC') has the value true. BGT (0, -1) has the value
false.

 BLE (I, J)
 Bitwise less than or equal to.

 Arguments: I,J Type: I or Boz
 Result: L Class: E

 The result is true if the sequence of bits represented by I is less than or equal to
the sequence of bits represented by J, according to the method of bit sequence com-
parison in 13.3.2 of Fortran 2008 standard; otherwise the result is false.

 Example. BLE (0, J) has the value true for any value of J. BLE (−1, 0) has the
value false.

 BLT (I, J)
 Bitwise less than.

 Arguments: I,J Type: I or Boz
 Result: L Class: E

557Appendix C

 The result is true if the sequence of bits represented by I is less than the sequence
of bits represented by J, according to the method of bit sequence comparison in
13.3.2 of Fortran 2008 standard; otherwise the result is false.

 Example: Example. BLT (0,−1) has the value true. BLT (Z'FF', Z'FC') has the
value false.

 BIT_SIZE(I)
 Returns the number of bits, as defi ned by the numeric model for integer numbers

in Chap. 5 .

 Argument: I Type: I
 Result: As argument Class: I

 Example: N_Bits=SIZE(I)
 BTEST(I,Pos)
 Returns true if the bit is set in the integer argument at the position given by the

second argument.

 Argument: I Type: I
 Result: L Class: E

 Example: T=BTEST(I,Pos)
 CEILING(A, Kind)
 Returns the smallest integer greater than or equal to the argument.

 Argument: A Type: R
 Result: I Class: E

 Note:
 if kind is present the result has the kind type parameter Kind.
 Otherwise the result is of type default integer.

 Example: I=CEILING(A) if A=12.21 then I=13, if A=−3.16 then I=−3
 CHAR(I, Kind)
 Returns the character in a given position in the processor collating sequence

associated with the specifi ed kind type parameter. Normally ASCII.

 Argument: I Type: I
 Result: CHAR Class: E

 Example: C=CHAR(65) and for the ASCII character set C='A'.
 CMPLX(X,Y, Kind)
 Converts to complex from integer, real and complex.

 Argument: X Type: N
 Result: C Class: E

558 Appendix C

 Note:

 1. if X is complex and Y is absent it is as if Y were present with the value
AIMAG(X).

 2. if X is not complex and Y is absent, it is as if Y were present with the value 0.

 Example: Z=CMPLX(X,Y)
 COMMAND_ARGUMENT_COUNT ()
 Number of command arguments.

 Arguments None
 Result: I Class: T

 The result value is equal to the number of command arguments available. If there
are no command arguments available or if the processor does not support command
arguments, then the result has the value zero. If the processor has a concept of a
command name, the command name does not count as one of the command
arguments.

 Example: I = COMMAND_ARGUMENT_COUNT ()
 CONJG(Z)
 Conjugate of a complex argument.

 Argument: Z Type: C
 Result: As Z Class: E

 Example: Z1=CONJG(Z)
 COS(X)
 Cosine.

 Argument: X Type: R, C
 Result: As argument Class: E

 Note: The arguments of all trigonometric functions should be in radians, not
degrees.

 Example: A=COS(X)
 COSH(X)
 Hyperbolic cosine.

 Argument: X Type: R,C
 Result: As argument Class: E

 Example: Z=COSH(X)
 COUNT(Mask, Dim)
 Returns the number of true elements in Mask along dimension Dim.

 Argument: Mask Type: L
 Result: I Class: T

559Appendix C

 Note: Dim must be a scalar in the range 1 £ Dim £ n , where n is the rank of Mask.
The result is scalar if Dim is absent or Mask has rank 1. Otherwise it works on the
dimension Dim of Mask and the result is an array of rank n−1.

 Example: N=COUNT(A)
 CPU_TIME(Time)
 Returns the processor time.

 Argument: Time Type: R
 Result: N/A Class: S

 Example: call CPU_TIME(Time)
 CSHIFT(Array,Shift, Dim)
 Circular shift on a rank 1 array or rank 1 sections of higher-rank arrays.

 Argument: Array Type: Any
 Result: As Array Class: T

 Note: Array must be an array, Shift must be a scalar if Array has rank 1, other-
wise it is an array of rank n−1, where n is the rank of Array. Dim must be a scalar
with a value in the range 1 £ Dim £ n .

 Example: Array=CSHIFT(Array,10)
 DATE_AND_TIME(Date,Time,Zone,Values)
 Returns the current date and time (compatible with ISO 8601:1988).

 Argument: Date Type: S
 Result: N/A Class: S

 Time and Zone are of type S.
 Note:

 1. Date is optional and must be scalar and 8 characters long in order to return the
complete value of the form CCYYMMDD, where CC is the century, YY is the
year, MM is the month and DD is the day. It is intent(out).

 2. Time is optional and must be scalar and 10 characters long in order to return the
complete value of the form hhmmss.sss where hh is the hour, mm is the minutes
and ss.sss is the seconds and milliseconds. It is intent(out).

 3. Zone is optional and must be scalar and must be 5 characters long in order to
return the complete value of the form hhmm where hh and mm are the time dif-
ferences with respect to Coordinated Universal Time in hours and minutes. It is
intent(out).

 4. Values is optional and a rank 1 array of size 8. It is intent(out). The values re
turned are as follows:
 Values(1) = the year
 Values(2) = the month
 Values(3) = the day

560 Appendix C

 Values(4) = the time with respect to Coordinated Universal Time in minutes.
 Values(5) = the hour (24 hour clock)
 Values(6) = the minutes
 Values(7) = the seconds
 Values(8) = the milliseconds in the range 0–999.

 Example: call DATE_TIME(D,T,Z,V)
 DBLE(A)
 Converts to double precision from integer, real, and complex

 Argument: A Type: N
 Result: DP Class: E

 Example: D=DBLE(A)
 DIGITS(X)
 Returns the number of signifi cant digits of the argument as defi ned in the numeric

models for integer and reals in Chap. 5 .

 Argument: X Type: I,R
 Result: I Class: I

 Example: I=DIGITS(X)
 DIM(X,Y)
 Returns fi rst argument minus minimum of the two arguments: X -MIN(X,Y).

 Argument: X Type: I
 Result: As arguments Class: E

 Example: Z=DIM(X,Y)
 DOT_PRODUCT(Vector_1,Vector_2)
 Performs the mathematical dot product of two rank 1 arrays.

 Argument: Vector_1 Type: N
 Result: As arguments Class: T

 Vector_2 is as Vector_1.
 Note:

 1. if Vector_1 is of type integer or real the result has the value
 SUM(Vector_1*Vector_2).

 2. if Vector_1 is complex the result has the value
 SUM(CONJG(Vector_1)*Vector_2).

 3. if Vector_1 is logical the result has the value ANY(Vector_1 .AND. Vector_2).

561Appendix C

 Example: A=DOT_PRODUCT(X,Y)
 DPROD(X,Y)
 double precision product of two reals.

 Argument: X Type: R
 Result: DP Class: E

 Example: D=DPROD(X,Y)
 DSHIFTL (I, J, SHIFT)
 Combined left shift.

 Arguments: I,J Type: I or Boz
 SHIFT Type: I

 Result: Same as I if I is of type integer; otherwise, same as J. If either I or J is a boz-literal-
constant, it is fi rst converted as if by the intrinsic function INT to type integer with the
kind type parameter of the other. The rightmost SHIFT bits of the result value are the
same as the leftmost bits of J, and the remaining bits of the result value are the same as
the rightmost bits of I. This is equal to IOR (SHIFTL (I, SHIFT), SHIFTR (J, BIT SIZE
(J)-SHIFT)). The model for the interpretation of an integer value as a sequence of bits is
in section 13.3 of Fortran 2008 standard.

 Class: E

 Examples: DSHIFTL (1, 2**30, 2) has the value 5 if default integer has 32 bits.
 DSHIFTL (I, I, SHIFT) has the same result value as ISHFTC (I, SHIFT).
 DSHIFTR (I, J, SHIFT)
 Combined right shift.

 Arguments: I,J Type: I or Boz
 SHIFT Type: I

 Result: Same as I if I is of type integer; otherwise, same as J. If either I or J is a boz-literal-
constant, it is fi rst converted as if by the intrinsic function INT to type integer with the
kind type parameter of the other. The leftmost SHIFT bits of the result value are the
same as the rightmost bits of I, and the remaining bits of the result value are the same
as the leftmost bits of J. This is equal to IOR (SHIFTL (I, BIT SIZE (I)-SHIFT),
SHIFTR (J, SHIFT)). The model for the interpretation of an integer value as a sequence
of bits is in 13.3 of Fortran 2008 standard.

 Class: E

 Examples. DSHIFTR (1, 16, 3) has the value 229 +2 if default integer has 32
bits.

 DSHIFTR (I, I, SHIFT) has the same result value as ISHFTC (I,-SHIFT).
 EOSHIFT(Array, Shift, Boundary, Dim)
 End of shift of a rank 1 array or rank 1 section of a higher-rank array.

 Argument: Array Type: Any
 Result: As Array Class: T

562 Appendix C

 Boundary is as Array.
 Note: Array must be an array, Shift must be a scalar if Array has rank 1, other-

wise it is an array of rank n−1, where n is the rank of Array. Boundary must be
scalar if Array has rank 1, otherwise it must be either scalar or of rank −1. Dim must
be a scalar with a value in the range 1 £ Dim £ n .

 Example: A=EOSHIFT(A,Shift)
 EPSILON(X)
 Smallest difference between two reals of that kind. See Chap. 5 and real numeric

model.

 Argument: X Type: R
 Result: As argument Class: I

 Example: Tiny=EPSILON(X)
 ERF (X)
 Error function.

 Argument: X Type: R
 Result: As X Class: E

 Example: Y = ERF(1.0) has the value 0.843 (approximately).
 ERFC (X)
 Complementary error function.

 Argument: X Type: R
 Result: As X Class: E

 Example: Y = ERFC (1.0) has the value 0.157 (approximately).
 ERFC_SCALED (X)
 Scaled complementary error function.

 Argument: X Type: R
 Result: As X Class: E

 Example: Y = ERFC_SCALED (20.0) has the value 0.0282 (approximately).
 EXECUTE_COMMAND_LINE(COMMAND, WAIT,EXITSTAT,CMDSTAT.

CMDMSG)
 Execute a command line.

 Argument: COMMAND – shall be a default character scalar. It is an INTENT
(IN) argument. Its value is the command line to be executed. The interpretation
is processor dependent.
 Argument: WAIT – (optional) shall be a default logical scalar. It is an INTENT
(IN) argument. If WAIT is present with the value false, and the processor sup-
ports asynchronous execution of the command, the command is executed
 asynchronously; otherwise it is executed synchronously.

563Appendix C

 Argument: EXITSTAT – (optional) shall be a default integer scalar. It is an
INTENT (INOUT) argument. If the command is executed synchronously, it is
assigned the value of the processor-dependent exit status. Otherwise, the value of
EXITSTAT is unchanged.
 Argument: CMDSTAT – (optional) shall be a default integer scalar. It is an
INTENT (OUT) argument. It is assigned the value −1 if the processor does not
support command line execution, a processor-dependent positive value if an
error condition occurs, or the value −2 if no error condition occurs but WAIT is
present with the value false and the processor does not support asynchronous
execution. Otherwise it is assigned the value 0.
 Argument: CMDMSG – (optional) shall be a default character scalar. It is an
INTENT (INOUT) argument. If an error condition occurs, it is assigned a
 processor-dependent explanatory message. Otherwise, it is unchanged.

 Class: S

 Example: CALL EXECUTE_COMMAND_LINE('pwd') will print the full
pathname of the current directory under Unix and an error message from
Windows.

 EXP(X)
 Exponential, e x .

 Argument: X Type: R, C
 Result: As argument Class: E

 Example: Y=EXP(X)
 EXPONENT(X)
 Returns the exponent component of the argument. See Chap. 5 and the real

numeric model.

 Argument: X Type: R
 Result: I Class: E

 Example: I=EXPONENT(X)
 EXTENDS_TYPE_OF (A, MOLD)
 Query dynamic type for extension.

 Arguments: A, Mold Type: P*
 Result: L Class: I

 If MOLD is unlimited polymorphic and is either a disassociated pointer or unal-
located allocatable variable, the result is true; otherwise if A is unlimited polymor-
phic and is either a disassociated pointer or unallocated allocatable variable, the
result is false; otherwise if the dynamic type of A or MOLD is extensible, the result
is true if and only if the dynamic type of A is an extension type of the dynamic type
of MOLD; otherwise the result is processor dependent.

564 Appendix C

 Example:

 if (extends_type_of(a, mold) then
 print*,'dynamic type of a is an extension of dynamic type of mold'
 endif

 FINDLOC (ARRAY, VALUE, DIM, MASK, KIND, BACK)
 FINDLOC (ARRAY, VALUE, MASK, KIND, BACK)

 Location(s) of a specifi ed value.

 Argument: ARRAY Type: shall be an array of intrinsic type
 Argument: VALUE Type: shall be scalar and in type conformance with ARRAY, as

specifi ed in Table 7.2 for relational intrinsic operations
7.1.5.5.2).

 Argument: DIM Type: shall be an integer scalar with a value in the range 1 DIM
 n , where n is the rank of ARRAY. The corresponding actual
argument shall not be an optional dummy argument.

 Argument: MASK Type: (optional) shall be of type logical and shall be conform-
able with ARRAY.

 Argument: KIND Type: (optional) shall be a scalar integer constant expression.
 Argument: BACK Type:(optional) shall be a logical scalar.

 Class: T

 FLOOR(A, Kind).
 Returns the greatest integer less than or equal to the argument

 Argument: A Type: R
 Result: I Class: E

 Note:

 If kind is present the result has the kind type parameter Kind, otherwise the result
is of type default integer.

 Example: I=FLOOR(A) and when A=5.2 I has the value 5, when A=−9.7 I has
the value −10

 FRACTION(X)
 Returns the fractional part of the real numeric model of the argument See Chap. 5

and the real numeric model.

 Argument: X Type: R
 Result: As X Class: E

 Example: F=FRACTION(X)
 GAMMA (X)
 Gamma function.

565Appendix C

 Argument: X Type: R
 Result: As X Class: E

 Example: Y = GAMMA(1.0) has the value 1.000 (approximately).
 GET_COMMAND (COMMAND, LENGTH, STATUS)
 Query program invocation command.
 GET_COMMAND_ARGUMENT (NUMBER, VALUE, LENGTH, STATUS)
 Query arguments from program invocation.
 GET_ENVIRONMENT_VARIABLE (NAME, VALUE, LENGTH, STATUS,

TRIM_NAME)
 Query environment variable.
 HUGE(X)
 Returns the largest number for the kind type of the argument. See Chap. 5 and

the real and integer numeric models.

 Argument: X Type: I,R
 Result: As argument Class: I

 Example: H=HUGE(X)
 HYPOT (X, Y)
 Euclidean distance function.

 Arguments: X,Y Type: R
 Result: R Class: E

 Example: H = HYPOT(3.0, 4.0) has the value 5.0 (approximately).
 IACHAR(C)
 Returns the position of the character argument in the ASCII collating sequence.

 Argument: C Type: Char
 Result: I Class: E

 Example: I=IACHAR('A') returns the value 65.
 IALL (ARRAY, DIM, MASK) or IALL (ARRAY, MASK)
 Reduce array with bitwise AND operation.
 IAND(I,J)
 Performs a logical AND on the arguments.

 Argument: I Type: I
 Result: As arguments Class: E

 Example: K=IAND(I,J)
 IANY (ARRAY, DIM, MASK) or IANY (ARRAY, MASK)
 Reduce array with bitwise OR operation.

566 Appendix C

 IBCLR(I,Pos)
 Clears one bit of the argument to zero.

 Argument: I Type: I
 Result: As I Class: E

 Note: 0 £ Pos < BIT_SIZE (I)
 Example: I=IBCLR(I,Pos)
 IBITS(I,Pos,Len)
 Returns a sequence of bits.

 Argument: I Type: I
 Result: As I Class: E

 Note: 0 £ Pos and (Pos + Len) £ BIT_SIZE (I) and Len ³ 0.
 Example: Slice=IBITS(I,Pos,Len)
 IBSET(I,Pos)
 Sets one bit of the argument to one.

 Argument: I Type: I
 Result: As I Class: E

 Note: 0 £ Pos < BIT_SIZE (I).
 Example: I=IBSET(I,Pos)
 ICHAR(C)
 Returns the position of a character in the processor collating sequence associated

with the kind type parameter of the argument. Normally the position in the ASCII
collating sequence.

 Argument: C Type: CHAR
 Result: I Class: E

 Example: I=ICHAR('A') would return the value 65 for the ASCII character set.
 IEOR(I,J)
 Performs an exclusive OR on the arguments.

 Argument: I Type: I
 Result: As I Class: E

 Example: I=IEOR(I,J)
 IMAGE_INDEX (COARRAY, SUB)
 Convert cosubscripts to image index.

 Argument: COARRAY Type: Co
 Argument: SUB Rank-one integer array
 Result: I Class: I

567Appendix C

 Example:

 integer, codimension[0:*]:: x
 integer, dimension(10,15), codimension[3,0:1,−1:*]:: z

 print*, image_index(x,(/0/)); print*, image_index(z,(/2,0,−1/))

 would print 1 and 2 respectively.

 INDEX(String,Substring, Back)
 Locates one substring in another, i.e., returns position of Substring in character

expression String.

 Argument: String Type: S
 Result: I Class: E

 Substring is of type S.
 Note:

 1. if Back is absent or present with the value .FALSE. then the function returns the
start position of the fi rst occurrence of the substring. if LEN(Substring) = 0 then
one is returned.

 2. if Back is present with the value .TRUE. then the function returns the start posi-
tion of the last occurrence of the substring. if LEN(Substring) = 0 then the value
(LEN(String) + 1) is returned.

 3. if the substring is not found the result is zero.
 4. if LEN(String) < LEN(Substring) the result is zero.

 Example:
 where=INDEX('Hello world Hello','Hello')
 The result 2 is returned.
 where=INDEX('Hello world Hello','Hello',.TRUE.)
 The result 14 is returned.
 INT(A, Kind)
 Converts to integer from integer, real, and complex.

 Argument: A Type: N
 Result: I Class: E

 Example: I=INT(F)
 IOR(I,J)
 Performs an inclusive OR on the arguments.

 Argument: I Type: I
 Result: As I Class: E

 Example: I=IOR(I,J)
 IPARITY (ARRAY, DIM, MASK) or IPARITY (ARRAY, MASK)
 Reduce array with bitwise exclusive OR operation.

568 Appendix C

 ISHFT(I, Shift)
 Performs a logical shift. The bits of I are shifted by Shift positions.

 Argument: I Type: I
 Result: As I Class: E

 Note: | Shift | £ BIT_SIZE (I)
 Example: I=ISHIFT(I,Shift).
 ISHFTC(I,Shift, Size)
 Performs a circular shift of the rightmost bits. The Size rightmost bits of I are

circularly shifted by Shift positions.

 Argument: I type: I
 Result: I Class: E

 Note:

 | Shift | < Size
 0 £ Size £ BIT_SIZE (I).
 if Size is absent it is as if it were present with the value of BIT_SIZE (I).
 if Shift is positive the shift is to the left.
 if Shift is negative the shift is to the right.
 if Shift is zero no shift is performed.
 Example: I=ISHFTC(I,Shift,Size)
 IS_CONTIGUOUS (ARRAY)
 Test contiguity of an array.

 Argument: ARRAY Type: any
 Result: L Class: I

 Example:
 integer,target, dimension(10)::a
 integer,pointer,dimension(:) :: p
 p=> a(1:10:2); print*,is_contiguous(p)
 would print 'F'
 IS_IOSTAT_END (I)
 Test IOSTAT value for end-of-fi le.

 Argument: I Type: I
 Result: L Class: E

 Example:
 IS_IOSTAT_END(I) returns value true if I is an I/O status value that corresponds

to an end-of-fi le condition, and false otherwise.

569Appendix C

 read(unit= 1, fmt=*, iostat=ist)y(I)
 …
 if(is_iostat_end(ist)) then
 print*,'end of fi le!'
 endif

 IS_IOSTAT_EOR (I)
 Test IOSTAT value for end-of-record.

 Argument: I Type: I
 Result: L Class: E

 Example: IS_IOSTAT_EOR(I) returns value true if I is an I/O status value that
corresponds to an end-of-record condition, and false otherwise.

 KIND(X)
 Returns the KIND type parameter of the argument.

 Argument: X Type: Any
 Result: I Class: I

 Example: I=KIND(X)
 LBOUND(Array, Dim)
 Returns the lower bounds for each dimension of the array argument or a specifi ed

lower bound.

 Argument: Array Type: Any
 Result: I Class: I

 Note:

 1 £ Dim £ n , where n is the rank of Array. The result is scalar if Dim is present
otherwise the result is an array of rank 1 and size n.

 The result is scalar if Dim is present, otherwise a rank 1 array and size n.
 Example: I=LBOUND(Array)
 LCOBOUND (COARRAY, DIM, KIND)
 Lower cobound(s) of a coarray.

 Argument: COARRAY Type: co
 Argument: DIM (optional) Type: I
 Argument: KIND (optional) Type: I
 Result: I Class: I

 Example:

 INTEGER, CODIMENSION[:,:], ALLOCATABLE::A
 ALLOCATE(A[2:3,7:*])
 LCBOUND (A) is [2,7] and LCOBOUND(A,DIM=2) is 7
 LEADZ (I)

570 Appendix C

 Number of leading zero bits.

 Argument: I Type: I
 Result: I Class: E

 Example: LEADZ (1) has the value 31 if BIT SIZE (1) has the value 32.
 LEN(String)
 Length of a character entity.

 Argument: String Type: S
 Result: I Class: I

 Example: I=LEN(String)
 LEN_TRIM(String)
 Length of character argument less the number of trailing blanks.

 Argument: String Type: S
 Result: I Class: E

 Example: I=LEN_TRIM(String)
 LGE(String_1,String_2)
 Lexically greater than or equal to and this is based on the ASCII collating

sequence.

 Argument: String_1 Type: S
 Result: L Class: E

 String_2 is of type S.
 Example: L=LGE(S1,S2)
 LGT(String_1 ,String_2)
 Lexically greater than and this is based on the ASCII collating sequence.

 Argument: String_1 Type: S
 Result: L Class: E

 Example: L=LGT(S1,S2)
 LLE(String_1, String_2)
 Lexically less than or equal to and this is based on the ASCII collating

sequence.

 Argument: String_1 Type: S
 Result: L Class: E

 String_2 is of type S.
 Example: L=LLE(S1,S2)
 LLT(String_ 1, String_2)

571Appendix C

 Lexically less than and this is based on the ASCII collating sequence.

 Argument: String_1 Type: S
 Result: L Class: E

 Example: L=LLT(S1,S2)
 LOG(X)
 Natural logarithm, loge x.

 Argument: X Type: R, C
 Result: As argument Class: E

 Example: Y=LOG(X)
 LOG_GAMMA (X)
 Logarithm of the absolute value of the gamma function.

 Argument: X Type: R
 Result: R Class: E

 Example: LOG_GAMMA (3.0) has the value 0.693 (approximately)
 LOG10(X)
 common logarithm, log 10.

 Argument: X Type: R
 Result: As argument Class: E

 Example: Y=LOG10(X)
 LOGICAL(L,Kind)
 Converts between different logical kind types, i.e., performs a type cast.

 Argument: L Type: L
 Result: L Class: E

 Example: L=LOGICAL(K, Kind)
 MASKL (I, KIND)
 Left justifi ed mask.

 Argument: I Type: I
 Result: I Class: E

 Example: MASKL (4) has the value SHIFTL (15, BIT_SIZE (0) - 4)
 MASKR (I, KIND)
 Right justifi ed mask.

572 Appendix C

 Argument: I Type: I
 Result: I Class: E

 Example: MASKR(4) has the value 15.
 MATMUL(Matrix_1 ,Matrix_2)
 Performs mathematical matrix multiplication of the array arguments.

 Argument: Matrix_1 Type: N,L
 Result: As arguments Class: T

 Matrix_2 is as Matrix_1.
 Note:

 1. Matrix_1 and Matrix_2 must be arrays of rank 1 or 2. if Matrix_1 is of numeric
type so must Matrix_2.

 2. if Matrix_1 has rank 1, Matrix_2 must have rank 2.
 3. if Matrix_2 has rank 1, Matrix_1 must have rank 2.
 4. The size of the fi rst dimension of Matrix_2 must equal the size of the last dimen-

sion of Matrix_1.
 5. if Matrix_1 has shape (n,m) and Matrix_2 has shape (m,k) the result has shape

(n,k).
 6. if Matrix_1 has shape (m) and Matrix_2 has shape (m,k) the result has shape (k).
7. if Matrix_1 has shape (n,m) and Matrix_2 has shape (m) the result has shape (n).

 Example: R=MATMUL(M_1,M_2)
 MAX(A1,A2,A3,…)
 Returns the largest value.

 Argument: A1 Type: I,R,S
 Result: As arguments Class: E

 A2, A3,.. are as A1.
 Example: A=MAX(A1,A2,A3,A4)
 MAXEPONENT(X)
 Returns the maximum exponent. See Chap. 5 and numeric models.

 Argument: X Type: R
 Result: I Class: I

 Example: I=MAXEXPONENT(X)
 MAXLOC(ARRAY, Dim, Mask, Kind, Back)
 Determine the location of the fi rst element of Array having the maximum value

of the elements identifi ed by Mask if present.

 Argument: Array Type: I,R
 Result: I Class: T

573Appendix C

 Note:

 0. Normally in Fortran if you omit an optional argument you must use keywords for
the rest. This intrinsic breaks this rule and DIM can be omitted and it is not nec-
essary to use a keyword with Mask.

 1. Array must be an array.
 2. Mask must be conformable with Array
 3. The result is an array of rank 1 and of size equal to the rank of Array.
 4. if Dim is present the result is an array of the rank of Array reduced by one and

with the shape of Array without the dimension Dim.

 Example:
 A=(/5,6,7,8/)
 I=MAXLOC(A)
 is (4), which is the subscript of the location of the fi rst occurrence of the maximum

value in the rank 1 array.

 if

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟⎝ ⎠

1 8 5

9 3 6

4 2 7

A

 I = MAXLOC(A,dim=1)
 is (2,1,3) returning the position of the largest in each column.
 I = MAXLOC(A,dim=2)
 is (2,1,3) returning the position of the largest in each row.
 MAXVAL(Array, Dim,Mask)
 Returns the maximum value of the elements of Array along dimension Dim

 corresponding to the true elements of Mask.

 Argument: Array Type: I,R,S
 Result: As argument Class: T

 Note:

 1 £ Dim £ n , where n is the rank of Array. The result is scalar if Dim is absent, or
Array has rank 1. Otherwise the result is an array of rank −1.

 if Array has size zero then the result is the largest negative number supported by
the processor for the corresponding type and kind of Array.

 Example:
 MAXVAL((/1,2,3/)) returns the value 3.
 MAXVAL(C,MASK=C < 0.0) returns the maximum of the negative elements of C.

 For
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

1 3 5

2 4 6
B

574 Appendix C

 MAXVAL(B,DIM=1) returns (2,4,6)
 MAXVAL(B,DIM=2) returns (5,6)
 MERGE(True,False,Mask)
 Chooses alternative values according to the value of a mask.

 Argument: True Type: Any
 Result: As True Class: E

 Example: for

 For
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

2 6 10

4 8 12
True ,

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

1 5 9

3 7 11
False and

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

T F T
Mask

F T F

 The result is
⎛ ⎞
⎜ ⎟
⎝ ⎠

2 5 10

3 8 11

 MERGE_BITS (I, J, MASK)
 Merge of bits under mask.

 Argument: I Type: I or Boz
 Argument: J I or Boz
 Argument: MASK I or Boz
 Result: same as I if Integer, otherwise same as J.
 Class: E

 Example: MERGE_BITS(14,18,22) has the value 6.
 MIN(A1,A2,A3,…)
 Chooses the smallest value.

 Argument: A1 Type: I,R,S
 Result: As arguments Class: E

 ww
 Example: Y=MIN(X1, X 2,X3,X4,X5)
 MINEXPONENT(X)
 Returns the minimum exponent. See Chap. 5 and numeric models.

 Argument: X Type: R
 Result: I Class: I

 Example: I=MINEXPONENT(X)
 MINLOC(Array, Dim, Mask, Kind, Back)
 Determine the location of the fi rst element of Array having the minimum value

of the elements identifi ed by Mask.

 Argument: Array Type: I,R
 Result: I Class: T

575Appendix C

 Note:

 0. Normally in Fortran if you omit an optional argument you must use keywords for
the rest. This intrinsic breaks this rule and Dim can be omitted and it is not neces-
sary to use a keyword with Mask.

 1. Array must be an array.
 2. Mask much be conformable with Array.
 3. The result is an array of rank 1 and of size equal to the rank of Array.
 4. if DIM is present the result is an array of the rank of Array reduced by one and

with the shape of Array without the dimension DIM.

 Example: I=MINLOC(Array)

 In the above example if Array is a rank 2 array of shape (5,10) and the smallest
value is in position (2,1) then the result is the rank 1 array I with shape (2) and
I(1)=2 and I(2)=1.

 See MAXLOC for further examples.
 MINVAL(Array, Dim,Mask)
 Returns the minimum value of the elements of Array along dimension Dim cor-

responding to the true elements of Mask.

 Argument: Array Type: I,R,S
 Result: As Array Class: T

 Note:l £ Dim £ n , where n is the rank of Array. The result is scalar if Dim is
absent, or Array has rank 1. Otherwise the result is an array of rank n–1.

 if Array has size zero then the result is the largest negative number supported by
the processor for the corresponding type and kind of Array.

 Example:

 MINAL((/1,2,3/)) returns the value 1.
 MINVAL(C,MASK=C > 0.0) returns the minimum of the positive elements of C.

 For
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

1 3 5

2 4 6
B

 MINVAL(B,DIM=1) returns (1,3,5).
 MINVAL(B,DIM=2) returns (1,2).
 MOD(A,B)
 Returns the remainder when fi rst argument divided by second.

 Argument: A Type: I, R
 Result: As arguments Class: E

 Note: if B=0 the result is processor dependent. For B ¹ 0 the result is A - INT
(A/B) * B.

576 Appendix C

 Example: R=MOD(A,B)
 if A=8 and B=5 then R=3
 if A=−8 and B=5 then R=−3
 if A=8 and B=−5 then R=3
 if A=−8 and B=−5 then R=−3
 MODULO(A,B)
 Returns the modulo of the arguments.

 Argument: A Type: I,R
 Result: As A Class: E

 Note:

 1. if B=0 then the result is processor dependent.
 2. integer A

 The result is R where A= Q * B + R and Q is integer
 for B>0, 0 £ R < B
 for B < 0, B < R £ 0

 3. real A

 The result is A - FLOOR(A/B) * B.
 Example: R=MODULO(A,B)
 if A=8 and B=5 then R=3
 if A=−8 and B=5 then R=2
 if A=8 and B=−5 then R=−2
 if A=−8 and B=−5 then R=−3
 MOVE_ALLOC (FROM, TO)
 Move an allocation.

 Argument: FROM May be any type and rank. It shall be allocatable. It is
INTENT(INOUT).

 Argument: TO Type compatible with FROM and same rank. It shall
be allocatable.

 Class: Pure subroutine

 Example:

 integer, dimension(:), allocatable:: b,c
 allocate(b(1:12))
 b(2) = 24
 call mov_alloc(from=b, to=c)
 ! b is unallocated
 ! c is allocated with bounds (1:12) and c(2) == 24

 MVBITS(From,F_Pos,Len,To,T_Pos)
 Copies a sequence of bits from one data object to another.

577Appendix C

 Argument: From Type: I
 Result: N/A Class: S

 All arguments are of integer type.
 Note:

 From must be intent(in).
 F_Pos must be intent(in), F_Pos ³ 0, F_Pos+Len £ BIT_SIZE(From).
 Len must be intent(in), Len ³ 0.
 To must be intent(inout).
 T_Pos must be intent(in), T_Pos ³ 0, T_Pos + Len £ BIT_SIZE(To).

 Example: call MVBITS(F,FP,L,T,TP)
 NEAREST(X,Next)
 Returns the nearest different number. See Chap. 5 and the real numeric model.

 Argument: X Type: R
 Result: As X Class: E

 Next is of type R.
 Example: N=NEAREST(X,Next)
 NEW_LINE (A)
 Returns newline character used for formatted stream output.

 Argument: A Type: Char
 Result: Char Class: I

 Example:

 open(2,fi le='nline.txt', access='stream', form='formatted')
 write(2,'(a)')'hola'//new_line('a')//'mundo'
 will write 2 lines to the fi le nline.txt.

 NINT(A, Kind)
 Yields nearest integer.

 Argument: A Type: RI
 Result: I Class: E

 Note:

 1. A > 0, the result is INT(A+0.5).
 2. A £ 0, the result is INT(A−0.5).

 Example: I=NINT(X)
 NORM2 (X, DIM)
 L2 norm of an array.

578 Appendix C

 Argument: X Type: R array
 Argument: DIM Type: DIM (optional) shall be an integer scalar with a value in the

range 1 <= DIM <= n, where n is the rank of X. The correspond-
ing actual argument shall not be an optional dummy argument.

 Result: R Class: T

 Note:

 Case (i): The result of NORM2 (X) has a value equal to a processor-dependent
approximation to the generalized L2 norm of X, which is the square root of the
sum of the squares of the elements of X.
 Case (ii): If DIM is present the array is reduced as for SUM(X,DIM) except that
NORM2 is applied to the reduced vectors.

 Examples:
 NORM2([3.0, 4.0]) is 5.0.
 If X has the value 1.0 2.0 3.0 4.0
 then NORM2(X,DIM=1) is [3.162, 4.472] and NORM2(X,DIM=2) is [2.236,5.0]

approximately.
 NOT(I)
 Returns the logical complement of the argument.

 Argument: I Type: I
 Result: As I Class: E

 Example: I=NOT(I)
 NULL(Mold)
 Returns a disassociated pointer.

 Argument: Mold Type: P
 Result: As argument Class: T

 Note:

 if the argument Mold is present the result is the same as Mold.
 Otherwise it is determined by context.

 Example: real, pointer :: P=>NULL()
 NUM_IMAGES ()
 Number of images.
 Argument: None
 Result: I
 Class: T

 Example:
 PRINT*, 'number of images =',NUM_IMAGES()

 PACK(Array,Mask, Vector)
 Packs an array into an array of rank 1, under the control of a mask.

579Appendix C

 Argument: Array Type: Any
 Result: As Array Class: T

 Note:

 1. Array must be an array.
 2. Mask be conformable with Array.
 3. Vector must have rank 1 and have at least as many elements as there are TRUE

elements in Mask.
 4. if Mask is scalar with the value TRUE. Vector must have at least as many ele-

ments as there are in Array.
 5. The result is an array of rank 1.
 6. if Vector is present the result size is that of Vector.
 7. if Vector is not present the result size is t, the number of TRUE elements in Mask,

unless Mask is scalar with a value TRUE in which case the result size is the size
of Array.

 Example: R=PACK(A,M)
 PARITY (MASK, DIM)
 Reduce array with .NEQV. operation.

 Argument: MASK Type: L array
 Argument: DIM I scalar in the range 1 <= DIM <=n where n is rank of MASK.

 Example:
 If T has the value true and F has the value false
 PARITY([T,T,T,F]) is true.
 POPCNT (I)
 Number of one bits in the sequence of bits of I.

 Argument: I Type: I
 Result: I Class: E

 Example:
 POPCNT ([1, 2, 3, 4, 5, 6, 7]) has the value [1, 1, 2, 1, 2, 2, 3].
 POPPAR (I)
 Returns the parity of the bit count of an integer expressed as 0 or 1. POPPAR (I)

has the value 1 if POPCNT (I) is odd, and 0 if POPCNT (I) is even.

 Argument: I Type: I
 Result: I Type: E

 Example:
 POPPAR ([1, 2, 3, 4, 5, 6, 7]) has the value [1, 1, 0, 1, 0, 0, 1].
 PRECISION(X)

580 Appendix C

 Returns the decimal precision of the argument. See Chap. 5 and numeric
models.

 Argument: X Type: R, C
 Result: I Class: I

 Example: I=PRECISION(X)
 PRESENT(A)
 Returns whether an optional argument is present.

 Argument: A Type: Any
 Result: L Class: I

 Note: A must be an optional argument of the procedure in which the PRESENT
function reference appears.

 Example: if (PRESENT(X)) then …
 PRODUCT(Array, Dim,Mask)
 The product of all of the elements of Array along the dimension Dim corre-

sponding to the TRUE elements of Mask.

 Argument: Array Type: N
 Result: As Array Class: T

 Note:

 1. Array must be an array.
 2. 1 £ Dim £ n where n is the rank of Array.
 3. Mask must be conformable with Array.
 4. result is scalar if Dim is absent, or Array has rank 1, otherwise the result is an

array of rank n–1.

 Example:

 1. PRODUCT((/1,2,3/)) the result is 6.
 2. PRODUCT(C,Mask=C > 0.0) forms the product of the positive elements of C.

 3. if
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

1 3 5

2 4 6
B

 PRODUCT(B,DIM=1) is (2,12,30) and
 PRODUCT(B,DIM=2) is (15,48)
 RADIX(X)

 Returns the base of the numeric argument. See Chap. 5 and numeric models.

 Argument: X Type: I,R
 Result: I Class: I

581Appendix C

 Example: Base=RADIX(X)
 RANDOM_NUMBER(X)
 Returns one pseudorandom number or an array of pseudorandom numbers from

the uniform distribution over the range 0 £ x < 1

 Argument: X Type: R
 Result: N/A Class: S

 Note: X is intent(out).
 Example: call RANDOM_NUMBER(X)
 RANDOM_SEED(Size,Put,Get)
 Restarts (seeds) or queries the pseudorandom generator used by RANDOM_

NUMBER.

 Argument: Size Type: I
 Result: N/A Class: S

 All arguments are of integer type.

 Note:

 1. Size is intent(out). It is set to the number N of integers that the processor uses to
hold the value of the seed.

 2. Put is intent(in). It is an array of rank 1 and size ³ N. It is used by the processor
to set the seed value.

 3. Get is intent(out). It is an array of rank 1 and size ³ N. It is set by the processor
to the current value of the seed.

 Example: call RANDOM_SEED
 RANGE(X)
 Returns the decimal exponent range of the real argument. See Chap. 5 and the

numeric model representing the argument.

 Argument: X Type: N
 Result: I Class: I

 Example: I=RANGE(N)
 REAL(A, Kind)
 Converts to real from integer, real or complex.

 Argument: A Type: N
 Result: R Class: E

 Example: X=real(A)
 REPEAT(String,N_Copies)
 Concatenates several copies of a string.

582 Appendix C

 Argument: String Type: S
 Result: S Class: T

 Example: New_S=REPEAT(S,10)
 RESHAPE(Source,Shape, Pad,Order)
 Constructs an array of a specifi ed shape from the elements of a given array.

 Argument: Source Type: Any
 Result: As Source Class: T

 Note:

 1. Source must be an array. if Pad is absent or of size zero the size of Source must
be ³ PRODUCT(Shape).

 2. Shape must be a rank 1 array and 0 £ size < 8.
 3. Pad must be an array.
 4. Order must have the same shape as Shape and its value must be a permutation of

(1,2,… ,n) where n is the size of Shape. if absent it is as if it were present with
the value (1,2,…,n).

 5. The result is an array of shape, Shape.

 Example:

 RESHAPE((/1,2,3,4,5,6/),(/2,3/)) has the value
⎛ ⎞
⎜ ⎟
⎝ ⎠

1 3 5

2 4 6

 RESHAPE((/1,2,3,4,5,6/) , (/2,4/) , (/0,0/) , (/2,1/)) has the value
⎛ ⎞
⎜ ⎟
⎝ ⎠

1 2 3 4

5 6 0 0

 RRSPACING(X)
 Returns the reciprocal of the relative spacing of model numbers near the argu-

ment value. See Chap. 5 and the real numeric model.

 Argument: X Type: R
 Result: As X Class: E

 Example: Z=RRSPACING(X)
 SAME_TYPE_AS (A, B)
 Query dynamic types for equality. If the dynamic type of A or B is extensible, the

result is true if and only if the dynamic type of A is the same as the dynamic type of
B. If neither A nor B has extensible dynamic type, the result is processor dependent.

 Argument: A An object of extensible declared type or unlimited polymorphic. If
it is a pointer, it shall not have an undefi ned association status.

 Argument: B An object of extensible declared type or unlimited polymorphic. If
it is a pointer, it shall not have an undefi ned association status.

 Result: L Type: I

583Appendix C

 SCALE(X,I)
 Returns X * b I where b is the base in the model representation of X. See Chap. 5

and the real numeric model.

 Argument: X Type: R
 Result: As X Class: E

 I is of integer type.
 Example: Z=SCALE(X,I)
 SCAN(String,Set, Back)
 Scans a string for any one of the characters in a set of characters.

 Argument: String Type: S
 Result: I Class: E

 Note:

 1. The default is to scan from the left, and will only be from the right when Back is
present and has the value TRUE.

 2. Zero is returned if the scan fails.

 Example: W=SCAN(String,Set)
 SELECTED_CHAR_KIND (NAME)
 Returns the kind value for the character set whose name is given by the character

string NAME or −1 if not supported.

 Argument: NAME Type: Char
 Result: I Class: T

 Note:

 If NAME has the value:

 DEFAULT: The result is the kind of the default character type.
 ASCII: The result is the kind of the ASCII character type.
 ISO_10646: The result is the kind of the ISO/IEC 10646 UCS-4 character type.

 SELECTED_INT_KIND(R)
 Returns a value of the kind type parameter of an integer data type that represents

all integer values n with −10 R < n < 10 R

 Argument: R Type: I
 Result: I Class: T

 Note:

 R must be scalar.
 if a kind type parameter is not available then the value −1 is returned.

584 Appendix C

 Example: I=SELECTED_INT_KIND(2)
 SELECTED_REAL_KIND(P,R,Radix)
 Returns a value of the kind type parameter of a real data type with decimal preci-

sion of at least P digits and a decimal exponent range of at least R.

 Argument: P and R Type: I
 Result: I Class: T

 Note:

 1. P and R must be scalar.
 2. The value −1 is returned if the precision is not available, the value −2 if the expo-

nent range is not available, and −3 if neither is available.

 Example: I=SELECTED_REAL_KIND(P,R)
 SET_EXPONENT(X,I)
 Returns the model number whose fractional part is the fractional part of the

model representation of X and whose exponent part is I.

 Argument: X Type: R
 Result: As X Class: E

 I is of integer type.
 Example: Exp_Part=SET_EXPONENT(X,I)
 SHAPE(Source)
 Returns the shape of the array argument or scalar.

 Argument: Source Type: Any
 Result: I Class: I

 Note:

 1. Source may be array valued or scalar. It must not be a pointer that is disassoci-
ated or an allocatable array that is not allocated. It must not be an assumed-size
array.

 2. The result is an array of rank 1 whose size is equal to the rank of Source.

 Example: S=SHAPE(A(2:5,-1:1)) yields S=(4,3)
 SHIFTA (I, SHIFT)
 The result has the value obtained by shifting the bits of I to the right by SHIFT

bits and replicating the leftmost bit of I in the left SHIFT bits.

 Arguments: I Type: I
 Argument: SHIFT Type: I (non-negative and <= BIT_SIZE(I)).
 Result: Same as I Class: E

 Example: SHIFTA (IBSET (0, BIT_SIZE (0) -1), 2) is equal to
 SHIFTL (7, BIT_SIZE (0) - 3).

585Appendix C

 SHIFTL (I, SHIFT)
 Left shift. Returns the bits of I shifted left.

 Arguments: I Type: I
 Argument: SHIFT Type: I (non-negative and <= BIT_SIZE(I)).
 Result: same as I Class: E

 Example: SHIFTL (4, 1) is 8
 SHIFTR (I, SHIFT)
 Right shift. Returns the bits of I shifted right.

 Arguments: I Type: I
 Argument: SHIFT Type: I (non-negative and <= BIT_SIZE(I)).
 Result: same as I Class: E

 Example: SHIFTR (4, 1) is 2.
 SIGN(A,B)
 Absolute value of A times the sign of B.

 Argument: A Type: I, R
 Result: As A Class: E

 Note:

 In the special case where B is zero normally the result would have the value
ABS(A), but if B is one of the real kind types and the processor is able to distinguish
between plus zero and minus zero then the result is ABS(A) if B is plus zero and the
result is –ABS(A) if B is minus zero.

 B is as A.

 Example: A=SIGN(A,B)
 SIN(X)
 Sine.

 Argument: X Type: R, C
 Result: As argument Class: E

 Note: The argument is in radians.
 Example: Z=SIN(X)
 SINH(X)
 Hyperbolic sine.

 Argument: X Type: R,C
 Result: As argument Class: E

 Example: Z=SINH(X)
 SIZE(Array, Dim)

586 Appendix C

 Returns the extent of an array along a specifi ed dimension or the total number of
elements in an array.

 Argument: Array Type: Any
 Result: I Class: I

 Note:

 1. Array must be an array. It must not be a pointer that is disassociated or an allocat-
able array that is not allocated. if Array is an assumed-size array Dim must be
present with a value less than the rank of Array.

 2. Dim must be scalar and in the range 1 £ Dim £ n where n is the rank of Array.
 3. result is equal to the extent of dimension Dim of Array, or if Dim is absent, the

total number of elements of Array.

 Example: A=SIZE(Array)
 SPACING(X)
 Returns the absolute spacing of model numbers near the argument value. See

Chap. 5 and the real numeric model.

 Argument: X Type: R
 Result: As X Class: E

 Example: S=SPACING(X)
 SPREAD(Source,Dim,N_Copies)
 Creates an array with an additional dimension, replicating the values in the origi-

nal array.

 Argument: Source Type: Any
 Result: As Source Class: T

 Note:

 1. Source may be array valued or scalar, with rank less than 7.
 2. Dim must be scalar and in the range 1 £ Dim £ n+1 where n is the rank of

Source.
 3. N_Copies must be scalar.
 4. The result is an array of rank n+1.

 Example:
 if A is the array (2,3,4) then SPREAD(A,DIM=1,NCOPIES=3) then the result is

the array
2 3 4

2 3 4

2 3 4

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

587Appendix C

 SQRT(X)
 Square root.

 Argument: X Type: R, C
 Result: As argument Class: E

 Example A=SQRT(B)
 STORAGE_SIZE (A, KIND)
 Storage size in bits. Returns the size, in bits, that would be taken in memory by

an array element with the dynamic type of A.

 Argument: A Type: scalar or array of any type.
 Argument: KIND (optional)
 Result: I Class: I

 Example: STORAGE_SIZE (1.0) has the same value as the named constant
NUMERIC_STORAGE_SIZE in the intrinsic module ISO_FORTRAN_ENV.

 SUM(Array, Dim,Mask)
 Returns the sum of all elements of Array along the dimension Dim correspond-

ing to the true elements of Mask.

 Argument: Array Type: N
 Result: As Array Class: T

 Note:

 1. Array must be an array.
 2. 1 £ Dim £ n where n is the rank of Array.
 3. Mask must be conformable with Array.
 4. result is scalar if Dim is absent, or Array has rank 1, otherwise the result is an

array of rank n–1.

 Example:

 1. SUM((/1,2,3/)) the result is 6.
 2. SUM(C,Mask=C > 0.0) forms the arithmetic sum of the positive elements of C.

 3. if
1 3 5

2 4 6
B

⎛ ⎞
= ⎜ ⎟⎝ ⎠

 SUM(B,Dim=1) is (3,7,11)
 SUM(B,Dim=2) is (9,12)
 SYSTEM_CLOCK(Count,Count_Rate,Count_Max)

 Returns integer data from a real time clock.

 Argument: Count Type: I
 Result: N/A Class: S

588 Appendix C

 Note:

 1. Count is intent(out) and is set to a processor dependent value based on the cur-
rent value of the processor clock or to -HUGE(0) if there is no clock. 0 £ Count
 £ Count_Max.

 2. Count_Rate is intent(out) and it is set to the number of processor clock counts
per second, or zero if there is no clock.

 3. Count_max is intent(out) and is set to the maximum value that Count can have or
to zero if there is no clock.

 Example: call SYSTEM_CLOCK(C,R,M)
 TAN(X)
 Tangent.

 Argument: X Type: R,C
 Result: As argument Class: E

 Note: X must be in radians.

 Example: Y=TAN(X)
 TANH(X)
 Hyperbolic tangent.

 Argument: X Type: R,C
 Result: As argument Class: E

 Example: Y=TANH(X)
 THIS_IMAGE ()
 THIS_IMAGE (COARRAY, DIM)
 Cosubscript(s) for this image.

 Argument: COARRAY Shall be a coarray of any type. If it is allocatable it
shall be allocated.

 Argument: DIM (optional) Shall be a default integer scalar. Its value shall be in
the range 1 <=DIM <= n, where n is the corank of
COARRAY. The corresponding actual argument
shall not be an optional dummy argument.

 Class: T

 Results:

 case (i) The result of THIS_IMAGE () is a scalar with a value equal to the
index of the invoking image.
 case (ii) The result of THIS_IMAGE (COARRAY) is the sequence of cosub-
script values for COARRAY that would specify the invoking image.
 case (iii) The result of THIS_IMAGE (COARRAY, DIM) is the value of
cosubscript DIM in the sequence of cosubscript values for COARRAY that
would specify the invoking image.

589Appendix C

 Examples:
 integer, dimension(10,20), codimension[2,0:9,0:*] :: A
 integer, codimension [0:*] :: IA
 for image 5:
 this_image(IA) == 4 and this_image(A) = [1, 2, 0]
 for image 96:
 this_image(A) == [2, 7, 4]
 TINY(X)
 Returns the smallest positive number in the model representing numbers of the

same type and kind type parameter as the argument.

 Argument: X Type: R
 Result: As X Class: I

 Example: T=TINY(X)
 TRAILZ (I)
 Number of trailing zero bits. If all of the bits of I are zero, the result value is

BIT_SIZE (I). Otherwise, the result value is the position of the rightmost 1 bit in I.

 Argument: I Type: I
 Result: I Class: E

 Example: TRAILZ(4) has the value 2.
 TRANSFER(Source,Mold, Size)
 Returns a result with a physical representation identical to that of Source, but

interpreted with the type and type parameters of Mold.

 Argument: Source Type: Any
 Result: As Mold Class: T

 Warning: A thorough understanding of the implementation specifi c internal rep-
resentation of the data types involved is necessary for successful use of this func-
tion. Consult the documentation that accompanies the compiler that you work with
before using this function.

 TRANSPOSE(Matrix)
 Transposes an array of rank 2.

 Argument: Matrix Type: Any
 Result: As argument Class: T

 Note: Matrix must be of rank 2. if its shape is (n,m) then the resultant matrix has
shape (m,n).

 Example: For A =
1 2 3
4 5 6
7 8 9

⎛ ⎞
⎜ ⎟
⎜ ⎟⎝ ⎠

 TRANSPOSE(A) yields

1 4 7
2 5 8
3 6 9

⎛ ⎞
⎜ ⎟
⎜ ⎟⎝ ⎠

590 Appendix C

 TRIM(String)
 Returns the argument with trailing blanks removed.

 Argument: String Type: S
 Result: As String Class: T

 Note: String must be a scalar.
 Example: T_S=TRIM(S)
 UBOUND(Array, Dim)
 Returns all the upper bounds of an array or a specifi ed upper bound.

 Argument: Array Type: Any
 Result: I Class: I

 Note:
 1 £ Dim £ n, where n is the rank of Array. The result is scalar if Dim is present

otherwise the result is an array of rank 1 and size n.
 the result is a scalar if Dim is present otherwise is an array of rank 1, and size n.

 Example: Z=UBOUND(A)
 UCOBOUND (COARRAY, DIM, KIND)
 Upper cobound(s) of a coarray.

 Argument: COARRAY Type: co
 Argument: DIM (optional) Type: I
 Argument: KIND (optional) Type: I
 Result: I Class: I

 Example:
 If NUM_IMAGES() == 24
 INTEGER, CODIMENSION[:,:], ALLOCATABLE::A
 ALLOCATE(A[1:10,*])
 UCBOUND (A) is [10,3] and UCOBOUND(A,DIM=2) is 3
 UNPACK(Vector,Mask,Field)
 Unpacks an array of rank 1 into an array under the control of a mask.

 Argument: Vector Type: Any
 Result: As Vector Class: T

 Note:
 1. Vector must have rank 1. Its size must be at least t, where t is the number of true

elements in Mask.
 2. Mask must be array valued.
 3. Field must be conformable with Mask. Result is an array with the same shape as

Mask.

591Appendix C

 Example:

 With Vector = (1,2,3) and Mask =
⎛ ⎞
⎜ ⎟
⎜ ⎟⎝ ⎠

F T F
T F F
F F T

 and Field =
1 0 0
0 1 0
0 0 1

⎛ ⎞
⎜ ⎟
⎜ ⎟⎝ ⎠

 The result is
1 2 0
11 0
0 0 3

⎛ ⎞
⎜ ⎟
⎜ ⎟⎝ ⎠

 VERIFY(String,Set, Back)
 Verify that a set of characters contains all the characters in a string by identifying

the position of the fi rst character in a string of characters that does not appear in a
given set of characters.

 Argument: String Type: S
 Result: I Class: E

 Note:
 1. The default is to scan from the left, and will only be from the right when Back is

present and has the value TRUE.
 2. The value of the result is zero if each character in String is in Set, or if String has

zero length.
 Example: I=VERIFY(String,Set)

593

 Appendix D

English and Latin Texts

 YET IF HE SHOULD GIVE UP WHAT HE HAS BEGUN, AND AGREE TO
MAKE US OR OUR KINGDOM SUBJECT TO THE KING OF ENGLAND OR
THE ENGLISH, WE SHOULD EXERT OURSELVES AT ONCE TO DRIVE HIM
OUT AS OUR ENEMY AND A SUBVERTER OF HIS OWN RIGHTS AND
OURS, AND MAKE SOME OTHER MAN WHO WAS ABLE TO DEFEND US
OUR KING; FOR, AS LONG AS BUT A HUNDRED OF US REMAIN ALIVE,
NEVER WILL WE ON ANY CONDITIONS BE BROUGHT UNDER ENGLISH
RULE. IT IS IN TRUTH NOT FOR GLORY, NOR RICHES, NOR HONOURS
THAT WE ARE FIGHTING, BUT FOR FREEDOM - FOR THAT ALONE,
WHICH NO HONEST MAN GIVES UP BUT WITH LIFE ITSELF.

 QUEM SI AB INCEPTIS DIESISTERET, REGI ANGLORUM AUT ANGLICIS
NOS AUT REGNUM NOSTRUM VOLENS SUBICERE, TANQUAM INIMICUM
NOSTRUM ET SUI NOSTRIQUE JURIS SUBUERSOREM STATIM EXPELLERE
NITEREMUR ET ALIUM REGEM NOSTRUM QUI AD DEFENSIONEM
NOSTRAM SUFFICERET FACEREMUS. QUIA QUANDIU CENTUM EX NOBIS
VIUI REMANSERINT, NUCQUAM ANGLORUM DOMINIO ALIQUATENUS
VOLUMUS SUBIUGARI. NON ENIM PROPTER GLORIAM, DIUICIAS AUT
HONORES PUGNAMUS SET PROPTER LIBERATEM SOLUMMODO QUAM
NEMO BONUS NISI SIMUL CUM VITA AMITTIT.

 from ‘The Declaration of Arbroath’ c.1320. The English translation is by Sir
James Fergusson.

595

 Appendix E

Coded Text Extract

 OH YABY NSFOUN, YAN DUBZY LZ DBUYLTUBFAJ BYYBOHNX GPDA
FNUZNDYOLH YABY YAN SBF LZ B GOHTMN FULWOHDN DLWNUNX YAN
GFBDN LZ BH NHYOUN DOYJ, BHX YAN SBF LZ YAN NSFOUN OYGNMZ
BH NHYOUN FULWOHDN. OH YAN DLPUGN LZ YOSN, YANGN NKYNHGOWN
SBFG VNUN ZLPHX GLSNALV VBHYOHT, BHX GL YAN DLMMNTN LZ
DBUYLTUBFANUG NWLMWNX B SBF LZ YAN NSFOUN YABY VBG YAN
GBSN GDBMN BG YAN NSFOUN BHX YABY DLOHDOXNX VOYA OY FLOHY
ZLU FLOHY. MNGG BYYNHYOWN YL YAN GYPXJ LZ DBUYLTUBFAJ,
GPDDNNXOHT TNHNUBYOLHG DBSN YL RPXTN B SBF LZ GPDA
SBTHOYPXN DPSENUGLSN, BHX, HLY VOYALPY OUUNWNUNHDN, YANJ
BEBHXLHNX OY YL YAN UOTLPUG LZ GPH BHX UBOH. OH YAN VNGYNUH
XNGNUYG, YBYYNUNX ZUBTSNHYG LZ YAN SBF BUN GYOMM YL EN
ZLPHX, GANMYNUOHT BH LDDBGOLHBM ENBGY LU ENTTBU; OH YAN
VALMN HBYOLH, HL LYANU UNMOD OG MNZY LZ YAN XOGDOFMOHN
LZ TNLTUBFAJ.

597

 Appendix F

Formal Syntax

 Statement ordering
 format statements may appear anywhere between the use statement and the

 contains statement.
 The following table summarises the usage of the various statements within indi-

vidual scoping units.

 Kind of scoping
unit

 Main
program module

 external sub
program

 module sub
program

 Internal sub
program

 interface
body

 use Y Y Y Y Y Y
 format Y N Y Y Y N
 Misc Dec a Y Y Y Y Y Y
 Derived type

defi nition
 Y Y Y Y Y Y

 interface block Y Y Y Y Y Y
 Executable

statement
 Y N Y Y Y N

 contains Y Y Y Y Y N

 a Misc Dec (Miscellaneous declaration) are parameter statements, implicit state-
ments, type declaration statements and specifi cation statements

 Syntax summary of some frequently used Fortran constructs
 The following provides simple syntactical defi nitions of some of the more fre-

quently used parts of Fortran.

 Main program
 program [program-name]
 [specifi cation-construct] …
 [executable-construct] …
 [contains
 [internal procedure] …]

 end [program [program-name]]

598 Appendix F

 Subprogram

 procedure heading
 [specifi cation-construct] …
 [executable-construct] …
 [contains
 [internal procedure] …]

 procedure ending

 module

 module name
 [specifi cation-construct] …
 [contains
 Subprogram
 [subprogram] …]

 end [module [module-name]

 Internal procedure

 procedure heading
 [specifi cation construct] …
 [executable construct] …

 procedure ending

 procedure heading

 [recursive] [type specifi cation] function
 function-name &
 ([dummy argument list]) [result (result name

)]
 [recursive] subroutine subroutine name &
 [([dummy argument list])]

 procedure ending

 end [function [function name]]
 end [subroutine [subroutine name]]

 Specifi cation construct

 derived type defi nition
 interface block
 specifi cation statement

 Derived type defi nition

 type [[, access specifi cation] ::] type name
 [private]
 [sequence]
 [type specifi cation [[, pointer] ::] component

599Appendix F

 specifi cation list]
 . . .
 end type [type name]

 interface block

 interface [generic specifi cation]
 [procedure heading
 [specifi cation construct] …
 procedure ending] …
 [module procedure module procedure name list] …

 end interface

 Specifi cation statement

 allocatable [::] allocatable array list
 dimension array dimension list
 external external name list
 format ([format specifi cation list])
 implicit implicit specifi cation
 intent (intent specifi cation) :: dummy argument name
 list
 intrinsic intrinsic procedure name list
 optional [::] optional object list
 parameter (named constant defi nition list)
 pointer [::] pointer name list
 public [[::] module entity name list]
 private[[::] module entity name list]
 save [[::] saved object list]
 target [::] target name list
 use module name [, rename list]
 use module name , only : [access list]
 type specifi cation [[, attribute specifi cation
] &
 …::object declaration list

 type specifi cation

 integer [([KIND=] kind parameter)]
 real[([KIND=] kind parameter)]
 complex[([KIND=] kind parameter)]
 character[([KIND=] kind parameter)]
 character[([KIND=] kind parameter)] &
 [LEN=] length parameter)

 LOGICAL[([KIND=] kind parameter)]
 type (type name)

600 Appendix F

 Attribute specifi cation

 allocatable
 dimension (array specifi cation)
 external
 intent (intent specifi cation)
 intrinsic
 optional
 parameter
 pointer
 private
 public
 save
 target

 Executable construct

 action statement
 case construct
 do construct
 if construct
 where construct

 Action statement

 allocate (allocation list) [,STAT= scalar integer
variable])
 call subroutinename [([actual argument
specifi cation
 list])]
 close (close specifi cation list)
 cycle [do construct name]
 deallocate(name list) [, STAT= scalar integer vari-
able])
 endfi le external fi le unit
 exit [do construct name]
 goto label
 if (scalar logical expression) action statement
 inquire (inquire specifi cation list) [output item
 list]
 nullify (pointer object list)
 open (connect specifi cation list)
 print format [, output item list]
 read (i/o control specifi cation list) [input item list
]
 read format [, output item list]
 return [scalar integer expression]

601Appendix F

 rewind (position specifi cation list)
 stop [access code]
 where (array logical expression) array assignment
 expression
 write (i/o control specifi cation list) [output item
list]
 pointer variable => target expression
 variable = expression

603

 Appendix G

Compiler Options

 In this appendix we look at some of compiler options we have used during the
development of the programs in the book.

 Cray

 This compiler was available on the Hector Service and several compilers are avail-
able and the default is the Portland Group compiler. To make the Cray compiler
available one had to use the following commands
 module swap PrgEnv-pgi PrdEnv-cray
 and then
 ftn -h caf compiler options source fi les -o executable

 gfortran

 gfortran

 -W
 -Wall
 -fbounds-check
 -pedantic-errors
 -std=f2003
 -Wunderfl ow -O
 -fbacktrace
 -ffpe-trap=zero,overfl ow,underfl ow
 -fopenmp
 -g

604 Appendix G

 g95

 g95

 -Wall
 -std=f2003
 -fbounds-check
 -ftrace

 IBM

 (Power 7)
 xlf

 -qlanglvl=2003pure
 -qxlf2003=polymorphic

 Intel

 ifort
 /check: all
 Determines whether several run time conditions are checked. keyword: all, none,
[no]arg_temp_created, [no]bounds, [no]format, [no]output_conversion
 /coarray
 /debug: full
 Determines the type of debugging information generated by the compiler in the
object fi le. keyword: minimal, partial, full, none.
 /exe:% 1intel
 /[no]fl tconsistency
 Determines whether improved fl oating point consistency is used.
 /fpe:0
 Specifi es fl oating point exception handling at run time for the main program; n = 0,
1, or 3. 0 - fl oating underfl ow results in zero; all other fl oating point exceptions abort
execution
 /gen-interfaces
 /heap-arrays

 /inline: all
 /list

 /[no]map[:name]
 Determines whether the compiler generates a link map (optionally, named name).
 /O
 /openmp /Qopenmp
 /parallel /Qparallel

605Appendix G

 /Qcoarray
 /Qfp-stack-check
 /recursive
 /stand: f03 /std03
 /[no]traceback
 Specifi es whether the compiler should generate extra information in the object fi le
that allows the display of source fi le traceback information at run time when a severe
error occurs.
 /warn: all

 /tcheck
 /traceback
 /warn:all,nodec,interfaces

 Nag

 nagfor
 -C=all
 Compile code with all possible run time checks. all array calls do none present
pointer
 -C=undefi ned
 -f2003
 -info
 -g
 -gline
 include line number information in run time error messages.
 -ieee=stop
 Enables all IEEE arithmetic facilities except for nonstop arithmetic. Execution is
terminated on fl oating overfl ow, divide by zero or invalid operand.

 sun

 f95
 -ansi
 -w4
 -xcheck=%all
 -C
 -ftrap=common,overfl ow,underfl ow

607I. Chivers and J. Sleightholme, Introduction to Programming with Fortran:
With Coverage of Fortran 90, 95, 2003, 2008 and 77,
DOI 10.1007/978-0-85729-233-9, © Springer-Verlag London Limited 2012

 A
 ABS , 181, 183, 210, 212, 232–234, 362, 428,

453, 461, 550, 585
 ACHAR , 227, 470, 550–551
 ACM. See Association of Computing

Machinery (ACM)
 ACOS , 181, 550–1
 Actual argument , 265, 269, 272–273, 292,

355, 458, 473, 499–501, 533, 539–540,
564, 578, 588, 600

 Ada , 2, 27–28, 40–41, 43, 327, 332, 417, 499
 Addition , 3, 58, 60, 62–64, 84, 139, 195, 217,

239, 297, 324, 327–329, 368, 397, 483
 Addition operator , 328–329
 ADJUSTL , 227, 551
 ADJUSTR , 227, 551
 Advance= , 227, 300–301, 308
 A edit descriptor , 139, 219
 AIMAG , 232–234, 551, 558
 AINT , 548–550
 Algol , 2, 22, 197
 Algorithm(s) , 1, 9, 11–12, 15–17, 45, 58,

183–184, 190–191, 198–199, 210, 250,
278, 281–282, 285, 325, 349, 357–358,
366, 434–435, 483

 ALL , 4–5, 11, 51–52, 65–6, 69–70, 137,
141–145, 158–161, 353–354, 411–414,
419–420, 486–487, 489–490, 501,
604–605

 Allocatable
 allocatable variable , 372, 388, 390
 arrays , 35, 99–100, 113, 251, 270, 275,

355, 539, 541, 584, 586
 attribute , 36, 100–101, 129, 270, 275, 362,

458, 471, 539, 552
 coarray , 458

 dummy arrays , 501, 503
 function results , 362–363

 Allocated , 472–473
 Allocate statement , 101, 129, 258, 354
 Alternate return , 530, 531
 ANINT , 550
 ANY , 552, 560, 593
 APL , 2, 25, 43
 Appendix A , 4, 539–545
 Argument(s) , 190, 194–197, 264–266,

268–273, 370, 471–473, 500–501,
539–545, 550–555, 557–558, 562–566,
569–571, 578, 580–582, 584–590

 actual , 500–501
 associated , 533, 540
 character , 272
 complex , 332, 551, 558
 corresponding , 499, 541
 dummy , 265, 500, 598
 keyword , 296, 543
 list , 195, 266, 268, 287–288, 500–501
 optional , 499

 Arithmetic assignment statement , 50–51, 58,
81, 187, 253

 Arithmetic evaluation , 58
 Arithmetic expressions , 57–58, 64, 80, 545
 Arithmetic if , 530
 Arithmetic operators , 115, 223, 239
 Array(s) , 87–90, 99–101, 107–111, 113–118,

120–129, 283–284, 339, 539–542,
559–562, 564–565, 567–569, 572–575,
577–582, 584–587, 589–590

 allocatable , 100
 associated actual argument , 269
 bounds , 114
 character , 221, 247, 324

 Index

608 Index

 Array(s) (cont.)
deferred-shape , 129, 270, 275, 354, 362
 dummy , 275, 540
 element(s) , 113–115, 118, 122, 128–129,

147, 182, 221, 356, 447, 539, 573, 575,
580, 587

 element order , 114, 122, 129
 element ordering , 113–114, 118, 128,

147, 539
 explicit-shape , 270, 539–540
 extent , 114
 functions , 122
 initialisation , 117, 120
 initialise , 2, 113
 manipulating , 95, 99
 nonpointer dummy argument , 269
 one-dimensional , 111, 114, 539
 pointer , 270, 541
 ragged , 299, 305–306
 rank , 114
 representation , 89, 93
 section , 2, 118–120, 124, 129, 146–147,

356, 447, 539, 545
 shape , 114
 size , 93, 99–100, 114, 284, 441, 579
 stride , 124
 two-dimensional , 111, 114

 Array arguments
 actual , 271, 275
 assumed-shape dummy , 272
 dummy , 275
 using assumed-shape dummy , 534

 Array assignment block , 127
 Array constructor(s) , 36, 116, 120–122, 129

 using , 113, 120
 ASCII characters , 174, 540

 set , 4, 218, 227–228, 547, 551,
557, 566

 type , 583
 ASCII collating sequence , 224, 565–566,

570–571
 ASIN , 181, 550, 552
 Assignment statement , 50–1, 58, 80–1, 83, 89,

187, 252–3, 371–2, 393, 543
 defi ned , 371–372
 intrinsic , 371, 543

 Associated , 49, 93, 172–174, 238–239,
251–253, 271–272, 300–305, 308,
346–348, 420, 446, 471–473, 475–477,
540–541, 553

 Association of Computing Machinery (ACM) ,
17, 40, 198, 285, 324, 365

 Association status , 252–253, 302, 553
 Assumed length dummy argument , 272

 Assumed-shape array(s) , 269, 272, 275,
296, 534

 using , 272
 Assumed shape dummy argument , 270
 Assumed shape parameter passing ,

270–271
 Assumed-size , 533, 540, 584, 586
 Assumed-size/explicit-shape dummy array

arguments , 533
 ATAN , 64, 181, 197, 233, 425, 428–429, 452,

461, 540, 550, 553
 ATAN2 , 553
 ATOM , 16, 540, 553–554
 ATOMIC , 448, 540, 549, 553–554
 ATOMIC DEFINE , 553–554
 ATOMIC REF , 554
 Attribute specifi cation , 369, 599
 Automatic array(s) , 270, 275,

278, 355

 B
 Bandwidth , 406
 Base class , 374, 384, 388, 395

 modifi ed , 378–379
 Base type , 231, 244, 368, 395
 Basic , 25
 BESSEL , 554–555
 Bessel functions , 554–556
 BESSEL_J0 , 554
 BESSEL_J1 , 554–555
 BESSEL_JN , 555
 BESSEL_Y0 , 553
 BESSEL_Y1 , 553
 BESSEL_YN , 555
 BGE , 556
 BGT , 556
 Binary , 20, 57, 70, 72, 77–79, 84, 151,

172, 174, 197, 481–482, 484,
493–494

 BIT , 65–66, 68–71, 73, 78–79, 129–130,
132–133, 221, 482–484, 495–496, 543,
556–557, 561, 566, 568, 584–585

 BIT_SIZE , 557
 Blanks, nulls and zeros , 161
 BLE , 556
 Block if statement , 201–205
 BLT , 556–557
 Bounds , 36, 114, 129, 270, 272, 275, 457, 483,

540–542, 569, 576, 590, 604
 BTEST , 78–79, 557
 Buffer , 168–169, 422, 424, 435–436
 Byte , 33, 44, 68
 BZ , 161

609Index

 C
 Call statement , 261, 265, 268, 544
 Case statement , 199, 205–206, 532, 534
 C BINDING module , 469–470
 C character types , 470
 CEILING , 35, 557
 C function pointer type , 471
 CHAR , 470, 557, 566, 583
 Character(s)

 argument , 565, 570
 coarray , 457
 expression , 174–175
 functions , 222, 227–228
 input , 49, 218
 i/o , 219
 operators , 219
 scalar, default , 562–563
 set available , 225
 sets, complete Fortran , 218
 single , 139
 string arguments , 224
 strings , 78, 139, 161, 170, 197, 218, 220,

223–224, 227, 540, 583, 591
 substrings , 221
 variables , 48, 139, 172, 218–220, 222, 224,

227, 272, 541, 545
 C interop , 470, 472, 474, 476, 478
 C language , 42
 CLASS keyword , 372, 388
 Class type , 339
 CLASS type specifi er , 369
 Close statement , 172
 C mask , 573, 575, 580, 587
 CMPLX , 231–235, 557–558
 Coarray , 457–467

 Fortran , 413
 C object pointer type , 471
 Cobol , 21
 Cobound , 540, 569, 590
 Codimension , 461, 463, 540–541, 567, 569,

589–590
 COF , 177
 Collating sequence , 223–224, 227, 540, 557,

565–566, 570–571
 Column information , 157
 Comments , 32, 38, 40, 48, 51–52, 54,

204, 447
 Common block , 472
 Compilation unit , 538
 Compiler options , 532, 603
 COMPLEX , 1–3, 13–14, 26–27, 36, 60–61,

68, 143–145, 202–203, 214, 218–219,
231–235, 239–240, 470, 549–551,
557–558

 Components , 13, 26, 31, 33–34, 36, 158,
244–245, 247, 262, 267, 300, 309–310,
370, 377, 380

 Computer algorithms , 17
 Computer programming , 17, 285, 331, 517
 Computer systems , 9, 15, 28, 31, 70, 128, 171,

175, 344, 407, 493
 Concatenate , 220, 228, 540
 Concurrent processes, asynchronous , 416, 496
 Conditions, end-of-record , 174, 569
 Conformable , 114–115, 127, 129, 540, 564,

573, 575, 579–580, 587, 590
 CONJG , 232, 234, 558, 560
 Constants , 57, 64, 69–70, 80, 175, 288, 290,

361, 486–487, 533, 540–541, 543
 named , 36, 469–471, 543–544, 554, 587

 Constructor , 379–380, 382–385, 389
 Contained , 4, 90, 149, 267, 272, 278, 288,

290, 308, 355, 543–544, 550
 Contains statement , 193, 597
 Continuation character & , 52
 Control specifi cation list , 600–601
 Control statements , 26, 212
 Control structures , 3, 26–27, 35, 47, 88, 95,

99, 108, 185, 199–200, 202, 204, 206,
208, 210, 212–214

 Corank , 458, 588
 COS , 180–181, 232, 354, 558
 COSH , 548, 556
 Count , 141, 223, 229, 397, 424, 435, 550,

558–559, 579, 587–588
 C pointer , 471, 473
 C pointer types , 471
 C programming language , 37, 41–42, 497
 CSHIFT , 557
 C type(s) , 470–471, 565–566
 Cycle , 176, 209, 212, 306, 346–347, 537, 600

 and exit , 209, 212
 statement , 199, 209

 D
 Data description statements , 47
 Data entity , 369, 458, 473, 541
 Data fi le , 172, 176–177, 273, 279,

284, 356
 Data fi les in Fortran , 172
 Data integer , 281, 293, 503
 Data items , 48, 51, 281, 300, 306, 375,

503, 517
 Data object , 69, 369, 413, 540–541, 543,

545, 576
 named , 369, 446, 545

 Data processing statements , 47, 51

610 Index

 Data structures , 85–86, 101, 198, 249–251,
285, 299–300, 324–325, 332, 344,
365–366, 368, 539

 Data types , 3, 25–26, 30, 35, 45, 47, 50, 57,
61, 70–71, 218–219, 231–232,
244–245, 249, 251–252, 300, 308–309,
332, 368–369, 424, 540–541, 545

 DATE_AND_TIME , 281–282, 426–427,
503–504, 559

 Daylight Saving Time , 324
 DBLE , 558
 Deallocate statement , 252, 256, 278
 Debugging , 239, 604
 Decimal point , 51, 53, 56, 131, 134–135, 137,

158–159
 Decremented features , 532
 Default kind , 67
 Deferred-shape arrays , 275, 362
 Defi ned functions , 179, 192, 194–195,

210, 262
 Defi ned types , 3, 26, 243–244, 247, 251, 292,

327, 545
 Defi nition, dummy argument type , 264
 Deleted features , 532
 Denormal , 479, 486, 489–491
 Derived data types , 287, 292–293, 296
 Derived types , 36–37, 243–244, 246, 248, 250,

288, 299, 306, 310, 369–371, 377, 387,
469, 473, 544–545

 defi nition , 288, 381, 540, 542, 544,
597–598

 parameterised , 36
 DIGITS , 560
 DIM , 560, 564–565, 567, 569, 573–575,

577–580, 586, 588, 590
 Dimension attribute , 2, 88–89, 94, 99,

106, 109
 Direct access fi les , 174–175
 Disassociated pointer , 252, 563, 578
 Dislin , 518–519, 521, 523, 525, 527
 Division , 59–64, 80, 84, 204, 217, 239, 486,

489, 541
 Do construct , 110, 372, 600
 do-construct-name , 110
 Do loop , 2, 88, 90, 95–97, 99, 102–103,

106–108, 110, 117, 120–121, 123, 147,
176, 199, 448

 Do statement , 88, 90, 96, 99, 106, 108–109,
176, 206–207, 209, 211–212

 DOT_PRODUCT , 116, 121, 183,
560–561

 Double precision , 331, 424, 481, 484, 514,
532–533, 549–550, 560–561

 Do while construct , 199

 DPROD , 559
 DSHIFTL , 561
 DSHIFTR , 561
 Dummy argument(s) , 36, 188, 194, 196,

264–265, 267, 269, 272–273, 292,
295–296, 355, 370, 458, 499–501, 533,
539–544, 564, 578, 598–599

 assumed length , 272
 assumed shape , 269–272, 540
 assumed size , 533
 character , 272
 explicit shape , 533
 name list , 196, 599
 names , 273, 539, 542
 optional , 501, 564, 578, 588
 passed-object , 370
 procedure , 355

 Dynamic binding , 368, 388–389, 391,
393–395

 Dynamic data structures , 344, 365
 Dynamic type , 369, 372, 563–564, 582, 587

 E
 Easter calculation , 183
 Edit descriptor , 131–137, 139, 141, 153, 162,

174, 219
 Editors , 23, 141
 E edit descriptor , 137
 Effi ciency , 22, 26, 32–33, 175, 282, 533
 E formats , 137, 141, 154, 158–160
 Eiffel , 32, 244, 328, 332, 368
 Elemental , 35, 179, 182–183, 194–195,

282–283, 296, 343, 364, 488, 491–492,
541, 545, 549

 assignment , 541
 function(s) , 182, 194–195, 282,

364, 549
 subroutine , 282, 488, 549

 Else block , 185, 190, 204
 Else if , 176, 199, 203, 205, 212–213, 293,

303–304, 346–347
 Elsewhere block , 127
 End do , 90–91, 94–95, 100, 102–104,

106–107, 125, 187, 222, 224, 273
 End do statement , 176, 206, 209
 End forall statement , 127
 End if statement , 202, 205
 End interface , 328, 338, 371, 379–380,

382–385, 388–389, 542, 599
 End-of-fi le , 174, 568
 End program statement , 49, 52
 End select statement , 206
 End subroutine statement , 264

611Index

 End type , 244–246, 292, 300–301, 303–307,
309, 328, 345, 371, 373–375, 378–379,
382, 385, 389–390, 599

 End where , 127
 Enhanced module facilities , 37, 39
 Entities , 105, 144, 171, 176, 294–295, 369,

372, 446, 458, 469, 471, 473, 540–545,
570, 599

 named , 372, 544
 Entity oriented declaration , 105
 Environment variables , 37, 412
 EOSHIFT , 559, 560
 Epsilon , 72, 74, 562
 ERF , 562
 ERFC , 562
 ERFC_SCALED , 562
 Error condition , 174, 563
 Error message , 64, 173, 240, 254–255,

259, 563
 Error number , 420, 424, 436
 Errors when reading , 168
 Evaluation and testing , 15
 Exceptional values , 93, 541
 Exception handling , 34, 482, 485, 493, 604
 EXECUTE_COMMAND_LINE ,

562–563
 Execution sequence , 458
 Execution time , 113, 129, 191
 Exit statement , 199, 206, 209, 212
 EXP , 44, 181, 210–212, 214, 563, 584
 Explicit interface , 188, 296, 355, 534, 542
 Explicit-shape array , 270, 539–540, 542
 EXPONENT , 59, 70–73, 80, 137, 158–159,

161, 482, 484, 492–493, 563, 572, 574,
581, 584

 Exponential format value , 159
 Exponentiation operator , 58
 Expressions , 2–3, 36, 57–62, 80, 122,

127–128, 141, 183, 199, 201–203, 232,
237, 239, 243, 324

 equivalent , 60
 scalar integer , 128, 544, 600

 Extends , 2–3, 28, 36, 103, 382–383, 385,
542–543, 563–564

 EXTENDS_TYPE_OF , 563–564
 Extents , 36, 60, 114–115, 129, 271–272, 534,

542, 544, 555–556, 586

 F
 Factorial , 189
 F edit descriptor , 134
 File= , 142, 150, 164, 166–167, 172–173, 176,

208, 246, 280, 283, 503, 577

 File name(s) , 143, 155, 169, 174, 273, 281,
503, 517

 arbitrary , 172
 Files , 2, 6, 21, 96, 104, 141–144, 150–151,

153–154, 156–157, 164–177, 187,
246–247, 268, 279–281, 295, 301–302,
345–347, 501–504, 529

 formatted , 157, 165, 175
 internal , 168–169
 unformatted , 167, 175

 Finalize , 420–421, 423, 440
 Final subroutine , 540
 FINDLOC , 564
 First-order ordinary differential equations ,

349, 351, 353–355
 Fixed fi elds on input , 156
 Floating point arithmetic , 481, 493–494, 497
 Floating point formats , 479, 482
 FLOOR , 564
 fmt , 142–147, 149–150, 159, 162–164,

172–173, 175–176, 208, 246, 265,
279–280, 300, 303–304, 308, 345–347,
502–503

 fmt= , 142–143, 147, 162–164, 172–173,
175–176, 208, 246, 265, 279–280, 300,
303–304, 308, 345–347, 502–503, 569

 Forall statement , 113, 128
 form= , 167, 577
 Format labels , 143, 163
 Format statement , 131–133, 138, 140, 143,

145, 149, 153, 157, 162, 170, 597
 Formatted data , 174
 Formatted Fortran output , 144
 Formatting , 148–149, 161, 174
 Fortran character set , 52
 Fortran’s array element ordering , 147
 FRACTION , 564
 Frequency , 206, 229–230, 232–233
 Function(s) , 179–183, 185–197, 209–214,

222–224, 307–308, 380, 382–386, 389,
427–429, 471–473, 489–492, 541–545,
549–551, 553–556, 561–562

 arguments , 195
 elemental , 182
 generic , 181, 331
 header , 188, 190, 196
 IEEE , 491–492
 inquiry , 472, 549
 internal , 192, 195, 534
 intrinsic , 180
 name , 185, 187, 195–196, 542, 598
 pure , 193
 recursive , 188–189
 result , 542–543

612 Index

 Function(s) (cont.)
result clause , 196
 standard , 214, 235
 supplied , 195, 329, 544
 transfer , 79
 transformational , 182
 user defi ned , 185

 G
 GAMMA , 564–565, 571
 Gaussian elimination , 357
 Generating a new line , 149
 Generic , 3, 34, 179, 181, 185, 194–195, 295,

331–342, 371–372, 388–390, 471, 473,
486, 540, 542

 example , 332–333, 335, 337, 339
 functions , 181, 185, 331
 interface , 372
 name , 371
 procedure(s) , 486, 542
 programming , 3, 331–332, 334, 336, 338,

340, 342
 Generic type bound procedure , 538
 Global , 13, 287–288, 296, 409, 472, 504,

514, 542
 Good programming guidelines , 54
 Goto statement , 200, 212, 215
 Graphics , 29, 31, 399, 403, 409, 480, 496,

499, 518–519, 521, 523, 525, 527, 529
 Graphics library , 399, 403, 518

 H
 High-level languages , 21, 24–25
 High Performance Fortran (HPF) , 4, 35,

128, 414
 High Performance Fortran Forum (HPFF) , 414
 Host association , 36, 543–544
 HPF. See High Performance Fortran (HPF)
 HPFF. See High Performance Fortran

Forum (HPFF)
 HUGE , 72–74, 81, 492, 565, 588
 HYPOT , 565

 I
 IACHAR , 227, 565
 IALL , 565
 IAND , 565
 IANY , 565
 IBCLR , 566
 IBITS , 566
 IBSET , 566

 ICHAR , 224, 566
 Icon , 2, 30, 40, 42
 I edit descriptor , 132
 IEEE , 3, 36, 40, 44, 72, 84, 479–494,

496–497, 605
 arithmetic , 479–482, 484, 486, 488–490,

492, 494, 496
 arithmetic support in Fortran , 3
 denormal values , 486, 489

 IEEE NaNs , 486, 489
 IEEE Standard , 84, 493–494
 IEOR , 566
 IERROR , 424
 If construct , 202, 372, 600
 I format , 132, 135, 141, 153, 156
 If statement , 201, 204, 532
 Image , 29, 413, 457–464, 466–467, 542, 554,

566–467, 578, 588–590
 control statements , 458
 current , 457–458
 invoking , 588
 numbers , 460, 463
 selectors , 458

 IMAGE_INDEX , 458, 566–567
 Implicit interface , 542
 Implicit none statement , 48, 51–52
 Implicit typing , 533
 Implied do loops , 104, 146–147
 Impure , 549
 Include , 2, 4, 21–23, 27, 30, 33, 35, 37, 48, 52,

87, 129, 373, 382, 480–481
 INDEX , 223–224, 229, 566–567
 Infi nity , 479, 482–483, 491–492, 541
 Inheritance , 30, 368, 381, 383, 388
 Initialisation , 35–36, 117, 120–121, 252
 Initialisation of components , 35
 Initialise , 121, 126, 310, 375, 380–381,

384, 539
 Initial value problems , 348

 fi rst-order , 348
 Initial values , 80, 90, 120, 213, 244, 349,

376–377, 384, 429, 476
 given , 51, 120

 Inout , 191, 266, 279, 282, 374, 376, 383,
385–386, 389, 500, 502, 563, 576–577

 Input , 2, 47, 51, 56, 115, 144, 155–157,
159–165, 168–170, 172, 215, 219, 232,
240, 353

 formatted , 163
 Input and output (I/O) , 174, 187, 194, 219,

600–601
 Input-item-list , 52
 Input/output statements , 49, 143
 Inquire statement , 598

613Index

 Inquiry functions , 73
 Instructions , 46, 49, 406–407, 544
 INT , 68–69, 73, 77, 181, 214, 232, 235,

339–340, 371, 470, 554, 561, 567, 577,
583–584

 Integer , 61–73, 102–110, 154–158, 165–168,
188–194, 252–256, 269–274, 279–284,
289–294, 303–309, 373–376, 378–380,
382–386, 423–424, 439–441

 argument , 79, 197, 224, 557
 arrays , 340–341, 424
 data , 81, 157, 168, 332, 587
 data type , 71, 583
 declaration , 105, 187
 default , 469, 557, 561, 564
 division , 62–63, 80, 204
 expression , 541, 544, 600
 fi elds , 156, 177
 formats , 132, 134, 479, 482
 kind parameter , 69
 kind representation , 69
 kind type numbers , 77
 kind types , 68, 72, 77, 80
 literal constant , 272
 nearest , 214, 577
 representation , 77, 89
 signed , 495
 type declarations , 68
 type statement , 69
 variable , 79, 174–175, 253, 267, 420,

429, 600
 Integer scalar , 564, 578

 default , 563, 588
 Intent , 193–194, 264–266, 270, 272–274,

276, 279–280, 293, 354, 373–376,
382–386, 388–391, 486–488, 490–492,
500–503, 577

 in , 187, 265–266
 attribute , 261, 265, 268
 inout , 191, 265–266, 279, 282, 374, 376,

383, 385–386, 389, 500, 502, 563,
576–577

 out , 264–266
 Interface , 36–37, 188, 261–262, 267–268,

272–273, 282, 295–296, 328, 338–339,
371–372, 379–385, 388–389, 416–418,
542, 597–599

 block , 339, 501, 542, 597–599
 body , 542, 544, 597
 explicit , 188, 195, 267, 296, 355, 364, 534
 statement , 542

 Internal fi le , 168
 Internal function(s) , 192, 195, 534
 Internal procedure , 296, 542–543, 597–598

 Internal subroutine , 270
 Interoperability , 3, 37–38, 469–472
 Interoperability with C , 38, 471
 Intrinsic , 2–4, 35, 67–68, 79, 115–116,

121–122, 179–183, 194–195, 252–253,
370–371, 471, 500–501, 540–543,
549–550, 599–600

 assignment , 371, 388, 543
 function(s) , 2, 35, 67–68, 72, 79, 122,

124–125, 129, 179–183, 185, 194–195,
232, 253, 262, 275, 285, 302, 345, 356,
500–501, 545, 549–550, 561

 module , 469, 471, 486, 554, 587
 procedure , 116, 121, 296, 541, 543, 599
 subroutine , 282, 540
 types , 243, 471, 545, 564

 I/O. See Input and output (I/O)
 IOR , 561, 567
 Iostat , 173–176, 265, 300–301, 303–304,

345–347, 568–569
 Iostat= , 175
 I/O statements , 48–49, 52
 I/O status value , 568–569
 IPARITY , 567
 IS_CONTIGUOUS , 568
 ISHFT , 568
 ISHFTC , 568
 IS_IOSTAT_END , 568–569
 IS_IOSTAT_EOR , 569
 ISO/IEC , 36–37, 39, 53, 396, 497, 583
 ISO, intrinsic module , 554, 587
 ISO TR , 479–480, 482, 484, 486, 488, 490,

492, 494, 496

 J
 J3 , 5, 37–38, 40
 Java , 2–3, 30, 33–34, 41, 244, 288, 328, 332,

368, 376, 481, 497

 K
 Keyword , 28, 143, 173, 175, 296, 372, 388,

499–501, 543, 573, 575, 604
 argument , 499
 and optional argument(s) , 499

 KIND , 72, 488–489, 533, 550, 554, 564, 569,
571, 583–584, 587, 590, 599

 Kind numbers , 67–68, 70
 Kind type parameter , 68, 70, 290, 361,

470–471, 541, 543, 557, 561, 564, 566,
569, 583–584, 589

 Kind types , 57, 69–70, 72, 80, 181, 183, 234,
361, 550–551, 565

614 Index

 L
 LAPACK , 6
 LaTeX , 29
 LBOUND , 569
 Leap year , 204–205
 L edit descriptor , 240
 LEN , 206, 567, 570, 599
 Length of character argument , 570
 Length of string , 226–227
 LEN_TRIM , 169, 223, 227, 570
 LGE , 224, 227, 550, 570
 LGT , 224, 228, 550, 570
 Linked list(s) , 251, 299–303, 344–347, 365
 LINPACK , 358
 Linux , 4, 54–56, 418, 481, 518
 Lisp , 2
 List directed input , 163
 List directed i/o , 143, 163
 List directed output , 143
 LLE , 224, 227, 550, 570
 LLT , 224, 228, 550, 570–571
 Local variables , 188, 194–195, 261, 266, 270,

278–280, 502–503, 540
 Local variables and the save attribute ,

261, 266
 Location , 229, 564, 572–574
 LOCK , 408–409, 458
 LOG , 55, 181, 183, 232, 483, 571
 LOG10 , 571
 Logical expression(s) , 3, 127–128, 199,

201–203, 207–208, 213, 237–238,
600–601

 Logical operators , 199, 202, 237, 239, 241
 Logicals , 3, 68, 126–128, 172, 199, 201–203,

207–208, 213, 237–241, 487–492,
549–550, 554, 564–565, 571, 599–601

 Logical variable , 240–241, 267
 Logic programming , 29, 42
 LOGO , 229
 Loop , 2, 90–91, 95–97, 102–104, 107–111,

120–121, 146–148, 199, 207, 209–211,
302, 305, 429, 446, 448–449

 Loop variable , 110, 213
 Lower bound , 124, 211, 272, 545, 569

 M
 Mantissa , 70–71, 73, 80, 482, 484
 Mask , 126, 128, 550, 552, 558–559, 564–565,

567, 571–575, 578–580, 587, 590–591
 Masked array assignment , 126
 MASKL , 571
 MASKR , 571–572
 MATMUL , 116, 275, 285, 572

 Matrix multiplication , 116, 274–275
 MAX , 36, 555–556, 572
 MAXEXPONENT , 572
 MAXLOC , 35, 362, 550, 572–573, 575
 MAXVAL , 362, 573–574
 Memory , 85, 113, 128, 256, 265, 302, 344,

353–355, 406, 541, 544, 587
 MERGE , 574
 MERGE_BITS , 574
 Message passing interface (MPI) , 3, 410–412,

415–426, 428, 430, 432, 434–436,
438–444, 452, 455, 459, 463

 implementations , 417–419, 444
 programming , 417–418

 MIN , 12, 36, 63, 71, 560, 574
 MINEXPONENT , 574
 MINLOC , 574
 MINVAL , 575
 Mixed mode arithmetic , 62
 Mixed mode expressions , 232
 MOD , 181, 183, 185–186, 191, 193, 197, 276,

536, 575–576
 Modula , 2
 Modula 2 , 2
 Modules , 188–196, 245–246, 267–268,

270–274, 279–282, 287–290, 292–297,
299–309, 353–357, 370–371, 373–376,
378–380, 382–391, 500–503, 597–599

 containing procedures , 267, 287, 288
 for derived data types , 287, 292–293
 for global data , 287–288
 intrinsic , 469, 471, 486
 for precision specifi cation and constant

defi nition , 288–289
 procedures , 261, 267–268, 289, 296, 328,

338–339, 354, 371, 469, 501, 534,
542–543

 for Sharing arrays of Data , 290–291
 usage and compilation , 295

 MODULO , 576
 Modulus , 183, 232, 234
 MOLD , 563
 Mold type , 563, 578
 MOVE_ALLOC , 576
 MPI. See Message passing interface (MPI)
 Multiple statements , 52
 MVBITS , 576

 N
 NAN , 479, 482–483, 486, 489,

491–493, 541
 NEAREST , 490, 492, 577
 Nested user defi ned types , 247

615Index

 Nesting , 102
 NETLIB , 414, 504, 514, 529
 NINT , 577
 Non advancing read , 174
 Non executable statements , 541, 543, 545
 NOPASS , 370
 NORM2 , 577–578
 NOT , 187, 202, 543, 578, 593
 Nthreads , 447–453
 Null , 35, 161–162, 164, 170, 175,

252–256, 258, 300–301, 345, 470,
476–477, 578

 Nullify , 256, 300–301, 303–304, 307–308,
346–347, 600

 Nullify statement , 252, 302
 Numeric models , 57, 557, 560, 565, 572, 574,

580–581
 Numeric representation , 57, 72
 Numeric types , 81, 217, 572
 NUM_IMAGES , 459–461, 463, 578, 590

 O
 Oberon , 2, 31, 43–44, 368, 396
 Oberon 2 , 2, 31, 368
 Oberon system , 43
 Object , 3, 13, 24, 30–31, 33–34, 36–37, 310,

367–370, 375–377, 381, 387–388, 395,
446–447, 544–545, 582

 coindexed , 554
 current , 375–377
 derived-type , 35, 543
 fi le , 268, 515, 540, 543, 604–605
 polymorphic , 36, 369

 Object oriented programming , 3, 13, 30–31,
33, 43, 367–368, 370, 375–376, 379,
381, 384, 395

 Obsolescent , 532
 Obsolescent features , 532
 Octal , 84
 ODEs. See Ordinary differential equations

(ODEs)
 Omp parallel , 447–448, 450–452
 Only , 11–12, 15–16, 43–44, 68–70, 137, 139,

145, 149–150, 156, 174–176, 196–198,
218–220, 295, 366–368, 370

 OpenMP. See Open multi-processing
(OpenMP)

 Openmpi , 419, 421
 Open multi-processing (OpenMP) , 3, 410,

412–413, 415–416, 426, 445–455, 459,
463, 604

 and coarray Fortran , 3, 415
 directives in Fortran start , 448

 programming , 445, 455
 programming in Fortran , 445

 Open statement , 141, 164, 169,
172–173

 Operating systems , 16, 25, 31, 37, 42, 44, 46,
54, 56, 65, 141, 408, 415–416,
480–481, 496

 Operator and assignment overloading , 327
 Operator hierarchy , 239
 Operators , 3, 25, 35–36, 49, 58–60, 115, 199,

202, 205, 219, 223, 237–239, 241,
327, 491

 logical , 199, 202, 237, 239, 241
 Optional arguments , 499–501, 550, 573,

575, 580
 Optional attribute(s) , 500
 Order of evaluation , 60
 Order of statements , 52
 Ordinary differential equations , 343, 348–349,

351, 353–355, 500
 system of , 348–349

 Ordinary differential equations (ODEs) , 343,
348–355, 498

 Output , 2, 74–75, 96, 110–112, 132–133,
136–139, 142–146, 148, 153–154,
229–230, 239–240, 253–255, 258–259,
421–422, 449–4451

 formatted , 150–151
 Output formats , 138, 154, 169–170
 Output formatting , 112, 150
 Output item list , 52, 600–601
 Overfl ow , 66, 133, 136, 141, 254, 479, 482,

485, 487, 603, 605
 Overloading , 3, 327–328

 P
 Pack , 356, 578–579
 Parallel , 285, 408–409, 446–452, 604

 computing , 399, 406, 414–415
 programming , 3, 397–398, 402,

404, 406, 408–410, 412, 414–416,
443, 459

 solution , 415, 432–433, 435, 437–438,
452–453

 Parameter attribute , 57, 64, 94, 543
 Parameterized derived types , 36
 Parameters , 57, 63–64, 68–70, 93–95,

102–105, 143, 153, 164–165, 173,
187–188, 261–262, 265–273, 288–290,
369–370, 375–376, 470–473, 487,
490–491, 513, 543, 599–600

 passing , 269
 statement , 64, 80, 153, 540

616 Index

 Parity , 579
 Pascal , 2
 Pass , 90, 370, 373, 375, 378–379, 382,

384–385, 388–389, 391
 Pass attribute , 375
 Pass control , 209
 Passed Object Dummy arguments , 370
 PDTs , 36
 PGAS , 409
 Pi

 calculation , 425, 427, 429, 431–433, 435,
437, 452–453, 460–461

 internal value of , 429, 434
 PL/1 , 2, 24
 Pointer(s) , 35–36, 251–256, 258–259, 296,

299–304, 307–308, 344–345, 370,
471–473, 476, 541, 543–545, 549–550,
553, 598–601

 allocation and assignment , 255
 arrays address , 251
 assignment , 36, 251, 253–254, 473
 assignment statement , 252–253, 543
 association , 541, 544–545
 attribute , 251, 543
 component , 301, 370, 473
 disassociation , 252
 initialisation , 252
 name list , 599
 undefi ned , 252
 variables , 252–253, 302, 476, 601

 Polymorphic entity , 369
 Polymorphism , 32, 36, 327, 372, 388, 391,

393–395
 Polymorphism and dynamic binding , 388–389,

391, 393
 POPCNT , 579
 POPPAR , 579
 Positional , 70, 501
 Positional arguments , 499
 Positional number systems , 57, 70, 84
 Positive integers , 70–71, 135, 139,

174, 189
 Positive values , 126, 214, 258
 Postscript , 29, 40
 Precedence , 52, 59–60, 239, 241
 Precedence of operators , 59, 239
 Precision , 65–70, 72, 74, 81, 287–290,

353–355, 361, 424, 426, 481–485, 493,
500, 532–533, 549–550, 579–580

 single , 484
 working , 289–290

 Precision specifi cation , 288–289
 Present , 42, 109, 129, 139, 144, 173–174,

500–501, 553, 557–558, 562–564,

567–569, 572–573, 578–580, 582–583,
590–591

 Print statement , 49, 51–52, 131–132, 143, 154
 Private attribute , 294
 Private statement , 309
 Procedures

 bound , 370, 374–375, 381, 384, 395
 internal , 287, 296, 332, 542–543,

597–598
 intrinsic , 115, 185, 296, 501,

541–543, 550
 pointer component , 370

 PRODUCT , 372, 560–1, 580, 582
 Program execution , 251, 369, 372,

539, 545
 Programming languages , 1, 19–20, 22, 24–25,

28, 30, 33, 39, 42–44, 46, 89, 231, 327,
332, 367–368

 Programming style , 226, 227, 229
 Program statement , 49, 51–52, 543
 Program unit , 94, 129, 187–188, 246,

265–266, 287–288, 292, 294–296, 308,
355, 501, 539, 541, 543–544

 Prolog , 2, 29
 Protected , 21, 287, 294, 377
 Protected attribute , 294
 PUBLIC attribute , 294, 370
 Public attribute , 294
 Public statement , 309
 Pure functions , 35, 179, 193
 Pure procedure , 194
 PVM , 410, 414

 R
 Radix , 71–72, 493, 550, 580–581, 584
 RANDOM_NUMBER , 283, 581
 RANDOM_SEED 581
 RANGE , 581
 Range and precision of numbers , 68
 Rank , 114–115, 120–126, 129, 270–273, 362,

423–424, 539, 544, 552, 559–562,
572–573, 575–576, 578–582, 586–587,
589–590

 Rank of array , 559, 562, 569, 573, 575, 580,
586–587, 590

 Rank of source , 424, 584, 586
 Read , 48–52, 93–96, 102–104, 138–141,

154–177, 204–206, 244–246, 272–274,
279, 281–283, 291–294, 300–308,
345–347, 353–354, 500–504

 advance= , 300
 fmt= , 172
 iostat= , 175

617Index

 statement , 49, 51, 163, 174–175, 219,
301, 533

 unit= , 142
 Reading , 2–3, 5, 7, 17, 40–44, 83–84, 141,

155–158, 162–168, 170, 174–176, 240,
299–303, 346–347, 396

 Reading formatted fi les , 165
 Reading in data , 155–170
 Reading unformatted fi les , 167
 Real(s) , 34, 50–51, 57, 60–74, 79–83,

100–104, 106–109, 114–117, 134–135,
137, 155–158, 170, 210–212, 217,
231–235, 269–274, 276–277, 289–294,
332, 353–357, 426–429, 460–462,
487–492, 560–562, 581–587

 constant , 69
 function , 193, 210, 212, 276, 364, 427
 kind type , 69
 literal constant , 70
 operators , 58
 variable(s) , 62, 107, 141, 170, 297

 Recursion , 22, 35, 188, 190–191, 198, 250,
281–282, 544

 Recursive , 17, 37, 179, 188–190, 196, 198,
279, 281–282, 284–285, 307–308, 499,
501–502, 504–505, 507, 598

 functions , 17, 179, 188–189, 279
 subroutines , 279

 Referencing a subroutine , 265
 Relational expression , 202
 Relational operator , 202
 Rename , 36, 599
 Repeat , 47, 56, 81, 144–145, 154, 170, 197,

199, 207–209, 212, 221, 228–229, 387,
393, 581–582

 Repeat until loop , 207
 Repetition , 2, 99, 107–108, 110, 143–144,

153, 208
 Reshape , 122, 126, 129, 539, 582
 Result clause , 196
 Return statement , 195
 Rewind , 155, 164, 169–170, 601
 RKM. See Runga Kutta Merson (RKM)
 Rounding and truncation , 61–63
 Rounding mode , 484, 486, 490, 492
 RRSPACING , 582
 Runga Kutta Merson (RKM) , 348
 Runtime error , 255, 259

 S
 SAME_TYPE_AS , 582
 Save attribute , 194, 261, 266
 Scalar coarray , 554

 Scalar integer variable , 174, 600
 Scalar-numeric-expression , 110
 Scalar variable , 2, 111, 471, 544
 Scalar-variable-name , 110
 SCALE , 25, 27, 44, 137, 148, 267, 295, 492,

517, 583
 SCAN , 583
 Scope , 14, 22, 37, 147, 179, 188, 195, 261,

266, 278, 296, 472, 542, 544
 Scope of variables , 188, 266
 Scoping unit , 540, 544–545, 597
 Select case statement , 205
 SELECTED_CHAR_KIND , 583
 SELECTED_INT_KIND , 68–69, 73, 77,

583–584
 SELECTED_REAL_KIND , 68–70, 73, 234,

289, 426, 488–489, 584
 Select type , 36, 372, 393–394, 540
 Semicolon , 52–53
 Separator , 132
 Sequential programs , 398, 447
 SET_EXPONENT , 584
 SHAPE , 379, 584
 Shape of array , 573, 575
 SHIFTA , 584
 SHIFTL , 561, 571, 584–585
 SHIFTR , 561, 585
 SHIFT type , 584–585
 SIGN , 35, 492, 585
 Signifi cant digits , 65–66, 69, 137, 158–159,

297, 544, 560
 Simula , 2
 SIN , 99, 180–183, 232, 585
 Sine function , 182, 331
 Singly linked list , 299–303
 SINH , 552
 SIZE , 65–66, 93, 99–100, 113–114, 284,

339–340, 355–356, 423–424, 439–441,
556–557, 568–573, 579, 581–582,
584–587, 589–590

 Skipping spaces and lines , 162
 Slash edit descriptor , 149–150
 Smalltalk , 29, 31
 Snobol , 23
 Sorting , 17, 275–276, 285, 325,

332, 366
 Source fi le traceback information , 605
 SPACING , 586
 Sparse matrix problems , 251, 343–345, 347
 SPREAD , 29, 413, 586
 SQL , 2, 27, 29, 41, 93
 SQRT , 181, 193, 197, 235, 271, 276, 486,

489, 587
 Square bracket(s) , 53, 413

618 Index

 Standardisation , 27, 36, 38, 497
 Statement functions , 296, 534
 Status= , 166, 173, 176, 265, 273, 345–347
 Stepwise refi nement , 13, 15, 17, 26
 Stop statement , 176, 194, 458
 STORAGE , 587
 STORAGE_SIZE , 587
 Stride , 124, 128, 544–545
 String , 218–223, 226–229, 540, 545, 551, 567,

570–571, 581, 583, 590–591
 character expression , 567

 Strong typing , 240
 Structure constructor , 371, 376–381, 384,

387, 544
 Structured programming , 3, 17, 26, 199–200,

215, 243, 249
 Subcomponents , 249, 267, 544
 Submodules , 37
 Subobject , 543
 Subprogram , 234, 266, 270, 287, 296, 472,

539–544, 598
 external , 542

 Subrange types , 32
 Subroutine(s) , 180, 194–195, 261–285,

288–296, 308–309, 331–332, 354–356,
358, 372–374, 376–377, 383–386,
388–391, 426–427, 486–488, 500–504,
540–544, 549, 598

 actual argument , 265
 dummy argment , 265
 elemental , 282–283, 488, 549
 generic , 331
 impure , 549
 internal , 278
 local variable , 266
 pure , 549
 recursive , 281, 284, 308
 scope of variable , 266

 Subscripts , 114, 539, 544, 573
 Substring , 220–221, 227, 447, 545, 567
 Subtraction , 58, 60, 62–64, 84, 217,

483, 541
 Subtraction operator , 329
 SUM , 560, 578, 587
 Supplying your own functions , 185–187
 Sync all , 458, 460–461, 463–464
 Synchronisation , 409, 448
 Sync images , 458
 Sync memory , 458
 SYSTEM_CLOCK , 587
 System of fi rst-order ordinary differential

equations , 348–349, 351, 353, 355
 Systems analysis , 9, 14, 17
 Systems analysis and design , 1, 9, 13–15, 17

 T
 TAN , 180–181, 354, 425, 550, 588
 TANH , 588
 Target , 128, 251–254, 256, 258, 296, 308,

471–473, 476, 541, 543–545, 549–550,
553, 568, 599–601

 attribute , 252–253, 473
 statement , 543

 Templates , 332, 339, 342
 Terminology , 10–11, 113, 169, 187–188, 244,

269, 368, 374–375, 381, 398, 419, 446,
449, 451, 457–458

 TeX , 29
 Text fi les , 171–172, 529
 THIS_IMAGE , 459–461, 463, 588–589
 Threads , 398, 408–409, 446–452
 Three-dimensional spatial problems , 251
 Timing , 191, 277–278, 281, 284, 426, 428,

452, 460–461, 503–504
 TINY , 72, 562, 589
 Tolerance , 209–211, 214, 484
 Tools , 12–13, 17, 177, 190, 224, 283, 287,

414, 534, 537
 Top-down , 1, 12, 15–16
 Trailing blanks , 220, 223, 227–228, 570, 590
 TRAILZ , 589
 TRANSFER , 32, 36, 79, 173–174, 285, 406,

419, 441, 446, 473, 476–477, 589
 Transformational functions , 182–183,

545, 549
 TRANSPOSE , 589
 Trees , 251
 TRIM , 565, 570, 590
 Triplet , 124, 128, 544–545
 Truncation , 57, 61–62, 80, 220, 545, 551
 Truth tables , 237–238, 241
 Type , 47–51, 189–192, 243–247, 300–310,

368–391, 393–394, 471–473, 486–488,
490–491, 539–545, 554–557, 563–565,
569–572, 574–577, 587–590

 abstract data , 26–27, 366, 368
 argument , 549–550
 character data , 3, 218–219
 complex , 327, 543
 complex data , 3, 231–232, 234
 conformance , 564
 construct , 372, 394
 conversion , 62, 64
 declaration statement , 369, 540
 default character , 53, 583
 default fi le , 177
 extensions , 31, 44, 542
 function return , 188
 interoperable , 472–473

619Index

 logical , 550
 logical data , 3, 202
 parent , 542–543
 pointer , 553
 specifi cation , 196, 598–599
 statement , 64, 69, 80, 266, 393–394
 supplying non-default character , 53
 transfer functions , 32

 Type-bound procedure , 36, 370, 540
 Type declaration , 48, 51–52, 64, 69, 101,

196, 245, 290, 369, 371, 375–377,
540, 545, 597

 real , 69–70, 290
 Type defi nition , 244, 288, 292, 301,

370–371, 375, 381, 540, 542, 544,
597–598

 derived , 288, 381, 540, 544, 597–598
 Type is , 3, 30, 36, 71, 188, 292, 309, 368–370,

375, 383, 471, 550, 554

 U
 UBOUND , 590
 UCOBOUND , 590
 Undefi ned pointer , 252
 Underfl ow , 66, 136, 141, 254, 482–3,

485–487, 545, 603–605
 Unformatted fi les , 151, 167, 175
 Unit= , 142–143, 147, 150, 162–164, 166–167,

172–173, 175–176, 208, 246, 265, 273,
279–280, 283, 345–347, 502–503

 Unit numbers , 141, 143, 155, 169, 173, 176
 logical , 172

 UNIX systems , 25, 96
 Unlimited polymorphic , 563, 582
 Unlock statement , 458
 UNPACK , 590
 Upper bound , 124, 211, 272, 545, 590
 Use , 1–5, 9–11, 22–25, 77–81, 172–175,

185–189, 191–198, 243–247, 267–268,
270–279, 287–290, 292–295, 302–308,
376–387, 531–534

 Use association , 370, 545
 Use, only , 295
 User defi ned functions , 179, 192,

194–195, 262

 User defi ned types , 3, 243–244, 247, 327
 nested , 247–248

 Using modules , 292, 355

 V
 Value attribute , 296
 Variable names , 49–50, 52, 163, 253, 541

 invalid , 218
 Variables , 48–52, 80, 168–170, 187–188,

218–222, 237–239, 251–253, 265–266,
278–280, 294–295, 371–373, 375–376,
446–447, 471–473, 543–545

 declarations , 129, 162, 434
 derived-type , 372
 polymorphic , 372, 381, 388, 390

 Variable types , 231–232
 complex , 240
 mixing , 240

 Variable values, actual , 188
 Variance , 270–271, 276, 278
 VERIFY , 190, 228, 591
 Volatile , 36, 458
 Volatile attribute , 36, 458

 W
 WG5 , 5, 37, 40, 43
 Where construct , 600
 Where statement , 113, 126–127
 While loop , 207, 211, 302
 Whole array , 113–118, 120, 122, 124–126,

128, 130, 147, 441
 Whole array manipulation , 115
 Write statement , 148, 153, 163

 X
 X edit descriptor , 133–134, 138
 X format , 162
 X3J3 , 138

 Z
 Zero length string , 591
 Zero sized array , 472, 573, 575

	Cover

	Introduction to Programming with Fortran
	Acknowledgement
	Contents

	Chapter 1: Overview
	1.1 Introduction
	1.2 Program Examples
	1.3 Further Reading
	1.3.1 The Fortran Standard
	1.3.2 J3 and WG5 Working Documents
	1.3.3 Compiler Documentation
	1.3.3.1 g95
	1.3.3.2 gfortran
	1.3.3.3 Intel
	1.3.3.4 Nag
Windows
	1.3.3.5 Oracle/Sun

	1.3.4 Books

	Chapter 2: Introduction to Problem Solving
	2.1 Introduction
	2.2 Natural Language
	2.3 Artificial Language
	2.3.1 Notations

	2.4 Resume
	2.5 Algorithms
	2.5.1 Top-Down
	2.5.2 Bottom-Up
	2.5.3 Stepwise Refinement

	2.6 Module Programming
	2.7 Object Oriented Programming
	2.8 Systems Analysis and Design
	2.8.1 Problem Definition
	2.8.2 Feasibility Study and Fact Finding
	2.8.3 Analysis
	2.8.4 Design
	2.8.5 Detailed Design
	2.8.6 Implementation
	2.8.7 Evaluation and Testing
	2.8.8 Maintenance

	2.9 Conclusions
	2.10 Problems
	 2.11 Bibliography

	Chapter 3: Introduction to Programming Languages
	3.1 Introduction
	3.2 Some Early Theoretical Work
	3.3 What Is a Programming Language?
	3.4 Program Language Development and Engineering
	3.5 The Early Days
	3.5.1 Fortran’s Origins
	3.5.2 Fortran 77
	3.5.3 Cobol
	3.5.4 Algol

	3.6 Chomsky and Program Language Development
	3.7 Lisp
	3.8 Snobol
	3.9 Second-Generation Languages
	3.9.1 PL/1 and Algol 68
	3.9.2 Simula
	3.9.3 Pascal
	3.9.4 APL
	3.9.5 Basic
	3.9.6 C

	3.10 Some Other Strands in Language Development
	3.10.1 Abstraction, Stepwise Refinement and Modules
	3.10.2 Structured Programming
	3.10.3 Data Structuring and Procedural Programming
	3.10.4 Standardisation

	3.11 Ada
	3.12 Modula
	3.13 Modula 2
	3.14 Other Language Developments
	3.14.1 Logo
	3.14.2 Postscript, TeX and LaTeX
	3.14.3 Prolog
	3.14.4 SQL
	3.14.5 ICON

	3.15 Object Oriented Programming
	3.15.1 Simula
	3.15.2 Smalltalk
	3.15.3 Oberon and Oberon 2
	3.15.4 Eiffel
	3.15.5 C++
	3.15.6 Java
	3.15.7 C#

	3.16 Back to Fortran!
	3.16.1 Fortran 90
	3.16.2 Fortran 95
	3.16.3 ISO Technical Reports TR15580 and TR15581
	3.16.4 Fortran 2003
	3.16.5 DTR 19767 Enhanced Module Facilities
	3.16.6 Fortran 2008
	3.16.7 The Future

	3.17 Internet Resources
	3.17.1 Standards Information
	3.17.2 Fortran Discussion Lists
	3.17.3 Other Sources

	3.18 Summary
	 3.19 Bibliography

	Chapter 4: Introduction to Programming
	4.1 Introduction
	4.2 Language Strengths and Weaknesses
	4.3 Elements of a Programming Language
	4.3.1 Data Description Statements
	4.3.2 Control Structures
	4.3.3 Data-Processing Statements
	4.3.4 Input and Output (I/O) Statements

	4.4 Variables—Name, Type and Value
	4.5 Notes
	4.6 Some More Fortran Rules
	4.7 Fortran Character Set
	4.8 Good Programming Guidelines
	4.9 Compilers
	4.10 Program Development
	4.11 Problems

	Chapter 5: Arithmetic
	5.1 An Introduction to Arithmetic in Fortran
	5.2 Example 1: Simple Arithmetic Expressions in Fortran
	5.3 Rounding and Truncation
	5.3.1 Example 2: Type Conversion and Assignment
	5.3.2 Example 3: Integer Division and Real Assignment

	5.4 Example 4: Time Taken for Light to Travel from the Sun to Earth
	5.5 The parameter Attribute
	5.6 Range, Precision and Size of Numbers
	5.7 Health Warning: Optional Reading, Beginners are Advised to Leave Until Later
	5.7.1 Example 5: Default Kinds
	5.7.2 Selecting Different Integer Kind Types
	5.7.3 Selecting Different Real Kind Types
	5.7.4 Specifying Kind Types for Literal Integer and Real Constants
	5.7.5 Positional Number Systems
	5.7.6 Bit Data Type and Representation Model
	5.7.7 Integer Data Type and Representation Model
	5.7.8 Real Data Type and Representation Model
	5.7.9 IEEE 754
	5.7.10 Testing the Numerical Representation of Different Kind Types on a System
	5.7.11 Example 6: Using the Numeric Enquiry Functions
	5.7.12 Example 7: Binary Representation of Different Integer Kind Type Numbers
	5.7.13 Example 8: Binary Representation of a Real Number
	5.7.14 Summary of How to Select the Appropriate Kind Type

	5.8 Variable Status
	5.9 Summary
	5.10 Problems
	5.11 Bibliography

	Chapter 6: Arrays 1: Some Fundamentals
	6.1 Tables of Data
	6.1.1 Telephone Directory
	6.1.2 Book Catalogue
a Catalogue Could Contain:
	6.1.3 Examination Marks or Results
	6.1.4 Monthly Rainfall

	6.2 Arrays in Fortran
	6.2.1 The d imension Attribute
	6.2.2 An Index
	6.2.3 Control Structure

	6.3 Example 1: Monthly Rainfall
	6.3.1 Possible Missing Data

	6.4 Example 2: People’s Weights and Setting the Array Size with a Parameter
	6.5 Summary
	6.6 Problems

	Chapter 7: Arrays 2: Further Examples
	7.1 Varying the Array Size at Run Time
	7.1.1 Example 1: Allocatable Arrays

	7.2 Higher-Dimension Arrays
	7.2.1 Example 2: Two Dimensional Arrays and a Map
	7.2.2 Example 3: Sensible Tabular Output
	7.2.3 Example 4: Average of Three Sets of Values
	7.2.4 Example 5: Booking Arrangements in a Theatre or Cinema

	7.3 Additional Forms of the Dimension Attribute and do Loop Statement
	7.3.1 Example 6: Voltage from −20 to +20 Volts
	7.3.2 Example 7: Longitude from −180 to +180
	7.3.3 Notes

	7.4 The Do Loop and Straight Repetition
	7.4.1 Example 8: Table of Liquid Conversion Measurements
	7.4.2 Example 9: Means and Standard Deviations

	7.5 Summary
	7.6 Problems

	Chapter 8: Whole Array and Additional Array Features
	8.1 Terminology
	8.1.1 Rank
	8.1.2 Bounds
	8.1.3 Extent
	8.1.4 Size
	8.1.5 Shape
	8.1.6 Conformable
	8.1.7 Array Element Ordering

	8.2 Whole Array Manipulation
	8.2.1 Assignment
	8.2.2 Expressions
	8.2.3 Example 1: One Dimensional Whole Arrays in Fortran
	8.2.4 Example 2: Two Dimensional Whole Arrays in Fortran

	8.3 Array Sections
	8.3.1 Example 3: Rank 1 Array Sections
	8.3.2 Example 4: Rank 2 Array Sections

	8.4 Array Constructors
	8.4.1 Example 5: Rank 1 Array Initialisation – Explicit Values
	8.4.2 Example 6: Rank 1 Array Initialisation Using an Implied do Loop
	8.4.3 Example 7: Rank 1 Arrays and the dot_product Intrinsic

	8.5 Initialising Rank 2 Arrays
	8.5.1 Example 8: Initialising a Two Dimensional Array

	8.6 Miscellaneous Array Examples
	8.6.1 Example 9: Rank 1 Arrays and a Step Size of 2 in Implied Do Loop
	8.6.2 Example 10: Rank 1 Array and the sum Intrinsic Function
	8.6.3 Example 11: Rank 2 Arrays and the sum Intrinsic Function
	8.6.4 Example 12: Masked Array Assignment and the Where Statement
	8.6.5 Notes

	8.7 The forall Statement and forall Construct
	8.7.1 Syntax
	8.7.2 Array Element Ordering and Physical and Virtual Memory

	8.8 Summary
	8.9 Problems
	8.10 Bibliography

	Chapter 9: Output of Results
	9.1 Introduction
	9.2 Example 1: Integers – I Format or Edit Descriptor
	9.3 Example 2: The x Edit Descriptor
	9.4 Reals – F Format or Edit Descriptor
	9.4.1 Example 3: Metric and Imperial Conversion and the f Edit Descriptor
	9.4.2 Example 4: Overflow and Underflow and the f Edit Descriptor

	9.5 Reals – E Format or Edit Descriptor
	9.5.1 Example 5: Simple e Edit Descriptor Usage

	9.6 Spaces
	9.7 Characters – A Format or Edit Descriptor
	9.7.1 Example 6: Character Output and the a Edit Descriptor
	9.7.2 Example 7: Headings

	9.8 Example 8: Mixed Type Output in a Format Statement
	9.9 Common Mistakes
	9.10 Open (and Close)
	9.10.1 The Open Statement
	9.10.2 Example 9: Open and Close Usage
	9.10.3 Writing

	9.11 Repetition
	9.12 Some More Examples
	9.13 Example 10: Implied Do Loops and Array Sections for Array Output
	9.13.1 Example 11: Whole Array Output

	9.14 Formatting for a Line Printer
	9.14.1 Mechanics of Carriage Control
	9.14.2 Generating a New Line on Both Line Printers and Terminals

	9.15 Example 12: Timing of Writing Formatted Files
	9.16 Example 13: Timing of Writing Unformatted Files
	9.17 Summary
	9.18 Problems

	Chapter 10: Reading in Data
	10.1 Reading from the Terminal or Keyboard Versus Reading from Files
	10.2 Fixed Fields on Input
	10.2.1 Integers and the I Format
	10.2.2 Example 1: Skipping Data Whilst Reading
	10.2.3 Reals and the F Format
	10.2.4 Reals and the E Format

	10.3 Blanks, Nulls and Zeros
	10.4 Characters
	10.5 Skipping Spaces and Lines
	10.6 Reading
	10.7 File Manipulation Again
	10.8 Reading Using Array Sections
	10.9 Timing of Reading Formatted Files
	10.10 Timing of Reading Unformatted Files
	10.11 Errors When Reading
	10.12 Flexible Input Using Internal Files
	10.13 Summary
	10.14 Problems

	Chapter 11: Files
	11.1 Introduction
	11.2 Data Files in Fortran
	11.3 Summary of Options on Open
	11.4 More Foolproof I/O
	11.5 Summary
	11.6 Problems

	Chapter 12: Functions
	12.1 Introduction
	12.2 An Introduction to Predefined Functions and Their Use
	12.2.1 Example 1: Simple Function Usage

	12.3 Generic Functions
	12.3.1 Example 2: The abs Generic Function

	12.4 Elemental Functions
	12.4.1 Example 3: Elemental Function Use

	12.5 Transformational Functions
	12.5.1 Example 4: Simple Transformational Use
	12.5.2 Example 5: Intrinsic dot_product Use

	12.6 Notes on Function Usage
	12.7 Example 6: Easter
	12.8 Intrinsic Procedures
	12.9 Supplying Your Own Functions
	12.9.1 Example 7: Simple User Defined Function

	12.10 An Introduction to the Scope of Variables, Local Variables and Interface Checking
	12.11 Recursive Functions
	12.11.1 Example 8: Recursive Factorial Evaluation

	12.12 Example 9: Recursive Version of gcd
	12.13 Example 10: After Removing Recursion
	12.14 Internal Functions
	12.14.1 Example 11: Stirling’s Approximation

	12.15 Pure Functions
	12.15.1 Pure Constraints

	12.16 Elemental Functions
	12.17 Resumé
	12.18 Formal Syntax
	12.19 Rules and Restrictions
	12.20 Problems
	12.21 Bibliography
	12.21.1 Recursion and Problem Solving

	Chapter 13: Control Structures
	13.1 Introduction
	13.2 Selection Among Courses of Action
	13.2.1 The Block if Statement
	 13.2.1.1 Example 1: Quadratic Roots
	 13.2.1.2 Note
	 13.2.1.3 Example 2: Date Calculation

	13.2.2 The Case Statement
	 13.2.2.1 Example 3: Simple Calculator
	 13.2.2.2 Example 4: Counting Vowels, Consonants, etc

	13.3 The Three Forms of the do Statement
	13.3.1 Example 5: Sentinel Usage
	13.3.2 Cycle and Exit
	13.3.3 Example 6: e**x Evaluation
	13.3.4 Example 7: Wave Breaking on an Offshore Reef

	13.4 Summary
	13.4.1 Control Structure Formal Syntax

	13.5 Problems
	13.6 Bibliography

	Chapter 14: Characters
	14.1 Introduction
	14.2 Character Input
	14.3 Character Operators
	14.4 Character Substrings
	14.5 Character Functions
	14.6 Collating Sequence
	14.7 Finding Out About the Character Set Available
	14.8 Scan Function Example
	14.9 Summary
	14.10 Problems

	Chapter 15: Complex
	15.1 Introduction
	15.2 Example 1
	15.3 Example 2
	15.4 Complex and Kind Type
	15.5 Summary
	15.6 Problem

	Chapter 16: Logical
	16.1 Introduction
	16.2 I/O
	16.3 Summary
	16.4 Problems

	Chapter 17: Introduction to Derived Types
	17.1 Introduction
	17.2 Example 1: Dates
	17.3 Type Definition
	17.4 Variable Definition
	17.4.1 Example 1 Variant Using Modules

	17.5 Example 2: Address Lists
	17.6 Example 3: Nested User Defined Types
	17.7 Problem
	17.8 Bibliography

	Chapter 18: An Introduction to Pointers
	18.1 Introduction
	18.2 Some Basic Pointer Concepts
	18.3 The associated Intrinsic Function
	18.4 Referencing a and b Before Allocation or Pointer Assignment
	18.4.1 gfortran
	18.4.2 Intel
	18.4.3 Nag

	18.5 Pointer Allocation and Assignment
	18.6 Memory Leak Examples
	18.7 Non-standard Pointer Example
	18.8 Problems

	Chapter 19: Introduction to Subroutines
	19.1 Introduction
	19.2 Example 1
	19.2.1 Defining a Subroutine
	19.2.2 Referencing a Subroutine
	19.2.3 Dummy Arguments or Parameters and Actual Arguments
	19.2.4 Intent
	19.2.5 Local Variables
	19.2.6 Local Variables and the Save Attribute
	19.2.7 Scope of Variables
	19.2.8 Status of the Action Carried Out in the Subroutine
	19.2.9 Modules ‘containing’ Procedures

	19.3 Why Bother with Subroutines?
	19.4 Summary
	19.5 Problems

	Chapter 20: Subroutines : 2
	20.1 More on Parameter Passing
	20.1.1 Assumed-Shape Array
	20.1.2 Deferred-Shape Array
	20.1.3 Automatic Arrays

	20.2 Example 1 – Assumed Shape Parameter Passing
	20.2.1 Notes

	20.3 Character Arguments and Assumed-Length Dummy Arguments
	20.4 Rank 2 and Higher Arrays as Parameters
	20.4.1 Notes

	20.5 Automatic Arrays and Median Calculation
	20.5.1 Internal Subroutines and Scope

	20.6 Recursive Subroutines – Quicksort
	20.6.1 Note – Recursive Subroutine
	20.6.2 Note – Flexible Design
	20.6.3 Note – Timing Information

	20.7 Elemental Subroutines
	20.8 Summary
	20.9 Problems
	20.10 Bibliography
	20.11 Commercial Numerical and Statistical Subroutine Libraries

	Chapter 21: Modules
	21.1 Introduction
	21.2 Basic Module Syntax
	21.3 Modules for Global Data
	21.4 Modules for Precision Specification and Constant Definition
	21.4.1 Note

	21.5 Modules for Sharing Arrays of Data
	21.6 Modules for Derived Data Types
	21.6.1 Person Data Type

	21.7 Private, Public and Protected Attributes
	21.8 The Use Statement
	21.9 Notes on Module Usage and Compilation
	21.10 Formal Syntax
	21.10.1 Interface
	21.10.2 Implicit and Explicit Interfaces
	21.10.3 Explicit Interface

	21.11 Summary
	21.12 Problems

	Chapter 22: Simple Data Structuring in Fortran
	22.1 Introduction
	22.2 Singly Linked List: Reading in an Arbitrary Amount of Text
	22.3 Singly Linked List: Reading in an Arbitrary Quantity of Numeric Data
	22.4 Ragged Arrays
	22.5 Ragged Arrays and Variable Sized Data Sets
	22.6 Perfectly Balanced Tree
	22.7 Date Class
	22.7.1 Notes: DST in the USA

	22.8 Problems
	22.9 Bibliography

	Chapter 23: Operator Overloading
	23.1 Introduction
	23.2 Other Languages
	23.3 Example
	23.4 Problem

	Chapter 24: Generic Programming
	24.1 Introduction
	24.2 Generic Programming and Other Languages
	24.3 Generic Example
	24.3.1 Generic Quicksort in C++
	24.3.2 Generic Quicksort in C#
	24.3.3 Summary

	24.4 Problem
	24.5 Bibliography

	Chapter 25: Mathematical Examples
	25.1 Introduction
	25.2 Using Linked Lists for Sparse Matrix Problems
	25.2.1 Inner Product of Two Sparse Vectors

	25.3 Solving a System of First-Order Ordinary Differential Equations Using Runge–Kutta–Merson
	25.3.1 Note: Alternative Form of the Allocate Statement
	25.3.2 Note: Automatic Arrays
	25.3.3 Note: Subroutine as a Dummy Procedure Argument
	25.3.4 Note: Compilation When Using Modules

	25.4 A Subroutine to Extract the Diagonal Elements of a Matrix
	25.5 The Solution of Linear Equations Using Gaussian Elimination
	25.5.1 Notes
	 25.5.1.1 Module for Kind Type
	 25.5.1.2 Deferred-Shape Arrays
	 25.5.1.3 Intrinsic Functions maxval and maxloc

	25.6 Allocatable Function Results
	25.7 Elemental e**x Function
	25.8 Problems
	25.9 Bibliography

	Chapter 26: Object Oriented Programming
	26.1 Introduction
	26.2 Brief Review of the History of Object Oriented Programming
	26.3 Background Technical Material
	26.4 Type Declaration Statements
	26.4.1 TYPE
	26.4.2 CLASS
	26.4.3 Attributes
	 26.4.3.1 Accessibility Attribute

	26.4.4 Passed Object Dummy Arguments
	26.4.5 Derived Types and Structure Constructors
	26.4.6 Structure Constructors and Generic Names
	26.4.7 Assignment
	26.4.8 Intrinsic Assignment Statement
	26.4.9 Defined Assignment Statement
	26.4.10 Polymorphic Variables
	26.4.11 Executable Constructs Containing Blocks
	26.4.12 ASSOCIATE Construct
	26.4.13 Select Type Construct

	26.5 Example 1 – The Basic Shape Class
	26.5.1 Key Points
	26.5.2 Notes
	26.5.3 Example 1 with Private Data
	26.5.4 Solution 1 with an Interface to Use the Class Name for the Structure Constructor
	26.5.5 Public and Private Accessibility

	26.6 Example 2 – Simple Inheritance
	26.6.1 Base Shape Class
	26.6.2 Circle – Derived Type 1
	26.6.3 Rectangle – Derived Type 2
	26.6.4 Simple Inheritance Test Program

	26.7 Example 3 – Polymorphism and Dynamic Binding
	26.7.1 Base Shape Class
	26.7.2 Circle – Derived Type 1
	26.7.3 Rectangle – Derived Type 2
	26.7.4 Shape Wrapper Module
	26.7.5 Display Subroutine
	26.7.6 Test Program
	26.7.7 Program Output

	26.8 Summary
	26.9 Problems
	26.10 Bibliography

	Chapter 27: Introduction to Parallel Programming
	27.1 Introduction
	27.2 Parallel Computing Classification
	27.3 Amdahl’s Law
	27.3.1 Amdahl’s Law Graph 1–8 Processors or Cores
	27.3.2 Amdahl’s Law Graph 2–64 Processors or Cores

	27.4 Gustafson’s Law
	27.4.1 Gustafson’s Law Graph 1–64 Processors or Cores

	27.5 Memory Access
	27.6 Cache
	27.7 Bandwidth and Latency
	27.8 Flynn’s Taxonomy
	27.9 Consistency Models
	27.10 Threads and Threading
	27.11 Threads and Processes
	27.12 Data Dependencies
	27.13 Race Conditions
	27.14 Mutual Exclusion – Mutex
	27.15 Monitors
	27.16 Locks
	27.17 Synchronization
	27.18 Granularity and Types of Parallelism
	27.19 Partitioned Global Address Space – PGAS
	27.20 Fortran and Parallel Programming
	27.21 MPI
	27.22 OpenMP
	27.23 Coarray Fortran
	27.24 Other Parallel Options
	27.24.1 PVM
	27.24.2 HPF

	27.25 Top 500 Supercomputers
	27.26 Summary
	27.27 Bibliography
	27.27.1 Computer Hardware
	 27.27.1.1 AMD
	 27.27.1.2 IBM

	27.27.2 Intel
	27.27.3 Computer Operating Systems
	27.27.4 Parallel Programming

	Chapter 28: MPI – Message Passing Interface
	28.1 Introduction
	28.2 MPI Programming
	28.3 Compiler and Implementation Combination
	28.4 Individual Implementation
	28.4.1 MPICH2
	28.4.2 Open MPI

	28.5 Compiler and MPI Combinations Used in the Book
	28.6 The MPI Memory Model
	28.7 Example 1 – Hello World
	28.8 Example 2 – Hello World Using Send and Receive
	28.9 Example 3 – Serial Solution for pi Calculation
	28.10 Example 4 – Parallel Solution for pi Calculation
	28.11 Example 5 – Work Sharing Between Processes
	28.12 Summary
	28.13 Problem

	Chapter 29: OpenMP
	29.1 Introduction
	29.2 OpenMP Memory Model
	29.3 Example 1 – Hello World
	29.4 Example 2 – Hello World Using Default Variable Data Scoping
	29.5 Example 3 – Hello World with Private thread_number Variable
	29.6 Example 4 – Parallel Solution for pi Calculation
	29.7 Summary
	29.8 Problem

	Chapter 30: Coarray Fortran
	30.1 Introduction
	30.2 Coarray Terminology
	30.3 Example 1 – Hello World
	30.4 Example 2 – Broadcasting Data
	30.5 Example 3 – Parallel Solution for Pi Calculation
	30.6 Example 4 – Work Sharing
	30.7 Summary
	30.8 Problem

	Chapter 31: C Interop
	31.1 Introduction
	31.2 ISO_C_BINDING Module
	31.3 Named Constants and Derived Types in the Module
	31.4 Character Interoperability
	31.5 Procedures in the Module
	31.6 Interoperability of Intrinsic Types
	31.7 Other Aspects of Interoperability
	31.8 C_LOC Examples
	31.9 Example 1
	31.9.1 Gfortran Output
	31.9.2 Intel Output
	31.9.3 Nag Output

	31.10 Example 2
	31.11 Bibliography
	31.12 Problem

	Chapter 32: ISOTR 15580 IEEE Arithmetic
	32.1 Introduction
	32.2 History
	32.3 IEEE 754 Specifications
	32.3.1 Single Precision Floating Point Format
	32.3.2 Double Precision Floating Point Format
	32.3.3 Two Classes of Extended Floating Point Formats
	32.3.4 Accuracy Requirements
	32.3.5 Base Conversion – Converting Between Decimal and Binary Floating Point Formats and Vice Versa
	32.3.6 Exception Handling
	32.3.7 Rounding Directions
	32.3.8 Rounding Precisions

	32.4 Resumé
	32.5 ISO TR 15580
	32.5.1 IEEE_FEATURES Module
	32.5.2 IEEE_EXCEPTIONS Module
	32.5.3 IEEE_ARITHMETIC Module
These are given below
	 32.5.3.1 IEEE Data Type Selection
Integer Function SELECTED_real_KIND(P,R)
	 32.5.3.2 General Support Enquiry Functions
LOGICAL Function IEEE_SUPPORT_DATATYPE(X)
	 32.5.3.3 Rounding Modes
Type IEEE_ROUND_type
	32.5.3.4 Number Classification
Type IEEE_CLASS_TYPE
	 32.5.3.5 Arithmetic Operations

	32.6 Summary
	32.7 Bibliography
	32.7.1 Web-Based Sources
	32.7.2 Hardware Sources
	32.7.3 Operating Systems
	32.7.4 Java and IEEE 754
	32.7.5 C and IEEE 754

	Chapter 33: Miscellaneous Features and Examples
	33.1 Introduction
	33.2 Keyword and Optional Arguments
	33.3 Allocatable Dummy Arrays
	33.4 Non Recursive Quicksort
	33.4.1 Gfortran
	33.4.2 Intel
	33.4.3 Nag
	33.4.4 Notes – Version Control Systems

	33.5 Simple Graphics Programming – Dislin
	33.6 Problem
	33.6.1 Hint

	33.7 Bibliography

	Chapter 34: Converting from Fortran 77
	34.1 Introduction
	34.2 Deleted Features
	34.3 Obsolescent Features
	34.3.1 Arithmetic if
	34.3.2 Real and Double Precision Do Control Variables
	34.3.3 Shared Do Termination and Non-enddo Termination
	34.3.4 Alternate Return
	34.3.5 Pause Statement
	34.3.6 Assign and Assigned Goto Statements
	34.3.7 Assigned Format Statements
	34.3.8 H Editing

	34.4 Better Alternatives
	34.5 Commercial Conversion Tools
	34.5.1 Convert
	34.5.2 Forcheck
	34.5.3 Forstruct
	34.5.4 Forstudy
	34.5.5 Fortran90-Lint
	34.5.6 Plusfort
	34.5.7 VAST/77to90

	34.6 Example of plusFORT Capability from Polyhedron Software
	34.6.1 Original Fortran 66
	34.6.2 Fortran 77 Version
	34.6.3 Fortran 90 Version

	34.7 Summary

	Appendix A
	Glossary

	Appendix B
	ASCII Character Set

	Appendix C
	Intrinsic Functions and Procedures

	Appendix D
	English and Latin Texts

	Appendix E
	Coded Text Extract

	Appendix F
	Formal Syntax

	Appendix G
	Compiler Options
	Cray
	gfortran
	g95
	IBM
	Intel
	Nag
	sun

	Index

