
Guide to 
Fortran 2008 
Programming

Walter S. Brainerd



Guide to Fortran 2008 Programming 





Walter S. Brainerd 

Guide to Fortran 2008 
Programming



Walter S. Brainerd 

Tucson, Arizona, USA 

 
ISBN 978-1-4471-6758-7 ISBN 978-1-4471-6759-4 (eBook) 
DOI 10.1007/978-1-4471-6759-4 
 
Library of Congress Control Number: 2015949998
 
Springer London Heidelberg New York Dordrecht  
© Springer-Verlag London 2009, 2015 
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the 
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, 
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information 
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now 
known or hereafter developed.  
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication 
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant 
protective laws and regulations and therefore free for general use.  
The publisher, the authors and the editors are safe to assume that the advice and information in this book are 
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors 
give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions 
that may have been made. 
 
Printed on acid-free paper 
 
Springer-Verlag London Ltd. is part of Springer Science+Business Media (www.springer.com) 

The Fortran Company 



Preface

Fortran has been the premier language for scientific computing since its introduction in
1957. Fortran originally was designed to allow programmers to evaluate formu-
las—FORmula TRANslation—easily on large computers. Fortran compilers are now
available on all sizes of machines, from small desktop computers to huge multiproces-
sors.

The Guide to Fortran 2008 Programming is an informal, tutorial introduction to the
most important features of Fortran 2008 (also known as Fortran 08), the latest standard
version of Fortran. Fortran has many modern features that will assist the programmer
in writing efficient, portable, and maintainable programs that are useful for everything
from “hard science” to text processing.

Target Audience
This book is intended for anyone who wants to learn Fortran 08, including those famil-
iar with programming language concepts but unfamiliar with Fortran. Experienced
Fortran 90/95 programmers will be able to use this volume to learn more about the im-
portant features of F90/95, such as modules and arrays, and to assimilate quickly those
features in Fortran 03 and Fortran 08 that are not in Fortran 90/95.

This guide is not a complete reference work for the entire Fortran language; it cov-
ers the basic features needed to be a good Fortran programmer and an introduction to
the important features of Fortran 66, 77. 90, 95, 03, and 08. Many older error-prone fea-
tures have been omitted and some of the more esoteric features that are new to Fortran
also are not discussed. To understand some of the features used in old Fortran pro-
grams, other sources should be consulted after learning the best basic collection of fea-
tures for writing new codes or enhancing old ones.

Guide to Fortran 2008 Programming is organized so that it may be read from begin-
ning to end, but also particular topics may be studied by reading some chapters before
previous ones are mastered. To a reasonable extent, all the material about one topic is
presented together, making the book suitable as a reference work, as well as a tutorial.

Examples and Case Studies
Most of the important features of the Fortran programming language are covered with
examples, beginning with the simplest constructs. The book concentrates to some ex-
tent on the newer features of the Fortran programming language, because they often
provide the best facilities to accomplish a particular programming task. Both the style
of the many example programs and the selection of topics discussed in detail guide the
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vi Preface

reader toward acquiring programming skills to produce Fortran programs that are
readable, maintainable, and efficient.

Case studies are used to illustrate the practical use of features of Fortran 08 and to
show how complete programs are put together. There are also simple problems to en-
able the reader to exercise knowledge of the topics learned.

Style of the Programming Examples
To illustrate the author’s opinion of good Fortran programming style, the program-
ming examples do not illustrate the wide variety of styles that might be used. There are
certainly many other good programming styles, but it is important to use a style con-
sistently within a programming project. The style notes also reflect opinions of the au-
thor and reflect one possible good style to use.

Most of the program examples have been run on either the free GCC compiler
gfortran or the Intel Fortran compiler ifort.

Organization of the Content
An unusual feature of the book is that the first chapter contains a complete discussion
of all the basic features needed to write complete Fortran programs: the form of For-
tran programs, data types, simple expressions and assignment, and simple input and
output. Subsequent chapters contain detailed discussions of control constructs, mod-
ules, procedures, arrays, character strings, data structures and derived types, pointer
variables, input/output, object-oriented programming, and coarrays.

Module-oriented programming is a very important part of Fortran programming
and the topic of modules is introduced early to provide the framework for organizing
data and procedures for a Fortran program.

From the beginning, Fortran has had extensive facilities for input and output; how-
ever, this is a topic that is not explored fully in many books because it is a little more
difficult than other features and perhaps just not as interesting as some features. The
use of these facilities is very important in production programs, so this book contains,
in Chapter 11, an extensive discussion of the excellent input/output facilities in Fortran.

Appendix A lists the many intrinsic procedures. Appendix B provides a brief infor-
mal syntax specification for the language.

There still will be occasions when more details about the language must be
learned. In these cases it will be necessary to consult the official standard, published by
the International Standards Organization or the reference work The Fortran 2003 Hand-
book, by Adams, Brainerd, Hendrickson, Maine, Martin, and Smith, Springer, 2009.

For more information about Fortran, go to http://www.fortran.com.
Many suggestions made by Brian Smith improved the book significantly.
Bill Long of Cray Inc. ran some programs using the Cray compiler that used For-

tran 2008 features not implemented on any compiler available to the author.

Tucson, Arizona, USA Walter S. Brainerd
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Introduction to Programming in Fortran 1
The best way to learn a programming language is to start reading and writing pro-
grams immediately. If a computer is available, we encourage you to write and run pro-
grams modeled on the simple programs in this chapter. In addition to this book, you
will need a short set of directions to show you how to enter and run a program at your
local installation.

This chapter covers the basic features of Fortran needed to perform simple calcula-
tions and print their results. Two case studies illustrate these features and provide
some insight into the debugging process.

1.1 Programs that Calculate and Print

Since computers are very good at arithmetic and Fortran is designed to be very good at
expressing numerical computations, one reasonable thing to learn first about Fortran is
how to tell a computer to do the sort of arithmetic that otherwise might be done by
hand or with the aid of a hand calculator. This section describes how to write programs
to calculate and to print the answer.

Simple Calculations

The first example is a program that prints the result of an addition.

program calculation_1
   print *, 84 + 13
end program calculation_1

The program calculation_1 tells the computer to add the numbers 84 and 13 and
then to print the computed sum, 97. When the computer is told to run calculation_1,
it does precisely that: It adds the two numbers and prints their sum. The execution out-
put will look something like this.

 97

© Springer-Verlag London 2015 1
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2 Chapter 1 Introduction to Programming in Fortran

Editing, Compiling, and Running a Program

Use your favorite editor on your computer system to edit a file with suffix specified by
the compiler you are using, for example, .f90. How this is done varies from one sys-
tem to another and it is assumed that you can do this. For our example, the file might
be named calculation_1.f90. It is a good scheme to name the file the same as the
program, but with the .f90 suffix.

To see the contents of the file at any time, you can use the editor again or type a
command at the prompt, which might be more, less, type, cat, or something else, de-
pending on your system. For example, on a Linux system that uses $ as the prompt:

$ less calculation_1.f90

program calculation_1
   print *, 84 + 13
end program calculation_1

Compiling the program means invoking a piece of software (compiler) that translates
the Fortran statements to computer instructions. This is done with a command similar
to the following:

$ fortran calculation_1.f90

If the compilation is successful, an executable program called a.out or a.exe will be
found in your directory or folder; you may confirm this by listing its contents (ls or
dir, for example).

The program may now be run by typing the command a, a.exe,  or ./a.out.

$ ./a.out

 97

There are more sophisticated ways to edit and run a program, such as using a graphi-
cal interface supplied with many compilers.

Default Print Format

The asterisk following the keyword print tells the computer that the programmer will
not be specifying the exact format or layout for the printed answer. Therefore, the For-
tran system will use a default format, also called a list-directed format (11.8), designed
to be satisfactory in most cases. The Fortran programming language allows some free-
dom in the design of default formats, so your output may differ slightly from the sam-
ple execution shown above.

Printing Messages

If you want the computer to print the exact typographic characters that you specify, en-
close them in quotation marks (double quotes), as illustrated by the program quotes.
The quotes are not printed in the output.
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program quotes
   print *, "84 + 13"
end program quotes

 84 + 13

In a Fortran program, a sequence of typographic characters enclosed in quotes is a
character string. A character string may contain alphabetic characters as well as nu-
meric characters and may contain other special characters such as punctuation marks
and arithmetic symbols.

Printing both exact literal characters and a computed numeric value produces the
following easy-to-read output.

program calculation_1_v2
   print *, "84 + 13 =", 84 + 13
end program calculation_1_v2

 84 + 13 = 97

In the program calculation_1_v2 (calculation 1 version 2), there are two items in the
list in the print statement, a character constant "84 + 13 =" to be printed exactly as
written (but without the delimiting quotation marks) and an arithmetic expression
whose value is first calculated and then printed. Although the two items may look sim-
ilar, they are treated quite differently. Enclosing the character string in quotes means
that it is to be transcribed character for character, including the three blank characters
(spaces, in ordinary typing), while the same expression written without quotes is to be
evaluated so that the sum can be printed. Commas are used to separate the items in the
list of a print statement.

The program Statement

Each Fortran program begins with a program statement and ends with an end program
statement. The program statement consists of the keyword program followed by a pro-
gram name of the programmer s choice. A name must start with a letter and consist of
at most 63 letters, digits, and underscores; the letters may be uppercase or lowercase.
Other names in Fortran also follow this rule.

The end program Statement

The end program statement begins with the keywords end program. It must be fol-
lowed by the name of the program. Every Fortran program must have an end program
statement as its last statement.

Exercises

1. Write and run a program that prints your name.
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2. Write and run a program that computes the sum of the integers 1 through 9, pre-
ceded by a short message explaining what the output is.

3. What computer output might be expected when the following program is run?

program simple
   print *, 1, "and", 1, "equals", 1 + 1
end program simple

1.2 Intrinsic Data Types

The intrinsic (i.e., built-in) data types in Fortran are integer, real, complex, logical, and
character. Each data type has a set of values that may be represented in that type and
operations that can be performed on those values. We already have seen examples of
the use of two of these data types. "84 + 13" (including the quotation marks) is a char-
acter string constant, and 84 + 13 is an expression whose value is of type integer, in-
volving two integer operands, 84 and 13, and the arithmetic operator +. The following
subsections discuss each of the five intrinsic types and the way that constants of those
types are written in Fortran.

Integer Type

The integer type is used to represent values that are whole numbers. In Fortran, inte-
ger constants are written much like they are written in ordinary usage. An integer con-
stant is a string containing only the digits 0 9, possibly followed by an underscore (_)
and a named integer constant, which designates the kind parameter as described later
in this section. The following are examples of integer constants.

23  0  1234567  42_short  42_long

Real Type

There are two forms of a real constant in Fortran. The first is called positional form
because the place value of each digit is determined by its position relative to the deci-
mal point. The positional form of a real constant consists of an integer followed by a
decimal point followed by a string of digits representing the fractional part of the val-
ue, possibly followed by an underscore and a kind parameter. Assuming that double
and quad are names of integer constants that are permissible real kinds on the Fortran
system being used, all the following are real constants written in positional form.

13.5            0.1234567    123.45678
00.30_double    3.0          0.1234567_quad

The exponential form of a real number consists of a real number written in posi-
tional form followed by the letter e and an optionally signed integer (without a kind
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parameter) and optionally followed by an underscore and kind parameter. The letter e
is read as “times 10 to the power” and the integer following the e is a power of 10 to
be multiplied by the number preceding the e. Exponential notation is useful for writing
very large or very small numbers. For example, 23.4e5 represents 23.4 times 10 to the
power 5, 23.4  105, or 23.4  100,000 = 2,340,000. The integer power may contain a mi-
nus or plus sign preceding it, as in the real constant 2.3e-5, which is 2.3  10 5 or 2.3

 0.00001 = 0.000023. Two more examples are 1.0e9_double, which is one billion with
kind parameter double, and 1.0e-3, which is 1/1000.

Complex Type

The Fortran complex type is used to represent the mathematical complex numbers,
which consist of two real numbers and often are written as a + bi. The first real number
is called the real part and the second is called the imaginary part of the complex num-
ber. In Fortran, a complex constant is written as two (possibly signed) real numbers,
separated by a comma and enclosed in parentheses. If one of the parts has a kind pa-
rameter, the other part should have the same kind parameter; the complex constant
then is that kind. Examples of complex constants are

(1.0, -1.0)
(-1.0, 3.1e-27)
(3.14_double, -7.0_double)

In the last example, double must be an integer parameter whose value is a kind avail-
able on the system being used.

Arithmetic Operators

The operators that may be used to combine two numeric values (integer, real, or com-
plex) include +, -, *, /, and **. Except for **, these symbols have their usual mathe-
matical meaning indicating addition, subtraction, multiplication, and division. The two
asterisks indicate exponentiation; that is, the value of 2**4 is 16, computed as 2 raised
to the power 4 or 24 in mathematical notation. The symbols + and - may be used as
unary operators to indicate the identity and negation operations, respectively.

Integer division always produces an integer result obtained by chopping off any
fractional part of the mathematical result. For example, since the mathematical result of
23/2 is 11.5, the value of the Fortran arithmetic expression

23.0 / 2.0

is 11.5, but the value of the expression

23 / 2

which is the quotient of two integer constants, is 11. Similarly, the value of both the ex-
pressions
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-23 / 2     23 / (-2)

is 11.

Relational Operators

Numeric (and character) values may be compared with relational operators. The form
of each relational operator is given in Table 1-1. Complex values may be compared

only with the relational operators == (equal) and /= (not equal). However, due to
roundoff error, in most cases it is not appropriate to compare either real or complex
values using either the == or the /= operator. In such cases, it is better to test for ap-
proximate equality instead. For example, it is possible to check that x is approximately
equal to y with the expression

abs(x - y) < 1.0e-5

where abs(x - y) is the absolute value of the difference between x and y. The result of
a relational operator is type logical.

Mixed-Mode Expressions

Mathematically, the integers are a subset of the real numbers and the real numbers are
a subset of the complex numbers. Thus, it makes sense to combine two numeric values,
creating a mixed-mode expression, even if they are not the same type. The two oper-
ands of a numeric operator do not have to be the same data type; when they are differ-
ent, one is converted to the type of the other prior to executing the operation. If one is
type integer and the other is type real, the integer is converted to a real value; if one is
type integer and the other is type complex, the integer is converted to a complex value;
if one is type real and the other is type complex, the real is converted to a complex val-
ue. As an example, the value of the expression

23.0 / 2

Table 1-1  The relational operators

Fortran form Meaning

< Less than

<= Less than or equal to

== Equal to

/= Not equal to

>= Greater than or equal to

> Greater than
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is 11.5, because the integer 2 is converted to a real value and then a division of two real
values is performed. If the two operands have different kind parameters, usually the
number whose kind parameter specifies lesser precision is converted to the kind with
greater precision before the operation is performed.

Logical Type

The logical type is used to represent the two truth values true and false. A logical con-
stant is either .true. or .false., possibly followed by an underscore and a kind pa-
rameter.

The operators that may be used to combine logical values are .not., .and., .or.,
.eqv., and .neqv. They are all binary operators except the unary operator .not. The
value resulting from the application of each logical operator is given in Table 1-2. To
give one simple example, the value of

.false. .eqv. .false.

is true.

Character Type

The character type is used to represent strings of characters. The form of a character
constant is a sequence of any characters representable in the computer delimited by
quotation marks. If a quotation mark is to occur in the character string, it is represent-
ed by two quotation marks with no intervening characters. If the character constant is
not default kind, the kind precedes the constant (see the third example below).

"Joan"
"John Q. Public"
iso_10646_"Don't tread on me."
"He said, ""Don't tread on me."""

There is only one character operator that produces a character result: concatena-
tion. The symbol used is // and the result of the binary operator is a string of charac-
ters consisting of those in the first string followed by those in the second string. For
example, the value of "John Q." // "Public" is the string John Q.Public. Note that
there is no blank after the period, although there could have been; the value of
"John Q. " // "Public" is the string John Q. Public.

Table 1-2 Values of the logical operators

x1 x2 .not. x1 x1 .or. x2 x1 .and. x2 x1 .eqv. x2 x1 .neqv. x2
True True False True True True False

True False False True False False True

False True True True False False True

False False True False False True False
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Relational operators may be used to compare character values, which is done using
the character collating sequence for default character kinds.

Parameters/Named Constants

A parameter is a named constant. Each parameter must be declared in a type state-
ment. Type statements appear between the program statement and the beginning of the
executable part of the program. Type statements also are used to give names to vari-
ables (1.3) and indicate their data type. Each parameter declaration consists of a key-
word specifying a type, followed by a comma and the keyword parameter, followed
by two colons. To the right of the double colon is a list of names, each followed by an
assignment and the expression giving the parameter value. The initialization assign-
ments are separated by commas. For example,

real, parameter :: pi = 3.14159, e = 2.71828
integer, parameter :: number_of_states = 50

declare pi and e to be real parameters and number_of_states to be an integer param-
eter with the value 50.

The value of a parameter is fixed by its declaration and cannot change during the
execution of a program.

A parameter name may be used in every place in a program where the correspond-
ing constant may be used; this is why it is also called a named constant. In addition, a
parameter may be used in some places where a variable may not be used. Examples
are indicating the size of a static array and the values selected by a case statement.

program parameter_example
   integer, parameter :: &
      number_of_states = 50, &
      number_of_senators_per_state = 2, &
      number_of_senators = &
         number_of_states * number_of_senators_per_state

   print *, &
      "There are", number_of_states, &
      "states in the United States of America."
   print *, &
      "From this, we can calculate that there are"
   print *, number_of_senators, &
      "senators in the United States senate."

end program parameter_example

The ampersand (&) indicates that a statement is continued on the next line (1.4).

Style note: It is good programming practice to declare quantities to be parame-
ters whenever possible. Assigning a constant value to a parameter tells the
reader of the program that the value corresponding to that name will never
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change when the program is running. It also allows the computer to provide a
diagnostic message if the programmer inadvertently tries to change its value.

Since parameters are named constants, use of a parameter name instead of the
corresponding constant makes a program more readable. It is easy to forget
what role an unnamed constant plays in a program.

Another important reason for using a parameter declaration is that the program
can be modified very easily if the particular value represented by the parameter name
needs to be changed. The programmer can then be sure that the constant will be cor-
rect whenever it is used throughout the program. For example, if Puerto Rico becomes
the 51st state, the program parameter_example can be updated easily.

A rather different reason for using a parameter is that its value is known by the
compiler and, therefore, can be used to indicate such things as the size of an array (4.1)
or the kind of a real variable.

Enumerators

Using an enumerator is a way to declare some related parameters. The required
BIND(C) attribute (8.10), gives them the same type and kind as a C enumerator, but it
is not necessary to call a C program when using an enumerator.

enum, bind(c)
   enumerator :: error_unit
   enumerator :: std_input = 5, std_output
end enum

   Unless otherwise indicated, the first parameter of the enumerator is set to 0, so
error_unit is 0, std_input is 5, and std_output is 6.

Rules for Names

number_of_states and number_of_senators are names of parameters used in the
program parameter_example. The following are the rules for names of parameters as
well as all other names in a Fortran program:

1. The first character of the name must be a letter.

2. The remaining characters may be any mixture of letters, digits, or underscore char-
acters (_).

3. There may be at most 63 characters in a name.

Style note: Names may contain both uppercase and lowercase letters, but a pro-
gram should not contain two names that differ only in the case of some of their
letters. For example, a variable could be Number_of_States, but wherever it is
used in a program, it should have the “N” and “S” capitalized. The name
number_of_states is the same variable, but looks to the reader like it might be
a different variable.
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These rules allow ordinary names like Lisa, Pamela, and Julie to be used as
names. They also allow ordinary English words such as total and area and more
technical-looking names such as X3J3 and WG5 to be used as names. The underscore al-
lows longer names to be more readable, as in distance_to_the_moon, vowel_count,
and number_of_vowels_in_the_text.

All names in Fortran, including names of programs, follow these rules.
Most names in this book are all lowercase, simply because they are a little easier to

type.

Kind Parameters

Kind parameters provide a way to parameterize the selection of different possible ma-
chine representations for each of the intrinsic data types. If the programmer is careful,
this provides a mechanism for making selection of numeric precision and range porta-
ble.

Each intrinsic data type has a parameter, called its kind parameter, associated with
it. A kind parameter is intended to designate a machine representation for a particular
data type. As an example, an implementation might have three real kinds, informally
known as single, double, and quadruple precision.

The kind parameter is an integer. These numbers are processor dependent, so that
kind parameters 1, 2, and 3 might be single, double, and quadruple precision; or on a
different system, kind parameters 4, 8, and 16 could be used for the same things. There
are at least two real and complex kinds and at least one kind for the integer, logical,
and character data types. There must be an integer kind capable of representing all 18-
digit integers. Note that the value of the kind parameter is not usually the number of
decimal digits of precision or range; on many systems, it is the number of bytes used to
represent the value.

It is possible to determine which kind parameters are available for each type on
your system by using the parameters real_kinds, integer_kinds, logical_kinds,
and character_kinds in the intrinsic module iso_fortran_env.

program kinds

   use iso_fortran_env
   implicit none
   print *, real_kinds

end program kinds

Kind parameters are optional in all cases, so it is possible to always use the default
kind if that is sufficient for your application.

The intrinsic functions selected_int_kind and selected_real_kind may be used
to select an appropriate kind for a variable or a named constant. These functions pro-
vide the means for making a program portable in cases where values need to be com-
puted with a certain specified precision that may use single precision on one machine,
but require double precision on another machine.
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When a kind parameter is used in a program, it must be a named integer constant
(parameter). In integer, real, and logical constants, it follows an underscore character
(_) at the end.

12345_short
1.345_very_precise
.true._enough

The two operands of a numeric operation may have different kind parameter val-
ues. In this case, if the two operands have the same type or one is real and one com-
plex, the result has the kind parameter of the operand with the greater precision. For
example, if kind long has greater precision than kind short, the value of

1.0_short + 3.0_long

is 4.0 with kind parameter long. If one operand is type integer and the other is real or
complex, the kind parameter of the result is that of the real or complex operand.

Exercises

1. Convert the following type real numbers from positional notation to exponential
notation.

48.2613      0.00241_ok    38499.0
0.2717       55.0          7.000001_quad

2. Convert the following type real numbers from exponential notation to positional
notation.

9.503e2     4.1679e+10_double     2.881e-5
-4.421e2    -5.81e-2_nice         7.000001e0

3. Write a program that prints the sum 0.1 + 0.2 + 0.3 +  + 0.9.

4. Determine the kind number of one real kind that has precision greater than that of
the default real kind on your computer system.

5. Print the value of selected_int_kind and selected_real_kind for about a dozen
different argument values to see which kind values are available on the computer
you are using. Check your results with your compiler manual.

6. Write a program that prints the sum of the complex numbers (0.1+0.1i) + (0.2+0.2i)
+ (0.3+0.3i) + (0.4+0.4i).

7. Write a program that prints the logical value of each of the following expressions:

2 > 3
2 < 3
0.1 + 0.1 == 0.2
0.5 + 0.5 /= 1.0
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8. Write a program that computes and prints the concatenation of all your names (i.e.,
first, middle, and last).

1.3 Variables and Input

One benefit of writing a computer program for doing a calculation rather than obtain-
ing the answer using pencil and paper or a hand calculator is that when the same sort
of problem arises again, the program already written can be reused. The use of vari-
ables gives the programs in this section the flexibility needed for such reuse. The pro-
grams in 1.1 direct the computer to perform the indicated arithmetic operations on
numeric constants appearing in the print statements. The sample program add_2 finds
the sum of any two integers supplied as input. The numbers to be added do not appear
in the program itself. Instead, two integer variables x and y are reserved to hold the
two values supplied as input. Because Fortran statements can operate on variables as
well as constants, their sum can be calculated and printed. The first sample run shows
how this new program could be used to find the sum of the numbers 84 and 13, calcu-
lated by the program calculation_1 in 1.1.

program add_2
   integer :: x, y
   read *, x
   print *, "Input data  x:", x
   read *, y
   print *, "Input data  y:", y
   print *, "x + y =", x + y
end program add_2

 Input data  x: 84
 Input data  y: 13
 x + y = 97

After declaring that the variables x and y will hold integer values, the program
add_2 tells the computer to read a number from an input device and call it x, then to
read another number and call it y, and finally to print the value of x + y, identified as
such. Two additional print statements that echo the values of the input data complete
the program add_2. During the execution of this program, the two numbers that are
the values for x and y must be supplied to the computer, or the computer cannot com-
plete the run.

Declaration of Variables

The value of a parameter is fixed by its declaration and cannot change during execu-
tion of a program. On the other hand, if the keyword parameter is omitted, the objects
being declared become variables and their values can be changed at any time. Thus,
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integer :: count

declares count to be an integer variable. The value of a variable declared in this way
may be changed during execution of the program.

The program add_2 uses the type declaration

integer :: x, y

that declares the type of the variables x and y.
Variable names are subject to the same rules as parameter names.
Corresponding to the integer, real, complex, logical, and character constants intro-

duced in 1.2, there are integer, real, complex, logical, and character variables. For ex-
ample, if the variables q, t, and k are to be real variables in a program and the
variables n and b are to be integer variables, then the following lines contain the neces-
sary declarations.

real :: q, t, k
integer :: n, b

Variables may have a particular hardware representation by putting kind= fol-
lowed by a named constant in parentheses after the keyword representing the data
type. For example, if more significant digits are needed than your system keeps in the
default real type and the kind parameter for extra precision is 2, the variables dpq, x,
and long may have extra precision by the following declarations.

integer, parameter :: more_precision = 2
real(kind=more_precision) :: dpq, x, long

A character variable may have a kind parameter, but it should have a length. The
keyword character should be followed by parentheses enclosing len= and an integer
value indicating the number of characters in the character string. If no length is given,
it is assumed to be 1. If the variable name is to be a string of 20 characters, it may be de-
clared as follows.

character(len=20) :: name

Instead of an integer value, the length can be * (meaning “assumed” or specified else-
where) for a character parameter or a dummy argument (3.5) that is type character. It
also may be :, which indicates that the length of the string is determined at run time;
in this case, the string must also have the allocatable (5.1) attribute.

The type statement (6.3) may be used to declare things to be an intrinsic type.

type (real) :: x, y, z
type (integer(kind=long_int_kind)), parameter :: &
      large_integer = 99999999

The implicit none Statement

If a variable does not appear in a type declaration statement, it has a type that is deter-
mined by its first letter (variables with names beginning with I, J, K, L, M, or N are
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type integer; all others are type real). This is very error prone and can be avoided by
putting the statement

implicit none

before the type declarations of every program.

Style note: Every program and module should contain an implicit none state-
ment. This requires that every variable that is used in the program must be list-
ed in a type declaration.

Supplying Input Data

The two input values 84 and 13 for the variables x and y, shown in the sample execu-
tion of the program add_2, did not appear in the computer by magic. They were typed
in by the user, but not as part of the program file. Instead, an input file can be pre-
pared, usually with the same editor used for preparing the program file. In this case
the file contains the two lines

84
13

If, for example, the file is named add_2.in, the program can be executed on most com-
puter systems using a command similar to the following:

$ ./a.out < add_2.in

If you want to put the output in a file called add_2.out instead of displaying it on your
screen, the following command should work:

$ ./a.out < add_2.in > add_2.out

Echo of Input Data

When reading input data from a file, it is good programming practice for the user to
provide an echo of the input data using print statements, so that the output contains
a record of the values used in the computation. Each read statement in the program
add_2 is followed by an echo of the input data just read.

Style note: It is good programming practice to echo all input data read from an
input file. However, it will be impractical to follow this rule in some cases,
such as when there is a large amount of input data.

Rerunning a Program with Different Data

The program add_2 contains echoes, whose importance is demonstrated when the pro-
gram is rerun using different input data. The echoes of input data help identify which
answer goes with which problem. Other important uses of input echoes will appear
later. In showing another sample run of the program add_2, this time adding two dif-
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ferent numbers, we do not repeat the program listing. The program does not change;
only the input data change. This time, the data file add_2.in has the following two
lines.

4
7

The execution output might look like

 Input data  x: 4
 Input data  y: 7
 x + y = 11

The final print statement of add_2 refers to the variables x and y. As the execution
output for the two sample runs shows, what actually is printed is the value of the char-
acter string constant "x + y = " followed by the value of the expression x + y at the
moment the print statement is executed.

The program add_2_reals is obtained from the program add_2 simply by chang-
ing the keyword integer in the variable declaration to the keyword real, which caus-
es the type of the variables x and y to be real. It can be used to add two quantities that
are not necessarily whole numbers. This execution of the program also illustrates that
the input data values may be negative. The input file add_2_reals.in for this sample
execution contains two lines:

97.6
-12.9

The program file contains the following lines:

program add_2_reals
   implicit none
   real :: x, y
   read *, x
   print *, "Input data  x:", x
   read *, y
   print *, "Input data  y:", y
   print *, "x + y =", x + y
end program add_2_reals

and the output is as follows:

 Input data  x:  97.5999985
 Input data  y: -12.8999996
 x + y =  84.6999969

Some Fortran systems habitually print real quantities in exponential format. On
such a system, the sample execution will more closely resemble the following:

 Input data  x:  0.975999985E+02
 Input data  y: -0.128999996E+02
 x + y =  0.846999969E+02
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If you are worried about why the printed result is not exactly 84.7, see 1.7 about
roundoff error.

Reading Several Values

The read statement may be used to obtain values for several variables at a time, as
shown in the program average, that calculates the average of any four numbers. The
four numbers to be averaged are supplied as data, rather than appearing as constants
in the program. This permits the same program to be used to average different sets of
four numbers.

program average
   implicit none
   real :: a, b, c, d
   read *, a, b, c, d
   print *, "Input data  a:", a
   print *, "            b:", b
   print *, "            c:", c
   print *, "            d:", d
   print *, "Average =", (a + b + c + d) / 4
end program average

The input data file in the sample execution has one line:

58.5 60.0 61.3 57.0

When we run the program average using this data file, the following output is pro-
duced.

 Input data  a:  58.5000000
             b:  60.0000000
             c:  61.2999992
             d:  57.0000000
 Average =  59.2000008

This program does a computation more complicated than any discussed so far, but the
meaning of the program should be obvious.

As shown in the sample execution, the data are supplied to the variables in the or-
der they are listed in the read statement. Note that the four variables in the read state-
ment are separated by commas and that there is a comma between the asterisk and the
first variable in the input list. Although it is not required, it is often desirable to put all
input data for a read statement on one line in the input file, creating a correspondence
between read statements and data lines. However, the input data file

58.5
60.0
61.3
57.0

would have produced the same execution output.
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Execution of each read statement normally reads data from a new line in the input file.
Thus, if four separate read statements were to be used to read the variables a, b, c, and
d, the four input values must be on four separate data lines in the input file.

Default Input Format

The asterisk in the read statement indicates that the format of the input data is left to
the one who prepares the input file, except that the individual values must be separat-
ed by at least one blank character or a comma.

Style note: Whenever possible, use the default input format. It makes prepara-
tion of data much easier and less prone to error.

Reading and Writing Character Strings

Since computers can process character data as well as numeric information, computer
languages provide for the reading and printing of character strings. The somewhat fa-
cetious program who shows how this is done in Fortran.

program who
   implicit none
   character(len=20) :: whats_his_name

   print *, "Do I remember whatshisname?"
   read *, whats_his_name
   print *, "Of course, I remember ", whats_his_name
end program who

 Do I remember whatshisname?
 Of course, I remember Roger Kaputnik

When the default input format, indicated by the asterisk, is used to read a character
string, you should enclose the string in quotes, the same as a character constant used
within a program. Delimiting quotes do not appear in the output when using the de-
fault output format. The input file for the execution of the program who shown above
consists of one line.

"Roger Kaputnik"

Input Data from a Terminal

We close this section with a program meters_to_inches designed to be run on a sys-
tem in which input data is supplied for the read statements by typing the data at a
computer terminal during the execution of the program. This is called interactive in-
put. The only change we make to the program is to add a print statement prompting
the user about what data to type and remove the statement that echoes the input data.
This input prompt immediately precedes the read statement. Without this input
prompt, when the computer pauses waiting for the user to type the value for meters
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requested in the read statement, it would appear as though the execution of the pro-
gram meters_to_inches failed for some unexplained reason, or that it never started.
The user would not know that the computer is waiting for input.

Style note: Precede an interactive input statement with an input prompt.

program meters_to_inches
! Converts length in meters to length in inches.
! The length in meters is typed
! when prompted during execution.

   implicit none
   real :: meters
   real, parameter :: inches_per_meter = 39.37

   print *, "Enter a length in meters."
   read *, meters
   print *, meters, "meters =", &
      meters * inches_per_meter, "inches."
end program meters_to_inches

 Enter a length in meters.
 2
   2.0000000 meters =  78.7399979 inches.

On most systems, the characters typed at the keyboard also appear on the screen.
Nonadvancing input/output allows the input to be typed on the same line as the

prompt. There is an example of this in 11.3.

Exercises

1. Which of the following are valid names for Fortran variables?

name    address   phone_#     phoney     real
iou_    iou_2     4gotten     4_ever     _laurie

2. The program inches_to_feet is similar to the program meters_to_inches de-
scribed in this section. What output is produced when inches_to_feet is run us-
ing 110 inches as the input value?

program inches_to_feet
   implicit none
   real :: inches
!  There are 12 inches per foot
   real, parameter :: inches_per_foot = 12.0

   read *, inches
   print *, inches, "inches =",  &
         inches / inches_per_foot, "feet."
end program inches_to_feet
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3. In the program rhyme, both jack and jill are parameters. What does a computer
print when this program is run?

program rhyme
   implicit none
   integer, parameter :: jack = 1, jill = 2
   print *, jack + jill, "went up the hill."
end program rhyme

4. Write a program that reads in a first name, a middle initial, and a last name as the
values of three different character variables and prints out the full name.

1.4 The Form of a Fortran Program

A Fortran program consists of a sequence of statements; these statements are written
on lines that may contain from 0 to 132 characters.

Continued Statements

Often a statement fits on one line, but a statement can be continued onto more lines if
the last character of the line to be continued is an ampersand (&).

print *,  &
      "I hope this is the right answer."

A statement may not have more than 256 lines.
A statement should not be broken in the middle of a keyword, a name, or a con-

stant. If it is necessary to break a long character string, use the concatenation operator
as shown in the following example.

print *,  &
      "This is a line that contains a really, " // &
      "really, really, long character string."

The important fact is that, in the absence of a continuation symbol, the end of a line
marks the end of a statement.

Each Fortran statement except the assignment statement (and the statement func-
tion statement, not discussed in this book) begins with a keyword, such as print, that
identifies the kind of statement it is.

Significant Blank Characters

Blank characters are significant in a program. In general, they must not occur within
things that normally would not be typed with blanks in English text, such as names
and numbers. On the other hand, they must be used between two things that look like
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“words”. An example is that, in the first line of a program, the keyword program and
the name of the program must be separated by one or more blanks, as in the example

program add_2

Keywords and names such as print and number must contain no blank characters, ex-
cept that keywords consisting of more than one English word may contain blanks be-
tween the words, as in the statement

end do

Two or more consecutive blanks are always equivalent to one blank unless they are in
a character string.

On the other hand, there are places where blank characters are not significant, but
can and should be used to improve the readability of the program. For example, many
of the programs in this book have blanks surrounding operator symbols, such as + and
-, and have a blank after each comma in an input/output list or procedure argument
list. Even more importantly, they all use preceding blanks to produce indentation that
shows the structure of the program and of its component parts.

Style note: Blank characters and blank lines should be used freely in a program
to make it easier to read.

Comments

Any occurrence of the exclamation symbol (!) other than within a character string or a
comment marks the beginning of a comment. The comment is terminated by the end of
the line. All comments are ignored by the Fortran system and are used to provide the
human reader information about the program.

Since comments are ignored, it is permissible to place a comment after the amper-
sand (&) continuation symbol without impairing the continuation.

real :: x,  &   ! measured value
        xbar    ! smoothed value

The Fortran Character Set

A Fortran statement is a sequence of characters. The characters of the Fortran character
set are the uppercase letters A Z, the lowercase letters a z, the digits 0 9, the under-
score _, and the special characters in Table 1-3. In addition, the character set contains
the following characters, which have no special use in a Fortran program and may ap-
pear in a program only within a comment or character constant.

$   ~   ^   \   {   }   '   |   #   @

The currency symbol need not display or print as $ in all implementations; it might
look like ¥ or £.
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Exercise

1. What does the following program print? Its style is not recommended.

                   program &
ugh
                   print &
     *     ,                &
               12.0         +&
    34.6
        end            program ugh

1.5 Some Intrinsic Functions

There are many built-in or intrinsic functions in Fortran, a few built-in or intrinsic
subroutines, and a few built-in or intrinsic modules. To use the functions, simply
type the name of the function followed by the arguments to the function enclosed in
parentheses. For example, abs(x) produces the absolute value of x and max(a,b,c)
yields the maximum of the values of a, b, and c.

Two of the more commonly used built-in subroutines are date_and_time and
random_number. Appendix A contains a list of all the intrinsic procedures.

Table 1-3  The Fortran special characters

Character Name of character Character Name of character

Blank ; Semicolon

= Equals ! Exclamation point

+ Plus " Quotation mark or quote

- Minus % Percent

* Asterisk & Ampersand

/ Slash ~ Tilde

( Left parenthesis > Greater than

) Right parenthesis ? Question mark

[ Left bracket ’ Apostrophe

] Right bracket ‘ Grave accent

, Comma $ Currency symbol

. Decimal point or period # Number sign

: Colon @ Commercial at
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There are built-in modules for features that assist calling C programming language
features (8.10) and handling IEEE arithmetic and exceptions (7).

Numeric Type Conversion Functions

There are built-in functions that convert any numeric value to each of the numeric
types. These functions are named int, real, and cmplx. For example, the value of
int(4.7) is the integer 4, the value of real((2.7,-4.9)) is 2.7, the real part of the
complex number 2.7 4.9i, and the value of cmplx(2) is 2.0+0.0i. These functions are es-
sential in some situations, such as when it is necessary to convert an integer to a real to
avoid an integer division or when the type of a procedure actual argument must match
the type of a dummy argument. For example, if a variable total holds the sum of a
bunch of integer test scores and it is necessary to divide by the integer variable
number_of_scores to find the average, one or both must be converted to type real.
Otherwise, the result will be an integer, which is probably not what is desired. The ex-
pression

real (total) / number_of_scores

will produce a real result with the fractional part of the average retained.
In other cases, explicit conversion is not required, but can improve the clarity of

the program. For example, if i is an integer variable and r is a real variable, the assign-
ment of the value of r to the variable i can be done with the statement

i = r

When this is done, any fractional part of the value of r is dropped, so that if r were 2.7,
the value of i would be 2 after execution of the assignment. This can be made clearer
to the reader of the program if the statement

i = int(r)

is used instead.

Style note: In a context that requires conversion from complex to integer or real
or requires conversion from real to integer, use the intrinsic type conversion
functions even if they are not required.

The numeric type conversion functions also may be used to convert from one kind
to another within the same data type or to specify the kind parameter of the result of
conversion between data types. For example, int(x, kind=short) converts the real
value x to an integer with kind parameter short. The kind should be given as an inte-
ger parameter.

The logical Function

The function named logical converts from one logical kind to another. For example, if
truth is type logical and packed is an integer named constant, logical(truth,
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packed) is the value of truth represented as a logical with kind parameter packed and
logical(truth) is the value of truth represented as a logical with the default kind
parameter.

Mathematical Functions

There are several built-in functions that perform common mathematical computations.
The following is a list of some of the most useful ones. Appendix A should be consult-
ed for a complete list of the functions. Most of them do what would be expected, but
the functions max and min are a little unusual in that they may be used with an arbi-
trary number of arguments. The mathematical functions are shown in Table 1-4.

Some of these functions will be used in the case studies at the end of this chapter.
Other intrinsic functions, such as those for array processing and character processing,
will be discussed in relevant chapters.

Kind Intrinsic Functions

The kind function returns the kind parameter value of its argument; the value depends
on the integers used as kind parameters on the computer being used. For example,
kind(x) is the kind parameter of the variable x; it might be 1 or 4, for example.
kind(0) is the default integer kind; kind(0.0) is the default real kind; and
kind(.false.) is the default logical kind.

There is an intrinsic function selected_real_kind that produces a kind value
whose representation has at least a certain precision and range. For example,
selected_real_kind(8, 70) will produce a kind (if there is one) that has at least 8
decimal digits of precision and allows a range of values between 1070 and 10 70, val-
ues between +10 70 and +1070, and zero. This permits the programmer to select repre-
sentations having required precision or range and give these processor-dependent kind
values to named constants. The named constants can then be used to indicate the kind
of a variable.

Table 1-4 Mathematical intrinsic functions

abs cos min

acos cosh modulo

aimag exp sin

asin floor sinh

atan log sqrt

ceiling log10 tan

conjg max tanh
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For the integer data type, there is an intrinsic function selected_int_kind with
only one argument. For example, selected_int_kind(5) produces an integer repre-
sentation allowing all integers between (but not necessarily including) 105 and +105.

Exercises

1. Write a program that prints the kind of each of the constants

0
0.0
(0.0, 0.0)
.false.
"a"

These are the default kinds.

2. Using the fact that selected_real_kind and selected_int_kind return a nega-
tive value when asked to produce a kind number for a precision or range not avail-
able on the system, determine all the possible kind numbers for reals and integers
on your system.

1.6 Expressions and Assignment

A Fortran expression can be used to indicate many sorts of computations and manipu-
lations of data values. So far we have seen simple examples of expressions as values to
be printed using the print statement. We now discuss in more detail just what can ap-
pear in this list of things to be printed.

Primaries

The basic component of an expression is a primary. Primaries are combined with oper-
ations and grouped with parentheses to indicate how values are to be computed. A pri-
mary is a constant, variable, function reference (3.6), array element (4.1), array section
(4.1), structure component (6.1), substring (5.1), array constructor (4.1), structure con-
structor (6.1), or an expression enclosed in parentheses. Note that this is a recursive
definition because the definition of an expression involves expressions in parentheses.
Examples of primaries are

5.7e43_double     ! constant
number_of_bananas ! variable
abs(x)            ! function value
(a + 3)           ! expression enclosed in parentheses
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Primaries can be combined using the operators discussed in 1.2 as well as with user-
defined operators discussed in 9.3 to form more complicated expressions. Any expres-
sion can be enclosed in parentheses to form another primary. Examples of more com-
plicated expressions are

-a + d * e + b ** c
x // y // "abcde"
(a + b) /= c
log_1 .and. log_2 .eqv. .not. log_3
a + b == c * d

The Interpretation of Expressions

When more than one operation occurs in an expression, parentheses and the prece-
dence of the operations determine the operands to which the operations are applied.
Operations with the highest precedence are applied first to the operand or operands
immediately adjacent to the operator. For example, since * has higher precedence than
+, in the expression a + b * c, the multiplication is first applied to its operands b and
c; then the result of this computation is used as an operand by adding it to the value of
a. If the programmer intends to add a and b and multiply the result by c, parentheses
must be used as in the expression (a + b) * c.

When two operators have the same precedence, they are applied left-to-right, ex-
cept for exponentiation, which is applied right-to-left. Thus, the value of 9 - 4 - 3 is
5  3 = 2, but the value of 2 ** 3 ** 2 is 29 = 512.

Table 1-5 shows the operations with the highest precedence at the top of the list
and the ones with the lowest precedence at the bottom.

Table 1-5  Operator precedence

Operator Precedence

User-defined unary operation Highest

** .

* or / .

Unary + or - .

Binary + or - .

// .

==, /=, <, <=, >, >= .

.not. .

.and. .
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The Evaluation of Expressions

Once it is determined by use of parentheses and precedence of operations which oper-
ations are to be performed on which operands, the computer may actually evaluate the
expression by doing the computations in any order that is mathematically equivalent
to the one indicated by the correct interpretation, except that it must evaluate each subex-
pression within parentheses before combining it with any other value. For example, the inter-
pretation of the expression a + b + c indicates that a and b are to be added and the
result added to c. Once this interpretation is made, it can be determined that a mathe-
matically equivalent result will be obtained by first adding b and c and then adding
this sum to a. Thus, the computer may do the computation either way.

The purpose of allowing the computer to rearrange expressions is to optimize exe-
cution speed. Thus a compiler will usually replace x/2.0 with 0.5*x because multipli-
cation is faster than division on most computers. If execution speed is not important
and you do not want to worry about these matters, just set the optimization level to 0
when compiling a program.

If the programmer writes the expression (a + b) + c, the computer must first do
the computation as required by the parentheses. Note that the expression
(a + b) + (c + d) can be done by first adding c and d but then the computer must
add a and b and add that result to the first sum obtained. To evaluate this expression,
the computer must not first add b and c or any other pair in which one operand is tak-
en from (a + b) and the other is taken from (c + d), because doing this would vio-
late the integrity of parentheses.

Note that integer division is an oddity in that it does not satisfy the rules of arith-
metic for ordinary division. For example, (i / 2) * 2 is not equal to i if i is an odd
integer. Thus, a computer may not make this substitution to optimize the evaluation of
the expression.

Table 1-6 contains examples of expressions with allowable alternative forms that
may be used by the computer in the evaluation of those expressions. a, b, and c repre-
sent arbitrary real or complex operands; i and j represent arbitrary integer operands;

.or. .

.eqv. or .neqv. .

User-defined binary operation Lowest

Table 1-5  (Continued) Operator precedence

Operator Precedence
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x, y, and z represent arbitrary operands of any numeric type; and l1, l2, and l3 repre-
sent arbitrary logical operands.

Table 1-7 contains examples of expressions with forbidden alternative forms that must
not be used by a computer in the evaluation of those expressions.

Assignment

The assignment statement is the most common way of giving a variable a value. An
assignment statement consists of a variable, an equals sign (=), and an expression. The
expression is evaluated and assigned to the variable. An example of an assignment
statement is

Table 1-6 Allowable alternative expressions

Expression Allowable alternative form

x + y y + x

x * y y * x

-x + y y - x

x + y + z x + (y + z)

x - y + z (z - y) + x

x * a / z x * (a / z)

x * y - x * z x * (y - z)

a / b / c a / (b * c)

a / 5.0 0.2 * a

i > j j - i < 0

l1 .and. l2 .and. l3 l1 .and. (l2 .and. l3)

abs(i) > -1 .or. logical(l1) .true.

Table 1-7 Nonallowable alternative expressions

Expression Nonallowable alternative form

i / 2 0.5 * i

x * i / j x * (i / j)

(x + y) + z x + (y + z)

i / j / a i / (j * a)

(x * y) - (x * z) x * (y - z)

x * (y - z) x * y - x * z
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x = a + 2 * sin(b)

Note for later that the variable on the left-hand side may be an array, an array element,
an array section, a substring, or a structure component.

Complete agreement of the variable and expression type and kind is not always re-
quired. In some cases the data type or kind parameter of the expression may be con-
verted in order to assign it to the variable.

If the variable on the left-hand side is any numeric type, the expression may be any
numeric type and any kind. If the variable is type character of kind ASCII, ISO 10646,
or default, the expression must be type character with one of those kinds; if the vari-
able is type character with another kind, the expression must be character of the same
kind. If the variable is type logical, the expression must be type logical but may be any
kind. If the variable is a derived type (6.2), that is, a user-defined type, the expression
must be the same derived type.

All of these rules apply to assignment as provided by the system (intrinsic assign-
ment); it is possible to extend the meaning of assignment to other cases as described in
9.1.

Exercises

1. What computer output might be expected when the following program is run?

program calculation_2
   implicit none
   print *, (201 + 55) * 4 - 2 * 10
end program calculation_2

2. The program calculation_3 uses a confusing sequence of arithmetic operations
whose meaning would be clearer if written with parentheses. What computer out-
put might be expected when it is run? Insert parentheses in the print statement in
a way that does not change the value printed, but makes it easier to understand.

program calculation_3
   implicit none
   print *, 343 / 7 / 7 * 2
end program calculation_3

3. What computer output might be expected when calculation_4 is run?

program calculation_4
   implicit none
   print *, 2 * (3 * (5 - 3))
end program calculation_4

4. What computer output might be expected when the program power_of_2 is run?

program power_of_2
   implicit none
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   print *, 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2
end program power_of_2

5. Write an expression that rounds the value of the variable x to the nearest tenth.

6. When is int(x/y) equal to x/y for real values x and y?

7. If x and y are type integer and both are positive, the value of the intrinsic function
modulo(x, y) is the remainder when x is divided by y. For example,
modulo(17, 5) = 2. Rewrite the following expression using the built-in function
modulo. Assume n is type integer with a positive value.

n - (n / 100) * 100

8. Write an expression using the built-in function modulo that has the value 1 when n
is odd and 0 when n is even.

9. Write an expression using the built-in function modulo that is true if the value of
the variable n is even and is false if n is odd.

10. Write a program to compute the quantity ei . The constant  can be computed by
the formula 4 * atan(1.0) because tan( /4) = 1. The complex constant i can be
written (0.0, 1.0). The built-in function exp(z) is used for raising the mathemat-
ical constant e to a power. The sample output should look like

 The value of e to the power i*pi is ___

1.7 Introduction to Formatting

Fortran has extremely powerful, flexible, and easy-to-use capabilities for output for-
matting. This section describes the basic formatting features that enable you to produce
really good-looking output, if you like. If the default formatting on your system is
good enough, there is no necessity to learn formatting right away. This section appears
early because some Fortran systems do not have satisfactory default formats, especially
for reals. On such systems, the techniques of this section are essential.

Roundoff

Just as 1/3 cannot be represented exactly as a decimal, though 0.333333 comes very
close, 1/10 and 1/100 cannot be represented exactly when the representation uses a
number base two instead of ten. The base two or binary system of notation is used in-
ternally in most computers for storage and calculation of numeric values. As a result,
when reals are converted from input represented in decimal notation to the computer s
internal representation and back again during execution of a program, the original
numbers may not be recovered precisely.
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Perhaps you have already seen this in your own output, in the form of a tell-tale
sequence of 9s in the decimal digits printed. For example, when adding 97.6 and 12.9
using the program add_2_reals in 1.3, the following output resulted.

 Input data  x:  97.5999985
 Input data  y: -12.8999996
 x + y =  84.6999969

The value of the variable x prints as 97.5999985 although the value supplied in the
input file is 97.6. The difference between the intended and calculated values is round-
off or roundoff error. It is normally of no consequence in calculations of measured
physical quantities because it is virtually impossible to distinguish between such near-
ly equal values as 97.5999985 and 97.6.

Similarly, the printed value of the variable y is 12.8999996 instead of 12.9. The
printed value of x + y is 84.6999969 differing by 0.000031 from the sum of the intend-
ed values, a hint to the expert that the computer being used probably does not use dec-
imal arithmetic for its internal calculations.

Using Formatted Output to Hide Roundoff

Minor cases of roundoff are hidden easily by rounding values before printing. For ex-
ample, if the unexpected echoes of input data above are rounded to four decimal plac-
es before printing, the results will appear precisely as expected: 97.6000 + ( 12.9000) =
84.7000.

If the default format for reals rounds answers to fewer decimal places than are ac-
tually calculated, you will not see any trace of roundoff. These extra guard digits may
actually contain roundoff, but rounding answers before printing guarantees that the
user will not see small roundoff errors. We mention roundoff at this point to forewarn
the beginner whose system shows such behavior in output. Roundoff is not a malfunc-
tion of the computer’s hardware, but a fact of life of finite precision arithmetic on com-
puters. A programmer needs to know how to hide roundoff through formatted
printing and needs to know why real values that print identically may still fail a test
for equality.

In the remainder of this section we introduce the simplest forms of user-specified
print formatting, including the facility for rounding real values to a specified number
of decimal places before printing.

Format Specifications

Extremely flexible and versatile control over the appearance of printed output is avail-
able in Fortran if you are willing to forego the convenience of the default format. In
place of the asterisk denoting the default format, write a format specification or some
alternative means of locating a format specification in the program. A format specifi-
cation is basically a list of edit descriptors, separated by commas and enclosed in pa-
rentheses. An example is

(f5.1, a, i4)
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For each expression to be printed, one of the edit descriptors in the format specification
is used to determine the form of the output. For example if x = 6.3 is type real and n =

26 is type integer, then

print "(f5.1, es9.1, a, i4)", x, x, " and ", n

would produce the output line

    6.3  6.3E+00 and  -26

This example shows four of the most frequently used edit descriptors, f (floating
point) and es (engineering and science) for printing of reals, a (alphanumeric) for char-
acter strings, and i (integer) for integers. The edit descriptor f5.1 means that a total of
five positions are reserved for printing a real value rounded to one place after the dec-
imal point. The decimal point occupies a position and a minus sign, if needed, occupies
another position, so the largest number printable using f5.1 format is 999.9 and 99.9
is the smallest. If the number to be printed is outside these bounds, the specified field
will be filled with asterisks. i4 editing reserves four positions for printing an integer.
For negative numbers, the minus sign takes up one of the four positions, making i4
format suitable for integers from 999 to 9999. The es (engineering/science) edit de-
scriptor is used for printing reals in exponential notation. For example, the es10.3 de-
scriptor uses 10 positions, prints the most significant digit to the left of the decimal
point, and prints the fractional part rounded to three decimal places, for example
6.023e+23 preceded by a blank character. For more details, see 11.8. The a edit de-
scriptor reserves space for character output. The length of the character expression to
be printed determines how many positions are used. It is also possible to reserve a spe-
cific number of positions for a character string. The edit descriptor a10, for example,
reserves 10 positions, regardless of the data to be printed. See 11.8 for details.

Placement of Format Specifications

In the preceding example, the format specification is in the form of a character con-
stant. Now the necessity of the comma after the asterisk or other format specifier in the
print statement becomes apparent. It is the means of separating the format specifier
from the first item in the list of expressions to be printed.

Since the format is a character expression, in the simplest case it is simply a charac-
ter constant that appears in the input/output statement. For example, the following two
print statements would produce the same output. It is assumed that x is real and n is
integer.

character(len=*), parameter :: layout = "(f5.1, a, i4)"
print "(f5.1, a, i4)", x, " and ", n
print layout, x, " and ", n
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Tab and Line Feed Edit Descriptors

The slash ( / ) edit descriptor starts a new line in the printed output. Thus, a single
print statement can produce several lines of output. For example

print "(a, /, a, /, a)", "These character strings", &
      "all appear", "on separate lines."

produces the three lines of output

These character strings
all appear
on separate lines.

The t (tab) edit descriptor is used to skip to a specified position of the output line
for precise control over the appearance of the output. Tabs may be either forward or
backward on the current line. For example,

print "(t30, i5, t50, i5, t10, i5)", a, b, c

will print the integer values of c in positions 10 14, a in positions 30 34, and b in posi-
tions 50 54. Some printing devices do not print position 1 of any output line. If you
have such a printer on your system, a t2 edit descriptor will skip to position 2 to get
single spacing.

Repeated Edit Descriptors

If one or more edit descriptors are to be repeated, they may be enclosed in parentheses
and preceded by the positive integer representing the number of repetitions or an as-
terisk (*) representing an unlimited number of repetitions.

3(i4) is equivalent to 3i4 or i4,i4,i4
5(/) is equivalent to 5/ or /,/,/,/,/
2(a4,/,t2) is equivalent to a4,/,t2,a4,/,t2

The parentheses may be omitted if there is only one a, es, f, i, or / edit descriptor in-
side the parentheses.

Examples of Formatted Output

The following examples illustrate how formatted output works. On some printers, the
first character may not appear, so it is best to put a blank in the first position.

print "(3i2)", 2, 3, 4

 2 3 4

x = 7.34688e-9
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print "(a, es10.3)", " The answer is ", x

 The answer is  7.347E-09

q1 = 5.6
q2 = 5.73
q3 = 5.79
f123 = "(a, 3(/, t2, a, i1, a, f3.1))"
print f123, " Here come the answers--", &
      " q", 1, "=", q1, &
      " q", 2, "=", q2, &
      " q", 3, "=", q3

 Here come the answers--
  q1=5.6
  q2=5.7
  q3=5.8

Formatted Input

A format specification can be used with the read statement to indicate how the posi-
tions of the input line are to be interpreted. Formatted input is not as essential as for-
matted output because most natural arrangements of input data are accepted by the
default read formats. However, there are two major exceptions, which sometimes
make the use of input formatting desirable. First, default formats for character input
usually require quotes around the input strings; character input read under an a edit
descriptor does not. Second, it is a small convenience not to have to separate numbers
with commas or blanks when large amounts of data are read by a program. For exam-
ple, it is much harder to type 10 one-digit integers on a line of input with separating
commas than without them. Rather than discuss the rules in detail for using formatted
input, one example is given.

real :: x1, x2, x3
integer :: j1, j2, j3
character(len=4) :: c
read "(a, 3 (f2.1, i1))", c, x1, j1, x2, j2, x3, j3

If the input line is

1234567890123

then executing the read statement is equivalent to executing the following assignment
statements. Notice that quotes for a format input data must be omitted and that deci-
mal points for f format input data are assumed when they are omitted.

c = "1234"
x1 = 5.6
j1 = 7
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x2 = 8.9
j2 = 0
x3 = 1.2
j3 = 3

Style note: It is good programming practice to use the default read format
whenever possible. Explicit input format specifications demand strict adher-
ence to specified positions for each value in the input data. The slightest mis-
alignment of the input data usually results in incorrect values assigned to the
variables. By comparison, the default input format is usually relatively tolerant
of variations in alignment and is user-friendly.

Exercises

1. If the variable x has value 2.5, what does the output for the following statement
look like? Use “b” for blank positions.

print "(f6.3, es11.1)", x, x ** 2

2. What are the largest and smallest values that can be printed by the statement

print "(f8.3)", value

3. What does the following statement print? Use “b” for blank positions.

print "(a, f9.5, a)", "!", 1.0/3.0, "!"

1.8 Case Study: Quadratic Formula

A quadratic equation is an equation involving the square of the unknown x and no
higher powers of x. Algorithms for solution of quadratic equations equivalent to the
quadratic formula are found in Old Babylonian texts dating to 1700 B.C. It is now rou-
tinely taught in high-school algebra. In this section, we show how to write a Fortran
program to evaluate and print the roots of a quadratic equation. We also discuss im-
proving the efficiency of the calculation by isolating common subexpressions. Some-
times there are better ways to solve a quadratic equation, particularly in cases where
roundoff might be a problem (Exercise 2). Also the programs in this section do not
handle the case when a, the coefficient of the x2 term, is zero.

The Problem

The most general quadratic equation has the form

ax2 + bx + c = 0



1.8 Case Study: Quadratic Formula 35

where a, b, and c are constants and x is the unknown. The quadratic formula says that
the roots of the quadratic equation, that is, the values of x for which the equation is
true, are given by the formula

This means that one root is obtained by adding the square root term and the other root
is obtained by subtracting the square root term.

The problem is to write a program that reads as input the three coefficients, a, b,
and c, and prints as output the values of the two roots. Since there is very little input,
and we wish to display the answers as they are computed, we write the program for
interactive execution with input from a terminal keyboard and output to the display
screen or printing element.

The Solution

Experienced programmers may regard the following pseudocode solution as obvious,
as indeed it is, but the three steps of the pseudocode solution must be considered, if
not necessarily written down.

Read the coefficients a, b, and c.
Calculate the two roots by the quadratic formula.
Print the two roots.

It is but a small step to the Fortran program that implements the pseudocode solu-
tion. Remember that an exclamation mark (!) begins a comment.

program quadratic_equation_solver
!  Calculates and prints the roots
!  of a quadratic equation
   implicit none
!  Variables:
!     a, b, c: coefficients
!     x1, x2: roots

   real :: a, b, c, x1, x2

!  Read the coefficients
   print *, "Enter a, the coefficient of x ** 2"
   read *, a
   print *, "Enter b, the coefficient of x"
   read *, b
   print *, "Enter c, the constant term"
   read *, c

!  Calculate the roots by the quadratic formula
   x1 = (-b + sqrt(b ** 2 - 4 * a * c)) / (2 * a)

x b– b2 4ac–
2a

---------------------------------------=
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   x2 = (-b - sqrt(b ** 2 - 4 * a * c)) / (2 * a)

!  Print the roots
   print *, "The roots are"
   print *, "x1 =", x1
   print *, "x2 =", x2
end program quadratic_equation_solver

In the input section, each read statement is preceded by an input prompt, that is, a
print statement telling the user at the computer terminal what input is expected. In
the calculation section, the quadratic formula illustrates the use of the intrinsic func-
tion sqrt.

Program Testing

To test the program quadratic_equation_solver, we made up several quadratic
equations with known roots. Since all variables are type real, our first test case has sim-
ple real roots. The solutions of the quadratic equation

x2  5x + 6 = 0

are 2 and 3.

 Enter a, the coefficient of x ** 2
 1
 Enter b, the coefficient of x
 -5
 Enter c, the constant term
 6
 The roots are
 x1 =   3.0000000
 x2 =   2.0000000

The next quadratic equation has negative and fractional roots to test whether the
program will work in these cases. The solutions of the quadratic equation

4x2 + 8x 21 = 0

are 3.5 and 1.5, testing both possibilities.

 Enter a, the coefficient of x ** 2
 4
 Enter b, the coefficient of x
 8
 Enter c, the constant term
 -21
 The roots are
 x1 =   1.5000000
 x2 =  -3.5000000
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Notice that x1 is always the greater of the two roots because its formula adds the
square root term.

The next case tests irrational roots of the quadratic equation. The golden ratio is a
ratio famous from Greek mathematics. Renaissance artists thought that the golden ra-
tio was the most pleasing ratio for the sides of a rectangular painting or the facade of a
building. The spiral shells of snails and the arrangement of seeds in a sunflower are re-
lated to it. The golden ratio is also the limit of the ratio of successive terms of the Fi-
bonacci sequence. The two roots of the following equation are the golden ratio and the
negative of its reciprocal.

x2   x  1 = 0

 Enter a, the coefficient of x ** 2
 1
 Enter b, the coefficient of x
 -1
 Enter c, the constant term
 -1
 The roots are
 x1 =   1.6180340
 x2 =  -0.6180340

The exact solutions are (1 + ) / 2 and (1 ) / 2, which check with the output of
the program using a hand calculator. The golden ratio has many interesting properties,
including the fact that 1/1.618034 = 0.618034.

The quadratic equation

x2  6x + 9 = 0

has only one solution, x = 3. You might wonder what a program designed to find two
roots will do with this equation.

 Enter a, the coefficient of x ** 2
 1
 Enter b, the coefficient of x
 -6
 Enter c, the constant term
 9
 The roots are
 x1 =   3.0000000
 x2 =   3.0000000

Mathematicians call the solution of this quadratic equation a double root. For this equa-
tion, the quantity b2  4ac is zero, so it does not matter whether its square root is added
or subtracted in the calculation of a root. The answer is the same for both roots.

Next we try the equation

x2  1000001x + 1 = 0

Running the program produces the results

5 5
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 Enter a, the coefficient of x ** 2
 1
 Enter b, the coefficient of x
 -1000001
 Enter c, the constant term
 1
 The roots are
 x1 =   1.0000010E+06
 x2 =   0.0000000E+00

The smaller root is not accurate because b and  are nearly equal. Cancellation
of the significant digits occurs during the subtraction leaving an answer severely con-
taminated by rounding errors. A way to cope with this situation is discussed in most
introductory texts on numerical computation (Exercise 2).

Finally, we try a test case which we know the program quadratic_equation_
solver cannot handle. The quadratic equation

x2 + 1 = 0

has no real roots. Instead, the roots are

x =  = 

+i and i are complex numbers with no real part. We still try it anyway, just to see what
happens.

 Enter a, the coefficient of x ** 2
 1
 Enter b, the coefficient of x
 0
 Enter c, the constant term
 1
 *** Attempt to take square root of negative quantity ***
 *** Execution terminated ***

Since b2  4ac is 4, the error message is right on the money. One way to cope with
this situation is discussed later.

Common Subexpressions

The arithmetic expressions for calculating the roots x1 and x2 both involve the same
subexpression, sqrt(b**2 - 4*a*c). As written, the program quadratic_equation_
solver asks the computer to recalculate this subexpression as part of the calculation of
x2. We can force the computer to calculate this subexpression only once by assigning it
to a new intermediate variable sub_expression, and then calculating both roots in
terms of the variable sub_expression.

program quadratic_equation_solver_2
!  Calculates and prints the roots
!  of a quadratic equation

b2 4ac–

1– i
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   implicit none
!  Variables:
!     a, b, c: coefficients
!     sub_expression: value common to both roots
!     x1, x2: roots

   real :: a, b, c, x1, x2, sub_expression

!  Read the coefficients
   print *, "Enter a, the coefficient of x ** 2"
   read *, a
   print *, "Enter b, the coefficient of x"
   read *, b
   print *, "Enter c, the constant term"
   read *, c

!  Calculate the roots by the quadratic formula
   sub_expression = sqrt (b ** 2 - 4 * a * c)
   x1 = (-b + sub_expression) / (2 * a)
   x2 = (-b - sub_expression) / (2 * a)

!  Print the roots
   print *, "The roots are"
   print *, "x1 =", x1
   print *, "x2 =", x2
end program quadratic_equation_solver_2

Some optimizing Fortran compilers will recognize that the program quadratic_
equation_solver, in its original form, calls for the calculation of the same subexpres-
sion twice without change of any of the variables in the subexpression. Such a compiler
would produce the more efficient machine language code corresponding to the second
version, quadratic_equation_solver_2, even when the programmer writes the less
efficient first version.

Complex Roots of a Quadratic Equation

The quadratic formula was used in the program quadratic_equation_ solver to cal-
culate the roots of a quadratic equation. The program worked well when the two roots
were real, but it failed in the test case of a quadratic whose roots were imaginary. In
that case, the quadratic formula calls for taking the square root of a negative number, a
function evaluation with no real answer. In the next program, quadratic_equation_
solver_3, we use complex values to compute the correct answer whether the roots of
the quadratic are real or complex.

The subexpression

d = b2  4ac
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is called the discriminant because it discriminates between the cases of two real roots,
a double real root, and two complex roots. If d is positive, there is a real square root of
d and the quadratic formula gives two real roots, one calculated by adding the square
root of d and the other by subtracting it. If d is zero, so is its square root. Consequently,
when d is zero the quadratic formula gives only one real root, b/2a.

When d is negative, on the other hand, its square root is imaginary. The complex
square root of a negative number is obtained by taking the square root of its absolute
value and multiplying the result by i, the basis of the complex number system. For ex-
ample, if d = 4, then  = 2i. Thus when d is negative, the two roots of the quadratic
equation are given by the formulas

     and     

However, with the use of the complex data type, the formula for calculating the
roots looks just like it does when the roots are real. The only thing that makes
quadratic_equation_solver_3 look different from the real version is that the discrim-
inant is converted to a complex value and all the remaining computations are done
with complex values. The two sample executions show one case where the roots are
complex and one case where they are both real.

program quadratic_equation_solver_3

!  Calculates and prints the roots
!  of a quadratic formula even if they are complex

   implicit none
!  Variables:  a, b, c = coefficients
!              z1, z2 = roots

   real :: a, b, c
   complex :: z1, z2

!  Read the coefficients
   read *, a, b, c
   print *, "Input data  a:", a
   print *, "            b:", b
   print *, "            c:", c

!  Calculate the roots
   z1 = (-b + sqrt (cmplx (b**2 - 4*a*c))) / (2*a)
   z2 = (-b - sqrt (cmplx (b**2 - 4*a*c))) / (2*a)

!  Print the roots
   print *, "The roots are:"
   print *, "z1 =", z1
   print *, "z2 =", z2

d

x1
b–

2a
------ d

2a
----------i+= x2

b–
2a
------ d

2a
----------i–=
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end program quadratic_equation_solver_3

 Input data  a:   1.0000000
             b:   0.0000000E+00
             c:   1.0000000
 The roots are:
 z1 = (  0.0000000E+00,  1.0000000)
 z2 = (  0.0000000E+00, -1.0000000)

 Input data  a:   4.0000000
             b:   8.0000000
             c: -21.0000000
 The roots are:
 z1 = (  1.5000000,  0.0000000E+00)
 z2 = ( -3.5000000,  0.0000000E+00)

Exercises

1. All of the programs in this section ignore the possibility that the value of a is zero,
or is close to zero. What will happen if quadratic_equation_solver is run with
input a = 0? Modify the program to handle this case. If a = 0, what happens if b is
also zero? Modify the program to handle this case also. (Section 2.2 explains how
to test if a = 0.)

2. If x1 and x2 are the roots of the quadratic equation ax2 + bx + c = 0, their product is
x1 x2 = c/a. When b is much larger than either a or c, the usual quadratic formula

does a poor job of calculating the root with the smaller absolute value because the

numerator is the difference of two nearly equal quantities  and b. Such
subtractions always reduce the number of significant digits in the answer by the
number of leading significant digits that cancel in the subtraction. Write a program
that calculates the roots of a quadratic equation using the quadratic formula, and
then recalculates the smaller root in absolute value using the formula x2 = c/ax1.
Compare the two sets of roots. Test the program on the following equations.

x2  10x + 1 = 0

x2  100x + 1 = 0

x2  1000x + 1 = 0

x2  10000x + 1 = 0

x b– b2 4ac–
2a

---------------------------------------=

b2 4ac–
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1.9 Case Study: Debugging Pendulum Calculations

This section will explain some of the steps in making a real program work. The time it
takes a pendulum to complete one swing is virtually independent of the amplitude or
maximum displacement of the pendulum at the height of its swing, as long as the
swing is relatively small compared with the length of the pendulum. For this reason,
pendulums have long been used to keep accurate time. The problem in this section is
to write a program to calculate the frequency f (the number of swings per second) of a
pendulum, and its period T (the time it takes to complete one swing). The input data is
the length of the pendulum in meters.

The formula for the frequency of a pendulum is

where g is the gravitational acceleration constant 9.80665 m/s2 for bodies falling under
the influence of gravity near the surface of the Earth, L is the length of the pendulum
in meters, and  is the mathematical constant 3.14159. In addition, the formula for the
period T is

The First Compilation

The solution to this problem uses everything we learned in this chapter: It has vari-
ables, input data, computational formulas, and even the built-in square root function.
Nevertheless, it seems to be a straightforward calculation for which a program can be
written quite easily. Here is the first attempt.

program pendulum
!  Calculates the frequency and period
!  of a pendulum of length L

!  First attempt

   implicit none
   real :: L, f, T
   real, parameter :: pi = 3.14159,
                      g = 9.80665

   print *, "Enter a value for L: "
   read *, L
   f = (1.0 / 2.0 * pi) sqrt (g / L)
   T = 1.0 / f
end program pendulum

f 1
2
------ g

L
---=

T 1
f
---=
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When this program is entered into the computer, it will not compile and run. The
error messages we show below are illustrative approximations of the messages we get
from actual Fortran compilers. The quality and amount of useful information con-
tained in error messages varies widely. We suggest comparing the error messages
shown here with the messages your system produces for the same errors.

% f03 pendulum.f03

Error: pendulum_1.f95, line 9: syntax error
       detected at ,@<end-of-statement>
***Invalid item in type declaration
Error: pendulum_1.f95, line 10: Implicit type for G
       detected at G@=
Error: pendulum_1.f95, line 14: syntax error
       detected at )@SQRT
***Malformed statement

Only three syntax errors is not too bad for a first attempt. The first error message is
puzzling. What syntax error? The parameter assignment pi = 3.14159 looks correct,
echoed in the error message, and the parameter assignment g = 9.80665 clearly is
there in the next line. The second error message is even more puzzling. g is declared
right in the line flagged by the error message. The crucial clue is before us, but as in a
good detective mystery, only the practiced eye can see it. Looking back at the first error
message, we now see that the compiler does not consider the line g = 9.80665 to be a
part of the real statement. Now the problem is clear. Both error messages are related,
and both are caused by the same mistake. There is no continuation character (&) at the
end of the first line of the statement declaring the parameters. It should read

real, parameter :: pi = 3.14159, &
                    g = 9.80665

The compiler sees the comma, and therefore expects another parameter assignment,
but, in the absence of the continuation character, it finds the end-of-statement instead.
Sometimes, when a compiler gets confused, it gets very confused. It would take a very
clever compiler to consistently print a good error message such as

  *** Error -- missing continuation character ***

The third error message said that the compiler was expecting something else when
sqrt was found instead. The rule is that the asterisk for multiplication cannot be omit-
ted in places where a multiplication sign can be omitted in ordinary algebraic notation.
We correct this assignment statement to the following.

   f = (1.0 / 2.0 * pi) * sqrt (g / L)

The Second Compilation and Run

Since all known errors have been corrected, we recompile the program. This time, there
are no error messages.
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program pendulum
!  Calculates the frequency and period
!  of a pendulum of length L

   implicit none
   real :: L, f, T
   real, parameter :: pi = 3.14159, &
                       g = 9.80665

   print *, "Enter a value for L:"
   read *, L
   f = (1.0 / 2.0 * pi) * sqrt(g / L)
   T = 1.0 / f
   print *, "The frequency of the pendulum is", &
                  f, "swings/sec."
   print *, "Each swing takes", T, "sec."
end program pendulum

The input data should be the length of the pendulum in meters. Visualizing the
size of a grandfather clock, and rounding the length of its pendulum to the nearest
whole meter, we will use an input length of one meter. Here is what the second run
produces.

  Enter a value for L:
 1
 The frequency of the pendulum is   4.9190345 swings/sec.
 Each swing takes   0.2032919 sec.

The program does run to completion; it prints the answers, but they are wrong!
The pendulum of a grandfather clock does not make almost five complete swings per
second. One swing every two seconds is more like it, with each half of the swing pro-
ducing a tick at one-second intervals. Just because the computer prints an answer, it
does not necessarily mean that the answer is right. The computer s arithmetic is almost
certainly perfect, but the formula it was told to compute might be in error.

All the evidence seems to be pointing a finger at the assignment statement to calcu-
late the frequency f:

f = (1.0 / 2.0 * pi) * sqrt(g / L)

or, if that statement is correct, at the statements that assign values to the variables and
parameters that appear on the right in that statement. The assignment statement for f
seems at first glance to be the equivalent of the algebraic formula for the frequency, so
we shift our attention to the assignment of the parameters pi and g and the reading of
the variable L. The echo of input data shows that L is correct. The parameter statement
assigning pi and g seems to be correct, so we shift our attention back to the assignment
statement calculating f. The error must be in this statement. If we still do not believe
that it is wrong, we could print the values of pi and g just before this statement to fur-
ther narrow the focus.
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Remember the rule that a sequence of multiplications and divisions is executed
from left to right. Thus, the assignment statement executes as though it were written

f = ((1.0 / 2.0) * pi) * sqrt(g / L)

The correct version of the statement is

f = (1.0 / (2.0 * pi)) * sqrt(g / L)

The Third Compilation and Run

This time, the answers look correct. We expected a pendulum one meter long to swing
once every two seconds.

 Enter a value for L:
 1
 The frequency of the pendulum is   0.4984032 swings/sec.
 Each swing takes   2.0064075 sec.

To check it, we calculate the algebraic formulas on a hand calculator and get the same
answers, and we could also try other pendulum lengths in the computer.

Postmortem Discussion

The author is really not incompetent enough to make all of the errors shown in this 14-
line program, at least not in one grand tour de force. However, even experienced pro-
grammers will make each of these errors, one at a time or in combination, over the
course of writing several dozen longer programs. Thus, it is vital for programmers not
only to know how to write programs, but also to have effective strategies for debug-
ging programs when the inevitable bugs appear. The techniques illustrated above:
compiler error messages, well-chosen test cases worked by hand, and diagnostic print-
ed output will serve the programmer in good stead throughout a career. Some Fortran
systems provide even more sophisticated tools.
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The programs in Chapter 1 performed simple calculations and printed the answers, but
each statement in these programs was executed exactly once. Almost any useful pro-
gram has the property that some collections of statements is executed many times, and
different sequences of statements are executed depending on the values of the input
data.

The Fortran statements that control which statements are executed, together with
the statements executed, are called control constructs. Three control constructs, the if
construct, the case construct, and the do construct are discussed in this chapter. Two
related constructs, the block construct and the associate construct also are discussed.
The if, stop, go to, and continue statements also are discussed briefly. Related topics
are the return statement (3.12), masked array assignment (4.1), and the select type
construct (12.4).

2.1 Statement Blocks

A collection of statements whose execution is controlled by one of the control con-
structs is called a block. For example, the statements between an if statement and the
next matching else if statement form a block. Transferring control into a block from
outside is not allowed, but it is possible to leave a block with a transfer of control. Any
block may contain a complete if, case, do, or block construct, so that these constructs
may be nested to any level.

The Block Construct

A block may be created by the block construct statements. This allows a variable to
have a scope consisting of just such a block. For example, in the following statements,
there are two variables named x. One is a type real parameter with the value 1.1; the
other is type integer and is known only inside the block construct, where it is declared.
Outside the block construct, x refers to the real parameter with value 1.1, as seen by the
output of the program.

program block_test

   implicit none
   real, parameter :: x = 1.1
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   block
      integer :: x
      do x = 1, 3
         print *, x
      end do
   end block

   print *, x

end program block_test

           1
           2
           3
   1.10000002

The associate Construct

The associate construct is a simple way to create an alias for a more complex expres-
sion, so that the alias may be used in the code, rather than rewriting the more compli-
cated expression. Here are two simple examples. Note that in the first associate
construct, changing the values of x and y does not change the value of s, because it is
the alias of an expression that is not a variable, but in the second construct, s is the
alias of the variable x, so changing x also changes s. Note also that s is not declared.

program assoc
   implicit none
   real :: x = 3, y = 4
   associate (s => sqrt(x**2 + y**2))
      print *, s
      x = 5; y = 12
      print *, s
   end associate
   associate (s => x)
      print *, s
      x = 9
      print *, s
   end associate
end program assoc

Running the program produces the following.

   5.00000000
   5.00000000
   5.00000000
   9.00000000
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Indentation of Blocks

Indentation of the blocks of a construct improves the readability of a program. The
subordinate placement of the controlled blocks visually reinforces the fact that their ex-
ecution is conditional or controlled.

Style note: The statements of each block of a construct should be indented some
consistent number of spaces more than the statements that delimit the block.

Construct Names

A construct may have a construct name on its first statement. It consists of an ordinary
Fortran name followed by a colon. The end statement that ends the construct must be
followed by the same construct name. This permits more complete checking that con-
structs are nested properly and provides a means of exiting any construct or cycling
(2.4) more than one level of nested loop.

The exit Statement

The exit statement causes termination of execution of a construct. If the keyword exit
is not followed by the name of a construct, the innermost do construct is exited; if there
is a construct name, that named construct (and all active constructs nested within it) is
exited. Examples of the exit statement occur throughout this chapter.

2.2 The if Construct

The if construct is a simple and elegant decision construct that permits the selection of
one of a number of blocks during execution of a program. The general form of an if
construct is

if (logical expression) then
  block of statements
else if (logical expression) then
  block of statements
else if (logical expression) then
  block of statements
else if . . .
   .
   .
   .
else

  block of statements
end if
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The else if and else statements and the blocks following them may be omitted. The
end if statement must not be omitted. The if construct may have a construct name.
Some simple examples follow.

if (a == b) then
   c = a
   print *, c
end if

dicey: if (dice <= 3 .or. dice == 12) then
   print *, "You lose!"
else if (dice == 7 .or. dice == 11) then
   print *, "You win!"
else
   print *, "You have to keep rolling until you get"
   print *, "either a 7 or a", dice
end if dicey

The if-then statement is executed by evaluating the logical expression. If it is true,
the block of statements following it is executed. Execution of this block completes the
execution of the entire if construct. If the logical expression is false, the next matching
else if, else, or end if statement following the block is executed. The execution of an
else if statement is exactly the same; the difference is that an if-then statement must
begin an if construct and an else if statement must not. The else and end if state-
ments merely serve to separate blocks in an if construct; their execution has no effect.

The effect of these rules is that the logical expressions in the if-then statement and
the else if statements are tested until one is found to be true. Then the block follow-
ing the statement containing that test is executed, which completes execution of the if
construct. If all of the logical conditions are false, the block following the else state-
ment is executed, if there is one.

Case Study: Escape Velocity of a Rocket

If a rocket or other object is projected directly upward from the surface of the Earth at
a velocity v, it will reach a maximum height h above the center of the Earth given by
the formula

where RE is the radius of the Earth (6.366  106 m) and g is the acceleration due to
gravity at the surface of the Earth (9.80 m/s2). This formula is not an unreasonable ap-
proximation, since a rocket reaches its maximum velocity within a relatively short pe-
riod of time after launching, and most of the air resistance is confined to a narrow layer
near the surface of the Earth.

A close examination of this formula reveals that it cannot possibly hold for all ve-
locities. For example, if the initial velocity v is such that v2 = 2gRE, then 1  v2/2gRE is

h
RE

1 v2 2gRE–
-------------------------------=
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zero and the maximum height h is infinite. This velocity v = 1.117  104 m/s (approxi-
mately 7 miles/s) is called the escape velocity of the Earth. Any object, either rocket or
atmospheric gas molecule, attaining this vertical velocity near the surface of the Earth
will leave the Earth’s gravitational field and not return. A particle starting at the escape
velocity will continue rising to arbitrarily great heights above the Earth. As it does so,
it will slow to almost, but not quite, zero velocity.

At initial velocities greater than the escape velocity, the particle or rocket’s velocity
will not drop to zero. Instead it will escape from the Earth’s gravitational field with a
final velocity vfinal given by the formula

The original formula for the maximum height h gives negative answers in these cases
and should not be used. The maximum height is infinite.

The Problem

We wish to write a program that reads an initial velocity of a rocket or molecule (in
meters per second) and prints an appropriate description of the fate of the rocket or
molecule. That is, if the rocket reaches a maximum height before falling back to Earth,
the maximum height should be printed. On the other hand, if the rocket escapes the
Earth’s gravitational field, the final velocity with which it escapes should be printed.

The Solution in Pseudocode

From the preceding discussion, we see that the fate of the rocket or molecule can be de-
termined by comparing the initial velocity to the escape velocity of the Earth, or equiv-
alently, by comparing v2 to 2gRE. If v2 is smaller, then a maximum height h is reached
before the rocket or molecule falls back to Earth. If the initial velocity is greater, then
the object in question escapes with a nonzero final velocity given by the second formu-
la. In the pseudocode solution below, the control structure is modeled exactly on the if
construct.

Read the initial velocity v
Echo the input data
If (v2 < 2gRE) then
   Calculate maximum height h above center of Earth
   Print that the object attains maximum height h - RE
      above the surface of the Earth before returning
      to Earth
else if (v2 == 2gRE) then
   Print that the initial velocity is
         the escape velocity
else
   Calculate the final velocity

vfinal v2 2gRE–=
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   Print that the object escapes Earth
         with the calculated final velocity
end if

The if construct extends from the keyword if that begins the if construct to the
keyword end if that ends the construct. The two lines of pseudocode between the key-
word then and the keywords else if constitute a block. They are executed if and only
if v2 < 2gRE. The line of pseudocode between the second keyword then and the key-
word else is the first and only block controlled by an else if statement in this if con-
struct. It is executed whenever v2 = 2gRE. Finally, the two lines of pseudocode between
the keyword else and the keyword end if are the else block. They are executed in
case none of the preceding if or else if conditions are true.

The Fortran Solution

Little remains to be done to refine the pseudocode solution to an executable Fortran
program except to choose names for the Fortran variables and parameters that most
nearly resemble the variable names in the formulas and to translate the pseudocode to
Fortran nearly line by line.

program escape
!  Accepts as input an initial velocity v
!  Prints maximum height attained,
!     if object does not escape Earth
!  Prints final escape velocity, vfinal,
!     if object escapes

!  Parameters
!     g  = acceleration of gravity near Earth’s surface
!             in meters / sec ** 2  (m/s**2)
!     RE = radius of the Earth (in meters)

   implicit none
   real :: v, h, vfinal
   real, parameter :: g = 9.80, RE = 6.366e6

   read *, v
   print *, "Initial velocity of object =", v, "m/s"
   if (v ** 2 < 2 * g * RE) then
      h = RE / (1 - v ** 2 / (2 * g * RE))
      print *, "The object attains a height of",  &
                h - RE, "m"
      print *, "above the Earth’s surface " //  &
               "before returning to Earth."
   else if (v ** 2 == 2 * g * RE) then
      print *, "This velocity is the escape " //  &
               "velocity of the Earth."
      print *, "The object just barely escapes " //  &
               "from Earth’s gravity."
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   else
      vfinal = sqrt (v ** 2 - 2 * g * RE)
      print *, "The object escapes with velocity", &
                vfinal, "m/s."
   end if
end program escape

 Initial velocity of object =   1.0000000E+03 m/s
 The object attains a height of   5.1432500E+04 m
 above the Earth’s surface before returning to Earth.

 Initial velocity of object =   2.0000000E+04 m/s
 The object escapes with velocity   1.6589949E+04 m/s.

 Initial velocity of object =   1.1170000E+04 m/s
 The object attains a height of   1.6871994E+11 m
 above the Earth’s surface before returning to Earth.

Testing an if Construct

The goal in testing an if construct is to design test cases that exercise each alternative
in the if construct. The first sample execution shows an initial velocity of 1.0  103 m/s
(1 km/s), which is well below the escape velocity of the Earth. The sample execution
shows that the rocket reaches a maximum height of 5.14  104 m (51.4 km) before fall-
ing back to Earth. Calculating the appropriate formula using a hand calculator gives
the same answer.

The second sample execution shows an initial velocity of 2.0  104 m/s (20 km/s),
which is well above the escape velocity. As expected, the printed output shows that the
rocket will escape from the Earth’s gravitational field, so the correct block in the if
construct is executed. It may seem surprising at first that the final velocity on escape is
such a large fraction of the initial velocity. We rechecked it using a hand calculator and
got the same answer. The explanation is that an initial velocity of nearly twice the es-
cape velocity carries with it an initial kinetic energy (energy of motion) of nearly four
times the energy of the escape velocity. So it is not really surprising that nearly three-
fourths of the initial kinetic energy is retained and carried away with the rocket in the
form of a large final velocity.

The third sample execution is designed to test the program using the escape veloc-
ity 1.117  104 m/s (11.17 km/s) as the initial velocity. Unfortunately, there is a little bit
of roundoff in the calculations, and the middle block in the if construct is not executed.
The printed answer is not bad. It says that the rocket will rise to a height of 1.69  1011

meters above the surface of the Earth before returning. Since this height is farther than
the distance to either Mars or Venus at their nearest approach to Earth, for all practical
purposes the program has reported that the rocket will escape.
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Roundoff Error in Tests for Equality

You must expect some roundoff in any calculation using reals. The largest source of
roundoff in this problem is the fact that the physical constants, the radius of the Earth,
and the gravitational acceleration, are given to only three or four significant digits, as
is the escape velocity. Even if the physical constants were given and used to more dig-
its, each arithmetic calculation in the computer is calculated to a fixed number of dig-
its. If you run this program on your computer, you will probably notice that the last
one or more digits of your computer’s printed answers differ from the ones shown.
This is to be expected. We suggest that you try initial velocities slightly larger than
1.117 104 m/s in an attempt to hit the escape velocity exactly on the nose. Quite likely
there is no computer-representable number on your machine to use as input to cause
execution of the middle alternative in the if block. Equality tests for reals are satisfied
only in special circumstances. The best you can reasonably expect is even larger maxi-
mum heights or extremely low final escaping velocities. To avoid this test for equality,
test for approximate equality instead. In our case, the two values v2 and 2gRE probably
should be considered equal if they agree to within three significant digits because g is
given to only three significant digits. This test for approximate equality can be used to
replace the else if statement in the program escape.

else if (abs((v**2 - 2*g*RE) / (2*g*RE)) < 1.0e-3) then

Flowchart for an if Construct

In standard flowcharting conventions, a diamond-shaped box is used to indicate a de-
cision or fork in the flow of the program execution. A rectangular box represents pro-
cessing of some sort. Using these standard conventions, the flowchart in Figure 2-1
indicates how an if construct is executed.

Case Study: Graduated Income Tax

The U.S. federal income tax is an example of a graduated or progressive tax, which
means that each income level is taxed at a different rate. After all deductions, progres-
sively higher incomes are taxed at increasing rates. A program to calculate federal in-
come tax uses a multi-alternative if block to select the correct tax computation formula
for each income level.

The resulting program illustrates the use of some of the logical operators .and.,
.or., and .not. To calculate a person’s income tax liability, income for the year is
modified by various exclusions, deductions, and adjustments to arrive at a taxable in-
come. The problem treated in this section is that of writing a program to compute the
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federal income tax liability for an unmarried taxpayer based on taxable income. Table
2-1 indicates how the tax is computed.

The input to the program is the person’s taxable income, after all deductions and
adjustments. The output is both the tax due on that taxable income and the person’s tax
bracket, that is, the rate at which the last dollar earned is taxed.

The central section of the program tax_computation to solve this problem corre-
sponds directly to the alternatives in the tax table.

program tax_computation
   implicit none
   real :: income, tax
   integer :: bracket

   read *, income
   print "(a, f15.2)", "Input data  income:", income

   if (income < 0) then
      print *, "Income cannot be negative."
   else if (income > 81560) then
      print *, "Tax must be figured using worksheet."
   else
   !  Find appropriate range and compute tax
      if (income==0) then
         tax = 0
         bracket = 0
      else if (income>0 .and. income<=17850) then
         tax = 0.15 * income
         bracket = 15
      else if (income>17850 .and. income<=43150) then
         tax = 2677.50 + 0.28 * (income - 17850)
         bracket = 28
      else if (income>43150 .and. income<=81560) then
         tax = 9761.50 + 0.33 * (income - 43150)
         bracket = 33

Table 2-1 Tax table

If taxable income is

more than
but not 
more than           then income tax is

$0 $17,850 15% of taxable income

$17,850 $43,150 $2,677.50 plus 28% of excess over $17,850

$43,150 $81,560 $9,761.50 plus 33% of excess over $43,150

$81,560 . . . Use worksheet to 
figure your tax
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      end if
   !  End of tax computation section
      print "(a, f8.2, a, f8.2)", &
            "The tax on $", income, " is $", tax
      print "(a, i2, a)", "This income is in the ",  &
            bracket, "% tax bracket."
   end if

end program tax_computation

Each line in the tax table corresponds to an if or else if test and a corresponding
block in the tax computation if construct. If income lies in the indicated range for that
if test, then the variables tax and bracket are calculated by the formula in the follow-
ing block. The conditions describing the ranges for income follow the tax table exactly.
They guarantee that only one range and one tax computation formula applies for each
possible value of income less than or equal to $81,560.

To be more specific, let us look at a few sample executions of tax_computation, in
which the computer is supplied with different values as input for the variable income.

Input data  income:        1000.00
The tax on $ 1000.00 is $  150.00
This income is in the 15% tax bracket.

Input data  income:       20850.00
The tax on $20850.00 is $ 3517.50
This income is in the 28% tax bracket.

Input data  income:       63150.00
The tax on $63150.00 is $16361.50
This income is in the 33% tax bracket.

Input data  income:       95000.00
 Tax must be figured using worksheet.

Consider the second run with a taxable income of $20,850. The only condition in
the tax computation section that this taxable income satisfies is

income > 17850 .and. income <= 43150

The tax is computed by the formula in the following block

tax = 2677.50 + 0.28 * (income - 17850)

so that the tax computed is 2677.50 + 0.28  (20850  17850) = 2677.50 + 0.28  3000 =
2677.50 + 840 = 3517.50. The second assignment statement of this block assigns a tax
bracket of 28 (percent) to the variable bracket. The remaining else if test in the if
construct is skipped. Then the two print statements that complete the else block of
the outer if construct are executed. Note that a complete if construct may be part of a
block controlled by another if construct.

In the last sample execution, using a taxable income of $95,000, the condition in the
else if statement of the outer if construct is satisfied, the variables tax and bracket
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are not assigned values at all, and the computer prints a statement that the tax cannot
be computed using the tax table.

Style note: It is good programming practice to warn the user when a situation
occurs that the program is not designed to handle.

Nonexclusive if Conditions

Because the tax computation if construct in the program tax_computation is based so
closely on the tax table, the alternative if and else if conditions are mutually exclu-
sive. Just as one and only one line of the tax table applies to each taxable income, one
and only one condition in the tax computation if construct is true (up to $81,560).

The test conditions in an if construct need not be mutually exclusive. Fortran per-
mits more than one condition to be true. However, even if several conditions are true,
only the first such condition selects its block for execution. The remaining conditions
are not even tested. Executing the selected block completes execution of the entire if
construct.

Using this rule for breaking ties when several conditions are satisfied, we may re-
write the inner if block of the program tax_computation with shorter test conditions.

   !  Find appropriate range and compute tax
      if (income == 0) then
         tax = 0
         bracket = 0
      else if (income <= 17850) then
         tax = 0.15 * income
         bracket = 15
      else if (income <= 43150) then
         tax = 2677.50 + 0.28 * (income - 17850)
         bracket = 28
      else
         tax = 9761.50 + 0.33 * (income - 43150)
         bracket = 33
      end if
   !  End of tax computation section

What is to be gained by shortening the if tests? Certainly, there is less typing to
enter the program. In addition, since the if tests are simpler, they will execute more
rapidly. Just how much more rapidly is not clear. Not only is the correspondence be-
tween the length of the Fortran source program and the speed of execution of the com-
piled machine language program rather loose, but input and output operations tend to
be very time consuming when compared with computational statements. Thus, it is
possible that most of the execution time is spent in the read and print statements, and
even a significant improvement in the speed of the if tests produces very little change
in the total execution time.

What is lost? The most important thing that is lost is the closeness of the corre-
spondence between the program and the tax table. The original program
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tax_computation obviously implements the tax table, but although the new program
also would implement the tax table, this fact would not be so obvious.

Another difference is that the second if construct is slightly more fragile or less ro-
bust. This means that although it works perfectly in its present form, it is slightly more
likely to fail if it is modified at a later date. For example, if the order of the alternatives
in the program tax_computation is scrambled, perhaps listed in decreasing rather
than in increasing order of taxable income, the tax computation if construct in the
original tax_computation program still works properly, but the replacement does not.
The alternatives in the replacement if construct must remain in increasing order or the
if construct will fail to compute taxes properly. On balance, the slight gain in efficien-
cy and the slightly fewer keystrokes needed do not justify the less robust program.

Style note: Do not sacrifice clarity of the program to shorten the execution time
by a few nanoseconds. Not only is the program harder to get right and main-
tain, but with a good optimizing compiler the improvement in execution time
may be smaller than anticipated or even nonexistent.

The if Statement

There is a special form of test that is useful when there are no else if or else condi-
tions and the action to be taken when the condition is true consists of just one state-
ment. It is the if statement. The general form of an if statement is

if ( logical expression ) statement

The statement to be executed when the logical expression is true must not be anything
that does not make sense alone, such as an end if statement. Also, it must not be an-
other if statement, and it may not be the first statement of a control construct.

When the if statement is executed, the logical expression is evaluated. If the result
is true, the statement following the logical expression is executed; otherwise, it is not
executed.

Using this form of testing has the drawback that if the program is modified in such
a way that the single statement if is no longer adequate, the if statement must be
changed to an if construct. If an if construct were used in the first place, the modifi-
cation would consist of simply adding more statements between the if-then statement
that begins the if construct and the end if statement. However, in the cases where the
computation to be done when a certain condition is true consists of just one short state-
ment, using the if statement probably makes it a little easier to read. Compare, for ex-
ample

if (value < 0) value = 0

with

if (value < 0) then
   value = 0
end if
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Exercises

1. Write an if construct that prints the word “vowel” if the value of the variable let-
ter is a vowel (i.e., A, E, I, O, or U) and the word “consonant” if the value of let-
ter is any other letter of the alphabet. Only uppercase letters can appear as values
of letter. Hint: to test if the value of letter is A, write

if (letter == "A") then

2. Hand simulate the programs example_1 to example_4 using the values 45, 75, and
95 as input data (12 simulations in all). Check your answers with a computer, if
possible. Caution: These simulations are tricky, but each program is syntactically
correct. No indentation has been used in order not to give any hints about the
structure of the if constructs. We suggest correctly indenting each program before
hand simulating it.

program example_1
   integer :: x
   read *, x
   if (x > 50) then
   if (x > 90) then
   print *, x, " is very high."
   else
   print *, x, " is high."
   end if
   end if
end program example_1

program example_2
   integer :: x
   read *, x
   if (x > 50) then
   if (x > 90) then
   print *, x, " is very high."
   else
   end if
   print *, x, " is high."
   end if
end program example_2

program example_3
   integer :: x
   read *, x
   if (x > 50) then
   if (x > 90) then
   print *, x, " is very high."
   end if
   else
   print *, x, " is high."
   end if
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end program example_3

program example_4
   integer :: x
   read *, x
   if (x > 50) then
   end if
   if (x > 90) then
   print *, x, " is very high."
   else
   print *, x, " is high."
   end if
end program example_4

3. A toll bridge charges $3.00 for passenger cars, $4.00 for buses, $6.00 for trucks un-
der 10,000 pounds, and $10.00 for trucks over 10,000 pounds. The problem is to
write a program using an if construct to compute the toll. Use interactive input if
it is available. The input data consists of first the letter C, B, or T for car, bus, or
truck, respectively. Either uppercase or lowercase letters are permitted. If the class
is T (truck), then prompt the user for another character that is either “<“ (meaning
less than 10,000 pounds) or “>” (meaning greater than 10,000 pounds). The follow-
ing are sample executions:

  Enter vehicle class (C, B, or T)
t
  Enter < or > to indicate weight class
<
  The toll is $6.00

  Enter vehicle class (C, B, or T)
c
  The toll is $3.00

Hint: the vehicle class variable might be declared as

character(len=1) :: vehicle_class

4. The Enlightened Corporation is pleased when its employees enroll in college class-
es. It offers them an 80% rebate on the first $500 of tuition, a 60% rebate on the sec-
ond $400, and a 40% rebate on the next $300. The problem is to compute the
amount of the rebate. The input data consists of one number, the amount of tuition
paid by the employee. A sample execution might produce the following:

  Input data  tuition:  600
  The employee’s rebate is $  460
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2.3 The case Construct

The case construct is somewhat similar to the if construct in that it permits selection
of one of a number of different alternative blocks of instructions, providing a stream-
lined syntax for an important special case of a multiway selection. The general form of
a case construct is

select case (expression)
  case (case selector)
     block of statements
  case (case selector)
     block of statements
    .
    .
    .
  [ case default
     block of statements ]
end select

The value of the expression in the select case statement should be an integer or a
character string (of any length). The case selector in each case statement is a list of
items, where each item is either a single constant or a range of the same type as the ex-
pression in the select case statement. A range is two constants separated by a colon
and stands for all the values between and including the two values. The case default
statement and its block are optional. The case construct may have a construct name.

The case construct is executed by evaluating the expression in the select case
statement. Then the expressions in the case statements are examined until one is found
with a value or range that includes the value of the expression. The block of statements
following this case statement is executed, completing execution of the entire case con-
struct. Unlike if constructs, no more than one case statement may match the value of
the expression. If no case statement matches the value of the expression and there is a
case default statement, the block following the case default statement is executed.

Any of the items in the list of values in the case statement may be a range of val-
ues, indicated by the lower bound and upper bound separated by a colon (:). The case
expression matches this item if the value of the expression is greater than or equal to
the lower bound and less than or equal to the upper bound.

A flowchart indicating how a case construct is executed appears in Figure 2-2.
Some simple examples follow.

select case (dice)
   case (2:3, 12)
      print *, "You lose!"
   case (7, 11)
      print *, "You win!"
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   case default
      print *, "You have to keep rolling until you get"
      print *, "either a 7 or a ", dice
end select

traffic: select case (traffic_light)
   case ("red")
      print *, "Stop"
   case ("yellow")
      print *, "Caution"
   case ("green")
      print *, "Go"
   case default
      print *, "Illegal value:", traffic_light
end select traffic

Yes

Figure 2-2   Execution flow for a case construct
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enum, bind(c)
   enumerator :: error
   enumerator :: jan, feb, mar, apr, may, jun
   enumerator :: jul, aug, sep, oct, nov, dec
end enum
   . . .
select case (month)
   case (sep, apr, jun, nov)
      number_of_days = 30
   case (jan, mar, may, jul:aug, oct, dec)
      number_of_days = 31
   case (feb)
      if (leap_year) then
         number_of_days = 29
      else
         number_of_days = 28
      end if
   case default
      number_of_days = error
end select

select case (symbol)
   case ("a":"z")
      category = "lowercase letter"
   case ("A":"Z")
      category = "uppercase letter"
   case ("0":"9")
      category = "digit"
   case default
      category = "other"
end select

Note that the computation of income tax that was done in the previous section
with an if construct cannot be done with a case construct because the data type of the
expression used in a select case statement may not be real.

Exercises

1. Write a case construct that prints the word “vowel” if the value of the variable let-
ter is a vowel (i.e., A, E, I, O, or U), prints the word “consonant” if the value of
letter is any other letter of the alphabet, and prints an error message if it is any
other character.

2. Write a complete program that reads one character and uses the case construct to
print the appropriate classification of the character.

3. A toll bridge charges $3.00 for passenger cars, $2.00 for buses, $6.00 for trucks un-
der 10,000 pounds, and $10.00 for trucks over 10,000 pounds. The problem is to
write a program to compute the toll using a case construct. Use interactive input if
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it is available. The input data consists of first the letter C, B, or T for car, bus, or
truck, respectively. Either uppercase or lowercase letters are permitted. If the class
is T (truck), then prompt the user for another character that is either “<“ (meaning
less than 10,000 pounds) or “>” (meaning greater than 10,000 pounds). The follow-
ing are sample executions:

  Enter vehicle class (C, B, or T)
t
  Enter < or > to indicate weight class
<
  The toll is $6.00

  Enter vehicle class (C, B, or T)
c
  the toll is $3.00

2.4 The do Construct

All the programs so far suffer from the defect that each instruction is executed at most
once. At the enormous speed at which computers execute instructions, it would be dif-
ficult to keep a computer busy for very long using this type of program. By the simple
expedient of having the computer execute some instructions more than once, perhaps a
large number of times, it is possible to produce a computer program that takes longer
to execute than to write. More important is the fact that a loop increases the difficulty
of writing a program very little, while it greatly increases the amount of useful data
processing and calculation done by the program.

The looping construct in Fortran is the do construct. The general form of the do
construct is

do [ loop control ]
   block of statements
end do

The do construct may have a construct name.
The block of statements, called the loop body or do construct body, is executed re-

peatedly as indicated by the loop control. Figure 2-3 is a flowchart showing the execu-
tion of a do construct.

There are two types of loop control. In one case the loop control is missing, in
which case the loop is executed until some explicit instruction in the do body such as
an exit statement terminates the loop. In the other type of loop control, a variable
takes on a progression of values until some limit is reached. After a brief discussion of
the cycle statement, we will look at examples of the different types of loop control.
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The cycle Statement

The cycle statement causes termination of the execution of one iteration of a loop. In
other words, the do body is terminated, the do variable (if present) is updated, and
control is transferred back to the beginning of the block of statements that comprise the
do body. If the keyword cycle is followed by the name of a construct, all active loops
nested within that named loop are exited and control is transferred back to the begin-
ning of the block of statements that comprise the named do construct.

Loops with No Loop Control

For a do construct with no loop control, the block of statements between the do state-
ment and the matching end do statement are executed repeatedly until an exit state-
ment or some other statement causes it to terminate. Suppose we wish to print out all
powers of two that are less than 1000. This is done with a simple do construct with no
loop control and an exit statement.

Figure 2-3 Execution flow for a do construct with an iteration count
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program some_powers_of_2

   implicit none
   integer :: power_of_2

   power_of_2 = 1  ! The zero power of 2
   print_power: do
      print *, power_of_2
      power_of_2 = 2 * power_of_2
      if (power_of_2 >= 1000) exit print_power
   end do print_power
end program some_powers_of_2

As another example, suppose a file contains integers, one per line. All of the inte-
gers are nonnegative, except the last integer in the file, which is negative. The follow-
ing program reads the file and computes the average of the integers, treating the first
negative integer it finds as a signal that there is no more data.

program average
!  This program finds the average of a file of
!  nonnegative integers, which occur one per line
!  in the input file. The first negative number
!  is treated as the end of data.

   implicit none
   integer :: number, number_of_numbers, total

   total = 0
   number_of_numbers = 0
   do
      read *, number
      if (number < 0) exit
      print *, "Input data  number:", number
      total = total + number
      number_of_numbers = number_of_numbers + 1
   end do

   print *, "The average of the numbers is",  &
         real(total)  / number_of_numbers
end program average

To illustrate a simple use of the cycle statement, suppose a file of integers similar
to the one used above is presented and the task is to count the number of odd numbers
in the file prior to the first negative number in the file. The following program accom-
plishes this. Recall that the intrinsic function modulo gives the remainder when the first
number is divided by the second number.
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program odd_numbers
!  This program counts the number of odd numbers
!  in a file of nonnegative integers,
!  which occur one per line in the input file.
!  The first negative number is treated as end of data.

   implicit none
   integer :: number, number_of_odd_numbers

   number_of_odd_numbers = 0
   do
      read *, number
      print *, "Input data  number:", number
      if (number < 0) then
         exit
      else if (modulo (number, 2) == 0) then
         cycle
      else
         number_of_odd_numbers = number_of_odd_numbers + 1
      end if
   end do

   print *, "The number of odd numbers is", number_of_odd_numbers
end program odd_numbers

These last two programs have a structure similar to that of the heart of many pro-
grams, both simple and complicated. In pseudocode, that structure is

do
   Attempt to read some data
   If all data have been processed, then exit
   Process the data
end do

For this kind of loop, a do construct with no loop control and an exit statement are
just right.

Loop Control with a do Variable

Quite frequently, the successive values taken by a variable follow a simple pattern, like
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or 9, 7, 5, 3. Because these sequences occur so often in pro-
gramming, there is a simple means of assigning successive values to a variable in For-
tran using the do construct and variable loop control. A simple example that prints the
squares and cubes of the integers 1 20 follows:

do number = 1, 20
   print *, number, number**2, number**3
end do
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The block of this do construct consists of a single print statement. The first time the
print statement is executed, the do variable number has the value of 1, and this num-
ber is printed as the first output line, followed by its square and its cube. Then the do
variable number takes on the value 2, which is printed on the next line, followed by its
square and its cube. Then the do variable takes on the values 3, 4, 5, up to 20 for suc-
cessive repetitions of the print statement. At this point, the possible values for the do
variable number specified in the do statement are exhausted and execution of the do
construct terminates.

The general forms of loop control using a do variable are

variable = expression, expression

and

variable = expression, expression, expression

The three integer expressions specify the starting value, the stopping value, and the
step size or stride between successive values of the do variable. The do statement in the
do construct above used constants 1 and 20 for the starting and stopping values. When
the step size expression is omitted, as it is in the do construct above, a step size of 1 is
used.

A do variable must be an integer variable; it should be declared in the program or
procedure (3.13) where it is used. It must not be an array element (4.1) or a component
of a structure (6.1). It should not be a dummy argument. It must not have the pointer
or target attribute (10.1).

The value of a do variable may not be changed inside the construct.
The number of times the loop is executed (unless terminated by an exit statement,

for example) is given by the formula

where m1 is the starting value, m2 is the stopping value, and m3 is the step size.  de-
notes the floor function, the greatest integer less than or equal to x. In cases where the
sequence of values starting at m1 in steps of m3 exactly reaches m2, this reduces to the
simpler formula

For example, the following do loop is executed  = 5 times with the
do variable assigned the values 2, 4, 6, 8, and 10.

do number = 2, 10, 2
   print *, number
end do

max m2 m1– m3+
m3

--------------------------------- 0,

x

1
m2 m1–

m3
-------------------+

10 2– 2 2+
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If the do statement were changed to

do number = 2, 11, 2

The do loop would be executed  = 5 times, as before, and the values of
the do variable number would be the same: 2, 4, 6, 8, and 10. The do statement

do number = 1, upper_limit

causes its do block to be executed no times if the value of the variable upper_limit is
less than or equal to zero.

Counting Backward

If the step size is negative, the do variable counts backwards. Thus, it is possible to
print the complete words to the popular camp song “Ninety-Nine Bottles of Beer on
the Wall” using a do statement with a negative step size. The program beer, which tells
the computer to print the verses, is given below. In the program, a print statement
with no print list is used to print a blank line between verses.

program beer
!  Prints the words of a camp song

   implicit none
   integer :: n

   do n = 99, 1, -1
      print *
      print *, n, "bottles of beer on the wall."
      print *, n, "bottles of beer."
      print *, "If one of those bottles should happen to fall,"
      print *, "there’d be", n - 1, "bottles of beer on the wall."
   end do
end program beer

Running the program produces the following output.

 99 bottles of beer on the wall.
 99 bottles of beer.
 If one of those bottles should happen to fall,
 there’d be 98 bottles of beer on the wall.

 98 bottles of beer on the wall.
 98 bottles of beer.
 If one of those bottles should happen to fall,
 there’d be 97 bottles of beer on the wall.

11 2– 2+ 2
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 97 bottles of beer on the wall.
 97 bottles of beer.
 If one of those bottles should happen to fall,
 there’d be 96 bottles of beer on the wall.
       .
       .
       .
 1 bottles of beer on the wall.
 1 bottles of beer.
 If one of those bottles should happen to fall,
 there’d be 0 bottles of beer on the wall.

A short name n is chosen for the do variable to make it easier to sing the program
listing. The execution output shown is abbreviated after three full verses, with the last
verse also given to show how the loop ends.

Testing if a Loop is Exited

The use of an exit statement makes clearer one example that previously seemed clear-
er with a go to statement. After executing a loop, it is sometimes needed to test if the
loop went through all of its iterations or exited prior to that. This can be done nicely
with a block construct and exit statement.

program exit_test

   implicit none
   real, dimension(5) :: x = &
      [ 1, 2, 3, 4, 5 ]

   find: block
      integer :: i
      do i = 1, 5
         if (x(i) > 2.2) then
            print *, "Location:", i
            exit find
         end if
      end do
      print *, "Not found"
   end block find

end program exit_test

2.5 Case Study: Numerical Integration I

The value of a definite integral is the area of a region of the plane bounded by the three
straight lines. x = a, y = 0, x = b, and the curve y = f(x) as shown in Figure 2-4. The better
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part of a semester in any calculus sequence is spent seeking analytic solutions to the
area problem, that is, expressing the area by an algebraic or trigonometric expression.
At the conclusion, the calculus student acquires a modest repertoire of useful functions
that can be integrated in “closed form”.

It turns out to be easier to approximate the area of such regions numerically, if you
have a computer available. Moreover, the numerical approximation method works
even for functions that cannot be integrated in closed form. If we replace the curve y =
f(x) by a straight line with endpoints a and b, the region in question is converted to a
trapezoid, a simple four-sided figure whose area is given by the formula

Of course, the area of this trapezoid is not exactly equal to the area of the original re-
gion with curved boundary, but the smaller the width of the trapezoid, the better the
approximation.

Specifically, the problem we wish to solve is to find the area of one arch of the
curve y = sin(x), that is, the area under this curve for x from 0 to  radians (180°) as
shown in Figure 2-5. We will do it by writing a program to calculate trapezoidal ap-
proximations to the area, choosing a number of trapezoids sufficient to give the answer
to three decimal places.

If we call the width of each trapezoid h, we have the relationship

Figure 2-4 Trapezoidal approximation to the area under a curve
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After a little algebra, the sum of the areas of the n trapezoids may be expressed by the
formula

In the following program integral, the sum is formed by first computing

Because a do variable must be an integer, we use the integer variable i that counts 1, 2,
...,  and compute the expression a + i*h to obtain the sequence of values

a + h, a + 2h, ..., a + (n 1)h = b h

The program follows.

program integral
!  Calculates a trapezoidal approximation to an area
!  using n trapezoids.
!  n is read from the input file.

!  The region is bounded by lines x = a, y = 0, x = b,
!  and the curve y = sin(x).
!  a and b also are read from the input file.

   implicit none

Figure 2-5 Approximating the area under the curve y = sin(x)
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   intrinsic :: sin
   real :: a, b, h, total
   integer :: i, n
 
   read *, n
   print *, "Input data  n:", n
   read *, a, b
   print *, "Input data  a:", a
   print *, "            b:", b

   h = (b - a) / n
!  Calculate the total f(a)/2+f(a+h)+...+f(b-h)+f(b)/2
!  Do the first and last terms first
   total = 0.5 * (sin(a) + sin(b))
   do i = 1, n - 1
      total = total + sin(a + i * h)
   end do

   print *, "Trapezoidal approximation to the area =", &
             h * total
end program integral

 Input data  n: 100
 Input data  a:   0.0000000E+00
             b:   3.1415901
 Trapezoidal approximation to the area =   1.9998353

 Input data  n: 1000
 Input data  a:   0.0000000E+00
             b:   3.1415901
 Trapezoidal approximation to the area =   1.9999995

Since these two answers differ by only one in the fourth decimal place, we may
conclude that the approximation using 100 trapezoids is sufficiently accurate for our
purposes, and that the approximation using 1000 trapezoids is accurate to more than
four decimal places. (An alert reader may have noticed that the sixth and seventh dec-
imal places in the echo of the input variable b are not the correct digits of .) There is
no need to rerun the program using more trapezoids to meet the limits of accuracy
specified in the problem statement. The answer is 1.9999995 rounded to three decimal
places to get 2.000. The input data for b was given using five decimal places as 3.14159
and the last two places echoed represent roundoff.

The intrinsic statement

The intrinsic statement consists of the keyword intrinsic followed by a double co-
lon (::) and followed by a list of intrinsic procedure names. It can be used to indicate
the use of any intrinsic procedure for documentation, but is usually not required.
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2.6 Exercises

1. Hand simulate the execution of the following statements, keeping track of the val-
ue of n and prod after the execution of each statement.

integer :: n, prod
prod = 1
do n = 2, 4
   prod = prod * n
end do

2. What output is produced by the following program?

program exercise
   implicit none
   intrinsic :: modulo
   integer :: m
   do m = 1, 20
      if (modulo(m, 2) /= 0) then
         print *, m
      end if
   end do
end program exercise

3. What is the value of the variable total at the conclusion of each of the following
loops?

integer :: n, total

total = 0
do n = 1, 10
   total = total + 1
end do

total = 0
do n = 1, 5
   total = total + n * n
end do

total = 0
do n = 1, 14, 2
   total = total + n * n
end do

total = 0
do n = 5, 1, -1
   total = total + n
end do
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4. An integer is a perfect square if it is the square of another integer. For example, 25
is a perfect square because it is 5  5. Write a program to selectively print those
numbers less than 100 that are not perfect squares. Sample output for this program
should look like the following.

  2
  3
  5
  6
  7
  8
  10
  .
  .
  .
  99

5. Read integers from the input file until the value zero is read. Then print the num-
ber in the file just before the first zero value. Sample input data might be

3
7
2
10
0
9
4
0
5

Sample output for this input data is

  Input data:  buffer  3
  Input data:  buffer  7
  Input data:  buffer  2
  Input data:  buffer  10
  Input data:  buffer  0
  The last number before the first zero is 10

6. Write a program that prints the smallest power of 3 that exceeds 5000.

7. In 1970, the population of New Jersey was 7,168,192 and it was increasing at the
rate of 18% per decade. The area of New Jersey is 7521 square miles. On the basis
of the 18% growth rate continuing indefinitely into the future, predict the popula-
tion of New Jersey every decade from 1980 on. Stop the predictions when the aver-
age number of square feet per person is less than 100. Print out all estimates.
Execution of the program should produce something like the following.

  year     population    sq ft / person
  1980       8458466.           24789.6
  1990       9980990.           21007.3
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     .              .                 .
     .              .                 .
     .              .                 .

For partial confirmation of the validity of the prediction model, look up the 1980,
1990, and 2000 census data for New Jersey and compare the actual data with your
program’s predictions.

8. The mathematical expression

produces better and better approximations to the famous mathematical constant e =
2.718281828459045... as n gets large. However, the computed result of this expres-
sion may be disappointingly inaccurate if the selected real kind does not permit
many significant digits of 1/n to be retained in the sum 1+1/n. Write a program to
calculate the expression

for n taking on successive powers of two: 1, 2, 4, 8, 16, ... and successive powers of
three: 1, 3, 9, 27, 81, ... . Run this program using each of the real kinds available on
your computer.

2.7 The stop Statement

The stop statement causes execution of a program to stop. With the use of modern
control constructs, a program usually should stop by coming to the end of the pro-
gram. However, there are some occasions where the stop statement is very convenient
to use. For example, when print statements are inserted for debugging, it is often de-
sirable to stop the program after a few such statements are executed or after the first
few iterations of a loop are executed. Also, when severe errors are detected in the mid-
dle of a procedure that is being executed, it is much easier to execute a stop statement
than exit out through what may be many layers of nested subroutine calls or function
references.

read *, income
if (income < 0) then
   print *, "Error: income is less than zero."
   stop
end if

1 1
n
---+

n

1 1
n
---+

n
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2.8 The go to and continue Statements

The if, case, and do constructs are sufficient to build almost any program. However,
there are some rare occasions that seem to require a direct branch to a different part of
the program. This can be done with the go to statement, which can transfer control to
a continue statement.

The form of the go to statement is

go to label

where label is a string of one to five decimal digits, at least one of which must be non-
zero. When the statement is executed, control is passed to the continue statement with
that label. The continue statement with the label should be after the go to statement;
branching backward produces code that is very difficult to understand.

The continue statement has the form

label continue

Branching from outside a construct (if, case, do, block, associate, or where) to a
continue statement inside the construct is not permitted.

One situation in which it might be convenient to use a go to statement is when a
serious error condition occurs inside a fairly complex construct, such as nested do
loops.
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Large programs are extremely difficult to debug and maintain unless they are split into
independent parts. Even relatively short programs are greatly improved when their
component parts are refined as procedures. Modules provide a place to put data decla-
rations so that they can be used and shared by programs. Modules also provide the
place to put a Fortran procedure, which is either a function or a subroutine, and to put
definitions of user-defined types; these are basic building blocks of a program and are
usually used by more than one part of a program.

Modules are especially useful when building a “package” or “library” of data and
procedures that may be accessible to many different programs.

Submodules are discussed in 8.1.

3.1 Modules

A module is a program unit that is not executed directly, but contains data specifica-
tions and procedures that may be utilized by other program units via the use state-
ment.

The general form of a module is:

module name
   use statements
   declaration statements
contains

   subroutines and functions
end module name

Style note: The implicit none and the private statements should appear in ev-
ery module unless the module consists of only use statements; such a module
is used to collect the information in several other modules.

Writing and Using Modules

To begin with a very simple example, one use of a module is to include the definition
of constants that might be useful in programs. The module math_module contains the
values of , e, and ; of course, it could contain many more useful constants. Note that
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these constants have default kind, regardless of the number of decimal digits that ap-
pear.

module math_module

   implicit none
   private
   real, public, parameter :: pi = &
         3.1415926535897932384626433832795028841972
   real, public, parameter :: e = &
         2.7182818284590452353602874713526624977572
   real, public, parameter :: gamma = &
         0.5772156649015328606065120900824024310422

end module math_module

Any program that needs these constants can simply use the module.

program circle

   use math_module
   implicit none
   real :: radius = 2.2, area

   area = pi * radius ** 2
   print *, area

end program circle

It is also possible to declare variables in a module. The module
declarations_module declares logical variables flag_1 and flag_2, which could then
be used in any program that uses the module.

module declarations_module

   implicit none
   private
   logical, public :: flag_1, flag_2

end module declarations_module

program using_modules

   use declarations_module
   implicit none

   logical, parameter :: f = .false.
   flag_1 = f
   flag_2 = .not. flag_1
      . . .
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end program using_modules

Most implementations require that a module be compiled before any program that
uses the module is compiled. Thus, if the module and program above are placed in the
same source file, the module must come before the program. Also, the use statement is
required, even if both module and program are in the same file.

Private and Public Access

Everything declared in a module has access, which is either private or public. Private
things are known only within the module and public things can be accessed by any
program or procedure that uses the module.

 Each parameter, variable, and type (6.2) in a module should have either the pub-
lic or private attribute in its declaration. It is possible for the programmer of a mod-
ule to use the access statements to restrict the variables and procedures in the module
that are accessible outside the module. This is done to “hide” implementation details in
the module and is accomplished by declaring things private. A nice example of this is
the module for computing with big integers discussed in 9.6. In the simple examples
shown so far, everything is declared public.

The private Statement

The private statement in a module indicates that all things not declared public are
private; without it, the default is that all things are public.

Style note: A private module should have a private statement to prevent
things in the module from being passed on.

The protected Attribute

If a variable in a module is declared to be public, its access can be partially restricted
by further giving it the protected attribute in the declaration. This means that the val-
ue of the variable is accessible but cannot be changed. For example, a module might
have a logical variable that indicates whether certain values in the module have been
initialized or not. It would be acceptable to have the value of the variable accessible
outside the module, but it should not be changed outside the module.

logical, public, protected :: &
      variables_have_been_initialized = .false.

The use Statement

The simple form of the use statement is just the keyword use followed by a module to
be used, as illustrated by a previous example. A use statement may appear in a pro-
gram, subroutine, function, another module, or a procedure interface.
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However, with the use statement, there are two ways to affect the way that names
in a module are accessed by another program unit. The first is that the names used in
the module may be changed in the program unit using the module. This may be neces-
sary because the program is using two or more modules that contain declarations of
the same name. Or it simply may be desirable to change the name to suit the taste or
needs of the programmer of the program unit.

For example, in a subroutine using module math_module, the programmer may de-
cide that the name e is too short to allow a clear understanding of its purpose. This can
be fixed by renaming the variable e to the longer name logarithm_base with the use
statement.

use math_module, logarithm_base => e

Any number of rename clauses may appear in the use statement.
The second way to affect the names accessed in a module is to have an only clause

in the use statement. In the program circle, only the constant  is needed. It is possi-
ble to prevent other names in the module from conflicting with names in the program;
this can be accomplished with the use statement.

use math_module, only : pi

If, in addition, it were desirable to use and rename the parameter e to logarithm_base,
this could be done with the statement:

use math_module, only : pi, logarithm_base => e

There can be many names, with or without renaming, in a list after the colon. A use
statement can refer to only one module, but there can be more than one use statement
in a program for a module.

use m, only : x
use m, only : y

3.2 Procedures

There are two kinds of procedures: functions and subroutines. A function looks much
like a Fortran program, except that it begins with the keyword function instead of the
keyword program. Once written, a function is used just like the built-in functions dis-
cussed in 1.5 to compute a value that may be used in any expression. A subroutine
also looks like a program or a function, except that the first line begins with the key-
word subroutine. A subroutine may be used to perform any computation and is in-
voked by executing a call statement.

Style note: All procedures should be placed in a module or after the contains
statement in a main program or module procedure.

Style note: Self-contained subtasks should be written as procedures.
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Functions and subroutines whose first statements contain the keyword recursive
are permitted to call themselves directly or indirectly; recursion (3.16) is used to write
clear and simple programs for what might otherwise be difficult programming tasks.

Functions and subroutines whose first statements contain the keyword elemental
allow the programmer to more simply write a procedure that handles an array of val-
ues on an element-by-element basis (8.7).

The keyword pure (3.7) on a function or subroutine statement indicates that the
procedure has no side effects.

Style note: Most functions should be pure, with or without the keyword.

An access statement consists of either private or public followed by a colon and
a list of the names of procedures in the module.

3.3 Subroutines

Suppose the task at hand is to read in three real numbers and print them in ascending
order. The main steps needed to accomplish this task are (1) read in the numbers, (2)
sort them, and (3) print them. The program sort_3 does this.

program sort_3

   implicit none
   call read_the_numbers()
   call sort_the_numbers()
   call print_the_numbers()

end program sort_3

It seems obvious (because the names are chosen well) that it performs the three
steps described above needed to solve the problem. However, if you try to compile this
into an executable program, you will be told that the three procedures are missing. We
must provide statements that directly reflect these three steps and put the details else-
where.

The call Statement

The call statement is used to indicate that the computation represented by a subrou-
tine is to be performed. The keyword call is followed by the name of the subroutine
and by a list of arguments (3.5) in parentheses. The program sort_3 contains three
call statements.
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Writing a Subroutine

A subroutine is very similar to a program except that the first statement is a subrou-
tine statement that begins with the keyword subroutine and ends with a list of argu-
ments in parentheses. The parentheses should appear even if there are no arguments.
The last statement of a subroutine is the end subroutine statement, which contains the
name of the subroutine.

The subroutine read_the_numbers consists of the subroutine statement, the state-
ments that read and echo the numbers, and the end subroutine statement that termi-
nates the subroutine.

subroutine read_the_numbers()
   read *, n1, n2, n3
   print *, "Input data  n1:", n1
   print *, "            n2:", n2
   print *, "            n3:", n3
end subroutine read_the_numbers

It is not necessary to declare the variables n1, n2, and n3 because they will be de-
clared elsewhere.

The other two subroutines are constructed similarly (see below).

3.4 Putting Procedures in a Module

We now show how the program to sort three numbers can be organized using a mod-
ule to contain the subroutines. The module also will contain the declaration of the four
private variables n1, n2, n3, and temp because they are used by the procedures in the
module. The module sort_3_module also contains the three subroutines after a con-
tains statement.

Procedures appear just before the last end statement of the module containing
them and they are preceded by a contains statement, which consists of simply the
keyword contains.

module sort_3_module

   implicit none
   private
   real :: n1, n2, n3
   real :: temp

   public :: read_the_numbers,  &
             sort_the_numbers,  &
             print_the_numbers

contains
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subroutine read_the_numbers()
   read *, n1, n2, n3
   print *, "Input data  n1:", n1
   print *, "            n2:", n2
   print *, "            n3:", n3
end subroutine read_the_numbers
  
subroutine sort_the_numbers()
   if (n1 > n2) then
      temp = n1
      n1 = n2
      n2 = temp
   end if
   if (n1 > n3) then
      temp = n1
      n1 = n3
      n3 = temp
   end if
   if (n2 > n3) then
      temp = n2
      n2 = n3
      n3 = temp
   end if
end subroutine sort_the_numbers

subroutine print_the_numbers()
   print *, "The numbers, in ascending order, are:"
   print *, n1, n2, n3
end subroutine print_the_numbers

end module sort_3_module

The following program uses the module to sort three numbers. The statement

use sort_3_module

indicates that there are procedures or data in a module called sort_3_module that are
needed by the program. Indeed, the computations will each be done with subroutines
that are in the module.

program sort_3

   use sort_3_module
   implicit none

   call read_the_numbers()
   call sort_the_numbers()
   call print_the_numbers()
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end program sort_3

Running the program produces

 Input data  n1:   2.2000000
             n2:   7.6999998
             n3:   5.5000000
 The numbers, in ascending order, are:
   2.2000000   5.5000000   7.6999998

3.5 Arguments

Something worth noticing is that there are three lines that occur three times in the sub-
routine sort_the_numbers, all doing the same kind of operation, namely, swapping
the values of two variables if they are in the wrong order. This illustrates the second
good reason to use a procedure: to write some statements once and use them many
times, either within the same program or in different programs. In this case, the com-
putation that is performed three times is represented the first time by the three state-
ments:

temp = n1
n1 = n2
n2 = temp

However, each time this swapping operation occurs in the subroutine, different named
variables are involved. This is no obstacle if a subroutine with arguments is used as il-
lustrated by the subroutine named swap.

subroutine swap(a, b)
   real, intent(in out) :: a, b
   real :: temp
   temp = a
   a = b
   b = temp
end subroutine swap

To call this subroutine, values are sent to it by placing them in parentheses after
the name of the subroutine in the call statement. Thus, to swap the values of n1 and
n2, use the statement

call swap(n1, n2)

n1 and n2 are called arguments. Argument passing applies to both subroutines and
functions and so is described in more detail in 3.8.

The subroutine sort_the_numbers can now use swap.

subroutine sort_the_numbers()
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   if (n1 > n2) then
      call swap(n1, n2)
   end if
   if (n1 > n3) then
      call swap(n1, n3)
   end if
   if (n2 > n3) then
      call swap(n2, n3)
   end if
end subroutine sort_the_numbers

The subroutine swap must be made available either by placing it in the same mod-
ule with sort_the_numbers, in which case it can be declared private because it is
used only within the same module, or placing it in a separate module and declaring it
public.

Dummy Arguments and Local Variables

There are two new variables a and b in the subroutine swap that serve as place holders
for the two numbers to be swapped. These are dummy arguments and must be de-
clared in the subroutine even if they have the same name as a variable declared in the
containing module.

The variable temp is used only in the subroutine swap. By declaring temp to be type
real within the subroutine swap, we make this variable local to the subroutine, so that
its value will not be confused with any value outside the subroutine. The declaration of
temp can be removed from the subroutine sort_the_numbers.

Argument Intent

In Fortran you should indicate the intent of use of each dummy argument of a subrou-
tine or function unless it is a dummy procedure. The intent may be in, which means
that the dummy argument cannot be changed within the procedure; it may be out,
which means that the actual argument must not be used until given a value in the pro-
cedure and is used to pass a value back to the calling program; or it may be in out,
which means that the dummy argument is expected both to receive an initial value
from and return a value to the corresponding actual argument. Thus, for dummy argu-
ments with intent out or in out, the corresponding actual argument must be a vari-
able.

The intent of a pointer (10.1) dummy argument applies to the pointer itself, not the
target. That is, the value (of the target) of a dummy pointer with intent in may be
changed within the procedure, but the pointer status may not.

The intent is an attribute given to an argument when it is declared within the pro-
cedure.

The intent attribute is provided to make the program more easily understood by a
human reader and to allow the compiler to catch errors when the programmer violates
the stated intent.



88 Chapter 3 Modules and Procedures

Style note: All dummy arguments (except procedures) should have their intent
declared.

Style note: All dummy arguments (except procedures) to a function should
have intent in to help enforce the style of writing only pure procedures.

The value Attribute

If a dummy argument has the value attribute, it may be changed, but this will not ef-
fect the corresponding actual argument. This is similar to declaring intent, but is a
separate attribute. It is a useful attribute when describing C functions (8.10), because
this is the way most C argument passing works unless pointers are used.

program value_test

   implicit none
   real :: x = 1.1
   call s(x)
   print *, x  ! produces 1.1

contains

subroutine s(d)
   real, value :: d
   d = 2*d
   print *, d  ! produces 2.2
end subroutine

end program value_test

Exercises

1. Write a module named swap_module that contains only the subroutine swap.

2. Remove swap from the module sort_3_module and rename it sort_module.

3. Write and test a public module sort_3_module that uses swap_module and
sort_module.

4. Write a subroutine sort_4_numbers that arranges the four integer variables i1, i2,
i3, and i4 into ascending order. Test the subroutine by putting it in a program that
reads four numbers, calls the subroutine, and prints the sorted values.

5. Write a subroutine that reads in values for a loan principal amount p, an annual in-
terest rate rannual, and the number of months m in which the loan is to be paid off.
The monthly payment is given by the formula
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where the monthly interest rate r = rannual /12. The subroutine should print out a
monthly schedule of the interest, principal paid, and remaining balance. Test the
subroutine with a program that calls it with p = $106,500, rannual = 7.25%, and m =
240 months.

3.6 Functions

If the purpose of a procedure is to compute one value (which may be a compound val-
ue consisting of a whole array or structure) and the procedure has no side effects (3.7),
a function is the sort of procedure to use. The value of a function is computed when
the name of the function, together with its arguments, is placed anywhere in an expres-
sion.

To illustrate a simple use of a function, suppose the task is to print out a table of
values of the function

for values of x equal to 1, 10, 100, ..., 1010. A program to do this is

module f_module

   implicit none
   private
   integer, parameter, public :: largest_power = 10
   public :: f

contains

function f(x) result(f_result)

   real, intent(in) :: x
   real :: f_result

   integer, parameter :: kind_needed =  &
      selected_real_kind(largest_power + 1)

   f_result = (1 + 1 / real(x, kind_needed)) ** x

end function f

pay r p 1 r+ m

1 r+ m 1–
--------------------------------=

f x( ) 1 1
x
---+

x
=
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end module f_module

program function_values

   use f_module
   implicit none
   real :: x
   integer :: i

   do i = 0, largest_power
      x = 10.0 ** i
      print "(f15.1, f15.5)", x, f(x)
   end do

end program function_values

            1.0        2.00000
           10.0        2.59374
          100.0        2.70481
         1000.0        2.71692
        10000.0        2.71815
       100000.0        2.71827
      1000000.0        2.71828
     10000000.0        2.71828
    100000000.0        2.71828
   1000000000.0        2.71828
  10000000000.0        2.71828

In this program the evaluation of the function occurs once for each execution of the
do construct, but the expression that evaluates the function occurs only once. In this
case, a function is used to put the details of evaluating the function in another place,
making the program a little easier to read. When this is done, there is also the advan-
tage that if a similar table of values is needed, but for a different function, the main
program does not need to be changed; only the function needs to be changed.

This function illustrates an interesting use of the selected_real_kind intrinsic
function. In the function, the intermediate result 1 + 1/x must be computed to get the
desired answers. For x = 1010, this value is 1.0000000001, which has 11 significant dig-
its, so a kind of real must be used that will hold this many digits. If a real kind with
fewer significant digits is used, the expression 1 + 1/x may evaluate as 1.00000, yield-
ing an incorrect value for f_result. Both the largest power of x used and the kind
needed to compute the function for this largest power are provided as parameters
(named constants).

The type conversion

real(x, kind_needed)

converts the already real value x to a real with kind of the required precision, and the
rules for mixed mode arithmetic guarantee that at least this precision is used through-
out the calculation. kind_needed must be a literal or named constant.
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Style note: Whenever an integer is used as a kind number, it should be a param-
eter, not a literal constant. It must not be a variable.

Writing a Function

A function is almost like a subroutine except that its first statement uses the keyword
function. Like a subroutine, it may have arguments that are written in parentheses in
the function statement. This is followed by the keyword result and the name of the
result variable. The last statement of a function is the end function statement, which
contains the name of the function.

A difference between a subroutine and a function is that a function must provide a
value that is returned as the value of the function. This is done by assigning a value to
a result variable during execution of the function. This result variable is indicated by
placing its name in parentheses at the end of the function statement following the
keyword result. The result variable is declared within the function and is used just
like any other local variable, but the value of this variable is the one that is returned as
the value of the function to the program using the function. Intent is not declared for
the result variable—its appearance in the result clause effectively makes its intent out.
The function f computes the values required in our example and uses the result vari-
able f_result to hold the result.

Invoking a Function

A programmer-defined function is called by writing its name, followed by its argu-
ments, in any expression in the same manner that a built-in function is invoked.

Exercises

1. Write a function median_of_3 that selects the median of its three integer argu-
ments. If all three numbers are different, the median is the number that is neither
the smallest nor the largest. If two or more of the three numbers are equal, the me-
dian is one of the equal numbers.

2. Write a function average_of_4 that computes the average of four real numbers.

3. Write a function cone_volume(r, h) that returns the volume of a cone. The formu-
la for the volume of a cone is V = r2h/3, where r is the radius of the base and h is
its height.

4. Write a function round(x, n) whose value is the real value x rounded to the near-
est multiple of 10n. For example, round (463.2783, -2) should be 463.28, which
has been rounded to the nearest hundredth.
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3.7 Pure Procedures and Side Effects

When a procedure is executed, a side effect is a change in the status of the program
that is something other than just computing a value to return to the calling procedure.
Examples are changing a variable declared in a program or module above the con-
tains statement or reading data from a file.

The programmer may indicate that a procedure has no side effects by putting the
keyword pure in the function or subroutine statement. All elemental procedures (8.7)
must be pure, unless the keyword impure also appears.

Style note: All functions should be pure. A reasonable exception is that a func-
tion might contain print statements for debugging.

When the following Fortran language rules are followed, most side effects will not
occur. Some of the rules involve features described later.

1. All dummy arguments in a function (except procedures, which never have an in-
tent attribute) must have intent in.

2. A local variable must not have the save attribute or be initialized by a declaration
statement.

3. Any subroutine that is called, including a defined assignment (9.1) must be pure.

4. There is no input/output statement, except for an internal read or write statement
(11.3).

5. The use statement permits a function to import names from a module without
placing them in the dummy argument list. The following additional rules are nec-
essary to prevent side effects with such variables. Any variable that is accessed
from a module by a use statement or has intent in must not appear as any of the
following:

a. the variable on the left of an assignment statement

b. an input item in an internal read statement

c. a character string used as the file in an internal write statement

d. the variable assigned a value as an iostat or iomsg specifier in an
input/output statement using an internal file

e. either the pointer or the target in a pointer assignment statement

f. the right side of an assignment statement, if the left side is of derived type with
a pointer component

g. the object to be allocated or deallocated or the status variable in either an
allocate or deallocate statement
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h. an actual argument in a procedure reference where the corresponding dummy
argument is intent out or in out.

A procedure that is invoked in any of the following circumstances must be pure;
that is, the procedure heading must contain the keyword pure or the keyword elemen-
tal.

1. a function referenced in a specification statement

2. a procedure that is passed as an actual argument to a pure procedure

3. a procedure referenced in a pure procedure, including those referenced by any
function, a defined operator (9.2), or defined assignment (9.1).

3.8 Argument Passing

One of the important properties of both functions and subroutines is that information
may be passed to the procedure when it is called and information may be returned
from the procedure to the calling program when the procedure execution ends. This in-
formation passing is accomplished with procedure arguments and, in the case of a
function, the function result. A correspondence is set up between actual arguments in
the calling program and dummy arguments in the procedure. The corresponding argu-
ments need not have the same name, and the correspondence is temporary, lasting only
for the duration of the procedure call.

Agreement of Arguments

In this subsection, we try to emphasize general principles, but for the sake of having all
the important rules in one place, we list exceptions needed to implement these lan-
guage features along with forward references to the sections where they are discussed.

Except for dummy arguments declared as optional (see below), the number of ac-
tual and dummy arguments must be the same. Each actual argument corresponds to a
dummy argument. The default correspondence is the first actual argument with the
first dummy argument, the second with the second, etc. However, keyword-identified
arguments (see below) can be used to override the default, and provide clear, order-in-
dependent specification of the correspondence between actual and dummy arguments.

The data type and kind parameter of each actual argument must match that of the
corresponding dummy argument.

Additionally, if the dummy argument is a pointer (10.1), the actual argument must
be a pointer.

If the subroutine or function is generic (8.6), there must be exactly one specific pro-
cedure with that generic name for which all the above rules of agreement of actual and
dummy arguments are satisfied (however, keyword actual arguments also can be used
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to determine which procedure is specified). For given actual arguments, Fortran selects
that specific procedure for which there is agreement of actual and dummy arguments.

Passing Arguments to Dummy Arguments with Intent out

If an actual argument is passed to a dummy argument that has intent out or intent
in out, it must be a variable (which includes an array name, an array element, an array
substring, a structure component, or a substring) so that it makes sense to give it a val-
ue. Any reference to the corresponding dummy argument in the subroutine causes the
computer to behave as if the reference were to the corresponding actual argument sup-
plied by the calling program, unless the dummy argument has the value attribute.
Statements in the subroutine causing changes to such a dummy argument cause the
same changes to the corresponding actual argument.

Style note: A dummy argument in a function should not be intent out or intent
in out.

Style note: A dummy argument that is intent out should be given a value dur-
ing execution of the procedure.

Passing Arguments to Dummy Arguments with Intent in

An actual argument that is a constant (either literal or named) or an expression more
complicated than a variable must correspond to a dummy argument with intent in.
The dummy argument then must not have its value changed during execution of the
procedure. There is no way to pass a value back to the calling program using such an
argument.

An Example of Passing Variables

Let us look again at the subroutine swap discussed earlier and how it is used in the
program sort_3 in 3.4. In the subroutine statement, the subroutine name swap is fol-
lowed by a list (a, b) of variables enclosed in parentheses. The variables a and b in
that list are the dummy arguments for the subroutine swap. They have intent in out.

Suppose that in executing the first read statement of the subroutine
read_the_numbers, the computer reads and assigns to the variable n1 the value 3.14,
assigns to the variable n2 the value 2.718, and assigns to the variable n3 the value 1.414.
Since 3.14, the value of n1, is greater than 2.718, the value of n2, the computer executes
the call statement

call swap(n1, n2)

The effect of this call statement is as if it were replaced by the following statements.

! Copy-in phase
a = n1
b = n2
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temp = a
a = b
b = temp

! Copy-out phase
n1 = a
n2 = b

In this example, the dummy arguments a and b both have intent in out. For a pro-
cedure with arguments with intent out, the copy-in phase may be skipped and for a
procedure with arguments with intent in, the copy-out phase may be skipped.

An Example of Passing Expressions

Suppose a function is to be written that computes the following sum of certain terms of
an arithmetic progression:

The arguments to this function are m, n, s (the starting value), and d, the difference be-
tween terms. A function to do this computation is contained in the program series
and a module is not used in this example in order to keep it a little simpler.

program series

   implicit none
   integer, parameter :: n = 100
   print *, series_sum(n+300, 2*n+500, 100.0, 0.1)

contains

function series_sum(m, n, s, d)  result(series_sum_result)

   integer, intent(in) :: m, n
   real, intent(in) :: s, d
   real :: series_sum_result
   integer :: i

   series_sum_result = 0
   do i = m, n
      series_sum_result = series_sum_result + s + i * d
   end do

end function series_sum

end program series

s d i+
i m=

n
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which produces the answer 46655.0. All four actual arguments in the call of
series_sum are constants and therefore may be passed to the intent in arguments of
the function series_sum.

Keyword Arguments

With the use of keyword arguments, it is not necessary to put the arguments in the
correct order, but it is necessary to know the names of the dummy arguments. The
same computation may be made using the statement

print *, series_sum(d=0.1, m=400, n=700, s=100.0)

It is even possible to call the function using keywords for some arguments and not for
others. In this case, the rule is that all actual arguments prior to the first keyword argu-
ment must match the corresponding dummy argument correctly and once a keyword
argument is used, the remaining arguments must use keywords. Thus, the following is
legal:

print *, series_sum(400, 700, d=0.1, s=100.0)

Optional Arguments

In our example computation of an arithmetic series, a common occurrence would be
that the value of m is 0. It is possible to indicate that certain arguments to a procedure
are optional arguments in the sense that they do not have to be present when the pro-
cedure is called. An optional argument must be declared to be such within the proce-
dure; usually, there would be some statements within the procedure to test the
presence of the optional argument on a particular call and perhaps do something dif-
ferent if it is not there. In our example, if the function series_sum is called without the
argument m, the value zero is used. To do this, the intrinsic function present is used to
test whether an argument has been supplied for the dummy argument m, and if an ac-
tual argument is not present, the lower bound for the sum is set to zero. To handle both
cases with the same do loop, a different variable, temp_m, is used to hold the lower
bound. One reason a different variable is used is that a dummy argument corresponding to
an actual argument that is not present must not be given a value within the procedure. The oth-
er reason is that all function arguments are intent in, and so cannot be changed any-
way.

If the actual argument corresponding to an optional dummy argument is a null
pointer (10.1) or an unallocated allocatable array (4.1), the argument is considered to be
not present.

function series_sum(m, n, s, d)  &
      result(series_sum_result)

   integer, optional, intent(in) :: m
   integer, intent(in) :: n
   real, intent(in) :: s, d
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   real :: series_sum_result
   integer :: i, temp_m

   if (present(m)) then
      temp_m = m
   else
      temp_m = 0
   end if

   series_sum_result = 0
   do i = temp_m, n
      series_sum_result = series_sum_result + s + i * d
   end do

end function series_sum

This new version of the function can now be called with any of the following state-
ments, all of which compute the same sum:

print *, series_sum(0, 700, 100.0, 0.1)
print *, series_sum(0, 700, d=0.1, s=100.0)
print *, series_sum(n=700, d=0.1, s=100.0)
print *, series_sum(d=0.1, s=100.0, n=700)
print *, series_sum(m=0, n=700, d=0.1, s=100.0)

Procedures as Arguments

An actual argument and the corresponding dummy argument may be a procedure.
The actual argument itself may be a dummy procedure. Only a few intrinsic proce-
dures may be passed as actual arguments. The actual argument may be internal, but
usually is in a module.

3.9 Interface Blocks

In a function or subroutine that has a procedure as a dummy argument, the dummy
argument must be “declared”, much as every other dummy argument is declared.
However, to “declare” a procedure, quite a bit of information should be provided. An
interface block is used for this purpose. The purpose of the interface block is to pro-
vide the information necessary to a calling program to tell whether the call is correct.
An interface block basically consists of the procedure itself with all of the executable
code and declarations of local variables removed, leaving all of the information about
its arguments and the result returned if it is a function.

Interface blocks also are used to describe C functions that are called from a Fortran
program (8.10), external procedures (not discussed in this book), procedures that ex-
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tend Fortran (9), derived-type procedure components (12.3), and type-bound proce-
dures (12.3).

In 3.14, the numerical integration routine has a dummy argument that is the func-
tion to be integrated. In this case, the function has one real argument and the result is
real. Thus, the interface block for this dummy argument is

   interface
   function f(x) result(f_result)
      real, intent(in) :: x
      real :: f_result
   end function f
   end interface

In this case, the interface block contains almost the whole function because there is
only one executable statement in the function. In general, of course, the executable part
of a function may be fairly lengthy and the interface block will be much smaller than
the whole function.

An interface block has its own scope, so it is sometimes necessary to use the im-
port statement (3.11) to provide access to things needed in the interface, such as a pa-
rameter.

3.10 Exercises

1. Write a program that tests cone_volume (Exercise 3 of 3.6) using keywords to call
the function with arguments in an inverted order.

2. Rewrite the function cone_volume (Exercise 3 of 3.6) to make the radius an option-
al argument with a default value of 1 if it is not present. Test the revised function
by using it both with the argument present and with the argument missing.

3.11 Using a Function in a Declaration Statement

Intrinsic functions are allowed in declarations—for example, in the specification of the
size of an array. Also, in some circumstances, it is possible to invoke a user-defined
function. A simple example is to create a parameter equal to the logarithm (base 10) of
the parameter size.

real, parameter :: log_10_size = log10(size).
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3.12 The return Statement

The return statement causes execution of a procedure to terminate with control given
back to the calling procedure. With the use of modern control constructs, a procedure
usually should terminate by coming to the end of the procedure. However, there are
situations in which it is better to use a return statement than introduce a complicated
set of nested if constructs. Most of the programs in this book are too simple to require
use of the return statement.

3.13 Scope

The scope of a name is the set of lines in a Fortran program where that name may be
used and refer to the same parameter, variable, procedure, or type. In general, the
scope of a parameter or variable declared in a program or module above the contains
statement extends throughout that program from the program or module statement to
the corresponding end statement, including any contained procedures, except those in
which the name is used to declare some other object in the procedure.

A name declared in a procedure has scope extending only from the beginning to
the end of that procedure, not to any other procedure (procedures contained in module
procedures, not discussed in this book, are an exception).

A name declared in a block construct (2.1) is known only within the construct.
Names declared with the public attribute above the contains statement in a mod-

ule have larger scope. This scope includes all modules and programs that use the mod-
ule and do not exclude the name with an only clause. These ideas are illustrated by the
following module segment.

module m
   implicit none
   public :: s
   integer, private :: a, b
   . . .
contains

subroutine s()
   real :: b
   . . .
   print *, a, b
   . . .

The values of a and b are printed in the subroutine. a is the integer variable declared in
the module; its scope includes the subroutine because it is not redeclared. However, it
is a real value that is printed for b, which is the b declared in the subroutine s. The
scope of the integer b declared in the module does not include the subroutine s. That
is, there are two variables with the name b, an integer variable b, whose scope is the
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module and does not include the subroutine s, and a real variable b, whose scope con-
sists of the subroutine s only.

The name of a procedure, its number and type of arguments, their names for use
only in keyword actual arguments, as well as the type of its result variable if it is a
function, are considered as declared in the containing module or program, and its
scope extends throughout the module or program. Therefore, a procedure can be called
by any procedure in the module or program and, if it is public in a module, any proce-
dure in a program or another procedure that uses the module.

The save Attribute

Unless something special is done by the programmer, the value of a variable that is lo-
cal to a procedure is not saved between calls to the procedure. Suppose it is desirable
to have a variable in a subroutine that counts the number of times the subroutine is
called; this might be useful for debugging, for example.

subroutine s()
   integer, save :: call_count = 0

   call_count = call_count + 1
   print *, "This is execution #", call_count,  &
            "of subroutine s."
!      . . .
end subroutine s

In this case, the value of the local variable call_count is saved between calls of the
subroutine because it is declared with the save attribute.

If a variable is given an initial value in a subroutine or function, it has the save at-
tribute whether or not the keyword save appears.

All variables declared in a module have the save attribute.

The import Statement

The import statement is used to gain access to an entity that is not in the current scope.
This is frequently used inside an interface block (3.9) since an interface block has its
own scope. For example, supposed a kind number is declared in a module and is need-
ed to declare a dummy argument in an interface block. The import statement in the fol-
lowing code makes it accessible inside the interface block. A use statement inside the
interface block also could be used to achieve the same purpose.

module param_mod
   implicit none
   integer, parameter :: kk = kind(0.0)
end module param_mod

program import_prog
   use param_mod
   implicit none
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   interface
      subroutine s(x)
      import :: kk
      real(kind=kk), intent(in) :: x
      end subroutine
   end interface
   . . .
end program import_prog

3.14 Case Study: Numerical Integration II

In 2.5, we wrote a program integral to approximate the definite integral

by dividing the interval from a to b into n equal pieces, approximating the curve with
straight lines, and computing the sum of the areas of the n trapezoids with the formula

In the program integral, the values for a, b, and n were read as input data. Now that
we have procedures, a better approach is to write a function integral with arguments
a, b, and n. The other problem with the program integral is that the name of the func-
tion to be integrated (sin, in the example), was “hard-wired” into the source code and
could not be changed without rewriting and recompiling the program. Since it is pos-
sible to pass a procedure as an argument, we can make the name of the function an ad-
ditional argument f to our function integral. The executable statements of the function
integral use the dummy function argument f in place of the particular function sin,
resulting in the following program integrate.

module integrate_module

   implicit none
   private
   public :: integral

contains

function integral(f, a, b, n)  result(integral_result)
!  Calculates a trapezoidal approximation to an area
!  using n trapezoids.

!  The region is bounded by lines x = a, y = 0, x = b,

f x xd
a

b

Tn h f a( )
2

-------- f a h+( ) f a 2h+( ) f b h–( ) f b( )
2

--------+ + + + +=
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!  and the curve y = f(x).

   interface
      function f(x) result(f_result)
         real, intent(in) :: x
         real :: f_result
      end function f
   end interface

   real, intent(in) :: a, b
   integer, intent(in) :: n
   real :: integral_result
   real :: h, total
   integer :: i

   h = (b - a) / n
!  Calculate the sum f(a)/2+f(a+h)+...+f(b-h)+f(b)/2
!  Do the first and last terms first
   total = 0.5 * (f(a) + f(b))
   do i = 1, n - 1
      total = total + f(a + i * h)
   end do

   integral_result = h * total
end function integral

end module integrate_module

program integrate

   use integrate_module

   implicit none
   intrinsic :: sin

   print *, integral(sin, a=0.0, b=3.14159, n=100)

end program integrate

Here is the result of running the program, which computes the integral of the trigono-
metric sine function from 0 to . The intrinsic function sin is one that can be passed as
an argument.

   1.9998353
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3.15 Case Study: Calculating Probabilities I

Consider the problem of estimating the probability that a throw of two dice will yield
a 7 or an 11. One way to solve this problem is to have a computer simulate many rolls
of the dice and count how many times the result is 7 or 11. The probability of throwing
7 or 11 is then the number of successful throws divided by the total number of times
the throw of the dice was simulated.

The Built-In Subroutine random_number

The heart of a probabilistic simulation program is a procedure that generates pseudo-
random numbers. In Fortran, such a procedure is built in; it is a subroutine named
random_number. The subroutine places uniformly distributed real numbers greater
than or equal to 0 and less than 1 in the actual argument. The argument may be a sin-
gle real variable or a real array. In this section, we will use random_number to generate
one value at a time; in 4.7, we will use the same subroutine with an array as the argu-
ment to generate a whole array of random numbers with one subroutine call.

Computing the Probability of a 7 or 11

The program to estimate the probability of rolling 7 or 11 with two dice is built on a
subroutine random_int, which in turn is based on the intrinsic subroutine
random_number. To simulate the roll of one die, we need a subroutine that returns an
integer from 1 to 6. The subroutine random_int has three arguments, random_result,
low, and high. The first is used to store the result, which is, with approximately equal
probability, any integer that is greater than or equal to low, the second argument, and
that is less than or equal to high, the third argument. For example, the statement

call random_int(digit, 0, 9)

assigns to digit one of the 10 one-digit integers 0, 1, 2, ..., 9. random_int is written as
a subroutine, rather than a function for two reasons:

1. It calls the subroutine random_number, which has the side effect of modifying the
“seed” of the random generator; hence random_int itself has side effects. A func-
tion should not have a side effect.

2. If it were a function, it would be tempting to set the value of the variable dice with
the statement

dice = random_int(1, 6) + random_int(1, 6)

An optimizing compiler might change this into the statement

dice = 2 * random_int(1, 6)

and each roll of the dice would produce an even number!
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The program seven_11 simulates the event of rolling the dice 1000 times and com-
putes a pretty good approximation to the true answer, which is 6/36 + 2/36 = 22.22%.
On many systems (gfortran is an exception), calling the subroutine random_seed before
generating any random numbers sets the generator to produce a different set of num-
bers each time the program is run. The seed also may be set using the put argument of
random_seed.

module random_int_module

   implicit none
   private
   public :: random_int

contains

subroutine random_int(random_result, low, high)

   integer, intent(out) :: random_result
   integer, intent(in) :: low, high
   real :: uniform_random_value

   call random_number(uniform_random_value)
   random_result =  &
      int((high - low + 1) * uniform_random_value + low)

end subroutine random_int

end module random_int_module

program seven_11

   use random_int_module
   implicit none

   integer, parameter :: number_of_rolls = 1000
   integer :: die_1, die_2, dice, i, wins

   call random_seed()
   wins = 0
   do i = 1, number_of_rolls
      call random_int(die_1, 1, 6)
      call random_int(die_2, 1, 6)
      dice = die_1 + die_2
      if ((dice == 7) .or. (dice == 11)) then
         wins = wins + 1
      end if
   end do
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   print "(a, f6.2)",  &
      "The percentage of rolls that are 7 or 11 is",  &
       100.0 * real(wins) / real(number_of_rolls)

end program seven_11

Here is the result of one execution of the program.

The percentage of rolls that are 7 or 11 is 22.40

Exercises

1. Write a program that determines by simulation the percentage of times the sum of
two rolled dice will be 2, 3, or 12. You might want to use a case construct (2.3).

2. Two dice are rolled until a 4 or 7 comes up. Write a simulation program to deter-
mine the percentage of times a 4 will be rolled before a 7 is rolled. What was the
largest sequence of rolls before the issue was decided?

3. Write a simulation program to determine the percentage of times exactly 5 coins
will be heads and 5 will be tails, if 10 fair coins are tossed simultaneously.

4. Use the subroutine random_int to create a program that deals a five-card poker
hand. Remember that the same card cannot occur twice in a hand. Use a character
valued function face_value(n) that returns "Ace" for 1, "2" for 2, ..., "10" for 10,
"Jack" for 11, "Queen" for 12, and "King" for 13, and another character-valued
function suit(m) for the suit.

5. Modify the subroutine random_int so that the arguments low and high are option-
al. If low is not present, use the value 1. If high is not present, use the value low +
1. Test the subroutine with many different calls in which the optional arguments
are omitted, arguments are called with keywords, and the arguments are in differ-
ent orders.

3.16 Recursion

Recursion may be thought of as a mechanism to handle flow of control in a program,
but its implementation requires dynamic storage allocation. Each time a recursive func-
tion or subroutine is called, there must be space for new copies of the variables that are
local to the procedure. There is no way to tell at compile time how many times the rou-
tine will call itself; hence there is no way to determine the amount of storage needed to
store copies of the variables local to a recursive procedure.

The use of recursion is a very powerful tool for constructing programs that other-
wise can be quite complex, particularly if the process being modeled is described re-
cursively. However, depending on the implementation available, recursion can require
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a substantial amount of runtime overhead. Thus, the use of recursion illustrates the
classic trade-off between time spent in constructing and maintaining a program and
execution time. In some cases, a process described recursively can be transformed into
an iterative process in a very straightforward manner; in other cases, it is very hard
and the resulting procedure is very difficult to follow. It is in these cases that recursion
is such a valuable tool. We will illustrate some examples that fall into each category. A
recursive version of the numerical integration program is discussed in 3.17. The sorting
and selecting programs in 4.3 and 4.4 use recursion. It is used to evaluate expressions
in 5.3 and to do exponentiation of big integers in 9.6. Recursion is used to process
linked lists with pointers in 10.3 and to process trees with allocatable variables in 10.4.

The Factorial Function

First, let us look at the mathematical definition of the factorial function n! defined for
nonnegative integers. It is a simple example that will illustrate many of the important
ideas relating to recursion.

0! = 1

n! = n  (n 1)!   for n > 0

To use this definition to calculate 4!, apply the second line of the definition with n = 4
to get 4! = 4  3!. To finish the calculation we need the value of 3!, which can be deter-
mined by using the second line of the definition again. 3! = 3  2!, so that 4! = 4  3  2!.
Using the second line of the definition two more times yields 2! = 2  1! and 1! = 1  0!.
Finally, the first line of the definition can be applied to compute 0! = 1. Plugging all
these values back in produces the computation

4! = 4 3 2 1 1 = 24

From this, it is pretty obvious that an equivalent definition for n! is

n! = n (n 1) (n 2) 3 2 1

for integers greater than zero. So this is an example for which it should be quite easy to
write an iterative program as well as a recursive one; but to illustrate the recursive
technique, let us first look at the recursive version. It should be easy to understand be-
cause it follows the recursive definition very closely.

module factorial_module

   implicit none
   public :: factorial

contains

recursive function factorial(n) result(factorial_result)

   integer, intent(in) :: n
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   integer :: factorial_result

   if (n <= 0) then
      factorial_result = 1
   else
      factorial_result = n * factorial(n - 1)
   end if

end function factorial

end module factorial_module

The function is called using its name in an expression as shown by the simple pro-
gram that computes 12!.

program test_factorial

   use factorial_module
   implicit none
   print*, "12! =", factorial(12)

end program test_factorial

 12! = 479001600

For a recursive function or subroutine, the keyword recursive must be placed on
the procedure heading line. This version of the function returns a result of 1 for a neg-
ative value of n for which the mathematical factorial function n! is undefined. Another
alternative is to treat a negative argument as an error, but returning 1 keeps the exam-
ple simple.

This program illustrates something often called tail recursion, which means that
the only recursive call occurs as the very last step in the computation of the procedure.
It is always easy to turn a process involving only tail recursion into an iterative pro-
cess. Here is the iterative version of the factorial function.

function factorial(n) result(factorial_result)

   integer, intent(in) :: n
   integer :: factorial_result
   integer :: i

   factorial_result = 1
   do i = 2, n
      factorial_result = i * factorial_result
   end do

end function factorial

Note that the do loop will be executed zero times for any value of n that is less than 2,
so that the value of 1 will be returned in these cases.
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The Fibonacci Sequence

This next example illustrates not only the use of recursion when an iterative program
would do as well, but a case in which a decision to implement a program based on a
recursive definition yields an algorithm that has very poor running time, even if recur-
sive function calls had no overhead.

The Fibonacci sequence 1, 1, 2, 3, 5, 8, 13, 21, 34, ... arises in such diverse applica-
tions as the number of petals in a daisy, the maximum steps it takes to recognize a se-
quence of characters, and the most pleasing proportions for a rectangle, the “golden
section” of Renaissance artists and mathematicians. It is defined by the relations

f(1) = 1
f(2) = 1
f(n) = f(n  1) + f(n  2)   for n > 2

Starting with the third term, each Fibonacci number is the sum of the two previous Fi-
bonacci numbers. Naive incorporation of the recurrence relation in a recursive function
program is very easy, but produces an execution time disaster for all but the smallest
values of n.

recursive function fibonacci(n) result(fibonacci_result)

   integer, intent(in) :: n
   integer :: fibonacci_result

   if (n <= 2) then
      fibonacci_result = 1
   else
      fibonacci_result = fibonacci(n - 1) + fibonacci(n - 2)
   end if

end function fibonacci

If the function is used to calculate f(7), for example, the recursive calls request compu-
tation of f(6) and f(5). Then the computation of f(6) again calls for the computation of
f(5) as well as f(4). Thus, values of f are computed over and over with the same argu-
ment. In fact, the number of recursive function calls resulting from a single call to fi-
bonacci(n) exceeds the answer, which is approximately 0.447 1.618n. The execution
time of this function is called exponential because it depends on a number greater than
1 raised to the nth power.

To make this computation much more efficient, values of f must be saved and re-
used when needed, rather than being recomputed. The next function to compute the
Fibonacci sequence is iterative rather than recursive. It uses the variables f_i and
f_i_minus_1 to hold the two most recently computed values of f and is iterative rather
than recursive.



3.16 Recursion 109

function fibonacci(n) result(fibonacci_result)

   integer, intent(in) :: n
   integer :: fibonacci_result
   integer :: f_i, save_f_i, i, f_i_minus_1

   if (n <= 2) then
      fibonacci_result = 1
   else
      f_i_minus_1 = 1
      f_i = 1
      do i = 3, n
         save_f_i = f_i
         f_i = f_i + f_i_minus_1
         f_i_minus_1 = save_f_i
      end do
      fibonacci_result = f_i
   end if

end function fibonacci

Although it may not be obvious at first glance why one must save the value of f_i in a
variable save_f_i and only later copy it to f_i_minus_1, this function is by far more
time and space efficient than the previous version. The speed increase is so marked
that it is worth having a couple of lines of code that are not completely obvious.

The Towers of Hanoi

According to legend, there is a temple in Hanoi that contains a ritual apparatus con-
sisting of 3 posts and 64 gold disks of graduated size that fit on the posts. When the
temple was built, all 64 gold disks were placed on the first post with the largest on the
bottom and the smallest on the top, as shown schematically in Figure 3-1. It is the sole
occupation of the priests of the temple to move all the gold disks systematically until
all 64 gold disks are on the third post, at which time the world will come to an end.

There are only two rules that must be followed:

1. Disks must be moved from post to post one at a time.

Figure 3-1 The towers of Hanoi
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2. A larger disk may never rest on top of a smaller disk on the same post.

A smaller version of this apparatus with only eight disks made of plastic is sold as
a recreational puzzle. The sequence of moves necessary to solve the simpler puzzle is
not obvious and often takes hours to figure out. We propose to write a simple recursive
procedure hanoi that prints complete directions for moving any number of disks from
one post to another.

The recursive procedure hanoi is based on the following top-down analysis of the
problem. Suppose n disks are to be moved from a starting post to a final post. Because
the largest of these n disks can never rest on a smaller disk, at the time the largest disk
is moved, all n 1 smaller disks must be stacked on the free middle post as shown in
Figure 3-2.

For the number of disks n > 1, the algorithm has 3 steps.

1. Legally move the top n 1 disks from the starting post to the free post.

2. Move the largest disk from the starting post to the final post.

3. Legally move the n 1 disks from the free post to the final post.

The middle step involves printing a single move instruction. The first and third steps
represent simpler instances of the same problem—simpler in this case because fewer
disks must be moved. Therefore, the first and third steps may be handled by recursive
procedure calls. In case n = 0, there are no instructions to be printed, and this provides
a nonrecursive path through the procedure for the simplest case. The Fortran subrou-
tine hanoi, its test program test_hanoi, and a sample execution output for four disks
are shown. It is not easy to write an iterative version of this program.

module hanoi_module

   implicit none
   private
   public :: hanoi

contains

recursive subroutine hanoi(number_of_disks,  &
      starting_post, goal_post)

Figure 3-2 Locations of the disks when the largest disk is to be moved
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   integer, intent(in) ::  &
   number_of_disks, starting_post, goal_post
   integer :: free_post
   ! all_posts is the sum of the post values 1+2+3
   ! so that the free post can be determined
   ! by subtracting the starting_post and the
   ! goal_post from this sum.
   integer, parameter :: all_posts = 6
 
   if (number_of_disks > 0) then
      free_post =  &
      all_posts - starting_post - goal_post
      call hanoi(number_of_disks - 1,  &
                  starting_post, free_post)
      print *, "Move disk", number_of_disks,  &
            "from post", starting_post,  &
            "to post", goal_post
      call hanoi(number_of_disks - 1,  &
                  free_post, goal_post)
   end if

end subroutine hanoi

end module hanoi_module

program test_hanoi

   use hanoi_module
   implicit none

   integer :: number_of_disks

   read *, number_of_disks
   print *, "Input data  number_of_disks:",  &
         number_of_disks
   print *
   call hanoi(number_of_disks, 1, 3)
  
end program test_hanoi

 Input data  number_of_disks: 4

 Move disk 1 from post 1 to post 2
 Move disk 2 from post 1 to post 3
 Move disk 1 from post 2 to post 3
 Move disk 3 from post 1 to post 2
 Move disk 1 from post 3 to post 1
 Move disk 2 from post 3 to post 2
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 Move disk 1 from post 1 to post 2
 Move disk 4 from post 1 to post 3
 Move disk 1 from post 2 to post 3
 Move disk 2 from post 2 to post 1
 Move disk 1 from post 3 to post 1
 Move disk 3 from post 2 to post 3
 Move disk 1 from post 1 to post 2
 Move disk 2 from post 1 to post 3
 Move disk 1 from post 2 to post 3

Indirect Recursion

It is possible for procedures a and b to be indirectly recursive in the sense that a calls b
and b calls a. An example of this kind of recursion occurs in the function term in 5.3.

Exercises

1. Write a recursive function bc(n, k) to compute the binomial coefficient ,
, using the relations

   for 0 < k < n

2. Write an efficient program to compute the binomial coefficient .

3. The following recurrence defines f(n) for all nonnegative integer values of n.

f(0) = 0
f(1) = f(2) = 1
f(n) = 2f(n 1) + f(n 2)  2f(n 3)   for n > 2

Write a function f to compute f(n), . Also have your program verify that for
, f(n) = [( 1)n+1 + 2n ] / 3.

4. For positive integers a and b, the greatest common divisor of a and b satisfies the
following recurrence relationship:

gcd(a,b) = b   if a mod b = 0

gcd(a,b) = gcd(b, a mod b)   if  a mod b  0

Write a recursive function gcd(a,b) using these recurrences. Test the program by
finding gcd(24,36), gcd(16,13), gcd(17,119), and gcd(177,228).

5. If the Towers of Hanoi procedure must be used to move n disks, how many indi-
vidual moves must be made? If it takes one second for each move, how long will it
take to move 64 disks? Hint: There are approximately 3.14  107 seconds per year.

n
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n
0 1=
n
n 1=
n
k

n 1–
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n 0
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3.17 Case Study: Adaptive Numerical Integration

To illustrate a very effective use of recursion to solve a problem of central importance
in numerical computing, let us return to the program integrate from 3.14 that com-
putes an approximation to a definite integral

that represents the area bounded by the lines x = a, x = b, y = 0, and the curve y = f(x),
by a sum of the areas of n trapezoids, each of width h. The program used a function
integral that takes arguments that are a function, the lower and upper limits of inte-
gration, and an integer that indicates the number of intervals to be used to form the ap-
proximating sum. The example in 3.14 computes

integral(sin, a=0.0, b=3.14159, n=100)

passing the function sin to be integrated as the first argument to the function inte-
gral.

Now suppose we want to integrate a function such as

Instead of using the previous version of the function integral, a slightly more sophis-
ticated recursive function is used because decreasing the width of each trapezoid may
not be the most efficient way to improve the accuracy of a trapezoidal approximation.
In regions where the curve y = f(x) is relatively straight, trapezoids approximate the
area closely, and further reductions in the width of the trapezoids produce little further
reduction in the error, which is already small. In regions where the curve y = f(x) bends
sharply, on the other hand, the area under the curve is approximated less well by trap-
ezoids, and it would pay to concentrate the extra work of computing the areas of thin-
ner trapezoids in such regions.

Another advantage of the function integral in this section is that it takes as input
argument the maximum permitted error in the answer, rather than the number of sub-
divisions, whose relationship to the error in the answer is hard to predict in general.

The recursive function integral written in this section uses an adaptive trapezoi-
dal method of approximating the area under a curve, requesting extra calculations
through a recursive call only in those regions where the approximation by trapezoids
is not yet sufficiently accurate.

Mathematicians tell us that the error E(h) in approximating the area of the almost
rectangular region with top boundary y = f(x) by the area of one trapezoid is approxi-
mately 1/12f (c)h3, where h is the width of the trapezoid, and c is some x value in the
interval, whose exact location may not be known, but which matters little because for
reasonable functions f’’(x) varies little over a small interval of width h. The dependence
of E(h) on h3 shows why the error drops rapidly as h decreases, and the dependence of
E(h) on f’’(c) shows why the error is smaller when f (x) is smaller, at places such as

f x( ) xd
a

b

f x( ) e x– 2

=
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near inflection points (where the tangent line crosses the curve) where f’’(x) = 0. If the
same region is approximated by the sum of the areas of two trapezoids, each of width
h/2, the error in each of them is approximately 1/12f ’’(c1)(h/2)3, or 1/8E(h), if we as-
sume f ’’(x) changes little over such a small interval so that f’’(c) ~ f’’(c1). Since there are
two trapezoids, the total error E(h/2) is approximately E(h)/4. If T(h) and T(h/2) are the
two trapezoidal approximations and I is the exact integral, we have approximately

             

             

             

This formula provides a way to check whether the trapezoidal approximations are bet-
ter than a specified error tolerance. Since

approximately, the two-trapezoid approximation is sufficiently accurate if

If not, then the error tolerance is split in two, and the adaptive trapezoidal function in-
tegral is called again to approximate the area of each half of the region to within half
of the original error tolerance. Thus, only regions where the approximation error is still
large are further subdivided.

module integral_module

   implicit none
   private
   public :: integral

contains

recursive function integral(f, a, b, tolerance)  &
      result(integral_result)

   intrinsic :: abs
   interface
      function f(x) result(f_result)
         real, intent(in) :: x
         real :: f_result
      end function f
   end interface
   real, intent(in) :: a, b, tolerance
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   real :: integral_result
   real :: h, mid
   real :: one_trapezoid_area, two_trapezoid_area
   real :: left_area, right_area

   h = b - a
   mid = (a + b) /2
   one_trapezoid_area = h * (f(a) + f(b)) / 2.0
   two_trapezoid_area = h/2 * (f(a) + f(mid)) / 2.0 + &
                        h/2 * (f(mid) + f(b)) / 2.0
   if (abs(one_trapezoid_area - two_trapezoid_area)  &
         < 3.0 * tolerance) then
      integral_result = two_trapezoid_area
   else
      left_area = integral(f, a, mid, tolerance / 2)
      right_area = integral(f, mid, b, tolerance / 2)
      integral_result = left_area + right_area
   end if

end function integral

end module integral_module

To test the function integral, we write a small test program and a function sub-
program f. The test program will evaluate

to an accuracy of 0.01. The curve  is an unnormalized error distribution func-

tion, used extensively in probability and statistics. Its integral is  (approximately
1.772454). It is assumed that function_module contains a function f that evaluates

.

program integrate

   use function_module
   use integral_module
   use math_module, only : pi
   implicit none

   real :: x_min, x_max
   real :: answer

   x_min = -4.0
   x_max = 4.0
   answer = integral(f, x_min, x_max, 0.01)
   print "(a, f11.6)",  &
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         "The integral is approximately ", answer
   print "(a, f11.6)",  &
         "The exact answer is           ", sqrt(pi)

end program integrate

The integral is approximately    1.777074
The exact answer is              1.772454

Because the modules integral_module and math_module both might be useful in
contexts other than with this simple test program, it makes sense to keep them sepa-
rate. When parts of a program are kept in separate files, the process of compiling and
running the program could be a little more complicated, although how this is done de-
pends on the system being used. In any case, it is important to ensure that the current
version of each piece of the program is the one that is used. Many systems have pro-
grams, such as make, that help with this task.

Comparing the adaptive trapezoidal approximation to the exact answer, we see
that the difference is approximately 0.0046, which is less than the specified error toler-
ance 0.01. Figure 3-3 shows the approximating trapezoids used between x = 2 and x =
+2 to obtain the answer; trapezoids not shown have boundary points at x = 4, 3, 2,
2, 3, and 4. Notice that more trapezoids are required to keep within the error tolerance
in the highly curved regions near the maximum of the function and where it first ap-
proaches zero than are required in the relatively straight regions near the two inflec-
tion points where the curve switches from concave upward to concave downward.

Exercises

1. Determine the number of trapezoids needed to evaluate

Figure 3-3 Approximating trapezoids used to calculate the integral of 

y e x2–=

x

y

1 2-1-2

e x2–
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to an accuracy of 0.01 using the nonadaptive integration function discussed in 3.14.

2. Determine the approximate value of

using both the adaptive integration method of this section and the nonadaptive in-
tegration method discussed in 3.14. The area under the curve y = f(x) between x = a

h and x = a + h may be approximated by the area under a parabola passing
through the three points (a h, f(a h)), (a, f(a)), and (a + h, f(a + h)). The approxima-
tion, called Simpson’s approximation, is given by the formula

with error 1/90f’’’’(c)h5 for some c in the interval of integration.

Use these facts to write a recursive adaptive Simpson’s approximation function
patterned on the adaptive trapezoidal approximation function integral in this
section. Compare the number of recursive function calls for your adaptive Simp-
son’s approximation function with the number required to achieve the same accu-
racy with the adaptive trapezoidal rule.
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Arrays 4
In ordinary usage, a list is a sequence of values, usually all representing data of the
same kind, or otherwise related to one another. A list of students registered for a par-
ticular course and a list of all students enrolled at a college are examples.

In Fortran, a collection of values of the same type is called an array. We will also re-
fer to a one-dimensional array as a “list”. Frequently, the same operation or sequence
of operations is performed on every element in an array. On a computer that performs
one statement at a time, it makes sense to write such programs by specifying what hap-
pens to a typical element of the array and enclosing these statements in a sufficient
number of do constructs (loops) to make them apply to every element. Fortran also has
powerful operations and intrinsic functions that operate on whole arrays or sections of
an array. Programs written using these array operations are often clearer and are more
easily optimized by Fortran compilers. Especially on computers with parallel or array
processing capabilities, such programs are more likely to take advantage of the special
hardware to increase execution speed.

4.1 Declaring and Using Arrays

We introduce the use of arrays with an example involving credit card numbers.

A Credit Card Checking Application

As an example of a problem that deals with a list, suppose that a company maintains a
computerized list of credit cards that have been reported lost or stolen or that are
greatly in arrears in payments. The company needs a program to determine quickly
whether a given credit card, presented by a customer wishing to charge a purchase, is
on this list of credit cards that can no longer be honored.

Suppose that a company has a list of 8262 credit cards reported lost or stolen, as il-
lustrated in Table 4-1.

Since all of the 8262 numbers in the list must be retained simultaneously in the
computer’s main memory for efficient searching, and since a simple (scalar) variable
can hold only one value at a time, each number must be assigned as the value of a vari-
able with a different name so that the computer can be instructed to compare each ac-
count number of a lost or stolen card against the account number of the card offered in
payment for goods and services.
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Subscripts

It is possible to use variables with the 8262 names

lost_card_1
lost_card_2
lost_card_3
 .
 .
 .
lost_card_8262

to hold the 8262 values. Unfortunately, the Fortran language does not recognize the in-
tended relationship between these variable names, so the search program cannot be
written simply. The Fortran solution is to declare a single object name lost_card that
consists of many individual integer values. The entire collection of values may be ref-
erenced by its name lost_card and individual card numbers in the list may be refer-
enced by the following names:

lost_card(1)
lost_card(2)
lost_card(3)
   .
   .
   .
lost_card(8262)

This seemingly minor modification of otherwise perfectly acceptable variable
names opens up a new dimension of programming capabilities. All the programs in
this chapter, and a large number of the programs in succeeding chapters, use arrays.

The numbers in parentheses that specify the location of an item within a list (or ar-
ray) are subscripts, a term borrowed from mathematics. Although mathematical sub-
scripts are usually written below the line (hence the name), such a form of typography

Table 4-1 Lost credit cards

Account number of 1st lost credit card 2718281

Account number of 2nd lost credit card 7389056

Account number of 3rd lost credit card 1098612

Account number of 4th lost credit card 5459815

Account number of 5th lost credit card 1484131

. .

. .

. .

Account number of 8262nd lost credit card 1383596
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is impossible on most computer input devices. A substitute notation, enclosing the
subscript in parentheses or brackets, is adopted in most computer languages. It is cus-
tomary to read the expression x(3) as “x sub 3”, just as if it were written x3.

The advantage of this method of naming the quantities over using the variable
names lost_card_1, lost_card_2, ..., lost_card_8262 springs from the following
programming language capability: The subscript of an array variable may itself be a variable,
or an even more complicated expression.

The consequences of this simple statement are much more profound than would
appear at first sight.

For a start in describing the uses of a subscript that is itself a variable, the two
statements

i = 1
print *, lost_card(i)

produce exactly the same output as the single statement

print *, lost_card(1)

namely, 2718281, the account number of the first lost credit card on the list. The entire
list of account numbers of lost credit cards can be printed by the subroutine
print_lost_cards.

subroutine print_lost_cards(lost_card)

   integer, dimension(:), intent(in) :: lost_card
   integer :: i

   do i = 1, 8262
      print *, lost_card(i)
   end do

end subroutine print_lost_cards

As an example of an array feature in Fortran, the collection of card numbers as a whole
can be referenced by its name, so the do construct can be replaced by the one statement

 print *, lost_card

The replacement just made actually creates a different output. The difference is
that using the do loop to execute a print statement 8262 times causes each card num-
ber to be printed on a separate line. The new version indicates that as many as possible
of the card numbers should be printed on one line, which might not produce accept-
able output. Adding a simple format for the print statement instead of using the de-
fault produces a more desirable result, printing four card numbers per line.

print "(4i8)", lost_card

This is a little better, but another problem is that the number of lost and stolen
cards varies daily. The subroutine will not be very useful if it makes the assumption
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that there are exactly 8262 cards to be printed each time. The declaration of an array-
valued dummy argument indicates the number of subscripts, but does not fix the size
of the dummy array.

integer, dimension(:), intent(in) :: lost_card

The colon indicates that the size of the array lost_card is to be assumed from the ar-
ray that is the actual argument given when the subroutine is called. Also, this passed-
on size can be used to print the entire list of cards using the intrinsic function size.

do i = 1, size(lost_card)
   print *, lost_card(i)
end do

The result would be a general subroutine for printing a list of integers.

Array Declarations

The name of an array must obey the same rules as an ordinary variable name. Each ar-
ray must be declared in the declaration section of a program, module, or procedure. A
name is declared to be an array by putting the dimension attribute in a type statement
followed by a range of subscripts, enclosed in parentheses. For example,

real, dimension(1:9) :: x, y
logical, dimension(-99:99) :: yes_no

declares that x and y are lists of 9 real values and that yes_no is a list of 199 logical val-
ues. These declarations imply that a subscript for x or y must be an integer expression
with a value from 1 to 9 and that a subscript for yes_no must be an integer expression
whose value is from 99 to +99.

The lower bound may be omitted, in which case it is assumed to be 1. A declara-
tion of x and y equivalent to the one above is

real, dimension(9) :: x, y

The rank of an array is the number of dimensions. The rank must not be greater
than 15.

A parameter (named constant) array may have each upper bound be *, getting its
shape from the constant expression that determines its value.

integer, parameter, dimension(0:*) :: perm = [ 5, 4, 3, 2, 1, 0 ]

In a function or subroutine, the range of a dummy argument usually consists of
just the colon, possibly preceded by a lower bound, and the subscript range is deter-
mined by the corresponding actual argument passed to the procedure. This sort of
dummy argument is called an assumed-shape array. If no lower bound is given, the
subscript range is from 1 to the size of the array, in each dimension.

subroutine s(d)
   integer, dimension(:, :, 0:), intent(in) :: d
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In this case, the subscripts on the dummy array d range from 1 to size(d,1) for the
first subscript, from 1 to size(d,2) for the second, and from 0 to size(d,3)-1 for the
third.

Style note: Declare dummy argument arrays to be assumed shape.

Arrays of character strings (5.1) may be declared like the following:

character(len=8), dimension(0:17) :: char_list
character(len=:). dimension(:,:), allocatable :: char_array

In this example, the variable char_list is a list of 18 character strings, each of length 8
and char_array is an allocatable rank-2 array.

The shape of an array is a list of the number of elements in each dimension. A 9 7
array has shape (9, 7); the array char_list declared above has shape (18); and the ar-
ray declared by

integer, dimension(9, 0:99, -99:99) :: iii

has shape (9, 100, 199).
The shape of a scalar is a list with no elements in it. The shape of a scalar or array

can be computed using the shape intrinsic function.
The declaration of a local array also may use values of other dummy arguments or

values in its host (program or module) to establish extents and hence the shape of the
array; such arrays are called automatic arrays. For example, the statements

subroutine s2(dummy_list, n, dummy_array)
   real, dimension(:) :: dummy_list
   real, dimension(size(dummy_list)) :: local_list
   real, dimension(n, n) :: dummy_array, local_array 
   real, dimension(2*n+1) :: longer_local_list

declare that the size of dummy_list is to be the same as the size of the corresponding
actual argument, that the array local_list is to be the same size as dummy_list, and
that dummy_array and local_array are both to be two-dimensional arrays with n  n
elements. The last declaration shows that some arithmetic on other dummy arguments
is permitted in calculating array bounds; these expressions may include references to
certain intrinsic functions, such as size and user-defined functions, in some circum-
stances.

If an array is declared outside a procedure, it must either be declared with constant
fixed bounds or be declared to be allocatable or pointer and be given bounds by the
execution of an allocate statement (see below) or a pointer assignment (10.1). In the
first case, our lost and stolen card program might contain the declaration

integer, dimension(8262) :: lost_card

This is not satisfactory if the number of lost cards changes frequently. In this situation,
one solution is to declare the array to have a sufficiently large upper bound so that
there will always be enough space to hold the card numbers. Because the upper bound
is fixed, there must be a variable whose value is the actual number of cards lost. As-
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suming that the list of lost credit cards is stored in a file connected to the standard in-
put unit (unit=*), the following program fragment reads, counts, and prints the
complete list of lost card numbers. The read statement has an iostat keyword argu-
ment whose value is set to zero if no error occurs and is set to a negative number if
there is an attempt to read beyond the last data item in the file. In the program
read_cards, the longer form of the read statement is required by the use of iostat.

program read_cards

   implicit none
   integer, dimension(20000) :: lost_card
   integer :: number_of_lost_cards, i, iostat_var

   do i = 1, 20000
      read (unit=*, fmt=*, iostat=iostat_var) lost_card(i)
      if (iostat_var < 0) then
         number_of_lost_cards = i - 1
         exit
      end if
   end do
      . . .
   print "(4i8)", lost_card(1:number_of_lost_cards)

end program read_cards

Although the array lost_card is declared to have room for 20,000 entries, the print
statement limits output to only those lost card numbers that actually were read from
the file by specifying a range of subscripts 1:number_of_lost_cards (see below for
details about this notation).

Array Constructors

Rather than assign array values one by one, it is convenient to give an array a set of
values using an array constructor. An array constructor is a sequence of scalar values
defined along one dimension only. An array constructor is a list of values, separated by
commas and delimited by the symbols “[” and “]”. There are three ways to form the
array constructor values and they may be combined in one constructor:

1. A scalar expression as in

x(1:4) = [ 1.2, 3.5, 1.1, 1.5 ]

2. An array expression as in

x(1:4) = [ a(i, 1:2), a(i+1, 2:3) ]

3. An implied do loop as in

x(1:4) = [ (sqrt(real(i)), i=1,4) ]



4.1 Declaring and Using Arrays 125

4. A combination of forms

x(1:5) = [ x(2), a(3, 1:2), (cos(x(i)), i=3,4) ]

If there are no values specified in an array constructor, the resulting array is zero
sized. Unless there is a type specification (see below), the values of the components
must have the same type and type parameters (kind and length). The rank of an array
constructor is always one; however, the reshape intrinsic function can be used to de-
fine rank-2 to rank-15 arrays from the array constructor values. For example,

reshape ( [ 1, 2, 3, 4, 5, 6 ], [ 2, 3 ] )

is the 2  3 array 

An implied do list is a list of expressions, followed by something that is like an itera-
tive control in a do statement. The whole thing is contained in parentheses. It repre-
sents a list of values obtained by writing each member of the list once for each value of
the do variable replaced by a value. For example, the implied do list in the array con-
structor above

(sqrt(real(i)), i=1,4)

is the same as the list

sqrt(real(1)), sqrt(real(2)), sqrt(real(3)), sqrt(real(4))

A do variable must be an integer variable and should be declared in the program
or procedure where it is used. It must not be an array element. or a component of a
structure (6.1). It must not have the pointer or target attribute (10.1). An implied do
also can be used in an input/output list (11.3).

An array constructor may specify the type and type parameters of the resulting ar-
ray. This allows a relaxation of the rule that says that all the values must have the same
type and type parameters. 

[ real :: 2, 3, 4.4 ] ! Type conversion

[ character(len=9) :: "Lisa", "Pamela", "Julie" ]

[ integer :: ]        ! An empty array

Dynamic Arrays

Dynamic storage allocation means that storage may be allocated or deallocated for
variables during execution of the program. With dynamic storage allocation, the pro-
gram can wait until it knows during execution exactly what size array is needed and
then allocate only that much space. Memory also can be deallocated dynamically, so
that the storage used for a large array early in the program can be reused for other

1 3 5
2 4 6
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large arrays later in the program after the values in the first array are no longer need-
ed.

For example, instead of relying on an end-of-file condition when reading in the list
of lost cards, it is possible to keep the numbers stored in a file with the number of lost
cards as the first value in the file, such as

8262
2718281
7389056
1098612
5459815
1484131
   .
   .
   .
1383596

The program can then read the first number, allocate the correct amount of space for
the array, and read the lost card numbers.

integer, dimension(:), allocatable :: lost_card
integer :: number_of_lost_cards
integer :: allocation_status
character(len=99) :: emsg
   . . .
! The first number in the file is the number
! of lost card numbers in the rest of the file.
read *, number_of_lost_cards
allocate (lost_card(number_of_lost_cards), &
      stat=allocation_status, errmsg=emsg)

if (allocation_status > 0) then
   print *, trim(emsg)
   stop
end if

! Read the numbers of the lost cards
read "(i7)", lost_card
   . . .

In the declaration of the array lost_card, the colon is used to indicate the rank (num-
ber of dimensions) of the array, but the bound is not pinned down until the allocate
statement is executed. The allocatable attribute indicates that the array is to be allo-
cated dynamically. Because the programmer does not know how many lost cards there
will be, there is no way to tell the compiler that information. During execution, the sys-
tem must be able to create an array of any reasonable size after reading from the input
data file the value of the variable number_of_lost_cards.
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If there is an allocation error (insufficient memory, for example), the variable
allocation_status is set to a positive value, which may be tested by the programmer.
If there is also an errmsg specifier, a message indicating the type of error is saved.

The component of a derived type (6.2) and a function result may be allocatable.
The deallocate statement may be used to free the allocated storage. Arrays de-

clared allocatable in a procedure are deallocated when execution of the procedure is
completed, if the array is allocated.

An allocatable array also may be allocated by an assignment statement (see the dis-
cussion under Array Assignment in this section).

Allocatable scalars will be used in later examples (10, 12.4).

Array Sections

In the following statement, used in the program read_cards, a section of the array
lost_card is printed.

print "(4i8)", lost_card(1:number_of_lost_cards)

On many occasions, such as the one above, only a portion of the elements of an array
is needed for a computation. It is possible to refer to a selected portion of an array,
called an array section. A parent array is an aggregate of array elements, from which a
section may be selected.

In the following example

real, dimension(10) :: a
   . . .
a(2:5) = 1.0

the parent array a has 10 elements. The array section consists of elements a(2), a(3),
a(4), and a(5). The section is an array itself and the value 1.0 is assigned to all four of
the elements in a(2:5).

In addition to the ordinary subscript that can select a subobject of an array, there
are two other mechanisms for selecting certain elements along a particular dimension
of an array. One is a subscript triplet, and the other is a vector subscript.

The syntactic form of a subscript triplet is

[ expression ] : [ expression ]  [ : expression ]

where each set of brackets encloses an optional item and each expression must produce
a scalar integer value. The first expression gives a lower bound, the second an upper
bound, and the third a stride. If the lower bound is omitted, the lower bound that was
declared or allocated is used. (Note that an assumed-shape dummy array is treated as
if it were declared with lower bound 1 unless a lower bound is given explicitly.) If the
upper bound is omitted, the upper bound that was declared or allocated is used. If the
declared bounds are :, the number of elements in each dimension is the size in that di-
mension. The stride is the increment between the elements in the section referenced by
the triplet notation. If omitted, it is assumed to be one. For example, if v is a one-di-
mensional array (list) of numbers
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v(0:4)

represents elements v(0), v(1), v(2), v(3), and v(4) and

v(3:7:2)

represents elements v(3), v(5), and v(7).
Each expression in the subscript triplet must be scalar. The values of any of the ex-

pressions in triplet notation may be negative. The stride must not be zero. If the stride
is positive, the section is from the first subscript up to the second in steps of the stride.
If the stride is negative, the section is from the first subscript down to the second, dec-
rementing by the stride.

Another way of selecting a section of an array is to use a vector subscript. A vector
subscript is an integer array expression of rank one. For example, if iv is a list of three
integers, 3, 7, and 2, and x is a list of nine real numbers 1.1, 2.2, ..., 9.9, the value of
x(iv) is the list of three numbers 3.3, 7.7, and 2.2—the third, seventh, and second ele-
ments of x.

Ordinary subscripts, triplets, and vector subscripts may be mixed in selecting an
array section from a parent array. An array section may be empty.

Consider a more complicated example. If b were declared in a type statement as

real, dimension(10, 10, 5) :: b

then b(1:4:3, 6:8:2, 3) is a section of b, consisting of four elements:

b(1, 6, 3)   b(1, 8, 3)
b(4, 6, 3)   b(4, 8, 3)

The stride along the first dimension is 3; therefore, the notation references the first sub-
scripts 1 and 4. The stride in the second dimension is 2, so the second subscript varies
by 2 and takes on values 6 and 8. In the third dimension of b, there is no triplet nota-
tion, so the third subscript is 3 for all elements of the section. The section would be one
that has shape (2, 2)—that is, it is two-dimensional, with extents 2 and 2.

To give an example using both triplet notation and a vector subscript, suppose
again that b is declared as above:

real, dimension(10, 10, 5) :: b

then b(8:9, 5, [4, 5, 4]) is a 2  3 array consisting of the six values

b(8, 5, 4)   b(8, 5, 5)   b(8, 5, 4)
b(9, 5, 4)   b(9, 5, 5)   b(9, 5, 4)

If vs is a list of three integers, and vs = [ 4 5 4 ], the expression b(8:9, 5, vs) would
have the same value as b(8:9, 5, [4, 5, 4]). The expression b(8:9, 5, vs) cannot oc-
cur on the left side of an assignment because of the duplication of elements of b.

The pack and unpack intrinsic functions may be useful in similar situations. As one
simple example, the following program prints the positive elements of the array: 3, 7,
and 4.
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program print_pack

   implicit none
   integer, dimension(6) :: x = [3, -7, 0, 7, -2, 4]
   print *, pack(x, mask = (x > 0))

end program print_pack

Array Assignment

Array assignment assigns values to a collection of array elements. A simple example is

real, dimension(100, 100) :: a
   . . .
a = 0

Array assignment is permitted under three circumstances: when the array expression
on the right has exactly the same shape as the array on the left, when the expression on
the right is a scalar, and when the variable on the left is an allocatable array. In the first
two cases, the expression on the right of the equals is conformable to the variable on
the left. Note that, for example, if a is a 9  9 array, the section a(2:4, 5:8) is the same
shape as a(3:5, 1:4), so the assignment

a(2:4, 5:8) = a(3:5, 1:4)

is valid, but the assignment

a(1:4, 1:3) = a(1:3, 1:4)

is not valid because. even though there are 12 elements in the array on each side of the
assignment, the left side has shape (4, 3) and the right side has shape (3, 4).

When a scalar is assigned to an array, the value of the scalar is assigned to every el-
ement of the array. Thus, for example, the statement

m(k+1:n, k) = 0

sets the elements m(k+1, k), m(k+2, k), ..., m(n, k) to zero.
 If the name of an allocatable array appears on the left side of an assignment state-

ment, it is allocated to have the shape of the expression on the right and then assigned
its value.

real, dimension(:), allocatable :: x1
   . . .
x1 = [1, 2, 3]
print *, size(x1)
x1 = [4, 5]
print *, size(x1)

prints the numbers 3 and 2.
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Reading a List of Unknown Size

Dynamic array assignment allows a list, such as the list of lost credit cards, to be read
in without knowing how many cards are in the list. Suppose the input file does not
contain the number of cards, but is simply the list of lost credit cards.

2718281
7389056
1098612
5459815
1484131
   .
   .
   .
1383596

The following code reads in the numbers one at a time and allocates the array to be one
bigger each time the new value is assigned as the last number in the array.

program read_cards_2

implicit none
integer, dimension(:), allocatable :: lost_card
integer :: card, ios
character(len=99) :: iom

lost_card = [ integer :: ]
do
   read (unit=*, fmt=*, iostat=ios, iomsg=iom) card
   if (ios < 0) exit
   if (ios > 0) then
      print *, trim(iom)
      cycle
   end if
   lost_card = [ lost_card, card ]
end do
!   . . .
print "(4i8)", lost_card

end program read_cards_2

Warning: if the list is very large, this program could run quite a long time, because
the array lost_card is reallocated every time a new card is read as input. However,
this can be fixed quite easily (see exercises below).

The where Construct

The where construct may be used to assign values to only those elements of an array
where a logical condition is true; thus, it is often called a masked array assignment.
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For example, the following statements set the elements of b and c to zero in those po-
sitions where the corresponding element of a is negative. The other elements of b and
c are unchanged. a, b, and c must be arrays of the same shape.

where (a < 0)
   b = 0
   c = 0
end where

The logical condition in parentheses is an array of logical values conformable to each
array in the assignment statement. In the example above, comparison of an array of
values with a scalar produces the array of logical values.

The where construct permits any number of array assignments to be done under
control of the same logical array. elsewhere statements within a where construct per-
mit array assignments to be done where the logical expression is false and to indicate
other conditions to affect additional statements. A where construct may contain nested
where constructs.

The following statements assign to the array a the quotient of the corresponding el-
ements of b and c in those cases where the element of c is not zero. In the positions
where the element of c is zero, the corresponding element of a is set to zero and the
zero elements of c are set to 1.

where (c /= 0) ! c/=0 is a logical array.
   a = b / c   ! a and b must conform to c.
elsewhere
   a = 0       ! The elements of a are set to 0
               ! where they have not been set to b/c.
   c = 1       ! The 0 elements of c are set to 1.
end where

The following program contains statements to set the array of integers key to 1, 0,
or 1, depending on whether the corresponding element of the real array a is negative,
zero, or positive, respectively. To see that the statements work correctly, the array a is
filled with random numbers using the random_number subroutine. The values below
the diagonal are negative; those above the diagonal are positive; and the diagonal is set
to 0.

program elsewhere_example

implicit none
integer, parameter :: n=9
integer, dimension(n,n) :: key
integer :: i, j
real, dimension(n,n) :: a

call random_number(a)
do i=1, n
   do j = 1, n
      if (i > j) then
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         ! Put negative numbers below the diagonal
         a(i,j) = -a(i,j) - 2.0
      else if (i < j) then
         ! Put positive numbers above the diagonal
         a(i,j) = a(i,j) + 2.0
      else
         ! Put zeros on the diagonal
         a(i,j) = 0.0
      end if
   end do
end do

where (a > 0)
   key = 1
elsewhere (a < 0)
   key = -1
elsewhere
   key = 0
end where

print "(9f5.1)", (a(i,:),i=1,9)
print *
print "(9i5)", (key(i,:),i=1,9)
end program elsewhere_example

Here is the result of one execution of the program.

  0.0  2.6  2.8  2.3  2.1  2.5  2.3  2.5  2.3
 -3.0  0.0  2.6  2.9  2.4  2.4  2.8  2.6  2.9
 -2.3 -2.8  0.0  3.0  2.2  2.4  2.4  3.0  2.3
 -2.9 -2.3 -2.2  0.0  2.7  2.6  2.6  2.9  2.9
 -2.6 -2.2 -2.8 -2.3  0.0  2.1  2.5  2.5  2.5
 -2.1 -2.9 -2.5 -2.3 -2.1  0.0  2.7  2.8  2.3
 -2.3 -2.6 -2.9 -2.6 -2.9 -2.9  0.0  2.8  2.5
 -2.8 -2.8 -3.0 -2.7 -2.9 -2.2 -2.9  0.0  2.7
 -2.4 -2.1 -2.2 -2.1 -2.8 -2.8 -2.1 -2.6  0.0

    0    1    1    1    1    1    1    1    1
   -1    0    1    1    1    1    1    1    1
   -1   -1    0    1    1    1    1    1    1
   -1   -1   -1    0    1    1    1    1    1
   -1   -1   -1   -1    0    1    1    1    1
   -1   -1   -1   -1   -1    0    1    1    1
   -1   -1   -1   -1   -1   -1    0    1    1
   -1   -1   -1   -1   -1   -1   -1    0    1
   -1   -1   -1   -1   -1   -1   -1   -1    0

Within a where construct, only array assignments, nested where constructs, and
where statements are permitted. The shape of all arrays in the assignment statements
must conform to the shape of the logical expression following the keyword where. The
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assignments are executed in the order they are written—first those in the where block,
then those in the elsewhere blocks.

Intrinsic Operators

All intrinsic operators and many intrinsic functions may be applied to arrays, operat-
ing independently on each element of the array. For example, the expression
abs(a(k:n)) results in a one-dimensional array of n  k + 1 nonnegative real values. A
binary operation, such as *, may be applied only to two arrays of the same shape or an
array and a scalar. It multiplies corresponding elements of the two arrays or multiplies
the elements of the array by the scalar. The assignment statement

a(k, k:n+1) = a(k, k:n+1) / pivot

divides each element of a(k, k:n+1) by the real scalar value pivot. In essence, a scalar
value may be considered an array of the appropriate size and shape with all its entries
equal to the value of the scalar.

Element Renumbering in Expressions

An important point to remember about array expressions is that the elements in an ex-
pression may not have the same subscripts as the elements in the arrays that make up
the expression. They are renumbered with 1 as the lower bound in each dimension.
Thus, it is legal to add y(0:7) + z(-7:0), which results in an array whose eight values
are considered to have subscripts 1, 2, 3, ..., 8.

The renumbering must be taken into account when referring back to the original
array. Suppose v is a one-dimensional integer array that is given an initial value with
the declaration

integer, dimension(0:6), parameter :: v = [ 3, 7, 0, -2, 2, 6, -1 ]

The intrinsic function maxloc returns a list of integers giving the position (subscript) of
the largest element of an array. maxloc(v) is [ 2 ] because position 2 of the list v con-
tains the largest number, 7, even though it is v(1) that has the value 7. Also, max-
loc(v(2:6)) is the list [ 4 ] because the largest entry, 6, occurs in the fourth position in
the section v(2:6).

There is also an intrinsic function, minloc, whose value is the list of subscripts of a

smallest element of an array. For example, if a = , the value of minloc(a) is

[3 2] because a(3, 2) is the smallest element of the array.

1 8 0
5 1– 7
3 2– 9
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Exercises

1. Write a statement that declares values to be an array of 100 real values with sub-
scripts ranging from 100 to 1.

2. Use an array constructor to assign the squares of the first 100 positive integers to a
list of integers named squares. For example, squares(5) = 25.

3. Write and run a program that declares an allocatable array named squares. Read
an integer n. Assign to the array all of the perfect squares between 1 and n2. Then
write a loop to print out all the numbers from 1 to n2 not in the array. Test the code
with n = 8. One of the intrinsic functions any or all might be useful. 

4. Declare a real rank-15 array N with default lower bounds and each upper bound 2.
Assign the value 2 to each element of the array. Print the sum and product of all
the values in the array.

5. Modify the program read_cards_2 above to include an array temp of fixed size
chunk=1000. Read card values into temp until it is full. Then assign the cards in
temp as the last elements of the array lost_card. Empty the array temp and repeat
the process until all the cards are read. Make sure to add the correct number of
cards at the last step in case the number is not a multiple of chunk. Using the
cpu_time intrinsic subroutine, compare the times for this program with the origi-
nal read_cards_2 program for reading 200,040 lost cards. Generate the file of lost
cards with a program of some sort.

6. Suppose list is a one-dimensional array that contains n < max_size real numbers
in ascending order. Write a subroutine insert(list, n, max_size, new_entry)
that adds the number new_entry to the list in the appropriate place to keep the en-
tire list sorted. Use a statement with array sections to shift the upper k elements
one position higher in the array. See also the intrinsic functions cshift and eo-
shift. Do the same thing using a dynamic array assignment statement.

7. Write a function that finds the angle between two three-dimensional real vectors. If
v = (v1, v2, v3), the magnitude of v is |v| = , where  is the vector dot prod-
uct of v with itself. The cosine of the angle between v and w is given by

The built-in function acos (arccosine) can be used to find an angle with a given co-
sine.

v v v v

cos v w
v w
------------=
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4.2 Searching a List

The previous section describes the appropriate terminology and some of the Fortran
rules concerning arrays and subscripts. This section makes a start toward illustrating
the power of arrays as they are used in meaningful programs. The application through-
out this section is that of checking a given credit card account number against a list of
account numbers of lost or stolen cards. Increasingly more efficient programs are pre-
sented here and compared.

The Problem: Credit Card Checking

When a customer presents a credit card in payment for goods or services, it is desirable
to determine quickly whether it can be accepted or whether it previously has been re-
ported lost or stolen or canceled for any other reason. The subroutines in this section
perform this task. See  4.1  for ways to read the list lost_card.

Sequential Search through an Unordered List

The first and simplest strategy for checking a given credit card is simply to search from
beginning to end through the list of canceled credit cards, card by card, either until the
given account number is found in the list, or until the end of the list is reached without
finding that account number. In the subroutine search_1, this strategy, called a se-
quential search, is accomplished by a do construct with exit that scans the list until the
given account number is found in the list or all of the numbers have been examined.

Style note: It is good programming practice to make the searching part of the
program a separate subroutine.

Other versions of the credit card program in this section will be obtained by modi-
fying this subroutine.

The two ways of exiting from the search loop both pass control to the end subrou-
tine statement. However, they have a different effect on the dummy argument found.
When the credit card being checked is not in the list, the search loop is executed until
the list is exhausted. This normal completion of the do construct allows control to fall
through to the end subroutine statement with the value of found still false. When the
card being checked is found in the list, the logical variable found is set to true before
exiting the do construct. The calling program can test the actual argument passed to
the dummy variable found to decide whether the card number was found in the list.
The intrinsic function size used in this subroutine returns an integer value that is the
number of elements in the array lost_card.

subroutine search_1(lost_card, card_number, found)

   integer, dimension(:), intent(in) :: lost_card
   integer, intent(in) :: card_number
   logical, intent(out) :: found
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   integer :: i

   found = .false.
   do i = 1, size(lost_card)
      if (card_number == lost_card(i)) then
         found = .true.
         exit
      end if
   end do

end subroutine search_1

This subroutine makes a nice example for illustrating how individual elements of
an array can be manipulated; but in Fortran, it is often better to think of operations for
processing the array as a whole. In fact, using the built-in array functions, it is possible
to do the search in one line.

found = any(lost_card == card_number)

The comparison

lost_card == card_number

creates a list of logical values with true in any position where the value of card_number
matches a number in the list lost_card. The intrinsic function any is true if any of the
elements in a list of logical values is true; it is false otherwise. The intrinsic function
any may be thought of as an extension of the binary operator .or. to arrays.

The basic strategy of the program search_1 is to check a credit card account num-
ber supplied as input against each account number, in turn, in the list of canceled or
lost cards, either until a match is found or until the list is exhausted. These alternatives
are not equally likely. Most credit cards offered in payment for purchases or services
represent the authorized use of active, valid accounts. Thus, by far the most usual exe-
cution of the subroutine search_1 is that the entire list is searched without finding the
card number provided.

The number of comparisons a program must make before accepting a credit card is
some measure of the efficiency of that program. For example, when searching for an
acceptable credit card in a list of 10,000 canceled credit cards, the subroutine search_1
usually makes 10,000 comparisons. On a traditional computer, the elapsed computer
time for the search depends on the time it takes to make one comparison and to pre-
pare to make the next comparison. However, on a computer with vector or parallel
hardware, many comparisons may be done simultaneously and the intrinsic functions,
probably written by the implementor to take advantage of this special hardware, might
provide very efficient searching.

If the search must be performed on a traditional computer by making one compar-
ison at a time, the search can be made more efficient by maintaining the list in the or-
der of increasing card number. As soon as one canceled card number examined in the
search is too large, all subsequent ones will also be too large, so the search can be aban-
doned early. The subroutine search_2 presumes that the list is in increasing order.
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subroutine search_2(lost_card, card_number, found)

   integer, dimension(:), intent(in) :: lost_card
   integer, intent(in) :: card_number
   logical, intent(out) :: found
   integer :: i

   found = .false.
   do i = 1, size(lost_card)
      if (card_number <= lost_card(i)) then
         found = (card_number == lost_card(i))
         exit
      end if
   end do

end subroutine search_2

Before accepting a presented account number, search_1 always must search the
entire list, but search_2 stops as soon as it reaches a number in the list of canceled ac-
count numbers that is larger than or equal to the presented number.

Roughly speaking, the average number of comparisons needed for an acceptance
by search_2 is about half the list size, plus one additional comparison to determine
whether the last entry examined was exactly the account number of the credit card be-
ing checked. For a list of 10,000 canceled cards, it would take an average of 5001 com-
parisons, significantly better than the 10,000 for search_1.

To a limited extent, this increased efficiency in the checking program is counterbal-
anced by some additional computer time needed to maintain the list of canceled credit
cards in increasing order. However, the list is likely to be searched much more often
than it is modified, so almost any increase in the efficiency of the checking program re-
sults, in practice, in an increase in the efficiency of the entire operation.

Program Notes

The sequential search loop in the subroutine search_2 is not quite as straightforward
as it seems at first glance. When the presented card card_number is compared against
an entry lost_card(i), three things can happen:

1. card_number is too high, in which case the search continues.

2. They match, in which case the presented card card_number has been found.

3. card_number is too low, in which case further search is futile.

The three possibilities are not equally likely. Case 1 can occur as many as 10,000 times
in one search. Cases 2 and 3 can only happen once per search. It is important to test
first for the most frequently occurring case. Otherwise, there will be two tests per iter-
ation, slowing the search loop appreciably. This subroutine tests for the first case, and
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then, if it is false, determines whether case 2 or case 3 applies. The following if con-
struct also does the tests in this same optimal order; but if the order of testing alterna-
tives were changed, twice as many tests would be done.

found = .false.
do i = 1, size(lost_card)
   if (card_number > lost_card(i)) then
      cycle
   else if (card_number == lost_card(i)) then
      found = .true.
      exit
   else
      exit
   end if
end do

Binary Search

Sequential search is a brute force technique. It works well for short lists but is very in-
efficient for large ones. A somewhat different strategy, divide and conquer, is em-
ployed in a binary search. Half of the list can be eliminated in one comparison by
testing the middle element. Then half the remaining elements are eliminated by anoth-
er test. This continues until there is only one element left; then this element is exam-
ined to see if it is the one being sought. The list must be ordered for binary search.
Note that a binary search is similar to what you do when looking up a telephone num-
ber in a phone book.

Table 4-2 shows how a binary search is used to try to find the number 2415495 in a
list of 16 numbers. The numbers are given in increasing order in the first column. The
presented number 2415495 is not in the list, but this fact plays no role in the search
procedure until the very last step.

Table 4-2  A binary search that fails

Before any 
comparisons

After one 
comparison

After two 
comparisons

After three 
comparisons

After four 
comparisons

Given 
number

1096633 1096633

1202604 1202604

1484131 1484131

1627547 1627547*

2008553 2008553 2008553

2202646 2202646 2202646*

2718281 2718281 2718281 2718281* 2718281 2415495
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As a first step in binary searching, the list is divided in half. An asterisk follows the
eighth number in column 1 because it is the last entry in the first half of the list. Since
the given number 2415495 is less than (or equal to) the eighth entry 2980957, the sec-
ond half of the list can be eliminated from further consideration. Column 2 shows only
the first half of the original list (entries 1 through 8) retained as the segment still active-
ly being searched.

The procedure is repeated. An asterisk follows the fourth entry in column 2 be-
cause it is the last entry in the first half of the segment of the list still actively being
searched. Since the given number 2415495 is greater than the fourth number 1627547,
this time it is the first half of the active segment that is eliminated and the second half
(entries 5 through 8 of the original list) that is retained. This is shown in column 3 of
Table 4-2.

In the next stage, the second remaining number 2202646, which was the sixth entry
in the original list, is marked with an asterisk because it is the last entry of the first half
of the segment still being searched. Since this number is exceeded by the given number
2415945, the second half of the segment in column 3 (entries 7 and 8) is retained as the
active segment in column 4. The seventh entry of the original list, the number 2718281,
is the last entry of the first half of the remaining list of two entries and thus is marked
with an asterisk in column 4 to indicate its role as a comparison entry. Since the given
number 2415495 is less than this, the other entry (the eighth original entry) is discard-
ed, and column 5 shows that after four comparisons, only the seventh entry 2718281 re-
mains as a candidate.

Since only one entry remains, a test for equality is made between the given number
2415495 and the one remaining entry 2718281. They are not equal. Thus, the given
number is not in the list. Note that the previous comparisons of these two numbers

2980957* 2980957 2980957 2980957

3269017

4034287

4424133

5459815

5987414

7389056

8103083

8886110

* An asterisk denotes the comparison entry at each stage, which is the last entry of the first 
half of the segment still under active consideration.

Table 4-2  (Continued) A binary search that fails

Before any 
comparisons

After one 
comparison

After two 
comparisons

After three 
comparisons

After four 
comparisons

Given 
number
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were merely to determine whether the given number was less than or equal to the sev-
enth entry.

Table 4-3 shows how the binary search works for the number 7389056, which is
found in the list of 16 numbers. As before, the first column lists the original numbers
with an asterisk following the last number of the first half of the list, the eighth entry.
The number 7389056 is greater than the eighth entry, so the second half of the list (en-
tries 9 16) is retained in column 2. A comparison of the given number 7389056 with the
last entry of the first half of the segment remaining in column 2, the twelfth original
entry 5459815, eliminates entries 9 through 12.

A comparison with the fourteenth entry, marked with an asterisk in column 3,
eliminates the fifteenth and sixteenth entries. One more comparison of the given num-
ber 7389056 against the thirteenth entry, marked with an asterisk in column 4, elimi-
nates that entry and leaves only the fourteenth entry 7389056. The final test for equality
of the given number and the only remaining candidate in the list yields success, and it
can be reported that the given number is the fourteenth entry in the list.

Table 4-3 A binary search that is successful

Before any 
comparisons

After one 
comparison

After two 
comparisons

After three 
comparisons

After four 
comparisons

Given 
number

1096633

1202604

1484131

1627547

2008553

2202646

2718281

2980957*

3269017 3269017

4034287 4034287

4424133 4424133

5459815 5459815*

5987414 5987414 5987414 5987414*

7389056 7389056 7389056* 7389056 7389056  = 7389056

8103083 8103083 8103083

8886110 8886110 8886110

* An asterisk denotes the comparison entry at each stage, which is the last entry of the first 
half of the segment still under active consideration.
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For the purpose of explanation, it is most convenient to use a list size that is an ex-
act power of 2, that is, 2, 4, 8, 16, 32, .... This avoids fractions when the size of the list
segment still under consideration is halved repeatedly. However, this is not essential;
the use of integer division by 2 in the subroutine binary_search permits it to search a
list of any length.

subroutine binary_search(lost_card, card_number, found)

   integer, dimension(:), intent(in) :: lost_card
   integer, intent(in) :: card_number
   logical, intent(out) :: found
   integer :: first, half, last, only

   first = 1
   last = size(lost_card)
   do
      if (first == last) exit
      half = (first + last) / 2
      if (card_number <= lost_card(half)) then
         ! Discard second half
         last = half
      else
         ! Discard first half
         first = half + 1
      end if
   end do

   ! The only remaining subscript to check is first
   ! (which is the same as last)
   only = first
   found = (card_number == lost_card(only))

end subroutine binary_search

When the part of the list still under consideration has been reduced to a single element
by repeated bisection, the first element left is the last and only element left and the do
construct is exited to test it.

Efficiency of a Binary Search

As before, we can get a reasonable indication of the efficiency of a search method by
seeing how many times the given account number is compared against account num-
bers in the list of lost or stolen cards in the most usual event that the card number is
not in the list.

The number of comparisons required in the binary search can be counted easily.
With one data comparison, a list of items to be searched can be cut in half. When the
list is reduced to one element, a final comparison determines whether that candidate is
the credit card being searched for or not. Thus, with n + 1 comparisons, it is possible to
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search 2n items. Turning it around the other way, n items may be searched using
log2n+1 comparisons. Thus, for example, 15 comparisons suffice for binary searching
all lists of length up to 16,384 (= 214). This is considerably better than the 8192 compar-
isons needed for a sequential search! However, keep in mind that on a computer with
intrinsic parallelism, it may be better to use the intrinsic functions and hope that the
implementation takes advantage of the parallelism to do many comparisons simulta-
neously. Even if it does, whether or not it is faster than the binary search depends on
the size of the list and the amount of parallelism in the system.

Exercises

1. What changes need to be made to the subroutine binary_search to search a list of
integers with kind long?

2. How could the subroutine search_2 be improved if you wanted to start at the end
of the list when searching for a “large” number?

4.3 Sorting

Frequently it is necessary to sort a list of numbers or character strings. For example,
the list lost_card in the previous section must be sorted for the binary search to work.
One of the simplest ways to do this is to compare every number in the list with every
other number in the list and swap them if they are out of order. As with the previous
examples in this chapter, the sorting is done with a subroutine so that it can be put in
a module and be used by many programs.

subroutine sort_1(list)

   real, dimension(:), intent(in out) :: list
   integer :: i, j

   do i = 1, size(list) - 1
      do j = i + 1, size(list)
         if (list(i) > list(j))  &
               call swap(list(i), list(j))
      end do
   end do

end subroutine sort_1

The subroutine swap of 3.5 that exchanges the values of two variables is assumed to be
available, perhaps in a module. This is a very simple algorithm for sorting, but it is
very inefficient and should not be used to sort more than a few hundred items.

A second approach to sorting a list is to find the smallest number in the list and
put it in the first position, then find the smallest number in the remainder of the list
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and put it in the second position, etc. The built-in function minloc can be used effec-
tively for this sort.

For an array a of rank n, that is, with n subscripts, the value of minloc(a) is a one-
dimensional array whose entries are the n subscript positions of a smallest element of
a. As described in 4.1, if the lower bound in a particular dimension is 1, the subscript
position and the subscript value are the same. If not, the actual subscript can be found
by adding the declared lower bound  1 to the subscript position. In the subroutine
sort_2, the subscript of list(i:) containing a minimal element is min_loc(1)+i-1,
where min_loc is an array with one element used temporarily to store the value of
minloc(list(i:)).

subroutine sort_2(list)

   real, dimension(:), intent(inout) :: list
   integer :: i
   integer, dimension(1) :: min_loc

   do i = 1, size(list) - 1
      min_loc = minloc(list(i:))
      call swap(list(i), list(i + min_loc(1) - 1))
   end do

end subroutine sort_2

This subroutine appears to be just about as inefficient as sort_1, because execution of
the minloc function involves searching through the elements of list(i:) to find the
smallest one. Indeed, it may be just as inefficient; however, if it is executed on a system
with parallelism, the minloc function may be faster than a sequential search.

Quick Sort

One of the best sorting algorithms is called “quick sort” or “partition sort”. Whereas
sort_1 needs to make approximately n2/2 comparisons to sort n numbers, the quick
sort needs approximately nlog2n comparisons. To get an idea of the amount of im-
provement, for n = 1000 items, sort_1 would require approximately 500,000 compari-
sons and the quick sort would require approximately 10,000 comparisons, a ratio of
50:1; for n = 1,000,000 items, sort_1 would require approximately 500,000,000,000 com-
parisons and the quick sort would require approximately 100,000,000 comparisons, a
ratio of 5000:1.

As might be expected, the quick sort is a bit more complicated. It is a divide-and-
conquer algorithm like binary search. To sort a list of numbers, an arbitrary number
(such as the first, last, or middle one) is chosen from the list. All the remaining num-
bers in turn are compared with the chosen number; the ones smaller are collected in a
“smaller” set and the ones larger are collected in a “larger” set. The whole list is sorted
by sorting the “smaller” set, following them with all numbers equal to the chosen
number, and following them with the sorted list of “larger” numbers. Note that sorting
the “smaller” and “larger” lists involves using the quick sort routine recursively (3.16).
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recursive subroutine quick_sort(list)

   real, dimension(:), intent(in out) :: list
   real, dimension(:), allocatable :: smaller, larger
   integer :: i,  &
         number_smaller, number_equal, number_larger
   real :: chosen

   if (size(list) > 1) then
      allocate (smaller(size(list)))
      allocate (larger(size(list)))
      chosen = list(1)
      number_smaller = 0
      number_equal = 1
      number_larger = 0

      do i = 2, size(list)
         if (list(i) < chosen) then
            number_smaller = number_smaller + 1
            smaller(number_smaller) = list(i)
         else if (list(i) == chosen) then
            number_equal = number_equal + 1
         else
            number_larger = number_larger + 1
            larger(number_larger) = list(i)
         end if
      end do

      call quick_sort(smaller(1:number_smaller))
      list(1:number_smaller) =  &
           smaller(1:number_smaller)
      list(number_smaller+1:  &
           number_smaller+number_equal) = chosen
      call quick_sort(larger(1:number_larger))
      list(number_smaller+number_equal+1:) =  &
           larger(1:number_larger)
      deallocate (smaller, larger)
   end if

end subroutine quick_sort

Although the subroutine quick_sort follows the description fairly closely and
sorts with order nlog2n comparisons, it wastes a lot of space in each subroutine call cre-
ating new smaller and larger lists. However, by clever management of the available
space (in fact, each element is replicated up to log2n times, creating a total memory use
of nlog2n reals), the entire list can be sorted without using any arrays except the origi-
nal argument list itself. In the following version of the quick sort, the “smaller” num-
bers are collected together by placing them at the beginning of the list and the “larger”
numbers are collected together by placing them at the end of the list. Also, every effort
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is made to eliminate unnecessary moving or swapping of elements in the list. To do se-
rious sorting, this version should be used.

The details of the quick-sorting algorithm are still quite tricky and must be clari-
fied further before an efficient and bug-free subroutine can be written. First, while it is
possible to maintain two lists in a single one-dimensional array—the list smaller that
grows up from the bottom of the array list and the list larger that grows down from
the top of the array list—it is difficult to manage three lists in one array. Thus, the
conditions for the sublists smaller and larger are relaxed to allow entries equal to the
test element chosen to qualify for either of these sublists. Since these elements are the
largest elements in the sublist smaller, and the smallest elements in the sublist larger,
they are reunited in the middle of the array list when both sublists are sorted in
place.

Second, since there are (essentially) no extra storage spaces for list elements, the
only way to remove an unsuitably large element from the left (i.e., smaller) part of the
list is to swap it with an unsuitably small element from the right (i.e., larger) part of
the list. Each pass through the main loop of the subroutine quick_sort consists of a
search for an unsuitably large element on the left, a search for an unsuitably small ele-
ment on the right, and a swap.

If the input list is in completely random order, it does not matter which element of
the list is chosen as the test element. We use the middle element of the input list for
two reasons: (1) one of the more likely nonrandom orders of a list is that the list is al-
ready sorted; choosing the middle element as test element provides much better splits
than the first or last in this case; (2) if the test element is the middle element, both the
search in the left list for a “large” element and the search in the right list for a “small”
element are guaranteed not to run off the ends of the list, because the middle element
will stop both searches. A test for invalid subscripts can be eliminated from these two
inner loops if the test element is the middle element.

The only argument to the subroutine quick_sort is the list of numbers to be sort-
ed. Recall that within the subroutine, regardless of the lower and upper bound of the
actual argument, the dummy argument has lower bound 1 and upper bound n =
size(list).

recursive subroutine quick_sort(list)

   real, dimension(:), intent(in out) :: list

   integer :: i, j, n
   real :: chosen, temp
   integer, parameter :: max_simple_sort_size = 6

   n = size(list)
   if (n <= max_simple_sort_size) then
      ! Use interchange sort for small lists
      call interchange_sort(list)
   else
      ! Use partition (“quick”) sort
      chosen = list(n/2)
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      i = 0
      j = n + 1

      do
         ! Scan list from left end
         ! until element >= chosen is found
         do
            i = i + 1
            if (list(i) >= chosen) exit
         end do
         ! Scan list from right end
         ! until element <= chosen is found
         do
            j = j - 1
            if (list(j) <= chosen) exit
         end do
         if (i < j) then
            ! Swap two out of place elements
            temp = list(i)
            list(i) = list(j)
            list(j) = temp
         else if (i == j) then
            i = i + 1
            exit
         else
            exit
         end if
      end do

      if (1 < j) call quick_sort(list(:j))
      if (i < n) call quick_sort(list(i:))
   end if  ! test for small array

end subroutine quick_sort

subroutine interchange_sort(list)

   real, dimension(:), intent(in out) :: list
   integer :: i, j
   real :: temp

   do i = 1, size(list) - 1
      do j = i + 1, size(list)
         if (list(i) >  list(j)) then
            temp = list(i)
            list(i) = list(j)
            list(j) = temp
         end if
      end do
   end do
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end subroutine interchange_sort

Sorting Small Lists

The subroutine quick_sort has been made more efficient by the addition of the fol-
lowing statements that test if the quantity of numbers to be sorted is small and call an
interchange sort if it is.

if (n <= max_simple_sort_size) then
   ! Use interchange sort for small lists
   call interchange_sort(list)

Why be concerned about this? Quick sort rarely is used to sort such small lists, and
even if it is, it is only relative efficiency that suffers: The absolute time required to
quick sort a small list is very small. The answer is that although the user might not call
quick_sort often to sort a very small list, because it is a divide-and-conquer tech-
nique, the quick-sort algorithm subdivides the list again and again until finally it calls
itself recursively many times to sort very small lists. Thus, small inefficiencies in the
quick sorting of small lists contribute many times over to form large inefficiencies in
the quick sorting of large lists.

The solution is simple: for lists below a certain minimum size, interchange_sort
is used. The subroutine quick_sort sorts all lists of size up to max_simple_sort_size
using the compact and simple sorting algorithm of the subroutine sort_1 for such
lists. For larger lists, it uses the quick sort algorithm. Some experimenting with ran-
domly generated large lists and different values of max_simple_sort_size indicates
that for this simple sorting algorithm and this implementation of the quick-sort algo-
rithm, max_simple_sort_size = 6 is probably a good choice. Your mileage may vary
(see Exercise 3).

Exercises

1. Modify the subroutine quick_sort so that a public variable named swap_count
records the number of times two values are swapped. This provides a crude mea-
sure of the complexity of the sorting algorithm. Experiment with the program by
generating 10,000 numbers using the built-in subroutine random_number discussed
in 3.15. Also collect data about actual running time using the built-in subroutine
cpu_time.

2. Execute quick_sort with randomly generated lists of numbers of various sizes of
n between 16 and 32,768 to see if the number of values swapped is proportional to
nlog2n.
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3. Vary the parameter max_simple_sort_size and test quick_sort using randomly
generated lists of size n = 10,000. What value of max_simple_sort_size produces
the fewest swaps? Do not forget to count the swaps in interchange_sort. Does
this value of max_simple_sort_size also produce the shortest actual running
time? If time permits, see if the results change when n is increased to 100,000.

4.4 Selecting

A common problem is to find the median of a list of numbers, that is, the one that
would be in the middle of the list if the list were in order. One way to do this is to sort
the list and look at the element in the middle, but this is quite inefficient. The best sort-
ing algorithms require nlog2n steps to sort n numbers, whereas the median of n num-
bers can be found in n steps.

The trick is one that is often applicable to recursive procedures: Solve a slightly
more general problem instead. In this case the more general problem to solve is to find
the number that would be in position k, 1 k n, if a list of n numbers were in order.
Then to find the median, simply find the number in position k = n/2.

A good algorithm to select the kth element is similar to the quick-sort algorithm.
Arbitrarily pick one of the numbers in the list. As with the quick sort, separate the
numbers into three collections: the numbers smaller than the chosen number, the num-
bers equal to the chosen number, and the numbers larger than the chosen number.
Suppose the size of each of these collections is s, e, and l, respectively. If k  s, the num-
ber we are looking for is in the collection of smaller numbers, and, in fact, is the kth
number in that collection in order; this number can be found by applying the same se-
lection algorithm recursively to the list of smaller numbers. If s k s+e, then the num-
ber chosen is the one we are looking for and the search is complete. If s + e < k, the
number we are looking for is in the collection of larger numbers; it is, in fact, the one in
position k s e in that list in order, so it can be found by recursively calling the selec-
tion procedure.

Here is the Fortran program; the selected element is returned as the value of the
variable element and the logical variable error indicates if a position outside the
bounds of the list is requested. The procedure quick_select is written as a subroutine
instead of a function because it returns two values.

recursive subroutine quick_select (list, k, element, error)

   real, dimension(:), intent(in) :: list
   integer, intent(in) :: k
   real, intent(out) :: element
   logical, intent(out) :: error
   real, dimension(:), allocatable :: smaller, larger
   integer :: i, n,  &
         number_smaller, number_equal, number_larger
   real :: chosen
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   n = size(list)
   if (n <= 1) then
      error = .not. (n == 1 .and. k == 1)
      if (error) then
         element = 0.0  ! A value must be assigned
                 ! because element is intent(out)
      else
         element = list(1)
      end if

   else
      allocate (smaller(n), larger(n))
      chosen = list(1)
      number_smaller = 0
      number_equal = 1
      number_larger = 0

      do i = 2, n
         if (list(i) < chosen) then
            number_smaller = number_smaller + 1
            smaller(number_smaller) = list(i)
         else if (list(i) == chosen) then
            number_equal = number_equal + 1
         else
            number_larger = number_larger + 1
            larger(number_larger) = list(i)
         end if
      end do

      if (k <= number_smaller) then
         call quick_select  &
               (smaller(1:number_smaller),  &
                k, element, error)
      else if (k <= number_smaller + number_equal) then
         element = chosen
         error = .false.
      else
         call quick_select  &
               (larger(1:number_larger),  &
                k - number_smaller - number_equal,  &
                element, error)
      end if
      deallocate (smaller, larger)
   end if

end subroutine quick_select
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Exercises

1. Modify the subroutine quick_select so that a variable named compare_count
records the number of times two values are compared. This provides a crude mea-
sure of the complexity of the selection algorithm. Experiment with the program by
generating 10,000 numbers using the built-in subroutine random_number (3.15).
Also collect data about actual running time using the built-in subroutine cpu_time
(8.2).

2. Execute quick_select with randomly generated lists of numbers of various sizes n
to see if the number of values compared is proportional to n.

3. Rewrite quick_select to reduce the amount of temporary storage used, using the
second version of quick_sort as a model.

4. Instead of using list(1) as the value of chosen in the subroutine quick_select,
use list(k). Repeat the timing experiments to see if this makes any difference. Try
the experiments using both versions with a list that is already sorted.

4.5 Case Study: Solving Linear Equations

The operations of searching, sorting, and selecting discussed in the previous sections
involve, by their nature, mostly operations on a single element of a list, one at a time.
In many situations, particularly in numerical computations, whole arrays or sections of
arrays can be processed at once. To explore an example of this type, we look at the
problem of solving n simultaneous equations of the form

a11x1 + a12x2 +  + a1nxn = b1
a21x2 + a22x2 +  + a2nxn = b2
. . .
an1xn + an2x2 +  + annxn = bn

In matrix notation, this system of equations would be written as

Solving the equations is done by performing combinations of the following opera-
tions, none of which changes the values of the solutions. The three operations are (1)
interchanging equations (which amounts to interchanging rows in the matrix of coeffi-
cients), (2) multiplying an equation (i.e., row) by a constant, and (3) adding one equa-

a11 a12 a1n

a21 a22 a2n

   
an1 an2 ann

x1

x2

xn

b1

b2

bn

=
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tion (i.e., row) to another equation. The operations of interchanging columns in the
matrix of coefficients (which amounts to renaming variables) and multiplying a col-
umn by a constant (which amounts to re-scaling the values of the variable represented
by that column) are sometimes used in solving simultaneous linear equations, but are
not used in the solution presented below.

These equations will be solved by a process called Gaussian elimination. Combi-
nations of these operations are performed until the equations are in a form where all
coefficients below the diagonal of the coefficient matrix are zero and all coefficients on
the main diagonal are one; this constitutes the first phase of Gaussian elimination. In
broad outline, what happens in this phase is that the first equation is solved for the
first variable x1 (i.e., its coefficient is made 1), and then appropriate multiples of the
first equation are subtracted from each of the remaining equations to eliminate the
variable x1 from equations 2 to n. Then the second equation is solved for x2, and multi-
ples of it are subtracted from the remaining equations to eliminate x2 also from equa-
tions 3 to n. Eventually, all the variables x1, x2, ..., xn 1 are eliminated from the nth
equation, which can now be solved for xn. At the end of the first phase, the set of equa-
tions takes the form

The second phase of Gaussian elimination is called back substitution. The last
equation is already solved for xn = dn. The answer for xn is substituted into the next-to-
last equation, which contains only variables xn 1 and xn after the first phase, so it can
be solved for xn 1. Then the answers for both xn and xn 1 are substituted into the previ-
ous equation to solve for xn 2, and so forth until all the variables xn, xn 1, ..., xn 2 are
substituted into the first equation to solve for x1.

An equivalent form of the back-substitution phase, which is used sometimes, is to
subtract appropriate multiples of the nth equation from all previous equations to elim-
inate xn from equations 1 to n 1. Then multiples of equation n 1 are subtracted from
equations 1 to n 2 to eliminate xn 1 from these equations. The process continues up-
ward through the equations until each equation has only one variable, or equivalently,
until every entry in the matrix of coefficients above the diagonal is zero. The equations
now have the form

x1 c12x2 c13x3 c1n 1– xn 1– c1nxn+ + + + + d1=

x2 c23x3 c2n 1– xn 1– c2nxn+ + + + d2=

x3 c3n 1– xn 1– c3nxn+ + + d3=

=
xn 1– cn 1n– xn+ dn 1–=

xn dn=
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which is solved for all of its variables. In the program solve_linear_equations, we
use the first method, substituting directly without changing the triangular matrix of
coefficients to this completely diagonalized form.

If all goes well, the process of solving the system of linear equations is no more
complicated than what we just described; however, a general solution must foresee and
provide for all possibilities, even the possibility that the set of equations is inconsistent
and has no solution.

The first potential problem is that when we try to solve the first equation for the
first variable x1, we might find that the first equation does not involve x1 (i.e., a11 = 0).
If some other equation involves x1, that is, if some ak1 0, then we can swap the first
and kth equations (to make a11 0 after the swap) so that we can solve the new first
equation for x1 and proceed. On the other hand, if no equation involves x1, then the
system of equations does not uniquely determine x1 and we must report this as an un-
determined system of equations.

A similar problem might occur when we try to solve the kth equation for xk. If the
coefficient akk is zero at this point in the computation, then we must seek a later equa-
tion, say the mth, for which amk  0, and swap it with the kth equation before proceed-
ing. If all remaining coefficients in the kth column are zero, then xk is not uniquely
determined.

Conventional wisdom, which we follow in this program, says that even if akk is
nonzero, it is still better to swap the kth equation with that later equation for which the
absolute value |amk| is largest. Part of the reason is that roundoff error in calculations
with the real coefficients often results in a coefficient that should be zero being calcu-
lated as a small nonzero value, but almost never results in it being calculated as a large
nonzero value. Swapping akk with amk, the coefficient with the largest magnitude,
greatly reduces the risk of dividing by a coefficient akk that should have been calculat-
ed as zero.

The program solve_linear_equations makes heavy use of array operations and
intrinsics to achieve compactness (and to illustrate the use of the operations and intrin-
sics). If these operations are not second nature, some statements in solve_linear_
equations may require some puzzling out, perhaps by writing equivalent do con-
structs.

subroutine solve_linear_equations(a, x, b, error)

   real, dimension(:, :), intent(in) :: a
   real, dimension(:), intent(out) :: x
   real, dimension(:), intent(in) :: b
   logical, intent(out) :: error
   real, dimension(:, :), allocatable :: m

x1 e1=

x2 e2=

=
xn en=
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   integer, dimension(1) :: max_loc
   real, dimension(:), allocatable :: temp_row
   integer :: n, k

   error = size(a, dim=1) /= size(b) .or.  &
           size(a, dim=2) /= size(b)
   if (error) then
      x = 0.0
      return
   end if

   n = size(b)
   allocate (m(n, n+1), temp_row(n+1))
   m(1:n, 1:n) = a
   m(1:n, n+1) = b

   ! Triangularization phase
   triang_loop: do k = 1, n

      max_loc = maxloc(abs(m(k:n, k)))
      temp_row(k:n+1) = m(k, k:n+1)
      m(k, k:n+1) = m(k-1+max_loc(1), k:n+1)
      m(k-1+max_loc(1), k:n+1) = temp_row(k:n+1)

      if (m(k, k) == 0) then
         error = .true.
         exit triang_loop
      else
         m(k, k:n+1) = m(k, k:n+1) / m(k, k)
         m(k+1:n, k+1:n+1) = m(k+1:n, k+1:n+1) -  &
            spread(m(k, k+1:n+1), 1, n-k) *  &
            spread(m(k+1:n, k), 2, n-k+1)
      end if

   end do triang_loop

   ! Back substitution phase

   if (error) then
      x = 0.0
   else
      do k = n, 1, -1
         x(k) = m(k, n+1) - sum(m(k, k+1:n) * x(k+1:n))
      end do
   end if

   deallocate (m, temp_row)

end subroutine solve_linear_equations
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The array m is created in the subroutine solve_linear_equations because the con-
stant terms are subject to the same operations as the coefficients of the variables during
the calculations of Gaussian elimination. It consists of the array a of coefficients en-
larged by one column into which is placed the list of constants b. This is accomplished
using the statements

real, dimension(:, :), allocatable :: m
n = size(b)
allocate (m(n, n + 1))
m(1:n, 1:n) = a
m(1:n, n+1) = b

Several array intrinsic functions are used in the subroutine solve_

linear_equations. The size function is used to find the number of equations and
variables, which is the size of the list b. The function spread takes an array and in-
creases its dimension (i.e., number of subscripts) by one by duplicating entries along a
chosen dimension. Suppose that m is the 3  4 array

then m(1, 2:4) is the one-dimensional array

and spread(m(1, 2:4), dim=1, count=2) is the two-dimensional array

which consists of two copies of m(1, 2:4) spread downward—that is, entries that dif-
fer only in the first subscript are duplicates. Similarly, spread(m(2:3, 1), dim=2,
count=3) is the array

consisting of three copies of m(2:3, 1) spread to the right, with duplicate entries that
differ only in the second subscript. Since these two arrays are the same size and shape,
they may be multiplied; the value of spread(m(1, 2:4), 1, 2) * spread(m(2:3, 1),
2, 3) is the array

11 12 13 14
21 22 23 24
31 32 33 34

12 13 14

12 13 14
12 13 14

21 21 21
31 31 31
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Thus, the resulting value of m after executing the statement

m(2:3, 2:4) = m(2:3, 2:4) -        &
        spread(m(1, 2:4), 1, 2) *  &
        spread(m(2:3, 1), 2, 3)

is

It is not necessary to set m(1,2:3) to 0 to complete this step in the triangularization be-
cause these elements are never looked at again.

The intrinsic function sum finds the sum of all the elements of an array. If a is a
one-dimensional array, then the statement

s = sum(a)

gives the same result (subject to rounding errors) as the statements

s = 0
do i = lbound(a), ubound(a)
   s = s + a(i)
end do

For higher-dimensional arrays, a nested do loop is needed for each dimension of the ar-
ray to achieve the effect of the built-in function sum. Besides the added simplicity and
clarity of using the expression sum(a) in place of nested loops, it is much easier for
compilers to recognize that sum(a) applies the same operation to the entire array and
therefore might be a suitable expression for parallel execution if the hardware permits.
The do loop versions explicitly ask for the calculations to be done in a specific order
and thus may not benefit from optimization.

Many other functions that operate on arrays are described briefly in 8.8 and Ap-
pendix A.

4.6 Case Study: Heat Transfer I

Consider the problem of determining the temperature at each point of a square plate
when a heat source is applied to two edges and the heat has had time to be distributed
throughout the plate.

12 21 13 21 14 21
12 31 13 31 14 31

11 12 13 14
21 22 12 21– 23 13 21– 24 14 21–
31 32 12 31– 33 13 31– 34 14 31–
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For our purposes, we will assume that the plate consists of a 10  10 array of
points. A constant source of heat with value 1.0 is applied to the left edge (column 1) of
the plate and heat values 1.0, 0.9, 0.8, ..., 0.2, 0.1 are applied to the points at the top of
the plate. No heat is applied to the other two borders. We assume that the temperature
in the plate assumes a steady state when the temperature at each internal point is the
average of the temperatures of the four points neighboring the point—the points to the
north, east, west, and south. Thus, the program does an iterative calculation: at each
step the temperature at each internal point is replaced by the average of the four sur-
rounding points. This can be done as an array operation:

temp = (n + e + s + w) / 4.0

The associate construct is used to give short names to some of the sections of the
two-dimensional array named plate. This makes it easier to understand that the main
computational step is averaging the points to the north, east, south, and west.

Note also the use of parameters tolerance and plate_format in the program. The
size of the plate is also a parameter P so that it can be changed easily.

!  A simple solution to the heat transfer problem
!     using arrays and the associate construct

program heat

   implicit none
   integer, parameter :: P = 10
   real, dimension(P, P), target :: plate
   real, dimension(P-2, P-2)           :: temp
   real, parameter :: tolerance = 1.0e-4
   character(len=*), parameter :: plate_format = "(10f5.2)"

   real    :: diff
   integer :: i,j, niter

   ! Set up initial conditions
   plate = 0
   plate(:, 1) = 1.0  ! boundary values
   plate(1, :) = [ ( real(j)/P, j = P, 1, -1 ) ]

   !  Alias parts of the plate
   associate (inside => plate(2:P-1, 2:P-1), &
                   n => plate(1:P-2, 2:P-1), &
                   s => plate(3:P,   2:P-1), &
                   e => plate(2:P-1, 1:P-2), &
                   w => plate(2:P-1, 3:P))

      ! Iterate
      niter = 0
      do
         temp = (n + e + s + w) / 4.0
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         diff = maxval(abs(temp-inside))
         niter = niter + 1
         inside = temp
         print *, niter, diff
         if (diff < tolerance) exit
      end do
   end associate

   do i = 1, min(P, 10)
     print plate_format, plate(i, :)
   enddo

end program heat

Here are the results produced by the last print statement after the computation
has converged.

 1.00 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10
 1.00 0.89 0.78 0.67 0.57 0.47 0.36 0.26 0.14 0.00
 1.00 0.88 0.76 0.65 0.54 0.43 0.33 0.23 0.12 0.00
 1.00 0.87 0.74 0.62 0.50 0.40 0.30 0.20 0.10 0.00
 1.00 0.85 0.71 0.58 0.46 0.36 0.26 0.18 0.09 0.00
 1.00 0.82 0.66 0.52 0.41 0.31 0.23 0.15 0.07 0.00
 1.00 0.77 0.59 0.45 0.34 0.25 0.18 0.12 0.06 0.00
 1.00 0.69 0.48 0.34 0.25 0.18 0.13 0.08 0.04 0.00
 1.00 0.49 0.29 0.19 0.13 0.10 0.07 0.04 0.02 0.00
 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4.7 Case Study: Calculating Probabilities II

In 3.15, we considered the problem of calculating the probability that a throw of two
dice will yield a 7 or an 11. The resulting program used the built-in subroutine
random_number to generate a random number between 0 and 1. We now provide a
slightly different solution in which the main program uses arrays.

Generating an Array of Random Numbers

In this section, we will rewrite the subroutine random_int to return an array of inte-
gers from low to high. The subroutine random_int calls random_number, but this time
it passes an array to be filled with numbers from 0 to 1.

subroutine random_int(result, low, high)

   integer, dimension(:), intent(out) :: result
   integer, intent(in) :: low, high
   real, dimension(:), allocatable :: uniform_random_value
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   allocate (uniform_random_value(size(result)))
   call random_number(uniform_random_value)
   result = int((high - low + 1) * uniform_random_value + low)
   deallocate (uniform_random_value)

end subroutine random_int

Computing the Probability of a 7 or 11 Using Arrays

Using the array version of the subroutine random_int, the program to estimate the
probability of rolling 7 or 11 with two dice is a bit shorter than the scalar version. We
leave it to the reader to ponder whether it is easier or more difficult to understand than
the scalar version.

program seven_11

   implicit none
   integer, parameter :: number_of_rolls = 1000
   integer, dimension (number_of_rolls) :: dice, die_1, die_2
   integer :: wins

   call random_seed()
   call random_int (die_1, 1, 6)
   call random_int (die_2, 1, 6)
   dice = die_1 + die_2
   wins = count ((dice == 7) .or. (dice == 11))

   print "(a, f6.2)",  &
      "The percentage of rolls that are 7 or 11 is", &
      100.0 * real (wins) / real (number_of_rolls)

contains

subroutine random_int . . .
   . . .

end program seven_11

The built-in function count returns the number of true values in any logical array;
in this case the value in the array is true if the corresponding value in the array dice is
7 or 11. This version of the program seven_11 should produce an answer similar to the
one produced by the scalar version.

Exercises

1. Use random_int to write a program that determines by simulation the percentage
of times the sum of two rolled dice will be 2, 3, or 12.
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2. Two dice are rolled until a 4 or 7 comes up. Use random_int to write a simulation
program to determine the percentage of times a 4 will be rolled before a 7 is rolled.

3. Use random_int to write a simulation program to determine the percentage of
times exactly 5 coins will be heads and 5 will be tails, if 10 fair coins are tossed si-
multaneously. If you use a two-dimensional array, it might help to make
random_int an impure elemental subroutine (8.7).

4. Is it reasonable to use the array version of random_int with an array argument to
create a program that deals a five-card poker hand? Remember that the same card
cannot occur twice in a hand.



Character Data 5
In a computer program, a piece of written text is called a character string. Character
strings have been used throughout this book to retain messages and identify informa-
tion printed out but not processed in any significant way. This chapter reviews this
simple use of character strings and presents computer programs in which the character
strings themselves are the center of interest.

5.1 Use of Character Data in Fortran Programs

Character String Declarations

A character string variable in a Fortran program is declared to be type character. Each
object of type character has a length, which is the number of characters that the string
has. For example, the declaration

character(len=7) :: string_7

declares the variable string_7 to be a character string of length 7. If the length is omit-
ted, it is assumed to be 1.

Character dummy arguments and character parameters may have their length des-
ignated as an asterisk, indicating that their length will be determined by the corre-
sponding actual argument or constant.

Style note: Declare dummy argument and parameter character strings to be
length (*).

A character string may be declared to have its length determined when it is as-
signed or allocated. In this case the length is : and the variable must be declared to be
allocatable.

character(len=:), allocatable :: line_4

It is possible for a character string to have length zero. It is not particularly useful
to declare a variable to have length zero because such a variable could only assume
one value, called the null string. However, the null string can arise as a result of a
computation and such a result might need to be saved as the value of a variable.

The characters in a character string are numbered 1 to n, where n is the length of
the string.
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It is possible to have an array of character strings, all of the same length. The fol-
lowing declares string_array to be a 5  9  7 array of character strings of length 20.

character(len=20), dimension(5, 9, 7) :: string_array

Character Parameters

A character constant may be given a name using the parameter attribute. The program
hello prints a character parameter or named character constant, instead of a literal
character constant.

program hello
   implicit none
   character(len=*), parameter :: &
         message = "Hello, I am a computer."
   print *, message
end program hello

Running the program produces

 Hello, I am a computer.

Note that the name of the character parameter must be declared, just like a character
variable, but the length may be an asterisk indicating that the length is to be deter-
mined from the value of the string.

 Another excellent use of a character parameter is as a format in an input/output
statement.

Character Constants

Recall that a character constant is enclosed in quotation marks (double quotes). This
makes it possible for the computer to tell the difference between the character constant
"yes" and the variable yes, or between the character constant "14" and the integer
constant 14.

Assigning Values to Character Variables

A variable that has been declared to be a character string may be assigned a value that
is a character string. A simple example is provided by the following program that as-
signs a string to a character variable used in a print statement instead of executing al-
ternative print statements containing different messages.

program test_sign
   implicit none
   real :: number
   character(len=:), allocatable :: number_sign

   read *, number
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   if (number > 0) then
      number_sign = "positive"
   else if (number == 0) then
      number_sign = "zero"
   else
      number_sign = "negative"
   end if
   print *, number, "is ", number_sign
end program test_sign

A sample output is:

  -2.3000000 is negative

Length of a Character String

The length of a character string is the number of characters in the string. The length of
a character string is never negative. Each blank occurring in the string is counted in its
length. The built-in function len gives the length of a character string. Thus,

len("love") is 4
len("Good morning.") is 13
len(" ") is 1
len("    ") is 4
len("bg7*5 ad") is 8

As with other functions, the argument of the function len may be a variable or more
general expression, as well as a constant.

For a character string declared to have a fixed length, the length of a character
string assigned to a character variable may be different from the length declared for
that variable. For example, if the input number is zero in the program test_sign, the
four-character constant “zero” is assigned to the eight-character variable number_sign.
This assignment is legal. Four blanks are added to the end of the string zero to make
its length 8, the declared length of the variable number_sign. Thus, the new value of
the variable number_sign is “zerobbbb”, where b is a blank character.

On the other hand, if a fixed-length character string to be assigned to a variable is
longer than the declared length of the variable, characters are truncated from the right
end of the string prior to assignment. For example, if the string name has a declared
length of 3, the assignment statement

name = "Jonathan"

results in the string “Jon” being assigned to name.
Most of the difficulties created by these assignment rules are avoided by declaring

a number_sign to have length :. Then when it is assigned the four-character value “ze-
ro”, its length is four. If it is assigned the value “negative”, its length is 8.
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In a subprogram, the length of a character dummy argument may be given as an
asterisk (*), which means that the length of the corresponding actual argument is to be
used. Such a dummy argument is said to have assumed length. For example,

subroutine process(c)
   character(len=*), intent(in) :: c

The length of a local character string may depend on values related to the dummy
arguments; such strings are called automatic, as they are very similar to automatic ar-
rays (4.1).

For example, a temporary local string can be declared to hold the value of an argu-
ment passed in.

subroutine ss(c)
   character(len=*), intent(in) :: c
   character(len=len(c)) :: temp_c
   temp_c = c
      . . .

The intrinsic function len provides information that is otherwise unobtainable in the
case where a character string, such as the variable c above, is a dummy argument with
its length given by an asterisk or the case where the string is declared with length :.

Trimmed Length of a String

In some cases, we are not interested in the length in characters of a variable. A defini-
tion of length that is suitable for many applications is the length of the substring that
includes all characters up to and including the last nonblank character, but excluding
terminal blanks. The function len_trim is a built-in function that computes the length
of a trimmed string. In addition, there is a built-in function trim, whose value is the
given character string with all trailing blanks removed.

Input of Character Strings

When character strings are supplied as input data for a read statement with the default
format (*), the string should be enclosed in quotes, just like a character constant. When
using an a format, however, surrounding quotes must be omitted; any quotes among
the characters read are considered to be part of the character constant.

Character Collating Sequences

Most Fortran programming language systems use the standard 128-character ASCII
character set. The acronym ASCII stands for “American Standard Code for Information
Interchange”; however, essentially the same code is also the international standard
ISO/IEC 646:1991. Some systems also may support a newer standard ISO/IEC
10646:-1:2000, a multi-byte code designed to handle characters from many languages.
The remainder of this section assumes the character encoding is ASCII.
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The intrinsic ordering for characters, called the collating sequence, is shown in Ta-
ble 5-1 for a selection of printable ASCII characters. One character is considered “less
than” another character if it precedes the other character in the collating sequence.

The Built-In Functions iachar and achar

The built-in function iachar produces an integer representing the ASCII code of the
character given as argument. For example, iachar("A") is 65.

The function achar returns the character with a given code. For example,
achar(65) gives the ASCII character in position 65, which is “A”.

A Testing Technique for Character Output

The program explore_character_set will allow you to explore the ASCII collating
sequence one character at a time. You type the character code and the computer prints
the character with that code. It should be run interactively.

program explore_character_set

! Prints the character with given character code
! in the default kind

   implicit none
   integer :: code

   print *, "Type a character code"
   read *, code
   print "(i5, 3a)", code, ">", achar(code), "<"

end program explore_character_set

 Type a character code
65
   65>A<

The blank character is a perfectly valid character (ASCII code 32). To better see the
value of achar, the value is printed surrounded by the printable characters > and <. A
blank character will then conspicuously occupy the print or display position between
its delimiters.

Table 5-1 The collating sequence for printable ASCII characters

blank !   # $ % & ‘ ( ) * + , - . /

0 1 2 3 4 5 6 7 8 9 : ; < = > ? @

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^ _ `

a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~
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You must expect some surprises when you run the program explore_

character_set. Most of the characters from 0 to 31 do not print. Some, like the line
feed or new line, achar(10) in ASCII, direct the printer to perform some action rather
than print a character. The delimiters > and < will help you figure out what action was
taken.

Table 5-2 summarizes executions of the program explore_character_set. It is the
output of a program similar to explore_character_set that uses loops to show the
printable ASCII characters and their corresponding codes, eight per line of output.
Codes 0 through 31 and code 127 represent special control characters such as the “bell”
character, backspace, and newline. Code 32 represents the blank character.

Comparison of Character Strings

The comparison operators

<, <=, ==, /=, >, >=

may be used to compare character values.
The ordering of strings is an extension of the ordinary lexicographic (i.e., dictio-

nary) ordering of words, but uses the processor codes to order characters other than
letters. If the first character of one character string precedes the first character of the
second string in the collating sequence, then we say the first character string is less
than the second. If the first characters are equal, the second characters are used to de-
cide which character string is smaller. If the second characters also match, the third
characters are used to decide, and so on. The character string with the smaller charac-
ter in the first position where the two strings differ is considered the smaller character
string. When character strings of different lengths are compared, the shorter one is

Table 5-2 The printable ASCII characters

 32     33 !   34 “   35 #   36 $   37 %   38 &   39 ‘

 40 (   41 )   42 *   43 +   44 ,   45 -   46 .   47 /

 48 0   49 1   50 2   51 3   52 4   53 5   54 6   55 7

 56 8   57 9   58 :   59 ;   60 <   61 =   62 >   63 ?

 64 @   65 A   66 B   67 C   68 D   69 E   70 F   71 G

 72 H   73 I   74 J   75 K   76 L   77 M   78 N   79 O

 80 P   81 Q   82 R   83 S   84 T   85 U   86 V   87 W

 88 X   89 Y   90 Z   91 [   92 \   93 ]   94 ^   95 _

 96 `   97 a   98 b   99 c  100 d  101 e  102 f  103 g

104 h  105 i  106 j  107 k  108 l  109 m  110 n  111 o

112 p  113 q  114 r  115 s  116 t  117 u  118 v  119 w

120 x  121 y  122 z  123 {  124 |  125 }  126 ~      
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treated as if it were padded with enough blanks at the end to make it the same length
as the longer one. For example,

"apple" < "bug" < "cacophony" < "doldrums"

"earache" < "elephant" < "empathy" < "equine"

"phlegmatic" < "phonograph" < "photosynthetic"

"dipole" < "duplicate" == "duplicate   " < "dynamic"

In the first line of expressions, decisions are made on the basis of the first letter of the
strings. In the second line, since each string has first letter “e”, decisions are made on
the basis of the relative collating position of the second letters. In the third set of com-
parisons, third or fourth letters differ.

From these examples, it is clear that the natural order of character strings corre-
sponds exactly to ordinary alphabetic order when the character strings are words writ-
ten either entirely in lowercase or entirely in uppercase letters.

String ordering does not take meaning into account. For example, although

"1" < "2" < "3" < "4"

as expected, it is also true that

"four" < "one" < "three" < "two"

and, worse yet

"12" < "2"

String ordering is also sensitive to upper and lower case. The two character strings

"word"       "WORD"

are not equal.

Substrings

Many character-processing applications require breaking down a string into individual
characters or subsequences of characters. Examples are decomposing a word into let-
ters or a sentence into words. The key idea in such a decomposition is a substring.

A substring of a character string is any consecutive sequence of characters in the
string. For example, “J”, “ne D”, and “Doe” are substrings of the character string
“Jane Doe”, but “JDoe” is not a substring. Every character string is regarded as a sub-
string of itself. The string of length zero (the null string) is a substring of every string;
it occurs between every pair of characters and at both the beginning and end of the
string. The following table indicates all the substrings of the character string “then”.

Length 0:  “ ” (the null string)
Length 1:  “t”  “h”  “e”  “n”
Length 2:  “th”  “he”  “en”
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Length 3:  “the”  “hen”
Length 4:  “then”

Referencing Substrings

There is a convenient way to refer to any contiguous subsequence of characters of a
character string. This is done by writing after any character variable or array element
two integer expressions that give the positions of the first and last characters in the
substring. These two expressions are separated by a colon and enclosed in parentheses.
The positions are numbered from 1 to n, where n is the length of the string. An exam-
ple is string(k:m), where the values of k and m are positive integers less than or equal
to the length of string and k  m. If k > m, the result is the null string. For example if c
= “crunch”,

c(2:4) is run
c(1:6) is crunch
c(3:2) is the null string
c(2:7) is illegal
c(5:5) is c

The last example illustrates how to refer to a single character of a string. The pro-
gram single_letters tells the computer to print, one at a time, the characters of a
string supplied as input.

program single_letters
!  Print individually the letters of an input string

   implicit none
   integer :: k
   character(len=10) :: string

   read "(a)", string
   print *, "Input data  string: ", string

   do k = 1, len(string)
      print *, "|", string(k : k), "|"
   end do

   print *, "====="
end program single_letters

 Input data  string: SHAZAM    
 |S|
 |H|
 |A|
 |Z|
 |A|
 |M|
 | |
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 | |
 | |
 | |
 =====

In a substring reference either of the lower or upper character positions may be
omitted. In that case, 1 is used for the lower position and the length of the string is the
upper position. For example

string = "abcde"
string(:3) is "abc"
string(3:) is "cde"

Reassigning the Value of a Substring

It is possible to reassign the value of a substring without affecting the rest of the string.
For instance, the three lines

name = "John X. Public"
initial = "Q"
name(6:6) = initial

tell the computer to change the value of the variable name from “John X. Public” to
“John Q. Public”. Similarly the three lines

name = "John Xavier Public"
new_middle_name = "Quincy"
name(6:11) = new_middle_name

direct the computer to change the value of the variable name from “John Xavier Public”
to “John Quincy Public”.

In reassigning the value of a substring as in the above two examples, it is necessary
that the length of the new substring value is exactly equal to the length of the old sub-
string value. The following example shows how to accomplish something similar when
the middle names are not the same length; in this case, name must be declared to be an
allocatable character string.

name = "John Paul Public"
name = name(1:5) // "Peter" // name(10:16)

Finding the Position of One String in Another

There are numerous reasons for wanting to know if one string is contained as a sub-
string in another. We might want to know if a particular letter is in a word or if a cer-
tain word is in a sentence. The built-in function index tells even more than that; it tells
where to find the first instance of one character string as a substring of another. For ex-
ample,

index("monkey", "on")
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is 2 because the substring “on” begins at the second letter of the string “monkey” and

index("monkey", "key")

is 4 because the substring “key” begins at the fourth letter of “monkey”.
If the string supplied as the second argument occurs more than once as a substring

of the string supplied as the first argument, the function value is the location of the be-
ginning of the leftmost occurrence, so that

index("banana", "ana")

is 2 even though characters 4 6 of “banana” are also “ana”. If the second argument is
not a substring of the first argument, rather than calling it an error and halting, a func-
tion value of zero is used as a signal. For example,

index("monkey", "off")

is 0. A program that calls the function index can test for the signal value zero if de-
sired.

The intrinsic function index has an optional third argument back (backwards).
When back is true, the search is for the rightmost occurrence of the substring. For ex-
ample, index("banana", "ana", .true.) is 4, but index("banana", "ana", .false.)
is 2. The default value for this argument is false.

Concatenation

The only built-in operation that can be performed on strings that produces a string re-
sult is concatenation. The concatenation of two strings is formed simply by placing one
string after the other. The symbol for concatenation is two slashes (//). The program
plural attempts to form the plural of given words by the method of putting the letter
“s” at the end. Obviously, this program is not very useful as it stands, but it does illus-
trate the use of the concatenation operator.

program plural

   implicit none
   character(len=18) :: word
   integer :: ios

   do ! until out of words
      read (unit=*, fmt="(a)", iostat=ios) word
      if (ios < 0) exit  ! End of file
      print *, "Input data  word: ", trim(word)
      print *, "  Plural of word: ", trim(word) // "s"
   end do

end program plural
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 Input data  word: program
   Plural of word: programs
 Input data  word: programmer
   Plural of word: programmers
 Input data  word: matrix
   Plural of word: matrixs
 Input data  word: computer
   Plural of word: computers
 Input data  word: horses
   Plural of word: horsess

The read statement in the program plural needs both a format specification and
an option iostat (input/output status) that sets the integer variable ios to a negative
value when attempting to read beyond the end of the file. Thus, the long form (11.3) is
required. However, we still want to use the default input unit, so we can write

read (unit=*, fmt="(a)", iostat=ios) word

The default input format is not used because we do not want to type quotes around the
input string.

Exercises

1. What is the value of each of the following expressions?

len ("5 feet")
len ("alphabet")
len ("abcdefghijklmnopqrstuvwxyz")
len ("42")

2. List all the substrings of length 3 of the string “alphabet”.

3. Write a program that reads a character string of maximum length 50 and prints all
substrings of length 3. If you cannot think of anything better, use as input data

"These are the times that try our souls."

The output from this sample input should be

  The
  hes
  ese
  .
  .
  .
  uls
  ls.

4. Write a program that reads a character string of maximum length 10 and prints all
of its substrings.
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5. Write a program that sorts a list of at most 200 character strings. Each character
string is at most 50 characters long and occupies the leftmost positions of one line
in the input file. Use the end-of-file test to terminate reading of input data. You
may be surprised at what happens if you accidentally type a blank in the leftmost
column of one of the lines in the input file. Then again, after you think about it,
you might not be.

6. A computer system maintains a list of valid passwords. Write a program that ac-
cepts an 18-character password and checks it against its list of valid passwords.
The program should print “ok” if the password is in the list and “Try again” if it is
not. Give the user two additional tries, replying with successively nastier messages
each time the user fails to give the correct password. Hint: Keep a list of responses
as well as a list of passwords. A sample execution might produce the following
output:

  Welcome to the super special simulated system
  Enter your password:
bug free
  Try again
  Enter your password:
silicon
  Are you sure you have a password?
  Enter your password:
i love fortran
  ok

7. Read an allocatable character string as input and print it in reverse order. You
should use a character-valued function reverse(string). If the input is

until

the output should be

 Input data  string:  until
 litnu

8. Nicely displayed headings add impact to a document. Write a program to take a
character string as input and print it surrounded by a border of exclamation marks.
Again, ignore trailing blanks in the input. Leave one blank before the first charac-
ter and after the last character in the display. If the input is

Payroll Report

the output should be

  Input data  title:  Payroll Report

  !!!!!!!!!!!!!!!!!!
  ! Payroll Report !
  !!!!!!!!!!!!!!!!!!
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9. Write a logical-valued function fortran_name that determines whether or not its
character string argument is a legal Fortran name.

10. If a chess or checkers board is declared by

character(len=1), dimension(8, 8) :: board

the statement

board = "R"

assigns the color red to all 64 positions. Write a statement or statements that as-
signs “B” to the 32 black positions. Assume that board(1, 1) is to be red so that
the board is as shown in Table 5-3.

11. Write a function char_to_int that accepts a character string and returns a vector
of integers, one for each character in the string. The integer value should be 1
through 26, reflecting the position in the alphabet if the character is either an up-
percase or lowercase letter; the value should be zero, otherwise. For example,
char_to_int("e") = [5] and char_to_int("a-z") = [1 0 26].

12. Write a function int_to_binary that converts an integer to a character string that
is the binary representation of the integer. Adjust the 1s and 0s in the right-hand
portion of the string and pad the remainder of the string with blanks. The string
should contain no insignificant zeros, except that the integer 0 should produce the
string consisting of all blanks and one character “0”. If the integer is negative, the
first nonblank character should be a minus sign; if it is positive, the first nonblank
character should be ”1”. Declare the function result to have length 5. If the de-
clared length is not long enough to contain the result, it should consist of all aster-
isks.

int_to_binary(5) is bb101
int_to_binary(0) is bbbb0
int_to_binary(-4) is b 100

Table 5-3 A chess or checkers board

R B R B R B R B

B R B R B R B R

R B R B R B R B

B R B R B R B R

R B R B R B R B

B R B R B R B R

R B R B R B R B

B R B R B R B R
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int_to_binary(77) is *****

You should write the function in such a way that changing the length of the func-
tion result to 16 requires no additional changes in the function.

13. Write and test a function my_index identical to the intrinsic function index. When
back is true, the search proceeds backward from right to left.

5.2 Text Analysis

There are numerous reasons for examining text in minute detail, word by word and
letter by letter. One of the reasons is to determine the authorship of an historical or lit-
erary work. Such quantities as the average length of a word or the frequency of usage
of certain letters can be important clues. Computers have been useful in studying text
from this viewpoint.

Blanking Out Punctuation

We start with some routines that perform simple text manipulation processes. The sub-
routine blank_punct (blank out punctuation) uses the substring value reassignment fa-
cility and the intrinsic function index. Keep in mind that a function value zero means
the function index has determined that the second supplied argument is not a sub-
string of the first supplied argument. The subroutine blank_punct regards any charac-
ter besides a letter or a blank as a “punctuation mark” to be blanked out.

The program test_bp (test blank out punctuation) is intended to show how the
subroutine blank_punct works. The dummy argument text is declared with length *
because its length is not changed by the subroutine.

module blank_module

   implicit none
   public :: blank_punct

contains

subroutine blank_punct(text)
   ! Blank out punctuation
   ! Retain only letters and blanks

   character(len=*), intent(in out) :: text
   character(len=*), parameter :: letter_or_b =  &
         "ABCDEFGHIJKLMNOPQRSTUVWXYZ" //  &
         "abcdefghijklmnopqrstuvwxyz "
   integer :: i
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   ! Replace any character that is not a blank
   ! or letter with a blank
   do i = 1, len_trim(text)
      if (index(letter_or_b, text(i:i)) == 0) then
         text(i:i) = " "
      end if
   end do
end subroutine blank_punct

end module blank_module

program test_bp

   use blank_module
   implicit none
   character(len=:), allocatable :: text
   text = "Suppress5$,superfluous*/3punctuation."
   call blank_punct(text)
   print *, text

end program test_bp

 The result is

Suppress     superfluous     punctuation                                                                

A slightly different version of the subroutine blank_punct uses the verify built-in
function. The verify function scans the first argument, checking that each character in
the string is also in the string that is the second argument. If each character in the first
argument is also in the second, the value of the function is 0. Otherwise, the value of
the function is the character position of the leftmost character in the first argument that
is not in the second argument. For example the value of verify("banana", "nab") is 0
and the value of verify("banana", "ab") is 3, the position in “banana” of the first let-
ter that is neither “a” nor “b”.

subroutine blank_punct(text)
! blank out punctuation
! retain only letters and blanks

   character(len=*), intent(in out) :: text
   character(len=*), parameter :: letter_or_b =  &
         "ABCDEFGHIJKLMNOPQRSTUVWXYZ" //  &
         "abcdefghijklmnopqrstuvwxyz "
   integer :: i

   ! Replace any character that is not a blank
   ! or letter with a blank
   do
      i = verify(text, letter_or_b)
      if (i == 0) exit
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      text(i:i) = " "
   end do
end subroutine blank_punct

The subroutine blank_punct needs a character string parameter letter_or_b of
length 53 that does not fit conveniently on one line. The concatenation operator is used
to break the line.

Excising a Character from a String

When a character of a string is blanked out, as by the subroutine blank_punct, that
character is replaced by a blank and the length of the character string remains un-
changed. When a character is excised from a string, not only is the character removed,
but also all of the characters to the right of the excised character are moved one posi-
tion to the left. If name is fixed length, the character in position c of name can be excised
by the statement

name(c:) = name(c+1:)

which adds a blank at the end of the string.
If name is allocatable, this does not work because the left side of the assignment is

not a simple name, so the length is not changed and a blank is still added to the end of
the string. If instead, the statement

name = name(:c-1) // name(c+1:)

is used, the blank character at position c is removed and the string is shortened by one
character.

The subroutine compress_bb (compress double blanks) removes all double blanks
from a string except those that occur at the right end. It is called by a program words
that lists all the words in a string; the program words is discussed in the next subsec-
tion. Here the dummy argument text is declared to have length :.

subroutine compress_bb(text)
!  Removes double blanks
   character(len=:), intent(in out), allocatable :: text
   integer :: i

   do
      i = index(text, "  ")
      if (i == 0) exit
      text = text(:i-1) // text(i+1:)
   end do
end subroutine compress_bb

Listing All the Words

We now turn our attention to the problem of listing all the words in a text. For this
purpose, the program words regards a substring as a word if and only if it consists en-
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tirely of letters and both the character immediately before it (if any) and the character
immediately after it (if any) are not letters. The program does not consult a dictionary
to see whether the word has been approved by a lexicographer.

For input, a fixed-length character string text_input is used because reading an
allocatable string does not set its length. Then text_input (trimmed) is assigned to the
allocatable string text.

program words

   use words_module
   implicit none
   character(len=200) :: text_input
   character(len=:), allocatable :: text
   integer :: end_of_word

   read "(a)", text_input
   text = trim(text_input)
   print *, "Input data  text: ", text

   ! Blanking out the punctuation,
   ! compressing the multiple blanks,
   ! and ensuring that the first character is a letter
   ! are pre-editing tasks to simplify the job.
   call blank_punct(text)
   call compress_bb(text)
   text = trim(adjustl(text)) // " "

   ! Print all the words.
   ! Each word is followed by exactly one blank.
   do ! until all words are printed
      if (len(text) == 0) exit
      end_of_word = index(text, " ") - 1
      print *, text(:end_of_word)

      ! Discard word just printed
      text = text(end_of_word+2:)
   end do

end program words

 Input data  text: Then, due to illness*, he resigned.
 Then
 due
 to
 illness
 he
 resigned

If the string supplied as input to the program words contains no letters, the pre-ed-
iting provides a string of all blanks to the do loop that prints all the words. The do loop



178 Chapter 5 Character Data

exits correctly on the first iteration without printing any words because the trimmed
length is zero. In the usual case, however, a word starts at position 1 of text and stops
immediately before the first blank. The computer prints the word and discards it and
the blank immediately following it, so that the next word to be printed begins at loca-
tion 1 of the resulting character string.

Even after the subroutines blank_punct and compress_bb are called, it is possible
that the first character of the string is a blank. Application of the built-in function ad-
justl shifts the string to the left to eliminate any leading blanks.

Average Word Length

To compute the average length of words in a given text, it is necessary to determine
both the total number of letters in each word and the total number of words. The most
direct way that comes to mind is used by the program avg_word_len_1 (average word
length, version 1).

program avg_word_len_1
   Initialize word count and letter count to zero
   Read text
   Start scan at leftmost character of the text
   Do until end of text is reached
      Locate the beginning and end of a word
      If no more words then exit the loop
      Increase the letter count
            by the number of letters in the word
      Increase the word count by 1
   Print "average word length = ", letter count / word count
end program avg_word_len_1

After reading in the text, the computer starts to look for the first word at the ex-
treme left. Blanks, commas, and other nonletters are passed over to find the beginning
of a word. Then letters are counted until the first nonletter is reached, such as a blank
or punctuation mark, which signals the end of the word. These steps are repeated for
each word in the text. Each time it locates a word, the computer increases the letter
count by its length and the word count by one.

The refinement of avg_word_len_1 is straightforward. It uses the intrinsic function
scan that works like verify, except that it looks for the first occurrence of any charac-
ter from a set of given characters, in this case the alphabetic characters.

program avg_word_len_1
!  Calculate the average word length of input text

   implicit none
   character(len=200) :: text
   integer :: word_begin, word_end
   integer :: word_count, letter_count
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   character(len=*), parameter :: alphabet =  &
         "ABCDEFGHIJKLMNOPQRSTUVWXYZ" //  &
         "abcdefghijklmnopqrstuvwxyz"

   letter_count = 0
   word_count = 0
   read "(a)", text
   print *, "Input data  text: ", trim(text)

   do  ! until no more words
      word_begin = scan(text, alphabet)
      if (word_begin == 0) exit
      text = text(word_begin:)
      word_end = verify(text, alphabet) - 1
      if (word_end == -1) word_end = len(text)
      letter_count = letter_count + word_end
      word_count = word_count + 1
      text = text(word_end+2:)
   end do

   print *, "Average word length =",  &
         real(letter_count) / word_count

end program avg_word_len_1

 Input data  text: Never mind the whys and wherefores.
 Average word length =   4.8333335

 Input data  text: I computed the average word length.
 Average word length =   4.8333335

The sample execution output of the program avg_word_len_1 might suggest that
to use average word length as a test for authorship, one should have a fairly large sam-
ple of text.

Modification for a Large Quantity of Text

If the amount of text is very large, the computer might not have enough memory to
hold it all at one time. Thus it may be desirable to modify the program
avg_word_len_1 so that it reads the text one line at a time, rather than all at once. The
program avg_word_len_2 incorporates such a modification. Much of the main pro-
gram avg_word_len_1 is put into the subroutine one_line (process one line).

module word_length_2_module

   implicit none
   public :: one_line
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   character(len=*), parameter, private :: alphabet =  &
         "ABCDEFGHIJKLMNOPQRSTUVWXYZ" //  &
         "abcdefghijklmnopqrstuvwxyz"
   character(len=200), public :: text
   integer, public :: word_count, letter_count

contains

subroutine one_line()
!  Accumulate statistics on one line of input text.
   integer :: word_begin, word_end

   do  ! until no more words
      word_begin = scan(text, alphabet)
      if (word_begin == 0) exit
      text = text(word_begin:)
      word_end = verify(text, alphabet) - 1
      if (word_end == -1) then
         word_end = len(text)
      end if
      letter_count = letter_count + word_end
      word_count = word_count + 1
      text = text(word_end+2:)
   end do

end subroutine one_line

end module word_length_2_module

program avg_word_len_2
!  Calculate the average word length of input text.
!  Text may have many lines, terminated by end of file.

   use word_length_2_module
   implicit none
   integer :: ios

   letter_count = 0
   word_count = 0

   do  ! until no more lines of text
      read (unit=*, fmt="(a)", iostat=ios) text
      if (ios < 0) exit
      print *, "Input data  text: ", trim(text)
      call one_line()
   end do

   print *, "Average word length =",  &
         real(letter_count) / word_count
end program avg_word_len_2
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 Input data  text: One of the more important uses
 Input data  text: of the character manipulation
 Input data  text: capability of computers is
 Input data  text: in the analysis of text.
 Average word length =   4.8947368

Frequency of Occurrence of Letters

There are two basic ways to count the number of occurrences of each letter of the al-
phabet in a given text. Both ways use 27 counters, one for each letter of the alphabet
and one to count all the other characters.

One way to tabulate letter frequencies in a line of text is first to scan it for all occur-
rences of the letter “a”, then to scan it for all occurrences of the letter “b”, and so on
through the alphabet. This requires 26 scans of the whole line. This method is embod-
ied in the pseudocode program letter_count_1.

program letter_count_1
   Initialize
   do
      Read line of text
      If no more text, exit loop
      do letter = "a", "z"
         Scan line of text, counting occurrences of that letter
               (either uppercase or lowercase)
         Calculate the number of nonletters and
               increment nonletter total
      end do
   end do
   Print the counts
end program letter_count_1

The second way to count letter frequencies in a line of text is to begin with the first
symbol of the text, to decide which of the 27 counters to increment, to continue with
the second letter of the line of text, to see which counter to increment this time, and so
on through the text. This second way is implemented by the pseudocode program
letter_count_2.

program letter_count_2
   Initialize
   do
      Read a line of text
      If no more text, exit loop
      Do for each character in the line of text
         If the character is a letter then
            Increment the count for that letter
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         else
            Increment the nonletter count
         end if
      end do
   end do
   Print the counts
end program letter_count_2

By the method of the program letter_count_1, the text must be scanned com-
pletely for each letter of the alphabet. By the method of the program letter_count_2,
the text is scanned just once. Thus, the second program executes considerably faster
than the first one and so only the program letter_count_2 is supplied below.

In Fortran, the subscripts of the array of counters cannot be “a”, “b”, etc. A sub-
script must be an integer. Therefore, subscripts 1 through 26 are used to count the
number of occurrences of each letter of the alphabet and subscript 0 is used to count
the characters that are not letters.

module letter_count_2_module

   implicit none
   public :: count_letters, print_counts

!  Variables:
!     tally(0) = count of nonletters
!     tally(1) - tally(26) = counts of A/a - Z/z

   character(len=*), parameter, private :: alphabet =  &
         "ABCDEFGHIJKLMNOPQRSTUVWXYZ" //  &
         "abcdefghijklmnopqrstuvwxyz"
   character(len=200), public :: text
   integer, dimension(0:26), public :: tally

contains

subroutine count_letters()
!  Count letters in one line of text
   integer :: i, letter

   do i = 1, len_trim(text)
      letter = index(alphabet, text(i:i))
      if (letter > 26) letter = letter - 26
      tally(letter) = tally(letter) + 1
   end do
end subroutine count_letters

subroutine print_counts()
!  Print the frequency counts

   integer :: letter
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   print *
   print "(2a10)", "Letter", "Frequency"
   do letter = 1, 26
      print "(a10, i10)",  &
            alphabet(letter:letter), tally(letter)
   end do
   print "(a10, i10)", "Other", tally(0)
end subroutine print_counts

end module letter_count_2_module

program letter_count_2
!  Count frequency of occurrence in a text
!  of each letter of the alphabet

   use letter_count_2_module
   implicit none
   integer :: ios

   tally = 0  ! Set entire array to zero

   do  ! until no more lines in file
      read (unit=*, fmt="(a)", iostat=ios) text
      if (ios < 0) exit
      print *, "Input data  text: ", trim(text)
      call count_letters()
   end do

   call print_counts()

end program letter_count_2

 Input data  text: One of the important text analysis
 Input data  text: techniques (to determine authorship)
 Input data  text: is to make a frequency count of
 Input data  text: letters in the text.

    Letter Frequency
         A         6
         B         0
         C         3
         D         1
         E        15
         F         3
         G         0
         H         5
         I         7
         J         0
         K         1
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         L         2
         M         3
         N         8
         O         8
         P         2
         Q         2
         R         5
         S         6
         T        16
         U         4
         V         0
         W         0
         X         2
         Y         2
         Z         0
     Other        20

This is a good example to illustrate how and where different variables and param-
eters are declared. The variable count is a public variable in the module because it is
used in the program letter_count_2. The parameter alphabet and the variable text
are private because they are not needed in the program letter_count_2, but are above
the contains statement because they are used in both of the module procedures. The
remaining variables are declared within the subroutines because they are needed in
only one subroutine.

Palindromes

Another aspect of text analysis is searching for patterns. Perhaps the text repeats itself
occasionally, or perhaps the lengths of the words form an interesting sequence of num-
bers. One pattern for which we search here is called a “palindrome”, which means that
the text reads the same from right to left as from left to right. The word “radar” is a
palindrome, for example. Liberal palindromers customarily relax the rules so that
punctuation, spacing, and capitalization are ignored. To liberal palindromers, the
names “Eve”, “Hannah”, and “Otto” are all palindromes, as is the sentence

“Able was I ere I saw Elba.”

something Napoleon might have said, except that he preferred speaking French.
The program palindrome satisfies the most conservative palindromers. As the two

sample runs show, it accepts the string

“NAT SAW I WAS TAN”

as a palindrome, but it rejects the string

“MADAM I’M ADAM”
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It is straightforward to modify the program palindrome to apply a more liberal test for
palindromes; simply preprocess the text as in the program words above. The subrou-
tine blank_punct converts all nonletters to blanks, the subroutine compress_bb can be
modified to excise all blanks, and a subroutine fold_cases can be written to change all
lowercase letters to uppercase.

module c_or_blank_module

   implicit none
   public :: c_or_blank

contains

function c_or_blank(c) result(c_or_blank_result)
!  Tests if c is blank
!  Returns "blank" if it is
!  Returns c otherwise
   character(len=*), intent(in) :: c
   character(len=5) :: c_or_blank_result

   if (c == " ") then
      c_or_blank_result = "blank"
   else
      c_or_blank_result = c
   end if
end function c_or_blank

end module c_or_blank_module

program palindrome
!  Tests for a palindrome

   use c_or_blank_module
   implicit none
   character(len=200) :: text
   integer :: l, left, right
   logical :: match

   read "(a)", text
   print *, "Input data  text: ", trim(text)

   right = len_trim(text)
   match = .true.
   do l = 1, right / 2
      if (text(l:l) /= text(right:right)) then
         left = l
         match = .false.
         exit
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      else
         right = right - 1
      end if
   end do

   if (match) then
      print *, "Palindrome"
   else
      print *, "Not a palindrome"
      print*, "Character",left,"from the left is ", &
            c_or_blank(text(left:left))
      print*, "Character",left,"from the right is ", &
            c_or_blank(text(right:right))
   end if

end program palindrome

 Input data  text: NAT SAW I WAS TAN
 Palindrome

 Input data  text: MADAM I'M ADAM
 Not a palindrome
 Character 5 from the left is M
 Character 5 from the right is blank

Exercises

1. Write a more efficient version of compress_bb described in 5.1. When a double
blank is found remove all of the consecutive blanks with one assignment state-
ment.

2. Calculate the ratio of letters in the first half of the alphabet to letters in the second
half of the alphabet in an input text.

3. An alliteration is a sequence of words all starting with the same letter. Write a pro-
gram alliteration that counts the most consecutive words in an input text start-
ing with the letter “P” or “p”. For the sample input data

In his popular paperback, “Party Pastimes People
Prefer”, prominent polo player Paul Perkins
presents pleasing palindromes.

the output should be

  14
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5.3 Case Study: Expression Evaluation

In 3.16 it was mentioned that it is possible for recursive procedures to call each other.
This is illustrated in this section with an example that also gives a little insight into
how computer programs are processed, producing the answers that we expect to see
when a program is run.

In this book, the syntax or form of Fortran statements is given by a very informal
description. The following definitions use a more formal notation to describe a small
part of Fortran, namely, a class of arithmetic expressions involving only nonnegative
integer constants, addition (+), multiplication (*), and parentheses. A more complete
description of this notation can be found in Appendix B.

The first thing to do is describe what a number is.

number is digit
or digit number

This says that a number is either a single digit or a digit followed by another (shorter)
number. It is a recursive definition because the definition of number involves number as
part of the second option. As with any recursive definition or program, there must be
a way to terminate the recursion; in this case, a number must eventually be just a digit,
the first choice for number. A digit is a single character 0, 1, ..., or 9. This is a situation
in which the recursion is not very essential and a number can be described more sim-
ply as a sequence of one or more digits, but this provides a very simple example of the
definitions of other syntactic objects that are a little more complicated.

The fundamental building block of an expression is called a primary. Primaries are
the basic components out of which expressions are built; they are treated as operands
and combined using arithmetic operators. In our case it is either a number or any other
expression enclosed in parentheses.

primary is number
or ( expression )

The next rule indicates how to build expressions using just primaries and multipli-
cation to form what are called terms. A term is a sequence of primaries separated by
the multiplication symbol (*). It can also be described recursively with the rule

term is primary
or primary * term

This description says that a term is either a primary by itself or a primary followed by the
multiplication symbol and another (simpler) term. Examples of terms are

64
111*2222
397*43*(2899*64352)

In the last case one of the primaries is (2899*64352), which is an example of an ex-
pression enclosed in parentheses.
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The description of an expression is similar to that of a term. An expression is a se-
quence of terms separated by the plus (+) operator and can be described recursively in
our notation by

expression is term
or term + expression

Examples of expressions are all of the example terms given in the previous list and the
following as well.

111+2222
111+2222*33
(111+2222)*33

The last two are seen to be expressions in slightly different ways. For 111+2222*33,
111 is a term and 2222*33 is an expression, because it is a term consisting of two pri-
maries separated by *. However, (111+2222)*33 consists of an expression in parenthe-
ses followed by * and the number 33. This illustrates that the syntax rules indicate how
the expression is to be broken down into components, which, in turn, indicates how
the value of the expression will be computed.

It is now possible to see how intertwined these definitions are. We started with the
definition of a primary that involved an expression. But the definition of expression in-
volves the definition of term, which involves the definition of primary!

It is possible to construct a program that determines if a string of characters is a le-
gal expression as defined above. This program can be implemented using the recursive
definitions directly or it can take advantage of the tail recursion in the definitions of
number, term, and expression in order to be a little more efficient. However, it is not as
easy to see how to handle the second alternative in the definition of primary without a
recursive call to determine if it is an expression in parentheses.

It is interesting that it is possible to write a program that is not much more compli-
cated than one that just tests the legality of an expression, but that computes the value
of any legal expression. Giving the rules that determine the value of each expression
specifies the semantics or meaning of the expression. It is easy to transform the rules
given above into rules that compute the value of any expression.

A primary is either a number or an expression in parentheses; the value of a prima-
ry is either the value of the number or the value of the expression in parentheses. This
sounds so simple that it may seem like it does not even say anything, but it does give
the value of any primary in terms of its components. By the way, we will assume that
the value of a number is “obvious”, although it is not hard to define the value of a
number in terms of its digits.

The description of the value of a term and an expression are very similar. If a term
is a primary, its value is the value of the primary, which is defined in the previous
paragraph. If it is primary * term, its value is the product of the value of the primary
and the term. Similarly, the value of expression is either the value of a term or the sum
of the values of a term and another expression.

We can now begin to write some of the functions that will return the value of the
various kinds of expressions. Blanks are not permitted or are removed by preprocess-
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ing. Taking them in the same order as before, primary is a function that computes the
value of a primary. We agree to return the value 1 if the string is not a legal primary.
This works because only nonnegative integer constants are allowed and there is no
subtraction operator.

recursive function primary(string) result(primary_result)

   character(len=*), intent(in) :: string
   integer :: primary_result
   integer :: ls

   ! See if it is a number
   primary_result = number(string)
   ls = len(string)
   ! If not, see if it is an expression in parens
   if (primary_result < 0 .and. ls > 0) then
      if (string(1:1) == "(" .and.  &
          string(ls:ls) == ")") then
         primary_result = expression(string(2:ls-1))
      end if
   end if

end function primary

The first executable statement evaluates the primary as if it were a number. If it is a
number, the value is not 1 and its value is also the value of the primary. If the value is

1, the other option is that the primary is an expression enclosed in parentheses. The
first and last characters are checked—if they are left and right parentheses, respective-
ly, the expression between is evaluated and is used as the value of the primary.

To check that a string is a number, which must be a string of one or more digits,
the verify function is used. It returns 0 if all the characters are digits. Also, if the
length of the string is greater than zero, an internal read statement (11.3) is used to
convert the string of digits to an integer value.

function number(string) result(number_result)

   character(len=*), intent(in) :: string
   integer :: number_result

   ! Check that it is one or more digits
   if (len(string) > 0 .and.  &
         verify(string, "0123456789") == 0) then
      read (unit=string, fmt=*) number_result
   else
      number_result = -1
   end if

end function number



190 Chapter 5 Character Data

The function term that returns the value of a string if it is a term and 1 otherwise
first checks to see if the string is a primary. If it is, the value of the primary is the value
of the term. If it is not a primary, it must be a primary followed by * followed by an-
other term.

recursive function term(string) result(term_result)

   character(len=*), intent(in) :: string
   integer :: term_result
   integer :: op

   ! Check if it is a primary
   term_result = primary(string)
   if (term_result < 0) then
      ! If not a primary,
      ! find the first * outside parens
      op = position(string, "*") 
      if (op > 0) then
         term_result =  &
            combine(primary(string (:op-1)),  &
                       term(string (op+1:)), "*")
      else
         term_result = -1
      end if
   end if

end function term

We have made the function a bit more efficient by realizing that a primary cannot
contain a multiplication sign unless it is inside parentheses. So we look for the leftmost
multiplication sign that is not enclosed in parentheses. This is done by scanning the
string, counting a left parenthesis as +1 and a right parenthesis as 1 and finding the
first * at a place where the count is zero (and hence the parentheses to the left are bal-
anced). The function position does this and returns 0 if it does not find such a multi-
plication symbol.

function position(string, op_symbol) result(position_result)

   character(len=*), intent(in) :: string, op_symbol
   integer :: position_result
   integer :: p, paren_count

   position_result = 0
   paren_count = 0
   do p = 1, len(string)
      if (string(p:p) == "(") then
         paren_count = paren_count + 1
      else if (string(p:p) == ")") then
         paren_count = paren_count - 1
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      else if (string(p:p) == op_symbol .and. paren_count == 0) then
         position_result = p
         exit
      end if
   end do

end function position

It is interesting to note that a case construct cannot be used to select which operation
to perform because the items in parentheses in each case statement must be constants;
an item cannot be the character string that is the dummy argument op_symbol.

If position is positive, the function term treats the characters to the left of the * as
a primary and the characters to the right as another term, getting their values and mul-
tiplying them together if neither is 1. The function combine is used to multiply two
values together, except that it returns 1 if either argument is 1. It is also used to add
two values, so it takes a third argument that indicates which operation to perform.

function combine(x, y, op_symbol) result(combine_result)

   integer, intent(in) :: x, y
   character(len=*), intent(in) :: op_symbol
   integer :: combine_result
   if (x < 0 .or. y < 0) then
      combine_result = -1
   else
      select case (op_symbol)
         case ("+")
            combine_result = x + y
         case ("*")
            combine_result = x * y
         case default
            combine_result = -1
      end select
   end if

end function combine

The function expression is very similar to term. The names of the functions called
are changed, and the operator passed to combine is + instead of *.

All of these functions are put in a module. This example does not seem to be im-
proved by using allocatable strings; in almost all cases, a string is a dummy argument,
which is declared to have length *, so a dynamically changing length is not needed.

module expression_module

   implicit none
   public :: expression, term, primary, number, position, combine

contains
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recursive function expression (string) . . .

recursive function term (string) . . .

recursive function primary (string) . . .

function number (string) . . .

function position (string, op_symbol) . . .

function combine (x, y, op_symbol) . . .

end module expression_module

program expression_evaluation

   use expression_module
   implicit none
   character(len=100) :: line
   integer :: status, value

   do
      read (unit=*, fmt="(a)", iostat=status) line
      if (status < 0) exit
      print *
      print *, "Input data  line:  ", trim(line)
      value = expression(trim(line))
      print *, "The value of the expression is: ", value
   end do

end program expression_evaluation

Input data  line:  (443+29)(38+754)
 The value of the expression is:  -1

 Input data  line:  89+23*4
 The value of the expression is:  181

 Input data  line:  (((((((555)))))))
 The value of the expression is:  555

 Input data  line:  64+23*(5388+39)*(54*22+3302*2)
 The value of the expression is:  972605296

Exercises

1. Give a recursive definition of the value of a number that uses the value of a digit.
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2. Extend the expression_evaluation program to allow negative constants, subtrac-
tion, and division. The result should be -huge(0) if the string is not a legal expres-
sion.



Structures and Derived Types 6
Fortran arrays allow data to be grouped, but only if all items have the same data type.
It is often useful to use a structure, which is a compound object consisting of values
that may be of different data types. Derived types are used to define the form of struc-
tures. It is possible to define new operations and functions on defined types, creating
abstract data types. Derived types and their operations are defined in a module, mak-
ing them globally available to many programs.

An interesting kind of structure is a recursive data structure, which can be built
and manipulated using pointers. Examples of these structures are found in the form of
linked lists (10.3), trees (10.4), and queues (12.4).

6.1 Structures

A structure is a collection of values, not necessarily of the same type. The objects that
make up a structure are called its components. The components of a structure are iden-
tified by Fortran names, whereas the elements of an array are identified by numerical
subscripts.

A good example of the use of a structure might be provided by a simple text edi-
tor, such as one supplied with many programming language systems. Each line in a
program consists of a line number and one or more statements. When the editor is run-
ning, the program being edited could be represented in the editing program as two ar-
rays, one to hold line numbers and one to hold the text of each line. Perhaps a better
way to do this is to have a single object called line consisting of two components, an
integer line_number and a character string statement. The entire program would then
be an array of these structures, one for each line.

The components of a structure may be arrays or other structures. The elements of
an array may be a structure. The elements of an array may not be arrays, but this func-
tionality can be achieved with an array whose elements are structures whose only com-
ponent is an array or by a higher dimensional (rank) array.

To give a slightly more complicated example, suppose we wish to store in our com-
puter the contents of our little black book that contains names, addresses, phone num-
bers, and perhaps some remarks about each person in the book. In this case, each entry
in the book can be treated as a structure containing four components: name, address,
phone number, and remarks. The diagram in Figure 6-1 represents the organization of
this information.
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The name of the structure is person, and it has four components: name, address,
phone, and remarks. Sometimes one or more components might be broken down into
lower-level components. For instance, if the owner of the black book wanted to contact
every acquaintance in a particular city, it would be helpful to have the component ad-
dress itself be a structure with components number, street, city, state, and postal
zip_code. With this organization of the data, it would be possible to have a computer
program scan the entries for city and state without having to look at the street address
or zip code. For similar reasons, it might be convenient to subdivide each telephone
number into a three-digit area code and a seven-digit local number, assuming all of the
numbers are in North America. This more refined data organization is represented
schematically by the structure in Figure 6-2.

6.2 Derived Types

As was discussed in 1.2, there are five intrinsic Fortran data types: integer, real, com-
plex, logical, and character. A programmer may define a new data type, called a de-
rived type. In Fortran, a derived type can be used only to define a structure.
Conversely, a structure can occur in a program only as a value of some derived type.

A type definition begins with the keyword type, followed by either the private
or public accessibility attribute (assuming it is in a module), followed by two colons
(::) and the name of the type being defined. The components of the type are given in
the form of ordinary type declarations. The type definition ends with the keywords
end type, followed by the name of the type being defined.

Style note: All type definitions should be put above the contains statement in a
module. In other words, a type definition should not appear in a main pro-
gram or a procedure. Each should be given the public or private attribute.

Figure 6-1 Diagram of the structure person
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Let us start first with the program editor example, for which each line of the pro-
gram consists of a line number and some text. A definition of a type that would be use-
ful in this example is

type, public :: line
   integer :: line_number
   character(len=line_length) :: text
end type line

where line_length is an integer parameter (named constant).
Let us next return to the example of the little black book. To define the type

phone_type in that example, area_code and number are each declared to be integer
components:

type, public :: phone_type
   integer :: area_code, number
end type phone_type

Figure 6-2 A refined structure person
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The definition of the type address_type is a little more complicated because some of
the components are character strings and some are integers:

type, public :: address_type
   integer :: number
   character(len=30) :: street, city
   character(len=2) :: state
   integer :: zip_code
end type address_type

Now that the types address_type and phone_type have been defined, it is possi-
ble to define a type suitable for one entry in the black book. Note that the names
address_type and phone_type were used for the names of the types, so that the names
address and phone could be used for the components of the type person_type.

type, public :: person_type
   character(len=40) :: name
   type(address_type) :: address
   type(phone_type) :: phone
   character(len=100) :: remarks
end type person_type

Features of Derived Types

Derived types have several features, some of which must be described later in combi-
nation with other features of Fortran.

• Components of a derived type may be allocatable (4.1, 10.4, 12.4) or a pointer (10).

• Components of a derived type may be a procedure pointer (10.1, 12.3, 13.15, 13.17).

• A derived type may have a final procedure (10.3), which is executed whenever a
variable of the type is destroyed.

• A derived type may have a type-bound procedure associated with it.

• A derived type may have parameters that are specified when a structure of the
type is declared.

The last two features are introduced in the next two subsections.

Type-Bound Procedures

A derived-type declaration may have a contains statement followed by a type-bound
procedure. The procedure is intended to process objects of the type or perform other
functions related to the type. In many cases, a type-bound procedure processes an ob-
ject of the type, so the default is that such an object is passed to the procedure unless
the nopass attribute (12.3) is given to the procedure. An example using pass occurs in
12.4.
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In the following simple example, the subroutine open_files might open some files
used in processing objects of type t. The type-bound procedure open_files with the
nopass attribute is named after the contains statement in the type definition and the
procedure itself occurs after the contains statement of the module. Note that in the
main program, the procedure is called by writing tt%open_files.

module m

   implicit none
   private

   type, public :: t
      real:: x=3.3
   contains
      procedure, nopass :: open_files
   end type

contains
   subroutine open_files()
      print *, "Opening file ..."
      ! open ( . . .
   end subroutine open_files

end module

program p

   use m
   implicit none

   type(t) :: tt
   call tt%open_files()

end program p

Parameterized Derived Types

All of the intrinsic types have a kind type parameter that allows the Fortran program-
mer to select a representation for the values of the type. In addition, the character type
has a length type parameter. Similarly, a derived type may have type parameters, as
specified by the programmer. There are two sorts of type parameters: kind and length.
The basic difference between them is that the kind must always be given as an expres-
sion that can be evaluated at compiler time—hence, must consist essentially of con-
stants, whereas a length parameter can change at runtime, just like character length or
array bounds.

An example of a derived-type definition for a type with both kind and length pa-
rameters follows.
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type, public :: matrix(rows, cols, k)
   integer, len :: rows, cols
   integer, kind :: k = kind(0.0)
   real(kind = k), dimension(rows, cols) :: values
end type matrix

The derived type matrix has three type parameters, listed in parentheses following
the type name in the first line of the type definition. The names of the type parameters
are rows, cols, and k. The type of each of these parameters, as well as an indication as
to whether they are kind or length type parameters, must be given in declarations in
the derived-type definition. These declarations are the second and third lines of the
definition. The parameter k has a default value, so may be omitted when the type is
used.

The next line lists the only component of the derived type: values, which is an ar-
ray of real kind k with the specified number of rows and columns (cols). An example
of a declaration of a variable of type matrix is given in 6.3.

Exercises

1. Design a data structure suitable for information on a college student to be used by
the college registrar. Write the type definitions needed for this data structure.

2. Assuming that airlines accept reservations for flights up to one year in advance,
design a data structure suitable for storing information associated with each reser-
vation. Write the type definitions needed for this data structure.

3. Design a data structure suitable to hold information on each flight to be made by
an airline during the next year. Write the type definitions needed for this data
structure.

4. Design a data structure suitable for a bank to keep the information on a checking
account. Write the type definitions needed for this data structure.

5. Add a fourth type parameter rck to the derived type matrix, given above. rck
should be an integer kind type parameter that indicates the kind of the type pa-
rameters rows and cols.

6.3 Declaring and Using Structures

Given the type definition for line in 6.2 that can be used to hold a line number and
one line of a program, a variable new_line that could be used to represent one line of
the program can then be declared by

type(line) :: new_line
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As shown in this example, a variable is declared to be a derived type with a decla-
ration that is similar to the declaration of a variable of intrinsic type, except that the
name of the intrinsic type is replaced by the keyword type and the name of the type in
parentheses. Note that in a type definition, the name of the type is not enclosed in pa-
rentheses, but in a type declaration, the name of the type is enclosed in parentheses.

The entire program to be edited could be represented by a single variable declared
to be an array of values of type line:

type(line), dimension(max_lines) :: program

With this declaration, some parts of the editor are a little easier to write and read be-
cause any operations that must be done to both a line number and the text can be ex-
pressed as a single operation on a line. For example, if two arrays were used, the print
statement of a subroutine list_program might have been written

print "(i5, tr1, a)", line_number(n), text(n)

It can now be written

print "(i5, tr1, a)", program(n)

where the tr (tab right) edit descriptor (11.8) indicates a number of print positions to
skip.

To use the type declarations for the address book, joan can be declared to be type
person_type with the statement

type(person_type) :: joan

and the little black book can be declared to be an array of type person_type:

type(person_type), dimension(1000) :: black_book

Of course, any program or module that is to contain a derived-type declaration must
use the module containing the derived-type definition (or be in the module containing
the definition).

Variables can be declared to be type matrix (6.2) with a declaration like the follow-
ing.

type (matrix (rows=40, cols=50) :: m
type (matrix (55, 65, kind=double)) :: b, c

These indicate that m is type matrix whose component values is a 40 50 array of
default reals and that b and c are type matrix and have a component that is a 55 65
array of reals of kind double. In this situation, double must be an integer parameter
defined somewhere previously (perhaps in a module that is used by the program).

An allocatable matrix with values of type default real can be declared using colons
for the length parameters:

type (matrix(rows=:, cols=:, k=kind(0.0)), allocatable :: A
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Referencing Structure Components

A component of a structure is referenced by writing the name of the structure followed
by a percent sign (%) and then the name of the component. Suppose joan is a variable
declared to be type person_type as shown above. Then Joan’s address is referenced by
the expression

joan % address

Style note: Blanks are permitted, but not required, around the percent sign in a
structure component reference. We often use the blanks because it improves
readability.

The object joan % address is itself a structure. If it is desired to refer to one of the
components of this structure, another percent symbol is used. For example, the state
Joan lives in is

joan % address % state

and her area code is

joan % phone % area_code

To see how structures can be used in a program, suppose the contents of the little
black book are stored as the value of the variable black_book declared above, and sup-
pose we want a subroutine that will print out the names of all persons who live in a
given postal zip code. The subroutine simply goes through the entire contents of the
black book, one entry at a time, and prints out the name of any person with the appro-
priate zip code.

Style note: If you use names followed by the suffix _type to name derived
types, the same name without the suffix is available for variables and structure
components of that type. For example, the component name can be type
name_type and address can be address_type. This convention is used fre-
quently in this book, but not always.

Default Initialization

There is no way in Fortran to indicate that (for example) every real variable should be
initialized to zero (although some compilers have a compile option to do this). Some-
thing like this can be done with derived types, however. Default initialization indi-
cates that certain components of a derived type are to be set to a specified value each
time an object of that type is created by a declaration or allocation. In the following ex-
ample, the x and y components of structures of type point are always initialized to 1.1
and 2.2, respectively. (To create a simple example, we violate the style rule that type
definitions should be in a module.)
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program default_initialization

   type :: point
      real :: x = 1.1, y = 2.2
   end type point

   type(point) :: p
   print *, p % x, p % y

end program default_initialization

The first executable statement of this program prints the two components of p. Ex-
cept for a variable of derived type that is initialized or default initialized, this is not le-
gal because it would not have a predictable value.

There is an example of default initialization in the linked-list program in 10.3.

Structure Constructors

Each derived-type definition creates a structure constructor, whose name is the same
as that of the derived type. For example, if you define a type named boa, you have a
boa constructor. This constructor may be used much like a function to create a struc-
ture of the named type. The arguments are values to be placed in the individual com-
ponents of the structure. For example, using the type phone_type in 6.2, an area code
and telephone number may be assigned with the statement

joan % phone = phone_type(505, 2750800)

It is not necessary that the function arguments be constants. If john also is type
person_type and john % address has been given a value, the variable joan of type
person_type can be assigned a value with the statement

joan = person_type ("Joan Doe", john % address,  &
       phone_type (505, fax_number - 1),  &
       "Same address as husband John")

A structure constructor looks a lot like a function call. One of the properties it
shares with a function call is that the arguments may be specified by a keyword. Thus,
the assignment to joan % phone above may be written

joan % phone = phone_type(area_code=505, number=2750800)

Also, a default initialized component may be omitted in a structure constructor.

type :: point
   real :: x=0.0, y=0.0
end type point

type (point) :: p
   . . .
p = point(y = 4.4)
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A constructor for a parameterized derived type must include values for the param-
eters that do not have default values. For example, using the declarations from above

m = matrix(40, 50)(t1)
A = matrix(55, 65, double)(t2)

where t1 and t2 are real arrays of the appropriate shape.

Exercises

1. Write a program that builds a small database of friends’ addresses and phone num-
bers by using the type definitions and declarations in this chapter. The program
should prompt the user for information about each entry, keep the entries in an ar-
ray, and write the whole database to a file when the program is terminated. The
following statements from Chapter 11 should be of interest:

open (unit=19, file="pfile", status="replace", action="write")

write (unit=19, fmt="(...)") black_book(entry_number)

close (unit=19, status="keep")

The open statement establishes that any operations using input/output unit 19 will
refer to the file named “pfile”. “replace” indicates that a new file is to be built, re-
placing any existing file with the same name. “keep” indicates that the file is to be
kept when the program that builds the database stops.

2. Write a program that finds entries in the database created in Exercise 1 based on
information provided by the user of the program. The statement

open (unit=19, file="pfile", status="old", &
      position="rewind", action="read")

can be used to connect unit 19 to file “pfile” created by the program in the previ-
ous exercise. “old” indicates that the file is already there; “rewind” says to position
the file at its beginning; and “read” indicates that the file will only be read and
nothing will be written to it.

3. Write a function matrix_add(a, b) that produces the result of adding two objects
of type matrix, with kind parameter default real, as defined in this section. If a
and b are not conformable, the result should be a 0 0 matrix. Test the function.
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There is a standard that describes how real values should be stored in a computer. This
standard also indicates the results when two values are added or multiplied. This
seems obvious, but remember that most real values cannot be represented exactly in a
computer, so the result of adding two numbers might be one of several possibilities
that are approximations to the sum; which possibility is selected depends upon the
rounding mode.

The use of the standard by most modern computers means that computations
should be much more similar when performed on different computer systems.

This standard is often called the IEEE arithmetic standard, because it was first pub-
lished as IEEE 754 (IEEE is the Institute of Electrical and Electronics Engineers). It is
currently published by the International Standards Organization as IEC 60559 (1989-
01), Binary floating-point arithmetic for microprocessor systems.

7.1 Numerical Representations

All values are stored in a computer as a finite collection of binary digits (bits). This
means that most real values cannot be represented exactly, as discussed briefly in 1.7. It
also means there is a limit to the size of numbers, both real and integer, that can be rep-
resented as values of a Fortran variable.

Representations of Integers

Integers (whole numbers) are represented as a string of bits. The number of bits is usu-
ally a power of two, such as 4, 8, 16, 32, or 64. For most Fortran systems, default inte-
gers are stored using 32 bits. The left bit is usually reserved for the sign: 0 for positive
and 1 for negative. Using a 4-bit representation as an example, the integers 0, 1, 2, and
3 would be represented as 0000, 0001, 0010, and 0011, respectively. To understand how
negative numbers are represented, think of a car odometer going backward. If the
odometer is 0000 and the representation is binary, going backward one yields 1111,
which is the representation of 1. 1110 is the representation of 2, and so forth. Other
schemes may be used to represent negative integers, but this one is the most common.

With 32 bits, the largest positive number that can be represented is a 0 followed by
thirty-one 1s, which represents the integer 231 1 or 2,147,483,647. This is the value of
the intrinsic function huge(0).
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Representations of Reals

To understand how real values are stored, think of them as being written in exponen-
tial form, except that the base is 2. Thus a number can be written as .f 2e. The number
is stored in three parts: the sign, the exponent e, and the fraction f. In IEEE standard
arithmetic, the sign uses 1 bit, the exponent uses 8 bits, and the fraction uses 23 bits.
Without worrying about the details, the result is that real numbers may be stored with
approximately 6 decimal digits of precision and the largest value is huge(0.0), which
is approximately 1038.

Exercises

1. Use the intrinsic function huge to compute and print the largest value of each of
the integer kinds available on your system.

2. Use the intrinsic functions huge and precision to compute and print the largest
double precision value and the precision of double precision values on your sys-
tem.

3. Investigate the intrinsic functions range, radix, and digits by using them in a
program. Determine which apply to reals and which to integers. Appendix A may
contain some information of interest.

7.2 NaN and Inf

One of the interesting things about the IEEE system of arithmetic is that it includes
representations for “values” that are not ordinary numbers. For example, in ordinary
arithmetic, the value of 7.7/0.0 is not defined. However, 7.7/x gets larger and larger as x
gets closer and closer to 0.0. This is the basis for saying that the result of 7.7/0.0 is in-
finity, or Inf. Similarly, 7.7/0.0 is negative infinity or -Inf.

program inf
   implicit none
   print *, 7.7/0.0, -7.7/0.0
end program inf

 +Inf -Inf

There is no similar argument that will produce an answer for 0.0/0.0. 0.0/x is al-
ways 0.0, except when x is 0, so 0 might be a reasonable value. However, x/0.0 is infin-
ity unless x is 0. On the other hand, x/x is always 1.0 unless x is 0.0. Thus 0.0/0.0 is
considered to be “Not a Number” or NaN.
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program nan
   implicit none
   print *, 0.0/0.0
end program nan

 NaN

As is the case for many programs in this book (the one later in this chapter that
checks for overflow is an exception), it is assumed the program is run in “continue
mode”—that is, the program does not halt after an exception occurs.

The reason any programmer might need to know about Inf and NaN is to under-
stand why such a value gets produced. In most cases, this would indicate something
wrong with the program and the value printed should provide some clue about what
it is. For example, suppose a program is supposed to compute the roots of a quadratic
equation ax2 + bx + c = 0. If it does not seem to be working right and we try to debug
the program by printing the value sqrt(b**2-4*a*c) and the result is NaN, that indi-
cates that b2  4ac is probably negative and the roots are complex.

It is interesting, but predictable, how these two special values combine with ordi-
nary arithmetic values. For example adding any ordinary number to Inf produces Inf
and combining a NaN with anything produces another NaN.

program naninf

   implicit none
   real, parameter :: NaN = 0.0/0.0, &
                      Inf = 1.1/0.0

   print *, Inf + 4.4, Inf + Inf, Inf/5.5
   print *, 0*Inf, Inf - Inf, NaN + 4.4

end program naninf

 +Inf +Inf +Inf
 NaN NaN NaN

Other interesting results occur when two values are compared and one of them is
Inf or NaN. The results of comparing Inf with ordinary values is not too surprising
when you think of +Inf as bigger than any ordinary number and -Inf as smaller than
any normal number.

program compare_inf
   implicit none
   real, parameter :: Inf = 4.4/0.0

   print *, 7.7 < Inf
   print *, 7.7 <= -Inf
   print *, Inf == Inf
   print *, -Inf < Inf

end program compare_inf
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Comparing a NaN is more interesting. Basically the idea is that since NaN is not a
number, it does not compare with any of the other values, so using both == and /= pro-
duce a false result. The only exception is that NaN /= NaN is true! This is shown in the
example in the next subsection.

The ieee_arithmetic Intrinsic Module

This ieee_arithmetic intrinsic module has parameters and procedures to help manip-
ulate IEEE arithmetic values. There is a procedure ieee_value that constructs the spe-
cial values (otherwise, an exception would be raised) using parameter names from the
module to indicate which value is desired. Note that there are two NaN values, one that
signals an exception (7.3) when used and one that does not. It is better to use this pro-
cedure to construct Inf and NaN values.

program ieee_naninf

   use, intrinsic :: ieee_arithmetic
   implicit none
   real :: NaN, Inf

   NaN = ieee_value(0.0, ieee_quiet_nan)
   Inf = ieee_value(0.0, ieee_positive_inf)
   print *, Inf, NaN

end program ieee_naninf

 +Inf NaN

This program uses two of the several values from the ieee_arithmetic module.
Please consult a reference manual or book to determine the others that are available.

Other procedures in the ieee_arithmetic module can be used to test values.

program ieee_test_naninf
   use, intrinsic :: ieee_arithmetic
   implicit none
   real :: NaN, Inf 

   NaN = ieee_value(0.0,ieee_quiet_nan)
   Inf = ieee_value(0.0,ieee_positive_inf)

   print *, ieee_is_nan(NaN), ieee_is_nan(7.7), ieee_is_nan(Inf)
   print *, ieee_is_finite(7.7), ieee_is_finite(Inf)
   print *, Inf==NaN, NaN==NaN, NaN/=NaN
end program ieee_test_naninf
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Exercises

1. If Inf and NaN are given values as in the program ieee_test_naninf, what is the
value of
a. NaN < Inf

b. -Inf == -Inf

2. If Inf and NaN are given values as in the program ieee_test_naninf, what is the
value of ieee_is_finite(0.0)?

7.3 Exceptions

When a computation produces an unusual result, often it is acceptable to just have the
program halt with a printed message that a problem has occurred. However, on other
occasions, it might be important to have the program continue, check to see if there is
a problem, and take corrective action. For examples, if the numbers get too large, all
the data could be scaled down by a factor of 1000 and the calculations performed
again. Usually these situations arise in programs written by professionals to perform
sophisticated calculations such as solving a differential equation. Things can get com-
plicated when using many of these features, but we will discuss a simple example in
order to get an idea of the facilities available.

Suppose we suspect that a particular multiplication is producing an overflow—that
is, it is producing a value bigger than the largest real value for the default real kind.
One simple way to do this is to see if the product is +Inf, but we may not want to put
this kind of checking into the program in order to check each time and possibly make
some sort of computational adjustment if an overflow occurs. So what we do is take
the essence of the computation and the checking and put it into a complete program in
order to figure out how it all works.

The special procedures that are needed are accessible from the intrinsic module
ieee_exceptions. The use statement in the program has an only clause, which lists
just those features needed. This is nice not only for documentation of the program, but
will produce a diagnostic if we misspell a name or try to get something from the
wrong module. Also, using the procedure ieee_get_flag as an inquiry for the occur-
rence of the desired exception avoids the need to check each operation; this would be a
laborious task in a large calculation.
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program exception
   use, intrinsic :: ieee_exceptions, only: &
         ieee_overflow, ieee_get_flag, ieee_set_halting_mode
   implicit none

   real :: x, y, z
   logical :: overflow_flag = .false.

   print *, "Enter values for x and y to be multiplied:"
   read *, x, y

   ! Set the halting mode to continue even if there is overflow.
   call ieee_set_halting_mode(ieee_overflow, .false.)

   ! Do the multiplication
   z = x * y

   ! Check if overflow occurred
   call ieee_get_flag(ieee_overflow, overflow_flag)
   if (overflow_flag) then
      print *, "An overflow occurred in the product x*y"
   else
      print *, "No overflow occurred in the product x*y"
   end if
   print *, "   where x = ", x, " and y = ", y
   print *, "The product was computed as ", z
end program exception

After the type declarations, there are statements to print a prompt and read in val-
ues for the variables x and y. Before the two values are multiplied, the procedure
ieee_set_halting_mode is called so that exception will be signaled if there is an over-
flow in a computation that follows. The value .false. indicates that the program is
not to halt if there is an overflow.

After the multiplication is performed the module subroutine ieee_get_flag is
called to determine if overflow occurred. The result is stored in the logical variable
overflow_flag. Then the flag is tested and an appropriate message is printed. In the
context of a larger program, action other than printing a message might be taken.

In a production program, more should be done. First, a check should be made that
IEEE arithmetic is supported by the compiler. Then we should check that overflow
checking is supported. We assume that both of these is true, but they can be checked
using other features of the IEEE modules.

There are many other features of the IEEE modules, which can be discovered in a
reference manual or book.

Exercise

1. Write a complete program that enables an exception for dividing by zero, does a
divide by zero, then tests and reports the exception.
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This chapter covers submodules, elemental procedures, how to call C functions, and
information about more intrinsic procedures.

8.1 Submodules

Modules (3.1) provide an excellent tool for organizing Fortran programs, but extensive
use of modules has revealed some limitations that are solved by submodules. These
difficulties arise particularly when large programs are constructed.

• Splitting a large module into several smaller modules causes private entities to be
made public in order to be accessed by another one of the modules. This may also
cause unnecessary name conflicts.

• Cascading compilation: when one module is changed, many others often are re-
compiled unnecessarily. This happens when the internals of a procedure change re-
quiring its recompilation, but its interface does not change, so units dependent on
that procedure do not need to be recompiled.

• Two modules may need to use entities from each other. (This is prohibited, but sub-
modules can be used).

Interfaces in the module may be published without disclosing the implementation
details because interfaces usually are placed in the module, but the implementation is
in the submodule.

A submodule is a separately compiled program unit.
In this example, length is a type-bound procedure (6.2), but this is not essential; it

could be an ordinary module procedure.

module line_mod

   implicit none
   private

   type, public :: line
      real :: x1, y1, x2, y2

© Springer-Verlag London 2015 
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   contains
      procedure :: length
   end type line

   interface
      module function length (l)
         class(line), intent(in) :: l
         real :: length
      end function length
   end interface

end module line_mod

submodule (line_mod) line_length_mod

contains

   module procedure length

      length = sqrt((l%x2-l%x1)**2 + &
                    (l%y2-l%y1)**2)

   end procedure length

end submodule line_length_mod

program submod

   use line_mod
   implicit none
   type (line) :: line_1

   line_1 = line(0, 0, 1, 1)
   print * line_1%length

end program submod

• Submodule procedures also are called separate procedures.

• Submodules access entities from the module by host association (just like with
contains).

• Submodules may have local data.

• Submodules may have submodules.

• Submodules may access other modules via a use statement. A submodule of mod-
ule A may use module B and a submodule of B may use A.
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8.2 Date and Time Subroutines

There are three subroutines useful for getting information about the date and time:
date_and_time, system_clock, and cpu_time.

Timing a Program

The following program illustrates a simple use of date_and_time to get the current
date and cpu_time to compare the timings of two ways to do a matrix multiplication.
One way uses do loops and the other uses the intrinsic function matmul. The timing is
done by calling cpu_time before and after the code to be timed. The time spent execut-
ing the code is then the difference between the two values returned, given in seconds.

program time_matrix_multiply

   ! Compare times of the matmul intrinsic vs. DO loops

   implicit none
   integer, parameter :: n = 2000
   real, dimension(n, n) :: a, b, c1, c2
   character(len=8) :: date
   real :: start_time, stop_time
   integer :: i, j, k
   character(len=*), parameter :: form = "(t2, a, f0.3, a)"

   ! Get date to print on report

   call date_and_time(date=date)

   print *, "Timing report dated: " // &
      date(1:4) // "-" // date(5:6) // "-" // date(7:8)

   call random_seed()
   call random_number(a)
   call random_number(b)
   call cpu_time(start_time)
   c1 = 0
   do k = 1, n
      do j = 1, n
         do i = 1, n
            c1(i, j) = c1(i, j) + a(i, k) * b(k, j)
         end do
      end do
   end do
   call cpu_time(stop_time)
   print *
   print form, "Time of DO loop version is: ", &
      stop_time - start_time, " seconds."
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   call cpu_time(start_time)
   c2 = matmul(a,b)
   call cpu_time(stop_time)

   print *
   print form, "Time of matmul version is: ", &
      stop_time - start_time, " seconds."

   print *
   if (any(abs(c1-c2) > 1.0e-4)) then
      print *, "There are significantly different values."
   else
      print *, "The results are approximately the same."
   end if

end program time_matrix_multiply

Here is one sample result of executing the program. Try this on your computer to
see how your results differ.

 Timing report dated: 2015-03-16

 Time of DO loop version is: 6.297 seconds.

 Time of matmul version is: 3.016 seconds.

 The results are approximately the same.

Exercise

1. Write a program to time the generation of one million random numbers, first one at
a time with one million calls to the intrinsic subroutine random_number, then with
one call passing the whole array.

8.3 Command-Line Arguments

The intrinsic procedures command_argument_count, get_command, and get_command_
argument are used to get information about the command that invoked the program.
Suppose we have a debugging version of the program compute_it that prints out a lot
of information about various variables during execution of the program, which the
normal version does not. Which is to be run is indicated by putting one of the words
debug or normal after the name of the program when executing it. The program tests
the command and sets a logical variable print_debug_info accordingly.
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program debug_it
   implicit none
   character(len=9) :: debug
   logical :: print_debug_info
      . . .
   call get_command_argument(number=1, value=debug)
   select case (trim(debug))
      case ("debug")
         print_debug_info = .true.
      case ("normal")
         print_debug_info = .false.
      case default
         print *, "Invalid command line argument"
         stop
   end select
      . . .
   if (print_debug_info) then
   ! print some debugging information
      . . .
end program debug_it

8.4 Environment Variables

The intrinsic subroutine get_environment_variable gets the value of the named envi-
ronment variable.

character(len=99) :: path
   . . .
call get_environment_variable(name="PATH", value=path)
if (index(path, "my_dir") > 0) then . . .

8.5 Executing a System Command

The intrinsic subroutine execute_command_line may be used to execute any operating
system command. This can be done synchronously or asynchronously and there are
optional arguments to control this and other features. Here is a simple example. Sup-
pose compiling the following program produces a file stop_test.exe. Note that the
stop code now may be any integer or character constant expression.

program stop_test
   print *, "Preparing to stop"
   stop 999999
end program stop_test
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Then a program can be written and run that executes stop_test or executes any
other command.

program exec_command

   implicit none
   integer :: stop_code
   call execute_command_line("dir")
   call execute_command_line &
      ("stop_test.exe", exitstat=stop_code)
   print *, stop_code

end program exec_command

Running the program produces the result of executing the dir (Windows) system
command (it would be ls on Linux) and the stop.exe program.

 Volume in drive C has no label.
 Volume Serial Number is BADA-0412

 Directory of C:\walt\training\F0308\Tests

11/19/2011  04:42 PM    <DIR>          .
11/19/2011  04:42 PM    <DIR>          ..
11/19/2011  04:08 PM            30,370 a.exe
11/19/2011  04:15 PM               212 command.f90
11/19/2011  04:40 PM            30,360 stop_test.exe
11/19/2011  04:40 PM                77 stop_test.f90
   . . .
 Preparing to stop
STOP 999999
      999999

8.6 Generic Procedures

Many intrinsic procedures are generic in that they allow arguments of different types.
For example, the intrinsic function abs will take an integer, real, or complex argument.
The programmer also can write generic procedures.

In 3.5 there is a subroutine that exchanges the values of any two real variables. It
would be nice to have a similar routine that swapped integer values, but the normal
rules of argument matching indicate that the types of the dummy and actual argu-
ments must match. This is true, but it is possible to have one procedure name swap
stand for several swapping routines, each with different names. The correct routine is
picked for execution based on the types of the arguments, just as for generic intrinsic
functions.

Here is the swap subroutine from 3.5, but with its name changed to swap_reals.
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subroutine swap_reals(a, b)
   real, intent(in out) :: a, b
   real :: temp
   temp = a
   a = b
   b = temp
end subroutine swap_reals

It is easy to construct a similar subroutine swap_integers.

subroutine swap_integers(a, b)
   integer, intent(in out) :: a, b
   integer :: temp
   temp = a
   a = b
   b = temp
end subroutine swap_integers

The way to make them both callable by the generic name swap is to place the name
swap in an interface statement and list the procedures that can be called when the argu-
ments match appropriately. The result is an interface block that has a different form
from the one used to declare a dummy procedure in 3.8.

   public :: swap
   private :: swap_reals, swap_integers
   interface swap
      procedure swap_reals, swap_integers
   end interface

When the interface block and the two subroutines are placed in a module, a pro-
gram that uses the module can call swap with either two integer arguments or two real
arguments. Here is the module and a program that tests the generic procedure swap.

module swap_module

   implicit none
   public :: swap
   private :: swap_reals, swap_integers

   interface swap
      procedure swap_reals, swap_integers
   end interface

contains

subroutine swap_reals(a, b)
   real, intent(in out) :: a, b
   real :: temp
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   temp = a
   a = b
   b = temp
end subroutine swap_reals

subroutine swap_integers(a, b)
   integer, intent(in out) :: a, b
   integer :: temp
   temp = a
   a = b
   b = temp
end subroutine swap_integers

end module swap_module

program test_swap

   use swap_module
   implicit none
   real :: x, y
   integer :: i, j

   x = 1.1
   y = 2.2

   i = 1
   j = 2

   call swap(x, y)
   print *, x, y

   call swap(i, j)
   print *, i, j

end program test_swap

Running this program produces

   2.2000000   1.1000000
 2 1

Exercises

1. Extend the generic subroutine swap to handle arrays of integers.

2. Extend the generic subroutine swap to handle character strings.

3. Extend the generic subroutine swap to handle real values with precision greater
than that of the default.
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4. The program seven_11 in 3.15 calls the function random_int, which produces one
pseudorandom integer value. The program seven_11 in 4.7 calls the function
random_int, which produces an array of pseudorandom integer values. Write a
module that makes random_int generic in the sense that it can be called to either
produce a single integer value or an array of values, depending on its arguments.

8.7 Elemental Procedures

One way to extend the generic subroutine swap, as requested in Exercise 1 of 8.6, is to
write another module procedure and add it to the list of procedures implementing the
generic subroutine swap. A far easier solution is to make the subroutine
swap_integers elemental.

An elemental procedure is one written with scalar (nonarray) dummy arguments,
but which can be called with array actual arguments. When this is done, the computa-
tion in the procedure is performed element-by-element on each element of the array
(or arrays) as if the invocation of the procedure were in a loop, executed once for each
element of an array.

Here is how the generic subroutine swap can be made to apply to integer arrays
and how it could be called to swap two arrays.

module swap_module

   implicit none
   public :: swap
   private :: swap_reals, swap_integers

   interface swap
      procedure swap_reals, swap_integers
   end interface

contains

elemental subroutine swap_reals(a, b)
   real, intent(in out) :: a, b
   real :: temp
   temp = a
   a = b
   b = temp
end subroutine swap_reals

elemental subroutine swap_integers(a, b)
   integer, intent(in out) :: a, b
   integer :: temp
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   temp = a
   a = b
   b = temp
end subroutine swap_integers

end module swap_module

program test_swap_arrays

   use swap_module
   implicit none
   integer, dimension(3) :: i = [1, 2, 3], &
                            j = [7, 8, 9]

   call swap(i, j)
   print *, i
   print *, j

end program test_swap_arrays

 7 8 9
 1 2 3

Here are some rules for elemental procedures:

1. All of the dummy arguments must be scalar.

2. With a couple of unusual exceptions, the actual arguments must all be conform-
able.

3. An elemental procedure may not be recursive.

4. No dummy argument may be a pointer (10.1) and the result may not be a pointer.

5. No dummy argument may be a procedure.

6. Each elemental procedure must be pure unless the keyword impure is present.

Here is another example of an elemental function.

program test_elemental_function

   character(len=*), parameter :: format = "(3f7.2)"
   print format, f(1.1)
   print format, f([1.1, 2.2, 3.3])

contains
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   elemental function f(x) result(rf)

     real, intent(in) :: x
     real :: rf

     rf = x**2 + 3

   end function f

end program test_elemental_function

   4.21
   4.21   7.84  13.89

Exercise

1. Rewrite the subroutine random_int in 4.7 so that it is elemental. It also must be de-
clared impure because it calls random_number, which has a side effect.

impure elemental subroutine random_int(result, low, high)

8.8 More Array Intrinsic Procedures

There is a large set of intrinsic procedures that process arrays. Some of these have been
discussed in Chapter 4. We will look at a few more and investigate some of the option-
al arguments allowed in some of them.

The simplest intrinsic functions that process arrays are elemental extensions of sca-
lar versions of the functions, some of which have been in Fortran for a long time. Con-
sider the trigonometric cosine function cos. It has long been generic in that it will take
real and complex arguments, but it is also elemental in that the argument may be an
array of any rank. For example, suppose we want to store in the variable ss the value
of

This can be done with the Fortran statement

ss = sum( a(1:n) * cos(x(1:n)) )

The cosine of each of the elements of x is computed and each of these, element-by-
element, is multiplied by the appropriate element of a. The elements of the resulting
array are added together by the sum intrinsic function. Note that sum is not elemental.

ai xicos
i 1=

n
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Suppose we want to add up the positive elements of the array and store the result
as the value of the variable sum_pos. For this, sum has an optional argument (3.8)
whose keyword is mask. The mask is a logical array conformable to the array a and
only the elements of a for which the mask is true contribute to the sum.

sum_pos = sum (a, mask = (a > 0))

The operation a > 0 elementally decides (true or false) whether a particular element
is positive. This produces an array of logical values used as the mask.

Test Scores

Next, let us look at some functions that are specially designed to process arrays. Sup-
pose we have a class with three students and have recorded their scores on four tests.
These are stored in a 3  4 array named score, as follows:

The largest score may be computed by maxval(score), which is 90 in this case.
Suppose we want the three scores that are the largest score for each student.

maxval, like many array intrinsic functions, has an optional argument with the
keyword dim, which indicates that the operation should be performed by varying one
of the subscripts of the array and keeping the others fixed. Thus, the expression

maxval(score, dim = 2)

computes the maximum of the four values in the first row (fix the first dimension to
row 1 and vary the column number) as 90 and calculates the maximum value in the
other rows to produce the array of three maximum values [90 80 66].

Now suppose we want to know which student got the largest score. We already
have the array of the three largest scores [90 80 66]. The intrinsic function maxloc will
determine the position in an array of the largest of the three scores, which is 1.

maxloc(maxval(score, dim = 2))

It may seem strange at first that the value of this expression is an array containing
the single number 1. But if maxloc were applied to a two-dimensional array, what
would be needed to locate the largest value is a row number and a column num-
ber—an array containing two numbers. The value of maxloc(score) is the array [1 3].
The first element of this array is the student with the largest score, giving us a second
way of computing that. The second element is the test on which the largest score was
achieved.

85 76 90 60
71 45 50 80
66 45 21 55
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Average Score

Computing the overall average test score is easy. Divide the sum of all the scores by the
number of scores, which is the size of the array.

average = sum(score) / size(score)

How many of the 12 scores are above the average, which is 62? First we produce an
array of logical values, true where the score is above average and false where it is not.
The variable above must be declared to be a 3  4 logical array.

above = (score > average)

Then the intrinsic function count (not elemental) determines the number of values in
the array that are true. The answer happens to be 6 in our case.

qty_above_average = count(above)

We are going to use the logical array above elsewhere in the next example; other-
wise, the two steps to compute qty_above_average could be combined.

qty_above_average = count(score > average)

Finally, just to show how powerful these intrinsics are, we ask the question: Did
any student always score above the overall average? This is computed by the statement

any_student_always_above_average = any(all(above, dim = 2))

The intrinsic function all tests whether all of the elements of an array are true.
With the dim optional argument 2, it tests each row for all true values. This produces
three false values. Then the function any tests if any of the values in its array argument
is true. The answer is false in our case. The first student came closest, scoring above the
average 62 on all but the last test.

The findloc function

The findloc function can be used to search an array for a specific value. Because it is
never a good idea to test real values for an exact match, it seems that many uses of the
function will temporarily create an array of logical values, then search that array for a
value that is true.

program find_loc

   implicit none
   intrinsic :: findloc

   real, dimension (3,3) :: X = &
      reshape (                 &
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         [ -11,  12, -13,       &
            21,  22, -23,       &
            31, -32, -33 ],     &
         [ 3, 3 ], order = [ 2, 1 ] )

   logical, parameter :: T = .true.

   print *, findloc(X>0, T)         ! = [ 2, 1 ]
   print *, findloc(X>0, T, back=T) ! = [ 2, 2 ]
   print *, findloc(X>0, T, dim=2)  ! = [ 2, 1, 1 ]

end program find_loc

Exercise

1. Write a statement that computes the answer to the question: Was any test so easy
that all four students scored above average on that test?

8.9 Bit Intrinsic Procedures

Sometimes it is convenient to be able to manipulate the individual binary digits (bits)
of a Fortran integer value. One example might involve using the bits of a large array of
integers to represent the states of the components of an electronic circuit. The follow-
ing example uses only two integer values to store and manipulate bits just to see how
things work.

The bits of integer value are numbered right to left starting with bit 0 on the right;
the integer is assumed to be stored using a binary representation. The first executable
statement of the program starts with integer value 0, whose bits are all 0, and sets bit 3
to 1 using the intrinsic function bset. Then bit two is also set by immediately calling
bset again and the result is saved as the value of b1100. Since the decimal equivalent
of binary 1100, which has bits 3 and 2 set, is 12, the result of this assignment is the
same as setting the variable b1100 to 12. Similarly, bits 3 and 1 of b1010 are set, result-
ing in b1010 having the value 10.

This is all verified by printing b1100 as an integer and using the intrinsic function
btest to check which of the bits 3, 2, 1, and 0 of b1100 and b1010 are set. Similar print
statements are used to show the values of ior and iand applied to these two values.

program bits

   implicit none
   integer :: b1100, b1010
   character(len=*), parameter :: &
      form = "(a15, 4l2)"
   integer :: k
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   b1100 = ibset(ibset(0,3),2)
   b1010 = ibset(ibset(0,3),1)

   print *, "The integer value of b1100 is", b1100
   print *

   print form, "b1100", &
      (btest(b1100, k), k = 3, 0, -1)
   print form, "b1010", &
      (btest(b1010, k), k = 3, 0, -1)
   print form, "Logical or", &
      (btest(ior(b1100,b1010), k), k = 3, 0, -1)
   print form, "Logical and", &
      (btest(iand(b1100,b1010), k), k = 3, 0, -1)
 
end program bits

Each list of data to be printed looks a lot like a do loop. It is called an implied-do
loop. It works like a do loop, printing the value indicated for k equal to 3, 2, 1, and 0.
Note that the whole loop is surrounded by parentheses.

Running this program produces output that illustrates how logical or and logical and
are computed.

 The integer value of b1100 is 12

          b1100 T T F F
          b1010 T F T F
     Logical or T T T F
    Logical and T F F F

The other bit intrinsic procedures are ibclr, which sets a bit to 0, ieor, which com-
putes exclusive or, ishft and ishftc which perform end-off and circular shifts, not,
which complements the bits of its argument, and the mvbits subroutine, which copies
bits from one integer to another.

Exercise

1. Write a function number_of_bits(n) that counts the number of bits in an integer
argument n that are 1. Test the function by printing the resulting values for n = 16,

15, ..., 2, 1, 0, 1, 2, ..., 16. Also print the values of the function when called with
arguments huge(n) and huge(n).

8.10 Calling C Procedures

Sometimes, it is necessary or desirable for a Fortran program to call a procedure writ-
ten in another programming language. For example, the procedure may be written al-
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ready and save you some programming effort; it may use features of another language
that are more convenient than or are missing from Fortran, such as interaction with a
game screen or a telemetry data stream.

There are several problems that make it a little difficult to correctly call a C proce-
dure. The most obvious is that the actual Fortran and dummy C arguments must
match. We cannot say that the types must be the same because data types have differ-
ent names in C (int instead of integer, for example). What must be true is the repre-
sentations must be the same. The different representations of data of a specific type in
Fortran are indicated by kinds; therefore, the problem is to use corresponding types
and select the right kind for the Fortran data. Another problem is simply getting the
name of the C procedure right as the system may use something different than the
name given by the C programmer; a typical case is that systems put an underscore af-
ter procedure names when building the whole program, and so the C procedure
print_a_line must be called print_a_line_. However, these conventions are differ-
ent on different computer systems. There are special features in Fortran to make it a lit-
tle easier to call a C procedure on any system using exactly the same Fortran program
and requiring no knowledge of these C and system idiosyncrasies.

Interfaces to C Procedures

To have a Fortran program make a correct call to a C procedure, an interface describing
the C procedure is written in the calling Fortran program. Procedure interfaces are de-
scribed in 3.8. The main new feature that is needed is to put bind(c) at the end of the
subroutine or function statement in the interface describing a C procedure. This tells
the Fortran compiler that it is a C procedure being called, even though the interface in-
formation is all written in Fortran.

C has only functions, no subroutines. However, a function can be declared as re-
turning void, a special indication that the function does not return a regular value;
such a function should be called as a subroutine from Fortran, whereas all other C
functions should be called as Fortran functions.

The iso_c_binding Intrinsic Module

There is a built-in (intrinsic) module named iso_c_binding. All you have to do is use
it to have access to several named constants and procedures that will help create a cor-
rect call to a C procedure, on whatever system the program is run. The keyword in-
trinsic can be added to the use statement, as shown in the example below, to ensure
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that you access the intrinsic module, not a user-written module that happens to have
the same name.

One of the main features of this intrinsic module is a collection of named constants
(parameters) that are Fortran kind numbers that indicate kinds that correspond to C
data types. C does not use kinds, but uses a different data type for each kind, so that,
for example, the C data types float and double correspond to two different kinds of
real in Fortran. Table 8-1 lists a few of these parameters for the most common C data
types.

C does not have the character string as a data type. Strings are represented by ar-
rays of single characters. However, a Fortran program may call a C function with a
dummy argument that is an array of characters and pass a character string actual argu-
ment. This is one of the things that is taken care of by putting bind(c) on the interface
of the procedure being called. Note that in the interface, the dummy character array is
declared to have dimension(*) (do not ask why—just do it).

Another parameter in the iso_c_binding intrinsic is c_null_char. It is a single
character that is used to terminate all C strings and hence needs to occur at the end of
a character string passed to a C function.

The iso_c_binding intrinsic module contains other things useful for interoperat-
ing with C.

An Example of Interoperation with C

The following example illustrates the use of some of these features. The example shows
how to pass a character string, an array, and a structure, as well as simple variables.

module type_def

   use, intrinsic :: iso_c_binding
   implicit none
   private

Table 8-1 C types and Fortran kinds

C type Fortran type and type parameter

int integer(kind=c_int)

short int integer(kind=c_short)

long int integer(kind=c_long)

float real(kind=c_float)

double real(kind=c_double)

char character(len=1, kind=c_char)
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   type, public, bind(c) :: t_type
      integer(kind=c_int) :: count
      real(kind=c_float) :: data
   end type t_type

end module type_def

program fortran_calls_c

   use type_def
   use, intrinsic :: iso_c_binding
   implicit none

   type(t_type) :: t
   real(kind=c_float) :: x, y
   integer(kind=c_int), dimension(0:1, 0:2) :: a

   interface
      subroutine c(tp, arr, a, b, m) bind(c)
         import :: c_float, c_int, c_char, t_type
         type(t_type) :: tp
         integer(kind=c_int), dimension(0:1, 0:2) :: arr
         real(kind=c_float) :: a, b 
         character(kind=c_char), dimension(*) :: m
      end subroutine c
   end interface

   t = t_type(count=99, data=9.9)
   x = 1.1
   a = reshape([1, 2, 3, 4, 5, 6], shape(a))
   call c(t, a, x, y, "doubling x" // c_null_char)
   print *, x, y
   print *, t
   print *, a

end program fortran_calls_c

Following is the C program that implements the function c.

typedef struct {int amount; float value;} newtype;

void c(newtype *nt, int arr[3][2], float *a, float *b, char msg[])
{
   printf (" %d %f\n", nt->amount, nt->value);
   printf (" %d %d %d\n", arr[0][1], arr[1][0], arr[1][1]);
   printf (" %s\n", msg);
   *b = 2*(*a);
}
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Following is the output:

 99 9.90000
 2 3 4
 doubling x
 1.1 2.2
 99 9.9
 1 2 3 4 5 6

 The module defines the derived type t_type. A structure tp of this type is passed
as an actual argument, so the components must be declared to agree with the structure
nt of type newtype in the C function. This uses the parameters c_int and c_float
from the intrinsic module. The type itself is defined with the bind(c) attribute so that
the components will be laid out in a manner similar to the components of a C structure
of type newtype.

The program fortran_calls_c uses the module type_def to access the derived
type t_type. The structure t is declared to be t_type. x and y are real variables with
the kind to match a C float data type.

All C arrays have lower bound 0 and are stored by rows rather than by columns, as
Fortran arrays are stored. Hence, it makes it a little easier to give the array lower
bounds 0. Also note that the subscripts are reversed in the declaration of the Fortran
actual array a and the C dummy array arr.

An interface for the C function c includes bind(c) and it uses the import state-
ment to make some of the parameters in the intrinsic modules accessible within the in-
terface, which has its own scope (3.13).

t is given a value with a structure constructor (6.3), x is given the value 1.1, and a
is given the value

with an array constructor (4.1) and the reshape function (4.1).
The C procedure is called as a subroutine and values are printed in both the C pro-

cedure and the main program.
There are many more features involved with the interoperability with C; for exam-

ple, pointers can be passed and a C function can call a Fortran procedure under the
right circumstances. If you need to interact with C in a more complicated manner,
please consult a manual or reference work, such as The Fortran 2003 Handbook.

1 3 5
2 4 6
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In Fortran, the programmer may not only define new types (6.2), but may define new
operators and extend the definition of intrinsic functions, existing operators, and as-
signment. This allows the user to define a special environment for each application. In
this chapter, we first see how to write code to do all of these things, then apply the
techniques to a useful new data type consisting of big integer values.

9.1 Extending Assignment

When an assignment statement is executed, sometimes the data type of the expression
on the right-hand side of the assignment symbol (=) is converted to the type of the vari-
able on the left-hand side. For example, if i is integer and r is real, the assignment

r = i

causes the integer value of i to be converted to type real for assignment to r. Suppose
we would like to extend this feature so that a logical value can be assigned to an inte-
ger with a false value being converted to zero and a true value converted to one when
the assignment

i = log

is written with log logical type and i integer type. To do this, a subroutine that does
the assignment must be written and an interface block must be given that indicates
which subroutine does the assignment with conversion. Both these things should be
placed in a module. The subroutine that will do the conversion follows.

subroutine integer_gets_logical(i, logical_expression)

   integer, intent(out) :: i
   logical, intent(in) :: logical_expression
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   if (logical_expression) then
      i = 1
   else
      i = 0
   end if

end subroutine integer_gets_logical

The following interface block indicates that assignment is extended by the subroutine
integer_gets_logical. The public statement indicates that the extended assignment
is available when the module is used, and the private statement indicates that the
procedure integer_gets_logical is not accessible outside the module.

   public :: assignment(=)
   private :: integer_gets_logical

   interface assignment(=)
      procedure integer_gets_logical
   end interface

Here is the complete module to accomplish this task with a program that tests it.

module int_logical_module

   implicit none
   public :: assignment(=)
   private :: integer_gets_logical

   interface assignment(=)
      procedure integer_gets_logical
   end interface
 
contains

subroutine integer_gets_logical(i, l)

   integer, intent(out) :: i
   logical, intent(in) :: l

   if (l) then
      i = 1
   else
      i = 0
   end if

end subroutine integer_gets_logical

end module int_logical_module
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program test_int_logical

   use int_logical_module
   implicit none
   integer :: i, j
   
   i = .false.
   print *, i
   j = (5 < 7) .and. (sin(0.3) < 1.0)
   print *, j

end program test_int_logical

 0
 1

A subroutine that serves to define an assignment must have exactly two argu-
ments; the first must be intent out or in out and the second intent in.

This mechanism must not be used to change the meaning of assignment with in-
trinsic types for which assignment is already defined, except that it may be used to re-
define assignment between values of the same derived type. It also may be used to
define assignment between values of different derived types.

Exercise

1. Write a module with a procedure and an interface block that extends assignment to
allow assigning an integer to a logical variable. The logical variable should be set
to false if the integer is 0 and set to true otherwise. Test the procedure with a pro-
gram that uses the module.

9.2 Extending Operators

Suppose we now want to be able to use + in place of .or., * in place of .and., and - in
place of .not. to manipulate logical values. This can be done by extending these oper-
ators, which already work with numeric operands. Functions must be written and the
names of the functions placed in an interface block in a module. The interface state-
ment contains the keyword operator in this case. Here is a complete module and pro-
gram to implement and test the extension of + to logical operands. It would be
reasonable to put the extensions for * and - in the same module.

module logical_plus_module

   implicit none
   public :: operator(+)
   private :: log_plus_log
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   interface operator(+)
      procedure log_plus_log
   end interface

contains

function log_plus_log(x, y)  &
      result(log_plus_log_result)

   logical, intent(in) :: x, y
   logical :: log_plus_log_result

   log_plus_log_result = x .or. y

end function log_plus_log

end module logical_plus_module

program test_logical_plus

   use logical_plus_module
   implicit none

   print *, .false. + .false.
   print *, .true. + .true.
   print *, (2.2 > 5.5) + (3.3 > 1.1)
   print *, (2.2 > 5.5) .or. (3.3 > 1.1)

end program test_logical_plus

 F
 T
 T
 T

Note that the parentheses in the expression in the third print statement are necessary
because + has a higher precedence than >. They are not necessary in the fourth print
statement because .or. has lower precedence than >.

A function used to extend an operator must have one or two arguments (depend-
ing on the operator being extended), which must be intent in.

It is not allowed to use this mechanism to change the meaning of an existing oper-
ator applied to one of the intrinsic types for which it is defined; however, a new oper-
ator may be used for this purpose (9.3).

Exercises

1. Extend the module above to allow the operations of * and - with logical operands.
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2. Write a module that extends the == and /= operators to allow comparison of both
scalar logical values and arrays of logical values. Note that the built-in operators
.eqv. and .neqv. are used for this purpose.

9.3 User-Defined Operators

In addition to extending the meaning of the built-in operators, it is possible to make up
new names for operators. If we were to add the operation of testing if an integer is
prime, there is probably not a good unary built-in operator that would be suitable to
extend to this use. Any name consisting of from 1 to 63 letters preceded and followed
by a period may be used, except that the operator name cannot be either of the logical
constants .true. or .false. For example, we might pick .prime. for the name of the
operator that returns true or false depending on whether its operand is a prime integer.
Defining a new operator is similar to extending an existing one; its name is used in an
interface statement and the function, which must have one or two intent in arguments,
is named in a procedure statement.

interface operator (.prime.)
   procedure prime
end interface operator (.prime.)

This operator could now be used just like any built-in unary operator, as illustrated by
the following if statement:

if (.prime. b .and. b > 100) print *, b

The precedence of a defined binary operator is always lower than all other opera-
tors, and the precedence of a defined unary operator is always higher than all other op-
erators. Therefore, in the example above, .prime. is evaluated before .and.

Exercise

1. Implement and test the operator .prime. described in this section.

9.4 Extending Intrinsic Functions

Many programmers are surprised that the sqrt function may be used with a real or
complex argument, but not with an integer argument. One possible reason is that there
might be some controversy about whether the result should be an integer or real value.
For example, should sqrt(5) be 2.236068, a type real approximation to the square root,
or 2, the largest integer less than the real square root? The integer square root is some-
times useful; one example is in determining the upper bound on factors of an integer i.
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It is not hard to compute either value with the expressions sqrt(real(i)) and
int(sqrt(real(i))) for any integer i, but it would be nice to just write sqrt(i). We
will extend the sqrt function to take an integer argument and return an integer value.
This is done by writing an interface block and the function to do the computation.
Here is the interface, the function, and a brief testing program. In the program, the 0.5
is used to avoid problems with roundoff.

Putting the keyword elemental on the function statement creates an array version
for each of the ranks. It is called with a one-dimensional array in the program
test_integer_sqrt.

Unlike with operators, it is possible to change the meaning of an intrinsic function
definition for one type of argument without affecting the availability of that intrinsic
for other types. For example, it is possible to change the definition of the cosine func-
tion cos for double precision arguments, but not affect the intrinsic definition for com-
plex.

module integer_sqrt_module

   implicit none
   intrinsic :: sqrt
   public :: sqrt
   private :: sqrt_int

   interface sqrt
      procedure sqrt_int
   end interface

contains

elemental function sqrt_int(i) result(sqrt_int_result)

   integer, intent(in) :: i
   integer :: sqrt_int_result

   sqrt_int_result = int(sqrt(real(i) + 0.5))

end function sqrt_int

end module integer_sqrt_module

program test_integer_sqrt

   use integer_sqrt_module
   implicit none

   integer :: k
   integer, dimension(20) :: n = [ (k, k = 1, 20) ]
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   print "(20i3)", n, sqrt(n)

end program test_integer_sqrt

  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20
  1  1  1  2  2  2  2  2  3  3  3  3  3  3  3  4  4  4  4  4

An intrinsic function should be listed in an intrinsic statement in a module con-
taining a description of an extension.

A better way to compute the square root of an integer is with an iterative technique
called “Newton Raphson”, which is used in the big integer module later in this chap-
ter.

Exercises

1. Extend the intrinsic subroutine random_number so that it has the functionality of
random_int in the previous exercise when called with arguments that are type in-
teger. Allow both scalar and array arguments.

2. Modify the extended intrinsic subroutine random_number of the previous exercise
so that the arguments low and high are optional as was done for random_int in
Exercise 5 of 3.15.

9.5 Derived-Type Editing

A value of derived type may be read or written using edit descriptors for each of its
components. This is not always the best format for a derived-type value. It is possible
to write a subroutine that performs the input/output in whatever form is desired.
However, it is convenient to simply put the derived-type value in an input/output list
and have a single dt edit descriptor to specify the format. This is done in a manner
analogous to extending assignment or extending an operator.

The form of the dt edit descriptor is

dt [ character-literal-constant ] [ ( arg-list ) ]

Using list-directed (* format) input/output with a derived-type object when a dt
edit descriptor is available also causes the editing extension to be used to format the
value. This is what is done in the examples below.

To start with a simple example, suppose the derived type point represents a point
in the plane given by rectangular coordinates x and y.

type, public :: point
   real :: x, y
end type point
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Suppose it is desirable to have values of type point printed as shown in the exam-
ple:

print *, "The distance from ", p1, " to ", p2, " is ", distance(p1, p2)

where the printed result is

 The distance from (5.0, 7.0) to (6.0, 8.0) is 1.414

Similar to extending an operator or assignment, an interface is used, which refer-
ences a subroutine that does the output. Things can get pretty complicated when using
all the features of derived-type editing, but our example will be about as simple as pos-
sible. First we need an interface.

interface write (formatted)
   procedure print_point
end interface

In place of write (formatted), the interface statement could contain read (for-
matted), write (unformatted), or read (unformatted), depending on the type of
data transfer.

The subroutine print_point has a number of arguments that are required in order
to handle more complicated examples; they are simply ignored in our example, but
must be in the subroutine. The actual argument passed to iotype is the character
string DT"//type, where type is the character literal constant of the dt edit descriptor;
iotype is LISTDIRECTED if the format is (*). The actual argument passed to v_list is
the integer array of values making up the argument list that is the second optional part
of the dt edit descriptor. unit, iostat, and iomsg are used in the same manner as the
namesake keywords in other data transfer statements.

The arguments iotype and v_list are not used for unformatted input/output.
The interface and the subroutine will be placed in the module point_module and,

of course, to make the example above work, a distance function is needed. Here is the
module as constructed so far; it is reasonable to enhance the module with other opera-
tions to manipulate points.

module point_module

   implicit none
   private
   type, public :: point
      real :: x, y
   end type point

   interface write (formatted)
      procedure print_point
   end interface
   public :: write (formatted)
   public :: distance
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contains

subroutine print_point(p, unit, iotype, v_list, iostat, iomsg)

   ! Arguments required by the dt edit descriptor
   type(point), intent(in) :: p
   integer, intent(in) :: unit
   character(len=*), intent(in) :: iotype
   integer, intent(in), dimension(:) :: v_list
   integer, intent(out) :: iostat
   character(len=*), intent(in out) :: iomsg

   write "(a, f0.1, a, f0.1, a)", "(", p%x, ", ", p%y, ")"
   iostat = 0

end subroutine print_point

function distance(p1, p2) result(d_r)
   type (point), intent(in) :: p1, p2
   real :: d_r
   d_r = sqrt ((p1%x-p2%x)**2 + (p1%y-p2%y)**2)
end function distance

end module point_module

program test_point_dt
   use point_module
   implicit none
   type (point) :: p1, p2
   p1 = point(5.0, 7.0)
   p2 = point(6.0, 8.0)
   print *, "The distance from ", p1, " to ", p2, " is ", &
              distance(p1, p2)
end program test_point_dt

9.6 Case Study: Computing with Big Integers

Suppose we are interested in adding, multiplying, and dividing very large integers,
possibly with hundreds of digits. This kind of capability is needed to factor large inte-
gers, a task very important in cryptography and secure communications. The Fortran
intrinsic integer type has a limit on the size of numbers it can represent, which de-
pends on the system, but might be 263 1, which is 9,223,372,036,854,775,807. This
problem can be solved by creating a new data type, called big_integer, deciding
which operations are needed, and writing procedures that will perform the operations
on values of this type. All of this will be placed in a module called big_integers so
that it can be used by many programs.
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The Type Definition for Big Integers

The first task is to decide how these large integers will be represented. Although a
linked list of digits is a possibility, it seems more straightforward to use an array of or-
dinary Fortran integers. The only remaining thing to decide is how much of a big inte-
ger to put into each element of the array. One possibility would be to put as large a
number into each element as possible. To make it easier to conceptualize with simple
examples, we will store one decimal digit in each element. However, because the abstract
data type paradigm is followed, changing the representation so that larger integers are stored in
each array element can be implemented easily without changing the programs using the
big_integer module.

The following type definition does the job. It uses a parameter nr_of_digits that
has arbitrarily been set to 100; this allows decimal numbers with up to 100 digits to be
represented using this scheme. The parameter nr_of_digits has the private at-
tribute, which means it cannot be accessed outside the module.

integer, parameter, private :: nr_of_digits = 100

type, public :: big_integer
   private
   integer, dimension(0:nr_of_digits) :: digit
end type big_integer

The array digit has 101 elements. digit(0) holds the units digit; digit(1) holds the
tens digit; digit(2) holds the hundreds digit; and so on. The extra element in the ar-
ray is used to check for overflow—if any value other than zero gets put into the largest
element, that will be considered to exceed the largest big_integer value and will be
set to infinity.

The private statement indicates that we do not want anybody who uses the mod-
ule to be able to access the component digit of a variable of type big_integer; we will
provide all of the operations necessary to compute with such values. The private
statement is discussed in 3.1.

IEEE arithmetic (7.2) deals only with real values. But just to get a little better grasp
on some of the simple concepts, we will introduce the special values of Infinity and
NaN into our scheme of big integers. These two special values will be represented by a
1 and 2 in position 100, with zeros elsewhere. These two values can be set up as param-
eters.

integer, private :: k
integer, private, parameter :: bInf = 1, bNaN = 2
type (big_integer), public, parameter :: &
      big_Inf = big_integer( [(0, k=0,nr_of_digits-1), bInf] ), &
      big_NaN = big_integer( [(0, k=0,nr_of_digits-1), bNaN] )

Here is an excellent example of the use of the private attribute. There is no reason
for a user of the big integer module to have access to k, bInf, or bNaN.
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Printing Big Integers

The next thing to do is to define some operations for big integers. The first necessary
operations assign values to a big integer and print the value of a big integer. Let us
take care of the printing first.

The following subroutine prints the value of a big integer. It takes advantage of the
fact that each element of the array digit is a single decimal digit. This subroutine
print_big is inside the module big_integers and so has access to all the data and
procedures in the module.

subroutine print_big(b)

   type(big_integer), intent(in) :: b
   integer :: n, first_significant_digit

   if (b%digit(nr_of_digits) == bInf) then
      print "(a)", "Inf"
      return
   else if (b%digit(nr_of_digits) == bNaN) then
      print "(a)", "NaN"
      return
   end if

   ! Find first significant digit
   first_significant_digit = 0  ! In case b = 0
   do n = nr_of_digits, 1, -1
      if (b%digit(n) /= 0) then
         first_significant_digit = n
         exit
      end if
   end do

   print "(50i1)", b%digit(first_significant_digit:0:-1)

end subroutine print_big

The basic strategy is to print the digits in i1 format, but first the leftmost nonzero
digit must be located to avoid printing long strings of leading zeros.

Assigning Big Integers

To test the printing subroutine, we need to have a way to assign a value to a big inte-
ger. One possibility is to write a procedure that will assign an ordinary Fortran integer
to a big integer, but this will limit the size of the integer that can be assigned. A second
possibility is to write the integer as a character string consisting of only digits 0 9 (we
are not allowing negative numbers). This is done by the subroutine big_gets_
char(b, c) that assigns the integer represented by the character string c to the big in-
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teger b. If c contains a character other than one of the digits, the subroutine returns
big_NaN. big_Inf is returned for b if the character string c is too long.

subroutine big_gets_char(b, c)

   type(big_integer), intent(out) :: b
   character(len=*), intent(in) :: c
   integer :: n, i
   character(len=*), parameter :: decimal_digits = "0123456789"

   if (verify(c, decimal_digits) /= 0) then
      b = big_NaN
      return
   else if (len(c) > nr_of_digits) then
      b = big_Inf
      return
   end if

   b%digit = 0
   n = 0
   do i = len(c), 1, -1
      b%digit(n) = index(decimal_digits, c(i:i)) - 1
      n = n + 1
   end do

end subroutine big_gets_char

Putting the Procedures in a Module

Now that we have enough operations defined on big integers to at least try something
meaningful, we next need to package them all in a module. The module that we have
created so far follows:

module big_integers

   implicit none

   integer, parameter, private :: nr_of_digits = 100

   type, public :: big_integer
      private
      integer, dimension(0:nr_of_digits) :: digit
   end type big_integer

   integer, private :: k
   integer, private, parameter :: bInf = 1, bNaN = 2
   type (big_integer), parameter :: &
         big_Inf = big_integer( [(0, k=0,nr_of_digits-1), bInf] ), &
         big_NaN = big_integer( [(0, k=0,nr_of_digits-1), bNaN] )
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   public :: print_big, big_gets_char

contains

subroutine print_big(b)

   type(big_integer), intent(in) :: b
   integer :: n, first_significant_digit

   if (b%digit(nr_of_digits) == bInf) then
      print "(a)", "Inf"
      return
   else if (b%digit(nr_of_digits) == bNaN) then
      print "(a)", "NaN"
      return
   end if

   ! Find first significant digit
   first_significant_digit = 0  ! In case b = 0
   do n = nr_of_digits, 1, -1
      if (b%digit(n) /= 0) then
         first_significant_digit = n
         exit
      end if
   end do

   print "(50i1)", b%digit(first_significant_digit:0:-1)

end subroutine print_big

subroutine big_gets_char(b, c)

   type(big_integer), intent(out) :: b
   character(len=*), intent(in) :: c
   integer :: n, i
   character(len=*), parameter :: decimal_digits = "0123456789"

   if (verify(c, decimal_digits) /= 0) then
      b = big_NaN
      return
   else if (len(c) > nr_of_digits) then
      b = big_Inf
      return
   end if

   b%digit = 0
   n = 0
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   do i = len(c), 1, -1
      b%digit(n) = index(decimal_digits, c(i:i)) - 1
      n = n + 1
   end do

end subroutine big_gets_char

end module big_integers

With the module available, we can write a simple program to test the assignment
and printing routines for big integers.

program test_big_1

   use big_integers
   implicit none
   type(big_integer) :: b1

   call big_gets_char(b1, "71234567890987654321")
   call print_big(b1)
   print *

   call big_gets_char(b1, "")
   call print_big(b1)
   print *

   call big_gets_char(b1, "123456789+987654321")
   call print_big(b1)
   print *

end program test_big_1

71234567890987654321
0
NaN

Extending Assignment for Big Integers

The name for the subroutine big_gets_char was picked because it converts a character
string to a big integer. But this is just like intrinsic assignment that converts an integer
to a real value when necessary. Indeed, it is possible to use the assignment statement to
do the conversion from character to type big integer. It is done by extending assign-
ment as described in 9.1.

interface assignment(=)
   procedure big_gets_char
end interface
public :: assignment(=)
private :: big_gets_char
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Now any user of the module can use the assignment statement instead of calling a sub-
routine, which makes the program a lot easier to understand.

Derived-Type Input/Output for Integers

The subroutine print_big can be fixed so that it extends formatted input/output to
values of type big_integer, as was done for values of type point in 9.5. The only real
work is to put in all of the required dummy arguments, but the executable code is the
same as above. The declaration part of print_big is:

subroutine print_big(b, unit, iotype, v_list, iostat, iomsg)

   ! Arguments required by the dt edit descriptor
   type(big_integer, intent(in) :: b
   integer :: intent(in) :: unit
   character(len=*), intent(in) :: iotype
   integer, intent(in), dimension(:) :: v_list
   integer, intent(in out) :: iostat
   character(len=*), intent(in out) :: iomsg

   ! Local variables
   integer :: first_dignificant_digit, n
      . . .

A write(formatted) interface also must be created. These two extensions may be
tested with the program test_big_2.

program test_big_2

   use big_integers
   implicit none
   type(big_integer) :: b1

   b1 = "71234567890987654321"
   print *, b1

   b1 = ""
   print *, b1

   b1 = "123456789+987654321"
   print *, b1

end program test_big_2

The result of running this version is identical to the output of test_big_1.
There is no need to have the subroutines big_gets_char and print_big available.

They may be declared private.
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Adding Big Integers

Now that we can assign to a big integer variable and print its value, it would be nice to
be able to perform some computations with big integers. Addition can be done with a
function that adds just like we do with pencil and paper, adding two digits at a time
and keeping track of any carry, starting with the rightmost digits. The function
big_plus_big does this.

pure function big_plus_big(x, y) result(big_plus_big_result)

   type(big_integer), intent(in) :: x, y
   type(big_integer) :: big_plus_big_result
   integer :: carry, temp_sum, n

   if (x==big_NaN .or. y==big_NaN) then
      big_plus_big_result = big_NaN
      return
   else if (x==big_Inf .or. y==big_Inf) then
      big_plus_big_result = big_Inf
      return
   end if

   carry = 0
   do n = 0, nr_of_digits
      temp_sum = x%digit(n) + y%digit(n) + carry
      big_plus_big_result%digit(n) = modulo(temp_sum, 10)
      carry = temp_sum / 10
   end do

   if (big_plus_big_result%digit(nr_of_digits) /= 0 &
         .or. carry /= 0) then
      big_plus_big_result = big_Inf
   end if

end function big_plus_big

In mathematics, the symbols + and  are used to add and subtract integers. It is
nice to do the same with big integers, and it is possible to do so by extending the ge-
neric properties of the operations already built into Fortran. Note that + already can be
used to add two integers, two real values, or one of each. The intrinsic operator + also
can be used to add two arrays of the same shape. In that sense, addition is already ge-
neric. We now extend the meaning of this operation to our own newly defined type,
big_integer. This is done with another interface block, this time with the keyword
operator, followed by the operator being extended. The + operator is public, but the
function big_plus_big is private. The function is explicitly pure because it will be
called from a pure subroutine.
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   public :: operator (+)
   interface operator (+)
      procedure big_plus_big
   end interface
   private :: big_plus_big

The use of the plus operator to add two big integers is tested by the program
test_big_3.

program test_big_3

   use big_integers_module
   type(big_integer) :: b1, b2

   b1 = "1234567890987654321"
   b2 = "9876543210123456789"
   print *, b1 + b2

end program test_big_3

The output is

11111111101111111110

The operation b1==b2, where b1 and b2 are big integers, is not built in. It must be
defined by a logical-valued function and placed in the module with the appropriate in-
terface. This operation is used in the function big_plus_big to test if either of the op-
erands is Inf or NaN. This is a little more robust than checking if digit 100 is 1 or 2.
Writing the function to extend == is an exercise.

Using only the procedures written so far, it is not possible to use the expression
b + i in a program where b is a big integer and i is an ordinary integer. To do that, we
must write another function and add its name to the list of functions in the interface
block for the plus operator. Similarly, it would be necessary to write a third function to
handle the case i + b, because the arguments are in the reverse order of the function
that implements b + i. Even if that is not done, the number 999 could be added to b us-
ing the statements

temp_big_integer = "999"
b = b + temp_big_integer

Similar interface blocks and functions can be written to make the other operations
utilize symbols, such as - and *. The precedence of the extended operators when used
to compute with big integers is the same as when they are used to add ordinary inte-
gers. This holds true for all built-in operators that are extended. The following pro-
gram tests the extended multiplication operator (the function is not shown). By looking
at the last digit of the answer, it is possible to see that the multiplication is done before
the addition.
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program test_big_4

   use big_integers_module
   type(big_integer) :: a, b, c

   a = "1"
   b = "9999999999999999999"
   c = "9999999999999999999"
   print *, a + b * c

end program test_big_4

99999999999999999980000000000000000002

New Operators for Big Integers

In addition to extending the meaning of the built-in operators, it is possible to make up
new names for operators. For example, we could define a new operator .prime.,
whose operand is a big integer and whose value is true if the big integer is a prime and
is false otherwise. Its name is used in an interface statement and the function.

public :: operator (.prime.)
interface operator (.prime.)
   procedure prime
end interface operator (.prime.)

This operator could now be used just like any built-in unary operator, as illustrated by
the following if statement:

if (.prime. b) call print_big(b)

Raising a Big Integer to an Integer Power

Exponentiation, like the factorial function, has both an iterative definition and a recur-
sive definition. They are

   n times

and

  for n > 1

Since Fortran has an exponentiation operator ** for integer and real numbers, it is not
necessary to write a procedure to do that. However, it may be necessary to write an ex-
ponentiation procedure for a new data type, such as our big integers. We suppose that
the multiply operator (*) has been extended to form the product of two big integers.

xn x x x=

x0 1=

xn x xn 1–=
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The task is to write a procedure for the module that will raise a big integer to a power
that is an ordinary nonnegative integer. This time, the simple iterative procedure is
presented first.

function big_power_int(b, i) result(big_power_int_result)

   type(big_integer), intent(in) :: b
   integer, intent(in) :: i
   type(big_integer) :: big_power_int_result
   integer :: n

   big_power_int_result = "1"
   do n = 1, i
      big_power_int_result = big_power_int_result * b
   end do

end function big_power_int

It would be straightforward to use the recursive factorial function as a model and con-
struct a recursive version of the exponentiation function; but this is another example of
tail recursion, and there is no real advantage to the recursive version. However, think
about how you would calculate x18 on a calculator that does not have exponentiation
as a built-in operator. The clever way is to compute x2 by squaring x, x4 by squaring x2,
x8 by squaring x4, x16 by squaring x8, and finally x18 by multiplying the results ob-
tained for x16 and x2. This involves a lot fewer multiplications than doing the computa-
tion the hard way by multiplying x by itself 18 times. To utilize this scheme to
construct a program is fairly tricky. It involves computing all the appropriate powers
x2, x4, x8, ..., then multiplying together the powers that have a 1 in the appropriate po-
sition in the binary representation of n. For example, since 18 = 100102, powers that
need to be multiplied are 16 and 2.

It happens that there is a recursive way of doing this that is quite easy to program.
It relies on the fact that xn can be defined with the following less-obvious recursive def-
inition below. The trick that leads to the more efficient recursive exponentiation func-
tion is to think of the problem “top-down” instead of “bottom-up”. That is, solve the
problem of computing x18 by computing x9 and squaring the result. Computing x9 is
almost as simple: square x4 and multiply the result by x. Eventually, this leads to the
problem of computing x0, which is 1. The recursive definition we are looking for is

x0 1=

xn
x n 2 2

x n 2 2
x

=
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where the first line of the second equation is used for n positive and even and the sec-
ond when n is positive and odd and where  is the floor function, which for positive
integers is the largest integer less than or equal to its argument. This definition can be
used to construct a big_power_int function that is more efficient than the iterative ver-
sion.

pure recursive function big_power_int(b, i)  &
      result(big_power_int_result)

   type(big_integer), intent(in) :: b
   integer, intent(in) :: i
   type(big_integer) :: big_power_int_result
   type(big_integer) :: temp_big

   ! Code to handle Inf and NaNs omitted
   if (i <= 0) then
      big_power_int_result = "1"
   else
      temp_big = big_power_int(b, i / 2)
      if (modulo(i, 2) == 0) then
         big_power_int_result = temp_big * temp_big
      else
         big_power_int_result = temp_big * temp_big * b
      end if
   end if

end function big_power_int

Exercises

1. Extend the equality operator (==) and the “less than” (<) operator to compare two
big integers.

2. Extend the equality operator (==) to compare a big integer with a character string
consisting of digits. Hint: Use extended assignment to assign the character string to
a temporary big integer, then use the extended equality operator from Exercise 1 to
do the comparison.

3. Extend the multiplication operator (*) to two big integers.

4. Use the result of the previous exercise to compute 100! = 100 99   2  1. It
may be necessary to increase the value of the parameter nr_of_digits.

5. Extend the subtraction operator (-) so that it performs “positive” subtraction. If the
difference is negative, the result should be 0.

6. Extend the intrinsic function huge to apply to a big integer argument.
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7. Extend the dt subroutine print_point so that if an explicit dt edit descriptor is
used with the character asterisk (so that DT* is passed to the dummy argument io-
type), an object of type point is printed as if the format were list directed (*).

8. Extend the dt subroutine print_big so that one integer value w can be passed to
v_list. If w is passed (that is, v_list is not zero sized), have the dt edit descriptor
behave just like the Iw edit descriptor.

9. The representation of big integers used in this section is very inefficient because
only one decimal digit is stored in each Fortran integer array element. It is possible
to store a number as large as possible, but not so large that when two are multi-
plied, there is overflow. This largest value can be determined portably on any sys-
tem with the statements

integer, parameter :: &
      d = (range(0) - 1) / 2, &
      base = 10 ** d

! Base of number system is 10 ** d,
! so that each "digit" is 0 to 10**d - 1

On a typical system that uses 32 bits to store an integer, with 1 bit used for the
sign, the value of the intrinsic inquiry function range(0) is 9 because 109 < 231 <
1010. To ensure that there is no chance of overflow in multiplication, this number is
decreased by one before dividing by two to determine the number of decimal dig-
its d that can be stored in one array element digit of a big integer. In our example,
this would set d to 4. The value of base is then 10**d, or 104 = 10,000. With this
scheme, instead of storing a number from 0 to 9 in one integer array element, it is
possible to store a number from 0 to base  1, which is 9,999 in the example. In ef-
fect, the big number system uses base 10,000 instead of base 10 (decimal).

Determine the value of range (0) on your system.

10. Modify the type definition for big_integer so that a number from 0 to base  1
(previous exercise) is stored in each element of the array. The number of elements
in the array should be computed from the parameter nr_of_digits.

11. Determine the largest number that can be represented as the value of a big integer
using the type definition in the previous exercise.

12. Modify the procedure big_gets_char to use the more efficient representation of
big integers.

13. Modify the procedure print_big to use the more efficient representation of big in-
tegers. In the format, i1 should be replaced by id.d, where d is the number of dec-
imal digits stored in each array element.
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14. Modify the subroutine big_plus_big using the new type definition for
big_integer. It is very similar to the one developed in this section, except that the
base is now not 10, but base.

15. Extend the operator * to multiply a big integer by an ordinary integer.

16. Extend huge using the new representation. Write a test program that prints
huge(b).

17. Approximately n multiplications are required to compute xn by the iterative ver-
sion of the function big_power_int. Estimate the number of multiplications need-
ed to compute xn by the recursive version.

18. Project: Write a module to do computation with rational numbers. The rational
numbers should be represented as a structure with two integers, the numerator
and the denominator. Provide assignment, some input/output, and some of the
usual arithmetic operators. Addition and subtraction are harder than multiplica-
tion and division, and equality is nontrivial if the rational numbers are not reduced
to lowest terms.

19. Modify the module in the previous exercise to use big integers for the numerator
and denominator.

20. Project: Write a module to manipulate big decimal numbers such as

28447305830139375750302.3742912561209239123636292

using the big_integer module as a model.



Pointer and Allocatable Variables 10
In Fortran, a pointer variable or simply a pointer is best thought of as a “free-floating”
name that may be associated dynamically with or “aliased to” some object. The object
already may have one or more other names or it may be an unnamed object. The object
may represent data (a variable, for example) or be a procedure.

Syntactically, a pointer is just any sort of variable that has been given the pointer
attribute in a declaration. A variable with the pointer attribute may be used just like
any ordinary variable, but it may be used in some additional ways as well. To under-
stand how Fortran pointers work, it is almost always better to think of them simply as
aliases. Another possibility is to think of the pointers as “descriptors”, sufficient to de-
scribe a row of a matrix, for example.

Allocatable arrays were discussed in 4.1; in this chapter, allocatable scalars are dis-
cussed.

Both pointers and allocatable arrays can be used to create recursive structures,
such as linked lists, queues, and trees.

In many applications, either pointers or allocatables could be used. When possible,
it is usually preferable to use allocatable variables as they are less error-prone, more ef-
ficient, and will not cause memory leaks.

10.1 The Use of Pointers in Fortran

Each pointer in a Fortran program is in one of the three following states:

1. It may be undefined, which is the condition of each pointer at the beginning of a
program, unless it has been initialized.

2. It may be null, which means that it is not the alias of any data object.

3. It may be associated, which means that it is the alias of some target data object.

The terms “disassociated” and “not associated” are used when a pointer is in
state 2. A pointer is defined if it is in state 2 or 3. The associated intrinsic inquiry
function discussed later distinguishes between states 2 and 3 only; its arguments must
be defined.

© Springer-Verlag London 2015 
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The Pointer Assignment Statement

To start with a very simple example, suppose p is a real variable with the pointer at-
tribute, perhaps given with the declaration

real, pointer :: p

Suppose r is also a real variable. Then it is possible to make p an alias of r by the
pointer assignment statement

p => r

For those that like to think of pointers, rather than aliases, this statement causes p to
point to r. Any variable aliased or “pointed to” by a pointer must be given the target
attribute when declared, and the target must have the same type (class if polymorphic
(12.2)), kind, and rank as the pointer. If the object is polymorphic, the pointer assumes
the type of the object. However, it is not necessary that the variable has a defined val-
ue. For procedures, the interfaces of the pointer and target must be the same. For our
example above, these requirements are met by the presence of the following declara-
tion:

real, target :: r

A variable with the pointer attribute may be an object more complicated than a
simple variable. It may be an array or structure, for example. The following declares v
to be a pointer to a one-dimensional array of reals:

real, dimension(:), pointer :: v

With v so declared, it may be used to alias any one-dimensional array of reals, includ-
ing a row or column of some two-dimensional array of reals. For example,

v => real_array(4, :)

makes v an alias of the fourth row of the array real_array. Of course, real_array
must have the target attribute for this to be legal.

real, dimension(100, 100), target :: real_array

Once a variable with the pointer attribute is an alias for some data object, that is, it
is pointing to something, it may be used in the same way that any other variable with
the same properties may be used. For the example above using v,

print *, v

has exactly the same effect as

print *, real_array(4, :)

and the assignment statement

v = 0
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has the effect of setting all the elements of the fourth row of the array real_array to 0.
An array pointer on the left-hand side of a pointer assignment may specify lower

bounds.

real, dimension(:, :), pointer :: p
real, dimension(100, -100:100), target :: t
   . . .
p(0:, 1:) => t

The bounds of p are 0:99 and 1:201.
A different version of the pointer assignment statement occurs when the right side

also is a pointer. This is illustrated by the following example, in which p1 and p2 are
both real variables with the pointer attribute and r is a real variable with the target at-
tribute.

real, target :: r
real, pointer :: p1, p2
r = 4.7
p1 => r
p2 => p1
r = 7.4
print *, p2

After execution of the first assignment statement, r is a name that refers to the value
4.7:

The first pointer assignment causes p1 to be an alias for r, so that the value of the vari-
able p1 is 4.7. The value 4.7 now has two names, r and p1, by which it may be refer-
enced.

The next pointer assignment

p2 => p1

4.7

r

r

p1 4.7
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causes p2 to be an alias for the same thing that p1 is an alias for, so the value of the
variable p2 is also 4.7. The value 4.7 now has three names or aliases, r, p1, and p2.

Changing the value of r to 7.4 causes the value of both p1 and p2 also to change to 7.4
because they are both aliases of r. Thus, the next print statement

print *, p2

prints the value 7.4.
The pointer assignment statement

p => q

is legal whatever the status of q. If q is undefined, p is undefined; if it is null, p is nul-
lified; and if it is aliased to or associated with a target, p becomes associated with the
same target. Note that if q is associated with some target, say t, it is not necessary that
t has a defined value.

The Difference between Pointer and Ordinary Assignment

We can now illustrate the difference between pointer assignment, which transfers the
status of one pointer to another, and ordinary assignment involving pointers. In an or-
dinary assignment in which pointers occur, the pointers must be viewed simply as
aliases for their targets. Consider the following statements:

real, pointer :: p1, p2
real, target  :: r1, r2
   . . .
r1 = 1.1
r2 = 2.2
p1 => r1
p2 => r2

This produces the following situation:

Now suppose the ordinary assignment statement

p2 = p1

r

p2 4.7
p1

r1

p1 1.1

r2

p2 2.2
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is executed. This statement has exactly the same effect as the statement

r2 = r1

because p2 is an alias for r2 and p1 is an alias for r1. The situation is now:

because the value 1.1 has been copied from r1 to r2. The values of p1, p2, r1, and r2
are all 1.1. Subsequent changes to r1 or p1 will have no effect on the value of r2.

If, on the other hand, the pointer assignment statement

p2 => p1

were executed instead, this statement would produce the situation

In this case, too, the values of p1, p2, and r1 are 1.1, but the value of r2 remains 2.2.
Subsequent changes to p1 or r1 do change the value of p2. They do not change the val-
ue of r2.

If the target of p1 is changed to r2 by the pointer assignment statement

p1 => r2

the target r1 and value 1.1 of p2 do not change, producing the following situation:

The pointer p2 remains an alias for r1; it does not remain associated with p1.

The allocate and deallocate Statements for Pointers

With the allocate statement, it is possible to create space for a value and cause a
pointer variable to refer to that space. The space has no name other than the pointer
mentioned in the allocate statement. For example,

allocate (p1)

r1

p1 1.1

r2

p2 1.1

r1

p1 1.1

r2
p2

2.2

r1

p2 1.1

r2

p1 2.2
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creates space for one real number and makes p1 an alias for that space. No real value is
stored in the space by the allocate statement, so it is necessary to assign a value to p1
before it can be used, just as with any other real variable.

As in the allocate statement for allocatable arrays, it is possible to test if the allo-
cation is successful. This might be done with the statement

allocate (p1, stat=allocation_status)

The statement

p1 = 7.7

sets up the following situation.

Before a value is assigned to p1, it must either be associated with an unnamed target
by an allocate statement or be aliased with a target by a pointer assignment state-
ment.

The deallocate statement throws away the space pointed to by its argument and
makes its argument null (state 2). For example,

deallocate (p1)

disassociates p1 from any target and nullifies it.

After p1 is deallocated, it must not be referenced in any situation that requires a value;
however it may be used, for example, on the right side of a pointer assignment state-
ment. If other pointer variables were aliases for p1, they, too, no longer reference a val-
ue; however, they are not nullified automatically.

p1

p1 7.7

p1
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The null Intrinsic Function

At the beginning of a program, a pointer variable (just as all other variables) is not de-
fined, unless it is initialized. A pointer variable must not be referenced to produce a
value when it is not defined, but it is sometimes desirable to have a pointer variable be
in the state of not pointing to anything, which might signify the last item in a linked
list, for example. This occurs when it is set to the value of the null intrinsic function,
which creates a condition that may be tested and assigned to other pointers by pointer
assignment (=>). A pointer is nullified with a pointer assignment such as

p1 => null()

If the target of p1 and p2 are the same, nullifying p1 does not nullify p2. On the
other hand, if p1 is null, then executing the pointer assignment

p2 => p1

causes p2 to be null also.
A null pointer is not associated with any target or other pointer.

The associated Intrinsic Function

The associated intrinsic function may be used to determine if a pointer variable is
pointing to, or is an alias for, another object. To use this function, the pointer variable
must be defined; that is, it must either be the alias of some data object or be null. The
associated function indicates which of these two cases is true; thus it provides the
means of testing if a pointer is null.

The associated function may have a second argument. If the second argument is
a target, the value of the function indicates whether the first argument is an alias of the
second argument. If the second argument is a pointer, it must be defined; in this case,
the value of the function is true if both pointers are null or if they are both aliases of
the same target. For example, the expression

associated(p1, r)

indicates whether or not p1 is an alias of r, and the expression

associated(p1, p2)

indicates whether p1 and p2 are both aliases of the same thing or they are both null.
If two pointers are aliases of different parts of the same array, they are not consid-

ered to be associated. For example, the following program will print the value false.

program test_associated
   implicit none
   real, target, dimension(4) :: a = [ 1, 2, 3, 4 ]
   real, pointer, dimension(:) :: p, q
   p => a(1:3)
   q => a(2:4)
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   print *, associated(p, q)
end program test_associated

Pointer Remapping

With pointer remapping, a one-dimensional pointer may alias a part of another array
that it could not otherwise. An example is the diagonal of a matrix.

real, pointer, dimension(:, :) :: matrix
real, pointer, dimension(:) :: diagonal, base
   . . .
allocate (base(n*n))
matrix(1:n, 1:n) => base
diagonal => base(::n+1)

diagonal now points to the diagonal elements of matrix.

Procedure Pointers

A procedure may have the pointer attribute. The procedure may not be generic or el-
emental.

When a procedure pointer is declared, the characteristics of procedures it may alias
are given by referencing a procedure interface (3.9); the interface may be abstract, the
interface of an actual procedure, or the name of a handy procedure.

procedure (simple_sub), pointer :: sss
procedure (f), pointer :: fff => null()
   . . .
sss => subr
call sss()  ! calls subr
   . . .
fff => cos
print *, fff(0.24)  ! prints cos(0.24)

Arrays of Procedures

Derived types and procedure pointers can be used to create, in effect, an array of pro-
cedures. The trick is to create an array of structures, each containing one component
that is a procedure pointer.

type, public :: proc_type
   procedure (real_f_x), pointer, nopass :: &
      ptr_to_f => null()
end type proc_type
type (proc_type), dimension(:), allocatable :: ap

Without the nopass attribute (12.3), it is assumed that the first argument of
ptr_to_f would be an object of type proc_type.
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intrinsic :: sin
   . . .
allocate (ap(100))
ap(1)%ptr_to_f => sin
   . . .
do n = 1, size(ap)
   print *, ap(n)%ptr_to_f(x)
end do

Dangling Pointers and Unreferenced Storage

There are two situations that the Fortran programmer must avoid. The first is a dan-
gling pointer. This situation arises when a pointer variable is an alias for some object
that gets deallocated by an action that does not involve the pointer directly. For exam-
ple, if p1 and p2 are aliases for the same object, and the statement

deallocate (p2)

is executed, it is obvious that p2 is now disassociated, but the status of p1 appears to be
unaffected, even though the object to which it was pointing has disappeared. A refer-
ence to p1 is now illegal and will produce unpredictable results. It is the responsibility
of the programmer to keep track of the number of pointer variables referencing a par-
ticular object and to nullify each of the pointers whenever one of them is deallocated.

A related problem of unreferenced storage can occur when a pointer variable that
is an alias of an object is nullified or set to alias something else without a deallocation.
If there is no other alias for this value, it is still stored in memory somewhere, but there
is no way to refer to it. This is not important if it happens to a few simple values, but if
it happens many times to large arrays, the efficient management of storage could be
hampered severely. In this case, it is also the responsibility of the programmer to en-
sure that objects are deallocated before all aliases of the object are modified. Fortran
systems are not required to have runtime “garbage collection” to recover the unrefer-
enced storage, but some do.

Exercise

1. Construct an array of three structures, each of which has a procedure pointer as its
only component (as shown in this section). Set the three pointers to alias the intrin-
sic functions sin, cos, and tan. 

Create a table of trig functions with the sin(x), cos(x), and tan(x) on one line and a
line each for x = 0.1, 0.2, ..., 1.0. Print out one or two values from the table to make
sure they are correct.
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10.2 Moving Pointers vs. Moving Data

In some cases, pointers can be used to avoid copying large amounts of data. In the heat
transfer program in 4.6, each time new temperature values are temporarily stored so
that they may be compared with the old values, then copied back into the interior of
the plate.

         temp = (n + e + s + w) / 4.0
            . . .
         inside = temp

If a second plate temp_plate (temporary plate) is used, then it is possible to store
the results of the calculation in the interior of the temporary plate. Then after conver-
gence is tested, the pointer plate can be set to temp_plate, avoiding a data copy. A
temporary pointer temp must be used to save the value of plate, so it can be deallocat-
ed; otherwise, after many iterations, there would be many copies of unreferenced stor-
age.

Here is part of the code

temp_interior = (n + e + s + w)/4.0
diff = maxval(abs(temp_interior-inside))

! Exchange pointers
temp => plate
plate => temp_plate
temp_plate => temp

For this example, the performance improvement was only about 10 20%, depend-
ing on the size P of the plate because the time to compute the new values is larger than
the time to move the data.

Figure 10-1 Exchanging pointers to “move” data
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10.3 Linked Lists

Linked lists have many uses in a wide variety of application areas; one example in sci-
ence and engineering is the use of a linked list to represent a queue in a simulation
program. Lists of values can be implemented in Fortran in more than one way. Perhaps
the most obvious way is to use an array. Another is to use pointers and data structures
to create a linked list. The choice should depend on which operations are going to be
performed on the list and the relative frequency of those operations. If the only re-
quirement is to add and delete numbers at one end of the list, as is done if the list is
treated as a stack, then an array is an easy and efficient way to represent the list. If
items must be inserted and deleted often at arbitrary points within the list, then a
linked list is nice; with an array, many elements would have to be moved to insert or
delete an element in the middle of the list. Another issue is whether storage is to be al-
located all at once, using an array, or element by element in a linked list implementa-
tion. The implementation of linked lists using pointers also uses recursion effectively,
but iteration also could be used.

A linked list of numbers (or any other objects) can be thought of schematically as
a bunch of boxes, often called nodes, each containing a number and pointer to the box
containing the first number in the rest of the list. Suppose, for example, the list con-
tains the numbers 14, 62, and 83. In the lists discussed in this section, the numbers are
kept in numeric order, as they are in this example. Figure 10-2 contains a pictorial rep-
resentation of the list.

We will illustrate the Fortran techniques for manipulating linked lists by construct-
ing a module to manipulate linked lists in which the nodes contain integers and the
lists are sorted with the smallest number at the head of the list. The procedures of the
module sorted_integer_lists_module use recursion. The recursion is usually tail re-
cursion, so, in one sense, not much is gained. However, it turns out that much of the
detailed manipulation of pointers is eliminated and the recursive versions do not need
such things as a dummy node at the head of the list or “trailing pointers”, which are

Figure 10-2 A linked list of integers
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necessary in the nonrecursive implementations of linked lists. This makes the routines
a lot easier to write, understand, and maintain, but perhaps a little less efficient to exe-
cute on systems that have a high overhead for procedure calls.

Recursive List Processing

The approach to writing recursive routines to process a list is to view the list itself as a
recursive data structure. That is, a list of integers is either empty or it is an integer fol-
lowed by a list of integers. This suggests that to process a list of numbers, process the
first number in the list and then process the rest of the list with the same routine, quit-
ting when the list is empty.

To view the list as a recursive data structure as described above, a node should
consist of a value and another object, next, of type sorted_list. An object of type
sorted_list is a pointer. The overall structure of the module and the type definitions
for the module are

module sorted_integer_lists_module

   implicit none
   private

   type, public :: sorted_list
      private
      integer :: value
      type(sorted_list), pointer :: next => null()
   contains
      final :: empty
   end type sorted_list

public:: is_empty, insert, delete, print_list

contains
   . . .

end module sorted_integer_lists_module

The public statement lists the module procedures that will be available to any pro-
gram using the module sorted_integer_lists_module. The public attribute on the
definition of the type list indicates that the type will also be available to programs
that use the module. Thus, the user is able to declare variables to be type sorted_list
and process lists with the public module procedures insert, empty, delete, and
print_list. These could be type-bound procedures if a more object-oriented (12) ap-
proach were desired.

The private statement in the definition of the type sorted_list indicates that al-
though the type sorted_list is available to any program that uses the module, the
user will not be able to access the internal structure. The component next is default ini-
tialized to null, which means that each time an object of type list is declared or allo-
cated, the component next is null.
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The type sorted_list has a final subroutine named empty. This means that the
user of a module can simply deallocate any sorted list and all the parts of the linked
list will be deallocated, returning their storage to the pool of available storage. It is not
listed in the public statement, because a final subroutine is always available.

Abstract Data Types

The purpose is to provide the user of the module with an abstract data type, that is,
with the name of the list type and all necessary procedures to manipulate these lists. If
it is desirable to change the implementation, we can be sure that no program has ac-
cessed the lists in any way except those provided by the public procedures in this mod-
ule.

It is important to be able to declare which details of a module are private to the
module and therefore hidden from all external users of the module, and which are
public.

Now we must supply procedures for the operations that are needed. They are the
function is_empty(list) that returns the logical value indicating whether or not the
list is empty; a subroutine insert(list, number) that inserts number a number into a
list; a subroutine delete(list, number, found) that deletes one occurrence of a num-
ber from a list, if it is there, and indicates if it is found; and a subroutine print_list
(list) that prints the numbers in the list in order. Some of these are quite simple and
could be done easily without a procedure, but the purpose is to include all necessary
operations in the module sorted_integer_lists_module and be able to change the
implementation.

Inserting a Number

Let us first do the subroutine that inserts a number into a list. The recursive version is
deceptively simple. First, if the list is empty, another list must be created and the num-
ber placed in its value field. Then the next field is made empty because there are no
other elements in the list. The Fortran statements to do this are

allocate (list)
list%value = number

If the list is not empty, the number to be inserted must be compared with the first
value in the list. If it is smaller or equal, it must be inserted as the first value of the list.
Again, a new first node is created and the number placed in its value field. However,
this time the next field of this new first node is set equal to the original list before the
insertion because all other numbers in the list follow this new number. The Fortran
statements to do this are

  allocate (temp)
  temp = sorted_list(number, list)
  list => temp
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A temporary variable of type list is necessary to prevent losing the reference to the
list when a new first node is allocated. Notice that pointer assignment (=>) is used for
the variables of type sorted_list.

These are the nonrecursive base cases of the recursive subroutine insert. The only
other remaining case is when the number to be inserted is greater than the first ele-
ment of the list. In this case, the insertion is completed by a recursive call to insert the
number in the rest of the list. The complete subroutine insert follows.

recursive subroutine insert(list, number)

   type(sorted_list), pointer, intent(in out) :: list
   integer, intent(in) :: number
   type(sorted_list), pointer :: temp

   if (is_empty(list)) then
      allocate (list)
      list%value = number
   else if (number <= list%value) then
      temp => list
      allocate (list)
      list = sorted_list(number, temp)
   else
      call insert(list%next, number)
   end if

end subroutine insert

As is typical with recursive algorithms, the program listing appears simpler than
the execution. To help understand why the recursive subroutine insert works, we
simulate its execution to insert the number 62 in a sorted list containing 14 and 83. The
list supplied to the dummy argument list at the top level call to insert is shown in
Figure 10-3. The first item in the list is less than 62, so a second level call to insert is

made to insert 62 into the rest of the list as shown in Figure 10-4.

Figure 10-3 Top level call to insertion subroutine

list
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83
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This time the new number 62 is less than the first element 83 of the list referenced
by dummy argument list, so the nonrecursive alternative to insert before the first el-
ement is selected. Figure 10-5 shows the situation after the allocate statement.

Figure 10-6 shows the situation after the structure assignment statement that links
the new node to the rest of the list starting with the number 83.

Determining if a List is Empty

The function that determines if a list is empty is straightforward. Recall that a pointer
is not associated if it is null.

function is_empty(list) result(is_empty_result)

   type(sorted_list), pointer, intent(in) :: list
   logical :: is_empty_result
   is_empty_result = .not. associated(list)

end function is_empty

Figure 10-4 Second level call to insertion subroutine

Figure 10-5 Allocating a new node for a linked list
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Deleting a Number

The subroutine to delete a number from a list, if it is there, is quite similar to the sub-
routine to insert. There are two special nonrecursive cases. If the list is empty, the num-
ber cannot be deleted from it, so found is set to false. If the number is the first number
in the list, deleting it may be accomplished by making list start with its second ele-
ment (if any) using the statement

list => list%next

   Also, it is a good idea to deallocate the space for the deleted node to avoid unref-
erenced storage. The statements

temp => list

temp%next => null()
deallocate (temp)

accomplish this. The first of these must be done before list is reassigned, and the oth-
ers afterward. temp%next must be set to null, so that when temp is deallocated, the fi-
nal subroutine empty does not deallocate the entire remainder of the list.

In case the list is not empty, but the desired number is not its first element, the
number is deleted by a recursive call to delete it from the rest of list. The full subrou-
tine delete follows.

recursive subroutine delete(list, number, found)

   type(sorted_list), pointer, intent(in out) :: list
   integer, intent(in) :: number
   logical, intent(out) :: found
   type(sorted_list), pointer :: temp

Figure 10-6 The linked list after the new number is inserted
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   if (is_empty(list)) then
      found = .false.
   else if (list%value == number) then
      ! Delete node pointed to by list
      temp => list
      list => list%next
      temp%next => null()
      deallocate(temp)
      found = .true.
   else
      call delete(list%next, number, found)
   end if

end subroutine delete

For example, if the number 62 is to be deleted from a list with elements 14, 62, and
83, the first call has list pointing to the node containing 14. Because this is not the de-
sired number, a second call is made with list pointing to the node containing 62, as
shown in Figure 10-7. This node is deleted by making the next field of the node con-
taining 14 (which is the actual argument corresponding to the dummy argument list)
point to the node containing 83 and deallocating the node containing 62.

The subroutine print_list prints the numbers in the list in order. This just in-
volves recursively traversing the list as in the subroutines insert and delete.

recursive subroutine print_list(list)

   type(sorted_list), pointer, intent(in) :: list

   if (associated(list)) then
      write (unit=*, fmt="(tr1, i0)", advance="no") list%value
      call print_list(list%next)
   end if

end subroutine print_list

Figure 10-7 The second (recursive) call to the deletion routine
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Although this is just an instance of tail recursion, the procedure is simpler than any
iterative version.

The Final Subroutine delete

Whenever a list of type sorted_list is deallocated, the final subroutine empty is called
with the list as its argument. The subroutine deletes the node pointed to by the argu-
ment list and recursively deletes the list referenced by its next component.

recursive subroutine empty(list)

   type(sorted_list), intent(in out) :: list
   if (associated(list%next)) then
      deallocate (list%next)
   end if

end subroutine empty

Sorting with a Linked List

With the integer list module just created, it is possible to write a simple but inefficient
sorting program. The program works by inserting numbers into a list that is ordered.
When all the numbers have been put into the list, it is printed, producing all the num-
bers in order. Just to show that the delete subroutine works the odd numbers are delet-
ed from the list. Finally the list is deallocated and the list is checked to make sure it is
empty.

program list_sort

   use sorted_integer_lists_module
   implicit none
   type(sorted_list), pointer :: list => null()
   logical :: found
   integer :: n
   integer, dimension(*), parameter :: numbers = &
      [ 4, 6, 3, 8, 7, 9, 2, 1, 5 ]

   do n = 1, size(numbers)
      call insert(list, numbers(n))
   end do

   print *, "Sorted list"
   call print_list(list)

   do n = 1, size(numbers)
      if (modulo(numbers(n), 2) /= 0) then
         call delete(list, numbers(n), found)
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         if (.not. found) then
            print *, numbers(n), "not found in list"
         end if
      end if
   end do

   print *; print *
   print *, "List with odd numbers deleted"
   call print_list(list)
   deallocate(list)
   print *; print *
   print *, "Is list empty?", is_empty(list)

end program list_sort

Running the program produces the following output.

 Sorted list
 1 2 3 4 5 6 7 8 9

 List with odd numbers deleted
 2 4 6 8

 Is list empty? T

Style note: A very important point to note is that even when the procedures in
the module sorted_integer_lists_module are rewritten to use iteration in-
stead of recursion, or even if arrays are used to represent the lists, creating yet
another list module, a program such as list_sort that uses one of these mod-
ules does not have to be changed at all (unless the name of the module is
changed). This illustrates one of the real benefits of using modules. However,
although the source code for the program is unchanged, whenever a module
changes, any program that uses the module must be recompiled.

Exercise

1. Create a different version of the sorted_integer_lists_module with all of the
same public types and procedures. However, this version should implement a list
with a dynamic array, rather than a linked list.

2. Use first the linked list version and then the array version of the programs to ma-
nipulate lists of integers to construct a program that sorts integers. Experiment
with each program, sorting different quantities of randomly generated integers to
determine an approximate formula for the complexity of the program. Is the execu-
tion time (or some other measure of complexity, such as the number of statements
executed) proportional to nlog2n? Is it proportional to n2?



272 Chapter 10 Pointer and Allocatable Variables

10.4 Trees

One of the big disadvantages of using a linked list to sort numbers is that the resulting
program has poor expected running time. In fact, for the program list_sort, the ex-
pected running time is proportional to n2, where n is the number of numbers to be
sorted. A much more efficient sorting program can be constructed if a slightly more
complicated data structure, the binary tree, is used. The resulting program, tree_sort,
has an expected running time proportional to n log2n instead of n2.

It is quite difficult to write nonrecursive programs to process trees, so we will
think of trees as recursive structures right from the start. Using this approach, a binary
tree of integers is either empty or is an integer, followed by two binary trees of inte-
gers, called the left subtree and right subtree.

Sorting with Trees

To sort numbers with a tree, we will construct a special kind of ordered binary tree
with the property that the number at the “top” or “root” node of the tree is greater
than all the numbers in its left subtree and less than or equal to all the numbers in its
right subtree. This partitioning of the tree into a left subtree containing smaller num-
bers and a right subtree containing larger numbers is exactly analogous to the parti-
tioning of a list into smaller and larger sublists that makes quick sort (4.3) an efficient
algorithm. This property will hold not only for the most accessible node at the “top” of
the tree (paradoxically called the “root” of the tree), but for all nodes of the tree. To il-
lustrate this kind of tree, suppose a list of integers contains the numbers 265, 113, 467,
264, 907, and 265 in the order given. To build an ordered binary tree containing these
numbers, first start with an empty tree. Then place the first number 265 in a node at
the root of the tree, as shown in Figure 10-8.

The blank boxes in the lower part of a node are understood to represent unallocat-
ed subtrees.

Then the next number is compared with the first. If it is less than the first number,
it is placed as a node in the left subtree; if it is greater than or equal to the first number,
it is placed in the right subtree. In our example, 113 < 265, so a node containing 113 is
created and assigned as the value of the left subtree of the node containing 265, as
shown in Figure 10-9.

Figure 10-8 The root of a tree
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The next number is 467, and it is placed in the right subtree of 265 because it is
larger than 265. The result is shown in Figure 10-10.

The next number is 264, so it is placed in the left subtree of 265. To place it proper-
ly within the left subtree, it is compared with 113, the occupant of the top of the left
subtree. Since 264 > 113, it is placed in the right subtree of the one with 113 at the top
to obtain the tree shown in Figure 10-11.

The next number 907 is larger than 265, so it is compared with 467 and put in the
right subtree of the node containing 467, as shown in Figure 10-12.

The final number 265 is equal to the number in the root node. An insertion position
is therefore sought in the right subtree of the root. Since 265 < 467, it is put to the left
of 467, as shown in Figure 10-13. Notice that the two nodes containing the number 265
are not even adjacent, nor is the node containing the number 264 adjacent to either
node with key 265. This does not matter. When the tree is printed, they will come out
in the right order.

.

Figure 10-9 Adding the number 113 to the tree

.

Figure 10-10 Adding the number 467 to the tree
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.

Figure 10-11 Adding the number 264 to the tree

.

Figure 10-12 Adding the number 907 to the tree
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Type Declarations for Trees

The declaration for the node of a tree is similar to the declaration for the node of a
linked list, except that the node must contain, in addition to the value, two compo-
nents, one for the left subtree and one for the right subtree. As with lists, we could
have tree be a derived data type, which implies it must be a structure with one com-
ponent, a pointer to the node of a tree. This time, the components will be allocatable
scalars instead of pointers. Thus, the declaration needed is

type, public :: tree_type
   integer :: value
   type(tree_type), allocatable ::  left, right
end type tree_type

The insert Subroutine

The subroutine that inserts a new number into the tree is a straightforward implemen-
tation of the following informal recipe: if the tree is empty, make the new entry the
only node of the tree; if the tree is not empty and the number to be inserted is less than
the number at the root, insert the number in the left subtree; otherwise, insert the num-
ber in the right subtree.

recursive subroutine insert(tree, number)

   type(tree_type), allocatable, intent(in out) :: tree
   integer, intent(in) :: number

.

Figure 10-13 The final ordered binary tree
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   ! If (sub)tree is empty, put number at root
   if (.not. allocated(tree)) then
      allocate (tree)
      tree%value = number
   ! Otherwise, insert into correct subtree
   else if (number < tree%value) then
      call insert(tree%left, number)
   else
      call insert(tree%right, number)
   end if

end subroutine insert

When a tree is allocated, the allocatable components are unallocated and there is
no need to explicitly allocate them at that time.

Printing the Tree in Order

The recipe for printing the nodes of the tree follows from the way the tree has been
built. It is simply to print in order the values in the left subtree of the root, print the
value at the root node, then print in order the values in the right subtree. This subrou-
tine is shown in the following complete module and program that sorts a file of inte-
gers by inserting them in an ordered binary tree, and then printing out the values in
the tree in order.

module tree_module

   implicit none
   public :: insert, print_tree

   type, public :: tree_type
      integer :: value
      type(tree_type), allocatable ::  left, right
   end type tree_type

contains

recursive subroutine insert(tree, number)
   . . .
end subroutine insert

recursive subroutine print_tree(tree)

! Print tree in infix order

   type(tree_type), allocatable :: tree
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   if (allocated(tree)) then
      call print_tree(tree % left)
      print *, tree % value
      call print_tree(tree % right)
   end if

end subroutine print_tree

end module tree_module

program tree_sort

! Sorts a list of integers by building
! a tree, sorted in infix order.
! This sort has expected behavior n log n,
! but worst case (input is sorted) n ** 2.

   use tree_module
   implicit none

   ! Start with an empty tree
   type(tree_type), allocatable :: tree
   integer :: number, ios, n

   integer, dimension(*), parameter :: numbers = &
      [ 4, 6, 3, 8, 7, 9, 2, 1, 5 ]

   do n = 1, size(numbers)
      call insert(tree, numbers(n))
   end do

   call print_tree(tree)

end program tree_sort

Exercises

1. Experiment with the program tree_sort, sorting different quantities of randomly
generated integers to determine an approximate formula for the complexity of the
program. It should be proportional to n log2n.

2. Draw a tree that would be constructed by the program tree_sort given a list with
the same numbers as above, but in the order 113, 264, 265, 265, 467, 907. What hap-
pens to the efficiency of inserting new nodes into this tree compared with the tree
given in Figure 10-13?
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3. Run the tree sort program in this section with two different lists, one consisting of
20,000 random numbers and the other consisting of the same numbers already
sorted. Write the results to a file, rather than printing them. Compare the time tak-
en for each run using cpu_time.
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The facilities needed to do simple input and output tasks are described in Chapter 1,
and many examples of these statements were discussed throughout the other chapters.
Sometimes it is necessary to use the more sophisticated input/output features of For-
tran, which are probably superior to those found in most other high-level languages.
This chapter describes these features in some detail, including direct access input/out-
put, nonadvancing input/output, unformatted input/output, the use of internal files,
stream input/output, asynchronous input/output, file connection statements, the in-
quire statement, file positioning statements, and formatting.

The input/output statements are

read
print
write
open
close
inquire
backspace
endfile
rewind
wait

The read, write, and print statements are the ones that do the actual data transfer;
the open and close statements deal with the connection between an input/output unit
and a file; the inquire statement provides the means to find out things about a file or
unit; the backspace, endfile, and rewind statements affect the position of the file; and
the wait statement is used for asynchronous input/output.

Because this chapter is needed only for the more sophisticated kinds of input and
output, it is organized a little bit differently from other chapters. The first part contains
a discussion of some fundamental ideas needed for a thorough understanding of how
Fortran input/output works. The next part of the chapter contains a description and ex-
amples of the special kinds of data transfer statements. Then there is a discussion of
the open, close, inquire, backspace, rewind, and endfile statements. The final part
contains a more detailed description of formatting than that provided in 1.7.

Input and output operations deal with collections of data called files. The data are
organized into records, which may correspond to lines on a computer terminal, lines
on a printout, or parts of a disk file. The descriptions of records and files in this chap-
ter are to be considered abstractions and do not necessarily represent the way data are
stored physically on any particular device. For example, a Fortran program may pro-
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duce a file of answers. This file might be printed, and the only remaining physical rep-
resentation of the file would be the ink on the paper. Or it might be written onto
magnetic disk and remain there for a few years, eventually to be erased when the disk
is used to store other information.

The general properties of records are discussed first.

11.1 Records

There are two kinds of records, data records and endfile records. A data record is a se-
quence of values. Thus, a data record may be represented schematically as a collection
of small boxes, each containing a value, as shown in Figure 11-1.

The values in a data record may be represented in one of two ways: formatted or
unformatted. If the values are characters readable by a person, each character is one
value and the data are formatted. For example, the statement

write (unit=*, fmt="(i1, a, i2)") 6, ",", 11

would produce a record containing the four character values “6” “,” “1” and “1”. In
this case, the record might be represented schematically as in Figure 11-2.

Unformatted data consist of values usually represented just as they are stored in
computer memory. For example, if integers are stored using an eight-bit binary repre-
sentation, execution of the statement

write (unit=19) 6, 11

might produce an unformatted record that looks like Figure 11-3.

Formatted Records

A formatted record is one that contains only formatted data. A formatted record may
be created by a person typing at a terminal or by a program that converts values stored
internally into character strings that form readable representations of those values.

Figure 11-1 Schematic representation of the values in a record

Figure 11-2 A formatted record with four character values

. . .

6 , 1 1
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When formatted data are read into the computer, the characters must be converted to
the computer’s internal representation of values, which is often a binary representa-
tion. Even character values may be converted from one character representation in the
record to another internal representation. The length of a formatted record is the num-
ber of characters in it; the length may be zero.

Unformatted Records

An unformatted record is one that contains only unformatted data. Unformatted
records usually are created by running a Fortran program, although, with the knowl-
edge of how to form the bit patterns correctly, they could be created by other means.
Unformatted data often require less space on an external device. Also, it is usually fast-
er to read and write unformatted data because no conversion is required. However, it
is not as suitable for reading by humans, and usually it is not suitable for transferring
data from one computer to another because the internal representation of values is ma-
chine dependent. The length of an unformatted data record depends on the number of
values in it, but is measured in some processor-dependent units such as machine
words; the length may be zero. The length of an unformatted record that will be pro-
duced by a particular output list may be determined by the inquire statement (11.6).

Endfile Records

The other kind of record is the endfile record, which, at least conceptually, has no val-
ues and has no length. There can be at most one endfile record in a file and it must be
the last record of a file. It is used to mark the end of a file.

An endfile record may be written explicitly by the programmer using the endfile
statement. An endfile record also is written implicitly when the last data transfer state-
ment involving the file was an output statement, the file has not been repositioned, and

1. a backspace statement is executed

2. a rewind statement is executed or

3. the file is closed.

Figure 11-3 An unformatted record with two integer values

00000110 00001011
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Record Length

In some files, the lengths of the records are fixed in advance of data being put in the
file; in others, it depends on how data are written to the file. For external formatted ad-
vancing sequential output (11.3), a record ends whenever a slash ( / ) edit descriptor is
encountered and at the conclusion of each output operation (write or print).

11.2 Files

A file is a collection of records. A file may be represented schematically with each box
representing a record, as shown in Figure 11-4.

The records of a file must be either all formatted or all unformatted, except that the
file may contain an endfile record as the last record. A file may have a name, but the
length of the names and the characters that may be used in the names depend on the
system being used. The set of names that are allowed often is determined by the oper-
ating system as well as the Fortran compiler.

A distinction is made between files that are located on an external device, such as
a disk, and files in memory accessible to the program. The two kinds of files are

1. external files

2. Internal files

The use of the files is illustrated schematically in Figure 11-5.

External Files

An external file usually is stored on a peripheral device, such as a memory card, a disk,
or a computer terminal. For each external file, there is a set of allowed access methods,
a set of allowed forms (formatted or unformatted), a set of allowed actions, and a set of
allowed record lengths. How these characteristics are established is dependent on the

Figure 11-4 Schematic representation of records in a file

...
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computer system you are using, but usually they are determined by a combination of
requests by the user of the file and actions by the operating system.

Internal Files

Internal files are stored in memory as values of character variables. The character val-
ues may be created using all the usual means of assigning character values or they may
be created with an output statement using the variable as an internal file. If the vari-
able is a scalar, the file has just one record; if the variable is an array, the file has one
record for each element of the array. The length of the record is the number of charac-
ters declared or assumed for the character variable. Only formatted sequential access is
permitted on internal files. For example, if char_array is an array of two character
strings declared by

character(len=7), dimension(2) :: char_array

the statement

write (unit=char_array, fmt="(f7.5, /, f7.5)") 10/3.0, 10/6.0

produces the same effect as the assignment statements

char_array(1) = "3.33333"
char_array(2) = "1.66667"

Existence of Files

Certain files are known to the processor and are available to an executing program;
these files are said to exist at that time. For example, a file may not exist because it is
not anywhere on the disks accessible to a system. A file may not exist for a particular

Figure 11-5 Internal and external files

Computer memory
External file

Reading

Writing
Data value
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Internal file
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program because the user of the program is not authorized to access the file. Fortran
programs usually are not permitted to access special system files, such as the operating
system or the compiler, in order to protect them from user modification. The inquire
statement may be used to determine whether or not a file exists.

In addition to files that are made available to programs by the processor for input,
output, and other special purposes, programs may create files needed during and after
program execution. When the program creates a file, it is said to exist, even if no data
have been written into it. A file no longer exists after it has been deleted. Any of the in-
put/output statements may refer to files that exist for the program at that point during
execution. Some of the input/output statements (inquire, open, close, write, print,
rewind, and endfile) can refer to files that do not exist. For example, a write state-
ment can create a file that does not exist and put data into that file. An internal file al-
ways exists.

File Access Methods

There are three access methods for external files:

1. sequential access

2. direct access

3. stream access

Sequential access to the records in the file begins with the first record of the file and
proceeds sequentially to the second record, and then to the next record, record by
record. The records are accessed in the order that they appear in the file, as indicated
in Figure 11-6. It is not possible to begin at some particular record within the file with-
out reading from the current record down to that record in sequential order.

When a file is being accessed sequentially, the records are read and written sequen-
tially. For example, if the records are written in any arbitrary order using direct access
and then read using sequential access, the records are read beginning with record
number one of the file, regardless of when it was written.

When a file is accessed directly, the records are selected by record number. Using
this identification, the records may be read or written in any order. For example, it is

Figure 11-6 Sequential access

...

record 1

record 2

record 3

record n
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possible to write record number 47 first, then write record number 13. In a new file,
this produces a file represented by Figure 11-7. Either record may be read without first
accessing the other.

The following rules apply when accessing a file directly:

1. If a file is to be accessed directly, all the records must have the same length.

2. It is not possible to delete a record using direct access.

3. Nonadvancing input/output is prohibited.

4. An internal file must not be accessed directly.

With stream access, the file is considered to be a sequence of units, which are usu-
ally bytes. For formatted input/output, newline characters may, in effect, give a record
structure to the file. There is no record structure for unformatted stream access files.

Each file has a set of permissible access methods; it is possible that a file may be ac-
cessed by more than one method. The file access method used to read or write the file
must be one of the allowed access methods for the file; it is established when the file is
connected to a unit (11.4). For example, the same file may be accessed sequentially by
a program, then disconnected and later accessed directly by the same program, if both
types of access are permitted for the file.

File Position

Each file being processed by a program has a position. During the course of program
execution, data are read or written, causing the position of the file to change. Also,
there are Fortran statements that cause the position of a file to change; an example is
the backspace statement.

The initial point is the point just before the first record. The terminal point is the
point just after the last record. These positions are illustrated by Figure 11-8. If the file
is empty, the initial point and the terminal point are the same.

A file may be positioned between records. In the example pictured in Figure 11-9,
the file is positioned between records 2 and 3. In this case, record 2 is the preceding
record and record 3 is the next record. Of course, if a file is positioned at its initial
point, there is no preceding record, and there is no next record if it is positioned at its
terminal point.

There may be a current record during execution of an input/output statement or af-
ter completion of a nonadvancing input/output statement as shown in Figure 11-10,
where record 2 is the current record.

Figure 11-7 A file written using direct access

record 13

record 47
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When there is a current record, the file is positioned at the initial point of the
record, between values in a record, or at the terminal point of the record as illustrated
in Figure 11-11.

An internal file is always positioned at the beginning of a record just prior to data
transfer.

Figure 11-8 Initial and terminal points of a file

Figure 11-9 A file positioned between records

Figure 11-10 A file positioned within a current record

...

Initial point

Terminal point

...

...

Current record
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Advancing and Nonadvancing I/O

Advancing input/output is record oriented. Completion of an input/output operation
always positions the file at the end of a record. Nonadvancing input/output is charac-
ter oriented. After reading and writing, the file position may be between characters
within a record.

Nonadvancing input/output is restricted to use with external sequential formatted
files and may not be used with list-directed formatting.

Units and File Connection

Input/output statements refer to a particular file by specifying its unit. For example,
the read and write statements do not refer to a file directly, but refer to a unit number,
which must be connected to a file. The unit number for an external file is a nonnegative
integer, except that it may be negative when obtained using the newunit specifier
(11.4). The name of an internal file also is called a unit; it is a character variable. In the
following examples, 5 and char_string are units.

read (unit=5) a
write (unit=char_string, fmt="(i3)") k

Some rules and restrictions for units are:

1. The unit * specifies a processor-determined unit number. On input, it is the same
unit number that the processor would use if a read statement appeared without
the unit number. On output, it is the same unit number that the processor would
use if a print statement appeared without the unit number. The unit specified by
an asterisk may be used only for formatted sequential access. The built-in module
iso_fortran_env contains two integer parameters, input_unit and output_unit,
which are the unit numbers used by the * unit specifier.

Style note: Because units 5 and 6 are not universally used by Fortran compilers
as the standard input and output units, use * or input_unit and output_unit
instead; these last two are names of parameters in the intrinsic module
iso_fortran_env. Note that input_unit and output_unit are allowed in the
auxiliary input/output statements, such as inquire and open, but * is not.

Figure 11-11 Positions within a record of a file

. . .

Initial point Between values Terminal point



288 Chapter 11 Input and Output

2. File positioning, file connection, and inquiry must use external files.

3. A unit number identifies one and only one unit in a Fortran program. That is, a
unit number is global to an entire program; a particular file may be connected to
unit 59 in one procedure and referred to through unit 59 in another procedure.

Only certain unit numbers may be used on a particular computing system. The
unit numbers that may be used are said to exist. Some unit numbers on some proces-
sors are always used for data input (for example, unit 5), others are always used for
output (for example, unit 6). Input/output statements must refer to units that exist, ex-
cept for those that close a file or inquire about a unit. The inquire statement may be
used to determine whether or not a unit exists. On most systems units 11 99 exist and
are available for general use.

To transfer data to or from an external file, the file must be connected to a unit.
Once the connection is made, most input/output statements use the unit number in-
stead of using the name of the file directly. An internal file always is connected to the
unit that is the name of the character variable. There are two ways to establish connec-
tion between a unit and an external file:

1. execution of an open statement in the executing program

2. preconnection by the operating system

Only one file may be connected to a unit at any given time. If the unit is discon-
nected after its first use on a file, it may be reconnected later to another file or it may
be reconnected later to the same file. A file that is not connected to a unit may not be
used in any statement except the open, close, or inquire statements. Some units may
be preconnected to files for each Fortran program by the operating system, without
any action necessary by the program. For example, on many systems, units 5 and 6 are
always preconnected to the default input and default output files, respectively. Precon-
nection of units also may be done by the operating system when requested by the user
in the operating system command language. In either of these cases, the user program
does not require an open statement to connect the file; it is preconnected.

Error, End-of-File, and End-of-Record Conditions

During execution of input/output statements, error conditions can occur. Error condi-
tions may be checked by using the iostat specifier and iomsg specifier on many in-
put/output statements. Each error condition will result in some positive value for the
iostat variable, but the values used will depend on the computer system being used.
Examples of errors are attempting to open a file that does not exist or attempting to
read input consisting of letters when the input variable is type integer. When such an
error occurs, the value of the iostat variable may be tested and alternative paths se-
lected. Used with the iostat specifier, the iomsg specifier gets a character string indi-
cating the type of problem.

If a read statement attempts to read an endfile record, the iostat variable will be
set to some negative value. It will also be set to a negative value when reading beyond
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the end of a record with a nonadvancing read statement. These conditions cannot both
occur at the same time.

If there is both an error condition and either an end-of-file or end-of-record condi-
tion, the iostat variable will be set to a positive value to indicate that an error has oc-
curred.

The program count_lines counts the number of lines in a file and illustrates the
use of iostat to determine when the end of the file is encountered. The sample run
shows what happens when the input to the program is the program itself.

 The input file is:

  program count_lines
     implicit none
     character(len=100) :: line, iom
     integer :: tally, status

     tally = 0
     print *, "The input file is:"
     print *  ! a blank line
     do
        read (unit=*, fmt="(a)", iostat=status, iomsg=iom) line
        if (status /= 0) then
           print *, trim(iom)
           exit
        end if
        write (unit=*, fmt="(t3, a)") trim(line)
        tally = tally + 1
     end do
     print *
     print *, "The file contains", tally, "lines."
  end program count_lines
 End of file

 The file contains 20 lines.

The intrinsic function trim removes trailing blank characters on the output lines.

11.3 Data Transfer Statements

The data transfer statements are the read, write, and print statements. In previous
chapters we have seen examples of various kinds of data transfer statements. The gen-
eral forms for the data transfer statements are as follows. Optional parts of a statement
appear in square brackets.

read ( io-control-spec-list ) [ input-item-list ]
read format [ , input-item-list ]
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write ( io-control-spec-list ) [ output-item-list ]
print format [ , output-item-list ]

Some examples of data transfer statements are

read (unit=19, iostat=is) x
write (unit=16, rec=14) y
read "(f10.2)", z
print *, zt

The Format Specifier

The format specifier (format in the syntax for the print statement and the short form
of the read statement) may be a character expression indicating explicit formatting or
an asterisk (*) indicating list-directed or default formatting.

The Control Information List

The input/output control specification list must contain a unit specifier of the form

unit= io-unit

and may contain at most one each of the following optional items:

fmt= format
rec= scalar-int-expr
iostat= scalar-default-int-variable
iomsg= scalar-char-variable
advance= scalar-char-expr
size= scalar-default-int-variable
decimal= scalar-default-char-expr
pos= scalar-int-expr

There are a few additional specifiers not listed here.
The input/output unit must be a nonnegative integer expression indicating an ex-

ternal unit connected to a file (including input_unit or output_unit from the
iso_fortran_env module), an asterisk indicating a processor-dependent external unit,
or a character variable of default kind indicating an internal unit.

The allowed forms of a format are the same within a control information list as
they are in the print statement and the short form of the read statement.

There are lots of additional rules about which combinations of these items may oc-
cur; some of these rules will be covered in the discussion of various types of data trans-
fer statements in the following sections.



11.3 Data Transfer Statements 291

The Input/Output List

The input/output list consists basically of variables in a read statement and expres-
sions in a write or print statement. An implied-do loop also may appear in an in-
put/output list.

print "(i9, f9.2)", (i, x(i), i = 1, n)

External Formatted Advancing Sequential Access I/O

The title of this section is a mouthful, but this is the kind of input/output that has been
illustrated throughout the book. For formatted input and output, the file consists of
characters. These characters are converted into representations suitable for storing in
computer memory during input and converted from an internal representation to char-
acters on output. When a file is accessed sequentially, records are processed in the or-
der in which they appear in the file. Advancing input/output means that the file is
positioned after the end of the last record read or written when the input/output is fin-
ished.

Templates that may be used to construct explicitly formatted sequential access data
statements are

read ( unit= unit-number  &
, fmt= format  &
[ , iostat= scalar-default-int-variable ]  &
[ , iomsg= scalar-char-variable ]  &
[ , advance= scalar-char-expr ]  &
) [ input-list ]

read format [ , input-list ]

write ( unit= unit-number  &
, fmt= format  &
[ , iostat= scalar-default-int-variable ]  &
[ , iomsg= scalar-char-variable ]  &
[ , advance= scalar-char-expr ]  &
) [ output-list ]

print format [ , output-list ]

The format may be a character expression whose value is a format specification, or an
asterisk indicating list-directed default formatting. For advancing input/output, the ex-
pression in the advance specifier must evaluate to yes, if it is present; nonadvancing
input/output is discussed below. The advance specifier must not be present if the for-
mat is an asterisk designating list-directed formatting.

Examples of formatted reading are

read (unit=input_unit, fmt=fmt_100) a, b, c(1:40)
read (unit=19, fmt="(2f20.5)", iostat=iend, iomsg=msg) x, y
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read (unit=*, fmt="(5e20.0)", advance="yes") y(1:kk)
read *, x, y
read "(2f20.5)", x, y
read *

Examples of formatted writing are

write (unit=19, fmt=fmt_103, iostat=is) a, b, c, s
write (unit=2*k, fmt=*) x
write (unit=*, fmt="(f10.5)") x
print "(a, es14.6)", " y = ", y
print *, "y = ", y
print *

When an advancing sequential access input/output statement is executed, reading
or writing of data begins with the next character in the file. If the previous input/out-
put statement was a nonadvancing statement, the next character transferred may be in
the middle of a record, even if the statement being executed is an advancing statement.
The difference between the two is that an advancing input/output statement always
leaves the file positioned at the end of the record when the data transfer is completed.

The iostat specifier may be used to check for an end-of-file or an error condition
and the iomsg specifier may be used to obtain an error message.

Nonadvancing Data Transfer

Like advancing input/output, the file is read or written beginning with the next charac-
ter; however, nonadvancing input/output leaves the file positioned after the last char-
acter read or written, rather than skipping to the end of the record. Nonadvancing
input/output is sometimes called partial record input/output. It may be used only with
explicitly formatted external files connected for sequential access. It may not be used
with list-directed input/output.

Templates that may be used to construct nonadvancing input/output statements
are

read ( unit= unit-number  &
, fmt= format  &
, advance= scalar-char-expr  &
[ , size= scalar-default-int-variable ]  &
[ , iostat= scalar-default-int-variable ]  &
[ , iomsg= scalar-char-variable ]  &
) [ input-list ]

write ( unit= unit-number  &
, fmt= format  &
, advance= scalar-char-expr  &
[ , iostat= scalar-default-int-variable ]  &
[ , iomsg= scalar-char-variable ]  &
) [ output-list ]
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The scalar character expression in the advance specifier must evaluate to no for
nonadvancing input/output. The format is a character expression whose value is a for-
mat specification; it must not be an asterisk designating list-directed formatting.

The size variable is assigned the number of characters read on input. It does not
count trailing blanks.

Examples of nonadvancing data transfer statements are

advancing = "no"
read (unit=15, fmt=fmt_100, advance=advancing) a, b, c
read (unit=19, fmt="(a)", advance="no",  &
      size=rec_size, iostat=ios, iomsg=message) line
write (unit=16, fmt="(i1)", advance=advancing) n
write (unit=16, fmt=fmt_200, advance="no") x(1:n)

The iostat specifier may be used to check for an end-of-file, end-of-record, or er-
ror condition and the iomsg specifier returns a message.

One of the important uses of nonadvancing input/output occurs when the size of
the records is not known. To illustrate this, the following program counts the number
of characters in a file, reading the input one character at a time. iostat values for end-
of-record and end-of-file are required to be negative, but are otherwise processor de-
pendent. The values 2 and 1 are typical, but the use of the intrinsic functions
is_iostat_end and is_iostat_eor is preferred.

program char_count
   implicit none
   character(len=1) :: c
   integer :: character_count, ios
   character(len=99) :: iom

   character_count = 0
   do
      read (unit=*, fmt="(a)", advance="no", &
            iostat=ios, iomsg=iom) c
      if (ios > 0) then
         print *, trim(iom)
      else if (is_iostat_eor(ios)) then
         cycle
      else if (is_iostat_end(ios)) then
         exit
      else
         character_count = character_count + 1
      end if
   end do

   print *, "The number of characters in the file is", &
            character_count
end program char_count
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            Another obvious use of nonadvancing input/output is to print part of a line
at one place in a program and finish the line later. If things are implemented properly,
it also should be possible to use nonadvancing input/output to supply a prompt to a
terminal and have the user type in data on the same line. This is not absolutely guaran-
teed, because many systems consider input from a terminal and output to the terminal
to involve two different files. Here is a simple example:

program test_sign
   implicit none
   integer :: number
   write (unit=*, fmt="(a)", advance="no")  &
         "Type in any integer: "
   read *, number
   write (unit=*, fmt="(a, i9, a)", advance="no")  &
         "The number ", number, " is "
   if (number > 0) then
      print *, "positive."
   else if (number == 0) then
      print *, "zero."
   else
      print *, "negative."
   end if
end program test_sign

Type in any integer: 36
The number        36 is  positive.

Data Transfer on Internal Files

Transferring data from machine representation to characters or from characters back to
machine representation can be done between two variables in an executing program. A
formatted sequential access input or output statement is used; list-directed formatting
is permitted. The format is used to interpret the characters. The internal file and the in-
ternal unit are the same character variable.

Templates that may be used to construct data transfer statements on an internal file
are

read ( unit= default-char-variable  &
, fmt= format  &
[ , iostat= scalar-default-int-variable ]  &
[ , iomsg= scalar-char-variable ]  &
) [ input-list ]

write ( unit= default-char-variable  &
, fmt= format  &
[ , iostat= scalar-default-int-variable ]  &
[ , iomsg= scalar-char-variable ]  &
) [ output-list ]
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Examples of data transfer statements on internal files are

read (unit=char_24, fmt=fmt_1, iostat=io_err) &
      mary, x, j, name
write (unit=char_var, fmt=*) x

Some rules and restrictions for using internal files are:

1. The unit must be a character variable that is not an array section with a vector sub-
script.

2. Each record of an internal file is a scalar character variable.

3. If the file is an array or an array section, each element of the array or section is a
scalar character variable and thus a record. The order of the records is the order of
the array elements (for arrays of rank two and greater, the first subscript varies
most rapidly). The length of the record, which must be the same for each record, is
the length of one array element.

4. If the character variable is an array or part of an array that has the pointer at-
tribute, the variable must be allocated before its use as an internal file.

5. If the number of characters written is less than the length of the record, the remain-
ing characters are set to blank. If the number of characters is greater than the
length of the record, the remaining characters are truncated.

6. The records in an internal file are assigned values when the record is written. An
internal file also may be assigned a value by a character assignment statement, or
by some other means.

7. To read a record in an internal file, it must be defined.

8. An internal file is always positioned at the beginning before a data transfer occurs.

9. Only formatted sequential access is permitted on internal files. List-directed for-
matting is permitted.

10. File connection, positioning, and inquiry must not be used with internal files.

11. The use of the iostat and iomsg specifiers is the same as for external files.

12. On input, blanks are ignored in numeric fields.

13. On list-directed output, character constants are delimited with quotes.

As a simple example of the use of internal files, the following write statement con-
verts the value of the integer variable n into the character string s of length 10:

write (unit=s, fmt="(i10)") n
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If n = 999, the string s would be “bbbbbbb999”, where b represents a blank character. To
make the conversion behave a little differently, we can force the first character of s to
be a sign and make the rest of the characters digits, using as many leading zeros as
necessary.

write (unit=s, fmt="(sp, i10.9)") n

Now if n = 999, the string s will have the value “+000000999”.
Another use of internal input/output is to read data from a file directly into a char-

acter string, examine it to make sure it has the proper form for the data that is sup-
posed to be read, and then read it with formatting conversion from the internal
character string variable to the variables needed to hold the data. To keep the example
simple, suppose that some input data record is supposed to contain ten integer values,
but they have been entered into the file as ten integers separated by colons. List-direct-
ed input requires that the numbers be separated by blanks or commas. One option is to
read in the data, examine the characters one at a time, and build the integers; but list-
directed input will do everything except find the colon separators. So another possibil-
ity is to read in the record, change the colons to commas, and use an internal list-di-
rected read statement to convert the character string into ten integer values. Here is a
complete program, but it just reads in the numbers and prints them.

program p_internal

   implicit none
   character(len=100) :: internal_record
   integer, dimension(10) :: numbers
   integer :: colon_position

   read (unit=*, fmt="(a)") internal_record
   do
      colon_position = index(internal_record, ":")
      if (colon_position == 0) exit
      internal_record (colon_position:colon_position) = ","
   end do

   read (unit=internal_record, fmt=*) numbers
   print "(5i5)", numbers

end program p_internal

If the input is

3:24:53:563:-34:290:-9:883:9:224

the output is

    3   24   53  563  -34
  290   -9  883    9  224
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Of course, in a real program, some error checking should be done to make sure
that the internal record has the correct format after the colons are converted to com-
mas.

Unformatted Input/Output

For unformatted input and output, the file usually consists of values stored using the
same representation used in program memory. This means that no conversion is re-
quired during input and output. Unformatted input/output may be done using both
sequential and direct access. It is always advancing.

Direct access is indicated by the presence of a rec specifier; sequential access oc-
curs when no rec specifier is present.

Templates that may be used to construct unformatted access data statements are

read ( unit= unit-number  &
[ , rec= record-number ]  &
[ , iostat= scalar-default-int-variable ]  &
[ , iomsg= scalar-char-variable ]  &
) [ input-list ]

write ( unit= unit-number  &
[ , rec= record-number ]  &
[ , iostat= scalar-default-int-variable ]  &
[ , iomsg= scalar-char-variable ]  &
) [ output-list ]

Examples of unformatted access reading are

read (unit=18) a, b, c(1:n, 1:n)
read (unit=19, rec=14, iostat=iend) x, y
read (unit=14, iostat=k, iomsg=msg) y

Examples of unformatted access writing are

write (unit=19, iostat=ik, iomsg=im) a, b, c, s
write (unit=17, iostat=status) x
write (unit=19, rec=next_record_number) x

The record number given by the rec specifier is a scalar integer expression whose
value indicates the number of the record to be read or written. If the access is sequen-
tial, the file is positioned at the beginning of the next record prior to data transfer and
positioned at the end of the record when the input/output is finished, because nonad-
vancing unformatted input/output is not permitted. The iostat and iomsg specifiers
may be used in the same way they are used for formatted input/output.

Unformatted access is very useful when creating a file of data that must be saved
from one execution of a program and used for a later execution of the program. Sup-
pose, for example that a program deals with the inventory of a large number of auto-
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mobile parts. The data for each part (in a module in our simple example) consists of
the part number and the quantity in stock.

type, public :: part
   integer :: id_number, qty_in_stock
end type part

type (part), dimension(10000), public :: part_list
integer, public:: number_of_parts

Suppose the integer variable number_of_parts records the number of different parts
that are stored in the array part_list. At the end of the program, the number of parts
and the entire part list can be saved in the file named part_file with the following
statements:

open (unit=19, file="part_file", position="rewind", &
      form="unformatted", action="write", status="replace")
write (unit=19), number_of_parts, part_list(1:number_of_parts)

At the beginning of the next execution of the program, the inventory can be read back
into memory with the statements:

open (unit=19, file="part_file", position="rewind", &
      form="unformatted", action="read", status="old")
read (unit=19), number_of_parts, part_list(1:number_of_parts)

See 11.4 for the description of the open statement.

Direct Access Data Transfer

When a file is accessed directly, the record to be processed is the one given by the
record number in a rec specifier. The file may be formatted or unformatted.

Templates that may be used to construct direct access data statements are

read ( unit= unit-number  &
, [ fmt= format ]  &
, rec= record-number  &
[ , iostat= scalar-default-int-variable ]  &
[ , iomsg= scalar-char-variable ]  &
) [ input-list ]

write ( unit= unit-number ]  &
[ , fmt= format ]  &
, rec= record-number  &
[ , iostat= scalar-default-int-variable ]  &
[ , iomsg= scalar-char-variable ]  &
) [ output-list ]

The format must not be an asterisk.
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Examples of direct access input/output statements are

read (unit=input_unit, fmt=fmt_x, rec=32) a
read (unit=12, rec=34, iostat=io_status) a, b, d
write (unit=output_unit, fmt="(2f15.5)", rec=n+2) x, y

The iostat and iomsg specifiers are used just as they are with sequential access.
To illustrate the use of direct access files, let us consider the simple automobile

parts example used to illustrate unformatted input/output. In this example, suppose
that the parts list is so large that it is not feasible to read the entire list into memory. In-
stead, each time information about a part is needed, just the information about that one
part is read from an external file. To do this in a reasonable amount of time, the file
must be stored on a device such as a disk, where each part is accessible as readily as
any other. Analogous but more realistic examples might involve the bank accounts for
all customers of a bank or tax information on all tax-payers in one country. This time a
structure is not needed, because the only information in the file is the quantity on
hand. The part identification number is used as the record number of the record in the
file used to store the information for the part having that number. Also, the array is not
needed because the program deals with only one part at a time.

Suppose we just need a program that looks up the quantity in stock for a given
part number. This program queries the user for the part number, looks up the quantity
on hand by reading one record from a file, and prints out that quantity.

program part_info
   implicit none
   integer :: part_number, qty_in_stock

   print *, "Enter part number"
   read *, part_number
   open (unit=19, file="part_file", access="direct", recl=10,  &
         form="unformatted", action="read", status="old")
   read (unit=19, rec=part_number) qty_in_stock
   print *, "The quantity in stock is", qty_in_stock
end program part_info

Of course, the program could be a little more sophisticated by using a loop to re-
peat the process of asking for a part number and providing the quantity in stock. Also,
there must be other programs that create and maintain the file that holds the database
of information about the parts. A more complex organization for the file may be neces-
sary if the range of legal part numbers greatly exceeds the actual number of different
parts for which information is saved.

Stream Access Data Transfer

When data transfer occurs with a file opened for stream access, the data transfer state-
ments are the same as for either sequential or direct access, except that the file may not
use nonadvancing input/output. Additionally, it may use the pos specifier to indicate a
position in the stream file at which to begin the data transfer. The value of the pos
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specifier must be one that was returned by the pos specifier of an inquire statement.
The following example shows how stream access and the pos specifier work.

program stream

   implicit none
   integer :: ios, mark_pos
   real :: x
   character(len=99) :: iom = "OK"

   open (unit=11, file="saf", access="stream", &
         form="unformatted", iostat=ios, iomsg=iom)
   print *, iom
   write (unit=11) 1.1
   write (unit=11) 2.2

   inquire (unit=11, pos=mark_pos)
   write (unit=11) 3.3
   write (unit=11) 4.4

   read (unit=11, pos=mark_pos) x
   print *, x

end program stream

The open statement indicates stream access and when it is executed the value of
iom is not changed from its initial value if there is no error. The first two write state-
ments put 1.1 and 2.2 in the file and then the inquire statement records the position of
the file as just after the 2.2. After two more write statements, x is read from the posi-
tion recorded by mark_pos resulting in its value being 3.3. The output from the pro-
gram is

 OK
 3.3

Asynchronous Input/Output

Normally, execution waits for an input/output statement to complete. Asynchronous
input/output allows computation to proceed while the input/output is taking place.
The wait statement allows for the program to wait at a certain point until the in-
put/output is complete. The inquire statement (11.6) may be used to determine if a
particular file may be read or written asynchronously and then the open statement
(11.4) may specify that asynchronous input/output is going to be used.

In this simple example, the array data is rank 3. The third subscript ranges from 1
to 13 and we want to read the values for a single subscript and process that data while
data is being read for the next value of the subscript.

The lines below suggest how the program executes. The values for subscript 1 are
read, then the program waits for that to finish and starts reading the values for sub-
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script 2. While that input is taking place the values for subscript 1 are processed. Then
the program waits for the input of values for subscript 2 to complete. And so forth.

read 1
======
wait 1
read 2
process 1
======
wait 2
read 3
process 2
======
 . . .
======
wait 12
read 13
process 12
======
wait 13
process 13

inquire (file="data_file", asynchronous=async_ok)
if (async_ok == "YES") then
   open (unit=11, file="data_file", &
         asynchronous="yes", iostat=ios, &
         form="unformatted", &
         position="rewind", action="readwrite")
   . . .
read (unit=11, asynchronous="yes") data(:,:,1)
do i = 1, 12
   wait (unit=11)
   read (unit=11, asynchronous="yes") data(:,:,i+1)
   call process(data(:,:,i))
end do
wait (unit=11)
call process(data(:,:,13))

11.4 The open Statement

The open statement establishes a connection between a unit and an external file and
determines the connection properties. After this is done, the file can be used for data
transfers (reading and writing) using the unit number. It is not necessary to execute an
open statement for files that are preconnected to a unit.
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The open statement may appear anywhere in a program and, once executed, the
connection of the unit to the file is valid in the main program or any subprogram for
the remainder of that execution, unless a close statement affecting the connection is
executed.

If a file is connected to one unit, it may not be connected to a different unit at the
same time.

Execution of an open statement using a unit that is already open is permitted in
only a few special circumstances.

Syntax Rules for the open Statement

The form of the open statement is

open ( connect-spec-list )

where some of the permissible connection specifications are

unit= external-file-unit
newunit= scalar-int-variable
file= file-name-expr
access= scalar-char-expr
action= scalar-char-expr
asynchronous= logical
decimal= scalar-char-expr
encoding= scalar-char-expr
form= scalar-char-expr
iostat= scalar-int-variable
iomsg= scalar-char-variable
position= scalar-char-expr
recl= scalar-int-expr
status= scalar-char-expr

Examples are

open (unit=19, iostat=ios, iomsg=iom, &
      status="scratch", action="readwrite")
open (unit=18, access="direct", file="plot_data", &
      status="old", action="read")

open (newunit=unit_number, file="xxx", status="replace")
write (unit=unit_number, fmt= . . .

Some rules, restrictions, and suggestions for the open statement are:

1. An external unit number or the newunit specifier is required.

2. A specifier may appear at most once in any open statement.



11.4 The open Statement 303

3. The file specifier must appear if the status is old, new, or replace; the file
specifier must not appear if the status is scratch.

4. The status specifier should appear.

5. The action specifier should appear. It must not be read if the status is new or re-
place. It should be readwrite if the status is scratch.

6. The position specifier should appear if the access is sequential and the status is
old.

7. The character expression established for many of the specifiers must contain per-
mitted values in a list of alternative values as described below. For example, old,
new, replace, and scratch are permitted for the status specifier. Uppercase let-
ters may be used. Trailing blanks in any specifier are ignored.

The Connection Specifiers

access The value of the access specifier must be direct, sequential, or
stream. The method must be an allowed access method for the file. If
the file is new, the allowed access methods given to the file must in-
clude the one indicated. If the access is direct, there must be a recl
specifier to specify the record length.

action The value of the action specifier must be read, write, or readwrite.
read indicates that write, print, and endfile statements are prohibit-
ed. write indicates that read statements are prohibited. readwrite in-
dicates that any input/output statement is permitted.

asynchronous The value of the asynchronous specifier must be yes or no. It indicates
whether asynchronous input/output may be used with the file.

decimal The value must be comma or point, indicating the decimal symbol.

encoding The value must be utf-8 or default, which indicates the encoding
method for formatted files.

file The file specifier indicates the name of the file to be connected. If the
name is omitted, the connection will be made to a processor-deter-
mined file.

form The value of the form specifier must be formatted or unformatted.
formatted indicates that all records will be formatted. unformatted in-
dicates that all records will be unformatted. If the file is connected for
direct access or stream access, the default is unformatted. If the file is
connected for sequential access, the default is formatted. If the file is
new, the allowed forms given to the file must include the one indicat-
ed.
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iomsg The value returned is an explanatory message if an error occurs. It has
no effect unless there is an iostat specifier.

iostat The iostat specifier must be an integer variable. It is given a value
that is a positive integer if there is an error condition while executing
the open statement and zero if there is no error.

newunit The newunit specifier must be an integer variable. It is set to a value
less than 1 that is not already used as a unit number. This number
then may be used as a unit number, knowing it will not conflict with
any other unit number in the program.

position The value of the position specifier must be rewind or append. rewind
positions the file at its initial point. append positions the file at the ter-
minal point or just before an endfile record, if there is one. The file
must be connected for sequential access. If the file is new, it is posi-
tioned at its initial point.

recl The recl specifier has a positive value that specifies the length of each
record if the access method is direct or the maximum length of a
record if the access method is sequential. If the file is connected for
formatted input/output, the length is the number of characters. If the
file is connected for unformatted input/output, the length is measured
in processor-dependent units. The length may be, for example, the
number of computer words. If the file exists, the length of the record
specified must be an allowed record length. If the file does not exist,
the file is created with the specified length as an allowed length.

status The value of the status specifier should be old, new, replace, or
scratch. old refers to a file that must exist. new refers to a file that
must not exist. If the status is replace and the file does not exist, it is
created and given a status of old. If the status is replace and the file
does exist, it is deleted, a new file is created with the same name, and
its status is changed to old. scratch refers to a scratch file that exists
only until termination of execution of the program or until a close is
executed on that unit. Scratch files must be unnamed. replace is rec-
ommended when it is not certain if there is an old version, but it is to
be replaced if there is one.

Exercise

1. Open a file using a new unit. Print the value of the unit number. Open a second file
using a new unit. Print the value of the unit number. Close the second file. Open a
third file using a new unit. Print the value of the unit number.
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11.5 The close Statement

Execution of a cclose statement terminates the connection of a file to a unit. Any con-
nections not closed explicitly by a close statement are closed by the operating system
when the program terminates. The form of the close statement is

close ( close-spec-list )

The items in the close specification list may be selected from

unit= external-file-unit
iostat= scalar-default-int-variable
iomsg= scalar-default-char-variable
status= scalar-char-expr

Examples are

close (unit=19)
close (unit=18, iostat=ir, iomsg=im, status="keep")

Some rules for the close statement are

1. An external unit number (including possibly input_unit or output_unit) is re-
quired.

2. A close statement may refer to a unit that is not connected or does not exist, but it
has no effect. This is not considered an error.

3. The status specifier must have a value that is keep or delete. If it is keep, the file
continues to exist after closing the file. If it has the value of delete, the file will not
exist after closing the file. The default value is keep, except that the default for
scratch files is delete. If you specify a status for a scratch file, it must be de-
lete.

4. The rules for the iostat and iomsg specifiers are the same as for the open state-
ment.

5. A specifier must not appear more than once in a close statement.

6. Connections that have been closed may be reopened at a later point in an executing
program. The new connection may be to the same or to a different file.

11.6 The inquire Statement

The inquire statement provides the capability of determining information about a
unit’s or file’s existence, connection, access method, or other properties during execu-



306 Chapter 11 Input and Output

tion of a program. For each property inquired about, a scalar variable of default kind is
supplied; that variable is given a value that answers the inquiry. The variable may be
tested and optional execution paths selected in a program based on the answer re-
turned. The inquiry specifiers are indicated by keywords in the inquire statement. A
file inquiry may be made by unit number, by the file name, or by an output list that
might be used in an unformatted direct access output statement.

The values of the character items (except name) are always in uppercase.

Syntax Rules for the inquire Statement

The form of an inquiry by unit number or file name is

inquire ( inquiry-spec-list )

An inquiry by unit must include the following in the inquiry specification list:

unit= external-file-unit

An inquiry by name must include the following in the inquiry specification list:

file= file-name

The expression for the file name may refer to a file that is not connected or does not ex-
ist. The value for the file name must be acceptable to the system. An inquire statement
must not have both a file specifier and a unit specifier.

In addition, the inquiry specification list may contain the following items and a
few more not listed here. The type of the item following the keyword is indicated; each
item following the keyword and equals sign must be a scalar variable of default kind,
if it is not type integer.

access= character
action= character
asynchronous= logical
decimal= character
direct= character
encoding= character
exist= logical
form= character
formatted= character
iomsg= character
iostat= integer
name= character
named= logical
nextrec= integer
number= integer
opened= logical
pos= character
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position= character
read= character
readwrite= character
recl= integer
sequential= character
stream= character
unformatted= character
write= character

Examples of the inquire statement are

inquire (unit=19, exist=ex)
inquire (file="t123", opened=op, access=ac)

The iolength Inquiry

The form of an inquire statement used to determine the length of an output item list
is

inquire ( iolength= scalar-default-int-variable ) output-item-list

The length value returned in the scalar integer variable will be an acceptable value that
can be used later as the value of the recl specifier in an open statement to connect a
file whose records will hold the data indicated by the output list of the inquire state-
ment.

An example of this form of the inquire statement is

inquire (iolength=iolen) x, y, cat

Specifiers for Inquiry by Unit or File Name

This section describes the syntax and effect of the inquiry specifiers that may appear in
the unit and file forms of the inquire statement. The values returned in the inquiry
specification list are those current at that point in the execution of the program.

The iostat inquiry specifier indicates error condition information about the inqui-
ry statement execution itself. If an error condition occurs, all the inquiry specifiers are
undefined except the iostat and iomsg specifiers.

access The value returned is SEQUENTIAL if the file is connected for sequential
access, DIRECT if the file is connected for direct access, STREAM if the file
is connected for stream access, or UNDEFINED if the file is not connected.

action The value returned is READ if the file is connected limiting the access to
input, WRITE if the file is connected limiting the access to output, READ-
WRITE if the file is connected for input and output, or UNDEFINED if the
file is not connected.
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asynchronous The character variable indicates whether the connection allows asyn-
chronous input/output.

decimal The value returned is COMMA if the decimal symbol is a comma, POINT if
the decimal symbol is a period, and UNDEFINED if the unit or file is not
connected for formatted input/output.

direct The value returned is YES if direct access is an allowed method, NO if
direct access is not an allowed method, or UNKNOWN if the processor
does not know if direct access is allowed.

encoding The character encoding used for the file.

exist If the inquiry is by unit, the logical variable indicates whether or not
the unit exists. If the inquiry is by file, the logical variable indicates
whether or not the file exists.

form The value returned is FORMATTED if the file is connected for formatted
input/output, UNFORMATTED if the file is connected for unformatted in-
put/output, or UNDEFINED if the file is not connected.

formatted The value returned is YES if formatted input/output is permitted for the
file, NO if formatted input/output is not permitted for the file, or UN-
KNOWN if the processor cannot determine if formatted input/output is
permitted for the file.

iolength The record length for direct-access input/output. This is used only in
an inquire by length inquiry.

iomsg The value returned is an explanatory message if an error occurs. It has
no effect if iostat is not present.

iostat The iostat specifier must be an integer variable. It is given a value
that is a positive integer if there is an error condition while executing
the open statement and zero if there is no error.

name The value is the name of the file if the file has a name; otherwise, the
designated variable becomes undefined. The processor may return a
name different from the one given in the file specifier by the pro-
gram, because a user identifier or some other processor requirement
for file names may be added. The name returned will be acceptable for
use in a subsequent open statement. The case (upper or lower) used is
determined by the processor.

named The scalar logical value is true if and only if the file has a name.

nextrec The integer value returned is one more than the last record number
read or written in a file connected for direct access. If no records have
been processed, the value is 1. The specified variable becomes unde-
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fined if the file is not connected for direct access or if the file position is
indeterminate because of a previous error condition.

number The value returned is the number of the unit connected to the file. If
there is no unit connected to the file, the value is 1.

opened If the inquiry is by unit, the logical variable indicates whether or not
the unit is connected to some file. If the inquiry is by file, the logical
variable indicates whether or not the file is connected to some unit.

pos The value returned is the position (usually byte number) of a file con-
nected for stream access, and is undefined otherwise.

position The value returned is REWIND if the file is connected with its position at
the initial point, APPEND if the file is connected with its position at the
end point or UNDEFINED if the file is not connected, is connected for di-
rect access or if any repositioning has occurred since the file was con-
nected.

read The value returned is YES if read is one of the allowed actions for the
file, NO if read is not one of the allowed actions for the file, or UNKNOWN
if the processor is unable to determine if read is one of the allowed ac-
tions for the file.

readwrite The value returned is YES if input and output are allowed for the file,
NO if input and output are not both allowed for the file, or UNKNOWN if
the processor is unable to determine if input and output are allowed
for the file.

recl The integer value returned is the maximum record length of the file.
For a formatted file, the length is in characters. For an unformatted file,
the length is in processor-dependent units. If the file does not exist, the
specified variable becomes undefined.

sequential The value returned is YES if sequential access is an allowed method, NO
if sequential access is not an allowed method, or UNKNOWN if the proces-
sor does not know if sequential access is allowed.

stream The value returned is YES if stream access is an allowed method, NO if
stream access is not an allowed method, or UNKNOWN if the processor
does not know if stream access is allowed.

unformatted The value returned is YES if unformatted input/output is permitted for
the file, NO if unformatted input/output is not permitted for the file, or
UNKNOWN if the processor cannot determine if unformatted input/output
is permitted for the file.

write The value returned is YES if write is one of the allowed actions for the
file, NO if write is not one of the allowed actions for the file, or UNKNOWN
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if the processor is unable to determine if write is one of the allowed
actions for the file.

Table of Values Assigned by inquire

Table 11-1 indicates the values assigned to the various variables by the execution of an
inquire statement.

Table 11-1   Values assigned by the inquire statement

Inquire by file Inquire by unit

Specifier Unconnected Connected Connected Unconnected

access UNDEFINED SEQUENTIAL or DIRECT UNDEFINED

action UNDEFINED READ, WRITE, or READWRITE UNDEFINED

asynchronous UNDEFINED YES or NO UNDEFINED

decimal UNDEFINED COMMA, POINT, or UNDEFINED UNDEFINED

direct UNKNOWN YES, NO, or UNKNOWN UNKNOWN

encoding UTF-8, 
UNKNOWN,or 

other

UTF-8, UNDEFINED, or 
UNKNOWN

UNKNOWN

exist True if file exists,
false otherwise

True if unit exists,
false otherwise

form UNDEFINED FORMATTED or UNFORMATTED UNDEFINED

formatted UNKNOWN YES, NO, or UNKNOWN UNKNOWN

iolength recl value for output-item-list

iomsg Error message or unchanged Unchanged

iostat 0 for no error, a positive integer for an error

name Filename (may not be same as 
file=value)

Filename if 
named, else 
undefined

Undefined

named True True if file 
named, false 

otherwise

False

nextrec Undefined If direct access, next record #; else 
undefined

Undefined

number 1 Unit number 1

opened False True False
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11.7 File Positioning Statements

Execution of a data transfer usually changes the position of a file. In addition, there are
three statements whose main purpose is to change the position of a file. Changing the
position backwards by one record is called backspacing. Changing the position to the
beginning of the file is called rewinding. The endfile statement writes an endfile
record and positions the file after the endfile record.

The syntax of the file positioning statements is

backspace ( position-spec-list )
rewind ( position-spec-list )
endfile ( position-spec-list )

A position specification may be either of the following:

unit= external-file-unit
iostat= scalar-default-int-variable
iomsg= scalar-default-char-variable

Examples of file positioning statements are

backspace (unit=18, iostat=status)
rewind (unit=input_unit)
endfile (unit=11, iostat=ierr, iomsg=endfile_error_message)

Rules and restrictions for file positioning statements:

pos Undefined value Stream file position or undefined 
value

Undefined value

position UNDEFINED REWIND, APPEND,
ASIS, or UNDEFINED

UNDEFINED

read UNKNOWN YES, NO, or UNKNOWN UNKNOWN

readwrite UNKNOWN YES, NO, or UNKNOWN UNKNOWN

recl Undefined If direct access, record length; else 
maximum record length

Undefined

sequential UNKNOWN YES, NO, or UNKNOWN UNKNOWN

stream UNKNOWN YES, NO, or UNKNOWN UNKNOWN

unformatted UNKNOWN YES, NO, or UNKNOWN UNKNOWN

write UNKNOWN YES, NO, or UNKNOWN UNKNOWN

Table 11-1  (Continued)   Values assigned by the inquire statement
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1. The backspace, rewind, and endfile statements may be used only to position ex-
ternal files.

2. The external file unit number is required.

3. The files must be connected for sequential access.

The backspace Statement

Execution of a backspace statement causes the file to be positioned before the current
record if there is a current record, or before the preceding record if there is no current
record. If there is no current record and no preceding record, the position of the file is
not changed. If the preceding record is an endfile record, the file becomes positioned
before the endfile record. If a backspace statement causes the implicit writing of an
endfile record and if there is a preceding record, the file becomes positioned before the
record that precedes the endfile record.

If the file is already at its initial point, a backspace statement does not affect it.
Backspacing over records written using list-directed formatting is prohibited.

The rewind Statement

A rewind statement positions the file at its initial point. Rewinding has no effect on the
position of a file already at its initial point.

The endfile Statement

The endfile statement writes an endfile record and positions the file after the endfile
record. Writing records past the endfile record is prohibited. After executing an end-
file statement, it is necessary to execute a backspace or a rewind statement to posi-
tion the file before the endfile record prior to reading or writing the file.

11.8 Formatting

Data usually are stored in memory as the values of variables in some binary form. For
example, the integer 6 may be stored as 0000000000000110, where the 1s and 0s repre-
sent bits. On the other hand, formatted data records in a file consist of characters.
Thus, when data are read from a formatted record, it must be converted from charac-
ters to the internal representation, and when data are written to a formatted record, it
must be converted from the internal representation into a string of characters. A for-
mat specification provides the information needed to determine how these conver-
sions are to be performed. The format specification is basically a list of edit descriptors
that describe the format for the values in the input/output list.



11.8 Formatting 313

A format specification is written as a character string or more complicated charac-
ter expression. The expression, when evaluated, must be a valid format specification.
Using these methods is called explicit formatting.

There is also list-directed formatting. Formatting (that is, conversion) occurs with-
out specifically providing the editing information usually contained in a format speci-
fication. In this case, the editing or formatting is implicit. List-directed editing, also
called “default formatting”, is explained below.

Some rules and restrictions pertaining to format specifications are:

1. If the expression is a character array, the format is derived in array element order.

2. If the expression is an array element, the format must be entirely contained within
that element.

Format Specifications

The items that make up a format specification are edit descriptors, which may be data
edit descriptors or control edit descriptors. Each data list item must have a corre-
sponding data edit descriptor; other descriptors control spacing, tabulation, etc.

Each format item has one of the following forms:

[ r ] data-edit-desc
control-edit-desc
[ r ] ( format-item-list )
* ( format-item-list )

where r is an integer literal constant called a repeat factor; it must be a positive integer
with no kind parameter value. The asterisk (*) indicates an unlimited format item list,
which behaves essentially as a very large number.

Examples:

read (unit=*, fmt="(5e10.1, i10)") max_values, k
print "(a, 2i5)", "The two values are: ", n(1), n(2)

The data edit descriptors have the forms shown in Table 11-2, where w specifies the
width of the field, m the minimum number of digits written, d the number of decimal
places, and e the number of digits in the exponent. There are other edit descriptors that
have functionality that duplicates those given in the table.

Table 11-2  Data edit descriptors

Descriptor Data type

i w [ . m ] Decimal integer

f w . d Real, positional form

es w . d [ e e ] Real, scientific form

en w . d [ e e ] Real, engineering form
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w, m, d, and e must be integer literal constants with no kind parameter. w must be
nonnegative for the i and f edit descriptors; it must be positive for the es, l, and a edit
descriptors. e must be positive. d and m must be nonnegative. The values of m, d, and e
must not exceed the value of w.

When w is not zero, it designates the width of the field in the file, that is, the num-
ber of characters transferred to or from the file. When w is zero, the value is printed in
the smallest field in which it fits. Also, as explained in the description of each edit de-
scriptor, m is the number of digits in the number field, d is the number of digits after
the decimal point, and e is the number of digits in the exponent.

For derived-type editing, the optional type and args are passed to a subroutine per-
forming the data transfer.

The control edit descriptors have the forms shown in Table 11-3. n is a positive in-
teger literal constant with no kind parameter.

Formatted Data Transfer

When formatted data transfer is taking place, the next item in the input/output list is
matched with the next data edit descriptor to determine the form of conversion be-
tween the internal representation of the data and the string of characters in the format-
ted record. Before this matching process occurs, the input/output list is considered to

l w Logical

a [ w ] Character (“alphabetic”)

dt [ type [ ( args ) ] ] Derived type

Table 11-3 Control Edit Descriptors

Descriptor Function

t n Tab to position n

tl n Tab left n positions

tr n Tab right n positions

[ n ] / Next record

: Stop formatting if i/o list is exhausted

s Default printing of plus sign

sp Print plus sign

ss Suppress plus sign

dc Decimal point symbol is a comma

dp Decimal point symbol is a period

Table 11-2  (Continued)  Data edit descriptors

Descriptor Data type
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be expanded by writing out each element in an array and each component in a struc-
ture, unless a dt edit descriptor matches the structure. Analogously, the repeated edit
descriptors are considered to be expanded, and the whole specification is considered to
be repeated as often as necessary to accommodate the entire list, as explained below re-
garding the use of parentheses. Let us take an example:

print "(i5, 2(i3, tr1, i4), i5)", i, n(1:4), j

The expanded input/output list would be

i, n(1), n(2), n(3), n(4), j

and the expanded list of edit descriptors would be

i5, i3, tr1, i4, i3, tr1, i4, i5

As the formatting proceeds, each input/output list item is read or written with a
conversion as specified by its corresponding data edit descriptor. Note that complex
data type items require two real data edit descriptors. The control edit descriptors af-
fect the editing process at the point they occur in the list of edit descriptors.

An empty format specification such as ( ) is restricted to input/output statements
without a list of items. The effect is that no characters are read or written.

Control edit descriptors do not require a corresponding data item in the list. When
the data items are completely processed, any control edit descriptors occurring next in
the expanded list of edit descriptors are processed and then the formatting terminates.

Parentheses in a Format Specification

The action indicated by encountering a right parenthesis in a format specification de-
pends on the nesting level. The rules are:

1. When the rightmost right parenthesis is encountered and there are no more data
items, input/output terminates.

2. When the rightmost right parenthesis is encountered and there are more data
items, the format is searched backward first until a right parenthesis is encoun-
tered, then back to the matching left parenthesis. If there is no other right paren-
thesis except the outermost one, format control reverts to the left parenthesis at the
beginning of the format specification. A slash edit descriptor is considered to occur
after processing the rightmost right parenthesis and before processing the left pa-
renthesis.

3. If there is a repeat factor or asterisk encountered to the left of the left parenthesis,
the repeat before the parenthesis is reused.

4. Sign control is not affected. It remains in effect until another sign edit descriptor is
encountered.

This process is illustrated by the following two cases:
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print "(a, i5)", "x", 1, "y", 2, "z", 3

is equivalent to

print "(a, i5, /, a, i5, /, a, i5)", "x", 1, "y", 2, "z", 3

and

print "(a, (i5))", "x", 1, 2, 3

is equivalent to

print "(a, i5, /, i5, /, i5)", "x", 1, 2, 3

An unlimited format list and the colon (:) edit descriptor provide a way to print a
comma-separated list; the colon prevents printing a comma after the last number.

program unlimited_format

   implicit none

   integer, dimension(:), allocatable :: A
   integer :: n, i

   print *, "Enter a number"
   read *, n
   A = [ (i, i = 1, n) ]

   print "(a, *(i0, :, "","", tr1))", "A = ", A

end program unlimited_format

 Enter a number
6
A = 1, 2, 3, 4, 5, 6

Numeric Editing

The edit descriptors that cover numeric editing are i, f, en, and es. The following rules
apply to all of them.

On input:

1. Leading blanks are not significant.

2. Within a field, blanks are ignored.

3. Plus signs may be omitted in the input data.

4. In numeric fields that have a decimal point and correspond to f, en, or es edit de-
scriptors, the decimal point in the input field overrides placement of the decimal
point indicated by the edit descriptor.
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5. There must be no kind parameter in the input data.

On output:

1. A positive or zero internal value may have a plus sign, depending on the sign edit
descriptors used.

2. The number is right justified in the field. Leading blanks may be inserted.

3. If the number or the exponent is too large for the field width specified in the edit
descriptor, the output field is filled with asterisks. The processor must not produce
asterisks when elimination of optional characters (such as the optional plus sign in-
dicated by the sp edit descriptor) will allow the output to fit into the output field.

Integer Editing

The integer edit descriptor is

i w [. m ]

w is the field width unless w = 0, in which case the minimal necessary field width
is used; m is the least number of digits to be output. m has no effect on an input field.
If m is omitted, its default value is 1. The value of m must not exceed the value of w un-
less w = 0. Leading zeros pad an integer field to the value of m. The field on output
consists of an optional sign and the magnitude of the integer number without leading
zeros, except in the case of padding to the value of m. All blanks are output only if the
magnitude is zero and m = 0.

Input: The character string in the file must be an optionally signed integer constant.
Output: The field consists of leading blanks, followed by an optional sign, followed

by the unsigned value of the integer. At least one digit must be output unless m is 0
and the output value is 0.

Example:

read (unit=15, fmt="(i5, i8)") i, j

If the input field is

bbb2401110107

i is read using the integer i5 edit descriptor and j is read with a i8 edit descriptor.
The resulting values of i and j are 24 and 1,110,107, respectively.

Example:

integer :: i
integer, dimension(4), parameter :: ik = [2, 1, 0, 0]
character(len=*), parameter :: &
     i_format = "(a, i3, a, i3.3, a, i0, a, i0.0, a)"
print i_format, "|", (ik(i), "|", i=1,4)

produces the line of output:
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|  2|001|0| |

Real Editing

The forms of the edit descriptors for real values are

fw.d
esw.d [ee ]
enw.d [ee ]

The f Edit Descriptor

If w > 0, f editing converts to or from a string of w digits with d digits after the decimal
point. d must not be greater than w. The number may be signed. If w = 0, the value is
printed using the smallest field width possible; w may not be 0 for input.

Input: If the input field contains a decimal point, the value of d has no effect. If
there is no decimal point, a decimal point is inserted in front of the rightmost d digits.
There may be more digits in the number than the processor can use. On input, the
number may contain an e indicating an exponent value.

Output: The number is an optionally signed real number with a decimal point,
rounded to d digits after the decimal point. If the number is less than one, the proces-
sor may place a zero in front of the decimal point. At least one zero must be output if
no other digits would appear. If the number does not fit into the output field, the entire
field is filled with asterisks.

Example:

read (unit=12, fmt="(f10.2, f10.3)") x, y

If the input field is

bbbb6.42181234567890

the values assigned to x and y are 6.4218 and 1234567.89, respectively. The value of d
(indicating two digits after the decimal point) is ignored for x because the input field
contains a decimal point.

Example:

real :: price = 473.25
print "(a, f0.2)", "The price is $", price

produces the output

The price is $473.25

The es Edit Descriptor

es is the exponential form scientific edit descriptor.
Input: The form is the same as for f editing.
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Output: The output of the number is in the form of scientific notation; 1 
|mantissa| < 10, except when the output value is 0.

Example:

write (unit=*, fmt="(es12.3)") b

The form of the output field is

[ ± ] y.x1x2 ... xd exp

where y is a nonzero digit and exp is a signed integer; the sign must be present in the
exponent.

Examples of output using the es edit descriptor are found in Table 11-4.

The en Edit Descriptor

en is the engineering form scientific edit descriptor.
Input: The form is the same as for f editing.
Output: The output of the number is in the form of engineering notation; 1  |man-

tissa| < 1000, except when the output value is 0. The exponent is a multiple of 3.
Example:

write (unit=output_unit, fmt="(en12.3)") b

The form of the output field is

[ ± ] y.x1x2 ... xd exp

where y is a one-, two-, or three-digit integer and exp is a signed integer that is a mul-
tiple of 3; the sign must be present in the exponent.

Examples of output using the en edit descriptor are found in Table 11-5.

Table 11-4 Examples of output using the es edit descriptor

Internal value Output field using ss, es12.3

6.421  6.421E+00

.5 5.000E-01

0.0217  2.170E-02

4721.3  4.721E+03

Table 11-5 Examples of output using the en edit descriptor

Internal value Output field using ss, en12.3

6.421  6.421E+00
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Complex Editing

Editing of complex numbers requires two real edit descriptors, one for the real part
and one for the imaginary part. Different edit descriptors may be used for the two
parts. Data read for a complex quantity is converted by the rules of conversion for as-
signment to complex. Other controls and characters may be inserted between the spec-
ification for the real and imaginary parts.

Example:

complex, dimension(2) :: cm
read (unit=*, fmt="(4es7.2)") cm(:)
write (unit=*, fmt="(2 (f7.2, a, f7.2, a))")  &
   real(cm(1)), " + ", aimag(cm(1)), "i ",  &
   real(cm(2)), " + ", aimag(cm(2)), "i "

If the input record is

bb55511bbb2146bbbb100bbbb621

the values assigned to cm(1) and cm(2) are 555.11+21.46i and 1+6.21i, respectively, and
the output record is

b555.11b+bbb21.46ibbbb1.00b+bbbb6.21ib

Logical Editing

The edit descriptor used for logical editing is

lw

w is the field width.
Input: The input field for a logical value consists of any number of blanks, followed

by an optional period, followed by t or f, either uppercase or lowercase, followed by
anything. Valid input fields for true include t, True, .TRUE., .T, and
thursday_afternoon, although the last is poor practice.

Output: The output field consists of w 1 leading blanks, followed by T or F.
Example:

write (unit=a_unit, fmt="(2l7)") l1, l2

.5 500.000E-03

0.0217  21.70E-03

4721.3  4.721E+03

Table 11-5  (Continued) Examples of output using the en edit descriptor

Internal value Output field using ss, en12.3
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If l1 and l2 are true and false, respectively, the output record will be

bbbbbbTbbbbbbF

Character Editing

The edit descriptor for character editing is

a [ w ]

w is the field width measured in characters. If w is omitted, the length of the data object
being read in or written out is used as the field width. Let len be the length of the data
object being read or written.

Input: If w is greater than len, the rightmost len characters in the input field are
read. If w is less than len, the input is padded with blanks on the right.

Output: If w is greater than len, blanks are added on the left. If w is less than len, the
leftmost w characters will appear in the output field. Unlike numeric fields, asterisks
are not written if the data does not fit in the specified field width.

Example:

character(len=*), parameter :: slogan="Save the river"
write (unit=*, fmt="(a)") slogan

produces the output record

Savebthebriver

Derived-Type Editing

Derived-type editing is described in 9.5.

Position Editing

Position edit descriptors control tabbing left or right in the record before the next list
item is processed. The edit descriptors for tabbing are:

tn tab to position n
tln tab left n positions
trn tab right n positions

n must be an unsigned integer constant with no kind parameter.
The tn edit descriptor positions the record just before character n, so that if a char-

acter is put into or taken from the record, it will be the nth character in the record. trn
moves right n characters. tln moves left n characters.

If, because of execution of a nonadvancing input/output statement, the file is posi-
tioned within a record at the beginning of an input/output statement, left tabbing may
not position that record any farther left than the position of the file at the start of the
input/output operation.
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Input: The t descriptor may position either forward or backward. A position to the
left of the current position allows input to be processed twice.

Output: The positioning does not transmit characters and does not by itself cause
the record to be shorter or longer. Positions that are skipped are blank filled, unless
filled later in the processing. A character may be replaced by the action of subsequent
descriptors, but the positioning descriptors do not carry out the replacement.

Examples: if x = 12.66 and y = 8654.123,

print "(f9.2, tr6, f9.3)", x, y

produces the record

bbbb12.66bbbbbb-8654.123

print "(f9.2, t7, f9.3)", x, y

produces the record

bbbb12-8654.123

Slash Editing

The current record is ended when a slash is encountered in a format specification. The
slash edit descriptor consists of the single slash character ( / ).

Input: If the file is connected for sequential access, the file is positioned at the be-
ginning of the next record. The effect is to skip the remainder of the current record. For
direct access, the record number is increased by one. A record may be skipped entirely
on input.

Output: If the file is connected for sequential access, the file is positioned at the be-
ginning of a new record. For direct access, the record number is increased by one, and
this record becomes the current record. An empty record is blank filled.

Example: if a = 1.1, b = 2.2, and c = 3.3,

print "(f5.1, /, 2f6.1)", a, b, c

produces two records:

bb1.1
bbb2.2bbb3.3

Colon Editing

The colon edit descriptor consists of the single colon character (:).
If the list of items in the formatted read or write statement is exhausted, a colon

stops format processing at that point. It has no effect if there is more data.
Example:

fmt_spec = "(3(f3.1, :, /))"
write (unit=*, fmt=fmt_spec) a, b, c
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produces only three records

1.1
2.2
3.3

The slash edit descriptor causes only three records to be output because the output list
is exhausted when the colon edit descriptor is processed the third time. Without the co-
lon edit descriptor, the output above would be followed by a blank line.

Sign Editing

Sign editing applies to numeric fields only; it controls the printing of the plus sign. It
only applies to output. The sign edit descriptors are

s optional plus is processor dependent
sp optional plus must be printed
ss optional plus must not be printed

The s edit descriptor indicates that the printing of an optional plus sign is up to the
processor; it is the default. sp indicates that an optional plus sign must be printed. ss
indicates that an optional plus sign must not be printed. The occurrence of these de-
scriptors applies until another one (s, sp, ss) is encountered in the format specification.

Example: if x(1) = 1.46 and x(2) = 234.1217,

write (unit=*, fmt="(sp, 2f10.2)") x(1:2)

produces the record

bbbbb+1.46bbb+234.12

Decimal Symbol Editing

The edit descriptor dp indicates that a period is to be used for a decimal point in nu-
meric input/output; dc indicates that a comma should be used. dp is the default.

print "(dc, f8.2)", 6666.22

produces the output

b6666,22

Exercise

1. Print out the message returned by iomsg when attempting to read 1.23 (that is a
period between the 1 and 2) with an f4.2 edit descriptor and the decimal option
set to comma, either by using the decimal specifier or the dc edit descriptor.
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List-Directed Formatting

List-directed formatting, also called default formatting, is selected by using an aster-
isk (*) in place of an explicit format specification in a read, write, or print statement.
List-directed editing occurs based on the type of each list item.

Example:

read (unit=input_unit, fmt=*) a, b, c

Some rules and restrictions relating to list-directed formatting are:

1. List-directed formatting cannot be used with direct access or nonadvancing in-
put/output.

2. The record consists of values and value separators.

3. If there are no list items, an input record is skipped or an output record that is
empty is written.

Values: The values allowed are

null a null value as in ,, (no value between separators)
c an unsigned literal constant without a kind parameter
r*c r repetitions of the constant c
r* r repetitions of the null value

where r is a string of digits.
Separators: The separators allowed are

, a comma, optionally preceded or followed by contiguous blanks
; instead of a comma, if the edit descriptor DC is in effect
/ a slash, optionally preceded or followed by contiguous blanks

one or more blanks between two nonblank values

Input: Input values generally are accepted as list-directed input if they are accepted
in explicit formatting with an edit descriptor. There are some exceptions. They are

1. The type must agree with the next item in the list.

2. Embedded blanks are not allowed, except within a character constant and around
the comma or parentheses of a complex constant.

3. Complex items in the list include the parentheses for a complex constant. They are
not treated as two reals, as is done with data edit descriptors. Blanks may occur be-
fore or after the comma. An example is

(1.2, 5.666)

4. Logical items must not use value separators as the optional characters following
the t or f.
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5. Character constants must be delimited by quotes. When a character constant is
continued beyond the current record, the end of the record must not be between
any quotes that are doubled to indicate a quote in the character string. Value sepa-
rators may be representable characters in the constant.

6. If len is the length of the next input list item, w is the length of a character constant
in the input, and if

len  w the leftmost len characters of the constant are used
len > w the w characters of the constant are used and

     the field is blank filled on the right

Null values: A null value is encountered if

1. there is no value between separators

2. the record begins with a value separator

3. the r* form is used.

Rules and restrictions:

1. An end of record does not signify a null value.

2. The null value does not change the next list item; however, the following value will
be matched with the following list item.

3. In complex number input, the entire constant may be null, but not one of the parts.

4. If a slash terminates the input, the rest of the list items are treated as though a null
value had been read. This applies to the remaining items in an array.

Example:

real x(4)
read (unit=5, fmt=*) i, x(:)

If the input record is

b6,,2.418 /

the result is that i = 6, x(1) is unchanged, and x(2) = 2.418. x(3) and x(4) are un-
changed.

Output: List-directed output uses the same conventions that are used for list-direct-
ed input. There are a few exceptions that are noted below for each of the intrinsic
types. Blanks and commas are used as separators except for certain character constants
that may contain a separator as part of the constant. The processor begins new records
as needed, at any point in the list of output items. A new record does not begin in the
middle of a number, except that complex numbers may be separated between the real
and the imaginary parts. Very long character constants are the exception; they may be
split across record boundaries. Slashes and null values are never output. Each new
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record begins with a blank for printing control, except for continued delimited charac-
ter constants. The processor has the option of using the repeat factor, r*c.

Integer: The effect is as though a suitable iw edit descriptor were used.
Real: The effect is as though an f or an es edit descriptor were used, except that for

es form output the first significant digit is just right of the decimal point instead of to
its left. The output result depends on the magnitude of the number, and the processor
has some discretion in this case.

Complex: The real and imaginary parts are enclosed in parentheses and separated
by a comma (with optional blanks surrounding the comma). If the length of the com-
plex number is longer than a record, the processor may separate the real and imagi-
nary parts on two records.

Logical: List-directed output prints T or F depending on the value of the logical data
object.

Character: Character constants are output as follows:

1. Character constants are not delimited by quotes.

2. Character constants are not surrounded by value separators.

3. Only one quote is output for each quote embedded in the character constant.

4. A blank is inserted in new records for a continued character constant.



Object-Oriented Programming 12
Object-oriented programming is a programming style that, as its name implies, places
emphasis on the objects or data in a program. More traditional Fortran programming
tends to emphasize the process or procedures of a program, rather than the data. It
takes a long time to become a true object-oriented programmer—it takes a rather dif-
ferent way of looking at the whole task of programming. This will not be accomplished
by studying this one chapter of a book, but what we can do is cover the Fortran lan-
guage features that assist in object-oriented programming and see how they can be
used in a few examples.

12.1 Extended Data Types

One of the characteristics of data in many programs is that there are data types that are
different yet have many properties in common. For example, if a graphics program
deals with objects that are lines to be drawn on a plane (a screen), all of the objects
have a position given by the coordinates of the two end points, but they might differ in
that some may have a direction and others a color. In Fortran, it is possible to define a
base derived type that has the properties common to a collection of data types. This
type might be called line_type, for example. This type can be extended to other types,
such as painted_line_type or vector_type and these new data types may inherit all
of the properties assigned to line_type, but add other properties such as r, g, and b to
specify the red, green, and blue components or the color for a line with color and di-
rection for a vector.

The following code illustrates how these derived types are defined. First the base
type line_type is defined. All the derived types have a name that ends with type in
order to serve as a reminder that these are names of types, not variables. The types
have the public attribute because it is assumed that they will be in a module and be
accessible by programs that use the module.

type, public :: line_type
   real :: x1, y1, x2, y2
end type line_type

type, public, extends(line_type) :: painted_line_type
   integer :: r, g, b   ! Values each 0-100
end type painted_line_type
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type, public, extends(line_type) :: vector_type
   integer :: direction  ! 0 not directed, 1 toward (x1, y1) or 2
end type vector_type

An object vv of type vector_type inherits the components of the type line_type
and so has five components: x1, y1, x2, y2, and direction. They are referenced as
vv%x1, vv%y1, vv%x2, vv%y2, and vv%direction.

The three derived types constitute a class; the name of the class is the name of the
base type line_type.

The effect of defining these extensible types could be achieved without extensibili-
ty as follows. First, define the type line_type as above. Then define the vector_type
as:

type, public :: vector_type
   type(line_type) :: line
   integer :: direction
end type vector_type

and similarly for the painted_line type.
Now, if vv is declared to be type vector_type, it still has five components, but

they are referenced as vv%line%x1, vv%line%y1, etc., and vv%direction. Although it is
a minor inconvenience to have to refer to the components with a slightly longer name,
the feature of extensible types would not be in the language if that were its only advan-
tage. The real power of extensible types becomes apparent when dealing with a vari-
able that can assume values of different data types (either a painted_line or a vector,
for example). Such variables are called polymorphic.

Exercises

1. The type person_type was defined in 6.2. The components of this type are suitable
for recording personal information about your friends or colleagues. Extend this
type to a type employee_type by adding components suitable for recording infor-
mation in a business environment. Possibilities are phone extension, mail stop, and
employee identification number. Do not add a component for salary.

2. Extend the employee_type in Exercise 1 to two data types, salaried_worker_type
and hourly_worker_type. In the former, include the component weekly_salary
and in the latter include the components hourly_wage, overtime_factor, and
hours_worked.

12.2 Polymorphism

A real variable in a Fortran program may assume different values at different times
when the program is executing. It is also possible that a variable assumes different
types at different times. Such a variable is called polymorphic (poly—many,
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morph—form). For example, it may be desirable to have a variable line that is at one
time a painted line and, later in the program, a vector. Such a variable is declared with
the keyword class instead of type. A polymorphic object is dynamic by nature and so
must be declared to have either the allocatable or pointer attribute.

class(line_type), allocatable :: line

This variable may be assigned a value that is a plain line, a painted line, or a vector.
For example

line = vector_type(1.1, 2.2, 4.4, 5.5, 2)

 Note: In Fortran 2003 it was a rule that a polymorphic variable may not appear on
the left side of an assignment statement; this rule was still enforced by most compilers
at the time of publication of this book. However, since polymorphic variables are dy-
namic, they also may be created and assigned a value with the allocate statement. For
example

allocate (line, source=vector_type(1.1, 2.2, 4.4, 5.5, 2))
   ! a vector from (1.1., 2.2) to (4.4, 5.5)

Suppose we now want to define a type of line with both color and direction. It
might seem that we could create a type that extends both painted_line_type and
vector_type, but this multiple inheritance is not allowed in Fortran. The best solution
is probably to extend the vector type to one that includes both the direction and the
color. Since a direction equal to 0 indicates no direction, this type includes all the infor-
mation needed and the painted_line_type can be ignored.

type, public, extends(vector_type) :: fancy_line_type
   integer :: r, g, b
end type fancy_line_type

If the variable fancy_line is declared by

class(line_type), allocatable :: fancy_line

it has all of the line components discussed so far—end points, color, and direction. It
can be set to represent an undirected blue line along the x-axis with one end at the or-
igin by the statement

fancy_line = fancy_line_type(0.0, 0.0, 0.0, 1.1, 0, 0, 0, 100)

12.3 Procedures and Derived Types

In keeping with the idea of focusing more on the data in a program, it is possible to as-
sociate a procedure with a type. This can be done in two ways: by having a procedure
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(pointer) as a component of a derived type or by having a contains section within a
type definition followed by a procedure.

Type-Bound Procedures

Continuing with our line examples, length provides an example of a type-bound pro-
cedure. Every line in the class line_type has a length. It is convenient to compute the
length of any member of the class line_type with the same function, regardless of the
type of the line. It is possible to achieve this with a generic function, but using a type-
bound procedure means writing just one function, instead of one for each data type.

First, line_type is enhanced by adding the procedure length.

type, public :: line_type
   real :: x1, y1, x2, y2
contains
   procedure, public :: length
end type line_type

Then the function length is defined within the module that also contains the type def-
inition for line_type. It could also be in a submodule as in 8.1.

function length(ab) result(length_result)

   class(line_type), intent(in) :: ab
   length_result = sqrt( (ab%x1-ab%x2)**2 + (ab%y1-ab%y2)**2 )

end function length

Because this procedure occurs within the type definition for line_type, it has a
special property. If x is any variable of class line_type, it can be called by the name
x%length, a notation just like that for selecting a component of x.

class(line_type) :: x
x = vector_type(5.3, 2.7, 6.8, 4.3, 1))
print *, x%length()

Exercises

1. Given an argument that is an array of objects of type employee_type, write a type-
bound procedure that prints the name and identification number of each employee
in the array.

2. Put the definition of the derived types person_type, employee_type,
hourly_worker_type, and salaried_worker_type in a module and add the proce-
dure written in Exercise 1 to the module. Write a main program to test it.
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Procedure Pointer Components

A procedure pointer (10.1) may be a component of a derived type. This allows the pro-
cedure component of different objects of the type to be associated with different proce-
dures, whereas a type-bound procedure is fixed for the type.

type, public :: t
   real :: x
   procedure (f), pointer, nopass :: fp
end type t
   . . .
type (t) :: tp
tp%x = 9.9
tp%fp => g  ! g must be a function with the same interface as f
   . . .
print *, tp%fp(tp%x)

The pass/nopass Attributes

Both procedure components and type-bound procedures have a special property: Un-
less otherwise indicated by using the nopass attribute (see the example immediately
above), whenever the procedure is called, the structure which contains the procedure is
passed as the first argument, without being explicitly written. See the length example
above, in which the function length is called passing x as its argument by writing
x%length(). The default pass attribute is used by the type-bound procedures of the
traffic simulation in the next section. Thus, in the print statement in the example
above, an argument must be provided to the function tp%fp because it has the nopass
attribute.

12.4 Case Study: Traffic Queues

Most of what has been shown so far in this chapter could be accomplished almost as
conveniently without extended types and polymorphism. The heart of this example is
a queue of objects that can individually be of different data types.

Traffic Flow Simulation

Suppose the task at hand is to simulate the flow of traffic on a rectangular grid of
streets. In object-oriented programming, we want to think of the types of data objects
needed first, then determine what operations or procedures are to be performed. Some
possibilities are vehicles, intersection, traffic lanes, pedestrians, and traffic lights. We
will concentrate on vehicles and queues of vehicles at an intersection.
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Vehicles

There are several sorts of vehicles involved in the traffic simulation, so a base type
vehicle_type is needed. This type can be extended to the various types of vehicles in
the class of vehicles.

To define the vehicle class, we need to decide what characteristics of every vehicle
need to be recorded in a variable of the class. This will depend on the requirements of
the simulation, but suppose we need at least its weight, number of wheels, and license
plate number. With this much decided, the type vehicle_type might be defined as fol-
lows. The type definitions and all the procedures in this section will go in a module, so
access should be specified explicitly for everything.

module vehicle_module

   implicit none
   private

   type, public :: vehicle_type
      real :: weight
      integer :: number_of_wheels
      character(len=9) :: license
   end type vehicle_type
      . . .

The next task is to decide which properties of each of the types of vehicles needs to
be recorded. To keep the example fairly simple, we include the carrying capacity of a
truck, a logical component to record whether or not a car is a taxi, and the number of
passengers for a bus. All these type definitions extend the type vehicle_type and will
complete the module vehicle_module.

      . . .
   type, public, extends(vehicle_type) :: car_type
      logical :: is_a_taxi
   end type car_type

   type, public, extends(vehicle_type) :: truck_type
      real :: capacity
   end type truck_type

   type, public, extends(vehicle_type) :: bus_type
      integer :: passengers
   end type bus_type

end module vehicle_module
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Vehicle Queues

A queue is list of objects much like a linked list (10.3), except that the first object
placed in the queue is the first one removed and each object is removed or processed in
the order in which it was placed in the queue.

One of the parts of simulating traffic on a grid will consist of keeping track of the
vehicles that are queued up at each intersection. The grid will have many intersections
and we assume a rectangular grid of two-lane streets, so that each intersection has four
queues. For this example, we will look at just a single queue that will be one building
block of the whole program.

We are going to construct a queue of vehicles—some cars, some trucks, and some
buses. Thus, an object in the queue can be of any of these three types within the class
of vehicles. Without polymorphism, all objects in the queue would have to be the same
type.

The development of the code for a traffic queue could occur in two phases. First,
the general type for a queue could be defined, then a type for a traffic queue could ex-
tend that type. To keep the example reasonable, we will combine these two phases and
construct directly a queue type that represents queues of vehicles.

With a stack, elements are inserted and removed from the same end of the list, so
only one pointer to the top of the stack is needed (10.3). With a queue, an element is in-
serted at one end and deleted at the other end, so if pointers were used to implement
the queue, two pointers would be needed—one to the head of the queue and one to its
tail. To see how things can be done differently, in this example an array is used to rep-
resent the queue; the array is an array of vehicles, which are represented by a polymor-
phic type. In this example the elements of the array are structures containing one
component, which is the derived type. This extra level of indirection is not needed if
polymorphic assignment is available.

The code to process traffic queues is placed in a separate module. First we need
type definitions for a vehicle queue and for each node of the queue. The procedures to
process the queue are bound to the type q_type.

module v_q_module

   use vehicle_module
   implicit none
   private

   type :: node_type
      class(vehicle_type), allocatable :: v
   end type node_type

   type, public :: q_type
      private
      type(node_type), dimension(:), allocatable :: vehicles
   contains
      procedure :: empty, is_empty, insert, remove, print_licenses
   end type q_type
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The next step is to write the procedures that process queues.
To create an empty queue, simply set the array of vehicles to an empty array. Note

that q is declared class(q_type), not type(q_type). This is because it is a passed ar-
gument of the subroutine and a passed argument must be polymorphic. This is also
true of the other procedures in the module.

subroutine empty(q)
   class(q_type), intent(out) :: q
   q%vehicles = [ node_type :: ]
end subroutine empty

The function that tests whether or not a vehicle queue is empty is simple—it tests
if the array of vehicles is size 0.

function is_empty(q) result(is_empty_result)
   class(q_type), intent(in) :: q
   logical :: is_empty_result
   is_empty_result = (size(q%vehicles) == 0)
end function is_empty

The subroutine to insert a vehicle at the end of a queue is almost as simple. Simply
append the vehicle as the last element of the array of vehicles.

subroutine insert(q, dv)
   class(q_type), intent(in out) :: q
   class(vehicle_type), intent(in), allocatable :: dv
   q%vehicles = [ q%vehicles, node_type(dv) ]
end subroutine insert

The remove subroutine sets its argument first to the first vehicle in the queue (if
there is one) and it also has an intent out argument that indicates whether or not a ve-
hicle was found in the queue, that is, whether or not the queue was empty. To remove
the first element of the array, the array is set to the section consisting of elements 2 to
the end of the array.

subroutine remove(q, first, found)
   class(q_type), intent(in out) :: q
   class(vehicle_type), allocatable, intent(out) :: first
   logical, intent(out) :: found
   found = .not. is_empty(q)
   if (.not. found) return  ! Q is empty
   first = q%vehicles(1)%v)
   q%vehicles = q%vehicles(2:)
end subroutine remove

The subroutine print_licenses uses a do loop to print the license number of each
vehicle.

subroutine print_licenses(q)
   class(q_type), intent(in) :: q
   integer :: n
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   do n = 1, size(q%vehicles)
      select type (temp_v=>q%vehicles(n)%v)
         type is (car_type)
            write (unit=*, fmt="(a9)", advance="no") "Car:"
         type is (bus_type)
            write (unit=*, fmt="(a9)", advance="no") "Bus:"
         type is (truck_type)
            write (unit=*, fmt="(a9)", advance="no") "Truck:"
         class default
            write (unit=*, fmt="(a9)", advance="no") "Vehicle:"
      end select
      print *, trim(q%vehicles(n)%v%license)
   end do
end subroutine print_licenses

end module v_q_module

 Note the use of the select type construct; as its name implies, a block of code is
selected for execution based on the type of q%vehicles(n)%v. The select type construct
also would be needed if any component of an extended type that is not a component of
the base type were to be accessed (printed, for example).

Some of the output in this example uses a write statement because the long form
is needed when nonadvancing input/output (11.2) (advance=no) is used. The asterisk
in the print statement (*) designates list-directed or default format, whereas the for-
mat in the write statements is explicit.

This same task could be performed using the procedure remove to get the first ve-
hicle in the queue, then printing the appropriate component and continuing until the
queue is empty. This, of course, destroys the queue, which may not be desirable.

What we have built can be tested with a main program that performs various oper-
ations consisting of inserting, removing, testing, and printing. Polymorphic assignment
was not available for testing, so the allocate statement was used instead.

program test_q
   use vehicle_module
   use v_q_module
   implicit none
   class(vehicle_type), allocatable :: v
   type(q_type) :: q
   logical :: f

   call q%empty()
   print *, "Is Q empty?", q%is_empty()
   allocate (v, source=car_type(2000.0, 4, "C-1455", .false.))
   print *, "Inserting car C-1455"
   call q%insert(v)
   deallocate (v)
   print *, "Is Q empty?", q%is_empty()
   print *, "Printing Q:"
   call q%print_licenses()
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   print *
   allocate (v, source=bus_type(9000.0, 6, "B-6700", 70))
   print *, "Inserting bus B-6700"
   call q%insert(v)
   deallocate (v)
   allocate (v, source=truck_type(9000.0, 18, "T-8800", 20000.00))
   print *, "Inserting truck T-8800"
   call q%insert(v)
   deallocate (v)
   allocate (v, source=bus_type(8000.0, 6, "B-6701", 70))
   print *, "Inserting bus B-6701"
   call q%insert(v)
   deallocate (v)
   print *, "Printing Q:"
   call q%print_licenses()
   print *
   print *, "Removing first vehicle in Q:"
   call q%remove(v, f)
   print *, "Found:", f, trim(v%license)
   print *, "Printing Q:"
   call q%print_licenses()
   print *
   print *, "Removing all vehicles from Q:"
   call q%empty()
   print *, "Printing Q:"
   call q%print_licenses()
   call q%remove(v, f)
   print *,f

end program test_q

The output from this program follows.

 Is Q empty? T
 Inserting car C-1455
 Is Q empty? F
 Printing Q:
     Car: C-1455

 Inserting bus B-6700
 Inserting truck T-8800
 Inserting bus B-6701
 Printing Q:
     Car: C-1455
     Bus: B-6700
   Truck: T-8800
     Bus: B-6701

 Removing first vehicle in Q:
 Found: T C-1455
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 Printing Q:
     Bus: B-6700
   Truck: T-8800
     Bus: B-6701

 Removing all vehicles from Q:
 Printing Q:
 F

We have made a good start toward building some of the objects and procedures
needed for a traffic flow simulation, but we have a long way to go. Other modules with
other data types and procedures can be built upon this work. However, the routines
we have created so far illustrate some of the important concepts of object-oriented pro-
gramming: type extension (inheritance), polymorphism (a queue of objects of different
types), and type-bound procedures.

Exercises

1. Create a data type called traffic_light_type with component color and a sub-
routine change_to that changes the color of the light to the argument of the sub-
routine.

2. Define a data type intersection with components consisting of four traffic
queues and two traffic lights (one for north south traffic and one for east west
traffic).

3. Write a procedure that will change the direction of the green light at an intersec-
tion.

4. Write a procedure that takes an intersection as its argument. For the two traffic
queues facing a green light, remove a random number of from one to four vehicles
from the queues. For the two traffic queues facing a red light, insert a random
number from one to three vehicles into the queues.

5. Use the procedures in Exercises 3 and 4 to simulate traffic at one intersection for
100 steps, each consisting of changing the direction of the light. For one of the traf-
fic queues, compute the average number of vehicles in the queue over the 100
steps. After each 10 steps, print the contents of the queue being averaged to see if
the results are reasonable.

6. Modify the traffic queue program in this section to remove one level of indirection
by defining the type q_type to be

type, public :: q_type
   private
   type(vehicle_type), dimension(:), allocatable :: vehicles
contains
   procedure :: empty, is_empty, insert, remove, print_licenses
end type q_type
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The type node_type is not needed, but modifying the subroutines in the module
requires using polymorphic assignment.

7. Write a program to print the length of each of an array of objects of class
line_type using the declarations and procedures of 12.1. Use the select_type
construct to print the type of the line along with its length.



Coarrays 13
Many modern computers have more than one processing unit. Even an inexpensive
laptop usually has several “cores”. Large computer clusters may have many thousands
of them. The total elapsed running time of a program often can be shortened if differ-
ent parts of the program can run simultaneously on different processing units.

The use of coarrays allows programs to run faster by spreading the computation to
two or more processors. This type of computation is called Single Program Multiple Data
(SPMD).

The purpose of this chapter is to show how to use Fortran coarrays by introducing
some of the basic features.

13.1 Images

In coarray Fortran, each process is called an image. The images are numbered 1, 2, ...,
n.

An important thing to keep in mind is that each image executes the same program.
Because the program code can depend on which image is executing it, the images may
be executing different parts of the program at the same time or executing the same part
of a program at different times.

Each image has its own copy of the program and the data. The program is the
same on each image. The execution of the program may be different on each image.

The number of images might be set at compile, load, or execute time, depending on
the system being used. This is typically controlled by a compiler option or an environ-
ment variable.

The intrinsic function num_images returns the number of images.
The intrinsic function this_image returns the number of the image on which the

code is executing.

13.2 A Simple Program Using Coarrays

Here is a simple example that doesn’t do anything useful, except show how coarrays
work. Its features are explained in the following subsections.
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program hello

   implicit none

   print *, "Hello from", this_image(), &
            "out of", num_images(), "images."

end program hello

The output is

 Hello from           3 out of           4 images.
 Hello from           1 out of           4 images.
 Hello from           2 out of           4 images.
 Hello from           4 out of           4 images.

Varying the Execution on Images

Because the intrinsic function this_image indicates which image the code is executing
on, select case or if constructs may be used to vary the execution on different imag-
es.

program trig

   implicit none
   real :: x = 0.5
   character(len=*), parameter :: &
         fmt = "(a, f0.1, a, f0.5)"

   x = 0.1 + this_image()/10.0

   select case (this_image())
      case (1)
         print fmt, "sine(", x, ") = ", sin(x)
      case (2)
         print fmt, "cosine(", x, ") = ", cos(x)
      case (3)
         print fmt, "tangent(", x, ") = ", tan(x)
   end select

end program trig

The output is

tangent(.4) = .42279
sine(.2) = .19867
cosine(.3) = .95534
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13.3 Coarray Declarations

The trigonometry example illustrates how the different images can execute different
parts of a program and with different data values, but in most realistic cases the data
on one image needs to be accessible on a different image. Declaring something to be a
coarray allows its values on one image to be referenced on another image.

real, dimension(100), codimension[*] :: ca, cb, cd
real :: dimension(0:9, 4:12), codimension[0:*] :: c2
integer, codimension[*] :: n

The first of these declarations indicates that ca, cb, and cd are each arrays with 100
real elements. A copy of each of the arrays will be stored on each image. The codimen-
sion attribute indicates that the values of each array on each image may be accessed by
the other images.

The second statement declares c2 to be a two-dimensional array and a one-dimen-
sional coarray with lower bound 0. The upper bound in the last codimension for each
nonallocatable coarray must be *.

The last declaration indicates that n is a coarray scalar. It is not an array, but its val-
ues on each image my be accessed by the other images. For a nonallocatable scalar, the
codimension is always *.

All dimensions and codimensions for an allocatable array must be :.
The number of dimensions plus the number of codimensions must be less than or

equal to 15.

13.4 Referencing a Value on Another Image

The bracket notation used like an array subscript refers to a value on another image.
Without the bracket, a value refers to the value on the local image.

The presence of the brackets indicates data movement from one image to another
and may indicate a performance penalty. For example, c2(:,:)[3] refers to the entire
array c2 on image 3 and the values of c2 will be copied to the current image.

In the following program, the value of n on image 1 is accessed by image 2 and
stored as the value of n on image 2. 

program ref_image_value

   implicit none

   integer, codimension[*] :: n = -99

   n = this_image()
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   if (this_image() == 2) then
      print *, "Before assignment, n =", n
      n = n[1]
      print *, "After assignment, n =", n
   end if

end program ref_image_value

The output is

 Before assignment, n =           2
 After assignment, n =           1

13.5 The sync all Statement

The sync all statement causes execution on each image to wait at that point in the
computation until all of the images reach that point.

Look again at the previous example, remembering that the program is being exe-
cuted by all images in whatever order they get to the instructions. It is possible, but in
this case not likely, that image 2 will reach the assignment statement

n = n[1]

before n as been given the value of its image on image 1. This is fixed by putting the
statement

sync all

just before the if statement. Then image 2 will not execute the if construct and access
n[1] until it has been set on image 1.

Other examples of the sync all statement occur later in this chapter.

13.6 Input and Output

Each image has its own units and file connections. The default output unit (*) is de-
fined for all images. The default input unit (*) is defined only for image 1. The output
from images is merged in a processor-defined manner; this means that even if output
from the images is controlled to execute in order, the output itself may not appear in a
file in any particular order.
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13.7 Verifying Speedup

The purpose of this section is just to verify that code can be executed on different im-
ages at the same time. To verify this, we do four sorts, first one on each image, then all
four sequentially on one image. The sorting program is an interchange sort, which is
very inefficient. But the efficiency of the sorting algorithm is not important; what is im-
portant is that the same sort is performed each time so that comparing the times makes
sense.

The system_clock Intrinsic Subroutine

The intrinsic subroutine cpu_time was used in 8.2 to time a matrix multiplication pro-
gram. This subroutine is not appropriate for timing a program running on multiple
processors because it records the total time for all processors, whereas it is the elapsed
time that is significant. The intrinsic subroutine system_clock records the system time
elapsed since the beginning of the program.

Testing Simultaneous Execution

The sorts on four images and the four sorts on one image are timed using the
system_clock subroutine on image 1. To time the sort using four images, the system
time is recorded on image 1, then a sort is done on each image, then after a sync all,
image 1 records the system time again and computes and prints the difference. The
sorts performed on one image are done under the control of a test for image 1.

program sort4

   use sort_mod, only: interchange_sort
   implicit none

   integer, parameter :: N = 50000
   integer :: k
   real, dimension(N) :: a
   integer :: start, stop, counts_per_second

   if (this_image() == 1) then
      call system_clock(start, counts_per_second)
   end if

   ! Generate the same set of random numbers on all images
   call random_number(a)
   call interchange_sort(a)
   print *, this_image(), a(1), a(N), all(a(:N-1)<=a(2:))
   sync all

   if (this_image() == 1) then
      call system_clock(stop)
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      print *, "For 4-images, time = ", &
            (stop - start) / counts_per_second, " seconds"
   end if

   if (this_image() == 1) then
      call system_clock(start)
      do k = 1, num_images()
         call random_number(a)
         call interchange_sort(a)
      end do
      call system_clock(stop)
      print *
      print *, "For 4 sorts on 1 image,  time = ", &
            (stop - start) / counts_per_second, " seconds"
      print *, a(1), a(N), all(a(:N-1)<=a(2:))
   end if

end program sort4

The following output shows the times recorded when running the program on an
i5-4440 four-processor system. The printout includes the first and last element of the
array after sorting to verify that the smallest number is close to 0 and the largest is
close to 1. The logical value indicates that the numbers are indeed sorted, as checked
by the all intrinsic function in the print statement. Note that exactly the same num-
bers are sorted on each image, with the same results. The sorting on image 1 does take
about four times as long as using four images.

           3  1.1205208E-05  0.9998947     T
           2  1.1205208E-05  0.9998947     T
           4  1.1205208E-05  0.9998947     T
           1  1.1205208E-05  0.9998947     T
 For 4-images, time =            3  seconds
 
 For 4 sorts on 1 image,  time =           13  seconds
  6.6114590E-06  0.9999950     T

13.8 A More Realistic Sorting Example

What we probably want to do in a more realistic situation is sort one large array by di-
viding up the work between several images. To accomplish this, the first half of the ar-
ray is sorted on image 1, the second half is sorted on image 2, and the two halves of the
array are merged. As before, the interchange sort (not shown) is used.

Here is the function that merges two sorted arrays. At each point in the merging
process, the first elements of each sorted list are compared and the smaller one is se-
lected for inclusion as the next element in the merged list. The process is made a little
more complicated by handling the merge after one of the lists is exhausted.
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module sort_mod
   ! subroutine interchange_sort(a)

   function merge2(a, b) result(m)

      real, dimension(:), intent(in) :: a, b
      real, dimension(size(a)+size(b)) :: m
      integer :: ka, kb, km

      ka = 1; kb = 1; km = 1

      do
         if (ka > size(a)) then
            m(km:) = b(kb:)
            return
         else if (kb > size(b)) then
            m(km:) = a(ka:)
            return
         else if (a(ka) < b(kb)) then
            m(km) = a(ka)
            km = km + 1; ka = ka + 1
         else
            m(km) = b(kb)
            km = km + 1; kb = kb + 1
         end if
      end do

   end function merge2

end module sort_mod

In the program sort2, random numbers are generated, stored in the array a, and
copied into the array b. To do the sort that uses two images, the latter half of a is cop-
ied to image 2; then the first half is sorted on image 1 and the second half is sorted at
the same time on image 2; then the sorted latter half is copied back from image 2 to im-
age 1; then the two halves of the array are merged on image 1.

To compare doing the sort on one image, the same steps are followed, but using
just one image. The two halves are sorted and then merged into one array. This process
must be used because simply using the interchange sort on image 1 to sort the whole
array takes longer and would not be a fair comparison of the methods.

program sort2

   use sort_mod
   implicit none

   integer, parameter :: N = 200000
   real, dimension(N), codimension[*] :: a
   real, dimension(N) :: b
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   integer :: start, stop, counts_per_second

   if (this_image() == 1) then
      call random_seed()
      call random_number(a)
      b = a
      call system_clock(start, counts_per_second)
   end if
   sync all

   if (this_image() == 2) then
      a(N/2+1:) = a(N/2+1:)[1]
   end if
   sync all

   select case (this_image())
      case (1)
         call interchange_sort(a(:N/2))
      case (2)
         call interchange_sort(a(N/2+1:))
   end select
   sync all

   if (this_image() == 1) then
      a(N/2+1:) = a(N/2+1:)[2]
      a = merge2(a(:N/2), a(N/2+1:))
      call system_clock(stop)
      print *, "For 2-image sort,  time = ", &
            (stop - start) / counts_per_second, " seconds"
      print *, a(1), a(N), all(a(:N-1)<=a(2:))
   end if

   if (this_image() == 1) then
      call system_clock(start)
      call interchange_sort(b(:N/2))
      call interchange_sort(b(N/2+1:))
      b = merge2(b(:N/2), b(N/2+1:))
      call system_clock(stop)
      print *
      print *, "For 1-image sort,  time = ", &
            (stop - start) / counts_per_second, " seconds"
      print *, b(1), b(N), all(b(:N-1)<=b(2:))
   end if

end program sort2

Here is the result of running this program. Note that the sorting time using two
images is one-half of the time using one image.
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 For 2-image sort,  time =    14  seconds
  5.8775768E-06  0.9999985     T

 For 1-image sort,  time =    28  seconds
  5.8775768E-06  0.9999985     T

The performance monitor shown in Figure 13-1 provides more proof that execution
is taking place on two of the computer’s processors. It is shown while executing the
program sort2, which was compiled specifying two images. Note that CPUs 1 and 4
are running at 100%, while the other two are almost idle.

Figure 13-1 Performance monitor showing two of four processors busy.

13.9 Compiling a Program with Coarrays

Some compilers may require a special option to compile a program with coarrays. For
example, with Gfortran, it is -fcoarray; with Intel ifort it is -coarray (Linux) or
/Qcoarray (Windows).

13.10 Definition of Coarray

A coarray is an entity declared with the codimension attribute. It is not a coarray if it
has

• a cosubscript

• a vector subscript

• an allocatable component selection.
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• a pointer component selection

A coindexed object has a cosubscript (brackets).
These definitions are important because the rules are different for coarrays and

coindexed objects.

Some Rules and Restrictions

• A coarray may be initialized.

• A coarray must have the save attribute (3.13). This is one more important reason to
put declarations in a module!

• A coarray may not be a parameter (named constant). It would be the same on all
images, so it is unnecessary.

• A coarray may not be a pointer, but it may be a target.

• Coarrays are not C interoperable (8.10).

• A coarray may not be of type c_ptr or type c_funptr.

Images and Cosubscripts

Coarrays are stored on images in the same order as arrays are stored in array-element
ordering. Assume, for example, that there are five images with the declaration

real, codimension [2, *] :: A

Then the correspondence between cosubscripts and images is as follows:

A[1, 1] is stored on image 1
A[2, 1] is stored on image 2
A[1, 2] is stored on image 3
A[2, 2] is stored on image 4
A[1, 3] is stored on image 5

Coindexed Object Rules

A coindex (square brackets) indicates that the value of the object on another image is
accessed.

• There are no co-triplets ; x[1:n] is invalid.

• The cosubscripts must indicate a valid image. For example, if A is declared

real, codimension[2,*] :: A

and the number of images is 5, then A[1,3] on image 5 is valid, but A[2,3] is in-
valid because it would be on image 6, which does not exist.
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Cobounds and Cosubscripts Functions

The following little program illustrates how images and cosubscripts are related. It
uses the intrinsic functions lcobound and ucobound.

program image_fns

   implicit none
   real, codimension[0:1, *] :: C

   if (this_image() == 2) then
      print *, "num_images =", num_images()
      print *, "lower cobounds of C", lcobound(C)
      print *, "upper cobounds of C", ucobound(C)
      print *, "cosubscripts of C on image 2", this_image(C)
   end if

end program image_fns

Running the program produces the following.

 num_images =           4
 lower cobounds of C           0           1
 upper cobounds of C           1           2
 cosubscripts of C on image 2           1           1

Because there are four images and C is declared with codimensions [0:1, *], C is
represented on the four images as follows:

C[0, 1] is on image 1
C[1, 1] is on image 2, hence the cosubscripts of C on image 2 are 1 and 1
C[0, 2] is on image 3
C[1, 2] is on image 4

The cosize of a coarray is the number of images.

13.11 Synchronization

The following cause synchronization of execution of programs on some selection of im-
ages. Some of these statements are discussed later and used in examples.

• sync statements

• lock and unlock statements

• critical and end critical statements (not discussed in this book)

• stop and end program statements
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• allocation and deallocation of a coarray.

The sync all statement was discussed earlier (13.5).
Note that allocatable arrays are deallocated implicitly in several circumstances and

so synchronization may take place at that time.

Syncing Images

The sync images statement causes a select set of images to suspend execution until
other images have reached that point in the execution of the program.

The following program forces four images to execute a piece of code in order of
image number by executing a sync between each image and the image whose number
is one higher.

This program uses a coarray scalar k, which is initialized to 1 on all images, but the
value of k is changed only on image 1. There is also a coarray p, but like k, its values
are changed only on image 1.

To understand how this program works, it is helpful to think first about the execu-
tion by image 1, then image 2, and so forth. For image 1, the first if statement is false,
so the two assignment statements are executed next. They set p(1) to 1 on image 1 and
increment k on image 1 to 2. Then it issues a sync with image 2, so image 1 waits at this
point until image 2 syncs with it.

Meanwhile, image 2 executes the statement that syncs it with image 1, so it waits
until image 1 has executed the assignment statements described above and syncs with
image 2. Then image 1 can continue to the sync all statement and wait for the other
images to reach that point. Image 2 executes the two assignment statements, setting
p(2) to 2 and k to 3 (both on image 1 only).

The execution on images 3 and 4 is similar. After all images reach the sync all
statement, image 1 prints the four values of the array p, which are 1, 2, 3, and 4.

program order_images

   implicit none
   integer :: me, n_i
   integer, codimension[*] :: k = 1
   integer, dimension(4), codimension[*] :: p

   me = this_image()
   n_i = num_images()

   if (me > 1) sync images (me - 1)
      p(k[1])[1] = me
      k[1] = k[1] + 1
   if (me < n_i) sync images (me + 1)

   sync all
   if (this_image() == 1) print *, p

end program order_images
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Syncing with All Other Images

The statement sync images(*) allows one image to synchronize with all of the other
images. Since image 1 often executes code that the other images do not (such as read-
ing input data using unit *), this allows such action to complete before any of the other
images execute code that depends on it. The following shows how images 2 and 3 can
be made to wait until some task performed by image 1 is completed. Note that the
sync images(1) statement is needed for all images other than image 1 so that they will
sync with image 1 as required by image 1’s sync images(*) statement.

program sync_star

   implicit none

   integer, codimension[*] :: cointeger = 99

   select case (this_image())
   case (1)
      cointeger = 10
      sync images (*)
   case (2, 3)
      sync images (1)
      print *, this_image() * cointeger[1]
   case default
      ! Image 1 hangs without this:
      sync images (1)
      print *, cointeger
   end select

end program sync_star

13.12 Allocatable Coarrays

A coarray is declared allocatable by using the keyword allocatable and by making
all dimensions and codimensions a colon (:).

The allocate statement specifies all bounds and cobounds. The last upper co-
bound in the allocate statement must be (*). The allocation on all images must be the
same.

The allocation (and deallocation) causes a synchronization. Everything waits until
the (de)allocation has completed on all images.

No coarray intrinsic assignment is allowed that requires a reallocation.
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13.13 Case Study: Heat Transfer II

A plate has a constant heat source applied to its boundary. What is the steady state
heat condition within the plate? A program to solve this problem illustrated a simple
use of the associate construct in 4.6. This program is a little more general, using param-
eters to specify the size of the plate and allocatable arrays. But the main difference is
that it times the execution of the program and compares it with the execution time for
a program that uses coarrays on four images.

First, various parts of the program are examined. Later the entire program is pre-
sented.

The code to solve this on one image is a little different from the previous version in
that the boundary conditions are not stored in the array representing the plate itself,
but instead are stored in elements surrounding the plate (Figure 13-2). That is, the plate
is considered to have two extra rows and two extra columns. A parameter P represents
the size of the plate (also Q = P/2 will be used in the coarray version).

   integer, public, parameter :: P = 1000, Q = P/2

Figure 13-2 A 10-by-10 plate with a border all around

The part of the program that runs on one image is similar to the example in 4.6, so
only the four-image code is discussed here.

In order to speed up the computation, the plate is divided into quadrants. The iter-
ations needed to solve the heat transfer problem are carried out on each quadrant si-
multaneously on different images.
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Although the computations for each quadrant can be executed independently of
the other quadrants, some parts of the border of each quadrant are cells in an adjacent
quadrant. This is illustrated by looking at the lower-left quadrant (the southwest quad-
rant). The northern border of this quadrant consists of cells in the northwest quadrant
and the eastern border consists of cells in the southeast quadrant. Thus, the values
along the southern border of the northwest quadrant must be copied to the image pro-
cessing the southwest quadrant. This is the shaded area in Figure 13-3.

Figure 13-3 The southwest (SW) quadrant of the plate

Similar declarations are provided for the four-image case, except that there is a
coarray quad representing each of four quadrants of the plate and there is a coarray
scalar diff that keeps track of how the process is converging. Most of this code is in a
module.

module heat_xfer_mod

   implicit none
   private

   integer, public, parameter :: P = 1000, Q = P/2
   real, public, parameter :: tolerance = 1.0e-5
   real, public, dimension(:, :), allocatable :: plate
   real, public, dimension(:, :), codimension[:,:], &
         allocatable, target :: quad
   real, public, dimension(:, :), allocatable :: temp_interior
   real, public, codimension[*] :: diff
   enum, bind(C)
      enumerator :: NW=1, SW, NE, SE 
   end enum
   real, public, pointer, dimension(:,:) :: n, e, s, w, interior
   real, public, allocatable, dimension(:) :: top, bottom, left, right
   integer :: j, image
   integer, public :: n_iter = 0, alloc_stat
   public :: set_boundary_conditions, initialize_quadrants, heat_xfer
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   public :: print_plate

The module procedure set_boundary_conditions allocates the arrays top, left,
right, and bottom and gives them values. A different way to write this code would be
to make these parameters.

contains

subroutine set_boundary_conditions ()

  allocate (top (0:P+1), bottom(0:P+1), &
            left(0:P+1), right (0:P+1), &
            stat = alloc_stat)
  if (alloc_stat > 0) then
     print *, "Allocation of boundary failed on image", &
              this_image()
     stop
  end if

  top = [ 1.0, ( real(j)/P, j = P, 0, -1) ]
  left = 1.0
  right = 0.0
  bottom = 0.0

end subroutine set_boundary_conditions

Another procedure in the module allocates the arrays for each quadrant of the
plate. Remember that this same code will be executed on each image. Q is half of P.

subroutine initialize_quadrants ()

   allocate (quad(0:Q+1, 0:Q+1) [2,*], &
              stat = alloc_stat)
   if (alloc_stat > 0) then
      print *, "Allocation of quadrant failed on image", &
               this_image()
      stop
   end if

   allocate (temp_interior(1:Q, 1:Q), &
             stat = alloc_stat)
   if (alloc_stat > 0) then
      print *, "Allocation of temp interior failed on image", &
               this_image()
      stop
   end if

Next, the boundary values are set for each quadrant. Note that NW, SW, NE, and
SE are simply parameters with values 1, 2, 3, and 4, declared using enumerators (1.2).
The parameter names help to understand the code a little bit better.
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   ! Set up boundaries
   quad = 0.0
   select case (this_image())
      case(NW)
         quad(:,0) = left(:Q+1)
         quad(0,:) = top(:Q+1)
      case(SW)
         quad(:,0) = left(Q:)
         quad(Q+1,:) = bottom(:Q+1)
      case(NE)
         quad(Q+1,:) = right(:Q+1)
         quad(0,:) = top(Q:)
      case(SE)
         quad(Q+1,:) = right(Q:)
         quad(Q+1,:) = bottom(Q:)
   end select

To use the southwest quadrant as the example again, the statement

quad(:,0) = left(Q:)

assigns the lower half of the values on the left edge of the plate to the values on the left
edge of the southwest quadrant and the statement

quad(Q+1,:) = bottom(:Q+1)

assigns values to the bottom of the SW quadrant from the bottom boundary of the
plate.

The heat transfer computation itself consists of updating the quadrant boundaries
and averaging the temperature at each point in the interior. The loop repeats until
there is convergence. This code must use cosubscripts, rather than image numbers.

subroutine heat_xfer()

   heat_xfer_loop: do

      ! Update interior quadrant boundaries
      ! Plate boundaries have not changed
      select case (this_image())
         case(NW)
            quad(Q+1, 1:Q) = quad(1,   1:Q) [2,1] ! S
            quad(1:Q, Q+1) = quad(1:Q, 1  ) [1,2] ! E
         case(SW)
            quad(0,   1:Q) = quad(Q  , 1:Q) [1,1] ! N
            quad(1:Q, Q+1) = quad(1:Q, 1  ) [2,2] ! E
         case(NE)
            quad(Q+1, 1:Q) = quad(1,   1:Q) [2,2] ! S
            quad(1:Q, 0  ) = quad(1:Q, Q  ) [1,1] ! W
         case(SE)
            quad(0,   1:Q) = quad(Q  , 1:Q) [1,2] ! N
            quad(1:Q, 0  ) = quad(1:Q, Q  ) [2,1] ! W
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      end select

For the southwest quadrant, values are copied from the image to the north into its
top boundary, and values are copied from the image to the east into its eastern bound-
ary. The associate construct is used when updating the cells in order to make the code
a little more readable.

   sync all

   associate ( &
         interior => quad(1:Q, 1:Q), &
         n => quad(0:Q-1, 1:Q  ), &
         s => quad(2:Q+1, 1:Q  ), &
         e => quad(1:Q  , 2:Q+1), &
         w => quad(1:Q  , 0:Q-1))

      temp_interior = (n + e + s + w) / 4

      diff = maxval(abs(interior - temp_interior))
      interior = temp_interior
   end associate

   sync all

Synchronization statements are used to make sure the updating and computing are
done in the correct order. Then image 1 checks the maximum of the iteration differenc-
es on the four images and exits the loop if there is convergence.

      if (this_image() == 1) then
         n_iter = n_iter + 1
         do image = 2, num_images()
            diff = max (diff, diff[image])
         end do
      end if
      sync all
      if (diff[1] < tolerance) exit heat_xfer_loop

   end do heat_xfer_loop

end subroutine heat_xfer

end module heat_xfer_mod

The program heat4 uses the procedures in the module to set up the computation,
calls the heat transfer calculation, and sets the final computed values from each quad-
rant in the array plate.

program heat4

   use heat_xfer_mod
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   implicit none
   . . .

   call set_boundary_conditions()
   sync all
   call system_clock(start, counts_per_second)
   call initialize_quadrants()
   sync all
   call heat_xfer()
   sync all
   . . .

   if (this_image() == 1) then
      . . .
      plate(0:Q,  0:Q)  = quad(0:Q,   0:Q  ) [1,1] ! NW
      plate(Q+1:, 0:Q)  = quad(1:Q+1, 0:Q  ) [2,1] ! SW
      plate(0:Q,  Q+1:) = quad(0:Q,   1:Q+1) [1,2] ! NE
      plate(Q+1:, Q+1:) = quad(1:Q+1, 1:Q+1) [2,2] ! SE

  . . 
   end if

end program heat4

This program was run on a Cray XC40 using four images.

 For 4-image solution,  time =  6  seconds

 Number of iterations (4 images): 32836

 For 1-image solution,  time =  37  seconds

 Number of iterations (1 image): 32836

 Max difference between methods: 0.

Changing the parameter P to 10 and printing the plate yields

 1.00 1.00 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00
 1.00 0.95 0.86 0.77 0.67 0.57 0.48 0.38 0.28 0.19 0.09 0.00
 1.00 0.92 0.83 0.74 0.64 0.55 0.45 0.36 0.27 0.18 0.09 0.00
 1.00 0.90 0.81 0.71 0.61 0.52 0.43 0.34 0.25 0.17 0.08 0.00
 1.00 0.89 0.78 0.68 0.58 0.49 0.40 0.31 0.23 0.15 0.08 0.00
 1.00 0.88 0.76 0.65 0.54 0.45 0.36 0.29 0.21 0.14 0.07 0.00
 1.00 0.86 0.72 0.60 0.50 0.41 0.33 0.25 0.18 0.12 0.06 0.00
 1.00 0.83 0.68 0.55 0.44 0.35 0.28 0.21 0.16 0.10 0.05 0.00
 1.00 0.78 0.60 0.47 0.37 0.29 0.22 0.17 0.12 0.08 0.04 0.00
 1.00 0.69 0.49 0.35 0.27 0.20 0.16 0.12 0.08 0.05 0.03 0.00
 1.00 0.50 0.29 0.20 0.14 0.11 0.08 0.06 0.04 0.03 0.01 0.00
 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Here is the complete program.
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module heat_xfer_mod

   implicit none
   private

   integer, public, parameter :: P = 1000, Q = P/2
   real, public, parameter :: tolerance = 1.0e-5
   real, public, dimension(:, :), allocatable :: plate
   real, public, dimension(:, :), codimension[:,:], &
         allocatable, target :: quad
   real, public, dimension(:, :), allocatable :: temp_interior
   real, public, codimension[*] :: diff
   enum, bind(C)
      enumerator :: NW=1, SW, NE, SE 
   end enum
   real, public, allocatable, dimension(:) :: top, bottom, left, right
   integer :: j, image
   integer, public :: n_iter = 0, alloc_stat
   public :: set_boundary_conditions, initialize_quadrants, heat_xfer
   public :: print_plate
   integer, public, parameter :: chunk = 100

contains

subroutine set_boundary_conditions ()

  allocate (top (0:P+1), bottom(0:P+1), &
            left(0:P+1), right (0:P+1), &
            stat = alloc_stat)
  if (alloc_stat > 0) then
     print *, "Allocation of boundary failed on image", this_image()
     stop
  end if

  top = [ 1.0, ( real(j)/P, j = P, 0, -1) ]
  left = 1.0
  right = 0.0
  bottom = 0.0

end subroutine set_boundary_conditions

subroutine initialize_quadrants ()

   allocate (quad(0:Q+1, 0:Q+1) [2,*], &
              stat = alloc_stat)
   if (alloc_stat > 0) then
      print *, "Allocation of quadrant failed on image", &
               this_image()
      stop
   end if
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   allocate (temp_interior(1:Q, 1:Q), &
             stat = alloc_stat)
   if (alloc_stat > 0) then
      print *, "Allocation of temp interior failed on image", &
               this_image()
      stop
   end if

   quad = 0.0
   select case (this_image())
      case(NW)
         quad(:,0) = left(:Q+1)
         quad(0,:) = top(:Q+1)
      case(SW)
         quad(:,0) = left(Q:)
         quad(Q+1,:) = bottom(:Q+1)
      case(NE)
         quad(Q+1,:) = right(:Q+1)
         quad(0,:) = top(Q:)
      case(SE)
         quad(Q+1,:) = right(Q:)
         quad(Q+1,:) = bottom(Q:)
   end select

end subroutine initialize_quadrants

subroutine heat_xfer ()

   integer :: k

   heat_xfer_loop: do

      ! Update interior quadrant boundaries
      ! Plate boundaries have not changed
      select case (this_image())
      case(NW)
         quad(Q+1, 1:Q) = quad(1,   1:Q) [2,1] ! S
         quad(1:Q, Q+1) = quad(1:Q, 1  ) [1,2] ! E
      case(SW)
         quad(0,   1:Q) = quad(Q  , 1:Q) [1,1] ! N
         quad(1:Q, Q+1) = quad(1:Q, 1  ) [2,2] ! E
      case(NE)
         quad(Q+1, 1:Q) = quad(1,   1:Q) [2,2] ! S
         quad(1:Q, 0  ) = quad(1:Q, Q  ) [1,1] ! W
      case(SE)
         quad(0,   1:Q) = quad(Q  , 1:Q) [1,2] ! N
         quad(1:Q, 0  ) = quad(1:Q, Q  ) [2,1] ! W
      end select

      sync all
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      associate ( &
         interior => quad(1:Q, 1:Q), &
         n => quad(0:Q-1, 1:Q  ), &
         s => quad(2:Q+1, 1:Q  ), &
         e => quad(1:Q  , 2:Q+1), &
         w => quad(1:Q  , 0:Q-1))

      temp_interior = (n + e + s + w) / 4

      diff = maxval(abs(interior - temp_interior))
      interior = temp_interior
      end associate

      sync all

      if (this_image() == 1) then
         n_iter = n_iter + 1
         do image = 2, num_images()
            diff = max (diff, diff[image])
         end do
      end if
      sync all
      if (diff[1] < tolerance) exit heat_xfer_loop

   end do heat_xfer_loop

end subroutine heat_xfer

subroutine print_plate(x)

   real, dimension(:,:), intent(in) :: x
   integer :: line

   print *
   do line = 1, size(x, 2)
      print "(1000f5.2)", x(line, :)
   end do

end subroutine print_plate

end module heat_xfer_mod

program heat4

   use heat_xfer_mod
   implicit none

   integer :: start, stop, counts_per_second
   integer :: line
   real, dimension(:,:), allocatable, target :: a
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   real, dimension(:,:), allocatable :: temp

   call set_boundary_conditions()
   sync all
   call system_clock(start, counts_per_second)
   call initialize_quadrants()
   sync all
   call heat_xfer()
   sync all

   if (this_image() == 1) then
      call system_clock(stop)
      print *, "For 4-image solution,  time = ", &
         (stop - start) / counts_per_second, " seconds"

      allocate (plate(0:P+1,0:P+1), stat = alloc_stat)
        if (alloc_stat > 0) then
           print *, "Allocation of plate failed"
           stop
        end if

      plate(0:Q,  0:Q)  = quad(0:Q,   0:Q  ) [1,1] ! NW 
      plate(Q+1:, 0:Q)  = quad(1:Q+1, 0:Q  ) [2,1] ! SW
      plate(0:Q,  Q+1:) = quad(0:Q,   1:Q+1) [1,2] ! NE
      plate(Q+1:, Q+1:) = quad(1:Q+1, 1:Q+1) [2,2] ! SE

      print *
      print *, "Number of iterations (4 images):", n_iter !MPI *100

!     call print_plate(plate) ! Uncomment for debugging
   end if

   if (this_image() == 1) then
      allocate (a(0:P+1,0:P+1), temp(P,P), &
                stat = alloc_stat)
        if (alloc_stat > 0) then
           print *, "Allocation of a or temp failed"
           stop
        end if

      a = 0
      a(0, :) = top
      a(:, 0) = left
      a(:, P+1) = right
      a(P+1:, 0) = bottom

      call system_clock(start)
      n_iter = 0
      associate ( &
         interior => a(1:P, 1:P), &
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         n => a(0:P-1, 1:P  ), &
         s => a(2:P+1, 1:P  ), &
         w => a(1:P,   0:P-1), &
         e => a(1:P,   2:P+1))

      call system_clock(start)
      n_iter = 0
      do
         temp = (n + e + w + s) / 4
         n_iter = n_iter + 1
         diff = maxval(abs(temp - interior))
         interior = temp
         if (diff < tolerance) exit
      end do
      end associate

      call system_clock(stop)
      print *
      print *, "For 1-image solution,  time = ", &
            (stop - start) / counts_per_second, " seconds"

      diff = maxval(abs(plate(1:P, 1:P) - a(1:P, 1:P)))

      print *
      print *, "Number of iterations (1 image):", n_iter

!     call print_plate(a) ! Uncomment to see values for small plate

      print *
      print *, "Max difference between methods:", diff
         
   end if

end program heat4

13.14 Coarray Rules and Restrictions

There are many rules and restrictions involving coarrays. Some of these are described
briefly in the following subsections.

Coarrays and Procedures

• An actual argument may be a coarray or a coindexed object.

• If a dummy argument is a coarray, the actual argument must be a coarray. (A coin-
dexed object is not a coarray!)
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• To invoke a procedure with a coarray dummy argument requires an explicit inter-
face. Put the procedure in a module!

• If a dummy argument is allocatable, the actual argument must be allocatable.

• A dummy argument of an elemental procedure may not be a coarray scalar.

• A function result may not be a coarray.

• A coarray may not be an automatic array.

• A coarray may not be a value or intent out dummy argument.

Coarrays and Pointers

• A coarray may not be a pointer.

• If the target of a pointer is a coarray, both the pointer and the target must be on the
same image. That is, a coarray pointer may not point to a target on a different im-
age.

Derived-Type Coarrays

• A coarray may not have a coarray component.

• A coarray may have a component that is allocatable or a pointer.

• The pointer component of a coarray may have a different status on different imag-
es.

In the following program, the pointer component ptr of s has different targets on
the two images.

program ptr_comp

   implicit none

   real, target :: x = 1.1, y = 2.2
   type :: s_type
      real, pointer :: ptr
   end type s_type
   type (s_type), codimension[*] :: s

   select case (this_image())
   case (1)
      s%ptr => x
      sync images (2)
   case (2)
      sync images (1)
      s%ptr => y
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      print *, s[1]%ptr  ! 1.1
      print *, s%ptr     ! 2.2
   end select

end program ptr_comp

• A derived type coarray may have a type-bound procedure or a component that is a
procedure. In the program bound_mod, the structure t is of derived type t_type,
which has both a procedure component p and a type-bound procedure s2.

module bound_mod

   implicit none
   private

   type, public :: t_type
      procedure(s1), pointer, nopass :: p
   contains
      procedure, nopass :: s2
   end type t_type

   public :: s1, s2

contains

   subroutine s1()
     print *, 1.1
   end subroutine s1

   subroutine s2()
     print *, 2.2
   end subroutine s2

end module bound_mod

program bound

   use bound_mod
   implicit none

   type(t_type), codimension[*] :: t

   t % p => s1
   sync all

   select case (this_image())
   case (1)
      call t%p()
      call t%s2()
      call t[2]%p()
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      call t[2]%s2()
   end select

end program bound

Polymorphic Coarrays

• A coarray may be polymorphic.

• Intrinsic assignment to a polymorphic coarray is not permitted.

• A reference to a procedure component of a polymorphic coarray on another image
is not permitted.

13.15 Case Study: Job Scheduling I

In the heat transfer case study, a single task was to be performed and it could be neatly
and logically divided up between several processors. In other situations, similar, but
perhaps unrelated, jobs need to be run on multiple processors to achieve good perfor-
mance. This is essentially what an operating system must do to schedule all the tasks
assigned to it, such as compiling a Fortran program, executing a program, surfing the
internet, or downloading a file.

In the following program, image 1 creates a schedule of jobs in lists on images 2, 3,
and 4. Then images 2 4 simultaneously execute the jobs on their list.

The subroutine s is a procedure that is to be executed by each of the images. The
tasks they will be assigned consist of executing s with a specified value of the argu-
ment. The subroutine does nothing useful, except illustrate that the task is executed.

module sub_mod
   use, intrinsic :: &
      iso_fortran_env, only: output_unit
   ! . . .
contains
   subroutine s(n)
      integer, intent(in) :: n
      real, dimension(n, n) :: x
      call random_number (x)
      print "(a, i3, a, i3, f6.2)", &
         "Executing job", n, " on image", this_image(), sum(x)
      flush (output_unit)
   end subroutine s
end module sub_mod

The module job_list_mod contains the definition of the derived type job_type,
consisting of some integer data and a procedure pointer whose interface is that of s. It
also contains a procedure add_job that image 1 calls to assign a job and get_job that
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allows the other images to select a job to be executed from their list. Note that
job_list and list_size are coarrays (list_size is a coarray scalar) because image 1
must add to those lists on each image > 1.

module job_list_mod

   use sub_mod
   implicit none
   private

   integer, parameter :: max_list_size = 300
   type, public :: job_type
      integer :: data
      procedure(s), pointer, nopass :: proc 
   end type job_type

   type (job_type), public, &
      dimension(max_list_size), &
      codimension[*] :: job_list
   integer, public, codimension[*] :: list_size

   public :: get_job, add_job

contains

   ! Get job from list on local image
   subroutine get_job(job, empty)

      type(job_type), intent(out) :: job
      logical, intent(out) :: empty

      empty = (list_size == 0)
      if (empty) return
      job = job_list(list_size)
      list_size = list_size - 1

   end subroutine get_job

   ! Put job on list_on specified image
   subroutine add_job(job, image)

      type(job_type), intent(in) :: job
      integer, intent(in) :: image

      if (list_size[image] == max_list_size) then
         print *, "Job list is full on image", image
         stop
      end if
      list_size[image] = list_size[image] + 1
      job_list(list_size[image])[image] = job
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   end subroutine add_job

end module job_list_mod

In the program job_list, image 1 puts some jobs in each job list, spreading them
around by using the modulo function to determine an image number. The sync all
statement causes images 2 and greater to wait until image 1 has built the job lists for all
the images. Then the jobs are executed on each of the images greater than 1.

program job_list

   use sub_mod
   use job_list_mod

   implicit none

   type (job_type) :: job
   integer :: n
   logical :: empty

   list_size = 0
   job%proc => s

   if (this_image() == 1) then
      do n = 1, 10
         job%data = n
         call add_job(job, image =  modulo(n, 4) + 1)
      end do
   end if

   sync all

   ! All images execute jobs on their job list,
   job_loop: do

      call get_job(job, empty)
      if (empty) exit job_loop
      call job%proc(job%data)

   end do job_loop

end program job_list

Running the program produces the following.

Executing job  8 on image  1 33.52
Executing job  9 on image  2 40.97
Executing job  5 on image  2 14.60
Executing job  1 on image  2  0.97
Executing job 10 on image  3 52.25
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Executing job  6 on image  3 19.40
Executing job  2 on image  3  2.50
Executing job  7 on image  4 26.21
Executing job  4 on image  1  7.12
Executing job  3 on image  4  4.41

According to the calculation in subroutine s, the last value printed should be ap-
proximately 1/2 of the square of the job number, so things look reasonable.

13.16 Locking Statements

Locks may be set using the lock and unlock statements to restrict access to data by
code on another image. For example, the statement

lock (list_lock[1])

indicates that no image except the image executing the lock statement can execute the
statements that follow it until the lock is unlocked using a statement such as

unlock (list_lock[1])

The object list_lock in each of these statements is declared to be type lock_type,
a derived type defined in the intrinsic module iso_fortran_env.

13.17 Case Study: Job Scheduling II

In the previous program, image 1 created job lists on each of the other images; then the
other images executed all the jobs on their own list. In the following program, the job
list is created and kept on image 1 and each of the other images then fetches the next
task from the job list and executes it; this continues until the job list is empty.

When the get_job subroutine is executed by an image, the list lock is set so that no
other image can access the list until the fetch is complete. Then it is unlocked.

The procedure to execute a job is the same as in the previous job scheduling pro-
gram. 

module job_list_mod

   use sub_mod
   use, intrinsic :: &
      iso_fortran_env, only: lock_type
   implicit none
   private
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   integer, parameter :: max_list_size = 300
   type(lock_type), codimension[*] :: list_lock
   type, public :: job_type
      integer :: data
      procedure(s), pointer, nopass :: proc
   end type job_type

   type (job_type), public, &
      dimension(max_list_size), &
      codimension[*] :: job_list
   integer, public, codimension[*] :: list_size

   public :: get_job, add_job

contains
   ! Get job from list on image 1
   subroutine get_job(job, empty)

      type(job_type), intent(out) :: job
      logical, intent(out) :: empty

      lock (list_lock[1])
      empty = (list_size[1] == 0)
      if (empty) then
         unlock (list_lock[1])
         return
      end if
      job = job_list(list_size[1])[1]
      list_size[1] = list_size[1] - 1
      unlock (list_lock[1])

   end subroutine get_job

   ! Put job on list_on image 1
   subroutine add_job(job)

      type(job_type), intent(in) :: job

      if (list_size[1] == max_list_size) then
         print *, "Job list is full"
         stop
      end if
      list_size = list_size + 1
      job_list(list_size) = job

   end subroutine add_job

end module job_list_mod
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program jobs

! Omitting declarations, etc.
   . . .
!  Create a list of jobs on image 1
   if (this_image() == 1) then
      do n = 1, 10
         job%data = n
!        job%data also could be different for each job
         call add_job(job)
      end do
   end if

   sync all

   ! All images > 1 execute jobs on job list,
   !    which is on image 1
   select case (this_image())
   case (2:)
   job_loop: do

      call get_job(job, empty)
      if (empty) exit job_loop
      call job%proc(job%data)

   end do job_loop
   end select

end program jobs

Running the program produces the following.

Executing job 10 on image  4 52.25
Executing job  9 on image  2 40.97
Executing job  8 on image  3 33.52
Executing job  7 on image  4 27.28
Executing job  6 on image  3 18.73
Executing job  4 on image  3  9.58
Executing job  3 on image  3  5.06
Executing job  2 on image  3  1.24
Executing job  5 on image  2 14.60
Executing job  1 on image  3  0.29
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13.18 Exercises

1. Write a program to use two images to find the maximum value in an array of
1,000,000 random numbers. Model the program after the program sort2 in 13.8.
Compute the maximum of the first half of the array on image 1 and the maximum
of the second half of the array on image 2. Then find the maximum of those two
values.

Why don t you get a significant speed improvement?

2. Write a program sort4x that splits an array into four parts, sorts each part on an
image, then merges the four parts into the sorted array (use merge three times).
Model it after the program sort2 (13.8). Make sure that the one-image version
does the same computation as the four-image version and compare the times.

3. Modify the heat transfer program so that the boundary values for each quadrant
are updated once for every hundred computational iterations. Look in the code for
the comment

! Update interior quadrant boundaries

and do the update and synchronization only if the value of niter is a multiple of
100. Does the four-image computation run faster? Why are the computational re-
sults slightly different?

4. Modify the heat transfer program so that the images form an x-by-y grid of images,
rather than a 2-by-2 grid. For example, if a 16-processor system is available, it
might work well to have a 4-by-4 grid of images (and it would be convenient if the
dimensions of the plate were a multiple of 4). Is performance better or worse if the
program uses a 2-by-8 grid of images? This last question should be easy to deter-
mine if parameters have been used properly.

5. Modify the first job scheduling program in this chapter so that image 1 sets differ-
ent procedures for the other images to execute when executing the items on their
job lists. In addition to the subroutine s, provide two or three other procedures.
Note that the interface for these additional procedures must be the same as s.

6. Modify the second job scheduling program in this chapter so that the other images
are executing the jobs while image 1 is creating them. The images executing the
jobs must wait sometimes in case the job queue is empty. There must be some spe-
cial signal to indicate that all the jobs have been placed on the job list.



Intrinsic Procedures A
A.1 Intrinsic Functions

An intrinsic function is an inquiry function, an elemental function, or a transforma-
tional function. An inquiry function is one whose result depends on the properties of
its principal argument, rather than the value of this argument; in fact, the argument
value may be undefined. An elemental function is one that is specified for scalar argu-
ments but may be applied to array arguments, as described in A.2. All other intrinsic
functions are transformational functions; they almost all have one or more array-val-
ued arguments or an array-valued result.

The names of the intrinsic procedures are given in A.4 A.15. In most cases, they
accept arguments of more than one type; for functions, the type of the result is usually
the same as the type of one or more of the arguments.

Kind Arguments

Style note: Several intrinsic procedures have kind values as arguments. It is rec-
ommended that they be integer named constants (parameters); other more gen-
eral forms that represent a constant for the compiler are permitted, but not
recommended.

A.2 Elemental Intrinsic Procedures

Elemental Intrinsic Function Arguments and Results

For an elemental intrinsic function, the shape of the result is the same as the shape of
the argument with the greatest rank. If the arguments are all scalar, the result is scalar.
For those elemental intrinsic functions that have more than one argument, all argu-
ments must be conformable (i.e., have the same shape). In the array-valued case, the
values of the elements, if any, of the result are the same as would have been obtained if
the scalar-valued function had been applied separately, in any order, to corresponding
elements of each argument. Arguments called kind must always be specified as a sca-
lar integer parameter. The value of the parameter must be a processor-supported kind
number.

Elemental Intrinsic Subroutine Arguments

For an elemental intrinsic subroutine, either all actual arguments must be scalar or all
intent(out) arguments must be arrays of the same shape, and the remaining argu-
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ments must be conformable with them. In the case that the intent(out) arguments are
arrays, the values of the elements, if any, of the results are the same as would be ob-
tained if the subroutine with scalar arguments were applied separately, in any order, to
corresponding elements of each argument.

A.3 Positional Arguments or Argument Keywords

All intrinsic procedures may be invoked with either positional arguments or argument
keywords. The descriptions in A.4 A.15 give the keyword names and positional se-
quence. A keyword is required for an argument only if a preceding optional argument
is omitted or a preceding actual argument is specified using a keyword. For example, a
reference to cmplx may be written in the form cmplx (real_part, complex_part, m)
or in the form cmplx(y=complex_part, kind=m, x=real_part).

Many of the argument keywords have names that are indicative of their usage. For
example,
kind Describes the kind of the result
string, string_a An arbitrary character string
back Indicates a string scan is

to be from right to left (backward)
mask A mask that may be applied to the arguments
dim A selected dimension of an array argument

A.4 Argument Presence Inquiry Function

The inquiry function present permits an inquiry to be made about the presence of an
actual argument associated with a dummy argument that has the optional attribute.
Its result is logical.
present(a) Argument presence

A.5 Numeric, Mathematical, Character, and Logical Procedures

Numeric Functions

The elemental functions int, real, dble, and cmplx perform type conversions. The el-
emental functions aimag, conjg, aint, anint, nint, abs, dim, dprod, mod, modulo,
floor, ceiling, sign,  max, and min perform simple numeric operations.
abs(a) Absolute value
aimag(z) Imaginary part of a complex number
aint(a, kind) Truncation to whole number
     Optional kind
anint(a, kind) Nearest whole number
     Optional kind
ceiling(a, kinf) Least integer greater than or equal to number
     Optional kind
cmplx(x, y, kind) Conversion to complex type
     Optional y, kind
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conjg(z) Conjugate of a complex number
dble(a) Conversion to double precision
dim(x, y) Difference x y, if positive, otherwise zero
dprod(x, y) Double precision product of two default real values
floor(a, kind) Greatest integer less than or equal to number
     Optional kind
int(a, kind) Conversion to integer type
     Optional kind
max(a1, a2, a3,...) Maximum value
     Optional a3,...
min(a1, a2, a3,...) Minimum value
     Optional a3,...
mod(a, p) Modulo function; a floor(a/p)*p;

if nonzero, modulo(a,p) has the sign of a
modulo(a, p) Modulo function; a floor(a/p)*p;

if nonzero, modulo(a,p) has the sign of p
nint(a, kind) Nearest integer
     Optional kind
real(a, kind) Conversion to real type
     Optional kind
sign(a, b) Absolute value of a with the sign of b

Mathematical Functions

The elemental functions sqrt, exp, log, log10, sin, cos, tan, asin, acos, atan, atan2,
sinh, cosh, tanh asinh, acosh, atanh, gamma, log_gamma, bessel_j0, bessel_j1,
bessel_jn, bessel_y0, bessel_y1, and bessel_yn evaluate mathematical functions.
acos(x) Arccosine
acosh(x) Hyperbolic arccosine
asin(x) Arcsine
asinh(x) Hyperbolic arcsine
atan(x) Arctangent
atan2(y, x) Arctangent of y/x
atanh(x) Hyperbolic arctangent
bessel_ j0(x) Bessel function of the 1st kind, order 0
bessel_ j1(x) Bessel function of the 1st kind, order 1
bessel_ jn(n, x) Bessel function of the 1st kind, order n
bessel_ jn(n1, n2, x) Bessel functions of the 1st kind
bessel_ y0(x) Bessel function of the 2nd kind, order 0
bessel_y1(x) Bessel function of the 2nd kind, order 1
bessel_yn(n, x) Bessel function of the 2nd kind, order n
bessel_yn(n1, n2, x) Bessel functions of the 2nd kind
cos(x) Cosine
cosh(x) Hyperbolic cosine
erf(x) Error function
erfc(x) Complementary error function
erfc_scaled(x) Scaled complementary error function
exp(x) Exponential
gamma(x) Gamma function
hypot(x, y) Euclidean distance function
log(x) Natural logarithm
log10(x) Common logarithm (base 10)
log_gamma(x) Logarithm of the absolute value of the gamma function
sin(x) Sine
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sinh(x) Hyperbolic sine
sqrt(x) Square root
tan(x) Tangent
tanh(x) Hyperbolic tangent

Character Functions

The elemental functions ichar, char, iachar, achar, index, verify, adjustl, adjustr,
scan, and len_trim perform character operations. The elemental functions lge, lgt,
lle, and llt compare character strings based on the ASCII collating sequence. The
transformational function repeat returns repeated concatenations of a character string
argument. The transformational function trim returns the argument with trailing
blanks removed.
achar(i, kind) Character in given position
     Optional kind      in the ASCII collating sequence
adjustl(string) Adjust left; move leading blanks to end
adjustr(string) Adjust right; move trailing blanks to beginning
char(i, kind) Character in given position
     Optional kind      in collating sequence
iachar(c, kind) Position of a character
     Optional kind      in the ASCII collating sequence
ichar(c, kind) Position of a character
     Optional kind      in collating sequence
index(string, substring, back, kind) Starting position of a substring
     Optional back, kind
lge(string_a, string_b) Greater than or equal based on the ASCII collating sequence
lgt(string_a, string_b) Greater than based on the ASCII collating sequence
lle(string_a, string_b) Less than or equal based on the ASCII collating sequence
llt(string_a, string_b) Less than based on the ASCII collating sequence
repeat(string, ncopies) Repeated concatenation
scan(string, set, back, kind) Scan a string for any character
     Optional back, kind       in a set of characters
trim(string) Remove trailing blank characters
verify(string, set, back, kind) Find a character in a string
     Optional back, kind      not in a set of characters

Character Inquiry Function

The inquiry functions len and len_trim return the length of a character entity. The
value of the argument to this function need not be defined. It is not necessary for a pro-
cessor to evaluate the argument of this function if the value of the function can be de-
termined otherwise. The function new_line returns a newline character of the same
kind as its character argument a.
len(string, kind) Length of a character entity
     Optional kind
len_trim(string, kind) Length without trailing blank characters
     Optional kind
new_line(a) A newline character the same kind as a
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Logical Function

The elemental function logical converts between objects of type logical with different
kind parameter values.
logical(l, kind) Convert between objects of type logical
     Optional kind      with different kind type parameters

Kind Functions

The inquiry function kind returns the kind parameter value of an integer, real, com-
plex, or logical entity. The transformational function selected_char_kind returns the
character kind parameter value of the character kind name; the values of name that usu-
ally are supported are DEFAULT, ASCII, and ISO_10646. The transformational function
selected_real_kind returns the real kind parameter value that has at least the deci-
mal precision and exponent range specified by its arguments. The transformational
function selected_int_kind returns the integer kind parameter value that has at least
the decimal exponent range specified by its argument.
kind(x) Kind parameter value
selected_char_kind(name) Kind parameter of a character kind with a given name
selected_int_kind(r) Integer kind parameter value,

     sufficient for integers with r digits
selected_real_kind(p, r) Real kind parameter value,
     Optional p, r      given decimal precision p and range r

A.6 Numeric Manipulation and Inquiry Functions

The numeric manipulation and inquiry functions are described in terms of a model for
the representation and behavior of numbers on a processor. The model has parameters
that are determined so as to make the model best fit the machine on which the execut-
able program is executed.

Models for Integer and Real Data

The model set for integer i is defined by

where r is an integer exceeding 1, q is a positive integer, each wk is a nonnegative inte-
ger less than r, and s is +1 or 1. The model set for real x is defined by

i s wk rk 1–
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s be fk b k–

k 1=

p
=



378 Appendix A Intrinsic Procedures

where b and p are integers exceeding 1; each fk is a nonnegative integer less than b; f1 is
also nonzero; s is +1 or 1; and e is an integer that lies between some integer maximum
emax and some integer minimum emin inclusively. For x = 0, its exponent e and digits fk
are defined to be zero. The integer parameters r and q determine the set of model inte-
gers, and the integer parameters b, p, emin, and emax determine the set of model floating
point numbers. The parameters of the integer and real models are available for each in-
teger and real data type implemented by the processor. The parameters characterize
the set of available numbers in the definition of the model. The numeric manipulation
and inquiry functions provide values related to the parameters and other constants re-
lated to them. Examples of these functions in this section use the models

and

Numeric Inquiry Functions

The inquiry functions radix, digits, minexponent, maxexponent, precision, range,
huge, tiny, epsilon and storage_size return scalar values related to the parameters
of the model associated with the type and type parameters of the arguments. The value
of the arguments to these functions need not be defined, and pointer arguments may
be disassociated.
digits(x) Number of significant digits p in the model
epsilon(x) Number that is almost negligible compared to one
huge(x) Largest number in the model
maxexponent(x) Maximum exponent in the model; emax
minexponent(x) Minimum exponent in the model; emin
precision(x) Decimal precision
radix(x) Base of the model; b for real and r for integer
range(x) Decimal exponent range; floor(log10(huge(x)))
storage_size(a, kind) Storage size in bits
     Optional kind
tiny(x) Smallest positive number in the model

Floating Point Manipulation Functions

The elemental functions exponent, scale, nearest, fraction, set_exponent, spacing,
and rrspacing return values related to the components of the model values associated
with the actual values of the arguments.
exponent(x) Exponent part e of a model number
fraction(x) Fractional part of a number
nearest(x, s) Nearest different processor number in a given direction
rrspacing(x) Reciprocal of the relative spacing
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     of model numbers near given number
scale(x, i) Multiply a real x by its base to an integer power i
set_exponent(x, i) Set exponent part of a number x to i
spacing(x) Absolute spacing of model numbers near a given number

A.7 Bit Manipulation and Inquiry Procedures

The bit manipulation procedures consist of a set of several functions and one
subroutine. Logical operations on bits are provided by the functions ior, iand, not,
and ieor; the functions bge, bgt, ble, and blt compare bits; the functions leadz and
trailz indicate the number of leading and trailing zero bits; popcnt and poppar
indicate the number and parity of one bits; shift operations are provided by the
functions shifta, shiftl, shiftr,  ishft and ishftc; bit subfields may be referenced
by the function ibits and by the subroutine mvbits; bit masks are constructed by
maskl and maskr; merge_bits merges bits; single-bit processing is provided by the
functions btest, ibset, and ibclr.

For the purposes of these procedures, a bit is defined to be a binary digit w located
at position k of a nonnegative integer scalar object based on a model nonnegative inte-
ger defined by

and for which wk may have the value 0 or 1. An example of a model number compati-
ble with the examples used in A.6 would have s = 32, thereby defining a 32-bit integer.

An inquiry function bit_size is available to determine the parameter s of the
model. The value of the argument of this function need not be defined. It is not neces-
sary for a processor to evaluate the argument of this function if the value of the func-
tion can be determined otherwise.

Effectively, this model defines an integer object to consist of s bits in sequence
numbered from right to left from 0 to s 1. This model is valid only in the context of
the use of such an object as the argument or result of one of the bit manipulation pro-
cedures. In all other contexts, the model defined for an integer in A.6 applies. In partic-
ular, whereas the models are identical for ws 1 = 0, they do not correspond for ws 1 = 1
and the interpretation of bits in such objects is processor dependent.
bge(i, j) Bitwise greater than or equal to
bgt(i, j) Bitwise greater than
bit_size(i) Number of bits in the model; s
ble(i, j) Bitwise less than or equal to
blt(i, j) Bitwise less than
btest(i, pos) Bit testing
iand(i, j) Logical and
ibclr(i, pos) Clear bit
ibits(i, pos, len) Bit extraction
ibset(i, pos) Set bit
ieor(i, j) Exclusive or
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ior(i, j) Inclusive or
ishft(i, shift) Logical shift
ishftc(i, shift, size) Circular shift
     Optional size
leadz(i) Number of leading zero bits
maskl(i, kind) Left justified mask
     Optional kind
maskr(i, kind) Right justified mask
     Optional kind
merge_bits (i, j, mask) Merge of bits under mask
mvbits(from, frompos, len, to, topos) Copy bits from one object to another
not(i) Logical complement
popcnt(i) Number of one bits
poppar(i) Parity of bits, 0 or 1
shifta(i, shift) Right shift with fill
shiftl(i, shift) Left shift
shiftr(i, shift) Right shift
trailz(i) Number of trailing zero bits

A.8 Array Intrinsic Functions

The array intrinsic functions perform the following operations on arrays: vector and
matrix multiplication, numeric or logical computation that reduces the rank, array
structure inquiry, array construction, array manipulation, and geometric location.

The Shape of Array Arguments

The transformational array intrinsic functions operate on each array argument as a
whole. The shape of the corresponding actual argument must therefore be defined; that
is, the actual argument must be an array section, an assumed-shape array, an explicit-
shape array, a pointer that is associated with a target, an allocatable array that has been
allocated, or an array-valued expression.

Some of the inquiry intrinsic functions accept array arguments for which the shape
need not be defined. They include the function lbound and certain references to size
and ubound.

Mask Arguments

Some array intrinsic functions have an optional mask argument that is used by the
function to select the elements of one or more arguments to be operated on by the
function.

The mask affects only the value of the function, and does not affect the evaluation,
prior to invoking the function, of arguments that are array expressions.

A mask argument must be of type logical.

Vector and Matrix Multiplication Functions

The matrix multiplication function matmul operates on two matrices, or on one matrix
and one vector, and returns the corresponding matrix matrix, matrix vector, or
vector matrix product. The arguments to matmul may be numeric (integer, real, or
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complex) or logical arrays. On logical matrices and vectors, matmul performs Boolean
matrix multiplication (that is, multiplication is .and. and addition is .or.).

The dot product function dot_product operates on two vectors and returns their
scalar product. The vectors are of the same type (numeric or logical) as for matmul. For
logical vectors, dot_product returns the Boolean scalar product.
dot_product(vector_a, vector_b) Dot product of two rank-one arrays
matmul(matrix_a, matrix_b) Matrix multiplication

Array Reduction Functions

The array reduction functions sum, product, maxval, minval, count, any,  all, parity,
iparity, and norm2 perform numerical, logical, and counting operations on arrays.
They may be applied to the whole array to give a scalar result or they may be applied
over a given dimension to yield a result of rank reduced by one. The optional dim ar-
gument selects which subscript is reduced. By use of a logical mask that is conformable
with the given array, the computation may be confined to any subset of the array (for
example, the positive elements).
all(mask, dim) True if all values are true
     Optional dim
any(mask, dim) True if any value is true
     Optional dim
count(mask, dim, kind) Number of true elements in an array
     Optional dim, kind
iparity(array, dim, mask) Exclusive or of array elements
     Optional mask
iparity(array, mask) Exclusive or of array elements
     Optional mask
maxval(array, dim, mask) Maximum value in an array
     Optional dim, mask
minval(array, dim, mask) Minimum value in an array
     Optional dim, mask
norm2(x, dim) L2 norm of an array
     Optional dim
parity(mask, dim) True if number of elements is odd
     Optional dim
product(array, dim, mask) Product of array elements
     Optional dim, mask
sum(array, dim, mask) Sum of array elements
     Optional dim, mask

Array Inquiry Functions

The functions size, shape, lbound, and ubound return, respectively, the size of the ar-
ray, the shape, and the lower and upper bounds of the subscripts along each dimen-
sion. The size, shape, or bounds must be defined. The function allocated indicates
whether an allocatable array (or scalar) is allocated. The function is_contiguous indi-
cates whether an array is contiguous or not.

The values of the array arguments to these functions need not be defined.
allocated(array) or allocated(scalar) Indicates whether allocatable argument is allocated
is_contiguous(array) Test contiguity of an array



382 Appendix A Intrinsic Procedures

lbound(array, dim, kind) Lower dimension bounds of an array
     Optional dim, kind
shape(source, kind) Shape of an array or scalar
     Optional kind
size(array, dim, kind) Total number of elements in an array
     Optional dim, kind
ubound(array, dim, kind) Upper dimension bounds of an array
     Optional dim, kind

Array Construction Functions

The functions merge, spread, pack, and unpack construct new arrays from the ele-
ments of existing arrays. merge combines two conformable arrays into one array by an
element-wise choice based on a logical mask. spread constructs an array from several
copies of an actual argument (spread does this by adding an extra dimension, as in
forming a book from copies of one page). pack and unpack, respectively, gather and
scatter the elements of a one-dimensional array from and to positions in another array
where the positions are specified by a logical mask.
merge(tsource, fsource, mask Merge under mask

     Where mask is true, result is tsource,
     elsewhere result is fsource

pack(array, mask, vector) Pack an array into an array of rank one
     Optional vector      under a mask. Result size is count(mask)

     If vector is present, result is padded with terminal
     elements of vector to size(vector)

spread(source, dim, ncopies) Replicates array by adding a dimension
unpack(vector, mask, field) Unpack an array of rank one into an array

    under a mask. Where mask is true, elemnts of field
    are replaced by elements of vector;
    result has shape of mask

Array Reshape Function

reshape produces an array with the same elements as its argument, but with a differ-
ent shape.
reshape(source, shape, pad, order) Reshape an array
     Optional pad, order

Array Manipulation Functions

The functions transpose, eoshift, and cshift manipulate arrays. transpose per-
forms the matrix transpose operation on a two-dimensional array. The shift functions
leave the shape of an array unaltered but shift the positions of the elements parallel to
a specified dimension of the array. These shifts are either circular (cshift), in which
case elements shifted off one end reappear at the other end, or end-off (eoshift), in
which case specified boundary elements are shifted into the vacated positions.
cshift(array, shift, dim) Circular shift
     Optional dim
eoshift(array, shift, boundary, dim) End-off shift
     Optional boundary, dim
transpose(matrix) Transpose of an array of rank two
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Array Location Functions

The function findloc finds the first location of a value. maxloc and minloc return the
location (subscripts) of an element of an array that has maximum and minimum val-
ues, respectively. By use of an optional logical mask that is conformable with the given
array, the reduction may be confined to any subset of the array. The size of the re-
turned value is the rank of the array.
findloc (array, value, dim, Location of a specified value
          mask, kind, back)
     Optional mask, kind, back
findloc (array, value, Location of a specified value
          mask, kind, back)
     Optional mask, kind, back
maxloc(array, dim, Location of maximum values in an array
          mask, kind, back)
     Optional mask, kind, back
maxloc(array, Location of maximum values in an array
          mask, kind, back
     Optional mask, kind, back
minloc(array, dim, Location of minimum values in an array
          mask, kind, back)
     Optional mask, kind, back
minloc(array, Location of minimum values in an array
          mask, kind, back
     Optional mask, kind, back

A.9 Pointer Nullify and Association Status Inquiry Functions

The function null returns a null (disassociated) pointer. The function associated tests
whether a pointer is currently associated with any target, with a particular target, or
with the same target as another pointer.
associated(pointer, target) Association status or comparison
     Optional target
null(mold) A null pointer
     Optional mold

A.10 Type Extension Inquiry Functions

The function extends_type_of determines whether the dynamic type of the first argu-
ment is an extension of the dynamic type of the second argument. The function
same_type_as determines whether the dynamic types of the two arguments are the
same.
extends_type_of(a, mold) True if the dynamic type of a is an extension

     of the dynamic type of mold
same_type_as(a, b) True if the dynamic types of a and b are the same
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A.11 Date and Time Subroutines

The subroutines date_and_time and system_clock return integer data from the date
and real-time clock. The time returned is local, but there are facilities for finding out
the difference between local time and Coordinated Universal Time.

The subroutine cpu_time returns in seconds the amount of CPU time used by the
program from the beginning of execution of the program.
cpu_time(time) Obtain processor time in seconds
date_and_time(date, time, Obtain date and time
           zone, values)      date= ccyymmdd
     Optional date, time,      time= hhmmss.sss
           zone, values      values=[year, month, day, gmt_min,

          hr,min,sec,msec]
system_clock(count, Obtain data from the system clock
           count_rate, count_max)      count_rate is in counts per second
     Optional count, count_rate,
              count_max

A.12 Pseudorandom Numbers

The subroutine random_number returns a pseudorandom number greater than or equal
to 0.0 and less than 1.0 or an array of pseudorandom numbers. The subroutine
random_seed initializes or restarts the pseudorandom number sequence.
random_number(harvest) Returns pseudorandom number
random_seed(size, put, get) Initializes or restarts the
     Optional size, put, get      pseudorandom number generator

A.13 Transfer Procedures

The transformational function transfer and pure subroutine move_alloc transfer data
without changing any bits.
move_alloc(from, to) Transfer an allocation from one object to another

     of the same type
transfer(source, mold, size) Result is the same bits as source, but interpreted

     with the type and type parameters of mold

A.14 Testing Input/Output Status

The elemental functions is_iostat_end and is_iostat_eor test an iostat value to de-
termine if it indicates an end-of-file condition or an end-of-record condition, respec-
tively.
is_iostat_end(i) True if iostat value indicates end of file
is_iostat_eor(i) True if iostat value indicates end of record
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A.15 Command Line Manipulation

The command line manipulation procedures allow the program to inquire about the
command and environment that invoked the program. command_argument_count is an
inquiry function that gives the number of arguments in the command line.
execute_command_line, get_command, get_command_argument, and
get_environment_variable are subroutines.
command_argument_count() Number of command line arguments
execute command line (command, Execute a command line
          wait, exitstat, cmdstat, cmdmsg)
     Optional wait, exitstat, cmdstat, cmdmsg
get_command(command, The entire command that invoked the program
          length, status)
     Optional command, length, status
get_command_argument(number, The appropriate argument from the command
         value, length, status)
     Optional value, length, status
get_environment_variable(name, The value of the named system environment variable
         value, length, status, trim_name)
     Optional value, length, status,
               trim_name

A.16 Coarray Functions

The functions image_index, lcobound, ucobound, num_images, and this_image are
used with coarrays.
image index(coarray, sub) Convert cosubscripts to image index
lcobound (coarray, dim, kind) Lower cobound(s) of a coarray
     Optional dim, kind
num_images() Number of images
this_image() Image of execution
this_image(coarray, dim) Cosubscript(s) for this image
     Optional dim
ucobound (coarray, dim, kind) Upper cobound(s) of a coarray
     Optional dim, kind

A.17 Atomic Functions

The functions atomic_define and atomic_ref define and reference a variable atomi-
cally. These functions are not discussed in this book.
atomic define(atom, value) Define a variable atomically
atomic ref(value, atom) Reference a variable atomically



Fortran Language Forms B
This appendix contains an informal description of the major parts of the Fortran pro-
gramming language. It is not a description of the complete Fortran language.

The notation used is a very informal variation of Backus Naur form (BNF) in
which characters from the Fortran character set are to be written as shown. Lowercase
italicized letters and words represent general categories for which specific syntactic en-
tities must be substituted in actual statements. The rules are not a complete and accu-
rate syntax description of Fortran, but are intended to give the general form of the
important language constructs.

Brackets [ ] indicate optional items. A “list” means one or more items separated by
commas.

program:

program program name
[ use statements ]
implicit none

[ declaration statements ]
[ executable statements ]

end program program-name

public module:

module module name
use statements
public

end module module name

private module:

module module name
[ use statements ]
implicit none

private

[ access statements ]
[ declaration statements ]

[ contains
[ subroutines and functions ] ]

end module module name
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submodule:

submodule ( parent ) submodule name
[ use statements ]
[ import statements ]
implicit none

private

[ declaration statements ]
[ contains

[ subroutines and functions ] ]
end submodule submodule name

subroutine:

[ prefix ] subroutine subroutine name ( [ argument list ] )
[ use statements ]
[ declaration statements ]
[ executable constructs ]

end subroutine subroutine name

function:

[ prefix ] function function name ( [ argument list ] ) &
result ( function result )

[ use statements ]
[ declaration statements ]
[ executable constructs ]

end function function name

prefix:
elemental

impure
pure
recursive

use statement:

use module name [ , rename list ]
use module name , only : [ only list ]

access statement:

public :: list of procedures, operators, assignments
private :: list of procedures, operators, assignments

declaration statement:

interface block
enumerator definition
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intrinsic statement
type definition statement
type declaration statement

interface block:

interface [ generic specification ]
[ import statements ]
[ interface specifications ]

end interface

interface specification:

procedure statement
procedure interface body

enumerator definition:

enum, bind(c)
[ enumerator :: enumerator list ] . . .

end enum

enumerator:

parameter [ = scalar integer constant expression ]

intrinsic statement:

intrinsic :: list of intrinsic procedure names

type definition statement:

type , [ access specifier ] :: derived type name
[ private ]
component declarations
[ contains

[ procedure statements ] ]
end type derived type name

type declaration statement:

type [ , attribute list ] :: initialization list

initialization:

name [ = expression ]
name => expression
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type:

integer [ ( kind= kind parameter ) ]
real [ ( kind= kind parameter ) ]
complex [ ( kind= kind parameter ) ]
logical [ ( kind= kind parameter ) ]
character ( len= length parameter )
character(len=*)

type ( type name )

attribute:

access specifier
parameter
allocatable

dimension ( array bounds )
intent ( intent specifier )
optional
pointer
save
target
value

access specifier:
public
private
protected

intent specifier:
in
out
in out

executable construct:

if construct
if statement
do construct
case construct
block construct
where construct
select type construct
associate construct
go to statement
continue statement
assignment statement
pointer assignment statement
allocate statement
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deallocate statement
call statement
cycle statement
exit statement
statement
stop statement
sync all statement:
sync images statement:
sync memory statement:
lock statement:
unlock statement:
open statement
close statement
inquire statement
read statement
print statement
write statement
backspace statement
rewind statement
endfile statement
wait statement

if construct:

[ construct name : ] if ( logical expression ) then 
executable statements

[ else if ( logical expression ) then 
executable statements ]
. . .

[ else
executable statements ]

end if [ construct name ]

if statement:

if ( logical expression ) statement 

do construct:

[ construct name : ] do [ loop control ]
executable constructs

end do [ construct name ]

loop control:

variable = start , stop [ : stride ]
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case construct:

[ construct name : ] select case ( expression )
case ( case selector )

executable statements
[ case ( case selector )

executable statements ]
. . .

[ case default
executable statements ]

end select [ construct name ]

block construct:

[ construct name : ] block
executable constructs

end block [ construct name ]

where construct:
where ( mask expression )

where body constructs
[ elsewhere ( mask expression )

where body constructs
. . . ]

[ elsewhere
where body constructs ]

endwhere

where body construct:

assignment statement
where construct
where statement
pointer assignment statement
where construct
where statement

select type construct:

select type ( polymorphic variable )
[ type guard

executable statements ]
 . . .

end select
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type guard:

type is ( type )
class is ( derived type )
class default

associate construct:

[ construct name : ] associate ( association list )
[ execution constructs ]

end associate [ construct name ]

go to statement:

go to label

continue statement:

label continue

assignment statement:

variable = expression

pointer assignment statement:

pointer => target

allocate statement:

allocate ( allocation list [ , stat= variable ] )

deallocate statement:

deallocate ( deallocation list [ , stat= variable ] )

call statement:

call subroutine name ( [ actual argument list ] )

cycle statement:

cycle [ do construct name ]

exit statement:

exit [ construct name ]

return statement:

return
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stop statement:

stop [ stop code ]

sync all statement:

sync all [ ( [ sync status list ] ) ]

sync images statement:

sync images ( images [ , sync status list ] )

sync memory statement:

sync memory [ ( [ sync status list ] ) ]

lock statement:

lock ( lock variable [ , lock status list ]

unlock statement:

unlock ( lock variable [ , lock status list ]

open statement:

open ( open specifier list )

close statement:

close ( close specifier list )

inquire statement:

inquire ( inquire specifier list )

read statement:

read format [ , variable list ]
read ( io control specifier list ) [ variable list ]

print statement:

print format [ , expression list ]

write statement:

write ( io control specifier list ) [ expression list ]
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io control specifier:

unit= value
fmt= value
rec= value
iostat= value
iomsg= value
advance= value
size= value
pos= value

backspace statement:

backspace ( position specifier list )

endfile statement:

endfile ( position specifier list )

rewind statement:

rewind ( position specifier list )

position specifier:

unit= value
iostat= value
iomsg= value

wait statement:

wait ( wait specifier list )
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!  20
-  5
&  19
*  5
**  5
+  5
.and.  7
.eqv.  7
.neqv.  7
.not.  7
.or.  7
/  5, 322
//  7, 170
/=  6
:  322
<  6
<=  6
==  6
>  6
>=  6
[  124
]  124
_  9

A
a edit descriptor  31, 164
abs function  374
abstract data type  265
access  81, 306

direct  284, 297, 298
sequential  284, 291, 297
stream  284, 299

access specifier  302, 306
access statement  83, 264
achar function  165, 376
acos function  375
acosh function  375
action specifier  302, 306
actual argument  93
adaptive trapezoidal integration  113
adjustl function  178, 376
adjustr function  376
advance specifier  290
advancing input/output  287, 291
aimag function  374
aint function  374
all function  223, 344, 381

allocatable array  125
allocatable attribute  123
allocatable coarray  351
allocate statement  126, 257
allocated function  381
allocation

memory  125
status  127

ampersand  19
anint function  374
any function  223, 381
argument

actual  93
agreement  93
dummy  87, 93
intent  87
keyword  96, 374
mask  380
optional  96
passing  93–98
pointer  93
procedure  86, 97

arithmetic  1
arithmetic operator  5
array  119–159

allocatable  125
assignment  129
assumed-shape  122
automatic  123
bound  123
C  229
character  162
conformable  129
constructor  124
declaration  122
dummy argument  122
dynamic  125
element renumbering  133
extent  123
name  122
parent  127
section  127, 128
shape  123, 129

array of procedures  260
ASCII  164
asin function  375
asinh function  375
assignment  27–29

array  129
character  162
extending  231–233, 244
masked array  130
pointer  254–257
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© Springer-Verlag London 2015 
W.S. Brainerd, Guide to Fortran 2008 Programming, DOI 10.1007/978-1-4471-6759-4 

397



398 Index

substring  169
assignment statement  27
associate construct  48, 156, 356
associated function  259, 383
associated pointer  253
association

pointer  383
assumed length  164
assumed-shape array  122
asterisk format  17
asynchronous input/output  300
asynchronous specifier  302, 306
atan function  375
atan2 function  375
atanh function  375
atomic_define function  385
atomic_ref function  385
attribute

allocatable  123
bind(c)  226
dimension  122
parameter  162
pointer  123, 253
private  240
protected  81
public  264
save  100
target  254
value  88

automatic array  123
automatic character  164
average  16

B
backspace statement  281, 312
backspacing  311
bessel_j0 function  375
bessel_j1 function  375
bessel_jn function  375
bessel_y0 function  375
bessel_y1 function  375
bessel_yn function  375
bge function  379
bgt function  379
big integer  239–252
binary search  138–142
binary tree  272
bind(c) attribute  226
bit function  224, 379
bit_size function  379
blank character  19
ble function  379
block

interface  217, 226, 238
statement  47

block construct  47, 71
blt function  379
body

loop  65
bound

array  123
lower  127
upper  127

bset function  224
btest function  224, 379
built-in function  21–24
built-in module  21
built-in subroutine  21

C
C programming language

array  229
procedure  226

c_float parameter  229
c_int parameter  229
c_null_char parameter  227
call statement  83
cascading compilation  211
case construct  62–65

flowchart  62
case default statement  62
case statement  62

range  62
ceiling function  374
char function  376
character

array  162
assignment  162
automatic  164
blank  19
comparison  8, 165
concatenation  7, 170
constant  3, 7, 162
declaration  161
dummy argment  164
exclamation  20
input/output  164
length  13, 161, 163
operator  7
parameter  162
set  20
special  3, 20
string  3, 161
type  7

character function  376
class  328
close statement  305
cmplx function  22, 374
coarray  339–??, 347, ??–371

allocatable  351
coarray function  385
coarray scalar  341
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cobound  349
codimension attribute  341, 347
coindex  348
coindexed object  348
collating sequence  165
command_argument_count function  214, 385
comment  20
common subexpression  38
comparison

character  165
operator  166

complex
constant  5
type  5

component
structure  195, 202

concatenation  7, 170
condition

end-of-file  288
end-of-record  288
error  288

conditional execution  49
conformable array  129
conjg function  374
connection

file  301
constant

character  3, 7, 162
complex  5
integer  4
logical  7
named  8
real  4

construct
case  62–65
control  47–77
do  65–77
forall  133
if  49–59
name  49
select type  335
where  130

constructor
array  124
structure  203

contains statement  84
continue statement  78
continued statement  19
control construct  47–77
control edit descriptor  313
control specification list

input/output  290
conversion

kind  22
conversion function  22
cos function  221, 375
cosh function  375

cosize  349
cosubscript  348
count function  158, 223, 381
cpu_time subroutine  213, 384
cshift function  134, 382
cycle statement  66

D
dangling pointer  261
data

input  14
data edit descriptor  313
data record  280
data transfer statement  289–299
data type  4–12

abstract  265
extended  327
intrinsic  4–12

date_and_time subroutine  213, 384
dble function  374
deallocate statement  127, 258
decimal specifier  290, 302, 306
declaration

array  122
character  161
structure  201
type  201

default format  17
default formatting  290, 324–326
default initialization  202
defined operator

precedence  235
definite integral  101–102, 113
definition

type  240
derived type  196

extended  327
parameterized  199

derived-type editing  237
derived-type formatting  237
derived-type input/output  237, 245
digits function  378
dim function  374
dimension attribute  122
direct access input/output  284, 297, 298
direct specifier  306
disassociated pointer  253
discriminant  40
division

integer  5, 26
do construct  65–77

flowchart  65
interation count  69

do statement  65
do variable  69
dot_product function  381
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dprod function  374
dt edit descriptor  237
dummy argument  87, 93

array  122
character  164

dynamic array  125
dynamic storage allocation  125

E
edit descriptor  30, 312, 313–323

/  322
:  322
a  31, 164, 321
character  321
colon  322
complex  320
control  313
data  313
dc  323
decimal symbol  323
dp  323
dt  237
en  319
engineering  319
es  31, 318
f  31, 318
i  31, 317
integer  317
l  320
logical  320
numeric  316
position  32, 321
ps  317
real  318
repeated  32
s  323
scientific  318
sign  323
slash  322
sp  323
ss  323
t  321
tab  321
tl  321
tr  321

elemental function  373
elemental procedure  219
elemental subroutine  373
else if statement  50
else statement  50
elsewhere statement  131
encoding specifier  302, 306
end do statement  65
end forall statement  133
end function statement  91
end if statement  50
end program statement  3
end subroutine statement  84

end where statement  131
endfile record  281
endfile statement  281, 312
end-of-file condition  288
end-of-record condition  288
enumerator  9
eoshift function  134, 382
epsilon function  378
equation

linear  150–155
quadratic  34–41

error
condition  288
roundoff  29

es edit descriptor  31
escape velocity  50–54
exception  209
exclamation character  20
execute_command_line subroutine  385
execution

conditional  49
exist specifier  306
exit statement  49, 71
exp function  375
explicit formatting  290, 313
exponent function  378
exponential notation  5
exponentiation  5
expression  24–27

equivalent  26
evaluation  26, 187–193
interpretation  25
mixed-mode  6

extended data type  327
extending assignment  231–233, 244
extending intrinsic function  235
extending operator  233, 246
extends_type_of function  383
extent

array  123
external file  282, 291

F
f edit descriptor  31
factorial function  106
Fibonacci sequence  37, 108
file  279, 282–289

access  284
connection  301
existence  283
external  282, 291
initial point  285
input  17
internal  282, 285, 294
position  285, 311
preconnection  288
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terminal point  285
file positioning statement  311
file specifier  302, 306
final subroutine  265
findloc function  223, 383
floor function  374
flowchart

case construct  62
do construct  65
if construct  54

fmt specifier  290
forall construct  133
forall statement  133
form

program  19–20, 387–395
form specifier  302, 306
format  2

asterisk  17
default  2, 17, 34
specifier  290

format specification  30, 312, 313, 315
formatted input/output  291
formatted record  280
formatted specifier  306
formatting  312–326

default  290, 324–326
derived-type  237
explicit  290, 313
input/output  29–34
list-directed  2, 290, 324–326

fraction function  378
function  82, 89–91

abs  374
achar  165, 376
acos  375
acosh  375
adjustl  178, 376
adjustr  376
aimag  374
aint  374
all  223, 344, 381
allocated  381
anint  374
any  223, 381
array  380
asign  375
asinh  375
associated  259, 383
atan  375
atan2  375
atanh  375
atomic_define  385
atomic_ref  385
bessel_j0  375
bessel_j1  375
bessel_jn  375
bessel_y0  375
bessel_y1  375
bessel_yn  375

bge  379
bgt  379
bit  224, 379
bit_size  379
ble  379
blt  379
bset  224
btest  224, 379
built-in  21–24
ceiling  374
char  376
character  376
cmplx  22, 374
coarray  385
command_argument_count  214, 385
conjg  374
conversion  22
cos  221, 375
cosh  375
count  158, 223, 381
cshift  134, 382
dble  374
digits  378
dim  374
dot_product  381
dprod  374
elemental  373
eoshift  134, 382
epsilon  378
exp  375
exponent  378
extends_type_of  383
factorial  106
findloc  223
floor  374
fraction  378
gamma  375
generic  216
huge  378
iachar  165, 376
iand  224, 379
ibclr  225, 379
ibits  379
ibset  379
ichar  376
ieee_value  208
ieor  225, 379
image_index  385
index  169, 174, 376
inquiry  373, 377, 381
int  22, 374
intrinsic  21–24, 373
ior  224, 379
iparity  381
is_contiguous  381
is_iostat_end  384
is_iostat_eor  384
ishft  225, 379
ishftc  225, 379
kind  23, 377
lbound  380, 381



402 Index

lcobound  349, 385
leadz  379
len  163, 376
len_trim  164, 376
lge  376
lgt  376
lle  376
llt  376
log  375
log_gamma  375
log10  375
logical  22, 377
maskl  379
maskr  379
mathematical  23, 375
matmul  380
max  23, 374
maxexponent  378
maxloc  133, 222, 383
maxval  222, 381
merge  382
merge_bits  379
min  23, 374
minexponent  378
minloc  133, 383
minval  381
mod  374
modulo  29, 374
nearest  378
new_line  376
nint  374
norm2  381
not  225, 379
null  259, 383
num_images  339, 385
numeric  374, 377
pack  128, 382
parity  381
popcnt  379
poppar  379
precision  378
present  96, 374
product  381
radix  378
range  251, 378
real  22, 374
reduction  381
repeat  376
reshape  125, 382
rrspacing  378
same_type_as  383
scale  378
scan  376
selected_char_kind  377
selected_int_kind  10, 24, 377
selected_real_kind  10, 23, 90, 377
set_exponent  378
shape  123, 381
shifta  379
shiftl  379
shiftrshiftr function  379

sign  374
sin  375
sinh  375
size  154, 223, 380, 381
spacing  378
spread  154, 382
sqrt  375
storage_size  378
sum  155, 221, 381
tan  375
tanh  375
this_image  339, 385
tiny  378
trailz  379
transfer  384
transformational  373
transpose  382
trim  164, 376
ubound  380, 381
ucobound  349, 385
unpack  128, 382
verify  189, 376

function statement  91

G
gamma function  375
garbage collection  261
Gaussian elimination  151
generic function  216
generic procedure  216
generic subroutine  216
get_command subroutine  214, 385
get_command_argument subroutine  214, 385
get_environment_variable subroutine  215, 385
go to statement  78
golden ratio  37
greatest common divisor  112

H
Hanoi

towers of  109
heat transfer  352
heat transfer problem  155
host association  212
huge function  378

I
i edit descriptor  31
iachar function  165, 376
iand function  224, 379
ibclr function  225, 379
ibits function  379
ibset function  379
ichar function  376
IEEE arithmetic standard  205
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ieee_arithmetic module  208
ieee_exceptions module  209
ieee_get_flag subroutine  209
ieee_set_halting_mode subroutine  210
ieee_value function  208
ieor function  225, 379
if construct  49–59

flowchart  54
if statement  59
if-then statement  50
image  339
image_index function  385
implied do list  125
import statement  100, 229
impure elemental procedure  220
income tax  54–59
indentation

statement  49
index function  169, 174, 376
indirect recursion  112
Inf  206
inheritance  327, 329
initial point of a file  285
initialization

default  202
input

data  14
file  17
interactive  17
prompt  17
terminal  17

input/output  279–326
advancing  287, 291
asynchronous  300
character  164
control specification list  290
derived-type  237, 245
direct access  284, 297, 298
external  291
formatted  291
formatting  29–34
internal  294
list  291
nonadvancing  285, 287, 292
sequential access  284, 291, 297
stream access  299
unformatted  297

input/output statement  279
inquire statement  284, 288, 305–310
inquiry function  373, 377, 381
int function  22, 374
integer

big  239–252
constant  4
division  5, 26
model  377, 379
type  4

integral
definite  71, 101–102, 113

intent
argument  87
in  87
in out  87
out  87

interface block  97, 100, 217, 226, 238
internal file  282, 285, 294
interoperability  226
intrinsic data type  4–12
intrinsic function  21–24, 373

extending  235
intrinsic module  21
intrinsic operator  133
intrinsic statement  74, 237
intrinsic subroutine  21, 373
iolength specifier  307
iomsg specifier  290, 302, 305, 306, 311
ior function  224, 379
iostat specifier  288, 290, 302, 305, 306, 311
iparity function  381
is_contiguous function  381
is_iostat_end function  384
is_iostat_eor function  384
ishft function  225, 379
ishftc function  225, 379
iso_c_binding module  226
iso_fortran_env module  10, 287, 290

J
job scheduling  365, 368

K
keyword

argument  96, 374
statement  19

kind  10–13
conversion  22

kind function  23, 377

L
lbound function  380, 381
lcobound function  349, 385
leadz function  379
len function  163, 164, 376
len_trim function  164, 376
length  13

assumed  164
character  13, 161, 163
record  282

letter
frequency  181–184

lge function  376
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lgt function  376
linear equation  150–155
linked list  263–271
list  119

implied do  125
input/output  291
linked  263–271

list-directed formatting  290, 324–326
lle function  376
llt function  376
local variable  87
lock statement  349, 368
log function  375
log_gamma function  375
log10 function  375
logical

constant  7
operator  7
type  7

logical function  22, 377
loop

body  65
lower bound  127

M
mask argument  380
masked array assignment  130
maskl function  379
maskr function  379
mathematical function  23, 375
matmul function  380
max function  23, 374
maxexponent function  378
maxloc function  133, 222, 383
maxval function  222, 381
median  148
memory allocation  125
merge  344
merge function  382
merge_bits function  379
min function  23, 374
minexponent function  378
minloc function  133, 383
minval function  381
mixed-mode expression  6
mod function  374
model

integer  377, 379
real  377

module  79–82
built-in  21
ieee_arithmetic  208
ieee_exceptions  209
intrinsic  21
iso_c_binding  226
iso_fortran_env  10, 287, 290

modulo function  29, 374
move_alloc subroutine  384
mvbits subroutine  225, 379

N
name  9

array  122
construct  49
length  3, 9
program  3
scope  99
variable  13

name specifier  306
named constant  8
named specifier  306
NaN  206
nearest function  378
new_line function  376
newunit specifier  302
nextrec specifier  306
nint function  374
nonadvancing input/output  285, 287, 292
nopass attribute  331
norm2 function  381
not function  225, 379
null function  259, 383
null pointer  253
null string  161
num_images function  339, 385
number specifier  306
numeric function  374, 377

O
object-oriented programming  327–338
open statement  288, 301–303
opened specifier  306
operator

arithmetic  5
character  7
comparison  166
extending  233, 246
intrinsic  133
logical  7
precedence  25
relational  6
user-defined  235, 248

optional argument  96
overflow  209

P
pack function  128, 382
palindrome  184
parameter  8

c_float  229
c_int  229
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c_null_char  227
character  162
kind  10–13

parameter attribute  162
parameterized derived type  199
parent array  127
parenthesis  26
parity function  381
partial record  292
partition sort  143
pass attribute  331
pendulum calculation  42–45
pointer  253–277

argument  93
assignment  254–257
associated  253
association  383
attribute  123
dangling  261
disassociated  253
null  253
procedure  260
undefined  253
variable  253

pointer assignment statement  254
pointer remapping  260
polymorphic variable  328

assignment  329
popcnt function  379
poppar function  379
pos specifier  290, 299, 306
position

edit descriptor  32
file  285, 311

position specifier  302, 307
precedence

defined operator  235
operator  25

precision  10, 23
precision function  378
preconnection

file  288
present function  96, 374
primary  24, 187
print statement  14
private attribute  240
private statement  81, 83, 240, 264
probability  103–105, 157–159
procedure  82–98

argument  86, 97
C  226
elemental  219
generic  216
pure  92
recursive  105–112

procedure pointer  260, 331
product function  381

program
form  19–20
name  3

program statement  3
prompt

input  17
protected attribute  81
public attribute  264
public statement  83, 232, 264
pure procedure  92

Q
quadratic equation  34–41

complex roots  39
queue

traffic  331–338
quick sort  143
quotation mark  2, 7

R
radix function  378
random_number subroutine  103, 157, 384
random_seed subroutine  384
range  23
range function  251, 378
rank  122
read specifier  307
read statement  16, 124
readwrite specifier  307
real

constant  4
model  377
precision  206
range  206
representation  206
type  4

real function  22, 374
rec specifier  290, 297, 298
recl specifier  302, 307
record  279–??

data  280
endifle  281
formatted  280
length  282
partial  292
unformatted  280

recursion  83, 105–112, 143, 187, 188, 248, 263
indirect  112
tail  107

recursive procedure  105–112
recursive structure  253
reduction function  381
relational operator  6
repeat factor  313
repeat function  376
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repeated edit descriptor  32
reshape function  125, 382
result variable  91
return statement  99
rewind statement  281, 312
rewinding  311
roundoff error  29, 54
rrspacing function  378

S
same_type_as function  383
save attribute  100
scale function  378
scan function  178, 376
scope  99–100
search

binary  138–142
efficiency  141
sequential  135

searching  135–142
section

array  127, 128
select case statement  62
select type construct  335
selected_char_kind function  377
selected_int_kind function  10, 24, 377
selected_real_kind function  10, 23, 90, 377
selecting  148–150
separate procedures  212
sequence

collating  165
sequential access input/output  284, 291, 297
sequential search  135
sequential specifier  307
set_exponent function  378
shape

array  123, 129
shape function  123, 381
shifta function  379
shiftl function  379
side effect  92
sign function  374
sin function  375
sinh function  375
size function  154, 223, 380, 381
size specifier  290
sort

partition  143
quick  143
tree  272

sorting  83, 142–148, 270–277, 344
spacing function  378
specifier  306

access  302
action  302, 306

advance  290
asynchronous  302, 306
decimal  290, 302, 306
direct  306
encoding  302, 306
exist  306
file  302, 306
fmt  290
form  302, 306
format  290
formatted  306
iolength  307
iomsg  290, 302, 305, 306, 311
iostat  288, 290, 302, 305, 306, 311
name  306
named  306
newunit  302
nextrec  306
number  306
opened  306
pos  290, 299, 306
position  302, 307
read  307
readwrite  307
rec  290, 297, 298
recl  302, 307
sequential  307
size  290
status  302, 305
stream  307
unformatted  307
unit  290, 302, 305, 306, 311
write  307

spread function  154, 382
sqrt function  375
statement

access  83, 264
allocate  126, 257
assignment  27
backspace  281, 312
block  47
call  83
case  62
case default  62
close  305
contains  84
continued  19
cycle  66
data transfer  289–299
deallocate  127, 258
do  65
else  50
else if  50
elsewhere  131
end do  65
end forall  133
end function  91
end if  50
end program  3
end subroutine  84
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end where  131
endfile  281, 312
exit  49
file positioning  311
forall  133
function  91
if  59
if-then  50
import  229
indentation  49
input/output  279
inquire  284, 288, 305–310
intrinsic  74, 237
keyword  19
length  19
open  288, 301–303
pointer assignment  254
print  14
private  81, 83, 240, 264
program  3
public  83, 232, 264
read  16, 124
return  99
rewind  281, 312
select case  62
stop  77
subroutine  84
type  8, 196
use  81
wait  300
where  131

status
allocation  127

status specifier  302, 305
step size  69
stop statement  77
storage

unreferenced  261
storage allocation

dynamic  125
storage_size function  378
stream access

input/output  299
stream specifier  307
stride  69, 127
string

character  3, 161
null  161

structure  195
component  195, 202
constructor  203
declaration  201
recursive  195, 253, 264

subexpression
common  38

submodule  211
subroutine  82, 83–89

built-in  21
cpu_time  213, 384

date_and_time  213, 384
elemental  373
execute_command_line  385
generic  216
get_command  214, 385
get_command_argument  214, 385
get_environment_variable  385
ieee_get_flag  209
ieee_set_halting_mode  210
intrinsic  21, 373
move_alloc  384
mvbits  225, 379
random_number  103, 157, 384
random_seed  384
system_clock  213, 343, 384

subroutine statement  84
subscript  120–122

triplet  127
vector  128

substring  167
assignment  169

sum function  155, 221, 381
sync all statement  342
sync images statement  350, 351
sync statement  349
syntax

Fortran  387–395
system_clock subroutine  213, 343, 384

T
tail recursion  107
tan function  375
tanh function  375
target attribute  254
term  187
terminal point of a file  285
this_image function  339, 385
tiny function  378
towers of Hanoi  109
traffic queue  331–338
trailz function  379
transfer function  384
transformational function  373
transpose function  382
tree  272–277

binary  272
tree sort  272
trim function  164, 376
triplet

subscript  127
type  4–12

character  7
complex  5
declaration  201
definition  196, 240
derived  196
extended  327
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integer  4
intrinsic  4–12
logical  7
real  4
statement  8

type statement  196
type-bound procedure  198

U
ubound function  380, 381
ucobound function  349, 385
undefined pointer  253
underscore  9
unformatted input/output  297
unformatted record  280
unformatted specifier  307
unit  287
unit specifier  290, 302, 305, 306, 311
unlimited format list  316
unlock statement  349, 368
unpack function  128, 382
upper bound  127
use statement  81

only  82
rename  82

user-defined operator  235, 248

V
value attribute  88
variable  12

do  69
local  87
name  13
pointer  253
result  91

vector subscript  128
verify function  175, 189, 376

W
wait statement  300
where construct  130
where statement  131
write specifier  307
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