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Series Foreword 

The world of modern computing potentially offers many helpful methods and tools to 

scientists and engineers, but the fast pace of change in computer hardware , software , and 

algorithms often makes practical use of the newest computing technology difficult. The 
Scientific and Engineering Computation series focuses on rapid advances in computing 

technologies and attempts to facilitate transferring these technologies to applications 

in science and engineering. It will include books on theories, methods , and original 

applications in such areas as parallelism, large-scale simulations , time-critical computing, 

computer-aided design and engineering, use of computers in manufacturing, visualization 

of scientific data, and human-machine interface technology . 
The series will help scientists and engineers to understand the current world of ad­

vanced computation and to anticipate future developments that will impact their com­

puting environments and open up new capabilities and modes of computation. 
This book in the series describes High Performance Fortran (HPF ) , a language that 

combines the full Fortran 90 language with special user annotations dealing with data 

distribution. It is expected that HPF will be a standard programming language for 

computationally intensive applications on many types of machines, such as traditional 
vector processors and newer massively parallel MIMD and SIMD multiprocessors. If 

successful , the HPF language with its modern features and powerful capabilities will 

become the new revitalized version of Fortran for scientists and engineers solving complex 
large-scale problems . 

Janusz S. Kowalik 
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o Sneak Preview 

Welcome to the High Performance Fortran Handbook! This book describes High Per­

formance Fortran (HPF), a set of extensions to Fortran expressing parallel execution 

at a relatively high level. The "official" definition of these extensions is the High Per­

formance Fortran Language Specification, version 1.0 [14]; this book is an adjunct to 

that work, presenting the same information in a more tutorial manner. To make a long 
story short , HPF was designed to provide a portable extension to Fortran 90 for writing 

data parallel applications. It includes features for mapping data to parallel processors, 
specifying data parallel operations, and methods for interfacing HPF programs to othe 

programming paradigms. 
This chapter is a road map to The High Performance Fortran Handbook. It gives a 

quick introduction to each of the other chapters, and a few simple examples of what you 

will find there . In short , it serves the same purposes as Chapter 0 of the Fortran 90 
Handbook [1] (which is, of course, where we got this idea) . All the material here is meant 

to be illustrative , rather than definitive. The chapters are relatively independent of each 

other, and may be read in any order. 

0.1 Basics of High Performance Fortran 

Chapter 1 contains some basic facts about HP F, including a short history of Fortran, the 

goals of HPF, notation conventions used in this book, and references for related material. 

0.2 Programming Model 

Chapter 2 describes HPF's programming model. A programming language is not much 

good if you don't know what a program in the language means; Chapter 2 gives a frame­
work for understanding HPF programs. Our model is divided into two parts: parallelism 

and communication. 

The parallelism in a program, expressed by constructs like array assignment , FORALL 
statements , DO INDEPENDENT loops, intrinsic and standard library procedures, and EX­

TR.INSIC pro cedures , determines how many operations a computer could possibly do at 
one time. Many of today's fastest machines are capable of performing tens, hundreds, or 

even thousands of operations simultaneously (or in parallel). HPF's parallel constructs 

make it easy for the programmer to indicate potentially parallel operations. It is then 

the compiler's responsibility to schedule those operations on the physical machine so that 
the program runs as fast as possible. 

Communication in a program is an overhead that opposes parallelism. Another fea-
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2 Cha.pter 0 

ture of today's parallel machines is that sharing data (through memory, or by explicit 
messages) is slower than pure computation. Moreover, languages prior to HPF forced the 
programmer to handle nearly all the details of communication , leading to complex code, 
bugs, and general frustration. HPF puts more of this burden on the compiler; the user 
supplies a very high-level data mapping strategy and the system generates the details of 
the communication it implies. 

Unfortunately, the parallelism and communication of an HPF program are often inter­
twined in complex ways. The final portion of Chapter 2 is devoted to illustrating some 
of these relationships. 

0.3 Fortran 90 

Chapter 3 describes Fortran 90. HPF is based on FClrtran 90, which is the latest in a long 
line of Fortran standards. In a perfect world, we would not need to describe Fortran 90 

separately , since all practicing Fortran programmers would already be familiar with it. 
However, a number of factors (both technical and sociological) have slowed Fortran 90's 

entrance into the world of scientific computing. In light of this, we thought it would be a 

good idea to give a short introduction to Fortran 90, with emphasis on its new features 
(as compared with the older FORTRAN 77 standard). We cannot give a full account of 
Fortran 90 in a book of this size-the already-mentioned Fortran 90 Handbook is over 
700 pages long. Instead, we provide just enough background for Fortran 90 by means 

of suggestive examples so the reader can see how it relates to HPF. We hope that our 
explanation also whets your appetite to find out more about Fortran 90. 

0.4 Data Mapping 

Chapter 4 describes the data mapping features in HPF. These are probably the most 
publicized features in HPF, although they are certainly not the only important ones. In 

short, HPF can describe how data is to be divided up among the processors in a parallel 
machine. The presumption is that the processor responsible for some data (also called 

the processor that owns the data) can read or write it much faster than another processor. 

This reflects the way that many current parallel machines operate. HPF describes the 
data-to-processor mapping in two stages : the DISTRIBUTE and ALIGN operations . 

DISTRIBUTE is an HPF directive that describes how an array is divided into even-sized 

pieces and distributed to processors in a regular way. For example , given the array 

declaration 

REAL A(100,100) 
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Sneak Preview 3 

and four processors, the DISTRIBUTE directive can express any of the following patterns: 

• Each processor receives a 50 x 50 block of A (i.e., one processor gets A (1: 50,1: 50), 

another gets A(51: 100,1: 50), etc.). The directive to say this is 

!HPF$ DISTRIBUTE A(BLOCK,BLOCK) 

• Each processor receives every 4th row of A (i.e. , one processor gets A (1,1: 100), 
A(5,1:100), A(e,1:100), etc.; another gets A(4,1:100), A(8,1:100), A(12,1:100), 

etc.). The directive to say this is 

!HPF$ DISTRIBUTE A(CYCLIC,*) 

There are many other patterns that can be generated with DISTRIBUTE alone. 

ALIGN is an HPF directive that describes how two arrays "line up" together. Basically, 
this describes one array's mapping in terms of another. For example, the ALIGN directive 

can express any of the following relations: 

• Two arrays X and Y are always distributed the same. The directive to say this is 

!HPF$ ALIGN XCI) WITH Y(I) 

• Elements of X correspond to the odd elements of Y (in this case, X can have at most 

half as many elements as V). The directive to say this is 

!HPF$ ALIGN XCI) WITH Y(2*I-1) 

• Each element of X is aligned with the entire corresponding column of A (in this case, 
elements of X may be replicated). The directive to say this is 

!HPF$ ALIGN XCI) WITH A(*,I) 

As with DISTRIBUTE, this list is not exhaustive. Some of these patterns could be achieved 
using the DISTRIBUTE directive only; some require ALIGN. 

There are also several other data mapping features. REDISTRIBUTE and REALIGN per­
form the same tasks as DISTRIBUTE and ALIGN, but work dynamically (as executable 

statements) rather than statically (as declarations). The TEMPLATE directive declares a 

phantom array that can be used in DISTRIBUTE and ALIGN directives; this is useful when 
no array is quite the right size to describe some mapping. Similarly, PROCESSORS defines 

a set of abstract processors that is useful for precisely defining some mappings. The rules 
relating this mapping to ordinary Fortran storage association (COMMON block reshaping 
and EQUIVALENCE) are also in this chapter. Although full support of storage association 
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4 Chapter 0 

is not compatible with the data mapping features of HPF, some important special cases 
are allowed. 

0.5 Data Mapping for Procedure Arguments 

Chapter 5 expands Chapter 4 to cover dummy procedure arguments. Procedure argu­
ments are different from local variables because they sometimes need information about 
the corresponding actual argument. In particular, all of the following are reasonable 
things to say about a dummy argument: 

• "I don't care how the actual is mapped-move the data to this distribution before 
starting this subroutine." Directives to do this look the same as directives for local 
variables , as shown above . 

• "I don't care how the actual is mapped-keep the data there for the duration of this 
subroutine." One way to say this is 

!HPF$ INHERIT X 

• "I know the actual has a certain distribution before coming into this subroutine-don't 

move it." One way to say this (when the actual's distribution is BLOCK) is 

!HPF$ DISTRIBUTE X *(BLOCK) 

More complex cases are also possible, such as relating two actual arguments to each 

other. 

Equally important for converting older codes to HPF is handling Fortran's sequence 
association . (This is the old method of passing arrays, in which the shape of the ac­

tual and the dummy argument do not have to match . ) Full support for this feature is 
not compatible with HPF's data mapping directives ; instead, special directives must be 

inserted to warn the compiler that trickiness is going on. 

0.6 Data Parallelism 

Chapter 6 describes HPF's constructs for data parallelism. These constructs describe 

operations (typically , large numbers of operations) that can be performed in parallel if 
the computer has the resources . The presumption is that doing many operations at once 
will be faster than doing the same operations one at a time. Even when there are many 

more parallel operations than there are processors on the target machine, HPF allows 
the extra parallelism to be specified. This way, when the program is ported to a more 
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parallel machine it can immediately take advantage of the extra speed available. Chap­

ter 6 discusses two data parallel constructs: the FORALL statement and the INDEPENDENT 

directive. 

The FORALL is a new statement that extends Fortran 90 array operations. For example, 

FORALL (I = 2:1-1) 
A(I,I) = A(I-l,I-l) + A(I,I) + A(I+1,I+1) 

END FORALL 

does a vector addition along the main diagonal of array A (something you can't do 
directly with normal array assignments) .  HPF also introduces PURE functions , which 
are guaranteed to have no side effects , to allow FORALL statements to perform complex 

elementwise computations . 
The INDEPENDENT directive gives the compiler more information about a DO loop or 

FORALL statement . For example, it tells the compiler that a DO loop does not make any 

"bad" data accesses that force the loop to be run sequentially. The first line of this code: 

!HPF$ INDEPENDENT 

DO I = 1, N 
X(IIDX(I» = Y(I) 

END DO 

amounts to an assertion that INDX does not contain any repeated values. With this 
information, a compiler knows it is safe to produce parallel code. Note that INDEPENDENT 

is a promise by the programmer that a program , as coded, already behaves a certain way; 

it is not correct to try to use INDEPENDENT to change the results of a program . 

0.7 Intrinsics and Library Procedures 

Chapter 7 describes HPF's intrinsic and library procedures (both functions and subrou­
tines). All these procedures are available to any programmer writing in HPF. Many of 
them are data parallel operations , including some new reduction operations , prefix and 

suffix operations, combining-scatter operations, and sorting. For example, the following 
statement computes the powers of S in increasing order 

X(l:N) = 

X(l :N) 
S 

PRODUCT_PREFIX(X(l:N» 

Users have found these functions useful in writing data parallel programs. In addition , 
HPF has a number of inquiry subroutines to give a programmer information about the 
state of the machine or an array's distribution. For example, 
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CALL HPF_DISTRIBUTIOI(A, AXIS_TYPE=DISTS) 

uses the array DISTS to return information about the distribution of array A. HPF also 
has a few new standard functions that were somehow left out of Fortran 90 but which 
certain user communities need in their work. Most of these operate on the bits of an 
integer. For example, 

I = POPCNT(J) 

counts the number of bits set to 1 in J. Chapter 7 gives a brief introduction to all the 
standard HPF functions. 

0.8 Extrinsic Procedures 

Chapter 8 describes EXTRINSIC procedures in HPF. EXTRINSIC is a means to invoke other 
programming paradigms from HPF. For example, parallel branch-and-bound searches are 
at best difficult to write in HPF, because their very purpose is to exploit indeterminacy 
and HPF strives for determinacy. Using EXTRINSIC allows a programmer to escape from 
HPF's constraints to write such a program. The normal HPF facilities are available 
outside of the EXTRINSIC procedure for data parallel tasks; for example, the initial setup 
or final analysis of the branch-and-bound search could be coded this way. Chapter 8 
describes two aspects of such procedures: a general interface mechanism for invoking a 
variety of programming models, and a specific SPMD programming model that is efficient 
on many (but not all) current parallel machines . 

The interface mechanism consists of the EXTRIXSIC attribute, which is applied to 

functions in much the same way as the RECURSIVE attribute. For example, 

INTERFACE 
EXTRINSIC(PROPRIETARY) SUBROUTINE MY_SORT(A) 

INTEGER, DIMENSION(:), INTENT(INOUT) : :  A 

END SUBROUTINE MY_SORT 

END INTERFACE 

is an interface for a subroutine named My...sORT written in the PROPRIETARY programming 
model (presumably a model proprietary to the computer vendor's machine). EXTRINSIC 
interfaces do two things: they alert the compiler that the program is entering a different 

model (which may in turn require the compiler to change the procedure calling sequence) , 
and they constrain the behavior of the called routine. In essence, the overall behavior of 
an EXTRINSIC routine as observed by the caller must be consistent with an HPF routine 
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with the same interface. For example , an EXTRINSIC routine may not take data that is 

consistently replicated in HPF and make it inconsistent. 
HPF also defines the HPF �OCAL programming model , which essentially consists of the 

same program executed on every processor of a parallel machine. This model is useful 

for two things. F irst , it is a model supported by many parallel machines and is therefore 

directly useful for many programmers. In situations where execution speed is more im­

portant than portability, EXTRINSIC(HPF.LOCAL) allows tuning of some operations that 

do not appear explicitly in HPF, such as low-level synchronization operations. Second, 

it serves as an example of how a particular programming model can be defined for use 

as an HPF EXTRINSIC. Vendors may define their own system-specific models, either as 

extensions to HPF .LOCAL or as entirely new models. 

0.9 Subset High Performance Fortran 

Chapter 9 describes Subset HPF , a minimal starting language defined to encourage early 

releases of compilers with HPF features. HPF is a rather large and complex language 

to implement . This subset contains features that are high on users' priority lists yet 

considered implement able relatively quickly by compiler writers. Compiler vendors are 

always encour aged to implement the full HPF language ; however, if resource constraints 

make this impossible, Subset HPF is a suitable language for early implementation. 

0.10 Appendices 

Appendix A contains definitions of the technical terms defined in HPF, as well as relevant 

technical terms defined in Fortran 90. 

Appendix B contains detailed specifications of the intrinsic and library routines intro­

duced in Chapter 7. 
Appendix C provides the formal syntax definitions for HPF. It is taken verbatim from 

the High Performance Fortran Language Specification, version 1.0 [14]. 
Appendix D provides a cross-reference of syntax symbols used in the formal syntax 

rules. It is taken verbatim from the Hzgh Performance Fortran Language Specification, 

version 1.0 [14]. 
The bibliography includes further references to HPF and Fortran 90. 
The index contains entries for all technical terms defined in this document, keywords 

in HPF and Fortran 90, and syntax symbols used in the grammars . 
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1 Basics of High Performance Fortran 

This chapter describes conventions of terminology and notation used throughout the 
rest of this book. It also discusses the goals of the High Performance Fortran Forum in 

defining HPF, and some sources of additional information. 

1.1 Fortran Development 

Although the [Fortran] group broke new ground ... they never lost sight of 
their main objective, namely, to produce a product that would be acceptable 
to practical users with real problems to solve. 

Fortran ... is still by far the most popular language for numerical computation 
Maurice V. Wilkes [30] 

Since its introduction almost four decades ago, Fortran1 has been the language of choice 
for scientific and engineering programming. HPF is the latest set of extensions to this 
venerable language. However, it is not a standard recognized by the formal national and 
international standards committees. The current ANSI and ISO programming language 
standard in this area is Fortran 90. 

The first programming language to be called Fortran was developed by IBM in the 
early 1950's [7]. It became quite popular after the first compiler was delivered to a 

customer in 1957, in large part because it was both efficient and much easier to write 
and maintain than the assembly languages that had come before. The language gained 
increasing acceptance as it was ported to more and more machines. In 1966, the American 
Standards Association (ASA, later to become the American National Standards Institute 
(ANSI)) published the first formal standard for Fortran [28]. This standard included 
many of the core features of Fortran, including: 

• The familiar INTEGER, REAL, and DOUBLE PRECISION data types . 

• A notation for array references and arithmetic computations . 

• DO loops for iteration (but not the END DO statement) . 
• IF conditionals (but not the block IF statement) . 
• Subroutines , functions, and the independent compilation of program units . 

• Global variables (through the mechanism of COMMOI blocks) . 

1 Note that the spelling of the name of the language is case-sensitive , a change made by the Fortran 
standards committee : "FORTRAN" refers to the FORTRAN 77 and earlier standards and, typically, 
products based on them; "Fortran" refers to the Fortran 90 standard and, typically, newer products. 
Except for references to particular standards or products, we will consistently use the term "Fortran" 
to identify the language. 
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It also included the Hollerith data type, which was later replaced with the CHARACTER 
type . The standard was later dubbed FORTRAN 66, to differentiate it from later ver­
sions. 

The Fortran language continued to evolve , and in 1978 ANSI and the International 

Standards Organization (ISO) published a new standard [3]. FORTRAN 77 provided 

a number of additional language features now well known to engineering and scientific 
programmers, including: 

• IF ... THEN, . . ELSE IF . .. END IF conditional statements. 
• The COMPLEX data type, COMPLEX constants, and operations on COMPLEX numbers. 

• The CHARACTER data type, CHARACTER constants , and operations on strings . 
• Formatted, unformatted , and direct-access file input and output. 

In 1978 the US Department of Defense published an addendum to the FORTRAN 77 

standard, designated MIL-STD-1753, with language features required by all compilers 
to be sold to the US government [29]. Virtually every Fortran compiler supports these 

features : 

• The END DO statement. 

• The DO WHILE statement. 
• INCLUDE lines. 
• The IMPLICIT NONE statement. 

• Syntax for octal and hexadecimal constants . 
• Eleven bit manipulation procedures. 

Soon after publication of the FORTRAN 77 standard , work began on a revision to the 

standard, with the working title of Fortran 8x [6] . By the time the new standard was 

accepted by ISO in 1991 (and by ANSI the following year ), it had been renamed For­
tran 90 [17]. In the words of that standard, its goal was to "modernize Fortran, so that 

it may continue its long history as a scientific and engineering programming language ." 
A secondary goal was to use the modern language features to allow programmers to dis­

continue use of obsolescent and no longer desirable forms in FORTRAN 77. These forms 

include nine features identified as obsolescent and a (now empty ) category of removed 

features listed in Appendix B of the standard. Although Fortran 90 provides significant 

new capabilities, it did not ignore the requirements of "legacy" codes ; Fortran 90 includes 

as a subset all of FORTRAN 77 and MIL-STD-1753. 
Even before the Fortran 90 standard had been formally approved , calls were heard 

for more extensions . In particular , standard features were needed to enable portable, 
efficient programming on the new generation of parallel machines. (Section 1.2 details 
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more of these concerns.) The first group to discuss standardization of parallel Fortran 

features was the Parallel Computing Forum (PCF). Their original goals were to stan­
dardize language features for task oriented parallelism on shared memory machines [24]. 

This effort continues as the ANSI X3H5 committee. The X3H5 Fortran language ex­
tensions [5] for parallelism are first-class language extensions (not directives) and make 
control of the parallelism very visible to the programmer with explicit constucts for 

synchonization, worksharing, etc.2 These extensions were, however, closely tied to the 
shared-memory paradigm for parallel computation, making them difficult to implement 
on newer distributed-memory machines. 

In November, 1991 Digital Equipment Corporation organized a birds-of-a-feather meet­
ing at the Supercomputing '91 conference in Albuquerque , New Mexico, to discuss their 
proposed language (already named "High Performance Fortran" ). Along with original 
material, this proposal synthesized ideas from Connection Machine Fortran (from Think­
ing Machines), Fortran 77D and Fortran 90D (from Rice and Syracuse Universities) , Vi­

enna Fortran (from the University of Vienna) , several compiler projects undertaken by 
COMPASS Inc., and other sources . The session was followed in January, 1992 by the 
kickoff meeting for the High Performance Fortran Forum (HPF F ) in Houston, Texas, 

hosted by the Center for Research on Parallel Computation (CRPC) at Rice University . 

Over 130 people attended to hear presentations from Convex Computer, Cray Research, 
Digital, IBM, Rice University, Thinking Machines, the University of Vienna , and oth­

ers on various aspects of the proposed language. There was a strong consensus that a 

common set of Fortran extensions for data parallel programming would be valuable and 
that this was a good time to define such a set of extensions . However, it was clear that 
a meeting of this size was too large to draft a technical proposal. A series of smaller 

"working group" meetings was scheduled to create the language draft . 

The HPFF working group, consisting of about 40 people, met for the first time in 
Dallas , Texas, in March, 1992. Eight further meetings were held, drawing attendees 

from industry, academia, and government; from Austria, England, France, Germany, 

Japan and the United States; and from the ranks of computer vendors, Fortran users, 
and general computer scientists. Through electronic mail, every effort was made to 

keep the HPFF process open to the public, and requests for comments on the draft 
produced voluminous responses. Although the effort was not sponsored by national and 

international standards organizations such as ANSI and ISO, the working group received 

several helpful communications from the ANSI X3J3 committee . The working group 

produced the High Performance Fortran Language Specification, version 1.0 in May, 

2In contrast, HPF chooses to use directives where possible and leaves control of parallelism to the 
compiler. 
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History of Fortran 
1954 "Preliminary Report, Specifications for the IBM Mathematical FORmula 

TRANslating System, FORTRAN" (J. W. Backus , et al.) 
1957 FORTRAN for the IBM 704 
1958 FORTRAN II for the IBM 704 
1 962 FORTRAN IV for the IBM 7030 STRETCH 
1966 X3.9-1966, American Standard (ASA) FORTRAN (FORTRAN 66) 
1969 Federal Information Processing Institute standard FIPS 69-1 
1978 ANSI X3.9 -1978 American National Standard Programming Language 

FORTRAN (FORTRAN 77) 
1978 MIL-STD-1753: FORTRAN, DoD Supplement to American National Stan-

dard X3.9-1978 
1980 ISO 1539-1980 (E), international Fortran standard; same as ANSI 
1987 S8.104 - Draft Standard , Fortran 8x for public review 
1991 Parallel Extensions for FORTRAN 77, X3H5 Language Binding, [X3H5/91-

0040-C] 
1991 S8.118 accepted as ISO/lEe 1539:1991 (E), Fortran 90 

1992 ANSI X3.198-1992; same Fortran 90 standard as ISO 

1993 High Performance Fortran Language Specification 

Table 1.1 
A brief history of Fortran 

1993 [14]. This book is based on that document. Recognizing that some important 
issues, such as parallel input/output facilities, could not be resolved within the time that 
HPF F  allowed itself, the working group recommended that another series of meetings 
be held during 1994. These meetings will consider both new extensions and experience 
gained with the first version of HPF. 

Major milestones in the history of Fortran are presented in Table 1.1. 

1.2 Goals of HPF 

Given the history outlined above, it is fair to ask, "Why do we need yet another Fortran 
extension?" It might seem that Fortran is serving its role quite nicely. 

Despite its past success, Fortran is reaching its limitations on the latest generation of 
high-performance machines. Fortran was originally developed for serial machines with 
linear memory architectures. In the past several years it has become increasingly ap­

parent that a language design relying on these architectural features creates difficulties 
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when executing on parallel machines. One symptom of this is the proliferation of parallel 
Fortran dialects, each specialized to the machine where it was first implemented . As the 
number of competing paral lel machines on the market increases, the lack of a standard 

paralle l Fortran is becoming increasingly serious. Without a standard programming in­

t erface , writing a parallel program ties a scientist to one machine for all his or her work. 

Perhaps worse, the difficulty of programming in almost any of the available languages 

creates a high barrier to entry; scientists are unwilling to make the substantial effort to 
move to the new parallel machines . 

As these difficulties became apparent, new research is also suggesting an answer: data 
parallel programming . The essence of the idea is that many scientific programs have 
a "natural" parallelism at a fine-grain level, such as performing the same (conceptual) 
operation on all the elements of an array. Moreover, other research suggests that many 
of the complex details of communication and synchronization could be generated by 

the compiler automatical ly , if only a little high-level data partitioning information were 

provided . HPF builds on these approaches. 
The overriding goal of HPF was therefore to produce a dialect of Fortran that could 

be used on a variety of parallel machines. At the first meeting, the HPFF working 
group refined this goal , saying its mission was to define language extensions and feature 
selection for Fortran supporting: 

• Data parallel programming (defined as single-threaded control structure, global name 

space, and loosely synchronous parallel execution) . 

• Top performance on MIMD and SIMD comput ers with non-uniform memory access 
costs (while not impeding performance on other machines) . 

• Code tuning for various architectures . 

It also established a numb er of secondary goals, including : 

• Portability (existing code) : Allow relatively easy conversion from existing sequential 

code to parallel code . 

• Portability (new code) : Allow efficient code on one parallel machine to be reasonably 

efficient on other machines . 

• Compatibility : Deviate minimally from other standards , particularly FORTRAN 77 
and Fortran 90. 

• Simplicity : Keep the resulting language simple . 

• Interoperability: Define open interfaces to other languages and programming sty les . 

• Availability: Make compiler availability feasible in the near term. 
• Promptness: Present a near-final proposal in November, 1992 and accept the final 

draft in January, 1993. (Note that this schedule was set in March, 1992.) 
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The HPFF work ing group made a number of compromises due to try to reach these 
goals. Much discussion was spent trying to balance portability between machines with 
ability to tune programs for a specific architecture. Some features were not accepted into 
HPF because the y caused severe hardsh ips for certain classes of machines , even though 
they were efficient on other machines . Final l y, the HPF Journal of Development [ 15] 
chronicles some proposals that did not achieve consensus , although they may have had 
technical merits .  

HPF does not solve all the problems of parallel programming. Its purpose i s  to provide 
a portable, high-level expression for data parallel algori thms .  For algorithms that fall 
into this rather large class, HPF promises to provide some measure of efficient portability. 
We also hope that the new constructs are intuitive, thus lowering the entrance barrier to 
parallel machines. In short, HPF is a step toward bringing the convenience of sequential 
Fortran to the complex parallel machines of today. (It will not be the last such step----,see 
Section 1. 7 below .) It should be noted that , although HPF was motivated by parallel 
architectures , the constructs can be used on any computer, in much the same way that 
Fortran 90 vector assignments can also be used on scalar processors. 

1.3 Fortran 90 Binding 

HPF is an extension of Fortran 90. The array calculation and dynamic storage allocation 
features of Fortran 90 make it a natural base for HPF. The new HPF language features 

fall into four categories with respect to Fortran 90: 

• New directives .  
• New language syntax . 
• Librar y routines. 
• Language restrictions. 

The HPF directives are speci al comments that suggest implementation strategies or 

assert facts about a program to the compiler. They may affect the efficiency of the com­

putation performed, but do not ch ange the value com puted by the program. Section 1.6 

describes the general form of these directives in more detail . 
HPF adds a few new language features, including the FOR ALL statement, the PURE 

and EXTRIRSIC attributes for procedures, and some intrinsic functions . These features 
had to be first-class language constructs rather than comments because they can affect 

the interpretation of a program. For example, the new intrinsics return values used in 

expressions . 
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The HPF library define s a st and ard interface to routines that have proven valuable for 

high performance computing in cluding addit ion al r eduction functions , combining scatter 

functions, prefix and suffix functions, and sor ting functions. It is a Fortran 90 MODULE. 

Full support of Fortran s equence and storage ass ociation is not compatible with the 

data distribution features of HPF .  S ome restrictions on the use of s eq uence and storage 

association are imposed. These restrictions may require insertion of HPF directives into 

standard Fortran 90 p rogr ams in order to preserve correct semantics under HPF. 

1.4 Notation 

This book us es most of the same notation as the Fortran 90 Handbook [1] by Adams et 
al. In particular, nearly the s ame conventions are used for syntax rules. (T ypesetting 
buffs will notice that we have changed fonts; otherwise the conventions are identical. ) 
We define the syntax of a con struct by giving its name and a schematic of its form; for 

example , a combined-directive (H301) has the form: 

combined-attribute-list :: entity-ded-list 

The number following the name refers to the rule number, as expl ained below. 
When a construct may take several forms, they are listed one per line following the 

words "one of:"; for examp le, combined-attribute (H302) is one of: 

ALIGN align-attribute-stuff 
DISTRIBUTE dist-attribute-stuff 

DYNAMIC 
INHERIT 

TEMPLATE 

PROCESSORS 

DIMENSION ( explicit-shape-spec-list ) 

Any characters in TYPEWRITER FONT in thes e forms should be interpr eted literally. Words 
in italic font are names of synt ax elements defined s eparately. Material in [square brack­
ets] is an optional part of the syntax . Three dots . .. indicate that the preceding w ord 
or bracketed expression may be repeated. 

Some names are implicitly defined. An xyz-list has the form: 

xyz [ • xyz] ... 

That is, an xyz-list is a comma-separated list of xyz items. An int-xyz is an xyz that is 
constrained to be of type integer. An xyz-name is a name (R304) that is associated with 

an xyz. 
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All references to syntax rule numbers refer to either the HPF language specification or 

the Fortran 90 standard . HPF syntax rules have identifying numbers of the form Hsnn 
where s is a one-digit section number (in the HPF language specification) and nn is a one­

or two-digit sequence number. Fortran 90 rules are numbered in the form Rssnn, where 

the one- or two-digit section number 88 refers to a section in the Fortran 90 standard. 

A BNF description of HPF in the style used in the Fortran 90 standard appears in 

Appendix C of this book, indexed by rule number. Appendix D contains a cross-reference 

of both HPF symbols and the Fortran 90 symbols that they reference. 
The first time that we use or define a technical t erm it appears in italics. Appendix A 

collects the definitions of these terms. Subsequent references to technical terms normally 

are not italicized. 

HPF and Fortran 90 keywords such as FORALL and IF appear in typewriter font in the 

text, as do variables and other elements taken from program examples. 

1.5 Conformance 

The Fortran 90 standard defines standard-conforming to mean that a program uses only 

the syntax and semantics (including obeying restrictions on use ) that are defined by the 

standard. Similarly, the HPF language specification defines HPF-conforming to mean 

that a program obeys the syntax and semantics defined by the specification. Finally , a 

program is Subset-conforming if it obeys the syntax and rules of Subset HPF. Program 

units , such as individual subroutines, conform to a standard or specification if they can 
be incorporated into a program that then conforms to the same standard or specification. 

All this has the following practical effect: Fortran 90 and HPF explicitly leave un­

defined what happens if you break any of their rules. Some compilers will detect such 
rule-breaking and report an error. In fact, Fortran 90 requires that compilers be able 
to detect and report non-standard-conforming syntax. Some compilers will imp ose their 

own interpretations on non-conforming programs. For example , the restriction that two 

iterations of an INDEPENDENT DO loop cannot both assign to the same location is very 
difficult to check, either in the compiler or while the program is running. Two executions 

of the same program, when processed by two different compilers, might assign different 

values to the location in this case, making the result machine-dependent. Indeed, two 

executions of the same program as processed by the same compiler might assign different 

values to the location, making the result unpredictable even on a single machine; HPF 
simply does not specify what happens when the restriction is violated. When we say in 

the text that a program may not do something, we mean that the resulting construct 

would not be HPF -conforming. We strongly recommend that programmers not use non-

Copyrighted Material 



Basics of High Performance Fortran 17 

HPF-conforming features, even if they happen to work on their current compiler; the 

cost of finding and fixing these features when the compiler changes will be very large. 

Some features are HPF-conforming, but their precise definition varies from system to 

system. For example, the mapping for an array with no explicit ALIGN or DISTRIBUTE 
directives can be anything that HPF can express. The Fortran 90 standard labels these 

features processor-dependent, where the "processor" is the language processor that pre­
pares the Fortran program for running. We use the terminology compiler- or system­

dependent to mean the same thing. It should be understood that we mean "compiler" in 

a rather broad sense in this book; it includes interactive interpreters , translators to other 

dialects of Fortran, and runtime libraries in addition to traditional compilers . Standard­
conforming programs can use compiler-dependent features , but the results of the program 
may change from system to system (or even from run to run on the same system) . This, 

of course, hurts portability. We recommend not relying on these features if they can be 

avoided, and documenting assumptions about them when they must be used. Frequently 
the careful programmer can compensate for system dependencies through the careful use 

of inquiry procedures such as NUMBER_OF ...PROCESSORS and HPLALIGNMENT. 

1.6 HPF Directives and Their Syntax 

Compiler directives form the heart of the HPF language. As directives, they are tech­

nically just Fortran comments. Their presence may be ignored by a standard Fortran 
compiler. But to an HPF compiler they supply the information needed to optimize 
performance. The form of an hpJ-directive-line (H20l) is : 

directive-origin hpJ-directive 

where a directive- origin (H202) is one of: 

!HPF$ 
CHPF$ 
*HPF$ 

HPF directives are consistent with Fortran 90 syntax in the following sense: if any 

HPF directive were to be adopted as part of a future Fortran standard, the only change 

necessary to convert an HPF program would be to remove the directive origin from 

each such directive. This has further implications. The directives must conform to the 

Fortran rules for the source form of the surrounding text. The first thing to notice is that 
Fortran 90 allows comments to begin with "e" and "*" as well as "!" in the fixed source 

form , but allows only "!" to begin a comment in free source form. We recommend that 
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programmers always use the "! HPF$" form of the directive-origin so that it will work in 
either form. 

HPF d irectives follow the free source form rule about spaces within the directive line. 

Spaces are significant . At least one space is required anywhere two keywords or a keyword 

and a variable name are adjacent. Furthermore, a space may not occur in the middle of a 

keyword or variable name. This rule applies even in directives using the fixed source form. 
(If HPF directives are converted to true statements in some future Fortran standard, this 

rule will undoubted ly be changed. HPF directives have been designed to be syntactically 
unambiguous if this happens. ) 

The d irectives also follow the Fortran convention regarding their location. There are 
two forms of d irective: 

spe ciJi c ati on-dire ctive 

executable-directive 

A specification-directIve (H204) must appear in the specification part of the program unit 

containing the other declarations relating to the data described. These directives include 
the following kinds (all defined in later sections of this book) : 

align-directive 

combined-directive 

distri but e- dire ctive 

dynamic-directive 

inherit-directive 

processors-dire ctive 

sequence-directive 

templat e-dire ctive 

An executable-directive (H205) appears with the other Fortran 90 executable-constructs 
in the program unit. There are three executable d irectives : 

realign-directive 

redistribute-directive 

independent- directive 

Even though the directives are "comments" th ere are additional rules about h ow they 
may be intermixed with other Fortran statements and comments. There are also rules 

for how to continue the directives in the case that they do not fit on a single line of the 
source, The basic rule of thumb is to think of the HPF directive as a regular Fortran 
statement, with one important exception. The Fortran free source form allows multiple 
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statements on a single source line. This is not allowed for HPF directives; they must 

start at the beginning of the source line (possibly preceded by blanks) . Non-directive 

comments may follow an HPF directive on the same source line . 

Example 1.1 The following directive is HPF-conforming: 

!HPF$ DISTRIBUTE (CYCLIC) :: PERIODIC_TABLE ! one element at a time 

Note that there is a trailing comment on .the same source line. 0 

Example 1.2 This code is not HPF -conforming: 

! *** The follo�ing line is not HPF-conforming! *** 
REAL PERIODIC_TABLE(103) ; !HPF$ DISTRIBUTE PERIODIC_TABLE(CYCLIC) 

The HPF directive should not have any non-blank characters preceding it on the same 

source line. The code may be corrected by splitting it onto two source lines: 

REAL PERIODIC_TABLE(103) 

!HPF$ DISTRIBUTE PERIODIC_TABLE(CYCLIC) 

Now the HPF directive is on its own source line . 0 

Example 1.3 This code is not HPF-conforming : 

! *** The follo�ing line is not HPF-conforming 

!HPF$ DISTRIBUTE PERIODIC_TABLE(CYCLIC)j DISTRIBUTE LOG_TABLE(BLOCK) 

HPF currently does not allow more than one directive to appear in a single source line. 

The code may be corrected by splitting it onto two source lines : 

!HPF$ DISTRIBUTE PERIODIC_TABLE(CYCLIC) 

!HPF$ DISTRIBUTE LOG_TABLE(BLOCK) 

Now each HPF directive is on its own source line . 0 

HPF directive lines must not appear within a continued Fortran statement . This would 
violate the idea that the directive might later become a regul ar Fortran statement. HPF 

directives can be continued. Other comments may be mixed within the continued HPF 

directive, but other Fortran statements may not appear between the lines of a continued 

directive. To continue an HPF directive, the rules of the surrounding source form are 

applied, but the HPF directive-origin must appear on each line of the continued directive. 
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Example 1.4 An HPF directive continuation in free source form: 

!HPF$ ALIGI AITIDISESTABLISHMEITARIAIISM(I.J.K) � 

!HPF$ WITH ORIITHORHYNCHUS_AIATIIUS(J.K.I) 

The directive origin must appear on each source line. 0 

Example 1.5 An HPF directive continuation in fixed source form : 

!HPF$ ALIGN ANTIDISESTABLISHMENTARIANISM(I.J.K) 

!HPF$*WITH ORNITHORHYNCHUS_ANATINUS(J.K,I) 

Chapter 1 

Observe that column 6 must be blank or zero on the first source line of the directive and 

not blank or zero on continuation lines . 0 

Example 1.6 This HPF directive continuation is "universal"; it works properly both in 
fixed source form and in free source form (see Section 3.10.4. 

!HPF$ ALIGN ANTIDISESTABLISHMENTARIANISM(I,J,K) 

!HPF$�WITH ORNITHORHYNCHUS_ANATINUS(J,K,I) 

Note that the "II;" in the first line is in column 73. 0 

Example 1. 7 This HPF directive has an embedded ordin ary comment lin e , which is 

acceptable to HPF. 

!HPF$ ALIGN ANTIDISESTABLISHMENTARIANISM(I,J,K) 

! The duckbill platypus is not usually so political . 

!HPF$II;WITH ORNITHORHYNCHUS_ANATINUS(J,K,I) 

However, it would not be acceptable to put another directive or an ordinary Fortran 

statement between the lines of a directive: 

! *** This code is not HPF-contorming! *** 

!HPF$ ALIGN ANTIDISESTABLISHMENTARIANISM(I,J,K) 

LOGICAL PLATYPUS 

!HPF$&WITH ORXITHORHYXCHUS_ANATIIUS(J.K,I) 

Such code is Fortran-conforming, but not HPF-conforming. 0 
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1.7 For Further Reading 

Alt hou gh we have tried to be th orou gh , there are some topics rel evant to HPF that are 
outside the scope of thi s book. This includes the HPF base documents, the definitions 

of precursors to HPF, and deeper discussions of Fortran 90. The purpose of this chapter 

is to gi ve the interested r ead er some entry points into that literature. 

The "official" definition of HPF can be found in the High Performance Fortran Lan­

guage Specification, version 1.0 final [ 14] . The document is available in an issue of 

Scientific Programming , and as a technical report from Rice University. Our book is 
d erived from this materi al , expl aining it in a more tutorial manner , adding examples , 

and giving advice on the use of features. The High Performance Fortran Journal of 

Development [15], also available from the same sources, contains a number of propos als 

that were not adopted into HPF, vers ion 1.0. Some of these may be conside red in fut ure 

revisions of HPF. We have not used any material from the Journal of Development in 

thi s book. 

Al though we have included some material on Fort ran 90, we have not covered it in 
depth, due in p art to the size of the languag e. The official definition of the language is 
Fortran 90 [17], a standard avail able from ISO and ANSI. Sever al other reference and 
text books covering Fortran 90 are also available. We particularly recommend Fortran 90 
Explained by Michael M etcal f and John Reid [23], the Fortran 90 Handbook by Jeanne 
Adams, et al. [1], and Programmer's Guide to Fortran 90 by Walt er Brainerd, Charles 
Goldberg and Jeanne Adams [9] for these purposes . 

It is probably impossible to tr ace all the influences on the de velopment of HPF. Any 

list of major technical influe nces would have to include: 

• Parallelizing compilers [31, 33]. 
• Compiler techniques for array operations [2, 12, 18]. 
• Data distribution languages, including Adapt [22] , Fortran D [16], Fortran gOD [32], 
Kali [21] , and V ienna Fortran [10j. 
• Computer v endor implementations, includi ng Connection Machine Fortran [27] and 

the Cray MPP programming model [25]. 

This list does not begin to suggest the gen eral work on paral lel computation th at fed 

into HPF and these languag es . Solving Problems on Concurrent Processors [13] by Fox 

et al. c ontains a wealth of material on this subj ect, although presented in a very different 

framework than this book . 

Several papers on HPF ha ve app eared in various journals and c onferenc es, ranging 

from progress r epor ts while the l an guage was being defined to detailed c ri tiq ues of the 

final result. Koelbel [19], Loveman [20], and Steele [26] surveyed the l anguage at vari ous 
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times during its development. Chapman , Mehrotra, and Zima [11] were more critical. 
This list is by no means complete . 

HPFF is an ongoing activity. In particular, this book is appearing j ust as a new series 

of working group meetings is being organized. If you would like to observe or participate 

in these discussions, send electronic mail with the line 

add hpff 

to hpff-reques tGcs . rice. edu. This will put you on the main mailing list. There are 
also a number of more specialized lists for detailed discussions. 

Documents related to HPF are available for anonymous FTP from titan. cs . rice . e du 

in the directory /public/HPFF. The latest language specification is stored in several 

formats in the subdirectory draft. See the README file in the main dire ctory for the 

current list of available files. 

Copyrighted Material 



 
2 Programming Model 

Every programming language assumes an underlying programming model that explains 
how a program will b e  executed. The purpose of the model is to provide a framework 
for designing and analyzing programs; in particular, a model usually tells what programs 
mean and gives a rough idea of the execution speed of a program. FORTRAN 77, for 
example, assumes that statements are executed in the order they were written and that 
memory is arranged in a linear array. Therefore, a programmer knows that the loop 

x = 0.0 
D O  I = 1, 10000 

X = X + A(I) 
END D O  

will add up the first 10,000 elements of array A and take about 10 ,000 times the time 
of a floating point addition. This chapter gives the basic programming model for High 
Performance Fortran. Mostly, we wil l  concentrate on the performance aspects of the 
programming model here, leaving the details of the meaning of constructs to be defined 
in other chapters. First, however, we make a short digression to describe modern parallel 
architectures. 

2.1 Parallel Machines 

Figure 2.1 shows a block diagram of a modern parallel computer that serves as the basis 
for the HPF programming model. The major features of this machine are: 

• Processors that can operate in parallel, that is, at the same time. 
• Memory modules that are associated with the processors. 
• An interconnection network that allows processors to cooperate and share data. 

This is obviously not a complete model-for one thing, it does not represent any input 
or output devices-but it does cover the machine features that HPF tries to describe. 

The distinguishing feature of a parallel machine is that it can have many processors 
active at once. This is called parallel computation, and is how the machine gets its speed. 
If one processor can perform a million computations per second, then 100 processors can 
(theoretically ) execute a hundred million computations in the same time. The machine's 
manufacturer will usually report this number as the machine's peak performance. (Users 
often call it the machine's "speed of light," since the computer will never go faster than the 
peak performance. ) In practice, various overheads will usually prevent the machine from 
achieving such perfect speedup. The actual performance considering these overheads is 
often called the machine's sustained performance. 
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Synchronization & Communications 

Figure 2.1 
A parallel machine 

In most parallel machines, each processor has an area of memory that it can access 
faster than other memory on the machine. We call this the processor's local memory, 

and other memory areas its remote memory. Because the local memory can be accessed 
faster than remote memory, an efficient program on the machine will use local memory as 
much as possible. Some machines have several levels of local memory, forming a memory 
hierarchy. HPF considers only one level of this hierarchy directly . 

A parallel machine must provide a way for the processors to coordinate their activities. 
There has to b e  a way for one processor to get data from another; doing this is called 
communication. Similarly, if a processor cannot proceed without a result from another 
processor it must wait, an operation called synchronization. Both communication and 
synchronization are overheads that can keep a parallel machine from reaching its peak 
performance. Efficient parallel programs avoid them when it is possible. 

Some examples may help to explain the HPF model. 

Example 2.1 One common class of parallel machines is the MIMD message-passing 

architecture. MIMD stands for "Multiple Instruction stream, Multiple Data stream," 
meaning that the processors can all be executing different instructions at the same time. 
Every processor in a message-passing machine is connected to a local memory, which 
no other processor can access directly. To share data (and to synchronize with each 
other) processors must send and receive messages. These messages travel through an 
interconnection network which ensures, either in hardware or software, that all the data 
arrives intact. Machines in this class include the Intel, Meiko, and nCUBE product lines. 
In addition, the Thinking Machines CM-5 belongs to this class, and some workstation 
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vendors such as Digi tal, Hewlett Packard , and IBM provide products that allow a network 
of workstations to be used as a single machine in this way. For this class of machines , 

the correspondence to the model in Figure 2.1 is very clear. Communication through 

the network in these machines is much more expensive than computation on a processor 
(often by two or three orders of magnitude ) ; thus, programs must minimize the volume 
of communication . Also , a message may have a large start-up cost ;  therefore , it often 
pays to combine two short messages into one large one. 0 

Example 2.2 Another common type of parallel machine is the MIMD shared-memory 

class. Like the MIMD message-passing machines, processors on these machines can 
execute different instructions in parallel. Unlike those machines , at least part of the 

memory is shared between processors; thus, data can be shared without explicit messages. 

Engineering constraints, however, make it difficult to sustain enough memory bandwidth 
to keep all the processors busy. One solution to this problem is to add caches to the 
processors. When a processor references a location , the hardware delivers the data to 
the processor's cache if  it is not already there; if it is there , then access is faster because 
it is local . In terms of the HPF model , we consider the processor caches to correspond 
to the memory modules of Figure 2.1. The hardware connections used to route the data 
correspond to the communication and synchronization network there. Machines made 
by Kendall Square Research fall into this category, as did Alliant and BBN machines 
before those companies left the market. Machines made by Cray Research and Tera 
Computer also fall into the shared-memory category, although they use other mechanisms 

for avoiding the memory bandwidth problem . In these machines the communications 
time is much less than in message-passing machines (although the local access time is 
typically higher). Still, efficient programs here will tend to make local accesses as much 
as possible. 0 

Example 2.3 A final class of parallel machine is the SIMD architecture . SIMD stands 

for "Single Instruction stream , Multiple Data stream," meaning that all processors must 
execute exactly the same instruction at the same time. (Processors may be turned off 
temporarily, if not all are required for a computation.) Each processor has its own mem­
ory, and can communicate with other processors using special instruct ions . Typically, 

this provides finer-grain communication than in the MIMD message-passing machine .  
SIMD machines are often, however, sensitive to the pattern of data movement, since 
routing must be resolved at a low level. As with MIMD message-passing machines, the 

correspondence with Figure 2. 1 is clear. Machines made by MasPar are good exam­

ples of this class, as is the Thinking Machines CM-2. In SIMD machines, much of the 

program complexity comes from ensuring that all processors execute precisely the same 
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instructions. Also , because the performance is tied to the communications patterns it is 
important to optimize the methods for sharing data. 0 

The conclusion to draw from these examples is that many current parallel machines 
reward programmers for keeping many processors busy working on local data. HPF 

provides ways to express both the parallelism in a program and the locality of data at 
a relatively high level. The next two sections give more detail regarding HPF's parallel 
and locality features. 

2.2 Parallel Computation 

If HPF tied itself closely to any one style of parallelism, then programs would not be 
easily portable to other machines. Instead, HPF expresses parallelism at a more ab­
stract level that can be efficiently implemented on many machines. Besides portability, 

this abstraction mechanism has the advantage that it is a natural framework for many 
programs. 

Several varieties of parallelism appear in scientific and engineering applications: 

• Data parallelism, in which operations are applied to many elements of an array (or 
other data structure ) . An example of this would be adding the corresponding elements 
of two arrays to produce a third array. 
• Functional parallelism (sometimes called task parallelism), in which conceptually dif­
ferent operations are performed at the same time. An example of this would be a series 
of filters used in image processing. 
• Master-slave parallelism, in which one process assigns subtasks to other processes. An 
example of this would be a numerical integration program that decomposed the problem 

domain in a master process, leaving the work of integrating the resulting sub domains to 
a set of slave processes. 

All these types of parallelism , and others as well, are useful in certain applications. It 
is difficult, however, to support all of them in the same language. HPF concentrates 

primarily on data parallel computations, which is a widely useful class. To provide some 

access to other types of parallelism , HPF also defines extr insic procedures as an "escape 
hatch" into other programming paradigms . Section 2.2.1 below int.roduces HPF's data 

parallel constructs, while Section 2.2.2 describes the extrinsic procedure interface . 
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Operation type Example 
Parallel Number of 

I Time Processors 

Elemental SIN(A (1 :N)) 0(1) O(N) 
Array Manipulation CSHIFT (A (l : N), K )  0(1) O(N) 
Array Construction SPREAD(X,NCOPIES=N) 0(1) O(N) 
Array Reduction SUM (A (l:N» o (log N) O(N) 
Prefix or Suffix SUM...PREFIX (A (l :1» O(log N) O(N) 
Sorting GRADE_UP (A (l :N» O(logN) O(N) 

Table 2.1 
Theoretical performance of array intrinsic and HPF library operations 

2.2.1 Data Parallel Operations 

HPF can express data parallelism in several ways: 

1. Fortran 90 array expressions and assignment (including masked assignment in the 
WHERE statement). 
2. Array intrinsics defined in Fortran 90 . 
3. The FORALL statement. 
4. The INDEPENDENT assertion on DO and FORALL. 

5. Array library functions defined in the HPF library . 

Fortran 90 features are discussed in detail in Chapter 3; FORALL and INDEPENDENT are 
discussed in Chapter 6; the HPF library is discussed in Chapter 7 .  

The granularity of parallelism in a construct is the amount of work that may b e  
performed in each parallel unit. Data parallel constructs generally have rather fine gran­
ularity. For example, array expressions define an independent computation for each 
element of the result; the same can be said for every index value in a FORALL statement. 
Similarly, the iterations of an INDEPENDENT loop can also b e  thought of as potentially 

parallel. Array intrinsics and HPF library operations have degrees of parallelism that 
vary by the type of intrinsic. Table 2.1 shows the best performance for these opera­
tions on a Concurrent-Read, Exclusive-Write Parallel Random Access Memory (CREW 
PRAM) machine (one of several popular theoretical models). It should b e  noted that 
the constant factors hidden in the "big 0" notation are quite large for sorting; it may be 
more realistic to consider sorting to be 0(log2 N) on O(N) processors. 

Regardless of how the data parallelism is expressed, the easiest way for a user to un­
derstand what is happening is to think of a single stream of control. Operations are 
executed in order, as defined by the usual DO and IF statements. When the program 
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Figure 2.2 
Distribution of three length-l,OOO,OOO arrays onto 1,000,000 processors in a manner ideal for 
element wise computation 

reaches a data parallel construct, many operations can be executed at once. The program 
temporarily forks into many fine-grain tasks, each of which performs one parallel opera­
tion. When all the operations are complete, the tasks rejoin and the program continues 
its execution. When parallel constructs are nested, the fork-and-join process happens 
recursively. Because all processors are executing the same program during this process, 
it is sometimes referred to as the SP M D ("Single Program Multiple Data") modeP 

Note that this is a conceptual model for how the program behaves and may not reflect 
how HPF is actually implemented on a particular machine. In particular, much of the 
fine-grain synchronization implied above can be eliminated in typical programs by using 
compiler analysis. 

Example 2.4 Suppose that the arrays A , B, and C each have one million elements. The 
array assignment 

C = A + B 

represents one million individual, independent assignments that could be carried out 
simultaneously if only one had a million processors, assuming that processor Pj were to 
contain array elements A(J ) , B(J ) , and C(J) in its memory (see Figure 2.2). 

The same computation might also be expressed using a FORALL statement: 

FORALL (J = 1:1000000) C(J) = A(J ) + B(J ) 

The FORALL statement has the same semantics as an array assignment and is parallel for 
the same reason. 

Yet another way to express the computation is a DO loop with an INDEPENDENT direc­

tive: 

1 Chapter 8 discusses a somewhat different "SPMD" model, in which communication is explicit and 
there are exactly as many tasks as processors. Unfortunately, the terminology of this field is still in flux, 
creating confusion even among co-authors. 
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!HPF$ INDEPENDENT 

DO J = 1, 1000000 

C(J) = A(J) + B(J) 

ElfD DO 

29 

Here, IlfDEPENDElfT is an assertion that it is safe to execute all iterations of the loop in 
parallel. (Some compilers would detect the potential parallelism of this loop without the 
INDEPENDENT directive. ) 

All three of these program fragments express the same computation: one million in­
dependent and potentially concurrent assignments. 0 

For many programs and parallel machines, the extent of data parallelism is much 
larger than the machine size. In Example 2.4, for example, no current machine has one 
million processors . When this happens, the compiler must assign some (perhaps many ) 
conceptually parallel operations onto the same processor. Considering parallelism only, 
the optimal assignment of tasks to processors is any pattern that puts the same amount of 
work on each processor. Assigning tasks in this way is called load balancing. For example, 
if the computations in Example 2. 4 were executed on 100 processors, one load-balanced 
scheme would be to assign each processor a contiguous block of 10,000 elements; another 
would be to assign each processor every lOath element. Section 2.4 examines some of the 
complications that arise when communication must also be taken into account. For now, 
it is enough to observe that perfect load balancing is not always possib le. For example, 
one million is not evenly divisible by 128, so executing the computations in Example 2. 4 
would give some processors at least 7813 elements to compute and some 7812 elements (or 
less) . This effect is more important on smaller problems; for example, 500 computations 
on 128 processors leaves 4 elements on some processors and 3 on others, a 25% difference. 

2.2.2 Extrinsic Procedures 

Although data parallelism is important for many problems, it is not the only type of 
parallel execution. Moreover, even data parallel programs may benefit from tuning in the 
target machine's "native language." The EXTRINSIC mechanism of Chapter 8 handles 
just such cases by providing an "escape hatch" to other programming paradigms. In 
particular, EXTRIlfSIC(HPF�OCAL) lets the programmer write a subroutine as a "node 
program." That is, the EXTRIlfSIC(HPF�OCAL) routine consists of code that will be 
executed essentially without change on every processor, in much the same way that many 
task parallel systems are programmed. This allows the programmer great control over 
what will happen on the physical machine, which in turn allows highly efficient machine­
specific code to be written. On the other hand, it also means that the programmer must 
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specify the details of dat a  movement and synchronization , making the program harder 

to read and write. 

The execution model for EXTRINSIC (HPF...LOCAL ) is closer to the physical machine than 

the data p arallel mo del. Essentially, all processors call the EXTRINSIC routine together. 

Once inside the routine, however , each processor is totally independent of the others. 

There is no coordination between processors unless the programmer explicitly p uts it in. 

Similarly, each processor has direct access only to its own dat a ,  rather than access to 

all of memory. The EXTRINSIC call returns when all the processors have finished their 

executions. 

EXTRINSIC routines are not properly part of HPF -they are routines written in a differ­

ent programming paradigm , and possibly in a completely different language. Therefore, 

we will not discuss them further in this chapter. However, these routines are very Im­

portant to have in practice, and their interface forms a vital p art of HPF. 

2.3 Communication 

While p arallelism speeds programs up, moving dat a between processors slows them down. 

The exact cost of this communication is machine-dependent , as is its most natural expres­

sion on a particular machine. HPF takes an abstract view of this sort of communication. 

The basic HPF dat a  model is simple . All data is stored in a global name space, which 

means that all processors "see" the same set of variables. In particular, there are no 

"private" variables visible to only a subset of the processors. Array declarations declare 

the entire size of an array, not the portion on a single processor as in many task parallel 

languages. The data mapping p art of HPF (defined in Chapter 4) describes how a variable 

can be divided among processors according to regular patterns. 

Communication must occur when two dat a  items are referenced together but are not 

stored on the same processor. The basic idea is to apply the definitions of the HPF dat a 

m apping directives to compute the home processor of each array element involved. Since 

we have not given those definitions yet, we will present this through examples rather 

than through formal definitions; we leave adding rigor to these examples as an exercise 

for the reader. 

The communication requirement for an operation with two inputs is clear from the 

above; communication occurs if the inputs are mapped to different processors, and not 

otherwise. Larger operations build their communication requirements up from their 

parts. For the moment , we will present a simple model of this. Section 2 .4 discuss some 

more complex cases. 
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We assume that the total communication for a program fragment is the sum of the 
communications that are needed for its parts. Moreover, in this section we will assume 

that every scalar expression and assignment to a scalar location (i.e., an assignment to 
one array element, rather than to an array section) is executed on only one processor. 

If one statement references several distributed array elements, then one element (such 

as the left-hand side in an assignment) will be local, and the communications can be 

computed relative to that reference. Iterative constructs like DO loops generate the sum 

of the inherent communication for nested statements. The same is true of data paral­
lel statements like FDRALL and array assignment; the communication is the sum of the 
communications requirements for the individual elements. Perhaps less obviously, con­
ditional statements like the IF and eASE constructs require at least the communication 
needed by the branch that is taken. 

We will start with a series of examples involving FDRALL statements and then gen­

eralize. The importance of the FDRALL is not its parallelism (see Example 2.16 for an 
explanation of why); rather, the FORALL is an easy way to specify operations on many 
array elements at once. Our purpose here is to illustrate the effect of data distribution 

specifications on communication requirements, not to suggest that this is the precise com­
piler implementation. The examples in this section use the declarations in Figure 2.3. 

The lines starting with "! HPF$" are the HPF directives for mapping the arrays to pro­
cessors . In this case, there are four processors named PROeS (l), PROeS(2), PRDeS(3) , 
and PRDeS(4). Figure 2.4 shows how the arrays are mapped among the processors. The 
DISTRIBUTE directives completely define the mappings for arrays A, B,  e, D, and nmx. 
The ALIGN directive does not specify the complete mapping of arrays X and Y, but does 

indicate their relative alignment . It causes X (I) and Y (I + 1 )  to be stored on the same 
processor for all values of I, regardless of the actual distribution chosen by the compiler 
for the arrays . Figu re 2.4 shows this as pairs of elements grouped in imaginary processors 
PRDeS? Elements Y (0) and Y (1 ) are not aligned with any element of X and therefore 
occupy processors alone. 

Example 2.5 Consider the following code : 

FDRALL (I = 1:16) A (I) = B(I) 

The identical distribution of A and B ensures that for all values of I, A (I) and B (I) are 

mapped to the same processor .  Therefore, this statement requires not communication . 

o 

Example 2.6 Consider the following code: 

FDRALL (I = 1:16) A(I) = e(I) 
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REAL, D IKENSION (16 ) 

REAL, DIMENSION ( 32 ) 

REAL, DIMENSI ON ( 8 )  

REAL, DIMENSION (O:9 )  

.. A, B, C 

:: D 
.. X 

.. Y 
INTEGER, DIMENSION ( 16 ) INX 

!HPF$ PROCESSORS, DIMEIS I OH (4 )  PROC 

!HPF$ DISTRIBUTE (BLOCK ) OITO PROCS A, B ,  D, III 
!HPF$ DISTRIBUTE ( CYCLIC) OITO PROCS .. c 
!HPF$ ALIGN (I ) W ITH Y (I+ 1 )  .. X 

Figure 2.3 
HPF data mapping declarations 

PROCS ( l )  PROCS(2) PROCS(3) 

a [2]01I10 [I]�00 0�[ill[ill 
b [2]01I10 0�[?J0 0�[ill[ill 
c [2]00 [ill 0��1ill 1I10[ill[ill 

d [2]0[1]0 0�[ill[ill [!!][i!][ill� 
0[IJ00 @][illlilll!il ���� 

inx [2]0[1]0 0�0[IJ 0�[ill[ill 
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PROCS(4) 

[ill[ill!illl!il 

[ill[ill!illl!il 
0[!][ill1!il 
Iillrillllilrill 
���[ill 
[ill[ill!illl!il 

PROCS? PROCS? PROCS? PROCS? PROCS? PROCS? PROCS? PROCS? PROCS? PROCS? 

x 

y 

Figure 2.4 
Data mappings from Figure 2.3 
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The communication requirements here are very different from Example 2.5 due to the 
different distributions of A and C. The first row of boxes in Figure 2.5 shows the data 
movement needed for all values of!. Small squares represent array elements; larger gray 
boxes represent the processors. Each arrow represents the assignment for one I value; if 
the arrow crosses from one gray box into another, then communication is needed for that 
value. The figure is difficult to read b ecause of all the communicated elements; three­
fourths of the elements are not aligned with their "partners. " The total communication 
is 12 elements; moreover, every processor must receive data from every other processor. 
o 

Example 2.7 Consider the following code: 

FORALL (I = 1: 15 ) A (I )  = B (I+ 1) 

The A ( I ) and B ( I ) references are on the same processor for all but three of the possible 
values of!. The exceptions to this are I=4*K for K=l , 2, or 3 (when A (I) is on PROCS ( K )  

and A (I+ 1 )  i s  on PROCS (K+ 1 )). The second row of Figure 2.5 shows the resulting shift 
communication pattern. Only one boundary element on each processor (except the end 
processor) needs to be communicated, giving a total of 3 communicated elements. Each 
processor receives data from at most one other processor . 0 

Example 2.8 Consider the following code: 

A (I )  = B (2*I- 1 )  

As the third row of Figure 2.5 shows, the strided access to B means that each active 
processor potentially receives data from two others. The total communications load is 

12 elements. 0 

Example 2.9 Consider the following code: 

FORALL ( I  = 1: 16) A (I )  = D (I) 

The array sizes of A and D are different. This size difference in turn makes the data 
mappings different, although both are described as BLOCK. The effect on communication 
is shown in the fourth row of boxes in Figure 2.5. The total communications requirement 
is 12 elements, with each processor receiving data from at most one other processor. A 
processor must send values to at most two other processors. 0 

Example 2.10 Consider the following code: 

FORALL ( I  = 1: 16 ) A (I )  = D (2*I- 1 )  
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Figure 2.5 
Communications patterns for some example assignments 
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This assignment shows how different distributions may be used together without causing 
communication: The fifth row of Figure 2.5 shows the reference pattern for the assign­
ment; note that no arrow crosses from one processor to another . It is easy to see why-the 
strided entry "cancels out" the difference in array sizes. 0 

Example 2.11 Consider the following code: 

FORALL (I = 1:15) C(I) = C(1+1) 

While superficially similar to Example 2.7, this code has very different communication 
behavior because the distribution of C is CYCLIC rather than BLOCK. This distribution 
maps the references to C (I ) and C(I+1 ) to different processors for any value of I. The 
sixth row of Figure 2.5 shows that the resulting communications pattern moves 15 array 
elements. Each processor receives data from one other processor in a shift pattern ( with 
wraparound on the ends) . 0 

Example 2.12 The following code requires no communication: 

FORALL (I = 1:8) X CI )  = Y (I+ 1 ) 

In this case, the relative alignment of the two arrays matches the assignment statement 
for any actual distribution of the arrays. 0 

Example 2.13 The following code may require communication: 

FORALL (I = 1:8) X CI )  = Y(I) 

The only information available in this example is that X CI )  and Y(I+1 ) are on the 
same processor; this has no logical consequences for the relationship between X CI )  and 
Y(I ) . The seventh row of Figure 2.5 shows this as communication between abstract 
processors. Since there are more abstract processors than physical processors, some of 
these communications may actually be local references. Whether this actually happens 
is very machine- and compiler-dependent. 0 

Example 2.14 The following code also has very limited information regarding its com­
munication requirements. 

FORALL ( I  = 1:16) A ( I) = B (INX (I» 

Clearly, A(I) and INX(I) are mapped together. Without knowledge of the values stored 
in INX, however, the relation between A(I) and B (INX (I» is unknown. Therefore, it 
is impossible to say what the communications requirements are (except that a most 16 
elements are sent and received) . 0 
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A few generalizations are worth making. 
Accessing arrays with different mappings will generally require communication even 

for apparently simple operations. We saw this in Examples 2.6 and 2.9 .  In a simple 
assignment between a BLOCK-distributed and a CYCLIC-distributed array, if each array 
has n elements on p processors, then corresponding the elements are located on the same 
processor if and only if l(i - l)/( nlp)J = (i -1 ) mod p. (This can be seen by inspecting 
the definitions of BLOCK and CYCLIC in Chapter 4.) Such a coincidence happens lip of 
the time, which is not often on large machines. Similar effects can occur for other com­
binations of distributions if the block sizes of the mappings are different. It is sometimes 
possible to construct expressions to avoid this communication, as in Example 2. 10, but 
this is rather difficult for the programmer to write (and for the compiler to unravel). 

Shift operations like Examples 2.7 and 2. 1 1  are common in practice. Communicating 

boundary elements as in Example 2.7 is the general case for BLOCK distributions and 
small shift distances. (Shifting by a large distance-more than the number of elements 
on a processor-requires communication for every element, however. ) Similarly, com­

municating every element in a CYCLIC-distributed array is also the common case. (The 
exception to this is shifting by a multiple of the number of processors, which avoids all 
communication.) These characteristics make BLOCK a good choice for algorithms that 
perform many operations involving neighboring array elements. CYCLIC distribution, 
however, may provide better load balance in some situations-see Example 2.19. 

Strided references as in Examples 2.8 and 2. 10 produce more complications for the 

general case. For BLOCK distributions, if the reference stride is k then a processor may 
require data from k + 1 others. (The number is k + 1 rather than k because boundaries 
may not match evenly. ) On most machines, this is more expensive than communicating 

with one other processor as in Example 2.7. The compiler can, however, schedule this 

data movement at compile-time. The situation with a CYCLIC distribution is similar, but 

the communications pattern is quite different. 
It is difficult or impossible to make general statements about arbitrary references like 

Examples 2.12 through 2.14. This will tend to produce slower code, since the techniques 
for handling such cases must be more general. We advise giving the compiler as much 
information as possible using the HPF directives; this tends to make the programs more 

efficient and portable. 

Example 2.15 The above FORALL statements could be converted to array assignments 

without changing the communications requirements. For example, 

A(1:15) = B(2 : 16 )  

is equivalent to Example 2.7. 0 
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Example 2.16 Similarly, the communication needs of Examples 2.5 through 2.14 would 
not change if the FORALL statements were changed to DO loops. For example, 

DO I = 1, 15 

A ( I) = 8 ( I + l) 
END DO 

has the same communications requirements as Example 2.7. In general, converting a 
FORALL statement to a DO loop changes its meaning and inherent parallelism, however. 
This is an important point-the communication requirements of a program may be com­
pletely independent of its parallelism. 0 

Example 2.17 This loop must communicate between 0 and 12 elements, depending on 
the original values in A. 

! HPF$ INDEPENDENT 

DO I = 1, 1 6  

IF (A ( I) < 0.0) THEN 

A (I) = B ( I) 
ELSE IF (A(I) > 0.0) THEN 

A(I) = C (I) 
END IF 

END DO 

(Compare with Examples 2.5 and 2.6.) Negative elements of A do not require communi­
cation; most positive elements do. 0 

A few other complex features deserve mention. Some array intrinsics have inherent 
communication costs as well. For example, consider the statements: 

X 

A ( 1: 1 6) 

A ( 1: 1 6) 

= SUM(A ( 1 : 1 6» 

= SPREAD ( B(l), NCOPIES= 1 6) 

= CSHIFT(A ( 1: 1 6) ,  1 )  

Intrinsic 1 
Intrinsic 2 

Intrinsic 3 

In general, the inherent communication derives from the mathematical definition of the 
function. For example, the inherent communication for computing SUM is one element 
for each processor storing part of the operand, minus one. (Further communication may 
be needed to  store the result. ) The optimal communication pattern is machine-specific. 
Similar remarks apply to any accumulation operation. Prefix and suffix operations may 
require a larger volume based on the distribution. The SPREAD intrinsic above requires a 
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broadcast from PRoes (1 ) to all processors , which may take advantage of available hard­
ware. The eSH IFT operations produce a shift communication pattern (with wraparound) . 
This list of examples illustrating array intrinsics is not meant to be exhaustive. 

A REALIGN directive (see Chapter 4) may change the location of every element of 
the array. This will cause communication of all elements that change their home pro­
cessor; in some compilation schemes , data will also be moved to new locations on the 
same processor. The communication volume is the same as an array assignment from 
an array with the original alignment to another array with the new alignment. The 
REDISTRIBUTE directive changes the distribution for every array aligned to the operand 
of the RED I STRIBUTE. Therefore, its cost is similar to the cost of a REALIGN on many 

arrays simultaneously. Compiler analysis may sometimes detect that data movement is 
not needed because an array has no values that could be accessed; such analysis and the 
resulting optimiz ations are beyond the scope of this book. 

2.4 Putting It All Together 

The purpose of this section is to show how parallelism and communication combine to 
determine the total performance of an HPF program. As we move from simple examples 
to more complex ones, it will become clear that our model does not describe all relevant 
characteristics of HPF execution. The performance of an HPF program will depend 
on the programming model, compiler design, target machine characteristics, and other 
factors . This does not mean that HPF is not a useful language; it simply means that 
programmers have to remember their computing environment. 

A simple model for the total computation time of a parallel program is 

Ttotal T par / P active + T senal + T comm (2 .4.1) 

where: 

• T total is the total execution time. 
• T par is the total work that can be executed in parallel. 
• P ac tzve is the number of (physical) processors that are active, that is, actually execut­
ing the work in T par. 
• Tserial is the total work that is done serially . 
• T comm is the cost of communications . 

This formula assumes that all parallel parts of the program have the same number of 
active processors; this is true of our examples , but not for most large programs . When 
a program has several parallel phases, then a better model would define several Tpar. 

Copyrighted Material 



Programming Model 39 

and Padive" and the total parallel time would be their sum. If a computation cannot be 
load balanced, then the term T par! P actIve should be replaced with the largest time on 
any processor. One can think of this as rounding the division result upwards (although 
the real reason for the load imbalance may be more complex). 

Example 2.18 Consider this bit of prototypical "stencil code": 

REAL , ARRAY ( 16 , 16 )  :: X ,  Y 

FORALL (J=2: 15 ,  K=2: 15 ) 

Y (J , K )  = ( X (J , K )+X (J- 1 , K ) +X ( J+ 1 , K )+X (J , K- 1 )+X (J , K+1»/5.0 
END FORALL 

Note that this code accesses all elements of X but updates only the interior elements of 
Y. 

If we have four processors Pl, P2, P3, alld P4, there are a number of ways we might 
assign the elements of X to processors; some of these are illustrated in Figure 2.6, along 
with the HPF directives that produce them. We will assume that the Y array is assigned 
in the same way as X ,  and that each element of Y is computed on the processor to which 
it is assigned. 

One obvious approach might be to take the elements of X in the usual Fortran column­
major array element order, divide them into four equal groups, and assign one group to 
each processor . The result is that each processor holds four adjacent columns of X-see 
Figure 2.6(a)). With this organization, processors P2 and P3 each must compute 56 
elements of Y (a 14 x 4 subarray of V), while processors Pl and P 4 need compute only 
42 elements ofY (a 14 x 3 subarray of Y) . We can see already that while this distribution 
of array elements equalizes the memory requirements of the four processors, it does not 
equalize the computational load. Moreover, processor P2 must exchange 14 elements of 
X with processor Pl and another 14 elements with processor P3. Processor P3 has the 
same computation and communication load as P2. Processors Pl and P 4 have less work 
to do, so the overall completion time will be dictated by the time required by processors 
P2 and P3. So the computational load (T par! P actwe ) is 56 element-computations and 
the communications overhead (T comm) is 28 element-exchanges. 

Alternatively, the processors might be organized in a 2 x 2 square, with each processor 
holding an 8 x 8 subarray of X-see Figure 2.6(b) . With this organization, each processor 
must compute 49 elements of Y, that is, a 7 x 7 subarray of Y. For example, Pl must 
compute Y ( 2: 8 , 2: 8 ). Each processor can compute 36 elements of Y ( the 6 x 6 interior 
of the 8 x 8 subarray ) without requiring elements of X from another processor; but to 
compute the other 13 elements of Y it must obtain 7 elements of X from each of two other 
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P3 

P3 

(a) DISTRIBUTE X ( * , BLOCK ) (b) DISTRIBUTE X ( BLOCK, BLOCK ) 

1 P2Pl 2 , P, PIP'2 PI P2 P, P2 p] 
P2 Pl P2 

Pa P4 P3P, P3 P, Pa P4 Pa P4 PaP" P3 P, P3 P, 

PI P2 PI P2 PI P2 PI P2 PI P2 PI P2 P, P2Pl , 
3 p. 3P, P3 P, Pa P4 Pa P4 Pa P4 P3 P, P3 P, 

, P2 PI P2 PI P2 P,i?2 Pl P2 PI P2 P, P2 P, P, 

Pa P4 P3P, Pa P4 P3i?, Pa P4 Pa P4 11'3 P4 P3 P, 

, P2 P,P2 P, P2 P,iP2 PI P2 PI P2 PI P2 PI P2 

Pl p-Ip-Ip. PlP2 Pa [p. [Pl P2P, p.Pl P,PaP. 
3 p. P3 P4 Pa P4 Pa P4 Pa P4 P3i? P3P• P3P, 

Pl P2 Pl P2 PI P2 Pl P2 PI P2 PI P2 Pl P2 PI P2 

3 P4 Pa P4 Pa P4 Pa P4 P3P .. Pa P4 3 P, PaP" 

, P, PI P2 Pl P2 P, P2 P, P, Pl P2 Pl P2 PI P2 

3P, P3 P" P3iP. PaP" P3 P, Pa P4 Pa P4 Pa P4 

P, 2 P, P2 Pl P2 PI P2 PI P2 PI 2 P, P2 PI P2 

11'3 P4 Pa P" Pa P4 Pa P4 Pa P4 Pa P4 Pa P4 Pa P4 

Pl P2 Pl P2 IP,IP, P, P, PI P2 PI P2 PI P2 P,iP2 

Pa P4 1P3 p. P3 P4 Pa P4 P3 P4 Pa P4 Pa P4 PaP4 

(c)  DISTRIBUTE XC*, CYCLIC ) (d) DISTRIBUTE X ( CYCLI C , CYCLIC )  

Figure 2.6 
Various distributions of a 16 X 16 array onto four processors 
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processors. So the computational requirement per processor (Tpar/ P act.ve) is 49 element­
computations and the communications overhead (Tcomm) is 14 element-exchanges. This 
distribution of data onto processors is a notable improvement because it balances the 
computational load and reduces the communications overhead. 

The distributions shown in Figures 2.6(a) and 2.6(b) are examples of block distribu­
tions: each processor contains a contiguous subarray of the specified array. Figure 2.6( c) 
illustrates a cyclic distribution in which columns of an array are distributed onto four 
processors so that each processor, starting from a different offset, contains every fourth 
column. Unfortunately, this happens to produce the same computational imbalance as 

the block distribution of Figure 2.6( a) and furthermore has a higher communications 
overhead. 

Figure 2.6( d) shows a distribution that is cyclic in both dimensions onto four processors 
arranged in a 2 x 2 square. This distribution , like the two-dimensional block distribution 
shown in Figure 2.6(b), would b alance the computational load evenly for our stencil 
example. Unfortunately, the communications overhead would be far greater: for every 
array element, all four nearest neighbors reside in other processors! 0 

Example 2.19 Lest the last example suggest that cyclic distributions are inefficient, we 
present a different algorithm where they are useful. Consider this simple code for LU 
decomposition by Gaussian elimination: 

REAL X ( 16, 1 6 )  

DO I = 1, 15 

FORALL (J = 1+ 1:16) 

X(J , 1 ) = X(J,1) / X(I,I) 
FORALL (K = 1+1:16 ) 

X(J,K) = X(J,K) - X(J,I)*X(1,K) 
END FORALL 

END FORALL 

END DO 

Incrementing the outer DO loop's index must be done sequentially, creating a small Tserial 

overhead . Also, all the elements assigned in the X (J. I) = . . . statement are located on 

the same processor in the one-dimensional mappings (Figures 2.6(a) and 2.6(c»; for the 

purposes of this example, we will assume these are also serial overhead. The parallel 

computation estimates below do not include this overhead. 

For each value of I, the inner FORALL construct carries out (16-1) **2 assignments, 
potentially in parallel. Successive iterations of the DO loop update smaller and smaller 
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Figure 2 .7  
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Regions of an array updated during successive iterations of LU-decomposition 
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regions of the array X, as illustrated in Figure 2.7 . With the assignment shown in Fig­

ure 2.6(a) , after the first eight iterations none of the elements assigned to processors P 1  
and P2 wil l  be updated again.  Considering the load imbalance , the parallel computation 
time (T parI P active) for all the inner FORALL index values is 470 element updates. The 
situation is even worse for the two-dimensional block mapping (Figure 2 .6(b ) ) : after the 

first eight iterations the elements of X to be updated all reside in one processor , giving 

T parI P a c t i v e  = 652. The cyclic distributions keep the computation al load approximately 
balanced across all the processors over the entire course of the computation; at every 
stage, the busiest processor has at most one more column to compute than the most idle. 
Figure 2.6(c) has a comp utation load of 356 clement up dates , taking these small load 

imbalances into account ; Figure 2 .6( d)  improves this to 344 element updates. 

The communications overheads for the different mappings do not depend on whether a 
block or cyclic mapping is used ; instead , they only dep end on the number of dimensions 
that are partitioned. In Figures 2.6 (a) and (c) , the references to X ( I , I ) and X O , K )  
will cause communication. The total number of elements sent is 120 , with most of 
those elements received by more than one processor . For the two-dimensional mappings 
(Figures 2 .6(b) and (d) ) , the reference X C J , ! )  also causes communicati on, leading to a 

T comm of 225 . Because there are so few processors, each element is received only once ; 

in general ,  the elements would be sent to all processors in a row, or all processors in a 
column . 0 

We now turn to some complications that real programs (and compilers) may bring to 
the model on page 2.4 . 1 .  The assumptions in Section 2. 3 may overestimate the commu­

nication, particularly for goo d  compilers. A maj or optimization on parallel machines is 
to reduce the communication cost. This can be done in several ways. One way is to 

avoid redundant communication-if a data value has been communicated once and has 
not changed, then it can be reused without another trip through the communications 
network . Reuse like this is common in sequences of statements . Another optimization is 

to carefully choose the location for a computation , possibly splitting the computation of 
one statement among several processors . Such optim izations are particularly useful for 

array expressions . There are far too many other optimizat ions to discuss here . Instead , 

we show two simple examples to give a flavor of how these work . 

Example 2.20 To illustrate removing redundant communication , consider the following 

statements .  

REAL, D I MENSION ( 1000 ) : :  R,  S .  T 

! HPF$ PROCESSORS , DIMENSI ON ( 10 )  : :  PROCS 
! HPF$ D ISTRIBUTE (CYCLIC) ONTO PROCS : :  R, S .  T 
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R ( I )  

S C I )  
= S (I+2 )  

= T ( I+3 )  
2 * R ( I+2)  S ( I +2 )  = 

T ( I )  = R ( I + 1 )  + S (I+2 ) + T ( I+ 3 )  

Stat ement 1 
Stat ement 2 

Stat ement 3 
Stat ement 4 

Chapter 2 

To simplify the discussion , assume that all four statements are executed on the processor 
storing the array element on the left-hand side . (This is an optimal strategy for this 
example , although not for all programs . )  Statements 1 and 2 each require one array 
element to be communicated for any value of I .  Statement 3 requires no communicat ion . 
All the references in Statement 4 are on different pro cessors . There is no redundancy to 
be exploited in the first three statements . However , for Statement 4 :  

• Element R (I+ 1 )  needs communication , since i t  is not local and was not used earlier . 
• Element S ( I + 2 )  needs communication , sin ce Statement 3 overwrote the value com­
municated for Statement 1. 
• Element T ( I + 3 )  does not need new communication , since it was used in Statement 2 
and not changed since . 

Thus , the minimum total communication in this program fragment is four array ele­
ments , rather than five as Section 2.3 suggests . 0 

Example 2 . 2 1  The reader may think that Example 2.20 was a lot of work for little 
gain . However , the same reasoning can be applied to aggregate operations with greater 
effect . Consider the following FORALL statement . 

REAL , DIMENSION ( 1000 ) : :  U ,  V , W 
! HPF$ PROCESSORS , D IMENSION ( 10 )  : :  PROCS ( 10 )  

! HPF$ DI STRIBUTE ( BLOCK ) ONTO PROCS : :  U , V , W 

FORALL ( K  = 3 : 998 ) 
U ( K )  (U (K- 1 ) *W (K- 1 )  + U (K ) *W ( K )  + U (K+l ) *W (K+ 1» I 3 . 0  
V ( K )  = (W (K-2 ) + W (K- l )  + W ( K )  + W (K+ l )  + W ( K+2» I 5 . 0 
W (K ) = ( U ( K-l )+U (K ) +U (K+ l» * (W (K- l )+W (K ) +W (K+ l » I 9 . 0 

END FORALL 

Here , the total communication per processor (except for PROCS ( 1 )  and PROCS ( 10») is 8 

elements: 

• Two elements for W (K- l) and W (K+ l ) ,  used in al l the assignments . 

• Two elements for U (K- 1 )  and U (K+1 ) ,  used in the assignment to U .  
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• Two elements for W (K-2 ) and U (K+2 ) , used in the assignment to V . 
• Two elements for U (K-l) and U (K+ l ) , used in the assignment to W .  (These cannot be 
reused from the assignment to U,  because they were overwritten there . )  

Values of W are not overwritten due to  the definition of  the FORALL statement . I f  each 
statement and each index value were treated separately, as in Section 2.5 ,  then two 
values of the FORALL indices (the first and last on each processor) would produce 6 
communicated elements each , and two other index values (next to the ends) would need 
1 communicated element . The grand total would therefore be 14 elements ; optimization 
has gained almost a factor of 2 in communication volume in this case . 0 

Example 2.22 To illustrate comput ation placement (or scheduling, as it is sometimes 
called ) ,  consider the following code . 

REAL , D IMEISIOI ( 100 , 1 00 )  

! HPF$ DISTRIBUTE ( BLOCK , * )  
x ,  Y ,  Z 
X ,  Y ,  Z 

X = TRANSPOSE ( Y )  + TRANSPOSE ( Z )  + X 

A straightforward implementation would require two transposition (communication ) op­
erations , one for each of Y and Z .  The communication pattern is similar to the CYCLIC 

to BLOCK conversion in Example 2 . 6 .  An optimizing compiler might algebraically rewrite 
this as: 

REAL , DIMENS ION ( 1 DO , 10D ) 

! HPF$ D I STRIBUTE (BLOCK . * )  

T 1  = Y + Z 
X = TRANSPOSE ( T l ) + X 

X ,  Y ,  Z ,  T 1  

X ,  Y ,  Z ,  T 1  

with only one use o f  transposition , thus cutting the communication volume i n  half. 0 

Example 2.23 After all that minimization , it is almost embarrassing to note that some­
times it is better to send more data than is real ly needed . In Example 2 . 1 7 ,  the cost of 
checking which data needed to be communicated might be more than the communication 
itself. In this case , a good compiler would communicate the entire contents of array C 

even though some of that data was not used due to the IF .  0 

Equation 2 .4 . 1  also allows some tradeoffs to be made . An extreme example is com­
pletely eliminating communication by putting all the data on a single processor and 
executing the entire computation there .  Of course , this eliminates all parallelism (not 
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to mention that there may not be enough local memory on one processor) . Unless the 

communication cost T comm is very high , this is unlikely to be an advantage. There are , 

however , several more interesting tradeoffs that an implementation can make: 

• Add communication to distribute parallel work among more processors . T comm lll­

creases , but T pari P active decreases . 
• Perform some parallel operations redundantly to avoid communication . T pari P active 

increases , but T comm decreases . 
• Partially parallelize the serial work, perhaps reducing the number of active processors . 
T s erial  decreases , T pari P activo increases . 
• In practice , parallelizing serial work often means adding communication . The tradeoff 
may actually be T .erial decreases, T pari P activo and T comm increase . 

Note that all of these tradeoffs can also be run in reverse-for example , restricting par­
allelism (creating coarser-grain parallelism) decreases T comm and increases T par I P a c tive . 

There are other tradeoffs one can attempt to make ; we leave listing them as an exercise 
for the reader . When faced with options like this , the correct choice is always to think 
about the system(s) the code will be running on . All of the parameters in our equa­
tion are system-dependent , and whether some of the tradeoffs are legal depends on the 
algorithm. 

Example 2 . 24 Choosing an intermediate storage location is sometimes more complex 
than Example 2 . 22  showed . Consider the following array assignment . 

REAL , DIMEISIOR ( 1000 ) Q ,  R ,  S ,  T 

INTEGER , DIMEISIOR ( 1000 ) IX 

! HPF$ PROCESSORS , DIMERSION ( 10 )  PROCS 
! HPF$ DISTRIBUTE ( CYCLIC ) ONTO PROCS : : Q, R, S ,  T ,  IX 

Q = R ( I X )  + S ( I X )  + T ( I X )  

and the following implementation strategies : 

• Evaluate each element of the right-hand side on the processor where it will be stored .  
This strategy potentially requires fetching three values (the elements of R ,  S , and T)  for 
each element computed . It always uses the maximum parallelism of the machine . 

• Evaluate each element of the right-hand side on the processor where the corresponding 
elements of R ( IX ) ,  S ( IX ) , and T ( I X )  are stored. This potentially communicates one 

result for each element computed . If the values of IX are evenly distributed ,  then it also 
uses the maximum machine parallelism . But if IX ( I ) = 1  for all I ,  then all the computation 
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is  done on one processor . (Similarly, if  IX ( I) = 1 0 * ( (I  +9)  / 1 0 ) , then PROCS ( 1 0 )  does al l 
the work, even though IX contains many different values . ) 

On the basis of communication only, the second strategy is 3 times better . Consi dering 
parallelism as well , the p icture is much cloudier .  Minimizing the total cost is a very 

m achine- and input-dependent problem . 0 

Example 2 . 2 5  Some algorithms have inherent , input- indep endent conflicts between 

computation an d communication . For example , consi der the co de below . 

REAL , D IMENSION ( 6 , 6 )  : : X ,  Y 
! HPF$ PROCESSORS , D IMEN S I ON ( 3 )  : :  PROCS 

! HPF$ D I STRIBUTE ( *, BLOCK) ONTO PROCS : :  X ,  Y 

DO I = 2 ,  6 

X C I, : ) = X ( 1 ,  : ) - X ( 1 -1 , : ) *Y ( 1 , : ) 
END DO 

DO  J = 2 ,  6 

X ( : ,  J )  = X ( : ,  J )  - X ( : ,  J -l ) *Y ( : ,  J )  
END D O  

Figure 2 . 8  shows how data flows i n  this problem . 

In the DO I loop , there is no conflic t ;  the array assignments are perfectly parallel and 

there is no communication . The DO J loop also has a potential p arallelism of N on each 

iteration . However , all elements of X ( : , J )  and Y ( : , J )  are located on the same processor . 

Therefore ,  exploitation of any of the potential p arallelism will require scattering the data 
to other pro cessors . (This is independent of the communication required for the reference 

to X ( : , J - 1 )  . ) There are several implementation strategies available for the DO J loop : 

1 .  Execute the vector operations in the D O  J loop sequentially. Since each processor 

must wait for a vector of values from its neighbor , the entire loop runs serially. In terms 

of Equation 2 . 4 . 1 ,  T par = T s e ri a l . This is the simplest possible strategy, but it means 

that the program will spend most of its time in sequential computation .  

2 .  Transpose X and Y before the DO J loop , and transpose them again at the end .  The 

DO J loop can then be executed exactly as the DO I loop-that is , in parallel wi thout 
communication . This allows parallel updates of both the rows and columns of x, at the 

cost of two all-to-all communication operations . It corresponds to increasing T comm and 

T par in order to eliminate Tseri a l .  This strategy works well  if the target system has a 
fast transpose operation an d enough memory to store the transp osed array s .  
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DO I = 2 I 6 

proc(2) 
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Data flow in Example 2 . 25 
Copyrighted Material 

Chapter 2 

proc(3) 

proc(3) 



Progra.mming Model 

proc( 1 )  1 , 1  

proc(2) 
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Figure 2.9 

Time 

Pipelined execution for Example 2 .25  
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3 .  Compute the results in row order on each processor , sending the last value to the next 
processor as soon as it is ready. This strategy can produce a pipelined effect , as shown in 
Figure 2 . 9 .  The communications volume is the same as method 1 ,  but the data is sent in 
smaller packets . This allows some parallelism , but parts of the algorithm execute serially. 
In terms of our model , work has been moved from Tsena / to Tpar . This strategy works 
best if the t arget system can sustain fine-grain communication and synchronization . 
4 .  A variant of the last method is for each processor to compute a few rows before com­
municating the results. The effect is much the same as in Figure 2 . 9 ,  except that the 
p ipeline startup is longer . However , on machines with a large communications startup 
time (for example ,  MIMD message-passing machines) this reduces the number of com­
munication events, thus reducing overhead . In terms of our model , this reduces T comm 

while increasing Tpar/ P active . This is the strategy of choice for machines which cannot 
handle fine-grain communication. 

This list is not exhaustive . It should be obvious that the optimal implementation of 
this algorithm depends very much on the target machine . It is also true that any of the 
above strategies could be implemented directly in HPF or could be incorporated into the 

compiler. 0 
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In light of the tradeoffs described above , the reader may wonder what the "best" way 
to write HPF programs is . There is no single answer.  In some situations , programmers 
are willing to invest extreme effort in tuning an application for a particular architecture ; 
in other situations , the ability to run on a variety of different machines is paramount . 
The advice to the programmer for these environments would have to be quite different . 
We can ,  however , make some general observations : 

• Programs will execute operations fastest if the dimension encapsulating the parallelism 
is distributed among processors . 
• Programs will execute operations fastest if the work is evenly divided among proces­

sors ; typically, this also implies that data should be evenly distributed . 
• Programs will execute operations fastest if there are few (or no) elements communi­
cated. 

Many data parallel algorithms fit these criteria for a number of data  distributions ; Fox 
et al. [ 13] is ful l  of such examples . Using such algorithms is highly recommended-they 
will be reasonably efficient everywhere . This efficiency can be enhanced by carefully 
matching the data mapping to a particular target machine . The particular mapping that 

produces the highest performance will sometimes vary from system to machine (although 
all machines should execute correctly with all distributions) , so this process may be 

considered machine-dependent optimization . In cases where conflicts cannot be avoided , 
such as Example 2 . 25 (as written) , the user may have to consider the characteristics of 
his or her target machine(s) in detail to decide the best strategy. We hope that vendors 
wil l  eventually provide tools for such tasks, but as of this writing such tools are still 
immature . 
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3 Fortran 90 

This Chapter summarizes the new features of Fortran 90, particularly those that have 
an impact on High Performance Fortran. 

3.1 Fortran 90 Features 

I don't know what the technical characteristics of the standard language for 
scientific and engineering computation in the year 2000 will be . .. but I know 

it will be called Fortran. 

remark attributed to John Backus 

In addition to all of the FORTRAN 77 and Department of Defense standard language 
features , Fortran 90 provides significant new facilities some of which, such as array syn­

tax, make it easier for a compiler to determine that operations may be carried out 

concurrently. 

Ease-of use improvements provide capabilities to ease the writing of programs, enhance 

control over program execution, and facilitate data input and output. 

Data fa cilities include an entity-oriented declaration syntax, user sp ecification of nu­
merical precision of data and additional numeric data types, user-defined arbitrary data 
structures, dynamically allocatable data, and pointer-based linked data structures. 

Array features include array subsection notation, vector-valued subscripts , expressions, 

assignment, and masked assignment ; array constructors; elemental, transformational, 
and inquiry array intrinsic functions; and array-valued user functions . 

Modularization facilities allow the packaging of dat a and procedures; the definition 
and packaging of data abstractions including the definition of operators and assignment 

for defined types; procedure improvements such as optional and keyword arguments, 

recursion, and internal procedures; and compiler checking across compilation units. 

A large number of intrinsic procedures prov ide built-in support for mathematical oper­

ations, especially the construction of, computation on, and transformation of arrays. In 

addition, there are procedures to inquire about numerical accuracy and bit manipulation 
procedures. 

The concept of language evolution, under which old language features are identified as 
obsolescent and subject to possible removal in future standards, highlights the require­

ment for the use of modern programming practices and the choice of a modern coding 

style. 
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3.2 Ease-of-Use Improvements 

Ease-of use improvements provide capabilities to ease the writing of programs, enhance 

control over program execution, and facilitate data input and output. 

3.2.1 Ease of Writing 

Fortran 90 provides three capabilities to ease the writing of programs: 

• Names can be up to 31 characters long, a significant improvement over the old limit 

of 6. 
• An expanded character set includes lower-case letters and the underscore character 

for use in names, and the forms ==, /=, <, >, <=, and >= for the relational operators . EQ., 
.NE., .LT., . GT., .GE., and .LE. 

• A new free source form removes the column dependences of the old fixed source form 
and adds conveniences such as the use of significant blanks, "!" -delimited comments 
which may end a line, and";" -separated statements on a single line. 

3.2.2 Ease of Program Control 

Control of program execution is enhanced by several new constructs: 

• Named IF, CASE, and DO constructs allowing named matching of construct parts and 

eliminating requirements for statement numbers. An example is: 

CHECK_IT; IF ( .NOT. DONE ) THEN 

ELSE IF ( .NOT. HOME) THEN CHECK_IT 

END IF CHECK_IT 

• New DO statement capabilities including DO for infinite loops (with loop termination 

programmed in the loop body) ; ERD DO to match DO without statement numbers; DO 

WHILE some condition is true; CYCLE to the next iteration of a loop; and EXIT from a 
nest of loops. For example: 

FOREVER; DO 

DO WHILE (I . NE .  10) 

INNER: DO I = 1 , N 

IF ( ... ) THEN CYCLE INNER 
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IF ( . . .  ) THEN EXIT FOREVER 

ERD DO INNER 

Elm DO 

END DO FOREVER 

53 

• A CASE construct that allows selection from a number of alternatives based on the 
value of an expression. (You can almost think of an IF construct as merely a two-way 
logical case construct.) Case alternatives may be selected for a single value or for a range 
of values, as in: 

SELECT CASE (I) 
CASE (: -1) 

J = -1 
CASE (0) 

J = 0 

CASE (1:5 ) 

J = 2 • 1- 1 

CASE DEFAULT 
J = 10 

END SELECT 

For values of I < 0 

For I = 0 

For values of I = i .  2, 3, 4, or 5 

Or CASE (6:) for values of I > 5 

3.2.3 Enhanced Input and Output 

Input/output capabilities are enhanced in four areas: 

• Non-advancing input/output, sometimes called partial record or strea m I/O, allows 
character-oriented I/O in addition to the traditional Fortran record-oriented I/O. 
• Namelist input/output, the ability to do I/O on a named group of data objects, has 
been a de facto standard facility in Fortran implementations and now has been officially 
standardized. 
• New I/O edit descriptors support binary, octal, hexadecimal, engineering , and scien­

tific notations. 
• Several new specifiers extend the operations of the IlfQUIRE, OPEX, READ , and WRITE 
statements. 
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3.3 Data Facilities 

3.3.1 Intrinsic Data Types 

Fortran 90, like its predecessors, provides six intrinsic data types: I1TEGER, REAL, DOUBLE 

PRECISION, COMPLEX, CHARACTER, and LOGICAL. It gives the programmer greater choice 
in the characteristics of these data types, however. 

Processors may provide more than one representation for a data type. (For example, 
Digital Equipment Corporation's Fortran compilers for the Alpha microprocessor directly 
support 1, 2, 4, and 8 byte integers and 2, 4, and 8 byte floating point numbers.) The 
KIND facility provides for the parameterization of the intrinsic types, except for DOUBLE 

PRECI S I ON, providing data types with user-specified precision and range1. This allows 
specification of, for example, short and long integers, more than two precisions for real 
and complex, additional large character sets (as used in some foreign languages), and 
both packed and unpacked logicals. Some examples are: 

REAL ( SELECTED_REAL_KIND ( B , 70» :: A Pre c ision of 8 d igits, 

range of -10**70 to 1 0**70 

SELECTED_INT_KIND (4) INTEGER , PARAMETER 

INTEGER (KIND=SHORT) 

REAL ( KIND(O.ODO» 

COMPLEX (KIND (O.ODO» 

SHORT = 

C 

Must allow -9999 t o  9999 
Same as DOUBLE PRECISION 
Same as DOUBLE COMPLEX , 

which is not in Fortran 90 

( or FORTRAN 77) 

CHARACTER(KIND=KANJI) , PARAMETER:: ORIENTAL = KANJI_'  ... ' 

Numeric inquiry intrinsic functions such as MAXEXPONENT return information about the 
actual representations of types and kinds of numbers while a program is running. 

3.3.2 Structured Data Types 

In addition to the capabilities of intrinsic data types, some programs need to define and 
use arbitrary structures of data. Fortran 90 provides two extension mechanisms to do 
this: arrays (described in Section 3.4) and derived types, sometimes called user-defined 

types (described in Section 3.5). An array is a collection of objects of the same type 
which are identified by their position within the array. Arrays have been a mainstay 

1 Most FORTRAN 77 compilers provide a similar capability through a de facto industry-standard 
extension, the * notation for data typing as in IIlTEGERU, IITEGEU2, I1TEGEh4, IITEGEh8, REAL*2 
REAL.4, REAL*8, and DOUBLE COIIPLEX. The "." notation, however, specifies the number of bytes in th� 
representation rather than the precision and range desired. Some processors support multiple floating 
point representations of the same size. 
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of Fortran since its earliest implementations, but Fortran 90 significantly expands their 
set of supporting operations. A derived type, or structure ,2 is a collection of objects of 

(possibly) different types which are identified by their name within the structure. Derived 
types provide the ability to use structured data and, together with modules, the ability 

to define abstract data types (see Section 3.7.3). 

3.3.3 Entity-Oriented Declarat ions and Allocatable Arrays 

Fortran 90 allows declarations organized either by attribute, as in FORTRAN 77, or 
by entity , as in the declarations of SHORT and K above. The entity form allows the 

programmer to group the type, attributes, and optional initialization value of an entity 
into a single statement. As the example showed , one of the attributes may be PARAMETER, 
meaning that the entity is a named constant of the specified type and value. Other 
attributes, such as DIMENSION and SAVE can be specified similarly. 

Often an array serves as a kind of working storage, and should take up space only when 

required. Three ways of accomplishing this are automatic arrays, allocata ble arrays, and 

pointers to arrays . 
Within a procedure, the extents in each dimension of an array are determined when 

control enters the procedure. Storage for the array is then allocated, and freed when 
control leaves the procedure. As a consequence, an array can be declared to be the same 

size as a dummy argument, as in: 

SUBROUTINE ARRAV_SWAP(X, Y) 
REAL, DIMENSION (:), INTENT(INOUT) X, Y 

REAL, DIMENSION ( SIZE ( X »  Z 

Z = X 

X = Y 

Y = Z 

END SUBROUTINE ARRAY_SWAP 

Dynamic storage allocation of arrays is avail able via the mechanism of ALLOCATABLE 
arrays. The declaration: 

REAL, DIMEISION ( : ,:), ALLOCATABLE : :  A 

declares A to be a two-dimensional array for which storage has not yet been allocated. 

Given this, the executable statement 

ALLOCATE (A(2*N, 2*N+l» 

2 Some programming languages use the term "record" to refer to what Fortran 90 means by "struc­
ture." In Fortran 90, a TecoTd is one of the elements of a file subject to input /output operations. 
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calculates the values 2*N and 2*N+l and allocates appropriate storage for A. This storage 
continues to exist until a DEALLOCATE A statement is reached (or until flow of control 
leaves the scope of the declaration of A). The ALLOCATED intrinsic can test whether or 
not A is currently allocated. 

Pointers are discussed in Section 3.6. 

3.4 Array Features 

Fortran 90 contains features to allow operations on entire arrays without explicit DO loops: 
a programmer can now say A = B + C to add two arrays together and store them into a 
third array. These features were introduced because many scientists have found them to 
be a natural and readable way of expressing algorithms. In addition, they have proven 
to have efficient implementations on a variety of computer architectures. We expect that 
these facilities will make Fortran 90 the programming language of choice for scientific 
and engineering numerical calculations on high performance computers. Their value has 
already been proven in a number of compiler products. The introductory overview in 
the Fortran 90 standard [17] states: 

Operations for processing whole arrays and subarrays (array sections) are in­

cluded in Fortran 90 for two principal reasons: (1) these features provide 
a more concise and higher level language that will allow programmers more 
quickly and reliably to develop and maintain scientific/engineering applica­

tions, and (2) these features can significantly facilitate optimization of array 

operations on many computer architectures. 

3.4.1 Array Overview 

Although the semantics of Fortran 90 are defined without reference to a particular under­
lying machine model, efficient execution can be realized on a variety of parallel machines. 
This is true despite the fact that Fortran 90 programs can be viewed as providing a global 
name space and a single thread of control Consider the following Fortran 90 declarations: 

REAL :: S 
REAL, DIMENStON (N) :: A, B 
INTEGER :: I, J 
INTEGER, DIMENSION (N) p 

A scalar floating po int variable 

Two N element arrays 
Two scalar int eger variables 

An integer index array 

Fortran 90 provides for element-by-element operations on entire arrays, where the par­

ticular order of evaluation is not specified by the language. The semantics of Fortran 
90 allows these statements to be executed in parallel. The following array assignment 
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statement multiplies each element of B by itself, adds that value to the square root of 

the corresponding element of A, and replaces the corresponding element of A with the 
new value: 

A = SQRT(A) + B**2 

The following statement performs a m asked array assignment in which each value of A 

is replaced by that value divided by the corresponding value of B except in those cases 

where the value of B is 0: 

WHERE (B 1= 0) A = A/B 

A number of Fortran 90 statements imply communication in a distributed memory im­

plementation . Examples include broadcast, when a scalar is assigned to an array: 

A = S/2 

permutation, when array section notation, index vectors, or some array intrinsics are 

used : 

A(I:J) = B(J:I:-1) 

A(P) = B 

A = CSBIFT(A. 1) 
A(P(i» = B(i). forall i = 1:1 
Circular shift left of A 

and reduction, such as summing all of the elements of an array : 

S = SUM (B) 

As the last two examples hint, there are also a number of intrinsic functions for dealing 

with arrays; these are listed in Tables 3 .1 through 3.6. 

3.4.2 Array Concepts and Terminology 

Consider the following declarations: 

REAL, DIMENSION(10, 6:24, -5:M) A 

REAL, DIMENSIOI(0:9, 20, M+6) . .  B 

The rank of A is 3, the shape of A is (/10, 20, (M+6)1), the ext ent of dimension 2 of A 

is 20 , and the size of A is 10 * 20 * (M+6). Arrays can be zero-sized if the extent of any 

dimension is zero. The rank must be fixed w hen the program is written , but the extents 
in any dimension, the lower bounds, upper bounds , and strides, do not have to be fixed 

until the array comes into existence. We saw examples of this in the previous section . 

Two arrays are conformable if they have the same shape, that is, the same rank and the 
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same extents in corresponding dimensions; A and B are conformable. An arbitrary array 
and a scalar are said to conform; the scalar is treated as if it were a conforming array each 
of whose elements had the scalar as its value. An elemental operation element al intrinsic 
is an operation defined on scalars producing a scalar result, that has the property that, 
when it is applied to conformable arrays, it operates on corresponding elements of the 
arrays and produces a conformable array result. 

3.4.3 Whole Array Operations and Assignment 

An array, strictly speaking, is not a type; rather DIMENSION is an attribute that may 
be applied in the declaration of objects of any type, intrinsic or user-defined. Thus, 
Fortran 90 has no concept of "arrays of arrays," although, of course, it does have multi­
dimensional arrays. The usual intrinsic arithmetic, comparison, and logical operations 
for scalars of that type, as well as assignment, are elemental, and may be applied element­
by-element to arrays. Thus: 

A = 2.5*A + B + 2.0 

replaces each element of A by its value multiplied by 2.5 and added to the corresponding 
element of B, plus 2. Thus, this particular assignment statement is equivalent to the 
triply nested set of loops (assuming the array bounds in Section 3.4.2): 

DO i = 1, 10 

DO J = 5, 24 

DO K = -5, M 
A(I,J,K) = 2.5*A(I,J,K) + B(I-l,J-4,K+6) + 2.0 

END DO 

END DO 

END DO 

except that the program does not restrict the order in which the elements as updated. 

3.4.4 Array Subsections 

Fortran 90 provides the ability to access elements of an array and parts, or sections, of 
arrays using subscript triplet notation. If an array is declared: 

REAL, DIMENSION(100, 100) :: A 

the array element references A (1,1) , A (100,1), A (1,100) , and A (100,100) reference 
the four corners of A while the array sections A (1, : ) , A (100, : ) , A ( : ,1) , and A ( : ,100) 

reference the first and last rows and the first and last columns of A. The array section 
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A(2:99. 2:99) references the interior  of A. Elements of an array section need not be 

contiguous . For example, A(l.l: 100: 2) references the odd elements of the first row of 

A and A (1: 100: 99.1: 100: 99) is a 2 by 2 array section that references all four corners . 

Array element references behave just the same in expressions as do scalar references, 
while arr ay sections behave as do arrays. For example,  A(1. :) is a ran k-one array with 
100 elements while A(2:99. 2:99) is a rank-two 98 by 98 element array. Syntactically, 

however , the only references allowed are to an element or a section of a named array. To 

reference an element of a section , for example, the section must first be assigned to a.n 

array temporary. 

A program can pass an array element or an array section (including a whole array) 
as an actual argument to a p rocedure . In general, the dummy argument must have 

the same type , kind, and rank as the actual argument . To use certain features the 

programmer must provide an explicIt Interfa ce to the caller so the compiler can check for 

correctness and provide appropriate linkage conventions . Fortran 90 also supports an old 
style of argument p assage by sequen ce association in which an array element is passed 
by reference to the pro cedure and can be used as either a scalar or the first element of 
a sequence, such as a column, to the proced ure . This form of argument passage puts 

significant limits on both what can be expressed3 and the execution performance of the 

program on more advanced computers with distributed rather than linear memories. We 

strongly recommend using the modern form of argument passing in all cases. 

3.4.5 Expressions 

Fortran 90 interpretation rules for expressions an d  assignment require freedom from side 
effects, allow short-circuit evaluation , require the ent ire right-hand side of an assignment 

to be evalu ated before the left-hand side is modified, and prohib it attemp ts to do multiple 

updates t o a left-hand side. The following are some statements from the standard [17]: 

• The eva luation of a function reference must neither affect nor be affected 
by the evaluation of any other entity within the statement. [7.1.7) 

• It is not necessary for the processor to evaluate all the operands of an 
expression if the value of the expression can be determined otherwise. [7.1.7.1] 

• Execu tion of an intrinsic assignm ent causes, in effect, the evaluation of the 
expression [on the right-hand side] and all expressions within [the left-hand 
side], the possible conversion of [the right-hand side] to the type and type 
param eters of [the  left- hand side] and the definition of [the left-hand side] 
with the resulting value. [7.5.1.5] 

3 A program can pass a colwnn this way, but not a row or more complex section. 
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• When [the left-hand side] in an intrinsic assignment is an array, the as­
signment is performed e lement-by-element .. . The processor m ay perform the 
element-by-e lement assignment in any order. [7.5.1.5] A many-one array sec­

tion is an array section with a vector subscript having two or more elem ents 
with the same value. A m any-one array section m ust not appear on the left 
of the  equ a ls in an assignment statement or as an input item in a REA D  
statement. [6.2.2.3.2] 

(We note in p assing that similar restrictions also appeared in older Fortran standards, 

but many programmers are unaware of them. ) 
For example , since the entire right hand side is evaluated b efore the left han d  side is 

up dated, the assignment statement: 

V(LB:UB) = V(LB-l:UB-l) 

has a meaning equivalent to 

DO I = LB, UB 

t empe I) = V(I-1) 

END DO 

DO I = LB, UB 
v( I) = t emp (l) 

END DO 

This , of  course, is  inefficient in both space and time .  The "obvious" naive scalarization: 

! * * *  WRONG !  !! Produces incorrect answer! !! * * * *  

DO I = LB, UB 

V(l) = V(I-1) 

END DO 

is incorrect. It  takes a rather sophisticated compiler analysis to determine a correct,  

effi
'
cient scalarization , running the loop backwards: 

DO I = UB, LB, -1 

v( I )  = V(l-1) 

END DO 

Other array expressions require even more complex translations to scalar code. 
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3.4.6 Vector-Valued Subscripts 

Vector-valued subscripts provide a more general way to form an array section that does 
the subscript triplet notation. An index vector can index an array along a p articular 

dimension ; the elements of this index vector select the elements of the indexed array 

to be in the subsect ion . In an expression , these selected elements may be arbitrary 

and involve duplicat ion . If a vector-valued subscript is used on the left-hand  side of an 

assignment , however , it may not have duplicate values. Since Fortran 90 does not sp ecify 
an order for update in an assignment , if duplicates were allowed the resulting value would 

depend on the order chosen. Be careful; in  general a comp iler will probably not check 
for duplicates because of the performance cost in doing so. For example: 

3.4.7 

INTEGER, DIMENSION(6) 

INTEGER, DIMENSION(3) 

INTEGER, DIMENSION(3) 

INTEGER, DIMENSION(3) 

B = A(ODD_LOCATIONS) 

A(ODD_LOCATIONS) = 15 

B = A(GENERAL_LOCATIONS) 

A = (/ 10, 20, 30, 40, 50, 60 /) 

B 

ODD_LOCATIONS = (/ (I, I=1:6:2) /) 
GENERAL_LOCATIONS = (/ 4, 2, 4 /) 

B -- (/ 10, 30, 50 /) 

A -- (/ 15, 20, 15, 40, 15, 60 /) 

B -- (/ 40, 20, 40 /) 
A(GENERAL_LOCATIONS) = 25 *** Not Fortran gO-conforming! ! ! 

Trying to updat e A(4) twice 

Array Constructors 

An array constructor provides a way to write a sequence of scalar values of the same 

type to be interpreted as a rank-one array. A component of an array constructor may be 
either an expression or an implied DO. If an expression has an array value, it is treated as 
a sequence of elements in array sequence order, with the first subscript position varying 
the fastest. An implied DO allows generation of a set of values by iteration . Since an 
array constructor is of rank one, the RESHAPE intrins ic can be used function to construct 
arrays of higher rank . If an array constructor is "simple enough,,4 it can be an initial 
value for an array in a declaration. 

(/ 1, 2, 3 , M, N+2, F (X) /) 

(/ B I) 
(/ Q, A(I:J:K) , 3.0/) 

(/ (I, I = 1, N, 2) I) 

Size is 6 
I Element s of B in element order 

Size i s  «J-I) /K + 1) + 2 

Odd numbers <= N 

4In general, an initialization expression must have every subexpression be a constant , ref�re�ce only 
certain intrinsic functions that can be evaluated at compile-time, and obey a few other restnctlOns. 
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RESHAPE ( SOURCE= ( /  (1, ( 0 , 1=1, H) , J=l, H-l) , 1 I), 
SHAPE = ( /  H, H I»� ! Ident ity matrix 

( /  « FUH ( I), I = 1 ,  F(», J, J = 1, UB) / )  

Size c an  only b e  comput ed by calling F ( )  UB t imes . 

! Values of FUH ( I) must c omput ed at the same time. 

3.4.8 Masked Array Assignments 

A m asked array assignment is an array assignment occurring in a WHERE statement or 
construct in which assignment occurs only to elements selected by the true elements of a 
logical array expression. In each such masked assignment statement , the mask expression, 
the variable being assigned to, and the right-hand-side expression must be conformable , 
and the assignment must be intrinsic and not defined. For example, in 

IHTEGER, DIMENSION (S) 
INTEGER, DIMENSIDH(5) 

IHTEGER, DIMENSIDN ( S) 

A = (J 0 ,  1, 1, 1, 0 / )  

B ( J  10, 11, 12, 13, 14 J) 
C = -1 

WHERE (A . NE .  0 )  C = B / A 

the resulting value of C will be ( J  -1,  1 1 , 12 , 13, -1 J). 
In a WHERE construct the mask expression is evaluated once and ,  effectively, its values 

are saved. Every assignment statement following the WHERE is executed as if it were 

WHERE (mask-expression-values) assignment-statement 

and every assignment statement following the ELSEWHERE is executed as if it were 

WHERE ( .  HOT. mask-expression-values) assignment-statement 

This is important to remember if the statements have side effects or modify each other 
or the mask expression. In this example of the WHERE construct : 

REAL , DIMENSIOH ( 1 000) :: PRESSURE , TEMP, PRECIPITATION 

WHERE (PRESSURE .GE. 1.0) 

PRESSURE = PRESSURE + 1 . 0  

TEMP = TEMP - 1 0 .0 

ELSEWHERE 

PRECIPITATION = .TRUE. 

END WHERE 
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the assignment to PRESSURE does not change the value of the mask as used in the other 
assignment statements in the WHERE construct. 

The mask is applied to the actual arguments of a funct ion reference on the right-hand­

side of the masked array assignment only if the function is an elemental intrinsic function. 

Otherwise the function's actual arguments are not masked by the mask expression. For 

example , since LOG is an elemental intrinsic function, in: 

WHERE (A .GT. 0) B = LOG(A) 

the mask is applied to A and LOG is executed only for the positive values of A. The result 

is assigned to those elements of B for which the mask is true. 
In the following example, since SUM is a transformational intrinsic and not an elemental, 

it is evaluated fully for all values of A. The assignment only happens for those elements 

of B that are greater than 0: 

REAL, OIMENSION( 10, 10) :: A 

REAL, OIMENSION(10) : :  B 
WHERE (B > 0.0) B = SUM(A, OIM=l) 

In this example: 

REAL, OIMENSION(10,10) : :  A 
REAL, OIMENSION(10) : :  B ,  C 
�HERE (C .GT. 0.0) B = SUM(LOG(A), OIM=l) / C 

since SUM is not elemental , all of its arguments are evaluated fully regardless of whether 
they are elemental or not. Thus LOG(A) is fully evaluated for all elements of A even 
though LOG is elemental. Notice that the mask is applied to the result of the SUM and to 

C to determine the right-hand-side. One way of thinking about this is that everything 
inside the argument list of a non-elemental function does not use the mask, everything 
outside does. 

3.4.9 Array-Valued Functions with Array-Valued Arguments 

Section 3.8 describes Fortran 90's large set of intrinsic functions, most of which can take 

array arguments and return array results. In addition to these , user-defined subroutines 
and functions can take array arguments where appropriate and, in the case of funct ions , 

return array results . A program can only select an element or t ake a section of a named 
array, so to select an element or take a section of a function result it must first be stored 

in a temporary variable. 
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3.4.10 Array Object s and Their Specifications 

Arrays may be specified in four different ways: 

• An explicit-shape array is an array that is declared with explicit values for the bounds 
in each array dimension. An automatic array is an explicit-shape array declared in a 

procedure; its bounds do not have to be constant and their values are determined at 
procedure entry. An explicit-shape array dummy whose size is determined by arguments 
passed into the procedure is referred to as an adjustable array. Adjustab le arrays de­
pend on the linear memory assumptions of sequence association; their function is better 

performed by assumed-shape arrays. 
• An assumed- shape array is a non-pointer dummy array whose shape is taken from its 
associated actual array. The array inquiry intrinsic functions apply to an assumed-shape 
array; this frees the programmer from the old-style Fortran practice of having to pass 

array bounds information as extra arguments along with the array itself. 
• A deferred-shape array must be specified with its rank, and has two forms: an allocat­
able array and an array pointer. A deferred-shape array assumes its shape when space 
is allocated for it in an ALLOCATE statement or, in the case of an array pointer , when it 
is associated with a target by pointer assignment . 

• An a ssumed- size array is a dummy array argument whose size is assumed from its 

associated actual. Its rank and extents may differ , from its actual , only its size is assumed, 
and only in the last dimension . This is an old form that depends on the linear memory 

assumptions of sequence association . 

Some annotated examples fol low: 

REAL FUNCTION F (M, N, W, X, Y, Z )  

INTEGER 

REAL, D IMENSION (10,  10 ) 

REAL, D IMENSION(M, N )  

REAL, DIMENSION ( : , 2:) 

REAL , DIMENSION (N , * )  

REAL , DIMENSION ( 1 0, 1 0) 

REAL , DIMENSION (M, N) 

REAL , DIMENSION (SIZE (W , 1»  

REAL , DIMENS ION(:), ALLOCATABLE 

REAL, DIMENSION ( : , :), POINTER 

M, N 

W Explicit shape 

X Explicit shape adj ustable 

Y Assumed shape 

Z Assumed size 

A Explicit shape 

B Explicit shape, automatic 

C Explicit shape, automatic 

D 

! Deferred-shape allocatable 

:: P ! Deferred-shape pointer 
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3.5 User-Defined Data Types 

A derived type is defined in a derived type definition in which the named components may 
themselves be of any type, including other derived types or arrays. A variable (structure) 
of that type is declared in a type declaration statement. Of course, a variable can be an 

array of objects of derived type; indeed, a variable of derived type can have any attribute 
(such as PARAMETER or IllTENT) that a variable of intrinsic type can have. The following 
example defines a derived type PERSON consisting of three components NAME, AGE, and 
IS..FEMALE, each of different type, declares a parameter ANN of type PERSON with an initial 

value given by a structure constructor, and an array called EMPLOYEE of 10 elements, each 
of type PERSON: 

TYPE PERSON 

CHARACTER (LEN = 10) 

INTEGER 

LOGICAL 

EID TYPE PERSall 

NAME 

AGE 

IS]EMALE 

TYPE ( PERSOI ) .  PARAMETER 

TYPE (PERSOI ) . DIMEISION(10) .. 

All = PERSall ( " AIN", 36, . TRUE. ) 
EMPLOYEE 

Objects of derived types act like "ordinary" variables with "ordinary" values; they 
are first-class citizens of Fortran 90. Assignment for objects of the same derived type 
is defined intrinsically to be an order unspecified, component-by-component assignment. 

No other operations are defined intrinsically for objects of derived type. The user-defined 

operator and user-defined assignment mechanisms may be used, especially in conjunction 
with modules, to provide abstract data types. Structure constructors may be used to 
create structures, and a component of a structure may be accessed by use of the Y. 
notation, as in the following continuation of the above example: 

INTERFACE OPERATOR (==) 

LOGICAL FUNCTION EMPLOYEE_EQUAL_TEST (E 1.  E2) 
TYPE (PERSON), INTENT ( IN )  : :  E1 

TYPE ( PERSON), INTEIT ( IN) : :  E2 

END FUNCTION EMPLOYEE_EQUAL_TEST 

END INTERFACE 

IIiTEGER SUM, N 
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EMPLoYEE(1 )  = PERSON ("EUNICE" , 25 , . TRUE . ) 

EMPLoYEE ( 2 )  = PERSON ( " OSCAR" , 42 , . FALSE. ) 

EMPLoYEE(3 ) = ANN 

SUM = 0 

N = 0 

DO I = 1 ,  1 0  

IF (.NoT . (EMPLoYEE(I ) -- ANN ) THEN 

PRINT *, I ,  EMPLOYEE ( I )  

N = N + 1 

SUM = SUM + EMPLoYEE(I ) %AGE 

END IF 

END DO 

PRINT *, "AVERAGE AGE OF " ,  N ,  " EMPLOYEES IS ", SUM/N 

With an appropriate definition of EMPLoYEE...EQUAL_TEST to compare two objects of type 
PERSON for equality, this example would calculate the average age of all employees who 
are not equivalent to ANN. 

In general , there is no order in memory implied by the order of the components in a 
derived type definition . Thus , a compiler is free to reorder the components (consistently 

of course) in order to achieve a better packing of data. If the program must have the com­

ponents in a structure allocated according to the Fortran rules for sequence association , 
for example to be able to pass a structure consistently to a non-Fortran 90 procedure , it 
must specify the SEQUENCE property in the derived type definition. This allows use of the 

old-style Fortran memory tricks such as array reshaping and EQUIVALENCE on the new 
derived types. We recommend that you avoid the use of the SEQUENCE property by using 
a module to make the derived type definition visible to caller and callee . The resulting 
code will be easier to maintain , and may even be faster on some machines. 

As we have seen , the Fortran 90 array facilities allow a number of array section refer­
ences. These extend to arrays of structures , and subarrays of structure components . For 

example: 

TYPE STRUCT 

REAL 

REAL , DIMENSIoN(20 ) 

END TYPE STRUCT 

SCALAR_COMPONENT 

ARRAY_COMPONENT 

TYPE ( STRUCT ) , DIMENSIoN ( 1 0 )  :: ARRAY_OF_STRUCTS 
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assigns to "elements J through K of the ARRAY _COMPONENT of the Ith element of ARRAY_­

OF ...5TRUCTS." A program can also access "the SCALAR_COMPONENT parts of the J through 

K elements of ARRAY.JlF ...5TRUCTS" or even "the Ith elements of the ARRA LCOMPONENT 

parts of the J through K elements of ARRAY.JlF ...5TRUCTS:" 

ARRAY_OF_STRUCTS (J:K )%SCALAR_COMPONENT 

ARRAY_OF_STRUCTS (J:K ) %ARRAY_COMPONENT (I ) 

Both may be used in any context that any other array section can be used. The limitation 
on such sectioning is that in a reference of the form A%B%C . .. only one of the components 

may have a rank greater than O. Thus , the following is not Fortran 90 conforming: 

ARRAY_OF_STRUCTS(I:J) %ARRAY_COMPONEXT (K:L) ! *** lonconforming!! ! 

3.6 Pointers 

Fortran 90 provides a concept of pointers but be careful, your intuition about pointers, 

derived from vendor-specific extensions to FORTRAN 775 or from other languages, is 
liable to be incorrect. In Fortran 90 a pointer is an alias, or another name which can refer 
to an object and is not a unique type of object itself. Thus, POINTER does not indicate 
a data type, but rather is an attribute of an object such as an array, an arbitrary scalar 
variable, or a structure. In addition, a pointer may alias a row, column, or more complex 
slice of an array, or a component of a structure. 

No storage is allocated for an object declared with the attribute POINTER. Thus, the 

program may not reference it until some object is pointer associated with it by use of an 

ALLOCATE statement or pointer assignment. The ASSOCIATED intrinsic function checks 
whether a pointer is associated with a particular target, or with any target. 

Anything that can be done with allocatable arrays can be done with pointers. The 
earlier example of an allocatable array could have been done as: 

REAL, DIMENSI ON (:. : ),  POINTER:: A 

ALLOCATE (A (2*N. 2*N+l» 

5Many vendors such as Cray, Digital, Sun Microsystems, and others provide an extension to their 
FORTRAN 77 implementations known as Gray pointers. The meaning of Cray pointers is dependent on 
the FORTRAN 77 concepts of sequence and storage association and the implementation assumption of a 
linear memory address space. In effect, a Cray pointer is a memory address, on which address arithmetic 
may be performed. This feature, with its implementation assumptions, is difficult to optim ize and 
difficult to implement on distributed memory hardware architectures . The Fortran 90 pointer concept 
provides many of the capabilities of Cray pointers, but with a different syntax and an architecture­
independent semantics. 
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Allocatable arrays are most appropriate in the simple situation where all that is really 
required is control over storage allocation. An allocatable array has only one "name" or 
alias, aiding compi ler optimization , whereas an array that is pointed to can have multiple 
aliases at the same time .  This situation can occur by means of pointer assignment . 
Continuing the previous example , suppose the program also declared : 

REAL , D IMEN S I ON ( :  , : ) , POINTER : :  B 

and, after the ALLOCATE statement, contained : 

B => A 

This pointer assignment statement (notice the use of "=>" instead of "=" ) causes B to 
be an alias for (point to) A. As a result,  an assignment to B ( I , J )  will change the value 
referenced by A ( I , J )  and vice versa. Pointer assignment can be used to have the effect 
of assignment without the copying of data. 

When a pointer is used outside of pointer assignment, it refers to the object that it 
points to. Continuing the last example : 

ALLOCATE (B ( 2*H , 2*H+ 1 »  

B = A 

makes B an alias for an anonymous array and copies the values of the array A into it . 
Since A and B are now aliases for two different arrays , an assignment to B ( I , J )  will not 
change the value referenced by A ( I , J ) .  

The allocated storage stays associated with B until either execution control leaves 
the scope of the declaration of B or until it is explicitly deallocated through the use of a 
DEALLOCATE statement . Storage that is not accessible by some name in the program is said 
to be inaccessib le . Since Fortran 90 does not require a compiler to reclaim in accessible 
storage, the programmer must ensure that all allocated storage is explicitly deallocated,  
or risk running out of memory. 

A declared data object that will be the target  of a pointer must have the TARGET 

attribute in its declaration . The TARGET attribute allows the compiler to know what may 
be and what cannot be aliased , helping optimization.  You should only give a data object 
the TARGET attribute if you are going to alias it with a pointer . 

Consider the following example (derived from examples in the Fortran 90 Han dbook) : 

REAL , DIMENSION ( 1 00 , 1 00 ) , TARGET 

REAL , DIMENSION (: , : ) , POINTER 

REAL , D IMENSION ( : ,  : ) , POINTER 

REAL , D IMENS ION ( : ,  : ) , POINTER 

A 

CORNERS 
INTERIOR 

ODD_COLUMNS 
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REAL , DIMENSION ( : ) ,  PO INTER 

REAL , POINTER 
. .  ARB ITRARY_ROW 

ELEMENT_POINTER 

CORNERS => A (1 : 1 00 : 99 , 1 : 100 : 99 )  

I NTERIOR = >  A (2 : 99 ,  2 : 99) 

ODD_COLUMNS => A ( : , 1 : 1 00 : 2 ) 

ARB ITRARY_ROW => A (I ,  : )  

ELEMENT_POINTER => ARB ITRARY_ROW (J ) 

69 

The variable names accurately describe the sections of A that the pointers alias.  The 

pointers can now be used to operate on the targeted elements. For example, the following 
doubles the elements in the row aliased by ARB ITRARY...ROW:  

ARBITRARY_ROW = 2 * ARBITRARY_ROW 

Pointers can also alias any other array section described by array section notation . They 
can dynamically change their targets at runtime , but unfortunately cannot be initialized 
when they are declared. 

The previous examples showed the use of pointers to alias parts of existing arrays. A 
more typical use is to control storage allocation and to construct dynamic data  structures 

such as trees or linked lists , as in the following example : 

TYPE NODE 

I NTEGER 

TYPE (NODE ) , POINTER 

END TYPE NODE 

VALUE 

NEXT 

TYPE (NODE ) ,  POINTER 

TYPE (NODE ) ,  TARGET 

P , LIST 

FIRSTNODE 

! St art w ith empty l ist 

NULLIFY (FIRSTNODE'l,NEXT ) 

L I ST => FIRSTNODE 

! Prepend ( append ) to l i s t  
ALLOCATE (P ) 

P'l,VALUE = N 

P'l,NEXT => LIST 

LIST => P 

I f  append : LI ST'l,NEXT => P 
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! L ist walk 
P => FIRSTNODE 
DO WHILE (ASSOCIATED ( P » 

PRINT * .  P%VALUE 

P => P%NEXT 

END DO 

Chapter 3 

Note the use of the NULLIFY statement to make a pointer point to nothing . Since pointers 
are not data types , there is no "value" to "assign" to a pointer to do this . Since functions 
can return pointers , the types and operations above could be packaged in a module for 
use as an abstract data type .  

3. 7 Modularization 

3.7. 1 The Structure of a Fortran Program 

Fortran allows the top-down functional decomposition of a program by partitioning it 
into program units: a main program and some number of external, inde pendently compiled 
functions and subroutines . An explicit interface to a procedure , which may be provided 
by an interface block for an external procedure , allows a high quality compiler to provide 
better checking and optimization of procedure calls. 

Module program units can be used to structure the bottom-up development of a pro­
gram as libraries of commonly used procedures , encapsulated derived data types and 

their defined operators and assignment , and packages of related global data definitions: 

• Using a module containing multiple module procedures provides a Fortran 90 library 
mechanism . 
• Using a module containing multiple interface blocks provides an interface to a pre­
existing library, possibly coded in a language other than Fortran . 
• Using a module to provide a set of procedures accessing private data ( data global to 
them but invisible to others) eliminates the need to use procedures with multiple e ntry 

points for the same purpose . 
• Using a module to define a collection of optionally initialized data entities eliminates 
the need to use common blocks, include l ines , and block data program units for the same 
purpose . It also avoids the need to maintain consistency of declarations across multiple 
files , a well-known source of bugs using the older techniques . 

Modules provide an effective method for defining in one place and controlling access to 
global data, global procedures , and encapsulated data abstractions . 
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3 . 7 . 2  Procedures 

There are two forms of procedures , su b routines  and fu nctions.  These are quite simil ar 
except that a subroutine is invoked in a CALL statement and does not return a value 
while a function is invoked in an expression and does return a value. Both forms of 

procedures accept arguments that may pass data into , out of, or both into and out 

of the procedure . This intention may be dec lared as an attribute of a dummy, either 
INTENT ( I N ) , I NTENT ( OUT ) , or INTENT ( INOUT ) . Such a declaration allows a compiler to 

check for incorrect usage , such as a procedure in which an assignment to an INTENT ( IR )  

dummy occurs . I t  also may allow the generation of more efficient code . For example, the 
value of an actual argument corresponding to an INTENT ( I N )  dummy argument is  known 

not to be changed by the call ; this may allow the optimization of constant propagation 

to occur across the procedure cal l .  

When a procedure is called , the actual arguments are "linked" to the dummy arguments 

by means of argum ent a ssociation. The dummy must h ave the same type and kind as 
the actual to which it is associated . The most straightforward way to p ass an array 
actual is to pass it to an assumed-shape dummy . Fortran does have other , older , ways 
to p ass arrays , such as assumed-size and explicit-shape explicit-shape a rray , but these 
mechanisms depend on the use of sequence association and the assumption that the 
hardware architecture provides a linear memory. Since the use of sequence associat ion 
and the assumption of a linear memory is not always efficient on modern machines , we 
strongly recommend against its use . 

Fortran allows for the use of argument keywords and for arguments to be optional. 

By default ,  the list of actual arguments is matched one-for-one in order with the list 
of dummy arguments . Alternatively, some of the arguments (possibly none) may be 
matched in order and the remainder matched by expressions of the form D=A where D is the 
name of a dummy argument and A is the actual argument . These keyword arguments may 
occur in any order . In addition , if a dummy argument is given the attribute OPTIONAL,  

it may be omitted from the argument l ist completely. In the procedure the intrinsic 

function PRESENT can test whether, on a particular call , an OPTI ONAL dummy argument 
has a corresponding actual argument . These two facilities are very useful for invoking 

procedures , such as graphics routines , with a large number of arguments many of which 

opt ional ly set various modes of usage . As a result , the old usage of the ENTRY statement 

to provide an alternate entry to a procedure is now obsolescent . 

Fortran allows a function to be called recursively, either directly or indirectly , if the 
function is declared to be RECURS IVE . Ordinarily, the name of a function can be used 
within the function as the value being returned by the function . The function RESULT 

allows an unambiguous distinction between the value being calculated in the function 
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and a recursive call of the function from within the function . The following example uses 

an inefficient approach to summing an array as an illustration (the SUM intrinsic function 
is much more efficient) :  

RECURSIVE REAL FUNCTION ARRAY_SUM (ARRAY)  RESULT ( A_SUM ) 

REAL , INTENT ( I N ) , DIMENSION ( : )  : :  ARRAY 
REAL : :  A_SUM 

IF ( S I ZE ( ARRAY ) = 0 )  THEN 

LSUM = 0 
ELSE 

A_SUM = ARRAY ( 1 )  + ARRAY_SUM ( ARRAY ( 2 : » 

END IF 

END FUNCTION ARRAY_SUM 

A main program , external function , or external subroutine may be a host for contained 
internal pro cedures that have access to data in the host environment by means of h ost 
association . In the following example A , B , C , D, and E are all accessible in INNER . Howeve r ,  
t h e  X i n  SAM is n o t  accessible because there i s  an overriding definition o f  X in INNER . Note 

that INNER allocates E, which may be used in SAM after a call on INNER . 

SUBROUTINE SAM ( A )  

USE LIB , ONLY : B Only B i s  av ailabl e from LIB 

TYPE Q 

INTEGER D 

END TYPE 

TYPE ( Q )  : :  C 

INTEGER , ALLOCATABLE , DIMENSION ( : )  E 

REAL X 

CONTAINS 

SUBROUTINE INNER ( C )  

I NTEGER X 

C%D = 3 

X = B ! A s s igns B in LIB to int eger X in INNER 

ALLOCATE ( E ( 1 00 0 »  

END SUBROUTINE INNER 

END SUBROUTINE SAM 

Using any of the following features requires an explicit interface : 
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• Keyword arguments . 
• User-defined operator or assignment . 
• Generic name references . 

• Optional and intent-specified arguments . 

• Array-valued and pointer-valued function results . 

• Assumed-shape ,  pointer , and target dummies . 

An explicit interface provides information about the attributes of a procedure and its 

dummy arguments so that a compiler can check a reference of that procedure for correct­

ness and can generate a correct and efficient invocation . Explicit interfaces are provided 
"automatically" for internal procedures , module procedures , and intrinsic procedures . 
If an external separately compiled procedure uses any of the features that requires an 
explicit interface , the programmer must provide one , in the form of an interface block ,  to 

each program unit that calls the procedure . Although this seems like a lot of effort , the 

rewards include the use of the more advanced Fortran capabilities , better compile-time 

checking of programs, and a better structured , easier to read , and easier to maintain 

program . For multiple usage , an interface block can always be packaged in a module , as 
the example in the next section shows . 

3. 7 . 3  Mo dules and Abstraction 

A module can define new derived types and specify that the details of the structure of en­

tities of these types should be PRIVATE and not accessible to users of the module . Those 
details are still accessible to procedures defined in the module , allowing the creation of 
abstract data  types and their operations . FORTRAN 77 provided g e n e ric intrinsic pro­
cedures where the same generic name refers to multiple specific procedures . Fortran 90 
extends this concept to allow user-defined generic procedures . It further allows overload­
ing operators and assignment , to give them procedural definitions for user-defined data 

types . 
For example , consider an application that requires the concept of rational numbers . 

(This example is derived from an example found in the Ada programming language 
standard [4] . )  The module RATIONAL...NUMBERS provides a definition for the derived type 
RATIONAL , the subroutine MAKE...R.ATIONAL , and overloadings for the = = ,  and + operators .  

Notice that in the module procedures an entity of type RATIONAL can be created by means 

of the standard mechanism of using the name of the type as a structure constructor . A 

user of the module, however, can not do this since the structure of the type RATI ONAL is 

PRIVATE . Thus , the module includes a subroutine MAKE...R.ATIONAL to serve that purpose . 

A production implementation of the concept of rational numbers would ,  of course , be 
more complex. (In particular , this version never reduces rationals to lowest terms , so 
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cascaded arithmetic operations are likely to overflow . ) 

MODULE RATIONAL_NUMBERS 

TYPE (RATI ONAL ) 

PRIVATE 

INTEGER : :  NUMERATOR 

INTEGER : :  DENOMINATOR Must be kept pos it ive 

END TYPE ( RATI ONAL ) 

INTERFACE OPERATOR ( = = )  

LOGICAL FUNCTI ON EQUAL ( X . y )  
TYPE ( RATIONAL ) . INTERT ( IN )  x .  Y 

END FUNCTION EQUAL 

END INTERFACE 

INTERFACE OPERATOR ( + )  

TYPE ( RATIONAL ) FUNCTION ADD_RATI ONALS ( X . Y )  
TYPE ( RATIONAL ) . INTENT ( I N )  : :  X .  Y 

END FUNCTION ADD_RATI ONALS 

END INTERFACE 

! Et cet era . et c et era . et cet era . . .  

CONTAINS 

LOGI CAL FUNCTION EQUAL ( X .  Y )  

TYPE (RATIONAL ) .  INTENT ( I N )  : :  X .  Y 

EQUAL = X'l.NUMERATOR*Y'l.DENOMINATOR==Y'l.NUMERATOR*XY�ENOMINATOR 

END FUNCTION EQUAL 

TYPE (RATI ONAL ) FUNCTION MAKE_RATIONAL ( X . Y )  

I NTEGER . INTENT ( IN ) : :  X .  Y 

IF ( Y  > 0 )  THEN 

MAKE_RATI ONAL = RATI ONAL ( X . y )  
ELSE 

MAKE_RATI ONAL = RATI ONAL ( -X . -y ) 
END IF 

END FUNCTION MAKE_RATIONAL 
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TYPE (RATI ONAL ) FUNCTION ADD _RATIONALS (I , Y )  

TYPE (RATIONAL ) ,  INTENT ( I N )  : :  I , Y 

ADD_RATIONALS = RATIONAL ( t 
I%NUMERATOR*r/�EIOMIIATOR + rI,IUMERATOR*X%DEIOMIIATOR , t 

X%DEIOMIIATOR*r/�EIOMIIATOR ) 
EID FUNCTION ADD_RATIONALS 

Et cet era , et c et era , et cet era . . . 

END MODULE RATI ONAL_NUMBERS 

PROGRAM TEST_RATI ONALS 

USE RATI ONAL_NUMBERS 

TYPE ( RATIONAL ) : :  I ,  Y 

I = MAKE_RATIONAL ( l , 2 )  

Y = I + MAKE_RATIONAL ( 3 , - 6 )  
I F  (Y = =  MAKE_RATIONAL ( O , l » THEN 

PRINT * ,  " P as s es Test " 

ELSE 

PRINT * ,  "Fails Test " 

END IF 
END PROGRAM TEST_RATI ONALS 

3.8  Intrinsic Proced ures 

75 

Fortran 90 defines 1 08 intrinsic functions and 5 intrinsic subroutines . Intrinsic proce­
dures are provided in Fortran 90 because they satisfy three major requirements : 

• They provide functionality that is frequently required in applications . 

• They can be implemented efficiently on a variety of computer architectures ,  including 

pipelined RISe and parallel as well as conventional .  

• A s  part o f  a Fortran 90 implementation they are well tested ,  documented , and reliable . 

The names of the intrinsic procedures , being pre-defined by Fortran , are always available 

unless the program creates its own procedure with the same name . All of the intrinsic 

procedures have explicit interfaces . The names of the arguments of the intrinsic pro­
cedures are used consistently. For example, D IM is used as the name of the argument 
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specifying the dimension of an array to be  used and MASK is used to select values of inter­

est from an array in a way similar to the WHERE statement . Intrinsic procedures behave 
like "ordinary" procedures and follow all of the ordinary rules for procedures . Argu­
ments may be passed by name and optional arguments may be omitted . For example, 

SUM (ARRAY=A . OIM=2 ) sums all values of the array A in the second dimension . 
There are four categories of intrinsic procedures . Elemental  fun ctions operate on a 

single element , and return a single value . Given an array as an argument , they return an 
array of the same shape ,  the result of applying the function to each of the elements of the 
array in an unspecified order . For example, SQRT (4 . 0 ) returns 2 . 0  while SQRT « ( /4 . 0 .  

9 . 0 ,  1 6 . 0/ »  returns [2 .0 , 3 . 0 , 4 .0] . Inquiry functions return properties of their argu­

ments .  For example, SIZE (  (/4 . 0 ,  9 . 0 .  1 6 . 0/ »  returns 3 .  Transformational  fun ctions 
usually have array arguments and return values that depend on many or all of the ele­
ments of its arguments . For example , SUM ( ( /4 . 0 ,  9 . 0 ,  1 6 . OJ) returns 29 .0 .  Intrin­
sic subroutines perform a variety of tasks . For example, CALL OATE...ANO_TIME (OATE=O ) 

where 0 is a scalar default character variable of length 8 will set 0 to a string of the form 
ccyymmdd, corresponding to century, year , month ,  and day respectively. 

Fortran 90 defines three representational models: the bit m odel ,  the integer number  
system mode l ,  and the real number system m odel .  The intrinsic functions that return 
values related to these models allow applications to be both numerically accurate and 

portable . For details of the models , we refer you to the Fortran 90 Standard .  
Most of  the intrinsic procedures are generi c  in  that they may be called with arguments 

of different types . The correct specific procedure will be determined by the types of the 
arguments . In some cases a specific procedure may have the same name as the generic .  
For example , the  generic reference to SIN  (X ) refers to the specific function OSIN ( X )  if X 

is double precision real , to CSIN ( X )  if X is default COMPLEX , or to SIN ( X )  if X is default 
real . If an intrinsic function itself, as opposed to the result of a call , is used as an actual 
argument to a procedure ,  only specific names can be used and the corresponding dummy 
argument in the procedure can have only scalar arguments .  

A brief summary of the Fortran 90 intrinsic procedures is presented in Tables 3 . 1  
through 3 . 6  in which italics are used to indicate optional arguments . 

3.9 Language Evolution 

Users who change over  to  Fortran 90 will . . .  [want] to  adapt their own style 
of programming, dropping FORTRA N 77 features now regarded as outm oded 
and embrace the newer facilities .  Maurice V. Wilkes [30] 
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Function Value Ret urned 

Argument Presence Inquiry Function 

PRESENT ( A ) True if an actu al argument has been supplied for the 

Numeric Functions 

ABS ( A )  

AIMAG ( Z ) 

A I NT ( A , KIND) 
ANINT ( A , KIND) 
CEILING ( A )  

CMPLX ( X , Y ,  KIND) 
CON J G ( Z )  

DBLE ( A )  

D IM ( X , y )  
DPROD ( X , y )  

FLOOR ( A )  

I NT ( A , KIND) 
MAX ( A i  , A2 , A 3, ) 

MIlf (A 1 , A2 , A 3, . .  , ) 

MOD ( A , P )  

MODULO ( A , P )  

}IlNT ( A , KIND) 

REAL ( A , KIND) 
S I GN ( A , B )  

optional dummy argument A 

Absolute value of A 
Imaginary part of complex number z 
A trun cated to a whole number 

A rounded to the nearest whole number 

Least integer greater than or equal to A 

Complex number ( X , Y )  

Complex conjugate of Z 

A converted to double precision 

X-y if p ositive , otherwise 0 
Double precision product of reals X and Y 

Greatest integer less than or equal to A 

Truncated integer value of A 

Maximum value of A 1 , A2 , A3 , . .  . 

Minimum value of A1 , A2 , A3 , . .  . 

Remainder function of A and P ,  value has sign of A 

Modulo function of A and P ,  value has sign of P 

A rounded to the nearest integer 

A converted to real type 

Absolute value of A times the sign of B 

Mathematical Functions 

ACOS ( X )  

ASI N ( X )  

ATAN ( X )  

ATAN2 ( Y , x )  
COS ( X )  

COSH ( X )  

EXP ( X )  

Table 3 . 1  

Arc cosine of  X 

Arc sine of X 
Arc t angent of X 

Arc tangent of complex number ( X , Y )  

Cosine of X 

Hyperb olic cosine of X 

Exponential of X 

Fortran 90 intrinsic procedures -argum.ent presence,  num.eric , a.nd mathematica.l 
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Function Value Returned 

Mathematical Functions -continued 

LOG ( X )  

LOG 1 0 ( X )  

SIN eX ) 

SINH ( X )  

SQRT ( X )  

TAN ( X )  

TANH ( X )  

Character Functions 

ACHAR ( I )  

ADJUSTL ( STRING ) 

ADJUSTR ( STRING ) 

CURC I ,  KIND) 
IACHAR ( C )  

ICHAR ( C )  

I NDEX ( STRIlfG , 

SUBSTRING , BA CK) 

LEN_TRIM ( STRING ) 

LGE ( STRING...A , 

STRING...B )  

LGT ( STRING...A ,  

STRING ...B )  

LLE ( STRING...A , 

STRING...B ) 

LLT ( STRING...A , 

STRING...B )  

REPEAT ( STRING , 

NCOPIES ) 

SCAN ( STRING , SET , 

BA CK) 
TRIM ( STRING ) 

VERIFY ( STRING , SET , 

BA CK) 
Table 3 . 2  

Natural logarithm of X 
Common logarithm of X 

Sine of X 

Hyperbolic sine of X 

Square root of X 

Tangent of X 

Hyperbolic tangent of X 

Character in position I in ASCII collating sequence 
Adjust STRING to the left by removing leading blanks 

and padding on the right with blanks 
Adjust STRING to the right by removing trailing blanks 

and padding on the left with blanks 
Character in position I in processor collating sequence 
Position of character C in ASCII collating sequence 

Position of character C in processor collating sequence 
Starting position of SUBSTRIHG in STRIlfG 

Length of STRING excluding trailing blank characters 
True if STRING...A is lexically greater than or equal to 

STRING...B 

True if STRING...A is lexically greater than STRING ...B 

True if STRING ...A is lexically less than or equal to 

STRING...B 

True if STRING...A is lexically less than STRING...B 

Repeated concatenation of copies of STRING 

Scan STRING for a character in SET 

Remove trailing blank characters from STRING 
True if all characters of STRING are in SET 
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Function Value Returned 

Character Inquiry Function 

LEN ( STRING ) 

Kind Functions 

K IND ( X )  

SELECTED..lNT...KIND ( R )  

SELECTED ...REAL...KI ND 

( P , R) 

Logical Function 

LOGICAL ( L , KIND) 

Number of characters in STRING 

Value of kind type parameter of X 

Integer kind type parameter value for range R 

Real kind type parameter value for precision P and 
range R 

Convert logical L to logical kind KIND 

Numeric Inquiry Functions 

D I G ITS ( X )  Number o f  significant digits for type and kind of X 

EPS ILON ( X )  A very small number of type and kind of X that is 

HUGE ( X )  

MAXEXPONENT ( X )  

MINEXPONENT ( X )  

PRECI S I ON ( X )  

RADIX ( X )  

RANGE ( X )  

TINY ( X )  

Bit Inquiry Functions 

B IT...S IZE ( I )  

almost negligible compared to one 
The largest number of the type and kind of X 

Maximum exponent for type and kind of X 

Minimum(most negative) exponent for type and kind of 
X 

Decimal precision for type and kind of X 

Base for type and kind of X 

Decimal exponent range for type and kind of X 

Smallest positive number for type and kind of X 

Number of bits for type and kind of integer I 

Bit Manipulation Funct ions 

BTEST ( I , POS ) 

lAND ( I , J )  

IBCLR ( I , pos ) 
I B ITS ( I , POS , LEN ) 

Table 3 .3  

True if bit  position POS of I is 1 
Logical and of I and J 

Clear bit position POS of I to 0 
Bit sequence of I starting at position POS of length LEN 

Fortran 90 intrinsic procedures - character inquiry, kind, logical , numeric inquiry, and bit inquiry 
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Function Value Returned 

Bit Inquiry Functions -continued 

IBSET ( I , POS ) Set bit POS in I to 1 
IEOR ( I ,  J )  Exclusive or of I and J 
IOR( I , J )  Inclusive or of I and J 
ISHFT ( I , SHIFT ) Logical end-off shift of SH IFT bits of I 
ISHFTC ( I , SHIFT , Circular shift of SHIFT bits of I 

SIZE) 
lOT ( I )  Logical complement of I 

Chapter 3 

Transfer Function 

TRAISFER ( S OURCE , 

MOLD , SIZE) 
Treat physical representation of SOURCE as if it were of 

the type and kind of MOLD 

Floating- point Manipulation Functions 

EXPO.ERT(X) Exponent part of X 

FRACTIOI (X ) Fractional part of X 

NEAREST ( X , s )  Nearest different machine representable number to X in 
the direction indicated by the sign of S 

RRSPACING ( X )  Reciprocal of the relative spacing o f  model numbers 

SCALE (X , I )  

SET-EXPONENT (X , I )  

SPACING ( X )  

near X 

Multiply a real X by its base to an integer power I 
Set exponent part of X to I 
Absolute spacing of model numbers near X 

Vector and Matrix Multiply Functions 

DOT -PRODUCT (VECT � ,  
VECT...B ) 

MATMUL ( MATRIX...A , 

MATRIX...B )  

Dot product of two rank-one arrays VECT � and VECT...B 

Matrix multiplication of MATRIX...A and MATRIX...B 

Array Reduction Functions 

ALL (MASK , DIM) 

ANY (MASK , DIM) 
Table 3 .4 

True if all values of MASK are true 
True if any value of MASK is true 

Fortran 90 intrinsic procedures -bit inquiry, transfer ,  floating-point manipulation, vector and matrix 
multiply, and array reduction 
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Function Value Returned 

Array Reduction Functions - continued 

COUNT (MASK , DIM) 
MAXVAL ( ARRAY , DDv!, 

MA SK) 
MINVAL ( ARRAY , DIM, 

MA SK) 
PRODUCT ( ARRAY , DIM, 

MA SI{) 
SUM (ARRAY , DIM, 

MA SK) 

N umber of true elements in MASK 

Maximum value in ARRAY 

Minimum value in ARRAY 

Product of elements in ARRAY 

Sum of elements in ARRAY 

Array Inquiry Funct ions 

ALLOCATED ( ARRA Y )  True i f  ARRAY i s  allocated 

LBOUND (ARRAY , DIM) Lower dimension bounds of ARRAY 

SHAP E ( SOURC E )  

SIZE ( ARRAY , DIM) 
UBOUND (ARRAY , DIM) 

Shape of an array or scalar SOURCE 

Total number of elements in ARRAY 

Upper dimension bounds of ARRAY 

Array Construction Functions 

MERGE ( TSOURCE , Choose value from TSOURCE or FSOURCE according to 

FSOURCE , MASK ) value of MASK 

PACK (ARRAY , MASK , Pack ARRAY into a rank one array under a mask MASK 

VECTOR ) 
SPREAD ( S OURCE , DIM , 

NCOPIES ) 

UNPA CK ( VECTOR , MASK , 

FIELD ) 

Replicate array SOURCE NCOP IES times in dimension DIM  

Unpack VECTOR into array of shape MASK , FIELD 

replacing O 's from MASK 

Array Reshap e Funct ion 

RESHAPE ( S OURCE , Reshape SOURCE into shape of SHAPE 

SHAPE , PA D , 

ORDER) 

Table 3 . 5  

8 1  

Fortran 9 0  intrinsic procedures - array reduc tion , array inquiry, array construc tion, and array reshape 
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Function Value Returned 

Array Manipulation Fun ctions 

CSHIFT (ARRAY , SH IFT , Circular shift of ARRAY SHIFT positions 
DIM) 

EOSHIFT ( ARRAY , 

SHIFT , DIM, 
BO UNDA RY) 

TRANSPOSE ( MATRIX )  

End-off shift of ARRAY SHIFT positions 

Transpose of MATRIX 

Array Location Functions 

MAXLOC ( ARRAY , 

MASK) 
MIlfLOC ( ARRAY , 

MASK) 

Location of a m aximum value in ARRAY 

Location of a minimum value in ARRAY 

Pointer Association Status Inquiry 

ASSOCIATED ( P O INTER , True if POINTER is associated 
TA R GET) 

Intrinsic Subroutines 

DATE...AND_TIME C DA TE,  

TIME, ZONE, 
VA L UES) 

MVB ITS CFROM , 

FROMPOS , LEN , TO , 

TOPOS ) 

RANDOM..1lUMBER 

( HARVEST ) 

RANDOM..sEED ( SIZE, 

P UT, GET) 
SYSTEM_CLOCK ( CO UNT, 

CO UNT_RA TE, 
CO UNT_MAX) 

Table 3.6 

Returns date an d time information 

Elemental subroutine to copy a sequence of LEN bits 
from FROMPOS in integer FROM to TOPOS in integer TO 

Returns a pseudo-random number or an array of 
pseudo-random numbers 

Initializes or queries the random number generator seed 

Returns dat a  from processor 's real time clock 

Fortran 90 intrinsic procedures - array manipulation, array location, pointer association status, and 
intrinsic subroutines 
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Removed and Obsolete Features Identified in Annex B of the Standard 

For Use 

No removed features  at this time .  

Arithmetic IF statements IF statements or IF constructs 
Real and double precision DO control vari- Integer control variables and expressions 
abies an d DO loop control expressions 

Shared DO termination and term ination An END DO for each DO  
on a statement other than END DO or 
CONTI NUE 

Branch to an END IF from outside its IF Branch to the statement directly follow-
block ing the END IF 
Procedure alternate return Return code and a CASE construct on 

return 

PAUSE statement An appropriate READ statement 

ASS I GN and assigned GO TO The internal procedures they are often 
used to simulate 

Assigned FORMAT specifiers Character variables and constants 

cH edit descriptor Character const ant edit descriptor 

Table 3 .7  
Removed and Obsolete Features Identified in  Annex B of  the Standard 

The Fortran 90 standard ,  for the first time , introduces a concept of language evolution in 
which the addition of new features is understoo d to cause old features to become redun­

dant and ,  eventually to be phased out . The Standard sites some examples and identifies 

(In Annex B) removed features and obsolescent or redu ndant  features for which there 

are better methods . In addition to these features , a number of authors have identified 

antiquate d  features to be avoided by the use of more modern Fortran 90 features . Some 

of these features , and their suggested replacements , are shown in Table 3 .7  and Table 3 . 8 .  

3 . 9 . 1  A voiding A ssumptions of Linear Mem.ory 

Whenever a computer architecture is directly visible in a programming language , one 

should expect two consequences : good p erformance on that architecture an d difficulty 

in porting applications to other computer architectures . Not surprisingly, traditional 

Fortran implementations have tended to provide excellent execution performance on tra­
ditional linear memory computer architectures . To achieve good performance on dis­

tributed memory computer architectures , however , it is necessary to avoid those older 
features of Fortran that depend on linear memory concep ts . These features were avail-
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Antiquated Fort ran Features and Their Replacement s 

For Use 

DOUBLE PRECISION  Numeric k i n d  facility 

Sequence association of array element Array section actual arguments 

actual arguments with dummy arrays associated with assumed shape array 

dummies 

BLOCK DATA and COMMON Modules 

DO loop old forms and CONTINUE The DO . . .  END DO for m .  

Statement labels and t h e  GO TO Are still considered h armful and should 
statement be avoided 

Computed GO TO st atement CASE construct 

DO WHILE statement IF . . .  EXIT in a DO . . .  END DO  

The RETURN statement effect H appens at p rocedure END 

The STOP statement effect H appens at END of main program 

IMPLICIT st atements IMPLI C IT NONE an d explicit  typing of 

all variables 

Attribute specification statements " :  : "  form of type declaration st atement 

grouping all of the at trib utes of an 
entity in one place 

DATA st atement Initi aliz ation expression in type 

decl aration st atements (excep t for 
BOZ data) 

Hollerith data Character data type and constants 

COMMON blocks Modules 

EQUIVALENCE st atements Mo dules , storage allocation , structures , 

point.ers , and TRANSFER intrinsic 
function 

Block data program units Mo dules 

Fixed source form Free source form 

Specific intrinsic functions Generic intrinsic funct.ions 

FORMAT statements Charac ter variables 

Arithmetic statement functions Internal functions 

Assumed size arrays Assumed shape arrays 

INCLUDE lines Mo dules 

ENTRY statements Modules with PRIVATE pro cedures 

Table 3 . 8  
N e w  features in Fortran 90 and what they replace 
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able to provide such necessary capabilities as the ability to pass a column of an array as 
an argument to a procedure and to reuse data storage no longer required . Fortunately, 
Fortran 90 provides modern features to meet these requirements that are efficient and 

do not depend on a model of memory. 
A linear memory model is visible in Fortran in two ways: 

• Sequence association is the definition of the mapping of multi-dimensional arrays to 

a linear sequence ordering, the so-called column-major order . Sequence association is 
particularly visible when an array expression or array element is associated with an 

assumed size or explicit size dummy array argument . Sequence association may be 

avoided in Fortran 90 through the use of assumed shape dummy array arguments and 
the use of intrinsic functions to reshape arrays . 
• Storage association is the definition of the mapping of data objects to underlying 
storage units , and was typically used to reshape COMMON and EQUIVALENCE data and to 
simulate allocatable storage. Storage association may be avoided in Fortran 90 through 
the use of allocatable data an d the use of intrinsic functions. 

3. 1 0  Fortran Coding Style 

Fortran 90 is a large language with a number of alternative ways of expressing the same 
intention , in part resulting from Fortran 90's backwards compatibility with previous 
Fortran standards . We strongly recommend that you choose a reasonable coding style 
and stick with it . While conforming to a style may add a few minutes to your typing 
time , it will be rewarded over and over as others , and you in the future , try to figure out 

the meaning of a section of code . The following sections present a number of code style 
guidelines that have proven to be useful .  Figure 3 . 1  shows a number of these guidelines 
in a single example . 

3 . 1 0 . 1  Upper- Case and Lower- Case Conventions 

Fortran 90 treats upper-case and lower-case letters in programs equivalently except , of 
course , in character constants and H format specifiers . This allows a variety of coding 
styles. For example, the following CALL statements are all equivalent : 

CALL MY_SUB (MAX (A , 3 ) , LEN= 1 2 )  

call my_ sub (max ( a , 3 ) , l en= 1 2 )  

CALL my_ s ub ( MAX ( a , 3 ) ,  LEN= 1 2 ) 
cal l  MY_SUB (max ( A , 3 ) , l en= 1 2 )  

Call My_ Sub (Max ( A , 3 ) , L en= 1 2 )  

all upper cas e 

all lower cas e 

Fortran 90 name s in upp er c a s e  

u s er name s  in upper c as e  

init i al l e t t e r s  in upper case 
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PROGRAM PI_EXAMPLE 

! Comput e the value of pi by numer ical int egrat ion 

! HPF$ 

IITEGER . PARAMETER N = 1000 
REAL . PARAMETER H = 1 . 0 / N 

REAL P I  

REAL , DIMENSION ( N )  RECT_AREA 

D ISTRIBUTE ( CYCL I C )  RECT_AREA 

INTERFACE 

SUBROUTIIE PRIRT_RESULT (X ) 

REAL : :  X 

END SUBROUTINE PRINT_RESULT 

END INTERFACE 

FORALL ( 1 = 1 : N )  

RECT_AREA ( I )  = H * F ( H* ( I-0 . 5 » 

END FORALL 

PI = SUM ( RECT_AREA ) 

CALL PRINT_RESULT ( P I )  

CONTAINS 

REAL FUNCTION F ( X )  

REAL : :  X 

F = 4 / ( 1 . 0  + X *X) 

END FUNCTI ON F 

END P ROGRAM P I _EXAMPLE 

Figure 3 . 1  
A complete Fortran 9 0  program 

Number of rect angle s  

Width of a rectangle 
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There are advantages and disadvantages to all of these , and other conventions . We 
recommend that you choose a style that you are comfortable with and use it consistent ly . 

Our examples use the "all upper-case" convention for the simple reason that it tends to 

make keywords and user names self-quoting when they appear in explanatory text . 

3 . 1 0 . 2  Spacing Convent ions 

In choosing a horizontal spacing convention , there is a tradeoff between the improved 
readability resulting from the addition of white space and the decreased readability if 

the extra space forces continuation lines. We recommend using white space to improve 
readability within reason . 

We recommend following the free source form rules for b lank characters even when 

using fixed source form : 

• Blank characters must not appear in  lexical tokens , except within a character context . 

For examp le , there can be no blanks between the two characters of the exponentiation 

operator **. 

• Blank characters must be used to separate names , constants , or labels from adjacent 

keywords , names constants, or labels. For example, a blank is required between the DO 
and its index variable .  

In addition , we recommend that blank characters be used at natural breaks in the 
program text , including around the = in assignments and fol lowing semicolons and most 

commas. 

3 . 1 0 . 3  Indent ation , Alignment and Blank Line Conventions 

As a result of its fixed source form and its origins in the days of punched cards, Fortran 
programs have traditionally not used an indentation convention ; programs have been 

written as lists of statements all beginning in "column 7 ," even though nothing in the 
definition of Fortran required non-indentation . We believe that modern style calls for 

appropriate indentation to show the nesting structure of a program unit . (As with blank 

space , we temper this advice if the indentation causes continuation lines . ) We have used 
a two-space indentat ion style throughout this book ; other programmers may prefer more 

or less . 
The following Fortran 90 constructs are candidates for nesting : 

• The statements in  the specification-part ,  execution-part ,  and intern a l-subp rogram of 

any of the forms of program-unit: m ain-program, function-subprogram, subro utine-sub­

p rogram, modu le , or block- data. 
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• The statements in the case-construct, fomll- construct, if-construct, do-construct, and 
where- construct. 
• The components of a derived type definition or an interface block . 
• In general , long assignment statements should break at a logical place in the right 
hand side expression and continue aligned with the beginning of the right hand side 

expression, unless deeper indentation (and p erhaps more white space) makes the code 
more readable . For example : 

NEW_VAL ( I , J )  = . 25 * OLD_VAL ( I - i , J )  + OLD_VAL ( I , J- i )  

+ OLD_VAL ( I + i , J )  + OLD_VAL ( I , J+ l ) 

In addition to nesting , we recommend that , in general , the : :  symbols in multiple 
succeeding declarations and the exclamation points in multiple succeeding trailing com­

ments should be lined up . Blank lines can also improve readabil ity by, for example , 
separating p arameter declarations ,  variable declarations , interface-blocks , and sections 
of executable co de . 

The HPF directives were designed so that if H P F  ever becomes p art of the Fortran 
language , the ! HPF$ could be edited out to leave a correct program . In this book , we have 
arranged things so that the directive bodies are aligned with the Fortran 90 statements 
in the surrounding program . This allows the reader to skip over the ! HPF$ in the left 

margin .  

3 . 1 0 . 4  Fr e e  Source Form 

We strongly recommend the use of Fortran 90 free source form to improve readability 

and have used free source form exclusively, except when we need to illustrate specific 

fixed source form features . Source code can be written to be interpreted correctly in 
either free or fixed source form by following these rules : 

• Limit statement labels , if they are absolutely necessary, to p ositions 1 through 5 and 
statements to positions 7 through 72 .  

• Treat blanks as being significant . 
• Use the exclamation point ( ! )  for a comment , but don 't place it in position 6 .  
• To continue statements , use the ampersand (.t)  in position 73 of the line being contin­

ued,  and position 6 of the continuation line. Following the ampersand in the l ine being 
continued ,  there can be only blanks or a comment . Positions 1 to 5 in the continuation 

line must be blank . 

Figure 3 . 2  shows an example that is valid in both source forms . The ".t" at the end of 
line 4 appears in column 73 , while the "Ie" beginning line 5 appears in column 6 .  
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! D ef ine the us er funct ion MY_SIN 

D OUBLE PRECISION FUNCTION MY_S I N e X )  

MY_SII = X - X**3/FACTORIAL ( 3 )  + X**5/FACTORIAL ( 5 )  

t - X**7/FACTORIAL ( 7 )  + X**9/FACTORIAL ( 9 )  

CONTAINS 

INTEGER FUNCTION FACTORIAL ( N )  

FACTOR = 1 
DO I = 2 ,  N 

FACTORIAL = FACTORIAL * I 

END DO 

EID FUNCT I ON FACTORIAL 

END FUNCTI OI MY_SII 

Figure 3 .2  
A Fortran 90 function that can be interpreted as either free source fonn or  fixed source Conn 
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4 Data Mapping 

HPF data alignment and distribution directives allow the programmer to advise the com­
piler about how data objects (especially array elements) should be assigned to processor 
memOrIes. 

4.1 Overview of Data Mapping 

The goal of data mapping directives in HPF is to allow the programmer to control the 
distribution of data to processors. Chapter 2 showed how this distribution could be used 
to improve the performance of programs (or could cause them to run slowly, if the data 
mapping was misused) . 

Often, the most convenient way to specify a data mapping is to give a simple pattern 
using the DISTRIBUTE directive. There are two major types of patterns that can be 

specified this way: block and cyclic distributions. In a block distribution, each processor 
contains a block-a contiguous subarray--of the specified array. For example , 

REAL, DIMENSION(lOO,lOO) X ,  Y 

!HPF$ DISTRIBUTE (*, BLOCK) X 

!HPF$ DISTRIBUTE (BLOCK, BLOCK) Y 

breaks the arrays X and Y into groups of columns and into rectangular blocks , respectively. 

In the form shown here, the block sizes are chosen to be as nearly equal as possible; it 
is also possible to pick a specific block size, if one wants an unequal distribution. Cyclic 
mappings distribute the elements of a dimension onto P processors so that each processor,  
starting from a different offset, contains every pth column. For example, 

REAL, DIMENSION(lOO,lOO) : :  X, Y 
!HPF$ PROCESSORS PROC1(lO), PROC2(2,5) 

!HPF$ DISTRIBUTE (CYCLIC,.) ONTO PROel X 

!HPF$ DISTRIBUTE (BLOCK,CYCLIC) ONTO PROC2 Y 

places every 10th row of X on the same processor. Combining the block and cyclic distri­

butions as shown effectively places half of every fifth column on one processor; a given 
processor will always have either all "top" halves, or all "bottom" halves. Examples 2.18 
and 2.19 in Chapter 2 contain several similar examples. 

Sometimes it more convenient to specify the desired distribution of an array by de­

scribing its relationship to another arr ay . For example, one might have a 16  x 16 array 
X and a 14 x 14 array Y, where elements of Yare intended to interact computationally 

with the interior of X. Of course , one could simply declare Y to be the same size as X, 
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(a) a 14 x 14 array aligned with 
the interior of a 16 x 16 array 

PI P2 

P3 P4 

(c) distribution (BLOCK, BLOCK) 

Figure 4.1 
Alignment of a 14 X 14 array with a 16 X 16 array 

Chapter 4 

PI P2 P3 P4 

(b) distribution ( * ,  BLOCK) 

iP1iP2 [Pa [P4 [Pl P2Pa P4P1 P2 [Pa P4P1 [P2 [g P4 

(d) distribution ( * ,  CYCLIC ) 
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distribute it in the same way as X, and then use only the interior of Y in the computation , 
but this could result in a clumsier coding style throughout the program . The desired 
relationship between X and Y can be expressed by an HPF alignment directive: 

REAL X(16, 16) , Y(14, 14) 
!HPF$ ALIGN Y(I , J) WITH X(I+l , J+l) 

See Figure 4.1, which assumes four processors storing the arrays . Here I and J are 

dummy variables that range over the valid subscript values for Y. For every element of 
Y, a corresponding element of X is indicated ; whatever processor memory contains that 
element of X should also contain that element of Y. If X is distributed (* , BLOCK) , whether 
by an explicit directive or by the compiler's discretion, Y will be distributed accordingly, 
as illustrated in Figure 4.1(b). Note that while X is distributed evenly across the four 

processors , Y is not, so as to assure that Y(I, J) is always in the same processor as 

X(I+l , J+l). Ifx were to be distributed (BLOCK , BLOCK), the result would be as shown 
in Figure 4.1(c); this distribution does coincidentally cut Y as well as X into four equal 
pieces. The result of a (*,CYCLIC) distribution for X is shown in Figure 4.1(d). 

It might be desirable to al ign several elements of one array to the same single element of 

another array; this is called a collapsing alignment. Figure 4.2( a) illustrates an alignment 
of a matrix M to a vector V, specified by the directive 

!HPF$ ALIGN M(I,*) WITH V(I) 

Wherever a given element of V is distributed , the entire corresponding row of M should 
also be distributed. (The directive could also be written 

!HPF$ ALIGN M(I,J) WITH VCI) 

but the use of an asterisk provides a stronger visual cue that collapsing is intended. ) 
With this alignment established , the distribution of M is d ictated by the distribution 

of V. If V is given a BLOCK distribution: 

!HPF$ DISTRIBUTE V(BLOCK) 

then the rows of M are given a matching distribution, resulting in an assignment to 
pro cessors such as shown in F igure 4.2(b). If instead V were given a CYCLIC distribution: 

!HPF$ DISTRIBUTE V(CYCLIC) 

then the rows of M would be given a matching distribution , resulting in an assignment to 

processors such as shown in Figure 4.2(c). 
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Figure 4.2 
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(a) A collapsed alignment of the rows of H wIth V 
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(b) Situation if V is given a BLOCK distribut on 

M V 
P, r-

. � P, .. p� 
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P, . � 
P:! . � 
P, . � 
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(c) Situation if V is given a CYCLIC distribution 

Collapsed alignment of rows of a matrix with elements of a vector 
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A 

LUT 

(a) an array and a lookup table 

(c) actual implement ation effect, 
replicating once per processor 

with a (BLOCK. BLOCK) distribution 

(b) replicating the lookup table 
to align with each array element 

(d) actual implementation effect, 
replicating once per processor 
with a (*. BLOCK) distribution 

Figure 4.3 
Replicated alignment of a lookup table with elements of an array 
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The converse of collapsing is replication; HPF provides a form of repli cating alignm e nt. 

Suppose that one must repeatedly evaluate a simple function from small integers to 
arbitrary values not easily represented as a formula. An efficient solution is to construct 
a lookup table and use the small integers as subscripts . 

REAL LUT(1: 147) 

c o de to in itialize lookup table 

Now suppose that the function must be evaluated for every position of an array that may 
be distributed over many processors: 

FORALL (1=1:4, J=1:4) A(I,J) = A(I,J) * LUT(INT(B(I,J» 

See Figure 4.3 (a ) . Whether the lookup table resides in one processor or is split across 

many processors, there can be a great deal of communications overhead when processors 
need values from the lookup table that reside in the memories of other processors. In 
this situation it is often advantageous to trade space for time by making many copies of 
the lookup t able so that each processor can have its own copy. 

Now, the programmer could code such a replicated lookup table explicitly by making 
it  two-dimensional , with the extra dimension equal to the number of processors, and then 
carefully distributing the table: 

REAL LUT(147,4) 

!HPF$ DISTRIBUTE LUT(*, BLOCK(l» 

However, this requires some care; in particular , whenever the lookup table is updated, 
all the copies must be updated. It is much easier to let the HPF compiler take care of 
the details by specifying a replicating alignment: 

REAL LUT(147) 

REAL A(4,4),B(4,4) 

!HPF$ ALIGN LUT(*) WITH A(*,*) 

!HPF$ ALIGN B(I,J) WITH A(I,J) 

!Replicating 

The alignment of LUT is actually both replicated and collapsed: a copy of the entire 

(collapsed) array LUT is to be aligned with every element of A. This situation is illustrated 
in Figure 4 .3 (b) . Wherever an element of A might reside, there wi ll be a copy of LUT in  
the same processor memory. The program is  then written as if there were only a single 
copy of LUT; whenever LUT is updated, the HPF compiler arranges to update all copies 
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consistently. (In practice, a good HPF compiler will not make a copy of LUT for every 
element of A, but only one copy in each processor that might contain elements of A. For a 

(BLOCK, BLOCK) distribution of A onto four processors, this would produce the situation 
shown in Figure 4.3( c) . A (*,  BLOCK) distribution for A would produce the situation 
shown in Figure 4.3(d) .) 

The data mapping directives illustrated so far are all static. They are like declarations; 
they take effect on entry to a scoping unit and describe how a data object is to be created . 
HPF also provides the dynamic data mapping directives REDISTRIBUTE and -REALIGN. 

They are just like DISTRIBUTE an d and ALIGN with three differences: 

• REDISTRIBUTE and REALIGN are like executable statements, not declarations, and so 
must appear in the execution-part (R208) of a scoping unit. 
• Because REDISTRIBUTE and REALIGN are not declarations, they may not be combined 
with declaration-type directives using : :  syntax . 
• REDISTRIBUTE and REALIGN may not be applied to just any data object, but only to 

an object having the DYNAMIC attribute, specified by an HPF DYNAMIC directive. (This 
is similar in spirit to the Fortran 90 restriction that a poi nter variable may not point to 
just any data object, but only to an object having the TARGET attribute. ) 

Consider an elaboration of a previous example: 

REAL, ARRAY(16,16) : :  X, Y 

!HPF$ PROCESSORS SQUARE(2,2) , LINE(4) 

!HPF$ ALIGN WITH X : :  Y 

!HPF$ DISTRIBUTE (BLOCK, BLOCK) ONTO SQUARE X 

!HPF$ DYNAMIC X 

Here the arrays X and Y are initially aligned and distributed as shown in Figure 4.1(c). 
However , we have declared an additional processor arrangement LINE and have specified 

the DYNAMIC attribute for X. (By the way, we could have combined the last two directives 

thus: 

!HPF$ DYNAMIC, DISTRIBUTE CBLOCK, BLOCK) ONTO SQUARE X 

in exactly the same manner that attributes may be combined III a Fortran 90 type 

declaration. HPF generalizes this syntax in not requ iring a type declaration to be part 

of a combined directive.) 
Because X is DYNAMIC, it is permitted to change the mapping of X on the fly. Therefore 

in the executable code we might insert this directive : 

!HPF$ REDISTRIBUTE C*,BLOCK) ONTO LINE:: X 
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This advises the compiler that X should be remapped at that point in the program 
execution. Redistribution is required to maintain alignment relationships; because Y 

is aligned with X ,  Y will also be redistributed when X is. After execution passes the 
REDISTRIBUTE directive, the situation is roughly as shown in Figure 4.1(b). 

We had to say "roughly" in the last remark because there is a subtle point about what 

HPF does and does not guarantee about distributions onto processors. In our example 
there are two declared processors arrangements, SQUARE and LIIlE. Each arrangement 
has four processors. It is l ikely, but n o t  gu aranteed,  that the physical processors used to 
implement SQUARE will be the same physical processors used to implement LINE; that 
is an implementation-dependent detail . Moreover , even if the same physical processors 
are used, it is not  guaranteeed that LINE ( 1) represents the same physical processor as 
SQUARE (1 , 1 ) ;  that is an implementation-dependent detail. So when X is remapped from 
SQUARE to LIIlE, it is likely that there will be a great deal of inter processor communication, 
but the details of what must be communicated are implementation-dependent. One 
might, for example , conclude from inspection of Figures 4.1(c) and 4 . 1(b) that processor 
P1 needs to export only half its data to perform the redistribution, but that conclusion 
is not guaranteed by HPF. The processor numberings in the figures are only illustrative 
and not definitive. 

Another subtle point is that Y can be remapped even though it was not declared 
DYNAMIC ,  because it is (statically) aligned to X, which is DYNAMIC.  The absence of a 
DYNAMIC attribute for Y does mean, however, that one may not use REALIGN to change 
the alignment of Y. SO while Y can be remapped implicitly whenever X is, the alignment 
relationship between Y ands X is always maintained and cannot be changed. 

4.2 The Data Mapping Model 

HPF directives allow the user to advise the compiler on the allocation of data objects 
to processor memories. The model is that there is a two-level mapping of data objects 
to the memories of abstract processors. Data objects (typically array elements) are first 
aligned relative to one another; a group of arrays is then distributed onto a rectilinear 
arrangement of abstract processors. (The implementation then uses the same number, or 
perhaps some smaller number, of physical processors to implement these abstract proces­
sors. This mapping of abstract processors to physical processors is system-dependent.) 

This model is illustrated in Figure 4.4. 
The basic concept is that every array (indeed, every object) is created with some 

alignment to an entity, which in turn has some distribution onto s o m e  arrangement of 

abstract processors. There are three cases of interest: 
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• If the specification statements contain explicit specification directives specifying the 
al ignment of an array A with respect to another array B, then the distribution of A will 
be dictated by the distribution of B. 

• Otherwise , the distribution of A itself may be specified explicitly (and it may be that 
other arrays are aligned with A ) . 
• If the user does not provide explicit directives for mapping a data object, then the 
compiler must choose a data mapping. 

In any case, data mapping specifications are conceptually used as a data o bject is created 
rather than as a separate step. 

This model gives a better picture of the actual amount of work that needs to be done 
than a model that says "the array is created in some default location, and then realigned 
and/or redistributed i f there is an explicit directive ." Using ALIGN and DISTRIBUTE 

specification directives doesn't have to cause any more work at run time than using the 
implementation defaults. 

There is a clear separation between directives that serve as specification statements 
and directives that serve as executable statements. Specification statements are carried 
out on entry to a program unit, as if all at once; only then are executable statements 
carried out . (While it is often convenient to think of specification statements as being 
handled at compile time, some of them contain specification expressions, which are per-
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mit ted to depend on run-time quantities such as dummy arguments, and so the values of 
these expressions may not be available until run time, specifically the very moment that 
program control enters the scoping unit.) 

In the case of an allocatable object, we say that the object is created whenever it is 
allocated. Specification directives for allocatable objects (and allocated pointer targets) 
may appear in the specificat i on-part of a program unit, but take effect each time the 
array is created, rather than on entry to the scoping unit. 

Alignment is considered an attribute  of a data object (in the Fortran 90 sense). If an 
object A is aligned (statically or dynamically) with an object B, which in turn is already 
aligned to an object C, this is regarded as an alignment of A with C directly, with B 

serving only as an intermediary at the time of specification. (This matters only in the 
case where B is subsequently realigned; the result is that A remains aligned with C.) We 
say that A is imm ediately aligned with B but ultim ately aligned with C. If an object is 
not explicitly aligned with another object, we say that it is ultimately aligned with itself. 
The alignment relationships form a tree with everything ultimately aligned to the object 
at the root of the tree; however, the tree is always immediately "collapsed" so that every 
object is related directly to the root. Any object that is not a root can be explicitly 
realigned but not explicitly redistributed. Any object that is a root can be explicitly 
redistributed but then cannot be explicitly realigned. 

Every object that is the root of an alignment tree has an associated temp late or index 
space. Typically, this template has the same rank and size in each dimension as the object 

associated with it. (The most important exception to this rule is dummy arguments with 
the INHERIT attribute, described in Section 5.4.) We often refer to "the template for an 
array," which means the template of the object to which the array is ultimately aligned. 
(When an explicit TEMPLATE (see Section 4.9) is used, this may be simply the template 
to which the array is explicitly aligned.) 

The distri b ution step of the HPF model technically applies to the template of an array, 
although because of the close relationship noted above we often speak loosely of the 

distribution of an array rather than of its template. Distribution partitions the template 
among a set of abstract processors according to a given pattern. The combination of 
alignment (from arrays to templates) and distribution (from templates to processors) 

thus determines the relationship of an array to the processors; we refer to this relationship 
as the mapping of the array. These remarks also apply to a scalar, which may be regarded 
as having an index space whose sole position is indicated by an empty list of subscripts. 
So every atomic data object is ultimately aligned to some data object, possibly itself, 

which is in turn distributed onto some specific abstract processor. (An atomic data o bject 

is a data object that has no subobjects.) 
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Every object is created as if according to some complete set of specification directives; 
if the program does not include complete specifications for the mapping of some object, 
the compiler provides defaults .  HPF imposes certain constraints on default mappings 

but also allows an HPF language processor certain specific freedoms. 

• By default an object is not aligned with any other object; i t  is ultimately aligned with 
itself. 
• The default distribution is system dependent , but must be expressible as explicit 
directives for that implementation. (The distribution of a sequential object has to be 
expressible as explicit directives only if it is an aggregate cover (see Section 4.10.2 ) . )  
• Identically declared objects need not b e  provided with identical default distribution 
specifications. The compiler may, for example, take into account the contexts in which 
objects are used in executable code . (The programmer can, if necessary, force identically 
declared objects to have identical distributions by specifying such distributions explicitly.) 
• Unlike objects, identically declared processor arrangements are guaranteed to repre­
sent "the same processors arranged the same way." This is discussed in more detail in 
Section 4.8. 

Once an object has been created, it can be remapped in one of two ways: 

• by realigning the object itself; or 
• by redistributing the object to which it is ultimately aligned. 

Such remapping will typ ically carry some cost in interprocessor communication. Re­
alignment causes remapping of only the object to be realigned, but redistributing an 
object causes all objects then ultimately aligned with it also to be  redistributed so as to 

maintain the alignment relationships . 
By analogy with the Fortran 90 ALLOCATABLE attribute, HPF includes the attribute 

DYNAMIC. It is not permitted to REALIGN an object that has not been declared DYNAMIC. 

Similarly, it  is not permitted to REDISTRIBUTE an object or template that has not been 
declared DYNAMIC. (A subtle point: it is possible to remap an object A that has not been 
declared DYNAMIC if it has been aligned to another object B that is declared DYNAMIC. 
Redistributing B will then cause A to be redistributed as well , so as to maintain the 
statically declared alignment relationship.) 

Sometimes it is desirable to consider a large index space with which several smaller 
arrays are to be aligned, but not to declare any array that spans the entire index space. 
HPF allows one to declare a TEMPLATE, which is like an array whose elements have no 
content and therefore occupy no storage; it is merely an abstract index space that can 
be distributed and with which arrays may be aligned. 
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It should be noted that HPF direct ives are technically regarded as advice to an HPF 
compiler rather than as commands. Alignment and distribut ion directives merely recom­

me n d  to the compiler that certain data objects should reside in the same processor: if 
two data objects are mapped (via the two-level mapping of alignment and distribution) 
to the same abstract processor, it is a strong recommendation to the implementation that 
they ought to reside in the same physical processor. The converse is not true; mapping 
two data objects to different abstract processors is not necessarily a strong recommen­
dation that the objects reside in different physical processors. HPF takes this stance for 
two reasons:  

• To provide flexibility for compiler implementors . In particular, as the technology of 
automatic data layout improves, compilers may judiciously override user directives in 

order to improve performance . (This is similar to the situation in the C programming 
language, which provides explicit register directives . When algorithms for automatic 
register allocation became sufficiently powerful, the best C compilers would ignore or 
override programmer directives when appropriate .) 
• To provide for maximum portability ofHPF codes. In particular, it is always legitimate 
to compile an HPF program for a single-processor target machine . 

While directives are technically merely advisory, all the directives in a complete HPF 
program must be consistent. An HPF compiler is permitted to re ly on the consistency 

of directives across separately compiled program units. 

4.3 Syntax of Data Alignment and Distribution Directives 

Specification directives in HPF have two forms: specification statements, analogous to the 
DIMENSION and ALLOCATABLE statements of Fortran 90; and an attribute form analogous 
to type declaration statements in Fortran 90 using the " : :" punctuation. 

The attribute form allows more than one attribute to be described in a single direct ive . 

HPF goes beyond Fortran 90 in not requ iring that the first attribute, or indeed any of 
them , be a type specifier. 

For syntactic convenience, the executable directives REALIGN and REDISTRIBUTE also 
come in two forms (statement form and attribute form ) but may not be combined with 
other attributes in a single directive. 

The form of a co m bin ed- directive (H301) is: 

c ombined- attribute-list :: entity- ded-list 

where a com bined- attribute  (H302) is one of: 
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1. The same combined- attribute must not appear more than once in a given combined­

directive . 

2. If the DIMEISION attribute appears in a combined- directive, any entity to which it 

app lies must be declared with the HPF TEMPLATE or PROCESSORS type specifier. 
3. The HPF keywords PROCESSORS and TEMPLATE play the role of type specifiers in 

declaring processor arrangements and templates. The HPF kp),words ALIGN, DIS­
TRIBUTE , DYIJAMIC, and IJlHERIT play the role o f  attributes. Attributes referring to 

processor arrangements, to templates, or to entities with other types (such as REAL) 
may be combined in an HPF directive without having the type specifier appear .  

4. D imension information may be  specified after an o bject-name or in a DIMEISION 

attribute. If both are present , the one after the object- name overrides the DIKEISIOI 
attribute (this is consistent with the Fortran 90 standard) . 

Example 4.1 The directive 

!HPF$ TEMPLATE , DIMENSION (64.64 ) : :  A, B, C(32,32), D 

specifies that A, B, and D are 64 x 64 templates; C is 32 x 32. 0 

4.4 DISTRIBUTE and REDISTRIBUTE Directives 

The DISTRIBUTE directive specifies a mapping of data objects to abstract processors in 

a processor arrangement. For example, 

REAL SALAMI ( 1 0000) 
!HPF$ D ISTRIBUTE SALAMI(BLOCK) 

specifies that the array SALAMI should be distributed across some set of abstract proces­
sors by slicing it uniformly into blocks of contiguous elements. If there are 50 processors, 
the directive implies that the array should be divided into groups of 200 elements, with 
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(a) the  52 elements of DECK-'lF _CARDS 
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Figure 4.5 
Cyclic and block-cyclic distributions of a deck of cards 
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(b ) the 52 elements of DECK_OF _CARDS 
with distribution CYCLI C ( 5 )  

SALAMI ( 1  : 200) mapped to the first processor , SALAMI ( 201 : 400) mapped t o  the second 
processor , and so on . If there is only one processor , the entire array is mapped to that 
processor as a single block of 10000 elements .  

The block size may be specified explicitly: 

REAL WEISSWURST ( 1 0000) 
! HPF$ DISTRIBUTE WEISSWURST (BLOCK (256» 

This specifies that groups of exactly 256 elements should be mapped to successive abstract 
processors . (There must be at least POOOO/2561 = 40 abstract processors if the directive 
is to be satisfied .  The fortieth processor will contain a partial block of only 16 elements, 
namely WEISSlJURST ( 9985 : 10000 ) . ) 

HPF also provides a cyclic distribution format : 

REAL DECK_OF_CARDS ( 52) 
! HPF$ DISTRIBUTE DECK_OF_CARDS ( CYCLI C )  

If there are 4 abstract processors , the first processor will contain DECK_OF _CARDS ( 1 : 49: 4 ) , 
the second processor will contain DECK-'lF _CARDS ( 2 : 50 : 4), the third processor will have 
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DECK.DF --CARDS (3: 6 1  : 4 ) ,  and the fourth processor will  have DECK-.OF _CARDS (4: 62 : 4 )  . 

Successive array elements are dealt out to successive abstract processors in round-robin 
fashion-see Figure 4.5(a). If the array elements were instead dealt out five at a time: 

!HPF$ DISTRIBUTE DECK_OF_CARDS (CYCLIC (5 »  

the result would be a b lock- cyc lic distribution that assigned the first processor DECK...oF _­
CARDS ( 1:6) ,  DECK.DF_CARD S ( 2 1:25) , and DECK...DF_CARDS(41:46)--see F igure 4.5(b). 

Distributions may be specified independently for each dimension of a multidimensional 
array: 

INTEGER CHESS_BOARD (8 , 8 ) , GO_BOARD ( 19 , 19 )  
!HPF$ DISTRIBUTE CHESS_BOARD ( BLOCK, BLOCK) 
! HPF$ D I STRIBUTE GO_BOARD(CYCLIC,*) 

The CHESS...BOARD array will be carved up into contiguous rectangular patches , which will 

be distributed onto a two-dimensional arrangement of abstract processors. The GO...BOARD 

array will have its rows distributed cyclically over a one-dimensional arrangement of 

abstract processors .  (The ""," specifies that GO...B OARD is not to be distributed along its 

second axis; thus an entire row is to be distr ibuted as one object . This is sometimes 

called "on-processor" distribut ion . ) 
The REDI STRIBUTE directive is similar to the DISTRIBUTE directive but is considered 

executable. An array (or template) may be redistributed at any time , provided it has 

been declared DYNAMIC (see Section 4.6). Any other arrays currently ultimately aligned 
with an array (or template ) when it is redistr ibuted are also remapped to reflect the new 

distribution, in such a way as to preserve alignment relationships (see Section 4.5). (This 

can require a lot of computational and communication effort at run time; the programmer 
must take care when using this feature.) 

The form of a distribute-directive (H303) is: 

DISTRIBUTE distribute e  dist-dire ctiv e-stuff 
DISTRIBUTE dist -at tribute-stuff :: distributee-list 

(Note that the second form is a special case of a co m b ined- directive (H30l).) 
The form of a redist rib ut e-directive (H304) is one of: 

REDISTRIBUTE distributee  dist-directive-stuff 

REDISTRIBUTE dist- a ttrib ute-stuff :: distributee-list 

Although REDISTRIBUTE is not an attribute and so cannot be used in a com bined-directive,  

for convenience a redistribute- directive may be written in the style of attributed syntax , 

using": :" punctuation , so as to resemb le a distribute-directive.  
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Either kind of directive mentions one or more distributees and some descriptive "stuff" 
that is taken to apply to each distribut ee. Each distributee (H307) must be either an 
object-name or a template-name . 

The form of dist-directive-stuff (H305) is one of: 

( dist-format-list 
( dist-format-list ONTO processors- name 

The form of dist-attribute-stuff (H306) is one of: 

( dist-format-l ist 
(dist-format-list ONTO processors- name 

ONTO d ist-target 

The distinction between specification statement form and attributed form is merely that 
a parenthesized dist-format list must appear in the specification statement form, whereas 
it may be omitted in the attributed form if the OITO clause appears .  This admittedly 
arbitrary restriction forestalls syntactic ambiguity in the directive form. 

(There are actually other possibilities for dist-d irective- stuff and dist- attri bute-stuff 
but they apply only to dummy arguments. Their complete syntax is discussed in Chap­
ter 5.) 

A dist-format (H309) may be one of: 

BLOCK [ ( int-expr ) 1 
CYCLIC [ ( int- expr ) 1 
* 

In a DISTRIBUTE or REDISTRIBUTE directive ,  the "formats" describe how each axis of 
an array or template is to be distributed and the ONTO clause , if present, specifies the 
particular abstract processor arrangement onto which the axes are distributed . 

Rules and restrictions: 
1. The DISTRIBUTE directive may appear only in the specification-part of a scoping unit. 
2. The REDISTRIBUTE directive may appear only in the execution-part of a scoping unit. 
3. An object-name mentioned as a distributee must be a simple name and not a suhob­

ject designator. 
4 . An object-name mentioned as a distrib utee may not appear as an align ee in an ALIGN 

or REALIGN directive. 

5. A d istributee that appears in a REDISTRIBUTE directive must have the DYNAMIC at­
tribute (see Section 4.6). 

6. If a dist-form at-list is specified, its length must equal the rank of each distributee. 
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7. If an OITO clause is present, the processors- name must name a processors arrange­
ment declared in a PROCESSORS directive (see Section 4.8). 

8. If both a dist-format-list and a processors- n ame appear ,  the number of elements of 
the dist-format-list that are not "*" must equal the rank of the named processor 

arrangement. 
9. If a processors-n ame appears but not a dist-format- list, the rank of each distributee 

must equal the rank of the named processor arrangement. 
10. Any int-expr appearing after BLOCK or CYCLIC in a dist-fo rm at of a DISTRIBUTE 

directive must be a specification-exp r. 

11. The value of any int-expr appearing after CYCLIC in a dist-format of a DISTRIBUTE 
or REDISTRIBUTE directive must be a positive integer. 

12. The value of any int-expr appearing after BLOCK in a dist-format of a DISTRIBUTE or 
REDISTRIBUTE directive must be a posit ive integer m such that, for every distributee, 

m x p � d (equivalently, m � rd/pl) where d is the extent of the corresponding 
dimension of the distributee and p is the corresponding dimension of the processors 

arrangement onto which the distributee is to be distributed. 

The meanings of the alternatives for dist-format are given below. But first, some 
preliminaries. 

Many of the formulas to come wil l  use the subexpressions r t 1 and j - k r t 1 for some 

j and k. We note in passing that these play the role of integer division and remainder 
in the formulas (except that the division is rounded upwards rather than truncated as in 
standard Fortran usage) . It is also true that this "remainder" is always negative or zero 
if j is nonnegative and k is positive. 

The dimensions of a processor arrangement appearing in an OITO clause are said to 
correspond in left-to-right order with those dimensions of a distributee  for which the 
corresponding dist-format is not *. In the example 

!HPF$ DISTRIBUTE (BLOCK, * ,  BLOCK) OITO SQUARE:: D1, D2 

the arrays D1 and D2 are three-dimensional (though not necessarily of the same shape) , 
but the processor arrangement SQUARE must be two-dimensional. SQUARE's first dimen­
sion corresponds to the first dimensions of D1 and D2 and its second dimension corre­

sponds to the third dimensions of D1 and D2. 
Let d be the extent of a distrib utee in a certain dimension and let p be the extent of 

the processor arrangement in the corresponding dimension. For simplicity, assume all 

dimensions have a lower bound of l. Then BLOCK(m) means that a distributee position 
whose index along that dimension is j is mapped to an abstract processor whose index 
along the corresponding dimension of the processor arrangement is r -In 1. Also, that 
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element of the distributee  is position number m + j - m r � 1 (that is, 1 + (j mod m)) 
among elements mapped to that abstract processor. The first distributee position in 
abstract processor k along that axis is position number 1 + m(k - 1). 

BLOCK by definition means the same as BLOCK ( r � 1 ). 
CYCLIC(m) means that a distributee position whose index along that dimension is j 

is mapped to an abstract processor whose index along the corresponding dimension of 

the processor arrangement is 1 + (� mod p). Also, that distributee position is position 

number 1 + m lfm J + (j mod m) among positions mapped to that abstract processor. 

The first distributee position in abstract processor k along that axis is position number 
1 + m ( k - 1) (this formula is the same as for BLOCK (m) ) . 

CYCLIC by definition means the same as CYCLIC (1). 

CYCLIC(m) and BLOCK(m) imply the same distribution when mxp 2: d, but BLOCK(m) 
additionally asserts that the distribution will not wrap around in a cyclic manner, which 

a compiler cannot determine at compile time if m is not constant. Note that CYCLIC and 
BLOCK (without argument expressions) do not imply the same distribution unless p 2: d, 
a degenerate case in which the block size is 1 and the distribution does not wrap around. 

The formulas for "position numbers" in the preceding paragraphs suggest a specific im­
plementation of BLOCK and CYCLIC layouts. For simplicity, first consider one-dimensional 

arrays only. A one-dimensional array of length d may be stored within p processors by 
reserving a block of space within each processor. Let bi be the address of the block of 

space within processor i (an implementation might or might not require the bi to have 

the same value for all i). Then: 

• For a BLOCK(m) distribution, element j of the array might be stored within processor 

r � 1 at address bWml + (j mod m) . 

• For a CYCLIC (m) distribution, element j of the array might be stored within processor 

1 + n � 1 - 1) mod p at address bl+W/ml-l)modp + m lfm J + (j mod m). 

For multidimensional arrays, one can separately apply the appropriate formula to each 
dimension and then combine processor numbers (on the one hand) and position numbers 

(on the other hand) in the same manner as one would combine ordinary subscripts for 

a Fortran multidimensional array to produce a linear processor number and a linear 

memory offset within that processor. 
While these formulas are highly suggestive, HPF does not require this particular or­

ganization of processors or this particular memory layout within processors. 
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Example 4 . 2  Suppose that we have 16 abstract processors and an array of length 100 : 

! HPF$ PROCESSORS SEDEC IM ( 16 )  
REAL CENTURY ( 100 ) 

Distributing the array BLOCK (which in this case would mean the same as BLOCK (7 » ) :  

! HPF$ DISTRIBUTE CENTURY (BLOCK ) ONTO SEDECIM 

results in this  mappin g of array elements onto abstract processors : 

2 3 4 5 6 7 8 9 1 0  1 1  1 2  1 3  14 1 5  1 6  

1 8 1 5  22  29  36 43 50 57 64 7 1 78 86 92 99 

2 9 16  23 30 37 44 6 1 68  66 72 79 86 93 100 

3 1 0  1 7  24 3 1 38 45 52 69 66 73 80 87 94 

4 1 1  1 8  26 32 39 46 53 60 67 74 8 1  88 96 

6 1 2  1 9  26  33  40 47 64 6 1 68 76 82  89 96 

6 1 3 20 27 34 4 1  48 55 62 69 76 83 90 97 

7 14  2 1  28 36 42 49 56 63 70 77 84 9 1  98 

Distributing the array BLOCK ( 8 ) : 

! HPF$ DISTRIBUTE CENTURY (BLOCK ( 8 »  ONTO SEDECIM 

results in this mapping of array elements onto abstract processors : 

1 2 3 4 5 6 7 8 9 1 0  1 1  1 2  1 3  14 1 5  1 6  

1 9 17  26 33 4 1 49 67 66 73 8 1  89 97 

2 1 0  1 8  26 34 42 60 58 66 74 82 90 98 

3 1 1  1 9  27 35 43 6 1  69 67 7 5  83 91  99 

4 1 2  20 28 36 44 62 60 68 76 84 92 100 

5 1 3  21 29 37 46 53 6 1  69 77 85 93 

6 14 22 30 38 46 54 62 70 78 86 94 

7 1 6  23 3 1  39 47 55 63 7 1  7 9  87 95 

8 16  24  32 40 48 56 64 72 80 88 96 

Distributing the array BLOCK ( 6 )  is  not H P F- conforming because 6 x 16 < 100 .  
Distributing the array CYCLIC  (which means exactly the same as CYCLI C ( l » ) :  
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! HPF$ DISTRIBUTE CENTURY (CYCLIC ) ONTO SEDECIM 

results in this mapping of array elements onto abstract processors: 

1 2 3 4 5 6 7 8 9 10 I I  12 1 3  14 1 5  1 6  

1 2 3 4 5 6 7 8 9 1 0  1 1  

17  1 8  1 9  20 2 1  2 2  23 24 25 26 27 

33 34 35 36 37 38 39 40 4 1  42 43 

49 50 5 1  52 53 54 55 56 57 58 59 

65 66 67 68 69 70 7 1  72 73 74 75 

8 1  82 83 84 85 86 87 88 89 90 9 1  

9 7  98 99 100 

Distributing the array CYCLIC (3 ) :  

! HPF$ DISTRIBUTE CENTURY ( CYCLIC ( 3 »  ONTO SEDECIM 

12 13 

28 29 

44 45 

60 6 1  

76 77 

92 93 

results in this mapping of array elements onto abstract processors: 

14 1 5  1 6  

3 0  3 1  3 2  

4 6  47 48 

62 63 64 

78 79 80 

94 95 96 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 4 7 10  13  16  1 9  22  25  28  3 1  34 37 40 43 46 

2 5 8 1 1  14 17  20 23 26 29 32 35 38 4 1  44 47 

3 6 9 1 2  15  18  2 1  24 27 30 33 36 39 42 45 48 

49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 

50 53 56 59 62 65 68 7 1  74 77 80 83 86 89 92 95 

51 54 57 60 63 66 69 72 75 78 8 1  84 87 90 93 96  

97 100 

98 

99 

Thus different distributions may require the reservation of differing amounts of space 

within each processor. 0 

A DISTRIBUTE or REDISTRIBUTE directive must not cause any data object associated 

with the distributee  via storage association (COMMON or EQUIVALENCE) to be mapped 

such that storage units of a scalar data object are split across more than one abstract 
processor . See Section 4 . 1 0 . 2  for further discussion of storage association. 
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The statement form of a DISTRIBUTE o r  REDISTRIBUTE directive may b e  considered 
an abbreviation for an attributed form that happens to mention only one alignee ;  for 
example , 

! HPF$ DISTRIBUTE distribute e ( dist-fo rm at- list ) ONTO dist- target  

is equivalent to 

! HPF$ DISTRIBUTE ( dist-format- list ) ONTO dist-target : :  distributee  

Note that , to prevent syntactic ambiguity, the dist-format-list must be present (with its 
surrounding parentheses) in the statement form . But if a dist-format-list is present , at 
least one dist-fo rm at must appear , in which case each distributee must be an array. It 
follows that the statement form of the directive may not be used to specify the mapping 
of scalars; the attributed form must be used :  

! HPF$ DISTRIBUTE ONTO SCALARPROC : :  REALSCALAR , INTSCALAR 

If the dist-format-list is omitted from the attributed form , then the language processor 
may make an arbitrary choice of distribution formats for each template or array. So the 
directive 

! HPF$ DISTRIBUTE ONTO P 0 1 , 02 , D3 

means the same as 

! HPF$ DISTRIBUTE ONTO P D 1  

! HPF$ DISTRIBUTE ONTO P D2 

! HPF$ DISTRIBUTE ONTO P D3 

to which a compiler, perhaps taking into account patterns of use of D l ,  D2, and D3 within 

the code, might choose to supply three distinct distributions such as, for example , 

! HPF$ DISTRIBUTE D l (BLOCK , BLOCK ) ONTO P 
! HPF$ DISTRIBUTE D2 ( CYCLIC . BLOCK ) OITO P 
! HPF$ D ISTRIBUTE D3 (BLOCK (43 ) . CYCLIC ) ONTO P 

Then again , the compiler might happen to choose the same distribution for all three 
arrays. 

In either the statement form or the attributed form , if the ONTO clause is present, it 

specifies the processor arrangement that is the target of the distribut ion . If the ONTO 
clause is omitted ,  then a system-dependent processor arrangement is chosen arbitrarily 
for each distributee.  So, for example , 
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REAL , DIMENSION ( 1000 ) : :  ARTHUR , ARNOLD , LINUS , LUCY 
! HPF$ PROCESSORS EXCALIBUR (32 ) 
! HPF$ DISTRIBUTE (BLOCK ) ONTO EXCALIBUR : :  ARTHUR , ARNOLD 
! HPF$ DISTRIBUTE (BLOCK ) : :  LINUS , LUCY 

Chapter 4 

causes the arrays ARTHUR and ARNOLD to have the same mapping , so that corresponding 
elements reside in the same abstract processor , because they are the same size and dis­
tributed in the same way (BLOCK) onto the same processor arrangement (EXCALIBUR) . 
However , LUCY and LINUS do not necessarily have the same mapping because they might , 
depending on the implementation, be distributed onto differently chosen processor ar­
rangements ; so corresponding elements of LUCY and LINUS might not reside on the same 
abstract processor . (The ALIGN directive provides a way to ensure that two arrays have 
the same mapping without having to specify an explicit processor arrangement . )  

4 . 5  ALIGN and REALIGN D irectives 

The ALIGN directive is used to specify that certain data objects are to be mapped in 
the same way as certain other data  objects. Operations between aligned data objects 
are likely to be more efficient than operations between data objects that are not known 
to be aligned (because two objects that are aligned are intended to be mapped to the 
same abstract processor ) .  The ALIGN directive is designed to make i t  particularly easy 
to specify explicit mappings for all the elements of an array at once . While objects can 
be aligned in some cases through careful use of matching DISTRIBUTE directives , ALIGN 
is more general and frequently more convenient . 

The REALIGN directive is similar to the ALIGN directive but is considered executable . An 
array (or template) may be realigned at any time , provided it has been declared DYNAMIC 

(see Section 4 . 6 )  Unlike redistribution (see Section 4 .4 ) , realigning a data  object does not 
cause any other object to be remapped . (However , realignment of even a single object , 
if it is large , could require a lot of computational and communication effort at run time; 
the programmer must take care when using this feature . )  

The ALIGN directive may appear only in the specification-part of a scoping unit . The 
REALIGN directive is similar but may appear only in the execution-part of a scoping 
unit .  The principal difference between ALIGN and REALIGN is that ALIGN must contain 
only a specification- expr as a subscript or in a subscript-triplet , whereas in REALIGN 
such subscripts may be any integer expressions . Another difference is that ALIGN is an 
attribute ,  and so can be combined with other attributes as part of a combined- directiv e ,  

whereas REALIGN is not an attribute (although a REALIGN statement may b e  written in 

the style of attributed syntax ,  using " : : "  punctuation) .  
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The form of an align- directive (H3 1 2 )  is : 

ALI GN align e e align- directive-stuff 

ALIGI align- a ttribute-stuff : :  a lign e e- list 

(Note that the second form is a special case of a combined- directive (H30 1 ) . )  

The form o f  a realign- directive ( H 3 1 3 )  is :  

REALIGN align e e  align- dire ctive-stuff 

REALIGN align- attribute-stuff : :  align e e - list 

1 13 

Although REALI GN is not an attribute and so cannot be used in a com b in ed- directive , for 
convenience a rea lign- directive may be written in the style of attributed syntax , using 

" :  ; "  punctuation , so as to resemble an align- directive .  

Either kind of directive mentions one or more al ignees and some descriptive "stuff" 
that is taken to apply to each alignee .  

The form of an a lignee (H3 16) is :  

o bje ct- n ame 

The form of align- directive-stuff (H3 14 )  is : 

( a lign-source- list ) align- with- clause 

whereas the form of an align- attribute-stuff (H3 15)  is :  

[ ( align- s o u rc e - /ist ) J align- with- clause 

The distinction between directive form and attributed form is merely that the a lign­

s ource-list with its enclosing parentheses must appear in the directive form , whereas it 
may be omitted in the attributed form .  (This admittedly arb itrary restriction forestalls 
syntactic amb igui ty in the directive form. ) One important consequence of this restriction 
is that alignees that are not arrays require the use of the attributed form.  

The form of each align-source (H317)  i s  one of: 

* 

align- dummy 

where an align-dummy (H318 )  is a scalar- int- varia ble .  

Rules and restrictions: 
1 .  An o bject -name mentioned as an alignee may not appear as a distributee in a D IS­

TRIBUTE or REDI STRIBUTE directive .  
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2 .  Any alignee that appears in a REALIGN directive must have the DYNAMIC at tribute 

(see Section 4 .6 ) . 
3 .  The align-source- list (and its surrounding parentheses) must be omitted if the align ee 

is scalar . (In some cases this will preclude the use of the statement form of the 

directive . ) 
4 .  If the align-sourcE-list is present , its length must equal the rank of the alignee . 

5. An align-dummy must be a named variable . 
6 .  An object may not have both the INHERIT attribute and the ALIGN attribute . (How­

ever,  an object with the INHERIT attribute may appear as an alignee in a REALIGN 
directive , provided that it does not appear as a distrib utee in a DISTRIBUTE or 

REDISTRIBUTE directive . )  

The statement form of an ALIGN or REALIGN directive may be considered a n  abbrevi­

ation of an attributed form that happens to mention only one align ee :  

! HPF$ ALIGN alignee  ( align- source-list ) WITH align-sp e c  

i s  equ ivalent to 

! HPF$ ALIGN ( align-s ourcE- list ) WITH align-sp e c  : :  align e e  

I f  the align-source- list is omitted from the attributed form and the alignees are not 
scalar , the a lign-source- list is assumed to consist of a parenthesized list of " : "  entries , 
equal in number to the rank of the align ees.  Similarly, if the align- subsc ript- list is omitted 
from the align-spec in either form , it is assumed to consist of a parenthesized list of " : " 

entries , equal in number to the rank of the align- target. So the directive 

! HPF$ ALIGN WITH B : :  A i , A2 , A3 

means 

! HPF$ ALIGN ( : , : )  WITH B ( : , : )  

which in turn means the same as 

! HPF$ ALIGN A 1 ( :  , : ) WITH B ( : , : ) 

! HPF$ ALIGN A2 ( :  , : )  WITH B e : , : )  
! HPF$ ALIGN A3( : , : ) WITH B ( : , : ) 

A i , A2 , A3 

because an attributed-form directive that mentions more than one align ee is equivalent 
to a series of identical directives , one for each a/ignee;  all alignees must have the same 
ran k .  With this understanding , we will assume below , for the sake of simplifying the 

description , that an ALIGN or REALIGI directive has a single alignee.  
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Each align-source correspon ds t o  one axis of the alignee ,  and i s  specified as either " : " 
or "*" or a dummy variable : 

• If it is " : "  I then positions along that axis will be spread out across the matching axis 

of the align-spec (see below) . 
• If it is "*" , then that axis is collapsed : positions along that axis make no difference in 

determi ning the corresponding position within the align-target. (Replacing the "*" with 

a dummy variable name not used anywhere else in the directive would have the same 

effect ; "*" is merely a convenience that saves the trouble of inventing a variable name 
and makes it clear that no dependence on that dime nsion is intended . )  
• A dummy variab le i s  considered t o  range over all valid index values for that dimension 
of the alignee.  

The form of an align- with- c1a use (H3 1 9 )  is : 

WITH align-t arge t [ ( a lign-subscript- list ) 

There is actually another possibility for a n  align-with- clause but it appl ies only to dummy 

arguments . The comp lete syntax for an align- with- claus e  is discussed in Chapter 5 .  
A n  align-target (H32 1 )  must b e  an o bject- n a m e  or a templat e-name .  

The form of an align-subs cript (H322) is : 

int-exp r  

align-subscript- use 

subscrip t-triplet 

* 

An align-su bscript-use is an integer expression that ment ions some a lign- du m my variable 
exactly once as a manifestly linear function of that variable . The form of an alzgn­

su bscript-use (H323) is one of: 

[ [ int- Ievel-two-exp r 1 a dd- op 1 align- a dd- op erand 

align-s u bscrip t-use a dd- op int- add- ope rand 

where an align - a dd- opera n d  (H324) is one of: 

[ int- a dd- opera n d  * 1 align-p rim ary 

a lign- a dd- operan d  * int-mult-operand 

and an align-prim ary (H325)  is one of: 

a lign-dummy 

( a lign-subscript- use  
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An int- add- operand (H326) is simply a Fortran 90 add- operand (R706)  of integer type .  
Similarly, a int- mult- operand (H327) is  a mult- operand (R705) o f  integer type and a 

int-level-two-expr (H328) is an level-2- expr (R707) of integer type. 

Rules and restrictions: 

1. Each align- dummy may appear at most once in an align-subscript- list. 

2 .  An align-subscript- use expression may contain at most one occurrence of an align­
dummy. 

3. An align- dummy may not appear anywhere in the align-spec except where explicitly 
permitted to appear by virtue of the grammar shown above. Paraphrased, one may 
construct an align- subscript-use by starting with an align- dummy and then doing 

additive and mUltiplicative things to it with any integer expressions that contain no 
align- dummy. 

4.  A subscript in an align-subscript may not contain occurrences of any align- dummy. 

5. An int- a dd- ope rand , int- mult- operand , or int-level-two- exp r must be of type integer . 

The syntax rules for an align-subscript- use take account of operator precedence issues , 
but the basic idea is simple: an align-subscript- use is intended to be a linear function of 

a single occurrence of an align- dummy. 

For example ,  the following align-subs cript-use expressions are valid,  assuming that J ,  

K ,  and H are align- dummy names and N is not an align- dummy: 

J + l  
+ J  
N* (H-N ) 

3-K 
-K+3 
2* ( J+ 1 )  

2*H 
H+2**3 
5-K+3 

1 00-3*H 
- (4*7+IOR (6 , 9 » *K- ( 1 3-5/3 ) 
2* ( 3* (K- l ) + 13 ) - 100 

The following expressions are not valid align-subscript- use expressions: 

J-J 
J+K 

IOR ( J , l )  

3*K-2*K 
3/K 

-K/3 

H* (N-M ) 

2**H 
H* ( 2+M) 

2*J-3*J+J  

H*K 
H* (M-N)  

2* ( 3* (K- l ) + 1 3 ) -K 

K-3*H 
2** ( 2* J-3*J+J ) 

The align-spec must contain exactly as many subscript-triple ts as the number of colons 

( " : » )  appearing in the align-source- list. These are matched up in corresponding left-to­
right order, ignoring , for this purpose, any align-s ource that is not a colon and any 

align-su bscrip t that is not a subscript-triplet. Consider a dimension of the align ee for 
which a colon appears as an align-source and let the lower and upper bounds of that 

array be LA an d U A. Let the corresponding subscript triplet be LT : UT : ST or its 
equivalent . Then the colon could be replaced by a new , as-yet-unused dummy variable , 

say J ,  and the subscript triplet by the expression ( J-LA ) *ST+LT without affecting the 

meaning of the directive. Moreover , the axes must conform , which means that 
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( rUT - LT + l l )  
max(O , UA - LA + l )  = max 0 ,  ST 
must be true . (This is entirely analogous to the treatment of array assignment . ) 

1 1 7  

To simplify the remainder o f  the discussion , we assume that every colon in the align­

source- list has been replaced by new dummy variables in exactly the fashion just de­
scribed ,  and that every "*" in the align-source- list has likewise been replaced by an 
otherwise unused dummy variable . For example ,  

! HPF$ ALIGN A ( : , * , K , : , : , * )  WITH B ( 3 1 : , : , K+3 , 20 : 100 : 3 )  

may b e  transformed into its equivalent 

! HPF$ ALIGN A ( I , J , K , L , M , N )  WITH B ( I-LBOUND (A , 1 ) +3 1 , & 
! HPF$ L-LBOUND (A , 4 ) +LBOUND ( B , 2 ) , K+3 , (M-LBOUND ( A , 5 » *3+20 ) 

with the attached requirements 

SIZE ( A , l ) . EQ .  UBOUND (B , 1 ) -30 
SIZE (A , 4 )  . EQ .  SIZE (B , 2 ) 

SIZE(A , 5 )  . EQ .  ( 100-20+3 ) /3 

Thus we need consider further only the case where every align-so urce is a dummy variable 
and no align-subs cript is a subscript- triplet .  

Each dummy variab le is considered to range over all val id index values for the corre­

sponding dimension of the align ee.  Every combination of possible values for the index 

variables selects an element of the alignee .  The align-spec indicates a corresponding el­
ement (or section) of the align-target  with which that element of the a lign ee should be 
aligned ;  th is  indicat ion may be a function of the index values , but  the nature of  this 
function is syntactically restricted (as discussed above) to linear functions in order to 
limit the complexity of the implementation . Each align-dummy variable may appear at 
most once in the a lign-spec and only in certain rigidly prescribed contexts . The result is 
that each a lign- subscript expression may contain at most one align - du m m y  variable and 
the expression is constrained to be a linear function of that variable . (Therefore skew 
alignments are not possible . )  

An  asterisk "*" as an  align-subscript indicates a replicated representation . Each ele­

ment of the a lignee  is aligned with every position along that axis of the align- t a rget .  It is 
as if the compi ler were , for each "*" a lign-subscript , to replace the "*" by a new dummy 
variable , automatically to add an extra dimension to the alignee,  and then use the same 
new dummy variable as the align-source for the new dimension . Thus the replicating 

alignment 
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! HPF$ ALIGN A ( J )  WITH D ( J  • •  ) 

roughly results in implementing A as a two-dimensional array with the specification 

! HPF$ ALIGI A ( J , K )  WITH D ( J , K )  

The compiler then generates code that ensures that all the copies of the original A along 
the extra dimension are updated consistently ; for example ,  a p iece of code such as 

DO I = 1 ,  200 

A ( I ) = 3 . 7  • •  I 

END DO 

is compiled roughly as if it were first transformed into 

DO I = 1 ,  200 

A ( I , : ) = 3 . 7  • •  I 

END DO 

By applying the transformations given above , al l  cases of an align- subscript may be 
conceptually reduced to either an int- expr (not involving an align- dummy) or an a lign­

subs crip t- use ,  and the align-sauree- list may be reduced to a list of index variables with 
no "." or " : " .  An align-subs cript-list may then be evaluated for any specific combination 
of values for the align- dummy variables simply by evaluating each align-su bscript as an 
expression . The resulting subscript values must be legitimate subscripts for the align­

target .  (This implies that the alignee is not allowed to "wrap around" or "extend past 
the edges" of an align-target . ) The selected element of the alignee is then considered 
to be aligned with the indicated element of the align- target;  more precisely, the selected 
element of the alignee is considered to be ultimately aligned with the same object with 
which the indicated element of the align- target are currently ultimately aligned (possibly 
itself ) . 

Once a relationship of ultimate alignment is established , it persists , even if the ulti­
mate align-target  is redistributed ,  unless and until the alignee is realigned by a REALI GI 

directive , which is permissible only if the align ee has the DYiAMIC attribute . 

More examples of ALIGI directives follow : 

INTEGER D l 00 

LOGICAL D 2 ( N , N ) 

REAL , DIMENSI ON ( N , N ) : :  X ,  A ,  B ,  C , AR1 , AR2A , P ,  Q ,  R ,  S 

! HPF$ ALIGN x C : , . ) WITH 0 1 ( : )  

! HPF$ ALIGN ( : , . ) WITH 0 1 : :  A ,  B ,  C ,  AR1 , AR2A 

! HPF$ ALIGN WITH 02 , DYNAMIC : :  P , Q , R , S 
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Note that , i n  a align ee-list,  the alignees must all have the same rank but need not all have 
the same shape ;  the extents need match only for dimensions that correspond to colons 
in the align-sauTee- list.  This turns out to be an extremely important convenience ; one of 

the most common cases in current practice is aligning arrays that match in distributed 
( "parallel" ) dimensions but may differ in collapsed ( "on-processor" ) dimensions : 

REAL A (3 , N ) , B ( 4 , 1 ) ,  C (43 , N ) , Q ( N )  

! HPF$ DISTRIBUTE Q (BLOCK ) 

! HPF$ ALIGN ( * , : )  WITH Q : : A ,  B , C 

Here there are processors (perhaps N of them ) and arrays of different sizes (3 ,  4 ,  43)  
within each processor are required. As far as HPF is concerned , the numbers 3 ,  4 ,  and 
43 may be different , because those axes will be col lapsed .  Thus array elements with 
indices differing only along that axis will all be aligned with the same element of Q (and 
thus be specified as residing in the same processor) . 

In the following examples , each directive in the group means the same thing , assuming 
that corresponding axis upper and lower bounds mat ch :  

! Second axis of  X is collapsed 

! HPF$ ALIGN x C : , * )  WITH 0 1 ( : )  

! HPF$ ALIGN X ( J , * ) WITH D l ( J )  

! HPF$ ALIGN X ( J , K )  WITH D l ( J )  

! Replicat ed representat ion along second axis  of 03 

! HPF$ ALIGN X C : , : )  W ITH 03 ( : , * , : )  

! HPF$ ALIGN X ( J , K )  WITH 03 ( J , * , K )  

! Transpos ing two axes  

! HPF$ ALIGN X ( J , K )  WITH 02 (K , J )  

! HPF$ ALIGN X ( J , : )  WITH 02 ( :  , J ) 

! HPF$ ALIGN x C : , K )  WITH 02 (K , : )  
! But there isn ' t  any way t o  get rid of *both* index variables ; 

! the subs cript-triplet syntax alone cannot express  transpo s it ion . 

! Revers ing both axes  

! HPF$ ALIGN X ( J , K )  WITH 02 (M-J+ l , N-K+ l )  

! HPF$ ALIGN X C : , : )  WITH 02 (M : l : - l , N : l : - l )  
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! S imple cas e 

! HPF$ ALIGN X ( J , K )  WITH D2 ( J , K )  

! HPF$ ALIGN X ( : , : ) WITH D2 ( : , : ) 

! HPF$ ALIGN ( J , K )  WITH D2 ( J , K ) : :  X 

! HPF$ ALIGN ( : , : ) WITH D2 ( : , : ) : : X 

! HPF$ ALIGN WITH D2 : :  X 

4.6 DYNAMIC D irect ive 

Chapter 4 

The DYNAMIC attribute specifies that an object may be dynamically realigned or redis­
tributed .  The form of a dynamic- directive (H329) is : 

DYNAMIC  align ee- or- distri butee- list 

where each alignee- or- distributee  (H330) must be either an alignee (H3 1 6 )  or a distributee  

(H307) . 

Rules and restrictions: 
1 .  An object in COMMON may not be declared DYNAMIC and may not be aligned to an 

object (or template) that is DYNAMIC .  (To get this kind of effect , Fortran 90 modules 
must be used instead of COMMON blocks . )  

2 .  A n  object with the SAVE attribute may not b e  declared DYNAMI C  and may not be 
aligned to an object (or template) that is DYNAMIC .  

A REALIGN directive may not be applied to an alignee that does not  have the DYNAMIC 

attribute .  A REDISTRIBUTE directive may not be applied to a distri butee  that does not 
have the DYNAMIC attribute . 

A DYNAMIC directive may be combined with other directives , with the attributes stated 
in any order , consistent with the Fortran 90 attribute syntax .  

Example 4.3 The following two directives mean exactly the same thing :  

! HPF$ DYNAMIC  A ,  B ,  C ,  D ,  E 

! HPF$ DUAMI C  A ,  B ,  C ,  0 ,  E 

o 

Example 4.4 The following two directives mean exactly the same thing: 

! HPF$ DYNAMIC ,  ALIGN WITH SNEEZY 
! HPF$ ALIGN WITH SNEEZY , DYNAMIC 

x,  Y,  Z 
X ,  Y ,  Z 
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o 

Example 4 . 5  The following two directives mean exactly the same thing : 

o 

! HPF$ DYNAMIC , DISTRIBUTE (BLOCK , BLOCK )  X ,  Y 
! HPF$ DISTRIBUTE (BLOCK , BLOCK ) , DYNAMIC X ,  Y 

Example 4 . 6  The three directives 

! HPF$ TEMPLATE A ( 64 , 64 ) , B ( 64 , 64 ) , C ( 64 , 64 ) , D ( 64 , 64 )  

! HPF$ DISTRIBUTE (BLOCK , BLOCK ) ONTO P : : A ,  B ,  C ,  D 

! HPF$ DYNAMIC  A ,  B ,  C ,  D 

may be combined into a single directive as follows : 

o 

! HPF$ TEMPLATE , DISTRIBUTE (BLOCK , BLOCK ) ONTO P ,  � 
! HPF$ DIMENSION ( 64 , 64 ) , DYNAMIC : :  A ,  B ,  C ,  D 

4. 7 Allocatable Arrays and Pointers 

1 2 1  

A variable w i th  the  POINTER or  ALLOCATABLE attribute may appear as an alignee in an 
ALIGN directive or as a distributee  in a DISTRIBUTE directive . Such directives do not 
take effect immediately, however ; they take effect each time the array is allocated by 
an ALLOCATE statement , rather than on entry to the scoping unit . The values of all 
specification expressions in such a directive are determined once on entry to the scoping 
unit and may be used multiple t imes (or not at all ) . For example : 

SUBROUTINE MILLARD_FILLMORE (N , M )  

REAL , ALLOCATABLE , DIMENSION ( : )  A ,  B 

! HPF$ ALIGN B ( I )  WITH A ( I+N ) 

! HPF$ DISTRIBUTE A (BLOCK (M*2 ) ) 

N = 43 
M = 91 

ALLOCATE ( A ( 27 ) ) 

ALLOCATE ( B ( 1 3 )  ) 
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The values of the expressions I and "*2 on entry to the subprogram are conceptually 
retained by the ALIGI and DISTRIBUTE direct ives for later use at allocation time . When 
the array A is allocated , it is distributed with a block size equal to the retained value of 

M*2 , not the value 182 .  When the array B is allocated , it is aligned relative to A according 
to the retained value of N, not its new value 43 . 

Note that it would have been incorrect in the MILLARD.FILLMORE example to perform 
the two ALLOCATE statements in the opposite order . In general , when an object X is 
created it may be aligned to another object Y only if Y has already been created or 
allocated .  The following example illustrates several other incorrect cases . 

SUBROUTINE WARREN_HARDING (P , Q ) 

REAL p ( : )  
REAL Q ( : )  
REAL R ( SIZE ( Q »  

REAL , ALLOCATABLE : :  S ( : ) , T ( : )  
! HPF$ ALIGN P ( I ) WITH T ( I )  ! ***  Nonconforming ! 
! HPF$ ALIGN Q(I) WITH *T ( I )  ! * ** Nonconforming ! 

! HPF$ ALIGN R ( I )  WITH T ( I )  ! ***  Nonconforming ! 

! HPF$ ALIGN S C I )  WITH T ( I )  

ALLOCATE (S ( S IZE ( Q » ) 

ALLOCATE (T (SIZE ( Q » ) 

! *** Nonconforming ! 

The ALIGN directives are not HPF-conforming because the array T has not yet been 
allocated at the time that the various alignments must take place . The four cases differ 

slightly in their details . The arrays P and Q already exist on entry to the subroutine , 
but because T is not yet allocated ,  one cannot correctly prescribe the alignment of P or 
describe the alignment of Q relative to T .  (See Section 5.5 for a discussion of prescriptive 
and descriptive directives . ) The array R is created on subroutine entry and its size can 
correctly depend on the SIZE of Q ,  but the alignment of R cannot be specified in terms 
of the alignment of T any more than its size can be specified in terms of the size of T. It 
is permitted to have an alignment directive for S in terms of T , because the alignment 
action does not take place until S is allocated ;  however , the first ALLOCATE statement 
is nonconforming because S needs to be aligned but at that point in time T is still 

unallocated .  
If  an ALLOCATE statement is immediately followed by REDISTRIBUTE and/or REALIGN 

directives , the meaning in princip le is that the array is first created with the statically 
declared al ignment , then immediately remapped.  In practice there is an obvious opti­
mization : create the array in the processors to which it is about to be remapped , in  a 
single step . H P F  implementors are strongly encouraged to implement this optimization 
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and HPF programmers are encouraged to rely upon it .  Here is an example : 

REAL ,  ALLOCATABLE ( : , : )  
! HPF$ DYNAMIC 

REAL , POUTER 

TINKER , EVERS 

TINKER . EVERS 
CHAlCE ( : ) 

! HPF$ DISTRIBUTE ( BLOCK ) , DYNAMIC : :  CHANCE 

READ 6 , M , N 

ALLOCATE (TINKER (N*M , N*M »  
! HPF$ REDISTRIBUTE TINKER(CYCLIC , BLOCK ) 

ALLOCATE (EVERS (N , N »  
! HPF$ REALIGN EVERS ( : , : ) WITH TINKER (M : : M , 1 :  : M ) 

ALLOCATE (CHANCE ( 10000 » 

! HPF$ REDISTRIBUTE CHANCE (CYCLIC )  

1 2 3  

While CHANCE i s  by  default always allocated with a BLOCK distribution , i t  should be 
possible for a compiler to notice that it wi l l  immediately be remapped to a CYCLIC 
distribution . Similar remarks apply to TINKER and EVERS . (Note that EVERS is mapped 

in a thinly-spread-out manner onto TIIKER j adjacent elements of EVERS are mapped to 
elements of TINKER separated by a stride M .  This thinly-spread-out mapping is put in the 
lower left corner of TINKER, because EVERS ( 1 , 1 )  is mapped to TINKER (M  , 1 )  . ) 

An array pointer may be used in REALIGN and REDISTRIBUTE as an alignee ,  align­

targ et,  or distributee  if and only if it is currently associated with a whole array, not an 
array section . One may remap an object by using a pointer as an align ee or distrib utee 

only if the object was created by ALLOCATE but is not an ALLOCATABLE array. 

Any directive that remaps an object constitutes an assertion on the part of the pro­
grammer that the remainder of program execution would be unaffected if all pointers 
associated with any portion of the object were instantly to acquire undefined pointer 

association status ,  except for the one p ointer ,  if any, used to indicate the object in the 

remapping directive . 

If HPF directives were ever to be absorbed as actual Fortran statements , the previous 

paragraph could be wr itten as "Remapping an object causes all pointers associated with 

any portion of the object to have undefined p ointer association st atus , except for the 
one pointer , if any , used to indicate the object in the remapp ing direct ive ." The more 

complicated wording here is intended to avoid any implicat ion that the remapping direc­
tives , in the form of structured comment annotations , have any effect on the execution 

semantics , as opposed to the execution speed, of the annotated program. )  

When a n  array is allocated , it will b e  aligned to an existing template if there is an 
explicit ALIGN directive for the allocatable variab le . If there is no explicit ALIGN directive , 
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then the array will be ultimately aligned with itself. It is forbidden for any other object 
to be ultimately aligned to an array at the t ime the array becomes undefined by reason 
of deallocation . All this applies regardless of whether the name originally used in the 
ALLOCATE statement when the array was created had the ALLOCATABLE attribute or the 
POINTER attribute . 

4 . 8  P ROCES S ORS D irective 

The PROCESSORS directive declares one or more rectilinear processor arrangements ,  spec­
ifying for each one its name, its rank (number of dimensions) , and the extent in each 
dimension . It may appear only in the specificatio n-part of a scoping unit . Every di­
mension of a processor arrangement must have nonzero extent ; therefore a processor 
arrangement cannot be empty. 

In the language of Section 14 . 1 . 2  of the Fortran 90 standard ,  processor arrangements 
are local entities of class ( 1 ) ;  therefore a processor arrangement may not have the same 
name as a variable , named constant , internal procedure , etc . ,  in the same scoping unit . 
N ames of processor arrangements obey the same rules for host and use association as 
other names in the long list in Section 1 2 . 1 . 2 . 2  .. 1 of the Fortran 90 standard .  

I f  two processor arrangements have the same shape ,  then corresponding elements of 
the two arrangements are understood to refer to the same abstract processor . (It is 
anticipated that system-dependent directives provided by some HPF implementations 
could overrule the default correspondence of processor arrangements that have the same 
shape . ) 

If directives collectively specify that two objects be mapped to the same abstract 
processor at a given instant during the program execution , the intent is that the two 
objects be mapped to the same physical processor at that instant . 

The intrinsic functions NUMBER_OF ...PROCESSORS and PROCESSORS.5HAPE may be used to 
inquire about the total number of actual physical processors used to execute the program . 
This information may then be used to calculate appropriate sizes for the declared abstract 

processor arrangements . 
The form of a processors-directive (H33 1 )  is : 

PROCESSORS processors-de c/- list 

where the form of a p rocess ors- decl (H332) is : 

process o rs- n a m e  [ ( expli cit-sh ap e-sp e c- list ) 1 

and a processors- n a m e  (H333) is simply an o bject- n a m e .  
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Examples : 

! HPF$ PROCESSORS p e N )  
! HPF$ PROCESSORS Q (NUMBER_OF_PROCESSORS ( » , & 
! HPF$ R ( 8 , NUMBER_OF_PROCESSORS ( ) /8 )  

! HPF$ PROCESSORS BIZARRO ( 1 972 : 1 997 , -20 : 17 ) 

! HPF$ PROCESSORS SCALARPROC 

125  

If no shape is specified ,  then the declared processor arrangement is conceptually scalar . 
A scalar processor arrangement may be useful as a way of indicating that certain 

scalar data should be kept together but need not interact strongly with distributed data .  
Depending on the implementation architecture , data distributed onto such a processor 
arrangement may reside in a single "control" or "host" processor ( if the machine has one) , 
or may reside in an arbitrarily chosen processor , or may be replicated over all proces­
sors . For target architectures that have a set of computat ional processors and a separate 
scalar host computer , a natural implementation is to map every scalar processor arrange­
ment onto the host processor . For target architectures that have a set of computational 
processors but no separate scalar "host" computer , data mapped to a scalar processor 
arrangement might be mapped to some arbitrarily chosen computational processor or 
replicated onto all computational processors . 

An HPF compiler is required to accept any PROCESSORS declaration in which the 
product of the extents of each declared processor arrangement is equal to the number 
of physical processors that would be returned by the call NUMBER--DF ...PROCESSORS ( ) . It 
must also accept all declarations of scalar PROCESSOR arrangements .  Other cases may be 
handled as well , depending on the implementation . 

For compat ibility with the Fortran 90 attribute syntax,  an optional " . .  " may be 

inserted .  The shape may also be specified with the DIMENSION attribute : 

! HPF$ PROCESSORS : :  RUBIK ( 3 , 3 , 3 ) 
! HPF$ PROCESSORS , DIMENSION ( 3 , 3 , 3 )  : :  RUBIK 

As in Fortran 90, an expli cit- shape-spec-list in a process ors- decl will override an explicit 
DIMENSION attribute : 

! HPF$ PROCESSORS , DIMENSION (3 , 3 , 3 ) : :  & 

! HPF$ RUBIK , RUBIKS_REVENGE (4 , 4 , 4 ) , SOMA 

Here RUBIKS..REVENGE is 4 x 4 x 4 while RUBIK and SOMA are each 3 x 3 x 3. (By 
the rules enunciated above , however , such a statement may not be completely portable 
because no HPF language processor is required to handle shapes of total sizes 27  and 64 
simultaneously. ) 
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Returning from a subprogram causes all processor arrangements declared local to that 
subprogram to become undefined. It is not HPF-conforming for any array or template 
to be distributed onto a processor arrangement at the time the processor arrangement 
becomes undefined unless at least one of two conditions holds : 

• The array or template itself becomes undefined at the same time by virtue of returning 
from the subprogram . 

• Whenever the subprogram is called , the processor arrangement is always locally de­
fined in the same way, with identical lower bounds , and identical upper bounds . 

Note that second condition is slightly less stringent than requiring all expressions to 
be constant . This allows calls to NUMBER-DF ...PROCESSORS or PROCESSORS...5HAPE to appear 
without violating the condition . 

Variables in COMMON or having the SAVE attribute may be mapped to a locally declared 
processor arrangement , but because the first condition cannot hold for such variables 
(they don 't become undefined) ,  the second condition must be observed.  This allows 
COMMOI variables to work properly through the customary strategy of putting identical 
declarations in  each scoping unit that needs to use them , while allowing the proces­
sor arrangements  to which they may be mapped to depend on the value returned by 
NUMBER-'JF ...PROCESSORS . 

It may be desirable to have a way for the user to specify at compile time the number 
of physical processors on which the program is to be executed . This might be speci­
fied either by a compiler-dependent directive , for example ,  or through the programming 
environment (for example, as a UNIX command-line argument ) . Such facilities are be­
yond the scope of the HPF specification , but as food for thought we offer the following 
illustrative hypothetical examples : 

! Declaration f or multiproces sor by ABC Corporat ion 
! ABC$ PHYSICAL PROCESSORS ( 8 ) 

! Declarat ion for mpp by XYZ Incorporated 

! XYZ$ PHYSICAL PROCESSORS ( 65536 ) 
! D e c l arat ion for hypercube machine by PDQ Limit ed 

! PDQ$ PHYSICAL PROCESSORS ( 2 , 2 , 2 , 2 , 2 , 2 , 2 ) 

! Declarat ion for two-dimens ional grid machine by TLA GmbH 

! TLA$ PHYSICAL PROCESSORS ( 1 28 , 64 )  

l One of  the  preceding might affect the f ollowing 

! HPF$ PROCESSORS P (NUMBER_OF_PROCESSORS ( »  

It may furthermore b e  desirable to have a way for the user to specify the precise map­
ping of the processor arrangement declared in a PROCESSORS statement to the physical 
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processors of the executing hardware. Again , this might be specified either by a compiler­
dependent directive or through the programming environment (for example , as a UNIX 
command-line argument) ; such facilities are beyond the scope of the HPF specification , 
but as food  for thought we offer the following i l lustrative hypothetical example : l 

! PDQ$ PHYSICAL PROCESSORS ( 2 . 2 , 2 , 2 . 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 ) 

! HPF$ PROCESSORS G ( e , 64 , 1 6 )  
! PDQ$ MACHINE LAYOUT G ( : GRAY (O : 2 ) . : GRAY (6 : 1 1 ) , : B INARY (3 : 6 , 12 »  

This might specify that the first dimension of G should use hypercube axes 0 ,  1 ,  2 with a 

Gray-code ordering ; the second dimension should use hypercube axes 6 through 1 1  with 
a Gray-code ordering; and the third dimension should use hypercube axes 3, 4, 5, and 

12 with a binary ordering . 

4.9  TEMPL ATE D irect ive 

The TEMPLATE directive declares one or more temp lates , specifying for each the name , 
the rank (number of dimensions) ,  and the extent in each dimension . It must appear in 
the specification-part of a scoping unit . 

In the language of section 14 . 1 . 2  of the Fortran 90 standard, templates are local entities 
of class ( 1 ) ;  therefore a template may not have the same name as a variab le , named 
constant , internal procedure , etc . ,  in  the same scoping unit . Template names obey the 
rules for host and use association as other names in the list in section 1 2 . 1 . 2 . 2 . 1  of the 
Fortran 90 standard. 

A template is simply an abstract space of indexed positions ; it can be considered as 

an "array of nothings" (as compared to an "array of integers , "  say) .  A template m ay be 
used as an abstract align-target that may then be distributed .  

The form of a t e mplate- directive (H334) is : 

TEMPLATE t e mp late- de cl- list 

where the form of a template-decl (H335) is: 

temp late-name [ ( explicit-sh ape-sp ec-list ) 1 

and a template- n ame (H336)  is simply an object-nam e . 

1 This example assumes that PDQ Limited has extended Fortran to allow arrays of rank greater than 
seven. 
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Some examples fol low : 

! HPF$ TEMPLATE A (N )  
! HPF$ TEMPLATE B (N , N ) , C ( N , 2*N ) 
! HPF$ TEMPLATE DOPEY ( 100 , 100 ) , SIEEZY ( 24 ) , GRUMPY ( 17 , 3 , 5) 

If the " :  : "  syntax is used , then the declared templates may optionally be distributed 
in the same com bined- directive .  In th is case all templates declared by the directive must 
have the same rank so that the DISTRIBUTE attribute will be meaningful . The DIMENSION 
attribute may also b e  used . 

! HPF$ TEMPLATE , DISTRIBUTE (BLOCK , * )  : :  WHINEY (64 , 64 ) , MOPEY ( 128 , 128 )&  

! HPF$ TEMPLATE , DIMENSION (91 , 9 1 )  : :  BORED , WHEEZY , PERKY 

Templates are useful in the particular situation where one must align several arrays 

relative to one another but there is no need to declare a single array that spans the entire 

index space of interest . For example , one m ight want four N x N arrays aligned to the 
four corners of a template of size (N + 1) x (N + 1 ) :  

! HPF$ TEMPLATE , DISTRIBUTE (BLOCK , BLOCK ) : :  EARTH (N+ 1 , N+ l )  
REAL , DIMENSIDN (N , N ) : :  NW , NE , SW , SE 

! HPF$ ALIGN NW ( I , J ) WITH EARTH ( I , J ) 
! HPF$ ALIGN NE ( I , J ) WITH EARTH ( I , J+ 1 )  
! HPF$ ALIGN SW ( I , J ) WITH EARTH ( I + l , J ) 
! HPF$ ALIGN SE ( r , J ) WITH EARTH ( I + 1 , J+ 1 ) 

Templates may also be useful in making assertions about the mapping of dummy argu­

ments (see Section 5 .5 ) .  
Unlike arrays , temp lates cannot be  in COMMON . S O  two temp lates declared i n  different 

scoping units will always be distinct , even if they are given the same name . The only 

way for two program units to refer to the same template is to declare the template in a 
module that is then used by the two program units . 

Temp lates are not passed through the subprogram argument interface . The template 

to which a dummy argument is aligned is always distinct from the temp late to which the 

actual argument is aligned , though it may be a copy (see Section 5 . 4) .  On exit from a 

subprogram , an HPF implementation arranges that the actual argument is aligned w ith 

the same template with which it was aligned before the call . 

Returning from a subprogram causes all templates declared local to that subprogram t.o 
become undefined . It is not HPF-conforming for any variable to be al igned to a template 

at the time the temp late becomes un defined unless at least one of two conditions holds : 
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• The var iable itself becomes undefined at  the same time by virtue of returning from 
the subprogram . 
• Whenever the subprogram is called ,  the template is always locally defined in the same 
way, with identical lower bounds , identical upper bounds, and identical distribution 
information ( if any) onto identically defined processor arrangements (see Section 4 .8 ) . 

(Note that this second condition is slightly less stringent than requiring all expressions 
to be constant . This allows calls to NUMBER-DF ..PROCESSORS or PROCESSORS-SHAPE to 
appear without violating the condition . ) 

Variables in COMMON or having the SAVE attribute may be mapped to a locally declared 
template , but because the first condition cannot hold for such variable (they don 't become 
undefined) , the second condition must be observed .  

4. 1 0  Fort ran Storage Associat ion a n d  HPF 

So far our discussion , with the exception of some fine print , might lead the reader to 
think that all variables are candidates for the mapping directives . For some codes this 
may be true , but there are important restrictions that are covered in this section . 

For most of the lifetime of the Fortran language , efficient use of memory has been 
very important . One use of COMMON and EQUIVALENCE in Fortran programs has been to 
conserve memory space . This is called st orage  association :  storage units used for one set 
of variables in one section of code that are reused for another set of variab les elsewhere .  
More formally stated : 

St o rage associat ion is the  ass ociation of two or m o re data o bjects that 

occurs when two or m o re st o rage sequ e n ces share o r  a re aligned with o n e  o r  

m o re storage units .  

- Fortran Standard ( 14 . 6 . 3 . 1 )  

I t  should not surprise the reader that this multiple use of storage h as  great potential 
for mischief if mapping directives are applied , either explicitly or implicitly. The (useful) 
Fortran tradition of separate compilation makes the problem worse because the compiler 
may not know where and how the multiple use is taking place .  For this reason , HPF 
introduces certain rules that restrict the use of storage association . We first examine the 
issues informally ; in Section 4 . 1 0 . 2  we present a more formal and detailed discussion . 

4 . 1 0 . 1  Informal Introduction to Storage Association 

First , we want to assure the reader that it is still okay to use COMMON and EQUIVALENCE 
in an HPF program . It is necessary, however , to sort out the safe uses of COMMON and 
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SUBROUTINE ONE 

COMMON /A_OK/ X ( 128 , 10 ) , Y ( 256 ) , INX ( 128 ) 
COMMON /DANGER/ TEMP ( 1 0 ,  100 ) , DEPTH ( 1000 ) , LOC ( 1 000 , 2 )  

COMMON /PELIGRO/ A ( 1 0 , 1 0 ) , B ( 20 , 1 0 ) , C ( 30 , 1 0 )  

END SUBROUTINE ONE 

SUBROUTINE TWO 

COMMON /A_OK/ WORK ( 128 , 1 0 ) , TEST (256 ) ,  INX ( 128 )  

Chapter 4 

COMMON /DANGER/ Ll ( 10 , 2 ) , L2 (200 ) , FILL ( 1780 ) , LOC ( 1 000 , 2 ) 
COMMON /PELI GRO/ A 1 ( 1 00) , B l (200 ) , C l (300 ) 

END SUBROUTINE TWO 

Figure 4.6 
Checking COIIIIOI blocks 

EQUIVALENCE from the uses that have the potential to cause trouble . We strongly rec­
ommend that programmers writing new Fortran 90 code use features like MODULE with 
the ren a m e  feature (RH08) , derived types (structures) , and allocatable storage to avoid 
the use of COMMON and EQUIVALENCE completely in new code . 

When is it safe to use common blocks? If COMMOI is used solely as a way to create global 
variables , rather than as a mechanism of storage reuse , then common variables can safely 
be distributed . To be more specific , when a given common block is used for the same set 
of variables (same size ,  same type , and same shape) everywhere it appears , then it is okay 
to map the variab les in the COMMON , bllt the mappings must also be the same everywhere . 
Only the variable names may differ . When an INCLUDE statement is used to introduce 
the declaration of COMMON and its variables , this rule is relat ively straight forward for the 
programmer to observe . Figure 4.6 gives a very simple example of some good and bad 
uses of CaMMal . The variables in common block /A.JJK/ are the same shape ,  size , and 
type .  They may be mapped , either explicitly by the user or implicitly by the compiler . 
The common blocks /DANGER/ and /PELIGRO/ both have problems . In SUBROUTINE TWO 
the programmer has violated the rule in multiple ways . LOC is the same , and in the same 
place in /DANGER/ in both subroutines , but the other variab les in /DANGER/ are different 
in number ,  type, size and shape. In /PELIGRO/ it is just the shape that differs . It is still 
okay to have common blocks like /DANGER/ and /PELIGRO/ in a code . But they must be 

marked as sequential everywhere they occur . The SEQUENCE directive is supplied for this 
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purpose . The following directive should appear in both subroutines for this code to be 
used in HPF .  

! HPF$ SEQUENCE /DANGER/ , /PELIGRO/ 

The notion s equ ential  and nonsequential  along with the form of the SEQUENCE directive 
is given in the next section . 

It should be fairly obvious why we requ ire that the explicit mappings be the same 

everywhere the COMMON is used.  If this were not the case,  a check for dynamic redis­
tribution would be required on entry to every subroutine and that overhead woul d be 
unacceptable . The requirement for the variables to be the same shape comes from the 
need to guarantee that the compiler can use the same method to access the (potentially 

distributed) variable everywhere . If some component were a different shape or type,  the 

compiler might apply different default distribu tions . 
What about EQUIVALENCE? As with COMMON, there are some uses of EQUIVALEICE that 

are relatively benign such as a simple rename of a variable while other uses create complex 

relationships between variables that inh ibit mapping . In HPF,  it is the case that any use 

of EQUIVALENCE with (or overlapping) a variable causes that variable to be sequential .  

It is not difficult to check the basic rule that applies to mapping a variable involved in  

EQUIVALENCE: if  there is one variable that is  as big as (or bigger than ) all of the other 
variables related by EQUIVALEIlCE, this variable is called a cover. If this cover is a 1-
dimensional variable , it may be mapped . The precise definition of a cover is given in the 

next section . 

Why restrict covers to I-dimensional for mapping? If a variable is a multi-dimensional 
array, the mapping access functions can get quite sophisticated for some distributions . 
Suppose this variable were a cover . If the other variables associated with this variable 

via EQUIVALENCE were also multi-dimensioned , the access to these equivalenced variables 
might be a very messy composite function . On the other hand , if the distributed cover is 
a single dimensional array, the mapping is straightforward for all equivalenced variab les . 

4. 1 0 . 2  St orage A ssociation i n  More Detail 

In this section we will define the notions of sequ e ntial  and nonsequential as they apply to 
variab les and common blocks . But first we will introduce the form of the directives sup­
plied to designate the sequentiality of data. It is also useful to give the formal definition 
of cover as used with EQUIVALENCE before discussing the sequentiality of variables . 

Sequence Directives A SEQUENCE directive is defined to allow a user to declare ex­

plicitly that variables or common blocks are to be treated by the compiler as sequentiaL 

The form of a sequ e n ce- directive (H70 1 )  is one of: 
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SEQUENCE 

SEQUENCE [ : : 1 asso ciation- name-list 

NO SEQUENCE 
NO SEQUENCE [ : :  1 association- name-list 

and an association-name (H702) is one of: 

v aria ble n a m e  
I [ comm on- block- n ame] I 

Rules and restrictions:  

Chapter 4 

1 .  A variable or common block name may appear at most once in a s equ ence- directive 

within any scoping unit . 

2. A sequ e n ce- directive belongs in the specification part of a program unit . 
3 .  The result variable of an array-valued function that is not an intrinsic function is a 

nonsequential array. It may not appear in any HPF SEQUENCE directive . 

A sequence- directive with an empty associ ation-name-list is treated as if it contained 
the name of all implicitly mapped variables and common blocks in the scoping unit 
that cannot otherwise be determined to be sequential or nonsequential by their language 
context . 

Normally, only the SEQUENCE directive is required, however some implementations may 

supply an optional compilation environment where variables are sequential by default . 
For completeness in such an environment , HPF defines the NO SEQUENCE directive to 
allow a user to establish that the usual nonsequential default should  apply to a scoping 
unit , or selected variables and common blocks within the scoping unit . 

Covers and Aggregates Often EQUIVALENCE is used simply to rename a variable or 
to give a new name to a part of a variable . However , it is possible in Fortran to link 
an elaborate string of variables together by over lapping the storage of mUltiple variables 
with one or more EQUIVALENCE statements . In HPF we call this an aggregate  vari a ble 

group. If there is a member variable that is exactly as big as the aggregate variable 
group , we call it a cover. The reader is encouraged to look at the examples in Figure 4 . 7 
to get an informal i dea what these terms mean before reading the next paragraph which 
gives a definition of the terms using some formal Fortran 90 terminology with reference 

numbers from the Fortran 90 standard .  
An aggrega t e  varia ble group is a collection of variab les whose individual storage se­

quences are parts of a single storage sequence . Variables associated by EQUIVALENCE 
statements or by some combination of EQUIVALENCE and COMMON statements form an ag­
gregate variable group. The size of an aggregate variable group is the number of storage 
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IMPLICIT REAL (A-Z ) 

COMMON /FOO/ A ( 100 ) , B ( 1 00 ) , C ( 100 ) , 0 ( 100 ) , E ( 1 0 0 )  

DIMENSION X ( 100 ) , Y ( 150 ) , Z ( 200 ) 

! Example 1 :  shoving a s impl e cover of tvo variable s  

EQUIVALEICE C A ( l ) , Z ( l )  ) 
! Four component s : (A , B ) , C ,  0 ,  E with s iz e s  200 , 100 , 1 00 , 100 
! Z  i s  a cover of A , B 

! Example 2 :  show ing how an aggr egate group consumes var iabl e s  
EQUIVALENCE ( B ( 100 ) , Y ( l )  ) 

! Thre e  components A ,  ( B , C ,  D ) , E w ith siz e s  100 , 300 , 1 00 
! B ,  C , and D are an aggr egate variable group but there is no cover 

! Example 3 :  show ing that a group can extend the l ength of common 

EQUIVALENCE ( E ( l ) , Y ( l )  ) 
! F i v e  components : A ,  B ,  C , 0 ,  E with s iz e s  100 , 100 , 100 , 100 , 1 5 0  
! Y i s  a cover of E 

! Example 4 :  showing how a group may be a compos ite of group s 

EQUIVALENCE ( A ( 5 1 ) , X ( l )  ) 
EQUIVALENCE ( B ( 100 ) , Y ( 1 )  ) 

! Two component s (A , B ,  C ,  D ) , E w ith s izes 400 , 100 
! There i s  no cover for the group w ith A ,  B, C , 0 ,  X and Y 

! Example 6 :  showing local variable s  making an aggregat e  group 
EQUIVALENCE ( Y C 1 00 ) , Z ( l »  

l One aggregate v ar iable group ( Y ,  Z )  with s iz e  299 
! No COMMON block involved and no cover 

! Example  6 :  show ing how a common block becomes s equential 

! HPF$ SEQUENCE /FOO/ 
! The COMMON has one component , (A , B ,  C ,  D ,  E) v ith s ize  600 

Figure 4 .7  
Examples of  aggregate variable groups and covers 
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units in the group 's storage sequence ( 14 . 6 . 3 . 1 ) .  If there is a member in an aggregate 
variable group whose storage sequence is totally associated ( 1 4 . 6 . 3 .3)  with the storage 
sequence of the aggregate variable group , that variable is called an aggregate cover or 
simply a cover. 

Sequential and Nonsequential Common Blocks In HPF a common block is n o n ­

sequential by definition , unless there is an explicit SEQUENCE directive to specify that it is 
sequential. All of the common blocks in Figure 4 . 7  are nonsequential except Example 6.  
A sequential  co mmon block has a single common block storage sequence ( 5 .5 . 2 . 1 ) .  The 
variables of a sequential common block are defined to form a single aggregate variable 
group . 

A common block contains a sequence of compone nts. Each component is either an 
aggregate variable group , or a variable that is not a member of any aggregate variable 
group .  Sequential common blocks contain a single component . Nonsequential common 
blocks may contain multiple components that may be nonsequential or sequential vari­
ables or aggregate variable groups. 

As an aid to porting old FORTRAN programs , some implementations may provide a 

compilation environment where the default definition of a common block is sequential. 

Sequential and Nonsequential Variables HPF variables are either sequent ial or 
nonsequential as determined by their context in a program or by explicit directives . A 
variab le is sequential if and only if any of the following holds: 

• It appears in a sequential common block ; 
• It is a member of an aggregate variable group ; 
• It is an assumed-size array ; 
• It is a component of a derived type with the Fortran 90 SEQUENCE attribute ; or 
• It is declared to be sequential in an HPF SEQUENCE directive . 

A sequential variable can be storage associated or sequence associated (see Section 5 . 9 ) ;  
nonsequential variables cannot . 

We say a variable is explicitly mapped if it appears in an HPF alignment or distribution 
directive within the scoping unit in which it is declared ;  otherw ise it is implicitly m apped. 

Storage Association Rules There are some rules about storage association to which 
HPF programs must conform: 

• A sequential variable may not be explicitly mapped unless it is a scalar or rank­
one array that is an aggregate cover . If there is more than one aggregate cover for an 
aggregate variable group , only one may be explicitly mapped.  
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• No explicit mapping may be given for a component of a derived type having the 
Fortran 90 SEQUEICE attribute. (By its definition , this attribute demands storage ass0-

ciation . ) 

If a common block is nonsequential , then all of the following must hold: 

• Every occurrence of the common block has exactly the same number of components 
with each corresponding component having a storage sequence of exactly the same size ; 

• If a component is a nonsequential variable in any occurrence of the common block , 
then it must be  nonsequential with identical type ,  shape , and mapping attributes in every 
occurrence of the common block ; 

• If a component is sequential and explicitly mapped (either a variable or an aggregate 
variable group with an explicitly mapped aggregate cover) in any occurrence of the 
common block ,  then it must be sequential and explici t ly mapped with identical mapping 
attributes in e v e ry occurrence of the common block . In addition , the type and shape of 
the explicitly mapped variable must be identical in all occurrences ; and 
• Every occurrence of the common block must be nonsequential . 

If any of these constraints are not met , it is the programmer 's responsibility to declare 

every instance of the common block as sequential using a SEQUENCE directive . 
Under these rules , variables in a common block can be mapped as long as the compo­

nents of the common block are the same in every scoping unit that declares the common 
block . The rules above also allow variables involved in an EQUIVALENCE statement to 
be mapped by the mechanism of declaring a rank-one array to cover exactly the aggre­
gate variable group and mapping that array .  Notice in Figure 4 . 7  that every example 

has a different set of components for IFOo/ . If these examples all came from the same 
source program and each example were in a different sub.routine , the programmer would 
have to declare IFccl sequential everywhere it is used ,  as was done in Example 6. This 
is required even though the actual set of variables in the common block are identical 

everywhere . 
As a reminder , an HPF program is nonconforming if it specifies any mapping that 

would cause a scalar data object to be mapped onto more than one abstract processor 
(Section 4 .4 ,  page 1 10 ) .  This puts a constraint on the sequential variables and aggregate 

covers that can be mapped. In parti cular , a program is nonconforming if it directs double 
precision or complex arrays to be mapped such that the storage units of a single array 
element are split because of some EQUIVALENCE statement or common block layout .  

In Figure 4 . 8  we give an example of a common block with a m i x  of sequential and 
nonsequential variables . IMIXI in both subroutines is a nonsequential common block 
with an identical set of four components . Components one and four are sequential and 
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SUBROUTINE ALPHA 
COMMON /MIX/ A ( 20 , 40 ) , E ( i0 , i0 ) , G ( i0 , i00 , i 0 ) , H ( i00 ) , P ( i00 ) 

REAL COVER ( 200 ) 
EQUIVALENCE ( COVER ( i ) , R ( i »  

! HPF$ SEQUENCE : :  A 

! HPF$ ALIGN E . . .  
! HPF$ DISTRIBUTE COVER ( CYCLIC ( 2 »  

END SUBROUTINE ALPHA 

SUBROUTINE BETA 
COMMON /MIX/ A ( 800 ) , E ( 1 0 , 10 ) , G ( i 0 , i00 , i 0 ) , Z ( 200 ) 

! HPF$ SEQUENCE : :  A ,  Z 

! HPF$ ALIGN E . . .  

! HPF$ D ISTRIBUTE Z ( CYCLIC ( 2 »  

END SUBROUTINE BETA 

Figure 4.8 
Examples of mapping covers 
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components two and four are explicitly mapped , with the same type ,  shape and mapping 

attributes . 
The first component , A ,  is declared sequential in both subroutines because its shape is 

different . It may not be exp licit ly mapped in either because it is not rank-one or scalar 

in ALPHA . The second component , E ,  is explicitly mapped , while the third component , G 
is imp licit ly mapped . E and G agree in type and shape in both occurrences . E must have 
the same explicit mapp ing and G must have no explicit mapping in both occurrences , 

since they are nonsequential variables . 

The last component in BETA , Z ,  must be declared sequential because there is an 
EQUIVALENCE statement in ALPHA . The variable COVER in ALPHA provides an aggregate 
cover of the aggregate variable group ( H , p ) .  It is i-dimensional so it is eligible for map­
ping .  Notice that Z and COVER are the same shape ,  size, and type .  Notice also that the 
mapp ing specified is the same in each subroutine . 

As a summary, we give a check-list for a programmer to determine the st atus of a 
variable or common block . The following questions can be applied ,  in order : 

• Does the variable appear in some explicit language context which dictates sequential 
(e .g . ,  EQUIVALENCE) or nonsequential (e .g . ,  array-valued function result variable)? 

• If not , does the variable or common block name appear in the list of names on a 
SEQUENCE or NO SEQUENCE directive? 
• If not , does the variable appear in an explicit mapping directive? 

• If not , does the scoping unit contain a nameless SEQUENCE or NO SEQUENCE? 
• If not , is the compilation affected by some special implementation-dependent environ­
ment which dictates that names default to SEQUENCE? 
• If not , then the comp iler will consider the variable or common block name nonsequen­
tial and is free to apply data mapping optimizat ions disregarding Fortran sequence and 
storage association . 
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5 Data Mapping for Procedure Argument s  

The rules for data mapping are more complicated when procedure calls are involved. 

The HPF alignment and distribution directives have extra features that apply only to 

dummy arguments: a directive for a dummy argument may be prescriptive, descriptive, 
or transcriptive, and the template for a dummy argument may be natural or inherited. 

There are also some restrictions on the use of sequence association . 

5.1 Data Mapping for Dummy Variables 

A general principle of the design of HPF is that a subprogram cannot permanently alter 

the mappings of data visible to its caller. (This restriction is intended to allow a compiler 

to generate more efficient code, because the compiler can rely on declared data mappings 
throughout the body of a scoping unit without concern for the possibility that a call to 

a subprogram might rearrange data.) 
On the other hand, it is useful to allow a subprogram to remap data received through a 

dummy argument. As a simple example, a subroutine might receive two array arguments 

A and B and apply an algorithm that is much more efficient when A and B are aligned. 

But generality demands that the subroutine operate correctly even when the actual array 

arguments are not aligned. 

The solution adopted in HPF is that a subprogram may include HPF directives that 

prescribe the alignment or distribution of dummy arguments. Such directives are identical 

to those for non-dummy variables. For example : 

!HPF$ DISTRIBUTE Z(BLOCK.*.CYCLIC) 

If the actual argument does not satisfy the directives, then an implicit remapping must 

occur so as to satisfy the directives. Such an implicit remapping is not visible to the 

caller; when execution resumes following the call, everything must be as if no remapping 

had occurred . 

On yet another hand, remapping a large piece of data may impose a large run-time 

execution cost, so it is not desirable to require remapping on entry to a subprogram. HPF 
allows a subprogram to specify, for a given dummy argument, that the corresponding 

actual argument should never be implicitly remapped; instead, the subroutine should be 

able to operate on the actual argument data however it happens to be distributed. 

!HPF$ UHERIT Z 

This avoids the overhead of remapping actual argument data, but the subprogram it­

self may execute more slowly because it must handle the generality of arbitrary data 

mappings . 
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Therefore HPF provides one more option: the subprogram may specify no remapping 
of an actual argument but also assert that the actual argument will have a particular 
alignment or distribution. 

! HPF$ D ISTRIBUTE *Z(BLOCK,*,CYCLIC ) 

This allows maximal efficiency but requires the caller to provide an actual argument that 
satisfies the assertion. 

Let us examine some more specific illustrations of these concepts. As we will see, 
if explicit interfaces are used, then directives need not match in the caller and callee, 

because the. HPF compiler will have the necessary information at compile time to perform 
a remapping. If explicit interfaces are not used, everything is still okay if the actual 

mapping of the actual argument matches the declared mapping of the dummy argument, 
or if the callee admits remapping of the actual argument. 

Figure 5.1 shows five subroutines: KOVACS, WOOD , ELDER, and CLARKE each call MINGO. 

Now subroutine MINGO prefers to receive its argument M with (BLOCK ,BLOCK) distribution 

(perhaps this minimizes communications costs within the subroutine) so it contains a 

DISTRIBUTE directive for its dummy argument. This is called a prescriptive directive : it 
prescribes a mapping for the dummy argument. 

Subroutine KOVACS has a local array K that it declares to be (*, CYCLIC)  . When it passes 
array K to MINGO, the data must be implicitly remapped so that the dummy argument has 
a (BLOCK,BLOCK) distribution. When subroutine KOVACS resumes execution on return 
from the call to MINGO , the array K within KOVACS still has (*,CYCLIC) distribution. 

Subroutine WOOD has a local array t1 that it declares to be (BLOCK,BLOCK ) .  When it 
passes array W to MINGO , nothing needs to be done. (However, in some implementations 

there might be a small run-time cost simply for testing whether remapping might be 

necessary. ) 
Subroutine ELDER, like KOVACS, has a local array that it declares to be (*. CYCLIC ) .  But 

ELDER also contains a Fortran 90 interface block describing MINGO. When it passes array 

E to MINGO, the data must be implicitly remapped so that the dummy argument has a 

(BLOCK ,BLOCK ) distribution. If ELDER is compiled separately from MINGO, the information 

in the interface block may allow the compiler to generate more efficient remapping code. 
When subroutine ELDER resumes execution on return from the call to MINGO I the array E 

within ELDER still has (* ,CYCLIC ) distribution. 
Subroutine CLARKE , like WOOD, has a local array C that it declares to be (BLOCK . BLOCK). 

But CLARKE also contains a Fortran 90 interface block describing MINGO. When it passes 

array C to MINGO , nothing needs to be done. The information in the interface block allows 

a compiler to determine at compile time that no remapping will be required. 
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SUBROUTINE KOVACS 

REAL K(100,100) 

!HPF$ DISTRIBUTE K(*,CYCLIC) 

CALL MINGO(K) 

END 

implicit remapping 

SUBROUTINE ELDER 

REAL E(100,100) 

!HPF$ DISTRIBUTE E(*,CYCLIC) 

INTERFACE 

SUBROUTINE MINGO(M) 

REAL M(100, 100) 

SUBROUTINE WOOD 

REAL W (100,100) 

!HPF$ DISTRIBUTE W(BLOCK,BLOCK) 

CALL MINGO(W) 

END 

no remapping required 

L..-,,....L-......J W 
I 
T 

SUBROUTINE CLARKE 

REAL C (100,100) 

!HPF$ DISTRIBUTE C(BLOCK,BLOCK) 

INTERFACE 

SUBROUTINE MINGO(M) 

REAL M(100, 100) 

141 

!HPF$ DISTRIBUTE M(BLOCK,BLOCK) !HPF$ DISTRIBUTE M(BLOCK,BLOCK) 

END SUBROUTINE MINGO END SUBROUTINE MINGO 

END INTERFACE END INTERFACE 

CALL MINGO(E) CALL IHNGO(C) 

END END 

implicit remapping 

(known at compile time) 

no remapping required 
(known at compile time) 

'--...I....�M 

SUBROUTINE MINGO(M) 

REAL M(100, 100) 

!HPF$ DISTRIBUTE M(BLOCK,BLOCK» 

END 

Figure 5.1 
Treatment of a prescriptive directive for a dummy argument 
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Figure 5.2 shows five more subroutines: PROHIAS, BERG, DAVIS, and GAINES each call 
JAFFEE. Now subroutine JAFFEE is willing to receive its argument J with any distribution, 
so it contains a DISTRIBUTE directive for its dummy argument that has simply asterisks 
"*" in place of a distribution format list and processors arrangement. This is called a 
transcriptive directive: the mapping of the dummy is simply copied, or transcribed, from 

the mapping of the actual argument. The intent is that if the argument is passed by 

reference, no movement of the data will be necessary at run time. Note, by the way, that 
transcriptive directives are not included in Subset HPF. 

(Asterisks may be used in two different ways in a DISTRIBUTE directive: within a dist­
format-list to indicate on-processor distribution, or to replace a dist-format-list and its 

surrounding parentheses. Thus, if HUMOR is a dummy argument, then 

! HPF$ DISTRIBUTE HUMOR (*) 

IS a prescriptive specification of HUMOR as residing within a single abstract processor, 
whereas 

!HPF$ DISTRIBUTE HUMOR * 

is a transcriptive specification indicating that any distribution is acceptable and that the 
actual argument should not be remapped. ) 

Subroutine PROHIAS has a local array P that it declares to be (*, CYCLIC). When it 
passes array P to JAFFEE, no remapping occurs. Subroutine JAFFEE must be prepared to 

handle its dummy argument J with (*, CYCLIC) distribution. 
Subroutine BERG has a local array B that it declares to be (BLOCK, BLOCK). When it 

passes array B to JAFFEE, no remapping occurs. Subroutine JAFFEE must be prepared to 

handle its dummy argument J with (*, CYCLIC) distribution. 
Subroutine DAVIS, like PROHIAS, has a local array that it declares to be (*,CYCLIC). 

But DAVIS also contains a Fortran 90 interface block describing JAFFEE. When it passes 

array D to JAFFEE, no remapping occurs. If DAVIS is compiled separately from JAFFEE, 

the information in the interface block informs the compiler that JAFFEE will accept any 
distribution, which may allow the compiler to generate more efficient code for the call. 

Subroutine GAINES, like BERG, has a local array G that it declares to be (BLOCK, BLOCK). 

But GAINES also contains a Fortran 90 interface block describing JAFFEE. When it passes 
array G to JAFFEE, no remapping occurs. As with DAVIS, the information in the interface 

block may allow the compiler to generate more efficient code. 

Observe that subroutine JAFFEE specifies the INHERIT attribute for its dummy argu­

ment J. If it did not, then it might be necessary to remap the actual argument after 

all, for the following subtle technical reason: for any given system (and the choices that 

system might make concerning default mappings), it must be possible to describe the 
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SUBROUTIHE PROHIAS 

REAL P(100,100) 

!HPF$ DISTRIBUTE P(*,CYCLIC) 

CALL JAFFEE(P) 

END 

no remapping occurs 

SUBROUTINE DAVIS 

REAL D(100,100) 

!HPF$ DISTRIBUTE D(*,CYCLIC) 

INTERFACE 

!HPF$ 

!HPF$ 

SUBROUTINE JAFFEE(J) 

REAL J(100,100) 

DISTRIBUTE J * ONTO * 

IHHERIT J 
EHD SUBROUTIHE JAFFEE 

END INTERFACE 

CALL JAFFEE(D) 

END I-I-I-"""""'r'-'-'D 

no remappmg occurs 
(known at compile time) 

SUBROUTINE BERG 

REAL B(100, 100) 

!HPF$ DISTRIBUTE B(BLOCK,BLOCK) 

CALL JAFFEE(B) 

END L.......,,-I----I B 
I 
I 

no remapping occurs 

SUBROUTINE GAINES 

REAL G (100,100) 

!HPF$ DISTRIBUTE G(BLOCK,BLOCK) 

INTERFACE 

!HPF$ 

!HPF$ 

SUBROUTINE JAFFEE(J) 

REAL J(100,100) 

DISTRIBUTE J * ONTO * 

INHERIT J 
END SUBROUTINE JAFFEE 

END INTERFACE 

CALL JAFFEE(G) 

END L.......,,-I----J G 
I 
I 

no remapping occurs 
(known at compile time ) 
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any 

'--_--I J 

SUBROUTINE JAFFEE(J) 

REAL J(100,100) 

subroutine JAFFEE 

handles any mapping for 
its dummy argument J 

!HPF$ DISTRIBUTE J * ONTO * 

! HPF$ INHERIT J 

END 

Figure 5.2 
Treatment of a transcriptive directive for a dununy argument 
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mapping of every data object through the use of HPF directives to that system. It is 
always possible to describe the mapping of a dummy argument by means of an inherited 
template or its equivalent, but not every possible data mapping can be specified by use 
of a natural template. See Section 5.4 for further discussion of natural and inherited 

templates and of the INHERIT directive. 

For now, suffice it to remark that the INHERIT attribute always implies the default 

distribution DISTRIBUTE * ONTO * ,  so it is convenient and perhaps st.ylistically pleasant 
simply to omit transcriptive DISTRIBUTE directives such as 

!HPF$ DISTRIBUTE J * ONTO * 

and use INHERIT by itself to indicate transcriptive acceptance of any data mapping: 

SUBROUTINE JAFFEE (J) 

REAL J ( 100, 1 00 ) 

! HPF$ INHERIT J ! Implies DISTRIBUTE J * ONTO * 

Figure 5.3 shows one more set of five subroutines: ARAGONES, NORTH, SIEGEL, and 
TORRES each call RICKARD. Now subroutine RICKARD prefers to receive its argument R 
with (BLOCK, BLOCK) distribution and furthermore asserts that the caller will provide 
an actual argument that is so distributed. Therefore RICKARD contains a DISTRIBUTE 
directive for its dummy argument that has an asterisk-meaning that no remapping will 

be required-followed by a distribution format list. This is called a descriptive directive: 
it describes the mapping of the dummy argument and claims that no remapping of the 

actual will be required to satisfy this description. (The intent is that if the argument is 

passed by reference, no movement of the data will be necessary at run time. All this is 

under the assumption that the language processor has in fact observed all other directives. 

While a conforming HPF language processor is not required to obey mapping directives, it 

should handle descriptive directives with the understanding that their implied assertions 

are relative to this assumption.) 
Subroutine ARAGONES has a local array A that it declares to be (*, CYCLIC) . When 

it passes array A to RICKARD, the mapping of A does not satisfy the description for the 

dummy R. This call is nonconforming and the behavior of the program is not specified 

by HPF. 
Subroutine NORTH has a local array N that it declares to be (BLOCK. BLOCK) . When 

it passes array N to RICKARD, nothing needs to be done; the mapping of N satisfies the 

description for the dummy R. 
Subroutine SIEGEL, like ARAGONES, has a local array that it declares to be (* , CYCLIC) . 

But SIEGEL also contains a Fortran 90 interface block describing RICKARD. When it 
passes array S to RICKARD, the data must be implicitly remapped to the (BLOCK, BLOCK) 
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SUBROUTINE ARAGONES 

REAL A(100,100) 

!HPF$ DISTRIBUTE A(*,CYCLIC) 

CALL RICKARD(A) 

END 

nonconforming call 

SUBROUTINE SIEGEL 

REAL S(100,100) 

!HPF$ DISTRIBUTE S(*,CYCLIC) 

INTERFACE 

SUBROUTINE RICKARD(R) 

REAL R(100,tOO) 

SUBROUTINE NORTH 

REAL N(100, 100) 

!HPF$ DISTRIBUTE N(BLOCK,BLOCK) 

CALL RICKARD(N) 

END 

no remapping required 

SUBROUTINE TORRES 

REAL T(100,100) 

r 

!HPF$ DISTRIBUTE T(BLOCK,BLOCK) 

INTERFACE 

SUBROUTINE RICKARD(R) 

REAL R(100, 100) 

145 

!HPF$ DISTRIBUTE *R(BLOCK,BLOCK) !HPF$ DISTRIBUTE *R(BLOCK,BLOCK) 

END SUBROUTINE RICKARD END SUBROUTINE RICKARD 

END INTERFACE END INTERFACE 

CALL RICKARD(S ) CALL RICKARD(T) 

END LJ..I...L...U,J-U S END 

I 
implicit remapping 

(known at compile time) 

no remapping required 
(known at compile time) 

L--J....---JR 

SUBROUTINE RICKARD(R) 

REAL R(100, tOO) 

!HPF$ DISTRIBUTE *R(BLOCK,BLOCK» 

END 

Figure 5.3 
Treatment of a descriptive directive for a dummy arglllIlent 
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distribution specified in the interface block. In other words, descriptive directives in an 
interface block must be treated as if they were prescriptive. This is discussed further in 

Section 5.5. 

Subroutine TORRES, like NORTH, has a local array that it declares to be (BLOCK, BLOCK) . 

But TORRES also contains a Fortran 90 interface block describing RICKARD. When it passes 
array T to RICKARD, nothing needs to be done. The information in the interface block 

allows a compiler to confirm at compile time that the mapping of the actual argument 
will satisfy the description of the dummy. 

These examples , while perhaps exhausting , are not exhaustive. Some additional points 
t o observe : 

• It is likely most helpful to an HPF compiler to specify, where possible, not only the 

distribution formats for dummy arguments but the specific processors arrangement (s) 
onto which they are distributed. 
• Conversely , it is best to specify DISTRIBUTE * ONTO * ( or INHERIT) , rather than 

simply *, to ensure that an actual argument will not be remapped. 

• The examples show only arrays of fixed shape ( 100, 100). There is no reason why 
assumed-shape arrays, for example, cannot be specified. 

• It is permitted to use an ALIGN directive instead of a DISTRIBUTE directive on a 
dummy argument; ALIGN directives have both prescriptive and descriptive forms (but 

not transcriptive). 

As an illustration of some of these points, consider this code: 

SUBROUTINE MELVIN (AXOLOTL.POIUYT) 

REAL AXOLOTL(:.:),POIUYT(:.:) 

!HPF$ IIHERIT, DISTRIBUTE *(BLOCK.BLOCK) AXOLOTL 

!HPF$ ALIGN POIUYT (:.:) WITH *AXOLOTL(:,:) 

The two arguments are assumed-shape arrays. The HPF directives convey some inter­

esting information about them: 

• The INHERIT attribute for AXOLOTL implies the default distribution DISTRIBUTE * 

ONTO *. Part of this default is then explicitly overridden, so the resulting specification 

is DISTRIBUTE *(BLOCK, BLOCK) ONTO *. Therefore the actual argument for AXOLOTL is 

never remapped. 
• It is asserted that the template of the actual argument for AXOLOTL will already be 

distributed (BLOCK, BLOCK) . 
• It is asserted that the actual argument for POIUYT will a lready be aligned with 

AXOLOTL; this actual also should not be remapped . 
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• It is asserted that AXOLOTL and POIUYT will have the same shape (though they may 

have a different shared shape on each entry to MELVIN) . (Note that the alternative 

!HPF$ ALIGN POIUYT(I,J) WITH *AXOLOTL(I,J) 

would allow the possibility that POIUYT not have the same shape as AXOLOTL-it might 

be smaller along any or all dimensions-but still be aligned with the "upper left corner" 

of AXOLOTL. 

5.2 DISTRIBUTE Directives and Dummy Arguments 

The syntax for the DISTRIBUTE directive given in Section 4.4 omitted certain options 
relevant only to dummy arguments. The complete syntax for these options is explained 

here. Note that the options related to dummy arguments may be used only in DISTRIBUTE 

directives, not in REDISTRIBUTE directives. 

The form of a distribute-directive (H303) is: 

DISTRIBUTE distributee  dist-directive-stuff 

DISTRIBUTE dist-attribute-stuff :: distributee-list 

(Note that the second form is a special case of a combined-directive (H30 1).) 
The form of dist-directive-stufJ (H305) is one of 

dist-format-clause 

dist-format-clause dist-onto-clause 

The form of dist-attribute-stufJ (H306) is one of: 

dist-form at-clause 

dist-format-clause dist-onto-clause 

dist-onto-clause 

The form of a dist-format-clause (H308) is: 

( dist-format-list ) 

* ( dist-format-list 

* 

These forms are prescriptive, descriptive, and transcriptive, respectively; the last two 

may be used only for dummy arguments. 

A dist-format (H309) is one of: 
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BLOCK [ ( int-expr ) 1 
CYCLIC [ ( int-expr ) 1 
* 

An asterisk as a d2st-format indicates on-processor distribution. 

The form of a dist-onto-clause (H310) is: 

ONTO dist-target 

where the dist-target (H311) is one of: 

processors-name 

* processors-name 
* 

Chapter 5 

where processors-nam e is defined by a PROCESSORS directive . These forms are prescrip­
tive, descriptive, and transcriptive, respectively; the last two may be used only for dummy 
arguments. 

Rules and restrictions: 

1. If either the dist-format-clause or the dist-target in a DISTRI BUTE directive begins 

with "*" then every distributee must be a dummy argument. 

2. Neither the dist-format-clause nor the dist-target in a REDISTRIBUTE directive may 
begin with "*" .  

3. If an ONTO clause is present and mentions a processors-name, it must. name a proces­

sors arrangement declared in a PROCESSORS directive (see Section 4.8). 

4. The other rules given in Section 4.4 also apply. 

5.3 ALIGN Directives and Dummy Arguments 

The syntax for the ALIGN directive given in Section 4 .. 5 omitted certain options relevant 

only to dummy arguments. The complete syntax for these options is explained here. Note 
that the options related to dummy arguments may be used only in ALIGN directives, not 

in REALIGN directives . 
The form of an align-with-clause (H319) is: 

WITH align-spec 

where the form of an align-spec (H320) is one of: 

align-target [ ( align-subscript-list ) 1 
* align- target [ ( align-subscript-list ) 
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These forms are prescriptive and descriptive respectively; the descriptive form may be 

used only for dummy arguments. (To get the effect of a transcriptive ALIGN specification, 

simply use INHERIT-see Section 5.4.) 

Rules and restrictions: 

1. If the align-spec in an ALIGtl directive begins with "*" then every aligna must be a 

dummy argument . 
2. The align-spec in a REALIGN may not begin with "*". 

3. The other rules given in Section 4.5 also apply. 

5.4 INHERIT Directive 

The INHERIT attribute specifies that the template for a dummy argument should be a 

copy of the template of the corresponding actual argument. This template may not have 

the same size and shape as the dummy argument; the dummy argument is aligned to 

the template copy in the same way that the actual argument is aligned to its original 

template . 
The form of an inherit-directive (H337) is: 

INHERIT dummy-argument-name-list 

The INHERIT directive causes the named subprogram dummy arguments to have the 

INHERIT attribute. 

Rules and restrictions: 

1. Only dummy arguments may have the INHERIT attribute. 

2. An object may not have both the INHERIT attribute and the ALIGN attribute. 

3. The INHERIT directive may appear only in a specification-part of a scop ing unit . 

The INHERIT attribute specifies that the template for a dummy argument should be 

inherited , by making a copy of the temp late of the actual argument. Moreover, the 

INHERIT attribute implies a default distribution of DISTRIBUTE * OITO *. Note that 

this default distribution is not part of Subset HPF; if a program uses INHERIT, it must 
override the default distribution with an explicit mapping directive in order to conform to 

Subset HPF. If an explicit mapp ing directive appears for the dummy argument, thereby 

overriding the default distribution , then the actual argument must be a whole array or 
a regular array section; it may not be an expression of any other form. 

If none of the attributes INHERIT, AL IGN, and D I STRIBUTE is specified explicitly for 

a dummy argument, then the template of the dummy argument has the same shape as 
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the dummy itself and the dummy argument is aligned to its templ ate by the identity 

mapping . 

An INHERIT directive may be combined with other direct ives as p a rt of a combined­

directive (H30 1). 
Consider the following example: 

REAL DOUGH(100 ) 

!RPF$ DISTRIBUTE DOUGH ( BLOCK( 1 0 )  

CALL PROBATE ( DOUGH (7:23:2 ) 

SUBROUTINE PROBATE ( BREAD) 

REAL BREAD(9 ) 

! HPF$ INHERIT BREAD 

The template of BREAD (a copy of the template for DOUGH) has shape [100]. Element 
BREAD ( I )  is aligned with element 5 + 2*1 of the inherited template. Since BREAD does 

not appear in a prescriptive DISTRIBUTE directive, the new template is not remapped 
and therefore has a BLOCK (10) distribution . Thus BREAD (1 ) and BREAD (2 ) reside on 

the first abstract processor (of at least ten), BREAD (3:7) resides on the second abstract 
processor, and BREAD (8 : 9 )  resides on the third abstract processor. 

5.5 Rules for Explicit Interfaces 

If, in a caller , there is an explicit interface for the called subprogram and that interface 

conta ins mapping direct ives (whether prescriptive or descriptive) for the dummy argu­
ment in question, the actual argument will be remapped if necessary to conform to the 
directives in the explicit interface . The templ ate of the dummy will then satisfy any 

constra ints imposed by the declared interface. 
The caller is re quired to treat descriptive directives in an explicit interface as if they 

were prescriptive so th at the directives in the interface may be an ex a ct textu al copy of 
the directives appe aring in the subprogram. If the caller enforces descriptive direct ives 
as if they were prescriptive, then the descriptive directives in the called routine will in 

fact be correct descriptions . 

There are two subtle points to be remarked upon. 

1. The term "explicit interface" is used here in the Fortran 90 sense . An interface block 

is not the only way to specify an expl icit interface; for example, module procedures and 

intern al procedures also are considered to have explicit interfaces. 
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2. If there is an expl icit interface , the remapping rule stated above applies even if there are 

no explicit HPF directives asso ciated with the explicit i nterface . Where the programmer 

has not specified directives explicitly, the comp iler is required to supply suit able defaults , 
and to do so in a consistent manner so that the same defau lted specifications are provided 
for a procedure and for any explicit interface for that procedure . 

If there is no expl icit inter fa ce, then actual arguments that are whole arrays or array 

sections are not remapped before the call; the values o f  other expressio ns may be mapped 

in any m anner at the discretion of the langu age pro cesso r. (It follows that an HPF 

program is nonconforming if all the following hold: 

l. Some procedure P is  cal led from some scoping unit s. 
2. P has a descriptive declaration for a dummy. 

3. The corresponding actu al is not a whole array or array section . 
4. S has no explici t interface for P. 

The reasonin g  is th at the descriptive declaration cannot provably describe the mapping 

of the actual argument, as th at mapping depends on the langu age pro cessor .) 

5.6 Descriptive DISTRIBUTE Directives 

In or der to specify expl icitly the distribution of a dummy argument, whether prescrip­

tively or des cript ively, the tem plate that is subject to distribution must be determine d. 

A dummy argument does not have the same template as the corresp onding actual argu­

ment (this is why remappings of dummies by a subroutine or function have no effect on 

the a ctual arg uments as v iewe d  by the caller) . Its template is determined in one of three 

w ays: 

1. If the dummy argument appears explicitly as an alignee i n  an ALIGN directive , its 
templ ate is specified by the align-target. 

2. If the dummy argument is not explic itly aligned and does not have the INHERIT 

attribute , then it has a brand-new , fresh ly created template th at has the same shape an d 

bounds as the dummy argument; this is called the natural template for the dummy. I n  

this c ase the dummy i s  ultimately aligned with itself . 
3. If the dummy argument is not exp l icitly aligned an d does have the INHERIT attribute , 

then the template is "inherited" from the actual argument as follows: 

• If the actual argument is a who le ar ray, the template of the dummy is a copy of 

the template with which the actual argument is ult ima tely al igned . 
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• If the actual argument is a regular array section of array A, then the template of 
the dummy is a copy of the template with which A is ultimately aligned. 

• If the actual argument is any other expression, a freshly created template is used, the 

shape and distribution of which may be chosen arbitrarily by the l anguage processor 
(and therefore the programmer cannot know anything a priori about its distribution). 

Then we say that the dummy has an inherited template rather than a natural template .  

Consider the following example: 

LOGICAL FRUG(128). TWISTl128) 

!HPF$ PROCESSORS DANCE_FLOOR(16) 

!HPF$ DISTRIBUTE (BLOCK) OITO DAICE_FLOOR ;; FRUG. TWIST 
CALL TERPSICHORE(FRUG(1:40:3). TWIST(1:40:3» 

The two array sections FRUG (1 : 40 ; 3) and TWIST(1: 40: 3) are mapped onto abstract 
processors in the same manner: 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 25 

10 34 

19 

4 28 

13 37 

22 

7 31 

16 40 

However , the subroutine TERPSICHORE will view them in different ways because it 

inherits t.he t.emplate for the second dummy but not the first: 

SUBROUTINE TERPSICHORE(FOXTROT. TANGO) 

LOGICAL FOXTROT(:). TANGO(:) 

!HPF$ INHERIT TANGO 

Therefore the template of TANGO is a copy of the 128 element template of the whole array 

TWIST. The template is mapped like this: 
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 9 17 26 33 41 49 57 65 73 81 89 97 105 113 121 

2 10 18 26 34 42 50 58 66 74 82 90 98 106 114 122 

3 11 19 27 35 43 51 59 67 75 83 91 99 107 115 123 

4 12 20 28 36 44 52 60 68 76 84 92 100 108 116 124 

5 13 21 29 37 45 53 61 69 77 85 93 101 109 117 125 

6 14 22 30 38 46 54 62 70 78 86 94 102 110 118 126 

7 15 23 31 39 47 55 63 71 79 87 95 103 111 119 127 

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 

TUGO(1) is aligned with element 3*1-2 of the templ ate . But the template of FOXTROT 

has the same size 14 as FOXTROT itself. The actual argument, FRUG (1: 40: 3) is mapped 
to the 16 processors in this manner: 

Abstract Elements 

processor of FRUG 

1 1,2,3 

2 4, 5, 6 

3 7, 8 

4 9, 10, 11 

5 12, 13, 14 

6-16 none 

It would seem reasonable to understand the mapping of the templ ate of FOXTROT to 

coincide in like manner with the layout of the array section: 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 9 

4 12 

7 

2 10 

5 13 

8 

3 

6 14 
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but we shall see that this cannot properly be described in HPF. Within subroutine 
TERPSICHORE it would be correct to make the descriptive assertion 

!HPF$ DISTRIBUTE TANGO * (BLOCK) 

but it would not be correct to declare 

!HPF$ DISTRIBUTE FOXTROT * (BLOCK) ! *** Nonconforming 

Each of these asserts that the template of the specified dummy argument is alread y 

distributed BLOCK on entry to the subroutine. The shape of the template for TANGO 

is [128], inherited (copied) from the array TWIST, whose section was passed as the 

corresponding actual argument, and that template does indeed have a BLOCK distribution. 

But the shape of the template for FOXTROT is [14]; the layout of the elements of the 
actual argument FRUG(1:40:3) (3 on the first processor, 3 on the second processor, 2 

on the third processor, 3 on the fourth processor, ... ) cann ot pr operly be described as a 

BLOCK distribution of a length-14 template, so the DISTRIBUTE declaration for FOXTROT 
shown above would indeed be erroneous. 

On the other hand, the layout of FRUG( 1 :40: 3) can be specified in terms of an align­

ment to a length- 1 28 template which , can be described by an explicit TEMPLATE declara­

tion (see Section 4.9), so the directives 

!HPF$ PROCESSORS DANCE_FLOOR (16) 
!HPF$ TEMPLATE, DISTRIBUTE(BLOCK) ONTO DANCE_FLOOR 

!HPF$ ALIGN FOXTROT(J) WITH *GURF(3*J-2) 
GURF (128) 

could be correctly inclu ded in TERPSICHORE to describe the layout of FOXTROT on entry 

to the subroutine without using an inherited template. 
Des cripti ve directives allow the programmer to make claims about the pre-existing 

distribution of a dummy based on knowledge of the mapping of the actual argument. 

But what claims may the programmer correctly make? 

If the dummy argument has an inher ited template , then the subprogram may contain 
directi ves corresponding to the directives describing the actual argument. Sometimes it is 

necessary, as an alternative, to introduce an explicit named template (using a TEMPLATE 

directive) rather than inheriting a template; an exam ple of this (GURF) appears above. 

If the dummy argument has a natural template (no INHERIT attribute ) then things 

are more complicated. In cer tain situations the programmer is justified in inferring a 

pre-existing distribution for the natural template from the distribution of the actual's 

template, that is, the template that would have been inherited if the INHERIT attribute 

had been specified. In all these situations, the actual argument must be a whole array or 
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array section, and the template of the actual must be coextensive with the array along 

any axes having a distribut ion format other than "*." 

If the actual argument is a whole array, then the pre-exist ing distribution of the natural 

template of the dummy is identical to that of the actual argument. 

If the actual argument is an array section , then , from each section-subscript and the 

distribution forma t for the corresponding axis of the array being subscripted, one con­

structs an axis distribution format for the corresponding axis of the natural template : 

• If the section-subscript is scalar and the array axis is collapsed (as by an ALIGN direc­

tive) then no entry should appear in the distribution for the natural template. 

• If the section-subscript is a subscript-triplet and the array axis is collapsed (as by an 
ALIGN d irect ive ) , then * should appear in the distribution for the natural template. 

• If the section-subscript is scalar and the array axis corresponds to an actual tem­

plate axis distributed *, then no entry should appear in the distribution for the natural 

template . 
• If the section-subscript is a subscript-triplet and the array axis corresponds to an 

actual template axis distributed *, then * should appear in the distribution for the 

natural template . 
• If the section-subscript is a subscript-triplet I: u: s and the array axis corresponds to 

an actual template axis distributed BLOCK(n ) (which might have been spec ified as simply 

BLOCK , but there will be some n that describes the resulting distribution) and LB is the 
lower bound for that axis ofthe array, then BLOCK( n/s ) should appear in the distribution 
for the natural temp late , provided that s divides n evenly and that 1- LB < s. 

• If the section-subscript is a subscript-triplet I: u: s and the array axis corresponds to an 

actual template axis distribute d CYCLIC(n) (which might have been specified as simply 

CYCLIC, in which case n = 1) and LB is the lower bound for that axis of the array, then 

CYCLIC(n/s) should appear in the distribution for the natural tempiate , provided that s 

divides n evenl y an d that 1- LB < s. 

If the situation of interest is not described by the cases listed above, no assertion about 

the distribution of the natural template of a dummy is HPF-conforming . 

Here is a typical example of the use of this feature. The main program has a two­

dimensional array TROGGS, which is to be processed by a subroutine one column at a 

time. (Perhaps processing the entire array at once would require proh ibitive amounts of 

temporary spa ce . ) Each column is to be distributed across many processors. 

REAL TROGGS(1024,473) 
!HPF$ DISTRIBUTE TROGGS(BLOCK, *) 

DO J = 1, 473 
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CALL WILD_THING(TROGGS(: ,J» 
END DO 

Chapter 5 

Each column of TROGGS has a BLOCK distribution . The rules listed above justify the 
programmer in saying so: 

SUBROUTINE WILD_THING(GROOVY) 

REAL GROOVY ( : ) 

!HPF$ D ISTRIBUTE GROOVY *(BLOCK) ONTO * 

Consider now the ALIGN directive. The presence or absence of an asterisk at the start 
of an align-spec has the same meaning as in a dist-format-clause: it specifies whether the 
ALIGN directive is descriptive or prescriptive, respectively. 

If an align-spec that does not begin with * is applied to a dummy argument, the 
meaning is that the dummy argument will be forced to have the specified alignment 
on entry to the subprogram (which may require temporarily remapping the data of the 

actual argument or a copy thereof ) . 
Note that a dummy argument may also be used as an align-target. 

SUBROUTINE NICHOLAS(TSAR,CZAR) 

REAL, DIMENSION(1918) : :  TSAR,CZAR 

!HPF$ INHERIT :: TSAR 

!HPF$ ALIGN WITH TSAR:: CZAR 

In this example the first dummy argument, TSAR, is allowed to remain aligned with the 

corresponding actual argument, while the second dummy argument, CZAR, is forced to be 

aligned with the first dummy argument . If the two actual arguments are already aligned , 
no remapping of the data will be required at run time; but the subprogram will operate 
correctly even if the actual arguments are not already aligned , at the cost of remapp ing 

the data for the second dummy argument at run time. 
If the align-spec begins with "*" , then the altgnee must be a dummy argument and the 

directive must be ALIGN and not REALIGN. The "*" indicates that the ALIGN directive 

constitutes a guarantee on the part of the programmer that, on entry to t.he subprogram , 
the indicated alignment will already be satisfied by the dummy argument, without any 

action to remap it required at run time . For example: 

SUBROUTINE GRUNGE(PLUNGE, SPONGE) 

REAL, DIMENSION(1000) : :  PLUNGE, SPONGE 

!HPF$ ALIGN PLUNGE WITH *SPONGE 
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This asserts th at , for every J in the range 1 :  1000 , on entry to subroutine GRUNGE , t he 

directives in the program have specified that PLUNGE ( J )  is currently mapped to the same 
abstract  pro cessor as SPONGE ( J )  . (The intent is  that if the language processor has in fact 

honored the direct ives , t hen no interprocessor communication will be required to achieve 

the specified alignment . )  

The alignment of a general expression is u p  t o  t he language processor and therefore 

un predict ab le by the programmer ; but the alignment of whole arrays an d array sections 

is predictable . In the code fr agment 

REAL FIJI (5000 ) , SQUEEGEE ( 2000 ) 

! HPF$ ALI GN SQUEEGEE (K ) WITH FIJI ( 2*K )  
CALL GRUNGE (FI J I ( 2002 : 4000 : 2 ) , SQUEEGEE ( 100 1 : »  

it is true that every element of t he array sect ion SQUEEGEE ( 100 1 : ) is aligned with the 

corresponding element of the array section F I J I ( 2002 : 4000 : 2 ) , so the claim made in 

subroutine GRUNGE is satisfie d by this particular cal l .  

I t  i s  not permitted t o  say simply " AL IGN WITH *" ; an a lign-t arge t  must follow t he 

asterisk . (Th e proper way to say "ac cept any al ignment" is INHERIT . ) 
If a dummy argument has no explicit ALI GN or DISTRIBUTE attribute ,  t hen t he compiler 

provi des an implicit alignment and distribution specification , one that could have been 

described explicitly without any "assertion asterisks" . 

5.7 Examples of D ISTRIBUTE Directives for D ummy Arguments 

A DI STRIBUTE direct ive for a dummy argument may have a dist-format-list and an ONTO 

clause , and each one m ay be prescriptive , descript ive ,  transcr iptive , or omitte d .  The 

follo wing examples of DISTRIBUTE d irectives for dummy arguments illustrate many of 

the possible combinations : 

Example 5 . 1  Prescriptive format , prescr iptive pro cessors arrangement : 

! HPF$ DISTRIBUTE URAN IA ( CYCL I C )  ONTO GALILEO 

The language pro cessor should do whatever it t akes to c ause URANIA to h ave a CYCLIC 

dist ributio n  on t he pro cessor arrangement GALILEO . 0 

Example 5 . 2  Transcriptive format , prescriptive processors arrangement : 

! HPF$ D I STRIBUTE POLYHYMNIA '" ONTO ELVI S  
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The language processor should do whatever it takes to cause POLYHYMN IA to be dis­
tributed onto the processor arrangement ELVIS, using whatever distribution format it 
currently has (which might be on some other processor arrangement) . (You can 't say 
this in Subset HPF . )  0 

Example 5 . 3  Descriptive format , prescriptive processors arrangement : 

! HPF$ DISTRIBUTE THALIA * ( CYCLIC )  ONTO FLIP 

The language processor should do whatever it  takes to cause THALI A  to have a CYCLIC 

distribution on the processor arrangement FL I P ;  THAL IA already has a cyclic distribution , 

though it might be on some other processor arrangement . 0 

Example 5 . 4  Prescriptive format , descriptive processors arrangement : 

! HPF$ DISTRIBUTE CALLIOPE ( CYCLIC ) ONTO *HOMER 

The language processor should do whatever it takes to cause CALL IOPE to have a CYCLIC 

distribution on the processor arrangement HOMER ; CALLI OPE i s  already distributed onto 
HOMER, though it might be with some other distribution format . 0 

Example 5 . 5  Transcriptive format , descriptive processors arrangement : 

! HPF$ DISTRIBUTE MELPOMENE * ONTO *EURIPIDES 

MELPOMENE is asserted to already be distributed onto EURIPIDES; use whatever distribu­

tion format the actual argument had so, if possible , no data movement should occur . 

(You can 't say this in Subset HPF . )  0 

Example 5 . 6  Descriptive format , descriptive processors arrangement : 

! HPF$ D I STRIBUTE CLIO * ( CYCLIC ) OITO *HERODOTUS 

CLIO is asserted to already be distributed CYCLIC onto HERODOTUS so , if possible , no data 
movement should occur . 0 

Example 5 . 7  Prescriptive format ,  transcriptive processors arrangement :  

! HPF$ DISTRI BUTE EUTERPE (CYCLI C )  ONTO * 

The language processor should do whatever it takes to cause EUTERPE to have a CYCL I C  

distribution onto whatever processor arrangement the actual was distributed onto .  (You 

can 't  say this in Subset HPF . )  0 
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Example 5 . 8  Transcriptive format ,  transcriptive processors arrangement : 

! HPF$ DISTRIBUTE ERATO * ONTO * 

The mapping of ERATO should not be changed from that of the actual argument . (You 
can 't say this in Subset HPF.)  You 're probably better off jus t  saying 

! HPF$ INHERIT ERATO 

which implies DISTRIBUTE ERATO * ONTO * as the default distribution . 0 

Example 5 . 9  Descriptive format , transcript ive pro cessors arrangement : 

! HPF$ D I STRIBUTE ARTHUR_MURRAY * (CYCLIC) ONTO * 

ARTHUR-HURRAY is asserted to already be distributed CYCLIC onto whatever pro cessor 

arrangement the a ctual a rgument was distributed onto , and no dat a movement should 

occur . (You can ' t  say this in Subset HPF . )  0 

Please note that  DISTRIBUTE ERATO * ONTO * does not mean t he same thing as 

! HPF$ DISTRIBUTE ERATO * ( *) ONTO * 

This latter means: ERATO is asserted to already be distributed * (that is ,  on-processor ) 

onto whatever pro cessor arrangement the a ctu a l  was distributed onto . Note th at the 

processo r arrangement is necessarily sc alar in this case .  

One m ay omit either the dist-format- clause or the dist-target-clause for a dummy ar­

gument . If s uch a c lause is o mitted and the dummy argument has the INHERIT attri bute , 

then the compiler must handle the directive as if * or ONTO * had been specified explic­

itly. If such a clause is omitted and the dummy does not have the INHERIT attribute , 

then the compiler may choose the distribution format or a target processor arrangement 

arbitrarily. 

Example 5 . 1 0  Descriptive format , defaulted p rocessors arrangement : 

! HPF$ D I STRIBUTE WHEEL_OF_FORTUNE * (CYCLIC) 

WHEELJlF -FORTUNE is asserted to already be CYCLIC. As long as it is kept CYCLIC, it m ay 

be remapped it onto some other processor arrangement , but there is no reason to . 0 

Example 5 . 1 1  Defaulted format , descript ive pro cessors arrangement : 

! HPF$ D I STRIBUTE ONTO *TV : :  DAVID_LETTERMAN 
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DAVID..LETTERMAN is asserted to already be distributed on TV in some fashion . The 
distribution format may be changed as long as DAVID..LETTERMAN is kept on TV . (Note 

that this declaration must be made in attributed form ; the statement form 

! HPF$ D I STRIBUTE DAVID_LETTERMAI OITO *TV ! * ** Nonc onf orming 

does not conform to the syntax for a DI STRIBUTE directive . )  0 

5 .8 Explicit Dynamic Remapping of D ummy Arguments 

The rules on the interaction of the REALIGN and REDISTRIBUTE directives with a subpro­
gram argument interface are : 

1 .  A dummy argument may be declared DYNAMIC .  However , it is subject to the general 
restrictions concerning the use of the name of an array to stand for its associated template . 
2. If an array or any section thereof is accessible by two or more paths , it is not HPF­
conforming to remap it through any of those paths . For example , if an array is passed 

as an actual argument , it is forbidden to realign that array, or to redistribute an array 

or template to which it was aligned at the time of the call , until the subprogram has 
returned from the cal l .  This prevents nasty ali asing problems . An example follows : 

MODULE FOO 

REAL A ( 1 0 , 10 )  

! HPF$ DYNAMIC  A 

END 

PROGRAM MA IN 

USE FOO 

CALL SUB (A ( 1 : 5 , 3 : 9 ) )  

END 

SUBROUTINE SUB ( B )  

USE FOO 

REAL B ( : , : ) 

! HPF$ RED ISTRI BUTE A 

END 

* ** Nonc onf orming 
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Situations such as this are forbidden , for the same reasons that an assignment to  A at the 

statement marked "Nonconforming" would also be forbidden. In general , in a n y  situation 

where assignment to a variable would  be nonconforming by reason of aliasing, remapping 
of that variable by an explicit REALIGN or RED I STRIBUTE directive is also forbidden . 

An overriding principle is that any mapping or remapping of arguments is not visible 

to the caller . This is true whether such remapping is implicit ( in order to conform to 

prescriptive directives , which may themselves be explicit or implicit ) or explicit (specified 

by REAL I GN or RED I STRIBUTE directives) . When the subprogram returns and the caller 

resumes execution , all objects accessible to the caller after the call are mapped exact ly as 

they were before the call . It is not possib le for a subprogram to change the mapping of any 
object in a manner visib le to its caller , not even by means of REALIGN and RED I STRIBUTE . 

The implicit remapping of dummy arguments can be implemented in several ways.  

One is for the subprogram to make a copy of the argument data and remap the copy for 

use within the subprogram . Another is to remap the actual argument on entry to the 

subprogram and later to perform a second remapping on exit from the subprogram to 
restore the data  to its original layout . 

5.9 Argument Passing and Sequence Associat ion 

This section is primarily about mak ing old codes work ,  but it is also important for 

programmers writing new codes to understand .  In the previous discussion there was 

an assumption that the dummy argument and the actual argument matched in size 

and shape . From its beginnings Fortran has allowed considerable flexibility across the 

boundaries of a call . The basic rule is summarized in this statement from the standard :  

Th e rank a n d  shape of the actual argument need not agree with the rank 

and shape of the dummy argument,  

- Fortran Standard ( 1 2.4 . 1 .4)  

This works in Fortran programs because of sequence a ssocia tion: the order of array 

elements that Fortran requires when an array, array expression , or array element is asso­

ciated with a dummy array argument . As with storage association , sequence association 

is a natural concept only in systems with a linearly addressed memory . 

As an aid to porting FORTRA N 77 codes , HPF allows codes that rely on sequence 

association to be valid HPF ;  however , each argument must be checked and the program­

mer may have to insert sequence directives (Section 4 . 1 0 .2 )  to instruct the HPF compiler 

to support the l inear sequencing of memory. 
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Actual argument Dummy argument requirements 
Scalar name The dummy argument must be a scalar . 
Scalar expression or The dummy argument must be a scalar. 

constant 

Array element If dummy argument is an array both arrays must 

be declared sequential . 
Array section The dummy argument must match in size and 

shape or both arrays must be declared 
sequential . 

Array name The dummy argument must match in size and 
shape or both arrays must be declared 
sequential . 

Array expression The dummy argument must match in size and 

shape .  If this is not true , the actual argument 

expression must first be stored in a sequential 

array and the array name can be passed .  

Assumed-size array The dummy argument must be declared sequential . 

Character variable The explicit-length of the dummy argument must 

match the length of the actual argument , in 
addition to matching shape .  Otherwise both the 
actual and the dummy must be declared 

sequential . 

Table 5 . 1  
Matching procedure arguments 

5 . 9 . 1 Argument Requirements 

In order to give a direct way to check all of the kinds of arguments for sequence associa­

tion , the different possibilities for actual arguments are l isted in Table 5 . 1 .  
There are some very common FORTRAN 7 7  cases that must b e  examined carefully. 

The practice of passing a portion of an array (e.g . , a column) by passing an array element 

which is treated as the starting address of a dummy array argument is incompatible with 
distributed data. Fortran 90 provides the array section mechanism to accomplish this 

same thing.  When the shape of the array section conforms to the shape declared by the 

dummy argument , then data mapping is still permitted .  

Another special case to note is an array expression as an actual argument . HPF 
provides no mechanism for the programmer to specify the mapping of an expression and 
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also no mechanism to specify that an expression is sequential. In this case ,  the dummy 

argument may not be a sequential array. The programmer will have to create an explicit 

(sequential) temporary to hold the expression value and pass that temporary as the 

argument . 

Assumed size arrays are listed as one of the kinds of argument that require the associ­
ated dummy argument to be sequenti al . Assumed size arrays are themselves sequent ial 
(see Sect ion 4. 10 .2) . It is easy to confuse assumed-size arrays and assumed shape arrays, 

so we will take a step back to review what they are . 

Assumed shape dummy arguments are of the form D I MENS I ON A ( : , : , : ) . The rank of 

the actual argument is reflected exactly in the associated dummy argument . Assumed 

size arguments are of the form DIMENSION A ( 20 , 10 , * ) ; they are a different story. By 

their definition , storage and sequence associat ion apply to the values of the array. The 

programmer dictates a shape that the dummy argument assumes , regardless of the shape 
of the actual argument . It is only the size of the last dimension that is left unspecified .  
We treat these assumed-size variables as sequential . I f  such a variable i s ,  i n  turn , p assed 
on to another subroutine, the associated dummy must be declared sequential .  

The reader should notice that a single case of an argument that requires sequence 

association and needs a sequential declaration can have a wider impact . If the actual 

argument is in COMMON this will entail finding all instances of the common block to mark 

that component sequential . In the long run , it is much better to correct a problem , such 

as the mismatch in shape ,  wherever possible . 

5. 9 . 2  Sequence Association Examples 

Figure 5 .4  gives some code segments to illustrate sequence association in arguments . The 

two calls to SEQ-ARGS and GOOD ...ARGS look very similar . But on close examination , all of 
the actual arguments in the call to GOOD ...ARGS in subroutine TWO match the shape and size 

of the corresponding dummy arguments exactly. The programmer will have to worry a 

bit about the proper distribution for B because of the section used as an actual , but there 

are no issues related to sequence asso ciation . The call to SEQ -ARGS in subroutine ONE, on 

the other hand ,  illustrates sequence association requirements for every argument . The 

reader will notice that we have inserted a SEQUENCE directive for each actual argument 

and each dummy argument . Let 's just check them one at a time . The first argument 

uses a very common FORTRAN 77 method to pass a column of the array A .  The address 

of the first element of the column is passed . The second and third arguments both 
illustrate cases where the dummy argument is a different rank than the corresponding 

actual arguments . The last argument is another common case where the progr ammer 
passes in an array of one size , but only uses part of the array. In this example , the 

programmer wishes to send in a Fortran 90 array expression D+E, but is required by the 
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SUBROUTINE ONE 

REAL A ( lOO , l OO ) , B ( l OO ) , C ( lO , l O O ) , 0 ( 1 0 0 ) , E ( l O O ) 

REAL TEMP ( lOO ) 

! HPF$ SEQUENCE A ,  B ,  C ,  TEMP 

TEMP = 0 + E 

CALL SEQ_ARGS ( A ( l , I ) , B ( 1 1 : 35 ) , C ,  TEMP ) 

END SUBROUT I NE ONE 

SUBROUTINE SEQ_ARGS ( COL , SQUARE , FLAT , PART ) 

REAL COL ( l OO ) , SQUARE ( 5 , 5 ) ,  FLAT ( l OOO ) , PART ( 20 )  

! HPF$ SEQUENCE COL , SQUARE , FLAT , PART 

END SUBROUTIIE SEQ_ARGS 

SUBROUTINE TlJO 

REAL A ( l O O , l O O ) , B ( lOO ) ,  C ( l O , lOO ) , 0 ( 100 ) , E ( l O O ) 

CALL GOOD_ARGS ( A ( l , I )  , B ( 1 1 : 35 ) , C ,  D+E ) 

END SUBROUTINE TWO 

SUBROUTINE GOOD_ARGS ( SCALAR , X25 , MATCH_C , MATCH_D ) 

REAL X25 ( 2 5 ) , MATCH_C e l O , l OO )  , MATCH_D ( l OO )  

END SUBROUT I NE GOOD_ARGS 

Figure 5.4 
Checking sequence association for arguments 
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CHARACTER ( LEN=44 ) A_LONG_WORD 

! HPF$ SEQUENCE A_LONG_WORD 

A _LONG_WORD= ' Chargoggagoggmanchaugagogg chaubunagungamaugg ' 

CALL WEBSTER ( A_LOIG_WORD ) 

SUBROUTINE WEBSTER ( SHORT_D I CTI ONARY ) 

CHARACTER ( LEN=4 ) SHORT_DI CT I ONARY ( 1 1 )  

! Not e that short _d i ct ionary ( 3 )  i s  ' agog ' 

! HPF$ SEQUENCE SHORT_D ICTI ONARY 

Figure 5.5 
Character sequence association 
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rules to store the value into a temporary location first in order to designate that it is  
sequential . As an alternative to using the SEQUENCE direct ives , the programmer might 

have replaced the call to SEQ ....ARGS with the following call . 

CALL SEQ_ARGS ( A « * , I » , RESHAPE ( B ( 1 1 : 35 ) , ( /5 , 5/ » ,  

RESHAPE ( C , ( / 1 000/ » , TEMP ( 1 : 20 »  

This uses the Fortran 90 RESHAPE intrinsic to pass the exact shapes and s izes required 

to the subroutine. It avoids the use of the S EQUENCE directives on either side of the 

call . While the SEQUENCE directive is certain ly easier to use , and this is not backwards 

comp atible with FO RTRAN 7 7 ,  there may be performance reasons for avoiding the 

SEQUENCE directives . 

F igure 5 . 5  gives an example of the additional sequen ce asso ciation issue for character 
variables . This code segment where the data is treated both as a single long character and 

an array of short characters is legal in both FORTRAN 77 and Fortran 90 .  However in 
HPF , both the actual argument an d dummy argument must be sequential . (By the way, 

"Chargoggagoggmanchaugagoggchaubunagungamaugg" is the original Nipmuc name for 

what is now called "Lake Webster" in Massachusetts . ) 
Figure 5 . 6  shows the case of an assumed-size argument . In subroutine ONE, the declared 

shape of WHAT ...s IZE  may match that of the incoming actual argument in its first two 

d imensions , but the compiler does not know for sure . WHAT .s IZE is sequential . When it 
is p assed on to subrout ine TWO , it doesn't matter how WHO..KIOWS is declared .  It  must be 
declared sequential. If the declaration in subrout ine ONE were WHAT...s I ZE ( : , : , : ) instead 

then no directive wou ld be required in subrout ine TWO . 
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! HPF$ 

SUBROUTINE ONE (WHAT_SIZE ) 

REAL WHAT_SIZE ( 1 0 . 50 . * ) 

CALL TWO (WHAT_SIZE)  

END SUBROUTINE ONE 

SUBROUT INE TWO ( WHO_KNOWS ) 

INTEGER WHO_KNOWS ( 1 0 . 50 . 5 ) 

SEQUENCE WHO_KNOWS 

END SUBROUTINE TWO 

Figure 5 .6  
Assumed size arguments 

5 . 9 . 3  Formal Sequence Association Rules 

Chapter 5 

For completeness , the formal rules about sequence association from the HPF document 
are listed here . 

1 .  When an array element or the name of an assumed-size array is used as an actual 

argument , the associated dummy argument must be a scalar or specified to be a sequential 

array. 
An array-element designator of a nonsequential array must not be associated with a 

dummy array argument . 
2. When an actual argument is an array or array section and the corresponding dummy 
argument differs from the actual argument in shape ,  then the dummy argument must be 
declared sequential and the actual array argument must be sequential . 

3 .  A variable of type character (scalar or array ) is nonsequential if it conforms to the 

requirements of Section 4 . 10 . 2 .  If the length of an explicit-length character dummy 
argument differs from the length of the actual argument , then both the actual and dummy 

arguments must be sequential .  
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6 Data Parallelism 

As explained in Chapter 2, the High Performance Fortran programming model consid­

ers two factors-parallelism and communication. Chapters 4 and 5 describe the data 

mapping mechanisms that determine the communication in a program. This chapter 
looks at some data parallel features of HPF. Other parallel features appear in Chapter 3 
(array assignments) , Chapter 7 (HPF library functions), and Chapter 8 (EXTRINSIC pro­

cedures) . 

6.1 Overview of Data Parallelism 

This chapter describes three features of HPF: the FORALL statement, the PURE attribute , 
and the INDEPENDENT directive. Of these, FORALL and INDEPENDENT are parallel in and 

of themselves. PURE is not parallel by itself, but can be used in conj unction with the 

FORALL statement to increase the generality of that construct. 
The FORALL statement , described in Section 6.2, generalizes the Fortran 90 array as­

signment to handle new shapes of arrays. In the process, the FORALL statement ends 
up looking a bit like a DO loop. (Note, however, that the FORALL statement is not itself 

a loop-it assigns to a block of array elements, but does not iterate over them in any 

specific order . ) The meaning is the same as for array assignments : compute all right­

hand sides before making any assignments. For example, Figure 6.1 shows how a FORALL 
statement can shift elements of the main diagonal of an array along the d iagonal . There 

is also a multi-statement FORALL, in which the array assignment semantics are applied 
to each statement in turn. Figure 6.2 shows this form of the FORALL. As you can see, 
FORALL statements can be nested and can have mask expressions. 

The intent in defining the FORALL is to create a parallel construct with determinate 

semantics. That is, the statement can execute in parallel, and the results are identical 
if it is re-executed with the same data. Identical results will hold even if the number of 
processors or the entire machine architecture changes (up to the differences in machine 

arithmetic , such as floating-point precision, permitted by the Fortran 90 standard). To 
ensure this level of determinacy, the FORALL has a number of constraints. It is important 

to realize that, because of these constraints, the FORALL is not the general "parallel loop" 

that some other langu ages have; in particular , there is no way (and no need) to perform 
explicit synchronization , schedule tasks, or pass messages in a FORALL. 

The FORALL can apply a user-defined function to every element of an array if the func­

tion is PURE, as defined in Section 6.3. Figure 6.3 shows a FORALL applying EQN-DF ..sTATE 
to elements of the arrays V, N, and T to produce array P. This is similar to using For­

tran 90 elemental intrinsics, except that PURE functions can be user-defined. A PURE 
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FORALL (I = 2:5) A(I,I) = A(I-1,I-1) 11 12 13 14 1
5 

[11 12 13 14 1
5 I 21 22 23 24 25 21 11 23 24 25 

31 32 33 34 35 -+ 31 32 22 34 35 41 42 43 44 45 41 42 43 33 4
5 51 52 

5
3 54 55 51 52 53 54 44 

A before A after 

Figure 6.1 
A single-statement FORALL 

FORALL (I = 1:8) 

A(I,I) = SQRT(A(I,I)) 

FORALL (J = 1-3:1+3 , J/=I .AND. J>=1 .AND. J<=8) 

A(1,J) = A(I,I) * A(J,J) 
END FORALL 

END FORALL 1 0 0 0 0 0 0 0 1 2 3 4 0 0 0 0 0 4 0 0 0 0 0 0 2 2 6 8 10 0 0 0 0 0 9 0 0 0 0 0 3 6 3 12 15 18 0 0 0 0 0 16 0 0 0 0 4 8 12 4 20 24 28 0 
-+ 0 0 0 0 25 0 0 0 0 10 15 20 

5 
30 35 40 0 0 0 0 0 36 0 0 0 0 18 24 30 6 42 48 0 0 0 0 0 0 49 0 0 0 0 28 35 42 7 56 0 0 0 0 0 0 0 64 0 0 0 0 40 48 56 8 

A before A after 

Figure 6.2 
A multi-statement FORALL 
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INTERFACE 

PURE REAL FUNCTION EQN_OF_STATE(VOL, MOLES, TEMP) 

REAL VOL, MOLES, TEMP 

END FUNCTION EQN_OF_STATE 
END INTERFACE 

FORALL (I = l:NUM, J = l:NUM) 

P(I,J) = EQN_OF_STATE(V(I,J), N(I,J), T(I,J» 

END FORALL 

Figure 6.3 
A PURE function declaration and use 

!HPF$ INDEPENDENT, NEW (J, Nl) 

DO I = 1, NBLACK 
Nl = IBLACK_PT(I) 
DO J = INITIAL_RED(Nl), LAST_RED(Nl) 

X(Nl) = X(Nl ) + A(J)*X(IRED_PT(J» 
EXD DO 

END DO 

Figure 6.4 
An I1DEPEIDEIT directive 
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function cannot have side effects on global data or on its arguments; thus, it behaves 
l ike a mathematically pure fun ction. HPF puts some rather heavy restrictions on the 
function before it can be declared PURE to ensure that the compiler can check for the 
lack of side effects. Like the constraints on FORALL, these restrict ions ensure determinate 
execution at some cost in generality. 

Sometimes the programmer knows that a loop is parallel in cases where the com­
piler cannot detect the parallelism . HPF introduces the INDEPENDENT directive for just 
such situations. The INDEPENDENT directive is a promise by the user that the results 
of the DO loop will be the same even if its iterations are executed in some other order 
or asynchronously in parallel. Figure 6.4 shows how an INDEPENDENT directive allows 
NBLACK sums to be computed in parallel .  Without the INDEPENDENT directive , the com­
piler woul d  have to assume that some elements of X were referenced as both X (Nl) and 
X (IRED...PT(J) ), forcing the loop to run serially. Note the difference in philosophy from 
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the FORALL statement . The FORALL is a new statement , with a different meaning from the 
similar-looking DO loop. The INDEPENDENT directive is a statement about the behavior 
of the program as it is written. 

6.2 The FORALL Statement 

The FORALL is a generalization of the Fortran 90 array assignment and WHERE statements. 
It provides for more array shapes to be assigned , particularly when nested FORALL state­
ments are used. In addition , when used with PURE functions (see Section 6.3) it provides 
a form of user-defined elemental functions . An HPF-conforming FORALL statement al­
ways has a well-defined meaning; no non determinacy is provided in the construct ,  and 
most of the restrictions to ensure this can be checked by the compiler. 

A FORALL statement is not a loop , nor is it a "parallel loop" as defined in some 
languages. We say this for a very simple reason: the FORALL does not iterate in any 
well-defined order . Parallel loops are often defined to express nondeterminate execution, 
or as a basis for expressing arbitrary parallel computations . The FORALL, when used in 
an HPF -conforming way, cannot do either of those things. 

HPF defines two forms of the FORALL statement-the single-statement FORALL (called 
the forall-stmt (H401) in the grammar ) and the multi-statement FORALL (called the 
forall-construct (H405». We will use the term FORALL statement to refer to both forms . 
Explanations of the few details where they differ will clearly identify either the single­
statement or multi-statement form. Note that the single-statement FORALL is included 
in Subset HPF ,  but the multi-statement FORALL is not. 

6.2.1 Form of the FORALL Statement 

The form of the forall-stmt (H401) is: 

FORALL ( forall-triplet-spec-list [ , scalar-mask-expr] ) forall-assignment 

The form of the forall-construct (H405) is: 

FORALL ( forall-triplet-spec-list [ , scalar-mask-expr] ) 

forall-body-stmt 

[ forall-body-stmt ] 

END FORALL 
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The following rules and restrictions apply to both the forall-stmt and fo rall- construct. 

Rules and restrictions: 

1. Any procedure referenced In the scalar-mask- expr of a FORALL must be PURE, as 

defined in Section 6.3. 
2. The evaluation of any expression in the forall- triplet-spec-list or scal a r- m ask-exp r  

of a FORALL must not affect the result of computing any other expression in the 

fo rall- triplet-spec-list or the scalar- m ask- e xp r. 

3. If a FORALL is nested within a forull-construct (a multi-statement FORALL) , then the 
inner FORALL may not redefine any index-na me used in the outer forall-construct. 

Note that II: FORALL may not be nested within a forall-stmt, (a single-statement 

FORALL). 
4. Each assignment or pointer assignment nested within a FORALL assigns to data objects 

specified by the statement for permitted values of the in dex- name variables. (Note 
that even for deeply nested FORALL statements, an innermost statement is always an 

assignment or pointer assignment .) A single assignment of this type may not cause 
multiple values to be assigned to the same atomic object. (Recall that an atomic 

data object is a Fortran 90 object which has no subobjects.) An HPF-conforming 
program may, however, assign to the same atomic objects in different assignment 
statements. 

The form of a forall-tripl et-spec (H403) is: 

in dex-n a m e  = subscript : su bscript [ : stride 1 

Rules and restrictions: 

1. The index- n a m e  must be a scalar integer variable. 

2. If stride is present, it must not have the value o. 
3. A subscript or strid e in a forall- triple t-spec- list must not contain a reference to any 

index-nam e  in the forall-tripl et-spec-list in which it appears. 

Note that Fortran 90 restricts su bscript (R617) and stri de (R620) to be scalar integers 

as well. 

A forull-assignm ent (H404) is one of: 

assignment-stmt 

p o inte r- assign m e nt-stmt 

A forall-body-stmt (H406) is one of: 
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forall-assignment 

where-stmt 

where-construct 

fomll-stmt 

forall-construct 

Chapter 6 

The following rules apply  to both the fomll-assignment and the fomll-body-stmt. 

Rules and restrictions: 
1. Any procedure referenced in a fomll-assignment or fomll-body-stmt, including one 

referenced by a defined operation or assignment, must be PURE (see Section 6 . 3). 

See Section 6.2.3 for many examples of FORALL syntax . 

6.2.2 Meaning of the FORALL Statement 

A mult i-statement FORALL is interpreted essentially as a series of single-statement FORALL 

statements. We therefore describe the single-statement FORALL's interpretation first, and 
then the complications of the multi-statement form. 

The descriptions below speak of the "index values" of a FORALL statement rather than 
"iterations" or any other term that might suggest an order to the operations. We hope 
this helps the reader break out of the habit of thinking in terms of looping through a 

space, with the corresponding implied serialization. 

Part of the semantics of the FORALL statement depends on the concept of an atomic 

object. Recall that this is a Fortran data object which contains no subobjects . For 

example , an integer variable is an atomic object, but an array of integers is an object 

that is not atomic. 

Interpretation of a Single-statement FORALL A single-statement FORALL is ex­

ecuted in four stages. 

1. Compute the valid set of index values. This is the set of values defined by the forall 

index range(s), not considering the mask expression . If there is more than one index, 

then the valid set is a set of tup les , where each tuple contains a value for each index . The 

range of valid values for each index is computed separately. For the for·all-triplet-spec 

INDEX = lb : ub : step 

let max = rUb-1b±11. If step is missing, it is as if it were present with the value 1. Then 
step 

the set of valid values for INDEX is lb + (k - 1) x step, k = 1,2, . . . , max. The valid set for 
the whole FORALL is the Cartesian p roduct of the active sets for the individual indices. 

If max :::; 0 for some index, the FORALL is not executed. 
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2. Compute the active set of index values. This is the set of index values for which the 
foral/-assignment is actually executed. The active set is constructed by evaluating the 

scalar-mask-expr for each element of the valid set. The mask elements may be calculated 
in any order or perhaps in parallel. The active set of index values is the subset of the 
valid index values for which the scalar-mask-expr evaluates to . TRUE. If there is no mask 
expression, then it is as if it were present with the constant value . TRUE., and so the 

active set equals the valid set. 
3. For each index value tuple in the active set, compute the right-hand side for the body 
of the FORALL; the tuple specifies the values for the index variables . (Note that in a single­

statement FORALL, the body will be either an assignment or a pointer assignment . In 
the case of an assignment statement (including array assignment) , this step is a standard 
expression evaluation. In the case of pointer assignment, it may involve evaluating a 
pointer-valued expression or constructing a p ointer to an object (depending on the type 
of the right-hand side) . ) At the same time, evaluate and save any subexpressions in the 
left-hand side (such as array subscripts ). The evaluations for different index values may 
be done in any order or perhaps in parallel .  
4. For each index value tuple in the active set, assign the right-hand side value computed 
in the previous step to the left-hand side. Depending on the statement type, this may 
be either a normal assignment or a pointer assignment. The left-hand side is determined 

from the saved sub expression values, rather than being computed while assignments are 
in progress . The assignments may be performed in any order or perhaps in parallel. 
(Remember that it is nonconforming for execution of a FORALL assignment to assign 
multiple values to the same memory location.) 

The scope of a FORALL index is the FORALL statement itself. In other words , the value 
of the FORALL index variable becomes undefined after the termination of the FORALL. 

The importance of computing both the right-hand sides and the left-hand subexpres­
sions in step 3 is that it prevents them from being overwritten. Thus, the order of 

assignments cannot affect either the values being assigned or the locations to which they 
are assigned . Similarly, computing the bounds and mask elements first ensures that they 
are not affected by any assignments within the FORALL body. 

Interpretation of a Multi-statement FORALL The multi-statement FORALL is 
concep tually a sequence of single-statement FORALLs. Its interpretation is therefore sim­
ilar, with suitable elaborations for sequences of statements and nesting . 

1. Compute the valid set of index values. This is done precisely as for the single-statement 
FORALL and has the same meaning . 
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2. Compute the active set of index values . This is done precisely as for the single­
statement FORALL and has the same meaning . 

3. Execute the statements in the FORALL body in the order given according to the rules 
below. Effectively, the rules specify that each statement takes effect for all active index 

values before any following statements begin . 

• An assignment or pointer assignment statement is executed as if it were within a 
single-statement FORALL: the right-hand side is computed for all active index values, 
then the computed values are assigned to the left-hand side for all active index values. 
• A FORALL statement modifies the active set of index values; the new active set is 
then used for executing the statements in the inner FORALL body. The process is more 
complicated than simply computing a single range for each of the inner indices and 

then taking a simple Cartesian product, because the ranges for the inner variables can 
depend on outer FORALL index variables. Consider, as an example, this code: 

FORALL (I= 1 : 3.  J=1:3. I > J) 
FORALL(K=1:3. L=l:J. K+L > I) 

A(I.J.K.L) = J*K + L 
END FORALL 

END FORALL 

The (I, J) tuples in the active set for the outer FORALL are: 

{ (2,1), 
(3,1), 
(3,2), } 

For each index value tuple in the outer active set, a new valid set is computed for the 
inner FORALL statement. Each tuple in the new active set includes all the index values 
from the outer tuple as well as values for the index variables newly introduced by the 
inner FORALL. In our example, there are three pairs in the outer active set, so three 
new valid sets of (I,J ,K,L) tuples are computed: 

{ (2,1,1,1), 
{ (3,1,1,1), 
{ (3,2,1,1), 

(2,1,2,1), 
(3,1,2,1), 
(3,2,1,2), 

(2,1,3,1) 
(3,1,3,1) 
(3,2,2,1), 

} 
} 
(3,2,2,2), (3,2,3,1), (3,2,3,2) } 

The union of all the new valid sets, one for each tuple in the outer active set, forms 
the inner valid set of (I,J,K,L) tuples: 
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{ (2,1,1,1), 
(3,1,1,1), 
(3,2,1 , 1) , 

(2,1,2,1), 
(3,1,2,1), 
(3,2,1,2), 

(2,1,3,1) 
(3,1,3,1) 
(3,2,2,1), (3,2,2,2), 
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(3,2,3,1 ) , (3,2,3,2 ) } 
The inner FORALL then computes the inn e r  active set of index tuples by evaluating its 

mask expression for all index values in the inner valid set and discarding index value 

tuples that result in a . FALSE. mask value. In our example, inner active value tuples 

must satisfy K+L > I: 

{ (2, 1 ,2,1), (2,1,3,1) 
(3,1,3,1) 

(3 ,2,2 ,2 ) , (3,2,3,1), (3,2,3,2) } 

Statements in the inner FORALL body are then executed using the inner active set of 

index values. At the end of the inner FORALL, the active set reverts to the outer active 

set. 

• A WHERE statement or construct masks the array assignments in its body. The WHERE 

first evaluates its mask expression for all active index values . The assignments within 

the WHERE branch of the construct (or the single assignment in the one-line WHERE 

statement) are then executed in order using the interpretat ion of arr ay assignments 

above. However, the only array elements assigned are those selected by both the active 

set of index values and the WHERE mask. Finally, the assignments in the ELSEWHERE 

branch are executed (if it is present) . The assignments here are also treated as array 
assignments, but elements are assigned only if they are selected by both the active set 

of index values and by the negation of the WHERE mask. 

6.2.3 Discussion of the FORALL Statement 

The purpose of this section is to give some concrete examples of the FORALL statement 

and suggest how it can be used in practical programs . Before that , however , we digress 

to give a more visual explanation of the meaning of a FORALL. 

Visualizing a FORALL The execution of the FORALL can be visualized by showing 
its p recede n ce graph. Such a graph shows all the computations performed in a FORALL 
and tells when one computation must finish before another one starts . Figure 6.5 shows 

the precedence graph for a small FORALL statement. For comparison, Figure 6.6 shows 
the precedence graph for a DO statement with the same body. 

In a precedence graph, the computations are shown as ellipses. The "Begin" ellipse 
contains the computation of the FORALL active set and the DO loop bounds. There are two 

computations for each assignment statement in the construct body-the right-hand side 
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Figure 6.5 
Precedence graph for a FORALL statement 

FORALL (I = 1:3) 
a(l) = bel) 
e(l) = del) 

EID FORALL 

Chapter 6 

computation and the assignment to the left-hand side. The "End" ellipse does not contain 
any computation; it  simply shows when the construct is complete . If two computations 

may have to be done in order, then there is an arrow from the earlier computation to the 
later one . The variables used in the FORALL in the figure are only for labeling ; the arrows 
do not represent the actual dependences for a computation using only those variables. 
Instead, an arrow between, for example , bel) and a(2) means that the right-hand side 
of the first statement for index value 1 may need to be completed before updating the 
left-hand side of the same statement for index value 2. Arrows from right-hand sides (b 
and d labels) to left-hand sides (a and e) are there because the left-hand update could 
overwrite some data needed to compute the right-hand side. Arrows from left-hand sides 

to right-hand sides are easier to understand; they mean that the assigned value might 

be used in a right-hand side computation. 
The key point to note about Figure 6.5 is that every statement in the body essentially 

has two synchronization points-one after the right-hand side is computed, and one after 
the assignment to the left-hand side. An operation near the end of a FORALL (such as 

the operation e (1») may depend on an operation near the top for any index value. Note 
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Figure 6.6 
Precedence graph for a DO statement 

DO I = 1, 3 

a(I) = b(I) 

e(I) = d(I) 

END DO 

177 

how this differs from the DO loop. There, a dependence goes from the last operation in 

each iteration to the first operation in the next, forming a single continuous chain. The 

effect of this is that every row in the FORALL dependence diagram can be executed in 
parallel, while no operations in the DO can execute in parallel. 

In practice, many of the dependences shown in these diagrams do not actually occur 

for a particular FORALL or DO statement. That is, Figures 6.5 and 6 . 6 are worst-case 
scenarios as far as parallelism is concerned. For example, if the computation in d does 
not use any elements from the array assigned in a, then none of the arrows from the 
second to the third row in the FORALL diagram actually occur . In simple cases (like the 
one we just described), a compiler may be able to detect that some dependences are not 
needed .  Section 6.4.3 shows how the INDEPENDENT directive can make assert ions about 
some DO and FORALL statements. 

The precedence graph for nested FORALL statements is (not surprisingly) a bit more 
complex. Figure 6.7 shows one small example. The key point to notice is the mass 
of dependences between operations in the inner FORALL statement . Every e operation 
potentially depends on every d operation, even those with different I values .  The remarks 
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Figure 6.7 

FORALL (I = 1: 3) 
a(I) = b(I) 

FORALL (J = 1:I) 
e(I,J) = d(I,J) 

END FORALL 
END FORALL 

Precedence graph for nested FORALL statements 
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about dependences not occurring in practice apply doubly here. For example, in the 
statement 

FORALL (I = 1:100) 

FORALL (J = 1:I) 

A(I,J) = A(J,I) * A(I,I) 
END FORALL 

END FORALL 

the worst-case diagram has 25,502,500 dependences between left- and right-hand sides; 
the number that actually occur is 5050. (The triangular index value space eliminates 
dependences between different values of I ,  and the only dependences in the FORALL J 
construct are from J=I to every value of J.) As before, every row in the FORALL precedence 

diagram can be executed in parallel. Although we don't show it , the diagram for a nested 
DO loop is a long chain of operations, snaking its way through the inner loops. 

FORALL Examples Examples 6.1 and 6.2 go through the interpretation of two 
FORALL statements in some detail. The other examples in this section suggest ways 
that the FORALL can be useful, as well as illustr ating some subtleties of the definitions in 

Sections 6.2.1 and 6.2.2. 

Example 6.1 First, we consider the FORALL in Figure 6 .1, reproduced below. 

FORALL (I = 2:5) A(I, I) = !(I-1, I-i) 

It is interpreted as follows: 

1. The bounds are evaluated (trivially) to determine that the valid set of the FORALL is 
{2,3,4,5} .  
2. Since there i s  no mask expression, the active set is the same as the valid set. 
3. The value of A(I-1, I-i) is computed for every index value in the active set . Using 

the values shown in Figure 6.1 produces the values {ll, 22 , 33 , 44} . 
4. The values are assigned to the elements {A(2,2),A(3,3),A(4,4),A(5,5)}. 

Figure 6.1 shows the overall effect of the FORALL statement. 0 

Example 6.2 We next consider the code in Figure 6.2, reproduced below. 

FORALL (I = 1:8) 

A(I, I) = SQRT(A(I.I» 
FORALL (J = 1-3: I+3, J/=I .AND. J>=1 .AND. J<=9) 

A(I, J) = A(I, I) * A(J, J) 
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END FORALL 
END FORALL 

The interpretation is only slightly more complex than the last example. 

Chapter 6 

1. The valid set for the FORALL I statement is easily computed as {I, 2, 3, 4, 5, 6, 7, 8}. 
2. The active set for the FORALL I statement is the same as the valid set. 
3. The expression SQRT(ACI, I» is computed for every active index value. Using the 
values ACI,I) = I**2, as shown in Figure 6.2, produces the values {1, 2, 3,4, 5, 6, 7, 8}. 
4. The values are assigned to elements A(I, I) for all elements of the active set . After 
this, A is the following matrix. 

1 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 
0 0 3 0 0 0 0 0 
0 0 0 4 0 0 0 0 

0 0 0 0 5 0 0 0 
0 0 0 0 0 6 0 0 
0 0 0 0 0 0 7 0 
0 0 0 0 0 0 0 8 

5. The valid set for the FORALL J is computed . The (I, J) values for that set are 

{(1,-2), (1,-1), (1,0), (1,1), (1,2), (1,3), (1,4), 
(2,-1), (2,0), (2,1), (2,2), (2,3), (2,4), (2,5), 
(3,0), (3,1), (3,2), (3,3), (3,4), (3,5), (3,6), 
(4,1), (4,2), (4,3), (4,4), (4,5), (4,6), (4,7), 
(5,2), (5,3), (5,4), (5,5), (5,6), (5,7), (5,8), 
(6,3), (6,4), (6,5), (6,6), (6,7), (6,8), (6,9), 
(7,4), (7,5), (7,6), (7,7), (7,8), (7,9), (7,10), 
(8,5), (8,6), (8,7), (8,8), (8,9), (8,10), (8,11) } 

6. The active set for the FORALL J is computed. The (I, J) values for that set are 

{ (1,2), (1,3), (1,4), 
(2,1) , (2,3), (2,4), (2,5), 

(3,1) , (3, 2), (3,4), (3,5), (3,6), 
( 4,1) , ( 4,2), (4,3), ( 4,5), (4,6), (4,7), 
(5,2), (5,3), (5,4), (5,6), (5 ,7), (5,8), 
(6,3), (6,4), (6,5), (6,7), (6,8), 
(7,4), (7,5), (7,6), (7,8), 
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(8,5), (8,6), (8,7) } 

From the valid set, the J/=I condition masks out the middle column, and the J>=l and 

J<=8 conditions remove the upper left and lower right corners. 

7. The values of A(I, I) * A (J ,  J) are computed for the active index value tuples . This 

gives the values 

{ 2, 3, 4, 
2, 6, 8, 10, 

3, 6, 12, 15, 18, 
4, 8, 12, 20, 24, 28, 
10, 15, 20, 30, 35, 40, 
18, 24, 30, 42, 48, 
28, 35, 42, 56, 
40, 48, 56 } 

8. The computed values are assigned to the elements A(1, J) for all active index value 
tuples. The list of elements is identical to the list of active index values shown above. 

Figure 6.2 shows the overall effect of the FORALL statement. 0 

Since the semantics of FORALL statements parallel the semantics of arr ay assignment , 
it is not surprising that some FORALL statements can be transl ated fairly directly to array 

assignments or WHERE statements. 

Example 6.3 The following FORALL statements 

FORALL ( I  = 2:N-l) XCI) = X(I-l) + XCI )  + X(I+l) Ex.l 

FORALL ( I  = l:N )  X(INOX(I » = XCI)  Ex.2 

FORALL ( I  = l:N , J= l : M, B(I,J)/=O.O) A(I , J) = 1.0/B(I,J) Ex.3 

FORALL (J = l:K, I = l : N ) A(I,J) = B (J,I) Ex.4 

FORALL (I = 2:N-l, J = 2:M-1)  
A ( I,J) = A(I,J-1) + A(I,J+ 1 )  + A(I-1 ,J) + A(I+1 ,J) Ex.Sa 

B(I,J) = A(I,J) Ex.Sb 

END FORALL 

are equivalent to the following Fortran 90 statements. 

X (2:N-1)  = X (1:H-2 )  + X (2 : N-l ) + X(3 :1) Ex.1 

X (INOX (l : N »  = X (l : N) Ex.2 

WHERE ( Y ( 1:N,1:M)  /= 0 . 0 )  X (l:N , l:M ) = 1 .0/Y( 1 :N,l:M) Ex.3 

A (l:N , l:M )  = TRANSPOSE (B (l:M, l : N »  Ex.4 
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A ( 2 :N -1 , 2:M- 1 )  = A ( 2:N- 1 , l:M-2 )  + A ( 2 :N- 1 , 3:M ) & 
+ A ( 1 :N -2,2:M-1) + A ( 3:N , 2:M-1) 

B ( 2:N -1 , 2 :M-1 ) = A ( 2:N- 1 , 2:M- 1 )  

A few details of these statements should b e  mentioned. 

Chapter 6 

Ex.Sa 

Ex.Sa 

Ex.Sb 

1. Statement E x .  1 uses the original values in the array X for all its computations. For 
example, if X CI ) =l for all I initially, then after the statement X ( I) =3 for elements 2 
through N- 1 .  Note that it does not  have the same effect as the Fortran 90 loop 

DO I = 2 ,  N-1 

X CI )  = X ( I-1) + X CI )  + X ( I +1) 

END DO 

which produces X ( I ) =2 *1+1 (for 2<=I<=N -1 ) from the same data. 
2. Statement Ex. 2 , performs a permutation of the array X if INDX contains the integers 
from 1 to I in some order. If INDX contains repeated values, neither the behavior of the 
FORALL nor the equivalent array assignment is defined. 

3. Statement Ex . 3 takes the reciprocal of each nonzero element of array B( 1 :  N ,  1 :M) .  

Elements that are zero are filtered out before the computation is done, so the statement 

is safe from "division by zero" errors. 

The reader can make up his or her own mind whether the FORALL or the array assign­
ment forms of these statements are more readable. Both forms have fans and detractors. 
o 

Not all FORALL statements have simple translations to Fortran 90. Translations some­
times become complex due to the shapes of array sections assigned, or because the FORALL 
indices are used in computations besides subscripts. 

Example 6.4 The following FORALL statements are difficult to translate to Fortran 90: 

! Forall 1 

FORALL ( I  = l:N ) A ( I , INDX ( I »  = XCI )  

! Forall 2 

FORALL ( I  = l:N , J = l:N ) A(I,J) = 1.0 / REA L( I +J-l) 

The shortest Fortran 90 equivalents we know of using array operations are below . 
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! Forall 1 
WHERE (S PREAD «/( I ,I =l,N ) /) , DIM=2 , NCOPIES=N )  = t 

SPREAD«/(I ,I =l , N )/) , D I M=l , NCOPIES=N)  

A( l:N , INDX ( l:N » = SPREAD(X ( l:N ) , OIM=2, N COP IES=N )  

END WHERE 

! Forall 2 

183 

A(l:N,l:M) = 1 . 0  / REAL ( SPREAD «/( I , I =l,N ) /) ,DIM=2,NCOP IES=H) t 
+ S PREAD «/( J , J=l , H) /) , DI H=l,NCOP IES=N )  - 1 ) 

Equivalent DO loops are shorter. However, if the right-hand sides used the array A then 
the translations to DO loops would be more complex . Example 6.1, for example, requires 

either using two DO loops or changing the natural iteration order. 0 

Example 6.5 The ability to nest a WHERE statement in a FORA LL is sometimes useful. 

FORALL (I = 1:5) 

WHERE ( A ( I ,:) /= 0. 0 ) 

A(I , :) = A ( I-1,:) + A ( I +1 , :) 
ELSEWHERE 

B ( I ,:) = A ( 6- I , :) 

END WHERE 

END FORALL 

This FORALL construct, when executed with the input arrays [ 00 

1.0 
A = 2.0 

3.0 
0.0 

0.0 0.0 

1.0 1.0 
2.0 0.0 

0 .0 3.0 

0.0 0.0 

will produce as results [ 00 
2.0 

A = 4.0 
2.0 
0.0 

0.0 0.0 

2 .0 0.0 

1.0 0.0 
0.0 0.0 
0.0 0.0 

0.0 

0.0 

2.0 
3.0 

0.0 

0.0 

0.0 

3.0 
2 .0 
0.0 

00 1 [ 0.0 

1.0 10.0 
2 .0 , B  = 20.0 
3 .0 30.0 
0.0 40.0 

0.0 [ 00 

2 .0 10.0 
4.0 , B = 20.0 
2.0 30.0 

0.0 0.0 

0.0 0.0 

10.0 10.0 

20.0 20.0 

30.0 30.0 

40.0 40.0 

0.0 0.0 

10.0 10.0 

20.0 0.0 

2.0 30.0 

0.0 0.0 

0.0 
00 1 10.0 10. 0 

20.0 20.0 

30.0 30.0 

40.0 40.0 

0.0 00 1 2.0 10.0 

20.0 20.0 

30.0 30.0 

0 .0 0. 0 

Note that, as with W HERE statements in ordinary Fortran 90, assignments in the WHERE 

branch may affect computations in the ELS EWHERE branch. 0 
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Example 6.6 The FORALL statement also allows pointer assignments in its body, which 
is a clear extension of Fortran 90 array assignments . 

TYPE MONARCH 

I NTEGER , POINTER :: P 

END TYPE MONARCH 

TYPE ( MO IARCH), DIMENSIOI(8) .. PATTERN 
INTEGER, D I MENSION ( 8 )  , TARGET OBJEC T  

! Set up a butterfly pattern 
FORALL ( J  = l:N ) PATTERN ( J)%P => OBJECT ( 1 +IEOR ( J-1,2 » 

This FORALL statement sets the elements 1 through 8 of array PATTERN to point to 
elements [3,4, 1,2,7,8,5,6) of OBJECT. (IEOR is allowed because all intrinsic functions are 
PURE; see Section 6.3.) 0 

Example 6.7 Functions returning arrays can also be PURE , as Section 6.3 discusses . 
This allows the programmer to think of subarrays as "elements" to be assigned , as in the 
following code . 

INTERFA CE 

P URE FUNCTIO N F(X) 

REAL,  DIMENSION( 3) : :  F 
REAL , DIMEISIOI(3), INTENT(IN) X 

END FUNCTION F 

END I NTERF ACE 

REAL, D IMENSION ( 3 , L , M , N )  V 

FORALL (I = l:L, J = l:M, K = l:N ) V( :, I , J , K) = F ( V ( :  , I , J,K» 

Computations of this form are common in some areas of physics, such as quantum chro­

modynamics. 0 

6.3 The PURE Attribute 

The P URE attribute applies to functions and subroutines, in much the same way as the 
Fortran 90 RECURSIVE attribute. It constrains the statements allowed in the procedure so 
that the procedure cannot have any side effects , except to return a value (in the case of a 
PURE function ) or modify INTENT ( OUT ) and I NTENT ( INOUT )  parameters (in the case of a 

PURE subroutine). This makes PURE functions safe for use in a FORALL statement ;  in fact , 
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this is intended to be the major use of PURE procedures. PURE subroutines are mainly 
intended to be called from other PURE procedures ; they cannot be called from a FORALL 
statement directly. A PURE procedure may also be used anywhere that a procedure of 

the same type can be called. 
The PURE attribute is not a part of Subset HPF. However, intrinsic functions are still 

considered PURE in Subset HPF. This allows (single-statement) FORALL statement bodies 
to call intrinsic functions, but not user-defined functions. Thus, Example 6.11 is not 
Subset-conforming, but Example 6.12 is allowed in Subset HPF. 

6.3.1 Form of the PURE Attribute 

The PURE attribute is specified in the function-stmt (H409) or subroutine- stmt (H411) by 

the prefix (H407) part. The new form of a prefix (H407) is: 

prefix-spec [ prefix-spec] ... 

where a prefix-spec (H408) is one of: 

type-spec 
RECURSIVE 

PURE 

extrinsic-prefix 

See Chapter 8 for the definition of extrinsic-prefix (H501). The form of a function-stmt 
(H409)) is not changed from rule R1217 of the Fortran 90 standard, but is rewritten here 
for clarity: 

[prefix] FUNCTION function-name ([ dummy-arg-name-list]) [RESULT (result-name)] 

Similar ly, the form of a subroutine-stmt (H411) is the same as Rule R1220 of the For­
tran 90 standard, and is rewritten here: 

[prefix] SUBROUTINE subroutine-name [<[ dummy-arg-listp] 

Rules and restrictions: 

1. A prefix must contain at most one of each variety of prefix-spec. 
2. The prefix of a subroutine-stmt must not contain a type-spec. 
3. Intrinsic functions, including the HPF intrinsic functions, are always PURE and require 

no explicit declaration of this fact. Intrinsic subroutines are PURE if they are elemental 
(i.e., MVBITS) but not otherwise. 

4. A statement function is PURE if and only if all functions that it referen ces are PURE. 
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Functions in the HPF library are PURE . 

In addition to the new definition of prefix, the PURE attribute adds a number of con­
straints to other Fortran 90 rules when they use a PURE function . When the constraints 
mention "a PURE procedure" they mean a procedure that is declared PURE by the above 
rules. 

Add the following rules and restrictions to the definitions of fu nction-su bprogram 

(R1215)  and su bro utin e-subprogra m (R1219) from the Fortran 90 standard:  

Rules and restrictions : 
1 .  The specification-part of a PURE function must specify that all dummy arguments have 

I NTENT ( nO except procedure arguments and arguments with the POINTER attribute. 
2 .  The specification-part of a PURE subroutine must specify the I NTENT of all dummy 

arguments except procedure arguments and arguments that have the POliTER attri­

bute . 
3. A local variable declared in a PURE procedure (including a variable declared in an 

internal procedure) must not have the SAVE attribute . 
4 .  A local variable declared in a PURE procedure (including a variable declared in an 

internal procedure) cannot be initialized in a type declaration statement or a DATA 

statement, since such initializations imply the SAVE attribute . 
5. A PURE procedure (or its internal procedures) may not use global variables, dummy 

arguments with I1TEIT (I1 ) ,  or objects that are storage associated with any part of a 
global variable in any operation that might cause their value to change. In addition , 
a PURE function may not use any dummy argument , even without a declared I1TEIT 
attribute , in these contexts. In particular , those variables cannot be used as :  

• The left-hand side of an assignment statement or pointer assignment statement . 

• An actual argument associated with an dummy argument with INTEIT ( OUT ) 
or INTENT ( INOUT ) or with the POINTER attribute . 
• An index variable in a DO statement, FORALL statement, or an implied DO clause .  

• The variable in  an ASSIGN statement . 
• An input item in a READ statement . 
• An internal file unit in a WRITE statement. 
• The object to be allocated in an ALLOCATE , the object to be deallocated in a 
DEALLOCATE statement, or the pointer to be nullified in a NULLIFY statement . 

• An IDSTAT= or S I ZE= specifier in an I/O statement, or the STAT= specifier in a 
ALLOCATE or DEALLOCATE statement. 

6.  A PURE procedure (or its internal procedures ) may not use global variables , dummy 

arguments with I NTENT ( IN ) , or objects that are storage associated with any part 
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of a global variable in any operation that could create a pointer to that variable. 
In addition , a PURE function may not use any dummy argument , even without a 
declared I1TEIT attribute , in these contexts . In particular ,  those variables cannot 
be used as: 

• The target ( right-hand side )  of a pointer assignment statement .  
• The right-hand side of an assignment t o  a derived-type variable ( including a 
variable that is a pointer to a derived type) if the derived type has a pointer 
component at any level of component selection . 

7. If a PURE procedure calls another procedure, then the called procedure must also be 
PURE . 

8 .  If a dummy argument to a PURE procedure or the dummy result of a PURE function 
is explicitly mapped, then : 

• If the dummy appears in an ALI GN directive as the alignee ( H 3 1 6) ( i .e . , as 
the variable being aligned with something) , then the a lign-target ( H32 1 )  ( i . e . ,  the 
thing being aligned to) must be another dummy argument or the dummy result . 

• The dummy cannot appear in a D ISTRIBUTE directive . 

• The dummy cannot have the IIKERIT attribute. 

• The dummy cannot have the DYNAMI C  attribute . 

9 . If a local variable in a PURE procedure is explicitly mapped, then : 

• If the variable appears in an ALIGN directive as the alignee (H316)  (i .e . ,  as 

the variable being aligned with something) , then the align-target (H32 1 )  (i .e . ,  the 
thing being aligned to) must be another local variable , a dummy argument or the 
dummy result . 

• The variable may not appear in a DISTRIBUTE directive . 

• The variable cannot have the DYNAMIC attribute . 

10 .  A global variable that appears in a PURE procedure must not be used in a REALI GN 

or REDI STRIBUTE directive . 
1 1 .  A PURE procedure may not contain any external input/output statement . The list 

of external I/ O statements includes the PRIIT, OPEl , CLOSE, BACKSPACE, ENDFILE, 

REWIID, and IIQUIRE statements . It also includes READ and WRITE statements whose 
I/O unit is an external file unit number or * .  

12 .  A PURE function must not contain a PAUSE or  STOP statement . 

Add the following rules to the definition of interface- body (R1204) . 
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Rules and restrictions : 
1. In an INTERFACE block ,  the interface specification of a PURE procedure must specify 

the IllTEliT of all dummy arguments except POIllTER and procedure arguments . 
2 .  A procedure that is declared PURE at its definition may be declared PURE in an 

IllTERFACE block , but this is not required . 
3. A procedure that is not declared PURE at its definition must not be declared PURE in 

an INTERFACE block . 

6 . 3 . 2  Meaning of the P URE At t ribute 

A call to a PURE procedure has exactly the same interpretation as a call to any other 
procedure . However , it is legal to call a PURE procedure in contexts where an arbitrary 
procedure is not allowed , In particular , 

• A PURE function may be used in the mask expression or the body of a FDRALL state­
ment . 
• A PURE function or subroutine may be called from a PURE procedure . 
• A PURE function or subroutine may be passed as an actual parameter to a dummy 
parameter that is declared PURE. 

If a procedure is used in any of these contexts, then its interface must be explicit and 
the PURE attribute must be part of that interface. Note that all the restrictions on PURE 

can be checked statically, that is , they refer to the syntax of the function , not to its 
behavior. (Consistency of the declarations between compilation units cannot be checked 
directly , unfortunately ; however , it can be checked when the units are linked into a single 
program . )  

6.3 . 3  Discussion of  the P URE Attribute 
We first give some examples of functions that are (or are not ) PURE , then illustrate their 

use. 

Example 6 . 8  The following statement functions are PURE : 

REAL : :  MY_EXP , MY_SIKH , STD_SIKH 

MY_EXP ( X )  = 1 + X + X*X/2 . 0  + X**3/6 . 0  

MY_SINH ( X )  = (MY_EXP ( X )  - MY_EXP ( - X »  / 2 . 0  

STD_SINH ( X )  = ( EXP ( X )  - EXP ( - X » / 2 . 0 

MY..EXP references no functions, so it cannot reference any non-PURE fun ctions . The other 
two functions reference only the PURE user-defined function MY ..EXP and the intrinsic EXP , 

o 

Copyrighted Material 



Data Parallelism 

Example 6.9 The following function is correctly declared to be PURE . 

PURE INTEGER FUNCTION MANDELBROT(X) 

COMPLEX . INTENT ( I I )  X 

COMPLEX XTMP 

INTEGER K 

! Assume SHARED_DEFS includes the declarat ion 
! INTEGER ITOL 

USE SHARED_DEFS 

K = 0 

XTMP = -X 

DO WHILE (ABS ( XTMP ) <2 . 0  . AID . K<ITOL ) 
XTMP = XTMP • XTMP - X 

K = K + 1 
END DO 

ITER = K 

END FUNCTION 

189 

Example 6 . 1 1  shows how a FORALL might call this function to update all the elements 
of an array. We expect that this will be a common use for PURE functions. A suitable 
IllTERFACE block for MAliDELBROT would be as follows .  

INTERFACE 

PURE INTEGER FUNCTION MANDELBROT ( X )  

COMPLEX . INTENT(IN) : :  X 

END FUNCTION MANDELBROT 

END INTERFACE 

We note a few interesting points about this function . 

• It uses shared data ( ITOL) , but does not assign to it . Read-only use of shared data is 
allowed in PURE functions.  
• It contains a loop construct. Arbitrary flow control is allowed in PURE functions . 

These features make PURE functions quite useful , although they also make compilation 
somewhat more complex. 0 

Example 6.1 0  The following function is not PURE . Any one of the commented state­

ments is enough to disqualify it from being PURE . 
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REAL FUNCTION IMPURE_FCN (W , X ,  Y )  ! *IMPURE* - No PURE attribut e 

Assume SHARED_DEFS contains the declarat ions 
INTEGER , PARAMETER N = 1000 
INTEGER NUM_CALLS 
REAL , DIMENSIOI (I) , TARGET LOOKUP_TABLE 

USE SHARED_DEFS 

REAL , INTENT ( IN )  W 
REAL , DIMENSION ( 10 )  , INTENT ( IN )  X 
REAL , DIMENSION (N ) , TARGET Y 

INTEGER , SAVE LAST 1 
REAL , DIMENSIOI ( 10 ) , POliTER z 

INTERFACE 

PURE SUBROUTINE BINARY_SEARCH (A , B ,  I )  
REAL , INTENT ( IN )  A 
REAL , INTENT ( INOUT) , DIMENSION ( N )  B 
INTEGER , INTENT ( INOUT ) I 

END PROCEDURE BINARY_SEARCH 
END I1TERFACE 

*IMPURE* 

*IMPURE* 

- No INTENT 

- Has SAVE 

! *IMPURE* - Passing global t o  INTENT ( INOUT ) parameter 
CALL BINARY_SEARCH (W , LOOKUP_TABLE , LAST ) 
Z => Y (LAST : LAST+9 ) * IMPURE* - Pointer to  dummy 
NUM_CALLS = NUM_CALLS + 1 ! * IMPURE* - Ass ignment t o  global 
IMPURE_FCN = SOM ( X  * Z )  

END FUNCTION IMPURE_FCN 

Notice that many of the "impurities" in this function do not actually cause side effects . 

• Leaving out the PURE attribute is purely a syntactic matter .  
• Although Y is not declared INTENT ( IN ) , it is not assigned in the procedure. 
• Assuming that B INARy...sEARCH does what its name implies , its second parameter will 
not be modified. A more appropriate INTERFACE block might be 

INTERFACE 
PURE SUBROUTINE BINARY_SEARCH (A . B ,  I )  
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REAL . IITEIT ( I I )  
REAL . IITEIT ( I I ) , D IMEISIOI ( I )  
IITEGER , IITEIT ( IIOUT ) 

EID PROCEDURE BIIARY_SEARCH 
EID I1TERFACE 

A 
B 
I 

which would make the CALL statement legal in a PURE function . 
• Although Z points to Y ,  there are no assignments to Z that modify Y .  
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The rules for PURE ensure that no side effects occur ;  it is not the case that every subroutine 
without side effects is PURE . 0 

Example 6 . 1 1  This FORALL applies the MAiDELBROT function defined in Example 6.9 to 
fill an array. 

FORALL ( I  = 1 : 1 ,  J = l : M ) 

A ( I . J ) = MAIDELBROT (COMPLX « I- 1 ) * 1 . 0! (N- 1 ) . ( J- 1 ) * 1 . 0/ (M- 1 » 
EID FORALL 

Note that because of the control flow inside MAIDELBROT this computation could not be 
written as a FORALL statement without the PURE function .  One of the major advantages 
of PURE functions is that they allow more complex operations to be done in parallel by 
FORALL statements. 0 

Example 6.12 Since intrinsic functions are PURE, they can be always be called from 
FORALL statements . For example , 

FORALL (K  = 1 : 9) X(K )  = SUM (X ( 1 : 1 0 : K » 

computes nine sums of subarrays of X .  If X has the value 

[1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10] 

b efore the FORALL , then it have the value 

[55, 25 , 22 , 1 5 , 7, 8, 9 , 10 , 1 1 , 1 01 

afterwards . Note that , since SUM is not an elemental function , it cannot be applied 
elementally in this way. 0 

Copyrighted Material 



1 9 2  Chapter 6 

6.4 T he INDEPEND ENT Directive 

The INDEPENDENT directive is an assertion that the programmer makes ab out the behavior 

of a DO loop or FORALL statement . In particular , INDEPENDENT asserts that the iterations 

of a DO or the computations for different active index values of a FORALL , do not interfere 

with each other in any way. This implies that the DO or FORALL will produ ce exactly 

the same answers if its iterations or computations are executed in p ar allel (or , for that 

matter , in any sequential order) . The compiler can use this information to pro duce more 
efficient co de .  

Note that INDEPENDENT is providing n e w  inform at i o n  to the compiler , not defining 

a new m e a ning for the code . If it is used correctly, INDEPENDENT will not change the 

meaning of a program. If it is misused (i .e . ,  if the p rogrammer is mistaken deliberately 

lies about the interactions between iterations) , then the program is not HPF-conforming . 

While FORALL statements technically do not have "iterations" because they are not 

loops , for simplicity of exposition in this section we use the term "iteration" to describe 

either an iteration of a DO loop or  the execution of the body of a FORALL for a single 

active index value tuple . 
Subset HPF includes the INDEPENDENT directive applied to b oth DO loops and FORALL 

st atements . 

6.4 . 1  Form of the INDEPENDENT Directive 

The INDEPENDENT directive precedes the DO loop or FORALL statement for which it is 

asserting behavior , and is said to apply to that loop or statement . The form of the 

indep e n dent- directive (H413) is : 

INDEPENDENT [ • NEW ( variable - list ) 1 

Rules and restrictions: 
1 .  The first  non-comment line following an I NDEPENDENT directive must b e  a DO or  

FORALL statement . 

2 .  If the NEW option is present, then the directive must apply to a DO loop . 

3 .  A NEW option cannot name a pointer or dummy argument in its v a ri a b le - list .  

4.  A variable  named in the NEW option must not have the SAVE or TARGET attribute . 

5 .  The DO or FORALL to which the INDEPENDENT directive applies must behave as de­

scribed in Section 6 .4 .2 .  
6.4.2 Meaning of the IND EPENDENT Directive 

A DO loop with an INDEPENDENT assertion applied to it is called a DO INDEPENDENT 
loop. The interpret ation of a DO INDEPENDENT is identical to the interpretation of the 
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corresponding DO loop with no INDEPENDENT . That is ,  INDEPENDENT (when correctly ap­
plied) does not change the results computed by the DO to which it applies . Similarly, 
a FORALL st atement with an INDEPENDENT assert ion applied to it  is called a FORALL 
INDEPENDENT. The interpretation of a FORALL INDEPENDENT is identical to the corre­
sponding FORALL 's interpretation . The importance of the INDEPENDENT directive is that 

it gives the compiler more information that may be used to optimize the program . Thus , 
although the meaning of the program does not change , its performance is likely to be 
better because the  compiler can make less restrictive assumptions . 

The interpretation of INDEPENDENT itself is essentially an explan ation of what the 
directive asserts . In short , it asserts two things : 

• Bernstein 's co n ditions [8] : If R;. is the set of locations "read" in iteration i of a 
construct , and Wi is the set of locations "written" in iteration i, then for any i t j it 
must be t rue that 

The effect of this is that no atomic dat a  object may be read in one iter ation and written 
in another , nor may any atomic object be written in more than one iteration . 
• No control  depen dence :  Once the construct begins execution , it will execute to com­
pletion .  

Note  that , unlike the  restrictions on PURE functions , these are assertions about the  behav­
ior of the INDEPENDENT constru ct , not about its syntax. For example , a DO IIfDEPENDENT 

could legally contain a STOP st atement , provided that statement was in a branch of an 
IF that was never executed . 

It is important to define precisely the terms "read" and "written" in Bernstein 's con­

ditions . Given that , we have the following : 

• An assignment to an object is a write to all the atomic objects that it contains . For 

example , an assignment to an integer variable is a write to one atomic object ; an array 
assignment to an integer array can be many atomic writes . Note that this is considered 

a write even if the value does n ot change .  

• Similarly, using an object as a DO or implied DO index ; as FORALL index ; as an input 
item in a READ statement ; as an internal file unit in a WRITE statement ; as the variable in 
an ASSI GN st atement ; as the pointer in an ALLOCATE, DEALLOCATE or NULLIFY st atement ; 
or as a IDST!T= , S I ZE= or STAT= specifier is a write to all atomic objects in that object . 
• A use of a variable in an expression (not including "use" in modifying that variable , as 
detailed above) is a read of every atomic object in the (fully-qualified)  use . For example,  
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TYPE EXAMPLE 
REAL , DIMENSIOR (3 )  ; ;  X ,  Y 

END TYPE EXAMPLE 

REAL , DIMENSION ( 1 0 )  A , B 
TYPE ( EXAMPLE ) C 

A ( t )  = A ( 1 0 )  

B ( 2 : 9 )  = B ( 1 : 8 )  
C%X ( 1 )  = C%Y ( 3 )  

Chapter 6 

contains reads of A ( 1 0 ) , B ( 1 ) ,  B (2 ) , B ( 3 ) ,  B (4 ) , B ( 5 ) , B (6 ) , B ( 7 ) , B ( 8) , and C%Y ( 3 ) . 
It does not contain reads of (among other things) A ( 1 ) , B (9 ) ,  B ( 10 ) , or C%Y taken as a 

whole . 
• Any file I/O statement except INQUIRE both reads and writes that file , where the file 
itself is considered to be an object. (This is due to Fortran 's definition of how the file 
position is affected by I/O statements; the position is defined after every operation , even 
for direct access files . )  An INQUIRE operation performs a read from its file . 
• A REALIGN or REDISTRIBUTE directive reads and writes a variable and every atomic 
object that it contains . (This is because the operation may change the processor storing 
every array element , which interferes with any assignment or use of those elements . )  In 
addition , a REDISTRIBUTE directive reads and writes every element of any array aligned 
to the array being distributed . 

Obviously, some of these points do not apply to FORALL statements , which cannot contain 
(for example) ASSIGN statements . 

A construct has control depe ndence if the execution of one iteration determines whether 
other iterations are executed. The following cases constitute control dependence in H P F  
programs : 

• A transfer of control (by a GO TO , alternate procedure return , or ERR= branch) to a 

branch target statement outside the body of the loop. 
• Any execution of an EXIT ,  STOP , or PAUSE statement. 

A FORALL statement cannot be affected by either of these conditions .  

The NEW clause modifies the meaning of the INDEPENDENT directive by  restricting 

the variables considered for inclusion in the read and write sets . The technical defi­

nition is that it changes the INDEPENDENT directive where it appears and all surrounding 

I NDEPENDENT directives to mean that those assertions would be true if new objects were 

created for the named variables for each iteration of the DO loop . In other words ,it asserts 
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that the remainder of program execution is unaffected if al l  variables in the variable list 
and any variables associated with them were to become undefined immediately before 
execution of every iteration of the loop , and also become undefined immediately after 
the completion of each iteration of the loop.  

The English translation of the above definition is that the variables named in the lEW 

clause should be treated as being private in the loop body. Effectively, the variables lose 
their values at the end of each iteration . The reason for the strange circumlocution has 
to do with the fact that lEW is part of a directive , rather than a first-class statement 
in the language . Since directives can 't change the meaning of the program , they can 't 

allocate new objects or make existing objects undefined. Therefore , the official definition 
has to be phrased as a series of "what ifs ." 

lEW variables provide the means to declare temporaries in IIlDEPENDENT loops. With­
out this feature , many conceptually independent loops would need substantial rewriting 
(including expansion of scalars into arrays) to meet the rather strict requirements for 
I1DEPEHDEHT. Note that a temporary need only be declared lEW at the innermost lex­
ical level at which it is assigned ,  since all enclosing INDEPENDENT assertions must take 
that NEW into account . Note also that index variables for nested DO loops must he de­
clared lEW ; the alternative was to limit the scope of an index variable to the loop itself, 
which changes Fortran semantics. FORALL indices , however , have scopes restricted by the 
semantics of the FORALL statement ; they require no NEW declarations. 

The compiler is j ustified in producing a warning if it can prove that an INDEPENDENT 

assertion is incorrect . It is not required to do so , however . Indeed, since deciding whether 
a loop is I NDEPENDEIT is an undecidable problem , it is always possible to write an as­
sertion that the compiler cannot fully check . A program containing any false assertion 
of this type is not HPF-conforming , thus is not defined by HPF, and the compiler may 
take any action it deems appropriate . 1 

6.4.3 Discussion of the INDEPENDENT Directive 
Like the FORALL statement , there is a good graphical representation of a DO I1DEPEllDEHT 
loop. We show that in Figure 6 .8, and then give some examples of loops that are (and 
are not ) INDEPEHDEHT . 

Visualizing INDEPENDENT Figure 6 . 8  shows the precedence graph for a DO IR­

DEPENDENT loop . If  the I NDEPEIDENT assertion were applied to a FORALL statement , the 
picture would look exactly the same. INDEPEHDENT means that only the dependences 
shown may occur , rather than the full sets of arrows from Figures 6 . 5  and 6 . 6 .  The 

1 At one point the HPF language draft suggested executing the programmer if such an error was 
found, but that sentence was eventually removed. 
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Figure 6.8 

! HPF$ INDEPENDENT 

DO I = 1 ,  3 
a ( l )  = bel) 
e (l) = d e l )  

END DO 

Precedence graph for a DO I1DEPEBDKIT loop 
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assertion essentially tells the compiler that this particular statement is not a worst case; 
in fact , it is far from the worst . It is clear from the figure that any operation in one 
iteration can be performed in parallel with any operation from any other iteration . The 

only ordering that needs to be enforced is within the same iteration . (Sometimes even 
this ordering may be unnecessary-in particular , when the statements in the body do 
not depend on each other . HPF has no way to express such fine control , however . )  

Figure 6 .9 shows a FORALL I NDEPENDENT with a nested FORALL . Replacing the outer 

FORALL statement with a DO loop would produce the same picture . We show it to point 
out that the I NDEPENDENT assert ion does mean that FORALL statements (or DO loops) 
nested within the INDEPENDENT statement are also INDEPENDENT . Compared to Figure 6 . 7 ,  
however , i t  is clear that removing the dependences between iterations i n  the outer FORALL 
is still a substantial imprnvement . 

INDEPENDENT Examples For simplicity, our explanations in this section assume 
there is no storage , sequence , or pointer association between any variables used in the 

code . INDEPENDENT can be used when variables are associated , but only if the association 
does not cause one of the rules in Section 6.4 .2 to be violated .  

Example 6 . 1 3  The following loop is INDEPENDENT regardless of the values of the vari­
ables involve d .  

! HPF$ INDEPENDENT 

DO I = 2 ,  N - 1  
X CI )  = Y ( I-1) + Y ( I )  + Y ( I+ 1 ) 

END DO 

This is ,  of  course , trivial to see-all iterations read from one array and write to another , 
so there can be no interference . Note that many elements of Y are used repeatedly ; this 
is allowed by the definition of INDEPENDENT . The other conditions relate to constructs 

not used in the loop . The loop could be written equivalently as fol lows . 

! HPF$ INDEPENDENT 
FORALL ( I  = 2 : N- 1 ) X C I )  = V ( I - i ) + V C I )  + Y ( I+ i )  

It i s  always the case that a FORALL INDEPENDENT can be directly rewritten as a DO  
I NDEPENDENT . The converse i s  not true , due t o  the restrictions on the body of a FORALL 

statement . 0 
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Figure 6.9 

! HPF$ INDEPENDENT 
FORALL ( I  = 1 :  3 )  

a ( I ) = b ( I )  
FORALL ( J  = l : I ) 

c ( I , J )  = d ( I , J ) 
END FORALL 

END FORALL 

Precedence graph for I1DEPEIDEIT with nested statements 
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Example 6.14 The following loops are INDEPENDENT regardless of the data values used . 

! HPF$ I NDEPENDENT , NEW (I) 
DO J = 2 ,  M-l , 2 

! HPF$ INDEPENDENT , NEW(VL , VR , UL , UR ) 

DO I = 2 , 1- 1 . 2 

VL = A ( I , J ) - A (I- l , J) 

VR = A ( I + 1 , J ) - A(I , J) 

UL = A ( I , J )  - A (I , J- 1 )  

UR = A ( I , J+ l )  - A ( I , J ) 
A ( I , J )  = B ( I , J ) + A(I , J) + 0 . 25 • ( VR - VL + UR - UL) 

END DO 
END DO 

There is no interference due to accesses of the array X because of the stride of the DO 
loop (i .e . ,  I and J are always even , therefore 1 - 1 ,  etc .  are always odd. ) Some compilers 

can detect this independence without a directive ,  but the reasoning to do so is clearly 
h arder than in Example 6 . 13 .  Good discussions of compiler dependence tests can be 

found in books by Wolfe [3 1] and Zima and Chapman [33] . Since different compilers 

will perform different analyses , we recommend using explicit INDEPENDENT assertions 
whenever portability to other systems is important . 

Without the NEW clause on the I loop , neither IlfDEPElfDENT assertion would be correct . 

For intuition why, consider an interleaved execution of loop iterations , that is , performing 

one statement from one iteration , followed by a statement from another iteration . It is 

easy to see that this might cause some iteration to use values of VL, VR, UL , and UR in 

the assignment to A ( I , J) that another iteration computed . The NEW option , however , 

specifies that this is not true if distinct storage units are used in each iteration of the 

loop . 0 

EXaIllple 6. 1 5  The truth of some INDEPEliDENT assertions depends on the data used in 
the construct . 

! HPF$ INDEPENDENT 
DO I = 1 ,  N 

X ( INDX ( I »  = Y ( I )  

END DO 

This directive asserts that the array INDX does not  have any repeated entries in its first 
N elements .  If there were repeated entries , at least one element of X would receive two 

values from Y, thus violating the Bernstein conditions . In general ,  there is no way for the 
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compiler to know the values variables will have at runtime . When a loop is INDEPENDENT 

because of properties of the input data , it is almost always advisable to use the explicit 
directive . (Unfortunately, we cannot say it is always advisable-reports of directives 
causing pathological behavior in compilers are legion.) 0 

Example 6 . 1 6  I NDEPEIDEIT loops may contain loops with dependences , so long as 
those dependences do not "escape" the INDEPENDENT loop . The code from Figure 6 .4  is 
an example of this . 

! HPF$ INDEPENDENT , NEW ( J , N 1 ) 

DO I 1 ,  NBLACK 

N 1  = IBLACK_PT ( I )  

DO J = INITIAL_RED ( N 1 ) , LAST_RED ( N 1 )  
X ( N 1 ) = X ( N 1 )  + A ( J ) *X ( IRED_PT ( J »  

END DO 

END DO 

As in the last example , the correctness of the INDEPENDENT assertion depends on the 
data . Essentially, the assertion says that no element is both "black" ( i .e . ,  referenced by 

IBLACK.PT) and "red" ( i . e. ,  referenced by IRED.PT) . It is clear , however , that the DO J 

loop is not INDEPENDENT , since it repeatedly uses the value of and assigns to the same 
element of X. 0 

Example 6 . 1 7  Although we have concentrated on assignments in the previous exam­
ples , a DO INDEPENDENT can contain arbitrary code if its behavior obeys the restrictions 
in Section 6 .4 . 2 .  

! HPF$ INDEPENDENT , IEW (K , L ,  N ,  ROOT ) 

L 1 : DO J = 1 ,  1 0  

L2 : DO 

READ ( J ,  ' ( 216 , 13 ) ' )  K ,  L , N 

IF (K<=O . OR .  L<=O . OR .  N<3 ) EXIT L2 

ROOT = (K**! + L**I ) **  ( 1 . 0  I I) 
WRITE ( J+10 , ' E1S . 6 ) ROOT 

IF (ROOT_M = FLOOR ( ROOT » THEN 

PRINT ' Fermat was wrong ! J 

EXIT L 1  

END I F  

END DO 

END DO 
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The READ and WRITE operations use different I/O units on every iteration .  According 
to standard Fortran , different I/O units must be associated with different files , so there 
is no cross-iteration interference. The PRINT statement would cause an interference if 
it were executed , and the EXIT statement would likewise invalidate the INDEPENDENT 

assertion . However , those statements are only executed if there are four positive integers 
K, L, M, N (with N > 2) such that 

KN + LN = MN 

Fermat 's Last Theore m ,  which was recently proved, gu arantees that such integers do not 
exist . 0 

The next three examples contain incorrect code . Be careful! 

Example 6. 1 8  The following loop is not a correct use of INDEPENDENT:  

! BPF$ I NDEPENDENT 

DO  I = 1 ,  N 

! *** Nonconforming ! ! !  *** 

S CALAR = SCALAR + X ( I ) *Y ( I )  

END DO 

The reason is that SCALAR is  both read and written by every iteration of the loop , creating 
almost N**2  violations of the Bernstein conditions . Placing SCALAR in a NEW clause is 
not correct either , since the results of the loop would change rather drastically if the 
value of S CALAR was forgotten at the end of each iteration. In short , you cannot use a 
DO INDEPENDENT to accumulate sums (or products ,  or other reduction operations) , even 
though there are parallel algorithms for such accumulations . The intrinsics in Chapter 7 
are the correct way to perform these operations . 0 

Example 6 . 1 9  The following program is n o t  correct usage of INDEPENDENT: 

! HPF$ 

! HPF$ 

ERR = ERR_TOL + 1 
D O  WHILE ( ERR > ERR_TOL ) 

INDEPENDENT , NEW ( J )  

D O  J = 2 ,  M- 1 

*** Nonconf orming ! ! !  *** 

INDEPENDENT *** Nonconf orming ! ! !  *** 

DO I = 2 ,  N - 1  

B ( I , J )  = A ( r , J )  

A ( I , J )  = 0 . 25* ( A ( I - 1 , J ) +A ( I+ 1 , J ) +A ( I , J- 1 ) +A ( I , J+ 1 »  

B ( I , J ) ABS ( A ( I , J )  - B ( I , J » 

EID DO 
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END DO 

ERR = MAXVAL ( B ( 2 : N- 1 , 2 : M- l »  
END D O  

Chapter 6 

As just one example of why the INDEPENDENT assertion is incorrect, consider A ( 3 , 3 ) . 
It is assigned by iteration ( I , J ) = ( 3 , 3 ) , and is used in iterations ( I , J ) = (4 , 3 ) , 

( 2 , 3 ) , ( 3 , 4 )  and ( 3 , 2 ) .  It is true that the outer DO WHILE will produce the same 
answer if the inner loops are executed in parallel , in the sense that it will terminate with 

answers that are very close to the sequential execution . However , chang ing the order of 
iterations does change the exact answer , which is what the Fortran and HPF language 
specifications define . 0 

Example 6 . 2 0  The following loop is not a correct use of INDEPENDENT if SCALAR is ever 

found in X .  

! HPF$ INDEPENDENT ! * * *  Poss ibly Nonconforming ! ! !  * * *  

L1 : DO I = 1 ,  N 
IF (X ( I )  = SCALAR ) THEN 

LANSWER = I 

EXIT L l  
END IF  

END DO 

When the IF condition is true for some value of I some iterations are not executed . 
This constitutes control dependence , and makes the INDEPENDENT assertion invalid . As 
in the last example , it does not matter that the answer will be the same if the loop 

is executed in parallel . Note , however , that if the EXIT statement is deleted then the 
loop may be INDEPENDENT , depending on the input data . Without the EXIT statement an 
INDEPENDENT assertion would mean that there was at most one I such that X ( I ) =SCALAR. 
o 
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7 Intrinsic and Library Procedures 

An important feature of Fortran 90 is the rich set of intrinsic functions and subroutines 
with which it is endowed. These allow the coding of data parallel programs at a higher 

level, and potentially with greater efficiency, than if their functions were programmed 
by the users. HPF includes Fortran 90's intrinsic procedures. Two of them, MAILOC and 
HIILOC, are enhanced in HPF. Three new intrinsic functions are included in HPF: two 
system inquiry functions, and one new computational function. 

In addition to the new intrinsic functions, HPF defines a library module, BPF...LIBRARY, 

that adds further to the power of the language. Intrinsic procedures are unlike ordinary 

procedures in that their interfaces are automatically known to the compiler. Some can 
take arbitrarily many arguments (HAX, for example) . These special features of intrinsic 
procedures were judged unnecessary for most of the HPF procedures, which were there­

fore included in the HPF library module, where a USE statement is required to access 
them. Note that the library is not part of subset HPF. The library contains a large 
group of additional functions and subroutines. One of the most important facilities these 

provide is the ability to query the alignment and distribution attributes of arrays or tem­
plates at run-time. The library also includes some important data parallel programming 
primitives: new reduction operations, combining scatter operations, prefix and suffix 

operations, and sorting . 
Detailed specifications of the intrinsic and library procedures appear in Appendix B. 
In order to make them more readable, the examples of this section use T and F to 

denote the logical values . TRUE. and . FALSE. 

7.1 System Inquiry Functions 

In a multi-processor computer, the physical processors may be arranged in a multi­
dimensional processor array. The system inquiry functions return values that describe 
the size and shape of the underlying processor array. NUMBER...oF ..PROCESSORS returns the 
total number of processors available to the program or the number of processors available 
to the program along a specified dimension of the processor array. PROCESSORS.5BAPE 

returns the shape of the processor array. Therefore, SIZE(PROCESSORS.5HAPEO) returns 

the rank of the processor array. 
The values returned by the system inquiry intrinsic functions remain constant for 

the duration of one program execution. For this reason, IUMBER...oF ..PROCESSORS and 
PROCESSORS..sHAPE may be used wherever Fortran 90 requires a specification-expr. In 
particular, references to system inquiry functions may occur in array declarations and in 

HPF directives. 
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Function Value returned 

N umber of executing processors (intrinsic) NUMBER.1lF ...PROCESSORS 

PROCESSORS...sHAPE Shape of the executing processor array ( intrinsic ) 

Table 7.1 

System inquiry functions 

Example 7.1 The code 

INTEGER, DIMENSION(SIZE(PROCESSORS_SHAPE())) 

REAL, DIMENSION(3*NUMBER_OF_PROCESSORS()) 

!HPF$ TEMPLATE, DIMENSION(NUMBER_OF_PROCESSORS()) 

PSHAPE 

A 

T 

declares PSHAPE to have one element for each dimension of the processor array. It is 
therefore the correct shape to contain the value of PROCESSORS...sHAPE(), for example. 
The array A has a size dependent on the number of physical processors; this helps ensure 
that the data values in A are spread evenly between processors when A is explicitly 
mapped. ( It is still possible to unbalance the load due to A by choosing a bad parameter 
to a CYCLIC(K) distribution. ) The template T has one element per processor; this may 

be convenient for defining some mappings, but is usually not necessary. 0 

The values of system inquiry functions may not occur in an initialization-expr, because 
they may not be assumed to be constants. HPF programs may be compiled to run on 
machines whose configurations are not known at compile time. We hope that vendors 
will supply HPF compilers and linkers that allow an executable program to run on a 
range of machines of varying size, using the system inquiry intrinsics to determine the 

machine size and shape at run time. 
Note that the system inquiry functions query the physical machine, and have nothing 

to do with any PROCESSORS directive that may occur. 

Table 7.1 summarizes the system inquiry functions. 

7.2 Mapping Inquiry Subroutines 

HPF provides data mapping directives that are advisory in nature. The mapping inquiry 

library subroutines allow the program to determine the actual mapping of an array at run 
time. For example, if REALIGlf or REDISTRIBUTE are used the mapping inquiry procedures 
can tell which data mapping is actually in effect. It may be especially important to know 

the exact mapping when an EXTRHTSIC subprogram is invoked. For these reasons, HPF 

includes mapp ing inquiry subroutines that describe how an array is actual ly mapped 
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onto the machine. To keep the number of routines small, the inquiry procedures are 
structured as subroutines with optional INTENT(OUT) arguments. 

Example 7.2 The distribution in effect may affect the choice of algorithm. 

SUBROUTINE GAUSS(A, X) 

REAL, DIMEISIOI(1: ,1:) A 
REAL, DIMENSION(1:SIZE(A, 2» X 

!HPF$ INHERIT:: A, X 

LOGICAL SIMPLE 

CHARACT ER*10 DISTS(2) 

INT EGER BLOCK S(2) 

CALL HPF_ALIGNMENT(A, IDENTIT Y_MAP=SIMPLE) 

IF (SIMPLE) T HEI 

CALL HPF_DISTRIBUT E(A, AXIS_TYPE=DISTS, AXIS_IHFO=BLOCK S) 

IF (DISTS(1)=='COLLAPSED' .AND. DISTS(2)=='CYCLIC') THEN 

CALL FACTOR_NORMAL_ORDER(A, X, BLOCK S(2» ! Cyclic 

ELSE IF (DIST S(1)=='COLLAPSED' .AID. DIST S(2)=='BLOCK') T HEN 

CALL FACTOR_PERMUTED_ORDER(A, I, BLOCKS(2» ! Block 

ELSE 

CALL REDIST_THEN_FACTOR(A, I) 

END IF 

ELSE 

CALL REDIST_THEN_FACT OR(A, I) 

END IF 

END SUBROUTIHE GAUSS 

! Other distributions 

Other alignments 

This code checks the mapping of A, and calls one of three other subroutines to perform 
the real work. For a Gaussian elimination routine (as the names here suggest), the 
different routines might use different elimination orders to keep the computational load 
balanced among processors. Another use might be to allow the called routines to use 
descriptive mapping directives; some compilers may produce more efficient code from 

these directives than from a simple IHHERIT . 0 

Table 7.2 summarizes the mapping inquiry subroutines. 
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Subroutine 

HPF ...ALIGNMENT 

HPF _T EMPLATE 

HPF ...DIST RIBUT ION 

Table 7.2 
Mapping inquiry subroutines 

Chapter 7 

Effect 

Returns information about the alignment of an array in 
optional INT ENT (OUT ) arguments 

Returns information about the template or array to 
which an array is ultimately aligned in optional 
INT ENT(OUT ) arguments 

Returns information about the distribution of the 
template or array to which an array is ultimately 
aligned in optional HIT ENT(OUT ) arguments 

7.3 Computational Functions 

7.3.1 Array Location Functions 

HPF generalizes the Fortran 90 MAXLOC and MINLOC intrinsic functions with an optional 
DIM parameter for finding the locations of maximum or minimum elements along a given 
dimension. This is analogous to the optional DIM argument in the MAXVAL and KINVAL 

intrinsics. Table 7.3 summarizes the array location functions. 

Function 

MAXLOC 

MULac 

Table 7.3 

Array location functions 

Value returned 

Location of a maximum value in an array (intrinsic) 
Location of a minimum value in an array (intrinsic) 

7.3.2 Bit Manipulation Functions 

HPF adds an elemental intrinsic function, ILEN, that computes the number of bits needed 

to store an integer value. ILEN was included as an intrinsic because of its use in rounding 
an integer up or down to the nearest power of two, a role that was deemed quite im­

portant. Three other elemental, bit-manipulation functions are included in the library: 
LEADZ computes the number of leading zero bits in an integer's representation; POPCNT 

counts the number of one bits in an integer; POPPAR computes the parity of an integer. 

Table 7.4 summarizes the new bit manipulation functions. 
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Function 

ILEI 

LEADZ 

POP CIT 

POPPAR 

Table '7.4 
Bit manipulation functions 

Value returned 

N umber of bits to store an integer (intrinsic ) 
N umber of leading zeros 

Number of one bits 

Parity of an integer 

7.3.3 Array Reduction Functions 
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HPF adds additional array reduction functions that operate in the same manner as the 

Fortran 90 SUM and ANY intrins ic functions. The new reduction functions are IAL L, 
IANY, IPARI TY , and PARITY, which correspond to the commutative , associative binary 

operations IAND, lOR, IEOR, and . NEQV. respectively. Thus: 

• IALL( (/ 7,3,10 /) ) has the value 2. 

• IAHY( (/ 7,3,10 /) ) has the value 15. 

• IPARITY( (/ 7,3,10 /) ) has the value 14. 

• PARITY( (/ T ,F,F , T, T /) ) has the value . TRUE . 
• PARITY( (/ T,F,F,T,F /) ) has the value .FALSE. 

In the specifications of these functions and the prefix, suffix, and combining scatter 

functions in Appendix B, the terms "XXX reduction" are used, where XXX is one of the 
reduction functions defined above or the Fortran 90 array reduction intrinsics. These 

are defined by means of an example. The IAND reduction of all the elements of ARRAY 

for which the corresponding elements of MASK are true is the scalar integer computed in 

RESULT by 

R ESULT = IAND_IDENTITY_ELEMENT 

DO I_1 = LBDUllD(AR R AY,l) , UBDUND(ARRAY,l) 

DO I_N = LBDUID(ARRAY,I), UBOUND(ARRAY,I) 

IF ( MASKCI_1,I_2, ... ,I_I) } � 

RESULT = IAND( RESULT, ARRAYCI_l,I_2, ... ,I_H) 

END DO 

END DO 
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Function 

IALL 
IANY 
IPARITY 
PARITY 

Table 7.5 

Array reduction functions 

Value returned 

Bitwise logical AND reduction 
Bitwise logical OR reduction 
Bitwise logical EOR reduction 
Logical EOR reduction 

Chapter 7 

Here, N is the rank of ARRAY and IAND-IDENTITLELEMENT is the integer that has all bits 
equal to one. (The interpretation of an integer as a sequence of bits is given in Section 
13.5.7 of the Fortran 90 standard. ) The other three reductions are similarly defined. The 
identity elements for lOR and IEOR are zero. The identity element for PARITY is . FALSE. 

Table 7.5 lists the new array reduction functions. 

7.3.4 Array Combining Scatter Functions 

Suppose that A is the array [ 10 20 30 ] , X is the array [ 1 2 3 4 ] , and V is the 
array [ 3 2 1 ] . In Fortran 90, one may write the array assignment 

X(V) = A 

after which X has the value [ 30 20 10 4 ] . If, however, the elements of V are not 
all different, the assignment is not standard-conforming in Fortran 90 (or HPF ). The 
combining scatter functions, in effect, allow duplicated indices and provide a means of 
specifying how elements sent to the same position in the result are to be combined. Thus, 
the combining scatter functions are generalized array reductions in which completely 
general, but nonoverlapping, subsets of array elements can be combined. 

There is a scatter function for each of twelve reduction operations. These functions all 

have the form 

XXX_SCATTER(ARRAY, BASE, INDX1, . . .  , INDXn, MASK) 

The allowed values of XXX are ALL, ANY, COPY, COUNT, IALL, IANY, IPARITY, MAXVAL, 
HUVAL, PARITY, PRODUCT, and SUM. 

The result has the same shape and type as BASE. In fact, the result is equal to BASE 
in positions for which no elements of ARRAY arrive. 

The source data come from ARRAY, and the integer INDX arguments must be con­
formable with it. The number of INDX arguments must equal the rank of BASE. For 
example, if ARRAY has rank two and BASE has rank three, then for all valid subscripts 

Copyrighted Material 



Intrinsic and Library Procedures 209 

I and J, ARRAY (I. J) contributes to element ( INDU (I. J). INDX2 (I, J). INDX3(I. J) 
of the result. 

Except for COUNT...SCATTER, ARRAY and BASE are arrays of the same type. (Because it 

returns the number of true elements of ARRAY, COUIT-SCATTER has a logical ARRAY and 

an integer BASE.) 
The optional , logical MASK argument selects elements of ARRAY for inclusion in the 

reduction. Only elements of ARRAY in positions for which MASK is true can contribute 

to the result. (For ALL-SCATTER, ANY -SCATTER, COUNT -SCATTER, and P ARITY -SCATTER, 

ARRAY must be logical. These functions do not have an optional MASK argument. ) 
Here is a more precise description of the way the result is computed. For every element 

a in ARRAY for which the MASK element is true there is a corresponding element in each 
of the IHOX arrays. Let SI be the value of the element of INOU that is indexed by the 

same subscripts as element a of ARRAY. More generally, for each j = 1,2, ... , n, let Sj be 
the value of the element of IHOXj that corresponds to element a in ARRAY, where n is the 

rank of BASE. The integers Sj, j = 1, . .. , n, form a subscript selecting an element of BASE: 

BASE( SI,S2, ... ,Sn). Unless element a is masked out by the optional MASK argument, 
(SI, S2, ... , sn) must be a valid subscript for BASE. 

Thus the IHOX arrays establish a mapping from all the elements of ARRAY onto se­
lected elements of BASE. Viewed in the other direction, this mapping associates with 

each element b of BASE a set 5 of elements from ARRAY. 
Because BASE and the result are conformable, for each element of BASE there is a 

corresponding element of the result. 
If S is empty , then the element of the result corresponding to the element b of BASE 

has the same value as b. 
If S is non-empty, then the elements of S will be combined with element b to produce 

an element of the result. For every combining-scatter function except COPy...sCATTER, 

this combining is done by the corresponding reduction function. As an example , for 

SUM...sCATTER, if the elements of S are ai, ... , am, then the element of the result corre­

sponding to the element b of BASE is the result of evaluating SUM ( (/ ai, a2, . . . , am, bf) ) . 
For C OPY -SCATTER, one of the elements of S is chosen in a system-dependent way. 

Note that, since a scalar is conformable with any array, a scalar may be used in place 

of an 110X array, in which case one hyperplane of the result is selected. See the example 

below. 
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Example 7.3 If 

[ 1 2 3 ] 
A is the array 4 5 6 ; 

7 8 9  
B is the array [=� =� =:]; 

-7 -8 -9 

then 

o 

[ 1 1 1
] I1 is the array 2 1 1 ; 

3 2 1 
I2 i, th' u'"Y [: : n 

SUM....5CATTER(A, B J I1, I2) has the value [
1
: -: -� ] ; 

o -8 -9 

SUM....5CATTER(A, B, 2, I2}hasthe value [;� -� =:]; 
-7 -8 -9 

SUM....5CATTER(A, B, I1, 2) has the value [=� 
2

� =:]; 
-7 -1 -9 

SUM....5CATTER(A, B, 2, 2) has the value [=� �� =:] 
-7 -8 -9 

Table 7.6 l ists the combining scatter functions. 

7.3.5 Array Prefix and Suffix Functions 

In a prefix function, or scan, of a vector, each element of the result is a function of the 
elements of the vector that precede it. Similarly, in a suffix function each element of the 
result is a function of the elements in the vector that follow it. For instance, SUM...PREFIX( 
(! 1, 2, 3, 4 /) ) has the value [1 3 6 10]. Parallel implementations of these 
functions are possible. They are imp ort ant in building efficient parallel algorithm on 
graphs and other general data structures. Because they are so useful , and because their 
efficient parallel implementation may best be done for some machines at programming 
levels below that of HPF, they have been included in the library. 

These functions provide prefix and suffix operations on arrays and subarrays. The 

functions all have the form 
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Function 

ALL...sCATTER 
ANy...sCATTER 
COPy...sCATTER 

COUXT ...sCATTER 

IALL...sCATTER 
IANY ...sCATTER 
IP ARITY ...sCATTER 
MAXVAL...sCATTER 
MINVAL...sCATTER 
PARITy...sCATTER 
PRODUCT ...sCATTER 
SUM...sCATTER 

Table 7.6 
Combining scatter functions 

Value returned 

Scatter of logical array, combining with logical AND 
Scatter of logical array, combining with logical OR 
Scatter of array, combining by (processor-dependent) 

selection 

Scatter of logical array, counting number of . TRUE. 
elements 

Scatter of integer array, combining with bitwise AND 
Scatter of integer array, combining with bitwise OR 
Scatter of integer array, combining with bitwise EOR 

Scatter of array, combining by taking the maximum 
Scatter of array, combining by taking the minimum 
Scatter of logical array, combining with logical EOR 
Scatter of array, combining by taking the product 

Scatter of array, combining by taking the sum 

XXX_PREFIX ( ARRAY , DIM, MASK, SEGMENT, EXCLUSIVE) 

XXX_SUFFIX ( ARRAY , DIM, MASK, SEGMENT, EXCLUSIVE) 

211 

The allowed values of XXX are ALL, ANY, COPY, COUNT, IALL, IANY, IPARITY, MAXVAL, 
MINVAL, PARITY, PRODUCT, and SUM. 

A detailed and precise description of these routines will be given below. But to begin, 

we give some examples to convey the general idea . In all of them we assume that: 

B has the value 

M has the value 

[ 1 2 

6 7 

11 12 

[� 

T T 
F T 
F T 

S h"" the value [ � 
T F 

T T 
T T 

3 
4 5

] 
8 9 10 ; 
13 1

4 
1
5 T 

n 
T 
F 

F 

� ] 
F 
T 

The elements of ARRAY are scanned in increasing (prefix) or decreasing (suffix) array 

element order. 
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Example 7.4 SUM..PREFIX(B) has the value 

SUM...sUFFIX(B) has the value 119 100 78 
[ '20 102 81 

113 93 70 

U 
57 
53 

44 

20 42 67 95 ] 
27 50 76 105 . 
39 63 90 120 
30 ] 
25 . 0 

15 

If DIM is present , one dimensional scans occur along the indicated dimension. 

Chapter 7 

Example 7.5 SUM..PREFIX(B, DIM=2) has the value [ � 1: 2� �� ��]. 0 
11 23 36 50 65 

If MASK is present, only the elements of ARRAY corresponding to true elements of MASK 
can contribute to the result. 

[ 1 14 17 42 56 ] 
Example 7.6 SUM..PREFIX (B. MASK=M) has the value 1 14 25 51 66 . 0 

12 14 38 51 66 

If SEGMENT is present, then it divides ARRAY up into subarrays that are scanned inde­
pendently. Each such subarray corresponds to a run of contiguous identical values in 

SEGMENT. 

Example 7.7 SUM..PREFIX (B. SEGMENT=S) returns [ � �� 
11 32 

3 4 5 ] 
8 13 15 . 0 

21 14 15 

If EXCLUSIVE is present and is true, then an element of ARRAY does not contribute to 

the corresponding element of the result; only elements that precede (prefix) or succeed 
(suffix) it can contribute to the corresponding element of the result. 

Example 7.8 SUM..PREFIX (B. SEGMElfT=S. EXCLUSIVE=. TRUE. ) has the value 
[011000] 

° 13 ° 4 5 . 0 

o 20 8 0 ° 

Here is a precise discussion of how these routines function . When comments below 

apply to both prefix and suffix forms of the routines, we will refer to them as YYYFIX 

functions. 
The arguments DIM, MASK, SEGMENT, and EXCLUSIVE are optional. The COPY _YYYFIX 

functions do not have MASK or EXCLUSIVE arguments. The ALL_YYYFIX, ANY _YYYFIX, 
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COUJIT_YYYFIX, and PARITY_YYYFIX functions do not have MASK arguments. Their ARRAY 

argument must be of type logical; it is denoted MASK in their specifications in Appendix B. 
The arguments MASK and SEGMENT must be of type logical . SEGMEllT must have the 

same shape as ARRAY . MASK must be conformable with ARRAY. EXCLUSIVE is a logical 
scalar. DIM is a scalar integer between one and the rank of ARRAY. 

The result has the same shape as ARRAY, and , with the exception of COUNT_YYYFIX, 
the same type and kind type parameter as ARRAY. (The result of COUllT _YYYFIX is default 

integer . )  
In all cases, every element of the result is determined by combining the values of certain 

selected elements of ARRAY. For prefix and suffix functions based on array reduction 
functions, the combining is done by the named reduction. For example , SUM.PREFIX 
combines elements by addition. COPY.PREFIX chooses one of the selected elements in a 
system-dependent way. The optional arguments affect the selection of elements of ARRAY 

for each element of the result; the selected elements of ARRAY are said to contribute to 
the result element. This section describes fully which elements of ARRAY contribute to a 
given element of the result. 

Ifno elements of ARRAY are selected for a given element of the result, that result element 
is set to a default value that is specific to the particular function and is described in its 

specification. 

For any given element r of the result, let a be the corresponding element of ARRAY. 

Every element of ARRAY contributes to r unless disqualified by one of the following rules . 

1. If the function is XXX.PREFIX, no element that follows a in the array element ordering 
of ARRAY contributes to r. If the function is XXX...sUFFIX, no element that precedes a in 
the array element ordering of ARRAY contributes to r. 

2. If the DIM argument is provided , an element z of ARRAY does not contribute to r 

unless all its indices, excepting only the index for dimension DIM, are the same as the 

corresponding indices of a. (It follows that if the DIM argument is omitted , then ARRAY, 
MASK, and SEGMENT are processed in array element order, as if temporarily regarded as 

rank-one arrays. If the DIM argument is present , then a family of completely independent 

scan operations is carried out along the selected dimension of ARRAY.) 

3. If the MASK argument is provided , an element z of ARRAY contributes to r only if the 
element of MASK corresponding to z is true. (It follows that array elements corresponding 
to positions where the MASK is false do not contribute anywhere to the result. However, 
the result is nevertheless defined at all positions, even positions where the MASK is false . )  
4 .  If  the SEGMEIJT argument is  provided, an element z of  ARRAY does not contribute if 

there is some intermediate element w of lRRA Y, possibly z itself, with all of the following 

properties: 
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• If the function is XXX...PREFIX, w does not precede z but does precede a in the array 
element ordering; if the function is XXX...sUFFIX, w does not follow z but does follow a 

in the array element ordering. 
• If the DIM argument is present, all the indices of w, excepting only the index for 
dimension DIM, are the same as the corresponding indices of a. 

• The element of SEGMENT corresponding to w does not have the same value as the 
element of SEGMENT corresponding to a. (In other words, z can contribute only if there 
is an unbroken string of SEGMENT values, all alike, extending from z through a . ) 

5. If the EXCLUSIVE argument is provided and is true, then a itself does not contribute 
to r. 

These general rules lead to the following important cases: 

Case (i): If ARRAY has rank one, element i of the result of XXX...PREFIX(ARRAY) is de­
termined by the first i elements of ARRAY; element SIZE(ARRAY) -i + 1 of the result of 
XXX...sUFFIX(ARRAY) is determined by the last i elements of ARRAY. 

Case (ii): If ARRAY has rank greater than one, then each element of the result of 
XXX...PREFIX(ARRAY) has a value determined by the corresponding element a of the ARRAY 
and all elements of ARRAY that precede a in array element order. For XXX...sUFFIX, a is 
determined by the elements of ARRAY that correspond to or follow a in array element 
order. 

Case (iii): Each element of the result of XXX...PREFIX (ARRAY, MASK=MASK) is determined 
by selected elements of ARRAY, namely the corresponding element a of the ARRAY and 
all elements of ARRAY that precede a in array element order, but an element of ARRAY 

may contribute to the result only if the corresponding element of MASK is true. If this 
restriction results in selecting no array elements to contribute to some element of the 
result, then that element of the result is set to the default value for the given function. 

Case (iv): Each element of the result of XXX...PREFIX(ARRAY ,DIM=DIM) is determined by 
selected elements of ARRAY, namely the corresponding element a of the ARRAY and all ele­
ments of ARRAY that precede a along dimension DIM; for example, in SUM...PREFIX(A(l:N, 

l:N) , DIM=2) , result element (i1,i2 ) could be computed as SUM(A(i1,1: i2» . More 

generally, in SUM...PREFIX(ARRAY, DIM) , result element i1,i2, ... ,iDIM, ... ,in could be 
computed as SUM(ARRAY( i1,i2, ... ,:iDIM, ... ,in » . (Note the colon before iDIM in 
that last expression. ) 

Case (v): If ARRAY has rank one, then element i of the result of XXX...PREFIX(ARRAY, 

EXCLUSIVE= . TRUE. ) is determined by the first i-I elements of ARRAY. 

Case (vi): The options may be used in any combination. 
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A new segment begins at every transition from false to true or true to false; thus a 

segment is indicated by a maximal contiguous subsequence of like logical values: 

(/T, T, T,F, T, F, F, F, T,F, F, T/) 
seven segments 

This organization deserves some comment. One library that influenced HPF delimited 

the segments by indicating the start of each segment. Another delimited the segments 

by indicating the stop of each segment. Each method had its advantages. There was also 
the question of whether the convention should change when performing a suffix rather 

than a prefix. HPF adopted the symmetric representation above for two reasons: 

1. It is symmetrical, in that the same segment specifier may be meaningfully used for 
prefix and suffix without changing its interpretation (start versus stop). 
2. The start-bit or stop-bit representation is easily converted to this form by using 
PARITY -PREFIX or PARITy...sUFFIX. These might be standard idioms for a compiler to 
recognize : 

SUM_PREFIX(FOO, SEGMEIT=PARITY_PREFIX(5TART_BIT5» 
5UM_PREFIX(FOO, 5EGMENT=PARITY_5UFFIX(STOP_BIT5» 
5UM_5UFFIX(FOO, 5EGMENT=PARITY_5UFFIX(START_BIT5» 

SUM_SUFFIX(FOO, SEGMENT=PARITY_PREFIX(5TOP_BIT5» 

Table 7.7 lists the new array prefix and suffix functions. 

7.3.6 Array Sorting Functions 

HPF includes procedures for sorting multidimensional arrays. These are structured as 
functions that return sorting permutations. An array can be sorted along a given axis, 

or the whole array may be viewed as a sequence in array element order. The sorts are 

stable, allowing for convenient sorting of structures by major and minor keys. 
Suppose that ARRAY has shape [4 5 6]. 

5 = GRADE_DOWI(ARRAY) 

returns an integer array of shape [3 120 ] in S. It is such that if j < k then the element 

ARRAY (5 (1, j), 5 (2, j), 5 (3, j» is greater than or equal to ARRAY (5 (1 , k), 5 (2, k) , 
S(3,k». And if these two elements are equal, then ARRAY(5(1 , j) , S(2, j) , 5(3, j» 

precedes ARRAY(S(l, k) ,S(2 ,k) ,S(3 , k» in the array element ordering of ARRAY. 

If ARRAY has shape [4 5 6 ] , and the optional argument is present, as in 

5 = GRADE_OOWN(ARRAY, OIM=2) 
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Function 

ALL....PREFIX 

ALL...sUFFIX 

ANY....PREFIX 

ANy...sUFFIX 

COPY...PREFIX 

COPy...sUFFIX 

COUNT ....PREFIX 

COUllT ...sUFFIX 

IALL....PREFIX 

IALL...sUFFIX 
IANY....PREFIX 

IANy...sUFFIX 
IP ARITY ....PREFIX 

IPARITy...sUFFIX 

MAXVAL....PREFIX 

MAXVAL...sUFFIX 

MINVAL.J>REFIX 

MIllVAL...sUFFIX 

PARITY....PREFIX 

PARITy...sUFFIX 

PRODUCT ...PREFIX 
PRODUCT ..sUFFIX 

SUM....PREFIX 

SUM...sUFFIX 

Table 7.7 

Prefix and suffix functions 

Value returned (for each element) 

Logical AND of preceding elements in array 

Logical AND of following elements in array 
Logical OR of preceding elements in array 
Logical OR of following elements in array 
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Selected (processor-dependent) value from preceding 
array elements 

Selected (processor-dependent) value from following 

array elements 
N umber of preceding . TRUE. elements in array 

N umber of following . TRUE. elements in array 
Bitwise AND of preceding elements in array 
Bitwise AND of following elements in array 
Bitwise OR of preceding elements in array 
Bitwise OR of following elements in array 
Bitwise EOR of preceding elements in array 

Bitwise EOR of following elements in array 
Maximum of preceding elements in array 

Maximum of following elements in array 
Minimum of preceding elements in array 

Minimum of following elements in array 

Logical EOR of preceding elements in array 
Logical EOR of following elements in array 

Product of preceding elements in array 
Product of following elements in array 

Sum of preceding elements in array 
Sum of following elements in array 
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then the result has the same shape as A RR AY : [4 5 6]. For ever y i and k the vector 
ARRAY( i, SCi, :, k), k ) is sorted in descending order. Stability means that if 

ARR AYC i, SCi, m, k) , k) isequaltoARRAYC i, SCi, m+l, k), k ) then S(i, m, 

k) must be smaller than SCi, m+1, k). 
Because of the stability requirement , GRADE...DOWN (AC 1: N» does not, in general, equal 

GRADE_UP (A (N: 1 : -1) ). Indeed , these results are equal if and only if A contains no 

duplicate values. 

Example 7.9 The st ability requirement allows one to cascade grading operations in 

order to sort on multiple fields. For example, consider the following code: 

TYPE PERSOI 
INTEGER AGE 
CHARACTER (LEN=50) NAME 

END TYPE PERSON 
TYPE(PERSON), DIMENSION(100000) 
INTEGER, DIMENSION(100000) 

v = GRADE_UP (MEMBERS%AGE. DIM=l) 

MEMBERS, ROSTER 
V 

V = V (GRADE_UP (MEMBERS (V)%NAME, DIM=l» 
ROSTER = MEMBERS(V) 

This would cause ROSTER to be a rearrangement of MEMBERS that is sorted primarily by 
name and secondarily by age ( that is, members with the same name are grouped together 

in order of ascending age). Note that the minor sort field is graded first, and that more 

statements like the second one may be inserted to sort on additional fields. Without the 

use of the DIM argument, GRADE_UP returns a rank-two result of shape [ 1 1 00000 ] , 
which would make the example more cumbersome. 

To list members with the same name in descending order of age, change the first 

GRADE_UP to GRADE...DOWN: 

o 

V = GRADE_DOWN (MEMBERS%AGE , DIM=1) 
V = V(GRADE_UP (MEMBERS (V)%NAME , DIM=l» 
ROSTER = MEMBERS(V) 

Table 7.8 summarizes the sorting functions. 
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Function 

GRADE...DOWN 

GRADE_UP 

Table 7.8 

Sorting functions 

Value returned 

Permutation that sorts into descending order 
Permutation that sorts into ascending order 

7.4 Alphabetical List of Intrinsic and Library Procedures 

Chapter 7 

Tables 7.9 through 7. 11 contain an alphabetical listing of all HPF library pro cedures and 
the intrinsics that are new to HPF or changed from Fortran 90. Intrinsic procedures are 
marked with an asterisk (*); subroutines are marked with a dagger (t) The arguments 
shown are the names that must be used for keywords when using the keyword form for 
actual arguments. Many of the argument keywords have names that are indicative of 
their usage, as is the case in Fortran 90. Detailed descriptions of all the procedures 
appear in Appendix B. 

Copyrighted Material 



Intrinsic and Library Procedures 219 

Function Optional arguments 

ALL-PREFIX (MASK, DIM, SEGMENT, EXCLUSIVE) DIM, SEGMENT, EXCLUSIVE 

ALL�CATTER (MASK, BASE, INDX1 ... , IIDXn) 

ALL�UFFIX (MASK, DIM, SEGMENT, EXCLUSIVE) DIM, SEGMENT, EXCLUSIVE 

ANY-PREFIX (MASK, DIM, SEGMENT, EXCLUSIVE) DIM, SEGMENT, EXCLUSIVE 

AXY�CATTER (MASK, BASE, INDX1, 

INDXn) 
. . .  , 

ANY�UFFIX (MASK, DIM, SEGMENT, EXCLUSIVE) 

COPY-PREFIX(ARRAY, DIM, SEGMENT) 

COPY�CATTER (ARRAY, BASE, INDX1, 

INDXn, MASK) 

COPY�UFFIX (ARRAY, DIM, SEGMENT) 

COUNT-PREFIX (MASK, DIM, SEGMENT, 

EXCLUSIVE) 

COUNT�CATTER(ARRAY, BASE, IIDX1, 

INDXn, MASK) 

COUNT�UFFIX(MASK, DIM, SEGMENT, 

EXCLUSIVE) 

GRADEJDOWN(ARRAY, DIM) 

GRADE_UP (ARRAY , DIM) 

HPF-ALIGNMENT(ALIGNEE, LB, UB, STRIDE, 

AXIS-KAP, IDENTITY-HAP, DYNAMIC, 

NCOPIES) t 

HPFJDISTRIBUTION(DISTRIBUTEE, AXIS_TYPE, 

AXIS..INFO, PROCESSORS...RANK, 

PROCESSORS�HAPE) t 

HPF_TEMPLATE (ALIGNEE, TEMPLATE...RANK, LB, 

UB, AXIS_TYPE, AXIS..INFO, 

NUMBER-ALIGNED, DYNAMIC) t 

IALL(IARRAY, DIM, MASK) 

Table 7.9 
HPF intrinsic and library procedures 

DIM, SEGMENT, EXCLUSIVE 

DIM, SEGMENT 

MASK 

DIM, SEGMENT 

DIM, SEGMENT, EXCLUSIVE 

MASK 

DIM, SEGMENT, EXCLUSIVE 

DIM 

DIM 

LB, UB, STRIDE, AXIS-HAP, 

IDENTITY-MAP, DYNAMIC, 
NCOPIES 

AXIS_TYPE, AXIS..INFO, 

PROCESSORS...RANK, 
PROCESSORS ...sHAPE 

TEMPLATE...RANK, LB, UB, 

AXIS_TYPE, AXIS..INFO, 

NUMBER-ALIGNED, DYNAMIC 

DIM, MASK 
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Function 

IALLJ?REFIX(ARRAY, DIM, MASK, SEGMENT, 

EXCLUSIVE) 

IALL-SCATTER(ARRAY, BASE, INDX1, ... , 

INDXn, MASK) 

IALL-SUFFIX(ARRAY, DIM, MASK, SEGMENT, 

EXCLUSIVE) 

IANY(IARRAY, DIM, MASK) 

IANYJ?REFIX(ARRAY, DIM, MASK, SEGMENT, 

EXCLUSIVE) 

IANY-SCATTER(ARRAY, BASE, INDX1, . . . , 

INDXn, MASK) 

IANY-SUFFIX(ARRAY, DIM, MASK, SEGMENT, 

EXCLUSIVE) 

ILEN(I) * 

IPARITY(IARRAY, DIM, MASK) 

IPARITYJ?REFIX(ARRAY, DIM, MASK, SEGMENT, 
EXCLUSIVE) 

IPARITY-SCATTER(ARRAY, BASE, INDX1, ... , 

INDXn, MASK) 

IPARITY-SUFFIX(ARRAY, DIM, MASK, SEGMENT, 

EXCLUSIVE) 

LEADZ(I) 

MAXLOC(ARRAY, DIM, MASK) * 

MAXVALJ?REFIX (ARRAY , DIM, MASK, SEGMENT, 

EXCLUSIVE) 

MAXVAL-SCATTER(ARRAY, BASE, INDX1, ... , 

INDXn, MASK) 

MAXVAL-SUFFIX(ARRAY, DIM, MASK, SEGMENT, 

EXCLUSIVE) 

MINLOC(ARRAY, DIM, MASK) * 

Table 7.10 
HPF intrinsic and library procedures (continued) 

Optional arguments 

DIM, MASK, SEGMENT, 

EXCLUSIVE 

MASK 

DIM, MASK, SEGMENT, 
EXCLUSIVE 

DIM, MASK 

DIM, MASK, SEGMENT, 

EXCLUSIVE 

MASK 

DIM, MASK, SEGMENT, 

EXCLUSIVE 

DIM, MASK 

DIM, MASK, SEGMENT, 
EXCLUSIVE 

MASK 

DIM, MASK, SEGMENT, 

EXCLUSIVE 

DIM, MASK 

DIM, MASK, SEGMENT, 

EXCLUSIVE 

MASK 

DIM, MASK, SEGMENT, 

EXCLUSIVE 

DIM, MASK 
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Function 

MINVAL-PREFIX(ARRAY , DIM, MASK, SEGMENT, 

EXCLUSIVE) 

MINVAL.sCATTER(ARRAY, BASE, INDXl, . .. , 

INDXn, MASK) 
MINVAL.sUFFIX(ARRAY , DIM, MASK, SEGMENT, 

EXCLUSIVE) 

NUMBERJDF-PROCESSORS(DIM) * 

PARITY (MASK , DIM) 

PARITY-PREFIX(MASK , DIM, SEGMENT, 

EXCLUSIVE) 
PARITy.sCATTER(MASK, BASE, INDXl, 

INDXn) 

PARITy.sUFFIX(MASK, DIM, SEGMENT, 
EXCLUSIVE) 

POPCNT(I ) 

POPPAR( I) 

... , 

PROCESSORS.sHAPE () * 

PRODUCT-PREFIX(ARRAY, DIM, MASK, SEGMENT, 
EXCLUSIVE) 

PRODUCT .sCATTER( ARRAY, BASE, INDX1, ... , 

INDXn, MASK) 
PRODUCT.sUFFIX(ARRAY, DIM, MASK, SEGMENT, 

EXCLUSIVE) 

SUM-PREFIX(ARRAY, DIM, MASK , SEGMENT , 
EXCLUSIVE) 

SUMJ)CATTER(ARRAY, BASE, IIDX1, .. . , 
INDXn, MASK) 

SUMJ)UFFIX(ARRAY, DIM, MASK, SEGMENT, 
EXCLUSIVE) 

Table 7.11 

HPF intrinsic and library procedures (continued) 

Optional arguments 

DIM , MASK , SEGMENT, 

EXCLUSIVE 

MASK 

DIM, MASK, SEGMENT, 
EXCLUSIVE 

DIM 

DIM 

DIM, SEGMENT, EXCLUSIVE 

DIM, SEGMENT, EXCLUSIVE 

DIM, MASK, SEGMENT, 
EXCLUSIVE 

MASK 

DIM, MASK, SEGMENT, 

EXCLUSIVE 

DIM, MASK, SEGMENT, 
EXCLUSIVE 

MASK 

DIM, MASK, SEGMENT, 

EXCLUSIVE 
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8 Extrinsic Procedures 

Fortran, wonderful as it may be, is not the only programming language in the world; and 

HPF is not the only way to get good performance out of a parallel computer. 

One important competing model is the so-called "SPMD sty le" in which many copies of 

the same program execute at the same time, one on each available processor. ("SPMD" 

stands for "Single Program Multiple Data . " ) Communication of data among the various 

running copies of the program is managed explicitly by the programmer, perhaps through 
the use of common data in a shared memory or through a library of subroutines that 

send and receive messages (packets of data) . 

It is beyond the scope of HPF to define all the facilities needed for SPMD program­

ming. However, HPF provides a mechanism by which HPF programs may call procedures 

written in other parallel programming styles or other programming languages. Because 

such procedures are themselves outside HPF, they are called extrinsic procedures. HPF 

simply provides a way of labeling external procedures as being non-HPF; indeed, there 

may be several different labels indicating several different kinds of extrinsic procedure. 

This allows an HPF compiler to generate the right kind of subroutine linkage, to convert 

data formats if necessary, and to rely on specific features of the "contract" between HPF 

routines and any specific kind of non-HPF procedure. 

A called procedure that is written in a language other than HPF should be declared 

EXTRINSIC within an HPF program that calls it. The EXTRINSIC prefix declares what 

sort of interface should be used when calling indicated subprograms. For example: 

INTERFACE 

EXTRINSIC(COBOL) SUBROUTINE PRINT_REPORT(DATA_ARRAY) 

REAL DATA_ARRAY( : , : )  

END SUBROUTINE PRINT_REPORT 

END INTERFACE 

might be used to indicate the use of a subroutine written in COBOL. Note, however, that 

this is merely an illustrative example; the keyword COBOL itself is not actually defined by 

HPF. Exactly which keywords are supported depends on the particular HPF language 

processor. 
Here is a perhaps more realistic example: 

INTERFACE 

EXTRINSIC(C_LOCAL) SUBROUTINE MUNCH_COLUMNS(A) 

REAL A(:,:) 

!HPF$ DISTRIBUTE A(*,BLOCK) 

END SUBROUTINE MUNCH_COLUMNS 
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END INTERFACE 

Here the called routine is presumably SPMD code written in C. If the actual argument for 
a call to MUNCH_COLUMNS is 100 x 100 and there are four processors, then each copy of the 
C procedure, one on each processor, will receive a 100 x 25 portion of the array, namely 

the elements that are mapped to the processor running that copy of MUNCH_COLUMNS. If 

there were instead 8 processors, then the first seven processors would receive 100 x 13 
portions of the actual argument and the last processor a 100 x 9 portion, again exactly 
the elements mapped to that processor. 

An extrinsic procedure might indeed be written in any of a number of languages and 
programming styles: 

• A single-thread-of-control language where one copy of the procedure is conceptually 

executing and there is a single locus of control within the program text. Such a language 
might be specifically designed for parallel implementation (C* is one example ) .  On the 

other hand, it might be a perfectly ordinary sequential language ; a plausible scenario is 
an HPF program calling user interface code (perhaps for X Windows) written in C. 

• A multiple-thread-of-control language, perhaps with dynamic assignment of loop it­

erations to processors or explicit dynamic process forking. When a procedure in such a 

language is first called, a single thread of control enters it, but it may spawn additional 
threads, resulting in multiple loci of control within the procedure or multiple copies of the 

p rocedure running on different processors. It is permissible for an extrinsic procedure to 

use any sequential or parallel control discipline within itself, and to remap or rearrange 
data among the processors as it pleases, so long as it leaves things in good order and 

reverts to a single conceptual thread of control on return to its HPF caller. (Exactly 

what this means is described more carefully in Section 8.l.2.) 
• Any programming language targeted to a single processor, with the understanding 

that, the instant a procedure is called, there will be many copies of the procedure exe­

cuting, one on each processor ("SPMD mode"). HPF refers to a procedure written in 

this fashion as a local procedure, because there is a local copy on each processor that 
operates principally on the data in that processor's local memory. A local procedure 

might be written in FORTRAN 77, Fortran 90, C, C++, Ada, or Pascal, for example. A 
particularly interesting possibility is that a local procedure might be written in (a special 

subset of ) HPF! In this situation we sometimes call ordinary HPF code global code in 

order to distinguish it from local code written in HPF. 
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EXTRINSIC(HPF_LOCAL) SUBROUTINE MUNCH_COLUMIS(A) 
REAL A(:,:) 

!HPFS INDEPEIDENT, NEW( I ) 

INTEGER I, J 

DO J = 1, UBOUND(A,2) 
I = 1 

SEARCH: DO WHILE (I <= UBOUND(A,l» 
IF ( A( I , J ) /= 0.0) THEN ! Found a nonzero element 

A (1:1-1,J) = A(I,l) 
EXIT SEARCH 

EID IF 
I = 1+1 

END DO SEARCH 
END DO 
END SUBROUTINE MUNCH_COLUMNS 

Figure 8.1 
Local HPF code for the IWJICH..counl.S example 

SUBROUTINE MUICH_COLUMNSeA) 

REAL A(: ,:) 

!HPFS DISTRIBUTE Ae.,BLOCK) 

INTEGER I(UBOUND(A,2», 1, K 

FORALL eJ = 1:UBOUID(1,2» 

225 

1(1) = MIILOC( (/ (K, K = 1, UBOUID(A,l» /), MASK = A(:,l) ) 

A(l:I(l)-l) = A(IeJ» 

END FORALL 
END SUBROUTINE MUNCH_COLUMNS 

Figure 8.2 
Global HPF code for the tmlCH..cOLUIIIS example 
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The previous example of an interface to local C code is easily changed to indicate an 

interface to local code written in HPF: 

!HPF$ 

INTERFACE 

EXTRINSIC(HPF_LOCAL) SUBROUTINE MUNCH_COLUMIS(A) 

REAL A(:.:) 

DISTRIBUTE A(*,BLOCK) 

END SUBROUTINE MUNCH_COLUMNS 

END INTERFACE 

If the task of MUNCH_COLUMNS is to find the first nonzero element in each column and 

overwrite the leading zeros with that value, then the code for the local routine might 
appear as in Figure 8.1. (Note the use of an INDEPENDENT directive on a DO loop and of 
array assignment, both of which are permitted in local HPF code . While these constructs 

might not execute on multiple processors, use of these features could help a compiler to 
generate good vector code, for example. A DISTR.IBUTE directive is not included , despite 
the fact that one appears in the interface block in the caller . ) 

While MUNCH_COLUMNS could be expressed as global HPF code (see Figure 8.2), the 

local version might be faster because it expresses and exploits the idea that only a 

prefix of each column needs to be examined and processed. Each processor might take a 

different amount of time to process its first column; the local code clearly indicates that 

the processors synchronize only after processing all columns , not after processing each 

column. (A really smart HPF compiler might be able to exploit the same trick when 

compiling the global code shown in Figure 8.2, but we doubt that HPF implementations 

will achieve that level of optimization in the near future. ) 

The next section describes the extrinsic procedure interface as seen by a calling routine 

written in HPF. This interface is used when calling any extrinsi c procedure .  The remain­

der of the chapter discusses the more specific topic of coding an extrinsic procedure in 

the SPMD ( local) style. This latter topic is not a required part of the H PF language 

specification. 

8.1 Definition and Invocation of Extrinsic Procedures 

An explicit interface must be provided for each extrinsic procedure entry in the scope 

where it is called, using an interface block . This interface defines the "HPF view" of the 

extrinsic procedure. 
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8.1.1 EXTRINSIC Prefix Syntax 

The form of an extrinsic-prefix (H601) is: 

EXTRIN S I C  ( extrinsic-kind-keyword ) 

where an extrinsic-kind-keyword (H602) is one of: 

HPF 

HPF_LOCAL 

227 

or perhaps some other , system-dependent, keyword . (Only the two keywords HPF and 

HPF -LOCAL are defined by the HPF language specification . ) 
An extrinsic-prefix may appear in a subroutine-stmt or function-simi (as defined in 

the Fortran 90 standard) in the same place that the keyword RECURSIVE might appear. 

See Section 6.3.1 for the extended forms of the grammar rules for function-stmt and 
subroutine-stmt covering this case. 

The extrinsic-kind-keyword indicates the kind of extrinsic interface to be used. (It may 

be helpful to compare this to Fortran 90 KIID parameters for numeric types. However, an 

extrinsic-kind is not integer-valued; it is merely a keyword. ) HPF defines two such key­

words: HPF and HPF -LOCAL. The keyword HPF ...LOCAL is intended for use in calling routines 

coded in the "local HPF" style described in section 8.4. The keyword HPF refers to the in­

terface n ormally used for calling ordinary HPF routines. Thus, writing EXTRINSIC(HPF) 

in an HPF program has ex actly the same effect as not using an EXTRINSIC prefix at all . 

(HPF defines the extrinsic-kind-keyword HPF primarily to set an example for other pro­

gram ming languages that might adopt this style of interface specification . For example, in 

an extended Fortran 90 compiler it would not be redundant to specify EXTRINSIC(HPF), 

though it might be redundant to specify EXTRINSIC ( F90). The C++ language already 
adds a linkage-specification feature to the C ext ern declaration ; the result  is quite sim­
ilar to (and predates) the HPF EXTRINSIC syntax. It would be quite plausible for a 

declaration such as 

ext ern "HPF" crunch_numbers(HPF_matrix<fl oat> a); 

to appear in a C++ program . ) 
Note that any particular HPF implementation is free to support any selection of extrin­

sic kind keywords, or none at all except for HPF itself. (While HPF defines the meaning 
of the extrinsic-kind keyword HPF .LOCAL, a conforming implementation is not required 

to support it. ) 
A subprogram with an extrinsic interface lies outside the scope of HPF . However , 

explicit interfaces to such subprograms must conform to HPF in all respects . HPF data 
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mapping directives may appear in interface blocks for extrinsic procedures even though 

such extrinsic procedures might not be written in HPF; the point is that the caller, which 

is written in HPF, may be bound to observe and enforce such mapping directives . 

Example 8.1 An interface for an ordinary function: 

! HPF$ 

INTERFACE 

EXTRINSIC(HPF_LOCAL) FUNCTION BAGEL(X) 

REAL X(:) 

REAL BAGEL(100) 

DISTRIBUTE (CYCLIC) 

END FUNCTION BAGEL 

END INTERFACE 

X ,  BAGEL 

Function BAGEL is declared to use the interface appropriate for local procedures coded in 

HPF. The caller should ensure that the actual argument has been mapped to a CYCLIC 

distribution. The returned result wil l  be of size 100 and also have a CYCLIC distribution . 
o 

Example 8.2 An interface for an operator: 

!HPF$ 

!HPF$ 

INTERFACE OPERATOR (+) 

EXTRINSIC(C_LOCAL) FUlCTION LATKES(X, y) 

REAL, DIMENSION( : , : )  : :  X 

REAL, DIMENSION(SIZE(X,l), SIZE(X,2» 

ALIGN WITH X : :  Y, Z 

DISTRIBUTE (BLOCK, BLOCK) X 

END FUNCTION LATKES 

END INTERFACE 

RESULT(Z) 

Y, Z 

The addition operator on real matrices is redefined to use a local SPMD procedure, 

coded in C, whose name is LATKES. The arguments must have the same shape .  This local 
procedure expects its arguments to be aligned with a BLOCK, BLOCK distribution; the 
result will be mapped in the same way and will have the same shape as the arguments . 
o 

Example 8.3 An interface for a generic function: 

INTERFACE KNISH 

FUNCTION RKNISH(X) !normal HPF interface 
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REAL XC:), RKIISH 

EID FUiCTIOI RKIISH 

229 

EXTRINSIC(SI SAL ) FUNCTION CKN I SHCX ) 

COMPLEX XC: ) .  CKNISH 
!extrinsic int erf ace 

END FUNCTION CKII SH 

END I NTERFACE 

A generic procedure named KlI SH is declared with two instantiations. The implementa­
tion for a REAL argument is an ordinary HPF procedure, but the implementation for a 

C OMPLEX argument is an extrinsic routine, presumably coded in SISAL. 0 

Overall ,  the intent is that a call to an extrinsic subprogram should behave, as observed 

by a calling program coded in HPF, exactly as if the subprogram had been coded in HPF. 

This is an obligation placed on the implementation of the interface and perhaps on the 
programmer when coding an extrinsic routine. However, it is also desirable to grant 

a certain freedom of implementation strategy so long as the obligation is satisfied. To 
this end an implementation may place certain restrictions on the programmer; moreover, 
each extrinsic-kind-keyword may call for a different set of restrictions. For example, 
an implementation on a parallel processor may find it convenient to replicate scalar 
arguments so as to provide a copy on every processor. This is permitted so long as this 
process is invisible to the caller. One way to achieve this is to place a restriction on the 
programmer who codes the called procedure: on return from the subprogram, all the 
copies of this scalar argument must have the same value. This implies that if the dummy 

argument has IITENT(OUT) or IIlTElfT ( INOUT), then all copies must have been updated 
consistently by the time of subprogram return. 

8.1.2 Requirements on the Called Extrinsic Procedure 

HPF requires a called extrinsic procedure to satisfy the following behavioral requirements: 

1. The overall implementation must behave as if all actions of the caller preceding the 

subprogram invocation are completed before any action of the subprogram is executed; 

and as if all actions of the subprogram are completed before any action of the caller 
following the subprogram invocation is executed. 
2. II/OUT intent restrictions declared in the interface for the extrinsic subroutine must 

be obeyed. 
3. Replicated variables, if updated, must be up dated consistently. More precisely, if a 

variable  accessible to a local subprogram has a replicated representation and is updated 
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by (one or more copies of) the local subroutine, then all copies of the replicated data 
must have identical values when the last processor returns from the local procedure . 
4. No HPF variable is modified unless it could be modified by an HPF procedure with 
the same explicit interface . 

5. When a subprogram returns and the caller resumes execution , all objects accessible 
to the caller after the call are mapped exactly as they were before the call. (Note that, 
as with a non-extrinsic (that is , ordinary HPF) subprogram , actual arguments may be 
copied or remapped in any way, so long as the effect is undone on return from the 
subprogram.) 

6. Exactly the same set of processors is visible to the HPF environment before and after 
the subprogram call. 

The call to an extrinsic procedure that fulfills these rules is semantically equivalent to 
the execution of an ordinary HPF procedure. 

8.2 Coding Local Procedures 

The remainder of this chapter defines a mechanism for coding single-processor local "per­
node" code in single-processor Fortran 90 or in a single-processor subset of HPF; the idea 
is that only data that is mapped to a given physical processor is accessible to that proces­
sor. This allows the programming of MIMD multiprocessor machines in a single-program 
multiple-data (SPMD) style . Implementation-specific libraries may be provided to facil­
itate communication between the physical processors that are independently executing 
this code, but the specification of such libraries is outside the scope of HPF and outside 

the scope of this book. 
From the caller's standpoint, an invocation of an extrinsic procedure from a "global" 

HPF program has the same semantics as an invocation of a regular procedure. The callee 
may see a different picture. This chapter describes a particular set of conventions for 
coding callees in the "local" style in which a copy of the subprogram executes on each 
processor (of which there may be one or many). 

An extrinsic procedure can be defined as explicit SPMD code by specifying the local 
procedure code that is to execute on each processor. HPF provides a mechanism for 

defining local procedures in a subset of HPF that excludes only data mapping direc­
tives, which are not relevant to local code. If a subprogram definition or interface uses 
the extrinsic-kind-keyword HPF ...LOCAL, then an HPF compiler should assume that the 

subprogram is coded as a local procedure. Because local procedures written in HPF 
are thus syntactically distinguished, they may be intermixed unambiguously with global 

HPF code if the implementor of an HPF language processor chooses to support such in-
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termixing. (Thus global and local HPF code might reside together within a single source 
file, for example. An alternate implementation strategy might require the two kinds of 
code to reside in separate files and to be compiled separately. Such implementation and 

programming environment details are not specified by HPF.) 

The following sections cover three distinct topics: 

1. The contract between the caller and a callee that is a local procedure. 

2. A specific version of this interface for the case where the callee is a local procedure 

coded in H P F  (extrinsic-kind-keyword HPF ..LOCAL). Such local procedures may be com­
piled separately or included as part of the text of a global HPF program. 
3. A specific version of this interface for the case where extrinsic procedures are defined 
as explicit SPMD code with each local procedure coded in Fortran 90 (the extrinsic­

kind-keyword might be, for instance , F90...LOCAL). Ideally these local procedures may be 

separately compiled by a Fortran 90 compiler and then linked with HPF code , though 

this depends on implementation details . 

8.3 Conventions for Local Subprograms 

All HPF arrays accessible to an extrinsic procedure (arrays passed as arguments) are 
logically carved up into pieces ; the local procedure executing on a particular physical 
processor sees an array containing just those elements of the global array that are mapped 

to that physical processor . 
It is important not to confuse the extrinsic procedure, which is conceptually a single 

procedural entity called from the HPF program, with the local procedures, which are 

executed on each node , one apiece . An invocation of an extrinsic procedure results in a 
separate invocation of a local procedure on each processor. The execution of an extrinsic 
procedure consists of the concurrent execution of a local procedure on each executing 
processor. Each local procedure invocation may terminate at any time by executing a 

RETURN statement . However, the extrinsic procedure as a whole terminates only after 

every local procedure has terminated; in effect, the processors are synchronized before 

return to a global HPF caller. 
With the exception of returning from a local procedure to the global caller that initiated 

local execution, there is no implicit synchronization of the locally executing processors. 

A local procedure may use any control structure whatsoever. To access data outside 
the processor requires either preparatory communication to copy data into the processor 

before running the local code, or communication among the separately executing copies of 
the local procedure . Individual implementations may provide implementation-dependent 

means for communicating , for example through a message-passing l ibrary or a shared-
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memory mechanism. Such communication mechanisms are beyond the scope of HPF 
and of this book. Note, however , that many useful portable algorithms that require only 
independence of control structure can take advantage of local routines, without requiring 
a communication facility. 

This model assumes only that array axes are mapped independently to axes of a 

rectangular processor grid, each array axis to at most one processor axis (no "skew" 
distributions) and no two array axes to the same processor axis. This restriction suffices 

to ensure that each physical processor contains a subset of array elements that can be 
locally arranged in a rectangular configuration. (To compute the global indices of an 
element given its local indices , or vice versa, may be quite a tangled computation-but 

it will be possible. See Section 8.4.3 for a description of recommended library routines 
for performing these index transformations. ) 

It is recommended that if, in any given implementation , an interface kind does not 
obey the conventions described in this sect ion, then the name of that interface kind 
should not end in "..LOCAL". 

8.3.1 Conventions for Calling Local Subprograms 

The default  mapp ing of scalar dummy arguments and of scalar function results is such 
that the argument is replicated on each physical processor. These mappings may, op­
tionally, be explicit in the interface, but any other explicit mapping of a scalar dummy 
argument or of a scalar function result is not HPF-conforming. 

As in the case of non-extrinsic subprograms, actual arguments may be mapped in any 
way; if necessary, they are copied automatically to correctly mapped temporaries before 
invocation of and after return from the extrinsic procedure . 

8.3.2 Calling Sequence 

The actions detailed below have to occur prior to the invocation of the local procedure 
on each processor. These actions are enforced by the compiler of the calling routine, and 
are not the responsibility of the programmer, nor do they impact the local procedure. 

(The next section discusses restrictions on the local procedure. ) 

1. The processors are synchronized . In other words, all actions that logically precede the 

call are completed. 

2. Each actual argument is remapped , if necessary, according to the directives (explicit 

or implicit) in the declared interface for the extrinsic procedure . Thus, HPF mapping 
directives appearing in the interface are binding-the compiler must obey these directives 

in calling local extrinsic procedures. (The reason for this rule is that data mapping is 

explicitly visible in local routines). Actual arguments corresponding to scalar dummy 
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arguments are replicated (by broadcasting, for example) in all processors. 

3. If a variable accessible to the called routine has a replicated representation , then all 
copies are updated prior to the call to contain the correct current value according to the 
sequential semantics of the source program . 

After these actions have occurred, the local procedure is invoked on each processor. 
The information available to the local invocation is described below in Section 8.3.3. 

The following actions must occur before control is transferred back to the caller . 

1. All pro cessors are synchronized after the call. In other words , execution of every copy 

of the local routine is completed before execution in the caller is resumed. 
2. The original distribution of arguments (and of the result of an extrinsic function ) is 
restored ,  if necessary . 

An implementation might check, before returning from the local subprogram, to make 
sure that replicated variables have been updated consistently by the subprogram . How­
ever, there is certainly no requirement-perhaps not even any encouragement-to do so. 
This is merely a tradeoff between speed and , for instance , debuggability. 

8.3 .3 Information Available to the Local Procedure 

The local procedure invoked on each processor is passed a local argument for each global 

argument passed by the caller to the (global ) extrinsic procedure interface. Each global 

argument is a distributed H PF array or a replicated scalar. The corresponding local 
argument is the p art of the g lobal array stored locally, or the local copy of a scalar 

argument . An array actual argument passed by an HPF caller is called a global array; 

the subgrid of that global array passed to one copy of a local routine (because it resides 

in that processor) is called a local array. 

If the extrinsic procedure is a function , then the local procedure is also a function. Each 
local invocation of that function will return the local part of the extrinsic function return 

value . If the extrinsic function is scalar-valued then the implicit mapping of the return 
value is replicated; in this case , all executed copies of the local function must return the 

same value. If it is desired to return one , possibly distinct , value per processor, then 
the extrinsic function should be declared to return a distributed rank-one array of size 

NUMBER_OF ...PROCESSORS ( ) . 
The run-time interface should provide enough information that each local function 

can discover for each local argument the mapping of the corresponding global argument, 
translate global indices to local indices, and vice-versa. A specific set of procedures 

that provide this information is described in Section 8.4.3. The manner in which this 
information is made available to the local routine depends on the implementation and 
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the programming language used for the local routine. 

8.4 Local Routines Written in HPF 

Chapter 8 

This section provides a specific design for providing the required information to local 

procedures in the case these procedures are written in HPF. (This design is merely a 
recommendation; a conforming HPF implementation is not required to support it.) 

A local procedure may be declared within an HPF program (and be compiled by an 
HPF compiler). The subroutine-stmt or function-stmt that begins the subprogram must 
contain the prefix EXTRINSIC(HPF �OCAL ) .  

8.4.1 Restrictions 

There are some restrictions on what HPF features may be used in writing a local, per­
processor procedure. These restrictions are detailed here. 

(Look out! Here comes a pun!) The restricted language used for coding local 
HPF procedures is sometimes called "HPF Lite" because it is lo-cal. 

A local HPF program unit may invoke other local program units or internal procedures, 
but it may not invoke an ordinary, "global" HPF routine. If a global HPF program calls 
local subprogram A with an actual array argument I, and A receives a portion of array 
X as dummy argument P, then A may call another local subprogram B and pass P or a 
section of P as an actual argument to B. 

A local HPF program unit may not access global HPF data other than data that is 
accessible, either directly or indirectly, via the actual arguments. In particular, a local 
HPF program unit does not have access to global HPF COMMON blocks; COMMON blocks 
appearing in local HPF program units are not identified with global HPF COMMON blocks . 
The same name may not be used to identify a COMMON block within both a local HPF 
program unit and an HPF program unit in the same executable program . 

Local program units can use all HPF constructs except for DISTRIBUTE, REDISTRIBUTE, 

ALIGN, REALIGN, DYNAMIC, INHERIT, PROCESSORS, and TEMPLATE directives (and attri­

butes). The distribution query library subroutines HPF.ALIGNMENT, HPF_TEMPLATE, and 
HPF .DISTRIBUTION may be applied to local arrays. Their outcome is the same as for a 

global array that happens to have all its elements on a single node. 
Scalar dummy arguments must be mapped so that each processor has a copy of the 

argument. This holds true , by convention, if no mapping is specified for the argument 

in the interface. Thus, the constraint disallows only explicit alignment and distribu­
tion directives in an explicit interface that imply that a scalar dummy argument is not 

replicated on all processors. 
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An EXTRINSI C (HPF .LOCAL ) routine may not be RECURSIVE. 

An EXTRINSIC ( HPF.LOCAL ) routine may not h ave alternate returns. 

An EXTRINSI C ( HPF.LOCAL ) routine may not be invoked, either directly or indirectly, 
in the body of a FORALL construct or in the body of an INDEPEJlDENT loop . 

The attributes (type ,  kind, rank, optional, intent ) of the dummy arguments must 

match the attributes of the corresponding dummy arguments in the explicit interface . A 
dummy argument of an EXTRIJlSIC ( HPF.LOCAL) routine may not be a procedure name. 

A dummy argument of an EXTRINSI C (HPF.LOCAL ) routine may not have the POINTER 

attribute. 
A dummy argument of an EXTRIN S I C ( HPF.LOCAL) routine must be nonsequential . 
A dummy array argument of an EXTRINSI C ( HPF.LOCAL ) routine must have assumed 

shape, even when it is explicit shape in the interface. Note that, in general, the shape of 
a dummy array argument differs from the shape of the corresponding actual argument, 
unless there is a single executing processor. 

Expli cit mapping directives for dummy arguments and function result variables may 
not appear in a local procedure, although they may appear (in the case of the result of 
an array-valued function, they must appear ) in the required explicit interface accessible 

to the caller. 
A local procedure m ay have several ENTRY points. A global HPF caller must contain 

a separate extrinsic interface for each entry point that can be invoked from the HPF 

program . 

8.4.2 Argument Association 

If a dummy argument of an EXTRINSI C ( HPF.LOCAL) routine is an array, then the cor­
responding dummy argument in the explicit interface for the local procedure must be 
an array of the same rank, type, and type parameters. When the extrinsic procedure is 
invoked, the local dummy argument is associated with the local array that consists of 
the subgrid of the global array that is stored locally. This local array will be a valid HPF 
array. 

If a dummy argument of an EXTRINSIC (HPF.LOCAL) routine is a scalar then the cor­
responding dummy argument of the local procedure must be a scalar of the same type. 

When the extrinsic procedure is invoked then the local procedure is passed an argument 
that consists of the local copy of the replicated scalar . This copy will be a val id HPF 

scalar.  
If  an EXTRINSI C ( HPF.LOCAL ) routine is a function, then the local procedure is a func­

tion that returns a scalar of the same type and type parameters, or an array of the same 

rank, type, and type parameters, as the HPF extrinsic function. The value returned by 
each local invocation is the local part of the value returned by the H PF invocation. 

Copyrighted Material 



236 

Each physical processor has at most one copy of each HPF variable. 
Consider the following extrinsic interface: 

I NTERFACE 

EXTRINSI C ( HPF_LOCAL ) FUNCTION MATZOH(X, y) RESULT ( Z) 

REAL , DIMENSION ( :,: ) : :  X 

REAL, DIMENSION (SIZE ( X,l» : : Y, Z 

!HPF$ ALIGN WITH XC:,*) : :  Y(:), Z(:)  

!HPF$ DI STRIBUTE X ( BLOCK , CYCLIC ) 

END FUNCTION 

END INTERFACE 

The corresponding local HPF procedure is specified as follows. 

EXTRINS I C ( HPF_LOCAL) FUNCTION MATZOH (XX, yy) RESULT ( ZZ )  

REAL, DIMENSION (:, : ) XX 

REAL, D IMENSI ON(5:) :: YY, ZZ 

NXl = SIZE(XX , 1) 

LXl = LBOUND (XX, 1) 

UXl = UBOUND ( XX, 1) 

NX2 = S I ZE ( XX, 2) 

LX2 = LBOUND(XX, 2) 

UX2 = UBOUND (XX, 2 )  

NY = SIZE ( YY, 1) 

LY = LBOUIlD(YY, 1) 

UY = UBOUllD(YY, 1) 

END FUNCTI ON 

Chapter 8 

Assume that the function is invoked with an actual (global) array X of shape 3 x 3 

and an actual vector Y of length 3 on a 4-processor machine, using a 2 x 2 processor 
arrangement (assuming one abstract processor per physical processor). 

Then the various local invocations of the function MATZOH receive actual arguments as 

shown here: 
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Processor (1 , 1) 

Y (2 )  

Processor (2,1) 

X(3 , 1 )  

Y(3) 

X (3,3 ) 

Processor (1,2) 

Processor (2,2) 

X(3 , 2) 

Y ( 3 )  

237 

Each lo cal invocation of MATZOH sees its own set of dummy arguments as shown here: 

Processor (1,1) 

Processor (2,1) 

XX (l,l) XX ( 1,2 )  

YY(5) 

Processor (2,2) 

XX(l,l) 

YY (5)  

Thus when processor (1,1) refers t o  its dummy argument element XX ( 1,2), i t  sees the 

value of actual argument element X ( 1,3 ) .  But when processor (2,1) refers to its dummy 

argument element XX ( 1,2 ) ,  it sees the value of actual argument element X(3,3). 

Here are the values to which each processor would set NX1, LX 1,  UX1, NX2, LX2, UX2, 

NY, LY, and UY: 

Processor (1,1) Processor (1,2) 

NXl = 2 LXi = 1 UXl = 2 NXi = 2 LXi = 1 UXl = 2 

NX2 = 2 LX2 = 1 UX2 = 2 NX2 = 1 LX2 = 1 UX2 = 1 

NY = 2 LY = 5 UY = 6 NY = 2 LY = 5 UY = 6 

Processor (2,1) Processor (2,2) 

NXi = 1 LXl = 1 UXi = 1 NXl = 1 LXi = 1 UXi = 1 

NX2 = 2 LX2 = 1 UX2 = 2 NX2 = 1 LX2 = 1 UX2 = 1 

NY = 1 LY = 5 UY = 5 NY = 1 LY = 5 UY = 5 
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The return array ZZ is distributed identically to YY and therefore has a partially repli­
cated representation. Processors (1,1) and (1,2) should return identical rank-one arrays 
of size 2; processors (2,1) and (2,2) should return identical rank-one arrays of size l. 

An actual argument to an extrinsic procedure may be a pointer. Since the corre­
sponding dummy argument may not have the POINTER attribute , the dummy argument 

becomes associated with the target of the HPF global pointer . In no way may a local 

pointer become pointer associated with a global HPF target. Therefore, an actual argu­
ment may not be of a derived type containing a pointer component. (It is expected that 
global pointer variables will have a different representation from that of local pointer vari­
ables, at least on distributed memory machines, because of the need to carry additional 
information for global addressing. This restriction could be lifted in the future.) 

Other inquiry intrinsics , such as ALLOCATED or PRESENT, should also behave as ex­
pected. Note that when a global array is passed to a local routine, some processors may 
receive an empty sub array. Such argument is PRESENT and has SIZE zero. 

8.4.3 HPF Local Routine Library 

Local HPF procedures can use any HPF intrinsic or library procedure. (The arguments 
to such procedures will be local arrays . Depending on the implementation , the actual 
code for the intrinsic and library routines used by local HPF procedures mayor may not 
be the same code used when called from global HPF code .) 

In addition, several local library procedures are provided to query the global mapping 
of an actual argument to an extrinsic function. These library procedures take as input 
the name of a dummy argument and return information on the corresponding global 
HPF actual argument. They may be invoked only by a local procedure that was directly 

invoked by global HPF code. If module facilities are available , they reside in a module 

called HPF -LOCAL-LIBRARYj a local routine that calls them should include the statement 

or some functionally appropriate variant thereof. 

The local HPF library also provides a new derived type PROC ID, to be used for processor 
identifiers. Each physical processor has a distinct identifier of type PROeID. It is assumed 
that a function is available to find the identifier of each executing processor-the syntax 
for calling such a function is beyond the scope of HPF and of this book. (It is likely that 
in many implementations type PROCID will be effectively identical to type INTEGER­

perhaps a derived type with a single integer component.) 

GLOBAL-.ALIGNMENT(ARRAY, ... } This has the same interface and behavior 
as the HPF inquiry subroutine HPF ...ALIGNMENT, but it returns information about the 
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global HPF array actual argument associated with the local dummy argument ARRAY, 

rather than returning information about the local array. 

GLOBAL-DISTRIBUTION(ARRAY, ... ) This has the same interface and behav­

ior as the HPF inquiry subroutine HPF ..DISTRIBUTION, but it returns information about 
the global HPF array actual argument associated with the local dummy argument ARRAY, 

rather than returning information about the local array. 

GLOBAL_TEMPLATE(ARRAY, ... ) This has the same interface and behavior as 

the HPF inquiry subroutine HPF _TEMPLATE, but it returns information about the global 

HPF array actual argument associated with the local dummy argument ARRAY, rather 
than returning information about the local array . 

ABSTRACT_TO_PHYSICAL(ARRAY, INDEX, PROC) 

Description. Returns processor identification for the physical processor ass0-

ciated with a specified abstract processor relative to a global actual argument 
array. 

Class. Subroutine. 

Arguments. 

ARRAY 

INDEX 

PROC 

may be of any type; it must be a dummy array that is associated with 

a global HPF array actual argument. It is an INTENT(IN) argument. 

must be a rank-l integer array containing the coordinates of an ab­

stract processor in the processors arrangement onto which the global 

HPF array is mapped. It is an INTENT(IN) argument. The size of 

INDEX must equal the rank of the processors arrangement. 

must be scalar and must be of type PROCID. It is an INTENT(OUT) 

argument . It receives the identifying value for the physical processor 

associated with the abstract processor specified by INDEX. 

PHYSICALTO-ABSTRACT(ARRAY, PROC, INDEX) 

Description. Returns coordinates for an abstract processor, relative to a global 

actual argument array, corresponding to a specified physical processor . 

Class. Subroutine. 

Arguments. 
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ARRAY 

PROC 

IXDEX 

Chapter 8 

may be of any type; it must be a dummy array that is associated with 

a global HPF array actual argument . It is an INTENT(IN) argument. 

must be scalar and must be of type PROCID. It is an INTENT(IN) 

argument . It contains an identifying value for a physical processor . 

must be a rank- l integer array. It is an IIlTEIIT(OUT) argument. The 

size of INDEX must equal the rank of the processor arrangement onto 

which the global HPF array is mapped . INDEX receives the coordi­

nates within this processors arrangement of the abstract processor 

associated with the physical processor specified by PROC . 

This procedure can be used only on systems where there is a one-to-one correspondence 

between abstract processors and physical processors . On systems where this correspon­

dence is one-to-many an equivalent , system-dependent procedure should be provided . 

L O C A L _TO _GLOBAL ( ARRAY, L..1NDEX, G ..1NDEX ) 

Description . Converts a set of local coordinates within a local dummy array to 

an equivalent set of glob al coordinates within the associated global H P F  actual 

argument array. 

Class. Subroutine . 

Argument s .  

ARRAY 

L-INDEX 

G-I lfDEX 

may be of any type; it must be a dummy array that is associated with 

a glob al HPF array actual argument . It is an INTENT ( IN) argument . 

must be a rank-l integer array whose size is equal to the rank of 

ARRAY . It is an INTENT(IN) argument . It contains the coordinates of 

an element within the local dummy array ARRAY. 

must be a rank- l integer arr ay whose size is equal to the rank of 

ARRAY . It is an IIlTENT (OUT )  argument. It receives the coordin ates 

within the global HPF array actual argument of the element identified 

within the local array by L-IlfDEX. 

GLOBAL _T O ...L O C AL( ARRAY ,  G ..1N D EX, L ..l N DEX, LO C AL )  

Opt ional argument s .  L-INDEX , LOCAL 

Description. Converts a set of global coordin ates within a glob al HPF actual 

argument array to an equivalent set of local coordinates within the associ ated 

local du mmy array. 
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Class.  Subroutine. 

Argulllents.  

ARRAY 

G...INDEX 

may be of any type;  it must be a dummy array that is associated with 

a global HPF arr ay actu al argument . It is an INTEHT (IH ) argument . 

must be a rank- l integer array whose size is equ al to the rank of 
ARRAY. It is an INTENT ( I N )  argument . It contains the coordinates of 

an element within the glob al HPF array actual argument associated 

with the local dummy array ARRAY. 

L...INDEX (optional )  must be a rank- l integer array whose size is equal to the rank 
of ARRAY . It is an I HTENT ( OUT ) argument . It receives the coordi­
nates within the local dummy array of the element identified within 
the glob al actual argument array by G_INDEX . However , the values 
in L ...IHDEX arc undefined if the value returned (or that would be re­
turned ) in LOCAL is false . 

LOCAL (optional) must be scal ar and must be of typ e  LOGI CAL . It is an IHTENT­
( OUT ) argument . It is set to . TRUE . if the local array contains a copy 
of the global array element and to . FALSE . otherwise . 

8.5 Local Routines Written in Fort ran 90 

The suggested interface to local SPMD routines written in Fortran 90 is the same as that 
for HPF local routines , with these few exceptions : 

• Only Fortran 90 constructs should be used ; it may not be possible to use extensions 
peculiar to HPF such as FORALL and the HPF intrinsic l ibrary procedures . 

• It is recommended that Fortran 90 language processors to be used for this purpose 
be extended to support the HPF local distribution query routines GLOBAL..ALIGHMEHT , 

GLOBAL_TEMPLATE, and GLOBAL...DISTRIBUTIOH and the PROCID derived type as described 

in Section 8 . 4 . 3 .  It is also recommended that these facilities be defined in a Fortran 90 

module named HPF ...LOCAL...LIBRARY . 

• Assuming that the intent is to compile such rout ines with a non-HPF Fortran 90 
compiler , the Fortran 90 program text should be in sep arate files rather than incorporated 

into H P F  source code . 
• The suggested extrinsic-kind- keyword for this calling interface is F90 ...LOCAL . 
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The restri ctions listed in Section 8.4 . 1  ought to apply as well to local routines written 

in Fortran 90. 

The local HPF code example in Figure 8 . 1  could also serve as an example of local 

Fortran 90 code simply by changing the keyword HPF ...LOCAL in the first line to F90...LOCAL. 

8 .5. 1 Argument Association 

If a dummy argument in the HPF explicit extrinsic interface is an array,  then the corre­
sponding dummy argument in the specification of the local procedure must be an array 
of the same rank , type ,  and type parameters . When the extrinsic p rocedure is invoked ,  

the local dummy argument is  associated with the local array that consists of the subgrid 
of the global array that is stored locally. This local array will be a valid Fortran 90 array .  

If  a dummy argument in the HPF explicit extrinsic interface is a scalar then the 

corresponding dummy argument of the local procedure must be a scalar of the same 

type .  When the extrinsic procedure is invoked then the local procedure is p assed an 

argument that consists of the local copy of the replicated scal ar . This copy will be a 
valid Fortran 90 scalar . 

If an HPF explicit extrinsic interface defines a function , then the local procedure should 

be a Fortran 90 function that returns a scalar of the same type and type parameters , or 
an array of the same rank , type ,  and type parameters , as the HPF extrinsic function . 
The value returned by each local invocation is the local part of the value returned by the 
HPF invocation . 

8.6 Example HPF Extrinsic P rocedures 

Figure 8 .3  shows an INTERFACE block , call , and subroutine definition for matrix multi­
pl ication coded as a local subroutine. 

Figure 8.4 shows an INTERFACE block , call , and subroutine definition for sum reduction 
coded as a local function . 
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The c aller : 

The NEWMATMULT rout ine comput e s  C=A*B . Bet ore call ing REWMATMULT , 
the ALI GN direct ives require broadcast ing cop i e s  ot rov A(I , * )  
and column B(* , J ) t o  the pro c e s s or that comput es C(I , J ) . 

INTERFACE 

EXTRINSIC(HPF_LOCAL ) SUBROUTINE NEWMATMULT(A , B ,  C )  
REAL , DIMENSION( : , : ) , INTENT(IN) A,  B 
REAL , DIMENSION( : , : ) ,  INTENT(OUT ) C 

! HPF$ ALIGN A ( I , J )  WITH * C ( I , * )  

! HPF$ ALI GN B(I , J ) WITH *C(* , J )  

END SUBROUTINE NEWMATMULT 

END INTERFACE 

REAL P(100 , 93 ) , Q(93 , 47 ) , R( 1 00 , 47 ) 

C ALL NEWMATMULT(P , Q , R) 

The local subrout ine def init ion : 

Each pro c e s sor i s  pas s ed 3 array s ot rank 2 .  A s sume that the 

global HPF array s A ,  B , and C have d imens ions LxM , Mxl and LxN , 

respect ively . The local array CC is ( a c opy of ) a r e ct angular 

subarray ot C .  For each pos it ion (I , J ) in thi s local array , 

the local array AA contains an ent ire rov ot A as AA(I , : )  and 

the local array BB contains an ent ire column of B as BB( : , J ) . 

C may have a r epl icat ed repres ent at ion ,  in whi ch case copies 

of C(I , J ) viII be cons istently updat ed at various pro c e s s or s . 

EXTRIISIC(HPF_LOCAL ) SUBROUTINE IEWMATMULT(AA , BB , CC ) 

REAL , DIMENSION( : , : ) ,  INTENT(IN ) AA , BB 

REAL , DIMEISIOI( : , : ) ,  INTENT(OUT ) : :  CC 

The loops use local indices  into AA , BB , and CC . 

DO I = LBOUND(CC , 1 )  , UBOUND(CC , l )  

DO J = LBOUID(CC , 2 ) , UBOUND(CC , 2 )  

CC(I , J ) = DOT_PRODUCT(AA(I , : ) ,  BB( : , J » 

END DO 

EID DO 

END SUBROUTINE IEWMATMULT 

Figure 8.3 
Matrix multiplication coded as a local HPF subroutine 
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The SREDUCE rout ine comput es at each proc e s s or the sum of 

the local element s of an array of rank 1 .  It returns an 

array that c ons ists  of one sum per processor . The sum 

reduct ion i s  c omplet ed by reducing this array of part ial sums . 

The funct ion calls an error rout ine if the array i s  r epl icat ed .  

( Repl icat ed arrays c ould be handl ed by a more compl icat ed code . )  

I NTERFACE 

EXTRINS I C (HPF_LOCAL ) FUNCTION SREDUCE ( A )  RESULT ( R )  

REAL , D IMENSION ( NUMBER_OF_PROCESSORS ( »  : :  R 

! HPF$ D ISTRIBUTE ( BLOCK ) : :  R 

REAL , D IMENSION ( : ) ,  INTENT ( IN )  A 

END FUNCTION SREDUCE 

END INTERFACE 

TOTAL = SUM ( SREDUCE (A»  

The local subrout ine def init i on 

EXTRINSIC (HPF_LOCAL) FUNCTION SREDUCE ( AA )  RESULT R 

REAL , DIMENSION ( : )  : :  R 

REAL , D IMENSION ( : ) ,  INTENT ( I N )  AA 

CALL GLOBAL_ALIGNMENT ( AA , NUMBER_N= N )  

I F  ( COPIES > 1 )  THEN 

CALL ERROR 

ELSE 

Array is  repl i cat ed--call error r out ine 

R = 0 Array i s  not repl icat ed--comput e l ocal sum 

DO J = 1 ,  UBOUND ( AA )  

R ( 1 )  = R ( 1 )  + A ( J )  

END DO 

END IF 
END SUBROUTINE SREDUCE 

Figure 8.4 
Sum reduction coded as a local HPF function 
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9 Subset High Performance Fortran 

This subset of HPF is intended to define a minimal starting set of features from Fortran 
90 and HPF. We will give the list of the HPF extensions that are in Subset HPF, followed 

by the definition of the Fortran 90 subset. The purpose of a subset is to encourage early 
release of compilers with HPF features. Actual HPF Subset implementations may include 

more features than are listed here. The programmer should check the specific details of 
each Subset compiler used. 

9.1 HPF Exte nsions and Subset High Performance Fortran 

The HPF extensions have been divided into two parts, those in Subset HPF, and those not 
in Subset HPF. This division was primarily done on the basis of expected implementation 

difficulty. 

9.1.1 HPF Features in the Subset 

The st atic data mapping features of HPF are in the subset. These include: the directives 
for ALIGN, DISTRIBUTE, TEMPLATE, and PROCESSORS, as well as the combined-directive. 

The INHERIT directive is part of the subset, but only the descriptive and prescriptive 

forms. That is, the programmer must specify what the distribution to be inherited 
is, either by asserting its form or by instructing the compiler to convert to a specific 
distribution. 

The single-statement FORALL is part of the subset. The INDEPENDENT directive as 

applied both to DO and FORALL is also part of the subset. 

The three new HPF intrinsic functions are part of the subset: NUHBER...oF .PROCESSORS. 

PROCESSORS,SHAPE and ILEN. 

9.1.2 HPF Features Not in the Subset 

For completeness, we also list the HPF extensions that are not required as part of Subset 

HPF. 

The dynamic mapping features are not part of the subset. These include the REALIGN, 

REDISTRIBUTE, and DYNAMIC directives. 

The transcriptive ( "lone star" ) form of the DISTRIBUTE directive and INHERIT directive 
is not part of the subset. 

The PURE function attribute is not part of the subset. This means that only HPF 
and Fortran 90 intrinsic functions can be called from the FORALL statement. No other 
subprograms can be called. 
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The forall-construct (multi-statement) FORALL is not in the subset. 
The HPF library and the HPF .LIBRARY module are not part of the subset. 
The EXTRINSIC function attribute is not in the subset. By implication, this means 

that the optional HPF .LOCAL interface is not part of the subset. 

9.2 Fortran 90 and Subset High Performance Fortran 

The set of Fortran 90 features selected for Subset HPF is most definitely not an ideal 
subset of the language. Features were selected either because they were already in com­
mon use or because they contributed to the performance-oriented goal of HPF. There 
are numerous useful and popular features omitted from this subset. 

9.2.1 Fortran 90 Features in the Subset 

The Fortran 90 features listed here are the features of Subset HPF For reference, the 
section numbers from the Fortran 90 standard are given along with the related syntax 
rule numbers: 

• All FORTRAN 77 standard conforming features, except for storage and sequence 
association. (See Sections 4.10 and 5.9 for detailed discussion of the exception.) 
• The Fortran 90 definitions of MIL-STD-1753 features: 

• DO WHILE statement (8.1.4.1.1 / R821) 
• END DO statement (8.1.4.1.1 / R825) 
• IMPLICIT NONE statement (5.3 / R540) 
• INCLUDE line (3.4) 
• Scalar bit manipulation intrinsic procedures: lOR, lAND, NOT, IEOR, ISHFT, ISHFTC, 

BTEST, IBSET, IBCLR, IBITS, MVBITS (13.13) 
• Binary, octal and hexadecimal constants for use in DATA statements (4.3.1.1 / R407 

and 5.2.9 / R533) 

• Arithmetic and logical array features: 

• Array sections (6.2.2.3/ R618-621) using subscript triplet notation (6.2.2.3.1) and 

vector-valued subscripts (6.2.2.3.2) 
• Array constructors limited to one level of implied DO (4.5 / R431) 
• Arithmetic and logical operations on whole arrays and array sections (2.4.3, 2.4.5, 

and 7.1) 
• Array assignment (2.4.5, 7.5, 7.5.1.4, and 7.5.1.5) 
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• Masked array assignment (7.5.3) using the WHERE statement (7.5.3/ R738) and the 
block WHERE . . .  ELSEWHERE construct (7.5.3/ R739) 
• Array-valued external functions (12.5.2.2) 
• Automatic arrays (5 . 1 .2 . 4 . 1) 

• ALLOCATABLE arrays and the ALLOCATE and DEALLOCATE statements (5.l.2.4.3, 6.3.1 

/ R622, and 6.3.3 / R631) 
• Assumed-shape arrays (5.1.2.4.2 / R516) 

• Intrinsic procedures: The list of intrinsic functions and subroutines below is a combi­
nation of (a) routines that are entirely new to Fortran and (b) routines that have always 

been part of Fortran, but now have been extended to new argument and result types. 
The new or extended definitions of these routines are part of the subset. If a FORTRAN 
77 routine is not included in this list, then only the original FORTRAN 77 definition is 
part of the subset. 

• The argument presence inquiry function: PRESENT (13.10.1) 
• All the numeric elemental functions: ABS, AIMAG, AINT, ANINT, CEILING, CMPLX, 

CONJG, DBLE, DIM, DPROD, FLOOR, INT, MAX, MIN, MOD, MODULO, NINT, REAL, SIGN 
(13.10.2) 

• All mathematical elemental functions: ACOS, ASH, ATAN, ATAN2, COS, COSH, EXP, 
LOG, LOG10, SIN, SINH, SQRT, TAN, TANH (13.10.3) 
• All the bit manipulation elemental functions: BTEST, lAND, IBCLR, IBITS, IBSET, 
IEOR, rcR, 1SHFT, 1SHFTC, NOT (13.10.10) 
• All the vector and matrix multiply functions: DOT-PRODUCT, MATMUL (13.10.13) 
• All the array reduction functions: ALL t, ANVt, COUNTt, MAXVAL t, MINVALt, PRODUCTt, 

SUMt(13.10.14) 
• All the array inquiry functions: ALLOCATED, LBOUNDt, SHAPE, SIZEt, 

UBOUNDt(13.10.15) 
• All the array construction functions: MERGE, PACK, SPREADt, UNPACK (13.10.16) 

• The array reshape function: RESHAPE (13.10.17) 
• All the array manipulation functions: CSHIFTt, EOSHIFTt, TRANSPOSE (13.10.18) 

• All array location functions: MAXLOCt, MIILOCt(13.10.19) 

• All the intrinsic subroutines: DATEAlDTIME, MVBITS, RAIDOMIUMBER, RAIDOMSEED, 

SVSTEMCLOCK (3.11) 

For all of the intrinsics that have an optional argument DIM, only actual argument 
expressions for DIM that are initialization expressions are part of the subset. The intrinsics 

with this constraint are marked with a dagger (t) in the list above. 

• Declarations: 
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• Type declaration statements, with all forms of type-spec except kind-selector and 
TYPE( type-name), and all forms of attr-spec except access-spec, TARGET, and POINTER. 
(5.1 / R501-503, R510) 

• Attribute specification statements: ALLOCATABLE, INTENT, OPTIONAL, PARAMETER, 
SAVE (5.2) 

• Procedure features: Interface blocks are included in the subset in order to facilitate use 

of the HPF directives across subroutine boundaries. Interface blocks provide a mechanism 

to specify the expected mapping of data, in addition to the types and intents of the 

arguments. 

• INTERFACE blocks with no generic-spec or module-procedure-stmt (12.3.2.1) 
• Optional arguments (5.2.2) 

• Keywor d argument passing (12.4.1 /R1212) 

• Syntax improvements: 

• Long (31 character) names (3.2.2) 
• Lower case letters (3.1. 7) 
• Use of "_" in names (3.1.3) 
• "!" initiated comments, both full line and trailing (3.3.2.1) 

9.2.2 Fortran 90 Features Not in the Subset 

We will not attempt a precise list of the Fortran 90 features not included in the subset , 

but for the reader 's aid , we do give a short summary of features here. The following 

are omitted: the free form source; control features such as CASE, CYCLE and EXIT; the 
numeric precision KIND feature ; the character array language , and full form of array con­
structors; POINTER and TARGET; derived type and operator definitions; generic procedures 

and internal subprograms; MODULE and USE; extensions to I/O such as additional clauses 

for OPEN and INQUIRE, NAMELIST formatting , and non- advancing , stream 1/0. 
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A Definition of Terms 

abstract processors: A rectilinear arrangement of processors that may be defined by 

a PROCESSORS directive. The mapping of the abstract processors to physical processors 

is system-dependent. 

aggregate cover: A member of an aggregate variable group whose storage is totally 

associated with the storage sequence ot the aggregate variable group. Informally stated , 

this is a variable that is exactly the same size as t,he entire aggregate variable group. 

aggregate variable group: A collection of variables whose individual storage sequences 

are parts of a single storage sequence. 

align target: A data object name or template name whose distribution serves as a 

pattern for the distribution of the index space of other data objects. 

alignee: A data object that is associated with an align target by an ALIGN or REALIGN 

directive, for the purpose of determining the distribution of the index space. 

alignment: An attribute of a data object that establishes the relationship between data 

objects for distribution. 

atomic object: A data object that contains no subobjects . These may not be split 

across processors as a result of distribution. They also define the basic unit of write and 

read operations for defining indepen dent . 

collapsed: A term used to describe a dimension of an array where every element of the 

dimension is aligned to the same element of another array or template . 

communication: The overhead incurred when an operation on one processor uses a 

data object stored on a different processor . 

component: Either a single variable or an aggregate variable group in a common block. 

cover: See aggregate cover. 

data locality: A term used to describe the likelihood that a processor operation uses 

data objects stored in its local memory . 
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data parallel: A description of parallelism potentially obtained when the same operation 
is applied to many elements of an array or data object. The data parallel model is a 

single-threaded control structure, global name space, and loosely synchronous parallel 
execution 

descriptive mapping: A method used to establish the mapping attributes of a dummy 

procedure argument where the attribute of the actual argument is asserted to be of a 
specified kind and thus requires no data motion. 

directive: A special Fortran comment that suggests implementation strategies or asserts 

facts about a program to the compiler. 

distributee: A data object named in a DISTRIBUTE directive. 

distribution: The partition of the index space of a data object among a set of abstract 

processors according to a given pattern. 

dynamic mapping: A mapping that may change during execution as a result of a 

REDISTRIBUTE or REALIGN directive. 

explicit interface: A definition of a procedure interface that is visible to the scoping 
unit of a reference (call) to the procedure, e.g. via an interface block or MODULE procedure 
definition. 

explicit mapping: A mapping attribute specified in an ALIGN, DISTRIBUTE, or DYNAMIC 

directive. 

extrinsic procedure: A routine that is not properly part of HPF. It may be written in 

a different programming paradigm and possibly in a different language. 

extrinsic kind keyword: Description of the extrinsic interface. HPF defines HPF and 

HPF...LOCAL. 

global name space: Programming model where a data object name can be accessed by 

more than one processor. This is the usual model on shared memory systems, but also 

supported on distributed memory systems in languages such as HPF. 

global variable: A variable accessible from more than one procedure. 
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HPF conforming: A program that obeys all of the syntax and semantic rules of the 

HPF language specification. 

immediately aligned: Two data objects with an alignment established by a specific 

ALIGN directive. 

implicit Inapping: A mapping attribute selected by the compiler when no explicit 

mapping is given. 

independent: A property of a DO loop or FOR-ALL statement where the results are the 

same whether executed serially or in parallel. This may be established by the compiler 

or may be asserted by the programmer with an IIiDEPEIiDEIT directive. 

inherited teInplate: A template for a dummy argument that is a copy of the template 

of the corresponding actual argument. Note that the shape and size of this template may 

differ from the shape and size of the dummy argument. 

load balance: Refers to program optimization to give each processor approximately the 

same amount of work. 

local naIne space: Programming model where a data object name is accessibly only 

by the local processor. 

local variable: A variable that IS accessible only within the procedure where it IS 

declared. 

local procedure : A procedure from a programming model where each processor IS 

potentially executing different code. 

loosely synchronous: Refers to an execution model where the processors are not nec­

essarily processing the exact same instruction (as in the SIMD model), but are forced 

by periodic synchronization events (such as message communication) to stay in the same 

general location in the program, possibly on the same line or control structure from the 
source program. 

Inapping: The combination of alignment and distribution attributes used to describe 

how a data object is allocated to an abstract processor arrangement. 
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mapping inquiry subroutines: Subroutines to allow a program to determine the 
actual mapping of an array at run time . 

MIMD: Stands for Multiple Instruction stream, Multiple Data stream, meaning that 

the processors can all be executing different instructions at the same time. 

natural template: A freshly created template for a dummy argument that is not 

explicitly aligned and does not have the INHERIT attribute . Causes the dummy argument 
to be ultimately aligned with itself. 

node program : See local procedure . 

nonconforming: A program that does not obey one or more syntax and semantic rules 

of the HPF language specification. The results of execution of the program are not 

defined. The compiler may not detect all instances of a nonconforming program. 

nonsequential variable : A variable that does not occur in a context involving storage 

association and is not named on a SEQUEICE directive. 

prescriptive mapping: A method used to establish the mapping attributes of a dummy 

procedure argument where the attribute is explicitly specified and the incoming mapping 

of the actual argument must be modified to match if it does not already conform. 

processor arrangement: See abstract processor arrangement. 

pure: An attribute of a procedure that constrains the statements allowed in the proce­

dure so that the procedure cannot have any side effects other than modification of output 

arguments or the function value. 

rank: The number of dimensions of an array. A scalar value has rank zero. 

replicat ion: A means of creating copies of a data object on more than one processor by 

establishing a special alignment of the data object. 

sequence association: The element sequence order of array elements that is required 

when an array, array expression , or array element is associated with a dummy argument 

in a call to a subprogram. 
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sequential common: A common block that is named in a SEQUENCE directive. Required 

for any common block whose components do not match exactly in shape, type , mapping 

and sequentiality in every occurrence of the common block. 

sequential variable: A variable that is involved in storage association or is named in 

a SEQUENCE directive. 

shape: For an array, the rank and extent of each dimension. 

SIMD: Stands for Single Instruction stream, Multiple Data stream, meaning that all 

processors execute exactly the same instruction at the same time (unless they have been 

turned off) . 

SPMD: Stands for Single Program, Multiple Data, meaning that all processors are 
executing the same program . 

static mapping: Mapping attributes that stay the same throughout program execution, 

except for possible remapping across procedure boundaries that are restored to their 

original state on return from the procedure. Required for all variables in COMMON. 

storage association: The association of two or more data objects that occurs when 

two or more storage sequences share or are aligned with one or more storage units . 

storage sequence: Contiguous storage units. 

stride: An array increment specified in subscript triplet notation. 

synchronization: A point in a program where the processor cannot proceed without a 

result or event from another processor and must wait for it to happen. 

system inquiry functions: Functions that return values to describe attributes of the 
physical computing resource, including the size and shape of the processor array. 

template: An index space associated with an array. This may be an array or an explicit 

TEMPLATE defined by a directive. 

totally associated: Term referring to entities which have the same storage sequence. 
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transcriptive mapping: A method used to establish the mapping attributes of a 

dummy procedure argument where the attribute is to be copied from the actual argument 

and code is produced to adapt to the possibility that the attribute may be different from 
call to call. 

ultimately aligned: The final alignment target in a set of related alignments. An 

object not explicitly aligned with another object is ultim ately aligned with itself. 
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B Description of HPF Library and Intrinsic Procedures 

Procedures not marked "Intrinsic" are HPF library proce d ures . I n  ord er to save space 
and enhance readability, th e exam ples of this a ppe nd ix use T and F to de not e the logical 
values . TRUE. and . FALSE. Optional arguments are marked with an asterisk (*). 

B.l ALL_PREFIX 

Synopsis. ALL....PREFIX  (MASK, DIM , SEGMENT , EXCLUSIVE ) 

Optional Arguments. DIM ,  SEGMENT, EXCLUSIVE 

Description. Computes a s egmented logical AND scan along d ime nsion DIM of 
MASK . 

Class. Transformational function. 

Arguments. 

MASK must b e  of type logical. It must not be scala r . 

DIM* must be scalar and of ty pe integer with a value in th e ra nge 1 < 
DIM � n, where n is the rank of MASK. 

SEGMENT* must be of type logical an d have the same shape as MASK . 

EXCLUSIVE* must b e  of typ e logical and must be scalar. 

Result Type, Type Parameter, and Shape. S ame as MASK.  

Result Value. Element r of the r es ult has the value ALL (I al, ..  · ,  am /») 
where (al,"" am ) is the (possibly empty ) set of elements of MASK selected to 
contribut e to r by the rules stated in Chapter 7. 

Example. ALL....PREFIX ( ( IT , F ,  T, T ,  T/ ),  SEGMENT= ( IF ,F , F ,  T, T/ ) ) is 

[T F F T T]. 

B.2 ALL_SCATTER 

Synopsis. AU-5CATTER(MASK , BASE , IIDXl, . . .  , IIDXn) 
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Description . Scatters elements of MASK to positions of the result indicated by 

inde x arrays INDXl, ... , INDXn. An e lement o f  the res ult is true if and only if th e 
cor responding element of BASE and all elements o f  MASK scattered to that position 
are true . 

Class. Transformatio nal function . 

Arguments . 

MASK must be of t ype log ical . It mus t not be sca lar . 

BASE must be of t ype logical with the same kind type parameter as MASK. 
It must not be scalar. 

INDX1, . . . , IIDXn must be of type integer and conformable with MASK. The num­
ber of IIIDX arguments must be equal to the rank of BASE. 

Result Type, Type Parameter, and Shape. Same as BASE. 

Result Value. The element of the result corresponding to the element b of BASE 
has the value ALL( (laI,u2, ... , am , b/ ) ) , where (al, . .. ,am ) are the el ements 
of MASK associated with b as described in Chapter 7. 

Example. ALL....sCATTER ( (IT, T, T, F/ ) ,  ( IT, T, T/ ) , (11, 1, 2, 2/) ) 
is [ T F T ] . 

B.3 ALL_SUFFIX 

Synopsis. ALL....sUFFIX(MASK, DIM, SEGMENT. EXCLUSIVE) 

Optional A rgument s. DIM, SEGMENT, EXCLUSIVE 

D escript ion. Computes a reverse , segm en ted logical AND scan along dime nsion 
DIM of MASK. 

Class. Transformational function . 

Argument s. 

MASK must be of type logical . It must not be scalar . 

DIM* must be scalar and o f  type integer with a value in the range 1 < 
DIM :S n, where n is the rank of MASK. 
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SEGMENT* must be of type logic al and h ave the sam e sh ape as MASK. 

EXCLUSIVE* must be  o f  type logical and must be scalar . 

Result Type, Type Par8llleter, and Shape. Same as MASK. 
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Result Value. Element r o f  the result has the value ALL( ( I  al," " am /» 
where (al, . . .  , am) is the (possibly empty ) set of elements of MASK selected to 
contribute to r by the rules stated in Ch apter 7. 

Example. ALL...sUFFIX( ( IT, F,T,T,T!) ,  SEGMENT= ( IF , F , F,T ,T / )  ) is 
[F F T T T ] . 

B.4 ANY...PREFIX 

Synopsis. ANY ...PREFIX (MASK , DIM, SEGMENT, EXCLUSIVE) 

Optional Arguments. DIM, SEGMENT , EXCLUSIVE 

Description. Comput es a seg mented logical OR scan along dimension DIM of 

MASK. 

Class. Transformational function . 

Arguments. 

MASK m ust be o f  type logical. It must not be scalar . 

D IM* must be scalar and of type integer w ith a value in the range 1 < 

DIM � n, where n is the rank of MASK. 

SEGMENT* m us t  be of type logic al and have t he same shape as MASK. 

EXCLUSIVE* must be of type logical an d mus t b e  s ca lar. 

Result Type, Type Par8llleter, and Shape. Same as MASK. 

Result Value. Element r o f  t he result has th e value AIV «(I al, . .  · ,  am /) 

where (al, . . .  ,am ) is the (poss ibly empty ) set of elements o f  MASK se lected to 

contribute to r by the rules stated in Chapter 7. 

Example . ANY ...PREFIX ( ( IF, T ,F ,F ,F!) ,  SEGMENT= ( IF , F ,F , T , T!) ) is 
[F T T F F]. 
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Synopsis. ANY ..sCATTER (MASK , BASE , INDX1, ... , IIDXn) 

Description. Scatters e lements o f  MASK to positions of the result ind icate d by 
in dex arr ays IID11, ... , IIDIn. An eleme nt of t he result is t rue if and o nly if the 
corresponding e lemen t o f  BASE or any e lement o f  MASK scattered to that position 

is true. 

C lass. Tran sforma tional func tion . 

Argument s. 

MASK must be  of type logic al . It must not be sc al ar .  

BASE must be of type logic al with the s ame kin d typ e parameter as MASK . 
It must not be scalar. 

11011 , ... , INDXn must be of type integer and con forma ble with MASK . The num­

ber of INDX arguments must be e qual to the rank of BASE. 

Result Type, Type Parameter, and Shape. Same as BASE . 

Result Value. Th e element of t he result correspon ding to the elemen t b of BASE 
has the va lu e  AIY ( (lal,a2, . . . ,am,bf) ) , where (al, . . . ,am ) are the elements 

of MASK associated with b as des cr ibe d in Ch apter 7. 

Example. ANY..sC ATTER( ( IT, F, F ,  F/ ) , ( IF ,  F ,  T/) , (/1 , 1, 2, 2f) ) 
is [ T F T]. 

B.a ANY_S UFFIX 

Synopsis. AIiY..sUFFIX (MASK , DIM, SEGMEIT , EXCLUSIVE) 

Optional Arguments. DIM , SEGMEIT , EXCLUSIVE 

Description. Computes a reverse, segmented logical OR scan along dimension 

DIM of MASK . 

C lass. Transformational function. 

Arguments. 
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MASK must be  of type l ogical . It must not be scalar . 
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DIM* must be scala r  and of type integer with a value in the range 1 < 
DIM::; n, wher e n is the rank o f  MASK . 

SEGMEllT* mus t be of type logical and have the same shape as MASK. 

EXCLUSIVE* must be of type log ical and must be scalar. 

Result Type, Type Parameter, and Shape. Same as MASK. 

Result Value. Elemen t r of the re sult h as  the value ANY«(I al, . .. ,am I» 

where (at, ... , am) is the (p os sibly empty) set of elements of MASK selected to 

con tr ibu te t o  r by the rules s tated in Chapter 7. 

Example. ANy..sUFFIX( (IF ,  T , F , F  ,F/ ) , SEGMENT= (IF , F,F ,  T, T/) ) is 

[ T T F F F] . 

B.7 COPY-PREFIX 

Synopsis. COPY ...PREFIX (ARRAY, DIM, SEGMEIlT) 

Optional Arguments. DIM, SEGMENT 

Description. C omputes a segmented copy s can al ong dimensi on DIM of ARRAY. 

Class. Transf orma ti onal fun cti on .  

Arguments. 

ARRAY may be of any type .  I t  must not be scalar . 

DIM* must be scala r and of type integer with a value in the range 1 < 

DIM::; n, w here n is the rank of ARRAY . 

SEGMENT* must be of type l ogica l and have the same shape as ARRAY. 

Result Type, Type Parameter, and Shape. Same as ARRAY.  

Result Value. Elemen t r of the result has the value a t  where (at, ... , am) is  the 
set, in array element orde r, of elem en ts of ARRAY selected to contribute t o r by 

the rule s  s tate d in Chapter 7. 

Example. COPY...PREFIX( (11,2,3,4,5/), SEGMENT= (IF,F,F,T,TI) ) is 

[1 1 1 4 4 ] . 
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B.B COPY_SCATTER 

Synopsis. COPY...5CATTER(ARRAY ,BASE, INDX1, ... , INDXn, MASK ) 

Optional Argument. MASK 

Description. Scatters elements o f  ARRAY sele cted by MASK to pos it ions o f  the 
result indicated by index arrays INDX1, . . .  , INDXn. Each element o f  the result 
is equal to one o f  the elements of ARRAY scattered to that posit ion or , i f  there is 
none,  to the corresponding element o f  BASE. 

Clas s .  Transformational function . 

Arguments. 

ARRAY 

BASE 

may be of any type .  It m us t  n ot be sca la r. 

must be of the same type and kind type parameter as ARRAY. 

INDX 1 , ... ,INDXn must be of type integer and m ust be confo rmable with ARRAY. 

The n umber ofINDX ar guments must be  e qual to the rank o f  BASE. 

MASK* must be of type logical and must be conformable with ARRAY. 

Result Type , Type Parameter, and Shape. Same as BASE . 

Result Value . Let S be the set of e lements of ARRAY asso ciated with element b 
o f  BASE as described in Chapter 7. 

I f  S is emp ty ,  then the e lement of the resu lt cor responding to the element b of 

BASE has the same va lue as b. 

If S is non-empty, then the e lemen t of the result c orresponding to the element b 
of BASE is the result o f  choosing one element from S. HPF doe s not specify how 
the cho ice is to be made ; the mecha nism is processo r depend ent . 

Example. COPY...5CATTER «/1, 2, 3, 4/), (/7, 8, 9/), (/1, 1, 2, 2/» 
is [x, y, 9], where x is a member of the set {1, 2 } and y is a member o f  the set 

{3,4}. 
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B.9 C Opy -BUFFIX 

Synopsis. COPY....sUFFIX (ARRAY . DIM . SEGMENT) 

Optional Arguments. DIM, SEGMENT 

Description. C omputes a revers e,  segm ented copy s can al ong dimensi on DIM of 
ARRAY. 

Class. Transf ormati onal functi on .  

Arguments. 

ARRAY may b e  of any typ e.  It must n ot b e  scalar . 

D IM* must b e  sca lar a nd of typ e int eg er with a value i n  th e rang e 1 < 

DIM � n, wh er e  n is th e rank of ARRAY . 

SEGMENT* must b e  of type l ogical and have the same shape as ARRAY. 

Result Type, Type Parameter, and Shape. Same as ARRAY . 

Result Value. E lement r of th e result has the value am wh ere (al, ... , am) is 
the s et ,  in array el ement order , of el eme nts of ARRAY s el ect ed t o  c ontribut e t o  r 

by the rul es stated in Chapter 7. 

Example. COPy....sUFFIX (  ( / 1, 2 . 3,4 , 5/ ) . SEGMENT= ( /F,F , F,T . T/ )  ) is 
[ 3 3 3 5 5 ] . 

B.10 C O UNT_PREFIX 

Synopsis. COUNT..PREFIX(MASK , DIM, SEGMENT , EXCLUSIVE ) 

Optional Arguments. DIM ,  SEGMENT, EXCLUSIVE 

Description. C omput es a segment ed COUNT scan al ong dim ens ion DIM of MASK . 

Class. Transf ormat i onal function .  

Arguments. 

MASK must b e  of type l ogical . It must n ot b e  scalar . 
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DIM* 

Appendix B 

must be scalar and of type integer with a value in the range 1 < 
DIM::; n, where n is the rank of MASK. 

SEGMENT* must be of type logical and have the same shape as MASK . 

EXCLUSIVE* must be of type logical and must be scalar. 

Result Type,  Type Parameter, and Shape. The result is of type default 
integer and of the same shape as MASK. 

Result Value. Element r of the result has the value COUNT( (I at, ... , am I » 
where (at, . .. , am ) is the (possibly empty) set of elements of MASK selected to 
contribute to r by the rules stated in Chapter 7. 

Example. COUNT...PREFIX( (IF , T ,  T, T ,  T/ ) , SEGMENT= (IF ,F , F ,  T ,  T/ ) ) is 

[ 0 1 2 1 2 ] . 

B.ll COUNT_SCATTER 

Synopsis. COUXT...sCATTER(MASK , BASE , INDXi, .. . , llDIn) 

Description. Scatters elements of MASK to positions of the result indicated by 
index arrays INDXi , ... , INDXn. Each element of the result is the sum of the 
corresponding element of BASE and the number of true elements of MASK scattered 
to that position. 

Class. Transformational function. 

Arguments .  

MASK must be of type logical. It must not be scalar. 

BASE must be of type integer. It must not be scalar. 

INDX1 , ... , INDXn must be of type integer and must be conformable with MASK . 
The number of INDX arguments must be equal to the rank of BASE. 

Result Type, Type Parameter , and Shape. Same as BASE. 

Result Value. The element of the result corresponding to the element b of 
BASE has the value b + COUNT( ( la t , a2, ... , ami) ) , where (al' ... , am) are the 
elements of MASK associated with b as described in Chapter 7. 

Example. COUNT...sCATTER «(lT , T ,  T ,  F/ ) , (l1 , -1, 0/ ) , (11 , 1 , 2 , 2/ » 
is [ 3 0 0 ] . 
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B.12 COUNT_SUFFIX 

Synopsis . COUNT...SUFFIX (MASK , DIM, SEGMENT , EXCLUSIVE ) 

Optional Argument s .  DIM, SEGMENT , EXCLUSIVE 

Description. Computes a reverse, segmented COUNT scan along dimension DIM 
of MASK . 

Class .  Transformational function. 

Arguments.  

MASK must be of  type logical. It must not be scalar. 

DIM* must be  scalar and of  type integer with a value in the range 1 < 
DIM:S n, where n is the rank of MASK . 

SEGMENT* must be of type logical and have the same shape as MASK. 

EXCLUSIVE* must be of type logical and must be scalar. 

Result Type,  Type Parameter, and Shape. The result is of type default 

integer and of the same shape as MASK . 

Result Value . Element r of the result has the value COUNT «(I a1, . . . , am / ) 
where (a1,"" am ) is the (possibly empty) set of elements of MASK selected to 
contr ibute to r by the rules stated in Chapter 7. 

Example. CDUNT..5UFFIX ( (IT , F, T, T, T/ ) , SEGMENT= (IF ,F ,F , T, T/) ) is 

[2 1 1 2 1 ] . 

B.13 GRADE_DOWN 

Synopsis.  GRADE.J)OWN (ARRAY, DIM ) 

Opt ional Argument. DIM 

Description. Produces a permut ation o f  the indices o f  an array, sorted by de­

scending array element values. 

Class .  Transformational function. 
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Arguments. 

ARRAY 

DIM* 

must be of type integer , real, or character. 

must be scalar and of type integer with a value in the range 1 ::; DIM ::; 

n, where n is the rank of ARRAY. The corresponding actual argument 

must not be an optional dummy argument. 

Result Type, Type Parameter, and Shape. The result is of type default 
integer. If DIM is present, the result has the same shape as ARRAY. If DIM is absent , 
the result has shape (/ SIZE ( SHAPE (ARRAY » . PRODUCT (SHAPE (ARRAY ) ) / ) . 

Result Value. 

Case (i): The result of S = GRADE...DDWN(ARRAY) has the property that if one 

computes the rank-one array B of size PRDDUCT(SHAPE (ARRAY» by 

FDRALL(K=1:SIZE(B.l»B(K)=ARRAY(S(1.K).S(2.K) • . . . •  S(N . K» 

where N has the value SIZE(SHAPE(ARRAY», then B is sorted in de­

scending order; moreover, all of the columns of S are distinct, that 

is, if j -I m then ALL(S(: .j) .EQ. S(: .m» will be false. The sort 

is stable; if j ::; m and B(j) = B(m), then ARRAY(S(1,j). S (2 ,j)  • 

. . . • S (n,j» precedes ARRAY(S(1, m) . S ( 2 ,  m) • . . . •  S (n, m» in the 

array element ordering of ARRAY. 

Case (ii): The result of R = GRADE...DDWN(ARRAY.DIM=K) has the property that 
ifone computes the array B(il,i2, .. . ,ik, . . . ,in) = ARRAY(il, i2, . . . , 

Examples. 

R (il , i2, ... , ik, ... , in), ... , in) then for all il, i2, ... , (om it ik)"'" in 
the vector B (il, i2, ... , :, ... , in) is sorted in descending order; more-

over, R( il, i2 ,  ... ,:, ... , in) is a permutation of all the integers in the 

range LBDUID(ARRAY .K) :UBDUllD(ARRAY .K). The sort is stable; that 
is, if j ::; m and B(il , i2 , . . .  , j , . . .  ,in)  = B (il,i2, . .. ,m, ... , in ) , 

then R(il , i2 , . . .  ,j, ... , in ) ::; R ( il,i2, . .. ,m, .. . ,in). 

Case (i): GRADE...DDWN ( ( /30. 20. 30. 40. -101) ) is a rank two array of 

shape [1 5 1 with the value [ 4 1 3 2 5 ] . (To produce a rank­

one result, the optional DIM = 1 argument must be used . ) 
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9 
If A i, t�e "<oy [� 5 n then GRADE...DOlrJN(A) has the value 

2 

[ � 2 2 3 3 1 2 1 � ]. 2 1 3 2 3 3 1 

em (iir If. is t�e ''''Y [� � ! l then O.ADEllO.I(A, 01. = 1) � .. the 

value [� � �]. 
3 3 2 

B.14 GRADE_UP 

Synop sis. GRADE_UP (ARRAY • DIM ) 

Optional Argument. DIM 

Description. Produces a permutation of the indices of  an array, sorted by as­

cending array element values. 

Class. Transformational function. 

Argument s. 

ARRAY 

DIM* 

must b e  o f  type integer, real, or character. 

must be scalar and of type integer with a value in the range 1 � DIM � 
n, where n is the rank of ARRAY. The corresponding actual argument 

must not be an optional dummy argument. 

Result Type, Type Parameter, and Shape. The result is of type default 

integer. If DIM is present, the result has the same shape as ARRAY . If DIM is absent, 

the result has shape (/ SIZE (SHAPE (ARRAY » , PRODUCT(SHAPE (ARRAY »  /). 

Result Value. 

Case (i): The result ofs = GRADE_UP (ARRAY ) has the property that if one com­

putes the rank-one array B of size PRODUCT ( SHAPE (ARRAY) ) by 

FORALL (K=1:SIZE (B.l» B (K ) =ARRAY (S(1,K ).S(2.K) • . . . •  S(I.K ) ) 
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where N has t he va lue SIZ E ( SHAP E (ARRAY», then B is sorted in as ­
cending order; moreover, all of t he co lumns of S are distinct , that 
is, if j:f:. m then ALL ( S (: .j) . EQ . S (: .m» will be false. The sort 
is stable; if j � m and B(j) = B(m), then ARRAY ( S (1 , j ) . S ( 2 ,j) • 

. . . • S (n,j» precedes ARRAY (S (1,m ). S (2,m). " ' J S (n, m» in 
the array elemen t ordering of ARRAY. 

Case (ii): The resu lt of R = GRADE_UP (ARRAY .DIM=K) has the property that 
if one computes the array B(il, i2, . . •  , ik, ... , in) = ARRAY (il, i2, ... , 

EXaIllples. 

R (il, i2, . .. , ik, ... , in), . .. , in) then for all il, i2, ... , (omit ik)"'" in 

the vector B (il, i2, ... , :, ... , in) is sorted in ascending order; more-
over , R(it, i2, ... ,:, ... , in) is a permutation of all the integers in the 
range LBOUND ( ARRAY .K) :UB OUND (ARRAY .K) . The sort is stable; that 

is , if j � m and B(il,i2, ... ,j, . . . ,in) = B(i1,i2, .. . ,m, ... ,in), 
then R(i1 ,i2, . . .  ,j, ... ,in) � R(il,i2, . . . ,m, . .. ,in). 

Case (i): GRADE_UP ( (/30 .  20. 30. 40. -10/» is a rank two array of shape 
[ 1  5 ]  with the value [ 5 2 1 3 4]. (To produce a rank-one 
result, the optional DIM = 1 argumen t must be used. ) 

If A IS the array [� : � l' then GRADE_UP (A) has the value 
1 2 4  

[� � � � � � ! � �]. 
C." (iir If A i, th, a"'Y [� � � l' th,n GIWlE.lJP (A , DIM = ,) h., th, 

valu , [� � n 
B.15 HPF _ALIGNMENT 

Synopsis. HPF ... ALIGNMENT (ALIGNEE. LB. UB. STRIDE. AXIS...M AP. IDENTITY­
JMAP. DYNAMIC. NCOPIES ) 
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Optional Argument s .  LB, UB , STRIDE ,  AXIS-MAP, IDENT ITY -M AP ,  DYNAMI C, 
NCOPIES 

Description. Retu rns info rmation rega rding th e co rr espondence of a variable 
and the align-target (ar ray o r  template) to which it is ultimat ely aligned . 

Class .  M a pp i ng inquiry subroutine . 

Argument s .  

ALI G NEE may be o f  any type. It may be scalar o r  array valued . It mus t not be 
an assum ed-size array. It m us t  not be a structure component. If it is a 
member o f an aggr egate va ria ble gr ou p, then it must be an aggregat e 
cover of th e group . (See Chapter 4 for th e d efinitio ns o f  "aggregate 
variabl e group " and "agg regate cov er." ) It must not be a point er that 
is disassociated or an allocatable array that is not allocated. It is an 
INTENT ( IN) argument . 

If AL IGNEE is a pointer , information about the a lignm ent of its target 
is r et urned . Th e target m ust not b e  an Cl-'lSumed-siz e dummy argu ­
ment or a s ection of an assum ed -siz e dummy argum ent .  If the target 
is (a section of) a member of an aggregate variable group, then the 
m em ber must b e  an aggregat e cov er o f  the group . The targe t mus t  
no t b e  a structur e componen t, bu t the pointer may be. 

LB* must be of type default integer and o f  rank one. Its size must be a t  
l east equal to the rank of ALI G NEE . It is an INTENT ( OUT ) argument . 
The first element of the i th a xis of ALI GNEE is ultimately aligned to 

the LB ( i )th align-target element alo ng the axis o f  the align-target as­

sociated with the ith a xis of ALI GNEE . If th e ith axis of ALIG NEE is a 
colla psed a xis , LB ( i ) is pro cessor de pendent. 

UB* must b e  of typ e default integer and of rank one. Its size must be  at 
l east equal to the rank of AL I GNEE . It is an INTENT (OUT ) a rg ument . 
The last element of the ith axis of AL I GlEE is ultimately aligned to 
the UB(i)th align-target element along t he axis of the align-target as­

soc iat ed with th e ith a xis of AL IGNEE . If the ith axis of AL IGNEE is a 

collapsed a xis , UB (i ) is processor dependent .  

STRIDE* must be of type default integ er a nd of ran k one. Its size m ust be at 
least equal to the rank of ALIGNEE. It is an INTENT ( OUT) argument . 
T he ith element o f  STRID E  is set to the stride used in a lig ning the 
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elements of ALIGNEE a long its ith a xis . If the i th a xis of ALIGNEE is a 
c ollapsed a xis , STRIDE (i ) is zero. 

AXIS..MAP* must be of type defau lt integer and of rank one .  Its size must be at 
least e qual t o  th e rank of ALIGNEE. It is an INTENT ( OUT ) argument . 
The ith element o fAXIS..MAP is set t o  the align-target axis associated 
wit h t he ith axis of ALIGREE . If t he ith axis of ALI GlEE is a co llapsed 
a xis , AXIS...MAP (i) is O. 

IDENTITY...MAP* must be scalar and of type d efault l og ical. It is an INTENT (OUT )  
argum ent . It is set t o  true if the ult imate align-target ass oc iated 
w ith ALIGNEE has a shap e id ent ical t o  ALIGNEE , th e a xes are mapped 
using th e ident ity p ermutati on ,  and th e strides ar e all positive (and 
theref ore equa l t o  1, because of t he shape c onst rain t ) ; oth erwise it is 
s et t o  fa lse . If a variabl e has n ot app eared as an alignee in an ALIGN 
or REALIGN dir ective , and d oes not have th e INHERIT attribute , then 
IDENTITY...MAP must be true ; it can be tru e in oth er circumstances as 
well . 

DYNAMIC* must be scalar and of ty pe defa ult logical. I t  is  an INTENT ( OUT ) 
argument . It is s et t o  tru e i f  ALIGNEE has the DYNAMI C  attribute ; 
oth erwise it is s et to fa ls e. If ALIGNEE h as  th e p ointer attr ibute , th en 
the result a pplies t o  ALIGNEE itsel f rath er than its tar get . 

NCOPIES* must be sca lar and of typ e default int eger .  It is an INTENT ( OUT ) 
argument . It is s et t o  th e numb er of co pies of ALIGNEE that ar e 
u lt imately aligned t o  align-target. For a non-replica t ed variable , it is 
s et t o  one .  

Examples . If ALIGNEE i s  scalar, then no ele ment s of LB, UB, STRIDE, or AXIS..MAP 
are set . 

Given t he d eclarati ons 

REAL PI = 3.1415927 
POINTER P_TO_A (: )  
DIMENSION A ( 1 0 , 1 0 ),B (20,30 ) ,C(20,40 , 10 ) , D (40) 

!HPF$ TEMPLATE T ( 40 , 20 )  
!HPF$ DYNAMIC A 
!HPF$ ALIGN A ( I , :) WITH T ( 1+3* I , 2:20:2 ) 
!HPF$ ALIGN C (I , * , J) WITH T ( J , 2 1-I ) 
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!HPF$ ALIGI D (I )  WITH T(I,4)  
!HPF$ PROCESSORS PROCS(4 , 2 ) , SCALARPROC 
!HPF$ DISTRIBUTE T(BLOCK , BLOCK )  OITO PROCS 
!HPF$ DISTRIBUTE B (CYCLIC , BLOCK ) ONTO PROCS 
!HPF$ DISTRIBUTE ONTO SCALARPROC :: P I  

P_TO_A => A(3:9:2, 6) 

269 

the results of HPF �LIGIMEIT are, assuming that the actual mappings are as the directives 

specify: 

A B C I Dip TO..A I -

LB [4, 2 ] [1, 1] [I, N/A, 1] [1] [10] 
UB [31,20] [20,30] [20, N /A, 1 0] [40] [28] 
STRIDE [3,2] [1 , 1] [-1, 0, 1] [1] [ 6] 
AXIS_MAP [1, 2] [1, 2] [2,0, 1] [ 1 ] [ 1] 
IDENTITY -MAP false true false false false 
DYNAMIC true false false false false 
NCOPIES 1 1 1 1 1 

where "N / A" denotes a processor-dependent result. To illustrate the use of IICOPIES, 
consider: 

LOGICAL BOZO(20,20),RONALD_MCDONALD(20) 

!HPF$ TEMPLATE EMMETT_KELLY(1 00 , 100 ) 

!HPF$ ALIGN RONALD_MCDOIALD (I) WITH BOZO(I.* ) 
!HPF$ ALIGN BOZO (J,K) WITH EMMETT_KELLY (J.5*K )  

CALL HPF�LIGIMENT(RONALD.JfCDOIALD, ICOPIES = NC ) sets IC t o  20 . Now consider: 

LOGICAL BOZO(20 , 20),ROIALD_MCDONALD(20 ) 
!HPF$ TEMPLATE WILLIE_WHISTLE(100 )  
!HPF$ ALIGI RONALD_MCDOIALO(I) WITH BOZO(I.* )  
!HPF$ ALIGN BOZO (J,*) WITH WILLIE_WHISTLE (5*J) 

CALL HPF �LIGNMENT(RONALD.JfCDONALD. NCOPIES = IC) sets NC to one. 

B.16 HPF -DISTRIBUTION 

Synopsis. HPFJDISTRIBUTION(DISTRIBUTEE. AXISTYPE. AXISINFO. PROCES­

SORSJtANK . PROCESSORS SHAPE) 
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Optional Argument s.  AXIS_TYPE , AXIS....INFO , PROCESSORS..RANK , 
PROCESSORS.5HAPE 

Appendix B 

Description. The HPF ..DISTRIBUTION su brout ine returns informat ion re ga rdin g  
the d istr ibution of the ult imate align-target assoc iate d w ith a var ia ble . 

Class . Map pin g inqui ry subroutine. 

Argument s. 

DISTRIBUTEE may be of any type. It may be scala r o r  array value d. It m ust 
not be an ass ume d-size array. It must not be a structure component . 
If it is a mem ber of an aggrega te varia ble grou p, then it must be 
an a ggre gate cove r of the group .  (See Chapter 4 for the de finit ions 
o f  "agg re gate va ria ble group " an d "aggregate cover ." ) It must n ot 
be a pointer that is disassociat ed o r  an alloca ta ble a rray t hat is not 
al locate d. It is an INTENT (IN) argument . 

If DISTRIBUTEE is a po inte r, info rmation a bout t he d istribution of its 
tar ge t  is returned. The target must not be an assume d-s ize dumm y 
a rgument or a sect ion of an assumed -s ize dumm y arg ument . If the 
ta rget is (a sect ion of) a mem ber of an agg regate va riable group , then 
the mem ber must be an aggregate cover of the group .  The target 
must not be a structure component , but the pointe r may be .  

AXIS_TYPE* must be a rank one array of type defau lt character. It may be of an y 
len gth ,  although it must be of length at least 9 in orde r to conta in 
the com plete value . Its elements are set to the values below as if 
by a characte r int rinsic as signment statement . Its size must be at 

least e qual to the ran k  of the align-target to which DISTRIBUTEE is 
ultimate ly aligne d; this is the value returned b y  HPF _TEMPLATE in 

TEMPLATE..RAlK ) . It is an lITEIT (OUT) argument . Its i th element 
conta ins info rmation on the d istr ibution o f  the ith a xis of that align­
target. The following values are de fined b y  HPF ( implementa tions 
may define other values) : 

'BLOCK' The a xis is d istr ibuted BLOCK. The corresponding e lement 
of AXIS....INFO con tains the bloc k size . 

'COLLAPSED' The axis is collapsed (distr ibute d w ith the "*" s pec ifi­
cation ) . The value of the co rresponding element of AXIS....INFO is 
processor d ependent . 
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I CYCLIC I The axis is d istrib uted CYCLIC .  The corresponding element 
o f AXIS....INFO contains the bloc k size . 

AXIS....IIFO* must be a rank one array of type default integer ,  and size at least 

equal to the rank of t he align-target to which DISTRIBUTEE is ult i­
mately aligne d (as returned by HPF .TEMPLATE in TEMPLA TE.1I.ANK) . It 

is an INTENT ( OUT ) argument . The ith element of AXIS....INFO con ­
tains the block size in the block or cyclic distribution of the ith axis 

of the ultimat e align-target of DISTRIBUTEE; if t hat axis is a collapsed 

axis, th en the value is processor dependent . 

PROCESSORS..RUK* must be scalar and of type default integer . It is set to the rank 

of the p roc essor arrang ement onto which DISTRIBUTEE is di strib uted. 
I t  is an INTENT (OUT) argument . 

PROCESSORS.sHAPE* m ust be a rank one array of type defaul t integer and of 

size at least equal to the value , m, returned in PROCESSORS..RANK . 
It is a n  INTENT (OUT) argument. Its first m elem ents are set to 
the shape of the processor arrangement to which DISTRIBUTEE is 

mapped.  (It m ay be necessary to call HPF J)ISTRIBUTION twice, the 

first time to obtain the v alue of PROCESSORS..RANK in order to a llocate 
PROCESSORS.sHAPE . ) 

EX8lIlple . Given the declarations in the example under HPF ...ALIGN ,  and as­

suming that the actual mappings are as the directives specify, the res ults of 
HPF .DISTRIBUTION are: 

A B PI 

AXIS.TYPE ['BLOCK', 'BLOCK'] ['CYCLIC', 'BLOCK'] [ ] 
AXIS...1NFO [10, 10] [1, 15] [ ] 
PROCESSORS SHAPE [4, 2] [4,2] [ ] 
PROCESSORS_RANK 2 2 a 

B.17 HPF _TEMPLATE 

Synopsis.  HPF_TEHPLATE (ALIGNEE, TEMPLATERANK ,  LB , UB , AXISTYPE , AX­
IS INFO , NUHBER...AL IGNED. DYNAMIC )  

Optional Argument s .  LB , UB, AXIS.TYPE ,  AXIS....IIFO, IUMBER...ALIGNED, 
TEHPLATE..RANK,DYNAHIC 
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D escrip tion. The HPF _TEMPLATE subroutine r et urns informatio n regarding the 
ultimate align-target asso ciat ed with a variable; HPF-TEMPLATE returns informa­
tion conce rning the variable from the template 's point of view (assuming the 
alignment is to a template rather than to an a rray ), while HPF ...ALIGNMENT returns 
information from the var iabl e's poin t of view . 

Class. Mapping inquiry subroutine . 

Arguments. 

ALIGNEE may be of any type .  It may b e  scalar or array valued . It must not be  
an assumed -size array . I t  m ust not b e  a structure component . If it i s  a 
member of an aggregate variable group , th en it m ust be  an aggregate 
cover of the group . (See Chapt er 4 for the d efinitions of "aggreg ate 
variable group " and "aggregate cover . " )  It must not be a po inter that 
is disassociat ed or an all ocatable ar ray th at is not all ocated . It is an 
INTENT (IN) ar gument . 

If ALIGNEE is a po inter, information ab out the a lignment of its target 
is returned. T he target must not be an assumed-size dummy arg u­
ment or a section of an assumed -size d ummy argument . If the target 
is (a section of) a member of an aggregate varia ble group , then the 
member must be an aggregat e cover of the group . The target must 
not be a st ructu re component, but the pointe r may be .  

TEMPLA TE...RANK* m ust be scalar an d of t ype default integer . I t  is an INTENT 
(OUT) arg um ent . It is set to the rank of the ultimate align-target. 
This can be di fferent fro m the ran k of the ALIGNEE, due to co llapsing 
and replicating. 

LB* m ust be of type default integer and of ran k  one . Its s ize  must be  
at l east equal to  the rank of  the align-target to  wh ic h  ALIGNEE is 
ultimately aligned ; this is the value r et urn ed in TEMPLATE...RANK .  It 
is an INTENT (OUT) argument . The ith element of LB contains the 
declared align-target low er bo und for the ith te mplate axis . 

UB* m us t  be of type defaul t int eger and of rank one . Its size must b e  
at least equal to the ran k of the dign-target to which ALIGNEE is 
ultima tely aligned ; th is is the value retu rned in TEMPLATE...RANK. It 
is an llTEIT (OUT) arg um ent . The ith element of UB contains the 
de clared align-target upper bo und for t he ith template a xis . 
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AXIS_TYPE* mus t  be a rank one a rra y o f  type def ault ch aract er . It m ay be of any 
le ngth , alt hough it must be o f  length at least 10 in order to contain 
the co mplete value . It s e lem en ts are se t to t he values below as if by 
a char acte r intr insi c assi gn ment statement. Its size must be at least 

equal to the r ank of the align-target to which ALIGNEE is ulti matel y 
aligned; th is is the va lue re tu rned in the INTENT ( OUT ) argum ent 
TEMPLATE..RANK . The i th element of AXIS_TYPE contains informat ion 
about t he ith axi s of the align-target. The fo llowing values are de fined 
by HPF (implementations m ay de fine other values): 

'NORMAL' An axis of ALIGNEE is aligned to the align-target axis . For 
elements of AXIS _TYPE assigned this value , the corresponding el­
ement ofAXIS-.lNFO is set to the n umber of the a xis of ALIGNEE 
alig ned to t his align-target axis . 

'REPLICATED' ALIGNEE is replicated along th is align-target axis .  Fo r 
eleme nts of AXIS_TYPE assigned this v alue, the co rresponding el­
ement of AXI S -.lNFO is s et to the n umber of copies of ALIGNEE 

along this align-target axis. 

'SINGLE' ALIGNEE is aligned wi th one coordinate of the align-target 
axis . For element s of AX IS_TYPE ass igned this value , the corre ­
sponding AXIS-.lNFO el ement is set to t he align-target coordinate 

to wh ich ALIGNEE is al igned . 

AXIS....INFO* must be of type default integer and of rank one. It s size must be 
at least equal to the rank of t he align-target to wh ich ALIGNEE is 
ultimately aligned; this is the v alu e ret urned in TEMPLATE..RANK. It is 
an INTENT (OUT) argument. See the des crip tion of AXIS3YPE above . 

NUMBER�LIGNED* must be scalar and of type defa ul t  integ er .  It is an INTENT 

(OUT) a rg ument . It is set to the tot al number of var iab les aligned 

to the ultim ate alzgn-target. This is the nu mbe r of v ariab les tha t are 
moved if the align-target is redistrib uted . 

DYNAMIC* mus t be sc alar and of type def ault logical .  It is an INTENT (OUT) ar­
gument. It is set to true if the align-target h as the DYNAMIC attribute, 

and to false othe rwi se . 

Example. Given the declarations in the example under HPF�LIGN, and assuming 

that the a ctual mappings are as the directives sp ecify, the results of HPF _TEHPLA TE 
ar e: 
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A C D 
LB [1, 1] [1, 1] [1, 1] 
UB [40, 20] [40, 20] [40, 20] 
AXIS_TYPE ['NORMAL', ['NORMAL', ['NORMAL', 

'NORMAL'] 'NORMAL'] 'SINGLE'] 
AXIS-INFO [1, 2] [3, 1] [1,4] 
NUMBER_ALIGNED 3 3 3 
TEMPLATE_RANK 2 2 2 
DYNAMIC false false false 

B.18 IALL 

Synopsis. IALL(ARRAY , DIM , MASK ) 

Optional Argument s .  DIM, MASK 

Description. Computes a bitwise logical AND reduction along dimension DIM of 
ARRAY. 

Class.  Transformational function. 

Arguments . 

ARRAY 

DIM* 

MASK* 

m ust be of type integer . It must not be scalar . 

must be scalar and of type integer w ith a value in the range 1 � DIM � 
n, where n is the ran k of ARRAY. The corresponding act ual argument 
m ust not be an optional dummy arg ument .  

must be of type logic al and m ust be confo rmable with ARRAY. 

Result Type,  Type Parameter, and S hape. The res ult is of type integer 
with the same kind type parameter as ARRAY. It is s calar if DIM is absent or if 

ARRAY has rank one ; otherwise , the res ult is an array of rank n - 1 and shape 

(d1, d2, ... , dDIM -1, dD1M+1, ... , dn) where (d1, d2, . . •  , dn) is the shape of ARRAY .  

Result Value . 

Case (i): The result of IALL(ARRAY ) is the IAND red uct ion of all th e elements 
of ARRAY. If ARRAY has size zero , the res ult is eq ual to a processor ­
dependent integer va lue x with the property that IAllD(I , x) = I 
fo r all integers I of the same kind type parameter as ARRAY. 
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Case (ii): The resu l t  of IALL(ARRAY , MASK=MASK ) is t he IAND reduction of all 
the elements of ARRAY correspond ing to the true elements of MASK ; 
if MASK con tains no true element s, the r esul t  is e qual to a p rocessor­
dependent integer value x (o ft he same kind type parameter as ARRAY) 
with the property that lAND (I , x) = I fo r all integers 1. 

Case (iii): If ARRAY has rank one , IALL(ARRAY , DIM=1 [,MASK» has a value equal 
to that o f  IALL ( ARRAY [, MASK). Other wise , the value o f  element 

(SI, S2, . .. , SDIM -1, SDIM +1, . .. , sn) of IALL(ARRAY, DIM=1 [ , MASK]) 
is equ al to IALL(ARRAY ( sI, S2, .. . , SDIM -1, : , SDIM+l, ... , Sn) 
[ , MASK = MASK(S1,S2, ... ,SDIM-1,:,SDIM+I, ... ,Sn)]) 

Examples. 

Case (i): The va lue of IALL( ( /7, 6, 3, 2/ » is 2 .  

Case (ii): The va lue of IALL( C ,  MASK = BTEST( C,O » i s  the IAND reduction of 

t he odd elem ent s of C .  

Case (iii): If B is the array [ � � � ] , then IALL (B , DIM = 1) i s  [2 3 I)] 

and IALL(B , DIM = 2) i s  [0 3]. 

B.19 IALL_PREFIX 

Synopsis. IALL...PREFIX (ARRAY , DIM, MASK, SEGMENT, EXCLUSIVE) 

Opt ional Arguments. DIM, MASK , SEGMENT, EXCLUSIVE 

Description. Compute s a segmen ted bitw ise logica l AND scan along dimension 

DIM o f  ARRAY. 

Class .  Transformational function. 

Argument s . 

ARRAY 

DIM. 

MASK. 

must be of type integer . It must no t be s ca lar. 

mu st be scalar and of type intege r with a val ue in the range 1 < 
DIM::; n, where n i s  the rank of ARRAY. 

mu st be of type logical an d must be conformable with ARRAY . 
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SEGMENT* must be o f  type logical and have t he same shape as ARRAY . 

EXCLUSIVE* m ust be o f  type logi cal and must be s cala r.  

Result Type, Type Paramet er , and Shape. Same as ARRAY . 

Result Value. Element r of the r es ult has the value IALL ( ( / a l , . . . , am / »  
where (al , . . . , am ) is the (possib ly empty) set of elements o f  ARRAY se lected to 
contribute to r by the r ules stated in Chapter 7 .  

Example . IALL..PREFIX ( ( / 1 , 3 , 2 , 4 , 5/ ) ,  SEGMENT= ( /F , F , F , T , T/ ) ) is 
[ 1 1 0 4 4 ] . 

B . 20 IALL_S CATTER 

Synopsis.  IALL..5CATTER (ARRAY , BASE , INDXi , . . .  , INDXn , MASK ) 

Optional Argument . MASK 

Description. S catters elements of ARRAY se lected by MASK to positions of the 
result indi cated by index arrays IlfDXi ,  . . . , IlIDXn. The /hbit o f  an element of 
the result is 1 if and only i f  the jth bits o f  the corresponding element of BASE and 
o f  the elements of ARRAY s catter ed to that position are all equal to 1 .  

Class .  Transformational functi on .  

Argument s .  

ARRAY m ust be of type integer . It must not be scalar . 

BASE m ust be of type integer with the same kind type parameter as ARRAY .  
I t  m ust not be scalar . 

IIDX1 , . . .  , INDXn must be of type integer and must be conformable with ARRAY . 
The n umber of IIDX arguments must be  equal to the rank of BASE.  

MASK* must be of type logica l and must be conformable with ARRAY . 

Result Typ e, Typ e Parameter , and Shape. Same as BASE . 

Result Value . The element of the result corresponding to the element b of BASE 
has the value IALL ( ( / a I , a2 , . . .  , am , bl) ) , where (aI , . . .  , am ) are the elements 
of ARRAY associated with b as des cribed in C hapter 7. 

Example. IALL..5CATTER « ( / l , 2 , 3 , 6/ ) , ( / 1 , 3 , 7/ ) , ( / 1 , 1 , 2 , 21 ) 

is [ 0 2 7 J .  
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B . 2 1  IALL_SUFFIX 

Synopsis. IALL...5UFFIX (ARRAY , DIM , MASK , SEGMEliT , EXCLUSIVE ) 

Opt ional Argument s .  DIM ,  MASK , SEGMENT, EXCLUSIVE 

Description . Computes a reverse , segmented bitwise logical AND scan along 
dimension DIM of ARRAY . 

Class. Transformational function . 

Arguments .  

ARRAY must be of type integer . It must not be scalar . 

DIM. must be scalar and of type integer with a value in the range 1 < 
DIM ::::; n ,  where n is the rank of ARRAY. 

MASK* must be of type logica l  and must be conformable with ARRAY . 

SEGMEliT* must be of type logical and have the same shape as ARRAY. 

EXCLUSIVE* must be of type logical and must be scalar . 

Result Type,  Type Parameter, and Shape. Same as ARRAY. 

Result Value. Element r of the result has the value IALL ( (f  a t , . . . , am I» 
where (at , . . .  , am ) is the (possibly empty) set of elements of ARRAY selected to 

contribute to r by the rules stated in Chapter 7.  

Example. IALLSUFFIX ( ( / 1 , 3 , 2 , 4 , 5/ ) , SEGMENT= (fF , F , F , T , T/ ) ) is 
[ 0 2 2 4 5 J . 

B . 2 2  IANY 

S ynopsis. IANY (ARRAY , DIM , MASK ) 

Optional Argument s.  DIM,  MASK 

Description. Computes a bitwise logical OR reduction along dimension DIM of 
ARRAY. 

Class. Transformational function . 
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Arguments. 

ARRAY 

DIM* 

MASK* 

must be of type integer . It must not be scalar. 

must be scalar and of type integer with a value in the range 1 :::; DIM :::; 
n, where n is the rank of ARRAY . The corresponding actual argument 
must not be an optional dummy argument . 

must be of type logical and must be conformable with ARRAY . 

Result Type,  Type Parameter, and Shape. The result is of type integer 
with the same kind type parameter as ARRAY . It is scalar if DIM is absent or if 
ARRAY has rank one ; otherwise , the result is an array of rank n - 1 and shape 
(d1 ,  d2 , . . .  , dDIM - 1, dD1M+l , . . . , dn) where (d1 , d2 , . . .  , dn) is the shape of ARRAY . 

Result Value. 

Case (i): The result of IANY (ARRAY ) is the lOR reduction of all the elements of 
ARRAY . If ARRAY has size zero , the result has the value zero . 

Case (ii): The result of IANY (ARRAY , MASK=MASK ) is the lOR reduction of all 
the elements of ARRAY corresponding to the true elements of MASK ; if 
MASK contains no true elements ,  the result is zero . 

Case (iii) : If ARRAY has rank one , IANY (ARRAY , DIM= 1 [ , MASK] ) has a value equal 
to that of IANY (ARRAY [ , MASK] ) .  Otherwise , the value of element 

(51 , 52 , . . .  , SDIM- 1 ,  SDIM+1 , . . .  , Sn) of IANY (ARRAY , DIM= 1 [, MASK] ) 

is equal to IANY (ARRAY ( Sl ,  S2 , . . . , SDIM- 1 , : , SDIM+1 , . . . , sn) 

[ , MASK = MASK (Sl , S2, . . .  , SDIM - 1 ,  : ,  SDIM + 1 , . . .  , Sn) ]) 

Examples. 

Case (i): The value of IANY « ( /9 ,  8 , 3 , 2/ »  is I I .  

Case (ii): The value of IANY ( C ,  MASK = BTEST ( C , O »  is the lOR reduction of 
the odd elements of c .  

Case (iii): If B is the array [ 2 3 6 ] , then IANY (B ,  
0 4 2 

and IANY (B , DIM = 2 ) is [ 7 6 ] . 
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B.23 IANY -P REFIX 

Synopsi s .  IANY ...PREF I X ( ARRAY , DIM , MASK , SEGMENT , EXCLUS IVE ) 

O pt ional Argument s. DIM , MASK , SEGMENT , EXCLUSIVE 

Descript ion.  Computes a segmented bitwise lo gical OR scan along dimension 

DIM of ARRAY .  

C lass. Transformational func tion .  

Arguments .  

ARRAY must be of type integer . It must not be scalar . 

DIM* must be scalar and of typ e integer with a value in the range 1 < 
DIM :::; n ,  where n is the rank of ARRAY . 

MASK* must b e  of type logical and must be conform able with ARRAY . 

SEGMENT* must be of type logical and have the same shape as ARRAY. 

EXCLUS IVE* must b e  of type logical and mllst b e  scalar . 

Result Type, Type Paramet er , and Shape. Same as ARRAY . 

Result Value. Element r of the result has the value IANY ( ( /  a l ,  . . .  , am I»  
where (a l , . . .  , am ) i s  the  (possibly empty) set of elements o f  ARRAY selected to  
contribute to r by t h e rules stated in Chapter 7 .  

Example. IANY...PREF I X ( ( / 1 , 2 , 3 , 2 , 5/ ) , SEGMENT= ( /F , F , F , T , T/ )  ) is 
[ 1 3 3 2 7 ] . 

B . 24 IANY _S CATTER 

Synopsis. IANY..5CATTER (ARRAY , BASE , INDX 1 ,  . . .  , INDXn , MASK ) 

Opt ional Argument . MASK 

Descript ion . Scatters elements of ARR AY selected by MASK to p ositions of the 

result indica t ed by ind ex arrays !NDX i ,  . . .  , INDXn . The /h bit of an element of 

the result is 1 if and only if the jth bit of th e corresponding el em en t of BASE or of 

any of th e el em ents of ARRAY scattered to that position is equal to 1 .  
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Clas s .  Transformational function . 

Argument s .  

ARRAY 

BASE 

must be of type integer . It must not be scalar . 

must be of type integer with the same kind type paramete r as ARRAY . 
It must not be scalar . 

IlfDX i , . . .  , IlfDXn must be of type integer and must be conformable with ARRAY . 
The number of INDX arguments must be equal to the rank of BASE. 

MASK· must be of type logical and must be conformable with ARRAY . 

Result Typ e,  Typ e Parameter, and Shape.  Same as BASE . 

Result Value. The element of the result corresponding to the element b of BASE 
has the value IANY ( (la l , a2 , . . . , am , b/ ) ) , where (al ' . . .  , am )  are the elements 
of ARRAY associated with b as described in Chapter 7 .  

Example. IANy...sCATTER ( ( l l , 2 , 3 , 6/ ) , ( 1 1 , 3 , 7/ ) , ( 1 1 , 1 , 2 , 2/ ) 
is [ 3 7 7 ] . 

B . 2 5  IANY _S UFFIX 

Synopsis. IANY ...sUFFIX (ARRAY , DIM , MASK , SEGMENT , EXCLUSIVE ) 

Opt ional Argument s .  DIM ,  MASK , SEGMENT , EXCLUSIVE 

Descrip tion. Computes a reverse , segmented bitwise logical OR scan along di­
mension DIM of ARRAY . 

Class.  Transformational function . 

Argument s .  

ARRAY must be of type integer . It must not be scalar . 

DIM. must be scalar and of type integer with a value in the range 1 < 
DIM � n, where n is the rank of ARRAY . 

MASK. must be of type logical and must be conformable wit.h ARRAY . 

SEGMENT. must be of type logi cal and have the same shape as ARRAY . 
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EXCLUSIVE* must be of type logical and must be scalar . 

Result Type ,  Type Parameter , and Shape. Same as ARRAY . 

Result Value. Element r of the result has the value IANY « ( I  al , . . .  , am I) ) 
where (a l , . . .  , am ) is the (possibly empty ) set of elements of ARRAY selected to 
contribute to r by the rules stated in Chapter 7 .  

Example. IANY .sUFFIX ( ( 14 , 2 , 3 , 2 , 51 ) , SEGMENT= ( IF , F , F  , T , T I )  ) is 
[ 7 3 3 7  S ] . 

B . 26 ILEN 

Synopsis. ILEN ( I )  

Description. Returns one less than the length , i n  bits , of the two 's-complement 
representation of an integer .  

Clas s .  Elemental function . Intrinsic . 

A rgument . I must be of type integer . 

Result Type and Type Parameter. Same as I .  

Result Value . If I is nonnegative, ILEN ( I )  h as the value flog 2 ( I + 1 )1 ; if I is 
negative , ILEN ( I )  has the value flog 2 ( - I )l · 

Examples. ILEN ( 4 )  = 3 .  ILEN (-4)  = 2 . 2** ILEN (N- 1 )  rounds N up to a 
power of 2 (for N > 0 ) ,  whereas 2** ( ILEN ( N ) - 1 ) rounds N down to a power of 2 .  
Compare with LEADZ . 

The value returned is one less than the length of the two's-complement representa­
tion of I ,  as the following explains . The shortest two 's-complement representation 
of 4 is 0 100 .  The leading zero is the required sign bit . In 3-bit two 's complement , 

100 represents - 4 . 

B . 2 7  IPARITY 

S ynop sis . IPARITY (ARRAY , DIM , MASK ) 

Opt ional Arguments.  DIM ,  MASK 
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Description. Computes a bitwise logical exclusive OR reduction along dimension 
DIM of ARRAY . 

C lass. Transformational function . 

Argument s.  

ARRAY 

DIM. 

MASK. 

must be of type integer . It must not be scalar . 

must be scalar and of type integer with a value in the range 1 ::; DIM ::; 
n, where n is the rank of ARRAY . The corresponding actual argument 
must not be an optional dummy argument .  

must b e  of type logical and must be conformable with ARRAY . 

Result Type,  Type Parameter , and Shape. The result is of type integer 
with the same kind type parameter as ARRAY . It is scalar if DIM is absent or if 
ARRAY has rank one ; otherwise , the result is an array of rank n - 1 and shape  

(d1, d2, . . . , dDIM - 1 , dDIM+1 ,  . . .  , dn) where (d 1 ,  d2 , . . .  , dn) i s  the  shape of ARRAY . 

Result Value. 

Case (i) : The result of IPARITY (ARRAY ) is the IEOR reduction of all the ele­
ments of ARRAY . If ARRAY has size zero , the result has the value zero . 

Case (ii): The result of IPARITY (ARRAY , MASK=MASK ) is the IEOR reduction of 
all the elements of ARRAY corresponding to the true elements of MASK ; 
if MASK contains no true elements ,  the result is zero . 

Case (iii) :  If ARRAY is rank one , IPARITY (ARRAY , DIM= l [ , MASK] ) is equiva­
lent to IPARITY (ARRAY [ , MASK] ) .  Otherwise , the value of element 

(S l ,  S2 , . . . , sD IM - 1 , S D Ilvl + 1 , . . .  , sn ) of IPARITY (ARRAY , DIM= l 

[ , MASK] ) is equal to IPARITY (ARRAY ( S l , S2 , . . .  , S D I AI - 1 ,  : , SD I M + 1 , 

. . . , Sn ) [ , MASK = MASK ( S l , S2 , . . .  , S D IM _ 1 , : , S D I M + 1 ,  . . .  , Sn ) ] ) 

Examples . 

Case (i) : The value of IPARITY « / 1 3 ,  8 ,  3 ,  2/ ) )  is 4 .  

Case (ii): The value of IPARITY (C , MASK = BTEST (C , 0 ) ) is the IEOR reduction 
of the odd elements of C. 

Case (iii) :  If  B is the array [ 2 3 7 ] , then IPARITY (B  , 
0 4 2 

and IPARITY (B , DIM = 2 )  is [ 6  6 ] . 
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B.28 IPARITYJ>REFIX 

Synopsi s .  IPARITY...PREFIX (ARRAY , DIM , MASK , SEGMENT , EXCLUSIVE) 

Opt ional Arguments.  DIM ,  MASK , SEGMENT , EXCLUSIVE 

283 

Description . Computes a segmented bitwise logical exclusive OR scan along 
dimension DIM of ARRAY . 

Class. Transformational function . 

Arguments. 

ARRA Y must be of type integer . It must not be scalar . 

D IM* must be scalar and of  type integer with a value in  the range 1 < 
DIM :::; n , where n is the rank of ARRAY . 

MASK* must be of type logical and must be conformable with ARRAY .  

SEGMENT* must be of type logical and have the same shape as ARRAY. 

EXCLUSIVE* must be of type logical and must be scalar .  

Result Type,  Type Parameter , and Shape. Same as ARRAY . 

Result Value. Element r of the result has the value IPARITY ( ( /  a t ,  . . . , am I »  

where (al , . . .  , am ) is the (possibly empty) set of elements of ARRAY selected to 
contribute to r by the rules stated in Chapter 7 .  

Example. IPARITY...PREFIX ( ( / 1 , 2 , 3 , 4 , 5/ ) , SEGMENT= ( /F , F , F , T , T/ ) ) is 
[ 1 3 0 4 1 ] . 

B.29 IPARITY -S CATTER 

Synopsis.  IPARITy..sCATTER (ARRAY , BASE , INDX 1 ,  . . .  , INDXn ,  MASK ) 

Optional Argument . MASK 

Description. Scatters elements of ARR.AY selected by MASK to positions of the 
result indicated by index arrays INDX 1 ,  . . .  , INDXn. The jth bit of an element of 
the result is 1 if and only if there are an odd number of ones among the lhbits 
of the corresponding element of BASE and the elements of ARRAY scattered to that 
position . 
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Class. Transformational function . 

ArguIllents .  

ARRAY 

BASE 

must be of type integer . It must not be scalar . 

must be of type integer with the same kind type parameter as ARRAY . 
It must not be scalar . 

INDX 1 ,  . . . •  INDXn must be of type integer and must be conformable with ARRAY . 
The number of INDX arguments must be equal to the rank of BASE. 

MASK* must be of type logical and must be conformable with ARRAY . 

Result Type,  Type ParaIneter, and Shape. Same as BASE. 

Result Value. The element of the result corresponding to the element b of 
BASE has the value IPARITY ( (/al . a2 ,  . . .  , am . b/ ) ) , where (a l , "  . ,  am ) are the 
elements of ARRAY associated with b as described in Chapter 7 .  

ExaIllple . IPARITY ..sCATTER ( ( / 1 .  2 , 3 , 6/ ) , ( / 1 , 3 , 7/ ) , ( / 1 , 1 , 2 , 2/ ) ) is 

[ 2  6 7 ] . 

B .30 IPA RITY _SUFFIX 

Synop sis. IPARITy..sUFFIX (ARRAY . DIM , MASK , SEGMENT , EXCLUSIVE ) 

Optional ArguIllents.  DIM,  MASK , SEGMENT , EXCLUSIVE 

Description. Computes a reverse , segmented bitwise logical exclusive OR scan 
along dimension DIM of ARRAY . 

Class. Transformational function . 

ArguIllent s . 

ARRA Y must be of type integer . It must not be  scalar . 

DIM* must be scalar and of type integer with a value in the range 1 < 
DIM � n, where n is the rank of ARRAY. 

MASK* must be of type logical and must be conformable with ARRAY . 

SEGMEIT* must be of type logical and have the same shape as ARRAY . 
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EXCLUSIVE* must be of type logical and must be scalar . 

Result Typ e,  Typ e Parameter, and Shape.  Same as ARRAY . 

Result Value. Element r of the result has the value IPARITY ( ( I  a l , . . . , am / »  
where (a l ,  . . .  , a m ) is the (possibly empty ) set of elements of ARRAY selected to 
contribute to r by the rules stated in Chapter 7 .  

Example. IPARITY ...sUFFIX  ( ( 1 1 , 2 , 3 , 4 , 51 ) , SEGMENT= (IF , F , F , T , T I )  ) is 
[ 0 1 3 1 5 ] . 

B.31 LEAD Z 

Synop sis. LEADZ ( I )  

Descript ion. Return the number of leading zeros in an integer . 

C lass. Elemental function . 

Argument . I must be of type integer . 

Result Typ e  and Type Parameter. Same as I .  

Result Value. The result i s  a count of the number o f  leading O-bits in the integer 
I .  The model for the interpretation of an integer as a sequence of bits is in Section 
1 3 . 5 . 7  of the Fortran 90 Standard .  LEADZ (O )  is BIT...sIZE ( I ) .  For nonzero I ,  if 
the leftmost one bit of I occurs in position k - 1 (where the rightmost bit is bit 
0) then LEADZ ( I )  is BIT...s I ZE ( I )  - k .  

Examples . LEADZ ( 3 )  h as  the value B IT ...sIZE ( 3 )  - 2 .  For scalar I ,  LEADZ ( I )  = =  

MINVAL « ( I ( J , J=O , BIT...sI ZE ( I »  I ) , MASK=M ) where M = (I (BTEST ( I , J ) . 
J=BIT...sI ZE ( I ) - l , 0 ,  - 1 ) , . TRUE . / ) . A given integer I may produce differ­
ent results from LEADZ ( I ) ,  depending on the number of bits in the representation 
of the integer (BIT...s IZE ( I » ) . That is because LEADZ counts bits from the most 
significant bit . Compare with ILEN . 

B .32 MAXLOC 

Synopsi s .  MAXLOC ( ARRAY , DIM , MASK ) 
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Class. Transformational function . Intrinsic .  

Optional Argument s . DIM ,  MASK 

Description. Determine the locations of the first elements of ARRAY along di­

mension DIM having the maximum value of the elements identified by MASK. 

Arguments. 

ARRAY 

DIM* 

MASK· 

must be of type integer or real . It must not be scalar. 

must be scalar and of type integer with a value in the range 1 � DIM � 
n, where n is the rank of ARRAY . The corresponding actual argument 
must not be an optional dummy argument . 

must be of type logical and must be conformable with ARRAY . 

Result Typ e, Type Parameter , and Shape.  The result is of type default 
integer . If DIM is  absent the result is an array of rank one and size equal to 
the rank of ARRAY ; otherwise , the result is an array of rank n - 1 and shape 
(d1 , . . . , dD1M- 1,  dD1M+1 ,  . . .  , dn ) ,  where (d1 , . . .  , dn) is the shape of ARRAY . 

Result Value. 

Case (i) : The result of executing S = MAXLOC ( ARRAY ) + LBOUND (ARRAY ) - 1 
is a rank-one array S of size equal to the rank n of ARRAY . It is such 
that ARRAY (S ( 1 )  • . . . •  S (n»  has the maximum value of all of the 
elements of ARRAY . If more than one element has the maximum value ,  
the element whose subscripts are returned is the first such element , 

taken in array element order . If ARRAY has size zero , the result is 
processor dependent . 

Case (ii): The result of executing S = MAXLOC (ARRAY , MASK ) +LBOUliD (ARRAY ) -l 
is a rank-one array S of size equal to the rank n of ARRAY . It is such that 
ARRAY ( S (  1 ) , . . .  , S (n» corresponds to a true element of MASK , and 

has the maximum value of all such elements of ARRAY . If more than 

one element has the maximum value, the element whose subscripts 
are returned is the first such element, taken in array element order . 
If there are no such elements (that is , if ARRAY has size zero or every 
element of MASK has the value false ) ,  the result is processor dependent . 
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Case (iii) : If ARRAY has rank one , the result of MAXLOC (ARRAY , DIM [ , MASK] )  
is a scalar S such that ARRAY ( S  + LBOUND (ARRA Y • 1) - 1 )  corre­
sponds to a true element of MASK (if MASK is present ) and has the 
ma ximum valu e of a ll such elements (all elements if MASK is absent ) . 

It is the smallest such subscript .  Otherwise , the value of element 

(S 1 ,  . . .  , SD I M  - 1 , SDIM + l , . . . , sn ) of MAXLOC (ARRAY , DIM [ , MASK] ) is 
equal to MAlLOC (ARRAY ( s 1 ,  . . .  , sD I M - 1 ,  : , S D IM + 1 , . . .  , Sn )  [ , MASK = 
MASK ( Sl , . . . , SDI M - l , : , SD IM H ,  . . . , sn)]). 

Examples.  

Case (i): The value of MAXLOC ( U 6 ,  -9 , 3 I »  is [ 1 ] .  

Case (ii): MAXLOC ( C ,  MASK = C . LT .  0 )  finds the location of the first element 

of C that is the maximum of the negative elements . 

Case (iii): The value of MAlLOC ( U  6 ,  -9 , 3 I ) , DIM= l )  is 1 .  If B is the array 

[ �  � -: ] ,  MAlLOC ( B, D IM = 1 ) is [ 2  1 2 ]  and MAlLOC e 

B ,  DIM = 2 ) is [ 2  3 ] . Note that this is true even if B has a 
declared lower bound other than 1 .  

B . 33 M AXVAL ...P REFIX 

Synopsis. MAXVAL.PREFIX (ARRAY , DIM , MASK , SEGMENT, EXCLUSIVE ) 

Opt ional Argument s. D I M ,  MASK, SEGMENT , EXCLUS IVE 

Description . Computes a segmented MAlVAL scan along dimension DIM of ARRAY . 

Class. Transformational function . 

Argument s .  

ARRAY must be of type integer or r eal . It must not be scalar . 

DIM* must be scalar and of type integer with a value in the range 1 < 
DIM :S; n, where n is the rank of ARRAY . 

MASK* must b e of type logical and must be conformable with ARRAY . 

SEGMENT* must be of type logical and have the same shape as ARRAY . 
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EXCLUS IVE* must be of type logical and must be scalar . 

Result Type, Type Parameter , and Shap e. Same as ARRAY . 

Result Value. Element r of the result has the value MAX VAL ( ( /  a l , . . .  , am / » 

where (a l , . . .  , am ) is the (possibly empty) set of elements of ARRAY selected to 
contribute to r by the rules stated in Chapter 7 .  

Example. MAXVAL..PREFIX (  (/3 , 4 , -5 , 2 , 5/ ) ,  SEGMENT= ( /F , F , F . T . T/ ) ) is 
[ 3 4 4 2 5 ] .  

B . 34 MAXVA L S C ATTER 

Synopsis. MAXVAL..SCATTER (ARRAY , BASE , INDX 1 • . . .  , INDXn . MASK ) 

O p t ional Argument. MASK 

Description. Scatters elements of ARRAY selected by MASK to positions of the 
result indicated by index arrays INDX 1 ,  . . . , INDXn. Each element of the result 
is assigned the maximum value of the corresponding element of BASE and the 
elements of ARRAY scattered to that position . 

C lass. Transformational function . 

Argument s. 

ARRAY 

BASE 

must be  of type integer or real . It must not be  scalar . 

must be  of the same type and kind type parameter as ARRAY . It must 
not be scalar . 

INDX l , . . .  , INDXn must be of type integer and must be conformable with ARRAY. 

The number of INDX arguments must be equal to the r ank of BASE . 

MASK* must be of type logical and must be conformable with ARRAY . 

Result Type, Type Parameter, and Shape. Same as BASE . 

Resu lt Value. The element of the result corresponding to the element b of 
BASE has the value MAXVAL ( ( /al , a2 , . . . , am , bf ) ) ,  where (a l , . . .  , am )  are the 
elements of ARRAY associated with b as described in Ch apter 7 .  

Example . MAXVAL....sCATTER ( ( / 1 ,  2 , 3 . i f ) , ( /4 ,  - 5 , 7 f ) , ( / 1 , 1 ,  2 , 2/ » 
is [ 4  3 7 ] . 
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B .35 MAXVAL.JiUFFIX 

Synopsis.  MAXVAL...S UFFIX (ARRAY , DIM , MASK , SEGMENT , EXCLUSIVE ) 

Optional Argument s .  DIM ,  MASK , SEGMENT , EXCLUSIVE 

Descript ion . Computes a reverse , segmented MAXVAL scan along dimension DIM 
of ARRAY . 

Clas s .  Transformational function . 

Argument s . 

ARRAY must be of type integer or real . It must not be scalar . 

DIM* must be scalar and of type integer with a value in the range 1 < 
DIM  � n, where n is the rank of ARRAY. 

MASK* must be of type logical and must be conformable with ARRAY. 

SEGMENT* must be of type logical and have the same shape as ARRAY . 

EXCLUSIVE* must be of type logical and must be scalar . 

Result Type, Type Parameter ,  and Shape . Same as ARRAY.  

Result Value. Element r of the result has the value MAXVAL ( (/ a l , . ' "  am I »  

where ( a l , . . .  , a m )  is the (possibly empty ) set of elements of ARRAY selected to 
contribute to r by the rules stated in Chapter 7 .  

Example. MAXVAL..sUFFIX ( (/3 , 4 , -6 , 2 , 5/ ) , SEGMENT: ( /F , F , F , T , T/ )  ) is 

[ 4  4 -5 5 5 ] . 

B .36 MINLO C  

Synopsis. MINLOC ( ARRAY , DIM , MASK ) 

Opt ional Argument s. DIM ,  MASK 

Description. Determine the locations of the first elements of ARRAY along di­
mension DIM having the minimum value of the elements identified by MASK . 

Class. Transformational function . Intrinsic .  
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Argument s .  

ARRAY 

DIM* 

MASK* 

must be of type integer or real . It must not be scalar . 

must be scalar and of type integer with a value in the range 1 :5 DIM :5 
n ,  where n is the rank of ARRAY . The corresponding actual argument 
must not be an optional dummy argument . 

must be of type logical and must be conformable with ARRAY. 

Result Type, Type Parameter, and Shape. The result is of type default 
integer. If DIM is absent the result is an array of rank one and size equal to 
the rank of ARRAY; otherwise , the result is an array of rank n - 1 and shape 
(d1 , . . .  , dD1M- 1 ,  dDIAJ+1 , . . .  , dn ) , where (d1 ,  . . . , dn ) is the shape of ARRAY . 

Result Value. 

Case (i): The result of executing S = MINLOC (ARRAY ) + LBOUND (ARRAY ) - 1 
is a rank-one array S of size equal to the rank n of ARRAY. It is such 
that ARRAY ( S ( 1 ) , . . .  , S (n »  has the minimum value of all of the 
elements of ARRAY . If more than one element has the minimum value , 
the element whose subscripts are returned is the first such element , 
taken in array element order . If ARRAY has size zero , the result is 
processor dependent . 

Case (ii) : The result of executing S = MINLOC (ARRAY , MASK ) +LBOUND (ARRAY ) - 1 
is a rank-one array S of size equal to the rank n of ARRAY . It is such 
that ARRAY ( S ( 1 ) ,  . . .  , S e n »  corresponds to a true element of MASK , 
and has the minimum value of all such elements of ARRAY . If more than 
one element has the minimum value, the element whose subscripts are 
returned is the first such element , taken in array element order . If 
there are no such elements (that is , if ARRAY has size zero or every 
element of MASK has the value false) , the result is processor dependent . 

Case (iii): If ARRAY has rank one , the result of MINLOC (ARRAY , DIM [ , MASK] ) 
is a scalar S such that ARRAY ( S  + LBOUND (ARRAY , 1 ) - 1 )  corre­

sponds to a true element of MASK ( if MASK is present ) and has the 
minimum value of all such elements (all elements if MASK is absent) . 

I t  is the smallest such subscript .  Otherwise , the value of element 

( S1 , " "  SDIM- l , SDIM+1 , " " sn ) of MINLOC (ARRAY , DIM [ , MASK] ) is 
equal to MINLOC (ARRAY «s 1 , . . .  , SDIM - 1 , : , SDIM+1 , . . . , sn »  [ , MASK 
= MASK « (S 1 , . . .  , SDIM- 1 , : ,  SDIM+1, . · . ,  sn ) ] ) .  
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Examples.  

Case (i): The value of MIILOC ( ( I  5 ,  -9 , 3 /» is [ 2 ] .  

291 

Case (ii): MINLOC ( C .  MASK = C . GT . 0 )  finds the location of the first element 
of C that is the minimum of the positive elements. 

Case (iii) : The value of MINLOC « ( I 5 ,  -9 , 3 I ) , DIM= l )  is 2. If B is the array 

[ �  � -: ] , MINLOC ( B ,  DIM = 1 ) is [ 1  2 1 ]  and MINLOC ( 

B ,  DIM = 2 ) is [ 3  1 ] . Note that this is true even if B has a 
declared lower bound other than 1 .  

B.37 MINVAL-PREFIX 

Synopsis . MINVAL..PREFIX (ARRAY , D IM ,  MASK , SEGMENT , EXCLUSIVE ) 

Optional Arguments. DIM,  MASK, SEGMENT, EXCLUSIVE 

D escript ion. Computes a segmented MUVAL scan along dimension DIM of ARRAY . 

Class. Transformational function. 

Arguments. 

ARRAY must be of type integer or real . It must not be scalar . 

DIM* must be scalar and of type integer with a value in the range 1 < 
DIM � n ,  where n is the rank of ARRAY . 

MASK* must be of type logical and must be conformable with ARRAY . 

SEGMENT* must be of type logical and have the same shape as ARRAY . 

EXCLUSIVE* must be of type logical and must be scalar .  

Result Type,  Type Parameter,  and S hape. Same as ARRAY . 

Resul t  Value.  Element r of the result has the value MINVAL ( (I  a l ,  . . .  , am / » 
where (al , . . .  , am ) is the (possibly empty) set of elements of ARRAY selected to 

contribute to r by the rules stated in Chapter 7 .  

Example. MINVAL..PREFIX ( ( 1 1 . 2 . -3 . 4 . 51 ) , SEGMENT= (IF , F • F , T • T / )  ) is 
[ 1  1 -3 4 4 ] . 
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B . 38 MINVAL_S C ATTER 

Synopsis. MINVALSCATTER ( ARRAY , BASE , INDX1 ,  . . .  , INDXn , MASK ) 

Opt ional Argument . MASK 

D escrip t ion. S catters elements of ARRAY selected by MASK to p ositions of the 

result indicated by index arrays INDx t ,  . . .  , INDXn . Each element of the result 

is assigned the maximum value of the corresponding element of BASE and the 

elements of ARRAY scattered to that position . 

C lass. Transformational function . 

Argument s .  

ARRAY 

BASE 

must be of type integer or real . It must not b e  scalar . 

must be of the same type  and kind type p arameter as ARRAY . It must 

not be scalar . 

INDX 1 , . . .  , INDXn must be of type  integer and must be conformable with ARRAY . 

The number of INDX arguments must be equal to the rank of BASE . 

MASK* must be of type logical and must be  conformable with ARRAY . 

Resu lt Typ e, Type Parameter, and Shape. S ame as BASE .  

Result Value. The element of the  result corresponding to the  element b of 
BASE has the value MINVAL ( (/a l , a2 ,  . . .  , am , bl )  ) , where (a l , . . .  , am ) are the 

elements of ARRAY associated with b as describ ed in Chapter 7. 

Example. MINVAL....5CATTER ( ( /  1 , -2 , -3 , 6 / ) , ( / 4 , 3 , 7 / ) , ( /  1 , 1 , 2 , 2  I) ) 
is [ -2 -3 7 ] . 

B . 39 MINVAL_S U FFIX 

Synopsis. MINVAL....5UFFIX (ARRAY , D IM , MASK , SEGMENT , EXCLUS IVE )  

Opt ional Argument s .  DIM ,  MASK , SEGMENT , EXCLUS IVE 

Descrip t ion. Computes a reverse , segmented MINVAL scan along dimension DIM  

of  ARRAY . 
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Clas s .  Transformational function . 

Arguments .  

ARRAY must be of type integer or real . It must not be scalar . 
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DIM. must be scalar and of type integer � ith a value in the range 1 < 
DIM � n, where n is the rank of ARRAY . 

MASK. must be of type logical and must be conformable with ARRAY.  

SEGMENT. must be of type logical and have the same shape as ARRAY . 

EXCLUSIVE. must be of type logical and must be scalar . 

Result Type, Typ e Parameter, and S hap e. Same as ARRAY . 

Result Value. Element r of the result has the value MUVAL( ( /  a l " " ,  am / ) 

where (a l l ' " I am ) is the (possibly empty) set of elements of ARRAY selected to 
contribute to r by the rules stated in Chapter 7 .  

Example. MINVAL..5UFFIX ( ( / 1 . 2 . -3 . 4 . 5/ ) .  SEGMENT= ( /F . F . F . T . T/ )  ) is 
[ -3 -3 -3 4 5 J .  

B .40 NUMBER_OF _PRO C ES S ORS 

S ynopsis. NUMBER..DF ...PROCESSORS (DIM ) 

Opt ional Argument . DIM 

Description. Returns the total number of processors available to the program 

or the number of processors available to the program along a specified dimension 
of the processor array. 

Class . System inquiry function . Intrinsic .  

Arguments . 

DIM. must be scalar and of type integer with a value in  the range 1 < 

DIM � n where n is the rank of the processor array. 

Result Type, Typ e Parameter , and S hape.  Default integer scalar . 
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Result Value. The result has a value equal to the extent of dimension DIM of 
the processor-dependent hardware processor array or, if DIM is absent , the total 
number of elements of the processor-dependent hardware processor array. The 
result is always greater than zero . 

Examples . For a computer with 8 192 processors arranged in a 128  by 64 rectan­
gular grid ,  the value of NUMBER....oF...PROCESSORS O is 8192 ;  the value of NUMBER...oF­
PROCESSORS (DIM= l )  is 128 ;  and the value of NUMBER....oF...PROCESSORS (DIM= 2 )  is 
64 . For a single-processor workstation , the value of NUMBER...oF ...PROCESSORS 0 is 
1 ;  since the rank of a scalar processor array is zero , no DIM argument may be used. 

B .4 1  PARITY 

Synopsis . PARITY (MASK , DIM)  

Opt ional Argument . DIM 

Description. Determine whether an odd number of  values are true in MASK along 
dimension DIM .  

Class.  Transformational function . 

Argument s.  

MASK must be of type logical . It must not be scalar .  

DIM* must be scalar and of type integer with a value in the range 1 :S DIM :S 
n ,  where n is the rank of MASK . The corresponding actual argument 
must not be an optional dummy argument . 

Result Type, Type Parameter, and Shap e. The result is of type logical with 
the same kind type parameter as MASK . It is scalar if DIM is absent or if MASK has 
rank one ; otherwise , the result is an array of rank n - 1 and shape 
(d1 , d2, . . . , dD1M - 1 ,  dD1M+1 ,  . . . , dn ) where (d1 , d2, . . .  , dn ) is the shape of MASK . 

Result Value. 

Case (i) : The result of PARITY (MASK ) is the . NEQV . reduction of all the ele­
ments of MASK. If MASK has size zero , the result has the value false . 
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Case (ii) :  lf MASK is  rank one , PARITY (MASK , DIM= l ) has a value equal t o  that of 
PARITY (MASK ) .  Otherwise , the value of element ( S I ,  S2 ,  . . .  , sDikI - I , 

SDIM+l , " " sn) of PARITY (MASK , DIM= l )  is equal to 
PARITY (MASK ( S l , S2 , . . .  , SDIM - I ,  : , SDIM+ l , . . .  , sn »  

Examples .  

Case (i) : The value of PARITY ( ( IT ,  T ,  T .  F I )  is true . 

Case (ii) : If B is the array [ �  � � ] , then PARITY ( B . DIM = 1 )  is [ F  F T 1 

and PARITY (B , DIM = 2 )  is [ F  T ] . 

B .42 PARITY � REFIX 

Synopsis . PARITY ..PREFIX (MASK , DIM , SEGMENT , EXCLUSIVE ) 

Optional Arguments .  DIM,  SEGMENT , EXCLUSIVE 

Description. Computes a segmented logical exclusive OR scan along dimension 
DIM of MASK. 

Class. Transformational function . 

Argument s .  

MASK must be of type logical . It must not be scalar . 

DIM* must be scalar and of type integer with a value in the range 1 < 
DIM :5 n, where n is the rank of MASK . 

SEGMEIT* must be of type logical and have the same shape as MASK . 

EXCLUSIVE* must be of type logical and must be scalar .  

Result Typ e,  Type Paramet er, and Shap e.  Same as MASK . 

Result Value . Element r of the result has the value PARITY ( C I  a l , · · · ,  am I )  

where (a l , " " a m ) i s  the ( possibly empty )  set of elements of MASK selected to 

contribute to r by the rules stated in Chapter 7 .  

Example. PARITY..PREFIX ( C IT , F ,  T ,  T .  T/ ) , SEGMENT= C lF , F  , F ,  T .  TI ) ) is 
[ T T F T F ] . 
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B .43 PA RITY _S CATTER 

Synop sis. PARITY ...sCATTER ( MASK , BASE , INDX l , . . .  , INDXn ) 

Description. Scatters elements of MASK to positions of the result indicated by 
index arrays INDX 1 ,  . . . , INDXn . An element of the result is true if and only if the 
number of true values among the corresponding element of BASE and the elements 
of MASK scattered to that position is odd .  

Clas s.  Transformational function . 

Arguments. 

MASK must be of type logical . It must not be scalar .  

BASE must be of type logi cal with the same kind type parameter as MASK . 

It must not be scalar . 

IIDX 1 , . . .  , I1DXn must be of type integer and conformable with MASK. The num­
ber of lIiDI arguments must be equal to the rank of BASE. 

Result Type, Type Parameter, and Shape. Same as BASE. 

Result Value. The element of the result corresponding to the element b of 
BASE has the value PARITY ( (/al , a2, . . .  , am , bf )  ) , where ( a l , . . .  , am )  are the 
elements of MASK associated with b as described in Chapter 7 .  

Example. PARITy...sCATTER « /  T , T , T , T  I ) , ( /  T , F , F  I ) , ( /  1 , 1 , 1 , 2 I »  

is [ F T F ] . 

B .44 PA RITY_SUF FIX 

Synopsis. PARITY ...sUFFIX (MASK , DIM , SEGMENT , EXCLUSIVE ) 

Optional Argument s.  DIM,  SEGMENT , EXCLUSIVE 

Description. Computes a reverse , segmented logical exclusive OR scan along 
dimension D IM of MASK . 

Class. Transformational function . 

Argument s .  
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MASK must be of type logical . It must not be scalar . 
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DIM* must be scalar and of type integer with a value in the range 1 < 

DIM � n ,  where n is the rank of MASK . 

SEGMENT* must be of type logical and have the same shape as MASK . 

EXCLUSIVE* must be of type logical and must be scalar . 

Result Type ,  Type Parameter, and Shap e. Same as MASK . 

Result Value .  Element r of the result has the value PARITY ( U a l , . . .  , am / ) 
where (al , . . . , am) is the (possibly empty ) set of elements of MASK selected to 
contribute to r by the rules stated in Chapter 7 .  

Example . PARITy...sUFFIX ( C IT , F , T ,  T ,  T/ ) ,  SEGMENT= ClF , F  , F ,  T ,  T/ ) ) is 
[ F T T F T ] . 

B ,45 P O P CNT 

S ynopsis. POPCNT ( I )  

Descript ion. Return the number of one bits in an integer . 

Class .  Elemental function . 

Argument . I must be of type integer . 

Result Type and Type Parameter . Same as I .  

Result Value. PDPCNT ( I )  i s  the number of one bits in the binary representation 
of the integer I .  The model for the interpretation of an integer as a sequence of 
bits is in Section 13. 5 . 7  of the Fortran 90 Standard .  

Example. POPCNT ( I )  = COUNT ( C I ( BTEST ( I , J ) ,  J=O , BIT...s IZE ( I ) - l ) / ) , 
for scalar I .  

B ,46 P O P PAR 

S ynopsis. POPPAR ( I ) 

Description. Return the parity of an integer . 
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Class .  Elemental function . 

Argument . I must be of type integer . 

Result Type and Typ e Parameter. Same as 1 .  

Result Value. POPPAR ( I )  is 1 if there are an odd number of one bits in I and 
zero if there are an even number . The model for the interpretation of an integer 
as a sequence of bits is in Section 1 3 . 5 . 7  of the Fortran 90 Standard .  

Example. For scalar I , POPPAR ( x )  = MERGE ( 1 . 0 .  STEST (POP CRT (x )  . 0 ) ) . 

B .47 P RO C E S S ORS_S H APE 

Synop sis.  PROCESSORS..sHAPE ( )  

Des cription. Returns the shape of the implementation-dependent processor ar­
ray. 

Class . System inquiry function . Intrinsic .  

Arguments.  None 

Result Typ e, Type Parameter, and Shape.  The result is a default integer 
array of rank one whose size is equal to the rank of the implementation-dependent 
processor array. 

Result Value. The value of the result IS the shape of the implementation­
dependent processor array. 

Example. In a computer with 2048 processors arranged in a hypercube ,  the value 
of PROCESSORS..sHAPE ( )  is [2 ,2 , 2 , 2 , 2 ,2 ,2 , 2 , 2 ,2 ,2] .  In a computer with 8 1 92 proces­
sors arranged in a 128 by 64 rectangular grid ,  the value of PROCESSORS..sHAPE ( )  
is [128 ,64] . For a single processor workstation , the value of PROCESSORS..sHAPE ( )  
is 0 ( the size-zero array of rank one ) .  

B .48 PRODUCT_PREFIX 

Synop sis. PRODUCT ..PREFIX (ARRAY • DIM . MASK . SEGMENT . EXCLUSIVE ) 

Optional Argument s .  DIM ,  MASK , SEGMENT , EXCLUSIVE 
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Description. Computes a segmented PRODUCT scan along dimension DIM of 
ARRAY.  

Class. Transformational function . 

Argument s . 

ARRAY must be of type integer , real , or complex . It must not be scalar . 

DIM. must be scalar and of type integer with a value in the range 1 < 
DIM � n ,  where n is the rank of ARRAY . 

MASK. must be of type logical and must be conforma ble with ARRAY . 

SEGMEliT. must be of type logical and have the same shape as ARRAY. 

EXCLUSIVE. must be of type logical and must be scalar . 

Result Type, Type Parameter , and Shape. Same as ARRAY. 

Result Value. Element r of the result has the value PRODUCT ( ( I al , " " am I )  

where (al , " " am ) i s  the (possibly empty) set of elements of ARRAY selected to 
cont ri bute to r by the rules stated in  Chapter 7 .  

Example. PRODUCT .PREFIX ( (1 1 . 2 . 3 , 4 . 51 ) . SEGMEliT= (IF . F • F • T • T I )  ) is 
[ 1  2 6 4 20 ] . 

B .49 P RO D U CT_S C ATTER 

Synopsis. PRODUCT-SCATTER (ARRAY . BASE , IHDI1 , . • .  , INOIn , MASK ) 

Optional Argument . MASK 

Description. Scatters elements of ARRAY selected by MASK to positions of the 
result indicated by index arrays IHOX 1 ,  . . .  , IHDIn. Each element of the result is 
equal to the product of the corresponding element of BASE and the elements of 
ARRAY scattered to that position . 

Class.  Transformational function . 

Argument s .  

ARRAY must be of type  integer , real ,  or complex . It must not be scalar . 
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must be of the same type and kind type par ameter as ARRAY. It must 
not be scalar.  

INDX 1 , . . .  , INDXn must be of type integer and must be conformable with ARRAY . 
The number of INDX arguments must be equal to the rank of BASE . 

MASK* must be of type logical and must be conformable with ARRAY. 

Result Type, Type Parameter, and Shape. Same as BASE. 

Result Value. The element of the result corresponding to the element b of 
BASE has the value PRODUCT ( (la l , a2 , . . .  , am , b/ ) ) , where (at , . . .  , am )  are the 
elements of ARRAY associated with b as described in Chapter 7 .  

Example. PRODUCT..sCATTER « ( I  1 , 2 , 3 , 1 1 ) ' ( 1 4 , -5 , 7 / ) , ( 1 1 , 1 , 2 , 2  / )  

is [ 8  - 1 5  7 ] .  

B . 50 PRODUCT _S UFFIX 

Synopsis. PRODUCT..sUFFIX (ARRAY , DIM , MASK , SEGMENT , EXCLUSIVE )  

Optional Argument s .  DIM,  MASK , SEGMENT , EXCLUSIVE 

Description . Computes a reverse , segmented PRODUCT scan along dimension DIM 
of ARRAY. 

Class.  Transformational function . 

Argument s .  

ARRAY must be of type integer , real , or complex . It must not be scalar .  

DIM* must be scalar and of type integer with a value in the range 1 < 
DIM � n ,  where n is the rank of ARRAY . 

MASK* must be of type logical and must be conformable with ARRAY . 

SEGMENT* must be  of type logical and have the same shape as ARRAY . 

EXCLUSIVE* must be  of type logical and must be scalar . 

Result Type ,  Typ e Parameter, and Shape. Same as ARRAY . 
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Result Value. Element r of the result has the value PRODUCT « ( /  at , . . . , am I ) 
where (a l , . . .  , am )  is the (possibly empty ) set of elements of ARRAY selected to 
contribute to r by the rules stated in Chapter 7 .  

Example. PRODUCT ...sUFFIX  ( ( / 1 . 2 , 3 , 4 , 51 ) , SEGMENT= ( /F ,  F , F  , T , T I )  ) is 
[ 6  6 3 20 5 ] . 

B . 5 1  SUM_P REFIX 

S ynop sis . SUM-PREFIX (ARRAY , DIM , MASK , SEGMENT , EXCLUS IVE ) 

Optional Argument s. DIM ,  MASK, SEGMENT , EXCLUS IVE 

Description . Computes a segmented SUM scan along dimension DIM of ARRAY .  

Clas s .  Transformational function . 

A rgument s .  

ARRAY must be of type integer , real , or complex. It must not be scalar . 

DIM. must be scalar and of type integer with a value in the range 1 < 
DIM � n ,  where n is the rank of ARRAY .  

MASK. must be of type logical and must be conformable with ARRAY . 

SEGMENT. must be of type logical and have the same shape as ARRAY . 

EXCLUSIVE. must be of type logical and must be scalar . 

Result Type,  Type Paramet er, and Shape.  Same as ARRAY . 

Result Value. Element r of the result has the value SUM ( ( / a t , . . .  , am I ) 

where ( a l , . . .  , am ) is the (possibly empty ) set of elements of ARRAY selected to 

contribute to r by the rules stated in Chapter 7 .  

Example. SUM-PREFIX ( ( / 1 , 2 , 3 , 4 , 5/ ) ,  SEGMENT= ( IF , F , F , T , TI )  ) is 
[ 1 3 6 4 9 ] .  
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B . 5 2  SUM_S C ATTER 

S ynopsis. SUM...5CATTER(ARRAY , BASE , INDX 1 ,  . . .  , INDXn , MASK ) 

Optional Argument . MASK 

Description . Scatters elements of ARRAY selected by MASK to positions of the 
result indicated by index arrays INDX 1 ,  . . .  , INDXn . Each element of the result is 
equal to the sum of the corresponding element of BASE and the elements of ARRAY 
scat tered to that position . 

Class. Transformational function . 

Arguments .  

ARRAY 

BASE 

must be of type integer , real , or complex. It must not be scalar . 

must be of the same type and kind type parameter as ARRAY. It must 
not be scalar . 

lIDX 1 , . . .  , IIDXn must be of type integer and must be conformable with AR.R.A Y .  
The number of IIDX arguments must be equal to the rank of BASE. 

MASK. must be of type logical and must be conformable with ARRAY. 

Result Type, Type Parameter, and Shape. Same as BASE. 

Result Value. The element of the result corresponding to the element b of BASE 
has the value SUM ( ( fal , a2 , . '  . ,  am , bl ) ) ,  where (al , . . .  , am ) are the elements 
of ARRAY associated with b as described in Chapter 7 . 

Example. SUM...5CATTER « ( l l ,  2 ,  3 , 1/ ) ,  ( 14 ,  -5 ,  7/ ) , ( 1 1 ,  1 , 2 ,  2/ )  
is [ 7  - 1  7 ] .  

B . 53 S U M _S U F FIX 

Synopsis.  SUM...5UFFIX (ARRAY , DIM , MASK , SEGMENT , EXCLUSIVE) 

Opt ional Argument s.  DIM,  MASK , SEGMENT, EXCLUSIVE 

Description. Computes a reverse , segmented SUM scan along dimension DIM of 
ARRAY . 
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Class .  Transformational function . 

Argument s .  

ARRAY must be of type integer , real , or complex . It must not be scalar . 
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DIM. must be scalar and of type integer with a value in the range 1 < 
DIM :s n ,  where n is the rank of ARRAY . 

MASK. must be of typ e  logical and must be conformable with ARRAY . 

SEGMENT. must be of type logical and have the same shape as ARRAY . 

EXCLUSIVE. must be of type logical and must be scalar . 

Result Type, Type Parameter, and Shape. Same as ARRAY . 

Result Value. Element r of the result has the value SUM ( ( /  a l , . .  " am I »  

where (a l , " " am ) is the (possibly empty ) set of elements of ARRAY selected to 

contribute to r by the rules stated in Chapter 7 .  

Example. SUM..5UFFIX ( ( / 1 . 2 . 3 . 4 . 5/ ) . SEGMENT= ( /F . F . F . T . T/ )  ) is 
[ 6 5 3 9 5 ] . 
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C Formal Syntax Rules 

This Appendix collects the formal syntax definitions from the High Performance Fortran 
Language Specification [14]. They use the same conventions a.s that document, which 

are in turn taken (with slight modifications) from the Fortran 90 Language Specification 

[17]. To summarize these conventions: 

• Each rule defines the form of a single syntactic term, called a nonterminal symbol or 

simply a nonterminal. The nonterminal being defined appears on the first line, to the 

left of the is. 

• Each rule gives one or more syntactic forms for the nonterminal that it defines. The 

first form appears on the first line to the right of the is; others appear on later lines, 

separated from each other by or. 
• Each rule IS numbered for identification and cross-referencing. The form of an HPF 

rule number is Hsnn, where s is a one-digit chapter number (from the HPF Language 
Specification) and nn is a one- or two-digit sequence number. A Fortran 90 rule number 
is of the form Rsnn, where s is a one- or two- digit chapter number (from the Fortran 90 
Language Specification) , and nn is a sequence number. HPF rules are reproduced below; 
Fortran 90 rules are cross-referenced by number, but not reproduced. 
• A nonterminal name appears in italic Jont. 

• A terminal (that is, literal text) appears in TYPEWRITER FONT. 

• Items that are optional are enclosed in [ square brackets ]. 
• Brackets around and trailing periods after an item indicate it may be [ repeated ] . . .  

• Line breaks in a BNF rule indicate separate lines in the syntactic form. 

• A name of the form xyz-list means a comma-separated list of xyz items. 

• A name of the form xyz-name means a name, which must refer to an entity of cla.ss 

xyz. 

• A name of the form scalar-xyz means an xyz which must evaluate to a scalar. 

• A name of the form integer-xyz means an xyz which must evaluate to an integer. 

References in the constraints refer to sections in the HPF Language Specification, not to 

this book. 

C.2 High Performance Fortran Terms and Concepts 

C.2.3 Syntax of Directives 

H20! hpJ-directive-line is directive-origin hpj-directive 
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H202 directive-origin is !HPF$ 

or CHPF$ 

or *HPF$ 

H203 hpj-directive is sp ecification-directive 

or executa ble-directive 

H204 specification-directive is processors-directive 

or align-directive 

or distribute-directive 

or dynamic-directive 
or inherit-directive 

or template-directive 

or combined-directive 

or sequence-directive 

H205 executable-directive is realign-directive 

or re distri bute-directive 

or independent-directive 

Constraint: An hpJ-directive-/ine cannot be commentary following another statement on 

the same line. 

Constraint: A specification-directive may appear only where a declaration-construct may 

appear. 

Constraint: An executable-directive may appear only where an executable-construct may 

appear. 

Constraint: An hpf-directive-line follows the rules of either Fortran 90 free form (3.3.1.1) 

or fixed form (3.3.2.1) comment lines, depending on the source form of the 

surrounding Fortran 90 source form in that program unit. (3.3) 

C.3 Data Alignment and Distribution Directives 

C.3.2 Syntax of Data Alignment and Distribution Directives 

H30l combined-directive IS combined-attribute-/ist:: entity-decl-/ist 
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H302 combined-attribute is !LIGI align-attribute-stuff 
or DISTRIBUTE dist-attribute-stuff 

or DYNAMIC 

or INHERIT 

or TEMPLATE 

or PROCESSORS 

or DIMENSION ( explicii-shape-spec-list ) 

Constraint: The same combined-attribute must not appear more than once in a given 

combined-directive. 

Constraint: If the DIMENSION attribute appears in a combined-directive, any entity to 

which it applies must be declared with the HPF TEMPLATE or PROCESSORS 

type specifier. 

C.3.3 DISTRIBUTE and REDISTRIBUTE Directives 

H303 distribute-directive 

H304 redistribute-directive 

H305 dist-dire ctive-stuff 

H306 dist-attribute-stuff 

H307 distributee 

H308 dist-format-clause 

H309 dist- format 

H3l0 dist-onto-clause 

H3ll dist-target 

IS DISTRIBUTE distributee d ist- d irective-stuff 

is REDISTRIBUTE distributee dist-directive-stuff 

or REDISTRIBUTE dist-attribute-stuff : : 

distributee-list 

IS dist-format-clause [ dist-onto-clause 1 

IS dist-directive-stuff 

or dist- onto-clause 

IS object-name 

or temp late-n ame 

is (dist- format-list ) 
or * ( dist-form at- list 

or * 

is BLOCK [ ( int-expr ) 1 
or CYCLIC [ ( int-expr ) 1 
or * 

IS ONTO dist- targ et 

is processors- name 

or * processors- name 

or * 
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Constraint: An object-name mentioned as a distributee must be a simple name and not 
a subobject designator. 

Constraint: An object-name mentioned as a distributee may not appear as an alignee in 

an ALIGN or REALIGI directive. 

Constraint: A distributee that appears in a REDISTRIBUTE directive must have the DY­

JAMIe attribute (see Section 3.5). 

Constraint: If a dist-format-list is specified, its length must equal the rank of each dis­

tributee. 

Constraint: If both a dist-format-list and a processors-name appear, the number of el­

ements of the dist-format-list that are not "*" must equal the rank of the 
named processor arrangement. 

Constraint: If a processors-name appears but not a dist-format-list, the rank of each 

distributee must equal the rank of t he named processor arrangement. 

Constraint: If either the dist-format-clause or the dist-target in a DISTRIBUTE directive 

begins with "*" then every distributee must be a dummy argument. 

Constraint: Neither the dist-format-clause nor the dist-target in a REDISTRIBUTE may 

begin with "*" . 

Constraint: Any int-expr appearing in a dist-format of a DISTRIBUTE directive must be 
a specification-expr. 

C.3.4 ALIGN and REALIGN Directives 

H312 align-directive 

H313 realign-directive 

H314 align- directive-stuff 

H315 align-attribute-stuff 

H316 alignee 

H317 align-source 

H318 align-dummy 

IS ALIGN alignee align-directive-stuff 

is REALIGN alignee align-directive-stuff 

or REALIGN align-attribute-stuff : :  alignee-list 

is (align-source-list) align-with-clause 

IS [( align-source-list ) 1 align-with-clause 

is object-name 

is 

or * 
or align-dummy 

is scalar-int-variable 
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Constraint: An object-name mentioned as an alignee may not appear as a distributee in 

a DISTRIBUTE or REDISTRIBUTE directive. 

Constraint: Any alignee that appears in a REALIGN directive must have the DYNAMIC 

attribute (see Section 3.5). 

Constraint: The align-source-list (and its surrounding parentheses) must be omitted 

if the alignee is scalar. (In some cases this will preclude the use of the 
statement form of the directive.) 

Constraint: If the align-source-list is present, its length must equal the rank of the 

alignee. 

Constraint: An align-dummy must be a named variable. 

Constraint: An object may not have both the INHERIT attribute and the ALIGN attribute. 
(However, an object with the INHERIT attribute may appear as an alignee 
in a REALIGN directive, provided that it does not appear as a distributee in 
a DISTRIBUTE or REDISTRIBUTE directive.) 

H319 align-with-clause 

H320 align-spec 

H321 align-target 

H322 align-subscript 

H323 align-subscript-use 

H324 align-add-operand 

H325 align-primary 

H326 int-add-operand 

H327 int-mult-operand 

H328 int-Ievel-two-expr 

is WITH align-spec 

is align-target [ ( align-subscript-list ) 1 
or * align-target [ ( align-subscript-list ) ] 

is object-name 

or template-name 

IS int-expr 
or align-subscript-use 

or subscript-triplet 

or * 

is [[ int-level-two-expr] add-op] align-add-operand 

or align-subscript-use add-op int-add-operand 

is [ int-add-operand * 1 align-primary 
or align-add-operand * int-mult-operand 

is align-dummy 
or ( align-subscript-use 

is add-operand 

is mult-operand 

is level-2-expr 
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Constraint: If the align-spec in an ALIGN directive begins with "*" then every alignee 
must be a dummy argument. 

Constraint: The align-spec in a REALIGN may not begin with "*" . 

Constraint: Each align-dummy may appear at most once in an align-subscript-list. 

Constraint: An align-subscript-use expression may contain at most one occurrence of an 
align-dummy. 

Constraint: An align-dummy may not appear anywhere in the align-spec except where 
explicitly permitted to appear by virtue of the grammar shown above. Para­

phrased, one may construct an align-subscrip1-use by starting with an align­

dummy and then doing additive and multiplicative things to it with any 

integer expressions that contain no align-dummy. 

Constraint: A subscript in an align-subscript may not contain occurrences of any align­
dummy. 

Constraint: An int-add-operand, int-mult-operand, or int-level-two-expr must be of type 
integer. 

C.3.5 DYNAMIC Directive 

H329 dynamic-directive 

H330 alignee-or-distributee 

is DYNAMIC alignee-or-distributee-list 

is alignee 
or distributee 

Constraint: An object in COMMON may not be declared DYNAMIC and may not be aligned to 

an object (or template) that is DYNAMIC. (To get this kind of effect, Fortran 
90 modules must be used instead of COMMON blocks.) 

Constraint: An object with the SAVE attribute may not be declared DYNAMIC and may 

not be aligned to an object (or template) that is DYNAMIC. 

C.3.7 PROCESSORS Directive 

H331 processors-directive 

H332 processors-decl 

H333 processors-name 

is PROCESSORS processors-decl-list 

is processors-name [ ( explicit-shape-spec-list ) 1 

IS object-name 
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C.3.S TEMPLATE Directive 

H334 template-directive is TEMPLATE template-ded-list 

H335 template-decl IS template-name [ ( explicit-shape-spec-list 

H336 template-name is object-name 

C.3.9 INHERIT Directive 

H337 inherit-directive is INHERIT dummy-argument-name-list 

C.4 Data Parallel Statements and Directives 

C.4.1 The FORALL Statement 

IS FORALL forall-header forall-assignment 

311 

) 1 

H401 forall-stmt 

H402 forall-header is ( forall-triplet-spec-list [ • scalar-mask-expr 1 

Constraint: Any procedure referenced in the scalar-mask- expr of a forall- heade r must 
be pure, as defined in Section 4.3. 

H403 forall-triplet-spec I S  index-name = subscript subscript [ stride 1 

Constraint: index-name must be a scalar integer variable. 

Constraint: A subscript or stride in a forall-triplet-spec-list must not contain a reference 

to any index-name in the forall-triplet-spec-list in which it appears. 

H404 forall-assignment is assignment-stmt 
or pointer-assignment-stmt 

Constraint: Any procedure referenced in a forall-assignment, including one referenced 

by a defined operation or assignment, must be pure as defined in Section 4.3. 

C.4.2 The FORALL Construct 

H405 forall-construct is FORALL forall-header 
forall-body-stmt 
[ forall-body-stmt 1 
END FORALL 
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H406 forall-body-stmt IS forall- assignment 

or where-stmt 

or where-construct 
or forall-stmt 

or forall-construct 

Appendix C 

Constraint: Any procedure referenced in a forall-body-stmt, including one referenced by 

a defined operation or assignment , must be pure as defined in Section 4.3. 

Constraint: If a forall-stmt or forall-construct is nested in a forall-construct, then the 

inner FORALL may not redefine any index-name used in the outer forall­
construct. 

C.4.3 Pure Procedures 

H407 prefix 

H408 prefix-spec 

H409 function- stmt 

H410 function-stuff 

H411 subroutine-stmt 

H412 subroutine-stuff 

is prefix-spec [ prefix-spec] ... 

IS type-spec 

or RECURSIVE 

or PURE 

or extrinsic-prefix 

is [pr efix] FUNCTION function-name function-stuff 

is ([ dummy-arg-name-list ] ) 

[ RESULT ( resu lt- name ) 

is [prefix] SUBROUTIHE subroutine- name 

subroutin e-stuff 

is ( [ dummy-arg-list ] ) ] 

Constraint: A prefix must contain at most one of each variety of prefix-spec. 

Constraint: The prefix of a subroutin e-stmt must not cont.ain a type-spec. 

The following constraints are added to Rule R1215 in Section 12.5.2.2 of the Fortran 90 

standard (defining fun cfion-subprogram): 

Const.raint: The specification-part of a pure function must specify that all dum m y argu­

ments have INTENT ON) except procedure arguments and arguments with 
the POINTER attribute. 

Constraint: A local variable declared in the specification-part or intcrnal-subprogram­

part of a pure function must not have the SAVE attribute. 
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Note local variable initialization in a type-declaration-stmt or a data-stmt 

implies the SAVE attribute; therefore, such initialization is also disallowed. 

Constraint : The execution-part and internal-subprogram-part of a pure function may 

not use a dummy argument, a global variable, or an object that is storage 

associated with a global variable, or a subobject thereof, in the following 

contexts: 

• As the assignment variable of an assignment-stmt; 

• As a DO variable or implied DO variable , or as an index-name in a forall-

triplet-spec; 

• As an input-item in a read-stmt ; 

• As an internal-file- unit in a write-simt; 

• As an lOSTAT= or SIZE= specifier in an I/O statement. 

• In an assign-stmt; 

• As the pointer-object or target of a pointer-assignment-stmi; 

• As the expr of an assignment- stmt whose assignment variable is of a de­
rived type, or is a pointer to a derived type, that has a pointer component 

at any level of component selection; 

• As an allocate-object or stat-variable in an allocate-stmt or deallocate- stmt , 

or as a pointer-object in a nullify-simt; or 

• As an actual argument associated with a dummy argument with UTEIT 

(OUT) or IllTENT(INOUT) or with the POIlTER attribute. 

Constraint: Any procedure referenced in a pure function, including one referenced via a 

defined operat ion or assignment, must be pure. 

Constraint: A dummy argument or the dummy result of a pure function may be explic­

itly aligned only with another dummy argument or the dummy result, and 

may not be explicitly distributed or given the INHERIT attribute. 

Constraint: In a pure function, a local variable may be explicitly aligned only with 

another local variable , a dummy argument, or the result variable. A local 
variable may not be explicitly distributed. 

Constraint: In a pure function, a dummy argument, local variable, or the result variable 
must not have the DYNAMIC attribute. 

Constraint: In a pure function, a global variable must not appear in a realign-directive 

or redistribute-directive. 
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Constraint: A pure function must not contain a print-stmt, open-stmt, close-stmt, back­
space-stmt, endfile-stmt, rewind-stmt, inquire-simt, or a read-stmt or write­
stmt whose io-unit is an external-file-unit or *. 

Constraint: A pure function must not contain a pause-stmi or stop-stmt. 

The following constraints are added to Rule R1219 in Section 12.5.2.3 of the Fortran 90 
standard (defining sUbroutine-subprogram ) : 

Constraint: The specification-part of a pure subroutine must specify the intents of all 

dummy arguments except procedure arguments and arguments that have 
the POINTER attribute. 

Constraint: A local variable declared in the specification-part or i1lternal-function-part 
of a pure subroutine must not have the SAVE attribute. 

Constraint: The execution-part or internal-subprogram-part of a pure subroutine must 
not use a dummy parameter with INTENT (IN) ,a global variable, or an object 

that is storage associated with a global variable, or a subobject thereof , in 
the following contexts : 

• As the assignment variable of an assignment-stmt; 

• As a DO variable or impl ied DO variable , or as a index-name in a forall-
triplet-spec ; 

• As an input-item in a read-simt; 

• As an internal-file-unit in a write-stmt; 

• As an IOSTAT= or SIZE= sp ecifier in an I/O statement. 

• In an assign-stmt; 

• As the pointer- object or target of a pointer-assignment-simt; 

• As the expr of an assignment-stmt whose assignment variable is of a de­

rived type, or is a pointer to a derived type, that has a pointer component 

at any level of component selection; 

• As an allocate-object or stat-variable in an allocate-stmi or deallocate-stmt, 
or as a pointer-object in a nullify-stmt; 

• As an actual argument associated with a dummy argument with INTENT 

(OUT) or INTENT(INOUT) or wi th the POINTER attribute. 

Constraint: Any procedure referenced in a pure subroutine, including one referenced via 

a defined operation or assignment, must be pure . 
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Constraint: A dummy argument of a pure subroutine may be explicitly aligned only 

with another dummy argument, and may not be explicitly distributed or 

given the INHERIT attribute. 

Constraint: In a pure subroutine, a local variable may be explicitly aligned only with 

another local variable or a dummy argument. A local variable may not be 

explicitly distributed. 

Constraint: In a pure subroutine, a dummy argument or local variable must not have 

the DYNAMIC attribute. 

Constraint: In a pure subroutine, a global variable must not appear in a realign-directive 

or redistribute-directive. 

Constraint: A pure subroutine must not contain a print-stmt, open-stmt, close-stmt, 

backspace-simt, endfile-stmt, rewind-stmt, inquire-stmt, or a read-stmt or 

write-stmt whose io-unit is an external-file-unit or *. 

Constraint: A pure subroutine must not contain a pause-stmt or stop-stmt. 

To define interface specifications for pure procedures, the following constraints are 
added to Rule R1204 in Section 12.3.2.1 of the Fortran 90 stanJ'ard (defining interface­
body): 

Constraint: An interface-body of a pure procedure must specify the intents of all dummy 

arguments except POINTER and procedure arguments. 

To define pure procedure references, the following extra constraint is added to Rules 
R1209 and R1210 in Section 12.4.1 of the Fortran 90 standard (defining function-reference 

and call-stmt): 

Constraint: In a reference to a pure procedure, a procedure-name actual-arg must be 

the name of a pure procedure. 

CAA The INDEPENDENT Directive 

H413 independent-directive 

H414 new-clause 

is INDEPENDENT [ J new-clause 

is NEW ( variable-list ) 

Constraint: The first non-comment line following an independent-directive must be a 

do-stmt, forall-stmt, or a forall-construct. 

Constraint: If the lEW option is present , then the directive must apply to a DO loop. 

Constraint: A variable named in the lEW option or any component or element thereof 

must not: 
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• Be a pointer or dummy argument; nor 

• Have the SAVE or TARGET attribute. 

C.6 Extrinsic Procedures 

C .6.2 Definition and Invocation of Extrinsic Procedures 

Appendix C 

H601 extrinsic-prefix is EXTRINSIC ( extrinsic-kind-keyword 

H602 extrinsic-kind-keyword IS HPF 

or HPF _LOCAL 

C.7 Storage and Sequence Association 

C.7.1 Storage Association 

H701 sequence-directive 

H702 association-name 

IS SEQUENCE [ [ :: 1 association-name-list 1 
or NO SEQUENCE [ [ :: 1 association-name-list 

IS variable-name 

or / common-block-name / 

Constraint: The result variable of an array-valued function that is not an intrinsic func­

tion is a nonsequential array . It may not appear in any HPF SEQUENCE 

directive. 

Constraint: A variable or COMMON block name may appear at most once in a sequence­
directive within any scoping unit. 
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D Formal Syntax Cross-reference 

This Appendix cross-references smbols used in the formal syntax rules. Rule identifiers 

beginning with "H" are from the High Performance Fortran Language Specification [14]; 

the full rule may be found in Appendix C. Rule identifiers beginning with "R" are from 
the Fortran 90 Standard [17); the full rule may be found there, or in the appendix of the 

Fortran 90 Handbook [1] . 

D.l Nonterminal Symbols That Are Defined 

Symbol Defined Referenced 
add-op R710 H323 
add-operand R706 H326 
align-add-operand H324 H323 H324 
align-attribute-stuff H315 H302 H313 
align-directive H312 H204 
align-directive-stuff H314 H312 H313 
align-dummy H318 H317 H325 
align-primary H325 H324 
align-source H317 H314 H315 
align-spec H320 H319 
align-subscript H322 H320 

align-subscript-use H323 H322 H323 H325 

align-target H321 H320 

align-with-clause H319 H314 H315 
alignee H316 H312 H313 H330 

alignee-or-distributee H330 H329 

allocate-object R625 
allocate-stmt R622 

array-constructor R431 

array-spec R512 

assign-stmt R838 

assignment-stmt R735 H404 

association-name H702 H701 

call-stmt R1210 

combined- attribute H302 H301 

combined-directive H301 H204 

data-simt R529 
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deallocate-stmt R631 

directive-origin H202 H2O! 

dist-attribute-stuff H306 H302 H304 

dist-directive-stuff H305 H303 H304 H306 

dist-format H309 H308 

dist-format-clause H308 H305 

dist-onto-clause H310 H305 H306 

dist-target H311 H310 

distribute-directive H303 H204 

distributee H307 H303 H304 H330 
dummy-arg R1221 H412 

dynamic-directive H329 H204 

end-function-stmt R1218 

end-subroutine-stmt R1222 

entity-decl R504 H301 

execut able-constru ct R215 

executable-directive H205 H203 

execution-part R208 

explicit-sh ape-spec R513 H302 H332 H335 
expr R723 

extrinsic-kind-keyword H602 H601 

extrinsic-prefix H601 H408 
forall-assignment H404 H401 H406 
forall-body-stmt H406 H405 

fo ra 11- construct H405 H406 
forall-header H402 H401 H405 
forall-stmt H401 H406 

forall-triplet-spec H403 H402 

function-reference R1209 

function-stmt H409 

function-stuff H410 H409 

function-subprogram R1215 

hpf-directive H203 H201 

hpf-directive-line H201 

independent-directive H413 H205 

inherit-directive H337 H204 

input-item R914 

int-add-operand H326 H323 H324 
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int-expr R728 H309 H322 
int-level-two-expr H328 H323 
int-mult-operand H327 H324 
int-variable R607 H318 
interface-body R1204 
internal-subprogram-part R210 
level-2-expr R707 H328 
mask-expr R741 H402 
mult-operand R705 H327 
namelist-group-object R737 
namelist-stmt R543 
new-clause H414 H413 
nullify-stmt R629 

output-item R915 

pause-stmt R844 

pointer-assignment-stmt R736 H404 

pointer-object R630 

prefix H407 H409 H411 

prefix-spec H408 H407 

processors-decl H332 H331 

processors-directive H331 H204 

processors-name H333 H311 H332 

read-stmt R737 

realign-directive H313 H205 

redistribute- directive H304 H205 

section-subscript R618 

sequence-directive H70l H204 

specificati on-directive H204 H203 

specification-expr R734 

specification-part R204 

stat-variable R623 

stop-stmt R842 

stride R620 H403 

subroutine-stmt H411 

subroutine-stuff H412 H411 

subscript R617 H403 

subscript-triplet R619 H322 

target R737 
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template-decl H335 H334 

template-directive H334 H204 

template-name H336 H307 H321 

type-declaration-stmt R50l 

type-spec R502 H408 

variable R60l H414 

where-construct R739 H406 

where-stmt R738 H406 

write-stmt R737 

D.2 Nonterminal Symbols That Are Not Defined 

Symbol 
common-black-name 

dummy-arg-name 

dummy-argument-name 

function-name 

index-name 

Referenced 

H702 

H4l0 

H337 

H409 

H403 

H335 

object-name 

result-name 

subroutine-name 

variable-name 

H307 H316 H321 H333 H336 

H410 

D.3 Terminal Symbols 

Symbol 

!HPF$ 

( 

* 

H411 

H702 

Referenced 

H202 

H302 H308 

H320 H325 

H4I0 H412 

H302 H308 

H320 H325 

H4l0 H4l2 

H308 H309 

H322 H324 
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H309 H3l4 H315 

H332 H335 H402 

H414 H601 

H309 H314 H315 

H332 H335 H402 

H414 H60l 

H311 H3l7 H320 
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*HPF$ H202 

H402 H413 
/ H702 

H317 H403 

H301 H304 H313 H701 
= H403 
ALIGN H302 H312 
BLOCK H309 
CHPF$ H202 
CYCLIC H309 
DIMENSION H302 
DISTRIBUTE H302 H303 
DYNAMIC H302 H329 
END H405 
EXTRINSIC H601 

FO�ALL H401 H405 

FUNCTION H409 

HPF H602 

HPF...LOCAL H602 

INDEPENDENT H413 

INHERIT H302 H337 

NEW H414 

NO H701 

ONTO H310 

PROCESSORS H302 H331 

PURE H408 

REALIGN H313 

RECURSIVE H408 

REDISTRIBUTE H304 

RESULT H410 

SEQUENCE H701 

SUBROUTINE H411 

TEMPLATE H302 H334 

WITH H319 
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