
 The High Performance Fortran Handbook

Copyrighted Material

Scientific and Engineering Computation
Janusz Kowalik, Editor

Data-Paral lel Programming on MIMD Computers

by Philip J. Hatcher and Michael J. Quinn, 1991

Unstructured Scientific Computation on Scalable Multiprocessors

edited by Piyush Mehrotra, Joel Saltz, and Robert Voigt, 1991

Parallel Computational Fluid Dynamics: Implementations and Results

edited by Horst D. Simon, 1992

Enterprise Integration Modeling: Proceedings of the First International Conference

edited by Charles J. Petrie, Jr., 1992

The High Performance Fortran Handbook

by Charles H. Koelbel, David B. Loveman, Robert S. Schreiber, Guy L. Steele Jr. and

Mary E. Zosel, 1994

Copyrighted Material

The High Performance Fortran Handbook

Charles H. Koelbel
David B. Loveman
Robert S. Schreiber
Guy L. Steele Jr.
Mary E. Zosel

The MIT Press
Cambridge, Massachusetts
London, England

Copyrighted Material

Second printing, 1997

© 1994 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic or
mechanical means (including photocopying, recording, or information storage and retrieval) without
permission in writing from the publisher.

This book was set in U.T� by the authors and was printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

The High performance Fortran handbook / Charles H. Koelbel ... let al.J.
p. cm. - (Scientific and engineering computation)

Includes bibliographical references and index.
ISBN 0-262-11185-3. - ISBN 0-262-61094-9 (pbk.)
1. FORTRAN (Computer program language) I. Koelbel, Charles H. II. Series.

QA76.73.F2SHS3 1994
00S.13'3--dc20

Copyrighted Material

93-6204
CIP

Contents

Series Foreword Xl

Acknowledgments Xlll

0 Sneak Preview 1

0.1 Basics of High Performance Fortran 1

0.2 Programming Model 1

0.3 Fortran 90 2

0.4 Data Mapping 2

0.5 Data Mapping for Procedure Arguments 4

0.6 Data Parallelism 4

0.7 Intrinsics and Library Procedures 5

0.8 Extrinsic Procedures 6

0.9 Subset High Performance Fortran 7

0.10 Appendices 7

1 Basics of High Performance Fortran 9

1.1 Fortran Development 9

1.2 Goals of HPF 12

1.3 Fortran 90 Binding 14

1 . 4 Notation 15

1.5 Conformance 16

1.6 HPF Directives and Their Syntax 17

1.7 For Further Reading 21

2 Programming Model 23

2.1 Parallel Machines 23

2.2 Parallel Computation 26

2 . 2 . 1 Data Parallel Operations 27

2.2.2 Extrinsic Procedures 29

2.3 Communication 30

2.4 Putting It All Together 38

Copyrighted Material

Vi Contents

3 Fortran 90 51

3.1 Fortran 90 Features 51

3.2 Ease-of-Use Improvements 52

3.2.1 Ease of Writing 52
3.2.2 Ease of Program Control 52
3.2.3 Enhanced Input and Output 53

3.3 Data Facilities 54

3.3.1 Intrinsic Data Types 54
3.3.2 Structured Data Types 54
3.3.3 Entity-Oriented Declarations and Allocatable Arrays 55

3.4 Array Features 56

3.4.1 Array Overview 56
3.4.2 Array Concepts and Terminology 57
3.4.3 W hole Array Operations and Assignment 58
3.4.4 Array Subsections 58
3.4.5 Expressions 59
3.4.6 Vector-Valued Subscripts 61
3.4.7 Array Constructors 61
3.4.8 Masked Array Assignments 62
3.4.9 Array-Valued Functions with Array-Valued Arguments 63
3.4.10 Array Objects and Their Specifications 64

3.5 User-Defined Data Types 65

3.6 Pointers 67

3.7 Modularization 70

3.7.1 The Structure of a Fortran Program 70
3.7.2 Procedures 71
3.7.3 Modules and Abstraction 73

3.8 Intrinsic Procedures 75

3.9 Language Evolution 76

3.9.1 A voiding Assumptions of Linear Memory 83

3.10 Fortran Coding Style 85

3.10.1 Upper-Case and Lower-Case Conventions 85

Copyrighted Material

Contents vii

3.10.2 Spacing Conventions 87
3.10.3 Indentation, Alignment and Blank Line Conventions 87
3.10.4 Free Source Form 88

4 Data Mapping 91

4.1 Overview of Data Mapping 91

4.2 The Data Mapping Model 98

4.3 Syntax of Data Alignment and Distribution Directives 102

4.4 DISTRIBUTE and REDISTRIBUTE Directives 103

4.5 ALIGN and REALIGN Directives 112

4.6 DYNAMIC Directive 120

4.7 Allocatable Arrays and Pointers 121

4.8 PROCESSORS Directive 124

4.9 TEMPLATE Directive 127

4.10 Fortran Storage Association and HPF 129

4.10.1 Informal Introduction to Storage Association 129

4.10.2 Storage Association in More Detail 131

5 Data Mapping for Procedure Arguments 139

5.1 Data Mapping for Dummy Variables 139

5.2 DISTRlBUTE Directives and Dummy Arguments 141

5.3 ALIGN Directives and Dummy Arguments 148

5.4 INHERIT Directive 149

5.5 Rules for Explicit Interfaces 150

5.6 Descriptive DISTRIBUTE Directives 151

5.7 Examples of DISTRIBUTE Directives for Dummy Arguments 157

5.8 Explicit Dynamic Remapping of Dummy Arguments 160

5.9 Argument Passing and Sequence Association 161

5.9.1 Argument Requirements 162

5.9.2 Sequence Association Examples 163
5.9.3 Formal Sequence Association Rules 166

Copyrighted Material

viii Contents

6 Data Parallelism 167

6.1 Overview of Data Parallelism 167
6.2 The FORALL Statement 170

6.2.1 Form of the FORALL Statement 170

6.2.2 Meaning of the FORALL Statement 172
6.2.3 Discussion of the FORALL Statement 175

6.3 The PURE Attribute 184

6.3.1 Form of the PURE Attribute 185

6.3.2 Meaning of the PURE Attribute 188

6.3.3 Discussion of the PURE Attribute 188

6.4 The INDEPENDENT Directive 192

6.4.1 Form of the INDEPENDENT Directive 192
6.4.2 Meaning of the INDEPENDENT Directive 192

6.4.3 Discussion of the INDEPENDENT Directive 195

7 Intrinsic and Library Procedures 203

7.1 System Inquiry Functions 203

7.2 Mapping Inquiry Subroutines 204

7.3 Computational Functions 206

7.3.1 Array Location Functions 206

7.3.2 Bit Manipulation Functions 206

7.3.3 Array Reduction Functions 207

7.3.4 Array Combining Scatter Functions 208

7 . 3.5 Array Prefix and Suffix Functions 210

7.3.6 Array Sorting Functions 21 5

7.4 Alphabetical List of Intrinsic and Library Procedures 218

8 Extrinsic Procedures 223

8.1 Definition and Invocation of Extrinsic Procedures 226

8.1.1 EXTRINSIC Prefix Syntax 227

8.1.2 Requirements on the Called Extrinsic Procedure 229

8.2 Coding Local Procedures 230

Copyrighted Material

Contents lX

8.3 Conventions for Local Subprograms 231

8.3.1 Conventions for Calling Local Subprograms 232
8.3.2 Calling Sequence 232

8.3.3 Information Available to the Local Procedure 233

8.4 Local Routines Written in HPF 234

8.4.1 Restrictions 234

8.4.2 Argument Association 235

8.4.3 HPF Local Routine Library 238

8.5 Local Routines Written in Fortran 90 241

8.5.1 Argument Association 242

8.6 Example HPF Extrinsic Procedures 242

9 Subset High Performance Fortran 245

9.1 HPF Extensions and Subset High Performance Fortran 245

9.1.1 HPF Features in the Subset 245

9.1.2 HPF Features Not in the Subset 245

9.2 Fortran 90 and Subset High Performance Fortran 246

9.2.1 Fortran 90 Features in the Subset 246

9.2.2 Fortran 90 Features Not in the Subset 248

A Definition of Terms 249

B Description of HPF Library and Intrinsic Proced ures 255

C Formal Syntax Rules 305

D Formal Syntax Cross-reference 317

Bibliography 323

Index 325

Copyrighted Material

Series Foreword

The world of modern computing potentially offers many helpful methods and tools to

scientists and engineers, but the fast pace of change in computer hardware , software , and

algorithms often makes practical use of the newest computing technology difficult. The
Scientific and Engineering Computation series focuses on rapid advances in computing

technologies and attempts to facilitate transferring these technologies to applications

in science and engineering. It will include books on theories, methods , and original

applications in such areas as parallelism, large-scale simulations , time-critical computing,

computer-aided design and engineering, use of computers in manufacturing, visualization

of scientific data, and human-machine interface technology .
The series will help scientists and engineers to understand the current world of ad­

vanced computation and to anticipate future developments that will impact their com­

puting environments and open up new capabilities and modes of computation.
This book in the series describes High Performance Fortran (HPF) , a language that

combines the full Fortran 90 language with special user annotations dealing with data

distribution. It is expected that HPF will be a standard programming language for

computationally intensive applications on many types of machines, such as traditional
vector processors and newer massively parallel MIMD and SIMD multiprocessors. If

successful , the HPF language with its modern features and powerful capabilities will

become the new revitalized version of Fortran for scientists and engineers solving complex
large-scale problems .

Janusz S. Kowalik

Copyrighted Material

Acknowledgments

Our thanks first go to the High Performance Fortran Forum (HPFF) , the developers of

HPF, without whom our book really would not exist. More than 60 people attended one
or more of the HPFF working group meetings and well over 500 participated through

the mailing lists. As much as we would like to, it is impossible to thank all of them

individually. We do want to mention some of the most visible contributors, however.

Many people served in positions of responsibility in the HPFF meetings. HPFF would
not have been possible if Ken Kennedy and Geoffrey Fox had not volunteered to convene

the first meeting. Ken Kennedy chaired all the working group meetings with remarkable

patience, diplomacy, and vision; he also encouraged us in writing this book. The authors
of this book served as heads of subgroups where technical discussions took place, and as

the overall language specification document editors. Other subgroups were led by Marina

Chen, Bob Knighten, Marc Snir, and Joel Williamson.

A number of other people contributed sections to either the HPF Language Specifica­
tion or the HPF Journal of Development, including Alok Choudhary, Tom Haupt, Mau­

reen Hoffert, Piyush Mehrotra, John Merlin, Tin-Fook Ngai, Rex Page, Sanjay Ranka,
Richard Shapiro, Matt Snyder, Richard Swift, and Min-You Wu. Other regular atten­

dees at the meetings, all of whom contributed ideas if not actual wording, included Alan
Adamson, Robert Babb II, Ralph Brickner, Barbara Chapman, James Cownie, Andy

Meltzer, Jean-Laurent Philippe, David Presberg, J. Ramanujam, P. Sadayappan, Randy

Scarborough, Vince Schuster, Henk Sips, and Hans Zima. Clemens-August Thole also
attended every meeting and furthermore organized a complementary group in Europe
that was instrumental in making HPFF an international effort. Comments from Michael

Metcalf, J. L. Schoenfelder, the ANSI X3J 3 committee, and groups at Cray Research

and MasPar Computer were influential in completing the language specification. To all

these people, and to the employers who supported their involvement in HPFF, go our
sincere thanks.

The following organizations made the language draft available by anonymous FTP

access and/or mail servers: AT&T Bell Laboratories, Cornell Theory Center, GMD-Il.T

(Sankt Augustin) , Oak Ridge National Laboratory, Rice University, Syracuse University,

and Thinking Machines Corporation. These outlets were instrumental in distributing

the HPF documents.
Finances for the HPFF meetings came from several sources. In the United States, the

National Science Foundation and the Defense Advanced Research Projects Agency (now

the Advanced Research Projects Agency) supported HPFF itself and many of the aca­

demic participants. In Europe, ESPRIT supplied travel money for several participants.
Finally, Rice University kept HPFF running financially while the organizers searched for

steady funding.

Copyrighted Material

xiv Acknowledgments

The HPF Language Specification is copyrighted by Rice University and appeared as a
special issue of Scientific Programming, published by John Wiley & Sons. Both organi­
zations have dedicated the language definition to the public domain. We thank them for

making it available and for permission to use portions of it in this book.
The authors specifically want to thank their employers: Rice University, Digital Equip­

ment Corporation, the Research Institute for Advanced Computer Science, Thinking
Machines Corporation, and Lawrence Livermore National Laboratory, for the time and
resources to participate in the HPF process and produce this book. Dr. Koelbel's efforts

were also supported by research grants from the Advanced Research Projects Agency

and from the State of Texas.

Thanks to Jill Diewald of Digital Equipment Corporation for her contributions to
Section 3.4.8.

Copyrighted Material

The High Performance Fortran Handbook

Copyrighted Material

o Sneak Preview

Welcome to the High Performance Fortran Handbook! This book describes High Per­

formance Fortran (HPF), a set of extensions to Fortran expressing parallel execution

at a relatively high level. The "official" definition of these extensions is the High Per­

formance Fortran Language Specification, version 1.0 [14]; this book is an adjunct to

that work, presenting the same information in a more tutorial manner. To make a long
story short , HPF was designed to provide a portable extension to Fortran 90 for writing

data parallel applications. It includes features for mapping data to parallel processors,
specifying data parallel operations, and methods for interfacing HPF programs to othe

programming paradigms.
This chapter is a road map to The High Performance Fortran Handbook. It gives a

quick introduction to each of the other chapters, and a few simple examples of what you

will find there . In short , it serves the same purposes as Chapter 0 of the Fortran 90
Handbook [1] (which is, of course, where we got this idea) . All the material here is meant

to be illustrative , rather than definitive. The chapters are relatively independent of each

other, and may be read in any order.

0.1 Basics of High Performance Fortran

Chapter 1 contains some basic facts about HP F, including a short history of Fortran, the

goals of HPF, notation conventions used in this book, and references for related material.

0.2 Programming Model

Chapter 2 describes HPF's programming model. A programming language is not much

good if you don't know what a program in the language means; Chapter 2 gives a frame­
work for understanding HPF programs. Our model is divided into two parts: parallelism

and communication.

The parallelism in a program, expressed by constructs like array assignment , FORALL
statements , DO INDEPENDENT loops, intrinsic and standard library procedures, and EX­

TR.INSIC pro cedures , determines how many operations a computer could possibly do at
one time. Many of today's fastest machines are capable of performing tens, hundreds, or

even thousands of operations simultaneously (or in parallel). HPF's parallel constructs

make it easy for the programmer to indicate potentially parallel operations. It is then

the compiler's responsibility to schedule those operations on the physical machine so that
the program runs as fast as possible.

Communication in a program is an overhead that opposes parallelism. Another fea-

Copyrighted Material

2 Cha.pter 0

ture of today's parallel machines is that sharing data (through memory, or by explicit
messages) is slower than pure computation. Moreover, languages prior to HPF forced the
programmer to handle nearly all the details of communication , leading to complex code,
bugs, and general frustration. HPF puts more of this burden on the compiler; the user
supplies a very high-level data mapping strategy and the system generates the details of
the communication it implies.

Unfortunately, the parallelism and communication of an HPF program are often inter­
twined in complex ways. The final portion of Chapter 2 is devoted to illustrating some
of these relationships.

0.3 Fortran 90

Chapter 3 describes Fortran 90. HPF is based on FClrtran 90, which is the latest in a long
line of Fortran standards. In a perfect world, we would not need to describe Fortran 90

separately , since all practicing Fortran programmers would already be familiar with it.
However, a number of factors (both technical and sociological) have slowed Fortran 90's

entrance into the world of scientific computing. In light of this, we thought it would be a

good idea to give a short introduction to Fortran 90, with emphasis on its new features
(as compared with the older FORTRAN 77 standard). We cannot give a full account of
Fortran 90 in a book of this size-the already-mentioned Fortran 90 Handbook is over
700 pages long. Instead, we provide just enough background for Fortran 90 by means

of suggestive examples so the reader can see how it relates to HPF. We hope that our
explanation also whets your appetite to find out more about Fortran 90.

0.4 Data Mapping

Chapter 4 describes the data mapping features in HPF. These are probably the most
publicized features in HPF, although they are certainly not the only important ones. In

short, HPF can describe how data is to be divided up among the processors in a parallel
machine. The presumption is that the processor responsible for some data (also called

the processor that owns the data) can read or write it much faster than another processor.

This reflects the way that many current parallel machines operate. HPF describes the
data-to-processor mapping in two stages : the DISTRIBUTE and ALIGN operations .

DISTRIBUTE is an HPF directive that describes how an array is divided into even-sized

pieces and distributed to processors in a regular way. For example , given the array

declaration

REAL A(100,100)

Copyrighted Material

Sneak Preview 3

and four processors, the DISTRIBUTE directive can express any of the following patterns:

• Each processor receives a 50 x 50 block of A (i.e., one processor gets A (1: 50,1: 50),

another gets A(51: 100,1: 50), etc.). The directive to say this is

!HPF$ DISTRIBUTE A(BLOCK,BLOCK)

• Each processor receives every 4th row of A (i.e. , one processor gets A (1,1: 100),
A(5,1:100), A(e,1:100), etc.; another gets A(4,1:100), A(8,1:100), A(12,1:100),

etc.). The directive to say this is

!HPF$ DISTRIBUTE A(CYCLIC,*)

There are many other patterns that can be generated with DISTRIBUTE alone.

ALIGN is an HPF directive that describes how two arrays "line up" together. Basically,
this describes one array's mapping in terms of another. For example, the ALIGN directive

can express any of the following relations:

• Two arrays X and Y are always distributed the same. The directive to say this is

!HPF$ ALIGN XCI) WITH Y(I)

• Elements of X correspond to the odd elements of Y (in this case, X can have at most

half as many elements as V). The directive to say this is

!HPF$ ALIGN XCI) WITH Y(2*I-1)

• Each element of X is aligned with the entire corresponding column of A (in this case,
elements of X may be replicated). The directive to say this is

!HPF$ ALIGN XCI) WITH A(*,I)

As with DISTRIBUTE, this list is not exhaustive. Some of these patterns could be achieved
using the DISTRIBUTE directive only; some require ALIGN.

There are also several other data mapping features. REDISTRIBUTE and REALIGN per­
form the same tasks as DISTRIBUTE and ALIGN, but work dynamically (as executable

statements) rather than statically (as declarations). The TEMPLATE directive declares a

phantom array that can be used in DISTRIBUTE and ALIGN directives; this is useful when
no array is quite the right size to describe some mapping. Similarly, PROCESSORS defines

a set of abstract processors that is useful for precisely defining some mappings. The rules
relating this mapping to ordinary Fortran storage association (COMMON block reshaping
and EQUIVALENCE) are also in this chapter. Although full support of storage association

Copyrighted Material

4 Chapter 0

is not compatible with the data mapping features of HPF, some important special cases
are allowed.

0.5 Data Mapping for Procedure Arguments

Chapter 5 expands Chapter 4 to cover dummy procedure arguments. Procedure argu­
ments are different from local variables because they sometimes need information about
the corresponding actual argument. In particular, all of the following are reasonable
things to say about a dummy argument:

• "I don't care how the actual is mapped-move the data to this distribution before
starting this subroutine." Directives to do this look the same as directives for local
variables , as shown above .

• "I don't care how the actual is mapped-keep the data there for the duration of this
subroutine." One way to say this is

!HPF$ INHERIT X

• "I know the actual has a certain distribution before coming into this subroutine-don't

move it." One way to say this (when the actual's distribution is BLOCK) is

!HPF$ DISTRIBUTE X *(BLOCK)

More complex cases are also possible, such as relating two actual arguments to each

other.

Equally important for converting older codes to HPF is handling Fortran's sequence
association . (This is the old method of passing arrays, in which the shape of the ac­

tual and the dummy argument do not have to match .) Full support for this feature is
not compatible with HPF's data mapping directives ; instead, special directives must be

inserted to warn the compiler that trickiness is going on.

0.6 Data Parallelism

Chapter 6 describes HPF's constructs for data parallelism. These constructs describe

operations (typically , large numbers of operations) that can be performed in parallel if
the computer has the resources . The presumption is that doing many operations at once
will be faster than doing the same operations one at a time. Even when there are many

more parallel operations than there are processors on the target machine, HPF allows
the extra parallelism to be specified. This way, when the program is ported to a more

Copyrighted Material

Sneak Preview 5

parallel machine it can immediately take advantage of the extra speed available. Chap­

ter 6 discusses two data parallel constructs: the FORALL statement and the INDEPENDENT

directive.

The FORALL is a new statement that extends Fortran 90 array operations. For example,

FORALL (I = 2:1-1)
A(I,I) = A(I-l,I-l) + A(I,I) + A(I+1,I+1)

END FORALL

does a vector addition along the main diagonal of array A (something you can't do
directly with normal array assignments) . HPF also introduces PURE functions , which
are guaranteed to have no side effects , to allow FORALL statements to perform complex

elementwise computations .
The INDEPENDENT directive gives the compiler more information about a DO loop or

FORALL statement . For example, it tells the compiler that a DO loop does not make any

"bad" data accesses that force the loop to be run sequentially. The first line of this code:

!HPF$ INDEPENDENT

DO I = 1, N
X(IIDX(I» = Y(I)

END DO

amounts to an assertion that INDX does not contain any repeated values. With this
information, a compiler knows it is safe to produce parallel code. Note that INDEPENDENT

is a promise by the programmer that a program , as coded, already behaves a certain way;

it is not correct to try to use INDEPENDENT to change the results of a program .

0.7 Intrinsics and Library Procedures

Chapter 7 describes HPF's intrinsic and library procedures (both functions and subrou­
tines). All these procedures are available to any programmer writing in HPF. Many of
them are data parallel operations , including some new reduction operations , prefix and

suffix operations, combining-scatter operations, and sorting. For example, the following
statement computes the powers of S in increasing order

X(l:N) =

X(l :N)
S

PRODUCT_PREFIX(X(l:N»

Users have found these functions useful in writing data parallel programs. In addition ,
HPF has a number of inquiry subroutines to give a programmer information about the
state of the machine or an array's distribution. For example,

Copyrighted Material

6 Chapter 0

CALL HPF_DISTRIBUTIOI(A, AXIS_TYPE=DISTS)

uses the array DISTS to return information about the distribution of array A. HPF also
has a few new standard functions that were somehow left out of Fortran 90 but which
certain user communities need in their work. Most of these operate on the bits of an
integer. For example,

I = POPCNT(J)

counts the number of bits set to 1 in J. Chapter 7 gives a brief introduction to all the
standard HPF functions.

0.8 Extrinsic Procedures

Chapter 8 describes EXTRINSIC procedures in HPF. EXTRINSIC is a means to invoke other
programming paradigms from HPF. For example, parallel branch-and-bound searches are
at best difficult to write in HPF, because their very purpose is to exploit indeterminacy
and HPF strives for determinacy. Using EXTRINSIC allows a programmer to escape from
HPF's constraints to write such a program. The normal HPF facilities are available
outside of the EXTRINSIC procedure for data parallel tasks; for example, the initial setup
or final analysis of the branch-and-bound search could be coded this way. Chapter 8
describes two aspects of such procedures: a general interface mechanism for invoking a
variety of programming models, and a specific SPMD programming model that is efficient
on many (but not all) current parallel machines .

The interface mechanism consists of the EXTRIXSIC attribute, which is applied to

functions in much the same way as the RECURSIVE attribute. For example,

INTERFACE
EXTRINSIC(PROPRIETARY) SUBROUTINE MY_SORT(A)

INTEGER, DIMENSION(:), INTENT(INOUT) : : A

END SUBROUTINE MY_SORT

END INTERFACE

is an interface for a subroutine named My...sORT written in the PROPRIETARY programming
model (presumably a model proprietary to the computer vendor's machine). EXTRINSIC
interfaces do two things: they alert the compiler that the program is entering a different

model (which may in turn require the compiler to change the procedure calling sequence) ,
and they constrain the behavior of the called routine. In essence, the overall behavior of
an EXTRINSIC routine as observed by the caller must be consistent with an HPF routine

Copyrighted Material

Sneak Preview 7

with the same interface. For example , an EXTRINSIC routine may not take data that is

consistently replicated in HPF and make it inconsistent.
HPF also defines the HPF �OCAL programming model , which essentially consists of the

same program executed on every processor of a parallel machine. This model is useful

for two things. F irst , it is a model supported by many parallel machines and is therefore

directly useful for many programmers. In situations where execution speed is more im­

portant than portability, EXTRINSIC(HPF.LOCAL) allows tuning of some operations that

do not appear explicitly in HPF, such as low-level synchronization operations. Second,

it serves as an example of how a particular programming model can be defined for use

as an HPF EXTRINSIC. Vendors may define their own system-specific models, either as

extensions to HPF .LOCAL or as entirely new models.

0.9 Subset High Performance Fortran

Chapter 9 describes Subset HPF , a minimal starting language defined to encourage early

releases of compilers with HPF features. HPF is a rather large and complex language

to implement . This subset contains features that are high on users' priority lists yet

considered implement able relatively quickly by compiler writers. Compiler vendors are

always encour aged to implement the full HPF language ; however, if resource constraints

make this impossible, Subset HPF is a suitable language for early implementation.

0.10 Appendices

Appendix A contains definitions of the technical terms defined in HPF, as well as relevant

technical terms defined in Fortran 90.

Appendix B contains detailed specifications of the intrinsic and library routines intro­

duced in Chapter 7.
Appendix C provides the formal syntax definitions for HPF. It is taken verbatim from

the High Performance Fortran Language Specification, version 1.0 [14].
Appendix D provides a cross-reference of syntax symbols used in the formal syntax

rules. It is taken verbatim from the Hzgh Performance Fortran Language Specification,

version 1.0 [14].
The bibliography includes further references to HPF and Fortran 90.
The index contains entries for all technical terms defined in this document, keywords

in HPF and Fortran 90, and syntax symbols used in the grammars .

Copyrighted Material

1 Basics of High Performance Fortran

This chapter describes conventions of terminology and notation used throughout the
rest of this book. It also discusses the goals of the High Performance Fortran Forum in

defining HPF, and some sources of additional information.

1.1 Fortran Development

Although the [Fortran] group broke new ground ... they never lost sight of
their main objective, namely, to produce a product that would be acceptable
to practical users with real problems to solve.

Fortran ... is still by far the most popular language for numerical computation
Maurice V. Wilkes [30]

Since its introduction almost four decades ago, Fortran1 has been the language of choice
for scientific and engineering programming. HPF is the latest set of extensions to this
venerable language. However, it is not a standard recognized by the formal national and
international standards committees. The current ANSI and ISO programming language
standard in this area is Fortran 90.

The first programming language to be called Fortran was developed by IBM in the
early 1950's [7]. It became quite popular after the first compiler was delivered to a

customer in 1957, in large part because it was both efficient and much easier to write
and maintain than the assembly languages that had come before. The language gained
increasing acceptance as it was ported to more and more machines. In 1966, the American
Standards Association (ASA, later to become the American National Standards Institute
(ANSI)) published the first formal standard for Fortran [28]. This standard included
many of the core features of Fortran, including:

• The familiar INTEGER, REAL, and DOUBLE PRECISION data types .

• A notation for array references and arithmetic computations .

• DO loops for iteration (but not the END DO statement) .
• IF conditionals (but not the block IF statement) .
• Subroutines , functions, and the independent compilation of program units .

• Global variables (through the mechanism of COMMOI blocks) .

1 Note that the spelling of the name of the language is case-sensitive , a change made by the Fortran
standards committee : "FORTRAN" refers to the FORTRAN 77 and earlier standards and, typically,
products based on them; "Fortran" refers to the Fortran 90 standard and, typically, newer products.
Except for references to particular standards or products, we will consistently use the term "Fortran"
to identify the language.

Copyrighted Material

10 Cha.pter 1

It also included the Hollerith data type, which was later replaced with the CHARACTER
type . The standard was later dubbed FORTRAN 66, to differentiate it from later ver­
sions.

The Fortran language continued to evolve , and in 1978 ANSI and the International

Standards Organization (ISO) published a new standard [3]. FORTRAN 77 provided

a number of additional language features now well known to engineering and scientific
programmers, including:

• IF ... THEN, . . ELSE IF . .. END IF conditional statements.
• The COMPLEX data type, COMPLEX constants, and operations on COMPLEX numbers.

• The CHARACTER data type, CHARACTER constants , and operations on strings .
• Formatted, unformatted , and direct-access file input and output.

In 1978 the US Department of Defense published an addendum to the FORTRAN 77

standard, designated MIL-STD-1753, with language features required by all compilers
to be sold to the US government [29]. Virtually every Fortran compiler supports these

features :

• The END DO statement.

• The DO WHILE statement.
• INCLUDE lines.
• The IMPLICIT NONE statement.

• Syntax for octal and hexadecimal constants .
• Eleven bit manipulation procedures.

Soon after publication of the FORTRAN 77 standard , work began on a revision to the

standard, with the working title of Fortran 8x [6] . By the time the new standard was

accepted by ISO in 1991 (and by ANSI the following year), it had been renamed For­
tran 90 [17]. In the words of that standard, its goal was to "modernize Fortran, so that

it may continue its long history as a scientific and engineering programming language ."
A secondary goal was to use the modern language features to allow programmers to dis­

continue use of obsolescent and no longer desirable forms in FORTRAN 77. These forms

include nine features identified as obsolescent and a (now empty) category of removed

features listed in Appendix B of the standard. Although Fortran 90 provides significant

new capabilities, it did not ignore the requirements of "legacy" codes ; Fortran 90 includes

as a subset all of FORTRAN 77 and MIL-STD-1753.
Even before the Fortran 90 standard had been formally approved , calls were heard

for more extensions . In particular , standard features were needed to enable portable,
efficient programming on the new generation of parallel machines. (Section 1.2 details

Copyrighted Material

Basics of High Performance Fortran 11

more of these concerns.) The first group to discuss standardization of parallel Fortran

features was the Parallel Computing Forum (PCF). Their original goals were to stan­
dardize language features for task oriented parallelism on shared memory machines [24].

This effort continues as the ANSI X3H5 committee. The X3H5 Fortran language ex­
tensions [5] for parallelism are first-class language extensions (not directives) and make
control of the parallelism very visible to the programmer with explicit constucts for

synchonization, worksharing, etc.2 These extensions were, however, closely tied to the
shared-memory paradigm for parallel computation, making them difficult to implement
on newer distributed-memory machines.

In November, 1991 Digital Equipment Corporation organized a birds-of-a-feather meet­
ing at the Supercomputing '91 conference in Albuquerque , New Mexico, to discuss their
proposed language (already named "High Performance Fortran"). Along with original
material, this proposal synthesized ideas from Connection Machine Fortran (from Think­
ing Machines), Fortran 77D and Fortran 90D (from Rice and Syracuse Universities) , Vi­

enna Fortran (from the University of Vienna) , several compiler projects undertaken by
COMPASS Inc., and other sources . The session was followed in January, 1992 by the
kickoff meeting for the High Performance Fortran Forum (HPF F) in Houston, Texas,

hosted by the Center for Research on Parallel Computation (CRPC) at Rice University .

Over 130 people attended to hear presentations from Convex Computer, Cray Research,
Digital, IBM, Rice University, Thinking Machines, the University of Vienna , and oth­

ers on various aspects of the proposed language. There was a strong consensus that a

common set of Fortran extensions for data parallel programming would be valuable and
that this was a good time to define such a set of extensions . However, it was clear that
a meeting of this size was too large to draft a technical proposal. A series of smaller

"working group" meetings was scheduled to create the language draft .

The HPFF working group, consisting of about 40 people, met for the first time in
Dallas , Texas, in March, 1992. Eight further meetings were held, drawing attendees

from industry, academia, and government; from Austria, England, France, Germany,

Japan and the United States; and from the ranks of computer vendors, Fortran users,
and general computer scientists. Through electronic mail, every effort was made to

keep the HPFF process open to the public, and requests for comments on the draft
produced voluminous responses. Although the effort was not sponsored by national and

international standards organizations such as ANSI and ISO, the working group received

several helpful communications from the ANSI X3J3 committee . The working group

produced the High Performance Fortran Language Specification, version 1.0 in May,

2In contrast, HPF chooses to use directives where possible and leaves control of parallelism to the
compiler.

Copyrighted Material

12 Chapter 1

History of Fortran
1954 "Preliminary Report, Specifications for the IBM Mathematical FORmula

TRANslating System, FORTRAN" (J. W. Backus , et al.)
1957 FORTRAN for the IBM 704
1958 FORTRAN II for the IBM 704
1 962 FORTRAN IV for the IBM 7030 STRETCH
1966 X3.9-1966, American Standard (ASA) FORTRAN (FORTRAN 66)
1969 Federal Information Processing Institute standard FIPS 69-1
1978 ANSI X3.9 -1978 American National Standard Programming Language

FORTRAN (FORTRAN 77)
1978 MIL-STD-1753: FORTRAN, DoD Supplement to American National Stan-

dard X3.9-1978
1980 ISO 1539-1980 (E), international Fortran standard; same as ANSI
1987 S8.104 - Draft Standard , Fortran 8x for public review
1991 Parallel Extensions for FORTRAN 77, X3H5 Language Binding, [X3H5/91-

0040-C]
1991 S8.118 accepted as ISO/lEe 1539:1991 (E), Fortran 90

1992 ANSI X3.198-1992; same Fortran 90 standard as ISO

1993 High Performance Fortran Language Specification

Table 1.1
A brief history of Fortran

1993 [14]. This book is based on that document. Recognizing that some important
issues, such as parallel input/output facilities, could not be resolved within the time that
HPF F allowed itself, the working group recommended that another series of meetings
be held during 1994. These meetings will consider both new extensions and experience
gained with the first version of HPF.

Major milestones in the history of Fortran are presented in Table 1.1.

1.2 Goals of HPF

Given the history outlined above, it is fair to ask, "Why do we need yet another Fortran
extension?" It might seem that Fortran is serving its role quite nicely.

Despite its past success, Fortran is reaching its limitations on the latest generation of
high-performance machines. Fortran was originally developed for serial machines with
linear memory architectures. In the past several years it has become increasingly ap­

parent that a language design relying on these architectural features creates difficulties

Copyrighted Material

Basics of High Performance Fortran 13

when executing on parallel machines. One symptom of this is the proliferation of parallel
Fortran dialects, each specialized to the machine where it was first implemented . As the
number of competing paral lel machines on the market increases, the lack of a standard

paralle l Fortran is becoming increasingly serious. Without a standard programming in­

t erface , writing a parallel program ties a scientist to one machine for all his or her work.

Perhaps worse, the difficulty of programming in almost any of the available languages

creates a high barrier to entry; scientists are unwilling to make the substantial effort to
move to the new parallel machines .

As these difficulties became apparent, new research is also suggesting an answer: data
parallel programming . The essence of the idea is that many scientific programs have
a "natural" parallelism at a fine-grain level, such as performing the same (conceptual)
operation on all the elements of an array. Moreover, other research suggests that many
of the complex details of communication and synchronization could be generated by

the compiler automatical ly , if only a little high-level data partitioning information were

provided . HPF builds on these approaches.
The overriding goal of HPF was therefore to produce a dialect of Fortran that could

be used on a variety of parallel machines. At the first meeting, the HPFF working
group refined this goal , saying its mission was to define language extensions and feature
selection for Fortran supporting:

• Data parallel programming (defined as single-threaded control structure, global name

space, and loosely synchronous parallel execution) .

• Top performance on MIMD and SIMD comput ers with non-uniform memory access
costs (while not impeding performance on other machines) .

• Code tuning for various architectures .

It also established a numb er of secondary goals, including :

• Portability (existing code) : Allow relatively easy conversion from existing sequential

code to parallel code .

• Portability (new code) : Allow efficient code on one parallel machine to be reasonably

efficient on other machines .

• Compatibility : Deviate minimally from other standards , particularly FORTRAN 77
and Fortran 90.

• Simplicity : Keep the resulting language simple .

• Interoperability: Define open interfaces to other languages and programming sty les .

• Availability: Make compiler availability feasible in the near term.
• Promptness: Present a near-final proposal in November, 1992 and accept the final

draft in January, 1993. (Note that this schedule was set in March, 1992.)

Copyrighted Material

14 Chapter 1

The HPFF work ing group made a number of compromises due to try to reach these
goals. Much discussion was spent trying to balance portability between machines with
ability to tune programs for a specific architecture. Some features were not accepted into
HPF because the y caused severe hardsh ips for certain classes of machines , even though
they were efficient on other machines . Final l y, the HPF Journal of Development [15]
chronicles some proposals that did not achieve consensus , although they may have had
technical merits .

HPF does not solve all the problems of parallel programming. Its purpose i s to provide
a portable, high-level expression for data parallel algori thms . For algorithms that fall
into this rather large class, HPF promises to provide some measure of efficient portability.
We also hope that the new constructs are intuitive, thus lowering the entrance barrier to
parallel machines. In short, HPF is a step toward bringing the convenience of sequential
Fortran to the complex parallel machines of today. (It will not be the last such step----,see
Section 1. 7 below .) It should be noted that , although HPF was motivated by parallel
architectures , the constructs can be used on any computer, in much the same way that
Fortran 90 vector assignments can also be used on scalar processors.

1.3 Fortran 90 Binding

HPF is an extension of Fortran 90. The array calculation and dynamic storage allocation
features of Fortran 90 make it a natural base for HPF. The new HPF language features

fall into four categories with respect to Fortran 90:

• New directives .
• New language syntax .
• Librar y routines.
• Language restrictions.

The HPF directives are speci al comments that suggest implementation strategies or

assert facts about a program to the compiler. They may affect the efficiency of the com­

putation performed, but do not ch ange the value com puted by the program. Section 1.6

describes the general form of these directives in more detail .
HPF adds a few new language features, including the FOR ALL statement, the PURE

and EXTRIRSIC attributes for procedures, and some intrinsic functions . These features
had to be first-class language constructs rather than comments because they can affect

the interpretation of a program. For example, the new intrinsics return values used in

expressions .

Copyrighted Material

Basics of High Performance Fortran 15

The HPF library define s a st and ard interface to routines that have proven valuable for

high performance computing in cluding addit ion al r eduction functions , combining scatter

functions, prefix and suffix functions, and sor ting functions. It is a Fortran 90 MODULE.

Full support of Fortran s equence and storage ass ociation is not compatible with the

data distribution features of HPF . S ome restrictions on the use of s eq uence and storage

association are imposed. These restrictions may require insertion of HPF directives into

standard Fortran 90 p rogr ams in order to preserve correct semantics under HPF.

1.4 Notation

This book us es most of the same notation as the Fortran 90 Handbook [1] by Adams et
al. In particular, nearly the s ame conventions are used for syntax rules. (T ypesetting
buffs will notice that we have changed fonts; otherwise the conventions are identical.)
We define the syntax of a con struct by giving its name and a schematic of its form; for

example , a combined-directive (H301) has the form:

combined-attribute-list :: entity-ded-list

The number following the name refers to the rule number, as expl ained below.
When a construct may take several forms, they are listed one per line following the

words "one of:"; for examp le, combined-attribute (H302) is one of:

ALIGN align-attribute-stuff
DISTRIBUTE dist-attribute-stuff

DYNAMIC
INHERIT

TEMPLATE

PROCESSORS

DIMENSION (explicit-shape-spec-list)

Any characters in TYPEWRITER FONT in thes e forms should be interpr eted literally. Words
in italic font are names of synt ax elements defined s eparately. Material in [square brack­
ets] is an optional part of the syntax . Three dots . .. indicate that the preceding w ord
or bracketed expression may be repeated.

Some names are implicitly defined. An xyz-list has the form:

xyz [• xyz] ...

That is, an xyz-list is a comma-separated list of xyz items. An int-xyz is an xyz that is
constrained to be of type integer. An xyz-name is a name (R304) that is associated with

an xyz.

Copyrighted Material

16 Chapter 1

All references to syntax rule numbers refer to either the HPF language specification or

the Fortran 90 standard . HPF syntax rules have identifying numbers of the form Hsnn
where s is a one-digit section number (in the HPF language specification) and nn is a one­

or two-digit sequence number. Fortran 90 rules are numbered in the form Rssnn, where

the one- or two-digit section number 88 refers to a section in the Fortran 90 standard.

A BNF description of HPF in the style used in the Fortran 90 standard appears in

Appendix C of this book, indexed by rule number. Appendix D contains a cross-reference

of both HPF symbols and the Fortran 90 symbols that they reference.
The first time that we use or define a technical t erm it appears in italics. Appendix A

collects the definitions of these terms. Subsequent references to technical terms normally

are not italicized.

HPF and Fortran 90 keywords such as FORALL and IF appear in typewriter font in the

text, as do variables and other elements taken from program examples.

1.5 Conformance

The Fortran 90 standard defines standard-conforming to mean that a program uses only

the syntax and semantics (including obeying restrictions on use) that are defined by the

standard. Similarly, the HPF language specification defines HPF-conforming to mean

that a program obeys the syntax and semantics defined by the specification. Finally , a

program is Subset-conforming if it obeys the syntax and rules of Subset HPF. Program

units , such as individual subroutines, conform to a standard or specification if they can
be incorporated into a program that then conforms to the same standard or specification.

All this has the following practical effect: Fortran 90 and HPF explicitly leave un­

defined what happens if you break any of their rules. Some compilers will detect such
rule-breaking and report an error. In fact, Fortran 90 requires that compilers be able
to detect and report non-standard-conforming syntax. Some compilers will imp ose their

own interpretations on non-conforming programs. For example , the restriction that two

iterations of an INDEPENDENT DO loop cannot both assign to the same location is very
difficult to check, either in the compiler or while the program is running. Two executions

of the same program, when processed by two different compilers, might assign different

values to the location in this case, making the result machine-dependent. Indeed, two

executions of the same program as processed by the same compiler might assign different

values to the location, making the result unpredictable even on a single machine; HPF
simply does not specify what happens when the restriction is violated. When we say in

the text that a program may not do something, we mean that the resulting construct

would not be HPF -conforming. We strongly recommend that programmers not use non-

Copyrighted Material

Basics of High Performance Fortran 17

HPF-conforming features, even if they happen to work on their current compiler; the

cost of finding and fixing these features when the compiler changes will be very large.

Some features are HPF-conforming, but their precise definition varies from system to

system. For example, the mapping for an array with no explicit ALIGN or DISTRIBUTE
directives can be anything that HPF can express. The Fortran 90 standard labels these

features processor-dependent, where the "processor" is the language processor that pre­
pares the Fortran program for running. We use the terminology compiler- or system­

dependent to mean the same thing. It should be understood that we mean "compiler" in

a rather broad sense in this book; it includes interactive interpreters , translators to other

dialects of Fortran, and runtime libraries in addition to traditional compilers . Standard­
conforming programs can use compiler-dependent features , but the results of the program
may change from system to system (or even from run to run on the same system) . This,

of course, hurts portability. We recommend not relying on these features if they can be

avoided, and documenting assumptions about them when they must be used. Frequently
the careful programmer can compensate for system dependencies through the careful use

of inquiry procedures such as NUMBER_OF ...PROCESSORS and HPLALIGNMENT.

1.6 HPF Directives and Their Syntax

Compiler directives form the heart of the HPF language. As directives, they are tech­

nically just Fortran comments. Their presence may be ignored by a standard Fortran
compiler. But to an HPF compiler they supply the information needed to optimize
performance. The form of an hpJ-directive-line (H20l) is :

directive-origin hpJ-directive

where a directive- origin (H202) is one of:

!HPF$
CHPF$
*HPF$

HPF directives are consistent with Fortran 90 syntax in the following sense: if any

HPF directive were to be adopted as part of a future Fortran standard, the only change

necessary to convert an HPF program would be to remove the directive origin from

each such directive. This has further implications. The directives must conform to the

Fortran rules for the source form of the surrounding text. The first thing to notice is that
Fortran 90 allows comments to begin with "e" and "*" as well as "!" in the fixed source

form , but allows only "!" to begin a comment in free source form. We recommend that

Copyrighted Material

18 Chapter 1

programmers always use the "! HPF$" form of the directive-origin so that it will work in
either form.

HPF d irectives follow the free source form rule about spaces within the directive line.

Spaces are significant . At least one space is required anywhere two keywords or a keyword

and a variable name are adjacent. Furthermore, a space may not occur in the middle of a

keyword or variable name. This rule applies even in directives using the fixed source form.
(If HPF directives are converted to true statements in some future Fortran standard, this

rule will undoubted ly be changed. HPF directives have been designed to be syntactically
unambiguous if this happens.)

The d irectives also follow the Fortran convention regarding their location. There are
two forms of d irective:

spe ciJi c ati on-dire ctive

executable-directive

A specification-directIve (H204) must appear in the specification part of the program unit

containing the other declarations relating to the data described. These directives include
the following kinds (all defined in later sections of this book) :

align-directive

combined-directive

distri but e- dire ctive

dynamic-directive

inherit-directive

processors-dire ctive

sequence-directive

templat e-dire ctive

An executable-directive (H205) appears with the other Fortran 90 executable-constructs
in the program unit. There are three executable d irectives :

realign-directive

redistribute-directive

independent- directive

Even though the directives are "comments" th ere are additional rules about h ow they
may be intermixed with other Fortran statements and comments. There are also rules

for how to continue the directives in the case that they do not fit on a single line of the
source, The basic rule of thumb is to think of the HPF directive as a regular Fortran
statement, with one important exception. The Fortran free source form allows multiple

Copyrighted Material

Basics of High Performance Fortran 19

statements on a single source line. This is not allowed for HPF directives; they must

start at the beginning of the source line (possibly preceded by blanks) . Non-directive

comments may follow an HPF directive on the same source line .

Example 1.1 The following directive is HPF-conforming:

!HPF$ DISTRIBUTE (CYCLIC) :: PERIODIC_TABLE ! one element at a time

Note that there is a trailing comment on .the same source line. 0

Example 1.2 This code is not HPF -conforming:

! *** The follo�ing line is not HPF-conforming! ***
REAL PERIODIC_TABLE(103) ; !HPF$ DISTRIBUTE PERIODIC_TABLE(CYCLIC)

The HPF directive should not have any non-blank characters preceding it on the same

source line. The code may be corrected by splitting it onto two source lines:

REAL PERIODIC_TABLE(103)

!HPF$ DISTRIBUTE PERIODIC_TABLE(CYCLIC)

Now the HPF directive is on its own source line . 0

Example 1.3 This code is not HPF-conforming :

! *** The follo�ing line is not HPF-conforming

!HPF$ DISTRIBUTE PERIODIC_TABLE(CYCLIC)j DISTRIBUTE LOG_TABLE(BLOCK)

HPF currently does not allow more than one directive to appear in a single source line.

The code may be corrected by splitting it onto two source lines :

!HPF$ DISTRIBUTE PERIODIC_TABLE(CYCLIC)

!HPF$ DISTRIBUTE LOG_TABLE(BLOCK)

Now each HPF directive is on its own source line . 0

HPF directive lines must not appear within a continued Fortran statement . This would
violate the idea that the directive might later become a regul ar Fortran statement. HPF

directives can be continued. Other comments may be mixed within the continued HPF

directive, but other Fortran statements may not appear between the lines of a continued

directive. To continue an HPF directive, the rules of the surrounding source form are

applied, but the HPF directive-origin must appear on each line of the continued directive.

Copyrighted Material

20

Example 1.4 An HPF directive continuation in free source form:

!HPF$ ALIGI AITIDISESTABLISHMEITARIAIISM(I.J.K) �

!HPF$ WITH ORIITHORHYNCHUS_AIATIIUS(J.K.I)

The directive origin must appear on each source line. 0

Example 1.5 An HPF directive continuation in fixed source form :

!HPF$ ALIGN ANTIDISESTABLISHMENTARIANISM(I.J.K)

!HPF$*WITH ORNITHORHYNCHUS_ANATINUS(J.K,I)

Chapter 1

Observe that column 6 must be blank or zero on the first source line of the directive and

not blank or zero on continuation lines . 0

Example 1.6 This HPF directive continuation is "universal"; it works properly both in
fixed source form and in free source form (see Section 3.10.4.

!HPF$ ALIGN ANTIDISESTABLISHMENTARIANISM(I,J,K)

!HPF$�WITH ORNITHORHYNCHUS_ANATINUS(J,K,I)

Note that the "II;" in the first line is in column 73. 0

Example 1. 7 This HPF directive has an embedded ordin ary comment lin e , which is

acceptable to HPF.

!HPF$ ALIGN ANTIDISESTABLISHMENTARIANISM(I,J,K)

! The duckbill platypus is not usually so political .

!HPF$II;WITH ORNITHORHYNCHUS_ANATINUS(J,K,I)

However, it would not be acceptable to put another directive or an ordinary Fortran

statement between the lines of a directive:

! *** This code is not HPF-contorming! ***

!HPF$ ALIGN ANTIDISESTABLISHMENTARIANISM(I,J,K)

LOGICAL PLATYPUS

!HPF$&WITH ORXITHORHYXCHUS_ANATIIUS(J.K,I)

Such code is Fortran-conforming, but not HPF-conforming. 0

Copyrighted Material

Basics of High Performance Fortran 21

1.7 For Further Reading

Alt hou gh we have tried to be th orou gh , there are some topics rel evant to HPF that are
outside the scope of thi s book. This includes the HPF base documents, the definitions

of precursors to HPF, and deeper discussions of Fortran 90. The purpose of this chapter

is to gi ve the interested r ead er some entry points into that literature.

The "official" definition of HPF can be found in the High Performance Fortran Lan­

guage Specification, version 1.0 final [14] . The document is available in an issue of

Scientific Programming , and as a technical report from Rice University. Our book is
d erived from this materi al , expl aining it in a more tutorial manner , adding examples ,

and giving advice on the use of features. The High Performance Fortran Journal of

Development [15], also available from the same sources, contains a number of propos als

that were not adopted into HPF, vers ion 1.0. Some of these may be conside red in fut ure

revisions of HPF. We have not used any material from the Journal of Development in

thi s book.

Al though we have included some material on Fort ran 90, we have not covered it in
depth, due in p art to the size of the languag e. The official definition of the language is
Fortran 90 [17], a standard avail able from ISO and ANSI. Sever al other reference and
text books covering Fortran 90 are also available. We particularly recommend Fortran 90
Explained by Michael M etcal f and John Reid [23], the Fortran 90 Handbook by Jeanne
Adams, et al. [1], and Programmer's Guide to Fortran 90 by Walt er Brainerd, Charles
Goldberg and Jeanne Adams [9] for these purposes .

It is probably impossible to tr ace all the influences on the de velopment of HPF. Any

list of major technical influe nces would have to include:

• Parallelizing compilers [31, 33].
• Compiler techniques for array operations [2, 12, 18].
• Data distribution languages, including Adapt [22] , Fortran D [16], Fortran gOD [32],
Kali [21] , and V ienna Fortran [10j.
• Computer v endor implementations, includi ng Connection Machine Fortran [27] and

the Cray MPP programming model [25].

This list does not begin to suggest the gen eral work on paral lel computation th at fed

into HPF and these languag es . Solving Problems on Concurrent Processors [13] by Fox

et al. c ontains a wealth of material on this subj ect, although presented in a very different

framework than this book .

Several papers on HPF ha ve app eared in various journals and c onferenc es, ranging

from progress r epor ts while the l an guage was being defined to detailed c ri tiq ues of the

final result. Koelbel [19], Loveman [20], and Steele [26] surveyed the l anguage at vari ous

Copyrighted Material

22 Chapter 1

times during its development. Chapman , Mehrotra, and Zima [11] were more critical.
This list is by no means complete .

HPFF is an ongoing activity. In particular, this book is appearing j ust as a new series

of working group meetings is being organized. If you would like to observe or participate

in these discussions, send electronic mail with the line

add hpff

to hpff-reques tGcs . rice. edu. This will put you on the main mailing list. There are
also a number of more specialized lists for detailed discussions.

Documents related to HPF are available for anonymous FTP from titan. cs . rice . e du

in the directory /public/HPFF. The latest language specification is stored in several

formats in the subdirectory draft. See the README file in the main dire ctory for the

current list of available files.

Copyrighted Material

2 Programming Model

Every programming language assumes an underlying programming model that explains
how a program will b e executed. The purpose of the model is to provide a framework
for designing and analyzing programs; in particular, a model usually tells what programs
mean and gives a rough idea of the execution speed of a program. FORTRAN 77, for
example, assumes that statements are executed in the order they were written and that
memory is arranged in a linear array. Therefore, a programmer knows that the loop

x = 0.0
D O I = 1, 10000

X = X + A(I)
END D O

will add up the first 10,000 elements of array A and take about 10 ,000 times the time
of a floating point addition. This chapter gives the basic programming model for High
Performance Fortran. Mostly, we wil l concentrate on the performance aspects of the
programming model here, leaving the details of the meaning of constructs to be defined
in other chapters. First, however, we make a short digression to describe modern parallel
architectures.

2.1 Parallel Machines

Figure 2.1 shows a block diagram of a modern parallel computer that serves as the basis
for the HPF programming model. The major features of this machine are:

• Processors that can operate in parallel, that is, at the same time.
• Memory modules that are associated with the processors.
• An interconnection network that allows processors to cooperate and share data.

This is obviously not a complete model-for one thing, it does not represent any input
or output devices-but it does cover the machine features that HPF tries to describe.

The distinguishing feature of a parallel machine is that it can have many processors
active at once. This is called parallel computation, and is how the machine gets its speed.
If one processor can perform a million computations per second, then 100 processors can
(theoretically) execute a hundred million computations in the same time. The machine's
manufacturer will usually report this number as the machine's peak performance. (Users
often call it the machine's "speed of light," since the computer will never go faster than the
peak performance.) In practice, various overheads will usually prevent the machine from
achieving such perfect speedup. The actual performance considering these overheads is
often called the machine's sustained performance.

Copyrighted Material

24 Chapter 2

P = Processor M = Memory

0® 0® • • • • 0®

• • • •

Synchronization & Communications

Figure 2.1
A parallel machine

In most parallel machines, each processor has an area of memory that it can access
faster than other memory on the machine. We call this the processor's local memory,

and other memory areas its remote memory. Because the local memory can be accessed
faster than remote memory, an efficient program on the machine will use local memory as
much as possible. Some machines have several levels of local memory, forming a memory
hierarchy. HPF considers only one level of this hierarchy directly .

A parallel machine must provide a way for the processors to coordinate their activities.
There has to b e a way for one processor to get data from another; doing this is called
communication. Similarly, if a processor cannot proceed without a result from another
processor it must wait, an operation called synchronization. Both communication and
synchronization are overheads that can keep a parallel machine from reaching its peak
performance. Efficient parallel programs avoid them when it is possible.

Some examples may help to explain the HPF model.

Example 2.1 One common class of parallel machines is the MIMD message-passing

architecture. MIMD stands for "Multiple Instruction stream, Multiple Data stream,"
meaning that the processors can all be executing different instructions at the same time.
Every processor in a message-passing machine is connected to a local memory, which
no other processor can access directly. To share data (and to synchronize with each
other) processors must send and receive messages. These messages travel through an
interconnection network which ensures, either in hardware or software, that all the data
arrives intact. Machines in this class include the Intel, Meiko, and nCUBE product lines.
In addition, the Thinking Machines CM-5 belongs to this class, and some workstation

Copyrighted Material

Programming Model 25

vendors such as Digi tal, Hewlett Packard , and IBM provide products that allow a network
of workstations to be used as a single machine in this way. For this class of machines ,

the correspondence to the model in Figure 2.1 is very clear. Communication through

the network in these machines is much more expensive than computation on a processor
(often by two or three orders of magnitude) ; thus, programs must minimize the volume
of communication . Also , a message may have a large start-up cost ; therefore , it often
pays to combine two short messages into one large one. 0

Example 2.2 Another common type of parallel machine is the MIMD shared-memory

class. Like the MIMD message-passing machines, processors on these machines can
execute different instructions in parallel. Unlike those machines , at least part of the

memory is shared between processors; thus, data can be shared without explicit messages.

Engineering constraints, however, make it difficult to sustain enough memory bandwidth
to keep all the processors busy. One solution to this problem is to add caches to the
processors. When a processor references a location , the hardware delivers the data to
the processor's cache if it is not already there; if it is there , then access is faster because
it is local . In terms of the HPF model , we consider the processor caches to correspond
to the memory modules of Figure 2.1. The hardware connections used to route the data
correspond to the communication and synchronization network there. Machines made
by Kendall Square Research fall into this category, as did Alliant and BBN machines
before those companies left the market. Machines made by Cray Research and Tera
Computer also fall into the shared-memory category, although they use other mechanisms

for avoiding the memory bandwidth problem . In these machines the communications
time is much less than in message-passing machines (although the local access time is
typically higher). Still, efficient programs here will tend to make local accesses as much
as possible. 0

Example 2.3 A final class of parallel machine is the SIMD architecture . SIMD stands

for "Single Instruction stream , Multiple Data stream," meaning that all processors must
execute exactly the same instruction at the same time. (Processors may be turned off
temporarily, if not all are required for a computation.) Each processor has its own mem­
ory, and can communicate with other processors using special instruct ions . Typically,

this provides finer-grain communication than in the MIMD message-passing machine .
SIMD machines are often, however, sensitive to the pattern of data movement, since
routing must be resolved at a low level. As with MIMD message-passing machines, the

correspondence with Figure 2. 1 is clear. Machines made by MasPar are good exam­

ples of this class, as is the Thinking Machines CM-2. In SIMD machines, much of the

program complexity comes from ensuring that all processors execute precisely the same

Copyrighted Material

26 Chapter 2

instructions. Also , because the performance is tied to the communications patterns it is
important to optimize the methods for sharing data. 0

The conclusion to draw from these examples is that many current parallel machines
reward programmers for keeping many processors busy working on local data. HPF

provides ways to express both the parallelism in a program and the locality of data at
a relatively high level. The next two sections give more detail regarding HPF's parallel
and locality features.

2.2 Parallel Computation

If HPF tied itself closely to any one style of parallelism, then programs would not be
easily portable to other machines. Instead, HPF expresses parallelism at a more ab­
stract level that can be efficiently implemented on many machines. Besides portability,

this abstraction mechanism has the advantage that it is a natural framework for many
programs.

Several varieties of parallelism appear in scientific and engineering applications:

• Data parallelism, in which operations are applied to many elements of an array (or
other data structure) . An example of this would be adding the corresponding elements
of two arrays to produce a third array.
• Functional parallelism (sometimes called task parallelism), in which conceptually dif­
ferent operations are performed at the same time. An example of this would be a series
of filters used in image processing.
• Master-slave parallelism, in which one process assigns subtasks to other processes. An
example of this would be a numerical integration program that decomposed the problem

domain in a master process, leaving the work of integrating the resulting sub domains to
a set of slave processes.

All these types of parallelism , and others as well, are useful in certain applications. It
is difficult, however, to support all of them in the same language. HPF concentrates

primarily on data parallel computations, which is a widely useful class. To provide some

access to other types of parallelism , HPF also defines extr insic procedures as an "escape
hatch" into other programming paradigms . Section 2.2.1 below int.roduces HPF's data

parallel constructs, while Section 2.2.2 describes the extrinsic procedure interface .

Copyrighted Material

Programming Model 27

Operation type Example
Parallel Number of

I Time Processors

Elemental SIN(A (1 :N)) 0(1) O(N)
Array Manipulation CSHIFT (A (l : N), K) 0(1) O(N)
Array Construction SPREAD(X,NCOPIES=N) 0(1) O(N)
Array Reduction SUM (A (l:N» o (log N) O(N)
Prefix or Suffix SUM...PREFIX (A (l :1» O(log N) O(N)
Sorting GRADE_UP (A (l :N» O(logN) O(N)

Table 2.1
Theoretical performance of array intrinsic and HPF library operations

2.2.1 Data Parallel Operations

HPF can express data parallelism in several ways:

1. Fortran 90 array expressions and assignment (including masked assignment in the
WHERE statement).
2. Array intrinsics defined in Fortran 90 .
3. The FORALL statement.
4. The INDEPENDENT assertion on DO and FORALL.

5. Array library functions defined in the HPF library .

Fortran 90 features are discussed in detail in Chapter 3; FORALL and INDEPENDENT are
discussed in Chapter 6; the HPF library is discussed in Chapter 7 .

The granularity of parallelism in a construct is the amount of work that may b e
performed in each parallel unit. Data parallel constructs generally have rather fine gran­
ularity. For example, array expressions define an independent computation for each
element of the result; the same can be said for every index value in a FORALL statement.
Similarly, the iterations of an INDEPENDENT loop can also b e thought of as potentially

parallel. Array intrinsics and HPF library operations have degrees of parallelism that
vary by the type of intrinsic. Table 2.1 shows the best performance for these opera­
tions on a Concurrent-Read, Exclusive-Write Parallel Random Access Memory (CREW
PRAM) machine (one of several popular theoretical models). It should b e noted that
the constant factors hidden in the "big 0" notation are quite large for sorting; it may be
more realistic to consider sorting to be 0(log2 N) on O(N) processors.

Regardless of how the data parallelism is expressed, the easiest way for a user to un­
derstand what is happening is to think of a single stream of control. Operations are
executed in order, as defined by the usual DO and IF statements. When the program

Copyrighted Material

28 Chapter 2

Pl P2 P3 P4 P5 PlOOOOOO
A � � � Q;J � IAlOOOOOOI
B � � � � � IBIOOOOOO I
C @] @] @] [ill [ill ICIOOOoool

Figure 2.2
Distribution of three length-l,OOO,OOO arrays onto 1,000,000 processors in a manner ideal for
element wise computation

reaches a data parallel construct, many operations can be executed at once. The program
temporarily forks into many fine-grain tasks, each of which performs one parallel opera­
tion. When all the operations are complete, the tasks rejoin and the program continues
its execution. When parallel constructs are nested, the fork-and-join process happens
recursively. Because all processors are executing the same program during this process,
it is sometimes referred to as the SP M D ("Single Program Multiple Data") modeP

Note that this is a conceptual model for how the program behaves and may not reflect
how HPF is actually implemented on a particular machine. In particular, much of the
fine-grain synchronization implied above can be eliminated in typical programs by using
compiler analysis.

Example 2.4 Suppose that the arrays A , B, and C each have one million elements. The
array assignment

C = A + B

represents one million individual, independent assignments that could be carried out
simultaneously if only one had a million processors, assuming that processor Pj were to
contain array elements A(J) , B(J) , and C(J) in its memory (see Figure 2.2).

The same computation might also be expressed using a FORALL statement:

FORALL (J = 1:1000000) C(J) = A(J) + B(J)

The FORALL statement has the same semantics as an array assignment and is parallel for
the same reason.

Yet another way to express the computation is a DO loop with an INDEPENDENT direc­

tive:

1 Chapter 8 discusses a somewhat different "SPMD" model, in which communication is explicit and
there are exactly as many tasks as processors. Unfortunately, the terminology of this field is still in flux,
creating confusion even among co-authors.

Copyrighted Material

Programming Model

!HPF$ INDEPENDENT

DO J = 1, 1000000

C(J) = A(J) + B(J)

ElfD DO

29

Here, IlfDEPENDElfT is an assertion that it is safe to execute all iterations of the loop in
parallel. (Some compilers would detect the potential parallelism of this loop without the
INDEPENDENT directive.)

All three of these program fragments express the same computation: one million in­
dependent and potentially concurrent assignments. 0

For many programs and parallel machines, the extent of data parallelism is much
larger than the machine size. In Example 2.4, for example, no current machine has one
million processors . When this happens, the compiler must assign some (perhaps many)
conceptually parallel operations onto the same processor. Considering parallelism only,
the optimal assignment of tasks to processors is any pattern that puts the same amount of
work on each processor. Assigning tasks in this way is called load balancing. For example,
if the computations in Example 2. 4 were executed on 100 processors, one load-balanced
scheme would be to assign each processor a contiguous block of 10,000 elements; another
would be to assign each processor every lOath element. Section 2.4 examines some of the
complications that arise when communication must also be taken into account. For now,
it is enough to observe that perfect load balancing is not always possib le. For example,
one million is not evenly divisible by 128, so executing the computations in Example 2. 4
would give some processors at least 7813 elements to compute and some 7812 elements (or
less) . This effect is more important on smaller problems; for example, 500 computations
on 128 processors leaves 4 elements on some processors and 3 on others, a 25% difference.

2.2.2 Extrinsic Procedures

Although data parallelism is important for many problems, it is not the only type of
parallel execution. Moreover, even data parallel programs may benefit from tuning in the
target machine's "native language." The EXTRINSIC mechanism of Chapter 8 handles
just such cases by providing an "escape hatch" to other programming paradigms. In
particular, EXTRIlfSIC(HPF�OCAL) lets the programmer write a subroutine as a "node
program." That is, the EXTRIlfSIC(HPF�OCAL) routine consists of code that will be
executed essentially without change on every processor, in much the same way that many
task parallel systems are programmed. This allows the programmer great control over
what will happen on the physical machine, which in turn allows highly efficient machine­
specific code to be written. On the other hand, it also means that the programmer must

Copyrighted Material

30 Chapter 2

specify the details of dat a movement and synchronization , making the program harder

to read and write.

The execution model for EXTRINSIC (HPF...LOCAL) is closer to the physical machine than

the data p arallel mo del. Essentially, all processors call the EXTRINSIC routine together.

Once inside the routine, however , each processor is totally independent of the others.

There is no coordination between processors unless the programmer explicitly p uts it in.

Similarly, each processor has direct access only to its own dat a , rather than access to

all of memory. The EXTRINSIC call returns when all the processors have finished their

executions.

EXTRINSIC routines are not properly part of HPF -they are routines written in a differ­

ent programming paradigm , and possibly in a completely different language. Therefore,

we will not discuss them further in this chapter. However, these routines are very Im­

portant to have in practice, and their interface forms a vital p art of HPF.

2.3 Communication

While p arallelism speeds programs up, moving dat a between processors slows them down.

The exact cost of this communication is machine-dependent , as is its most natural expres­

sion on a particular machine. HPF takes an abstract view of this sort of communication.

The basic HPF dat a model is simple . All data is stored in a global name space, which

means that all processors "see" the same set of variables. In particular, there are no

"private" variables visible to only a subset of the processors. Array declarations declare

the entire size of an array, not the portion on a single processor as in many task parallel

languages. The data mapping p art of HPF (defined in Chapter 4) describes how a variable

can be divided among processors according to regular patterns.

Communication must occur when two dat a items are referenced together but are not

stored on the same processor. The basic idea is to apply the definitions of the HPF dat a

m apping directives to compute the home processor of each array element involved. Since

we have not given those definitions yet, we will present this through examples rather

than through formal definitions; we leave adding rigor to these examples as an exercise

for the reader.

The communication requirement for an operation with two inputs is clear from the

above; communication occurs if the inputs are mapped to different processors, and not

otherwise. Larger operations build their communication requirements up from their

parts. For the moment , we will present a simple model of this. Section 2 .4 discuss some

more complex cases.

Copyrighted Material

Programming Model 31

We assume that the total communication for a program fragment is the sum of the
communications that are needed for its parts. Moreover, in this section we will assume

that every scalar expression and assignment to a scalar location (i.e., an assignment to
one array element, rather than to an array section) is executed on only one processor.

If one statement references several distributed array elements, then one element (such

as the left-hand side in an assignment) will be local, and the communications can be

computed relative to that reference. Iterative constructs like DO loops generate the sum

of the inherent communication for nested statements. The same is true of data paral­
lel statements like FDRALL and array assignment; the communication is the sum of the
communications requirements for the individual elements. Perhaps less obviously, con­
ditional statements like the IF and eASE constructs require at least the communication
needed by the branch that is taken.

We will start with a series of examples involving FDRALL statements and then gen­

eralize. The importance of the FDRALL is not its parallelism (see Example 2.16 for an
explanation of why); rather, the FORALL is an easy way to specify operations on many
array elements at once. Our purpose here is to illustrate the effect of data distribution

specifications on communication requirements, not to suggest that this is the precise com­
piler implementation. The examples in this section use the declarations in Figure 2.3.

The lines starting with "! HPF$" are the HPF directives for mapping the arrays to pro­
cessors . In this case, there are four processors named PROeS (l), PROeS(2), PRDeS(3) ,
and PRDeS(4). Figure 2.4 shows how the arrays are mapped among the processors. The
DISTRIBUTE directives completely define the mappings for arrays A, B, e, D, and nmx.
The ALIGN directive does not specify the complete mapping of arrays X and Y, but does

indicate their relative alignment . It causes X (I) and Y (I + 1) to be stored on the same
processor for all values of I, regardless of the actual distribution chosen by the compiler
for the arrays . Figu re 2.4 shows this as pairs of elements grouped in imaginary processors
PRDeS? Elements Y (0) and Y (1) are not aligned with any element of X and therefore
occupy processors alone.

Example 2.5 Consider the following code :

FDRALL (I = 1:16) A (I) = B(I)

The identical distribution of A and B ensures that for all values of I, A (I) and B (I) are

mapped to the same processor . Therefore, this statement requires not communication .

o

Example 2.6 Consider the following code:

FDRALL (I = 1:16) A(I) = e(I)

Copyrighted Material

32

REAL, D IKENSION (16)

REAL, DIMENSION (32)

REAL, DIMENSI ON (8)

REAL, DIMENSION (O:9)

.. A, B, C

:: D
.. X

.. Y
INTEGER, DIMENSION (16) INX

!HPF$ PROCESSORS, DIMEIS I OH (4) PROC

!HPF$ DISTRIBUTE (BLOCK) OITO PROCS A, B , D, III
!HPF$ DISTRIBUTE (CYCLIC) OITO PROCS .. c
!HPF$ ALIGN (I) W ITH Y (I+ 1) .. X

Figure 2.3
HPF data mapping declarations

PROCS (l) PROCS(2) PROCS(3)

a [2]01I10 [I]�00 0�[ill[ill
b [2]01I10 0�[?J0 0�[ill[ill
c [2]00 [ill 0��1ill 1I10[ill[ill

d [2]0[1]0 0�[ill[ill [!!][i!][ill�
0[IJ00 @][illlilll!il ����

inx [2]0[1]0 0�0[IJ 0�[ill[ill

Chapter 2

PROCS(4)

[ill[ill!illl!il

[ill[ill!illl!il
0[!][ill1!il
Iillrillllilrill
���[ill
[ill[ill!illl!il

PROCS? PROCS? PROCS? PROCS? PROCS? PROCS? PROCS? PROCS? PROCS? PROCS?

x

y

Figure 2.4
Data mappings from Figure 2.3

Copyrighted Material

Programming Model 33

The communication requirements here are very different from Example 2.5 due to the
different distributions of A and C. The first row of boxes in Figure 2.5 shows the data
movement needed for all values of!. Small squares represent array elements; larger gray
boxes represent the processors. Each arrow represents the assignment for one I value; if
the arrow crosses from one gray box into another, then communication is needed for that
value. The figure is difficult to read b ecause of all the communicated elements; three­
fourths of the elements are not aligned with their "partners. " The total communication
is 12 elements; moreover, every processor must receive data from every other processor.
o

Example 2.7 Consider the following code:

FORALL (I = 1: 15) A (I) = B (I+ 1)

The A (I) and B (I) references are on the same processor for all but three of the possible
values of!. The exceptions to this are I=4*K for K=l , 2, or 3 (when A (I) is on PROCS (K)

and A (I+ 1) i s on PROCS (K+ 1)). The second row of Figure 2.5 shows the resulting shift
communication pattern. Only one boundary element on each processor (except the end
processor) needs to be communicated, giving a total of 3 communicated elements. Each
processor receives data from at most one other processor . 0

Example 2.8 Consider the following code:

A (I) = B (2*I- 1)

As the third row of Figure 2.5 shows, the strided access to B means that each active
processor potentially receives data from two others. The total communications load is

12 elements. 0

Example 2.9 Consider the following code:

FORALL (I = 1: 16) A (I) = D (I)

The array sizes of A and D are different. This size difference in turn makes the data
mappings different, although both are described as BLOCK. The effect on communication
is shown in the fourth row of boxes in Figure 2.5. The total communications requirement
is 12 elements, with each processor receiving data from at most one other processor. A
processor must send values to at most two other processors. 0

Example 2.10 Consider the following code:

FORALL (I = 1: 16) A (I) = D (2*I- 1)

Copyrighted Material

34 Chapter 2

c

a

b

a

b

a

d

a

d

a

c

c

y

x

Figure 2.5
Communications patterns for some example assignments

Copyrighted Material

Programming Model 35

This assignment shows how different distributions may be used together without causing
communication: The fifth row of Figure 2.5 shows the reference pattern for the assign­
ment; note that no arrow crosses from one processor to another . It is easy to see why-the
strided entry "cancels out" the difference in array sizes. 0

Example 2.11 Consider the following code:

FORALL (I = 1:15) C(I) = C(1+1)

While superficially similar to Example 2.7, this code has very different communication
behavior because the distribution of C is CYCLIC rather than BLOCK. This distribution
maps the references to C (I) and C(I+1) to different processors for any value of I. The
sixth row of Figure 2.5 shows that the resulting communications pattern moves 15 array
elements. Each processor receives data from one other processor in a shift pattern (with
wraparound on the ends) . 0

Example 2.12 The following code requires no communication:

FORALL (I = 1:8) X CI) = Y (I+ 1)

In this case, the relative alignment of the two arrays matches the assignment statement
for any actual distribution of the arrays. 0

Example 2.13 The following code may require communication:

FORALL (I = 1:8) X CI) = Y(I)

The only information available in this example is that X CI) and Y(I+1) are on the
same processor; this has no logical consequences for the relationship between X CI) and
Y(I) . The seventh row of Figure 2.5 shows this as communication between abstract
processors. Since there are more abstract processors than physical processors, some of
these communications may actually be local references. Whether this actually happens
is very machine- and compiler-dependent. 0

Example 2.14 The following code also has very limited information regarding its com­
munication requirements.

FORALL (I = 1:16) A (I) = B (INX (I»

Clearly, A(I) and INX(I) are mapped together. Without knowledge of the values stored
in INX, however, the relation between A(I) and B (INX (I» is unknown. Therefore, it
is impossible to say what the communications requirements are (except that a most 16
elements are sent and received) . 0

Copyrighted Material

36 Chapter 2

A few generalizations are worth making.
Accessing arrays with different mappings will generally require communication even

for apparently simple operations. We saw this in Examples 2.6 and 2.9 . In a simple
assignment between a BLOCK-distributed and a CYCLIC-distributed array, if each array
has n elements on p processors, then corresponding the elements are located on the same
processor if and only if l(i - l)/(nlp)J = (i -1) mod p. (This can be seen by inspecting
the definitions of BLOCK and CYCLIC in Chapter 4.) Such a coincidence happens lip of
the time, which is not often on large machines. Similar effects can occur for other com­
binations of distributions if the block sizes of the mappings are different. It is sometimes
possible to construct expressions to avoid this communication, as in Example 2. 10, but
this is rather difficult for the programmer to write (and for the compiler to unravel).

Shift operations like Examples 2.7 and 2. 1 1 are common in practice. Communicating

boundary elements as in Example 2.7 is the general case for BLOCK distributions and
small shift distances. (Shifting by a large distance-more than the number of elements
on a processor-requires communication for every element, however.) Similarly, com­

municating every element in a CYCLIC-distributed array is also the common case. (The
exception to this is shifting by a multiple of the number of processors, which avoids all
communication.) These characteristics make BLOCK a good choice for algorithms that
perform many operations involving neighboring array elements. CYCLIC distribution,
however, may provide better load balance in some situations-see Example 2.19.

Strided references as in Examples 2.8 and 2. 10 produce more complications for the

general case. For BLOCK distributions, if the reference stride is k then a processor may
require data from k + 1 others. (The number is k + 1 rather than k because boundaries
may not match evenly.) On most machines, this is more expensive than communicating

with one other processor as in Example 2.7. The compiler can, however, schedule this

data movement at compile-time. The situation with a CYCLIC distribution is similar, but

the communications pattern is quite different.
It is difficult or impossible to make general statements about arbitrary references like

Examples 2.12 through 2.14. This will tend to produce slower code, since the techniques
for handling such cases must be more general. We advise giving the compiler as much
information as possible using the HPF directives; this tends to make the programs more

efficient and portable.

Example 2.15 The above FORALL statements could be converted to array assignments

without changing the communications requirements. For example,

A(1:15) = B(2 : 16)

is equivalent to Example 2.7. 0

Copyrighted Material

Programming Model 37

Example 2.16 Similarly, the communication needs of Examples 2.5 through 2.14 would
not change if the FORALL statements were changed to DO loops. For example,

DO I = 1, 15

A (I) = 8 (I + l)
END DO

has the same communications requirements as Example 2.7. In general, converting a
FORALL statement to a DO loop changes its meaning and inherent parallelism, however.
This is an important point-the communication requirements of a program may be com­
pletely independent of its parallelism. 0

Example 2.17 This loop must communicate between 0 and 12 elements, depending on
the original values in A.

! HPF$ INDEPENDENT

DO I = 1, 1 6

IF (A (I) < 0.0) THEN

A (I) = B (I)
ELSE IF (A(I) > 0.0) THEN

A(I) = C (I)
END IF

END DO

(Compare with Examples 2.5 and 2.6.) Negative elements of A do not require communi­
cation; most positive elements do. 0

A few other complex features deserve mention. Some array intrinsics have inherent
communication costs as well. For example, consider the statements:

X

A (1: 1 6)

A (1: 1 6)

= SUM(A (1 : 1 6»

= SPREAD (B(l), NCOPIES= 1 6)

= CSHIFT(A (1: 1 6) , 1)

Intrinsic 1
Intrinsic 2

Intrinsic 3

In general, the inherent communication derives from the mathematical definition of the
function. For example, the inherent communication for computing SUM is one element
for each processor storing part of the operand, minus one. (Further communication may
be needed to store the result.) The optimal communication pattern is machine-specific.
Similar remarks apply to any accumulation operation. Prefix and suffix operations may
require a larger volume based on the distribution. The SPREAD intrinsic above requires a

Copyrighted Material

38 Chapter 2

broadcast from PRoes (1) to all processors , which may take advantage of available hard­
ware. The eSH IFT operations produce a shift communication pattern (with wraparound) .
This list of examples illustrating array intrinsics is not meant to be exhaustive.

A REALIGN directive (see Chapter 4) may change the location of every element of
the array. This will cause communication of all elements that change their home pro­
cessor; in some compilation schemes , data will also be moved to new locations on the
same processor. The communication volume is the same as an array assignment from
an array with the original alignment to another array with the new alignment. The
REDISTRIBUTE directive changes the distribution for every array aligned to the operand
of the RED I STRIBUTE. Therefore, its cost is similar to the cost of a REALIGN on many

arrays simultaneously. Compiler analysis may sometimes detect that data movement is
not needed because an array has no values that could be accessed; such analysis and the
resulting optimiz ations are beyond the scope of this book.

2.4 Putting It All Together

The purpose of this section is to show how parallelism and communication combine to
determine the total performance of an HPF program. As we move from simple examples
to more complex ones, it will become clear that our model does not describe all relevant
characteristics of HPF execution. The performance of an HPF program will depend
on the programming model, compiler design, target machine characteristics, and other
factors . This does not mean that HPF is not a useful language; it simply means that
programmers have to remember their computing environment.

A simple model for the total computation time of a parallel program is

Ttotal T par / P active + T senal + T comm (2 .4.1)

where:

• T total is the total execution time.
• T par is the total work that can be executed in parallel.
• P ac tzve is the number of (physical) processors that are active, that is, actually execut­
ing the work in T par.
• Tserial is the total work that is done serially .
• T comm is the cost of communications .

This formula assumes that all parallel parts of the program have the same number of
active processors; this is true of our examples , but not for most large programs . When
a program has several parallel phases, then a better model would define several Tpar.

Copyrighted Material

Programming Model 39

and Padive" and the total parallel time would be their sum. If a computation cannot be
load balanced, then the term T par! P actIve should be replaced with the largest time on
any processor. One can think of this as rounding the division result upwards (although
the real reason for the load imbalance may be more complex).

Example 2.18 Consider this bit of prototypical "stencil code":

REAL , ARRAY (16 , 16) :: X , Y

FORALL (J=2: 15 , K=2: 15)

Y (J , K) = (X (J , K)+X (J- 1 , K) +X (J+ 1 , K)+X (J , K- 1)+X (J , K+1»/5.0
END FORALL

Note that this code accesses all elements of X but updates only the interior elements of
Y.

If we have four processors Pl, P2, P3, alld P4, there are a number of ways we might
assign the elements of X to processors; some of these are illustrated in Figure 2.6, along
with the HPF directives that produce them. We will assume that the Y array is assigned
in the same way as X , and that each element of Y is computed on the processor to which
it is assigned.

One obvious approach might be to take the elements of X in the usual Fortran column­
major array element order, divide them into four equal groups, and assign one group to
each processor . The result is that each processor holds four adjacent columns of X-see
Figure 2.6(a)). With this organization, processors P2 and P3 each must compute 56
elements of Y (a 14 x 4 subarray of V), while processors Pl and P 4 need compute only
42 elements ofY (a 14 x 3 subarray of Y) . We can see already that while this distribution
of array elements equalizes the memory requirements of the four processors, it does not
equalize the computational load. Moreover, processor P2 must exchange 14 elements of
X with processor Pl and another 14 elements with processor P3. Processor P3 has the
same computation and communication load as P2. Processors Pl and P 4 have less work
to do, so the overall completion time will be dictated by the time required by processors
P2 and P3. So the computational load (T par! P actwe) is 56 element-computations and
the communications overhead (T comm) is 28 element-exchanges.

Alternatively, the processors might be organized in a 2 x 2 square, with each processor
holding an 8 x 8 subarray of X-see Figure 2.6(b) . With this organization, each processor
must compute 49 elements of Y, that is, a 7 x 7 subarray of Y. For example, Pl must
compute Y (2: 8 , 2: 8). Each processor can compute 36 elements of Y (the 6 x 6 interior
of the 8 x 8 subarray) without requiring elements of X from another processor; but to
compute the other 13 elements of Y it must obtain 7 elements of X from each of two other

Copyrighted Material

40 Chapter 2

P3

P3

(a) DISTRIBUTE X (* , BLOCK) (b) DISTRIBUTE X (BLOCK, BLOCK)

1 P2Pl 2 , P, PIP'2 PI P2 P, P2 p]
P2 Pl P2

Pa P4 P3P, P3 P, Pa P4 Pa P4 PaP" P3 P, P3 P,

PI P2 PI P2 PI P2 PI P2 PI P2 PI P2 P, P2Pl ,
3 p. 3P, P3 P, Pa P4 Pa P4 Pa P4 P3 P, P3 P,

, P2 PI P2 PI P2 P,i?2 Pl P2 PI P2 P, P2 P, P,

Pa P4 P3P, Pa P4 P3i?, Pa P4 Pa P4 11'3 P4 P3 P,

, P2 P,P2 P, P2 P,iP2 PI P2 PI P2 PI P2 PI P2

Pl p-Ip-Ip. PlP2 Pa [p. [Pl P2P, p.Pl P,PaP.
3 p. P3 P4 Pa P4 Pa P4 Pa P4 P3i? P3P• P3P,

Pl P2 Pl P2 PI P2 Pl P2 PI P2 PI P2 Pl P2 PI P2

3 P4 Pa P4 Pa P4 Pa P4 P3P .. Pa P4 3 P, PaP"

, P, PI P2 Pl P2 P, P2 P, P, Pl P2 Pl P2 PI P2

3P, P3 P" P3iP. PaP" P3 P, Pa P4 Pa P4 Pa P4

P, 2 P, P2 Pl P2 PI P2 PI P2 PI 2 P, P2 PI P2

11'3 P4 Pa P" Pa P4 Pa P4 Pa P4 Pa P4 Pa P4 Pa P4

Pl P2 Pl P2 IP,IP, P, P, PI P2 PI P2 PI P2 P,iP2

Pa P4 1P3 p. P3 P4 Pa P4 P3 P4 Pa P4 Pa P4 PaP4

(c) DISTRIBUTE XC*, CYCLIC) (d) DISTRIBUTE X (CYCLI C , CYCLIC)

Figure 2.6
Various distributions of a 16 X 16 array onto four processors

Copyrighted Material

Progra.mming Model 41

processors. So the computational requirement per processor (Tpar/ P act.ve) is 49 element­
computations and the communications overhead (Tcomm) is 14 element-exchanges. This
distribution of data onto processors is a notable improvement because it balances the
computational load and reduces the communications overhead.

The distributions shown in Figures 2.6(a) and 2.6(b) are examples of block distribu­
tions: each processor contains a contiguous subarray of the specified array. Figure 2.6(c)
illustrates a cyclic distribution in which columns of an array are distributed onto four
processors so that each processor, starting from a different offset, contains every fourth
column. Unfortunately, this happens to produce the same computational imbalance as

the block distribution of Figure 2.6(a) and furthermore has a higher communications
overhead.

Figure 2.6(d) shows a distribution that is cyclic in both dimensions onto four processors
arranged in a 2 x 2 square. This distribution , like the two-dimensional block distribution
shown in Figure 2.6(b), would b alance the computational load evenly for our stencil
example. Unfortunately, the communications overhead would be far greater: for every
array element, all four nearest neighbors reside in other processors! 0

Example 2.19 Lest the last example suggest that cyclic distributions are inefficient, we
present a different algorithm where they are useful. Consider this simple code for LU
decomposition by Gaussian elimination:

REAL X (16, 1 6)

DO I = 1, 15

FORALL (J = 1+ 1:16)

X(J , 1) = X(J,1) / X(I,I)
FORALL (K = 1+1:16)

X(J,K) = X(J,K) - X(J,I)*X(1,K)
END FORALL

END FORALL

END DO

Incrementing the outer DO loop's index must be done sequentially, creating a small Tserial

overhead . Also, all the elements assigned in the X (J. I) = . . . statement are located on

the same processor in the one-dimensional mappings (Figures 2.6(a) and 2.6(c»; for the

purposes of this example, we will assume these are also serial overhead. The parallel

computation estimates below do not include this overhead.

For each value of I, the inner FORALL construct carries out (16-1) **2 assignments,
potentially in parallel. Successive iterations of the DO loop update smaller and smaller

Copyrighted Material

42

x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x

x x X x x x x x x x x x x x x x

X x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x

first iteration

x x x x x x x x x x x x x x

x x x x x x x x x x x x x x

X X X X X X X X X X X X X X
x x x x x x x x x x x x x x

x x x x x x x x x x x x x x

x x x x x x x x x x x x x x

x x x x x x x x x x x x x x

x x x x x x x x x x x x x x

x x x x x x x x x x x x x x

X X X X X X X X X X X X X X
X X X X X X X X X X X X X X
x x x x x x x x x x x x x x

x x x x x x x x x x x x x x

third iteration

Figure 2 .7

Chapter 2

x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x X
X X X X X X X X X x x x x x x
X X X x x x x x x x X X X X X
x x x x x x x x x x x x x x X
x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x

second iteration

x x x x x x x x x x x x x

x x x x x x x x x x x x x

x x x x x x x x x x x x x

x x x x x x x x x x x x x

x x x x x x x x x x x x x

x x x x x x x x x x x x x

X X X X X X X X X X X X X
x x x x x x x x x x x x x

x x x x x x x x x x x x x

x x x x x x x x x x x x x

x x x x x x x x x x x x x

X X X X X X X X X X X X X

fourth iteration

Regions of an array updated during successive iterations of LU-decomposition

Copyrighted Material

Programming Model 43

regions of the array X, as illustrated in Figure 2.7 . With the assignment shown in Fig­

ure 2.6(a) , after the first eight iterations none of the elements assigned to processors P 1
and P2 wil l be updated again. Considering the load imbalance , the parallel computation
time (T parI P active) for all the inner FORALL index values is 470 element updates. The
situation is even worse for the two-dimensional block mapping (Figure 2 .6(b)) : after the

first eight iterations the elements of X to be updated all reside in one processor , giving

T parI P a c t i v e = 652. The cyclic distributions keep the computation al load approximately
balanced across all the processors over the entire course of the computation; at every
stage, the busiest processor has at most one more column to compute than the most idle.
Figure 2.6(c) has a comp utation load of 356 clement up dates , taking these small load

imbalances into account ; Figure 2 .6(d) improves this to 344 element updates.

The communications overheads for the different mappings do not depend on whether a
block or cyclic mapping is used ; instead , they only dep end on the number of dimensions
that are partitioned. In Figures 2.6 (a) and (c) , the references to X (I , I) and X O , K)
will cause communication. The total number of elements sent is 120 , with most of
those elements received by more than one processor . For the two-dimensional mappings
(Figures 2 .6(b) and (d)) , the reference X C J , !) also causes communicati on, leading to a

T comm of 225 . Because there are so few processors, each element is received only once ;

in general , the elements would be sent to all processors in a row, or all processors in a
column . 0

We now turn to some complications that real programs (and compilers) may bring to
the model on page 2.4 . 1 . The assumptions in Section 2. 3 may overestimate the commu­

nication, particularly for goo d compilers. A maj or optimization on parallel machines is
to reduce the communication cost. This can be done in several ways. One way is to

avoid redundant communication-if a data value has been communicated once and has
not changed, then it can be reused without another trip through the communications
network . Reuse like this is common in sequences of statements . Another optimization is

to carefully choose the location for a computation , possibly splitting the computation of
one statement among several processors . Such optim izations are particularly useful for

array expressions . There are far too many other optimizat ions to discuss here . Instead ,

we show two simple examples to give a flavor of how these work .

Example 2.20 To illustrate removing redundant communication , consider the following

statements .

REAL, D I MENSION (1000) : : R, S . T

! HPF$ PROCESSORS , DIMENSI ON (10) : : PROCS
! HPF$ D ISTRIBUTE (CYCLIC) ONTO PROCS : : R, S . T

Copyrighted Material

44

R (I)

S C I)
= S (I+2)

= T (I+3)
2 * R (I+2) S (I +2) =

T (I) = R (I + 1) + S (I+2) + T (I+ 3)

Stat ement 1
Stat ement 2

Stat ement 3
Stat ement 4

Chapter 2

To simplify the discussion , assume that all four statements are executed on the processor
storing the array element on the left-hand side . (This is an optimal strategy for this
example , although not for all programs .) Statements 1 and 2 each require one array
element to be communicated for any value of I . Statement 3 requires no communicat ion .
All the references in Statement 4 are on different pro cessors . There is no redundancy to
be exploited in the first three statements . However , for Statement 4 :

• Element R (I+ 1) needs communication , since i t is not local and was not used earlier .
• Element S (I + 2) needs communication , sin ce Statement 3 overwrote the value com­
municated for Statement 1.
• Element T (I + 3) does not need new communication , since it was used in Statement 2
and not changed since .

Thus , the minimum total communication in this program fragment is four array ele­
ments , rather than five as Section 2.3 suggests . 0

Example 2 . 2 1 The reader may think that Example 2.20 was a lot of work for little
gain . However , the same reasoning can be applied to aggregate operations with greater
effect . Consider the following FORALL statement .

REAL , DIMENSION (1000) : : U , V , W
! HPF$ PROCESSORS , D IMENSION (10) : : PROCS (10)

! HPF$ DI STRIBUTE (BLOCK) ONTO PROCS : : U , V , W

FORALL (K = 3 : 998)
U (K) (U (K- 1) *W (K- 1) + U (K) *W (K) + U (K+l) *W (K+ 1» I 3 . 0
V (K) = (W (K-2) + W (K- l) + W (K) + W (K+ l) + W (K+2» I 5 . 0
W (K) = (U (K-l)+U (K) +U (K+ l» * (W (K- l)+W (K) +W (K+ l » I 9 . 0

END FORALL

Here , the total communication per processor (except for PROCS (1) and PROCS (10») is 8

elements:

• Two elements for W (K- l) and W (K+ l) , used in al l the assignments .

• Two elements for U (K- 1) and U (K+1) , used in the assignment to U .

Copyrighted Material

Programming Model 45

• Two elements for W (K-2) and U (K+2) , used in the assignment to V .
• Two elements for U (K-l) and U (K+ l) , used in the assignment to W . (These cannot be
reused from the assignment to U, because they were overwritten there .)

Values of W are not overwritten due to the definition of the FORALL statement . I f each
statement and each index value were treated separately, as in Section 2.5 , then two
values of the FORALL indices (the first and last on each processor) would produce 6
communicated elements each , and two other index values (next to the ends) would need
1 communicated element . The grand total would therefore be 14 elements ; optimization
has gained almost a factor of 2 in communication volume in this case . 0

Example 2.22 To illustrate comput ation placement (or scheduling, as it is sometimes
called) , consider the following code .

REAL , D IMEISIOI (100 , 1 00)

! HPF$ DISTRIBUTE (BLOCK , *)
x , Y , Z
X , Y , Z

X = TRANSPOSE (Y) + TRANSPOSE (Z) + X

A straightforward implementation would require two transposition (communication) op­
erations , one for each of Y and Z . The communication pattern is similar to the CYCLIC

to BLOCK conversion in Example 2 . 6 . An optimizing compiler might algebraically rewrite
this as:

REAL , DIMENS ION (1 DO , 10D)

! HPF$ D I STRIBUTE (BLOCK . *)

T 1 = Y + Z
X = TRANSPOSE (T l) + X

X , Y , Z , T 1

X , Y , Z , T 1

with only one use o f transposition , thus cutting the communication volume i n half. 0

Example 2.23 After all that minimization , it is almost embarrassing to note that some­
times it is better to send more data than is real ly needed . In Example 2 . 1 7 , the cost of
checking which data needed to be communicated might be more than the communication
itself. In this case , a good compiler would communicate the entire contents of array C

even though some of that data was not used due to the IF . 0

Equation 2 .4 . 1 also allows some tradeoffs to be made . An extreme example is com­
pletely eliminating communication by putting all the data on a single processor and
executing the entire computation there . Of course , this eliminates all parallelism (not

Copyrighted Material

46 Chapter 2

to mention that there may not be enough local memory on one processor) . Unless the

communication cost T comm is very high , this is unlikely to be an advantage. There are ,

however , several more interesting tradeoffs that an implementation can make:

• Add communication to distribute parallel work among more processors . T comm lll­

creases , but T pari P active decreases .
• Perform some parallel operations redundantly to avoid communication . T pari P active

increases , but T comm decreases .
• Partially parallelize the serial work, perhaps reducing the number of active processors .
T s erial decreases , T pari P activo increases .
• In practice , parallelizing serial work often means adding communication . The tradeoff
may actually be T .erial decreases, T pari P activo and T comm increase .

Note that all of these tradeoffs can also be run in reverse-for example , restricting par­
allelism (creating coarser-grain parallelism) decreases T comm and increases T par I P a c tive .

There are other tradeoffs one can attempt to make ; we leave listing them as an exercise
for the reader . When faced with options like this , the correct choice is always to think
about the system(s) the code will be running on . All of the parameters in our equa­
tion are system-dependent , and whether some of the tradeoffs are legal depends on the
algorithm.

Example 2 . 24 Choosing an intermediate storage location is sometimes more complex
than Example 2 . 22 showed . Consider the following array assignment .

REAL , DIMEISIOR (1000) Q , R , S , T

INTEGER , DIMEISIOR (1000) IX

! HPF$ PROCESSORS , DIMERSION (10) PROCS
! HPF$ DISTRIBUTE (CYCLIC) ONTO PROCS : : Q, R, S , T , IX

Q = R (I X) + S (I X) + T (I X)

and the following implementation strategies :

• Evaluate each element of the right-hand side on the processor where it will be stored .
This strategy potentially requires fetching three values (the elements of R , S , and T) for
each element computed . It always uses the maximum parallelism of the machine .

• Evaluate each element of the right-hand side on the processor where the corresponding
elements of R (IX) , S (IX) , and T (I X) are stored. This potentially communicates one

result for each element computed . If the values of IX are evenly distributed , then it also
uses the maximum machine parallelism . But if IX (I) = 1 for all I , then all the computation

Copyrighted Material

Programming Model 47

is done on one processor . (Similarly, if IX (I) = 1 0 * ((I +9) / 1 0) , then PROCS (1 0) does al l
the work, even though IX contains many different values .)

On the basis of communication only, the second strategy is 3 times better . Consi dering
parallelism as well , the p icture is much cloudier . Minimizing the total cost is a very

m achine- and input-dependent problem . 0

Example 2 . 2 5 Some algorithms have inherent , input- indep endent conflicts between

computation an d communication . For example , consi der the co de below .

REAL , D IMENSION (6 , 6) : : X , Y
! HPF$ PROCESSORS , D IMEN S I ON (3) : : PROCS

! HPF$ D I STRIBUTE (*, BLOCK) ONTO PROCS : : X , Y

DO I = 2 , 6

X C I, :) = X (1 , :) - X (1 -1 , :) *Y (1 , :)
END DO

DO J = 2 , 6

X (: , J) = X (: , J) - X (: , J -l) *Y (: , J)
END D O

Figure 2 . 8 shows how data flows i n this problem .

In the DO I loop , there is no conflic t ; the array assignments are perfectly parallel and

there is no communication . The DO J loop also has a potential p arallelism of N on each

iteration . However , all elements of X (: , J) and Y (: , J) are located on the same processor .

Therefore , exploitation of any of the potential p arallelism will require scattering the data
to other pro cessors . (This is independent of the communication required for the reference

to X (: , J - 1) .) There are several implementation strategies available for the DO J loop :

1 . Execute the vector operations in the D O J loop sequentially. Since each processor

must wait for a vector of values from its neighbor , the entire loop runs serially. In terms

of Equation 2 . 4 . 1 , T par = T s e ri a l . This is the simplest possible strategy, but it means

that the program will spend most of its time in sequential computation .

2 . Transpose X and Y before the DO J loop , and transpose them again at the end . The

DO J loop can then be executed exactly as the DO I loop-that is , in parallel wi thout
communication . This allows parallel updates of both the rows and columns of x, at the

cost of two all-to-all communication operations . It corresponds to increasing T comm and

T par in order to eliminate Tseri a l . This strategy works well if the target system has a
fast transpose operation an d enough memory to store the transp osed array s .

Copyrighted Material

48

proc(1)

proc(1)

Figure 2.8

DO I = 2 I 6

proc(2)

DO J = 2 I 6

proc(2)

Data flow in Example 2 . 25
Copyrighted Material

Chapter 2

proc(3)

proc(3)

Progra.mming Model

proc(1) 1 , 1

proc(2)

proc(3)

Figure 2.9

Time

Pipelined execution for Example 2 .25

49

3 . Compute the results in row order on each processor , sending the last value to the next
processor as soon as it is ready. This strategy can produce a pipelined effect , as shown in
Figure 2 . 9 . The communications volume is the same as method 1 , but the data is sent in
smaller packets . This allows some parallelism , but parts of the algorithm execute serially.
In terms of our model , work has been moved from Tsena / to Tpar . This strategy works
best if the t arget system can sustain fine-grain communication and synchronization .
4 . A variant of the last method is for each processor to compute a few rows before com­
municating the results. The effect is much the same as in Figure 2 . 9 , except that the
p ipeline startup is longer . However , on machines with a large communications startup
time (for example , MIMD message-passing machines) this reduces the number of com­
munication events, thus reducing overhead . In terms of our model , this reduces T comm

while increasing Tpar/ P active . This is the strategy of choice for machines which cannot
handle fine-grain communication.

This list is not exhaustive . It should be obvious that the optimal implementation of
this algorithm depends very much on the target machine . It is also true that any of the
above strategies could be implemented directly in HPF or could be incorporated into the

compiler. 0

Copyrighted Material

50 Cha.pter 2

In light of the tradeoffs described above , the reader may wonder what the "best" way
to write HPF programs is . There is no single answer. In some situations , programmers
are willing to invest extreme effort in tuning an application for a particular architecture ;
in other situations , the ability to run on a variety of different machines is paramount .
The advice to the programmer for these environments would have to be quite different .
We can , however , make some general observations :

• Programs will execute operations fastest if the dimension encapsulating the parallelism
is distributed among processors .
• Programs will execute operations fastest if the work is evenly divided among proces­

sors ; typically, this also implies that data should be evenly distributed .
• Programs will execute operations fastest if there are few (or no) elements communi­
cated.

Many data parallel algorithms fit these criteria for a number of data distributions ; Fox
et al. [13] is ful l of such examples . Using such algorithms is highly recommended-they
will be reasonably efficient everywhere . This efficiency can be enhanced by carefully
matching the data mapping to a particular target machine . The particular mapping that

produces the highest performance will sometimes vary from system to machine (although
all machines should execute correctly with all distributions) , so this process may be

considered machine-dependent optimization . In cases where conflicts cannot be avoided ,
such as Example 2 . 25 (as written) , the user may have to consider the characteristics of
his or her target machine(s) in detail to decide the best strategy. We hope that vendors
wil l eventually provide tools for such tasks, but as of this writing such tools are still
immature .

Copyrighted Material

3 Fortran 90

This Chapter summarizes the new features of Fortran 90, particularly those that have
an impact on High Performance Fortran.

3.1 Fortran 90 Features

I don't know what the technical characteristics of the standard language for
scientific and engineering computation in the year 2000 will be . .. but I know

it will be called Fortran.

remark attributed to John Backus

In addition to all of the FORTRAN 77 and Department of Defense standard language
features , Fortran 90 provides significant new facilities some of which, such as array syn­

tax, make it easier for a compiler to determine that operations may be carried out

concurrently.

Ease-of use improvements provide capabilities to ease the writing of programs, enhance

control over program execution, and facilitate data input and output.

Data fa cilities include an entity-oriented declaration syntax, user sp ecification of nu­
merical precision of data and additional numeric data types, user-defined arbitrary data
structures, dynamically allocatable data, and pointer-based linked data structures.

Array features include array subsection notation, vector-valued subscripts , expressions,

assignment, and masked assignment ; array constructors; elemental, transformational,
and inquiry array intrinsic functions; and array-valued user functions .

Modularization facilities allow the packaging of dat a and procedures; the definition
and packaging of data abstractions including the definition of operators and assignment

for defined types; procedure improvements such as optional and keyword arguments,

recursion, and internal procedures; and compiler checking across compilation units.

A large number of intrinsic procedures prov ide built-in support for mathematical oper­

ations, especially the construction of, computation on, and transformation of arrays. In

addition, there are procedures to inquire about numerical accuracy and bit manipulation
procedures.

The concept of language evolution, under which old language features are identified as
obsolescent and subject to possible removal in future standards, highlights the require­

ment for the use of modern programming practices and the choice of a modern coding

style.

Copyrighted Material

52 Chapter 3

3.2 Ease-of-Use Improvements

Ease-of use improvements provide capabilities to ease the writing of programs, enhance

control over program execution, and facilitate data input and output.

3.2.1 Ease of Writing

Fortran 90 provides three capabilities to ease the writing of programs:

• Names can be up to 31 characters long, a significant improvement over the old limit

of 6.
• An expanded character set includes lower-case letters and the underscore character

for use in names, and the forms ==, /=, <, >, <=, and >= for the relational operators . EQ.,
.NE., .LT., . GT., .GE., and .LE.

• A new free source form removes the column dependences of the old fixed source form
and adds conveniences such as the use of significant blanks, "!" -delimited comments
which may end a line, and";" -separated statements on a single line.

3.2.2 Ease of Program Control

Control of program execution is enhanced by several new constructs:

• Named IF, CASE, and DO constructs allowing named matching of construct parts and

eliminating requirements for statement numbers. An example is:

CHECK_IT; IF (.NOT. DONE) THEN

ELSE IF (.NOT. HOME) THEN CHECK_IT

END IF CHECK_IT

• New DO statement capabilities including DO for infinite loops (with loop termination

programmed in the loop body) ; ERD DO to match DO without statement numbers; DO

WHILE some condition is true; CYCLE to the next iteration of a loop; and EXIT from a
nest of loops. For example:

FOREVER; DO

DO WHILE (I . NE . 10)

INNER: DO I = 1 , N

IF (...) THEN CYCLE INNER

Copyrighted Material

Fortran 90

IF (. . .) THEN EXIT FOREVER

ERD DO INNER

Elm DO

END DO FOREVER

53

• A CASE construct that allows selection from a number of alternatives based on the
value of an expression. (You can almost think of an IF construct as merely a two-way
logical case construct.) Case alternatives may be selected for a single value or for a range
of values, as in:

SELECT CASE (I)
CASE (: -1)

J = -1
CASE (0)

J = 0

CASE (1:5)

J = 2 • 1- 1

CASE DEFAULT
J = 10

END SELECT

For values of I < 0

For I = 0

For values of I = i . 2, 3, 4, or 5

Or CASE (6:) for values of I > 5

3.2.3 Enhanced Input and Output

Input/output capabilities are enhanced in four areas:

• Non-advancing input/output, sometimes called partial record or strea m I/O, allows
character-oriented I/O in addition to the traditional Fortran record-oriented I/O.
• Namelist input/output, the ability to do I/O on a named group of data objects, has
been a de facto standard facility in Fortran implementations and now has been officially
standardized.
• New I/O edit descriptors support binary, octal, hexadecimal, engineering , and scien­

tific notations.
• Several new specifiers extend the operations of the IlfQUIRE, OPEX, READ , and WRITE
statements.

Copyrighted Material

54 Chapter 3

3.3 Data Facilities

3.3.1 Intrinsic Data Types

Fortran 90, like its predecessors, provides six intrinsic data types: I1TEGER, REAL, DOUBLE

PRECISION, COMPLEX, CHARACTER, and LOGICAL. It gives the programmer greater choice
in the characteristics of these data types, however.

Processors may provide more than one representation for a data type. (For example,
Digital Equipment Corporation's Fortran compilers for the Alpha microprocessor directly
support 1, 2, 4, and 8 byte integers and 2, 4, and 8 byte floating point numbers.) The
KIND facility provides for the parameterization of the intrinsic types, except for DOUBLE

PRECI S I ON, providing data types with user-specified precision and range1. This allows
specification of, for example, short and long integers, more than two precisions for real
and complex, additional large character sets (as used in some foreign languages), and
both packed and unpacked logicals. Some examples are:

REAL (SELECTED_REAL_KIND (B , 70» :: A Pre c ision of 8 d igits,

range of -10**70 to 1 0**70

SELECTED_INT_KIND (4) INTEGER , PARAMETER

INTEGER (KIND=SHORT)

REAL (KIND(O.ODO»

COMPLEX (KIND (O.ODO»

SHORT =

C

Must allow -9999 t o 9999
Same as DOUBLE PRECISION
Same as DOUBLE COMPLEX ,

which is not in Fortran 90

(or FORTRAN 77)

CHARACTER(KIND=KANJI) , PARAMETER:: ORIENTAL = KANJI_' ... '

Numeric inquiry intrinsic functions such as MAXEXPONENT return information about the
actual representations of types and kinds of numbers while a program is running.

3.3.2 Structured Data Types

In addition to the capabilities of intrinsic data types, some programs need to define and
use arbitrary structures of data. Fortran 90 provides two extension mechanisms to do
this: arrays (described in Section 3.4) and derived types, sometimes called user-defined

types (described in Section 3.5). An array is a collection of objects of the same type
which are identified by their position within the array. Arrays have been a mainstay

1 Most FORTRAN 77 compilers provide a similar capability through a de facto industry-standard
extension, the * notation for data typing as in IIlTEGERU, IITEGEU2, I1TEGEh4, IITEGEh8, REAL*2
REAL.4, REAL*8, and DOUBLE COIIPLEX. The "." notation, however, specifies the number of bytes in th�
representation rather than the precision and range desired. Some processors support multiple floating
point representations of the same size.

Copyrighted Material

Fortran 90 55

of Fortran since its earliest implementations, but Fortran 90 significantly expands their
set of supporting operations. A derived type, or structure ,2 is a collection of objects of

(possibly) different types which are identified by their name within the structure. Derived
types provide the ability to use structured data and, together with modules, the ability

to define abstract data types (see Section 3.7.3).

3.3.3 Entity-Oriented Declarat ions and Allocatable Arrays

Fortran 90 allows declarations organized either by attribute, as in FORTRAN 77, or
by entity , as in the declarations of SHORT and K above. The entity form allows the

programmer to group the type, attributes, and optional initialization value of an entity
into a single statement. As the example showed , one of the attributes may be PARAMETER,
meaning that the entity is a named constant of the specified type and value. Other
attributes, such as DIMENSION and SAVE can be specified similarly.

Often an array serves as a kind of working storage, and should take up space only when

required. Three ways of accomplishing this are automatic arrays, allocata ble arrays, and

pointers to arrays .
Within a procedure, the extents in each dimension of an array are determined when

control enters the procedure. Storage for the array is then allocated, and freed when
control leaves the procedure. As a consequence, an array can be declared to be the same

size as a dummy argument, as in:

SUBROUTINE ARRAV_SWAP(X, Y)
REAL, DIMENSION (:), INTENT(INOUT) X, Y

REAL, DIMENSION (SIZE (X » Z

Z = X

X = Y

Y = Z

END SUBROUTINE ARRAY_SWAP

Dynamic storage allocation of arrays is avail able via the mechanism of ALLOCATABLE
arrays. The declaration:

REAL, DIMEISION (: ,:), ALLOCATABLE : : A

declares A to be a two-dimensional array for which storage has not yet been allocated.

Given this, the executable statement

ALLOCATE (A(2*N, 2*N+l»

2 Some programming languages use the term "record" to refer to what Fortran 90 means by "struc­
ture." In Fortran 90, a TecoTd is one of the elements of a file subject to input /output operations.

Copyrighted Material

56 Chapter 3

calculates the values 2*N and 2*N+l and allocates appropriate storage for A. This storage
continues to exist until a DEALLOCATE A statement is reached (or until flow of control
leaves the scope of the declaration of A). The ALLOCATED intrinsic can test whether or
not A is currently allocated.

Pointers are discussed in Section 3.6.

3.4 Array Features

Fortran 90 contains features to allow operations on entire arrays without explicit DO loops:
a programmer can now say A = B + C to add two arrays together and store them into a
third array. These features were introduced because many scientists have found them to
be a natural and readable way of expressing algorithms. In addition, they have proven
to have efficient implementations on a variety of computer architectures. We expect that
these facilities will make Fortran 90 the programming language of choice for scientific
and engineering numerical calculations on high performance computers. Their value has
already been proven in a number of compiler products. The introductory overview in
the Fortran 90 standard [17] states:

Operations for processing whole arrays and subarrays (array sections) are in­

cluded in Fortran 90 for two principal reasons: (1) these features provide
a more concise and higher level language that will allow programmers more
quickly and reliably to develop and maintain scientific/engineering applica­

tions, and (2) these features can significantly facilitate optimization of array

operations on many computer architectures.

3.4.1 Array Overview

Although the semantics of Fortran 90 are defined without reference to a particular under­
lying machine model, efficient execution can be realized on a variety of parallel machines.
This is true despite the fact that Fortran 90 programs can be viewed as providing a global
name space and a single thread of control Consider the following Fortran 90 declarations:

REAL :: S
REAL, DIMENStON (N) :: A, B
INTEGER :: I, J
INTEGER, DIMENSION (N) p

A scalar floating po int variable

Two N element arrays
Two scalar int eger variables

An integer index array

Fortran 90 provides for element-by-element operations on entire arrays, where the par­

ticular order of evaluation is not specified by the language. The semantics of Fortran
90 allows these statements to be executed in parallel. The following array assignment

Copyrighted Material

Fortran 90 57

statement multiplies each element of B by itself, adds that value to the square root of

the corresponding element of A, and replaces the corresponding element of A with the
new value:

A = SQRT(A) + B**2

The following statement performs a m asked array assignment in which each value of A

is replaced by that value divided by the corresponding value of B except in those cases

where the value of B is 0:

WHERE (B 1= 0) A = A/B

A number of Fortran 90 statements imply communication in a distributed memory im­

plementation . Examples include broadcast, when a scalar is assigned to an array:

A = S/2

permutation, when array section notation, index vectors, or some array intrinsics are

used :

A(I:J) = B(J:I:-1)

A(P) = B

A = CSBIFT(A. 1)
A(P(i» = B(i). forall i = 1:1
Circular shift left of A

and reduction, such as summing all of the elements of an array :

S = SUM (B)

As the last two examples hint, there are also a number of intrinsic functions for dealing

with arrays; these are listed in Tables 3 .1 through 3.6.

3.4.2 Array Concepts and Terminology

Consider the following declarations:

REAL, DIMENSION(10, 6:24, -5:M) A

REAL, DIMENSIOI(0:9, 20, M+6) . . B

The rank of A is 3, the shape of A is (/10, 20, (M+6)1), the ext ent of dimension 2 of A

is 20 , and the size of A is 10 * 20 * (M+6). Arrays can be zero-sized if the extent of any

dimension is zero. The rank must be fixed w hen the program is written , but the extents
in any dimension, the lower bounds, upper bounds , and strides, do not have to be fixed

until the array comes into existence. We saw examples of this in the previous section .

Two arrays are conformable if they have the same shape, that is, the same rank and the

Copyrighted Material

58 Chapter 3

same extents in corresponding dimensions; A and B are conformable. An arbitrary array
and a scalar are said to conform; the scalar is treated as if it were a conforming array each
of whose elements had the scalar as its value. An elemental operation element al intrinsic
is an operation defined on scalars producing a scalar result, that has the property that,
when it is applied to conformable arrays, it operates on corresponding elements of the
arrays and produces a conformable array result.

3.4.3 Whole Array Operations and Assignment

An array, strictly speaking, is not a type; rather DIMENSION is an attribute that may
be applied in the declaration of objects of any type, intrinsic or user-defined. Thus,
Fortran 90 has no concept of "arrays of arrays," although, of course, it does have multi­
dimensional arrays. The usual intrinsic arithmetic, comparison, and logical operations
for scalars of that type, as well as assignment, are elemental, and may be applied element­
by-element to arrays. Thus:

A = 2.5*A + B + 2.0

replaces each element of A by its value multiplied by 2.5 and added to the corresponding
element of B, plus 2. Thus, this particular assignment statement is equivalent to the
triply nested set of loops (assuming the array bounds in Section 3.4.2):

DO i = 1, 10

DO J = 5, 24

DO K = -5, M
A(I,J,K) = 2.5*A(I,J,K) + B(I-l,J-4,K+6) + 2.0

END DO

END DO

END DO

except that the program does not restrict the order in which the elements as updated.

3.4.4 Array Subsections

Fortran 90 provides the ability to access elements of an array and parts, or sections, of
arrays using subscript triplet notation. If an array is declared:

REAL, DIMENSION(100, 100) :: A

the array element references A (1,1) , A (100,1), A (1,100) , and A (100,100) reference
the four corners of A while the array sections A (1, :) , A (100, :) , A (: ,1) , and A (: ,100)

reference the first and last rows and the first and last columns of A. The array section

Copyrighted Material

Fortran 90 59

A(2:99. 2:99) references the interior of A. Elements of an array section need not be

contiguous . For example, A(l.l: 100: 2) references the odd elements of the first row of

A and A (1: 100: 99.1: 100: 99) is a 2 by 2 array section that references all four corners .

Array element references behave just the same in expressions as do scalar references,
while arr ay sections behave as do arrays. For example, A(1. :) is a ran k-one array with
100 elements while A(2:99. 2:99) is a rank-two 98 by 98 element array. Syntactically,

however , the only references allowed are to an element or a section of a named array. To

reference an element of a section , for example, the section must first be assigned to a.n

array temporary.

A program can pass an array element or an array section (including a whole array)
as an actual argument to a p rocedure . In general, the dummy argument must have

the same type , kind, and rank as the actual argument . To use certain features the

programmer must provide an explicIt Interfa ce to the caller so the compiler can check for

correctness and provide appropriate linkage conventions . Fortran 90 also supports an old
style of argument p assage by sequen ce association in which an array element is passed
by reference to the pro cedure and can be used as either a scalar or the first element of
a sequence, such as a column, to the proced ure . This form of argument passage puts

significant limits on both what can be expressed3 and the execution performance of the

program on more advanced computers with distributed rather than linear memories. We

strongly recommend using the modern form of argument passing in all cases.

3.4.5 Expressions

Fortran 90 interpretation rules for expressions an d assignment require freedom from side
effects, allow short-circuit evaluation , require the ent ire right-hand side of an assignment

to be evalu ated before the left-hand side is modified, and prohib it attemp ts to do multiple

updates t o a left-hand side. The following are some statements from the standard [17]:

• The eva luation of a function reference must neither affect nor be affected
by the evaluation of any other entity within the statement. [7.1.7)

• It is not necessary for the processor to evaluate all the operands of an
expression if the value of the expression can be determined otherwise. [7.1.7.1]

• Execu tion of an intrinsic assignm ent causes, in effect, the evaluation of the
expression [on the right-hand side] and all expressions within [the left-hand
side], the possible conversion of [the right-hand side] to the type and type
param eters of [the left- hand side] and the definition of [the left-hand side]
with the resulting value. [7.5.1.5]

3 A program can pass a colwnn this way, but not a row or more complex section.

Copyrighted Material

60 Chapter 3

• When [the left-hand side] in an intrinsic assignment is an array, the as­
signment is performed e lement-by-element .. . The processor m ay perform the
element-by-e lement assignment in any order. [7.5.1.5] A many-one array sec­

tion is an array section with a vector subscript having two or more elem ents
with the same value. A m any-one array section m ust not appear on the left
of the equ a ls in an assignment statement or as an input item in a REA D
statement. [6.2.2.3.2]

(We note in p assing that similar restrictions also appeared in older Fortran standards,

but many programmers are unaware of them.)
For example , since the entire right hand side is evaluated b efore the left han d side is

up dated, the assignment statement:

V(LB:UB) = V(LB-l:UB-l)

has a meaning equivalent to

DO I = LB, UB

t empe I) = V(I-1)

END DO

DO I = LB, UB
v(I) = t emp (l)

END DO

This , of course, is inefficient in both space and time . The "obvious" naive scalarization:

! * * * WRONG ! !! Produces incorrect answer! !! * * * *

DO I = LB, UB

V(l) = V(I-1)

END DO

is incorrect. It takes a rather sophisticated compiler analysis to determine a correct,

effi
'
cient scalarization , running the loop backwards:

DO I = UB, LB, -1

v(I) = V(l-1)

END DO

Other array expressions require even more complex translations to scalar code.

Copyrighted Material

Fortran 90 6 1

3.4.6 Vector-Valued Subscripts

Vector-valued subscripts provide a more general way to form an array section that does
the subscript triplet notation. An index vector can index an array along a p articular

dimension ; the elements of this index vector select the elements of the indexed array

to be in the subsect ion . In an expression , these selected elements may be arbitrary

and involve duplicat ion . If a vector-valued subscript is used on the left-hand side of an

assignment , however , it may not have duplicate values. Since Fortran 90 does not sp ecify
an order for update in an assignment , if duplicates were allowed the resulting value would

depend on the order chosen. Be careful; in general a comp iler will probably not check
for duplicates because of the performance cost in doing so. For example:

3.4.7

INTEGER, DIMENSION(6)

INTEGER, DIMENSION(3)

INTEGER, DIMENSION(3)

INTEGER, DIMENSION(3)

B = A(ODD_LOCATIONS)

A(ODD_LOCATIONS) = 15

B = A(GENERAL_LOCATIONS)

A = (/ 10, 20, 30, 40, 50, 60 /)

B

ODD_LOCATIONS = (/ (I, I=1:6:2) /)
GENERAL_LOCATIONS = (/ 4, 2, 4 /)

B -- (/ 10, 30, 50 /)

A -- (/ 15, 20, 15, 40, 15, 60 /)

B -- (/ 40, 20, 40 /)
A(GENERAL_LOCATIONS) = 25 *** Not Fortran gO-conforming! ! !

Trying to updat e A(4) twice

Array Constructors

An array constructor provides a way to write a sequence of scalar values of the same

type to be interpreted as a rank-one array. A component of an array constructor may be
either an expression or an implied DO. If an expression has an array value, it is treated as
a sequence of elements in array sequence order, with the first subscript position varying
the fastest. An implied DO allows generation of a set of values by iteration . Since an
array constructor is of rank one, the RESHAPE intrins ic can be used function to construct
arrays of higher rank . If an array constructor is "simple enough,,4 it can be an initial
value for an array in a declaration.

(/ 1, 2, 3 , M, N+2, F (X) /)

(/ B I)
(/ Q, A(I:J:K) , 3.0/)

(/ (I, I = 1, N, 2) I)

Size is 6
I Element s of B in element order

Size i s «J-I) /K + 1) + 2

Odd numbers <= N

4In general, an initialization expression must have every subexpression be a constant , ref�re�ce only
certain intrinsic functions that can be evaluated at compile-time, and obey a few other restnctlOns.

Copyrighted Material

62 Chapter 3

RESHAPE (SOURCE= (/ (1, (0 , 1=1, H) , J=l, H-l) , 1 I),
SHAPE = (/ H, H I»� ! Ident ity matrix

(/ « FUH (I), I = 1 , F(», J, J = 1, UB) /)

Size c an only b e comput ed by calling F () UB t imes .

! Values of FUH (I) must c omput ed at the same time.

3.4.8 Masked Array Assignments

A m asked array assignment is an array assignment occurring in a WHERE statement or
construct in which assignment occurs only to elements selected by the true elements of a
logical array expression. In each such masked assignment statement , the mask expression,
the variable being assigned to, and the right-hand-side expression must be conformable ,
and the assignment must be intrinsic and not defined. For example, in

IHTEGER, DIMENSION (S)
INTEGER, DIMENSIDH(5)

IHTEGER, DIMENSIDN (S)

A = (J 0 , 1, 1, 1, 0 /)

B (J 10, 11, 12, 13, 14 J)
C = -1

WHERE (A . NE . 0) C = B / A

the resulting value of C will be (J -1, 1 1 , 12 , 13, -1 J).
In a WHERE construct the mask expression is evaluated once and , effectively, its values

are saved. Every assignment statement following the WHERE is executed as if it were

WHERE (mask-expression-values) assignment-statement

and every assignment statement following the ELSEWHERE is executed as if it were

WHERE (. HOT. mask-expression-values) assignment-statement

This is important to remember if the statements have side effects or modify each other
or the mask expression. In this example of the WHERE construct :

REAL , DIMENSIOH (1 000) :: PRESSURE , TEMP, PRECIPITATION

WHERE (PRESSURE .GE. 1.0)

PRESSURE = PRESSURE + 1 . 0

TEMP = TEMP - 1 0 .0

ELSEWHERE

PRECIPITATION = .TRUE.

END WHERE

Copyrighted Material

Fortran 90 63

the assignment to PRESSURE does not change the value of the mask as used in the other
assignment statements in the WHERE construct.

The mask is applied to the actual arguments of a funct ion reference on the right-hand­

side of the masked array assignment only if the function is an elemental intrinsic function.

Otherwise the function's actual arguments are not masked by the mask expression. For

example , since LOG is an elemental intrinsic function, in:

WHERE (A .GT. 0) B = LOG(A)

the mask is applied to A and LOG is executed only for the positive values of A. The result

is assigned to those elements of B for which the mask is true.
In the following example, since SUM is a transformational intrinsic and not an elemental,

it is evaluated fully for all values of A. The assignment only happens for those elements

of B that are greater than 0:

REAL, OIMENSION(10, 10) :: A

REAL, OIMENSION(10) : : B
WHERE (B > 0.0) B = SUM(A, OIM=l)

In this example:

REAL, OIMENSION(10,10) : : A
REAL, OIMENSION(10) : : B , C
�HERE (C .GT. 0.0) B = SUM(LOG(A), OIM=l) / C

since SUM is not elemental , all of its arguments are evaluated fully regardless of whether
they are elemental or not. Thus LOG(A) is fully evaluated for all elements of A even
though LOG is elemental. Notice that the mask is applied to the result of the SUM and to

C to determine the right-hand-side. One way of thinking about this is that everything
inside the argument list of a non-elemental function does not use the mask, everything
outside does.

3.4.9 Array-Valued Functions with Array-Valued Arguments

Section 3.8 describes Fortran 90's large set of intrinsic functions, most of which can take

array arguments and return array results. In addition to these , user-defined subroutines
and functions can take array arguments where appropriate and, in the case of funct ions ,

return array results . A program can only select an element or t ake a section of a named
array, so to select an element or take a section of a function result it must first be stored

in a temporary variable.

Copyrighted Material

64 Cha.pter 3

3.4.10 Array Object s and Their Specifications

Arrays may be specified in four different ways:

• An explicit-shape array is an array that is declared with explicit values for the bounds
in each array dimension. An automatic array is an explicit-shape array declared in a

procedure; its bounds do not have to be constant and their values are determined at
procedure entry. An explicit-shape array dummy whose size is determined by arguments
passed into the procedure is referred to as an adjustable array. Adjustab le arrays de­
pend on the linear memory assumptions of sequence association; their function is better

performed by assumed-shape arrays.
• An assumed- shape array is a non-pointer dummy array whose shape is taken from its
associated actual array. The array inquiry intrinsic functions apply to an assumed-shape
array; this frees the programmer from the old-style Fortran practice of having to pass

array bounds information as extra arguments along with the array itself.
• A deferred-shape array must be specified with its rank, and has two forms: an allocat­
able array and an array pointer. A deferred-shape array assumes its shape when space
is allocated for it in an ALLOCATE statement or, in the case of an array pointer , when it
is associated with a target by pointer assignment .

• An a ssumed- size array is a dummy array argument whose size is assumed from its

associated actual. Its rank and extents may differ , from its actual , only its size is assumed,
and only in the last dimension . This is an old form that depends on the linear memory

assumptions of sequence association .

Some annotated examples fol low:

REAL FUNCTION F (M, N, W, X, Y, Z)

INTEGER

REAL, D IMENSION (10, 10)

REAL, D IMENSION(M, N)

REAL, DIMENSION (: , 2:)

REAL , DIMENSION (N , *)

REAL , DIMENSION (1 0, 1 0)

REAL , DIMENSION (M, N)

REAL , DIMENSION (SIZE (W , 1»

REAL , DIMENS ION(:), ALLOCATABLE

REAL, DIMENSION (: , :), POINTER

M, N

W Explicit shape

X Explicit shape adj ustable

Y Assumed shape

Z Assumed size

A Explicit shape

B Explicit shape, automatic

C Explicit shape, automatic

D

! Deferred-shape allocatable

:: P ! Deferred-shape pointer

Copyrighted Material

Fortran 90 65

3.5 User-Defined Data Types

A derived type is defined in a derived type definition in which the named components may
themselves be of any type, including other derived types or arrays. A variable (structure)
of that type is declared in a type declaration statement. Of course, a variable can be an

array of objects of derived type; indeed, a variable of derived type can have any attribute
(such as PARAMETER or IllTENT) that a variable of intrinsic type can have. The following
example defines a derived type PERSON consisting of three components NAME, AGE, and
IS..FEMALE, each of different type, declares a parameter ANN of type PERSON with an initial

value given by a structure constructor, and an array called EMPLOYEE of 10 elements, each
of type PERSON:

TYPE PERSON

CHARACTER (LEN = 10)

INTEGER

LOGICAL

EID TYPE PERSall

NAME

AGE

IS]EMALE

TYPE (PERSOI) . PARAMETER

TYPE (PERSOI) . DIMEISION(10) ..

All = PERSall (" AIN", 36, . TRUE.)
EMPLOYEE

Objects of derived types act like "ordinary" variables with "ordinary" values; they
are first-class citizens of Fortran 90. Assignment for objects of the same derived type
is defined intrinsically to be an order unspecified, component-by-component assignment.

No other operations are defined intrinsically for objects of derived type. The user-defined

operator and user-defined assignment mechanisms may be used, especially in conjunction
with modules, to provide abstract data types. Structure constructors may be used to
create structures, and a component of a structure may be accessed by use of the Y.
notation, as in the following continuation of the above example:

INTERFACE OPERATOR (==)

LOGICAL FUNCTION EMPLOYEE_EQUAL_TEST (E 1. E2)
TYPE (PERSON), INTENT (IN) : : E1

TYPE (PERSON), INTEIT (IN) : : E2

END FUNCTION EMPLOYEE_EQUAL_TEST

END INTERFACE

IIiTEGER SUM, N

Copyrighted Material

66 Chapter 3

EMPLoYEE(1) = PERSON ("EUNICE" , 25 , . TRUE .)

EMPLoYEE (2) = PERSON (" OSCAR" , 42 , . FALSE.)

EMPLoYEE(3) = ANN

SUM = 0

N = 0

DO I = 1 , 1 0

IF (.NoT . (EMPLoYEE(I) -- ANN) THEN

PRINT *, I , EMPLOYEE (I)

N = N + 1

SUM = SUM + EMPLoYEE(I) %AGE

END IF

END DO

PRINT *, "AVERAGE AGE OF " , N , " EMPLOYEES IS ", SUM/N

With an appropriate definition of EMPLoYEE...EQUAL_TEST to compare two objects of type
PERSON for equality, this example would calculate the average age of all employees who
are not equivalent to ANN.

In general , there is no order in memory implied by the order of the components in a
derived type definition . Thus , a compiler is free to reorder the components (consistently

of course) in order to achieve a better packing of data. If the program must have the com­

ponents in a structure allocated according to the Fortran rules for sequence association ,
for example to be able to pass a structure consistently to a non-Fortran 90 procedure , it
must specify the SEQUENCE property in the derived type definition. This allows use of the

old-style Fortran memory tricks such as array reshaping and EQUIVALENCE on the new
derived types. We recommend that you avoid the use of the SEQUENCE property by using
a module to make the derived type definition visible to caller and callee . The resulting
code will be easier to maintain , and may even be faster on some machines.

As we have seen , the Fortran 90 array facilities allow a number of array section refer­
ences. These extend to arrays of structures , and subarrays of structure components . For

example:

TYPE STRUCT

REAL

REAL , DIMENSIoN(20)

END TYPE STRUCT

SCALAR_COMPONENT

ARRAY_COMPONENT

TYPE (STRUCT) , DIMENSIoN (1 0) :: ARRAY_OF_STRUCTS

Copyrighted Material

Fortran 90 61

assigns to "elements J through K of the ARRAY _COMPONENT of the Ith element of ARRAY_­

OF ...5TRUCTS." A program can also access "the SCALAR_COMPONENT parts of the J through

K elements of ARRAY.JlF ...5TRUCTS" or even "the Ith elements of the ARRA LCOMPONENT

parts of the J through K elements of ARRAY.JlF ...5TRUCTS:"

ARRAY_OF_STRUCTS (J:K)%SCALAR_COMPONENT

ARRAY_OF_STRUCTS (J:K) %ARRAY_COMPONENT (I)

Both may be used in any context that any other array section can be used. The limitation
on such sectioning is that in a reference of the form A%B%C . .. only one of the components

may have a rank greater than O. Thus , the following is not Fortran 90 conforming:

ARRAY_OF_STRUCTS(I:J) %ARRAY_COMPONEXT (K:L) ! *** lonconforming!! !

3.6 Pointers

Fortran 90 provides a concept of pointers but be careful, your intuition about pointers,

derived from vendor-specific extensions to FORTRAN 775 or from other languages, is
liable to be incorrect. In Fortran 90 a pointer is an alias, or another name which can refer
to an object and is not a unique type of object itself. Thus, POINTER does not indicate
a data type, but rather is an attribute of an object such as an array, an arbitrary scalar
variable, or a structure. In addition, a pointer may alias a row, column, or more complex
slice of an array, or a component of a structure.

No storage is allocated for an object declared with the attribute POINTER. Thus, the

program may not reference it until some object is pointer associated with it by use of an

ALLOCATE statement or pointer assignment. The ASSOCIATED intrinsic function checks
whether a pointer is associated with a particular target, or with any target.

Anything that can be done with allocatable arrays can be done with pointers. The
earlier example of an allocatable array could have been done as:

REAL, DIMENSI ON (:. :), POINTER:: A

ALLOCATE (A (2*N. 2*N+l»

5Many vendors such as Cray, Digital, Sun Microsystems, and others provide an extension to their
FORTRAN 77 implementations known as Gray pointers. The meaning of Cray pointers is dependent on
the FORTRAN 77 concepts of sequence and storage association and the implementation assumption of a
linear memory address space. In effect, a Cray pointer is a memory address, on which address arithmetic
may be performed. This feature, with its implementation assumptions, is difficult to optim ize and
difficult to implement on distributed memory hardware architectures . The Fortran 90 pointer concept
provides many of the capabilities of Cray pointers, but with a different syntax and an architecture­
independent semantics.

Copyrighted Material

6 8 Chapter 3

Allocatable arrays are most appropriate in the simple situation where all that is really
required is control over storage allocation. An allocatable array has only one "name" or
alias, aiding compi ler optimization , whereas an array that is pointed to can have multiple
aliases at the same time . This situation can occur by means of pointer assignment .
Continuing the previous example , suppose the program also declared :

REAL , D IMEN S I ON (: , :) , POINTER : : B

and, after the ALLOCATE statement, contained :

B => A

This pointer assignment statement (notice the use of "=>" instead of "=") causes B to
be an alias for (point to) A. As a result, an assignment to B (I , J) will change the value
referenced by A (I , J) and vice versa. Pointer assignment can be used to have the effect
of assignment without the copying of data.

When a pointer is used outside of pointer assignment, it refers to the object that it
points to. Continuing the last example :

ALLOCATE (B (2*H , 2*H+ 1 »

B = A

makes B an alias for an anonymous array and copies the values of the array A into it .
Since A and B are now aliases for two different arrays , an assignment to B (I , J) will not
change the value referenced by A (I , J) .

The allocated storage stays associated with B until either execution control leaves
the scope of the declaration of B or until it is explicitly deallocated through the use of a
DEALLOCATE statement . Storage that is not accessible by some name in the program is said
to be inaccessib le . Since Fortran 90 does not require a compiler to reclaim in accessible
storage, the programmer must ensure that all allocated storage is explicitly deallocated,
or risk running out of memory.

A declared data object that will be the target of a pointer must have the TARGET

attribute in its declaration . The TARGET attribute allows the compiler to know what may
be and what cannot be aliased , helping optimization. You should only give a data object
the TARGET attribute if you are going to alias it with a pointer .

Consider the following example (derived from examples in the Fortran 90 Han dbook) :

REAL , DIMENSION (1 00 , 1 00) , TARGET

REAL , DIMENSION (: , :) , POINTER

REAL , D IMENSION (: , :) , POINTER

REAL , D IMENS ION (: , :) , POINTER

A

CORNERS
INTERIOR

ODD_COLUMNS

Copyrighted Material

Fortran 90

REAL , DIMENSION (:) , PO INTER

REAL , POINTER
. . ARB ITRARY_ROW

ELEMENT_POINTER

CORNERS => A (1 : 1 00 : 99 , 1 : 100 : 99)

I NTERIOR = > A (2 : 99 , 2 : 99)

ODD_COLUMNS => A (: , 1 : 1 00 : 2)

ARB ITRARY_ROW => A (I , :)

ELEMENT_POINTER => ARB ITRARY_ROW (J)

69

The variable names accurately describe the sections of A that the pointers alias. The

pointers can now be used to operate on the targeted elements. For example, the following
doubles the elements in the row aliased by ARB ITRARY...ROW:

ARBITRARY_ROW = 2 * ARBITRARY_ROW

Pointers can also alias any other array section described by array section notation . They
can dynamically change their targets at runtime , but unfortunately cannot be initialized
when they are declared.

The previous examples showed the use of pointers to alias parts of existing arrays. A
more typical use is to control storage allocation and to construct dynamic data structures

such as trees or linked lists , as in the following example :

TYPE NODE

I NTEGER

TYPE (NODE) , POINTER

END TYPE NODE

VALUE

NEXT

TYPE (NODE) , POINTER

TYPE (NODE) , TARGET

P , LIST

FIRSTNODE

! St art w ith empty l ist

NULLIFY (FIRSTNODE'l,NEXT)

L I ST => FIRSTNODE

! Prepend (append) to l i s t
ALLOCATE (P)

P'l,VALUE = N

P'l,NEXT => LIST

LIST => P

I f append : LI ST'l,NEXT => P

Copyrighted Material

70

! L ist walk
P => FIRSTNODE
DO WHILE (ASSOCIATED (P »

PRINT * . P%VALUE

P => P%NEXT

END DO

Chapter 3

Note the use of the NULLIFY statement to make a pointer point to nothing . Since pointers
are not data types , there is no "value" to "assign" to a pointer to do this . Since functions
can return pointers , the types and operations above could be packaged in a module for
use as an abstract data type .

3. 7 Modularization

3.7. 1 The Structure of a Fortran Program

Fortran allows the top-down functional decomposition of a program by partitioning it
into program units: a main program and some number of external, inde pendently compiled
functions and subroutines . An explicit interface to a procedure , which may be provided
by an interface block for an external procedure , allows a high quality compiler to provide
better checking and optimization of procedure calls.

Module program units can be used to structure the bottom-up development of a pro­
gram as libraries of commonly used procedures , encapsulated derived data types and

their defined operators and assignment , and packages of related global data definitions:

• Using a module containing multiple module procedures provides a Fortran 90 library
mechanism .
• Using a module containing multiple interface blocks provides an interface to a pre­
existing library, possibly coded in a language other than Fortran .
• Using a module to provide a set of procedures accessing private data (data global to
them but invisible to others) eliminates the need to use procedures with multiple e ntry

points for the same purpose .
• Using a module to define a collection of optionally initialized data entities eliminates
the need to use common blocks, include l ines , and block data program units for the same
purpose . It also avoids the need to maintain consistency of declarations across multiple
files , a well-known source of bugs using the older techniques .

Modules provide an effective method for defining in one place and controlling access to
global data, global procedures , and encapsulated data abstractions .

Copyrighted Material

Fortran 90 7 1

3 . 7 . 2 Procedures

There are two forms of procedures , su b routines and fu nctions. These are quite simil ar
except that a subroutine is invoked in a CALL statement and does not return a value
while a function is invoked in an expression and does return a value. Both forms of

procedures accept arguments that may pass data into , out of, or both into and out

of the procedure . This intention may be dec lared as an attribute of a dummy, either
INTENT (I N) , I NTENT (OUT) , or INTENT (INOUT) . Such a declaration allows a compiler to

check for incorrect usage , such as a procedure in which an assignment to an INTENT (IR)

dummy occurs . I t also may allow the generation of more efficient code . For example, the
value of an actual argument corresponding to an INTENT (I N) dummy argument is known

not to be changed by the call ; this may allow the optimization of constant propagation

to occur across the procedure cal l .

When a procedure is called , the actual arguments are "linked" to the dummy arguments

by means of argum ent a ssociation. The dummy must h ave the same type and kind as
the actual to which it is associated . The most straightforward way to p ass an array
actual is to pass it to an assumed-shape dummy . Fortran does have other , older , ways
to p ass arrays , such as assumed-size and explicit-shape explicit-shape a rray , but these
mechanisms depend on the use of sequence association and the assumption that the
hardware architecture provides a linear memory. Since the use of sequence associat ion
and the assumption of a linear memory is not always efficient on modern machines , we
strongly recommend against its use .

Fortran allows for the use of argument keywords and for arguments to be optional.

By default , the list of actual arguments is matched one-for-one in order with the list
of dummy arguments . Alternatively, some of the arguments (possibly none) may be
matched in order and the remainder matched by expressions of the form D=A where D is the
name of a dummy argument and A is the actual argument . These keyword arguments may
occur in any order . In addition , if a dummy argument is given the attribute OPTIONAL,

it may be omitted from the argument l ist completely. In the procedure the intrinsic

function PRESENT can test whether, on a particular call , an OPTI ONAL dummy argument
has a corresponding actual argument . These two facilities are very useful for invoking

procedures , such as graphics routines , with a large number of arguments many of which

opt ional ly set various modes of usage . As a result , the old usage of the ENTRY statement

to provide an alternate entry to a procedure is now obsolescent .

Fortran allows a function to be called recursively, either directly or indirectly , if the
function is declared to be RECURS IVE . Ordinarily, the name of a function can be used
within the function as the value being returned by the function . The function RESULT

allows an unambiguous distinction between the value being calculated in the function

Copyrighted Material

72 Chapter 3

and a recursive call of the function from within the function . The following example uses

an inefficient approach to summing an array as an illustration (the SUM intrinsic function
is much more efficient) :

RECURSIVE REAL FUNCTION ARRAY_SUM (ARRAY) RESULT (A_SUM)

REAL , INTENT (I N) , DIMENSION (:) : : ARRAY
REAL : : A_SUM

IF (S I ZE (ARRAY) = 0) THEN

LSUM = 0
ELSE

A_SUM = ARRAY (1) + ARRAY_SUM (ARRAY (2 : »

END IF

END FUNCTION ARRAY_SUM

A main program , external function , or external subroutine may be a host for contained
internal pro cedures that have access to data in the host environment by means of h ost
association . In the following example A , B , C , D, and E are all accessible in INNER . Howeve r ,
t h e X i n SAM is n o t accessible because there i s an overriding definition o f X in INNER . Note

that INNER allocates E, which may be used in SAM after a call on INNER .

SUBROUTINE SAM (A)

USE LIB , ONLY : B Only B i s av ailabl e from LIB

TYPE Q

INTEGER D

END TYPE

TYPE (Q) : : C

INTEGER , ALLOCATABLE , DIMENSION (:) E

REAL X

CONTAINS

SUBROUTINE INNER (C)

I NTEGER X

C%D = 3

X = B ! A s s igns B in LIB to int eger X in INNER

ALLOCATE (E (1 00 0 »

END SUBROUTINE INNER

END SUBROUTINE SAM

Using any of the following features requires an explicit interface :

Copyrighted Material

Fortran 90 73

• Keyword arguments .
• User-defined operator or assignment .
• Generic name references .

• Optional and intent-specified arguments .

• Array-valued and pointer-valued function results .

• Assumed-shape , pointer , and target dummies .

An explicit interface provides information about the attributes of a procedure and its

dummy arguments so that a compiler can check a reference of that procedure for correct­

ness and can generate a correct and efficient invocation . Explicit interfaces are provided
"automatically" for internal procedures , module procedures , and intrinsic procedures .
If an external separately compiled procedure uses any of the features that requires an
explicit interface , the programmer must provide one , in the form of an interface block , to

each program unit that calls the procedure . Although this seems like a lot of effort , the

rewards include the use of the more advanced Fortran capabilities , better compile-time

checking of programs, and a better structured , easier to read , and easier to maintain

program . For multiple usage , an interface block can always be packaged in a module , as
the example in the next section shows .

3. 7 . 3 Mo dules and Abstraction

A module can define new derived types and specify that the details of the structure of en­

tities of these types should be PRIVATE and not accessible to users of the module . Those
details are still accessible to procedures defined in the module , allowing the creation of
abstract data types and their operations . FORTRAN 77 provided g e n e ric intrinsic pro­
cedures where the same generic name refers to multiple specific procedures . Fortran 90
extends this concept to allow user-defined generic procedures . It further allows overload­
ing operators and assignment , to give them procedural definitions for user-defined data

types .
For example , consider an application that requires the concept of rational numbers .

(This example is derived from an example found in the Ada programming language
standard [4] .) The module RATIONAL...NUMBERS provides a definition for the derived type
RATIONAL , the subroutine MAKE...R.ATIONAL , and overloadings for the = = , and + operators .

Notice that in the module procedures an entity of type RATIONAL can be created by means

of the standard mechanism of using the name of the type as a structure constructor . A

user of the module, however, can not do this since the structure of the type RATI ONAL is

PRIVATE . Thus , the module includes a subroutine MAKE...R.ATIONAL to serve that purpose .

A production implementation of the concept of rational numbers would , of course , be
more complex. (In particular , this version never reduces rationals to lowest terms , so

Copyrighted Material

74 Chapter 3

cascaded arithmetic operations are likely to overflow .)

MODULE RATIONAL_NUMBERS

TYPE (RATI ONAL)

PRIVATE

INTEGER : : NUMERATOR

INTEGER : : DENOMINATOR Must be kept pos it ive

END TYPE (RATI ONAL)

INTERFACE OPERATOR (= =)

LOGICAL FUNCTI ON EQUAL (X . y)
TYPE (RATIONAL) . INTERT (IN) x . Y

END FUNCTION EQUAL

END INTERFACE

INTERFACE OPERATOR (+)

TYPE (RATIONAL) FUNCTION ADD_RATI ONALS (X . Y)
TYPE (RATIONAL) . INTENT (I N) : : X . Y

END FUNCTION ADD_RATI ONALS

END INTERFACE

! Et cet era . et c et era . et cet era . . .

CONTAINS

LOGI CAL FUNCTION EQUAL (X . Y)

TYPE (RATIONAL) . INTENT (I N) : : X . Y

EQUAL = X'l.NUMERATOR*Y'l.DENOMINATOR==Y'l.NUMERATOR*XY�ENOMINATOR

END FUNCTION EQUAL

TYPE (RATI ONAL) FUNCTION MAKE_RATIONAL (X . Y)

I NTEGER . INTENT (IN) : : X . Y

IF (Y > 0) THEN

MAKE_RATI ONAL = RATI ONAL (X . y)
ELSE

MAKE_RATI ONAL = RATI ONAL (-X . -y)
END IF

END FUNCTION MAKE_RATIONAL

Copyrighted Material

Fortran 90

TYPE (RATI ONAL) FUNCTION ADD _RATIONALS (I , Y)

TYPE (RATIONAL) , INTENT (I N) : : I , Y

ADD_RATIONALS = RATIONAL (t
I%NUMERATOR*r/�EIOMIIATOR + rI,IUMERATOR*X%DEIOMIIATOR , t

X%DEIOMIIATOR*r/�EIOMIIATOR)
EID FUNCTION ADD_RATIONALS

Et cet era , et c et era , et cet era . . .

END MODULE RATI ONAL_NUMBERS

PROGRAM TEST_RATI ONALS

USE RATI ONAL_NUMBERS

TYPE (RATIONAL) : : I , Y

I = MAKE_RATIONAL (l , 2)

Y = I + MAKE_RATIONAL (3 , - 6)
I F (Y = = MAKE_RATIONAL (O , l » THEN

PRINT * , " P as s es Test "

ELSE

PRINT * , "Fails Test "

END IF
END PROGRAM TEST_RATI ONALS

3.8 Intrinsic Proced ures

75

Fortran 90 defines 1 08 intrinsic functions and 5 intrinsic subroutines . Intrinsic proce­
dures are provided in Fortran 90 because they satisfy three major requirements :

• They provide functionality that is frequently required in applications .

• They can be implemented efficiently on a variety of computer architectures , including

pipelined RISe and parallel as well as conventional .

• A s part o f a Fortran 90 implementation they are well tested , documented , and reliable .

The names of the intrinsic procedures , being pre-defined by Fortran , are always available

unless the program creates its own procedure with the same name . All of the intrinsic

procedures have explicit interfaces . The names of the arguments of the intrinsic pro­
cedures are used consistently. For example, D IM is used as the name of the argument

Copyrighted Material

76 Chapter 3

specifying the dimension of an array to be used and MASK is used to select values of inter­

est from an array in a way similar to the WHERE statement . Intrinsic procedures behave
like "ordinary" procedures and follow all of the ordinary rules for procedures . Argu­
ments may be passed by name and optional arguments may be omitted . For example,

SUM (ARRAY=A . OIM=2) sums all values of the array A in the second dimension .
There are four categories of intrinsic procedures . Elemental fun ctions operate on a

single element , and return a single value . Given an array as an argument , they return an
array of the same shape , the result of applying the function to each of the elements of the
array in an unspecified order . For example, SQRT (4 . 0) returns 2 . 0 while SQRT « (/4 . 0 .

9 . 0 , 1 6 . 0/ » returns [2 .0 , 3 . 0 , 4 .0] . Inquiry functions return properties of their argu­

ments . For example, SIZE ((/4 . 0 , 9 . 0 . 1 6 . 0/ » returns 3 . Transformational fun ctions
usually have array arguments and return values that depend on many or all of the ele­
ments of its arguments . For example , SUM ((/4 . 0 , 9 . 0 , 1 6 . OJ) returns 29 .0 . Intrin­
sic subroutines perform a variety of tasks . For example, CALL OATE...ANO_TIME (OATE=O)

where 0 is a scalar default character variable of length 8 will set 0 to a string of the form
ccyymmdd, corresponding to century, year , month , and day respectively.

Fortran 90 defines three representational models: the bit m odel , the integer number
system mode l , and the real number system m odel . The intrinsic functions that return
values related to these models allow applications to be both numerically accurate and

portable . For details of the models , we refer you to the Fortran 90 Standard .
Most of the intrinsic procedures are generi c in that they may be called with arguments

of different types . The correct specific procedure will be determined by the types of the
arguments . In some cases a specific procedure may have the same name as the generic .
For example , the generic reference to SIN (X) refers to the specific function OSIN (X) if X

is double precision real , to CSIN (X) if X is default COMPLEX , or to SIN (X) if X is default
real . If an intrinsic function itself, as opposed to the result of a call , is used as an actual
argument to a procedure , only specific names can be used and the corresponding dummy
argument in the procedure can have only scalar arguments .

A brief summary of the Fortran 90 intrinsic procedures is presented in Tables 3 . 1
through 3 . 6 in which italics are used to indicate optional arguments .

3.9 Language Evolution

Users who change over to Fortran 90 will . . . [want] to adapt their own style
of programming, dropping FORTRA N 77 features now regarded as outm oded
and embrace the newer facilities . Maurice V. Wilkes [30]

Copyrighted Material

Fortran 90

Function Value Ret urned

Argument Presence Inquiry Function

PRESENT (A) True if an actu al argument has been supplied for the

Numeric Functions

ABS (A)

AIMAG (Z)

A I NT (A , KIND)
ANINT (A , KIND)
CEILING (A)

CMPLX (X , Y , KIND)
CON J G (Z)

DBLE (A)

D IM (X , y)
DPROD (X , y)

FLOOR (A)

I NT (A , KIND)
MAX (A i , A2 , A 3,)

MIlf (A 1 , A2 , A 3, . . ,)

MOD (A , P)

MODULO (A , P)

}IlNT (A , KIND)

REAL (A , KIND)
S I GN (A , B)

optional dummy argument A

Absolute value of A
Imaginary part of complex number z
A trun cated to a whole number

A rounded to the nearest whole number

Least integer greater than or equal to A

Complex number (X , Y)

Complex conjugate of Z

A converted to double precision

X-y if p ositive , otherwise 0
Double precision product of reals X and Y

Greatest integer less than or equal to A

Truncated integer value of A

Maximum value of A 1 , A2 , A3 , . . .

Minimum value of A1 , A2 , A3 , . . .

Remainder function of A and P , value has sign of A

Modulo function of A and P , value has sign of P

A rounded to the nearest integer

A converted to real type

Absolute value of A times the sign of B

Mathematical Functions

ACOS (X)

ASI N (X)

ATAN (X)

ATAN2 (Y , x)
COS (X)

COSH (X)

EXP (X)

Table 3 . 1

Arc cosine of X

Arc sine of X
Arc t angent of X

Arc tangent of complex number (X , Y)

Cosine of X

Hyperb olic cosine of X

Exponential of X

Fortran 90 intrinsic procedures -argum.ent presence, num.eric , a.nd mathematica.l

Copyrighted Material

77

78 Chapter 3

Function Value Returned

Mathematical Functions -continued

LOG (X)

LOG 1 0 (X)

SIN eX)

SINH (X)

SQRT (X)

TAN (X)

TANH (X)

Character Functions

ACHAR (I)

ADJUSTL (STRING)

ADJUSTR (STRING)

CURC I , KIND)
IACHAR (C)

ICHAR (C)

I NDEX (STRIlfG ,

SUBSTRING , BA CK)

LEN_TRIM (STRING)

LGE (STRING...A ,

STRING...B)

LGT (STRING...A ,

STRING ...B)

LLE (STRING...A ,

STRING...B)

LLT (STRING...A ,

STRING...B)

REPEAT (STRING ,

NCOPIES)

SCAN (STRING , SET ,

BA CK)
TRIM (STRING)

VERIFY (STRING , SET ,

BA CK)
Table 3 . 2

Natural logarithm of X
Common logarithm of X

Sine of X

Hyperbolic sine of X

Square root of X

Tangent of X

Hyperbolic tangent of X

Character in position I in ASCII collating sequence
Adjust STRING to the left by removing leading blanks

and padding on the right with blanks
Adjust STRING to the right by removing trailing blanks

and padding on the left with blanks
Character in position I in processor collating sequence
Position of character C in ASCII collating sequence

Position of character C in processor collating sequence
Starting position of SUBSTRIHG in STRIlfG

Length of STRING excluding trailing blank characters
True if STRING...A is lexically greater than or equal to

STRING...B

True if STRING...A is lexically greater than STRING ...B

True if STRING ...A is lexically less than or equal to

STRING...B

True if STRING...A is lexically less than STRING...B

Repeated concatenation of copies of STRING

Scan STRING for a character in SET

Remove trailing blank characters from STRING
True if all characters of STRING are in SET

Fortran 90 intrinsic procedurGepyriglqtedd�ial

Fortran 90

Function Value Returned

Character Inquiry Function

LEN (STRING)

Kind Functions

K IND (X)

SELECTED..lNT...KIND (R)

SELECTED ...REAL...KI ND

(P , R)

Logical Function

LOGICAL (L , KIND)

Number of characters in STRING

Value of kind type parameter of X

Integer kind type parameter value for range R

Real kind type parameter value for precision P and
range R

Convert logical L to logical kind KIND

Numeric Inquiry Functions

D I G ITS (X) Number o f significant digits for type and kind of X

EPS ILON (X) A very small number of type and kind of X that is

HUGE (X)

MAXEXPONENT (X)

MINEXPONENT (X)

PRECI S I ON (X)

RADIX (X)

RANGE (X)

TINY (X)

Bit Inquiry Functions

B IT...S IZE (I)

almost negligible compared to one
The largest number of the type and kind of X

Maximum exponent for type and kind of X

Minimum(most negative) exponent for type and kind of
X

Decimal precision for type and kind of X

Base for type and kind of X

Decimal exponent range for type and kind of X

Smallest positive number for type and kind of X

Number of bits for type and kind of integer I

Bit Manipulation Funct ions

BTEST (I , POS)

lAND (I , J)

IBCLR (I , pos)
I B ITS (I , POS , LEN)

Table 3 .3

True if bit position POS of I is 1
Logical and of I and J

Clear bit position POS of I to 0
Bit sequence of I starting at position POS of length LEN

Fortran 90 intrinsic procedures - character inquiry, kind, logical , numeric inquiry, and bit inquiry

Copyrighted Material

79

80

Function Value Returned

Bit Inquiry Functions -continued

IBSET (I , POS) Set bit POS in I to 1
IEOR (I , J) Exclusive or of I and J
IOR(I , J) Inclusive or of I and J
ISHFT (I , SHIFT) Logical end-off shift of SH IFT bits of I
ISHFTC (I , SHIFT , Circular shift of SHIFT bits of I

SIZE)
lOT (I) Logical complement of I

Chapter 3

Transfer Function

TRAISFER (S OURCE ,

MOLD , SIZE)
Treat physical representation of SOURCE as if it were of

the type and kind of MOLD

Floating- point Manipulation Functions

EXPO.ERT(X) Exponent part of X

FRACTIOI (X) Fractional part of X

NEAREST (X , s) Nearest different machine representable number to X in
the direction indicated by the sign of S

RRSPACING (X) Reciprocal of the relative spacing o f model numbers

SCALE (X , I)

SET-EXPONENT (X , I)

SPACING (X)

near X

Multiply a real X by its base to an integer power I
Set exponent part of X to I
Absolute spacing of model numbers near X

Vector and Matrix Multiply Functions

DOT -PRODUCT (VECT � ,
VECT...B)

MATMUL (MATRIX...A ,

MATRIX...B)

Dot product of two rank-one arrays VECT � and VECT...B

Matrix multiplication of MATRIX...A and MATRIX...B

Array Reduction Functions

ALL (MASK , DIM)

ANY (MASK , DIM)
Table 3 .4

True if all values of MASK are true
True if any value of MASK is true

Fortran 90 intrinsic procedures -bit inquiry, transfer , floating-point manipulation, vector and matrix
multiply, and array reduction

Copyrighted Material

Fortran 90

Function Value Returned

Array Reduction Functions - continued

COUNT (MASK , DIM)
MAXVAL (ARRAY , DDv!,

MA SK)
MINVAL (ARRAY , DIM,

MA SK)
PRODUCT (ARRAY , DIM,

MA SI{)
SUM (ARRAY , DIM,

MA SK)

N umber of true elements in MASK

Maximum value in ARRAY

Minimum value in ARRAY

Product of elements in ARRAY

Sum of elements in ARRAY

Array Inquiry Funct ions

ALLOCATED (ARRA Y) True i f ARRAY i s allocated

LBOUND (ARRAY , DIM) Lower dimension bounds of ARRAY

SHAP E (SOURC E)

SIZE (ARRAY , DIM)
UBOUND (ARRAY , DIM)

Shape of an array or scalar SOURCE

Total number of elements in ARRAY

Upper dimension bounds of ARRAY

Array Construction Functions

MERGE (TSOURCE , Choose value from TSOURCE or FSOURCE according to

FSOURCE , MASK) value of MASK

PACK (ARRAY , MASK , Pack ARRAY into a rank one array under a mask MASK

VECTOR)
SPREAD (S OURCE , DIM ,

NCOPIES)

UNPA CK (VECTOR , MASK ,

FIELD)

Replicate array SOURCE NCOP IES times in dimension DIM

Unpack VECTOR into array of shape MASK , FIELD

replacing O 's from MASK

Array Reshap e Funct ion

RESHAPE (S OURCE , Reshape SOURCE into shape of SHAPE

SHAPE , PA D ,

ORDER)

Table 3 . 5

8 1

Fortran 9 0 intrinsic procedures - array reduc tion , array inquiry, array construc tion, and array reshape

Copyrighted Material

82 Chapter 3

Function Value Returned

Array Manipulation Fun ctions

CSHIFT (ARRAY , SH IFT , Circular shift of ARRAY SHIFT positions
DIM)

EOSHIFT (ARRAY ,

SHIFT , DIM,
BO UNDA RY)

TRANSPOSE (MATRIX)

End-off shift of ARRAY SHIFT positions

Transpose of MATRIX

Array Location Functions

MAXLOC (ARRAY ,

MASK)
MIlfLOC (ARRAY ,

MASK)

Location of a m aximum value in ARRAY

Location of a minimum value in ARRAY

Pointer Association Status Inquiry

ASSOCIATED (P O INTER , True if POINTER is associated
TA R GET)

Intrinsic Subroutines

DATE...AND_TIME C DA TE,

TIME, ZONE,
VA L UES)

MVB ITS CFROM ,

FROMPOS , LEN , TO ,

TOPOS)

RANDOM..1lUMBER

(HARVEST)

RANDOM..sEED (SIZE,

P UT, GET)
SYSTEM_CLOCK (CO UNT,

CO UNT_RA TE,
CO UNT_MAX)

Table 3.6

Returns date an d time information

Elemental subroutine to copy a sequence of LEN bits
from FROMPOS in integer FROM to TOPOS in integer TO

Returns a pseudo-random number or an array of
pseudo-random numbers

Initializes or queries the random number generator seed

Returns dat a from processor 's real time clock

Fortran 90 intrinsic procedures - array manipulation, array location, pointer association status, and
intrinsic subroutines

Copyrighted Material

Fortran 90 83

Removed and Obsolete Features Identified in Annex B of the Standard

For Use

No removed features at this time .

Arithmetic IF statements IF statements or IF constructs
Real and double precision DO control vari- Integer control variables and expressions
abies an d DO loop control expressions

Shared DO termination and term ination An END DO for each DO
on a statement other than END DO or
CONTI NUE

Branch to an END IF from outside its IF Branch to the statement directly follow-
block ing the END IF
Procedure alternate return Return code and a CASE construct on

return

PAUSE statement An appropriate READ statement

ASS I GN and assigned GO TO The internal procedures they are often
used to simulate

Assigned FORMAT specifiers Character variables and constants

cH edit descriptor Character const ant edit descriptor

Table 3 .7
Removed and Obsolete Features Identified in Annex B of the Standard

The Fortran 90 standard , for the first time , introduces a concept of language evolution in
which the addition of new features is understoo d to cause old features to become redun­

dant and , eventually to be phased out . The Standard sites some examples and identifies

(In Annex B) removed features and obsolescent or redu ndant features for which there

are better methods . In addition to these features , a number of authors have identified

antiquate d features to be avoided by the use of more modern Fortran 90 features . Some

of these features , and their suggested replacements , are shown in Table 3 .7 and Table 3 . 8 .

3 . 9 . 1 A voiding A ssumptions of Linear Mem.ory

Whenever a computer architecture is directly visible in a programming language , one

should expect two consequences : good p erformance on that architecture an d difficulty

in porting applications to other computer architectures . Not surprisingly, traditional

Fortran implementations have tended to provide excellent execution performance on tra­
ditional linear memory computer architectures . To achieve good performance on dis­

tributed memory computer architectures , however , it is necessary to avoid those older
features of Fortran that depend on linear memory concep ts . These features were avail-

Copyrighted Material

84 Chapter 3

Antiquated Fort ran Features and Their Replacement s

For Use

DOUBLE PRECISION Numeric k i n d facility

Sequence association of array element Array section actual arguments

actual arguments with dummy arrays associated with assumed shape array

dummies

BLOCK DATA and COMMON Modules

DO loop old forms and CONTINUE The DO . . . END DO for m .

Statement labels and t h e GO TO Are still considered h armful and should
statement be avoided

Computed GO TO st atement CASE construct

DO WHILE statement IF . . . EXIT in a DO . . . END DO

The RETURN statement effect H appens at p rocedure END

The STOP statement effect H appens at END of main program

IMPLICIT st atements IMPLI C IT NONE an d explicit typing of

all variables

Attribute specification statements " : : " form of type declaration st atement

grouping all of the at trib utes of an
entity in one place

DATA st atement Initi aliz ation expression in type

decl aration st atements (excep t for
BOZ data)

Hollerith data Character data type and constants

COMMON blocks Modules

EQUIVALENCE st atements Mo dules , storage allocation , structures ,

point.ers , and TRANSFER intrinsic
function

Block data program units Mo dules

Fixed source form Free source form

Specific intrinsic functions Generic intrinsic funct.ions

FORMAT statements Charac ter variables

Arithmetic statement functions Internal functions

Assumed size arrays Assumed shape arrays

INCLUDE lines Mo dules

ENTRY statements Modules with PRIVATE pro cedures

Table 3 . 8
N e w features in Fortran 90 and what they replace

Copyrighted Material

Fortran 90 85

able to provide such necessary capabilities as the ability to pass a column of an array as
an argument to a procedure and to reuse data storage no longer required . Fortunately,
Fortran 90 provides modern features to meet these requirements that are efficient and

do not depend on a model of memory.
A linear memory model is visible in Fortran in two ways:

• Sequence association is the definition of the mapping of multi-dimensional arrays to

a linear sequence ordering, the so-called column-major order . Sequence association is
particularly visible when an array expression or array element is associated with an

assumed size or explicit size dummy array argument . Sequence association may be

avoided in Fortran 90 through the use of assumed shape dummy array arguments and
the use of intrinsic functions to reshape arrays .
• Storage association is the definition of the mapping of data objects to underlying
storage units , and was typically used to reshape COMMON and EQUIVALENCE data and to
simulate allocatable storage. Storage association may be avoided in Fortran 90 through
the use of allocatable data an d the use of intrinsic functions.

3. 1 0 Fortran Coding Style

Fortran 90 is a large language with a number of alternative ways of expressing the same
intention , in part resulting from Fortran 90's backwards compatibility with previous
Fortran standards . We strongly recommend that you choose a reasonable coding style
and stick with it . While conforming to a style may add a few minutes to your typing
time , it will be rewarded over and over as others , and you in the future , try to figure out

the meaning of a section of code . The following sections present a number of code style
guidelines that have proven to be useful . Figure 3 . 1 shows a number of these guidelines
in a single example .

3 . 1 0 . 1 Upper- Case and Lower- Case Conventions

Fortran 90 treats upper-case and lower-case letters in programs equivalently except , of
course , in character constants and H format specifiers . This allows a variety of coding
styles. For example, the following CALL statements are all equivalent :

CALL MY_SUB (MAX (A , 3) , LEN= 1 2)

call my_ sub (max (a , 3) , l en= 1 2)

CALL my_ s ub (MAX (a , 3) , LEN= 1 2)
cal l MY_SUB (max (A , 3) , l en= 1 2)

Call My_ Sub (Max (A , 3) , L en= 1 2)

all upper cas e

all lower cas e

Fortran 90 name s in upp er c a s e

u s er name s in upper c as e

init i al l e t t e r s in upper case

Copyrighted Material

86 Chapter 3

PROGRAM PI_EXAMPLE

! Comput e the value of pi by numer ical int egrat ion

! HPF$

IITEGER . PARAMETER N = 1000
REAL . PARAMETER H = 1 . 0 / N

REAL P I

REAL , DIMENSION (N) RECT_AREA

D ISTRIBUTE (CYCL I C) RECT_AREA

INTERFACE

SUBROUTIIE PRIRT_RESULT (X)

REAL : : X

END SUBROUTINE PRINT_RESULT

END INTERFACE

FORALL (1 = 1 : N)

RECT_AREA (I) = H * F (H* (I-0 . 5 »

END FORALL

PI = SUM (RECT_AREA)

CALL PRINT_RESULT (P I)

CONTAINS

REAL FUNCTION F (X)

REAL : : X

F = 4 / (1 . 0 + X *X)

END FUNCTI ON F

END P ROGRAM P I _EXAMPLE

Figure 3 . 1
A complete Fortran 9 0 program

Number of rect angle s

Width of a rectangle

Copyrighted Material

Fortran 90 87

There are advantages and disadvantages to all of these , and other conventions . We
recommend that you choose a style that you are comfortable with and use it consistent ly .

Our examples use the "all upper-case" convention for the simple reason that it tends to

make keywords and user names self-quoting when they appear in explanatory text .

3 . 1 0 . 2 Spacing Convent ions

In choosing a horizontal spacing convention , there is a tradeoff between the improved
readability resulting from the addition of white space and the decreased readability if

the extra space forces continuation lines. We recommend using white space to improve
readability within reason .

We recommend following the free source form rules for b lank characters even when

using fixed source form :

• Blank characters must not appear in lexical tokens , except within a character context .

For examp le , there can be no blanks between the two characters of the exponentiation

operator **.

• Blank characters must be used to separate names , constants , or labels from adjacent

keywords , names constants, or labels. For example, a blank is required between the DO
and its index variable .

In addition , we recommend that blank characters be used at natural breaks in the
program text , including around the = in assignments and fol lowing semicolons and most

commas.

3 . 1 0 . 3 Indent ation , Alignment and Blank Line Conventions

As a result of its fixed source form and its origins in the days of punched cards, Fortran
programs have traditionally not used an indentation convention ; programs have been

written as lists of statements all beginning in "column 7 ," even though nothing in the
definition of Fortran required non-indentation . We believe that modern style calls for

appropriate indentation to show the nesting structure of a program unit . (As with blank

space , we temper this advice if the indentation causes continuation lines .) We have used
a two-space indentat ion style throughout this book ; other programmers may prefer more

or less .
The following Fortran 90 constructs are candidates for nesting :

• The statements in the specification-part , execution-part , and intern a l-subp rogram of

any of the forms of program-unit: m ain-program, function-subprogram, subro utine-sub­

p rogram, modu le , or block- data.

Copyrighted Material

88 Chapter 3

• The statements in the case-construct, fomll- construct, if-construct, do-construct, and
where- construct.
• The components of a derived type definition or an interface block .
• In general , long assignment statements should break at a logical place in the right
hand side expression and continue aligned with the beginning of the right hand side

expression, unless deeper indentation (and p erhaps more white space) makes the code
more readable . For example :

NEW_VAL (I , J) = . 25 * OLD_VAL (I - i , J) + OLD_VAL (I , J- i)

+ OLD_VAL (I + i , J) + OLD_VAL (I , J+ l)

In addition to nesting , we recommend that , in general , the : : symbols in multiple
succeeding declarations and the exclamation points in multiple succeeding trailing com­

ments should be lined up . Blank lines can also improve readabil ity by, for example ,
separating p arameter declarations , variable declarations , interface-blocks , and sections
of executable co de .

The HPF directives were designed so that if H P F ever becomes p art of the Fortran
language , the ! HPF$ could be edited out to leave a correct program . In this book , we have
arranged things so that the directive bodies are aligned with the Fortran 90 statements
in the surrounding program . This allows the reader to skip over the ! HPF$ in the left

margin .

3 . 1 0 . 4 Fr e e Source Form

We strongly recommend the use of Fortran 90 free source form to improve readability

and have used free source form exclusively, except when we need to illustrate specific

fixed source form features . Source code can be written to be interpreted correctly in
either free or fixed source form by following these rules :

• Limit statement labels , if they are absolutely necessary, to p ositions 1 through 5 and
statements to positions 7 through 72 .

• Treat blanks as being significant .
• Use the exclamation point (!) for a comment , but don 't place it in position 6 .
• To continue statements , use the ampersand (.t) in position 73 of the line being contin­

ued, and position 6 of the continuation line. Following the ampersand in the l ine being
continued , there can be only blanks or a comment . Positions 1 to 5 in the continuation

line must be blank .

Figure 3 . 2 shows an example that is valid in both source forms . The ".t" at the end of
line 4 appears in column 73 , while the "Ie" beginning line 5 appears in column 6 .

Copyrighted Material

Fortran 90

! D ef ine the us er funct ion MY_SIN

D OUBLE PRECISION FUNCTION MY_S I N e X)

MY_SII = X - X**3/FACTORIAL (3) + X**5/FACTORIAL (5)

t - X**7/FACTORIAL (7) + X**9/FACTORIAL (9)

CONTAINS

INTEGER FUNCTION FACTORIAL (N)

FACTOR = 1
DO I = 2 , N

FACTORIAL = FACTORIAL * I

END DO

EID FUNCT I ON FACTORIAL

END FUNCTI OI MY_SII

Figure 3 .2
A Fortran 90 function that can be interpreted as either free source fonn or fixed source Conn

Copyrighted Material

89

4 Data Mapping

HPF data alignment and distribution directives allow the programmer to advise the com­
piler about how data objects (especially array elements) should be assigned to processor
memOrIes.

4.1 Overview of Data Mapping

The goal of data mapping directives in HPF is to allow the programmer to control the
distribution of data to processors. Chapter 2 showed how this distribution could be used
to improve the performance of programs (or could cause them to run slowly, if the data
mapping was misused) .

Often, the most convenient way to specify a data mapping is to give a simple pattern
using the DISTRIBUTE directive. There are two major types of patterns that can be

specified this way: block and cyclic distributions. In a block distribution, each processor
contains a block-a contiguous subarray--of the specified array. For example ,

REAL, DIMENSION(lOO,lOO) X , Y

!HPF$ DISTRIBUTE (*, BLOCK) X

!HPF$ DISTRIBUTE (BLOCK, BLOCK) Y

breaks the arrays X and Y into groups of columns and into rectangular blocks , respectively.

In the form shown here, the block sizes are chosen to be as nearly equal as possible; it
is also possible to pick a specific block size, if one wants an unequal distribution. Cyclic
mappings distribute the elements of a dimension onto P processors so that each processor,
starting from a different offset, contains every pth column. For example,

REAL, DIMENSION(lOO,lOO) : : X, Y
!HPF$ PROCESSORS PROC1(lO), PROC2(2,5)

!HPF$ DISTRIBUTE (CYCLIC,.) ONTO PROel X

!HPF$ DISTRIBUTE (BLOCK,CYCLIC) ONTO PROC2 Y

places every 10th row of X on the same processor. Combining the block and cyclic distri­

butions as shown effectively places half of every fifth column on one processor; a given
processor will always have either all "top" halves, or all "bottom" halves. Examples 2.18
and 2.19 in Chapter 2 contain several similar examples.

Sometimes it more convenient to specify the desired distribution of an array by de­

scribing its relationship to another arr ay . For example, one might have a 16 x 16 array
X and a 14 x 14 array Y, where elements of Yare intended to interact computationally

with the interior of X. Of course , one could simply declare Y to be the same size as X,

Copyn'ghted Material

92

(a) a 14 x 14 array aligned with
the interior of a 16 x 16 array

PI P2

P3 P4

(c) distribution (BLOCK, BLOCK)

Figure 4.1
Alignment of a 14 X 14 array with a 16 X 16 array

Chapter 4

PI P2 P3 P4

(b) distribution (* , BLOCK)

iP1iP2 [Pa [P4 [Pl P2Pa P4P1 P2 [Pa P4P1 [P2 [g P4

(d) distribution (* , CYCLIC)

Copyrighted Material

Data Mapping 93

distribute it in the same way as X, and then use only the interior of Y in the computation ,
but this could result in a clumsier coding style throughout the program . The desired
relationship between X and Y can be expressed by an HPF alignment directive:

REAL X(16, 16) , Y(14, 14)
!HPF$ ALIGN Y(I , J) WITH X(I+l , J+l)

See Figure 4.1, which assumes four processors storing the arrays . Here I and J are

dummy variables that range over the valid subscript values for Y. For every element of
Y, a corresponding element of X is indicated ; whatever processor memory contains that
element of X should also contain that element of Y. If X is distributed (* , BLOCK) , whether
by an explicit directive or by the compiler's discretion, Y will be distributed accordingly,
as illustrated in Figure 4.1(b). Note that while X is distributed evenly across the four

processors , Y is not, so as to assure that Y(I, J) is always in the same processor as

X(I+l , J+l). Ifx were to be distributed (BLOCK , BLOCK), the result would be as shown
in Figure 4.1(c); this distribution does coincidentally cut Y as well as X into four equal
pieces. The result of a (*,CYCLIC) distribution for X is shown in Figure 4.1(d).

It might be desirable to al ign several elements of one array to the same single element of

another array; this is called a collapsing alignment. Figure 4.2(a) illustrates an alignment
of a matrix M to a vector V, specified by the directive

!HPF$ ALIGN M(I,*) WITH V(I)

Wherever a given element of V is distributed , the entire corresponding row of M should
also be distributed. (The directive could also be written

!HPF$ ALIGN M(I,J) WITH VCI)

but the use of an asterisk provides a stronger visual cue that collapsing is intended.)
With this alignment established , the distribution of M is d ictated by the distribution

of V. If V is given a BLOCK distribution:

!HPF$ DISTRIBUTE V(BLOCK)

then the rows of M are given a matching distribution, resulting in an assignment to
pro cessors such as shown in F igure 4.2(b). If instead V were given a CYCLIC distribution:

!HPF$ DISTRIBUTE V(CYCLIC)

then the rows of M would be given a matching distribution , resulting in an assignment to

processors such as shown in Figure 4.2(c).

Copyrighted Material

94

Figure 4.2

H V
-
-
-
-
e-I

,e-
�

I

.;--
-
-
-
-

(a) A collapsed alignment of the rows of H wIth V

H V
r---------------------�P�.---------------------.------�·I� � :======================�P�'============

====
====�------�'.I�

�====================,P�'====================� I P,
r P, __ ----�.I� :======================'P�3====================�

I �
:======================�P�3====================�"-----�I. I�
P=====================�P�l====================� ______ �'·I� �

r-.:: �==================���- ==================�-----�I�I�
r � . � :======================'P�'== ================��------�I.I�
:======================'P�' ====================�------�I. I�
:======================'P� I====================� ------�I.I�

(b) Situation if V is given a BLOCK distribut on

M V
P, r-

. � P, .. p�
P:! . Ip;
P, fp f-'. P, .. P4
P, . �
P:! . �
P, . �
P, . i>,
P, . �
P, . �
Pi I. • p;:--

(c) Situation if V is given a CYCLIC distribution

Collapsed alignment of rows of a matrix with elements of a vector

Copyrighted Material

Chapter 4

Data Mapping

A

LUT

(a) an array and a lookup table

(c) actual implement ation effect,
replicating once per processor

with a (BLOCK. BLOCK) distribution

(b) replicating the lookup table
to align with each array element

(d) actual implementation effect,
replicating once per processor
with a (*. BLOCK) distribution

Figure 4.3
Replicated alignment of a lookup table with elements of an array

Copyrighted Material

95

96 Chapter 4

The converse of collapsing is replication; HPF provides a form of repli cating alignm e nt.

Suppose that one must repeatedly evaluate a simple function from small integers to
arbitrary values not easily represented as a formula. An efficient solution is to construct
a lookup table and use the small integers as subscripts .

REAL LUT(1: 147)

c o de to in itialize lookup table

Now suppose that the function must be evaluated for every position of an array that may
be distributed over many processors:

FORALL (1=1:4, J=1:4) A(I,J) = A(I,J) * LUT(INT(B(I,J»

See Figure 4.3 (a) . Whether the lookup table resides in one processor or is split across

many processors, there can be a great deal of communications overhead when processors
need values from the lookup table that reside in the memories of other processors. In
this situation it is often advantageous to trade space for time by making many copies of
the lookup t able so that each processor can have its own copy.

Now, the programmer could code such a replicated lookup table explicitly by making
it two-dimensional , with the extra dimension equal to the number of processors, and then
carefully distributing the table:

REAL LUT(147,4)

!HPF$ DISTRIBUTE LUT(*, BLOCK(l»

However, this requires some care; in particular , whenever the lookup table is updated,
all the copies must be updated. It is much easier to let the HPF compiler take care of
the details by specifying a replicating alignment:

REAL LUT(147)

REAL A(4,4),B(4,4)

!HPF$ ALIGN LUT(*) WITH A(*,*)

!HPF$ ALIGN B(I,J) WITH A(I,J)

!Replicating

The alignment of LUT is actually both replicated and collapsed: a copy of the entire

(collapsed) array LUT is to be aligned with every element of A. This situation is illustrated
in Figure 4 .3 (b) . Wherever an element of A might reside, there wi ll be a copy of LUT in
the same processor memory. The program is then written as if there were only a single
copy of LUT; whenever LUT is updated, the HPF compiler arranges to update all copies

Copyrighted Material

Data M apping 97

consistently. (In practice, a good HPF compiler will not make a copy of LUT for every
element of A, but only one copy in each processor that might contain elements of A. For a

(BLOCK, BLOCK) distribution of A onto four processors, this would produce the situation
shown in Figure 4.3(c) . A (*, BLOCK) distribution for A would produce the situation
shown in Figure 4.3(d) .)

The data mapping directives illustrated so far are all static. They are like declarations;
they take effect on entry to a scoping unit and describe how a data object is to be created .
HPF also provides the dynamic data mapping directives REDISTRIBUTE and -REALIGN.

They are just like DISTRIBUTE an d and ALIGN with three differences:

• REDISTRIBUTE and REALIGN are like executable statements, not declarations, and so
must appear in the execution-part (R208) of a scoping unit.
• Because REDISTRIBUTE and REALIGN are not declarations, they may not be combined
with declaration-type directives using : : syntax .
• REDISTRIBUTE and REALIGN may not be applied to just any data object, but only to

an object having the DYNAMIC attribute, specified by an HPF DYNAMIC directive. (This
is similar in spirit to the Fortran 90 restriction that a poi nter variable may not point to
just any data object, but only to an object having the TARGET attribute.)

Consider an elaboration of a previous example:

REAL, ARRAY(16,16) : : X, Y

!HPF$ PROCESSORS SQUARE(2,2) , LINE(4)

!HPF$ ALIGN WITH X : : Y

!HPF$ DISTRIBUTE (BLOCK, BLOCK) ONTO SQUARE X

!HPF$ DYNAMIC X

Here the arrays X and Y are initially aligned and distributed as shown in Figure 4.1(c).
However , we have declared an additional processor arrangement LINE and have specified

the DYNAMIC attribute for X. (By the way, we could have combined the last two directives

thus:

!HPF$ DYNAMIC, DISTRIBUTE CBLOCK, BLOCK) ONTO SQUARE X

in exactly the same manner that attributes may be combined III a Fortran 90 type

declaration. HPF generalizes this syntax in not requ iring a type declaration to be part

of a combined directive.)
Because X is DYNAMIC, it is permitted to change the mapping of X on the fly. Therefore

in the executable code we might insert this directive :

!HPF$ REDISTRIBUTE C*,BLOCK) ONTO LINE:: X

Copyrighted Material

98 Chapter 4

This advises the compiler that X should be remapped at that point in the program
execution. Redistribution is required to maintain alignment relationships; because Y

is aligned with X , Y will also be redistributed when X is. After execution passes the
REDISTRIBUTE directive, the situation is roughly as shown in Figure 4.1(b).

We had to say "roughly" in the last remark because there is a subtle point about what

HPF does and does not guarantee about distributions onto processors. In our example
there are two declared processors arrangements, SQUARE and LIIlE. Each arrangement
has four processors. It is l ikely, but n o t gu aranteed, that the physical processors used to
implement SQUARE will be the same physical processors used to implement LINE; that
is an implementation-dependent detail . Moreover , even if the same physical processors
are used, it is not guaranteeed that LINE (1) represents the same physical processor as
SQUARE (1 , 1) ; that is an implementation-dependent detail. So when X is remapped from
SQUARE to LIIlE, it is likely that there will be a great deal of inter processor communication,
but the details of what must be communicated are implementation-dependent. One
might, for example , conclude from inspection of Figures 4.1(c) and 4 . 1(b) that processor
P1 needs to export only half its data to perform the redistribution, but that conclusion
is not guaranteed by HPF. The processor numberings in the figures are only illustrative
and not definitive.

Another subtle point is that Y can be remapped even though it was not declared
DYNAMIC , because it is (statically) aligned to X, which is DYNAMIC. The absence of a
DYNAMIC attribute for Y does mean, however, that one may not use REALIGN to change
the alignment of Y. SO while Y can be remapped implicitly whenever X is, the alignment
relationship between Y ands X is always maintained and cannot be changed.

4.2 The Data Mapping Model

HPF directives allow the user to advise the compiler on the allocation of data objects
to processor memories. The model is that there is a two-level mapping of data objects
to the memories of abstract processors. Data objects (typically array elements) are first
aligned relative to one another; a group of arrays is then distributed onto a rectilinear
arrangement of abstract processors. (The implementation then uses the same number, or
perhaps some smaller number, of physical processors to implement these abstract proces­
sors. This mapping of abstract processors to physical processors is system-dependent.)

This model is illustrated in Figure 4.4.
The basic concept is that every array (indeed, every object) is created with some

alignment to an entity, which in turn has some distribution onto s o m e arrangement of

abstract processors. There are three cases of interest:

Copyrighted Material

Data Mapping

Arrays or

other objects

Figure 4.4

Abstract

Physical Group of

aligned objects

processors as a

user-declared

Cartesian mesh processors

ALIGN

(static) or

REALIGN

(dynamic)

DISTRIBUTE

(static) or

REDISTRIBUTE

(dynamic)

Optional

implementation­

dependent

directive

The HPF data mapping model

99

• If the specification statements contain explicit specification directives specifying the
al ignment of an array A with respect to another array B, then the distribution of A will
be dictated by the distribution of B.

• Otherwise , the distribution of A itself may be specified explicitly (and it may be that
other arrays are aligned with A) .
• If the user does not provide explicit directives for mapping a data object, then the
compiler must choose a data mapping.

In any case, data mapping specifications are conceptually used as a data o bject is created
rather than as a separate step.

This model gives a better picture of the actual amount of work that needs to be done
than a model that says "the array is created in some default location, and then realigned
and/or redistributed i f there is an explicit directive ." Using ALIGN and DISTRIBUTE

specification directives doesn't have to cause any more work at run time than using the
implementation defaults.

There is a clear separation between directives that serve as specification statements
and directives that serve as executable statements. Specification statements are carried
out on entry to a program unit, as if all at once; only then are executable statements
carried out . (While it is often convenient to think of specification statements as being
handled at compile time, some of them contain specification expressions, which are per-

Copyrighted Material

100 Chapter 4

mit ted to depend on run-time quantities such as dummy arguments, and so the values of
these expressions may not be available until run time, specifically the very moment that
program control enters the scoping unit.)

In the case of an allocatable object, we say that the object is created whenever it is
allocated. Specification directives for allocatable objects (and allocated pointer targets)
may appear in the specificat i on-part of a program unit, but take effect each time the
array is created, rather than on entry to the scoping unit.

Alignment is considered an attribute of a data object (in the Fortran 90 sense). If an
object A is aligned (statically or dynamically) with an object B, which in turn is already
aligned to an object C, this is regarded as an alignment of A with C directly, with B

serving only as an intermediary at the time of specification. (This matters only in the
case where B is subsequently realigned; the result is that A remains aligned with C.) We
say that A is imm ediately aligned with B but ultim ately aligned with C. If an object is
not explicitly aligned with another object, we say that it is ultimately aligned with itself.
The alignment relationships form a tree with everything ultimately aligned to the object
at the root of the tree; however, the tree is always immediately "collapsed" so that every
object is related directly to the root. Any object that is not a root can be explicitly
realigned but not explicitly redistributed. Any object that is a root can be explicitly
redistributed but then cannot be explicitly realigned.

Every object that is the root of an alignment tree has an associated temp late or index
space. Typically, this template has the same rank and size in each dimension as the object

associated with it. (The most important exception to this rule is dummy arguments with
the INHERIT attribute, described in Section 5.4.) We often refer to "the template for an
array," which means the template of the object to which the array is ultimately aligned.
(When an explicit TEMPLATE (see Section 4.9) is used, this may be simply the template
to which the array is explicitly aligned.)

The distri b ution step of the HPF model technically applies to the template of an array,
although because of the close relationship noted above we often speak loosely of the

distribution of an array rather than of its template. Distribution partitions the template
among a set of abstract processors according to a given pattern. The combination of
alignment (from arrays to templates) and distribution (from templates to processors)

thus determines the relationship of an array to the processors; we refer to this relationship
as the mapping of the array. These remarks also apply to a scalar, which may be regarded
as having an index space whose sole position is indicated by an empty list of subscripts.
So every atomic data object is ultimately aligned to some data object, possibly itself,

which is in turn distributed onto some specific abstract processor. (An atomic data o bject

is a data object that has no subobjects.)

Copyrighted Material

D ata Mapping 101

Every object is created as if according to some complete set of specification directives;
if the program does not include complete specifications for the mapping of some object,
the compiler provides defaults . HPF imposes certain constraints on default mappings

but also allows an HPF language processor certain specific freedoms.

• By default an object is not aligned with any other object; i t is ultimately aligned with
itself.
• The default distribution is system dependent , but must be expressible as explicit
directives for that implementation. (The distribution of a sequential object has to be
expressible as explicit directives only if it is an aggregate cover (see Section 4.10.2) .)
• Identically declared objects need not b e provided with identical default distribution
specifications. The compiler may, for example, take into account the contexts in which
objects are used in executable code . (The programmer can, if necessary, force identically
declared objects to have identical distributions by specifying such distributions explicitly.)
• Unlike objects, identically declared processor arrangements are guaranteed to repre­
sent "the same processors arranged the same way." This is discussed in more detail in
Section 4.8.

Once an object has been created, it can be remapped in one of two ways:

• by realigning the object itself; or
• by redistributing the object to which it is ultimately aligned.

Such remapping will typ ically carry some cost in interprocessor communication. Re­
alignment causes remapping of only the object to be realigned, but redistributing an
object causes all objects then ultimately aligned with it also to be redistributed so as to

maintain the alignment relationships .
By analogy with the Fortran 90 ALLOCATABLE attribute, HPF includes the attribute

DYNAMIC. It is not permitted to REALIGN an object that has not been declared DYNAMIC.

Similarly, it is not permitted to REDISTRIBUTE an object or template that has not been
declared DYNAMIC. (A subtle point: it is possible to remap an object A that has not been
declared DYNAMIC if it has been aligned to another object B that is declared DYNAMIC.
Redistributing B will then cause A to be redistributed as well , so as to maintain the
statically declared alignment relationship.)

Sometimes it is desirable to consider a large index space with which several smaller
arrays are to be aligned, but not to declare any array that spans the entire index space.
HPF allows one to declare a TEMPLATE, which is like an array whose elements have no
content and therefore occupy no storage; it is merely an abstract index space that can
be distributed and with which arrays may be aligned.

Copyrighted Material

102 Chapter 4

It should be noted that HPF direct ives are technically regarded as advice to an HPF
compiler rather than as commands. Alignment and distribut ion directives merely recom­

me n d to the compiler that certain data objects should reside in the same processor: if
two data objects are mapped (via the two-level mapping of alignment and distribution)
to the same abstract processor, it is a strong recommendation to the implementation that
they ought to reside in the same physical processor. The converse is not true; mapping
two data objects to different abstract processors is not necessarily a strong recommen­
dation that the objects reside in different physical processors. HPF takes this stance for
two reasons:

• To provide flexibility for compiler implementors . In particular, as the technology of
automatic data layout improves, compilers may judiciously override user directives in

order to improve performance . (This is similar to the situation in the C programming
language, which provides explicit register directives . When algorithms for automatic
register allocation became sufficiently powerful, the best C compilers would ignore or
override programmer directives when appropriate .)
• To provide for maximum portability ofHPF codes. In particular, it is always legitimate
to compile an HPF program for a single-processor target machine .

While directives are technically merely advisory, all the directives in a complete HPF
program must be consistent. An HPF compiler is permitted to re ly on the consistency

of directives across separately compiled program units.

4.3 Syntax of Data Alignment and Distribution Directives

Specification directives in HPF have two forms: specification statements, analogous to the
DIMENSION and ALLOCATABLE statements of Fortran 90; and an attribute form analogous
to type declaration statements in Fortran 90 using the " : :" punctuation.

The attribute form allows more than one attribute to be described in a single direct ive .

HPF goes beyond Fortran 90 in not requ iring that the first attribute, or indeed any of
them , be a type specifier.

For syntactic convenience, the executable directives REALIGN and REDISTRIBUTE also
come in two forms (statement form and attribute form) but may not be combined with
other attributes in a single directive.

The form of a co m bin ed- directive (H301) is:

c ombined- attribute-list :: entity- ded-list

where a com bined- attribute (H302) is one of:

Copyrighted Material

Data Mapping

ALIGB align- attribute-stuff

DISTRIBUTE dist- attribute-stuff

DYNAMIC

I1HERIT
TEMPLATE

PROCESSORS
DIMENSION (expli cit-sh ape-spec- list

Rules and restrictions:

103

1. The same combined- attribute must not appear more than once in a given combined­

directive .

2. If the DIMEISION attribute appears in a combined- directive, any entity to which it

app lies must be declared with the HPF TEMPLATE or PROCESSORS type specifier.
3. The HPF keywords PROCESSORS and TEMPLATE play the role of type specifiers in

declaring processor arrangements and templates. The HPF kp),words ALIGN, DIS­
TRIBUTE , DYIJAMIC, and IJlHERIT play the role o f attributes. Attributes referring to

processor arrangements, to templates, or to entities with other types (such as REAL)
may be combined in an HPF directive without having the type specifier appear .

4. D imension information may be specified after an o bject-name or in a DIMEISION

attribute. If both are present , the one after the object- name overrides the DIKEISIOI
attribute (this is consistent with the Fortran 90 standard) .

Example 4.1 The directive

!HPF$ TEMPLATE , DIMENSION (64.64) : : A, B, C(32,32), D

specifies that A, B, and D are 64 x 64 templates; C is 32 x 32. 0

4.4 DISTRIBUTE and REDISTRIBUTE Directives

The DISTRIBUTE directive specifies a mapping of data objects to abstract processors in

a processor arrangement. For example,

REAL SALAMI (1 0000)
!HPF$ D ISTRIBUTE SALAMI(BLOCK)

specifies that the array SALAMI should be distributed across some set of abstract proces­
sors by slicing it uniformly into blocks of contiguous elements. If there are 50 processors,
the directive implies that the array should be divided into groups of 200 elements, with

Copyrighted Material

104

1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16
17 18 19 20
21 22 23 24
25 26 27 28
29 30 31 32
33 34 35 36
37 38 39 40
41 42 43 44
45 46 47 48
49 50 51 52

(a) the 52 elements of DECK-'lF _CARDS
with distribution CYCLIC

Figure 4.5
Cyclic and block-cyclic distributions of a deck of cards

Chapter 4

1 6 11 16
2 7 12 17
3 8 � �
4 9 14 �
5 10 15 r--w-

21 26 31 �
22 27 32 37
23 28 33 �
24 29 34 39
25 30 35 40
41 46 51 -

42 47 52 -

43 48 - -

44
45

49
50

-

-

-

f----
-

(b) the 52 elements of DECK_OF _CARDS
with distribution CYCLI C (5)

SALAMI (1 : 200) mapped to the first processor , SALAMI (201 : 400) mapped t o the second
processor , and so on . If there is only one processor , the entire array is mapped to that
processor as a single block of 10000 elements .

The block size may be specified explicitly:

REAL WEISSWURST (1 0000)
! HPF$ DISTRIBUTE WEISSWURST (BLOCK (256»

This specifies that groups of exactly 256 elements should be mapped to successive abstract
processors . (There must be at least POOOO/2561 = 40 abstract processors if the directive
is to be satisfied . The fortieth processor will contain a partial block of only 16 elements,
namely WEISSlJURST (9985 : 10000) .)

HPF also provides a cyclic distribution format :

REAL DECK_OF_CARDS (52)
! HPF$ DISTRIBUTE DECK_OF_CARDS (CYCLI C)

If there are 4 abstract processors , the first processor will contain DECK_OF _CARDS (1 : 49: 4) ,
the second processor will contain DECK-'lF _CARDS (2 : 50 : 4), the third processor will have

Copyrighted Material

Data Mapping 105

DECK.DF --CARDS (3: 6 1 : 4) , and the fourth processor will have DECK-.OF _CARDS (4: 62 : 4) .

Successive array elements are dealt out to successive abstract processors in round-robin
fashion-see Figure 4.5(a). If the array elements were instead dealt out five at a time:

!HPF$ DISTRIBUTE DECK_OF_CARDS (CYCLIC (5 »

the result would be a b lock- cyc lic distribution that assigned the first processor DECK...oF _­
CARDS (1:6) , DECK.DF_CARD S (2 1:25) , and DECK...DF_CARDS(41:46)--see F igure 4.5(b).

Distributions may be specified independently for each dimension of a multidimensional
array:

INTEGER CHESS_BOARD (8 , 8) , GO_BOARD (19 , 19)
!HPF$ DISTRIBUTE CHESS_BOARD (BLOCK, BLOCK)
! HPF$ D I STRIBUTE GO_BOARD(CYCLIC,*)

The CHESS...BOARD array will be carved up into contiguous rectangular patches , which will

be distributed onto a two-dimensional arrangement of abstract processors. The GO...BOARD

array will have its rows distributed cyclically over a one-dimensional arrangement of

abstract processors . (The ""," specifies that GO...B OARD is not to be distributed along its

second axis; thus an entire row is to be distr ibuted as one object . This is sometimes

called "on-processor" distribut ion .)
The REDI STRIBUTE directive is similar to the DISTRIBUTE directive but is considered

executable. An array (or template) may be redistributed at any time , provided it has

been declared DYNAMIC (see Section 4.6). Any other arrays currently ultimately aligned
with an array (or template) when it is redistr ibuted are also remapped to reflect the new

distribution, in such a way as to preserve alignment relationships (see Section 4.5). (This

can require a lot of computational and communication effort at run time; the programmer
must take care when using this feature.)

The form of a distribute-directive (H303) is:

DISTRIBUTE distribute e dist-dire ctiv e-stuff
DISTRIBUTE dist -at tribute-stuff :: distributee-list

(Note that the second form is a special case of a co m b ined- directive (H30l).)
The form of a redist rib ut e-directive (H304) is one of:

REDISTRIBUTE distributee dist-directive-stuff

REDISTRIBUTE dist- a ttrib ute-stuff :: distributee-list

Although REDISTRIBUTE is not an attribute and so cannot be used in a com bined-directive,

for convenience a redistribute- directive may be written in the style of attributed syntax ,

using": :" punctuation , so as to resemb le a distribute-directive.

Copyrighted Material

106 Chapter 4

Either kind of directive mentions one or more distributees and some descriptive "stuff"
that is taken to apply to each distribut ee. Each distributee (H307) must be either an
object-name or a template-name .

The form of dist-directive-stuff (H305) is one of:

(dist-format-list
(dist-format-list ONTO processors- name

The form of dist-attribute-stuff (H306) is one of:

(dist-format-l ist
(dist-format-list ONTO processors- name

ONTO d ist-target

The distinction between specification statement form and attributed form is merely that
a parenthesized dist-format list must appear in the specification statement form, whereas
it may be omitted in the attributed form if the OITO clause appears . This admittedly
arbitrary restriction forestalls syntactic ambiguity in the directive form.

(There are actually other possibilities for dist-d irective- stuff and dist- attri bute-stuff
but they apply only to dummy arguments. Their complete syntax is discussed in Chap­
ter 5.)

A dist-format (H309) may be one of:

BLOCK [(int-expr) 1
CYCLIC [(int- expr) 1
*

In a DISTRIBUTE or REDISTRIBUTE directive , the "formats" describe how each axis of
an array or template is to be distributed and the ONTO clause , if present, specifies the
particular abstract processor arrangement onto which the axes are distributed .

Rules and restrictions:
1. The DISTRIBUTE directive may appear only in the specification-part of a scoping unit.
2. The REDISTRIBUTE directive may appear only in the execution-part of a scoping unit.
3. An object-name mentioned as a distributee must be a simple name and not a suhob­

ject designator.
4 . An object-name mentioned as a distrib utee may not appear as an align ee in an ALIGN

or REALIGN directive.

5. A d istributee that appears in a REDISTRIBUTE directive must have the DYNAMIC at­
tribute (see Section 4.6).

6. If a dist-form at-list is specified, its length must equal the rank of each distributee.

Copyrighted Material

Data Mapping 107

7. If an OITO clause is present, the processors- name must name a processors arrange­
ment declared in a PROCESSORS directive (see Section 4.8).

8. If both a dist-format-list and a processors- n ame appear , the number of elements of
the dist-format-list that are not "*" must equal the rank of the named processor

arrangement.
9. If a processors-n ame appears but not a dist-format- list, the rank of each distributee

must equal the rank of the named processor arrangement.
10. Any int-expr appearing after BLOCK or CYCLIC in a dist-fo rm at of a DISTRIBUTE

directive must be a specification-exp r.

11. The value of any int-expr appearing after CYCLIC in a dist-format of a DISTRIBUTE
or REDISTRIBUTE directive must be a positive integer.

12. The value of any int-expr appearing after BLOCK in a dist-format of a DISTRIBUTE or
REDISTRIBUTE directive must be a posit ive integer m such that, for every distributee,

m x p � d (equivalently, m � rd/pl) where d is the extent of the corresponding
dimension of the distributee and p is the corresponding dimension of the processors

arrangement onto which the distributee is to be distributed.

The meanings of the alternatives for dist-format are given below. But first, some
preliminaries.

Many of the formulas to come wil l use the subexpressions r t 1 and j - k r t 1 for some

j and k. We note in passing that these play the role of integer division and remainder
in the formulas (except that the division is rounded upwards rather than truncated as in
standard Fortran usage) . It is also true that this "remainder" is always negative or zero
if j is nonnegative and k is positive.

The dimensions of a processor arrangement appearing in an OITO clause are said to
correspond in left-to-right order with those dimensions of a distributee for which the
corresponding dist-format is not *. In the example

!HPF$ DISTRIBUTE (BLOCK, * , BLOCK) OITO SQUARE:: D1, D2

the arrays D1 and D2 are three-dimensional (though not necessarily of the same shape) ,
but the processor arrangement SQUARE must be two-dimensional. SQUARE's first dimen­
sion corresponds to the first dimensions of D1 and D2 and its second dimension corre­

sponds to the third dimensions of D1 and D2.
Let d be the extent of a distrib utee in a certain dimension and let p be the extent of

the processor arrangement in the corresponding dimension. For simplicity, assume all

dimensions have a lower bound of l. Then BLOCK(m) means that a distributee position
whose index along that dimension is j is mapped to an abstract processor whose index
along the corresponding dimension of the processor arrangement is r -In 1. Also, that

Copyrighted Material

108 Chapter 4

element of the distributee is position number m + j - m r � 1 (that is, 1 + (j mod m))
among elements mapped to that abstract processor. The first distributee position in
abstract processor k along that axis is position number 1 + m(k - 1).

BLOCK by definition means the same as BLOCK (r � 1).
CYCLIC(m) means that a distributee position whose index along that dimension is j

is mapped to an abstract processor whose index along the corresponding dimension of

the processor arrangement is 1 + (� mod p). Also, that distributee position is position

number 1 + m lfm J + (j mod m) among positions mapped to that abstract processor.

The first distributee position in abstract processor k along that axis is position number
1 + m (k - 1) (this formula is the same as for BLOCK (m)) .

CYCLIC by definition means the same as CYCLIC (1).

CYCLIC(m) and BLOCK(m) imply the same distribution when mxp 2: d, but BLOCK(m)
additionally asserts that the distribution will not wrap around in a cyclic manner, which

a compiler cannot determine at compile time if m is not constant. Note that CYCLIC and
BLOCK (without argument expressions) do not imply the same distribution unless p 2: d,
a degenerate case in which the block size is 1 and the distribution does not wrap around.

The formulas for "position numbers" in the preceding paragraphs suggest a specific im­
plementation of BLOCK and CYCLIC layouts. For simplicity, first consider one-dimensional

arrays only. A one-dimensional array of length d may be stored within p processors by
reserving a block of space within each processor. Let bi be the address of the block of

space within processor i (an implementation might or might not require the bi to have

the same value for all i). Then:

• For a BLOCK(m) distribution, element j of the array might be stored within processor

r � 1 at address bWml + (j mod m) .

• For a CYCLIC (m) distribution, element j of the array might be stored within processor

1 + n � 1 - 1) mod p at address bl+W/ml-l)modp + m lfm J + (j mod m).

For multidimensional arrays, one can separately apply the appropriate formula to each
dimension and then combine processor numbers (on the one hand) and position numbers

(on the other hand) in the same manner as one would combine ordinary subscripts for

a Fortran multidimensional array to produce a linear processor number and a linear

memory offset within that processor.
While these formulas are highly suggestive, HPF does not require this particular or­

ganization of processors or this particular memory layout within processors.

Copyrighted Material

Data M apping 109

Example 4 . 2 Suppose that we have 16 abstract processors and an array of length 100 :

! HPF$ PROCESSORS SEDEC IM (16)
REAL CENTURY (100)

Distributing the array BLOCK (which in this case would mean the same as BLOCK (7 ») :

! HPF$ DISTRIBUTE CENTURY (BLOCK) ONTO SEDECIM

results in this mappin g of array elements onto abstract processors :

2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 14 1 5 1 6

1 8 1 5 22 29 36 43 50 57 64 7 1 78 86 92 99

2 9 16 23 30 37 44 6 1 68 66 72 79 86 93 100

3 1 0 1 7 24 3 1 38 45 52 69 66 73 80 87 94

4 1 1 1 8 26 32 39 46 53 60 67 74 8 1 88 96

6 1 2 1 9 26 33 40 47 64 6 1 68 76 82 89 96

6 1 3 20 27 34 4 1 48 55 62 69 76 83 90 97

7 14 2 1 28 36 42 49 56 63 70 77 84 9 1 98

Distributing the array BLOCK (8) :

! HPF$ DISTRIBUTE CENTURY (BLOCK (8 » ONTO SEDECIM

results in this mapping of array elements onto abstract processors :

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 14 1 5 1 6

1 9 17 26 33 4 1 49 67 66 73 8 1 89 97

2 1 0 1 8 26 34 42 60 58 66 74 82 90 98

3 1 1 1 9 27 35 43 6 1 69 67 7 5 83 91 99

4 1 2 20 28 36 44 62 60 68 76 84 92 100

5 1 3 21 29 37 46 53 6 1 69 77 85 93

6 14 22 30 38 46 54 62 70 78 86 94

7 1 6 23 3 1 39 47 55 63 7 1 7 9 87 95

8 16 24 32 40 48 56 64 72 80 88 96

Distributing the array BLOCK (6) is not H P F- conforming because 6 x 16 < 100 .
Distributing the array CYCLIC (which means exactly the same as CYCLI C (l ») :

Copyrighted Material

1 10 Chapter 4

! HPF$ DISTRIBUTE CENTURY (CYCLIC) ONTO SEDECIM

results in this mapping of array elements onto abstract processors:

1 2 3 4 5 6 7 8 9 10 I I 12 1 3 14 1 5 1 6

1 2 3 4 5 6 7 8 9 1 0 1 1

17 1 8 1 9 20 2 1 2 2 23 24 25 26 27

33 34 35 36 37 38 39 40 4 1 42 43

49 50 5 1 52 53 54 55 56 57 58 59

65 66 67 68 69 70 7 1 72 73 74 75

8 1 82 83 84 85 86 87 88 89 90 9 1

9 7 98 99 100

Distributing the array CYCLIC (3) :

! HPF$ DISTRIBUTE CENTURY (CYCLIC (3 » ONTO SEDECIM

12 13

28 29

44 45

60 6 1

76 77

92 93

results in this mapping of array elements onto abstract processors:

14 1 5 1 6

3 0 3 1 3 2

4 6 47 48

62 63 64

78 79 80

94 95 96

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 4 7 10 13 16 1 9 22 25 28 3 1 34 37 40 43 46

2 5 8 1 1 14 17 20 23 26 29 32 35 38 4 1 44 47

3 6 9 1 2 15 18 2 1 24 27 30 33 36 39 42 45 48

49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94

50 53 56 59 62 65 68 7 1 74 77 80 83 86 89 92 95

51 54 57 60 63 66 69 72 75 78 8 1 84 87 90 93 96

97 100

98

99

Thus different distributions may require the reservation of differing amounts of space

within each processor. 0

A DISTRIBUTE or REDISTRIBUTE directive must not cause any data object associated

with the distributee via storage association (COMMON or EQUIVALENCE) to be mapped

such that storage units of a scalar data object are split across more than one abstract
processor . See Section 4 . 1 0 . 2 for further discussion of storage association.

Copyrighted Material

Data Mapping 1 1 1

The statement form of a DISTRIBUTE o r REDISTRIBUTE directive may b e considered
an abbreviation for an attributed form that happens to mention only one alignee ; for
example ,

! HPF$ DISTRIBUTE distribute e (dist-fo rm at- list) ONTO dist- target

is equivalent to

! HPF$ DISTRIBUTE (dist-format- list) ONTO dist-target : : distributee

Note that , to prevent syntactic ambiguity, the dist-format-list must be present (with its
surrounding parentheses) in the statement form . But if a dist-format-list is present , at
least one dist-fo rm at must appear , in which case each distributee must be an array. It
follows that the statement form of the directive may not be used to specify the mapping
of scalars; the attributed form must be used :

! HPF$ DISTRIBUTE ONTO SCALARPROC : : REALSCALAR , INTSCALAR

If the dist-format-list is omitted from the attributed form , then the language processor
may make an arbitrary choice of distribution formats for each template or array. So the
directive

! HPF$ DISTRIBUTE ONTO P 0 1 , 02 , D3

means the same as

! HPF$ DISTRIBUTE ONTO P D 1

! HPF$ DISTRIBUTE ONTO P D2

! HPF$ DISTRIBUTE ONTO P D3

to which a compiler, perhaps taking into account patterns of use of D l , D2, and D3 within

the code, might choose to supply three distinct distributions such as, for example ,

! HPF$ DISTRIBUTE D l (BLOCK , BLOCK) ONTO P
! HPF$ DISTRIBUTE D2 (CYCLIC . BLOCK) OITO P
! HPF$ D ISTRIBUTE D3 (BLOCK (43) . CYCLIC) ONTO P

Then again , the compiler might happen to choose the same distribution for all three
arrays.

In either the statement form or the attributed form , if the ONTO clause is present, it

specifies the processor arrangement that is the target of the distribut ion . If the ONTO
clause is omitted , then a system-dependent processor arrangement is chosen arbitrarily
for each distributee. So, for example ,

Copyrighted Material

112

REAL , DIMENSION (1000) : : ARTHUR , ARNOLD , LINUS , LUCY
! HPF$ PROCESSORS EXCALIBUR (32)
! HPF$ DISTRIBUTE (BLOCK) ONTO EXCALIBUR : : ARTHUR , ARNOLD
! HPF$ DISTRIBUTE (BLOCK) : : LINUS , LUCY

Chapter 4

causes the arrays ARTHUR and ARNOLD to have the same mapping , so that corresponding
elements reside in the same abstract processor , because they are the same size and dis­
tributed in the same way (BLOCK) onto the same processor arrangement (EXCALIBUR) .
However , LUCY and LINUS do not necessarily have the same mapping because they might ,
depending on the implementation, be distributed onto differently chosen processor ar­
rangements ; so corresponding elements of LUCY and LINUS might not reside on the same
abstract processor . (The ALIGN directive provides a way to ensure that two arrays have
the same mapping without having to specify an explicit processor arrangement .)

4 . 5 ALIGN and REALIGN D irectives

The ALIGN directive is used to specify that certain data objects are to be mapped in
the same way as certain other data objects. Operations between aligned data objects
are likely to be more efficient than operations between data objects that are not known
to be aligned (because two objects that are aligned are intended to be mapped to the
same abstract processor) . The ALIGN directive is designed to make i t particularly easy
to specify explicit mappings for all the elements of an array at once . While objects can
be aligned in some cases through careful use of matching DISTRIBUTE directives , ALIGN
is more general and frequently more convenient .

The REALIGN directive is similar to the ALIGN directive but is considered executable . An
array (or template) may be realigned at any time , provided it has been declared DYNAMIC

(see Section 4 . 6) Unlike redistribution (see Section 4 .4) , realigning a data object does not
cause any other object to be remapped . (However , realignment of even a single object ,
if it is large , could require a lot of computational and communication effort at run time;
the programmer must take care when using this feature .)

The ALIGN directive may appear only in the specification-part of a scoping unit . The
REALIGN directive is similar but may appear only in the execution-part of a scoping
unit . The principal difference between ALIGN and REALIGN is that ALIGN must contain
only a specification- expr as a subscript or in a subscript-triplet , whereas in REALIGN
such subscripts may be any integer expressions . Another difference is that ALIGN is an
attribute , and so can be combined with other attributes as part of a combined- directiv e ,

whereas REALIGN is not an attribute (although a REALIGN statement may b e written in

the style of attributed syntax , using " : : " punctuation) .

Copyrighted Material

Data Mapping

The form of an align- directive (H3 1 2) is :

ALI GN align e e align- directive-stuff

ALIGI align- a ttribute-stuff : : a lign e e- list

(Note that the second form is a special case of a combined- directive (H30 1) .)

The form o f a realign- directive (H 3 1 3) is :

REALIGN align e e align- dire ctive-stuff

REALIGN align- attribute-stuff : : align e e - list

1 13

Although REALI GN is not an attribute and so cannot be used in a com b in ed- directive , for
convenience a rea lign- directive may be written in the style of attributed syntax , using

" : ; " punctuation , so as to resemble an align- directive .

Either kind of directive mentions one or more al ignees and some descriptive "stuff"
that is taken to apply to each alignee .

The form of an a lignee (H3 16) is :

o bje ct- n ame

The form of align- directive-stuff (H3 14) is :

(a lign-source- list) align- with- clause

whereas the form of an align- attribute-stuff (H3 15) is :

[(align- s o u rc e - /ist) J align- with- clause

The distinction between directive form and attributed form is merely that the a lign­

s ource-list with its enclosing parentheses must appear in the directive form , whereas it
may be omitted in the attributed form . (This admittedly arb itrary restriction forestalls
syntactic amb igui ty in the directive form.) One important consequence of this restriction
is that alignees that are not arrays require the use of the attributed form.

The form of each align-source (H317) i s one of:

*

align- dummy

where an align-dummy (H318) is a scalar- int- varia ble .

Rules and restrictions:
1 . An o bject -name mentioned as an alignee may not appear as a distributee in a D IS­

TRIBUTE or REDI STRIBUTE directive .

Copyrighted Material

1 14 Chapter 4

2 . Any alignee that appears in a REALIGN directive must have the DYNAMIC at tribute

(see Section 4 .6) .
3 . The align-source- list (and its surrounding parentheses) must be omitted if the align ee

is scalar . (In some cases this will preclude the use of the statement form of the

directive .)
4 . If the align-sourcE-list is present , its length must equal the rank of the alignee .

5. An align-dummy must be a named variable .
6 . An object may not have both the INHERIT attribute and the ALIGN attribute . (How­

ever, an object with the INHERIT attribute may appear as an alignee in a REALIGN
directive , provided that it does not appear as a distrib utee in a DISTRIBUTE or

REDISTRIBUTE directive .)

The statement form of an ALIGN or REALIGN directive may be considered a n abbrevi­

ation of an attributed form that happens to mention only one align ee :

! HPF$ ALIGN alignee (align- source-list) WITH align-sp e c

i s equ ivalent to

! HPF$ ALIGN (align-s ourcE- list) WITH align-sp e c : : align e e

I f the align-source- list is omitted from the attributed form and the alignees are not
scalar , the a lign-source- list is assumed to consist of a parenthesized list of " : " entries ,
equal in number to the rank of the align ees. Similarly, if the align- subsc ript- list is omitted
from the align-spec in either form , it is assumed to consist of a parenthesized list of " : "

entries , equal in number to the rank of the align- target. So the directive

! HPF$ ALIGN WITH B : : A i , A2 , A3

means

! HPF$ ALIGN (: , :) WITH B (: , :)

which in turn means the same as

! HPF$ ALIGN A 1 (: , :) WITH B (: , :)

! HPF$ ALIGN A2 (: , :) WITH B e : , :)
! HPF$ ALIGN A3(: , :) WITH B (: , :)

A i , A2 , A3

because an attributed-form directive that mentions more than one align ee is equivalent
to a series of identical directives , one for each a/ignee; all alignees must have the same
ran k . With this understanding , we will assume below , for the sake of simplifying the

description , that an ALIGN or REALIGI directive has a single alignee.

Copyrighted Material

Data Mapping 1 1 5

Each align-source correspon ds t o one axis of the alignee , and i s specified as either " : "
or "*" or a dummy variable :

• If it is " : " I then positions along that axis will be spread out across the matching axis

of the align-spec (see below) .
• If it is "*" , then that axis is collapsed : positions along that axis make no difference in

determi ning the corresponding position within the align-target. (Replacing the "*" with

a dummy variable name not used anywhere else in the directive would have the same

effect ; "*" is merely a convenience that saves the trouble of inventing a variable name
and makes it clear that no dependence on that dime nsion is intended .)
• A dummy variab le i s considered t o range over all valid index values for that dimension
of the alignee.

The form of an align- with- c1a use (H3 1 9) is :

WITH align-t arge t [(a lign-subscript- list)

There is actually another possibility for a n align-with- clause but it appl ies only to dummy

arguments . The comp lete syntax for an align- with- claus e is discussed in Chapter 5 .
A n align-target (H32 1) must b e an o bject- n a m e or a templat e-name .

The form of an align-subs cript (H322) is :

int-exp r

align-subscript- use

subscrip t-triplet

*

An align-su bscript-use is an integer expression that ment ions some a lign- du m my variable
exactly once as a manifestly linear function of that variable . The form of an alzgn­

su bscript-use (H323) is one of:

[[int- Ievel-two-exp r 1 a dd- op 1 align- a dd- op erand

align-s u bscrip t-use a dd- op int- add- ope rand

where an align - a dd- opera n d (H324) is one of:

[int- a dd- opera n d * 1 align-p rim ary

a lign- a dd- operan d * int-mult-operand

and an align-prim ary (H325) is one of:

a lign-dummy

(a lign-subscript- use

Copyrighted Material

1 1 6 Chapter 4

An int- add- operand (H326) is simply a Fortran 90 add- operand (R706) of integer type .
Similarly, a int- mult- operand (H327) is a mult- operand (R705) o f integer type and a

int-level-two-expr (H328) is an level-2- expr (R707) of integer type.

Rules and restrictions:

1. Each align- dummy may appear at most once in an align-subscript- list.

2 . An align-subscript- use expression may contain at most one occurrence of an align­
dummy.

3. An align- dummy may not appear anywhere in the align-spec except where explicitly
permitted to appear by virtue of the grammar shown above. Paraphrased, one may
construct an align- subscript-use by starting with an align- dummy and then doing

additive and mUltiplicative things to it with any integer expressions that contain no
align- dummy.

4. A subscript in an align-subscript may not contain occurrences of any align- dummy.

5. An int- a dd- ope rand , int- mult- operand , or int-level-two- exp r must be of type integer .

The syntax rules for an align-subscript- use take account of operator precedence issues ,
but the basic idea is simple: an align-subscript- use is intended to be a linear function of

a single occurrence of an align- dummy.

For example , the following align-subs cript-use expressions are valid, assuming that J ,

K , and H are align- dummy names and N is not an align- dummy:

J + l
+ J
N* (H-N)

3-K
-K+3
2* (J+ 1)

2*H
H+2**3
5-K+3

1 00-3*H
- (4*7+IOR (6 , 9 » *K- (1 3-5/3)
2* (3* (K- l) + 13) - 100

The following expressions are not valid align-subscript- use expressions:

J-J
J+K

IOR (J , l)

3*K-2*K
3/K

-K/3

H* (N-M)

2**H
H* (2+M)

2*J-3*J+J

H*K
H* (M-N)

2* (3* (K- l) + 1 3) -K

K-3*H
2** (2* J-3*J+J)

The align-spec must contain exactly as many subscript-triple ts as the number of colons

(" : ») appearing in the align-source- list. These are matched up in corresponding left-to­
right order, ignoring , for this purpose, any align-s ource that is not a colon and any

align-su bscrip t that is not a subscript-triplet. Consider a dimension of the align ee for
which a colon appears as an align-source and let the lower and upper bounds of that

array be LA an d U A. Let the corresponding subscript triplet be LT : UT : ST or its
equivalent . Then the colon could be replaced by a new , as-yet-unused dummy variable ,

say J , and the subscript triplet by the expression (J-LA) *ST+LT without affecting the

meaning of the directive. Moreover , the axes must conform , which means that

Copyrighted Material

Data Mapping

(rUT - LT + l l)
max(O , UA - LA + l) = max 0 , ST
must be true . (This is entirely analogous to the treatment of array assignment .)

1 1 7

To simplify the remainder o f the discussion , we assume that every colon in the align­

source- list has been replaced by new dummy variables in exactly the fashion just de­
scribed , and that every "*" in the align-source- list has likewise been replaced by an
otherwise unused dummy variable . For example ,

! HPF$ ALIGN A (: , * , K , : , : , *) WITH B (3 1 : , : , K+3 , 20 : 100 : 3)

may b e transformed into its equivalent

! HPF$ ALIGN A (I , J , K , L , M , N) WITH B (I-LBOUND (A , 1) +3 1 , &
! HPF$ L-LBOUND (A , 4) +LBOUND (B , 2) , K+3 , (M-LBOUND (A , 5 » *3+20)

with the attached requirements

SIZE (A , l) . EQ . UBOUND (B , 1) -30
SIZE (A , 4) . EQ . SIZE (B , 2)

SIZE(A , 5) . EQ . (100-20+3) /3

Thus we need consider further only the case where every align-so urce is a dummy variable
and no align-subs cript is a subscript- triplet .

Each dummy variab le is considered to range over all val id index values for the corre­

sponding dimension of the align ee. Every combination of possible values for the index

variables selects an element of the alignee . The align-spec indicates a corresponding el­
ement (or section) of the align-target with which that element of the a lign ee should be
aligned ; th is indicat ion may be a function of the index values , but the nature of this
function is syntactically restricted (as discussed above) to linear functions in order to
limit the complexity of the implementation . Each align-dummy variable may appear at
most once in the a lign-spec and only in certain rigidly prescribed contexts . The result is
that each a lign- subscript expression may contain at most one align - du m m y variable and
the expression is constrained to be a linear function of that variable . (Therefore skew
alignments are not possible .)

An asterisk "*" as an align-subscript indicates a replicated representation . Each ele­

ment of the a lignee is aligned with every position along that axis of the align- t a rget . It is
as if the compi ler were , for each "*" a lign-subscript , to replace the "*" by a new dummy
variable , automatically to add an extra dimension to the alignee, and then use the same
new dummy variable as the align-source for the new dimension . Thus the replicating

alignment

Copyrighted Material

1 18 Chapter 4

! HPF$ ALIGN A (J) WITH D (J • •)

roughly results in implementing A as a two-dimensional array with the specification

! HPF$ ALIGI A (J , K) WITH D (J , K)

The compiler then generates code that ensures that all the copies of the original A along
the extra dimension are updated consistently ; for example , a p iece of code such as

DO I = 1 , 200

A (I) = 3 . 7 • • I

END DO

is compiled roughly as if it were first transformed into

DO I = 1 , 200

A (I , :) = 3 . 7 • • I

END DO

By applying the transformations given above , al l cases of an align- subscript may be
conceptually reduced to either an int- expr (not involving an align- dummy) or an a lign­

subs crip t- use , and the align-sauree- list may be reduced to a list of index variables with
no "." or " : " . An align-subs cript-list may then be evaluated for any specific combination
of values for the align- dummy variables simply by evaluating each align-su bscript as an
expression . The resulting subscript values must be legitimate subscripts for the align­

target . (This implies that the alignee is not allowed to "wrap around" or "extend past
the edges" of an align-target .) The selected element of the alignee is then considered
to be aligned with the indicated element of the align- target; more precisely, the selected
element of the alignee is considered to be ultimately aligned with the same object with
which the indicated element of the align- target are currently ultimately aligned (possibly
itself) .

Once a relationship of ultimate alignment is established , it persists , even if the ulti­
mate align-target is redistributed , unless and until the alignee is realigned by a REALI GI

directive , which is permissible only if the align ee has the DYiAMIC attribute .

More examples of ALIGI directives follow :

INTEGER D l 00

LOGICAL D 2 (N , N)

REAL , DIMENSI ON (N , N) : : X , A , B , C , AR1 , AR2A , P , Q , R , S

! HPF$ ALIGN x C : , .) WITH 0 1 (:)

! HPF$ ALIGN (: , .) WITH 0 1 : : A , B , C , AR1 , AR2A

! HPF$ ALIGN WITH 02 , DYNAMIC : : P , Q , R , S

Copyrighted Material

Data Mapping 1 1 9

Note that , i n a align ee-list, the alignees must all have the same rank but need not all have
the same shape ; the extents need match only for dimensions that correspond to colons
in the align-sauTee- list. This turns out to be an extremely important convenience ; one of

the most common cases in current practice is aligning arrays that match in distributed
("parallel") dimensions but may differ in collapsed ("on-processor") dimensions :

REAL A (3 , N) , B (4 , 1) , C (43 , N) , Q (N)

! HPF$ DISTRIBUTE Q (BLOCK)

! HPF$ ALIGN (* , :) WITH Q : : A , B , C

Here there are processors (perhaps N of them) and arrays of different sizes (3 , 4 , 43)
within each processor are required. As far as HPF is concerned , the numbers 3 , 4 , and
43 may be different , because those axes will be col lapsed . Thus array elements with
indices differing only along that axis will all be aligned with the same element of Q (and
thus be specified as residing in the same processor) .

In the following examples , each directive in the group means the same thing , assuming
that corresponding axis upper and lower bounds mat ch :

! Second axis of X is collapsed

! HPF$ ALIGN x C : , *) WITH 0 1 (:)

! HPF$ ALIGN X (J , *) WITH D l (J)

! HPF$ ALIGN X (J , K) WITH D l (J)

! Replicat ed representat ion along second axis of 03

! HPF$ ALIGN X C : , :) W ITH 03 (: , * , :)

! HPF$ ALIGN X (J , K) WITH 03 (J , * , K)

! Transpos ing two axes

! HPF$ ALIGN X (J , K) WITH 02 (K , J)

! HPF$ ALIGN X (J , :) WITH 02 (: , J)

! HPF$ ALIGN x C : , K) WITH 02 (K , :)
! But there isn ' t any way t o get rid of *both* index variables ;

! the subs cript-triplet syntax alone cannot express transpo s it ion .

! Revers ing both axes

! HPF$ ALIGN X (J , K) WITH 02 (M-J+ l , N-K+ l)

! HPF$ ALIGN X C : , :) WITH 02 (M : l : - l , N : l : - l)

Copyrighted Material

1 2 0

! S imple cas e

! HPF$ ALIGN X (J , K) WITH D2 (J , K)

! HPF$ ALIGN X (: , :) WITH D2 (: , :)

! HPF$ ALIGN (J , K) WITH D2 (J , K) : : X

! HPF$ ALIGN (: , :) WITH D2 (: , :) : : X

! HPF$ ALIGN WITH D2 : : X

4.6 DYNAMIC D irect ive

Chapter 4

The DYNAMIC attribute specifies that an object may be dynamically realigned or redis­
tributed . The form of a dynamic- directive (H329) is :

DYNAMIC align ee- or- distri butee- list

where each alignee- or- distributee (H330) must be either an alignee (H3 1 6) or a distributee

(H307) .

Rules and restrictions:
1 . An object in COMMON may not be declared DYNAMIC and may not be aligned to an

object (or template) that is DYNAMIC . (To get this kind of effect , Fortran 90 modules
must be used instead of COMMON blocks .)

2 . A n object with the SAVE attribute may not b e declared DYNAMI C and may not be
aligned to an object (or template) that is DYNAMIC .

A REALIGN directive may not be applied to an alignee that does not have the DYNAMIC

attribute . A REDISTRIBUTE directive may not be applied to a distri butee that does not
have the DYNAMIC attribute .

A DYNAMIC directive may be combined with other directives , with the attributes stated
in any order , consistent with the Fortran 90 attribute syntax .

Example 4.3 The following two directives mean exactly the same thing :

! HPF$ DYNAMIC A , B , C , D , E

! HPF$ DUAMI C A , B , C , 0 , E

o

Example 4.4 The following two directives mean exactly the same thing:

! HPF$ DYNAMIC , ALIGN WITH SNEEZY
! HPF$ ALIGN WITH SNEEZY , DYNAMIC

x, Y, Z
X , Y , Z

Copyrighted Material

Data M apping

o

Example 4 . 5 The following two directives mean exactly the same thing :

o

! HPF$ DYNAMIC , DISTRIBUTE (BLOCK , BLOCK) X , Y
! HPF$ DISTRIBUTE (BLOCK , BLOCK) , DYNAMIC X , Y

Example 4 . 6 The three directives

! HPF$ TEMPLATE A (64 , 64) , B (64 , 64) , C (64 , 64) , D (64 , 64)

! HPF$ DISTRIBUTE (BLOCK , BLOCK) ONTO P : : A , B , C , D

! HPF$ DYNAMIC A , B , C , D

may be combined into a single directive as follows :

o

! HPF$ TEMPLATE , DISTRIBUTE (BLOCK , BLOCK) ONTO P , �
! HPF$ DIMENSION (64 , 64) , DYNAMIC : : A , B , C , D

4. 7 Allocatable Arrays and Pointers

1 2 1

A variable w i th the POINTER or ALLOCATABLE attribute may appear as an alignee in an
ALIGN directive or as a distributee in a DISTRIBUTE directive . Such directives do not
take effect immediately, however ; they take effect each time the array is allocated by
an ALLOCATE statement , rather than on entry to the scoping unit . The values of all
specification expressions in such a directive are determined once on entry to the scoping
unit and may be used multiple t imes (or not at all) . For example :

SUBROUTINE MILLARD_FILLMORE (N , M)

REAL , ALLOCATABLE , DIMENSION (:) A , B

! HPF$ ALIGN B (I) WITH A (I+N)

! HPF$ DISTRIBUTE A (BLOCK (M*2))

N = 43
M = 91

ALLOCATE (A (27))

ALLOCATE (B (1 3))

Copyrighted Material

1 2 2 Chapter 4

The values of the expressions I and "*2 on entry to the subprogram are conceptually
retained by the ALIGI and DISTRIBUTE direct ives for later use at allocation time . When
the array A is allocated , it is distributed with a block size equal to the retained value of

M*2 , not the value 182 . When the array B is allocated , it is aligned relative to A according
to the retained value of N, not its new value 43 .

Note that it would have been incorrect in the MILLARD.FILLMORE example to perform
the two ALLOCATE statements in the opposite order . In general , when an object X is
created it may be aligned to another object Y only if Y has already been created or
allocated . The following example illustrates several other incorrect cases .

SUBROUTINE WARREN_HARDING (P , Q)

REAL p (:)
REAL Q (:)
REAL R (SIZE (Q »

REAL , ALLOCATABLE : : S (:) , T (:)
! HPF$ ALIGN P (I) WITH T (I) ! *** Nonconforming !
! HPF$ ALIGN Q(I) WITH *T (I) ! * ** Nonconforming !

! HPF$ ALIGN R (I) WITH T (I) ! *** Nonconforming !

! HPF$ ALIGN S C I) WITH T (I)

ALLOCATE (S (S IZE (Q »)

ALLOCATE (T (SIZE (Q »)

! *** Nonconforming !

The ALIGN directives are not HPF-conforming because the array T has not yet been
allocated at the time that the various alignments must take place . The four cases differ

slightly in their details . The arrays P and Q already exist on entry to the subroutine ,
but because T is not yet allocated , one cannot correctly prescribe the alignment of P or
describe the alignment of Q relative to T . (See Section 5.5 for a discussion of prescriptive
and descriptive directives .) The array R is created on subroutine entry and its size can
correctly depend on the SIZE of Q , but the alignment of R cannot be specified in terms
of the alignment of T any more than its size can be specified in terms of the size of T. It
is permitted to have an alignment directive for S in terms of T , because the alignment
action does not take place until S is allocated ; however , the first ALLOCATE statement
is nonconforming because S needs to be aligned but at that point in time T is still

unallocated .
If an ALLOCATE statement is immediately followed by REDISTRIBUTE and/or REALIGN

directives , the meaning in princip le is that the array is first created with the statically
declared al ignment , then immediately remapped. In practice there is an obvious opti­
mization : create the array in the processors to which it is about to be remapped , in a
single step . H P F implementors are strongly encouraged to implement this optimization

Copyrighted Material

Data Mapping

and HPF programmers are encouraged to rely upon it . Here is an example :

REAL , ALLOCATABLE (: , :)
! HPF$ DYNAMIC

REAL , POUTER

TINKER , EVERS

TINKER . EVERS
CHAlCE (:)

! HPF$ DISTRIBUTE (BLOCK) , DYNAMIC : : CHANCE

READ 6 , M , N

ALLOCATE (TINKER (N*M , N*M »
! HPF$ REDISTRIBUTE TINKER(CYCLIC , BLOCK)

ALLOCATE (EVERS (N , N »
! HPF$ REALIGN EVERS (: , :) WITH TINKER (M : : M , 1 : : M)

ALLOCATE (CHANCE (10000 »

! HPF$ REDISTRIBUTE CHANCE (CYCLIC)

1 2 3

While CHANCE i s by default always allocated with a BLOCK distribution , i t should be
possible for a compiler to notice that it wi l l immediately be remapped to a CYCLIC
distribution . Similar remarks apply to TINKER and EVERS . (Note that EVERS is mapped

in a thinly-spread-out manner onto TIIKER j adjacent elements of EVERS are mapped to
elements of TINKER separated by a stride M . This thinly-spread-out mapping is put in the
lower left corner of TINKER, because EVERS (1 , 1) is mapped to TINKER (M , 1) .)

An array pointer may be used in REALIGN and REDISTRIBUTE as an alignee , align­

targ et, or distributee if and only if it is currently associated with a whole array, not an
array section . One may remap an object by using a pointer as an align ee or distrib utee

only if the object was created by ALLOCATE but is not an ALLOCATABLE array.

Any directive that remaps an object constitutes an assertion on the part of the pro­
grammer that the remainder of program execution would be unaffected if all pointers
associated with any portion of the object were instantly to acquire undefined pointer

association status , except for the one p ointer , if any, used to indicate the object in the

remapping directive .

If HPF directives were ever to be absorbed as actual Fortran statements , the previous

paragraph could be wr itten as "Remapping an object causes all pointers associated with

any portion of the object to have undefined p ointer association st atus , except for the
one pointer , if any , used to indicate the object in the remapp ing direct ive ." The more

complicated wording here is intended to avoid any implicat ion that the remapping direc­
tives , in the form of structured comment annotations , have any effect on the execution

semantics , as opposed to the execution speed, of the annotated program.)

When a n array is allocated , it will b e aligned to an existing template if there is an
explicit ALIGN directive for the allocatable variab le . If there is no explicit ALIGN directive ,

Copyrighted Material

124 Chapter 4

then the array will be ultimately aligned with itself. It is forbidden for any other object
to be ultimately aligned to an array at the t ime the array becomes undefined by reason
of deallocation . All this applies regardless of whether the name originally used in the
ALLOCATE statement when the array was created had the ALLOCATABLE attribute or the
POINTER attribute .

4 . 8 P ROCES S ORS D irective

The PROCESSORS directive declares one or more rectilinear processor arrangements , spec­
ifying for each one its name, its rank (number of dimensions) , and the extent in each
dimension . It may appear only in the specificatio n-part of a scoping unit . Every di­
mension of a processor arrangement must have nonzero extent ; therefore a processor
arrangement cannot be empty.

In the language of Section 14 . 1 . 2 of the Fortran 90 standard , processor arrangements
are local entities of class (1) ; therefore a processor arrangement may not have the same
name as a variable , named constant , internal procedure , etc . , in the same scoping unit .
N ames of processor arrangements obey the same rules for host and use association as
other names in the long list in Section 1 2 . 1 . 2 . 2 .. 1 of the Fortran 90 standard .

I f two processor arrangements have the same shape , then corresponding elements of
the two arrangements are understood to refer to the same abstract processor . (It is
anticipated that system-dependent directives provided by some HPF implementations
could overrule the default correspondence of processor arrangements that have the same
shape .)

If directives collectively specify that two objects be mapped to the same abstract
processor at a given instant during the program execution , the intent is that the two
objects be mapped to the same physical processor at that instant .

The intrinsic functions NUMBER_OF ...PROCESSORS and PROCESSORS.5HAPE may be used to
inquire about the total number of actual physical processors used to execute the program .
This information may then be used to calculate appropriate sizes for the declared abstract

processor arrangements .
The form of a processors-directive (H33 1) is :

PROCESSORS processors-de c/- list

where the form of a p rocess ors- decl (H332) is :

process o rs- n a m e [(expli cit-sh ap e-sp e c- list) 1

and a processors- n a m e (H333) is simply an o bject- n a m e .

Copyrighted Material

D at a M apping

Examples :

! HPF$ PROCESSORS p e N)
! HPF$ PROCESSORS Q (NUMBER_OF_PROCESSORS (» , &
! HPF$ R (8 , NUMBER_OF_PROCESSORS () /8)

! HPF$ PROCESSORS BIZARRO (1 972 : 1 997 , -20 : 17)

! HPF$ PROCESSORS SCALARPROC

125

If no shape is specified , then the declared processor arrangement is conceptually scalar .
A scalar processor arrangement may be useful as a way of indicating that certain

scalar data should be kept together but need not interact strongly with distributed data .
Depending on the implementation architecture , data distributed onto such a processor
arrangement may reside in a single "control" or "host" processor (if the machine has one) ,
or may reside in an arbitrarily chosen processor , or may be replicated over all proces­
sors . For target architectures that have a set of computat ional processors and a separate
scalar host computer , a natural implementation is to map every scalar processor arrange­
ment onto the host processor . For target architectures that have a set of computational
processors but no separate scalar "host" computer , data mapped to a scalar processor
arrangement might be mapped to some arbitrarily chosen computational processor or
replicated onto all computational processors .

An HPF compiler is required to accept any PROCESSORS declaration in which the
product of the extents of each declared processor arrangement is equal to the number
of physical processors that would be returned by the call NUMBER--DF ...PROCESSORS () . It
must also accept all declarations of scalar PROCESSOR arrangements . Other cases may be
handled as well , depending on the implementation .

For compat ibility with the Fortran 90 attribute syntax, an optional " . . " may be

inserted . The shape may also be specified with the DIMENSION attribute :

! HPF$ PROCESSORS : : RUBIK (3 , 3 , 3)
! HPF$ PROCESSORS , DIMENSION (3 , 3 , 3) : : RUBIK

As in Fortran 90, an expli cit- shape-spec-list in a process ors- decl will override an explicit
DIMENSION attribute :

! HPF$ PROCESSORS , DIMENSION (3 , 3 , 3) : : &

! HPF$ RUBIK , RUBIKS_REVENGE (4 , 4 , 4) , SOMA

Here RUBIKS..REVENGE is 4 x 4 x 4 while RUBIK and SOMA are each 3 x 3 x 3. (By
the rules enunciated above , however , such a statement may not be completely portable
because no HPF language processor is required to handle shapes of total sizes 27 and 64
simultaneously.)

Copyrighted Material

126 Chapter 4

Returning from a subprogram causes all processor arrangements declared local to that
subprogram to become undefined. It is not HPF-conforming for any array or template
to be distributed onto a processor arrangement at the time the processor arrangement
becomes undefined unless at least one of two conditions holds :

• The array or template itself becomes undefined at the same time by virtue of returning
from the subprogram .

• Whenever the subprogram is called , the processor arrangement is always locally de­
fined in the same way, with identical lower bounds , and identical upper bounds .

Note that second condition is slightly less stringent than requiring all expressions to
be constant . This allows calls to NUMBER-DF ...PROCESSORS or PROCESSORS...5HAPE to appear
without violating the condition .

Variables in COMMON or having the SAVE attribute may be mapped to a locally declared
processor arrangement , but because the first condition cannot hold for such variables
(they don 't become undefined) , the second condition must be observed. This allows
COMMOI variables to work properly through the customary strategy of putting identical
declarations in each scoping unit that needs to use them , while allowing the proces­
sor arrangements to which they may be mapped to depend on the value returned by
NUMBER-'JF ...PROCESSORS .

It may be desirable to have a way for the user to specify at compile time the number
of physical processors on which the program is to be executed . This might be speci­
fied either by a compiler-dependent directive , for example , or through the programming
environment (for example, as a UNIX command-line argument) . Such facilities are be­
yond the scope of the HPF specification , but as food for thought we offer the following
illustrative hypothetical examples :

! Declaration f or multiproces sor by ABC Corporat ion
! ABC$ PHYSICAL PROCESSORS (8)

! Declarat ion for mpp by XYZ Incorporated

! XYZ$ PHYSICAL PROCESSORS (65536)
! D e c l arat ion for hypercube machine by PDQ Limit ed

! PDQ$ PHYSICAL PROCESSORS (2 , 2 , 2 , 2 , 2 , 2 , 2)

! Declarat ion for two-dimens ional grid machine by TLA GmbH

! TLA$ PHYSICAL PROCESSORS (1 28 , 64)

l One of the preceding might affect the f ollowing

! HPF$ PROCESSORS P (NUMBER_OF_PROCESSORS (»

It may furthermore b e desirable to have a way for the user to specify the precise map­
ping of the processor arrangement declared in a PROCESSORS statement to the physical

Copyrighted Material

Dat a M apping 1 2 7

processors of the executing hardware. Again , this might be specified either by a compiler­
dependent directive or through the programming environment (for example , as a UNIX
command-line argument) ; such facilities are beyond the scope of the HPF specification ,
but as food for thought we offer the following i l lustrative hypothetical example : l

! PDQ$ PHYSICAL PROCESSORS (2 . 2 , 2 , 2 . 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2)

! HPF$ PROCESSORS G (e , 64 , 1 6)
! PDQ$ MACHINE LAYOUT G (: GRAY (O : 2) . : GRAY (6 : 1 1) , : B INARY (3 : 6 , 12 »

This might specify that the first dimension of G should use hypercube axes 0 , 1 , 2 with a

Gray-code ordering ; the second dimension should use hypercube axes 6 through 1 1 with
a Gray-code ordering; and the third dimension should use hypercube axes 3, 4, 5, and

12 with a binary ordering .

4.9 TEMPL ATE D irect ive

The TEMPLATE directive declares one or more temp lates , specifying for each the name ,
the rank (number of dimensions) , and the extent in each dimension . It must appear in
the specification-part of a scoping unit .

In the language of section 14 . 1 . 2 of the Fortran 90 standard, templates are local entities
of class (1) ; therefore a template may not have the same name as a variab le , named
constant , internal procedure , etc . , in the same scoping unit . Template names obey the
rules for host and use association as other names in the list in section 1 2 . 1 . 2 . 2 . 1 of the
Fortran 90 standard.

A template is simply an abstract space of indexed positions ; it can be considered as

an "array of nothings" (as compared to an "array of integers , " say) . A template m ay be
used as an abstract align-target that may then be distributed .

The form of a t e mplate- directive (H334) is :

TEMPLATE t e mp late- de cl- list

where the form of a template-decl (H335) is:

temp late-name [(explicit-sh ape-sp ec-list) 1

and a template- n ame (H336) is simply an object-nam e .

1 This example assumes that PDQ Limited has extended Fortran to allow arrays of rank greater than
seven.

Copyrighted Material

1 28 Chapter 4

Some examples fol low :

! HPF$ TEMPLATE A (N)
! HPF$ TEMPLATE B (N , N) , C (N , 2*N)
! HPF$ TEMPLATE DOPEY (100 , 100) , SIEEZY (24) , GRUMPY (17 , 3 , 5)

If the " : : " syntax is used , then the declared templates may optionally be distributed
in the same com bined- directive . In th is case all templates declared by the directive must
have the same rank so that the DISTRIBUTE attribute will be meaningful . The DIMENSION
attribute may also b e used .

! HPF$ TEMPLATE , DISTRIBUTE (BLOCK , *) : : WHINEY (64 , 64) , MOPEY (128 , 128)&

! HPF$ TEMPLATE , DIMENSION (91 , 9 1) : : BORED , WHEEZY , PERKY

Templates are useful in the particular situation where one must align several arrays

relative to one another but there is no need to declare a single array that spans the entire

index space of interest . For example , one m ight want four N x N arrays aligned to the
four corners of a template of size (N + 1) x (N + 1) :

! HPF$ TEMPLATE , DISTRIBUTE (BLOCK , BLOCK) : : EARTH (N+ 1 , N+ l)
REAL , DIMENSIDN (N , N) : : NW , NE , SW , SE

! HPF$ ALIGN NW (I , J) WITH EARTH (I , J)
! HPF$ ALIGN NE (I , J) WITH EARTH (I , J+ 1)
! HPF$ ALIGN SW (I , J) WITH EARTH (I + l , J)
! HPF$ ALIGN SE (r , J) WITH EARTH (I + 1 , J+ 1)

Templates may also be useful in making assertions about the mapping of dummy argu­

ments (see Section 5 .5) .
Unlike arrays , temp lates cannot be in COMMON . S O two temp lates declared i n different

scoping units will always be distinct , even if they are given the same name . The only

way for two program units to refer to the same template is to declare the template in a
module that is then used by the two program units .

Temp lates are not passed through the subprogram argument interface . The template

to which a dummy argument is aligned is always distinct from the temp late to which the

actual argument is aligned , though it may be a copy (see Section 5 . 4) . On exit from a

subprogram , an HPF implementation arranges that the actual argument is aligned w ith

the same template with which it was aligned before the call .

Returning from a subprogram causes all templates declared local to that subprogram t.o
become undefined . It is not HPF-conforming for any variable to be al igned to a template

at the time the temp late becomes un defined unless at least one of two conditions holds :

Copyrighted Material

Data M apping 1 2 9

• The var iable itself becomes undefined at the same time by virtue of returning from
the subprogram .
• Whenever the subprogram is called , the template is always locally defined in the same
way, with identical lower bounds , identical upper bounds, and identical distribution
information (if any) onto identically defined processor arrangements (see Section 4 .8) .

(Note that this second condition is slightly less stringent than requiring all expressions
to be constant . This allows calls to NUMBER-DF ..PROCESSORS or PROCESSORS-SHAPE to
appear without violating the condition .)

Variables in COMMON or having the SAVE attribute may be mapped to a locally declared
template , but because the first condition cannot hold for such variable (they don 't become
undefined) , the second condition must be observed .

4. 1 0 Fort ran Storage Associat ion a n d HPF

So far our discussion , with the exception of some fine print , might lead the reader to
think that all variables are candidates for the mapping directives . For some codes this
may be true , but there are important restrictions that are covered in this section .

For most of the lifetime of the Fortran language , efficient use of memory has been
very important . One use of COMMON and EQUIVALENCE in Fortran programs has been to
conserve memory space . This is called st orage association : storage units used for one set
of variables in one section of code that are reused for another set of variab les elsewhere .
More formally stated :

St o rage associat ion is the ass ociation of two or m o re data o bjects that

occurs when two or m o re st o rage sequ e n ces share o r a re aligned with o n e o r

m o re storage units .

- Fortran Standard (14 . 6 . 3 . 1)

I t should not surprise the reader that this multiple use of storage h as great potential
for mischief if mapping directives are applied , either explicitly or implicitly. The (useful)
Fortran tradition of separate compilation makes the problem worse because the compiler
may not know where and how the multiple use is taking place . For this reason , HPF
introduces certain rules that restrict the use of storage association . We first examine the
issues informally ; in Section 4 . 1 0 . 2 we present a more formal and detailed discussion .

4 . 1 0 . 1 Informal Introduction to Storage Association

First , we want to assure the reader that it is still okay to use COMMON and EQUIVALENCE
in an HPF program . It is necessary, however , to sort out the safe uses of COMMON and

Copyrighted Material

130

SUBROUTINE ONE

COMMON /A_OK/ X (128 , 10) , Y (256) , INX (128)
COMMON /DANGER/ TEMP (1 0 , 100) , DEPTH (1000) , LOC (1 000 , 2)

COMMON /PELIGRO/ A (1 0 , 1 0) , B (20 , 1 0) , C (30 , 1 0)

END SUBROUTINE ONE

SUBROUTINE TWO

COMMON /A_OK/ WORK (128 , 1 0) , TEST (256) , INX (128)

Chapter 4

COMMON /DANGER/ Ll (10 , 2) , L2 (200) , FILL (1780) , LOC (1 000 , 2)
COMMON /PELI GRO/ A 1 (1 00) , B l (200) , C l (300)

END SUBROUTINE TWO

Figure 4.6
Checking COIIIIOI blocks

EQUIVALENCE from the uses that have the potential to cause trouble . We strongly rec­
ommend that programmers writing new Fortran 90 code use features like MODULE with
the ren a m e feature (RH08) , derived types (structures) , and allocatable storage to avoid
the use of COMMON and EQUIVALENCE completely in new code .

When is it safe to use common blocks? If COMMOI is used solely as a way to create global
variables , rather than as a mechanism of storage reuse , then common variables can safely
be distributed . To be more specific , when a given common block is used for the same set
of variables (same size , same type , and same shape) everywhere it appears , then it is okay
to map the variab les in the COMMON , bllt the mappings must also be the same everywhere .
Only the variable names may differ . When an INCLUDE statement is used to introduce
the declaration of COMMON and its variables , this rule is relat ively straight forward for the
programmer to observe . Figure 4.6 gives a very simple example of some good and bad
uses of CaMMal . The variables in common block /A.JJK/ are the same shape , size , and
type . They may be mapped , either explicitly by the user or implicitly by the compiler .
The common blocks /DANGER/ and /PELIGRO/ both have problems . In SUBROUTINE TWO
the programmer has violated the rule in multiple ways . LOC is the same , and in the same
place in /DANGER/ in both subroutines , but the other variab les in /DANGER/ are different
in number , type, size and shape. In /PELIGRO/ it is just the shape that differs . It is still
okay to have common blocks like /DANGER/ and /PELIGRO/ in a code . But they must be

marked as sequential everywhere they occur . The SEQUENCE directive is supplied for this

Copyrighted Material

D ata Mapping 1 3 1

purpose . The following directive should appear in both subroutines for this code to be
used in HPF .

! HPF$ SEQUENCE /DANGER/ , /PELIGRO/

The notion s equ ential and nonsequential along with the form of the SEQUENCE directive
is given in the next section .

It should be fairly obvious why we requ ire that the explicit mappings be the same

everywhere the COMMON is used. If this were not the case, a check for dynamic redis­
tribution would be required on entry to every subroutine and that overhead woul d be
unacceptable . The requirement for the variables to be the same shape comes from the
need to guarantee that the compiler can use the same method to access the (potentially

distributed) variable everywhere . If some component were a different shape or type, the

compiler might apply different default distribu tions .
What about EQUIVALENCE? As with COMMON, there are some uses of EQUIVALEICE that

are relatively benign such as a simple rename of a variable while other uses create complex

relationships between variables that inh ibit mapping . In HPF, it is the case that any use

of EQUIVALENCE with (or overlapping) a variable causes that variable to be sequential .

It is not difficult to check the basic rule that applies to mapping a variable involved in

EQUIVALENCE: if there is one variable that is as big as (or bigger than) all of the other
variables related by EQUIVALEIlCE, this variable is called a cover. If this cover is a 1-
dimensional variable , it may be mapped . The precise definition of a cover is given in the

next section .

Why restrict covers to I-dimensional for mapping? If a variable is a multi-dimensional
array, the mapping access functions can get quite sophisticated for some distributions .
Suppose this variable were a cover . If the other variables associated with this variable

via EQUIVALENCE were also multi-dimensioned , the access to these equivalenced variables
might be a very messy composite function . On the other hand , if the distributed cover is
a single dimensional array, the mapping is straightforward for all equivalenced variab les .

4. 1 0 . 2 St orage A ssociation i n More Detail

In this section we will define the notions of sequ e ntial and nonsequential as they apply to
variab les and common blocks . But first we will introduce the form of the directives sup­
plied to designate the sequentiality of data. It is also useful to give the formal definition
of cover as used with EQUIVALENCE before discussing the sequentiality of variables .

Sequence Directives A SEQUENCE directive is defined to allow a user to declare ex­

plicitly that variables or common blocks are to be treated by the compiler as sequentiaL

The form of a sequ e n ce- directive (H70 1) is one of:

Copyrighted Material

132

SEQUENCE

SEQUENCE [: : 1 asso ciation- name-list

NO SEQUENCE
NO SEQUENCE [: : 1 association- name-list

and an association-name (H702) is one of:

v aria ble n a m e
I [comm on- block- n ame] I

Rules and restrictions:

Chapter 4

1 . A variable or common block name may appear at most once in a s equ ence- directive

within any scoping unit .

2. A sequ e n ce- directive belongs in the specification part of a program unit .
3 . The result variable of an array-valued function that is not an intrinsic function is a

nonsequential array. It may not appear in any HPF SEQUENCE directive .

A sequence- directive with an empty associ ation-name-list is treated as if it contained
the name of all implicitly mapped variables and common blocks in the scoping unit
that cannot otherwise be determined to be sequential or nonsequential by their language
context .

Normally, only the SEQUENCE directive is required, however some implementations may

supply an optional compilation environment where variables are sequential by default .
For completeness in such an environment , HPF defines the NO SEQUENCE directive to
allow a user to establish that the usual nonsequential default should apply to a scoping
unit , or selected variables and common blocks within the scoping unit .

Covers and Aggregates Often EQUIVALENCE is used simply to rename a variable or
to give a new name to a part of a variable . However , it is possible in Fortran to link
an elaborate string of variables together by over lapping the storage of mUltiple variables
with one or more EQUIVALENCE statements . In HPF we call this an aggregate vari a ble

group. If there is a member variable that is exactly as big as the aggregate variable
group , we call it a cover. The reader is encouraged to look at the examples in Figure 4 . 7
to get an informal i dea what these terms mean before reading the next paragraph which
gives a definition of the terms using some formal Fortran 90 terminology with reference

numbers from the Fortran 90 standard .
An aggrega t e varia ble group is a collection of variab les whose individual storage se­

quences are parts of a single storage sequence . Variables associated by EQUIVALENCE
statements or by some combination of EQUIVALENCE and COMMON statements form an ag­
gregate variable group. The size of an aggregate variable group is the number of storage

Copyrighted Material

D at a Mapping 1 3 3

IMPLICIT REAL (A-Z)

COMMON /FOO/ A (100) , B (1 00) , C (100) , 0 (100) , E (1 0 0)

DIMENSION X (100) , Y (150) , Z (200)

! Example 1 : shoving a s impl e cover of tvo variable s

EQUIVALEICE C A (l) , Z (l))
! Four component s : (A , B) , C , 0 , E with s iz e s 200 , 100 , 1 00 , 100
! Z i s a cover of A , B

! Example 2 : show ing how an aggr egate group consumes var iabl e s
EQUIVALENCE (B (100) , Y (l))

! Thre e components A , (B , C , D) , E w ith siz e s 100 , 300 , 1 00
! B , C , and D are an aggr egate variable group but there is no cover

! Example 3 : show ing that a group can extend the l ength of common

EQUIVALENCE (E (l) , Y (l))
! F i v e components : A , B , C , 0 , E with s iz e s 100 , 100 , 100 , 100 , 1 5 0
! Y i s a cover of E

! Example 4 : showing how a group may be a compos ite of group s

EQUIVALENCE (A (5 1) , X (l))
EQUIVALENCE (B (100) , Y (1))

! Two component s (A , B , C , D) , E w ith s izes 400 , 100
! There i s no cover for the group w ith A , B, C , 0 , X and Y

! Example 6 : showing local variable s making an aggregat e group
EQUIVALENCE (Y C 1 00) , Z (l »

l One aggregate v ar iable group (Y , Z) with s iz e 299
! No COMMON block involved and no cover

! Example 6 : show ing how a common block becomes s equential

! HPF$ SEQUENCE /FOO/
! The COMMON has one component , (A , B , C , D , E) v ith s ize 600

Figure 4 .7
Examples of aggregate variable groups and covers

Copyrighted Material

1 34 Chapter 4

units in the group 's storage sequence (14 . 6 . 3 . 1) . If there is a member in an aggregate
variable group whose storage sequence is totally associated (1 4 . 6 . 3 .3) with the storage
sequence of the aggregate variable group , that variable is called an aggregate cover or
simply a cover.

Sequential and Nonsequential Common Blocks In HPF a common block is n o n ­

sequential by definition , unless there is an explicit SEQUENCE directive to specify that it is
sequential. All of the common blocks in Figure 4 . 7 are nonsequential except Example 6.
A sequential co mmon block has a single common block storage sequence (5 .5 . 2 . 1) . The
variables of a sequential common block are defined to form a single aggregate variable
group .

A common block contains a sequence of compone nts. Each component is either an
aggregate variable group , or a variable that is not a member of any aggregate variable
group . Sequential common blocks contain a single component . Nonsequential common
blocks may contain multiple components that may be nonsequential or sequential vari­
ables or aggregate variable groups.

As an aid to porting old FORTRAN programs , some implementations may provide a

compilation environment where the default definition of a common block is sequential.

Sequential and Nonsequential Variables HPF variables are either sequent ial or
nonsequential as determined by their context in a program or by explicit directives . A
variab le is sequential if and only if any of the following holds:

• It appears in a sequential common block ;
• It is a member of an aggregate variable group ;
• It is an assumed-size array ;
• It is a component of a derived type with the Fortran 90 SEQUENCE attribute ; or
• It is declared to be sequential in an HPF SEQUENCE directive .

A sequential variable can be storage associated or sequence associated (see Section 5 . 9) ;
nonsequential variables cannot .

We say a variable is explicitly mapped if it appears in an HPF alignment or distribution
directive within the scoping unit in which it is declared ; otherw ise it is implicitly m apped.

Storage Association Rules There are some rules about storage association to which
HPF programs must conform:

• A sequential variable may not be explicitly mapped unless it is a scalar or rank­
one array that is an aggregate cover . If there is more than one aggregate cover for an
aggregate variable group , only one may be explicitly mapped.

Copyrighted Material

Data. Mapping 135

• No explicit mapping may be given for a component of a derived type having the
Fortran 90 SEQUEICE attribute. (By its definition , this attribute demands storage ass0-

ciation .)

If a common block is nonsequential , then all of the following must hold:

• Every occurrence of the common block has exactly the same number of components
with each corresponding component having a storage sequence of exactly the same size ;

• If a component is a nonsequential variable in any occurrence of the common block ,
then it must be nonsequential with identical type , shape , and mapping attributes in every
occurrence of the common block ;

• If a component is sequential and explicitly mapped (either a variable or an aggregate
variable group with an explicitly mapped aggregate cover) in any occurrence of the
common block , then it must be sequential and explici t ly mapped with identical mapping
attributes in e v e ry occurrence of the common block . In addition , the type and shape of
the explicitly mapped variable must be identical in all occurrences ; and
• Every occurrence of the common block must be nonsequential .

If any of these constraints are not met , it is the programmer 's responsibility to declare

every instance of the common block as sequential using a SEQUENCE directive .
Under these rules , variables in a common block can be mapped as long as the compo­

nents of the common block are the same in every scoping unit that declares the common
block . The rules above also allow variables involved in an EQUIVALENCE statement to
be mapped by the mechanism of declaring a rank-one array to cover exactly the aggre­
gate variable group and mapping that array . Notice in Figure 4 . 7 that every example

has a different set of components for IFOo/ . If these examples all came from the same
source program and each example were in a different sub.routine , the programmer would
have to declare IFccl sequential everywhere it is used , as was done in Example 6. This
is required even though the actual set of variables in the common block are identical

everywhere .
As a reminder , an HPF program is nonconforming if it specifies any mapping that

would cause a scalar data object to be mapped onto more than one abstract processor
(Section 4 .4 , page 1 10) . This puts a constraint on the sequential variables and aggregate

covers that can be mapped. In parti cular , a program is nonconforming if it directs double
precision or complex arrays to be mapped such that the storage units of a single array
element are split because of some EQUIVALENCE statement or common block layout .

In Figure 4 . 8 we give an example of a common block with a m i x of sequential and
nonsequential variables . IMIXI in both subroutines is a nonsequential common block
with an identical set of four components . Components one and four are sequential and

Copyrighted Material

1 3 6

SUBROUTINE ALPHA
COMMON /MIX/ A (20 , 40) , E (i0 , i0) , G (i0 , i00 , i 0) , H (i00) , P (i00)

REAL COVER (200)
EQUIVALENCE (COVER (i) , R (i »

! HPF$ SEQUENCE : : A

! HPF$ ALIGN E . . .
! HPF$ DISTRIBUTE COVER (CYCLIC (2 »

END SUBROUTINE ALPHA

SUBROUTINE BETA
COMMON /MIX/ A (800) , E (1 0 , 10) , G (i 0 , i00 , i 0) , Z (200)

! HPF$ SEQUENCE : : A , Z

! HPF$ ALIGN E . . .

! HPF$ D ISTRIBUTE Z (CYCLIC (2 »

END SUBROUTINE BETA

Figure 4.8
Examples of mapping covers

Copyrighted Material

Chapter 4

Data M apping 137

components two and four are explicitly mapped , with the same type , shape and mapping

attributes .
The first component , A , is declared sequential in both subroutines because its shape is

different . It may not be exp licit ly mapped in either because it is not rank-one or scalar

in ALPHA . The second component , E , is explicitly mapped , while the third component , G
is imp licit ly mapped . E and G agree in type and shape in both occurrences . E must have
the same explicit mapp ing and G must have no explicit mapping in both occurrences ,

since they are nonsequential variables .

The last component in BETA , Z , must be declared sequential because there is an
EQUIVALENCE statement in ALPHA . The variable COVER in ALPHA provides an aggregate
cover of the aggregate variable group (H , p) . It is i-dimensional so it is eligible for map­
ping . Notice that Z and COVER are the same shape , size, and type . Notice also that the
mapp ing specified is the same in each subroutine .

As a summary, we give a check-list for a programmer to determine the st atus of a
variable or common block . The following questions can be applied , in order :

• Does the variable appear in some explicit language context which dictates sequential
(e .g . , EQUIVALENCE) or nonsequential (e .g . , array-valued function result variable)?

• If not , does the variable or common block name appear in the list of names on a
SEQUENCE or NO SEQUENCE directive?
• If not , does the variable appear in an explicit mapping directive?

• If not , does the scoping unit contain a nameless SEQUENCE or NO SEQUENCE?
• If not , is the compilation affected by some special implementation-dependent environ­
ment which dictates that names default to SEQUENCE?
• If not , then the comp iler will consider the variable or common block name nonsequen­
tial and is free to apply data mapping optimizat ions disregarding Fortran sequence and
storage association .

Copyrighted Material

5 Data Mapping for Procedure Argument s

The rules for data mapping are more complicated when procedure calls are involved.

The HPF alignment and distribution directives have extra features that apply only to

dummy arguments: a directive for a dummy argument may be prescriptive, descriptive,
or transcriptive, and the template for a dummy argument may be natural or inherited.

There are also some restrictions on the use of sequence association .

5.1 Data Mapping for Dummy Variables

A general principle of the design of HPF is that a subprogram cannot permanently alter

the mappings of data visible to its caller. (This restriction is intended to allow a compiler

to generate more efficient code, because the compiler can rely on declared data mappings
throughout the body of a scoping unit without concern for the possibility that a call to

a subprogram might rearrange data.)
On the other hand, it is useful to allow a subprogram to remap data received through a

dummy argument. As a simple example, a subroutine might receive two array arguments

A and B and apply an algorithm that is much more efficient when A and B are aligned.

But generality demands that the subroutine operate correctly even when the actual array

arguments are not aligned.

The solution adopted in HPF is that a subprogram may include HPF directives that

prescribe the alignment or distribution of dummy arguments. Such directives are identical

to those for non-dummy variables. For example :

!HPF$ DISTRIBUTE Z(BLOCK.*.CYCLIC)

If the actual argument does not satisfy the directives, then an implicit remapping must

occur so as to satisfy the directives. Such an implicit remapping is not visible to the

caller; when execution resumes following the call, everything must be as if no remapping

had occurred .

On yet another hand, remapping a large piece of data may impose a large run-time

execution cost, so it is not desirable to require remapping on entry to a subprogram. HPF
allows a subprogram to specify, for a given dummy argument, that the corresponding

actual argument should never be implicitly remapped; instead, the subroutine should be

able to operate on the actual argument data however it happens to be distributed.

!HPF$ UHERIT Z

This avoids the overhead of remapping actual argument data, but the subprogram it­

self may execute more slowly because it must handle the generality of arbitrary data

mappings .

Copyrighted Material

140 Chapter 5

Therefore HPF provides one more option: the subprogram may specify no remapping
of an actual argument but also assert that the actual argument will have a particular
alignment or distribution.

! HPF$ D ISTRIBUTE *Z(BLOCK,*,CYCLIC)

This allows maximal efficiency but requires the caller to provide an actual argument that
satisfies the assertion.

Let us examine some more specific illustrations of these concepts. As we will see,
if explicit interfaces are used, then directives need not match in the caller and callee,

because the. HPF compiler will have the necessary information at compile time to perform
a remapping. If explicit interfaces are not used, everything is still okay if the actual

mapping of the actual argument matches the declared mapping of the dummy argument,
or if the callee admits remapping of the actual argument.

Figure 5.1 shows five subroutines: KOVACS, WOOD , ELDER, and CLARKE each call MINGO.

Now subroutine MINGO prefers to receive its argument M with (BLOCK ,BLOCK) distribution

(perhaps this minimizes communications costs within the subroutine) so it contains a

DISTRIBUTE directive for its dummy argument. This is called a prescriptive directive : it
prescribes a mapping for the dummy argument.

Subroutine KOVACS has a local array K that it declares to be (*, CYCLIC) . When it passes
array K to MINGO, the data must be implicitly remapped so that the dummy argument has
a (BLOCK,BLOCK) distribution. When subroutine KOVACS resumes execution on return
from the call to MINGO , the array K within KOVACS still has (*,CYCLIC) distribution.

Subroutine WOOD has a local array t1 that it declares to be (BLOCK,BLOCK) . When it
passes array W to MINGO , nothing needs to be done. (However, in some implementations

there might be a small run-time cost simply for testing whether remapping might be

necessary.)
Subroutine ELDER, like KOVACS, has a local array that it declares to be (*. CYCLIC) . But

ELDER also contains a Fortran 90 interface block describing MINGO. When it passes array

E to MINGO, the data must be implicitly remapped so that the dummy argument has a

(BLOCK ,BLOCK) distribution. If ELDER is compiled separately from MINGO, the information

in the interface block may allow the compiler to generate more efficient remapping code.
When subroutine ELDER resumes execution on return from the call to MINGO I the array E

within ELDER still has (* ,CYCLIC) distribution.
Subroutine CLARKE , like WOOD, has a local array C that it declares to be (BLOCK . BLOCK).

But CLARKE also contains a Fortran 90 interface block describing MINGO. When it passes

array C to MINGO , nothing needs to be done. The information in the interface block allows

a compiler to determine at compile time that no remapping will be required.

Copyrighted Material

Data Mapping for Procedure Arguments

SUBROUTINE KOVACS

REAL K(100,100)

!HPF$ DISTRIBUTE K(*,CYCLIC)

CALL MINGO(K)

END

implicit remapping

SUBROUTINE ELDER

REAL E(100,100)

!HPF$ DISTRIBUTE E(*,CYCLIC)

INTERFACE

SUBROUTINE MINGO(M)

REAL M(100, 100)

SUBROUTINE WOOD

REAL W (100,100)

!HPF$ DISTRIBUTE W(BLOCK,BLOCK)

CALL MINGO(W)

END

no remapping required

L..-,,....L-......J W
I
T

SUBROUTINE CLARKE

REAL C (100,100)

!HPF$ DISTRIBUTE C(BLOCK,BLOCK)

INTERFACE

SUBROUTINE MINGO(M)

REAL M(100, 100)

141

!HPF$ DISTRIBUTE M(BLOCK,BLOCK) !HPF$ DISTRIBUTE M(BLOCK,BLOCK)

END SUBROUTINE MINGO END SUBROUTINE MINGO

END INTERFACE END INTERFACE

CALL MINGO(E) CALL IHNGO(C)

END END

implicit remapping

(known at compile time)

no remapping required
(known at compile time)

'--...I....�M

SUBROUTINE MINGO(M)

REAL M(100, 100)

!HPF$ DISTRIBUTE M(BLOCK,BLOCK»

END

Figure 5.1
Treatment of a prescriptive directive for a dummy argument

Copyrighted Material

L..-,..-'-� C
I
I

142 Chapter 5

Figure 5.2 shows five more subroutines: PROHIAS, BERG, DAVIS, and GAINES each call
JAFFEE. Now subroutine JAFFEE is willing to receive its argument J with any distribution,
so it contains a DISTRIBUTE directive for its dummy argument that has simply asterisks
"*" in place of a distribution format list and processors arrangement. This is called a
transcriptive directive: the mapping of the dummy is simply copied, or transcribed, from

the mapping of the actual argument. The intent is that if the argument is passed by

reference, no movement of the data will be necessary at run time. Note, by the way, that
transcriptive directives are not included in Subset HPF.

(Asterisks may be used in two different ways in a DISTRIBUTE directive: within a dist­
format-list to indicate on-processor distribution, or to replace a dist-format-list and its

surrounding parentheses. Thus, if HUMOR is a dummy argument, then

! HPF$ DISTRIBUTE HUMOR (*)

IS a prescriptive specification of HUMOR as residing within a single abstract processor,
whereas

!HPF$ DISTRIBUTE HUMOR *

is a transcriptive specification indicating that any distribution is acceptable and that the
actual argument should not be remapped.)

Subroutine PROHIAS has a local array P that it declares to be (*, CYCLIC). When it
passes array P to JAFFEE, no remapping occurs. Subroutine JAFFEE must be prepared to

handle its dummy argument J with (*, CYCLIC) distribution.
Subroutine BERG has a local array B that it declares to be (BLOCK, BLOCK). When it

passes array B to JAFFEE, no remapping occurs. Subroutine JAFFEE must be prepared to

handle its dummy argument J with (*, CYCLIC) distribution.
Subroutine DAVIS, like PROHIAS, has a local array that it declares to be (*,CYCLIC).

But DAVIS also contains a Fortran 90 interface block describing JAFFEE. When it passes

array D to JAFFEE, no remapping occurs. If DAVIS is compiled separately from JAFFEE,

the information in the interface block informs the compiler that JAFFEE will accept any
distribution, which may allow the compiler to generate more efficient code for the call.

Subroutine GAINES, like BERG, has a local array G that it declares to be (BLOCK, BLOCK).

But GAINES also contains a Fortran 90 interface block describing JAFFEE. When it passes
array G to JAFFEE, no remapping occurs. As with DAVIS, the information in the interface

block may allow the compiler to generate more efficient code.

Observe that subroutine JAFFEE specifies the INHERIT attribute for its dummy argu­

ment J. If it did not, then it might be necessary to remap the actual argument after

all, for the following subtle technical reason: for any given system (and the choices that

system might make concerning default mappings), it must be possible to describe the

Copyrighted Material

Data Mapping for Procedure Arguments

SUBROUTIHE PROHIAS

REAL P(100,100)

!HPF$ DISTRIBUTE P(*,CYCLIC)

CALL JAFFEE(P)

END

no remapping occurs

SUBROUTINE DAVIS

REAL D(100,100)

!HPF$ DISTRIBUTE D(*,CYCLIC)

INTERFACE

!HPF$

!HPF$

SUBROUTINE JAFFEE(J)

REAL J(100,100)

DISTRIBUTE J * ONTO *

IHHERIT J
EHD SUBROUTIHE JAFFEE

END INTERFACE

CALL JAFFEE(D)

END I-I-I-"""""'r'-'-'D

no remappmg occurs
(known at compile time)

SUBROUTINE BERG

REAL B(100, 100)

!HPF$ DISTRIBUTE B(BLOCK,BLOCK)

CALL JAFFEE(B)

END L.......,,-I----I B
I
I

no remapping occurs

SUBROUTINE GAINES

REAL G (100,100)

!HPF$ DISTRIBUTE G(BLOCK,BLOCK)

INTERFACE

!HPF$

!HPF$

SUBROUTINE JAFFEE(J)

REAL J(100,100)

DISTRIBUTE J * ONTO *

INHERIT J
END SUBROUTINE JAFFEE

END INTERFACE

CALL JAFFEE(G)

END L.......,,-I----J G
I
I

no remapping occurs
(known at compile time)

143

any

'--_--I J

SUBROUTINE JAFFEE(J)

REAL J(100,100)

subroutine JAFFEE

handles any mapping for
its dummy argument J

!HPF$ DISTRIBUTE J * ONTO *

! HPF$ INHERIT J

END

Figure 5.2
Treatment of a transcriptive directive for a dununy argument

Copyrighted Material

144 Chapter 5

mapping of every data object through the use of HPF directives to that system. It is
always possible to describe the mapping of a dummy argument by means of an inherited
template or its equivalent, but not every possible data mapping can be specified by use
of a natural template. See Section 5.4 for further discussion of natural and inherited

templates and of the INHERIT directive.

For now, suffice it to remark that the INHERIT attribute always implies the default

distribution DISTRIBUTE * ONTO * , so it is convenient and perhaps st.ylistically pleasant
simply to omit transcriptive DISTRIBUTE directives such as

!HPF$ DISTRIBUTE J * ONTO *

and use INHERIT by itself to indicate transcriptive acceptance of any data mapping:

SUBROUTINE JAFFEE (J)

REAL J (100, 1 00)

! HPF$ INHERIT J ! Implies DISTRIBUTE J * ONTO *

Figure 5.3 shows one more set of five subroutines: ARAGONES, NORTH, SIEGEL, and
TORRES each call RICKARD. Now subroutine RICKARD prefers to receive its argument R
with (BLOCK, BLOCK) distribution and furthermore asserts that the caller will provide
an actual argument that is so distributed. Therefore RICKARD contains a DISTRIBUTE
directive for its dummy argument that has an asterisk-meaning that no remapping will

be required-followed by a distribution format list. This is called a descriptive directive:
it describes the mapping of the dummy argument and claims that no remapping of the

actual will be required to satisfy this description. (The intent is that if the argument is

passed by reference, no movement of the data will be necessary at run time. All this is

under the assumption that the language processor has in fact observed all other directives.

While a conforming HPF language processor is not required to obey mapping directives, it

should handle descriptive directives with the understanding that their implied assertions

are relative to this assumption.)
Subroutine ARAGONES has a local array A that it declares to be (*, CYCLIC) . When

it passes array A to RICKARD, the mapping of A does not satisfy the description for the

dummy R. This call is nonconforming and the behavior of the program is not specified

by HPF.
Subroutine NORTH has a local array N that it declares to be (BLOCK. BLOCK) . When

it passes array N to RICKARD, nothing needs to be done; the mapping of N satisfies the

description for the dummy R.
Subroutine SIEGEL, like ARAGONES, has a local array that it declares to be (* , CYCLIC) .

But SIEGEL also contains a Fortran 90 interface block describing RICKARD. When it
passes array S to RICKARD, the data must be implicitly remapped to the (BLOCK, BLOCK)

Copyrighted Material

Data Mapping for Procedure Arguments

SUBROUTINE ARAGONES

REAL A(100,100)

!HPF$ DISTRIBUTE A(*,CYCLIC)

CALL RICKARD(A)

END

nonconforming call

SUBROUTINE SIEGEL

REAL S(100,100)

!HPF$ DISTRIBUTE S(*,CYCLIC)

INTERFACE

SUBROUTINE RICKARD(R)

REAL R(100,tOO)

SUBROUTINE NORTH

REAL N(100, 100)

!HPF$ DISTRIBUTE N(BLOCK,BLOCK)

CALL RICKARD(N)

END

no remapping required

SUBROUTINE TORRES

REAL T(100,100)

r

!HPF$ DISTRIBUTE T(BLOCK,BLOCK)

INTERFACE

SUBROUTINE RICKARD(R)

REAL R(100, 100)

145

!HPF$ DISTRIBUTE *R(BLOCK,BLOCK) !HPF$ DISTRIBUTE *R(BLOCK,BLOCK)

END SUBROUTINE RICKARD END SUBROUTINE RICKARD

END INTERFACE END INTERFACE

CALL RICKARD(S) CALL RICKARD(T)

END LJ..I...L...U,J-U S END

I
implicit remapping

(known at compile time)

no remapping required
(known at compile time)

L--J....---JR

SUBROUTINE RICKARD(R)

REAL R(100, tOO)

!HPF$ DISTRIBUTE *R(BLOCK,BLOCK»

END

Figure 5.3
Treatment of a descriptive directive for a dummy arglllIlent

Copyrighted Material

r

146 Chapter 5

distribution specified in the interface block. In other words, descriptive directives in an
interface block must be treated as if they were prescriptive. This is discussed further in

Section 5.5.

Subroutine TORRES, like NORTH, has a local array that it declares to be (BLOCK, BLOCK) .

But TORRES also contains a Fortran 90 interface block describing RICKARD. When it passes
array T to RICKARD, nothing needs to be done. The information in the interface block

allows a compiler to confirm at compile time that the mapping of the actual argument
will satisfy the description of the dummy.

These examples , while perhaps exhausting , are not exhaustive. Some additional points
t o observe :

• It is likely most helpful to an HPF compiler to specify, where possible, not only the

distribution formats for dummy arguments but the specific processors arrangement (s)
onto which they are distributed.
• Conversely , it is best to specify DISTRIBUTE * ONTO * (or INHERIT) , rather than

simply *, to ensure that an actual argument will not be remapped.

• The examples show only arrays of fixed shape (100, 100). There is no reason why
assumed-shape arrays, for example, cannot be specified.

• It is permitted to use an ALIGN directive instead of a DISTRIBUTE directive on a
dummy argument; ALIGN directives have both prescriptive and descriptive forms (but

not transcriptive).

As an illustration of some of these points, consider this code:

SUBROUTINE MELVIN (AXOLOTL.POIUYT)

REAL AXOLOTL(:.:),POIUYT(:.:)

!HPF$ IIHERIT, DISTRIBUTE *(BLOCK.BLOCK) AXOLOTL

!HPF$ ALIGN POIUYT (:.:) WITH *AXOLOTL(:,:)

The two arguments are assumed-shape arrays. The HPF directives convey some inter­

esting information about them:

• The INHERIT attribute for AXOLOTL implies the default distribution DISTRIBUTE *

ONTO *. Part of this default is then explicitly overridden, so the resulting specification

is DISTRIBUTE *(BLOCK, BLOCK) ONTO *. Therefore the actual argument for AXOLOTL is

never remapped.
• It is asserted that the template of the actual argument for AXOLOTL will already be

distributed (BLOCK, BLOCK) .
• It is asserted that the actual argument for POIUYT will a lready be aligned with

AXOLOTL; this actual also should not be remapped .

Copyrighted Material

Data Mapping for Procedure Arguments 147

• It is asserted that AXOLOTL and POIUYT will have the same shape (though they may

have a different shared shape on each entry to MELVIN) . (Note that the alternative

!HPF$ ALIGN POIUYT(I,J) WITH *AXOLOTL(I,J)

would allow the possibility that POIUYT not have the same shape as AXOLOTL-it might

be smaller along any or all dimensions-but still be aligned with the "upper left corner"

of AXOLOTL.

5.2 DISTRIBUTE Directives and Dummy Arguments

The syntax for the DISTRIBUTE directive given in Section 4.4 omitted certain options
relevant only to dummy arguments. The complete syntax for these options is explained

here. Note that the options related to dummy arguments may be used only in DISTRIBUTE

directives, not in REDISTRIBUTE directives.

The form of a distribute-directive (H303) is:

DISTRIBUTE distributee dist-directive-stuff

DISTRIBUTE dist-attribute-stuff :: distributee-list

(Note that the second form is a special case of a combined-directive (H30 1).)
The form of dist-directive-stufJ (H305) is one of

dist-format-clause

dist-format-clause dist-onto-clause

The form of dist-attribute-stufJ (H306) is one of:

dist-form at-clause

dist-format-clause dist-onto-clause

dist-onto-clause

The form of a dist-format-clause (H308) is:

(dist-format-list)

* (dist-format-list

*

These forms are prescriptive, descriptive, and transcriptive, respectively; the last two

may be used only for dummy arguments.

A dist-format (H309) is one of:

Copyrighted Material

148

BLOCK [(int-expr) 1
CYCLIC [(int-expr) 1
*

An asterisk as a d2st-format indicates on-processor distribution.

The form of a dist-onto-clause (H310) is:

ONTO dist-target

where the dist-target (H311) is one of:

processors-name

* processors-name
*

Chapter 5

where processors-nam e is defined by a PROCESSORS directive . These forms are prescrip­
tive, descriptive, and transcriptive, respectively; the last two may be used only for dummy
arguments.

Rules and restrictions:

1. If either the dist-format-clause or the dist-target in a DISTRI BUTE directive begins

with "*" then every distributee must be a dummy argument.

2. Neither the dist-format-clause nor the dist-target in a REDISTRIBUTE directive may
begin with "*" .

3. If an ONTO clause is present and mentions a processors-name, it must. name a proces­

sors arrangement declared in a PROCESSORS directive (see Section 4.8).

4. The other rules given in Section 4.4 also apply.

5.3 ALIGN Directives and Dummy Arguments

The syntax for the ALIGN directive given in Section 4 .. 5 omitted certain options relevant

only to dummy arguments. The complete syntax for these options is explained here. Note
that the options related to dummy arguments may be used only in ALIGN directives, not

in REALIGN directives .
The form of an align-with-clause (H319) is:

WITH align-spec

where the form of an align-spec (H320) is one of:

align-target [(align-subscript-list) 1
* align- target [(align-subscript-list)

Copyrighted Material

Data Mapping for Procedure Arguments 149

These forms are prescriptive and descriptive respectively; the descriptive form may be

used only for dummy arguments. (To get the effect of a transcriptive ALIGN specification,

simply use INHERIT-see Section 5.4.)

Rules and restrictions:

1. If the align-spec in an ALIGtl directive begins with "*" then every aligna must be a

dummy argument .
2. The align-spec in a REALIGN may not begin with "*".

3. The other rules given in Section 4.5 also apply.

5.4 INHERIT Directive

The INHERIT attribute specifies that the template for a dummy argument should be a

copy of the template of the corresponding actual argument. This template may not have

the same size and shape as the dummy argument; the dummy argument is aligned to

the template copy in the same way that the actual argument is aligned to its original

template .
The form of an inherit-directive (H337) is:

INHERIT dummy-argument-name-list

The INHERIT directive causes the named subprogram dummy arguments to have the

INHERIT attribute.

Rules and restrictions:

1. Only dummy arguments may have the INHERIT attribute.

2. An object may not have both the INHERIT attribute and the ALIGN attribute.

3. The INHERIT directive may appear only in a specification-part of a scop ing unit .

The INHERIT attribute specifies that the template for a dummy argument should be

inherited , by making a copy of the temp late of the actual argument. Moreover, the

INHERIT attribute implies a default distribution of DISTRIBUTE * OITO *. Note that

this default distribution is not part of Subset HPF; if a program uses INHERIT, it must
override the default distribution with an explicit mapping directive in order to conform to

Subset HPF. If an explicit mapp ing directive appears for the dummy argument, thereby

overriding the default distribution , then the actual argument must be a whole array or
a regular array section; it may not be an expression of any other form.

If none of the attributes INHERIT, AL IGN, and D I STRIBUTE is specified explicitly for

a dummy argument, then the template of the dummy argument has the same shape as

Copyrighted Material

150 Chapter 5

the dummy itself and the dummy argument is aligned to its templ ate by the identity

mapping .

An INHERIT directive may be combined with other direct ives as p a rt of a combined­

directive (H30 1).
Consider the following example:

REAL DOUGH(100)

!RPF$ DISTRIBUTE DOUGH (BLOCK(1 0)

CALL PROBATE (DOUGH (7:23:2)

SUBROUTINE PROBATE (BREAD)

REAL BREAD(9)

! HPF$ INHERIT BREAD

The template of BREAD (a copy of the template for DOUGH) has shape [100]. Element
BREAD (I) is aligned with element 5 + 2*1 of the inherited template. Since BREAD does

not appear in a prescriptive DISTRIBUTE directive, the new template is not remapped
and therefore has a BLOCK (10) distribution . Thus BREAD (1) and BREAD (2) reside on

the first abstract processor (of at least ten), BREAD (3:7) resides on the second abstract
processor, and BREAD (8 : 9) resides on the third abstract processor.

5.5 Rules for Explicit Interfaces

If, in a caller , there is an explicit interface for the called subprogram and that interface

conta ins mapping direct ives (whether prescriptive or descriptive) for the dummy argu­
ment in question, the actual argument will be remapped if necessary to conform to the
directives in the explicit interface . The templ ate of the dummy will then satisfy any

constra ints imposed by the declared interface.
The caller is re quired to treat descriptive directives in an explicit interface as if they

were prescriptive so th at the directives in the interface may be an ex a ct textu al copy of
the directives appe aring in the subprogram. If the caller enforces descriptive direct ives
as if they were prescriptive, then the descriptive directives in the called routine will in

fact be correct descriptions .

There are two subtle points to be remarked upon.

1. The term "explicit interface" is used here in the Fortran 90 sense . An interface block

is not the only way to specify an expl icit interface; for example, module procedures and

intern al procedures also are considered to have explicit interfaces.

Copyrighted Material

Data Mapping for Procedure Arguments 151

2. If there is an expl icit interface , the remapping rule stated above applies even if there are

no explicit HPF directives asso ciated with the explicit i nterface . Where the programmer

has not specified directives explicitly, the comp iler is required to supply suit able defaults ,
and to do so in a consistent manner so that the same defau lted specifications are provided
for a procedure and for any explicit interface for that procedure .

If there is no expl icit inter fa ce, then actual arguments that are whole arrays or array

sections are not remapped before the call; the values o f other expressio ns may be mapped

in any m anner at the discretion of the langu age pro cesso r. (It follows that an HPF

program is nonconforming if all the following hold:

l. Some procedure P is cal led from some scoping unit s.
2. P has a descriptive declaration for a dummy.

3. The corresponding actu al is not a whole array or array section .
4. S has no explici t interface for P.

The reasonin g is th at the descriptive declaration cannot provably describe the mapping

of the actual argument, as th at mapping depends on the langu age pro cessor .)

5.6 Descriptive DISTRIBUTE Directives

In or der to specify expl icitly the distribution of a dummy argument, whether prescrip­

tively or des cript ively, the tem plate that is subject to distribution must be determine d.

A dummy argument does not have the same template as the corresp onding actual argu­

ment (this is why remappings of dummies by a subroutine or function have no effect on

the a ctual arg uments as v iewe d by the caller) . Its template is determined in one of three

w ays:

1. If the dummy argument appears explicitly as an alignee i n an ALIGN directive , its
templ ate is specified by the align-target.

2. If the dummy argument is not explic itly aligned and does not have the INHERIT

attribute , then it has a brand-new , fresh ly created template th at has the same shape an d

bounds as the dummy argument; this is called the natural template for the dummy. I n

this c ase the dummy i s ultimately aligned with itself .
3. If the dummy argument is not exp l icitly aligned an d does have the INHERIT attribute ,

then the template is "inherited" from the actual argument as follows:

• If the actual argument is a who le ar ray, the template of the dummy is a copy of

the template with which the actual argument is ult ima tely al igned .

Copyrighted Material

152 Chapter 5

• If the actual argument is a regular array section of array A, then the template of
the dummy is a copy of the template with which A is ultimately aligned.

• If the actual argument is any other expression, a freshly created template is used, the

shape and distribution of which may be chosen arbitrarily by the l anguage processor
(and therefore the programmer cannot know anything a priori about its distribution).

Then we say that the dummy has an inherited template rather than a natural template .

Consider the following example:

LOGICAL FRUG(128). TWISTl128)

!HPF$ PROCESSORS DANCE_FLOOR(16)

!HPF$ DISTRIBUTE (BLOCK) OITO DAICE_FLOOR ;; FRUG. TWIST
CALL TERPSICHORE(FRUG(1:40:3). TWIST(1:40:3»

The two array sections FRUG (1 : 40 ; 3) and TWIST(1: 40: 3) are mapped onto abstract
processors in the same manner:

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 25

10 34

19

4 28

13 37

22

7 31

16 40

However , the subroutine TERPSICHORE will view them in different ways because it

inherits t.he t.emplate for the second dummy but not the first:

SUBROUTINE TERPSICHORE(FOXTROT. TANGO)

LOGICAL FOXTROT(:). TANGO(:)

!HPF$ INHERIT TANGO

Therefore the template of TANGO is a copy of the 128 element template of the whole array

TWIST. The template is mapped like this:

Copyrighted Material

Data Mapping for Procedure Arguments 153

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 9 17 26 33 41 49 57 65 73 81 89 97 105 113 121

2 10 18 26 34 42 50 58 66 74 82 90 98 106 114 122

3 11 19 27 35 43 51 59 67 75 83 91 99 107 115 123

4 12 20 28 36 44 52 60 68 76 84 92 100 108 116 124

5 13 21 29 37 45 53 61 69 77 85 93 101 109 117 125

6 14 22 30 38 46 54 62 70 78 86 94 102 110 118 126

7 15 23 31 39 47 55 63 71 79 87 95 103 111 119 127

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

TUGO(1) is aligned with element 3*1-2 of the templ ate . But the template of FOXTROT

has the same size 14 as FOXTROT itself. The actual argument, FRUG (1: 40: 3) is mapped
to the 16 processors in this manner:

Abstract Elements

processor of FRUG

1 1,2,3

2 4, 5, 6

3 7, 8

4 9, 10, 11

5 12, 13, 14

6-16 none

It would seem reasonable to understand the mapping of the templ ate of FOXTROT to

coincide in like manner with the layout of the array section:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 9

4 12

7

2 10

5 13

8

3

6 14

Copyrighted Material

154 Chapter 5

but we shall see that this cannot properly be described in HPF. Within subroutine
TERPSICHORE it would be correct to make the descriptive assertion

!HPF$ DISTRIBUTE TANGO * (BLOCK)

but it would not be correct to declare

!HPF$ DISTRIBUTE FOXTROT * (BLOCK) ! *** Nonconforming

Each of these asserts that the template of the specified dummy argument is alread y

distributed BLOCK on entry to the subroutine. The shape of the template for TANGO

is [128], inherited (copied) from the array TWIST, whose section was passed as the

corresponding actual argument, and that template does indeed have a BLOCK distribution.

But the shape of the template for FOXTROT is [14]; the layout of the elements of the
actual argument FRUG(1:40:3) (3 on the first processor, 3 on the second processor, 2

on the third processor, 3 on the fourth processor, ...) cann ot pr operly be described as a

BLOCK distribution of a length-14 template, so the DISTRIBUTE declaration for FOXTROT
shown above would indeed be erroneous.

On the other hand, the layout of FRUG(1 :40: 3) can be specified in terms of an align­

ment to a length- 1 28 template which , can be described by an explicit TEMPLATE declara­

tion (see Section 4.9), so the directives

!HPF$ PROCESSORS DANCE_FLOOR (16)
!HPF$ TEMPLATE, DISTRIBUTE(BLOCK) ONTO DANCE_FLOOR

!HPF$ ALIGN FOXTROT(J) WITH *GURF(3*J-2)
GURF (128)

could be correctly inclu ded in TERPSICHORE to describe the layout of FOXTROT on entry

to the subroutine without using an inherited template.
Des cripti ve directives allow the programmer to make claims about the pre-existing

distribution of a dummy based on knowledge of the mapping of the actual argument.

But what claims may the programmer correctly make?

If the dummy argument has an inher ited template , then the subprogram may contain
directi ves corresponding to the directives describing the actual argument. Sometimes it is

necessary, as an alternative, to introduce an explicit named template (using a TEMPLATE

directive) rather than inheriting a template; an exam ple of this (GURF) appears above.

If the dummy argument has a natural template (no INHERIT attribute) then things

are more complicated. In cer tain situations the programmer is justified in inferring a

pre-existing distribution for the natural template from the distribution of the actual's

template, that is, the template that would have been inherited if the INHERIT attribute

had been specified. In all these situations, the actual argument must be a whole array or

Copyrighted Material

Data Mapping for Procedure Arguments 155

array section, and the template of the actual must be coextensive with the array along

any axes having a distribut ion format other than "*."

If the actual argument is a whole array, then the pre-exist ing distribution of the natural

template of the dummy is identical to that of the actual argument.

If the actual argument is an array section , then , from each section-subscript and the

distribution forma t for the corresponding axis of the array being subscripted, one con­

structs an axis distribution format for the corresponding axis of the natural template :

• If the section-subscript is scalar and the array axis is collapsed (as by an ALIGN direc­

tive) then no entry should appear in the distribution for the natural template.

• If the section-subscript is a subscript-triplet and the array axis is collapsed (as by an
ALIGN d irect ive) , then * should appear in the distribution for the natural template.

• If the section-subscript is scalar and the array axis corresponds to an actual tem­

plate axis distributed *, then no entry should appear in the distribution for the natural

template .
• If the section-subscript is a subscript-triplet and the array axis corresponds to an

actual template axis distributed *, then * should appear in the distribution for the

natural template .
• If the section-subscript is a subscript-triplet I: u: s and the array axis corresponds to

an actual template axis distributed BLOCK(n) (which might have been spec ified as simply

BLOCK , but there will be some n that describes the resulting distribution) and LB is the
lower bound for that axis ofthe array, then BLOCK(n/s) should appear in the distribution
for the natural temp late , provided that s divides n evenly and that 1- LB < s.

• If the section-subscript is a subscript-triplet I: u: s and the array axis corresponds to an

actual template axis distribute d CYCLIC(n) (which might have been specified as simply

CYCLIC, in which case n = 1) and LB is the lower bound for that axis of the array, then

CYCLIC(n/s) should appear in the distribution for the natural tempiate , provided that s

divides n evenl y an d that 1- LB < s.

If the situation of interest is not described by the cases listed above, no assertion about

the distribution of the natural template of a dummy is HPF-conforming .

Here is a typical example of the use of this feature. The main program has a two­

dimensional array TROGGS, which is to be processed by a subroutine one column at a

time. (Perhaps processing the entire array at once would require proh ibitive amounts of

temporary spa ce .) Each column is to be distributed across many processors.

REAL TROGGS(1024,473)
!HPF$ DISTRIBUTE TROGGS(BLOCK, *)

DO J = 1, 473

Copyrighted Material

156

CALL WILD_THING(TROGGS(: ,J»
END DO

Chapter 5

Each column of TROGGS has a BLOCK distribution . The rules listed above justify the
programmer in saying so:

SUBROUTINE WILD_THING(GROOVY)

REAL GROOVY (:)

!HPF$ D ISTRIBUTE GROOVY *(BLOCK) ONTO *

Consider now the ALIGN directive. The presence or absence of an asterisk at the start
of an align-spec has the same meaning as in a dist-format-clause: it specifies whether the
ALIGN directive is descriptive or prescriptive, respectively.

If an align-spec that does not begin with * is applied to a dummy argument, the
meaning is that the dummy argument will be forced to have the specified alignment
on entry to the subprogram (which may require temporarily remapping the data of the

actual argument or a copy thereof) .
Note that a dummy argument may also be used as an align-target.

SUBROUTINE NICHOLAS(TSAR,CZAR)

REAL, DIMENSION(1918) : : TSAR,CZAR

!HPF$ INHERIT :: TSAR

!HPF$ ALIGN WITH TSAR:: CZAR

In this example the first dummy argument, TSAR, is allowed to remain aligned with the

corresponding actual argument, while the second dummy argument, CZAR, is forced to be

aligned with the first dummy argument . If the two actual arguments are already aligned ,
no remapping of the data will be required at run time; but the subprogram will operate
correctly even if the actual arguments are not already aligned , at the cost of remapp ing

the data for the second dummy argument at run time.
If the align-spec begins with "*" , then the altgnee must be a dummy argument and the

directive must be ALIGN and not REALIGN. The "*" indicates that the ALIGN directive

constitutes a guarantee on the part of the programmer that, on entry to t.he subprogram ,
the indicated alignment will already be satisfied by the dummy argument, without any

action to remap it required at run time . For example:

SUBROUTINE GRUNGE(PLUNGE, SPONGE)

REAL, DIMENSION(1000) : : PLUNGE, SPONGE

!HPF$ ALIGN PLUNGE WITH *SPONGE

Copyrighted Material

Dat a M apping for Procedure Arguments 1 57

This asserts th at , for every J in the range 1 : 1000 , on entry to subroutine GRUNGE , t he

directives in the program have specified that PLUNGE (J) is currently mapped to the same
abstract pro cessor as SPONGE (J) . (The intent is that if the language processor has in fact

honored the direct ives , t hen no interprocessor communication will be required to achieve

the specified alignment .)

The alignment of a general expression is u p t o t he language processor and therefore

un predict ab le by the programmer ; but the alignment of whole arrays an d array sections

is predictable . In the code fr agment

REAL FIJI (5000) , SQUEEGEE (2000)

! HPF$ ALI GN SQUEEGEE (K) WITH FIJI (2*K)
CALL GRUNGE (FI J I (2002 : 4000 : 2) , SQUEEGEE (100 1 : »

it is true that every element of t he array sect ion SQUEEGEE (100 1 :) is aligned with the

corresponding element of the array section F I J I (2002 : 4000 : 2) , so the claim made in

subroutine GRUNGE is satisfie d by this particular cal l .

I t i s not permitted t o say simply " AL IGN WITH *" ; an a lign-t arge t must follow t he

asterisk . (Th e proper way to say "ac cept any al ignment" is INHERIT .)
If a dummy argument has no explicit ALI GN or DISTRIBUTE attribute , t hen t he compiler

provi des an implicit alignment and distribution specification , one that could have been

described explicitly without any "assertion asterisks" .

5.7 Examples of D ISTRIBUTE Directives for D ummy Arguments

A DI STRIBUTE direct ive for a dummy argument may have a dist-format-list and an ONTO

clause , and each one m ay be prescriptive , descript ive , transcr iptive , or omitte d . The

follo wing examples of DISTRIBUTE d irectives for dummy arguments illustrate many of

the possible combinations :

Example 5 . 1 Prescriptive format , prescr iptive pro cessors arrangement :

! HPF$ DISTRIBUTE URAN IA (CYCL I C) ONTO GALILEO

The language pro cessor should do whatever it t akes to c ause URANIA to h ave a CYCLIC

dist ributio n on t he pro cessor arrangement GALILEO . 0

Example 5 . 2 Transcriptive format , prescriptive processors arrangement :

! HPF$ D I STRIBUTE POLYHYMNIA '" ONTO ELVI S

Copyrighted Material

158 Chapter 5

The language processor should do whatever it takes to cause POLYHYMN IA to be dis­
tributed onto the processor arrangement ELVIS, using whatever distribution format it
currently has (which might be on some other processor arrangement) . (You can 't say
this in Subset HPF .) 0

Example 5 . 3 Descriptive format , prescriptive processors arrangement :

! HPF$ DISTRIBUTE THALIA * (CYCLIC) ONTO FLIP

The language processor should do whatever it takes to cause THALI A to have a CYCLIC

distribution on the processor arrangement FL I P ; THAL IA already has a cyclic distribution ,

though it might be on some other processor arrangement . 0

Example 5 . 4 Prescriptive format , descriptive processors arrangement :

! HPF$ DISTRIBUTE CALLIOPE (CYCLIC) ONTO *HOMER

The language processor should do whatever it takes to cause CALL IOPE to have a CYCLIC

distribution on the processor arrangement HOMER ; CALLI OPE i s already distributed onto
HOMER, though it might be with some other distribution format . 0

Example 5 . 5 Transcriptive format , descriptive processors arrangement :

! HPF$ DISTRIBUTE MELPOMENE * ONTO *EURIPIDES

MELPOMENE is asserted to already be distributed onto EURIPIDES; use whatever distribu­

tion format the actual argument had so, if possible , no data movement should occur .

(You can 't say this in Subset HPF .) 0

Example 5 . 6 Descriptive format , descriptive processors arrangement :

! HPF$ D I STRIBUTE CLIO * (CYCLIC) OITO *HERODOTUS

CLIO is asserted to already be distributed CYCLIC onto HERODOTUS so , if possible , no data
movement should occur . 0

Example 5 . 7 Prescriptive format , transcriptive processors arrangement :

! HPF$ DISTRI BUTE EUTERPE (CYCLI C) ONTO *

The language processor should do whatever it takes to cause EUTERPE to have a CYCL I C

distribution onto whatever processor arrangement the actual was distributed onto . (You

can 't say this in Subset HPF .) 0

Copyrighted Material

Data M apping for Procedure Arguments 159

Example 5 . 8 Transcriptive format , transcriptive processors arrangement :

! HPF$ DISTRIBUTE ERATO * ONTO *

The mapping of ERATO should not be changed from that of the actual argument . (You
can 't say this in Subset HPF.) You 're probably better off jus t saying

! HPF$ INHERIT ERATO

which implies DISTRIBUTE ERATO * ONTO * as the default distribution . 0

Example 5 . 9 Descriptive format , transcript ive pro cessors arrangement :

! HPF$ D I STRIBUTE ARTHUR_MURRAY * (CYCLIC) ONTO *

ARTHUR-HURRAY is asserted to already be distributed CYCLIC onto whatever pro cessor

arrangement the a ctual a rgument was distributed onto , and no dat a movement should

occur . (You can ' t say this in Subset HPF .) 0

Please note that DISTRIBUTE ERATO * ONTO * does not mean t he same thing as

! HPF$ DISTRIBUTE ERATO * (*) ONTO *

This latter means: ERATO is asserted to already be distributed * (that is , on-processor)

onto whatever pro cessor arrangement the a ctu a l was distributed onto . Note th at the

processo r arrangement is necessarily sc alar in this case .

One m ay omit either the dist-format- clause or the dist-target-clause for a dummy ar­

gument . If s uch a c lause is o mitted and the dummy argument has the INHERIT attri bute ,

then the compiler must handle the directive as if * or ONTO * had been specified explic­

itly. If such a clause is omitted and the dummy does not have the INHERIT attribute ,

then the compiler may choose the distribution format or a target processor arrangement

arbitrarily.

Example 5 . 1 0 Descriptive format , defaulted p rocessors arrangement :

! HPF$ D I STRIBUTE WHEEL_OF_FORTUNE * (CYCLIC)

WHEELJlF -FORTUNE is asserted to already be CYCLIC. As long as it is kept CYCLIC, it m ay

be remapped it onto some other processor arrangement , but there is no reason to . 0

Example 5 . 1 1 Defaulted format , descript ive pro cessors arrangement :

! HPF$ D I STRIBUTE ONTO *TV : : DAVID_LETTERMAN

Copyrighted Material

1 6 0 Chapter 5

DAVID..LETTERMAN is asserted to already be distributed on TV in some fashion . The
distribution format may be changed as long as DAVID..LETTERMAN is kept on TV . (Note

that this declaration must be made in attributed form ; the statement form

! HPF$ D I STRIBUTE DAVID_LETTERMAI OITO *TV ! * ** Nonc onf orming

does not conform to the syntax for a DI STRIBUTE directive .) 0

5 .8 Explicit Dynamic Remapping of D ummy Arguments

The rules on the interaction of the REALIGN and REDISTRIBUTE directives with a subpro­
gram argument interface are :

1 . A dummy argument may be declared DYNAMIC . However , it is subject to the general
restrictions concerning the use of the name of an array to stand for its associated template .
2. If an array or any section thereof is accessible by two or more paths , it is not HPF­
conforming to remap it through any of those paths . For example , if an array is passed

as an actual argument , it is forbidden to realign that array, or to redistribute an array

or template to which it was aligned at the time of the call , until the subprogram has
returned from the cal l . This prevents nasty ali asing problems . An example follows :

MODULE FOO

REAL A (1 0 , 10)

! HPF$ DYNAMIC A

END

PROGRAM MA IN

USE FOO

CALL SUB (A (1 : 5 , 3 : 9))

END

SUBROUTINE SUB (B)

USE FOO

REAL B (: , :)

! HPF$ RED ISTRI BUTE A

END

* ** Nonc onf orming

Copyrighted Material

Data M apping for Procedure Arguments 1 6 1

Situations such as this are forbidden , for the same reasons that an assignment to A at the

statement marked "Nonconforming" would also be forbidden. In general , in a n y situation

where assignment to a variable would be nonconforming by reason of aliasing, remapping
of that variable by an explicit REALIGN or RED I STRIBUTE directive is also forbidden .

An overriding principle is that any mapping or remapping of arguments is not visible

to the caller . This is true whether such remapping is implicit (in order to conform to

prescriptive directives , which may themselves be explicit or implicit) or explicit (specified

by REAL I GN or RED I STRIBUTE directives) . When the subprogram returns and the caller

resumes execution , all objects accessible to the caller after the call are mapped exact ly as

they were before the call . It is not possib le for a subprogram to change the mapping of any
object in a manner visib le to its caller , not even by means of REALIGN and RED I STRIBUTE .

The implicit remapping of dummy arguments can be implemented in several ways.

One is for the subprogram to make a copy of the argument data and remap the copy for

use within the subprogram . Another is to remap the actual argument on entry to the

subprogram and later to perform a second remapping on exit from the subprogram to
restore the data to its original layout .

5.9 Argument Passing and Sequence Associat ion

This section is primarily about mak ing old codes work , but it is also important for

programmers writing new codes to understand . In the previous discussion there was

an assumption that the dummy argument and the actual argument matched in size

and shape . From its beginnings Fortran has allowed considerable flexibility across the

boundaries of a call . The basic rule is summarized in this statement from the standard :

Th e rank a n d shape of the actual argument need not agree with the rank

and shape of the dummy argument,

- Fortran Standard (1 2.4 . 1 .4)

This works in Fortran programs because of sequence a ssocia tion: the order of array

elements that Fortran requires when an array, array expression , or array element is asso­

ciated with a dummy array argument . As with storage association , sequence association

is a natural concept only in systems with a linearly addressed memory .

As an aid to porting FORTRA N 77 codes , HPF allows codes that rely on sequence

association to be valid HPF ; however , each argument must be checked and the program­

mer may have to insert sequence directives (Section 4 . 1 0 .2) to instruct the HPF compiler

to support the l inear sequencing of memory.

Copyrighted Material

1 62 Chapter 5

Actual argument Dummy argument requirements
Scalar name The dummy argument must be a scalar .
Scalar expression or The dummy argument must be a scalar.

constant

Array element If dummy argument is an array both arrays must

be declared sequential .
Array section The dummy argument must match in size and

shape or both arrays must be declared
sequential .

Array name The dummy argument must match in size and
shape or both arrays must be declared
sequential .

Array expression The dummy argument must match in size and

shape . If this is not true , the actual argument

expression must first be stored in a sequential

array and the array name can be passed .

Assumed-size array The dummy argument must be declared sequential .

Character variable The explicit-length of the dummy argument must

match the length of the actual argument , in
addition to matching shape . Otherwise both the
actual and the dummy must be declared

sequential .

Table 5 . 1
Matching procedure arguments

5 . 9 . 1 Argument Requirements

In order to give a direct way to check all of the kinds of arguments for sequence associa­

tion , the different possibilities for actual arguments are l isted in Table 5 . 1 .
There are some very common FORTRAN 7 7 cases that must b e examined carefully.

The practice of passing a portion of an array (e.g . , a column) by passing an array element

which is treated as the starting address of a dummy array argument is incompatible with
distributed data. Fortran 90 provides the array section mechanism to accomplish this

same thing. When the shape of the array section conforms to the shape declared by the

dummy argument , then data mapping is still permitted .

Another special case to note is an array expression as an actual argument . HPF
provides no mechanism for the programmer to specify the mapping of an expression and

Copyrighted Material

Data Mapping for Procedure Arguments 163

also no mechanism to specify that an expression is sequential. In this case , the dummy

argument may not be a sequential array. The programmer will have to create an explicit

(sequential) temporary to hold the expression value and pass that temporary as the

argument .

Assumed size arrays are listed as one of the kinds of argument that require the associ­
ated dummy argument to be sequenti al . Assumed size arrays are themselves sequent ial
(see Sect ion 4. 10 .2) . It is easy to confuse assumed-size arrays and assumed shape arrays,

so we will take a step back to review what they are .

Assumed shape dummy arguments are of the form D I MENS I ON A (: , : , :) . The rank of

the actual argument is reflected exactly in the associated dummy argument . Assumed

size arguments are of the form DIMENSION A (20 , 10 , *) ; they are a different story. By

their definition , storage and sequence associat ion apply to the values of the array. The

programmer dictates a shape that the dummy argument assumes , regardless of the shape
of the actual argument . It is only the size of the last dimension that is left unspecified .
We treat these assumed-size variables as sequential . I f such a variable i s , i n turn , p assed
on to another subroutine, the associated dummy must be declared sequential .

The reader should notice that a single case of an argument that requires sequence

association and needs a sequential declaration can have a wider impact . If the actual

argument is in COMMON this will entail finding all instances of the common block to mark

that component sequential . In the long run , it is much better to correct a problem , such

as the mismatch in shape , wherever possible .

5. 9 . 2 Sequence Association Examples

Figure 5 .4 gives some code segments to illustrate sequence association in arguments . The

two calls to SEQ-ARGS and GOOD ...ARGS look very similar . But on close examination , all of
the actual arguments in the call to GOOD ...ARGS in subroutine TWO match the shape and size

of the corresponding dummy arguments exactly. The programmer will have to worry a

bit about the proper distribution for B because of the section used as an actual , but there

are no issues related to sequence asso ciation . The call to SEQ -ARGS in subroutine ONE, on

the other hand , illustrates sequence association requirements for every argument . The

reader will notice that we have inserted a SEQUENCE directive for each actual argument

and each dummy argument . Let 's just check them one at a time . The first argument

uses a very common FORTRAN 77 method to pass a column of the array A . The address

of the first element of the column is passed . The second and third arguments both
illustrate cases where the dummy argument is a different rank than the corresponding

actual arguments . The last argument is another common case where the progr ammer
passes in an array of one size , but only uses part of the array. In this example , the

programmer wishes to send in a Fortran 90 array expression D+E, but is required by the

Copyrighted Material

1 64

SUBROUTINE ONE

REAL A (lOO , l OO) , B (l OO) , C (lO , l O O) , 0 (1 0 0) , E (l O O)

REAL TEMP (lOO)

! HPF$ SEQUENCE A , B , C , TEMP

TEMP = 0 + E

CALL SEQ_ARGS (A (l , I) , B (1 1 : 35) , C , TEMP)

END SUBROUT I NE ONE

SUBROUTINE SEQ_ARGS (COL , SQUARE , FLAT , PART)

REAL COL (l OO) , SQUARE (5 , 5) , FLAT (l OOO) , PART (20)

! HPF$ SEQUENCE COL , SQUARE , FLAT , PART

END SUBROUTIIE SEQ_ARGS

SUBROUTINE TlJO

REAL A (l O O , l O O) , B (lOO) , C (l O , lOO) , 0 (100) , E (l O O)

CALL GOOD_ARGS (A (l , I) , B (1 1 : 35) , C , D+E)

END SUBROUTINE TWO

SUBROUTINE GOOD_ARGS (SCALAR , X25 , MATCH_C , MATCH_D)

REAL X25 (2 5) , MATCH_C e l O , l OO) , MATCH_D (l OO)

END SUBROUT I NE GOOD_ARGS

Figure 5.4
Checking sequence association for arguments

Copyrighted Material

Chapter 5

Data Mapping for Procedure Arguments

CHARACTER (LEN=44) A_LONG_WORD

! HPF$ SEQUENCE A_LONG_WORD

A _LONG_WORD= ' Chargoggagoggmanchaugagogg chaubunagungamaugg '

CALL WEBSTER (A_LOIG_WORD)

SUBROUTINE WEBSTER (SHORT_D I CTI ONARY)

CHARACTER (LEN=4) SHORT_DI CT I ONARY (1 1)

! Not e that short _d i ct ionary (3) i s ' agog '

! HPF$ SEQUENCE SHORT_D ICTI ONARY

Figure 5.5
Character sequence association

165

rules to store the value into a temporary location first in order to designate that it is
sequential . As an alternative to using the SEQUENCE direct ives , the programmer might

have replaced the call to SEQARGS with the following call .

CALL SEQ_ARGS (A « * , I » , RESHAPE (B (1 1 : 35) , (/5 , 5/ » ,

RESHAPE (C , (/ 1 000/ » , TEMP (1 : 20 »

This uses the Fortran 90 RESHAPE intrinsic to pass the exact shapes and s izes required

to the subroutine. It avoids the use of the S EQUENCE directives on either side of the

call . While the SEQUENCE directive is certain ly easier to use , and this is not backwards

comp atible with FO RTRAN 7 7 , there may be performance reasons for avoiding the

SEQUENCE directives .

F igure 5 . 5 gives an example of the additional sequen ce asso ciation issue for character
variables . This code segment where the data is treated both as a single long character and

an array of short characters is legal in both FORTRAN 77 and Fortran 90 . However in
HPF , both the actual argument an d dummy argument must be sequential . (By the way,

"Chargoggagoggmanchaugagoggchaubunagungamaugg" is the original Nipmuc name for

what is now called "Lake Webster" in Massachusetts .)
Figure 5 . 6 shows the case of an assumed-size argument . In subroutine ONE, the declared

shape of WHAT ...s IZE may match that of the incoming actual argument in its first two

d imensions , but the compiler does not know for sure . WHAT .s IZE is sequential . When it
is p assed on to subrout ine TWO , it doesn't matter how WHO..KIOWS is declared . It must be
declared sequential. If the declaration in subrout ine ONE were WHAT...s I ZE (: , : , :) instead

then no directive wou ld be required in subrout ine TWO .

Copyrighted Material

166

! HPF$

SUBROUTINE ONE (WHAT_SIZE)

REAL WHAT_SIZE (1 0 . 50 . *)

CALL TWO (WHAT_SIZE)

END SUBROUTINE ONE

SUBROUT INE TWO (WHO_KNOWS)

INTEGER WHO_KNOWS (1 0 . 50 . 5)

SEQUENCE WHO_KNOWS

END SUBROUTINE TWO

Figure 5 .6
Assumed size arguments

5 . 9 . 3 Formal Sequence Association Rules

Chapter 5

For completeness , the formal rules about sequence association from the HPF document
are listed here .

1 . When an array element or the name of an assumed-size array is used as an actual

argument , the associated dummy argument must be a scalar or specified to be a sequential

array.
An array-element designator of a nonsequential array must not be associated with a

dummy array argument .
2. When an actual argument is an array or array section and the corresponding dummy
argument differs from the actual argument in shape , then the dummy argument must be
declared sequential and the actual array argument must be sequential .

3 . A variable of type character (scalar or array) is nonsequential if it conforms to the

requirements of Section 4 . 10 . 2 . If the length of an explicit-length character dummy
argument differs from the length of the actual argument , then both the actual and dummy

arguments must be sequential .

Copyrighted Material

6 Data Parallelism

As explained in Chapter 2, the High Performance Fortran programming model consid­

ers two factors-parallelism and communication. Chapters 4 and 5 describe the data

mapping mechanisms that determine the communication in a program. This chapter
looks at some data parallel features of HPF. Other parallel features appear in Chapter 3
(array assignments) , Chapter 7 (HPF library functions), and Chapter 8 (EXTRINSIC pro­

cedures) .

6.1 Overview of Data Parallelism

This chapter describes three features of HPF: the FORALL statement, the PURE attribute ,
and the INDEPENDENT directive. Of these, FORALL and INDEPENDENT are parallel in and

of themselves. PURE is not parallel by itself, but can be used in conj unction with the

FORALL statement to increase the generality of that construct.
The FORALL statement , described in Section 6.2, generalizes the Fortran 90 array as­

signment to handle new shapes of arrays. In the process, the FORALL statement ends
up looking a bit like a DO loop. (Note, however, that the FORALL statement is not itself

a loop-it assigns to a block of array elements, but does not iterate over them in any

specific order .) The meaning is the same as for array assignments : compute all right­

hand sides before making any assignments. For example, Figure 6.1 shows how a FORALL
statement can shift elements of the main diagonal of an array along the d iagonal . There

is also a multi-statement FORALL, in which the array assignment semantics are applied
to each statement in turn. Figure 6.2 shows this form of the FORALL. As you can see,
FORALL statements can be nested and can have mask expressions.

The intent in defining the FORALL is to create a parallel construct with determinate

semantics. That is, the statement can execute in parallel, and the results are identical
if it is re-executed with the same data. Identical results will hold even if the number of
processors or the entire machine architecture changes (up to the differences in machine

arithmetic , such as floating-point precision, permitted by the Fortran 90 standard). To
ensure this level of determinacy, the FORALL has a number of constraints. It is important

to realize that, because of these constraints, the FORALL is not the general "parallel loop"

that some other langu ages have; in particular , there is no way (and no need) to perform
explicit synchronization , schedule tasks, or pass messages in a FORALL.

The FORALL can apply a user-defined function to every element of an array if the func­

tion is PURE, as defined in Section 6.3. Figure 6.3 shows a FORALL applying EQN-DF ..sTATE
to elements of the arrays V, N, and T to produce array P. This is similar to using For­

tran 90 elemental intrinsics, except that PURE functions can be user-defined. A PURE

Copyrighted Material

168 Chapter 6

FORALL (I = 2:5) A(I,I) = A(I-1,I-1) 11 12 13 14 1
5

[11 12 13 14 1
5 I 21 22 23 24 25 21 11 23 24 25

31 32 33 34 35 -+ 31 32 22 34 35 41 42 43 44 45 41 42 43 33 4
5 51 52

5
3 54 55 51 52 53 54 44

A before A after

Figure 6.1
A single-statement FORALL

FORALL (I = 1:8)

A(I,I) = SQRT(A(I,I))

FORALL (J = 1-3:1+3 , J/=I .AND. J>=1 .AND. J<=8)

A(1,J) = A(I,I) * A(J,J)
END FORALL

END FORALL 1 0 0 0 0 0 0 0 1 2 3 4 0 0 0 0 0 4 0 0 0 0 0 0 2 2 6 8 10 0 0 0 0 0 9 0 0 0 0 0 3 6 3 12 15 18 0 0 0 0 0 16 0 0 0 0 4 8 12 4 20 24 28 0
-+ 0 0 0 0 25 0 0 0 0 10 15 20

5
30 35 40 0 0 0 0 0 36 0 0 0 0 18 24 30 6 42 48 0 0 0 0 0 0 49 0 0 0 0 28 35 42 7 56 0 0 0 0 0 0 0 64 0 0 0 0 40 48 56 8

A before A after

Figure 6.2
A multi-statement FORALL

Copyrighted Material

Data Parallelism

INTERFACE

PURE REAL FUNCTION EQN_OF_STATE(VOL, MOLES, TEMP)

REAL VOL, MOLES, TEMP

END FUNCTION EQN_OF_STATE
END INTERFACE

FORALL (I = l:NUM, J = l:NUM)

P(I,J) = EQN_OF_STATE(V(I,J), N(I,J), T(I,J»

END FORALL

Figure 6.3
A PURE function declaration and use

!HPF$ INDEPENDENT, NEW (J, Nl)

DO I = 1, NBLACK
Nl = IBLACK_PT(I)
DO J = INITIAL_RED(Nl), LAST_RED(Nl)

X(Nl) = X(Nl) + A(J)*X(IRED_PT(J»
EXD DO

END DO

Figure 6.4
An I1DEPEIDEIT directive

169

function cannot have side effects on global data or on its arguments; thus, it behaves
l ike a mathematically pure fun ction. HPF puts some rather heavy restrictions on the
function before it can be declared PURE to ensure that the compiler can check for the
lack of side effects. Like the constraints on FORALL, these restrict ions ensure determinate
execution at some cost in generality.

Sometimes the programmer knows that a loop is parallel in cases where the com­
piler cannot detect the parallelism . HPF introduces the INDEPENDENT directive for just
such situations. The INDEPENDENT directive is a promise by the user that the results
of the DO loop will be the same even if its iterations are executed in some other order
or asynchronously in parallel. Figure 6.4 shows how an INDEPENDENT directive allows
NBLACK sums to be computed in parallel . Without the INDEPENDENT directive , the com­
piler woul d have to assume that some elements of X were referenced as both X (Nl) and
X (IRED...PT(J)), forcing the loop to run serially. Note the difference in philosophy from

Copyrighted Material

170 Chapter 6

the FORALL statement . The FORALL is a new statement , with a different meaning from the
similar-looking DO loop. The INDEPENDENT directive is a statement about the behavior
of the program as it is written.

6.2 The FORALL Statement

The FORALL is a generalization of the Fortran 90 array assignment and WHERE statements.
It provides for more array shapes to be assigned , particularly when nested FORALL state­
ments are used. In addition , when used with PURE functions (see Section 6.3) it provides
a form of user-defined elemental functions . An HPF-conforming FORALL statement al­
ways has a well-defined meaning; no non determinacy is provided in the construct , and
most of the restrictions to ensure this can be checked by the compiler.

A FORALL statement is not a loop , nor is it a "parallel loop" as defined in some
languages. We say this for a very simple reason: the FORALL does not iterate in any
well-defined order . Parallel loops are often defined to express nondeterminate execution,
or as a basis for expressing arbitrary parallel computations . The FORALL, when used in
an HPF -conforming way, cannot do either of those things.

HPF defines two forms of the FORALL statement-the single-statement FORALL (called
the forall-stmt (H401) in the grammar) and the multi-statement FORALL (called the
forall-construct (H405». We will use the term FORALL statement to refer to both forms .
Explanations of the few details where they differ will clearly identify either the single­
statement or multi-statement form. Note that the single-statement FORALL is included
in Subset HPF , but the multi-statement FORALL is not.

6.2.1 Form of the FORALL Statement

The form of the forall-stmt (H401) is:

FORALL (forall-triplet-spec-list [, scalar-mask-expr]) forall-assignment

The form of the forall-construct (H405) is:

FORALL (forall-triplet-spec-list [, scalar-mask-expr])

forall-body-stmt

[forall-body-stmt]

END FORALL

Copyrighted Material

Data Parallelism 171

The following rules and restrictions apply to both the forall-stmt and fo rall- construct.

Rules and restrictions:

1. Any procedure referenced In the scalar-mask- expr of a FORALL must be PURE, as

defined in Section 6.3.
2. The evaluation of any expression in the forall- triplet-spec-list or scal a r- m ask-exp r

of a FORALL must not affect the result of computing any other expression in the

fo rall- triplet-spec-list or the scalar- m ask- e xp r.

3. If a FORALL is nested within a forull-construct (a multi-statement FORALL) , then the
inner FORALL may not redefine any index-na me used in the outer forall-construct.

Note that II: FORALL may not be nested within a forall-stmt, (a single-statement

FORALL).
4. Each assignment or pointer assignment nested within a FORALL assigns to data objects

specified by the statement for permitted values of the in dex- name variables. (Note
that even for deeply nested FORALL statements, an innermost statement is always an

assignment or pointer assignment .) A single assignment of this type may not cause
multiple values to be assigned to the same atomic object. (Recall that an atomic

data object is a Fortran 90 object which has no subobjects.) An HPF-conforming
program may, however, assign to the same atomic objects in different assignment
statements.

The form of a forall-tripl et-spec (H403) is:

in dex-n a m e = subscript : su bscript [: stride 1

Rules and restrictions:

1. The index- n a m e must be a scalar integer variable.

2. If stride is present, it must not have the value o.
3. A subscript or strid e in a forall- triple t-spec- list must not contain a reference to any

index-nam e in the forall-tripl et-spec-list in which it appears.

Note that Fortran 90 restricts su bscript (R617) and stri de (R620) to be scalar integers

as well.

A forull-assignm ent (H404) is one of:

assignment-stmt

p o inte r- assign m e nt-stmt

A forall-body-stmt (H406) is one of:

Copyrighted Material

172

forall-assignment

where-stmt

where-construct

fomll-stmt

forall-construct

Chapter 6

The following rules apply to both the fomll-assignment and the fomll-body-stmt.

Rules and restrictions:
1. Any procedure referenced in a fomll-assignment or fomll-body-stmt, including one

referenced by a defined operation or assignment, must be PURE (see Section 6 . 3).

See Section 6.2.3 for many examples of FORALL syntax .

6.2.2 Meaning of the FORALL Statement

A mult i-statement FORALL is interpreted essentially as a series of single-statement FORALL

statements. We therefore describe the single-statement FORALL's interpretation first, and
then the complications of the multi-statement form.

The descriptions below speak of the "index values" of a FORALL statement rather than
"iterations" or any other term that might suggest an order to the operations. We hope
this helps the reader break out of the habit of thinking in terms of looping through a

space, with the corresponding implied serialization.

Part of the semantics of the FORALL statement depends on the concept of an atomic

object. Recall that this is a Fortran data object which contains no subobjects . For

example , an integer variable is an atomic object, but an array of integers is an object

that is not atomic.

Interpretation of a Single-statement FORALL A single-statement FORALL is ex­

ecuted in four stages.

1. Compute the valid set of index values. This is the set of values defined by the forall

index range(s), not considering the mask expression . If there is more than one index,

then the valid set is a set of tup les , where each tuple contains a value for each index . The

range of valid values for each index is computed separately. For the for·all-triplet-spec

INDEX = lb : ub : step

let max = rUb-1b±11. If step is missing, it is as if it were present with the value 1. Then
step

the set of valid values for INDEX is lb + (k - 1) x step, k = 1,2, . . . , max. The valid set for
the whole FORALL is the Cartesian p roduct of the active sets for the individual indices.

If max :::; 0 for some index, the FORALL is not executed.

Copyrighted Material

Data Parallelism 173

2. Compute the active set of index values. This is the set of index values for which the
foral/-assignment is actually executed. The active set is constructed by evaluating the

scalar-mask-expr for each element of the valid set. The mask elements may be calculated
in any order or perhaps in parallel. The active set of index values is the subset of the
valid index values for which the scalar-mask-expr evaluates to . TRUE. If there is no mask
expression, then it is as if it were present with the constant value . TRUE., and so the

active set equals the valid set.
3. For each index value tuple in the active set, compute the right-hand side for the body
of the FORALL; the tuple specifies the values for the index variables . (Note that in a single­

statement FORALL, the body will be either an assignment or a pointer assignment . In
the case of an assignment statement (including array assignment) , this step is a standard
expression evaluation. In the case of pointer assignment, it may involve evaluating a
pointer-valued expression or constructing a p ointer to an object (depending on the type
of the right-hand side) .) At the same time, evaluate and save any subexpressions in the
left-hand side (such as array subscripts). The evaluations for different index values may
be done in any order or perhaps in parallel .
4. For each index value tuple in the active set, assign the right-hand side value computed
in the previous step to the left-hand side. Depending on the statement type, this may
be either a normal assignment or a pointer assignment. The left-hand side is determined

from the saved sub expression values, rather than being computed while assignments are
in progress . The assignments may be performed in any order or perhaps in parallel.
(Remember that it is nonconforming for execution of a FORALL assignment to assign
multiple values to the same memory location.)

The scope of a FORALL index is the FORALL statement itself. In other words , the value
of the FORALL index variable becomes undefined after the termination of the FORALL.

The importance of computing both the right-hand sides and the left-hand subexpres­
sions in step 3 is that it prevents them from being overwritten. Thus, the order of

assignments cannot affect either the values being assigned or the locations to which they
are assigned . Similarly, computing the bounds and mask elements first ensures that they
are not affected by any assignments within the FORALL body.

Interpretation of a Multi-statement FORALL The multi-statement FORALL is
concep tually a sequence of single-statement FORALLs. Its interpretation is therefore sim­
ilar, with suitable elaborations for sequences of statements and nesting .

1. Compute the valid set of index values. This is done precisely as for the single-statement
FORALL and has the same meaning .

Copyrighted Material

174 Chapter 6

2. Compute the active set of index values . This is done precisely as for the single­
statement FORALL and has the same meaning .

3. Execute the statements in the FORALL body in the order given according to the rules
below. Effectively, the rules specify that each statement takes effect for all active index

values before any following statements begin .

• An assignment or pointer assignment statement is executed as if it were within a
single-statement FORALL: the right-hand side is computed for all active index values,
then the computed values are assigned to the left-hand side for all active index values.
• A FORALL statement modifies the active set of index values; the new active set is
then used for executing the statements in the inner FORALL body. The process is more
complicated than simply computing a single range for each of the inner indices and

then taking a simple Cartesian product, because the ranges for the inner variables can
depend on outer FORALL index variables. Consider, as an example, this code:

FORALL (I= 1 : 3. J=1:3. I > J)
FORALL(K=1:3. L=l:J. K+L > I)

A(I.J.K.L) = J*K + L
END FORALL

END FORALL

The (I, J) tuples in the active set for the outer FORALL are:

{ (2,1),
(3,1),
(3,2), }

For each index value tuple in the outer active set, a new valid set is computed for the
inner FORALL statement. Each tuple in the new active set includes all the index values
from the outer tuple as well as values for the index variables newly introduced by the
inner FORALL. In our example, there are three pairs in the outer active set, so three
new valid sets of (I,J ,K,L) tuples are computed:

{ (2,1,1,1),
{ (3,1,1,1),
{ (3,2,1,1),

(2,1,2,1),
(3,1,2,1),
(3,2,1,2),

(2,1,3,1)
(3,1,3,1)
(3,2,2,1),

}
}
(3,2,2,2), (3,2,3,1), (3,2,3,2) }

The union of all the new valid sets, one for each tuple in the outer active set, forms
the inner valid set of (I,J,K,L) tuples:

Copyrighted Material

Data Parallelism

{ (2,1,1,1),
(3,1,1,1),
(3,2,1 , 1) ,

(2,1,2,1),
(3,1,2,1),
(3,2,1,2),

(2,1,3,1)
(3,1,3,1)
(3,2,2,1), (3,2,2,2),

175

(3,2,3,1) , (3,2,3,2) }
The inner FORALL then computes the inn e r active set of index tuples by evaluating its

mask expression for all index values in the inner valid set and discarding index value

tuples that result in a . FALSE. mask value. In our example, inner active value tuples

must satisfy K+L > I:

{ (2, 1 ,2,1), (2,1,3,1)
(3,1,3,1)

(3 ,2,2 ,2) , (3,2,3,1), (3,2,3,2) }

Statements in the inner FORALL body are then executed using the inner active set of

index values. At the end of the inner FORALL, the active set reverts to the outer active

set.

• A WHERE statement or construct masks the array assignments in its body. The WHERE

first evaluates its mask expression for all active index values . The assignments within

the WHERE branch of the construct (or the single assignment in the one-line WHERE

statement) are then executed in order using the interpretat ion of arr ay assignments

above. However, the only array elements assigned are those selected by both the active

set of index values and the WHERE mask. Finally, the assignments in the ELSEWHERE

branch are executed (if it is present) . The assignments here are also treated as array
assignments, but elements are assigned only if they are selected by both the active set

of index values and by the negation of the WHERE mask.

6.2.3 Discussion of the FORALL Statement

The purpose of this section is to give some concrete examples of the FORALL statement

and suggest how it can be used in practical programs . Before that , however , we digress

to give a more visual explanation of the meaning of a FORALL.

Visualizing a FORALL The execution of the FORALL can be visualized by showing
its p recede n ce graph. Such a graph shows all the computations performed in a FORALL
and tells when one computation must finish before another one starts . Figure 6.5 shows

the precedence graph for a small FORALL statement. For comparison, Figure 6.6 shows
the precedence graph for a DO statement with the same body.

In a precedence graph, the computations are shown as ellipses. The "Begin" ellipse
contains the computation of the FORALL active set and the DO loop bounds. There are two

computations for each assignment statement in the construct body-the right-hand side

Copyrighted Material

176

Figure 6.5
Precedence graph for a FORALL statement

FORALL (I = 1:3)
a(l) = bel)
e(l) = del)

EID FORALL

Chapter 6

computation and the assignment to the left-hand side. The "End" ellipse does not contain
any computation; it simply shows when the construct is complete . If two computations

may have to be done in order, then there is an arrow from the earlier computation to the
later one . The variables used in the FORALL in the figure are only for labeling ; the arrows
do not represent the actual dependences for a computation using only those variables.
Instead, an arrow between, for example , bel) and a(2) means that the right-hand side
of the first statement for index value 1 may need to be completed before updating the
left-hand side of the same statement for index value 2. Arrows from right-hand sides (b
and d labels) to left-hand sides (a and e) are there because the left-hand update could
overwrite some data needed to compute the right-hand side. Arrows from left-hand sides

to right-hand sides are easier to understand; they mean that the assigned value might

be used in a right-hand side computation.
The key point to note about Figure 6.5 is that every statement in the body essentially

has two synchronization points-one after the right-hand side is computed, and one after
the assignment to the left-hand side. An operation near the end of a FORALL (such as

the operation e (1») may depend on an operation near the top for any index value. Note

Copyrighted Material

Data Parallelism

Figure 6.6
Precedence graph for a DO statement

DO I = 1, 3

a(I) = b(I)

e(I) = d(I)

END DO

177

how this differs from the DO loop. There, a dependence goes from the last operation in

each iteration to the first operation in the next, forming a single continuous chain. The

effect of this is that every row in the FORALL dependence diagram can be executed in
parallel, while no operations in the DO can execute in parallel.

In practice, many of the dependences shown in these diagrams do not actually occur

for a particular FORALL or DO statement. That is, Figures 6.5 and 6 . 6 are worst-case
scenarios as far as parallelism is concerned. For example, if the computation in d does
not use any elements from the array assigned in a, then none of the arrows from the
second to the third row in the FORALL diagram actually occur . In simple cases (like the
one we just described), a compiler may be able to detect that some dependences are not
needed . Section 6.4.3 shows how the INDEPENDENT directive can make assert ions about
some DO and FORALL statements.

The precedence graph for nested FORALL statements is (not surprisingly) a bit more
complex. Figure 6.7 shows one small example. The key point to notice is the mass
of dependences between operations in the inner FORALL statement . Every e operation
potentially depends on every d operation, even those with different I values . The remarks

Copyrighted Material

178

Figure 6.7

FORALL (I = 1: 3)
a(I) = b(I)

FORALL (J = 1:I)
e(I,J) = d(I,J)

END FORALL
END FORALL

Precedence graph for nested FORALL statements

Copyrighted Material

Chapter 6

Data Parallelism 179

about dependences not occurring in practice apply doubly here. For example, in the
statement

FORALL (I = 1:100)

FORALL (J = 1:I)

A(I,J) = A(J,I) * A(I,I)
END FORALL

END FORALL

the worst-case diagram has 25,502,500 dependences between left- and right-hand sides;
the number that actually occur is 5050. (The triangular index value space eliminates
dependences between different values of I , and the only dependences in the FORALL J
construct are from J=I to every value of J.) As before, every row in the FORALL precedence

diagram can be executed in parallel. Although we don't show it , the diagram for a nested
DO loop is a long chain of operations, snaking its way through the inner loops.

FORALL Examples Examples 6.1 and 6.2 go through the interpretation of two
FORALL statements in some detail. The other examples in this section suggest ways
that the FORALL can be useful, as well as illustr ating some subtleties of the definitions in

Sections 6.2.1 and 6.2.2.

Example 6.1 First, we consider the FORALL in Figure 6 .1, reproduced below.

FORALL (I = 2:5) A(I, I) = !(I-1, I-i)

It is interpreted as follows:

1. The bounds are evaluated (trivially) to determine that the valid set of the FORALL is
{2,3,4,5} .
2. Since there i s no mask expression, the active set is the same as the valid set.
3. The value of A(I-1, I-i) is computed for every index value in the active set . Using

the values shown in Figure 6.1 produces the values {ll, 22 , 33 , 44} .
4. The values are assigned to the elements {A(2,2),A(3,3),A(4,4),A(5,5)}.

Figure 6.1 shows the overall effect of the FORALL statement. 0

Example 6.2 We next consider the code in Figure 6.2, reproduced below.

FORALL (I = 1:8)

A(I, I) = SQRT(A(I.I»
FORALL (J = 1-3: I+3, J/=I .AND. J>=1 .AND. J<=9)

A(I, J) = A(I, I) * A(J, J)

Copyrighted Material

180

END FORALL
END FORALL

The interpretation is only slightly more complex than the last example.

Chapter 6

1. The valid set for the FORALL I statement is easily computed as {I, 2, 3, 4, 5, 6, 7, 8}.
2. The active set for the FORALL I statement is the same as the valid set.
3. The expression SQRT(ACI, I» is computed for every active index value. Using the
values ACI,I) = I**2, as shown in Figure 6.2, produces the values {1, 2, 3,4, 5, 6, 7, 8}.
4. The values are assigned to elements A(I, I) for all elements of the active set . After
this, A is the following matrix.

1 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0
0 0 3 0 0 0 0 0
0 0 0 4 0 0 0 0

0 0 0 0 5 0 0 0
0 0 0 0 0 6 0 0
0 0 0 0 0 0 7 0
0 0 0 0 0 0 0 8

5. The valid set for the FORALL J is computed . The (I, J) values for that set are

{(1,-2), (1,-1), (1,0), (1,1), (1,2), (1,3), (1,4),
(2,-1), (2,0), (2,1), (2,2), (2,3), (2,4), (2,5),
(3,0), (3,1), (3,2), (3,3), (3,4), (3,5), (3,6),
(4,1), (4,2), (4,3), (4,4), (4,5), (4,6), (4,7),
(5,2), (5,3), (5,4), (5,5), (5,6), (5,7), (5,8),
(6,3), (6,4), (6,5), (6,6), (6,7), (6,8), (6,9),
(7,4), (7,5), (7,6), (7,7), (7,8), (7,9), (7,10),
(8,5), (8,6), (8,7), (8,8), (8,9), (8,10), (8,11) }

6. The active set for the FORALL J is computed. The (I, J) values for that set are

{ (1,2), (1,3), (1,4),
(2,1) , (2,3), (2,4), (2,5),

(3,1) , (3, 2), (3,4), (3,5), (3,6),
(4,1) , (4,2), (4,3), (4,5), (4,6), (4,7),
(5,2), (5,3), (5,4), (5,6), (5 ,7), (5,8),
(6,3), (6,4), (6,5), (6,7), (6,8),
(7,4), (7,5), (7,6), (7,8),

Copyrighted Material

Data Parallelism 181

(8,5), (8,6), (8,7) }

From the valid set, the J/=I condition masks out the middle column, and the J>=l and

J<=8 conditions remove the upper left and lower right corners.

7. The values of A(I, I) * A (J , J) are computed for the active index value tuples . This

gives the values

{ 2, 3, 4,
2, 6, 8, 10,

3, 6, 12, 15, 18,
4, 8, 12, 20, 24, 28,
10, 15, 20, 30, 35, 40,
18, 24, 30, 42, 48,
28, 35, 42, 56,
40, 48, 56 }

8. The computed values are assigned to the elements A(1, J) for all active index value
tuples. The list of elements is identical to the list of active index values shown above.

Figure 6.2 shows the overall effect of the FORALL statement. 0

Since the semantics of FORALL statements parallel the semantics of arr ay assignment ,
it is not surprising that some FORALL statements can be transl ated fairly directly to array

assignments or WHERE statements.

Example 6.3 The following FORALL statements

FORALL (I = 2:N-l) XCI) = X(I-l) + XCI) + X(I+l) Ex.l

FORALL (I = l:N) X(INOX(I » = XCI) Ex.2

FORALL (I = l:N , J= l : M, B(I,J)/=O.O) A(I , J) = 1.0/B(I,J) Ex.3

FORALL (J = l:K, I = l : N) A(I,J) = B (J,I) Ex.4

FORALL (I = 2:N-l, J = 2:M-1)
A (I,J) = A(I,J-1) + A(I,J+ 1) + A(I-1 ,J) + A(I+1 ,J) Ex.Sa

B(I,J) = A(I,J) Ex.Sb

END FORALL

are equivalent to the following Fortran 90 statements.

X (2:N-1) = X (1:H-2) + X (2 : N-l) + X(3 :1) Ex.1

X (INOX (l : N » = X (l : N) Ex.2

WHERE (Y (1:N,1:M) /= 0 . 0) X (l:N , l:M) = 1 .0/Y(1 :N,l:M) Ex.3

A (l:N , l:M) = TRANSPOSE (B (l:M, l : N » Ex.4

Copyrighted Material

182

A (2 :N -1 , 2:M- 1) = A (2:N- 1 , l:M-2) + A (2 :N- 1 , 3:M) &
+ A (1 :N -2,2:M-1) + A (3:N , 2:M-1)

B (2:N -1 , 2 :M-1) = A (2:N- 1 , 2:M- 1)

A few details of these statements should b e mentioned.

Chapter 6

Ex.Sa

Ex.Sa

Ex.Sb

1. Statement E x . 1 uses the original values in the array X for all its computations. For
example, if X CI) =l for all I initially, then after the statement X (I) =3 for elements 2
through N- 1 . Note that it does not have the same effect as the Fortran 90 loop

DO I = 2 , N-1

X CI) = X (I-1) + X CI) + X (I +1)

END DO

which produces X (I) =2 *1+1 (for 2<=I<=N -1) from the same data.
2. Statement Ex. 2 , performs a permutation of the array X if INDX contains the integers
from 1 to I in some order. If INDX contains repeated values, neither the behavior of the
FORALL nor the equivalent array assignment is defined.

3. Statement Ex . 3 takes the reciprocal of each nonzero element of array B(1 : N , 1 :M) .

Elements that are zero are filtered out before the computation is done, so the statement

is safe from "division by zero" errors.

The reader can make up his or her own mind whether the FORALL or the array assign­
ment forms of these statements are more readable. Both forms have fans and detractors.
o

Not all FORALL statements have simple translations to Fortran 90. Translations some­
times become complex due to the shapes of array sections assigned, or because the FORALL
indices are used in computations besides subscripts.

Example 6.4 The following FORALL statements are difficult to translate to Fortran 90:

! Forall 1

FORALL (I = l:N) A (I , INDX (I » = XCI)

! Forall 2

FORALL (I = l:N , J = l:N) A(I,J) = 1.0 / REA L(I +J-l)

The shortest Fortran 90 equivalents we know of using array operations are below .

Copyrighted Material

Data Parallelism

! Forall 1
WHERE (S PREAD «/(I ,I =l,N) /) , DIM=2 , NCOPIES=N) = t

SPREAD«/(I ,I =l , N)/) , D I M=l , NCOPIES=N)

A(l:N , INDX (l:N » = SPREAD(X (l:N) , OIM=2, N COP IES=N)

END WHERE

! Forall 2

183

A(l:N,l:M) = 1 . 0 / REAL (SPREAD «/(I , I =l,N) /) ,DIM=2,NCOP IES=H) t
+ S PREAD «/(J , J=l , H) /) , DI H=l,NCOP IES=N) - 1)

Equivalent DO loops are shorter. However, if the right-hand sides used the array A then
the translations to DO loops would be more complex . Example 6.1, for example, requires

either using two DO loops or changing the natural iteration order. 0

Example 6.5 The ability to nest a WHERE statement in a FORA LL is sometimes useful.

FORALL (I = 1:5)

WHERE (A (I ,:) /= 0. 0)

A(I , :) = A (I-1,:) + A (I +1 , :)
ELSEWHERE

B (I ,:) = A (6- I , :)

END WHERE

END FORALL

This FORALL construct, when executed with the input arrays [00

1.0
A = 2.0

3.0
0.0

0.0 0.0

1.0 1.0
2.0 0.0

0 .0 3.0

0.0 0.0

will produce as results [00
2.0

A = 4.0
2.0
0.0

0.0 0.0

2 .0 0.0

1.0 0.0
0.0 0.0
0.0 0.0

0.0

0.0

2.0
3.0

0.0

0.0

0.0

3.0
2 .0
0.0

00 1 [0.0

1.0 10.0
2 .0 , B = 20.0
3 .0 30.0
0.0 40.0

0.0 [00

2 .0 10.0
4.0 , B = 20.0
2.0 30.0

0.0 0.0

0.0 0.0

10.0 10.0

20.0 20.0

30.0 30.0

40.0 40.0

0.0 0.0

10.0 10.0

20.0 0.0

2.0 30.0

0.0 0.0

0.0
00 1 10.0 10. 0

20.0 20.0

30.0 30.0

40.0 40.0

0.0 00 1 2.0 10.0

20.0 20.0

30.0 30.0

0 .0 0. 0

Note that, as with W HERE statements in ordinary Fortran 90, assignments in the WHERE

branch may affect computations in the ELS EWHERE branch. 0

Copyrighted Material

184 Chapter 6

Example 6.6 The FORALL statement also allows pointer assignments in its body, which
is a clear extension of Fortran 90 array assignments .

TYPE MONARCH

I NTEGER , POINTER :: P

END TYPE MONARCH

TYPE (MO IARCH), DIMENSIOI(8) .. PATTERN
INTEGER, D I MENSION (8) , TARGET OBJEC T

! Set up a butterfly pattern
FORALL (J = l:N) PATTERN (J)%P => OBJECT (1 +IEOR (J-1,2 »

This FORALL statement sets the elements 1 through 8 of array PATTERN to point to
elements [3,4, 1,2,7,8,5,6) of OBJECT. (IEOR is allowed because all intrinsic functions are
PURE; see Section 6.3.) 0

Example 6.7 Functions returning arrays can also be PURE , as Section 6.3 discusses .
This allows the programmer to think of subarrays as "elements" to be assigned , as in the
following code .

INTERFA CE

P URE FUNCTIO N F(X)

REAL, DIMENSION(3) : : F
REAL , DIMEISIOI(3), INTENT(IN) X

END FUNCTION F

END I NTERF ACE

REAL, D IMENSION (3 , L , M , N) V

FORALL (I = l:L, J = l:M, K = l:N) V(:, I , J , K) = F (V (: , I , J,K»

Computations of this form are common in some areas of physics, such as quantum chro­

modynamics. 0

6.3 The PURE Attribute

The P URE attribute applies to functions and subroutines, in much the same way as the
Fortran 90 RECURSIVE attribute. It constrains the statements allowed in the procedure so
that the procedure cannot have any side effects , except to return a value (in the case of a
PURE function) or modify INTENT (OUT) and I NTENT (INOUT) parameters (in the case of a

PURE subroutine). This makes PURE functions safe for use in a FORALL statement ; in fact ,

Copyrighted Material

Data Parallelism 185

this is intended to be the major use of PURE procedures. PURE subroutines are mainly
intended to be called from other PURE procedures ; they cannot be called from a FORALL
statement directly. A PURE procedure may also be used anywhere that a procedure of

the same type can be called.
The PURE attribute is not a part of Subset HPF. However, intrinsic functions are still

considered PURE in Subset HPF. This allows (single-statement) FORALL statement bodies
to call intrinsic functions, but not user-defined functions. Thus, Example 6.11 is not
Subset-conforming, but Example 6.12 is allowed in Subset HPF.

6.3.1 Form of the PURE Attribute

The PURE attribute is specified in the function-stmt (H409) or subroutine- stmt (H411) by

the prefix (H407) part. The new form of a prefix (H407) is:

prefix-spec [prefix-spec] ...

where a prefix-spec (H408) is one of:

type-spec
RECURSIVE

PURE

extrinsic-prefix

See Chapter 8 for the definition of extrinsic-prefix (H501). The form of a function-stmt
(H409)) is not changed from rule R1217 of the Fortran 90 standard, but is rewritten here
for clarity:

[prefix] FUNCTION function-name ([dummy-arg-name-list]) [RESULT (result-name)]

Similar ly, the form of a subroutine-stmt (H411) is the same as Rule R1220 of the For­
tran 90 standard, and is rewritten here:

[prefix] SUBROUTINE subroutine-name [<[dummy-arg-listp]

Rules and restrictions:

1. A prefix must contain at most one of each variety of prefix-spec.
2. The prefix of a subroutine-stmt must not contain a type-spec.
3. Intrinsic functions, including the HPF intrinsic functions, are always PURE and require

no explicit declaration of this fact. Intrinsic subroutines are PURE if they are elemental
(i.e., MVBITS) but not otherwise.

4. A statement function is PURE if and only if all functions that it referen ces are PURE.

Copyrighted Material

186 Chapter 6

Functions in the HPF library are PURE .

In addition to the new definition of prefix, the PURE attribute adds a number of con­
straints to other Fortran 90 rules when they use a PURE function . When the constraints
mention "a PURE procedure" they mean a procedure that is declared PURE by the above
rules.

Add the following rules and restrictions to the definitions of fu nction-su bprogram

(R1215) and su bro utin e-subprogra m (R1219) from the Fortran 90 standard:

Rules and restrictions :
1 . The specification-part of a PURE function must specify that all dummy arguments have

I NTENT (nO except procedure arguments and arguments with the POINTER attribute.
2 . The specification-part of a PURE subroutine must specify the I NTENT of all dummy

arguments except procedure arguments and arguments that have the POliTER attri­

bute .
3. A local variable declared in a PURE procedure (including a variable declared in an

internal procedure) must not have the SAVE attribute .
4 . A local variable declared in a PURE procedure (including a variable declared in an

internal procedure) cannot be initialized in a type declaration statement or a DATA

statement, since such initializations imply the SAVE attribute .
5. A PURE procedure (or its internal procedures) may not use global variables, dummy

arguments with I1TEIT (I1) , or objects that are storage associated with any part of a
global variable in any operation that might cause their value to change. In addition ,
a PURE function may not use any dummy argument , even without a declared I1TEIT
attribute , in these contexts. In particular , those variables cannot be used as :

• The left-hand side of an assignment statement or pointer assignment statement .

• An actual argument associated with an dummy argument with INTEIT (OUT)
or INTENT (INOUT) or with the POINTER attribute .
• An index variable in a DO statement, FORALL statement, or an implied DO clause .

• The variable in an ASSIGN statement .
• An input item in a READ statement .
• An internal file unit in a WRITE statement.
• The object to be allocated in an ALLOCATE , the object to be deallocated in a
DEALLOCATE statement, or the pointer to be nullified in a NULLIFY statement .

• An IDSTAT= or S I ZE= specifier in an I/O statement, or the STAT= specifier in a
ALLOCATE or DEALLOCATE statement.

6. A PURE procedure (or its internal procedures) may not use global variables , dummy

arguments with I NTENT (IN) , or objects that are storage associated with any part

Copyrighted Material

Da.ta. Parallelism 187

of a global variable in any operation that could create a pointer to that variable.
In addition , a PURE function may not use any dummy argument , even without a
declared I1TEIT attribute , in these contexts . In particular , those variables cannot
be used as:

• The target (right-hand side) of a pointer assignment statement .
• The right-hand side of an assignment t o a derived-type variable (including a
variable that is a pointer to a derived type) if the derived type has a pointer
component at any level of component selection .

7. If a PURE procedure calls another procedure, then the called procedure must also be
PURE .

8 . If a dummy argument to a PURE procedure or the dummy result of a PURE function
is explicitly mapped, then :

• If the dummy appears in an ALI GN directive as the alignee (H 3 1 6) (i .e . , as
the variable being aligned with something) , then the a lign-target (H32 1) (i . e . , the
thing being aligned to) must be another dummy argument or the dummy result .

• The dummy cannot appear in a D ISTRIBUTE directive .

• The dummy cannot have the IIKERIT attribute.

• The dummy cannot have the DYNAMI C attribute .

9 . If a local variable in a PURE procedure is explicitly mapped, then :

• If the variable appears in an ALIGN directive as the alignee (H316) (i .e . , as

the variable being aligned with something) , then the align-target (H32 1) (i .e . , the
thing being aligned to) must be another local variable , a dummy argument or the
dummy result .

• The variable may not appear in a DISTRIBUTE directive .

• The variable cannot have the DYNAMIC attribute .

10 . A global variable that appears in a PURE procedure must not be used in a REALI GN

or REDI STRIBUTE directive .
1 1 . A PURE procedure may not contain any external input/output statement . The list

of external I/ O statements includes the PRIIT, OPEl , CLOSE, BACKSPACE, ENDFILE,

REWIID, and IIQUIRE statements . It also includes READ and WRITE statements whose
I/O unit is an external file unit number or * .

12 . A PURE function must not contain a PAUSE or STOP statement .

Add the following rules to the definition of interface- body (R1204) .

Copyrighted Material

1 88 Chapter 6

Rules and restrictions :
1. In an INTERFACE block , the interface specification of a PURE procedure must specify

the IllTEliT of all dummy arguments except POIllTER and procedure arguments .
2 . A procedure that is declared PURE at its definition may be declared PURE in an

IllTERFACE block , but this is not required .
3. A procedure that is not declared PURE at its definition must not be declared PURE in

an INTERFACE block .

6 . 3 . 2 Meaning of the P URE At t ribute

A call to a PURE procedure has exactly the same interpretation as a call to any other
procedure . However , it is legal to call a PURE procedure in contexts where an arbitrary
procedure is not allowed , In particular ,

• A PURE function may be used in the mask expression or the body of a FDRALL state­
ment .
• A PURE function or subroutine may be called from a PURE procedure .
• A PURE function or subroutine may be passed as an actual parameter to a dummy
parameter that is declared PURE.

If a procedure is used in any of these contexts, then its interface must be explicit and
the PURE attribute must be part of that interface. Note that all the restrictions on PURE

can be checked statically, that is , they refer to the syntax of the function , not to its
behavior. (Consistency of the declarations between compilation units cannot be checked
directly , unfortunately ; however , it can be checked when the units are linked into a single
program .)

6.3 . 3 Discussion of the P URE Attribute
We first give some examples of functions that are (or are not) PURE , then illustrate their

use.

Example 6 . 8 The following statement functions are PURE :

REAL : : MY_EXP , MY_SIKH , STD_SIKH

MY_EXP (X) = 1 + X + X*X/2 . 0 + X**3/6 . 0

MY_SINH (X) = (MY_EXP (X) - MY_EXP (- X » / 2 . 0

STD_SINH (X) = (EXP (X) - EXP (- X » / 2 . 0

MY..EXP references no functions, so it cannot reference any non-PURE fun ctions . The other
two functions reference only the PURE user-defined function MY ..EXP and the intrinsic EXP ,

o

Copyrighted Material

Data Parallelism

Example 6.9 The following function is correctly declared to be PURE .

PURE INTEGER FUNCTION MANDELBROT(X)

COMPLEX . INTENT (I I) X

COMPLEX XTMP

INTEGER K

! Assume SHARED_DEFS includes the declarat ion
! INTEGER ITOL

USE SHARED_DEFS

K = 0

XTMP = -X

DO WHILE (ABS (XTMP) <2 . 0 . AID . K<ITOL)
XTMP = XTMP • XTMP - X

K = K + 1
END DO

ITER = K

END FUNCTION

189

Example 6 . 1 1 shows how a FORALL might call this function to update all the elements
of an array. We expect that this will be a common use for PURE functions. A suitable
IllTERFACE block for MAliDELBROT would be as follows .

INTERFACE

PURE INTEGER FUNCTION MANDELBROT (X)

COMPLEX . INTENT(IN) : : X

END FUNCTION MANDELBROT

END INTERFACE

We note a few interesting points about this function .

• It uses shared data (ITOL) , but does not assign to it . Read-only use of shared data is
allowed in PURE functions.
• It contains a loop construct. Arbitrary flow control is allowed in PURE functions .

These features make PURE functions quite useful , although they also make compilation
somewhat more complex. 0

Example 6.1 0 The following function is not PURE . Any one of the commented state­

ments is enough to disqualify it from being PURE .

Copyrighted Material

190 Chapter 6

REAL FUNCTION IMPURE_FCN (W , X , Y) ! *IMPURE* - No PURE attribut e

Assume SHARED_DEFS contains the declarat ions
INTEGER , PARAMETER N = 1000
INTEGER NUM_CALLS
REAL , DIMENSIOI (I) , TARGET LOOKUP_TABLE

USE SHARED_DEFS

REAL , INTENT (IN) W
REAL , DIMENSION (10) , INTENT (IN) X
REAL , DIMENSION (N) , TARGET Y

INTEGER , SAVE LAST 1
REAL , DIMENSIOI (10) , POliTER z

INTERFACE

PURE SUBROUTINE BINARY_SEARCH (A , B , I)
REAL , INTENT (IN) A
REAL , INTENT (INOUT) , DIMENSION (N) B
INTEGER , INTENT (INOUT) I

END PROCEDURE BINARY_SEARCH
END I1TERFACE

IMPURE

IMPURE

- No INTENT

- Has SAVE

! *IMPURE* - Passing global t o INTENT (INOUT) parameter
CALL BINARY_SEARCH (W , LOOKUP_TABLE , LAST)
Z => Y (LAST : LAST+9) * IMPURE* - Pointer to dummy
NUM_CALLS = NUM_CALLS + 1 ! * IMPURE* - Ass ignment t o global
IMPURE_FCN = SOM (X * Z)

END FUNCTION IMPURE_FCN

Notice that many of the "impurities" in this function do not actually cause side effects .

• Leaving out the PURE attribute is purely a syntactic matter .
• Although Y is not declared INTENT (IN) , it is not assigned in the procedure.
• Assuming that B INARy...sEARCH does what its name implies , its second parameter will
not be modified. A more appropriate INTERFACE block might be

INTERFACE
PURE SUBROUTINE BINARY_SEARCH (A . B , I)

Copyrighted Material

Data Parallelism

REAL . IITEIT (I I)
REAL . IITEIT (I I) , D IMEISIOI (I)
IITEGER , IITEIT (IIOUT)

EID PROCEDURE BIIARY_SEARCH
EID I1TERFACE

A
B
I

which would make the CALL statement legal in a PURE function .
• Although Z points to Y , there are no assignments to Z that modify Y .

191

The rules for PURE ensure that no side effects occur ; it is not the case that every subroutine
without side effects is PURE . 0

Example 6 . 1 1 This FORALL applies the MAiDELBROT function defined in Example 6.9 to
fill an array.

FORALL (I = 1 : 1 , J = l : M)

A (I . J) = MAIDELBROT (COMPLX « I- 1) * 1 . 0! (N- 1) . (J- 1) * 1 . 0/ (M- 1 »
EID FORALL

Note that because of the control flow inside MAIDELBROT this computation could not be
written as a FORALL statement without the PURE function . One of the major advantages
of PURE functions is that they allow more complex operations to be done in parallel by
FORALL statements. 0

Example 6.12 Since intrinsic functions are PURE, they can be always be called from
FORALL statements . For example ,

FORALL (K = 1 : 9) X(K) = SUM (X (1 : 1 0 : K »

computes nine sums of subarrays of X . If X has the value

[1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10]

b efore the FORALL , then it have the value

[55, 25 , 22 , 1 5 , 7, 8, 9 , 10 , 1 1 , 1 01

afterwards . Note that , since SUM is not an elemental function , it cannot be applied
elementally in this way. 0

Copyrighted Material

1 9 2 Chapter 6

6.4 T he INDEPEND ENT Directive

The INDEPENDENT directive is an assertion that the programmer makes ab out the behavior

of a DO loop or FORALL statement . In particular , INDEPENDENT asserts that the iterations

of a DO or the computations for different active index values of a FORALL , do not interfere

with each other in any way. This implies that the DO or FORALL will produ ce exactly

the same answers if its iterations or computations are executed in p ar allel (or , for that

matter , in any sequential order) . The compiler can use this information to pro duce more
efficient co de .

Note that INDEPENDENT is providing n e w inform at i o n to the compiler , not defining

a new m e a ning for the code . If it is used correctly, INDEPENDENT will not change the

meaning of a program. If it is misused (i .e . , if the p rogrammer is mistaken deliberately

lies about the interactions between iterations) , then the program is not HPF-conforming .

While FORALL statements technically do not have "iterations" because they are not

loops , for simplicity of exposition in this section we use the term "iteration" to describe

either an iteration of a DO loop or the execution of the body of a FORALL for a single

active index value tuple .
Subset HPF includes the INDEPENDENT directive applied to b oth DO loops and FORALL

st atements .

6.4 . 1 Form of the INDEPENDENT Directive

The INDEPENDENT directive precedes the DO loop or FORALL statement for which it is

asserting behavior , and is said to apply to that loop or statement . The form of the

indep e n dent- directive (H413) is :

INDEPENDENT [• NEW (variable - list) 1

Rules and restrictions:
1 . The first non-comment line following an I NDEPENDENT directive must b e a DO or

FORALL statement .

2 . If the NEW option is present, then the directive must apply to a DO loop .

3 . A NEW option cannot name a pointer or dummy argument in its v a ri a b le - list .

4. A variable named in the NEW option must not have the SAVE or TARGET attribute .

5 . The DO or FORALL to which the INDEPENDENT directive applies must behave as de­

scribed in Section 6 .4 .2 .
6.4.2 Meaning of the IND EPENDENT Directive

A DO loop with an INDEPENDENT assertion applied to it is called a DO INDEPENDENT
loop. The interpret ation of a DO INDEPENDENT is identical to the interpretation of the

Copyrighted Material

Data Parallelism 1 93

corresponding DO loop with no INDEPENDENT . That is , INDEPENDENT (when correctly ap­
plied) does not change the results computed by the DO to which it applies . Similarly,
a FORALL st atement with an INDEPENDENT assert ion applied to it is called a FORALL
INDEPENDENT. The interpretation of a FORALL INDEPENDENT is identical to the corre­
sponding FORALL 's interpretation . The importance of the INDEPENDENT directive is that

it gives the compiler more information that may be used to optimize the program . Thus ,
although the meaning of the program does not change , its performance is likely to be
better because the compiler can make less restrictive assumptions .

The interpretation of INDEPENDENT itself is essentially an explan ation of what the
directive asserts . In short , it asserts two things :

• Bernstein 's co n ditions [8] : If R;. is the set of locations "read" in iteration i of a
construct , and Wi is the set of locations "written" in iteration i, then for any i t j it
must be t rue that

The effect of this is that no atomic dat a object may be read in one iter ation and written
in another , nor may any atomic object be written in more than one iteration .
• No control depen dence : Once the construct begins execution , it will execute to com­
pletion .

Note that , unlike the restrictions on PURE functions , these are assertions about the behav­
ior of the INDEPENDENT constru ct , not about its syntax. For example , a DO IIfDEPENDENT

could legally contain a STOP st atement , provided that statement was in a branch of an
IF that was never executed .

It is important to define precisely the terms "read" and "written" in Bernstein 's con­

ditions . Given that , we have the following :

• An assignment to an object is a write to all the atomic objects that it contains . For

example , an assignment to an integer variable is a write to one atomic object ; an array
assignment to an integer array can be many atomic writes . Note that this is considered

a write even if the value does n ot change .

• Similarly, using an object as a DO or implied DO index ; as FORALL index ; as an input
item in a READ statement ; as an internal file unit in a WRITE statement ; as the variable in
an ASSI GN st atement ; as the pointer in an ALLOCATE, DEALLOCATE or NULLIFY st atement ;
or as a IDST!T= , S I ZE= or STAT= specifier is a write to all atomic objects in that object .
• A use of a variable in an expression (not including "use" in modifying that variable , as
detailed above) is a read of every atomic object in the (fully-qualified) use . For example,

Copyrighted Material

194

TYPE EXAMPLE
REAL , DIMENSIOR (3) ; ; X , Y

END TYPE EXAMPLE

REAL , DIMENSION (1 0) A , B
TYPE (EXAMPLE) C

A (t) = A (1 0)

B (2 : 9) = B (1 : 8)
C%X (1) = C%Y (3)

Chapter 6

contains reads of A (1 0) , B (1) , B (2) , B (3) , B (4) , B (5) , B (6) , B (7) , B (8) , and C%Y (3) .
It does not contain reads of (among other things) A (1) , B (9) , B (10) , or C%Y taken as a

whole .
• Any file I/O statement except INQUIRE both reads and writes that file , where the file
itself is considered to be an object. (This is due to Fortran 's definition of how the file
position is affected by I/O statements; the position is defined after every operation , even
for direct access files .) An INQUIRE operation performs a read from its file .
• A REALIGN or REDISTRIBUTE directive reads and writes a variable and every atomic
object that it contains . (This is because the operation may change the processor storing
every array element , which interferes with any assignment or use of those elements .) In
addition , a REDISTRIBUTE directive reads and writes every element of any array aligned
to the array being distributed .

Obviously, some of these points do not apply to FORALL statements , which cannot contain
(for example) ASSIGN statements .

A construct has control depe ndence if the execution of one iteration determines whether
other iterations are executed. The following cases constitute control dependence in H P F
programs :

• A transfer of control (by a GO TO , alternate procedure return , or ERR= branch) to a

branch target statement outside the body of the loop.
• Any execution of an EXIT , STOP , or PAUSE statement.

A FORALL statement cannot be affected by either of these conditions .

The NEW clause modifies the meaning of the INDEPENDENT directive by restricting

the variables considered for inclusion in the read and write sets . The technical defi­

nition is that it changes the INDEPENDENT directive where it appears and all surrounding

I NDEPENDENT directives to mean that those assertions would be true if new objects were

created for the named variables for each iteration of the DO loop . In other words ,it asserts

Copyrighted Material

Data Parallelism 195

that the remainder of program execution is unaffected if al l variables in the variable list
and any variables associated with them were to become undefined immediately before
execution of every iteration of the loop , and also become undefined immediately after
the completion of each iteration of the loop.

The English translation of the above definition is that the variables named in the lEW

clause should be treated as being private in the loop body. Effectively, the variables lose
their values at the end of each iteration . The reason for the strange circumlocution has
to do with the fact that lEW is part of a directive , rather than a first-class statement
in the language . Since directives can 't change the meaning of the program , they can 't

allocate new objects or make existing objects undefined. Therefore , the official definition
has to be phrased as a series of "what ifs ."

lEW variables provide the means to declare temporaries in IIlDEPENDENT loops. With­
out this feature , many conceptually independent loops would need substantial rewriting
(including expansion of scalars into arrays) to meet the rather strict requirements for
I1DEPEHDEHT. Note that a temporary need only be declared lEW at the innermost lex­
ical level at which it is assigned , since all enclosing INDEPENDENT assertions must take
that NEW into account . Note also that index variables for nested DO loops must he de­
clared lEW ; the alternative was to limit the scope of an index variable to the loop itself,
which changes Fortran semantics. FORALL indices , however , have scopes restricted by the
semantics of the FORALL statement ; they require no NEW declarations.

The compiler is j ustified in producing a warning if it can prove that an INDEPENDENT

assertion is incorrect . It is not required to do so , however . Indeed, since deciding whether
a loop is I NDEPENDEIT is an undecidable problem , it is always possible to write an as­
sertion that the compiler cannot fully check . A program containing any false assertion
of this type is not HPF-conforming , thus is not defined by HPF, and the compiler may
take any action it deems appropriate . 1

6.4.3 Discussion of the INDEPENDENT Directive
Like the FORALL statement , there is a good graphical representation of a DO I1DEPEllDEHT
loop. We show that in Figure 6 .8, and then give some examples of loops that are (and
are not) INDEPEHDEHT .

Visualizing INDEPENDENT Figure 6 . 8 shows the precedence graph for a DO IR­

DEPENDENT loop . If the I NDEPEIDENT assertion were applied to a FORALL statement , the
picture would look exactly the same. INDEPEHDENT means that only the dependences
shown may occur , rather than the full sets of arrows from Figures 6 . 5 and 6 . 6 . The

1 At one point the HPF language draft suggested executing the programmer if such an error was
found, but that sentence was eventually removed.

Copyrighted Material

196

Figure 6.8

! HPF$ INDEPENDENT

DO I = 1 , 3
a (l) = bel)
e (l) = d e l)

END DO

Precedence graph for a DO I1DEPEBDKIT loop

Copyrighted Material

Chapter 6

Data Parallelism 197

assertion essentially tells the compiler that this particular statement is not a worst case;
in fact , it is far from the worst . It is clear from the figure that any operation in one
iteration can be performed in parallel with any operation from any other iteration . The

only ordering that needs to be enforced is within the same iteration . (Sometimes even
this ordering may be unnecessary-in particular , when the statements in the body do
not depend on each other . HPF has no way to express such fine control , however .)

Figure 6 .9 shows a FORALL I NDEPENDENT with a nested FORALL . Replacing the outer

FORALL statement with a DO loop would produce the same picture . We show it to point
out that the I NDEPENDENT assert ion does mean that FORALL statements (or DO loops)
nested within the INDEPENDENT statement are also INDEPENDENT . Compared to Figure 6 . 7 ,
however , i t is clear that removing the dependences between iterations i n the outer FORALL
is still a substantial imprnvement .

INDEPENDENT Examples For simplicity, our explanations in this section assume
there is no storage , sequence , or pointer association between any variables used in the

code . INDEPENDENT can be used when variables are associated , but only if the association
does not cause one of the rules in Section 6.4 .2 to be violated .

Example 6 . 1 3 The following loop is INDEPENDENT regardless of the values of the vari­
ables involve d .

! HPF$ INDEPENDENT

DO I = 2 , N - 1
X CI) = Y (I-1) + Y (I) + Y (I+ 1)

END DO

This is , of course , trivial to see-all iterations read from one array and write to another ,
so there can be no interference . Note that many elements of Y are used repeatedly ; this
is allowed by the definition of INDEPENDENT . The other conditions relate to constructs

not used in the loop . The loop could be written equivalently as fol lows .

! HPF$ INDEPENDENT
FORALL (I = 2 : N- 1) X C I) = V (I - i) + V C I) + Y (I+ i)

It i s always the case that a FORALL INDEPENDENT can be directly rewritten as a DO
I NDEPENDENT . The converse i s not true , due t o the restrictions on the body of a FORALL

statement . 0

Copyrighted Material

1 98

Figure 6.9

! HPF$ INDEPENDENT
FORALL (I = 1 : 3)

a (I) = b (I)
FORALL (J = l : I)

c (I , J) = d (I , J)
END FORALL

END FORALL

Precedence graph for I1DEPEIDEIT with nested statements

Copyrighted Material

Chapter 6

Dat a Parallelism 199

Example 6.14 The following loops are INDEPENDENT regardless of the data values used .

! HPF$ I NDEPENDENT , NEW (I)
DO J = 2 , M-l , 2

! HPF$ INDEPENDENT , NEW(VL , VR , UL , UR)

DO I = 2 , 1- 1 . 2

VL = A (I , J) - A (I- l , J)

VR = A (I + 1 , J) - A(I , J)

UL = A (I , J) - A (I , J- 1)

UR = A (I , J+ l) - A (I , J)
A (I , J) = B (I , J) + A(I , J) + 0 . 25 • (VR - VL + UR - UL)

END DO
END DO

There is no interference due to accesses of the array X because of the stride of the DO
loop (i .e . , I and J are always even , therefore 1 - 1 , etc . are always odd.) Some compilers

can detect this independence without a directive , but the reasoning to do so is clearly
h arder than in Example 6 . 13 . Good discussions of compiler dependence tests can be

found in books by Wolfe [3 1] and Zima and Chapman [33] . Since different compilers

will perform different analyses , we recommend using explicit INDEPENDENT assertions
whenever portability to other systems is important .

Without the NEW clause on the I loop , neither IlfDEPElfDENT assertion would be correct .

For intuition why, consider an interleaved execution of loop iterations , that is , performing

one statement from one iteration , followed by a statement from another iteration . It is

easy to see that this might cause some iteration to use values of VL, VR, UL , and UR in

the assignment to A (I , J) that another iteration computed . The NEW option , however ,

specifies that this is not true if distinct storage units are used in each iteration of the

loop . 0

EXaIllple 6. 1 5 The truth of some INDEPEliDENT assertions depends on the data used in
the construct .

! HPF$ INDEPENDENT
DO I = 1 , N

X (INDX (I » = Y (I)

END DO

This directive asserts that the array INDX does not have any repeated entries in its first
N elements . If there were repeated entries , at least one element of X would receive two

values from Y, thus violating the Bernstein conditions . In general , there is no way for the

Copyrighted Material

200 Ch apter 6

compiler to know the values variables will have at runtime . When a loop is INDEPENDENT

because of properties of the input data , it is almost always advisable to use the explicit
directive . (Unfortunately, we cannot say it is always advisable-reports of directives
causing pathological behavior in compilers are legion.) 0

Example 6 . 1 6 I NDEPEIDEIT loops may contain loops with dependences , so long as
those dependences do not "escape" the INDEPENDENT loop . The code from Figure 6 .4 is
an example of this .

! HPF$ INDEPENDENT , NEW (J , N 1)

DO I 1 , NBLACK

N 1 = IBLACK_PT (I)

DO J = INITIAL_RED (N 1) , LAST_RED (N 1)
X (N 1) = X (N 1) + A (J) *X (IRED_PT (J »

END DO

END DO

As in the last example , the correctness of the INDEPENDENT assertion depends on the
data . Essentially, the assertion says that no element is both "black" (i .e . , referenced by

IBLACK.PT) and "red" (i . e. , referenced by IRED.PT) . It is clear , however , that the DO J

loop is not INDEPENDENT , since it repeatedly uses the value of and assigns to the same
element of X. 0

Example 6 . 1 7 Although we have concentrated on assignments in the previous exam­
ples , a DO INDEPENDENT can contain arbitrary code if its behavior obeys the restrictions
in Section 6 .4 . 2 .

! HPF$ INDEPENDENT , IEW (K , L , N , ROOT)

L 1 : DO J = 1 , 1 0

L2 : DO

READ (J , ' (216 , 13) ') K , L , N

IF (K<=O . OR . L<=O . OR . N<3) EXIT L2

ROOT = (K**! + L**I) ** (1 . 0 I I)
WRITE (J+10 , ' E1S . 6) ROOT

IF (ROOT_M = FLOOR (ROOT » THEN

PRINT ' Fermat was wrong ! J

EXIT L 1

END I F

END DO

END DO

Copyrighted Material

Da.ta. Parallelism 201

The READ and WRITE operations use different I/O units on every iteration . According
to standard Fortran , different I/O units must be associated with different files , so there
is no cross-iteration interference. The PRINT statement would cause an interference if
it were executed , and the EXIT statement would likewise invalidate the INDEPENDENT

assertion . However , those statements are only executed if there are four positive integers
K, L, M, N (with N > 2) such that

KN + LN = MN

Fermat 's Last Theore m , which was recently proved, gu arantees that such integers do not
exist . 0

The next three examples contain incorrect code . Be careful!

Example 6. 1 8 The following loop is not a correct use of INDEPENDENT:

! BPF$ I NDEPENDENT

DO I = 1 , N

! *** Nonconforming ! ! ! ***

S CALAR = SCALAR + X (I) *Y (I)

END DO

The reason is that SCALAR is both read and written by every iteration of the loop , creating
almost N**2 violations of the Bernstein conditions . Placing SCALAR in a NEW clause is
not correct either , since the results of the loop would change rather drastically if the
value of S CALAR was forgotten at the end of each iteration. In short , you cannot use a
DO INDEPENDENT to accumulate sums (or products , or other reduction operations) , even
though there are parallel algorithms for such accumulations . The intrinsics in Chapter 7
are the correct way to perform these operations . 0

Example 6 . 1 9 The following program is n o t correct usage of INDEPENDENT:

! HPF$

! HPF$

ERR = ERR_TOL + 1
D O WHILE (ERR > ERR_TOL)

INDEPENDENT , NEW (J)

D O J = 2 , M- 1

*** Nonconf orming ! ! ! ***

INDEPENDENT *** Nonconf orming ! ! ! ***

DO I = 2 , N - 1

B (I , J) = A (r , J)

A (I , J) = 0 . 25* (A (I - 1 , J) +A (I+ 1 , J) +A (I , J- 1) +A (I , J+ 1 »

B (I , J) ABS (A (I , J) - B (I , J »

EID DO

Copyrighted Material

202

END DO

ERR = MAXVAL (B (2 : N- 1 , 2 : M- l »
END D O

Chapter 6

As just one example of why the INDEPENDENT assertion is incorrect, consider A (3 , 3) .
It is assigned by iteration (I , J) = (3 , 3) , and is used in iterations (I , J) = (4 , 3) ,

(2 , 3) , (3 , 4) and (3 , 2) . It is true that the outer DO WHILE will produce the same
answer if the inner loops are executed in parallel , in the sense that it will terminate with

answers that are very close to the sequential execution . However , chang ing the order of
iterations does change the exact answer , which is what the Fortran and HPF language
specifications define . 0

Example 6 . 2 0 The following loop is not a correct use of INDEPENDENT if SCALAR is ever

found in X .

! HPF$ INDEPENDENT ! * * * Poss ibly Nonconforming ! ! ! * * *

L1 : DO I = 1 , N
IF (X (I) = SCALAR) THEN

LANSWER = I

EXIT L l
END IF

END DO

When the IF condition is true for some value of I some iterations are not executed .
This constitutes control dependence , and makes the INDEPENDENT assertion invalid . As
in the last example , it does not matter that the answer will be the same if the loop

is executed in parallel . Note , however , that if the EXIT statement is deleted then the
loop may be INDEPENDENT , depending on the input data . Without the EXIT statement an
INDEPENDENT assertion would mean that there was at most one I such that X (I) =SCALAR.
o

Copyrighted Material

7 Intrinsic and Library Procedures

An important feature of Fortran 90 is the rich set of intrinsic functions and subroutines
with which it is endowed. These allow the coding of data parallel programs at a higher

level, and potentially with greater efficiency, than if their functions were programmed
by the users. HPF includes Fortran 90's intrinsic procedures. Two of them, MAILOC and
HIILOC, are enhanced in HPF. Three new intrinsic functions are included in HPF: two
system inquiry functions, and one new computational function.

In addition to the new intrinsic functions, HPF defines a library module, BPF...LIBRARY,

that adds further to the power of the language. Intrinsic procedures are unlike ordinary

procedures in that their interfaces are automatically known to the compiler. Some can
take arbitrarily many arguments (HAX, for example) . These special features of intrinsic
procedures were judged unnecessary for most of the HPF procedures, which were there­

fore included in the HPF library module, where a USE statement is required to access
them. Note that the library is not part of subset HPF. The library contains a large
group of additional functions and subroutines. One of the most important facilities these

provide is the ability to query the alignment and distribution attributes of arrays or tem­
plates at run-time. The library also includes some important data parallel programming
primitives: new reduction operations, combining scatter operations, prefix and suffix

operations, and sorting .
Detailed specifications of the intrinsic and library procedures appear in Appendix B.
In order to make them more readable, the examples of this section use T and F to

denote the logical values . TRUE. and . FALSE.

7.1 System Inquiry Functions

In a multi-processor computer, the physical processors may be arranged in a multi­
dimensional processor array. The system inquiry functions return values that describe
the size and shape of the underlying processor array. NUMBER...oF ..PROCESSORS returns the
total number of processors available to the program or the number of processors available
to the program along a specified dimension of the processor array. PROCESSORS.5BAPE

returns the shape of the processor array. Therefore, SIZE(PROCESSORS.5HAPEO) returns

the rank of the processor array.
The values returned by the system inquiry intrinsic functions remain constant for

the duration of one program execution. For this reason, IUMBER...oF ..PROCESSORS and
PROCESSORS..sHAPE may be used wherever Fortran 90 requires a specification-expr. In
particular, references to system inquiry functions may occur in array declarations and in

HPF directives.

Copyrighted Material

204 Chapter 7

Function Value returned

N umber of executing processors (intrinsic) NUMBER.1lF ...PROCESSORS

PROCESSORS...sHAPE Shape of the executing processor array (intrinsic)

Table 7.1

System inquiry functions

Example 7.1 The code

INTEGER, DIMENSION(SIZE(PROCESSORS_SHAPE()))

REAL, DIMENSION(3*NUMBER_OF_PROCESSORS())

!HPF$ TEMPLATE, DIMENSION(NUMBER_OF_PROCESSORS())

PSHAPE

A

T

declares PSHAPE to have one element for each dimension of the processor array. It is
therefore the correct shape to contain the value of PROCESSORS...sHAPE(), for example.
The array A has a size dependent on the number of physical processors; this helps ensure
that the data values in A are spread evenly between processors when A is explicitly
mapped. (It is still possible to unbalance the load due to A by choosing a bad parameter
to a CYCLIC(K) distribution.) The template T has one element per processor; this may

be convenient for defining some mappings, but is usually not necessary. 0

The values of system inquiry functions may not occur in an initialization-expr, because
they may not be assumed to be constants. HPF programs may be compiled to run on
machines whose configurations are not known at compile time. We hope that vendors
will supply HPF compilers and linkers that allow an executable program to run on a
range of machines of varying size, using the system inquiry intrinsics to determine the

machine size and shape at run time.
Note that the system inquiry functions query the physical machine, and have nothing

to do with any PROCESSORS directive that may occur.

Table 7.1 summarizes the system inquiry functions.

7.2 Mapping Inquiry Subroutines

HPF provides data mapping directives that are advisory in nature. The mapping inquiry

library subroutines allow the program to determine the actual mapping of an array at run
time. For example, if REALIGlf or REDISTRIBUTE are used the mapping inquiry procedures
can tell which data mapping is actually in effect. It may be especially important to know

the exact mapping when an EXTRHTSIC subprogram is invoked. For these reasons, HPF

includes mapp ing inquiry subroutines that describe how an array is actual ly mapped

Copyrighted Material

Intrinsic and Library Procedures 205

onto the machine. To keep the number of routines small, the inquiry procedures are
structured as subroutines with optional INTENT(OUT) arguments.

Example 7.2 The distribution in effect may affect the choice of algorithm.

SUBROUTINE GAUSS(A, X)

REAL, DIMEISIOI(1: ,1:) A
REAL, DIMENSION(1:SIZE(A, 2» X

!HPF$ INHERIT:: A, X

LOGICAL SIMPLE

CHARACT ER*10 DISTS(2)

INT EGER BLOCK S(2)

CALL HPF_ALIGNMENT(A, IDENTIT Y_MAP=SIMPLE)

IF (SIMPLE) T HEI

CALL HPF_DISTRIBUT E(A, AXIS_TYPE=DISTS, AXIS_IHFO=BLOCK S)

IF (DISTS(1)=='COLLAPSED' .AND. DISTS(2)=='CYCLIC') THEN

CALL FACTOR_NORMAL_ORDER(A, X, BLOCK S(2» ! Cyclic

ELSE IF (DIST S(1)=='COLLAPSED' .AID. DIST S(2)=='BLOCK') T HEN

CALL FACTOR_PERMUTED_ORDER(A, I, BLOCKS(2» ! Block

ELSE

CALL REDIST_THEN_FACTOR(A, I)

END IF

ELSE

CALL REDIST_THEN_FACT OR(A, I)

END IF

END SUBROUTIHE GAUSS

! Other distributions

Other alignments

This code checks the mapping of A, and calls one of three other subroutines to perform
the real work. For a Gaussian elimination routine (as the names here suggest), the
different routines might use different elimination orders to keep the computational load
balanced among processors. Another use might be to allow the called routines to use
descriptive mapping directives; some compilers may produce more efficient code from

these directives than from a simple IHHERIT . 0

Table 7.2 summarizes the mapping inquiry subroutines.

Copyrighted Material

206

Subroutine

HPF ...ALIGNMENT

HPF _T EMPLATE

HPF ...DIST RIBUT ION

Table 7.2
Mapping inquiry subroutines

Chapter 7

Effect

Returns information about the alignment of an array in
optional INT ENT (OUT) arguments

Returns information about the template or array to
which an array is ultimately aligned in optional
INT ENT(OUT) arguments

Returns information about the distribution of the
template or array to which an array is ultimately
aligned in optional HIT ENT(OUT) arguments

7.3 Computational Functions

7.3.1 Array Location Functions

HPF generalizes the Fortran 90 MAXLOC and MINLOC intrinsic functions with an optional
DIM parameter for finding the locations of maximum or minimum elements along a given
dimension. This is analogous to the optional DIM argument in the MAXVAL and KINVAL

intrinsics. Table 7.3 summarizes the array location functions.

Function

MAXLOC

MULac

Table 7.3

Array location functions

Value returned

Location of a maximum value in an array (intrinsic)
Location of a minimum value in an array (intrinsic)

7.3.2 Bit Manipulation Functions

HPF adds an elemental intrinsic function, ILEN, that computes the number of bits needed

to store an integer value. ILEN was included as an intrinsic because of its use in rounding
an integer up or down to the nearest power of two, a role that was deemed quite im­

portant. Three other elemental, bit-manipulation functions are included in the library:
LEADZ computes the number of leading zero bits in an integer's representation; POPCNT

counts the number of one bits in an integer; POPPAR computes the parity of an integer.

Table 7.4 summarizes the new bit manipulation functions.

Copyrighted Material

Intrinsic and Library Procedures

Function

ILEI

LEADZ

POP CIT

POPPAR

Table '7.4
Bit manipulation functions

Value returned

N umber of bits to store an integer (intrinsic)
N umber of leading zeros

Number of one bits

Parity of an integer

7.3.3 Array Reduction Functions

207

HPF adds additional array reduction functions that operate in the same manner as the

Fortran 90 SUM and ANY intrins ic functions. The new reduction functions are IAL L,
IANY, IPARI TY , and PARITY, which correspond to the commutative , associative binary

operations IAND, lOR, IEOR, and . NEQV. respectively. Thus:

• IALL((/ 7,3,10 /)) has the value 2.

• IAHY((/ 7,3,10 /)) has the value 15.

• IPARITY((/ 7,3,10 /)) has the value 14.

• PARITY((/ T ,F,F , T, T /)) has the value . TRUE .
• PARITY((/ T,F,F,T,F /)) has the value .FALSE.

In the specifications of these functions and the prefix, suffix, and combining scatter

functions in Appendix B, the terms "XXX reduction" are used, where XXX is one of the
reduction functions defined above or the Fortran 90 array reduction intrinsics. These

are defined by means of an example. The IAND reduction of all the elements of ARRAY

for which the corresponding elements of MASK are true is the scalar integer computed in

RESULT by

R ESULT = IAND_IDENTITY_ELEMENT

DO I_1 = LBDUllD(AR R AY,l) , UBDUND(ARRAY,l)

DO I_N = LBDUID(ARRAY,I), UBOUND(ARRAY,I)

IF (MASKCI_1,I_2, ... ,I_I) } �

RESULT = IAND(RESULT, ARRAYCI_l,I_2, ... ,I_H)

END DO

END DO

Copyrighted Material

208

Function

IALL
IANY
IPARITY
PARITY

Table 7.5

Array reduction functions

Value returned

Bitwise logical AND reduction
Bitwise logical OR reduction
Bitwise logical EOR reduction
Logical EOR reduction

Chapter 7

Here, N is the rank of ARRAY and IAND-IDENTITLELEMENT is the integer that has all bits
equal to one. (The interpretation of an integer as a sequence of bits is given in Section
13.5.7 of the Fortran 90 standard.) The other three reductions are similarly defined. The
identity elements for lOR and IEOR are zero. The identity element for PARITY is . FALSE.

Table 7.5 lists the new array reduction functions.

7.3.4 Array Combining Scatter Functions

Suppose that A is the array [10 20 30] , X is the array [1 2 3 4] , and V is the
array [3 2 1] . In Fortran 90, one may write the array assignment

X(V) = A

after which X has the value [30 20 10 4] . If, however, the elements of V are not
all different, the assignment is not standard-conforming in Fortran 90 (or HPF). The
combining scatter functions, in effect, allow duplicated indices and provide a means of
specifying how elements sent to the same position in the result are to be combined. Thus,
the combining scatter functions are generalized array reductions in which completely
general, but nonoverlapping, subsets of array elements can be combined.

There is a scatter function for each of twelve reduction operations. These functions all

have the form

XXX_SCATTER(ARRAY, BASE, INDX1, . . . , INDXn, MASK)

The allowed values of XXX are ALL, ANY, COPY, COUNT, IALL, IANY, IPARITY, MAXVAL,
HUVAL, PARITY, PRODUCT, and SUM.

The result has the same shape and type as BASE. In fact, the result is equal to BASE
in positions for which no elements of ARRAY arrive.

The source data come from ARRAY, and the integer INDX arguments must be con­
formable with it. The number of INDX arguments must equal the rank of BASE. For
example, if ARRAY has rank two and BASE has rank three, then for all valid subscripts

Copyrighted Material

Intrinsic and Library Procedures 209

I and J, ARRAY (I. J) contributes to element (INDU (I. J). INDX2 (I, J). INDX3(I. J)
of the result.

Except for COUNT...SCATTER, ARRAY and BASE are arrays of the same type. (Because it

returns the number of true elements of ARRAY, COUIT-SCATTER has a logical ARRAY and

an integer BASE.)
The optional , logical MASK argument selects elements of ARRAY for inclusion in the

reduction. Only elements of ARRAY in positions for which MASK is true can contribute

to the result. (For ALL-SCATTER, ANY -SCATTER, COUNT -SCATTER, and P ARITY -SCATTER,

ARRAY must be logical. These functions do not have an optional MASK argument.)
Here is a more precise description of the way the result is computed. For every element

a in ARRAY for which the MASK element is true there is a corresponding element in each
of the IHOX arrays. Let SI be the value of the element of INOU that is indexed by the

same subscripts as element a of ARRAY. More generally, for each j = 1,2, ... , n, let Sj be
the value of the element of IHOXj that corresponds to element a in ARRAY, where n is the

rank of BASE. The integers Sj, j = 1, . .. , n, form a subscript selecting an element of BASE:

BASE(SI,S2, ... ,Sn). Unless element a is masked out by the optional MASK argument,
(SI, S2, ... , sn) must be a valid subscript for BASE.

Thus the IHOX arrays establish a mapping from all the elements of ARRAY onto se­
lected elements of BASE. Viewed in the other direction, this mapping associates with

each element b of BASE a set 5 of elements from ARRAY.
Because BASE and the result are conformable, for each element of BASE there is a

corresponding element of the result.
If S is empty , then the element of the result corresponding to the element b of BASE

has the same value as b.
If S is non-empty, then the elements of S will be combined with element b to produce

an element of the result. For every combining-scatter function except COPy...sCATTER,

this combining is done by the corresponding reduction function. As an example , for

SUM...sCATTER, if the elements of S are ai, ... , am, then the element of the result corre­

sponding to the element b of BASE is the result of evaluating SUM ((/ ai, a2, . . . , am, bf)) .
For C OPY -SCATTER, one of the elements of S is chosen in a system-dependent way.

Note that, since a scalar is conformable with any array, a scalar may be used in place

of an 110X array, in which case one hyperplane of the result is selected. See the example

below.

Copyrighted Material

210 Chapter 7

Example 7.3 If

[1 2 3]
A is the array 4 5 6 ;

7 8 9
B is the array [=� =� =:];

-7 -8 -9

then

o

[1 1 1
] I1 is the array 2 1 1 ;

3 2 1
I2 i, th' u'"Y [: : n

SUM....5CATTER(A, B J I1, I2) has the value [
1
: -: -�] ;

o -8 -9

SUM....5CATTER(A, B, 2, I2}hasthe value [;� -� =:];
-7 -8 -9

SUM....5CATTER(A, B, I1, 2) has the value [=�
2

� =:];
-7 -1 -9

SUM....5CATTER(A, B, 2, 2) has the value [=� �� =:]
-7 -8 -9

Table 7.6 l ists the combining scatter functions.

7.3.5 Array Prefix and Suffix Functions

In a prefix function, or scan, of a vector, each element of the result is a function of the
elements of the vector that precede it. Similarly, in a suffix function each element of the
result is a function of the elements in the vector that follow it. For instance, SUM...PREFIX(
(! 1, 2, 3, 4 /)) has the value [1 3 6 10]. Parallel implementations of these
functions are possible. They are imp ort ant in building efficient parallel algorithm on
graphs and other general data structures. Because they are so useful , and because their
efficient parallel implementation may best be done for some machines at programming
levels below that of HPF, they have been included in the library.

These functions provide prefix and suffix operations on arrays and subarrays. The

functions all have the form

Copyrighted Material

Intrinsic and Library Procedures

Function

ALL...sCATTER
ANy...sCATTER
COPy...sCATTER

COUXT ...sCATTER

IALL...sCATTER
IANY ...sCATTER
IP ARITY ...sCATTER
MAXVAL...sCATTER
MINVAL...sCATTER
PARITy...sCATTER
PRODUCT ...sCATTER
SUM...sCATTER

Table 7.6
Combining scatter functions

Value returned

Scatter of logical array, combining with logical AND
Scatter of logical array, combining with logical OR
Scatter of array, combining by (processor-dependent)

selection

Scatter of logical array, counting number of . TRUE.
elements

Scatter of integer array, combining with bitwise AND
Scatter of integer array, combining with bitwise OR
Scatter of integer array, combining with bitwise EOR

Scatter of array, combining by taking the maximum
Scatter of array, combining by taking the minimum
Scatter of logical array, combining with logical EOR
Scatter of array, combining by taking the product

Scatter of array, combining by taking the sum

XXX_PREFIX (ARRAY , DIM, MASK, SEGMENT, EXCLUSIVE)

XXX_SUFFIX (ARRAY , DIM, MASK, SEGMENT, EXCLUSIVE)

211

The allowed values of XXX are ALL, ANY, COPY, COUNT, IALL, IANY, IPARITY, MAXVAL,
MINVAL, PARITY, PRODUCT, and SUM.

A detailed and precise description of these routines will be given below. But to begin,

we give some examples to convey the general idea . In all of them we assume that:

B has the value

M has the value

[1 2

6 7

11 12

[�

T T
F T
F T

S h"" the value [�
T F

T T
T T

3
4 5

]
8 9 10 ;
13 1

4
1
5 T

n
T
F

F

�]
F
T

The elements of ARRAY are scanned in increasing (prefix) or decreasing (suffix) array

element order.

Copyrighted Material

212

Example 7.4 SUM..PREFIX(B) has the value

SUM...sUFFIX(B) has the value 119 100 78
['20 102 81

113 93 70

U
57
53

44

20 42 67 95]
27 50 76 105 .
39 63 90 120
30]
25 . 0

15

If DIM is present , one dimensional scans occur along the indicated dimension.

Chapter 7

Example 7.5 SUM..PREFIX(B, DIM=2) has the value [� 1: 2� �� ��]. 0
11 23 36 50 65

If MASK is present, only the elements of ARRAY corresponding to true elements of MASK
can contribute to the result.

[1 14 17 42 56]
Example 7.6 SUM..PREFIX (B. MASK=M) has the value 1 14 25 51 66 . 0

12 14 38 51 66

If SEGMENT is present, then it divides ARRAY up into subarrays that are scanned inde­
pendently. Each such subarray corresponds to a run of contiguous identical values in

SEGMENT.

Example 7.7 SUM..PREFIX (B. SEGMENT=S) returns [� ��
11 32

3 4 5]
8 13 15 . 0

21 14 15

If EXCLUSIVE is present and is true, then an element of ARRAY does not contribute to

the corresponding element of the result; only elements that precede (prefix) or succeed
(suffix) it can contribute to the corresponding element of the result.

Example 7.8 SUM..PREFIX (B. SEGMElfT=S. EXCLUSIVE=. TRUE.) has the value
[011000]

° 13 ° 4 5 . 0

o 20 8 0 °

Here is a precise discussion of how these routines function . When comments below

apply to both prefix and suffix forms of the routines, we will refer to them as YYYFIX

functions.
The arguments DIM, MASK, SEGMENT, and EXCLUSIVE are optional. The COPY _YYYFIX

functions do not have MASK or EXCLUSIVE arguments. The ALL_YYYFIX, ANY _YYYFIX,

Copyrighted Material

Intrinsic and Library Procedures 213

COUJIT_YYYFIX, and PARITY_YYYFIX functions do not have MASK arguments. Their ARRAY

argument must be of type logical; it is denoted MASK in their specifications in Appendix B.
The arguments MASK and SEGMENT must be of type logical . SEGMEllT must have the

same shape as ARRAY . MASK must be conformable with ARRAY. EXCLUSIVE is a logical
scalar. DIM is a scalar integer between one and the rank of ARRAY.

The result has the same shape as ARRAY, and , with the exception of COUNT_YYYFIX,
the same type and kind type parameter as ARRAY. (The result of COUllT _YYYFIX is default

integer .)
In all cases, every element of the result is determined by combining the values of certain

selected elements of ARRAY. For prefix and suffix functions based on array reduction
functions, the combining is done by the named reduction. For example , SUM.PREFIX
combines elements by addition. COPY.PREFIX chooses one of the selected elements in a
system-dependent way. The optional arguments affect the selection of elements of ARRAY

for each element of the result; the selected elements of ARRAY are said to contribute to
the result element. This section describes fully which elements of ARRAY contribute to a
given element of the result.

Ifno elements of ARRAY are selected for a given element of the result, that result element
is set to a default value that is specific to the particular function and is described in its

specification.

For any given element r of the result, let a be the corresponding element of ARRAY.

Every element of ARRAY contributes to r unless disqualified by one of the following rules .

1. If the function is XXX.PREFIX, no element that follows a in the array element ordering
of ARRAY contributes to r. If the function is XXX...sUFFIX, no element that precedes a in
the array element ordering of ARRAY contributes to r.

2. If the DIM argument is provided , an element z of ARRAY does not contribute to r

unless all its indices, excepting only the index for dimension DIM, are the same as the

corresponding indices of a. (It follows that if the DIM argument is omitted , then ARRAY,
MASK, and SEGMENT are processed in array element order, as if temporarily regarded as

rank-one arrays. If the DIM argument is present , then a family of completely independent

scan operations is carried out along the selected dimension of ARRAY.)

3. If the MASK argument is provided , an element z of ARRAY contributes to r only if the
element of MASK corresponding to z is true. (It follows that array elements corresponding
to positions where the MASK is false do not contribute anywhere to the result. However,
the result is nevertheless defined at all positions, even positions where the MASK is false .)
4 . If the SEGMEIJT argument is provided, an element z of ARRAY does not contribute if

there is some intermediate element w of lRRA Y, possibly z itself, with all of the following

properties:

Copyrighted Material

214 Chapter 7

• If the function is XXX...PREFIX, w does not precede z but does precede a in the array
element ordering; if the function is XXX...sUFFIX, w does not follow z but does follow a

in the array element ordering.
• If the DIM argument is present, all the indices of w, excepting only the index for
dimension DIM, are the same as the corresponding indices of a.

• The element of SEGMENT corresponding to w does not have the same value as the
element of SEGMENT corresponding to a. (In other words, z can contribute only if there
is an unbroken string of SEGMENT values, all alike, extending from z through a .)

5. If the EXCLUSIVE argument is provided and is true, then a itself does not contribute
to r.

These general rules lead to the following important cases:

Case (i): If ARRAY has rank one, element i of the result of XXX...PREFIX(ARRAY) is de­
termined by the first i elements of ARRAY; element SIZE(ARRAY) -i + 1 of the result of
XXX...sUFFIX(ARRAY) is determined by the last i elements of ARRAY.

Case (ii): If ARRAY has rank greater than one, then each element of the result of
XXX...PREFIX(ARRAY) has a value determined by the corresponding element a of the ARRAY
and all elements of ARRAY that precede a in array element order. For XXX...sUFFIX, a is
determined by the elements of ARRAY that correspond to or follow a in array element
order.

Case (iii): Each element of the result of XXX...PREFIX (ARRAY, MASK=MASK) is determined
by selected elements of ARRAY, namely the corresponding element a of the ARRAY and
all elements of ARRAY that precede a in array element order, but an element of ARRAY

may contribute to the result only if the corresponding element of MASK is true. If this
restriction results in selecting no array elements to contribute to some element of the
result, then that element of the result is set to the default value for the given function.

Case (iv): Each element of the result of XXX...PREFIX(ARRAY ,DIM=DIM) is determined by
selected elements of ARRAY, namely the corresponding element a of the ARRAY and all ele­
ments of ARRAY that precede a along dimension DIM; for example, in SUM...PREFIX(A(l:N,

l:N) , DIM=2) , result element (i1,i2) could be computed as SUM(A(i1,1: i2» . More

generally, in SUM...PREFIX(ARRAY, DIM) , result element i1,i2, ... ,iDIM, ... ,in could be
computed as SUM(ARRAY(i1,i2, ... ,:iDIM, ... ,in » . (Note the colon before iDIM in
that last expression.)

Case (v): If ARRAY has rank one, then element i of the result of XXX...PREFIX(ARRAY,

EXCLUSIVE= . TRUE.) is determined by the first i-I elements of ARRAY.

Case (vi): The options may be used in any combination.

Copyrighted Material

Intrinsic and Library Procedures 215

A new segment begins at every transition from false to true or true to false; thus a

segment is indicated by a maximal contiguous subsequence of like logical values:

(/T, T, T,F, T, F, F, F, T,F, F, T/)
seven segments

This organization deserves some comment. One library that influenced HPF delimited

the segments by indicating the start of each segment. Another delimited the segments

by indicating the stop of each segment. Each method had its advantages. There was also
the question of whether the convention should change when performing a suffix rather

than a prefix. HPF adopted the symmetric representation above for two reasons:

1. It is symmetrical, in that the same segment specifier may be meaningfully used for
prefix and suffix without changing its interpretation (start versus stop).
2. The start-bit or stop-bit representation is easily converted to this form by using
PARITY -PREFIX or PARITy...sUFFIX. These might be standard idioms for a compiler to
recognize :

SUM_PREFIX(FOO, SEGMEIT=PARITY_PREFIX(5TART_BIT5»
5UM_PREFIX(FOO, 5EGMENT=PARITY_5UFFIX(STOP_BIT5»
5UM_5UFFIX(FOO, 5EGMENT=PARITY_5UFFIX(START_BIT5»

SUM_SUFFIX(FOO, SEGMENT=PARITY_PREFIX(5TOP_BIT5»

Table 7.7 lists the new array prefix and suffix functions.

7.3.6 Array Sorting Functions

HPF includes procedures for sorting multidimensional arrays. These are structured as
functions that return sorting permutations. An array can be sorted along a given axis,

or the whole array may be viewed as a sequence in array element order. The sorts are

stable, allowing for convenient sorting of structures by major and minor keys.
Suppose that ARRAY has shape [4 5 6].

5 = GRADE_DOWI(ARRAY)

returns an integer array of shape [3 120] in S. It is such that if j < k then the element

ARRAY (5 (1, j), 5 (2, j), 5 (3, j» is greater than or equal to ARRAY (5 (1 , k), 5 (2, k) ,
S(3,k». And if these two elements are equal, then ARRAY(5(1 , j) , S(2, j) , 5(3, j»

precedes ARRAY(S(l, k) ,S(2 ,k) ,S(3 , k» in the array element ordering of ARRAY.

If ARRAY has shape [4 5 6] , and the optional argument is present, as in

5 = GRADE_OOWN(ARRAY, OIM=2)

Copyrighted Material

216

Function

ALL....PREFIX

ALL...sUFFIX

ANY....PREFIX

ANy...sUFFIX

COPY...PREFIX

COPy...sUFFIX

COUNTPREFIX

COUllT ...sUFFIX

IALL....PREFIX

IALL...sUFFIX
IANY....PREFIX

IANy...sUFFIX
IP ARITYPREFIX

IPARITy...sUFFIX

MAXVAL....PREFIX

MAXVAL...sUFFIX

MINVAL.J>REFIX

MIllVAL...sUFFIX

PARITY....PREFIX

PARITy...sUFFIX

PRODUCT ...PREFIX
PRODUCT ..sUFFIX

SUM....PREFIX

SUM...sUFFIX

Table 7.7

Prefix and suffix functions

Value returned (for each element)

Logical AND of preceding elements in array

Logical AND of following elements in array
Logical OR of preceding elements in array
Logical OR of following elements in array

Chapter 7

Selected (processor-dependent) value from preceding
array elements

Selected (processor-dependent) value from following

array elements
N umber of preceding . TRUE. elements in array

N umber of following . TRUE. elements in array
Bitwise AND of preceding elements in array
Bitwise AND of following elements in array
Bitwise OR of preceding elements in array
Bitwise OR of following elements in array
Bitwise EOR of preceding elements in array

Bitwise EOR of following elements in array
Maximum of preceding elements in array

Maximum of following elements in array
Minimum of preceding elements in array

Minimum of following elements in array

Logical EOR of preceding elements in array
Logical EOR of following elements in array

Product of preceding elements in array
Product of following elements in array

Sum of preceding elements in array
Sum of following elements in array

Copyrighted Material

Intrinsic and Library Procedures 217

then the result has the same shape as A RR AY : [4 5 6]. For ever y i and k the vector
ARRAY(i, SCi, :, k), k) is sorted in descending order. Stability means that if

ARR AYC i, SCi, m, k) , k) isequaltoARRAYC i, SCi, m+l, k), k) then S(i, m,

k) must be smaller than SCi, m+1, k).
Because of the stability requirement , GRADE...DOWN (AC 1: N» does not, in general, equal

GRADE_UP (A (N: 1 : -1)). Indeed , these results are equal if and only if A contains no

duplicate values.

Example 7.9 The st ability requirement allows one to cascade grading operations in

order to sort on multiple fields. For example, consider the following code:

TYPE PERSOI
INTEGER AGE
CHARACTER (LEN=50) NAME

END TYPE PERSON
TYPE(PERSON), DIMENSION(100000)
INTEGER, DIMENSION(100000)

v = GRADE_UP (MEMBERS%AGE. DIM=l)

MEMBERS, ROSTER
V

V = V (GRADE_UP (MEMBERS (V)%NAME, DIM=l»
ROSTER = MEMBERS(V)

This would cause ROSTER to be a rearrangement of MEMBERS that is sorted primarily by
name and secondarily by age (that is, members with the same name are grouped together

in order of ascending age). Note that the minor sort field is graded first, and that more

statements like the second one may be inserted to sort on additional fields. Without the

use of the DIM argument, GRADE_UP returns a rank-two result of shape [1 1 00000] ,
which would make the example more cumbersome.

To list members with the same name in descending order of age, change the first

GRADE_UP to GRADE...DOWN:

o

V = GRADE_DOWN (MEMBERS%AGE , DIM=1)
V = V(GRADE_UP (MEMBERS (V)%NAME , DIM=l»
ROSTER = MEMBERS(V)

Table 7.8 summarizes the sorting functions.

Copyrighted Material

218

Function

GRADE...DOWN

GRADE_UP

Table 7.8

Sorting functions

Value returned

Permutation that sorts into descending order
Permutation that sorts into ascending order

7.4 Alphabetical List of Intrinsic and Library Procedures

Chapter 7

Tables 7.9 through 7. 11 contain an alphabetical listing of all HPF library pro cedures and
the intrinsics that are new to HPF or changed from Fortran 90. Intrinsic procedures are
marked with an asterisk (*); subroutines are marked with a dagger (t) The arguments
shown are the names that must be used for keywords when using the keyword form for
actual arguments. Many of the argument keywords have names that are indicative of
their usage, as is the case in Fortran 90. Detailed descriptions of all the procedures
appear in Appendix B.

Copyrighted Material

Intrinsic and Library Procedures 219

Function Optional arguments

ALL-PREFIX (MASK, DIM, SEGMENT, EXCLUSIVE) DIM, SEGMENT, EXCLUSIVE

ALL�CATTER (MASK, BASE, INDX1 ... , IIDXn)

ALL�UFFIX (MASK, DIM, SEGMENT, EXCLUSIVE) DIM, SEGMENT, EXCLUSIVE

ANY-PREFIX (MASK, DIM, SEGMENT, EXCLUSIVE) DIM, SEGMENT, EXCLUSIVE

AXY�CATTER (MASK, BASE, INDX1,

INDXn)
. . . ,

ANY�UFFIX (MASK, DIM, SEGMENT, EXCLUSIVE)

COPY-PREFIX(ARRAY, DIM, SEGMENT)

COPY�CATTER (ARRAY, BASE, INDX1,

INDXn, MASK)

COPY�UFFIX (ARRAY, DIM, SEGMENT)

COUNT-PREFIX (MASK, DIM, SEGMENT,

EXCLUSIVE)

COUNT�CATTER(ARRAY, BASE, IIDX1,

INDXn, MASK)

COUNT�UFFIX(MASK, DIM, SEGMENT,

EXCLUSIVE)

GRADEJDOWN(ARRAY, DIM)

GRADE_UP (ARRAY , DIM)

HPF-ALIGNMENT(ALIGNEE, LB, UB, STRIDE,

AXIS-KAP, IDENTITY-HAP, DYNAMIC,

NCOPIES) t

HPFJDISTRIBUTION(DISTRIBUTEE, AXIS_TYPE,

AXIS..INFO, PROCESSORS...RANK,

PROCESSORS�HAPE) t

HPF_TEMPLATE (ALIGNEE, TEMPLATE...RANK, LB,

UB, AXIS_TYPE, AXIS..INFO,

NUMBER-ALIGNED, DYNAMIC) t

IALL(IARRAY, DIM, MASK)

Table 7.9
HPF intrinsic and library procedures

DIM, SEGMENT, EXCLUSIVE

DIM, SEGMENT

MASK

DIM, SEGMENT

DIM, SEGMENT, EXCLUSIVE

MASK

DIM, SEGMENT, EXCLUSIVE

DIM

DIM

LB, UB, STRIDE, AXIS-HAP,

IDENTITY-MAP, DYNAMIC,
NCOPIES

AXIS_TYPE, AXIS..INFO,

PROCESSORS...RANK,
PROCESSORS ...sHAPE

TEMPLATE...RANK, LB, UB,

AXIS_TYPE, AXIS..INFO,

NUMBER-ALIGNED, DYNAMIC

DIM, MASK

Copyrighted Material

220

Function

IALLJ?REFIX(ARRAY, DIM, MASK, SEGMENT,

EXCLUSIVE)

IALL-SCATTER(ARRAY, BASE, INDX1, ... ,

INDXn, MASK)

IALL-SUFFIX(ARRAY, DIM, MASK, SEGMENT,

EXCLUSIVE)

IANY(IARRAY, DIM, MASK)

IANYJ?REFIX(ARRAY, DIM, MASK, SEGMENT,

EXCLUSIVE)

IANY-SCATTER(ARRAY, BASE, INDX1, . . . ,

INDXn, MASK)

IANY-SUFFIX(ARRAY, DIM, MASK, SEGMENT,

EXCLUSIVE)

ILEN(I) *

IPARITY(IARRAY, DIM, MASK)

IPARITYJ?REFIX(ARRAY, DIM, MASK, SEGMENT,
EXCLUSIVE)

IPARITY-SCATTER(ARRAY, BASE, INDX1, ... ,

INDXn, MASK)

IPARITY-SUFFIX(ARRAY, DIM, MASK, SEGMENT,

EXCLUSIVE)

LEADZ(I)

MAXLOC(ARRAY, DIM, MASK) *

MAXVALJ?REFIX (ARRAY , DIM, MASK, SEGMENT,

EXCLUSIVE)

MAXVAL-SCATTER(ARRAY, BASE, INDX1, ... ,

INDXn, MASK)

MAXVAL-SUFFIX(ARRAY, DIM, MASK, SEGMENT,

EXCLUSIVE)

MINLOC(ARRAY, DIM, MASK) *

Table 7.10
HPF intrinsic and library procedures (continued)

Optional arguments

DIM, MASK, SEGMENT,

EXCLUSIVE

MASK

DIM, MASK, SEGMENT,
EXCLUSIVE

DIM, MASK

DIM, MASK, SEGMENT,

EXCLUSIVE

MASK

DIM, MASK, SEGMENT,

EXCLUSIVE

DIM, MASK

DIM, MASK, SEGMENT,
EXCLUSIVE

MASK

DIM, MASK, SEGMENT,

EXCLUSIVE

DIM, MASK

DIM, MASK, SEGMENT,

EXCLUSIVE

MASK

DIM, MASK, SEGMENT,

EXCLUSIVE

DIM, MASK

Copyrighted Material

Chapter 7

Intrinsic a.nd Libra.ry Procedures

Function

MINVAL-PREFIX(ARRAY , DIM, MASK, SEGMENT,

EXCLUSIVE)

MINVAL.sCATTER(ARRAY, BASE, INDXl, . .. ,

INDXn, MASK)
MINVAL.sUFFIX(ARRAY , DIM, MASK, SEGMENT,

EXCLUSIVE)

NUMBERJDF-PROCESSORS(DIM) *

PARITY (MASK , DIM)

PARITY-PREFIX(MASK , DIM, SEGMENT,

EXCLUSIVE)
PARITy.sCATTER(MASK, BASE, INDXl,

INDXn)

PARITy.sUFFIX(MASK, DIM, SEGMENT,
EXCLUSIVE)

POPCNT(I)

POPPAR(I)

... ,

PROCESSORS.sHAPE () *

PRODUCT-PREFIX(ARRAY, DIM, MASK, SEGMENT,
EXCLUSIVE)

PRODUCT .sCATTER(ARRAY, BASE, INDX1, ... ,

INDXn, MASK)
PRODUCT.sUFFIX(ARRAY, DIM, MASK, SEGMENT,

EXCLUSIVE)

SUM-PREFIX(ARRAY, DIM, MASK , SEGMENT ,
EXCLUSIVE)

SUMJ)CATTER(ARRAY, BASE, IIDX1, .. . ,
INDXn, MASK)

SUMJ)UFFIX(ARRAY, DIM, MASK, SEGMENT,
EXCLUSIVE)

Table 7.11

HPF intrinsic and library procedures (continued)

Optional arguments

DIM , MASK , SEGMENT,

EXCLUSIVE

MASK

DIM, MASK, SEGMENT,
EXCLUSIVE

DIM

DIM

DIM, SEGMENT, EXCLUSIVE

DIM, SEGMENT, EXCLUSIVE

DIM, MASK, SEGMENT,
EXCLUSIVE

MASK

DIM, MASK, SEGMENT,

EXCLUSIVE

DIM, MASK, SEGMENT,
EXCLUSIVE

MASK

DIM, MASK, SEGMENT,

EXCLUSIVE

Copyrighted Material

221

8 Extrinsic Procedures

Fortran, wonderful as it may be, is not the only programming language in the world; and

HPF is not the only way to get good performance out of a parallel computer.

One important competing model is the so-called "SPMD sty le" in which many copies of

the same program execute at the same time, one on each available processor. ("SPMD"

stands for "Single Program Multiple Data . ") Communication of data among the various

running copies of the program is managed explicitly by the programmer, perhaps through
the use of common data in a shared memory or through a library of subroutines that

send and receive messages (packets of data) .

It is beyond the scope of HPF to define all the facilities needed for SPMD program­

ming. However, HPF provides a mechanism by which HPF programs may call procedures

written in other parallel programming styles or other programming languages. Because

such procedures are themselves outside HPF, they are called extrinsic procedures. HPF

simply provides a way of labeling external procedures as being non-HPF; indeed, there

may be several different labels indicating several different kinds of extrinsic procedure.

This allows an HPF compiler to generate the right kind of subroutine linkage, to convert

data formats if necessary, and to rely on specific features of the "contract" between HPF

routines and any specific kind of non-HPF procedure.

A called procedure that is written in a language other than HPF should be declared

EXTRINSIC within an HPF program that calls it. The EXTRINSIC prefix declares what

sort of interface should be used when calling indicated subprograms. For example:

INTERFACE

EXTRINSIC(COBOL) SUBROUTINE PRINT_REPORT(DATA_ARRAY)

REAL DATA_ARRAY(: , :)

END SUBROUTINE PRINT_REPORT

END INTERFACE

might be used to indicate the use of a subroutine written in COBOL. Note, however, that

this is merely an illustrative example; the keyword COBOL itself is not actually defined by

HPF. Exactly which keywords are supported depends on the particular HPF language

processor.
Here is a perhaps more realistic example:

INTERFACE

EXTRINSIC(C_LOCAL) SUBROUTINE MUNCH_COLUMNS(A)

REAL A(:,:)

!HPF$ DISTRIBUTE A(*,BLOCK)

END SUBROUTINE MUNCH_COLUMNS

Copyrighted Material

224 Chapter 8

END INTERFACE

Here the called routine is presumably SPMD code written in C. If the actual argument for
a call to MUNCH_COLUMNS is 100 x 100 and there are four processors, then each copy of the
C procedure, one on each processor, will receive a 100 x 25 portion of the array, namely

the elements that are mapped to the processor running that copy of MUNCH_COLUMNS. If

there were instead 8 processors, then the first seven processors would receive 100 x 13
portions of the actual argument and the last processor a 100 x 9 portion, again exactly
the elements mapped to that processor.

An extrinsic procedure might indeed be written in any of a number of languages and
programming styles:

• A single-thread-of-control language where one copy of the procedure is conceptually

executing and there is a single locus of control within the program text. Such a language
might be specifically designed for parallel implementation (C* is one example) . On the

other hand, it might be a perfectly ordinary sequential language ; a plausible scenario is
an HPF program calling user interface code (perhaps for X Windows) written in C.

• A multiple-thread-of-control language, perhaps with dynamic assignment of loop it­

erations to processors or explicit dynamic process forking. When a procedure in such a

language is first called, a single thread of control enters it, but it may spawn additional
threads, resulting in multiple loci of control within the procedure or multiple copies of the

p rocedure running on different processors. It is permissible for an extrinsic procedure to

use any sequential or parallel control discipline within itself, and to remap or rearrange
data among the processors as it pleases, so long as it leaves things in good order and

reverts to a single conceptual thread of control on return to its HPF caller. (Exactly

what this means is described more carefully in Section 8.l.2.)
• Any programming language targeted to a single processor, with the understanding

that, the instant a procedure is called, there will be many copies of the procedure exe­

cuting, one on each processor ("SPMD mode"). HPF refers to a procedure written in

this fashion as a local procedure, because there is a local copy on each processor that
operates principally on the data in that processor's local memory. A local procedure

might be written in FORTRAN 77, Fortran 90, C, C++, Ada, or Pascal, for example. A
particularly interesting possibility is that a local procedure might be written in (a special

subset of) HPF! In this situation we sometimes call ordinary HPF code global code in

order to distinguish it from local code written in HPF.

Copyrighted Material

Extrinsic Procedures

EXTRINSIC(HPF_LOCAL) SUBROUTINE MUNCH_COLUMIS(A)
REAL A(:,:)

!HPFS INDEPEIDENT, NEW(I)

INTEGER I, J

DO J = 1, UBOUND(A,2)
I = 1

SEARCH: DO WHILE (I <= UBOUND(A,l»
IF (A(I , J) /= 0.0) THEN ! Found a nonzero element

A (1:1-1,J) = A(I,l)
EXIT SEARCH

EID IF
I = 1+1

END DO SEARCH
END DO
END SUBROUTINE MUNCH_COLUMNS

Figure 8.1
Local HPF code for the IWJICH..counl.S example

SUBROUTINE MUICH_COLUMNSeA)

REAL A(: ,:)

!HPFS DISTRIBUTE Ae.,BLOCK)

INTEGER I(UBOUND(A,2», 1, K

FORALL eJ = 1:UBOUID(1,2»

225

1(1) = MIILOC((/ (K, K = 1, UBOUID(A,l» /), MASK = A(:,l))

A(l:I(l)-l) = A(IeJ»

END FORALL
END SUBROUTINE MUNCH_COLUMNS

Figure 8.2
Global HPF code for the tmlCH..cOLUIIIS example

Copyrighted Material

226 Chapter 8

The previous example of an interface to local C code is easily changed to indicate an

interface to local code written in HPF:

!HPF$

INTERFACE

EXTRINSIC(HPF_LOCAL) SUBROUTINE MUNCH_COLUMIS(A)

REAL A(:.:)

DISTRIBUTE A(*,BLOCK)

END SUBROUTINE MUNCH_COLUMNS

END INTERFACE

If the task of MUNCH_COLUMNS is to find the first nonzero element in each column and

overwrite the leading zeros with that value, then the code for the local routine might
appear as in Figure 8.1. (Note the use of an INDEPENDENT directive on a DO loop and of
array assignment, both of which are permitted in local HPF code . While these constructs

might not execute on multiple processors, use of these features could help a compiler to
generate good vector code, for example. A DISTR.IBUTE directive is not included , despite
the fact that one appears in the interface block in the caller .)

While MUNCH_COLUMNS could be expressed as global HPF code (see Figure 8.2), the

local version might be faster because it expresses and exploits the idea that only a

prefix of each column needs to be examined and processed. Each processor might take a

different amount of time to process its first column; the local code clearly indicates that

the processors synchronize only after processing all columns , not after processing each

column. (A really smart HPF compiler might be able to exploit the same trick when

compiling the global code shown in Figure 8.2, but we doubt that HPF implementations

will achieve that level of optimization in the near future.)

The next section describes the extrinsic procedure interface as seen by a calling routine

written in HPF. This interface is used when calling any extrinsi c procedure . The remain­

der of the chapter discusses the more specific topic of coding an extrinsic procedure in

the SPMD (local) style. This latter topic is not a required part of the H PF language

specification.

8.1 Definition and Invocation of Extrinsic Procedures

An explicit interface must be provided for each extrinsic procedure entry in the scope

where it is called, using an interface block . This interface defines the "HPF view" of the

extrinsic procedure.

Copyrighted Material

Extrinsic Procedures

8.1.1 EXTRINSIC Prefix Syntax

The form of an extrinsic-prefix (H601) is:

EXTRIN S I C (extrinsic-kind-keyword)

where an extrinsic-kind-keyword (H602) is one of:

HPF

HPF_LOCAL

227

or perhaps some other , system-dependent, keyword . (Only the two keywords HPF and

HPF -LOCAL are defined by the HPF language specification .)
An extrinsic-prefix may appear in a subroutine-stmt or function-simi (as defined in

the Fortran 90 standard) in the same place that the keyword RECURSIVE might appear.

See Section 6.3.1 for the extended forms of the grammar rules for function-stmt and
subroutine-stmt covering this case.

The extrinsic-kind-keyword indicates the kind of extrinsic interface to be used. (It may

be helpful to compare this to Fortran 90 KIID parameters for numeric types. However, an

extrinsic-kind is not integer-valued; it is merely a keyword.) HPF defines two such key­

words: HPF and HPF -LOCAL. The keyword HPF ...LOCAL is intended for use in calling routines

coded in the "local HPF" style described in section 8.4. The keyword HPF refers to the in­

terface n ormally used for calling ordinary HPF routines. Thus, writing EXTRINSIC(HPF)

in an HPF program has ex actly the same effect as not using an EXTRINSIC prefix at all .

(HPF defines the extrinsic-kind-keyword HPF primarily to set an example for other pro­

gram ming languages that might adopt this style of interface specification . For example, in

an extended Fortran 90 compiler it would not be redundant to specify EXTRINSIC(HPF),

though it might be redundant to specify EXTRINSIC (F90). The C++ language already
adds a linkage-specification feature to the C ext ern declaration ; the result is quite sim­
ilar to (and predates) the HPF EXTRINSIC syntax. It would be quite plausible for a

declaration such as

ext ern "HPF" crunch_numbers(HPF_matrix<fl oat> a);

to appear in a C++ program .)
Note that any particular HPF implementation is free to support any selection of extrin­

sic kind keywords, or none at all except for HPF itself. (While HPF defines the meaning
of the extrinsic-kind keyword HPF .LOCAL, a conforming implementation is not required

to support it.)
A subprogram with an extrinsic interface lies outside the scope of HPF . However ,

explicit interfaces to such subprograms must conform to HPF in all respects . HPF data

Copyrighted Material

228 Chapter 8

mapping directives may appear in interface blocks for extrinsic procedures even though

such extrinsic procedures might not be written in HPF; the point is that the caller, which

is written in HPF, may be bound to observe and enforce such mapping directives .

Example 8.1 An interface for an ordinary function:

! HPF$

INTERFACE

EXTRINSIC(HPF_LOCAL) FUNCTION BAGEL(X)

REAL X(:)

REAL BAGEL(100)

DISTRIBUTE (CYCLIC)

END FUNCTION BAGEL

END INTERFACE

X , BAGEL

Function BAGEL is declared to use the interface appropriate for local procedures coded in

HPF. The caller should ensure that the actual argument has been mapped to a CYCLIC

distribution. The returned result wil l be of size 100 and also have a CYCLIC distribution .
o

Example 8.2 An interface for an operator:

!HPF$

!HPF$

INTERFACE OPERATOR (+)

EXTRINSIC(C_LOCAL) FUlCTION LATKES(X, y)

REAL, DIMENSION(: , :) : : X

REAL, DIMENSION(SIZE(X,l), SIZE(X,2»

ALIGN WITH X : : Y, Z

DISTRIBUTE (BLOCK, BLOCK) X

END FUNCTION LATKES

END INTERFACE

RESULT(Z)

Y, Z

The addition operator on real matrices is redefined to use a local SPMD procedure,

coded in C, whose name is LATKES. The arguments must have the same shape . This local
procedure expects its arguments to be aligned with a BLOCK, BLOCK distribution; the
result will be mapped in the same way and will have the same shape as the arguments .
o

Example 8.3 An interface for a generic function:

INTERFACE KNISH

FUNCTION RKNISH(X) !normal HPF interface

Copyrighted Material

Extrinsic Procedures

REAL XC:), RKIISH

EID FUiCTIOI RKIISH

229

EXTRINSIC(SI SAL) FUNCTION CKN I SHCX)

COMPLEX XC:) . CKNISH
!extrinsic int erf ace

END FUNCTION CKII SH

END I NTERFACE

A generic procedure named KlI SH is declared with two instantiations. The implementa­
tion for a REAL argument is an ordinary HPF procedure, but the implementation for a

C OMPLEX argument is an extrinsic routine, presumably coded in SISAL. 0

Overall , the intent is that a call to an extrinsic subprogram should behave, as observed

by a calling program coded in HPF, exactly as if the subprogram had been coded in HPF.

This is an obligation placed on the implementation of the interface and perhaps on the
programmer when coding an extrinsic routine. However, it is also desirable to grant

a certain freedom of implementation strategy so long as the obligation is satisfied. To
this end an implementation may place certain restrictions on the programmer; moreover,
each extrinsic-kind-keyword may call for a different set of restrictions. For example,
an implementation on a parallel processor may find it convenient to replicate scalar
arguments so as to provide a copy on every processor. This is permitted so long as this
process is invisible to the caller. One way to achieve this is to place a restriction on the
programmer who codes the called procedure: on return from the subprogram, all the
copies of this scalar argument must have the same value. This implies that if the dummy

argument has IITENT(OUT) or IIlTElfT (INOUT), then all copies must have been updated
consistently by the time of subprogram return.

8.1.2 Requirements on the Called Extrinsic Procedure

HPF requires a called extrinsic procedure to satisfy the following behavioral requirements:

1. The overall implementation must behave as if all actions of the caller preceding the

subprogram invocation are completed before any action of the subprogram is executed;

and as if all actions of the subprogram are completed before any action of the caller
following the subprogram invocation is executed.
2. II/OUT intent restrictions declared in the interface for the extrinsic subroutine must

be obeyed.
3. Replicated variables, if updated, must be up dated consistently. More precisely, if a

variable accessible to a local subprogram has a replicated representation and is updated

Copyrighted Material

230 Chapter 8

by (one or more copies of) the local subroutine, then all copies of the replicated data
must have identical values when the last processor returns from the local procedure .
4. No HPF variable is modified unless it could be modified by an HPF procedure with
the same explicit interface .

5. When a subprogram returns and the caller resumes execution , all objects accessible
to the caller after the call are mapped exactly as they were before the call. (Note that,
as with a non-extrinsic (that is , ordinary HPF) subprogram , actual arguments may be
copied or remapped in any way, so long as the effect is undone on return from the
subprogram.)

6. Exactly the same set of processors is visible to the HPF environment before and after
the subprogram call.

The call to an extrinsic procedure that fulfills these rules is semantically equivalent to
the execution of an ordinary HPF procedure.

8.2 Coding Local Procedures

The remainder of this chapter defines a mechanism for coding single-processor local "per­
node" code in single-processor Fortran 90 or in a single-processor subset of HPF; the idea
is that only data that is mapped to a given physical processor is accessible to that proces­
sor. This allows the programming of MIMD multiprocessor machines in a single-program
multiple-data (SPMD) style . Implementation-specific libraries may be provided to facil­
itate communication between the physical processors that are independently executing
this code, but the specification of such libraries is outside the scope of HPF and outside

the scope of this book.
From the caller's standpoint, an invocation of an extrinsic procedure from a "global"

HPF program has the same semantics as an invocation of a regular procedure. The callee
may see a different picture. This chapter describes a particular set of conventions for
coding callees in the "local" style in which a copy of the subprogram executes on each
processor (of which there may be one or many).

An extrinsic procedure can be defined as explicit SPMD code by specifying the local
procedure code that is to execute on each processor. HPF provides a mechanism for

defining local procedures in a subset of HPF that excludes only data mapping direc­
tives, which are not relevant to local code. If a subprogram definition or interface uses
the extrinsic-kind-keyword HPF ...LOCAL, then an HPF compiler should assume that the

subprogram is coded as a local procedure. Because local procedures written in HPF
are thus syntactically distinguished, they may be intermixed unambiguously with global

HPF code if the implementor of an HPF language processor chooses to support such in-

Copyrighted Material

Extrinsic Procedures 231

termixing. (Thus global and local HPF code might reside together within a single source
file, for example. An alternate implementation strategy might require the two kinds of
code to reside in separate files and to be compiled separately. Such implementation and

programming environment details are not specified by HPF.)

The following sections cover three distinct topics:

1. The contract between the caller and a callee that is a local procedure.

2. A specific version of this interface for the case where the callee is a local procedure

coded in H P F (extrinsic-kind-keyword HPF ..LOCAL). Such local procedures may be com­
piled separately or included as part of the text of a global HPF program.
3. A specific version of this interface for the case where extrinsic procedures are defined
as explicit SPMD code with each local procedure coded in Fortran 90 (the extrinsic­

kind-keyword might be, for instance , F90...LOCAL). Ideally these local procedures may be

separately compiled by a Fortran 90 compiler and then linked with HPF code , though

this depends on implementation details .

8.3 Conventions for Local Subprograms

All HPF arrays accessible to an extrinsic procedure (arrays passed as arguments) are
logically carved up into pieces ; the local procedure executing on a particular physical
processor sees an array containing just those elements of the global array that are mapped

to that physical processor .
It is important not to confuse the extrinsic procedure, which is conceptually a single

procedural entity called from the HPF program, with the local procedures, which are

executed on each node , one apiece . An invocation of an extrinsic procedure results in a
separate invocation of a local procedure on each processor. The execution of an extrinsic
procedure consists of the concurrent execution of a local procedure on each executing
processor. Each local procedure invocation may terminate at any time by executing a

RETURN statement . However, the extrinsic procedure as a whole terminates only after

every local procedure has terminated; in effect, the processors are synchronized before

return to a global HPF caller.
With the exception of returning from a local procedure to the global caller that initiated

local execution, there is no implicit synchronization of the locally executing processors.

A local procedure may use any control structure whatsoever. To access data outside
the processor requires either preparatory communication to copy data into the processor

before running the local code, or communication among the separately executing copies of
the local procedure . Individual implementations may provide implementation-dependent

means for communicating , for example through a message-passing l ibrary or a shared-

Copyrighted Material

232 Chapter 8

memory mechanism. Such communication mechanisms are beyond the scope of HPF
and of this book. Note, however , that many useful portable algorithms that require only
independence of control structure can take advantage of local routines, without requiring
a communication facility.

This model assumes only that array axes are mapped independently to axes of a

rectangular processor grid, each array axis to at most one processor axis (no "skew"
distributions) and no two array axes to the same processor axis. This restriction suffices

to ensure that each physical processor contains a subset of array elements that can be
locally arranged in a rectangular configuration. (To compute the global indices of an
element given its local indices , or vice versa, may be quite a tangled computation-but

it will be possible. See Section 8.4.3 for a description of recommended library routines
for performing these index transformations.)

It is recommended that if, in any given implementation , an interface kind does not
obey the conventions described in this sect ion, then the name of that interface kind
should not end in "..LOCAL".

8.3.1 Conventions for Calling Local Subprograms

The default mapp ing of scalar dummy arguments and of scalar function results is such
that the argument is replicated on each physical processor. These mappings may, op­
tionally, be explicit in the interface, but any other explicit mapping of a scalar dummy
argument or of a scalar function result is not HPF-conforming.

As in the case of non-extrinsic subprograms, actual arguments may be mapped in any
way; if necessary, they are copied automatically to correctly mapped temporaries before
invocation of and after return from the extrinsic procedure .

8.3.2 Calling Sequence

The actions detailed below have to occur prior to the invocation of the local procedure
on each processor. These actions are enforced by the compiler of the calling routine, and
are not the responsibility of the programmer, nor do they impact the local procedure.

(The next section discusses restrictions on the local procedure.)

1. The processors are synchronized . In other words, all actions that logically precede the

call are completed.

2. Each actual argument is remapped , if necessary, according to the directives (explicit

or implicit) in the declared interface for the extrinsic procedure . Thus, HPF mapping
directives appearing in the interface are binding-the compiler must obey these directives

in calling local extrinsic procedures. (The reason for this rule is that data mapping is

explicitly visible in local routines). Actual arguments corresponding to scalar dummy

Copyrighted Material

Extrinsic Procedures 233

arguments are replicated (by broadcasting, for example) in all processors.

3. If a variable accessible to the called routine has a replicated representation , then all
copies are updated prior to the call to contain the correct current value according to the
sequential semantics of the source program .

After these actions have occurred, the local procedure is invoked on each processor.
The information available to the local invocation is described below in Section 8.3.3.

The following actions must occur before control is transferred back to the caller .

1. All pro cessors are synchronized after the call. In other words , execution of every copy

of the local routine is completed before execution in the caller is resumed.
2. The original distribution of arguments (and of the result of an extrinsic function) is
restored , if necessary .

An implementation might check, before returning from the local subprogram, to make
sure that replicated variables have been updated consistently by the subprogram . How­
ever, there is certainly no requirement-perhaps not even any encouragement-to do so.
This is merely a tradeoff between speed and , for instance , debuggability.

8.3 .3 Information Available to the Local Procedure

The local procedure invoked on each processor is passed a local argument for each global

argument passed by the caller to the (global) extrinsic procedure interface. Each global

argument is a distributed H PF array or a replicated scalar. The corresponding local
argument is the p art of the g lobal array stored locally, or the local copy of a scalar

argument . An array actual argument passed by an HPF caller is called a global array;

the subgrid of that global array passed to one copy of a local routine (because it resides

in that processor) is called a local array.

If the extrinsic procedure is a function , then the local procedure is also a function. Each
local invocation of that function will return the local part of the extrinsic function return

value . If the extrinsic function is scalar-valued then the implicit mapping of the return
value is replicated; in this case , all executed copies of the local function must return the

same value. If it is desired to return one , possibly distinct , value per processor, then
the extrinsic function should be declared to return a distributed rank-one array of size

NUMBER_OF ...PROCESSORS () .
The run-time interface should provide enough information that each local function

can discover for each local argument the mapping of the corresponding global argument,
translate global indices to local indices, and vice-versa. A specific set of procedures

that provide this information is described in Section 8.4.3. The manner in which this
information is made available to the local routine depends on the implementation and

Copyrighted Material

234

the programming language used for the local routine.

8.4 Local Routines Written in HPF

Chapter 8

This section provides a specific design for providing the required information to local

procedures in the case these procedures are written in HPF. (This design is merely a
recommendation; a conforming HPF implementation is not required to support it.)

A local procedure may be declared within an HPF program (and be compiled by an
HPF compiler). The subroutine-stmt or function-stmt that begins the subprogram must
contain the prefix EXTRINSIC(HPF �OCAL) .

8.4.1 Restrictions

There are some restrictions on what HPF features may be used in writing a local, per­
processor procedure. These restrictions are detailed here.

(Look out! Here comes a pun!) The restricted language used for coding local
HPF procedures is sometimes called "HPF Lite" because it is lo-cal.

A local HPF program unit may invoke other local program units or internal procedures,
but it may not invoke an ordinary, "global" HPF routine. If a global HPF program calls
local subprogram A with an actual array argument I, and A receives a portion of array
X as dummy argument P, then A may call another local subprogram B and pass P or a
section of P as an actual argument to B.

A local HPF program unit may not access global HPF data other than data that is
accessible, either directly or indirectly, via the actual arguments. In particular, a local
HPF program unit does not have access to global HPF COMMON blocks; COMMON blocks
appearing in local HPF program units are not identified with global HPF COMMON blocks .
The same name may not be used to identify a COMMON block within both a local HPF
program unit and an HPF program unit in the same executable program .

Local program units can use all HPF constructs except for DISTRIBUTE, REDISTRIBUTE,

ALIGN, REALIGN, DYNAMIC, INHERIT, PROCESSORS, and TEMPLATE directives (and attri­

butes). The distribution query library subroutines HPF.ALIGNMENT, HPF_TEMPLATE, and
HPF .DISTRIBUTION may be applied to local arrays. Their outcome is the same as for a

global array that happens to have all its elements on a single node.
Scalar dummy arguments must be mapped so that each processor has a copy of the

argument. This holds true , by convention, if no mapping is specified for the argument

in the interface. Thus, the constraint disallows only explicit alignment and distribu­
tion directives in an explicit interface that imply that a scalar dummy argument is not

replicated on all processors.

Copyrighted Material

Extrinsic Procedures 235

An EXTRINSI C (HPF .LOCAL) routine may not be RECURSIVE.

An EXTRINSIC (HPF.LOCAL) routine may not h ave alternate returns.

An EXTRINSI C (HPF.LOCAL) routine may not be invoked, either directly or indirectly,
in the body of a FORALL construct or in the body of an INDEPEJlDENT loop .

The attributes (type , kind, rank, optional, intent) of the dummy arguments must

match the attributes of the corresponding dummy arguments in the explicit interface . A
dummy argument of an EXTRIJlSIC (HPF.LOCAL) routine may not be a procedure name.

A dummy argument of an EXTRINSI C (HPF.LOCAL) routine may not have the POINTER

attribute.
A dummy argument of an EXTRIN S I C (HPF.LOCAL) routine must be nonsequential .
A dummy array argument of an EXTRINSI C (HPF.LOCAL) routine must have assumed

shape, even when it is explicit shape in the interface. Note that, in general, the shape of
a dummy array argument differs from the shape of the corresponding actual argument,
unless there is a single executing processor.

Expli cit mapping directives for dummy arguments and function result variables may
not appear in a local procedure, although they may appear (in the case of the result of
an array-valued function, they must appear) in the required explicit interface accessible

to the caller.
A local procedure m ay have several ENTRY points. A global HPF caller must contain

a separate extrinsic interface for each entry point that can be invoked from the HPF

program .

8.4.2 Argument Association

If a dummy argument of an EXTRINSI C (HPF.LOCAL) routine is an array, then the cor­
responding dummy argument in the explicit interface for the local procedure must be
an array of the same rank, type, and type parameters. When the extrinsic procedure is
invoked, the local dummy argument is associated with the local array that consists of
the subgrid of the global array that is stored locally. This local array will be a valid HPF
array.

If a dummy argument of an EXTRINSIC (HPF.LOCAL) routine is a scalar then the cor­
responding dummy argument of the local procedure must be a scalar of the same type.

When the extrinsic procedure is invoked then the local procedure is passed an argument
that consists of the local copy of the replicated scalar . This copy will be a val id HPF

scalar.
If an EXTRINSI C (HPF.LOCAL) routine is a function, then the local procedure is a func­

tion that returns a scalar of the same type and type parameters, or an array of the same

rank, type, and type parameters, as the HPF extrinsic function. The value returned by
each local invocation is the local part of the value returned by the H PF invocation.

Copyrighted Material

236

Each physical processor has at most one copy of each HPF variable.
Consider the following extrinsic interface:

I NTERFACE

EXTRINSI C (HPF_LOCAL) FUNCTION MATZOH(X, y) RESULT (Z)

REAL , DIMENSION (:,:) : : X

REAL, DIMENSION (SIZE (X,l» : : Y, Z

!HPF$ ALIGN WITH XC:,*) : : Y(:), Z(:)

!HPF$ DI STRIBUTE X (BLOCK , CYCLIC)

END FUNCTION

END INTERFACE

The corresponding local HPF procedure is specified as follows.

EXTRINS I C (HPF_LOCAL) FUNCTION MATZOH (XX, yy) RESULT (ZZ)

REAL, DIMENSION (:, :) XX

REAL, D IMENSI ON(5:) :: YY, ZZ

NXl = SIZE(XX , 1)

LXl = LBOUND (XX, 1)

UXl = UBOUND (XX, 1)

NX2 = S I ZE (XX, 2)

LX2 = LBOUND(XX, 2)

UX2 = UBOUND (XX, 2)

NY = SIZE (YY, 1)

LY = LBOUIlD(YY, 1)

UY = UBOUllD(YY, 1)

END FUNCTI ON

Chapter 8

Assume that the function is invoked with an actual (global) array X of shape 3 x 3

and an actual vector Y of length 3 on a 4-processor machine, using a 2 x 2 processor
arrangement (assuming one abstract processor per physical processor).

Then the various local invocations of the function MATZOH receive actual arguments as

shown here:

Copyrighted Material

Extrinsic Procedures

Processor (1 , 1)

Y (2)

Processor (2,1)

X(3 , 1)

Y(3)

X (3,3)

Processor (1,2)

Processor (2,2)

X(3 , 2)

Y (3)

237

Each lo cal invocation of MATZOH sees its own set of dummy arguments as shown here:

Processor (1,1)

Processor (2,1)

XX (l,l) XX (1,2)

YY(5)

Processor (2,2)

XX(l,l)

YY (5)

Thus when processor (1,1) refers t o its dummy argument element XX (1,2), i t sees the

value of actual argument element X (1,3) . But when processor (2,1) refers to its dummy

argument element XX (1,2) , it sees the value of actual argument element X(3,3).

Here are the values to which each processor would set NX1, LX 1, UX1, NX2, LX2, UX2,

NY, LY, and UY:

Processor (1,1) Processor (1,2)

NXl = 2 LXi = 1 UXl = 2 NXi = 2 LXi = 1 UXl = 2

NX2 = 2 LX2 = 1 UX2 = 2 NX2 = 1 LX2 = 1 UX2 = 1

NY = 2 LY = 5 UY = 6 NY = 2 LY = 5 UY = 6

Processor (2,1) Processor (2,2)

NXi = 1 LXl = 1 UXi = 1 NXl = 1 LXi = 1 UXi = 1

NX2 = 2 LX2 = 1 UX2 = 2 NX2 = 1 LX2 = 1 UX2 = 1

NY = 1 LY = 5 UY = 5 NY = 1 LY = 5 UY = 5

Copyrighted Material

238 Chapter 8

The return array ZZ is distributed identically to YY and therefore has a partially repli­
cated representation. Processors (1,1) and (1,2) should return identical rank-one arrays
of size 2; processors (2,1) and (2,2) should return identical rank-one arrays of size l.

An actual argument to an extrinsic procedure may be a pointer. Since the corre­
sponding dummy argument may not have the POINTER attribute , the dummy argument

becomes associated with the target of the HPF global pointer . In no way may a local

pointer become pointer associated with a global HPF target. Therefore, an actual argu­
ment may not be of a derived type containing a pointer component. (It is expected that
global pointer variables will have a different representation from that of local pointer vari­
ables, at least on distributed memory machines, because of the need to carry additional
information for global addressing. This restriction could be lifted in the future.)

Other inquiry intrinsics , such as ALLOCATED or PRESENT, should also behave as ex­
pected. Note that when a global array is passed to a local routine, some processors may
receive an empty sub array. Such argument is PRESENT and has SIZE zero.

8.4.3 HPF Local Routine Library

Local HPF procedures can use any HPF intrinsic or library procedure. (The arguments
to such procedures will be local arrays . Depending on the implementation , the actual
code for the intrinsic and library routines used by local HPF procedures mayor may not
be the same code used when called from global HPF code .)

In addition, several local library procedures are provided to query the global mapping
of an actual argument to an extrinsic function. These library procedures take as input
the name of a dummy argument and return information on the corresponding global
HPF actual argument. They may be invoked only by a local procedure that was directly

invoked by global HPF code. If module facilities are available , they reside in a module

called HPF -LOCAL-LIBRARYj a local routine that calls them should include the statement

or some functionally appropriate variant thereof.

The local HPF library also provides a new derived type PROC ID, to be used for processor
identifiers. Each physical processor has a distinct identifier of type PROeID. It is assumed
that a function is available to find the identifier of each executing processor-the syntax
for calling such a function is beyond the scope of HPF and of this book. (It is likely that
in many implementations type PROCID will be effectively identical to type INTEGER­

perhaps a derived type with a single integer component.)

GLOBAL-.ALIGNMENT(ARRAY, ... } This has the same interface and behavior
as the HPF inquiry subroutine HPF ...ALIGNMENT, but it returns information about the

Copyrighted Material

Extrinsic Procedures 239

global HPF array actual argument associated with the local dummy argument ARRAY,

rather than returning information about the local array.

GLOBAL-DISTRIBUTION(ARRAY, ...) This has the same interface and behav­

ior as the HPF inquiry subroutine HPF ..DISTRIBUTION, but it returns information about
the global HPF array actual argument associated with the local dummy argument ARRAY,

rather than returning information about the local array.

GLOBAL_TEMPLATE(ARRAY, ...) This has the same interface and behavior as

the HPF inquiry subroutine HPF _TEMPLATE, but it returns information about the global

HPF array actual argument associated with the local dummy argument ARRAY, rather
than returning information about the local array .

ABSTRACT_TO_PHYSICAL(ARRAY, INDEX, PROC)

Description. Returns processor identification for the physical processor ass0-

ciated with a specified abstract processor relative to a global actual argument
array.

Class. Subroutine.

Arguments.

ARRAY

INDEX

PROC

may be of any type; it must be a dummy array that is associated with

a global HPF array actual argument. It is an INTENT(IN) argument.

must be a rank-l integer array containing the coordinates of an ab­

stract processor in the processors arrangement onto which the global

HPF array is mapped. It is an INTENT(IN) argument. The size of

INDEX must equal the rank of the processors arrangement.

must be scalar and must be of type PROCID. It is an INTENT(OUT)

argument . It receives the identifying value for the physical processor

associated with the abstract processor specified by INDEX.

PHYSICALTO-ABSTRACT(ARRAY, PROC, INDEX)

Description. Returns coordinates for an abstract processor, relative to a global

actual argument array, corresponding to a specified physical processor .

Class. Subroutine.

Arguments.

Copyrighted Material

240

ARRAY

PROC

IXDEX

Chapter 8

may be of any type; it must be a dummy array that is associated with

a global HPF array actual argument . It is an INTENT(IN) argument.

must be scalar and must be of type PROCID. It is an INTENT(IN)

argument . It contains an identifying value for a physical processor .

must be a rank- l integer array. It is an IIlTEIIT(OUT) argument. The

size of INDEX must equal the rank of the processor arrangement onto

which the global HPF array is mapped . INDEX receives the coordi­

nates within this processors arrangement of the abstract processor

associated with the physical processor specified by PROC .

This procedure can be used only on systems where there is a one-to-one correspondence

between abstract processors and physical processors . On systems where this correspon­

dence is one-to-many an equivalent , system-dependent procedure should be provided .

L O C A L _TO _GLOBAL (ARRAY, L..1NDEX, G ..1NDEX)

Description . Converts a set of local coordinates within a local dummy array to

an equivalent set of glob al coordinates within the associated global H P F actual

argument array.

Class. Subroutine .

Argument s .

ARRAY

L-INDEX

G-I lfDEX

may be of any type; it must be a dummy array that is associated with

a glob al HPF array actual argument . It is an INTENT (IN) argument .

must be a rank-l integer array whose size is equal to the rank of

ARRAY . It is an INTENT(IN) argument . It contains the coordinates of

an element within the local dummy array ARRAY.

must be a rank- l integer arr ay whose size is equal to the rank of

ARRAY . It is an IIlTENT (OUT) argument. It receives the coordin ates

within the global HPF array actual argument of the element identified

within the local array by L-IlfDEX.

GLOBAL _T O ...L O C AL(ARRAY , G ..1N D EX, L ..l N DEX, LO C AL)

Opt ional argument s . L-INDEX , LOCAL

Description. Converts a set of global coordin ates within a glob al HPF actual

argument array to an equivalent set of local coordinates within the associ ated

local du mmy array.

Copyrighted Material

Extrinsic Procedures 24 1

Class. Subroutine.

Argulllents.

ARRAY

G...INDEX

may be of any type; it must be a dummy array that is associated with

a global HPF arr ay actu al argument . It is an INTEHT (IH) argument .

must be a rank- l integer array whose size is equ al to the rank of
ARRAY. It is an INTENT (I N) argument . It contains the coordinates of

an element within the glob al HPF array actual argument associated

with the local dummy array ARRAY.

L...INDEX (optional) must be a rank- l integer array whose size is equal to the rank
of ARRAY . It is an I HTENT (OUT) argument . It receives the coordi­
nates within the local dummy array of the element identified within
the glob al actual argument array by G_INDEX . However , the values
in L ...IHDEX arc undefined if the value returned (or that would be re­
turned) in LOCAL is false .

LOCAL (optional) must be scal ar and must be of typ e LOGI CAL . It is an IHTENT­
(OUT) argument . It is set to . TRUE . if the local array contains a copy
of the global array element and to . FALSE . otherwise .

8.5 Local Routines Written in Fort ran 90

The suggested interface to local SPMD routines written in Fortran 90 is the same as that
for HPF local routines , with these few exceptions :

• Only Fortran 90 constructs should be used ; it may not be possible to use extensions
peculiar to HPF such as FORALL and the HPF intrinsic l ibrary procedures .

• It is recommended that Fortran 90 language processors to be used for this purpose
be extended to support the HPF local distribution query routines GLOBAL..ALIGHMEHT ,

GLOBAL_TEMPLATE, and GLOBAL...DISTRIBUTIOH and the PROCID derived type as described

in Section 8 . 4 . 3 . It is also recommended that these facilities be defined in a Fortran 90

module named HPF ...LOCAL...LIBRARY .

• Assuming that the intent is to compile such rout ines with a non-HPF Fortran 90
compiler , the Fortran 90 program text should be in sep arate files rather than incorporated

into H P F source code .
• The suggested extrinsic-kind- keyword for this calling interface is F90 ...LOCAL .

Copyrighted Material

242 Chapter 8

The restri ctions listed in Section 8.4 . 1 ought to apply as well to local routines written

in Fortran 90.

The local HPF code example in Figure 8 . 1 could also serve as an example of local

Fortran 90 code simply by changing the keyword HPF ...LOCAL in the first line to F90...LOCAL.

8 .5. 1 Argument Association

If a dummy argument in the HPF explicit extrinsic interface is an array, then the corre­
sponding dummy argument in the specification of the local procedure must be an array
of the same rank , type , and type parameters . When the extrinsic p rocedure is invoked ,

the local dummy argument is associated with the local array that consists of the subgrid
of the global array that is stored locally. This local array will be a valid Fortran 90 array .

If a dummy argument in the HPF explicit extrinsic interface is a scalar then the

corresponding dummy argument of the local procedure must be a scalar of the same

type . When the extrinsic procedure is invoked then the local procedure is p assed an

argument that consists of the local copy of the replicated scal ar . This copy will be a
valid Fortran 90 scalar .

If an HPF explicit extrinsic interface defines a function , then the local procedure should

be a Fortran 90 function that returns a scalar of the same type and type parameters , or
an array of the same rank , type , and type parameters , as the HPF extrinsic function .
The value returned by each local invocation is the local part of the value returned by the
HPF invocation .

8.6 Example HPF Extrinsic P rocedures

Figure 8 .3 shows an INTERFACE block , call , and subroutine definition for matrix multi­
pl ication coded as a local subroutine.

Figure 8.4 shows an INTERFACE block , call , and subroutine definition for sum reduction
coded as a local function .

Copyrighted Material

Extrinsic Procedures 243

The c aller :

The NEWMATMULT rout ine comput e s C=A*B . Bet ore call ing REWMATMULT ,
the ALI GN direct ives require broadcast ing cop i e s ot rov A(I , *)
and column B(* , J) t o the pro c e s s or that comput es C(I , J) .

INTERFACE

EXTRINSIC(HPF_LOCAL) SUBROUTINE NEWMATMULT(A , B , C)
REAL , DIMENSION(: , :) , INTENT(IN) A, B
REAL , DIMENSION(: , :) , INTENT(OUT) C

! HPF$ ALIGN A (I , J) WITH * C (I , *)

! HPF$ ALI GN B(I , J) WITH *C(* , J)

END SUBROUTINE NEWMATMULT

END INTERFACE

REAL P(100 , 93) , Q(93 , 47) , R(1 00 , 47)

C ALL NEWMATMULT(P , Q , R)

The local subrout ine def init ion :

Each pro c e s sor i s pas s ed 3 array s ot rank 2 . A s sume that the

global HPF array s A , B , and C have d imens ions LxM , Mxl and LxN ,

respect ively . The local array CC is (a c opy of) a r e ct angular

subarray ot C . For each pos it ion (I , J) in thi s local array ,

the local array AA contains an ent ire rov ot A as AA(I , :) and

the local array BB contains an ent ire column of B as BB(: , J) .

C may have a r epl icat ed repres ent at ion , in whi ch case copies

of C(I , J) viII be cons istently updat ed at various pro c e s s or s .

EXTRIISIC(HPF_LOCAL) SUBROUTINE IEWMATMULT(AA , BB , CC)

REAL , DIMENSION(: , :) , INTENT(IN) AA , BB

REAL , DIMEISIOI(: , :) , INTENT(OUT) : : CC

The loops use local indices into AA , BB , and CC .

DO I = LBOUND(CC , 1) , UBOUND(CC , l)

DO J = LBOUID(CC , 2) , UBOUND(CC , 2)

CC(I , J) = DOT_PRODUCT(AA(I , :) , BB(: , J »

END DO

EID DO

END SUBROUTINE IEWMATMULT

Figure 8.3
Matrix multiplication coded as a local HPF subroutine

Copyrighted Material

244 Chapter 8

The SREDUCE rout ine comput es at each proc e s s or the sum of

the local element s of an array of rank 1 . It returns an

array that c ons ists of one sum per processor . The sum

reduct ion i s c omplet ed by reducing this array of part ial sums .

The funct ion calls an error rout ine if the array i s r epl icat ed .

(Repl icat ed arrays c ould be handl ed by a more compl icat ed code .)

I NTERFACE

EXTRINS I C (HPF_LOCAL) FUNCTION SREDUCE (A) RESULT (R)

REAL , D IMENSION (NUMBER_OF_PROCESSORS (» : : R

! HPF$ D ISTRIBUTE (BLOCK) : : R

REAL , D IMENSION (:) , INTENT (IN) A

END FUNCTION SREDUCE

END INTERFACE

TOTAL = SUM (SREDUCE (A»

The local subrout ine def init i on

EXTRINSIC (HPF_LOCAL) FUNCTION SREDUCE (AA) RESULT R

REAL , DIMENSION (:) : : R

REAL , D IMENSION (:) , INTENT (I N) AA

CALL GLOBAL_ALIGNMENT (AA , NUMBER_N= N)

I F (COPIES > 1) THEN

CALL ERROR

ELSE

Array is repl i cat ed--call error r out ine

R = 0 Array i s not repl icat ed--comput e l ocal sum

DO J = 1 , UBOUND (AA)

R (1) = R (1) + A (J)

END DO

END IF
END SUBROUTINE SREDUCE

Figure 8.4
Sum reduction coded as a local HPF function

Copyrighted Material

9 Subset High Performance Fortran

This subset of HPF is intended to define a minimal starting set of features from Fortran
90 and HPF. We will give the list of the HPF extensions that are in Subset HPF, followed

by the definition of the Fortran 90 subset. The purpose of a subset is to encourage early
release of compilers with HPF features. Actual HPF Subset implementations may include

more features than are listed here. The programmer should check the specific details of
each Subset compiler used.

9.1 HPF Exte nsions and Subset High Performance Fortran

The HPF extensions have been divided into two parts, those in Subset HPF, and those not
in Subset HPF. This division was primarily done on the basis of expected implementation

difficulty.

9.1.1 HPF Features in the Subset

The st atic data mapping features of HPF are in the subset. These include: the directives
for ALIGN, DISTRIBUTE, TEMPLATE, and PROCESSORS, as well as the combined-directive.

The INHERIT directive is part of the subset, but only the descriptive and prescriptive

forms. That is, the programmer must specify what the distribution to be inherited
is, either by asserting its form or by instructing the compiler to convert to a specific
distribution.

The single-statement FORALL is part of the subset. The INDEPENDENT directive as

applied both to DO and FORALL is also part of the subset.

The three new HPF intrinsic functions are part of the subset: NUHBER...oF .PROCESSORS.

PROCESSORS,SHAPE and ILEN.

9.1.2 HPF Features Not in the Subset

For completeness, we also list the HPF extensions that are not required as part of Subset

HPF.

The dynamic mapping features are not part of the subset. These include the REALIGN,

REDISTRIBUTE, and DYNAMIC directives.

The transcriptive ("lone star") form of the DISTRIBUTE directive and INHERIT directive
is not part of the subset.

The PURE function attribute is not part of the subset. This means that only HPF
and Fortran 90 intrinsic functions can be called from the FORALL statement. No other
subprograms can be called.

Copyrighted Material

246 Chapter 9

The forall-construct (multi-statement) FORALL is not in the subset.
The HPF library and the HPF .LIBRARY module are not part of the subset.
The EXTRINSIC function attribute is not in the subset. By implication, this means

that the optional HPF .LOCAL interface is not part of the subset.

9.2 Fortran 90 and Subset High Performance Fortran

The set of Fortran 90 features selected for Subset HPF is most definitely not an ideal
subset of the language. Features were selected either because they were already in com­
mon use or because they contributed to the performance-oriented goal of HPF. There
are numerous useful and popular features omitted from this subset.

9.2.1 Fortran 90 Features in the Subset

The Fortran 90 features listed here are the features of Subset HPF For reference, the
section numbers from the Fortran 90 standard are given along with the related syntax
rule numbers:

• All FORTRAN 77 standard conforming features, except for storage and sequence
association. (See Sections 4.10 and 5.9 for detailed discussion of the exception.)
• The Fortran 90 definitions of MIL-STD-1753 features:

• DO WHILE statement (8.1.4.1.1 / R821)
• END DO statement (8.1.4.1.1 / R825)
• IMPLICIT NONE statement (5.3 / R540)
• INCLUDE line (3.4)
• Scalar bit manipulation intrinsic procedures: lOR, lAND, NOT, IEOR, ISHFT, ISHFTC,

BTEST, IBSET, IBCLR, IBITS, MVBITS (13.13)
• Binary, octal and hexadecimal constants for use in DATA statements (4.3.1.1 / R407

and 5.2.9 / R533)

• Arithmetic and logical array features:

• Array sections (6.2.2.3/ R618-621) using subscript triplet notation (6.2.2.3.1) and

vector-valued subscripts (6.2.2.3.2)
• Array constructors limited to one level of implied DO (4.5 / R431)
• Arithmetic and logical operations on whole arrays and array sections (2.4.3, 2.4.5,

and 7.1)
• Array assignment (2.4.5, 7.5, 7.5.1.4, and 7.5.1.5)

Copyrighted Material

Subset High Performance Fortran 247

• Masked array assignment (7.5.3) using the WHERE statement (7.5.3/ R738) and the
block WHERE . . . ELSEWHERE construct (7.5.3/ R739)
• Array-valued external functions (12.5.2.2)
• Automatic arrays (5 . 1 .2 . 4 . 1)

• ALLOCATABLE arrays and the ALLOCATE and DEALLOCATE statements (5.l.2.4.3, 6.3.1

/ R622, and 6.3.3 / R631)
• Assumed-shape arrays (5.1.2.4.2 / R516)

• Intrinsic procedures: The list of intrinsic functions and subroutines below is a combi­
nation of (a) routines that are entirely new to Fortran and (b) routines that have always

been part of Fortran, but now have been extended to new argument and result types.
The new or extended definitions of these routines are part of the subset. If a FORTRAN
77 routine is not included in this list, then only the original FORTRAN 77 definition is
part of the subset.

• The argument presence inquiry function: PRESENT (13.10.1)
• All the numeric elemental functions: ABS, AIMAG, AINT, ANINT, CEILING, CMPLX,

CONJG, DBLE, DIM, DPROD, FLOOR, INT, MAX, MIN, MOD, MODULO, NINT, REAL, SIGN
(13.10.2)

• All mathematical elemental functions: ACOS, ASH, ATAN, ATAN2, COS, COSH, EXP,
LOG, LOG10, SIN, SINH, SQRT, TAN, TANH (13.10.3)
• All the bit manipulation elemental functions: BTEST, lAND, IBCLR, IBITS, IBSET,
IEOR, rcR, 1SHFT, 1SHFTC, NOT (13.10.10)
• All the vector and matrix multiply functions: DOT-PRODUCT, MATMUL (13.10.13)
• All the array reduction functions: ALL t, ANVt, COUNTt, MAXVAL t, MINVALt, PRODUCTt,

SUMt(13.10.14)
• All the array inquiry functions: ALLOCATED, LBOUNDt, SHAPE, SIZEt,

UBOUNDt(13.10.15)
• All the array construction functions: MERGE, PACK, SPREADt, UNPACK (13.10.16)

• The array reshape function: RESHAPE (13.10.17)
• All the array manipulation functions: CSHIFTt, EOSHIFTt, TRANSPOSE (13.10.18)

• All array location functions: MAXLOCt, MIILOCt(13.10.19)

• All the intrinsic subroutines: DATEAlDTIME, MVBITS, RAIDOMIUMBER, RAIDOMSEED,

SVSTEMCLOCK (3.11)

For all of the intrinsics that have an optional argument DIM, only actual argument
expressions for DIM that are initialization expressions are part of the subset. The intrinsics

with this constraint are marked with a dagger (t) in the list above.

• Declarations:

Copyrighted Material

248 Chapter 9

• Type declaration statements, with all forms of type-spec except kind-selector and
TYPE(type-name), and all forms of attr-spec except access-spec, TARGET, and POINTER.
(5.1 / R501-503, R510)

• Attribute specification statements: ALLOCATABLE, INTENT, OPTIONAL, PARAMETER,
SAVE (5.2)

• Procedure features: Interface blocks are included in the subset in order to facilitate use

of the HPF directives across subroutine boundaries. Interface blocks provide a mechanism

to specify the expected mapping of data, in addition to the types and intents of the

arguments.

• INTERFACE blocks with no generic-spec or module-procedure-stmt (12.3.2.1)
• Optional arguments (5.2.2)

• Keywor d argument passing (12.4.1 /R1212)

• Syntax improvements:

• Long (31 character) names (3.2.2)
• Lower case letters (3.1. 7)
• Use of "_" in names (3.1.3)
• "!" initiated comments, both full line and trailing (3.3.2.1)

9.2.2 Fortran 90 Features Not in the Subset

We will not attempt a precise list of the Fortran 90 features not included in the subset ,

but for the reader 's aid , we do give a short summary of features here. The following

are omitted: the free form source; control features such as CASE, CYCLE and EXIT; the
numeric precision KIND feature ; the character array language , and full form of array con­
structors; POINTER and TARGET; derived type and operator definitions; generic procedures

and internal subprograms; MODULE and USE; extensions to I/O such as additional clauses

for OPEN and INQUIRE, NAMELIST formatting , and non- advancing , stream 1/0.

Copyrighted Material

A Definition of Terms

abstract processors: A rectilinear arrangement of processors that may be defined by

a PROCESSORS directive. The mapping of the abstract processors to physical processors

is system-dependent.

aggregate cover: A member of an aggregate variable group whose storage is totally

associated with the storage sequence ot the aggregate variable group. Informally stated ,

this is a variable that is exactly the same size as t,he entire aggregate variable group.

aggregate variable group: A collection of variables whose individual storage sequences

are parts of a single storage sequence.

align target: A data object name or template name whose distribution serves as a

pattern for the distribution of the index space of other data objects.

alignee: A data object that is associated with an align target by an ALIGN or REALIGN

directive, for the purpose of determining the distribution of the index space.

alignment: An attribute of a data object that establishes the relationship between data

objects for distribution.

atomic object: A data object that contains no subobjects . These may not be split

across processors as a result of distribution. They also define the basic unit of write and

read operations for defining indepen dent .

collapsed: A term used to describe a dimension of an array where every element of the

dimension is aligned to the same element of another array or template .

communication: The overhead incurred when an operation on one processor uses a

data object stored on a different processor .

component: Either a single variable or an aggregate variable group in a common block.

cover: See aggregate cover.

data locality: A term used to describe the likelihood that a processor operation uses

data objects stored in its local memory .

Copyrighted Material

250 Appendix A

data parallel: A description of parallelism potentially obtained when the same operation
is applied to many elements of an array or data object. The data parallel model is a

single-threaded control structure, global name space, and loosely synchronous parallel
execution

descriptive mapping: A method used to establish the mapping attributes of a dummy

procedure argument where the attribute of the actual argument is asserted to be of a
specified kind and thus requires no data motion.

directive: A special Fortran comment that suggests implementation strategies or asserts

facts about a program to the compiler.

distributee: A data object named in a DISTRIBUTE directive.

distribution: The partition of the index space of a data object among a set of abstract

processors according to a given pattern.

dynamic mapping: A mapping that may change during execution as a result of a

REDISTRIBUTE or REALIGN directive.

explicit interface: A definition of a procedure interface that is visible to the scoping
unit of a reference (call) to the procedure, e.g. via an interface block or MODULE procedure
definition.

explicit mapping: A mapping attribute specified in an ALIGN, DISTRIBUTE, or DYNAMIC

directive.

extrinsic procedure: A routine that is not properly part of HPF. It may be written in

a different programming paradigm and possibly in a different language.

extrinsic kind keyword: Description of the extrinsic interface. HPF defines HPF and

HPF...LOCAL.

global name space: Programming model where a data object name can be accessed by

more than one processor. This is the usual model on shared memory systems, but also

supported on distributed memory systems in languages such as HPF.

global variable: A variable accessible from more than one procedure.

Copyrighted Material

Definition of Terms 251

HPF conforming: A program that obeys all of the syntax and semantic rules of the

HPF language specification.

immediately aligned: Two data objects with an alignment established by a specific

ALIGN directive.

implicit Inapping: A mapping attribute selected by the compiler when no explicit

mapping is given.

independent: A property of a DO loop or FOR-ALL statement where the results are the

same whether executed serially or in parallel. This may be established by the compiler

or may be asserted by the programmer with an IIiDEPEIiDEIT directive.

inherited teInplate: A template for a dummy argument that is a copy of the template

of the corresponding actual argument. Note that the shape and size of this template may

differ from the shape and size of the dummy argument.

load balance: Refers to program optimization to give each processor approximately the

same amount of work.

local naIne space: Programming model where a data object name is accessibly only

by the local processor.

local variable: A variable that IS accessible only within the procedure where it IS

declared.

local procedure : A procedure from a programming model where each processor IS

potentially executing different code.

loosely synchronous: Refers to an execution model where the processors are not nec­

essarily processing the exact same instruction (as in the SIMD model), but are forced

by periodic synchronization events (such as message communication) to stay in the same

general location in the program, possibly on the same line or control structure from the
source program.

Inapping: The combination of alignment and distribution attributes used to describe

how a data object is allocated to an abstract processor arrangement.

Copyrighted Material

252 Appendix A

mapping inquiry subroutines: Subroutines to allow a program to determine the
actual mapping of an array at run time .

MIMD: Stands for Multiple Instruction stream, Multiple Data stream, meaning that

the processors can all be executing different instructions at the same time.

natural template: A freshly created template for a dummy argument that is not

explicitly aligned and does not have the INHERIT attribute . Causes the dummy argument
to be ultimately aligned with itself.

node program : See local procedure .

nonconforming: A program that does not obey one or more syntax and semantic rules

of the HPF language specification. The results of execution of the program are not

defined. The compiler may not detect all instances of a nonconforming program.

nonsequential variable : A variable that does not occur in a context involving storage

association and is not named on a SEQUEICE directive.

prescriptive mapping: A method used to establish the mapping attributes of a dummy

procedure argument where the attribute is explicitly specified and the incoming mapping

of the actual argument must be modified to match if it does not already conform.

processor arrangement: See abstract processor arrangement.

pure: An attribute of a procedure that constrains the statements allowed in the proce­

dure so that the procedure cannot have any side effects other than modification of output

arguments or the function value.

rank: The number of dimensions of an array. A scalar value has rank zero.

replicat ion: A means of creating copies of a data object on more than one processor by

establishing a special alignment of the data object.

sequence association: The element sequence order of array elements that is required

when an array, array expression , or array element is associated with a dummy argument

in a call to a subprogram.

Copyrighted Material

Definition of Terms 253

sequential common: A common block that is named in a SEQUENCE directive. Required

for any common block whose components do not match exactly in shape, type , mapping

and sequentiality in every occurrence of the common block.

sequential variable: A variable that is involved in storage association or is named in

a SEQUENCE directive.

shape: For an array, the rank and extent of each dimension.

SIMD: Stands for Single Instruction stream, Multiple Data stream, meaning that all

processors execute exactly the same instruction at the same time (unless they have been

turned off) .

SPMD: Stands for Single Program, Multiple Data, meaning that all processors are
executing the same program .

static mapping: Mapping attributes that stay the same throughout program execution,

except for possible remapping across procedure boundaries that are restored to their

original state on return from the procedure. Required for all variables in COMMON.

storage association: The association of two or more data objects that occurs when

two or more storage sequences share or are aligned with one or more storage units .

storage sequence: Contiguous storage units.

stride: An array increment specified in subscript triplet notation.

synchronization: A point in a program where the processor cannot proceed without a

result or event from another processor and must wait for it to happen.

system inquiry functions: Functions that return values to describe attributes of the
physical computing resource, including the size and shape of the processor array.

template: An index space associated with an array. This may be an array or an explicit

TEMPLATE defined by a directive.

totally associated: Term referring to entities which have the same storage sequence.

Copyrighted Material

254 Appendix A

transcriptive mapping: A method used to establish the mapping attributes of a

dummy procedure argument where the attribute is to be copied from the actual argument

and code is produced to adapt to the possibility that the attribute may be different from
call to call.

ultimately aligned: The final alignment target in a set of related alignments. An

object not explicitly aligned with another object is ultim ately aligned with itself.

Copyrighted Material

B Description of HPF Library and Intrinsic Procedures

Procedures not marked "Intrinsic" are HPF library proce d ures . I n ord er to save space
and enhance readability, th e exam ples of this a ppe nd ix use T and F to de not e the logical
values . TRUE. and . FALSE. Optional arguments are marked with an asterisk (*).

B.l ALL_PREFIX

Synopsis. ALL....PREFIX (MASK, DIM , SEGMENT , EXCLUSIVE)

Optional Arguments. DIM , SEGMENT, EXCLUSIVE

Description. Computes a s egmented logical AND scan along d ime nsion DIM of
MASK .

Class. Transformational function.

Arguments.

MASK must b e of type logical. It must not be scala r .

DIM* must be scalar and of ty pe integer with a value in th e ra nge 1 <
DIM � n, where n is the rank of MASK.

SEGMENT* must be of type logical an d have the same shape as MASK .

EXCLUSIVE* must b e of typ e logical and must be scalar.

Result Type, Type Parameter, and Shape. S ame as MASK.

Result Value. Element r of the r es ult has the value ALL (I al, .. · , am /»)
where (al,"" am) is the (possibly empty) set of elements of MASK selected to
contribut e to r by the rules stated in Chapter 7.

Example. ALL....PREFIX ((IT , F , T, T , T/), SEGMENT= (IF ,F , F , T, T/)) is

[T F F T T].

B.2 ALL_SCATTER

Synopsis. AU-5CATTER(MASK , BASE , IIDXl, . . . , IIDXn)

Copyrighted Material

256 Appendix B

Description . Scatters elements of MASK to positions of the result indicated by

inde x arrays INDXl, ... , INDXn. An e lement o f the res ult is true if and only if th e
cor responding element of BASE and all elements o f MASK scattered to that position
are true .

Class. Transformatio nal function .

Arguments .

MASK must be of t ype log ical . It mus t not be sca lar .

BASE must be of t ype logical with the same kind type parameter as MASK.
It must not be scalar.

INDX1, . . . , IIDXn must be of type integer and conformable with MASK. The num­
ber of IIIDX arguments must be equal to the rank of BASE.

Result Type, Type Parameter, and Shape. Same as BASE.

Result Value. The element of the result corresponding to the element b of BASE
has the value ALL((laI,u2, ... , am , b/)) , where (al, . .. ,am) are the el ements
of MASK associated with b as described in Chapter 7.

Example. ALL....sCATTER ((IT, T, T, F/) , (IT, T, T/) , (11, 1, 2, 2/))
is [T F T] .

B.3 ALL_SUFFIX

Synopsis. ALL....sUFFIX(MASK, DIM, SEGMENT. EXCLUSIVE)

Optional A rgument s. DIM, SEGMENT, EXCLUSIVE

D escript ion. Computes a reverse , segm en ted logical AND scan along dime nsion
DIM of MASK.

Class. Transformational function .

Argument s.

MASK must be of type logical . It must not be scalar .

DIM* must be scalar and o f type integer with a value in the range 1 <
DIM :S n, where n is the rank of MASK.

Copyrighted Material

Description of HPF Library and Intrinsic Procedures

SEGMENT* must be of type logic al and h ave the sam e sh ape as MASK.

EXCLUSIVE* must be o f type logical and must be scalar .

Result Type, Type Par8llleter, and Shape. Same as MASK.

257

Result Value. Element r o f the result has the value ALL((I al," " am /»
where (al, . . . , am) is the (possibly empty) set of elements of MASK selected to
contribute to r by the rules stated in Ch apter 7.

Example. ALL...sUFFIX((IT, F,T,T,T!) , SEGMENT= (IF , F , F,T ,T /)) is
[F F T T T] .

B.4 ANY...PREFIX

Synopsis. ANY ...PREFIX (MASK , DIM, SEGMENT, EXCLUSIVE)

Optional Arguments. DIM, SEGMENT , EXCLUSIVE

Description. Comput es a seg mented logical OR scan along dimension DIM of

MASK.

Class. Transformational function .

Arguments.

MASK m ust be o f type logical. It must not be scalar .

D IM* must be scalar and of type integer w ith a value in the range 1 <

DIM � n, where n is the rank of MASK.

SEGMENT* m us t be of type logic al and have t he same shape as MASK.

EXCLUSIVE* must be of type logical an d mus t b e s ca lar.

Result Type, Type Par8llleter, and Shape. Same as MASK.

Result Value. Element r o f t he result has th e value AIV «(I al, . . · , am /)

where (al, . . . ,am) is the (poss ibly empty) set of elements o f MASK se lected to

contribute to r by the rules stated in Chapter 7.

Example . ANY ...PREFIX ((IF, T ,F ,F ,F!) , SEGMENT= (IF , F ,F , T , T!)) is
[F T T F F].

Copyrighted Material

B.o ANY �CATTER

Synopsis. ANY ..sCATTER (MASK , BASE , INDX1, ... , IIDXn)

Description. Scatters e lements o f MASK to positions of the result ind icate d by
in dex arr ays IID11, ... , IIDIn. An eleme nt of t he result is t rue if and o nly if the
corresponding e lemen t o f BASE or any e lement o f MASK scattered to that position

is true.

C lass. Tran sforma tional func tion .

Argument s.

MASK must be of type logic al . It must not be sc al ar .

BASE must be of type logic al with the s ame kin d typ e parameter as MASK .
It must not be scalar.

11011 , ... , INDXn must be of type integer and con forma ble with MASK . The num­

ber of INDX arguments must be e qual to the rank of BASE.

Result Type, Type Parameter, and Shape. Same as BASE .

Result Value. Th e element of t he result correspon ding to the elemen t b of BASE
has the va lu e AIY ((lal,a2, . . . ,am,bf)) , where (al, . . . ,am) are the elements

of MASK associated with b as des cr ibe d in Ch apter 7.

Example. ANY..sC ATTER((IT, F, F , F/) , (IF , F , T/) , (/1 , 1, 2, 2f))
is [T F T].

B.a ANY_S UFFIX

Synopsis. AIiY..sUFFIX (MASK , DIM, SEGMEIT , EXCLUSIVE)

Optional Arguments. DIM , SEGMEIT , EXCLUSIVE

Description. Computes a reverse, segmented logical OR scan along dimension

DIM of MASK .

C lass. Transformational function.

Arguments.

Copyrighted Material

Description of HPF Library and Intrinsic Procedures

MASK must be of type l ogical . It must not be scalar .

259

DIM* must be scala r and of type integer with a value in the range 1 <
DIM::; n, wher e n is the rank o f MASK .

SEGMEllT* mus t be of type logical and have the same shape as MASK.

EXCLUSIVE* must be of type log ical and must be scalar.

Result Type, Type Parameter, and Shape. Same as MASK.

Result Value. Elemen t r of the re sult h as the value ANY«(I al, . .. ,am I»

where (at, ... , am) is the (p os sibly empty) set of elements of MASK selected to

con tr ibu te t o r by the rules s tated in Chapter 7.

Example. ANy..sUFFIX((IF , T , F , F ,F/) , SEGMENT= (IF , F,F , T, T/)) is

[T T F F F] .

B.7 COPY-PREFIX

Synopsis. COPY ...PREFIX (ARRAY, DIM, SEGMEIlT)

Optional Arguments. DIM, SEGMENT

Description. C omputes a segmented copy s can al ong dimensi on DIM of ARRAY.

Class. Transf orma ti onal fun cti on .

Arguments.

ARRAY may be of any type . I t must not be scalar .

DIM* must be scala r and of type integer with a value in the range 1 <

DIM::; n, w here n is the rank of ARRAY .

SEGMENT* must be of type l ogica l and have the same shape as ARRAY.

Result Type, Type Parameter, and Shape. Same as ARRAY.

Result Value. Elemen t r of the result has the value a t where (at, ... , am) is the
set, in array element orde r, of elem en ts of ARRAY selected to contribute t o r by

the rule s s tate d in Chapter 7.

Example. COPY...PREFIX((11,2,3,4,5/), SEGMENT= (IF,F,F,T,TI)) is

[1 1 1 4 4] .

Copyrighted Material

260 Appendix B

B.B COPY_SCATTER

Synopsis. COPY...5CATTER(ARRAY ,BASE, INDX1, ... , INDXn, MASK)

Optional Argument. MASK

Description. Scatters elements o f ARRAY sele cted by MASK to pos it ions o f the
result indicated by index arrays INDX1, . . . , INDXn. Each element o f the result
is equal to one o f the elements of ARRAY scattered to that posit ion or , i f there is
none, to the corresponding element o f BASE.

Clas s . Transformational function .

Arguments.

ARRAY

BASE

may be of any type . It m us t n ot be sca la r.

must be of the same type and kind type parameter as ARRAY.

INDX 1 , ... ,INDXn must be of type integer and m ust be confo rmable with ARRAY.

The n umber ofINDX ar guments must be e qual to the rank o f BASE.

MASK* must be of type logical and must be conformable with ARRAY.

Result Type , Type Parameter, and Shape. Same as BASE .

Result Value . Let S be the set of e lements of ARRAY asso ciated with element b
o f BASE as described in Chapter 7.

I f S is emp ty , then the e lement of the resu lt cor responding to the element b of

BASE has the same va lue as b.

If S is non-empty, then the e lemen t of the result c orresponding to the element b
of BASE is the result o f choosing one element from S. HPF doe s not specify how
the cho ice is to be made ; the mecha nism is processo r depend ent .

Example. COPY...5CATTER «/1, 2, 3, 4/), (/7, 8, 9/), (/1, 1, 2, 2/»
is [x, y, 9], where x is a member of the set {1, 2 } and y is a member o f the set

{3,4}.

Copyrighted Material

Description of HPF Library and Intrinsic Procedures 261

B.9 C Opy -BUFFIX

Synopsis. COPY....sUFFIX (ARRAY . DIM . SEGMENT)

Optional Arguments. DIM, SEGMENT

Description. C omputes a revers e, segm ented copy s can al ong dimensi on DIM of
ARRAY.

Class. Transf ormati onal functi on .

Arguments.

ARRAY may b e of any typ e. It must n ot b e scalar .

D IM* must b e sca lar a nd of typ e int eg er with a value i n th e rang e 1 <

DIM � n, wh er e n is th e rank of ARRAY .

SEGMENT* must b e of type l ogical and have the same shape as ARRAY.

Result Type, Type Parameter, and Shape. Same as ARRAY .

Result Value. E lement r of th e result has the value am wh ere (al, ... , am) is
the s et , in array el ement order , of el eme nts of ARRAY s el ect ed t o c ontribut e t o r

by the rul es stated in Chapter 7.

Example. COPy....sUFFIX ((/ 1, 2 . 3,4 , 5/) . SEGMENT= (/F,F , F,T . T/)) is
[3 3 3 5 5] .

B.10 C O UNT_PREFIX

Synopsis. COUNT..PREFIX(MASK , DIM, SEGMENT , EXCLUSIVE)

Optional Arguments. DIM , SEGMENT, EXCLUSIVE

Description. C omput es a segment ed COUNT scan al ong dim ens ion DIM of MASK .

Class. Transf ormat i onal function .

Arguments.

MASK must b e of type l ogical . It must n ot b e scalar .

Copyrighted Material

262

DIM*

Appendix B

must be scalar and of type integer with a value in the range 1 <
DIM::; n, where n is the rank of MASK.

SEGMENT* must be of type logical and have the same shape as MASK .

EXCLUSIVE* must be of type logical and must be scalar.

Result Type, Type Parameter, and Shape. The result is of type default
integer and of the same shape as MASK.

Result Value. Element r of the result has the value COUNT((I at, ... , am I »
where (at, . .. , am) is the (possibly empty) set of elements of MASK selected to
contribute to r by the rules stated in Chapter 7.

Example. COUNT...PREFIX((IF , T , T, T , T/) , SEGMENT= (IF ,F , F , T , T/)) is

[0 1 2 1 2] .

B.ll COUNT_SCATTER

Synopsis. COUXT...sCATTER(MASK , BASE , INDXi, .. . , llDIn)

Description. Scatters elements of MASK to positions of the result indicated by
index arrays INDXi , ... , INDXn. Each element of the result is the sum of the
corresponding element of BASE and the number of true elements of MASK scattered
to that position.

Class. Transformational function.

Arguments .

MASK must be of type logical. It must not be scalar.

BASE must be of type integer. It must not be scalar.

INDX1 , ... , INDXn must be of type integer and must be conformable with MASK .
The number of INDX arguments must be equal to the rank of BASE.

Result Type, Type Parameter , and Shape. Same as BASE.

Result Value. The element of the result corresponding to the element b of
BASE has the value b + COUNT((la t , a2, ... , ami)) , where (al' ... , am) are the
elements of MASK associated with b as described in Chapter 7.

Example. COUNT...sCATTER «(lT , T , T , F/) , (l1 , -1, 0/) , (11 , 1 , 2 , 2/ »
is [3 0 0] .

Copyrighted Material

Description of HPF Library and Intrinsic Procedures 263

B.12 COUNT_SUFFIX

Synopsis . COUNT...SUFFIX (MASK , DIM, SEGMENT , EXCLUSIVE)

Optional Argument s . DIM, SEGMENT , EXCLUSIVE

Description. Computes a reverse, segmented COUNT scan along dimension DIM
of MASK .

Class . Transformational function.

Arguments.

MASK must be of type logical. It must not be scalar.

DIM* must be scalar and of type integer with a value in the range 1 <
DIM:S n, where n is the rank of MASK .

SEGMENT* must be of type logical and have the same shape as MASK.

EXCLUSIVE* must be of type logical and must be scalar.

Result Type, Type Parameter, and Shape. The result is of type default

integer and of the same shape as MASK .

Result Value . Element r of the result has the value COUNT «(I a1, . . . , am /)
where (a1,"" am) is the (possibly empty) set of elements of MASK selected to
contr ibute to r by the rules stated in Chapter 7.

Example. CDUNT..5UFFIX ((IT , F, T, T, T/) , SEGMENT= (IF ,F ,F , T, T/)) is

[2 1 1 2 1] .

B.13 GRADE_DOWN

Synopsis. GRADE.J)OWN (ARRAY, DIM)

Opt ional Argument. DIM

Description. Produces a permut ation o f the indices o f an array, sorted by de­

scending array element values.

Class . Transformational function.

Copyrighted Material

264 Appendix B

Arguments.

ARRAY

DIM*

must be of type integer , real, or character.

must be scalar and of type integer with a value in the range 1 ::; DIM ::;

n, where n is the rank of ARRAY. The corresponding actual argument

must not be an optional dummy argument.

Result Type, Type Parameter, and Shape. The result is of type default
integer. If DIM is present, the result has the same shape as ARRAY. If DIM is absent ,
the result has shape (/ SIZE (SHAPE (ARRAY » . PRODUCT (SHAPE (ARRAY)) /) .

Result Value.

Case (i): The result of S = GRADE...DDWN(ARRAY) has the property that if one

computes the rank-one array B of size PRDDUCT(SHAPE (ARRAY» by

FDRALL(K=1:SIZE(B.l»B(K)=ARRAY(S(1.K).S(2.K) • . . . • S(N . K»

where N has the value SIZE(SHAPE(ARRAY», then B is sorted in de­

scending order; moreover, all of the columns of S are distinct, that

is, if j -I m then ALL(S(: .j) .EQ. S(: .m» will be false. The sort

is stable; if j ::; m and B(j) = B(m), then ARRAY(S(1,j). S (2 ,j) •

. . . • S (n,j» precedes ARRAY(S(1, m) . S (2 , m) • . . . • S (n, m» in the

array element ordering of ARRAY.

Case (ii): The result of R = GRADE...DDWN(ARRAY.DIM=K) has the property that
ifone computes the array B(il,i2, .. . ,ik, . . . ,in) = ARRAY(il, i2, . . . ,

Examples.

R (il , i2, ... , ik, ... , in), ... , in) then for all il, i2, ... , (om it ik)"'" in
the vector B (il, i2, ... , :, ... , in) is sorted in descending order; more-

over, R(il, i2 , ... ,:, ... , in) is a permutation of all the integers in the

range LBDUID(ARRAY .K) :UBDUllD(ARRAY .K). The sort is stable; that
is, if j ::; m and B(il , i2 , . . . , j , . . . ,in) = B (il,i2, . .. ,m, ... , in) ,

then R(il , i2 , . . . ,j, ... , in) ::; R (il,i2, . .. ,m, .. . ,in).

Case (i): GRADE...DDWN ((/30. 20. 30. 40. -101)) is a rank two array of

shape [1 5 1 with the value [4 1 3 2 5] . (To produce a rank­

one result, the optional DIM = 1 argument must be used .)

Copyrighted Material

Description of HPF Library and Intrinsic Procedures 265

9
If A i, t�e "<oy [� 5 n then GRADE...DOlrJN(A) has the value

2

[� 2 2 3 3 1 2 1 �]. 2 1 3 2 3 3 1

em (iir If. is t�e ''''Y [� � ! l then O.ADEllO.I(A, 01. = 1) � .. the

value [� � �].
3 3 2

B.14 GRADE_UP

Synop sis. GRADE_UP (ARRAY • DIM)

Optional Argument. DIM

Description. Produces a permutation of the indices of an array, sorted by as­

cending array element values.

Class. Transformational function.

Argument s.

ARRAY

DIM*

must b e o f type integer, real, or character.

must be scalar and of type integer with a value in the range 1 � DIM �
n, where n is the rank of ARRAY. The corresponding actual argument

must not be an optional dummy argument.

Result Type, Type Parameter, and Shape. The result is of type default

integer. If DIM is present, the result has the same shape as ARRAY . If DIM is absent,

the result has shape (/ SIZE (SHAPE (ARRAY » , PRODUCT(SHAPE (ARRAY » /).

Result Value.

Case (i): The result ofs = GRADE_UP (ARRAY) has the property that if one com­

putes the rank-one array B of size PRODUCT (SHAPE (ARRAY)) by

FORALL (K=1:SIZE (B.l» B (K) =ARRAY (S(1,K).S(2.K) • . . . • S(I.K))

Copyrighted Material

266 Appendix B

where N has t he va lue SIZ E (SHAP E (ARRAY», then B is sorted in as ­
cending order; moreover, all of t he co lumns of S are distinct , that
is, if j:f:. m then ALL (S (: .j) . EQ . S (: .m» will be false. The sort
is stable; if j � m and B(j) = B(m), then ARRAY (S (1 , j) . S (2 ,j) •

. . . • S (n,j» precedes ARRAY (S (1,m). S (2,m). " ' J S (n, m» in
the array elemen t ordering of ARRAY.

Case (ii): The resu lt of R = GRADE_UP (ARRAY .DIM=K) has the property that
if one computes the array B(il, i2, . . • , ik, ... , in) = ARRAY (il, i2, ... ,

EXaIllples.

R (il, i2, . .. , ik, ... , in), . .. , in) then for all il, i2, ... , (omit ik)"'" in

the vector B (il, i2, ... , :, ... , in) is sorted in ascending order; more-
over , R(it, i2, ... ,:, ... , in) is a permutation of all the integers in the
range LBOUND (ARRAY .K) :UB OUND (ARRAY .K) . The sort is stable; that

is , if j � m and B(il,i2, ... ,j, . . . ,in) = B(i1,i2, .. . ,m, ... ,in),
then R(i1 ,i2, . . . ,j, ... ,in) � R(il,i2, . . . ,m, . .. ,in).

Case (i): GRADE_UP ((/30 . 20. 30. 40. -10/» is a rank two array of shape
[1 5] with the value [5 2 1 3 4]. (To produce a rank-one
result, the optional DIM = 1 argumen t must be used.)

If A IS the array [� : � l' then GRADE_UP (A) has the value
1 2 4

[� � � � � � ! � �].
C." (iir If A i, th, a"'Y [� � � l' th,n GIWlE.lJP (A , DIM = ,) h., th,

valu , [� � n
B.15 HPF _ALIGNMENT

Synopsis. HPF ... ALIGNMENT (ALIGNEE. LB. UB. STRIDE. AXIS...M AP. IDENTITY­
JMAP. DYNAMIC. NCOPIES)

Copyrighted Material

Description of HPF Library and Intrinsic Procedures 267

Optional Argument s . LB, UB , STRIDE , AXIS-MAP, IDENT ITY -M AP , DYNAMI C,
NCOPIES

Description. Retu rns info rmation rega rding th e co rr espondence of a variable
and the align-target (ar ray o r template) to which it is ultimat ely aligned .

Class . M a pp i ng inquiry subroutine .

Argument s .

ALI G NEE may be o f any type. It may be scalar o r array valued . It mus t not be
an assum ed-size array. It m us t not be a structure component. If it is a
member o f an aggr egate va ria ble gr ou p, then it must be an aggregat e
cover of th e group . (See Chapter 4 for th e d efinitio ns o f "aggregate
variabl e group " and "agg regate cov er.") It must not be a point er that
is disassociated or an allocatable array that is not allocated. It is an
INTENT (IN) argument .

If AL IGNEE is a pointer , information about the a lignm ent of its target
is r et urned . Th e target m ust not b e an Cl-'lSumed-siz e dummy argu ­
ment or a s ection of an assum ed -siz e dummy argum ent . If the target
is (a section of) a member of an aggregate variable group, then the
m em ber must b e an aggregat e cov er o f the group . The targe t mus t
no t b e a structur e componen t, bu t the pointer may be.

LB* must be of type default integer and o f rank one. Its size must be a t
l east equal to the rank of ALI G NEE . It is an INTENT (OUT) argument .
The first element of the i th a xis of ALI GNEE is ultimately aligned to

the LB (i)th align-target element alo ng the axis o f the align-target as­

sociated with the ith a xis of ALI GNEE . If th e ith axis of ALIG NEE is a
colla psed a xis , LB (i) is pro cessor de pendent.

UB* must b e of typ e default integer and of rank one. Its size must be at
l east equal to the rank of AL I GNEE . It is an INTENT (OUT) a rg ument .
The last element of the ith axis of AL I GlEE is ultimately aligned to
the UB(i)th align-target element along t he axis of the align-target as­

soc iat ed with th e ith a xis of AL IGNEE . If the ith axis of AL IGNEE is a

collapsed a xis , UB (i) is processor dependent .

STRIDE* must be of type default integ er a nd of ran k one. Its size m ust be at
least equal to the rank of ALIGNEE. It is an INTENT (OUT) argument .
T he ith element o f STRID E is set to the stride used in a lig ning the

Copyrighted Material

268 Appendix B

elements of ALIGNEE a long its ith a xis . If the i th a xis of ALIGNEE is a
c ollapsed a xis , STRIDE (i) is zero.

AXIS..MAP* must be of type defau lt integer and of rank one . Its size must be at
least e qual t o th e rank of ALIGNEE. It is an INTENT (OUT) argument .
The ith element o fAXIS..MAP is set t o the align-target axis associated
wit h t he ith axis of ALIGREE . If t he ith axis of ALI GlEE is a co llapsed
a xis , AXIS...MAP (i) is O.

IDENTITY...MAP* must be scalar and of type d efault l og ical. It is an INTENT (OUT)
argum ent . It is set t o true if the ult imate align-target ass oc iated
w ith ALIGNEE has a shap e id ent ical t o ALIGNEE , th e a xes are mapped
using th e ident ity p ermutati on , and th e strides ar e all positive (and
theref ore equa l t o 1, because of t he shape c onst rain t) ; oth erwise it is
s et t o fa lse . If a variabl e has n ot app eared as an alignee in an ALIGN
or REALIGN dir ective , and d oes not have th e INHERIT attribute , then
IDENTITY...MAP must be true ; it can be tru e in oth er circumstances as
well .

DYNAMIC* must be scalar and of ty pe defa ult logical. I t is an INTENT (OUT)
argument . It is s et t o tru e i f ALIGNEE has the DYNAMI C attribute ;
oth erwise it is s et to fa ls e. If ALIGNEE h as th e p ointer attr ibute , th en
the result a pplies t o ALIGNEE itsel f rath er than its tar get .

NCOPIES* must be sca lar and of typ e default int eger . It is an INTENT (OUT)
argument . It is s et t o th e numb er of co pies of ALIGNEE that ar e
u lt imately aligned t o align-target. For a non-replica t ed variable , it is
s et t o one .

Examples . If ALIGNEE i s scalar, then no ele ment s of LB, UB, STRIDE, or AXIS..MAP
are set .

Given t he d eclarati ons

REAL PI = 3.1415927
POINTER P_TO_A (:)
DIMENSION A (1 0 , 1 0),B (20,30) ,C(20,40 , 10) , D (40)

!HPF$ TEMPLATE T (40 , 20)
!HPF$ DYNAMIC A
!HPF$ ALIGN A (I , :) WITH T (1+3* I , 2:20:2)
!HPF$ ALIGN C (I , * , J) WITH T (J , 2 1-I)

Copyrighted Material

Description of HPF Library and Intrinsic Procedures

!HPF$ ALIGI D (I) WITH T(I,4)
!HPF$ PROCESSORS PROCS(4 , 2) , SCALARPROC
!HPF$ DISTRIBUTE T(BLOCK , BLOCK) OITO PROCS
!HPF$ DISTRIBUTE B (CYCLIC , BLOCK) ONTO PROCS
!HPF$ DISTRIBUTE ONTO SCALARPROC :: P I

P_TO_A => A(3:9:2, 6)

269

the results of HPF �LIGIMEIT are, assuming that the actual mappings are as the directives

specify:

A B C I Dip TO..A I -

LB [4, 2] [1, 1] [I, N/A, 1] [1] [10]
UB [31,20] [20,30] [20, N /A, 1 0] [40] [28]
STRIDE [3,2] [1 , 1] [-1, 0, 1] [1] [6]
AXIS_MAP [1, 2] [1, 2] [2,0, 1] [1] [1]
IDENTITY -MAP false true false false false
DYNAMIC true false false false false
NCOPIES 1 1 1 1 1

where "N / A" denotes a processor-dependent result. To illustrate the use of IICOPIES,
consider:

LOGICAL BOZO(20,20),RONALD_MCDONALD(20)

!HPF$ TEMPLATE EMMETT_KELLY(1 00 , 100)

!HPF$ ALIGN RONALD_MCDOIALD (I) WITH BOZO(I.*)
!HPF$ ALIGN BOZO (J,K) WITH EMMETT_KELLY (J.5*K)

CALL HPF�LIGIMENT(RONALD.JfCDOIALD, ICOPIES = NC) sets IC t o 20 . Now consider:

LOGICAL BOZO(20 , 20),ROIALD_MCDONALD(20)
!HPF$ TEMPLATE WILLIE_WHISTLE(100)
!HPF$ ALIGI RONALD_MCDOIALO(I) WITH BOZO(I.*)
!HPF$ ALIGN BOZO (J,*) WITH WILLIE_WHISTLE (5*J)

CALL HPF �LIGNMENT(RONALD.JfCDONALD. NCOPIES = IC) sets NC to one.

B.16 HPF -DISTRIBUTION

Synopsis. HPFJDISTRIBUTION(DISTRIBUTEE. AXISTYPE. AXISINFO. PROCES­

SORSJtANK . PROCESSORS SHAPE)

Copyrighted Material

270

Optional Argument s. AXIS_TYPE , AXIS....INFO , PROCESSORS..RANK ,
PROCESSORS.5HAPE

Appendix B

Description. The HPF ..DISTRIBUTION su brout ine returns informat ion re ga rdin g
the d istr ibution of the ult imate align-target assoc iate d w ith a var ia ble .

Class . Map pin g inqui ry subroutine.

Argument s.

DISTRIBUTEE may be of any type. It may be scala r o r array value d. It m ust
not be an ass ume d-size array. It must not be a structure component .
If it is a mem ber of an aggrega te varia ble grou p, then it must be
an a ggre gate cove r of the group . (See Chapter 4 for the de finit ions
o f "agg re gate va ria ble group " an d "aggregate cover .") It must n ot
be a pointer that is disassociat ed o r an alloca ta ble a rray t hat is not
al locate d. It is an INTENT (IN) argument .

If DISTRIBUTEE is a po inte r, info rmation a bout t he d istribution of its
tar ge t is returned. The target must not be an assume d-s ize dumm y
a rgument or a sect ion of an assumed -s ize dumm y arg ument . If the
ta rget is (a sect ion of) a mem ber of an agg regate va riable group , then
the mem ber must be an aggregate cover of the group . The target
must not be a structure component , but the pointe r may be .

AXIS_TYPE* must be a rank one array of type defau lt character. It may be of an y
len gth , although it must be of length at least 9 in orde r to conta in
the com plete value . Its elements are set to the values below as if
by a characte r int rinsic as signment statement . Its size must be at

least e qual to the ran k of the align-target to which DISTRIBUTEE is
ultimate ly aligne d; this is the value returned b y HPF _TEMPLATE in

TEMPLATE..RAlK) . It is an lITEIT (OUT) argument . Its i th element
conta ins info rmation on the d istr ibution o f the ith a xis of that align­
target. The following values are de fined b y HPF (implementa tions
may define other values) :

'BLOCK' The a xis is d istr ibuted BLOCK. The corresponding e lement
of AXIS....INFO con tains the bloc k size .

'COLLAPSED' The axis is collapsed (distr ibute d w ith the "*" s pec ifi­
cation) . The value of the co rresponding element of AXIS....INFO is
processor d ependent .

Copyrighted Material

Description of HPF Library a.nd Intrinsic Procedures 271

I CYCLIC I The axis is d istrib uted CYCLIC . The corresponding element
o f AXIS....INFO contains the bloc k size .

AXIS....IIFO* must be a rank one array of type default integer , and size at least

equal to the rank of t he align-target to which DISTRIBUTEE is ult i­
mately aligne d (as returned by HPF .TEMPLATE in TEMPLA TE.1I.ANK) . It

is an INTENT (OUT) argument . The ith element of AXIS....INFO con ­
tains the block size in the block or cyclic distribution of the ith axis

of the ultimat e align-target of DISTRIBUTEE; if t hat axis is a collapsed

axis, th en the value is processor dependent .

PROCESSORS..RUK* must be scalar and of type default integer . It is set to the rank

of the p roc essor arrang ement onto which DISTRIBUTEE is di strib uted.
I t is an INTENT (OUT) argument .

PROCESSORS.sHAPE* m ust be a rank one array of type defaul t integer and of

size at least equal to the value , m, returned in PROCESSORS..RANK .
It is a n INTENT (OUT) argument. Its first m elem ents are set to
the shape of the processor arrangement to which DISTRIBUTEE is

mapped. (It m ay be necessary to call HPF J)ISTRIBUTION twice, the

first time to obtain the v alue of PROCESSORS..RANK in order to a llocate
PROCESSORS.sHAPE .)

EX8lIlple . Given the declarations in the example under HPF ...ALIGN , and as­

suming that the actual mappings are as the directives specify, the res ults of
HPF .DISTRIBUTION are:

A B PI

AXIS.TYPE ['BLOCK', 'BLOCK'] ['CYCLIC', 'BLOCK'] []
AXIS...1NFO [10, 10] [1, 15] []
PROCESSORS SHAPE [4, 2] [4,2] []
PROCESSORS_RANK 2 2 a

B.17 HPF _TEMPLATE

Synopsis. HPF_TEHPLATE (ALIGNEE, TEMPLATERANK , LB , UB , AXISTYPE , AX­
IS INFO , NUHBER...AL IGNED. DYNAMIC)

Optional Argument s . LB , UB, AXIS.TYPE , AXIS....IIFO, IUMBER...ALIGNED,
TEHPLATE..RANK,DYNAHIC

Copyrighted Material

272 Appendix B

D escrip tion. The HPF _TEMPLATE subroutine r et urns informatio n regarding the
ultimate align-target asso ciat ed with a variable; HPF-TEMPLATE returns informa­
tion conce rning the variable from the template 's point of view (assuming the
alignment is to a template rather than to an a rray), while HPF ...ALIGNMENT returns
information from the var iabl e's poin t of view .

Class. Mapping inquiry subroutine .

Arguments.

ALIGNEE may be of any type . It may b e scalar or array valued . It must not be
an assumed -size array . I t m ust not b e a structure component . If it i s a
member of an aggregate variable group , th en it m ust be an aggregate
cover of the group . (See Chapt er 4 for the d efinitions of "aggreg ate
variable group " and "aggregate cover . ") It must not be a po inter that
is disassociat ed or an all ocatable ar ray th at is not all ocated . It is an
INTENT (IN) ar gument .

If ALIGNEE is a po inter, information ab out the a lignment of its target
is returned. T he target must not be an assumed-size dummy arg u­
ment or a section of an assumed -size d ummy argument . If the target
is (a section of) a member of an aggregate varia ble group , then the
member must be an aggregat e cover of the group . The target must
not be a st ructu re component, but the pointe r may be .

TEMPLA TE...RANK* m ust be scalar an d of t ype default integer . I t is an INTENT
(OUT) arg um ent . It is set to the rank of the ultimate align-target.
This can be di fferent fro m the ran k of the ALIGNEE, due to co llapsing
and replicating.

LB* m ust be of type default integer and of ran k one . Its s ize must be
at l east equal to the rank of the align-target to wh ic h ALIGNEE is
ultimately aligned ; this is the value r et urn ed in TEMPLATE...RANK . It
is an INTENT (OUT) argument . The ith element of LB contains the
declared align-target low er bo und for the ith te mplate axis .

UB* m us t be of type defaul t int eger and of rank one . Its size must b e
at least equal to the ran k of the dign-target to which ALIGNEE is
ultima tely aligned ; th is is the value retu rned in TEMPLATE...RANK. It
is an llTEIT (OUT) arg um ent . The ith element of UB contains the
de clared align-target upper bo und for t he ith template a xis .

Copyrighted Material

Description of HPF Library and Intrinsic Procedures 273

AXIS_TYPE* mus t be a rank one a rra y o f type def ault ch aract er . It m ay be of any
le ngth , alt hough it must be o f length at least 10 in order to contain
the co mplete value . It s e lem en ts are se t to t he values below as if by
a char acte r intr insi c assi gn ment statement. Its size must be at least

equal to the r ank of the align-target to which ALIGNEE is ulti matel y
aligned; th is is the va lue re tu rned in the INTENT (OUT) argum ent
TEMPLATE..RANK . The i th element of AXIS_TYPE contains informat ion
about t he ith axi s of the align-target. The fo llowing values are de fined
by HPF (implementations m ay de fine other values):

'NORMAL' An axis of ALIGNEE is aligned to the align-target axis . For
elements of AXIS _TYPE assigned this value , the corresponding el­
ement ofAXIS-.lNFO is set to the n umber of the a xis of ALIGNEE
alig ned to t his align-target axis .

'REPLICATED' ALIGNEE is replicated along th is align-target axis . Fo r
eleme nts of AXIS_TYPE assigned this v alue, the co rresponding el­
ement of AXI S -.lNFO is s et to the n umber of copies of ALIGNEE

along this align-target axis.

'SINGLE' ALIGNEE is aligned wi th one coordinate of the align-target
axis . For element s of AX IS_TYPE ass igned this value , the corre ­
sponding AXIS-.lNFO el ement is set to t he align-target coordinate

to wh ich ALIGNEE is al igned .

AXIS....INFO* must be of type default integer and of rank one. It s size must be
at least equal to the rank of t he align-target to wh ich ALIGNEE is
ultimately aligned; this is the v alu e ret urned in TEMPLATE..RANK. It is
an INTENT (OUT) argument. See the des crip tion of AXIS3YPE above .

NUMBER�LIGNED* must be scalar and of type defa ul t integ er . It is an INTENT

(OUT) a rg ument . It is set to the tot al number of var iab les aligned

to the ultim ate alzgn-target. This is the nu mbe r of v ariab les tha t are
moved if the align-target is redistrib uted .

DYNAMIC* mus t be sc alar and of type def ault logical . It is an INTENT (OUT) ar­
gument. It is set to true if the align-target h as the DYNAMIC attribute,

and to false othe rwi se .

Example. Given the declarations in the example under HPF�LIGN, and assuming

that the a ctual mappings are as the directives sp ecify, the results of HPF _TEHPLA TE
ar e:

Copyrighted Material

274 Appendix B

A C D
LB [1, 1] [1, 1] [1, 1]
UB [40, 20] [40, 20] [40, 20]
AXIS_TYPE ['NORMAL', ['NORMAL', ['NORMAL',

'NORMAL'] 'NORMAL'] 'SINGLE']
AXIS-INFO [1, 2] [3, 1] [1,4]
NUMBER_ALIGNED 3 3 3
TEMPLATE_RANK 2 2 2
DYNAMIC false false false

B.18 IALL

Synopsis. IALL(ARRAY , DIM , MASK)

Optional Argument s . DIM, MASK

Description. Computes a bitwise logical AND reduction along dimension DIM of
ARRAY.

Class. Transformational function.

Arguments .

ARRAY

DIM*

MASK*

m ust be of type integer . It must not be scalar .

must be scalar and of type integer w ith a value in the range 1 � DIM �
n, where n is the ran k of ARRAY. The corresponding act ual argument
m ust not be an optional dummy arg ument .

must be of type logic al and m ust be confo rmable with ARRAY.

Result Type, Type Parameter, and S hape. The res ult is of type integer
with the same kind type parameter as ARRAY. It is s calar if DIM is absent or if

ARRAY has rank one ; otherwise , the res ult is an array of rank n - 1 and shape

(d1, d2, ... , dDIM -1, dD1M+1, ... , dn) where (d1, d2, . . • , dn) is the shape of ARRAY .

Result Value .

Case (i): The result of IALL(ARRAY) is the IAND red uct ion of all th e elements
of ARRAY. If ARRAY has size zero , the res ult is eq ual to a processor ­
dependent integer va lue x with the property that IAllD(I , x) = I
fo r all integers I of the same kind type parameter as ARRAY.

Copyrighted Material

Description of H PF Library and Intrinsic Procedures 275

Case (ii): The resu l t of IALL(ARRAY , MASK=MASK) is t he IAND reduction of all
the elements of ARRAY correspond ing to the true elements of MASK ;
if MASK con tains no true element s, the r esul t is e qual to a p rocessor­
dependent integer value x (o ft he same kind type parameter as ARRAY)
with the property that lAND (I , x) = I fo r all integers 1.

Case (iii): If ARRAY has rank one , IALL(ARRAY , DIM=1 [,MASK» has a value equal
to that o f IALL (ARRAY [, MASK). Other wise , the value o f element

(SI, S2, . .. , SDIM -1, SDIM +1, . .. , sn) of IALL(ARRAY, DIM=1 [, MASK])
is equ al to IALL(ARRAY (sI, S2, .. . , SDIM -1, : , SDIM+l, ... , Sn)
[, MASK = MASK(S1,S2, ... ,SDIM-1,:,SDIM+I, ... ,Sn)])

Examples.

Case (i): The va lue of IALL((/7, 6, 3, 2/ » is 2 .

Case (ii): The va lue of IALL(C , MASK = BTEST(C,O » i s the IAND reduction of

t he odd elem ent s of C .

Case (iii): If B is the array [� � �] , then IALL (B , DIM = 1) i s [2 3 I)]

and IALL(B , DIM = 2) i s [0 3].

B.19 IALL_PREFIX

Synopsis. IALL...PREFIX (ARRAY , DIM, MASK, SEGMENT, EXCLUSIVE)

Opt ional Arguments. DIM, MASK , SEGMENT, EXCLUSIVE

Description. Compute s a segmen ted bitw ise logica l AND scan along dimension

DIM o f ARRAY.

Class . Transformational function.

Argument s .

ARRAY

DIM.

MASK.

must be of type integer . It must no t be s ca lar.

mu st be scalar and of type intege r with a val ue in the range 1 <
DIM::; n, where n i s the rank of ARRAY.

mu st be of type logical an d must be conformable with ARRAY .

Copyrighted Material

276 Appendix B

SEGMENT* must be o f type logical and have t he same shape as ARRAY .

EXCLUSIVE* m ust be o f type logi cal and must be s cala r.

Result Type, Type Paramet er , and Shape. Same as ARRAY .

Result Value. Element r of the r es ult has the value IALL ((/ a l , . . . , am / »
where (al , . . . , am) is the (possib ly empty) set of elements o f ARRAY se lected to
contribute to r by the r ules stated in Chapter 7 .

Example . IALL..PREFIX ((/ 1 , 3 , 2 , 4 , 5/) , SEGMENT= (/F , F , F , T , T/)) is
[1 1 0 4 4] .

B . 20 IALL_S CATTER

Synopsis. IALL..5CATTER (ARRAY , BASE , INDXi , . . . , INDXn , MASK)

Optional Argument . MASK

Description. S catters elements of ARRAY se lected by MASK to positions of the
result indi cated by index arrays IlfDXi , . . . , IlIDXn. The /hbit o f an element of
the result is 1 if and only i f the jth bits o f the corresponding element of BASE and
o f the elements of ARRAY s catter ed to that position are all equal to 1 .

Class . Transformational functi on .

Argument s .

ARRAY m ust be of type integer . It must not be scalar .

BASE m ust be of type integer with the same kind type parameter as ARRAY .
I t m ust not be scalar .

IIDX1 , . . . , INDXn must be of type integer and must be conformable with ARRAY .
The n umber of IIDX arguments must be equal to the rank of BASE.

MASK* must be of type logica l and must be conformable with ARRAY .

Result Typ e, Typ e Parameter , and Shape. Same as BASE .

Result Value . The element of the result corresponding to the element b of BASE
has the value IALL ((/ a I , a2 , . . . , am , bl)) , where (aI , . . . , am) are the elements
of ARRAY associated with b as des cribed in C hapter 7.

Example. IALL..5CATTER « (/ l , 2 , 3 , 6/) , (/ 1 , 3 , 7/) , (/ 1 , 1 , 2 , 21)

is [0 2 7 J .

Copyrighted Material

Description of H P F Library and Intrinsic Procedures 277

B . 2 1 IALL_SUFFIX

Synopsis. IALL...5UFFIX (ARRAY , DIM , MASK , SEGMEliT , EXCLUSIVE)

Opt ional Argument s . DIM , MASK , SEGMENT, EXCLUSIVE

Description . Computes a reverse , segmented bitwise logical AND scan along
dimension DIM of ARRAY .

Class. Transformational function .

Arguments .

ARRAY must be of type integer . It must not be scalar .

DIM. must be scalar and of type integer with a value in the range 1 <
DIM ::::; n , where n is the rank of ARRAY.

MASK* must be of type logica l and must be conformable with ARRAY .

SEGMEliT* must be of type logical and have the same shape as ARRAY.

EXCLUSIVE* must be of type logical and must be scalar .

Result Type, Type Parameter, and Shape. Same as ARRAY.

Result Value. Element r of the result has the value IALL ((f a t , . . . , am I»
where (at , . . . , am) is the (possibly empty) set of elements of ARRAY selected to

contribute to r by the rules stated in Chapter 7.

Example. IALLSUFFIX ((/ 1 , 3 , 2 , 4 , 5/) , SEGMENT= (fF , F , F , T , T/)) is
[0 2 2 4 5 J .

B . 2 2 IANY

S ynopsis. IANY (ARRAY , DIM , MASK)

Optional Argument s. DIM, MASK

Description. Computes a bitwise logical OR reduction along dimension DIM of
ARRAY.

Class. Transformational function .

Copyrighted Material

278 Appendix B

Arguments.

ARRAY

DIM*

MASK*

must be of type integer . It must not be scalar.

must be scalar and of type integer with a value in the range 1 :::; DIM :::;
n, where n is the rank of ARRAY . The corresponding actual argument
must not be an optional dummy argument .

must be of type logical and must be conformable with ARRAY .

Result Type, Type Parameter, and Shape. The result is of type integer
with the same kind type parameter as ARRAY . It is scalar if DIM is absent or if
ARRAY has rank one ; otherwise , the result is an array of rank n - 1 and shape
(d1 , d2 , . . . , dDIM - 1, dD1M+l , . . . , dn) where (d1 , d2 , . . . , dn) is the shape of ARRAY .

Result Value.

Case (i): The result of IANY (ARRAY) is the lOR reduction of all the elements of
ARRAY . If ARRAY has size zero , the result has the value zero .

Case (ii): The result of IANY (ARRAY , MASK=MASK) is the lOR reduction of all
the elements of ARRAY corresponding to the true elements of MASK ; if
MASK contains no true elements , the result is zero .

Case (iii) : If ARRAY has rank one , IANY (ARRAY , DIM= 1 [, MASK]) has a value equal
to that of IANY (ARRAY [, MASK]) . Otherwise , the value of element

(51 , 52 , . . . , SDIM- 1 , SDIM+1 , . . . , Sn) of IANY (ARRAY , DIM= 1 [, MASK])

is equal to IANY (ARRAY (Sl , S2 , . . . , SDIM- 1 , : , SDIM+1 , . . . , sn)

[, MASK = MASK (Sl , S2, . . . , SDIM - 1 , : , SDIM + 1 , . . . , Sn)])

Examples.

Case (i): The value of IANY « (/9 , 8 , 3 , 2/ » is I I .

Case (ii): The value of IANY (C , MASK = BTEST (C , O » is the lOR reduction of
the odd elements of c .

Case (iii): If B is the array [2 3 6] , then IANY (B ,
0 4 2

and IANY (B , DIM = 2) is [7 6] .

Copyrighted Material

DIM = 1) is [2 7 7]

Description of HPF Library and Intrinsic Procedures 279

B.23 IANY -P REFIX

Synopsi s . IANY ...PREF I X (ARRAY , DIM , MASK , SEGMENT , EXCLUS IVE)

O pt ional Argument s. DIM , MASK , SEGMENT , EXCLUSIVE

Descript ion. Computes a segmented bitwise lo gical OR scan along dimension

DIM of ARRAY .

C lass. Transformational func tion .

Arguments .

ARRAY must be of type integer . It must not be scalar .

DIM* must be scalar and of typ e integer with a value in the range 1 <
DIM :::; n , where n is the rank of ARRAY .

MASK* must b e of type logical and must be conform able with ARRAY .

SEGMENT* must be of type logical and have the same shape as ARRAY.

EXCLUS IVE* must b e of type logical and mllst b e scalar .

Result Type, Type Paramet er , and Shape. Same as ARRAY .

Result Value. Element r of the result has the value IANY ((/ a l , . . . , am I»
where (a l , . . . , am) i s the (possibly empty) set of elements o f ARRAY selected to
contribute to r by t h e rules stated in Chapter 7 .

Example. IANY...PREF I X ((/ 1 , 2 , 3 , 2 , 5/) , SEGMENT= (/F , F , F , T , T/)) is
[1 3 3 2 7] .

B . 24 IANY _S CATTER

Synopsis. IANY..5CATTER (ARRAY , BASE , INDX 1 , . . . , INDXn , MASK)

Opt ional Argument . MASK

Descript ion . Scatters elements of ARR AY selected by MASK to p ositions of the

result indica t ed by ind ex arrays !NDX i , . . . , INDXn . The /h bit of an element of

the result is 1 if and only if the jth bit of th e corresponding el em en t of BASE or of

any of th e el em ents of ARRAY scattered to that position is equal to 1 .

Copyrighted Material

280 Appendix B

Clas s . Transformational function .

Argument s .

ARRAY

BASE

must be of type integer . It must not be scalar .

must be of type integer with the same kind type paramete r as ARRAY .
It must not be scalar .

IlfDX i , . . . , IlfDXn must be of type integer and must be conformable with ARRAY .
The number of INDX arguments must be equal to the rank of BASE.

MASK· must be of type logical and must be conformable with ARRAY .

Result Typ e, Typ e Parameter, and Shape. Same as BASE .

Result Value. The element of the result corresponding to the element b of BASE
has the value IANY ((la l , a2 , . . . , am , b/)) , where (al ' . . . , am) are the elements
of ARRAY associated with b as described in Chapter 7 .

Example. IANy...sCATTER ((l l , 2 , 3 , 6/) , (1 1 , 3 , 7/) , (1 1 , 1 , 2 , 2/)
is [3 7 7] .

B . 2 5 IANY _S UFFIX

Synopsis. IANY ...sUFFIX (ARRAY , DIM , MASK , SEGMENT , EXCLUSIVE)

Opt ional Argument s . DIM , MASK , SEGMENT , EXCLUSIVE

Descrip tion. Computes a reverse , segmented bitwise logical OR scan along di­
mension DIM of ARRAY .

Class. Transformational function .

Argument s .

ARRAY must be of type integer . It must not be scalar .

DIM. must be scalar and of type integer with a value in the range 1 <
DIM � n, where n is the rank of ARRAY .

MASK. must be of type logical and must be conformable wit.h ARRAY .

SEGMENT. must be of type logi cal and have the same shape as ARRAY .

Copyrighted Material

Description of HPF Library and Intrinsic Procedures 28 1

EXCLUSIVE* must be of type logical and must be scalar .

Result Type , Type Parameter , and Shape. Same as ARRAY .

Result Value. Element r of the result has the value IANY « (I al , . . . , am I))
where (a l , . . . , am) is the (possibly empty) set of elements of ARRAY selected to
contribute to r by the rules stated in Chapter 7 .

Example. IANY .sUFFIX ((14 , 2 , 3 , 2 , 51) , SEGMENT= (IF , F , F , T , T I)) is
[7 3 3 7 S] .

B . 26 ILEN

Synopsis. ILEN (I)

Description. Returns one less than the length , i n bits , of the two 's-complement
representation of an integer .

Clas s . Elemental function . Intrinsic .

A rgument . I must be of type integer .

Result Type and Type Parameter. Same as I .

Result Value . If I is nonnegative, ILEN (I) h as the value flog 2 (I + 1)1 ; if I is
negative , ILEN (I) has the value flog 2 (- I)l ·

Examples. ILEN (4) = 3 . ILEN (-4) = 2 . 2** ILEN (N- 1) rounds N up to a
power of 2 (for N > 0) , whereas 2** (ILEN (N) - 1) rounds N down to a power of 2 .
Compare with LEADZ .

The value returned is one less than the length of the two's-complement representa­
tion of I , as the following explains . The shortest two 's-complement representation
of 4 is 0 100 . The leading zero is the required sign bit . In 3-bit two 's complement ,

100 represents - 4 .

B . 2 7 IPARITY

S ynop sis . IPARITY (ARRAY , DIM , MASK)

Opt ional Arguments. DIM , MASK

Copyrighted Material

282 Appendix B

Description. Computes a bitwise logical exclusive OR reduction along dimension
DIM of ARRAY .

C lass. Transformational function .

Argument s.

ARRAY

DIM.

MASK.

must be of type integer . It must not be scalar .

must be scalar and of type integer with a value in the range 1 ::; DIM ::;
n, where n is the rank of ARRAY . The corresponding actual argument
must not be an optional dummy argument .

must b e of type logical and must be conformable with ARRAY .

Result Type, Type Parameter , and Shape. The result is of type integer
with the same kind type parameter as ARRAY . It is scalar if DIM is absent or if
ARRAY has rank one ; otherwise , the result is an array of rank n - 1 and shape

(d1, d2, . . . , dDIM - 1 , dDIM+1 , . . . , dn) where (d 1 , d2 , . . . , dn) i s the shape of ARRAY .

Result Value.

Case (i) : The result of IPARITY (ARRAY) is the IEOR reduction of all the ele­
ments of ARRAY . If ARRAY has size zero , the result has the value zero .

Case (ii): The result of IPARITY (ARRAY , MASK=MASK) is the IEOR reduction of
all the elements of ARRAY corresponding to the true elements of MASK ;
if MASK contains no true elements , the result is zero .

Case (iii) : If ARRAY is rank one , IPARITY (ARRAY , DIM= l [, MASK]) is equiva­
lent to IPARITY (ARRAY [, MASK]) . Otherwise , the value of element

(S l , S2 , . . . , sD IM - 1 , S D Ilvl + 1 , . . . , sn) of IPARITY (ARRAY , DIM= l

[, MASK]) is equal to IPARITY (ARRAY (S l , S2 , . . . , S D I AI - 1 , : , SD I M + 1 ,

. . . , Sn) [, MASK = MASK (S l , S2 , . . . , S D IM _ 1 , : , S D I M + 1 , . . . , Sn)])

Examples .

Case (i) : The value of IPARITY « / 1 3 , 8 , 3 , 2/)) is 4 .

Case (ii): The value of IPARITY (C , MASK = BTEST (C , 0)) is the IEOR reduction
of the odd elements of C.

Case (iii) : If B is the array [2 3 7] , then IPARITY (B ,
0 4 2

and IPARITY (B , DIM = 2) is [6 6] .

Copyrighted Material

DIM = 1) is [2 7 5]

Description of H P F Library and Intrinsic Procedures

B.28 IPARITYJ>REFIX

Synopsi s . IPARITY...PREFIX (ARRAY , DIM , MASK , SEGMENT , EXCLUSIVE)

Opt ional Arguments. DIM , MASK , SEGMENT , EXCLUSIVE

283

Description . Computes a segmented bitwise logical exclusive OR scan along
dimension DIM of ARRAY .

Class. Transformational function .

Arguments.

ARRA Y must be of type integer . It must not be scalar .

D IM* must be scalar and of type integer with a value in the range 1 <
DIM :::; n , where n is the rank of ARRAY .

MASK* must be of type logical and must be conformable with ARRAY .

SEGMENT* must be of type logical and have the same shape as ARRAY.

EXCLUSIVE* must be of type logical and must be scalar .

Result Type, Type Parameter , and Shape. Same as ARRAY .

Result Value. Element r of the result has the value IPARITY ((/ a t , . . . , am I »

where (al , . . . , am) is the (possibly empty) set of elements of ARRAY selected to
contribute to r by the rules stated in Chapter 7 .

Example. IPARITY...PREFIX ((/ 1 , 2 , 3 , 4 , 5/) , SEGMENT= (/F , F , F , T , T/)) is
[1 3 0 4 1] .

B.29 IPARITY -S CATTER

Synopsis. IPARITy..sCATTER (ARRAY , BASE , INDX 1 , . . . , INDXn , MASK)

Optional Argument . MASK

Description. Scatters elements of ARR.AY selected by MASK to positions of the
result indicated by index arrays INDX 1 , . . . , INDXn. The jth bit of an element of
the result is 1 if and only if there are an odd number of ones among the lhbits
of the corresponding element of BASE and the elements of ARRAY scattered to that
position .

Copyrighted Material

284 Appendix B

Class. Transformational function .

ArguIllents .

ARRAY

BASE

must be of type integer . It must not be scalar .

must be of type integer with the same kind type parameter as ARRAY .
It must not be scalar .

INDX 1 , . . . • INDXn must be of type integer and must be conformable with ARRAY .
The number of INDX arguments must be equal to the rank of BASE.

MASK* must be of type logical and must be conformable with ARRAY .

Result Type, Type ParaIneter, and Shape. Same as BASE.

Result Value. The element of the result corresponding to the element b of
BASE has the value IPARITY ((/al . a2 , . . . , am . b/)) , where (a l , " . , am) are the
elements of ARRAY associated with b as described in Chapter 7 .

ExaIllple . IPARITY ..sCATTER ((/ 1 . 2 , 3 , 6/) , (/ 1 , 3 , 7/) , (/ 1 , 1 , 2 , 2/)) is

[2 6 7] .

B .30 IPA RITY _SUFFIX

Synop sis. IPARITy..sUFFIX (ARRAY . DIM , MASK , SEGMENT , EXCLUSIVE)

Optional ArguIllents. DIM, MASK , SEGMENT , EXCLUSIVE

Description. Computes a reverse , segmented bitwise logical exclusive OR scan
along dimension DIM of ARRAY .

Class. Transformational function .

ArguIllent s .

ARRA Y must be of type integer . It must not be scalar .

DIM* must be scalar and of type integer with a value in the range 1 <
DIM � n, where n is the rank of ARRAY.

MASK* must be of type logical and must be conformable with ARRAY .

SEGMEIT* must be of type logical and have the same shape as ARRAY .

Copyrighted Material

Description of HPF Library and Intrinsic Procedures 285

EXCLUSIVE* must be of type logical and must be scalar .

Result Typ e, Typ e Parameter, and Shape. Same as ARRAY .

Result Value. Element r of the result has the value IPARITY ((I a l , . . . , am / »
where (a l , . . . , a m) is the (possibly empty) set of elements of ARRAY selected to
contribute to r by the rules stated in Chapter 7 .

Example. IPARITY ...sUFFIX ((1 1 , 2 , 3 , 4 , 51) , SEGMENT= (IF , F , F , T , T I)) is
[0 1 3 1 5] .

B.31 LEAD Z

Synop sis. LEADZ (I)

Descript ion. Return the number of leading zeros in an integer .

C lass. Elemental function .

Argument . I must be of type integer .

Result Typ e and Type Parameter. Same as I .

Result Value. The result i s a count of the number o f leading O-bits in the integer
I . The model for the interpretation of an integer as a sequence of bits is in Section
1 3 . 5 . 7 of the Fortran 90 Standard . LEADZ (O) is BIT...sIZE (I) . For nonzero I , if
the leftmost one bit of I occurs in position k - 1 (where the rightmost bit is bit
0) then LEADZ (I) is BIT...s I ZE (I) - k .

Examples . LEADZ (3) h as the value B IT ...sIZE (3) - 2 . For scalar I , LEADZ (I) = =

MINVAL « (I (J , J=O , BIT...sI ZE (I » I) , MASK=M) where M = (I (BTEST (I , J) .
J=BIT...sI ZE (I) - l , 0 , - 1) , . TRUE . /) . A given integer I may produce differ­
ent results from LEADZ (I) , depending on the number of bits in the representation
of the integer (BIT...s IZE (I ») . That is because LEADZ counts bits from the most
significant bit . Compare with ILEN .

B .32 MAXLOC

Synopsi s . MAXLOC (ARRAY , DIM , MASK)

Copyrighted Material

286 Appendix B

Class. Transformational function . Intrinsic .

Optional Argument s . DIM , MASK

Description. Determine the locations of the first elements of ARRAY along di­

mension DIM having the maximum value of the elements identified by MASK.

Arguments.

ARRAY

DIM*

MASK·

must be of type integer or real . It must not be scalar.

must be scalar and of type integer with a value in the range 1 � DIM �
n, where n is the rank of ARRAY . The corresponding actual argument
must not be an optional dummy argument .

must be of type logical and must be conformable with ARRAY .

Result Typ e, Type Parameter , and Shape. The result is of type default
integer . If DIM is absent the result is an array of rank one and size equal to
the rank of ARRAY ; otherwise , the result is an array of rank n - 1 and shape
(d1 , . . . , dD1M- 1, dD1M+1 , . . . , dn) , where (d1 , . . . , dn) is the shape of ARRAY .

Result Value.

Case (i) : The result of executing S = MAXLOC (ARRAY) + LBOUND (ARRAY) - 1
is a rank-one array S of size equal to the rank n of ARRAY . It is such
that ARRAY (S (1) • . . . • S (n» has the maximum value of all of the
elements of ARRAY . If more than one element has the maximum value ,
the element whose subscripts are returned is the first such element ,

taken in array element order . If ARRAY has size zero , the result is
processor dependent .

Case (ii): The result of executing S = MAXLOC (ARRAY , MASK) +LBOUliD (ARRAY) -l
is a rank-one array S of size equal to the rank n of ARRAY . It is such that
ARRAY (S (1) , . . . , S (n» corresponds to a true element of MASK , and

has the maximum value of all such elements of ARRAY . If more than

one element has the maximum value, the element whose subscripts
are returned is the first such element, taken in array element order .
If there are no such elements (that is , if ARRAY has size zero or every
element of MASK has the value false) , the result is processor dependent .

Copyrighted Material

Description of HPF Library and Intrinsic Procedures 287

Case (iii) : If ARRAY has rank one , the result of MAXLOC (ARRAY , DIM [, MASK])
is a scalar S such that ARRAY (S + LBOUND (ARRA Y • 1) - 1) corre­
sponds to a true element of MASK (if MASK is present) and has the
ma ximum valu e of a ll such elements (all elements if MASK is absent) .

It is the smallest such subscript . Otherwise , the value of element

(S 1 , . . . , SD I M - 1 , SDIM + l , . . . , sn) of MAXLOC (ARRAY , DIM [, MASK]) is
equal to MAlLOC (ARRAY (s 1 , . . . , sD I M - 1 , : , S D IM + 1 , . . . , Sn) [, MASK =
MASK (Sl , . . . , SDI M - l , : , SD IM H , . . . , sn)]).

Examples.

Case (i): The value of MAXLOC (U 6 , -9 , 3 I » is [1] .

Case (ii): MAXLOC (C , MASK = C . LT . 0) finds the location of the first element

of C that is the maximum of the negative elements .

Case (iii): The value of MAlLOC (U 6 , -9 , 3 I) , DIM= l) is 1 . If B is the array

[� � -:] , MAlLOC (B, D IM = 1) is [2 1 2] and MAlLOC e

B , DIM = 2) is [2 3] . Note that this is true even if B has a
declared lower bound other than 1 .

B . 33 M AXVAL ...P REFIX

Synopsis. MAXVAL.PREFIX (ARRAY , DIM , MASK , SEGMENT, EXCLUSIVE)

Opt ional Argument s. D I M , MASK, SEGMENT , EXCLUS IVE

Description . Computes a segmented MAlVAL scan along dimension DIM of ARRAY .

Class. Transformational function .

Argument s .

ARRAY must be of type integer or r eal . It must not be scalar .

DIM* must be scalar and of type integer with a value in the range 1 <
DIM :S; n, where n is the rank of ARRAY .

MASK* must b e of type logical and must be conformable with ARRAY .

SEGMENT* must be of type logical and have the same shape as ARRAY .

Copyrighted Material

288 Appendix B

EXCLUS IVE* must be of type logical and must be scalar .

Result Type, Type Parameter , and Shap e. Same as ARRAY .

Result Value. Element r of the result has the value MAX VAL ((/ a l , . . . , am / »

where (a l , . . . , am) is the (possibly empty) set of elements of ARRAY selected to
contribute to r by the rules stated in Chapter 7 .

Example. MAXVAL..PREFIX ((/3 , 4 , -5 , 2 , 5/) , SEGMENT= (/F , F , F . T . T/)) is
[3 4 4 2 5] .

B . 34 MAXVA L S C ATTER

Synopsis. MAXVAL..SCATTER (ARRAY , BASE , INDX 1 • . . . , INDXn . MASK)

O p t ional Argument. MASK

Description. Scatters elements of ARRAY selected by MASK to positions of the
result indicated by index arrays INDX 1 , . . . , INDXn. Each element of the result
is assigned the maximum value of the corresponding element of BASE and the
elements of ARRAY scattered to that position .

C lass. Transformational function .

Argument s.

ARRAY

BASE

must be of type integer or real . It must not be scalar .

must be of the same type and kind type parameter as ARRAY . It must
not be scalar .

INDX l , . . . , INDXn must be of type integer and must be conformable with ARRAY.

The number of INDX arguments must be equal to the r ank of BASE .

MASK* must be of type logical and must be conformable with ARRAY .

Result Type, Type Parameter, and Shape. Same as BASE .

Resu lt Value. The element of the result corresponding to the element b of
BASE has the value MAXVAL ((/al , a2 , . . . , am , bf)) , where (a l , . . . , am) are the
elements of ARRAY associated with b as described in Ch apter 7 .

Example . MAXVAL....sCATTER ((/ 1 , 2 , 3 . i f) , (/4 , - 5 , 7 f) , (/ 1 , 1 , 2 , 2/ »
is [4 3 7] .

Copyrighted Material

Description of HPF Libra.ry and Intrinsic Procedures 289

B .35 MAXVAL.JiUFFIX

Synopsis. MAXVAL...S UFFIX (ARRAY , DIM , MASK , SEGMENT , EXCLUSIVE)

Optional Argument s . DIM , MASK , SEGMENT , EXCLUSIVE

Descript ion . Computes a reverse , segmented MAXVAL scan along dimension DIM
of ARRAY .

Clas s . Transformational function .

Argument s .

ARRAY must be of type integer or real . It must not be scalar .

DIM* must be scalar and of type integer with a value in the range 1 <
DIM � n, where n is the rank of ARRAY.

MASK* must be of type logical and must be conformable with ARRAY.

SEGMENT* must be of type logical and have the same shape as ARRAY .

EXCLUSIVE* must be of type logical and must be scalar .

Result Type, Type Parameter , and Shape . Same as ARRAY.

Result Value. Element r of the result has the value MAXVAL ((/ a l , . ' " am I »

where (a l , . . . , a m) is the (possibly empty) set of elements of ARRAY selected to
contribute to r by the rules stated in Chapter 7 .

Example. MAXVAL..sUFFIX ((/3 , 4 , -6 , 2 , 5/) , SEGMENT: (/F , F , F , T , T/)) is

[4 4 -5 5 5] .

B .36 MINLO C

Synopsis. MINLOC (ARRAY , DIM , MASK)

Opt ional Argument s. DIM , MASK

Description. Determine the locations of the first elements of ARRAY along di­
mension DIM having the minimum value of the elements identified by MASK .

Class. Transformational function . Intrinsic .

Copyrighted Material

290 Appendix B

Argument s .

ARRAY

DIM*

MASK*

must be of type integer or real . It must not be scalar .

must be scalar and of type integer with a value in the range 1 :5 DIM :5
n , where n is the rank of ARRAY . The corresponding actual argument
must not be an optional dummy argument .

must be of type logical and must be conformable with ARRAY.

Result Type, Type Parameter, and Shape. The result is of type default
integer. If DIM is absent the result is an array of rank one and size equal to
the rank of ARRAY; otherwise , the result is an array of rank n - 1 and shape
(d1 , . . . , dD1M- 1 , dDIAJ+1 , . . . , dn) , where (d1 , . . . , dn) is the shape of ARRAY .

Result Value.

Case (i): The result of executing S = MINLOC (ARRAY) + LBOUND (ARRAY) - 1
is a rank-one array S of size equal to the rank n of ARRAY. It is such
that ARRAY (S (1) , . . . , S (n » has the minimum value of all of the
elements of ARRAY . If more than one element has the minimum value ,
the element whose subscripts are returned is the first such element ,
taken in array element order . If ARRAY has size zero , the result is
processor dependent .

Case (ii) : The result of executing S = MINLOC (ARRAY , MASK) +LBOUND (ARRAY) - 1
is a rank-one array S of size equal to the rank n of ARRAY . It is such
that ARRAY (S (1) , . . . , S e n » corresponds to a true element of MASK ,
and has the minimum value of all such elements of ARRAY . If more than
one element has the minimum value, the element whose subscripts are
returned is the first such element , taken in array element order . If
there are no such elements (that is , if ARRAY has size zero or every
element of MASK has the value false) , the result is processor dependent .

Case (iii): If ARRAY has rank one , the result of MINLOC (ARRAY , DIM [, MASK])
is a scalar S such that ARRAY (S + LBOUND (ARRAY , 1) - 1) corre­

sponds to a true element of MASK (if MASK is present) and has the
minimum value of all such elements (all elements if MASK is absent) .

I t is the smallest such subscript . Otherwise , the value of element

(S1 , " " SDIM- l , SDIM+1 , " " sn) of MINLOC (ARRAY , DIM [, MASK]) is
equal to MINLOC (ARRAY «s 1 , . . . , SDIM - 1 , : , SDIM+1 , . . . , sn » [, MASK
= MASK « (S 1 , . . . , SDIM- 1 , : , SDIM+1, . · . , sn)]) .

Copyrighted Material

Description of HPF Library and Intrinsic Procedures

Examples.

Case (i): The value of MIILOC ((I 5 , -9 , 3 /» is [2] .

291

Case (ii): MINLOC (C . MASK = C . GT . 0) finds the location of the first element
of C that is the minimum of the positive elements.

Case (iii) : The value of MINLOC « (I 5 , -9 , 3 I) , DIM= l) is 2. If B is the array

[� � -:] , MINLOC (B , DIM = 1) is [1 2 1] and MINLOC (

B , DIM = 2) is [3 1] . Note that this is true even if B has a
declared lower bound other than 1 .

B.37 MINVAL-PREFIX

Synopsis . MINVAL..PREFIX (ARRAY , D IM , MASK , SEGMENT , EXCLUSIVE)

Optional Arguments. DIM, MASK, SEGMENT, EXCLUSIVE

D escript ion. Computes a segmented MUVAL scan along dimension DIM of ARRAY .

Class. Transformational function.

Arguments.

ARRAY must be of type integer or real . It must not be scalar .

DIM* must be scalar and of type integer with a value in the range 1 <
DIM � n , where n is the rank of ARRAY .

MASK* must be of type logical and must be conformable with ARRAY .

SEGMENT* must be of type logical and have the same shape as ARRAY .

EXCLUSIVE* must be of type logical and must be scalar .

Result Type, Type Parameter, and S hape. Same as ARRAY .

Resul t Value. Element r of the result has the value MINVAL ((I a l , . . . , am / »
where (al , . . . , am) is the (possibly empty) set of elements of ARRAY selected to

contribute to r by the rules stated in Chapter 7 .

Example. MINVAL..PREFIX ((1 1 . 2 . -3 . 4 . 51) , SEGMENT= (IF , F • F , T • T /)) is
[1 1 -3 4 4] .

Copyrighted Material

292 Appendix B

B . 38 MINVAL_S C ATTER

Synopsis. MINVALSCATTER (ARRAY , BASE , INDX1 , . . . , INDXn , MASK)

Opt ional Argument . MASK

D escrip t ion. S catters elements of ARRAY selected by MASK to p ositions of the

result indicated by index arrays INDx t , . . . , INDXn . Each element of the result

is assigned the maximum value of the corresponding element of BASE and the

elements of ARRAY scattered to that position .

C lass. Transformational function .

Argument s .

ARRAY

BASE

must be of type integer or real . It must not b e scalar .

must be of the same type and kind type p arameter as ARRAY . It must

not be scalar .

INDX 1 , . . . , INDXn must be of type integer and must be conformable with ARRAY .

The number of INDX arguments must be equal to the rank of BASE .

MASK* must be of type logical and must be conformable with ARRAY .

Resu lt Typ e, Type Parameter, and Shape. S ame as BASE .

Result Value. The element of the result corresponding to the element b of
BASE has the value MINVAL ((/a l , a2 , . . . , am , bl)) , where (a l , . . . , am) are the

elements of ARRAY associated with b as describ ed in Chapter 7.

Example. MINVAL....5CATTER ((/ 1 , -2 , -3 , 6 /) , (/ 4 , 3 , 7 /) , (/ 1 , 1 , 2 , 2 I))
is [-2 -3 7] .

B . 39 MINVAL_S U FFIX

Synopsis. MINVAL....5UFFIX (ARRAY , D IM , MASK , SEGMENT , EXCLUS IVE)

Opt ional Argument s . DIM , MASK , SEGMENT , EXCLUS IVE

Descrip t ion. Computes a reverse , segmented MINVAL scan along dimension DIM

of ARRAY .

Copyrighted Material

Description of H P F Library and Intrinsic Procedures

Clas s . Transformational function .

Arguments .

ARRAY must be of type integer or real . It must not be scalar .

293

DIM. must be scalar and of type integer � ith a value in the range 1 <
DIM � n, where n is the rank of ARRAY .

MASK. must be of type logical and must be conformable with ARRAY.

SEGMENT. must be of type logical and have the same shape as ARRAY .

EXCLUSIVE. must be of type logical and must be scalar .

Result Type, Typ e Parameter, and S hap e. Same as ARRAY .

Result Value. Element r of the result has the value MUVAL((/ a l " " , am /)

where (a l l ' " I am) is the (possibly empty) set of elements of ARRAY selected to
contribute to r by the rules stated in Chapter 7 .

Example. MINVAL..5UFFIX ((/ 1 . 2 . -3 . 4 . 5/) . SEGMENT= (/F . F . F . T . T/)) is
[-3 -3 -3 4 5 J .

B .40 NUMBER_OF _PRO C ES S ORS

S ynopsis. NUMBER..DF ...PROCESSORS (DIM)

Opt ional Argument . DIM

Description. Returns the total number of processors available to the program

or the number of processors available to the program along a specified dimension
of the processor array.

Class . System inquiry function . Intrinsic .

Arguments .

DIM. must be scalar and of type integer with a value in the range 1 <

DIM � n where n is the rank of the processor array.

Result Type, Typ e Parameter , and S hape. Default integer scalar .

Copyrighted Material

294 Appendix B

Result Value. The result has a value equal to the extent of dimension DIM of
the processor-dependent hardware processor array or, if DIM is absent , the total
number of elements of the processor-dependent hardware processor array. The
result is always greater than zero .

Examples . For a computer with 8 192 processors arranged in a 128 by 64 rectan­
gular grid , the value of NUMBER....oF...PROCESSORS O is 8192 ; the value of NUMBER...oF­
PROCESSORS (DIM= l) is 128 ; and the value of NUMBER....oF...PROCESSORS (DIM= 2) is
64 . For a single-processor workstation , the value of NUMBER...oF ...PROCESSORS 0 is
1 ; since the rank of a scalar processor array is zero , no DIM argument may be used.

B .4 1 PARITY

Synopsis . PARITY (MASK , DIM)

Opt ional Argument . DIM

Description. Determine whether an odd number of values are true in MASK along
dimension DIM .

Class. Transformational function .

Argument s.

MASK must be of type logical . It must not be scalar .

DIM* must be scalar and of type integer with a value in the range 1 :S DIM :S
n , where n is the rank of MASK . The corresponding actual argument
must not be an optional dummy argument .

Result Type, Type Parameter, and Shap e. The result is of type logical with
the same kind type parameter as MASK . It is scalar if DIM is absent or if MASK has
rank one ; otherwise , the result is an array of rank n - 1 and shape
(d1 , d2, . . . , dD1M - 1 , dD1M+1 , . . . , dn) where (d1 , d2, . . . , dn) is the shape of MASK .

Result Value.

Case (i) : The result of PARITY (MASK) is the . NEQV . reduction of all the ele­
ments of MASK. If MASK has size zero , the result has the value false .

Copyrighted Material

Description of H P F Library and Intrinsic Procedures 295

Case (ii) : lf MASK is rank one , PARITY (MASK , DIM= l) has a value equal t o that of
PARITY (MASK) . Otherwise , the value of element (S I , S2 , . . . , sDikI - I ,

SDIM+l , " " sn) of PARITY (MASK , DIM= l) is equal to
PARITY (MASK (S l , S2 , . . . , SDIM - I , : , SDIM+ l , . . . , sn »

Examples .

Case (i) : The value of PARITY ((IT , T , T . F I) is true .

Case (ii) : If B is the array [� � �] , then PARITY (B . DIM = 1) is [F F T 1

and PARITY (B , DIM = 2) is [F T] .

B .42 PARITY � REFIX

Synopsis . PARITY ..PREFIX (MASK , DIM , SEGMENT , EXCLUSIVE)

Optional Arguments . DIM, SEGMENT , EXCLUSIVE

Description. Computes a segmented logical exclusive OR scan along dimension
DIM of MASK.

Class. Transformational function .

Argument s .

MASK must be of type logical . It must not be scalar .

DIM* must be scalar and of type integer with a value in the range 1 <
DIM :5 n, where n is the rank of MASK .

SEGMEIT* must be of type logical and have the same shape as MASK .

EXCLUSIVE* must be of type logical and must be scalar .

Result Typ e, Type Paramet er, and Shap e. Same as MASK .

Result Value . Element r of the result has the value PARITY (C I a l , · · · , am I)

where (a l , " " a m) i s the (possibly empty) set of elements of MASK selected to

contribute to r by the rules stated in Chapter 7 .

Example. PARITY..PREFIX (C IT , F , T , T . T/) , SEGMENT= C lF , F , F , T . TI)) is
[T T F T F] .

Copyrighted Material

296 Appendix B

B .43 PA RITY _S CATTER

Synop sis. PARITY ...sCATTER (MASK , BASE , INDX l , . . . , INDXn)

Description. Scatters elements of MASK to positions of the result indicated by
index arrays INDX 1 , . . . , INDXn . An element of the result is true if and only if the
number of true values among the corresponding element of BASE and the elements
of MASK scattered to that position is odd .

Clas s. Transformational function .

Arguments.

MASK must be of type logical . It must not be scalar .

BASE must be of type logi cal with the same kind type parameter as MASK .

It must not be scalar .

IIDX 1 , . . . , I1DXn must be of type integer and conformable with MASK. The num­
ber of lIiDI arguments must be equal to the rank of BASE.

Result Type, Type Parameter, and Shape. Same as BASE.

Result Value. The element of the result corresponding to the element b of
BASE has the value PARITY ((/al , a2, . . . , am , bf)) , where (a l , . . . , am) are the
elements of MASK associated with b as described in Chapter 7 .

Example. PARITy...sCATTER « / T , T , T , T I) , (/ T , F , F I) , (/ 1 , 1 , 1 , 2 I »

is [F T F] .

B .44 PA RITY_SUF FIX

Synopsis. PARITY ...sUFFIX (MASK , DIM , SEGMENT , EXCLUSIVE)

Optional Argument s. DIM, SEGMENT , EXCLUSIVE

Description. Computes a reverse , segmented logical exclusive OR scan along
dimension D IM of MASK .

Class. Transformational function .

Argument s .

Copyrighted Material

Description of HPF Library and Intrinsic Procedures

MASK must be of type logical . It must not be scalar .

297

DIM* must be scalar and of type integer with a value in the range 1 <

DIM � n , where n is the rank of MASK .

SEGMENT* must be of type logical and have the same shape as MASK .

EXCLUSIVE* must be of type logical and must be scalar .

Result Type , Type Parameter, and Shap e. Same as MASK .

Result Value . Element r of the result has the value PARITY (U a l , . . . , am /)
where (al , . . . , am) is the (possibly empty) set of elements of MASK selected to
contribute to r by the rules stated in Chapter 7 .

Example . PARITy...sUFFIX (C IT , F , T , T , T/) , SEGMENT= ClF , F , F , T , T/)) is
[F T T F T] .

B ,45 P O P CNT

S ynopsis. POPCNT (I)

Descript ion. Return the number of one bits in an integer .

Class . Elemental function .

Argument . I must be of type integer .

Result Type and Type Parameter . Same as I .

Result Value. PDPCNT (I) i s the number of one bits in the binary representation
of the integer I . The model for the interpretation of an integer as a sequence of
bits is in Section 13. 5 . 7 of the Fortran 90 Standard .

Example. POPCNT (I) = COUNT (C I (BTEST (I , J) , J=O , BIT...s IZE (I) - l) /) ,
for scalar I .

B ,46 P O P PAR

S ynopsis. POPPAR (I)

Description. Return the parity of an integer .

Copyrighted Material

29 8 Appendix B

Class . Elemental function .

Argument . I must be of type integer .

Result Type and Typ e Parameter. Same as 1 .

Result Value. POPPAR (I) is 1 if there are an odd number of one bits in I and
zero if there are an even number . The model for the interpretation of an integer
as a sequence of bits is in Section 1 3 . 5 . 7 of the Fortran 90 Standard .

Example. For scalar I , POPPAR (x) = MERGE (1 . 0 . STEST (POP CRT (x) . 0)) .

B .47 P RO C E S S ORS_S H APE

Synop sis. PROCESSORS..sHAPE ()

Des cription. Returns the shape of the implementation-dependent processor ar­
ray.

Class . System inquiry function . Intrinsic .

Arguments. None

Result Typ e, Type Parameter, and Shape. The result is a default integer
array of rank one whose size is equal to the rank of the implementation-dependent
processor array.

Result Value. The value of the result IS the shape of the implementation­
dependent processor array.

Example. In a computer with 2048 processors arranged in a hypercube , the value
of PROCESSORS..sHAPE () is [2 ,2 , 2 , 2 , 2 ,2 ,2 , 2 , 2 ,2 ,2] . In a computer with 8 1 92 proces­
sors arranged in a 128 by 64 rectangular grid , the value of PROCESSORS..sHAPE ()
is [128 ,64] . For a single processor workstation , the value of PROCESSORS..sHAPE ()
is 0 (the size-zero array of rank one) .

B .48 PRODUCT_PREFIX

Synop sis. PRODUCT ..PREFIX (ARRAY • DIM . MASK . SEGMENT . EXCLUSIVE)

Optional Argument s . DIM , MASK , SEGMENT , EXCLUSIVE

Copyrighted Material

Description of HPF Library and Intrinsic Procedures 299

Description. Computes a segmented PRODUCT scan along dimension DIM of
ARRAY.

Class. Transformational function .

Argument s .

ARRAY must be of type integer , real , or complex . It must not be scalar .

DIM. must be scalar and of type integer with a value in the range 1 <
DIM � n , where n is the rank of ARRAY .

MASK. must be of type logical and must be conforma ble with ARRAY .

SEGMEliT. must be of type logical and have the same shape as ARRAY.

EXCLUSIVE. must be of type logical and must be scalar .

Result Type, Type Parameter , and Shape. Same as ARRAY.

Result Value. Element r of the result has the value PRODUCT ((I al , " " am I)

where (al , " " am) i s the (possibly empty) set of elements of ARRAY selected to
cont ri bute to r by the rules stated in Chapter 7 .

Example. PRODUCT .PREFIX ((1 1 . 2 . 3 , 4 . 51) . SEGMEliT= (IF . F • F • T • T I)) is
[1 2 6 4 20] .

B .49 P RO D U CT_S C ATTER

Synopsis. PRODUCT-SCATTER (ARRAY . BASE , IHDI1 , . • . , INOIn , MASK)

Optional Argument . MASK

Description. Scatters elements of ARRAY selected by MASK to positions of the
result indicated by index arrays IHOX 1 , . . . , IHDIn. Each element of the result is
equal to the product of the corresponding element of BASE and the elements of
ARRAY scattered to that position .

Class. Transformational function .

Argument s .

ARRAY must be of type integer , real , or complex . It must not be scalar .

Copyrighted Material

300

BASE

Appendix B

must be of the same type and kind type par ameter as ARRAY. It must
not be scalar.

INDX 1 , . . . , INDXn must be of type integer and must be conformable with ARRAY .
The number of INDX arguments must be equal to the rank of BASE .

MASK* must be of type logical and must be conformable with ARRAY.

Result Type, Type Parameter, and Shape. Same as BASE.

Result Value. The element of the result corresponding to the element b of
BASE has the value PRODUCT ((la l , a2 , . . . , am , b/)) , where (at , . . . , am) are the
elements of ARRAY associated with b as described in Chapter 7 .

Example. PRODUCT..sCATTER « (I 1 , 2 , 3 , 1 1) ' (1 4 , -5 , 7 /) , (1 1 , 1 , 2 , 2 /)

is [8 - 1 5 7] .

B . 50 PRODUCT _S UFFIX

Synopsis. PRODUCT..sUFFIX (ARRAY , DIM , MASK , SEGMENT , EXCLUSIVE)

Optional Argument s . DIM, MASK , SEGMENT , EXCLUSIVE

Description . Computes a reverse , segmented PRODUCT scan along dimension DIM
of ARRAY.

Class. Transformational function .

Argument s .

ARRAY must be of type integer , real , or complex . It must not be scalar .

DIM* must be scalar and of type integer with a value in the range 1 <
DIM � n , where n is the rank of ARRAY .

MASK* must be of type logical and must be conformable with ARRAY .

SEGMENT* must be of type logical and have the same shape as ARRAY .

EXCLUSIVE* must be of type logical and must be scalar .

Result Type , Typ e Parameter, and Shape. Same as ARRAY .

Copyrighted Material

Description of HPF Library and Intrinsic Procedures 301

Result Value. Element r of the result has the value PRODUCT « (/ at , . . . , am I)
where (a l , . . . , am) is the (possibly empty) set of elements of ARRAY selected to
contribute to r by the rules stated in Chapter 7 .

Example. PRODUCT ...sUFFIX ((/ 1 . 2 , 3 , 4 , 51) , SEGMENT= (/F , F , F , T , T I)) is
[6 6 3 20 5] .

B . 5 1 SUM_P REFIX

S ynop sis . SUM-PREFIX (ARRAY , DIM , MASK , SEGMENT , EXCLUS IVE)

Optional Argument s. DIM , MASK, SEGMENT , EXCLUS IVE

Description . Computes a segmented SUM scan along dimension DIM of ARRAY .

Clas s . Transformational function .

A rgument s .

ARRAY must be of type integer , real , or complex. It must not be scalar .

DIM. must be scalar and of type integer with a value in the range 1 <
DIM � n , where n is the rank of ARRAY .

MASK. must be of type logical and must be conformable with ARRAY .

SEGMENT. must be of type logical and have the same shape as ARRAY .

EXCLUSIVE. must be of type logical and must be scalar .

Result Type, Type Paramet er, and Shape. Same as ARRAY .

Result Value. Element r of the result has the value SUM ((/ a t , . . . , am I)

where (a l , . . . , am) is the (possibly empty) set of elements of ARRAY selected to

contribute to r by the rules stated in Chapter 7 .

Example. SUM-PREFIX ((/ 1 , 2 , 3 , 4 , 5/) , SEGMENT= (IF , F , F , T , TI)) is
[1 3 6 4 9] .

Copyrighted Material

302 Appendix B

B . 5 2 SUM_S C ATTER

S ynopsis. SUM...5CATTER(ARRAY , BASE , INDX 1 , . . . , INDXn , MASK)

Optional Argument . MASK

Description . Scatters elements of ARRAY selected by MASK to positions of the
result indicated by index arrays INDX 1 , . . . , INDXn . Each element of the result is
equal to the sum of the corresponding element of BASE and the elements of ARRAY
scat tered to that position .

Class. Transformational function .

Arguments .

ARRAY

BASE

must be of type integer , real , or complex. It must not be scalar .

must be of the same type and kind type parameter as ARRAY. It must
not be scalar .

lIDX 1 , . . . , IIDXn must be of type integer and must be conformable with AR.R.A Y .
The number of IIDX arguments must be equal to the rank of BASE.

MASK. must be of type logical and must be conformable with ARRAY.

Result Type, Type Parameter, and Shape. Same as BASE.

Result Value. The element of the result corresponding to the element b of BASE
has the value SUM ((fal , a2 , . ' . , am , bl)) , where (al , . . . , am) are the elements
of ARRAY associated with b as described in Chapter 7 .

Example. SUM...5CATTER « (l l , 2 , 3 , 1/) , (14 , -5 , 7/) , (1 1 , 1 , 2 , 2/)
is [7 - 1 7] .

B . 53 S U M _S U F FIX

Synopsis. SUM...5UFFIX (ARRAY , DIM , MASK , SEGMENT , EXCLUSIVE)

Opt ional Argument s. DIM, MASK , SEGMENT, EXCLUSIVE

Description. Computes a reverse , segmented SUM scan along dimension DIM of
ARRAY .

Copyrighted Material

Description of HPF Library and Intrinsic Procedures

Class . Transformational function .

Argument s .

ARRAY must be of type integer , real , or complex . It must not be scalar .

303

DIM. must be scalar and of type integer with a value in the range 1 <
DIM :s n , where n is the rank of ARRAY .

MASK. must be of typ e logical and must be conformable with ARRAY .

SEGMENT. must be of type logical and have the same shape as ARRAY .

EXCLUSIVE. must be of type logical and must be scalar .

Result Type, Type Parameter, and Shape. Same as ARRAY .

Result Value. Element r of the result has the value SUM ((/ a l , . . " am I »

where (a l , " " am) is the (possibly empty) set of elements of ARRAY selected to

contribute to r by the rules stated in Chapter 7 .

Example. SUM..5UFFIX ((/ 1 . 2 . 3 . 4 . 5/) . SEGMENT= (/F . F . F . T . T/)) is
[6 5 3 9 5] .

Copyrighted Material

C Formal Syntax Rules

This Appendix collects the formal syntax definitions from the High Performance Fortran
Language Specification [14]. They use the same conventions a.s that document, which

are in turn taken (with slight modifications) from the Fortran 90 Language Specification

[17]. To summarize these conventions:

• Each rule defines the form of a single syntactic term, called a nonterminal symbol or

simply a nonterminal. The nonterminal being defined appears on the first line, to the

left of the is.

• Each rule gives one or more syntactic forms for the nonterminal that it defines. The

first form appears on the first line to the right of the is; others appear on later lines,

separated from each other by or.
• Each rule IS numbered for identification and cross-referencing. The form of an HPF

rule number is Hsnn, where s is a one-digit chapter number (from the HPF Language
Specification) and nn is a one- or two-digit sequence number. A Fortran 90 rule number
is of the form Rsnn, where s is a one- or two- digit chapter number (from the Fortran 90
Language Specification) , and nn is a sequence number. HPF rules are reproduced below;
Fortran 90 rules are cross-referenced by number, but not reproduced.
• A nonterminal name appears in italic Jont.

• A terminal (that is, literal text) appears in TYPEWRITER FONT.

• Items that are optional are enclosed in [square brackets].
• Brackets around and trailing periods after an item indicate it may be [repeated] . . .

• Line breaks in a BNF rule indicate separate lines in the syntactic form.

• A name of the form xyz-list means a comma-separated list of xyz items.

• A name of the form xyz-name means a name, which must refer to an entity of cla.ss

xyz.

• A name of the form scalar-xyz means an xyz which must evaluate to a scalar.

• A name of the form integer-xyz means an xyz which must evaluate to an integer.

References in the constraints refer to sections in the HPF Language Specification, not to

this book.

C.2 High Performance Fortran Terms and Concepts

C.2.3 Syntax of Directives

H20! hpJ-directive-line is directive-origin hpj-directive

Copyrighted Material

306 Appendix C

H202 directive-origin is !HPF$

or CHPF$

or *HPF$

H203 hpj-directive is sp ecification-directive

or executa ble-directive

H204 specification-directive is processors-directive

or align-directive

or distribute-directive

or dynamic-directive
or inherit-directive

or template-directive

or combined-directive

or sequence-directive

H205 executable-directive is realign-directive

or re distri bute-directive

or independent-directive

Constraint: An hpJ-directive-/ine cannot be commentary following another statement on

the same line.

Constraint: A specification-directive may appear only where a declaration-construct may

appear.

Constraint: An executable-directive may appear only where an executable-construct may

appear.

Constraint: An hpf-directive-line follows the rules of either Fortran 90 free form (3.3.1.1)

or fixed form (3.3.2.1) comment lines, depending on the source form of the

surrounding Fortran 90 source form in that program unit. (3.3)

C.3 Data Alignment and Distribution Directives

C.3.2 Syntax of Data Alignment and Distribution Directives

H30l combined-directive IS combined-attribute-/ist:: entity-decl-/ist

Copyrighted Material

Formal Syntax Rules 307

H302 combined-attribute is !LIGI align-attribute-stuff
or DISTRIBUTE dist-attribute-stuff

or DYNAMIC

or INHERIT

or TEMPLATE

or PROCESSORS

or DIMENSION (explicii-shape-spec-list)

Constraint: The same combined-attribute must not appear more than once in a given

combined-directive.

Constraint: If the DIMENSION attribute appears in a combined-directive, any entity to

which it applies must be declared with the HPF TEMPLATE or PROCESSORS

type specifier.

C.3.3 DISTRIBUTE and REDISTRIBUTE Directives

H303 distribute-directive

H304 redistribute-directive

H305 dist-dire ctive-stuff

H306 dist-attribute-stuff

H307 distributee

H308 dist-format-clause

H309 dist- format

H3l0 dist-onto-clause

H3ll dist-target

IS DISTRIBUTE distributee d ist- d irective-stuff

is REDISTRIBUTE distributee dist-directive-stuff

or REDISTRIBUTE dist-attribute-stuff : :

distributee-list

IS dist-format-clause [dist-onto-clause 1

IS dist-directive-stuff

or dist- onto-clause

IS object-name

or temp late-n ame

is (dist- format-list)
or * (dist-form at- list

or *

is BLOCK [(int-expr) 1
or CYCLIC [(int-expr) 1
or *

IS ONTO dist- targ et

is processors- name

or * processors- name

or *

Copyrighted Material

308 Appendix C

Constraint: An object-name mentioned as a distributee must be a simple name and not
a subobject designator.

Constraint: An object-name mentioned as a distributee may not appear as an alignee in

an ALIGN or REALIGI directive.

Constraint: A distributee that appears in a REDISTRIBUTE directive must have the DY­

JAMIe attribute (see Section 3.5).

Constraint: If a dist-format-list is specified, its length must equal the rank of each dis­

tributee.

Constraint: If both a dist-format-list and a processors-name appear, the number of el­

ements of the dist-format-list that are not "*" must equal the rank of the
named processor arrangement.

Constraint: If a processors-name appears but not a dist-format-list, the rank of each

distributee must equal the rank of t he named processor arrangement.

Constraint: If either the dist-format-clause or the dist-target in a DISTRIBUTE directive

begins with "*" then every distributee must be a dummy argument.

Constraint: Neither the dist-format-clause nor the dist-target in a REDISTRIBUTE may

begin with "*" .

Constraint: Any int-expr appearing in a dist-format of a DISTRIBUTE directive must be
a specification-expr.

C.3.4 ALIGN and REALIGN Directives

H312 align-directive

H313 realign-directive

H314 align- directive-stuff

H315 align-attribute-stuff

H316 alignee

H317 align-source

H318 align-dummy

IS ALIGN alignee align-directive-stuff

is REALIGN alignee align-directive-stuff

or REALIGN align-attribute-stuff : : alignee-list

is (align-source-list) align-with-clause

IS [(align-source-list) 1 align-with-clause

is object-name

is

or *
or align-dummy

is scalar-int-variable

Copyrighted Material

Formal Syntax Rules 309

Constraint: An object-name mentioned as an alignee may not appear as a distributee in

a DISTRIBUTE or REDISTRIBUTE directive.

Constraint: Any alignee that appears in a REALIGN directive must have the DYNAMIC

attribute (see Section 3.5).

Constraint: The align-source-list (and its surrounding parentheses) must be omitted

if the alignee is scalar. (In some cases this will preclude the use of the
statement form of the directive.)

Constraint: If the align-source-list is present, its length must equal the rank of the

alignee.

Constraint: An align-dummy must be a named variable.

Constraint: An object may not have both the INHERIT attribute and the ALIGN attribute.
(However, an object with the INHERIT attribute may appear as an alignee
in a REALIGN directive, provided that it does not appear as a distributee in
a DISTRIBUTE or REDISTRIBUTE directive.)

H319 align-with-clause

H320 align-spec

H321 align-target

H322 align-subscript

H323 align-subscript-use

H324 align-add-operand

H325 align-primary

H326 int-add-operand

H327 int-mult-operand

H328 int-Ievel-two-expr

is WITH align-spec

is align-target [(align-subscript-list) 1
or * align-target [(align-subscript-list)]

is object-name

or template-name

IS int-expr
or align-subscript-use

or subscript-triplet

or *

is [[int-level-two-expr] add-op] align-add-operand

or align-subscript-use add-op int-add-operand

is [int-add-operand * 1 align-primary
or align-add-operand * int-mult-operand

is align-dummy
or (align-subscript-use

is add-operand

is mult-operand

is level-2-expr

Copyrighted Material

310 Appendix C

Constraint: If the align-spec in an ALIGN directive begins with "*" then every alignee
must be a dummy argument.

Constraint: The align-spec in a REALIGN may not begin with "*" .

Constraint: Each align-dummy may appear at most once in an align-subscript-list.

Constraint: An align-subscript-use expression may contain at most one occurrence of an
align-dummy.

Constraint: An align-dummy may not appear anywhere in the align-spec except where
explicitly permitted to appear by virtue of the grammar shown above. Para­

phrased, one may construct an align-subscrip1-use by starting with an align­

dummy and then doing additive and multiplicative things to it with any

integer expressions that contain no align-dummy.

Constraint: A subscript in an align-subscript may not contain occurrences of any align­
dummy.

Constraint: An int-add-operand, int-mult-operand, or int-level-two-expr must be of type
integer.

C.3.5 DYNAMIC Directive

H329 dynamic-directive

H330 alignee-or-distributee

is DYNAMIC alignee-or-distributee-list

is alignee
or distributee

Constraint: An object in COMMON may not be declared DYNAMIC and may not be aligned to

an object (or template) that is DYNAMIC. (To get this kind of effect, Fortran
90 modules must be used instead of COMMON blocks.)

Constraint: An object with the SAVE attribute may not be declared DYNAMIC and may

not be aligned to an object (or template) that is DYNAMIC.

C.3.7 PROCESSORS Directive

H331 processors-directive

H332 processors-decl

H333 processors-name

is PROCESSORS processors-decl-list

is processors-name [(explicit-shape-spec-list) 1

IS object-name

Copyrighted Material

Formal Syntax Rules

C.3.S TEMPLATE Directive

H334 template-directive is TEMPLATE template-ded-list

H335 template-decl IS template-name [(explicit-shape-spec-list

H336 template-name is object-name

C.3.9 INHERIT Directive

H337 inherit-directive is INHERIT dummy-argument-name-list

C.4 Data Parallel Statements and Directives

C.4.1 The FORALL Statement

IS FORALL forall-header forall-assignment

311

) 1

H401 forall-stmt

H402 forall-header is (forall-triplet-spec-list [• scalar-mask-expr 1

Constraint: Any procedure referenced in the scalar-mask- expr of a forall- heade r must
be pure, as defined in Section 4.3.

H403 forall-triplet-spec I S index-name = subscript subscript [stride 1

Constraint: index-name must be a scalar integer variable.

Constraint: A subscript or stride in a forall-triplet-spec-list must not contain a reference

to any index-name in the forall-triplet-spec-list in which it appears.

H404 forall-assignment is assignment-stmt
or pointer-assignment-stmt

Constraint: Any procedure referenced in a forall-assignment, including one referenced

by a defined operation or assignment, must be pure as defined in Section 4.3.

C.4.2 The FORALL Construct

H405 forall-construct is FORALL forall-header
forall-body-stmt
[forall-body-stmt 1
END FORALL

Copyrighted Material

312

H406 forall-body-stmt IS forall- assignment

or where-stmt

or where-construct
or forall-stmt

or forall-construct

Appendix C

Constraint: Any procedure referenced in a forall-body-stmt, including one referenced by

a defined operation or assignment , must be pure as defined in Section 4.3.

Constraint: If a forall-stmt or forall-construct is nested in a forall-construct, then the

inner FORALL may not redefine any index-name used in the outer forall­
construct.

C.4.3 Pure Procedures

H407 prefix

H408 prefix-spec

H409 function- stmt

H410 function-stuff

H411 subroutine-stmt

H412 subroutine-stuff

is prefix-spec [prefix-spec] ...

IS type-spec

or RECURSIVE

or PURE

or extrinsic-prefix

is [pr efix] FUNCTION function-name function-stuff

is ([dummy-arg-name-list])

[RESULT (resu lt- name)

is [prefix] SUBROUTIHE subroutine- name

subroutin e-stuff

is ([dummy-arg-list])]

Constraint: A prefix must contain at most one of each variety of prefix-spec.

Constraint: The prefix of a subroutin e-stmt must not cont.ain a type-spec.

The following constraints are added to Rule R1215 in Section 12.5.2.2 of the Fortran 90

standard (defining fun cfion-subprogram):

Const.raint: The specification-part of a pure function must specify that all dum m y argu­

ments have INTENT ON) except procedure arguments and arguments with
the POINTER attribute.

Constraint: A local variable declared in the specification-part or intcrnal-subprogram­

part of a pure function must not have the SAVE attribute.

Copyrighted Material

Formal Synta.x Rules 313

Note local variable initialization in a type-declaration-stmt or a data-stmt

implies the SAVE attribute; therefore, such initialization is also disallowed.

Constraint : The execution-part and internal-subprogram-part of a pure function may

not use a dummy argument, a global variable, or an object that is storage

associated with a global variable, or a subobject thereof, in the following

contexts:

• As the assignment variable of an assignment-stmt;

• As a DO variable or implied DO variable , or as an index-name in a forall-

triplet-spec;

• As an input-item in a read-stmt ;

• As an internal-file- unit in a write-simt;

• As an lOSTAT= or SIZE= specifier in an I/O statement.

• In an assign-stmt;

• As the pointer-object or target of a pointer-assignment-stmi;

• As the expr of an assignment- stmt whose assignment variable is of a de­
rived type, or is a pointer to a derived type, that has a pointer component

at any level of component selection;

• As an allocate-object or stat-variable in an allocate-stmt or deallocate- stmt ,

or as a pointer-object in a nullify-simt; or

• As an actual argument associated with a dummy argument with UTEIT

(OUT) or IllTENT(INOUT) or with the POIlTER attribute.

Constraint: Any procedure referenced in a pure function, including one referenced via a

defined operat ion or assignment, must be pure.

Constraint: A dummy argument or the dummy result of a pure function may be explic­

itly aligned only with another dummy argument or the dummy result, and

may not be explicitly distributed or given the INHERIT attribute.

Constraint: In a pure function, a local variable may be explicitly aligned only with

another local variable , a dummy argument, or the result variable. A local
variable may not be explicitly distributed.

Constraint: In a pure function, a dummy argument, local variable, or the result variable
must not have the DYNAMIC attribute.

Constraint: In a pure function, a global variable must not appear in a realign-directive

or redistribute-directive.

Copyrighted Material

314 Appendix C

Constraint: A pure function must not contain a print-stmt, open-stmt, close-stmt, back­
space-stmt, endfile-stmt, rewind-stmt, inquire-simt, or a read-stmt or write­
stmt whose io-unit is an external-file-unit or *.

Constraint: A pure function must not contain a pause-stmi or stop-stmt.

The following constraints are added to Rule R1219 in Section 12.5.2.3 of the Fortran 90
standard (defining sUbroutine-subprogram) :

Constraint: The specification-part of a pure subroutine must specify the intents of all

dummy arguments except procedure arguments and arguments that have
the POINTER attribute.

Constraint: A local variable declared in the specification-part or i1lternal-function-part
of a pure subroutine must not have the SAVE attribute.

Constraint: The execution-part or internal-subprogram-part of a pure subroutine must
not use a dummy parameter with INTENT (IN) ,a global variable, or an object

that is storage associated with a global variable, or a subobject thereof , in
the following contexts :

• As the assignment variable of an assignment-stmt;

• As a DO variable or impl ied DO variable , or as a index-name in a forall-
triplet-spec ;

• As an input-item in a read-simt;

• As an internal-file-unit in a write-stmt;

• As an IOSTAT= or SIZE= sp ecifier in an I/O statement.

• In an assign-stmt;

• As the pointer- object or target of a pointer-assignment-simt;

• As the expr of an assignment-stmt whose assignment variable is of a de­

rived type, or is a pointer to a derived type, that has a pointer component

at any level of component selection;

• As an allocate-object or stat-variable in an allocate-stmi or deallocate-stmt,
or as a pointer-object in a nullify-stmt;

• As an actual argument associated with a dummy argument with INTENT

(OUT) or INTENT(INOUT) or wi th the POINTER attribute.

Constraint: Any procedure referenced in a pure subroutine, including one referenced via

a defined operation or assignment, must be pure .

Copyrighted Material

Formal Syntax Rules 315

Constraint: A dummy argument of a pure subroutine may be explicitly aligned only

with another dummy argument, and may not be explicitly distributed or

given the INHERIT attribute.

Constraint: In a pure subroutine, a local variable may be explicitly aligned only with

another local variable or a dummy argument. A local variable may not be

explicitly distributed.

Constraint: In a pure subroutine, a dummy argument or local variable must not have

the DYNAMIC attribute.

Constraint: In a pure subroutine, a global variable must not appear in a realign-directive

or redistribute-directive.

Constraint: A pure subroutine must not contain a print-stmt, open-stmt, close-stmt,

backspace-simt, endfile-stmt, rewind-stmt, inquire-stmt, or a read-stmt or

write-stmt whose io-unit is an external-file-unit or *.

Constraint: A pure subroutine must not contain a pause-stmt or stop-stmt.

To define interface specifications for pure procedures, the following constraints are
added to Rule R1204 in Section 12.3.2.1 of the Fortran 90 stanJ'ard (defining interface­
body):

Constraint: An interface-body of a pure procedure must specify the intents of all dummy

arguments except POINTER and procedure arguments.

To define pure procedure references, the following extra constraint is added to Rules
R1209 and R1210 in Section 12.4.1 of the Fortran 90 standard (defining function-reference

and call-stmt):

Constraint: In a reference to a pure procedure, a procedure-name actual-arg must be

the name of a pure procedure.

CAA The INDEPENDENT Directive

H413 independent-directive

H414 new-clause

is INDEPENDENT [J new-clause

is NEW (variable-list)

Constraint: The first non-comment line following an independent-directive must be a

do-stmt, forall-stmt, or a forall-construct.

Constraint: If the lEW option is present , then the directive must apply to a DO loop.

Constraint: A variable named in the lEW option or any component or element thereof

must not:

Copyrighted Material

316

• Be a pointer or dummy argument; nor

• Have the SAVE or TARGET attribute.

C.6 Extrinsic Procedures

C .6.2 Definition and Invocation of Extrinsic Procedures

Appendix C

H601 extrinsic-prefix is EXTRINSIC (extrinsic-kind-keyword

H602 extrinsic-kind-keyword IS HPF

or HPF _LOCAL

C.7 Storage and Sequence Association

C.7.1 Storage Association

H701 sequence-directive

H702 association-name

IS SEQUENCE [[:: 1 association-name-list 1
or NO SEQUENCE [[:: 1 association-name-list

IS variable-name

or / common-block-name /

Constraint: The result variable of an array-valued function that is not an intrinsic func­

tion is a nonsequential array . It may not appear in any HPF SEQUENCE

directive.

Constraint: A variable or COMMON block name may appear at most once in a sequence­
directive within any scoping unit.

Copyrighted Material

D Formal Syntax Cross-reference

This Appendix cross-references smbols used in the formal syntax rules. Rule identifiers

beginning with "H" are from the High Performance Fortran Language Specification [14];

the full rule may be found in Appendix C. Rule identifiers beginning with "R" are from
the Fortran 90 Standard [17); the full rule may be found there, or in the appendix of the

Fortran 90 Handbook [1] .

D.l Nonterminal Symbols That Are Defined

Symbol Defined Referenced
add-op R710 H323
add-operand R706 H326
align-add-operand H324 H323 H324
align-attribute-stuff H315 H302 H313
align-directive H312 H204
align-directive-stuff H314 H312 H313
align-dummy H318 H317 H325
align-primary H325 H324
align-source H317 H314 H315
align-spec H320 H319
align-subscript H322 H320

align-subscript-use H323 H322 H323 H325

align-target H321 H320

align-with-clause H319 H314 H315
alignee H316 H312 H313 H330

alignee-or-distributee H330 H329

allocate-object R625
allocate-stmt R622

array-constructor R431

array-spec R512

assign-stmt R838

assignment-stmt R735 H404

association-name H702 H701

call-stmt R1210

combined- attribute H302 H301

combined-directive H301 H204

data-simt R529

Copyrighted Material

318 Appendix D

deallocate-stmt R631

directive-origin H202 H2O!

dist-attribute-stuff H306 H302 H304

dist-directive-stuff H305 H303 H304 H306

dist-format H309 H308

dist-format-clause H308 H305

dist-onto-clause H310 H305 H306

dist-target H311 H310

distribute-directive H303 H204

distributee H307 H303 H304 H330
dummy-arg R1221 H412

dynamic-directive H329 H204

end-function-stmt R1218

end-subroutine-stmt R1222

entity-decl R504 H301

execut able-constru ct R215

executable-directive H205 H203

execution-part R208

explicit-sh ape-spec R513 H302 H332 H335
expr R723

extrinsic-kind-keyword H602 H601

extrinsic-prefix H601 H408
forall-assignment H404 H401 H406
forall-body-stmt H406 H405

fo ra 11- construct H405 H406
forall-header H402 H401 H405
forall-stmt H401 H406

forall-triplet-spec H403 H402

function-reference R1209

function-stmt H409

function-stuff H410 H409

function-subprogram R1215

hpf-directive H203 H201

hpf-directive-line H201

independent-directive H413 H205

inherit-directive H337 H204

input-item R914

int-add-operand H326 H323 H324

Copyrighted Material

Formal Syntax Cross-reference 319

int-expr R728 H309 H322
int-level-two-expr H328 H323
int-mult-operand H327 H324
int-variable R607 H318
interface-body R1204
internal-subprogram-part R210
level-2-expr R707 H328
mask-expr R741 H402
mult-operand R705 H327
namelist-group-object R737
namelist-stmt R543
new-clause H414 H413
nullify-stmt R629

output-item R915

pause-stmt R844

pointer-assignment-stmt R736 H404

pointer-object R630

prefix H407 H409 H411

prefix-spec H408 H407

processors-decl H332 H331

processors-directive H331 H204

processors-name H333 H311 H332

read-stmt R737

realign-directive H313 H205

redistribute- directive H304 H205

section-subscript R618

sequence-directive H70l H204

specificati on-directive H204 H203

specification-expr R734

specification-part R204

stat-variable R623

stop-stmt R842

stride R620 H403

subroutine-stmt H411

subroutine-stuff H412 H411

subscript R617 H403

subscript-triplet R619 H322

target R737

Copyrighted Material

320 Appendix D

template-decl H335 H334

template-directive H334 H204

template-name H336 H307 H321

type-declaration-stmt R50l

type-spec R502 H408

variable R60l H414

where-construct R739 H406

where-stmt R738 H406

write-stmt R737

D.2 Nonterminal Symbols That Are Not Defined

Symbol
common-black-name

dummy-arg-name

dummy-argument-name

function-name

index-name

Referenced

H702

H4l0

H337

H409

H403

H335

object-name

result-name

subroutine-name

variable-name

H307 H316 H321 H333 H336

H410

D.3 Terminal Symbols

Symbol

!HPF$

(

*

H411

H702

Referenced

H202

H302 H308

H320 H325

H4I0 H412

H302 H308

H320 H325

H4l0 H4l2

H308 H309

H322 H324

Copyrighted Material

H309 H3l4 H315

H332 H335 H402

H414 H601

H309 H314 H315

H332 H335 H402

H414 H60l

H311 H3l7 H320

Formal Syntax Cross-reference 321

*HPF$ H202

H402 H413
/ H702

H317 H403

H301 H304 H313 H701
= H403
ALIGN H302 H312
BLOCK H309
CHPF$ H202
CYCLIC H309
DIMENSION H302
DISTRIBUTE H302 H303
DYNAMIC H302 H329
END H405
EXTRINSIC H601

FO�ALL H401 H405

FUNCTION H409

HPF H602

HPF...LOCAL H602

INDEPENDENT H413

INHERIT H302 H337

NEW H414

NO H701

ONTO H310

PROCESSORS H302 H331

PURE H408

REALIGN H313

RECURSIVE H408

REDISTRIBUTE H304

RESULT H410

SEQUENCE H701

SUBROUTINE H411

TEMPLATE H302 H334

WITH H319

Copyrighted Material

 Bibliography

[1] J. C. Adams, W. S. Brainer d, J. T. Martin , B. T. Smith, and J. L. Wagener . Fortran 90 Handbook.
Intertext-McGraw Hill, New York, NY, 1992.

[2] E. Albert, J. Lukas, and G. Steele, Jr. Data parallel comp uters and the FORALL statement.
Journal of Parallel and Distributed Computing, 13(2):185-192, October 1991.

[3] Ameri can National Standards Institute, Inc., 1430 Broadway, New York, NY. Ameri can National
Standard Programming Language FORTRAN, ANSI X9.9.1978, approved April 3 1978.

[4] American National Standards Institute, Inc., 1430 Broadway, New York, NY. Reference Manual
for the Ada Programming Langua ge [ANSI/MIL-STD-1815A}, January 1983.

[5J American National Standards Institute, Inc., 1430 Broadway, New York, NY. Parallel Extension6
for FORTRAN 77, X3H5 Language Binding, [X3H5/91-0040.C}, 1991.

[6J A merican National Standards Institute, Inc., 1430 Broadway, New York, NY . American National
Standard for Information Systems Programming Language FORTRAN, S8 (X9.9-198x), April
1987. Revision of X3.9-1978, Draft S8, Version 104.

[7] J. W. Backus, et a1. Preliminary Report, Specifications for the IBM Mathematical FORmula
TRANslating System, FORTRAN. IBM Corp.,Programming Research Group, Applied Science
Division, 1954.

[8] A. J. Bernstein. Analysis of programs for parallel processing. IEEE Transactions on Computers,
15(5), October 1966.

(9] W. S. Brainerd, C. H. Goldberg , and J. C. Adams. Programmer 's Guide to Fortran 90. Intertext
Publications, McGraw-Hill Book Company, New York , NY, 1990.

[10] B. Chapman, P. Mehrotra, and H. Zima. Programming in Vienna Fortran. Scientific Programming,
1(1):3150, Fall 1992.

[11]

[12]

[13]

B. Chapman , P. Mehrot ra, and H. Zima. High Performance Fortran without templates: An al­
t ernative model for distribution and aligrunent. In Proceedings of the Fourth ACM SIGPLAN
Symposium on Principles & Practice of Parallel Programming (PPoPP), San Diego, CA, May
1993.

M. Chen and J. Cowie. Prototyping Fortran-90 compilers for massively parallel machines. In
Proceedings of the SIGPLAN '92 Conference on Program Language Design and Implementation,
San Francisco, CA, June 1992.

G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker. Solving Problems on
Concurrent Processors, volume 1. Prentice-Hall, Englewood Cliffs, NJ, 1988.

[14] High Performance Fortran Forum. High Performance Fortran language specification, version 1.0.
Technical Report CRPC-TR92225, Center for Research on Parallel Computation, Rice University,
Houston, TX, 1992 (revised May 1993). To appear in Scientific Programming, vol. 2, no. !.

[15] Hi gh Performance Fortran Forum. High Performance Fortran journal of development. Te chnical
Report CRPC-TR93300, Center for Research on Parallel Computation, Rice University, Houston,
TX, May 3 1993. To appear in Scientific Programming, vol. 2, no. 1.

[16]

[17]

[18]

S. Hiranan dani, K. Kennedy, C. Koelbel, U. Kremer, and C. Tseng. An overview of the Fortran D

programmi ng system. In U. Banerjee, D. G elernter, A. Nicolau, and D. Padua, editors, Languages

and Compilers for Parallel Computing, Fourth International Worbhop, Santa Clara, CA, August

1991. Springer-Verlag.

International Organization for Standardization and International Electrotechnical Commission.

Fortran 90 {ISO/IEC 1599: 199/ (E)}, May 1991. Now also ANSI X3.198-1992.

K. Knobe, 1. Lukas, and G. Steele, Jr. Data optimization: Allocation of arrays to reduce communi­

cation on SIMD machines. Journal of Paral lel and Distributed Computing, 8(2):102-118, February

1990.

[19] C. Koelbel. An overview of High Performance Fortran. Fortran For um, 11(4), December 1992.

Copyrighted Material

324 Bibliography

[20] D. B. Loveman. High Performance Fortran. IEEE Parallel & Distributed Technology, 1(1), Febru­

ary 1993.

[21) P. Mehrotra and J. Van Rosendale. Programming distributed memory a.rchitectures using Kali. In
Ad1lances in Languages and Compilers for Parallel Computing, Irvine, CA, 1991. The MIT Press.

[22] J. Merlin. ADAPTing Fortran-OO array programs Cor distributed memory architectures. In Firat
International Conference of the A"strian Center for Parallel Computation, Salzburg, Austria,
September 1991.

[23] M. Metcalf and J. Reid. Fortran 90 Explained. Oxford Science Publications, 1990.

[24] Parallel Computing Forum. PCF: Parallel Fortran extensions. Fortran Forum, 10(3), September
1991.

[25] D. M. Pase, T. MacDonald, and A. Meltzer. MPP Fortran Programming Model. Cray Research,
Inc., Eagan, MN, August 26 1992.

[26) G. L. Steele Jr. High Performance Fortra: Status report. ACM SIGPlan Notices, 28(1), January
1993 .

[27] Thinking Machines Corporation, Cambridge, Massachusetts. CM Fortran Reference Manual, July
1991.

[28) United States of America Standards Institute, New York, NY. USA Standard FORTRAN, USAS
X3.9-1966, March 1966.

[29] US Department of Defense. Military Standard, MIL-STD-1753: FORTRAN, DoD S"pplement to
American National Standard X3.9-1978, November 9 1978.

{3�) M. J. W ilkes. From Fortran and Algol to object-oriented languages. Communications of the A CM,
36(7):21-23, July 1993.

[31] M. J. Wolfe. Optimizing Supercompilers for Supercomp"ters. The MIT Press, Cambridge, MA,
1989.

[32) M. Wu and G. Fox. A test suite approach for fortran 90d compilers on MIMD distributed memory
parallel computers. In Proceedings of the 1992 Scalable High Performance Computing Conference,
Williamsburg, VA, April 1992.

[33] H. Zima and B. Chapman. Supercompilers for Parallel and Vector Computer •. Addison-Wesley,
New York, NY, 1991.

Copyrighted Material

 Index

•

* notation, 54

A

abstract processors, 98, 249
ABSTRACT _ TOJ>HYSICAL, 239
active set, 173, 174
Ada, 73
adjustable array, 64
Advanced Research P rojects Agency (ARPA),

xiii
aggregate cover, 134, 249
aggregate variable group, 132, 249
alias, 67, 160
ALIGN directive, 103, 112ft', 148ft', 187, 245
align-add-operand, 115,309
align-at tribute-stuff, 113, 308
align-directive, 113, 308
align-directive-stuff, 1 13, 308
align-dununy, 113, 116,308
align-primary, 115, 309
align-source, 113, 308
align-spec, 148, 309
align-subscript, 115, 309
align-subscript-use, 115, 116, 309
align-target, 115, 187, 249, 309
align-with-clause, 115, 148, 309
alignee, 113, 187,249, 308
alignee-or-distributee, 120,310
alignment, 100, 249
ALL...PREFIX, 255
ALL_SCATTER, 255
ALL-SUFFIX, 256
Alliant , 25
allocatable array, 55, 64
ALLOCATABLE attribute, 121ft'
ALLOCATE statement, 121ft', 186, 193
American National Standards Institute (ANSI),

xiii,9
American Standards Association (ASA), 9
ANY _PREFIX, 257
ANY_SCATTER, 258
ANY_SUFFIX, 258
argument association, 71
array, 54
array assignment, 27,56,167,170,173
array combining scatter function, 208
array constructor, 61
array expression, 27
array features, 51
array intrinsic, 27

array pointer, 64
array prefix function , 210
array reduction function, 207
array sequence order , 61
array sorting function , 215
array suffix function, 210
ASSIGN statement , 186, 193
assignment statement, 173, 174, 186, 187
assignment-stmt, 171
association-name, 132, 316
assumed-shape array, 64, 71, 163
assumed-size array, 64,71,163
atomic data object, 171, 193
atomic object, 100, 172, 249
attribute, 100
automatic array, 55, 64

B

BACKSPACE statement , 187
BBN,25
Bell Laboratories, xiii
Bernstein conditions, 199
Bernstein's conditions, 193
bit manipulation function, 206
bit model, 76
block data program unit, 70
block distribution, 91, 103, 107
BLOCK (m) distribution, 107
block-cyclic distribution, 105

c

call-stmt, 315
Center for Research on Parallel Computation

(CRPC),l1
CLOSE statement, 187
collapsed, 115, 249
collapsing alignment, 93
combined-attribute, 102 , 307
combined-directive, 102, 113, 147,306
combining scatter function,

see array combining 6catter function
comment, 17
COMMON, 70,120, 129ft'
communication, 24, 30ft', 249
COMPASS, Inc., 1 1
component, 134, 249
conformable, 57
control dependence, 193, 194
Convex Computer , 11
COpy _PREFIX, 259
COPY_SCATTER,260
COpy _SUFFIX, 261
Cornell Theory Center, xiii

array location function, 206

Copyrighted Material

326

correspond, 107
COUNT _PREFIX, 261
COUNT _SCATTER, 262
COUNT _SUFFIX, 263
cover, 131, 134,249
Cray pointer, 67
Cray Research, xiii, 11, 25, 67
currently allocated, 56
cyclic distribution, 91, 104, 108
CYCLIC (m) distribution, 108

D

data facilities, 51
data locality, 249
data mapping, 30,31, 91ff, 100, 139ff, 251

model,98ff
specification, 102

data object, 172
data parallel , 26, 27ff, 250
data remapping, see dynamic mapping
DATA statement, 186
DEALLOCATE statement, 186, 193
deferred-shape array, 64
derived type, 54, 65, 187
derived type definition , 65
descriptive mapping, 139, 144, 151ff, 245, 250
Digital Equipment Corporation, xiv, 11, 25, 54 ,

67
DIMENSION attribute, 103
directive, 14, 17ff, 250
directive-origin, 306
dist-attribute-stuff, 106 , 147, 307
dist-directive-stuff, 106, 147,307
dist-format, 106, 147,307
dist-format-clause, 147, 307
dist-onto-clause, 148, 307
dist-target, 148, 307
DISTRIBUTE directive, 103ff, 147ff, 187, 245
distribute-directive, 105, 147, 307
distributee , 106, 1 13, 250, 307
distribution, 100, 250
distribution formats, 106
DO INDEPENDENT, 192
DO statement, 170, 186, 192, 193
dummy argument, 186, 187, 188
dummy result, 187
DYNAMIC attribute, 114, 187
DYNAMIC directive, 101,103, 120ff, 245
dynamic mapping, 97, 140, 160, 245, 250
dynamic-directive, 120, 310

E

ease-of use improvements, 51, 52
edit descriptor, 53
element, 58
elemental intrinsic, 58, 76, 167
ENDFILE statement, 187
EQUIVALENCE, 129ff
ESPRIT, xiii
executable-directive, 306

Index

explicit interface, 59, 70, 72, 140, 150ff, 250
explicit mapping, 134, 187, 250
explicit-shape array, 64, 71
extent, 57
external function, 70
external 1/0, 187
EXTRINSIC attribute, 246
EXTRINSIC procedure, 29ff, 223ff, 250
extrinsic-kind-keyword, 227, 250, 316
extrinsic-prefix, 185, 227, 316

F

FORALL INDEPENDENT, 193
FORALL statement, 27, 167, 170, 174, 186,

188, 192
forall-assignment, 171, 311
forall-body-stmt, 171,312
forall-construct, 170, 311
forall-header, 311
forall-stmt, 170, 311
forall-triplet-spec, 171, 311
forall-triplet-spec-list, 171
FORTRAN 77, 10, 246
Fortran 8x, 10
Fortran 90,10,14,21,27, 51ff, 241, 246ff
function, 71
function-reference, 315
function-stmt, 185, 312
function-stuff,312
function-subprogram, 186, 312
functional parallelism, 26

G

generic procedure, 73, 76
global argument, 233
global array, 233
global code, 224
global name space, 250
global name space, 30
global variable, 186, 187, 250
GLOBAL..ALIGNMENT,238
GLOBAL...DISTRIBUTION,239

Copyrighted Material

Index

GLOBAL-TEMPLATE, 239
GLOBAL_TO_LOCAL, 240
GMD-I1.T (Sankt Augustin) , xiii
GOTO statement, 194
GRADE-DOWN,263
GRADE_UP, 265
granularity, 27

H

Hewlett Packard, 25
High Performance Fortran Forum (HPFF) , xiii,

11,22
host association, 72
HPF intrinsic procedure, 203, 218, 255ft'
HPF library, 15, 27, 186, 203, 218, 246, 255ft'
HPF local library, 238ft'
HPF-confornUng, 16,170,171,192,251
hpf-directive, 306
hpf-directive-line, 305
HPF -.ALIGNMENT, 266
HPF -DISTRIBUTION, 269
HPF -L OCAL, 230ff
HPF_TEMPLATE, 271

I

IALL,274
IALL-PREFIX, 275
IALL-SCATTER, 276
IALL_SUFFIX, 277
IANY, 277
IANY _PREFIX, 279
IANY _SCATTER, 279
IANY _SUFFIX, 280
IBM, 9, 11, 25
ILEN, 245, 281
immediately aligned, 100, 251
implicit mapping, 98, 134, 251
implied DO, 61, 186, 193
inaccessible, 68
include line, 70
INDEPENDENT directive, 27, 169, 192, 245,

251
independent-directive, 192, 315
independently compiled, 70
index-name, 171
INHERIT attribute, 187
INHERIT directive, 103, 149ft', 245
inherit-directive, 149, 311
inherited template , 139, 149ft', 152, 251
initialization expression , 61
inner active set , 175
inner valid set , 174
input/output statement, 186, 187,194

INQUIRE statement, 187, 194
inquiry function, 76
int-add-operand, 309
int-Ievel-two-expr, 309
int-mult-operand, 309
integer number system model, 76
Intel, 24
INTENT attribute, 184, 186, 188
interconnection network, 23
interface block, 70, 188
interface-body, 187, 315
internal I/O, 186
internal procedure, 186

327

International Standards Organization (ISO), 10
intrinsic data type, 54
intrinsic procedure, 51,75,76, 185
IPARITY, 281
IPARITY -PREFIX, 283
IPARITY -SCATTER, 283
IPARITY_SUFFIX, 284

K

Kendall Square Research, 25
keyword argument , 71

L

language evolution , 51,83
Lawrence Livermore National Laboratory, xiv
LEADZ, 285
linear function, 116
load balance, 29, 251
local argument, 233
local array, 233
local memory, 24
local name space, 25 1
local procedure , 224, 251
local variable, 187, 251
LOCAL_TO_GLOBAL, 240
location function, Bee array location Junction
loosely synchronous, 251

M

main program, 70
many-one array section, 60
mapping inquiry subroutine, 204, 252
masked array assignment, 27,57, 62,170, 175
MasPar, xiii, 25
master-slave parallelism, 26
MAXLOC, 206, 285
MAXVAL, 206
MAXVAL_PREFIX, 287
MAXVAL_SCATTER,288
MAXVAL_SUFFIX, 289

Copyrighted Material

328

Meiko, 24
memory, 23
message-passing, 24
MIL-STD-17 53, 10, 246
MIMD, see Multiple Instruction Multiple Data

(MIMD)
MINLOC, 206, 289
MINVAL,206
MINVAL_PREFIX, 291
MINVAL_SCATTER, 292
MINVAL_SUFFIX, 292
modularization, 51, 70ff
module program unit, 70
multi-statement FORALL, 170, 173, 246
multiple entry point, 70
Multiple Instruction Multiple Data (MIMD) , 24
Multiple Instruction Multiple Data (SIMD), 252

N

namelist I/O, 53
National Science Foundation (NSF), xiii
natural template, 139, 151, 252
nCUBE, 24
new-clause, 315
node program, 252
non-advancing I/O, 53
nonconfornling, 252
nonsequential, 131, 134ff
nonsequential variable, 252
NOSEQUENCE directive, 131ff
NULLIFY statement, 186, 193
NUMBER_OF -PROCESSORS, 124, 203, 245,

293

o

Oak Ridge National Laboratory, xiii
obsolescent feature, 83
ONTO clause, 107, Ill, 148
OPEN statement, 187
optional argument, 71
outer active set., 174

p

parallel computation, 23, 26ff
parallel computer, 23
Parallel Computing Forum (PCF), 11
Parallel Random Access Memory (PRAM) , 27
PARITY, 294
PARITY _PREFIX, 295
PARITY _SCATTER, 296
PARITY_SUFFIX, 296
partial record I/O, 53
PAUSE statement, 187

PHYSICALTO-ABSTRACT, 239
pointer, 55, 67
POINTER attribute, 186

Index

pointer assignment, 67, 173, 174, 186, 187
pointer associated, 67
POINTER attribute, 121ff, 186, 188
pointer-assignment-stmt, 171
POPCNT, 297
P OPPAR, 297
precedence graph, 175
prefix , 185, 312
prefix function , see array prefix function
prefix-spec , 185, 312
prescriptive mapping, 139, 140, 245, 252
PRINT statement, 187
processor, 23
processor arrangement, 124, 252
processor-dependent, 17
PROCESSORS directive, 103, 124ff, 245
processors-decl, 124, 310
processors-directive, 124, 310
processors-name, 124, 310
PROCESSORS_SHAPE, 124,203,245,298
PRODUCLPREFIX, 298
PRODUCT _SCATTER, 299
PRODUCT _SUFFIX, 300
program unit, 70
programming model, 23
PURE attribute, 171, 172, 184, 245, 252
PURE procedure, 167

R

rank, 57, 252
READ statement, 186, 187, 193
real number system model, 76
REALIGN directive, 101, 112ff, 187, 194,245
realign-directive, 113, 308
record,55
RECURSIVE attribute, 184, 185
REDISTRIBUTE directive, 101, 103ff, 187, 194,

245
redistribute-directive, 105, 307
reduction function,

see array reduction function
redundant feature, 83
remote memory, 24
removed feature, 83
replicating alignment, 96
replication, 96, 252
representational model, 76
Research Institute for Advanced Computer Sci­

ence (RIACS) , xiv
REWIND statement, 187
Rice University, xiii, 11

Copyrighted Material

Index

rule number, 15

s

SAVE attribute, 120, 129, 186, 192
scalar processor arrangement, 125
section, 58
sequence association, 15, 85, 139, 161, 25:;1

SEQUENCE attribute, 135
SEQUENCE directive, 131ff
sequence-directive, 131, 316
sequential, 131, 134ff
sequential common, 134, 253
sequential variable, t34, 253
shape, 57, 253
shared memory, 2,5
SIMD,

see Single Instruction Multiple Data (SIMD)
Single Instruction Multiple Data (SIMD), 205,

253
Single Program Multiple Data (SPMD), 28, 223,

253

single-statement FORALL, 170, 172, 245
size, 57
sorting function, see array sorting junction
specific procedure, 76
specification-directive, 306
SPMD,

see Single Program Multiple Data (SPMD)
standard-conforming, 16
statement functions, 185
static mapping, 97, 245, 253
STOP statement, 187
storage association, IS, 805, 129ff, 186, 253
storage sequence, :;1053
stream I/O, 53
stride, 171, 253

structure, 55
structure constructor, 65

subobject, 172
subroutine, 71
subroutine-stmt, 185,312
subroutine-stuff,312
subroutine-subprogram, 186, 314
subscript, 171
subscript triplet notation, 58, 61
Subset HPF, 245ff
Subset-conforming, 16
suffix function, see array suffix junction
SUM.PREFIX, 301
SUM_SCATTER, 302
SUM.BUFFIX, 302
Sun Microsystems, 67
synchronization, 24, 253
syntax rule, 15

Sy racuse University, xiii, 11
system inquiry function, 203, 253

T

TARGET attribute, 68, 192
task parallel, 26, 29ff
template, 100, 253
TEMPLATE directive, 101, 103 , 127ff, 245
template-decl, 127, 311
template-directive, 127, 311
template-name, 127, 311
Tera Computer, 25
Texas, xiv
Thinking Machines, xiii, 11, 24, 25
totally associated, 253
transcriptive mapping, 139, 142, 245, 254
transformational funct.ion, 76

329

triplet notation, see subscript triplet notation
type declaration statement, 65, 186
type-spec, 1805

u

ultimately aligned, 100, 254
University of Vienna, 11
user-defined assignment, 65
user-defined operator, 65
user-defined type, 54

v

valid set, 172, 173
vector-valued subscript, 61

w

WHERE statement,
see masked arra1l assignment

where-construct, 172
where-stmt, 172
WITH clause, 115, 148

WRITE statement, 186, 187, 193

Copyrighted Material

