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Series Foreword

The world of modern computing potentially offers many helpful methods and tools to
scientists and engineers, but the fast pace of change in computer hardware, software, and
algorithms often makes practical use of the newest computing technology difficult. The
Scientific and Engineering Computation series focuses on rapid advances in computing
technologies and attempts to facilitate transferring these technologies to applications
in science and engineering. It will include books on theories, methods, and original
applications in such areas as parallelism, large-scale simulations, time-critical computing,
computer-aided design and engineering, use of computers in manufacturing, visualization
of scientific data, and human-machine interface technology.

The series will help scientists and engineers to understand the current world of ad-
vanced computation and to anticipate future developments that will impact their com-
puting environments and open up new capabilities and modes of computation.

This book in the series describes High Performance Fortran (HPF), a language that
combines the full Fortran 90 language with special user annotations dealing with data
distribution. It is expected that HPF will be a standard programming language for
computationally intensive applications on many types of machines, such as traditional
vector processors and newer massively parallel MIMD and SIMD multiprocessors. If
successful, the HPF language with its modern features and powerful capabilities will
become the new revitalized version of Fortran for scientists and engineers solving complex
large-scale problems.

Janusz S. Kowalik
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O Sneak Preview

Welcome to the High Performance Fortran Handbook! This book describes High Per-
formance Fortran (HPF), a set of extensions to Fortran expressing parallel execution
at a relatively high level. The “official” definition of these extensions is the High Per-
formance Fortran Language Specification, version 1.0 [14]; this book is an adjunct to
that work, presenting the same information in a more tutorial manner. To make a long
story short, HPF was designed to provide a portable extension to Fortran 90 for writing
data parallel applications. It includes features for mapping data to parallel processors,
specifying data parallel operations, and methods for interfacing HPF programs to othe
programming paradigms.

This chapter is a road map to The High Performance Fortiran Handbook. It gives a
quick introduction to each of the other chapters, and a few simple examples of what you
will find there. In short, it serves the same purposes as Chapter 0 of the Fortran 90
Handbook [1] (which is, of course, where we got this idea). All the material here is meant
to be illustrative, rather than definitive. The chapters are relatively independent of each
other, and may be read in any order.

0.1 Basics of High Performance Fortran

Chapter 1 contains some basic facts about HPF, including a short history of Fortran, the
goals of HPF, notation conventions used in this book, and references for related material.

0.2 Programming Model

Chapter 2 describes HPF’s programming model. A programming language is not much
good if you don’t know what a program in the language means; Chapter 2 gives a frame-
work for understanding HPF programs. Our model is divided into two parts: parallelism
and communication.

The parallelism in a program, expressed by constructs like array assignment, FORALL
statements, DO INDEPENDENT loops, intrinsic and standard library procedures, and EX-
TRINSIC procedures, determines how many operations a computer could possibly do at
one time. Many of today’s fastest machines are capable of performing tens, hundreds, or
even thousands of operations simultaneously (or in parallel). HPF’s parallel constructs
make it easy for the programmer to indicate potentially parallel operations. It is then
the compiler’s responsibility to schedule those operations on the physical machine so that
the program runs as fast as possible.

Communication in a program is an overhead that opposes parallelism. Another fea-
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2 Chapter 0

ture of today’s parallel machines is that sharing data (through memory, or by explicit
messages) is slower than pure computation. Moreover, languages prior to HPF forced the
programmer to handle nearly all the details of communication, leading to complex code,
bugs, and general frustration. HPF puts more of this burden on the compiler; the user
supplies a very high-level data mapping strategy and the system generates the details of
the communication it implies.

Unfortunately, the parallelism and communication of an HPF program are often inter-
twined in complex ways. The final portion of Chapter 2 is devoted to illustrating some
of these relationships.

0.3 Fortran 90

Chapter 3 describes Fortran 90. HPF is based on Fortran 90, which is the latest in a long
line of Fortran standards. In a perfect world, we would not need to describe Fortran 90
separately, since all practicing Fortran programmers would already be familiar with it.
However, a number of factors (both technical and sociological) have slowed Fortran 90’s
entrance into the world of scientific computing. In light of this, we thought it would be a
good idea to give a short introduction to Fortran 90, with emphasis on its new features
(as compared with the older FORTRAN 77 standard). We cannot give a full account of
Fortran 90 in a book of this size—the already-mentioned Fortran 90 Handbook is over
700 pages long. Instead, we provide just enough background for Fortran 90 by means
of suggestive examples so the reader can see how it relates to HPF. We hope that our
explanation also whets your appetite to find out more about Fortran 90.

0.4 Data Mapping

Chapter 4 describes the data mapping features in HPF. These are probably the most
publicized features in HPF, although they are certainly not the only important ones. In
short, HPF can describe how data is to be divided up among the processors in a parallel
machine. The presumption is that the processor responsible for some data (also called
the processor that owns the data) can read or write it much faster than another processor.
This reflects the way that many current parallel machines operate. HPF describes the
data-to-processor mapping in two stages: the DISTRIBUTE and ALIGN operations.

DISTRIBUTE is an HPF directive that describes how an array is divided into even-sized
pieces and distributed to processors in a regular way. For example, given the array
declaration

REAL A(100,100)
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Sneak Preview 3

and four processors, the DISTRIBUTE directive can express any of the following patterns:

e Each processor receives a 50 x 50 block of A (i.e., one processor gets A(1:50,1:50),
another gets A(51:100,1:50), etc.). The directive to say this is

'HPF$ DISTRIBUTE A(BLOCK,BLOCK)

e Each processor receives every 4" row of A (i.e., one processor gets A(1,1:100),
A(5,1:100), A(9,1:100), etc.; another gets A(4,1:100), A(8,1:100), A(12,1:100),
etc.). The directive to say this is

'BPF$ DISTRIBUTE A(CYCLIC,*)

There are many other patterns that can be generated with DISTRIBUTE alone.

ALIGN is an HPF directive that describes how two arrays “line up” together. Basically,
this describes one array’s mapping in terms of another. For example, the ALIGN directive
can express any of the following relations:

e Two arrays X and Y are always distributed the same. The directive to say this is
'HPF$ ALIGN X(I) WITH Y(I)

o Elements of X correspond to the odd elements of Y (in this case, X can have at most
half as many elements as Y). The directive to say this is

'HPF$ ALIGN X(I) WITH Y(2*I-1)

e Each element of X is aligned with the entire corresponding column of A (in this case,
elements of X may be replicated). The directive to say this is

'HPF$ ALIGN X(I) WITH A(*,I)

As with DISTRIBUTE, this list is not exhaustive. Some of these patterns could be achieved
using the DISTRIBUTE directive only; some require ALIGN.

There are also several other data mapping features. REDISTRIBUTE and REALIGN per-
form the same tasks as DISTRIBUTE and ALIGN, but work dynamically (as executable
statements) rather than statically (as declarations). The TEMPLATE directive declares a
phantom array that can be used in DISTRIBUTE and ALIGN directives; this is useful when
no array is quite the right size to describe some mapping. Similarly, PROCESSORS defines
a set of abstract processors that is useful for precisely defining some mappings. The rules
relating this mapping to ordinary Fortran storage association (COMMON block reshaping
and EQUIVALENCE) are also in this chapter. Although full support of storage association
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4 Chapter 0

is not compatible with the data mapping features of HPF, some important special cases
are allowed.

0.5 Data Mapping for Procedure Arguments

Chapter 5 expands Chapter 4 to cover dummy procedure arguments. Procedure argu-
ments are different from local variables because they sometimes need information about
the corresponding actual argument. In particular, all of the following are reasonable
things to say about a dummy argument:

e “I don’t care how the actual is mapped—move the data to this distribution before

starting this subroutine.” Directives to do this look the same as directives for local
variables, as shown above.

e “I don’t care how the actual is mapped—keep the data there for the duration of this
subroutine.” One way to say this is

'HPF$ INHERIT X

e “I'know the actual has a certain distribution before coming into this subroutine—don’t
move it.” One way to say this (when the actual’s distribution is BLOCK) is

'HPF$ DISTRIBUTE X *(BLOCK)

More complex cases are also possible, such as relating two actual arguments to each
other.

Equally important for converting older codes to HPF is handling Fortran’s sequence
association. (This is the old method of passing arrays, in which the shape of the ac-
tual and the dummy argument do not have to match.) Full support for this feature is
not compatible with HPF’s data mapping directives; instead, special directives must be
inserted to warn the compiler that trickiness is going on.

0.6 Data Parallelism

Chapter 6 describes HPF’s constructs for data parallelism. These constructs describe
operations (typically, large numbers of operations) that can be performed in parallel if
the computer has the resources. The presumption is that doing many operations at once
will be faster than doing the same operations one at a time. Even when there are many
more parallel operations than there are processors on the target machine, HPF allows
the extra parallelism to be specified. This way, when the program is ported to a more
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Sneak Preview 5

parallel machine it can immediately take advantage of the extra speed available. Chap-
ter 6 discusses two data parallel constructs: the FORALL statement and the INDEPENDENT
directive.

The FORALL 1s a new statement that extends Fortran 90 array operations. For example,

FORALL (I = 2:N-1)
A(I,I) = A(I-1,I-1) + A(I,I) + A(I+1,I+1)
END FORALL

does a vector addition along the main diagonal of array A (something you can’t do
directly with normal array assignments). HPF also introduces PURE functions, which
are guaranteed to have no side effects, to allow FORALL statements to perform complex
elementwise computations.

The INDEPENDENT directive gives the compiler more information about a DO loop or
FORALL statement. For example, it tells the compiler that a DO loop does not make any
“bad” data accesses that force the loop to be run sequentially. The first line of this code:

YHPF$ INDEPENDENT
DOI =1, N
X(INDX(I)) = Y(I)
END DO

amounts to an assertion that INDX does not contain any repeated values. With this
information, a compiler knows it is safe to produce parallel code. Note that INDEPENDENT
is a promise by the programmer that a program, as coded, already behaves a certain way;
it is not correct to try to use INDEPENDENT to change the results of a program.

0.7 Intrinsics and Library Procedures

Chapter 7 describes HPF’s intrinsic and library procedures (both functions and subrou-
tines). All these procedures are available to any programmer writing in HPF. Many of
them are data parallel operations, including some new reduction operations, prefix and
suffix operations, combining-scatter operations, and sorting. For example, the following
statement computes the powers of S in increasing order

S
PRODUCT_PREFIX(X(1:N))

X(1:N)
X(1:N)

Users have found these functions useful in writing data parallel programs. In addition,
HPF has a number of inquiry subroutines to give a programmer information about the
state of the machine or an array’s distribution. For example,
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6 Chapter 0

CALL HPF_DISTRIBUTION(A, AXIS_TYPE=DISTS)

uses the array DISTS to return information about the distribution of array A. HPF also
has a few new standard functions that were somehow left out of Fortran 90 but which
certain user communities need in their work. Most of these operate on the bits of an
integer. For example,

I = POPCNT(J)

counts the number of bits set to 1 in J. Chapter 7 gives a brief introduction to all the
standard HPF functions.

0.8 Extrinsic Procedures

Chapter 8 describes EXTRINSIC procedures in HPF. EXTRINSIC is a means to invoke other
programming paradigms from HPF. For example, parallel branch-and-bound searches are
at best difficult to write in HPF, because their very purpose is to exploit indeterminacy
and HPF strives for determinacy. Using EXTRINSIC allows a programmer to escape from
HPF’s constraints to write such a program. The normal HPF facilities are available
outside of the EXTRINSIC procedure for data parallel tasks; for example, the initial setup
or final analysis of the branch-and-bound search could be coded this way. Chapter 8
describes two aspects of such procedures: a general interface mechanism for invoking a
variety of programming models, and a specific SPMD programming model that is efficient
on many (but not all) current parallel machines.

The interface mechanism consists of the EXTRINSIC attribute, which is applied to
functions in much the same way as the RECURSIVE attribute. For example,

INTERFACE
EXTRINSIC(PROPRIETARY) SUBROUTINE MY_SORT(A)
INTEGER, DIMENSION(:), INTENT(INOUT) :: A
END SUBROUTINE MY_SORT
END INTERFACE

is an interface for a subroutine named MY_SORT written in the PROPRIETARY programming
model (presumably a model proprietary to the computer vendor’s machine). EXTRINSIC
interfaces do two things: they alert the compiler that the program is entering a different
model (which may in turn require the compiler to change the procedure calling sequence),
and they constrain the behavior of the called routine. In essence, the overall behavior of
an EXTRINSIC routine as observed by the caller must be consistent with an HPF routine
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Sneak Preview 7

with the same interface. For example, an EXTRINSIC routine may not take data that is
consistently replicated in HPF and make it inconsistent.

HPF also defines the HPF_LOCAL programming model, which essentially consists of the
same program executed on every processor of a parallel machine. This model is useful
for two things. First, it is a model supported by many parallel machines and is therefore
directly useful for many programmers. In situations where execution speed is more im-
portant than portability, EXTRINSIC(HPF LOCAL) allows tuning of some operations that
do not appear explicitly in HPF, such as low-level synchronization operations. Second,
it serves as an example of how a particular programming model can be defined for use
as an HPF EXTRINSIC. Vendors may define their own system-specific models, either as
extensions to HPF _LOCAL or as entirely new models.

0.9 Subset High Performance Fortran

Chapter 9 describes Subset HPF, a minimal starting language defined to encourage early
releases of compilers with HPF features. HPF is a rather large and complex language
to implement. This subset contains features that are high on users’ priority lists yet
considered implementable relatively quickly by compiler writers. Compiler vendors are
always encouraged to implement the full HPF language; however, if resource constraints
make this impossible, Subset HPF is a suitable language for early implementation.

0.10 Appendices

Appendix A contains definitions of the technical terms defined in HPF, as well as relevant
technical terms defined in Fortran 90.

Appendix B contains detailed specifications of the intrinsic and library routines intro-
duced in Chapter 7.

Appendix C provides the formal syntax definitions for HPF. It is taken verbatim from
the High Performance Fortran Language Specification, version 1.0 [14].

Appendix D provides a cross-reference of syntax symbols used in the formal syntax
rules. It is taken verbatim from the High Performance Foriran Language Specification,
version 1.0 [14].

The bibliography includes further references to HPF and Fortran 90.

The index contains entries for all technical terms defined in this document, keywords
in HPF and Fortran 90, and syntax symbols used in the grammars.
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1 Basics of High Performance Fortran

This chapter describes conventions of terminology and notation used throughout the
rest of this book. It also discusses the goals of the High Performance Fortran Forum in
defining HPF, and some sources of additional information.

1.1 Fortran Development

Although the [Fortran] group broke new ground ... they never lost sight of
their main objective, namely, to produce a product that would be acceptable
to practical users with real problems to solve.

Fortran . . . is still by far the most popular language for numerical computation
Maurice V. Wilkes [30]

Since its introduction almost four decades ago, Fortran! has been the language of choice
for scientific and engineering programming. HPF is the latest set of extensions to this
venerable language. However, it is not a standard recognized by the formal national and
international standards committees. The current ANSI and ISO programming language
standard in this area is Fortran 90.

The first programming language to be called Fortran was developed by IBM in the
early 1950’s [7]. It became quite popular after the first compiler was delivered to a
customer in 1957, in large part because it was both efficient and much easier to write
and maintain than the assembly languages that had come before. The language gained
increasing acceptance as it was ported to more and more machines. In 1966, the American
Standards Association (ASA, later to become the American National Standards Institute
(ANSI)) published the first formal standard for Fortran [28]. This standard included
many of the core features of Fortran, including:

The familiar INTEGER, REAL, and DOUBLE PRECISION data types.

A notation for array references and arithmetic computations.

DO loops for iteration (but not the END DO statement).

IF conditionals (but not the block IF statement).

Subroutines, functions, and the independent compilation of program units.
Global variables (through the mechanism of COMMON blocks).

1Note that the spelling of the name of the language is case-sensitive, a change made by the Fortran
standards committee: “FORTRAN" refers to the FgﬁTRAN 77 and earlier standards and, typically,
products based on them; “Fortran” refers to the Fortran 90 standard and, typically, newer products.
Except for references to particular standards or products, we will consistently use the term “Fortran”
to identify the language.
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10 Chapter 1

It also included the Hollerith data type, which was later replaced with the CEARACTER
type. The standard was later dubbed FORTRAN 66, to differentiate it from later ver-
sions.

The Fortran language continued to evolve, and in 1978 ANSI and the International
Standards Organization (ISO) published a new standard [3]. FORTRAN 77 provided
a number of additional language features now well known to engineering and scientific
programmers, including:

e IF...THEN...ELSE IF ...END IF conditional statements.

e The COMPLEX data type, COMPLEX constants, and operations on COMPLEX numbers.

e The CHARACTER data type, CHARACTER constants, and operations on strings.

e Formatted, unformatted, and direct-access file input and output.

In 1978 the US Department of Defense published an addendum to the FORTRAN 77
standard, designated MIL-STD-1753, with language features required by all compilers
to be sold to the US government [29]. Virtually every Fortran compiler supports these
features:

The END DO statement.

The DO WHILE statement.

INCLUDE lines.

The IMPLICIT NONE statement.

Syntax for octal and hexadecimal constants.
Eleven bit manipulation procedures.

Soon after publication of the FORTRAN 77 standard, work began on a revision to the
standard, with the working title of Fortran 8x [6]. By the time the new standard was
accepted by ISO in 1991 (and by ANSI the following year), it had been renamed For-
tran 90 {17]. In the words of that standard, its goal was to “modernize Fortran, so that
it may continue its long history as a scientific and engineering programming language.”
A secondary goal was to use the modern language features to allow programmers to dis-
continue use of obsolescent and no longer desirable forms in FORTRAN 77. These forms
include nine features identified as obsolescent and a (now empty) category of removed
features listed in Appendix B of the standard. Although Fortran 90 provides significant
new capabilities, it did not ignore the requirements of “legacy” codes; Fortran 90 includes
as a subset all of FORTRAN 77 and MIL-STD-1753.

Even before the Fortran 90 standard had been formally approved, calls were heard
for more extensions. In particular, standard features were needed to enable portable,
efficient programming on the new generation of parallel machines. (Section 1.2 details
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more of these concerns.) The first group to discuss standardization of parallel Fortran
features was the Parallel Computing Forum (PCF). Their original goals were to stan-
dardize language features for task oriented parallelism on shared memory machines [24].
This effort continues as the ANSI X3H5 committee. The X3H5 Fortran language ex-
tensions [5] for parallelism are first-class language extensions (not directives) and make
control of the parallelism very visible to the programmer with explicit constucts for
synchonization, worksharing, etc.?2 These extensions were, however, closely tied to the
shared-memory paradigm for parallel computation, making them difficult to implement
on newer distributed-memory machines.

In November, 1991 Digital Equipment Corporation organized a birds-of-a-feather meet-
ing at the Supercomputing ’91 conference in Albuquerque, New Mexico, to discuss their
proposed language (already named “High Performance Fortran”). Along with original
material, this proposal synthesized ideas from Connection Machine Fortran (from Think-
ing Machines), Fortran 77D and Fortran 90D (from Rice and Syracuse Universities), Vi-
enna Fortran (from the University of Vienna), several compiler projects undertaken by
COMPASS Inc., and other sources. The session was followed in January, 1992 by the
kickoff meeting for the High Performance Fortran Forum (HPFF) in Houston, Texas,
hosted by the Center for Research on Parallel Computation (CRPC) at Rice University.
Over 130 people attended to hear presentations from Convex Computer, Cray Research,
Digital, IBM, Rice University, Thinking Machines, the University of Vienna, and oth-
ers on various aspects of the proposed language. There was a strong consensus that a
common set of Fortran extensions for data parallel programming would be valuable and
that this was a good time to define such a set of extensions. However, it was clear that
a meeting of this size was too large to draft a technical proposal. A series of smaller
“working group” meetings was scheduled to create the language draft.

The HPFF working group, consisting of about 40 people, met for the first time in
Dallas, Texas, in March, 1992. Eight further meetings were held, drawing attendees
from industry, academia, and government; from Austria, England, France, Germany,
Japan and the United States; and from the ranks of computer vendors, Fortran users,
and general computer scientists. Through electronic mail, every effort was made to
keep the HPFF process open to the public, and requests for comments on the draft
produced voluminous responses. Although the effort was not sponsored by national and
international standards organizations such as ANSI and ISO, the working group received
several helpful communications from the ANSI X3J3 committee. The working group
produced the High Performance Fortran Language Specification, version 1.0 in May,

2In contrast, HPF chooses to use directives where possible and leaves control of parallelism to the
compiler.

Copyrighted Material



12 Chapter 1

History of Fortran
1954 | “Preliminary Report, Specifications for the IBM Mathematical FORmula
TRANslating System, FORTRAN” (J. W. Backus, et al.)
1957 | FORTRAN for the IBM 704
1958 | FORTRAN II for the IBM 704
1962 | FORTRAN 1V for the IBM 7030 STRETCH
1966 | X3.9-1966, American Standard (ASA) FORTRAN (FORTRAN 66)
1969 | Federal Information Processing Institute standard FIPS 69-1
1978 | ANSI X3.9 -1978 American National Standard Programming Language
FORTRAN (FORTRAN 77)
1978 | MIL-STD-1753: FORTRAN, DoD Supplement to American National Stan-
dard X3.9-1978
1980 | ISO 1539-1980 (E), international Fortran standard; same as ANSI
1987 | S8.104 — Draft Standard, Fortran 8x for public review
1991 | Parallel Extensions for FORTRAN 77, X3H5 Language Binding, [X3H5/91-
0040-C]
1991 | S8.118 accepted as ISO/IEC 1539:1991 (E), Fortran 90
1992 | ANSI X3.198-1992; same Fortran 90 standard as ISO
1993 | High Performance Fortran Language Specification

Table 1.1
A brief history of Fortran

1993 [14]. This book is based on that document. Recognizing that some important
issues, such as parallel input/output facilities, could not be resolved within the time that
HPFF allowed itself, the working group recommended that another series of meetings
be held during 1994. These meetings will consider both new extensions and experience
gained with the first version of HPF.

Major milestones in the history of Fortran are presented in Table 1.1.

1.2 Goals of HPF

Given the history outlined above, it is fair to ask, “Why do we need yet another Fortran
extension?” It might seem that Fortran is serving its role quite nicely.

Despite its past success, Fortran is reaching its limitations on the latest generation of
high-performance machines. Fortran was originally developed for serial machines with
linear memory architectures. In the past several years it has become increasingly ap-
parent that a language design relying on these architectural features creates difficulties
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when executing on parallel machines. One symptom of this is the proliferation of parallel
Fortran dialects, each specialized to the machine where it was first implemented. As the
number of competing parallel machines on the market increases, the lack of a standard
parallel Fortran is becoming increasingly serious. Without a standard programming in-
terface, writing a parallel program ties a scientist to one machine for all his or her work.
Perhaps worse, the difficulty of programming in almost any of the available languages
creates a high barrier to entry; scientists are unwilling to make the substantial effort to
move to the new parallel machines.

As these difficulties became apparent, new research is also suggesting an answer: data
parallel programming. The essence of the idea is that many scientific programs have
a “natural” parallelism at a fine-grain level, such as performing the same (conceptual)
operation on all the elements of an array. Moreover, other research suggests that many
of the complex details of communication and synchronization could be generated by
the compiler automatically, if only a little high-level data partitioning information were
provided. HPF builds on these approaches.

The overriding goal of HPF was therefore to produce a dialect of Fortran that could
be used on a variety of parallel machines. At the first meeting, the HPFF working
group refined this goal, saying its mission was to define language extensions and feature
selection for Fortran supporting:

o Data parallel programming (defined as single-threaded control structure, global name
space, and loosely synchronous parallel execution).

e Top performance on MIMD and SIMD computers with non-uniform memory access
costs (while not impeding performance on other machines).

e Code tuning for various architectures.

It also established a number of secondary goals, including:

o Portability (existing code): Allow relatively easy conversion from existing sequential
code to parallel code.

o Portability (new code): Allow efficient code on one parallel machine to be reasonably
efficient on other machines.

e Compatibility: Deviate minimally from other standards, particularly FORTRAN 77
and Fortran 90.

e Simplicity: Keep the resulting language simple.

o Interoperability: Define open interfaces to other languages and programming styles.
e Availability: Make compiler availability feasible in the near term.

e Promptness: Present a near-final proposal in November, 1992 and accept the final
draft in January, 1993. (Note that this schedule was set in March, 1992.)
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The HPFF working group made a number of compromises due to try to reach these
goals. Much discussion was spent trying to balance portability between machines with
ability to tune programs for a specific architecture. Some features were not accepted into
HPF because they caused severe hardships for certain classes of machines, even though
they were efficient on other machines. Finally, the HPF Journal of Development [15]
chronicles some proposals that did not achieve consensus, although they may have had
technical merits.

HPF does not solve all the problems of parallel programming. Its purpose is to provide
a portable, high-level expression for data parallel algorithms. For algorithms that fall
into this rather large class, HPF promises to provide some measure of efficient portability.
We also hope that the new constructs are intuitive, thus lowering the entrance barrier to
parallel machines. In short, HPF is a step toward bringing the convenience of sequential
Fortran to the complex parallel machines of today. (It will not be the last such step—see
Section 1.7 below.) It should be noted that, although HPF was motivated by parallel
architectures, the constructs can be used on any computer, in much the same way that
Fortran 90 vector assignments can also be used on scalar processors.

1.3 Fortran 90 Binding

HPF is an extension of Fortran 90. The array calculation and dynamic storage allocation
features of Fortran 90 make it a natural base for HPF. The new HPF language features
fall into four categories with respect to Fortran 90:

New directives.

New language syntax.
Library routines.
Language restrictions.

The HPF directives are special comments that suggest implementation strategies or
assert facts about a program to the compiler. They may affect the efficiency of the com-
putation performed, but do not change the value computed by the program. Section 1.6
describes the general form of these directives in more detail.

HPF adds a few new language features, including the FORALL statement, the PURE
and EXTRINSIC attributes for procedures, and some intrinsic functions. These features
had to be first-class language constructs rather than comments because they can affect
the interpretation of a program. For example, the new intrinsics return values used in
expressions.
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The HPF library defines a standard interface to routines that have proven valuable for
high performance computing including additional reduction functions, combining scatter
functions, prefix and suffix functions, and sorting functions. It is a Fortran 90 MODULE.

Full support of Fortran sequence and storage association is not compatible with the
data distribution features of HPF. Some restrictions on the use of sequence and storage
association are imposed. These restrictions may require insertion of HPF directives into
standard Fortran 90 programs in order to preserve correct semantics under HPF.

1.4 Notation

This book uses most of the same notation as the Fortran 90 Handbook [1] by Adams et
al. In particular, nearly the same conventions are used for syntax rules. (Typesetting
buffs will notice that we have changed fonts; otherwise the conventions are identical.)
We define the syntax of a construct by giving its name and a schematic of its form; for
example, a combined-directive (H301) has the form:

combined-attribute-list :: entity-decl-list

The number following the name refers to the rule number, as explained below.
When a construct may take several forms, they are listed one per line following the
words “one of:”; for example, combined-atiribute (H302) is one of:

ALIGN align-attribute-stuff
DISTRIBUTE dist-attribute-stuff
DYNAMIC

INHERIT

TEMPLATE

PROCESSORS

DIMENSION ( ezplicit-shape-spec-list )

Any characters in TYPEWRITER FONT in these forms should be interpreted literally. Words
in italic font are names of syntax elements defined separately. Material in [square brack-
ets] is an optional part of the syntax. Three dots ... indicate that the preceding word
or bracketed expression may be repeated.

Some names are implicitly defined. An zyz-list has the form:
zyz [, zyz ] ...

That is, an zyz-list is a comma-separated list of zyz items. An int-zyz is an zyz that is

constrained to be of type integer. An zyz-name is a name (R304) that is associated with
an ryz.
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All references to syntax rule numbers refer to either the HPF language specification or
the Fortran 90 standard. HPF syntax rules have identifying numbers of the form Hsnn
where s is a one-digit section number (in the HPF language specification) and nn is a one-
or two-digit sequence number. Fortran 90 rules are numbered in the form Rssnn, where
the one- or two-digit section number ss refers to a section in the Fortran 90 standard.

A BNF description of HPF in the style used in the Fortran 90 standard appears in
Appendix C of this book, indexed by rule number. Appendix D contains a cross-reference
of both HPF symbols and the Fortran 90 symbols that they reference.

The first time that we use or define a technical term it appears in italics. Appendix A
collects the definitions of these terms. Subsequent references to technical terms normally
are not italicized.

HPF and Fortran 90 keywords such as FORALL and IF appear in typewriter font in the
text, as do variables and other elements taken from program examples.

1.5 Conformance

The Fortran 90 standard defines standard-conforming to mean that a program uses only
the syntax and semantics (including obeying restrictions on use) that are defined by the
standard. Similarly, the HPF language specification defines HPF-conforming to mean
that a program obeys the syntax and semantics defined by the specification. Finally, a
program is Subset-conforming if it obeys the syntax and rules of Subset HPF., Program
units, such as individual subroutines, conform to a standard or specification if they can
be incorporated into a program that then conforms to the same standard or specification.

All this has the following practical effect: Fortran 90 and HPF explicitly leave un-
defined what happens if you break any of their rules. Some compilers will detect such
rule-breaking and report an error. In fact, Fortran 90 requires that compilers be able
to detect and report non-standard-conforming syntax. Some compilers will impose their
own interpretations on non-conforming programs. For example, the restriction that two
iterations of an INDEPENDENT DO loop cannot both assign to the same location is very
difficult to check, either in the compiler or while the program is running. Two executions
of the same program, when processed by two different compilers, might assign different
values to the location in this case, making the result machine-dependent. Indeed, two
executions of the same program as processed by the same compiler might assign different
values to the location, making the result unpredictable even on a single machine; HPF
simply does not specify what happens when the restriction is violated. When we say in
the text that a program may not do something, we mean that the resulting construct
would not be HPF-conforming. We strongly recommend that programmers not use non-
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HPF-conforming features, even if they happen to work on their current compiler; the
cost of finding and fixing these features when the compiler changes will be very large.

Some features are HPF-conforming, but their precise definition varies from system to
system. For example, the mapping for an array with no explicit ALIGN or DISTRIBUTE
directives can be anything that HPF can express. The Fortran 90 standard labels these
features processor-dependent, where the “processor” is the language processor that pre-
pares the Fortran program for running. We use the terminology compiler- or system-
dependent to mean the same thing. It should be understood that we mean “compiler” in
a rather broad sense in this book; it includes interactive interpreters, translators to other
dialects of Fortran, and runtime libraries in addition to traditional compilers. Standard-
conforming programs can use compiler-dependent features, but the results of the program
may change from system to system (or even from run to run on the same system). This,
of course, hurts portability. We recommend not relying on these features if they can be
avoided, and documenting assumptions about them when they must be used. Frequently
the careful programmer can compensate for system dependencies through the careful use
of inquiry procedures such as NUMBER_OF PROCESSORS and HPF _ALIGNMENT.

1.6 HPF Directives and Their Syntax

Compiler directives form the heart of the HPF language. As directives, they are tech-
nically just Fortran comments. Their presence may be ignored by a standard Fortran
compiler. But to an HPF compiler they supply the information needed to optimize
performance. The form of an hpf-directive-line (H201) is:

directive-origin hpf-directive
where a directive-origin (H202) is one of:

{HPF$
CHPF$
*HPF$

HPF directives are consistent with Fortran 90 syntax in the following sense: if any
HPF directive were to be adopted as part of a future Fortran standard, the only change
necessary to convert an HPF program would be to remove the directive origin from
each such directive. This has further implications. The directives must conform to the
Fortran rules for the source form of the surrounding text. The first thing to notice is that
Fortran 90 allows comments to begin with “C” and “*#” as well as “!” in the fixed source
form, but allows only “!” to begin a comment in free source form. We recommend that
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programmers always use the “'HPF$” form of the directive-origin so that it will work in
either form,

HPF directives follow the free source form rule about spaces within the directive line.
Spaces are significant. At least one space is required anywhere two keywords or a keyword
and a variable name are adjacent. Furthermore, a space may not occur in the middle of a
keyword or variable name. This rule applies even in directives using the fixed source form.
(If HPF directives are converted to true statements in some future Fortran standard, this
rule will undoubtedly be changed. HPF directives have been designed to be syntactically
unambiguous if this happens.)

The directives also follow the Fortran convention regarding their location. There are
two forms of directive:

specification-directive
ezecutable-directive

A specification-directive (H204) must appear in the specification part of the program unit
containing the other declarations relating to the data described. These directives include
the following kinds (all defined in later sections of this book):

align-directive
combined-directive
distribute-directive
dynamic-directive
inherit-directive
processors-directive
sequence-directive
template-directive

An ezeculable-directive (H205) appears with the other Fortran 90 erecutable-constructs
in the program unit. There are three executable directives:

realign-directive
redistribute-directive
independent-directive

Even though the directives are “comments” there are additional rules about how they
may be intermixed with other Fortran statements and comments. There are also rules
for how to continue the directives in the case that they do not fit on a single line of the
source. The basic rule of thumb is to think of the HPF directive as a regular Fortran
statement, with one important exception. The Fortran free source form allows multiple
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statements on a single source line. This is not allowed for HPF directives; they must
start at the beginning of the source line (possibly preceded by blanks). Non-directive
comments may follow an HPF directive on the same source line.

Example 1.1 The following directive is HPF-conforming:
'HPF$ DISTRIBUTE (CYCLIC) :: PERIODIC_TABLE !one element at a time

Note that there is a trailing comment on the same source line. O

Example 1.2 This code is not HPF-conforming:

! *x* The following line is not HPF-conforming! *#**
REAL PERIODIC_TABLE(103); 'HPF$ DISTRIBUTE PERIODIC_TABLE(CYCLIC)

The HPF directive should not have any non-blank characters preceding it on the same
source line. The code may be corrected by splitting it onto two source lines:

REAL PERIODIC_TABLE(103)
{EPF$ DISTRIBUTE PERIODIC_TABLE(CYCLIC)

Now the HPF directive is on its own source line. O

Example 1.3 This code is not HPF-conforming;:

! *** The following line is not HPF-conforming
'HPF$ DISTRIBUTE PERIODIC_TABLE(CYCLIC); DISTRIBUTE LOG_TABLE(BLOCK)

HPF currently does not allow more than one directive to appear in a single source line.
The code may be corrected by splitting it onto two source lines:

'HPF$ DISTRIBUTE PERIODIC_TABLE(CYCLIC)
'HPF$ DISTRIBUTE LOG_TABLE(BLOCK)

Now each HPF directive is on its own source line. O

HPF directive lines must not appear within a continued Fortran statement. This would
violate the idea that the directive might later become a regular Fortran statement. HPF
directives can be continued. Other comments may be mixed within the continued HPF
directive, but other Fortran statements may not appear between the lines of a continued
directive. To continue an HPF directive, the rules of the surrounding source form are
applied, but the HPF directive-origin must appear on each line of the continued directive.
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Example 1.4 An HPF directive continuation in free source form:

'HPF$ ALIGN ANTIDISESTABLISHMENTARIANISM(I,J,K) &
1HPF$ WITH ORNITHORHYNCHUS_ANATINUS(J,K,I)

The directive origin must appear on each source line. O

Example 1.5 An HPF directive continuation in fixed source form:

'HPF$ ALIGN ANTIDISESTABLISHMENTARIANISM(I,J,K)
IHPF$*WITH ORNITHORHYNCHUS_ANATINUS(J,K,I)

Observe that column 6 must be blank or zero on the first source line of the directive and
not blank or zero on continuation lines. O

Example 1.6 This HPF directive continuation is “universal”; it works properly both in
fixed source form and in free source form (see Section 3.10.4.

'HPF$ ALIGN ANTIDISESTABLISHMENTARIANISM(I,J,K) &
'HPF$&WITH ORNITHORHYNCHUS_ANATINUS(J,K,I)

Note that the “&” in the first line is in column 73. O

Example 1.7 This HPF directive has an embedded ordinary comment line, which is
acceptable to HPF.

'HPF$ ALIGN ANTIDISESTABLISHMENTARIANISM(I,J,K) &
! The duckbill platypus is not usually so political.
'HPF$&WITH ORNITHORHYNCHUS_ANATINUS(J,K,I)

However, it would not be acceptable to put another directive or an ordinary Fortran
statement between the lines of a directive:

! #**x This code is not HPF-conforming! **¥*

{HPF$ ALIGN ANTIDISESTABLISHMENTARIANISM(I,J,K) &
LOGICAL PLATYPUS

'HPF$&WITH ORNITHORHYNCHUS_ANATINUS(J,K,I)

Such code is Fortran-conforming, but not HPF-conforming. O
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1.7 For Further Reading

Although we have tried to be thorough, there are some topics relevant to HPF that are
outside the scope of this book. This includes the HPF base documents, the definitions
of precursors to HPF, and deeper discussions of Fortran 90. The purpose of this chapter
is to give the interested reader some entry points into that literature.

The “official” definition of HPF can be found in the High Performance Fortran Lan-
guage Specification, version 1.0 final [14]. The document is available in an issue of
Scientific Programming, and as a technical report from Rice University. Our book is
derived from this material, explaining it in a more tutorial manner, adding examples,
and giving advice on the use of features. The High Performance Fortran Journal of
Development [15], also available from the same sources, contains a number of proposals
that were not adopted into HPF, version 1.0. Some of these may be considered in future
revisions of HPF. We have not used any material from the Journal of Development in
this book.

Although we have included some material on Fortran 90, we have not covered it in
depth, due in part to the size of the language. The official definition of the language is
Fortran 90 [17], a standard available from ISO and ANSI. Several other reference and
text books covering Fortran 90 are also available. We particularly recommend Fortran 90
Ezplained by Michael Metcalf and John Reid [23], the Fortran 90 Handbook by Jeanne
Adams, et al. [1}, and Programmer’s Guide to Fortran 90 by Walter Brainerd, Charles
Goldberg and Jeanne Adams [9] for these purposes.

It is probably impossible to trace all the influences on the development of HPF. Any
list of major technical influences would have to include:

e Parallelizing compilers [31, 33).

o Compiler techniques for array operations [2, 12, 18].

e Data distribution languages, including Adapt [22], Fortran D [16], Fortran 90D [32],
Kali [21], and Vienna Fortran [10].

e Computer vendor implementations, including Connection Machine Fortran [27] and
the Cray MPP programming model [25].

This list does not begin to suggest the general work on parallel computation that fed
into HPF and these languages. Solving Problems on Concurrent Processors [13] by Fox
et al. contains a wealth of material on this subject, although presented in a very different
framework than this book.

Several papers on HPF have appeared in various journals and conferences, ranging
from progress reports while the language was being defined to detailed critiques of the
final result. Koelbel [19], Loveman [20], and Steele [26] surveyed the language at various
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times during its development. Chapman, Mehrotra, and Zima [11] were more critical.
This list is by no means complete.

HPFF is an ongoing activity. In particular, this book is appearing just as a new series
of working group meetings is being organized. If you would like to observe or participate
in these discussions, send electronic mail with the line

add hpff

to hpff-request@cs.rice. edu. This will put you on the main mailing list. There are
also a number of more specialized lists for detailed discussions.

Documents related to HPF are available for anonymous FTP from titan.cs.rice.edu
in the directory /public/HPFF. The latest language specification is stored in several
formats in the subdirectory draft. See the README file in the main directory for the
current list of available files.
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2 Programming Model

Every programming language assumes an underlying programming model that explains
how a program will be executed. The purpose of the model is to provide a framework
for designing and analyzing programs; in particular, a model usually tells what programs
mean and gives a rough idea of the execution speed of a program. FORTRAN 77, for
example, assumes that statements are executed in the order they were written and that
memory is arranged in a linear array. Therefore, a programmer knows that the loop

X =0.0

DO I =1, 10000
X =X+ ACD)

END DO

will add up the first 10,000 elements of array A and take about 10,000 times the time
of a floating point addition. This chapter gives the basic programming model for High
Performance Fortran. Mostly, we will concentrate on the performance aspects of the
programming model here, leaving the details of the meaning of constructs to be defined
in other chapters. First, however, we make a short digression to describe modern parallel
architectures.

2.1 Parallel Machines

Figure 2.1 shows a block diagram of a modern parallel computer that serves as the basis
for the HPF programming model. The major features of this machine are:

e Processors that can operate in parallel, that is, at the same time.
o Memory modules that are associated with the processors.
e An interconnection network that allows processors to cooperate and share data.

This is obviously not a complete model—for one thing, it does not represent any input
or output devices—but it does cover the machine features that HPF tries to describe.

The distinguishing feature of a parallel machine is that it can have many processors
active at once. This is called parallel computation, and is how the machine gets its speed.
If one processor can perform a million computations per second, then 100 processors can
(theoretically) execute a hundred million computations in the same time. The machine’s
manufacturer will usually report this number as the machine’s peak performance. (Users
often call it the machine’s “speed of light,” since the computer will never go faster than the
peak performance.) In practice, various overheads will usually prevent the machine from
achieving such perfect speedup. The actual performance considering these overheads is
often called the machine’s sustained performance.
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P = Processor M = Memory

P@ PI(M)] o o o o Pl (W)

Synchronization & Communications

Figure 2.1
A parallel machine

In most parallel machines, each processor has an area of memory that it can access
faster than other memory on the machine. We call this the processor’s local memory,
and other memory areas its remote memory. Because the local memory can be accessed
faster than remote memory, an efficient program on the machine will use local memory as
much as possible. Some machines have several levels of local memory, forming a memory
hierarchy. HPF considers only one level of this hierarchy directly.

A parallel machine must provide a way for the processors to coordinate their activities.
There has to be a way for one processor to get data from another; doing this is called
communication. Similarly, if a processor cannot proceed without a result from another
processor it must wait, an operation called synchronization. Both communication and
synchronization are overheads that can keep a parallel machine from reaching its peak
performance. Efficient parallel programs avoid them when it is possible.

Some examples may help to explain the HPF model.

Example 2.1 One common class of parallel machines is the MIMD message-passing
architecture. MIMD stands for “Multiple Instruction stream, Multiple Data stream,”
meaning that the processors can all be executing different instructions at the same time.
Every processor in a message-passing machine is connected to a local memory, which
no other processor can access directly. To share data (and to synchronize with each
other) processors must send and receive messages. These messages travel through an
interconnection network which ensures, either in hardware or software, that all the data
arrives intact. Machines in this class include the Intel, Meiko, and nCUBE product lines.
In addition, the Thinking Machines CM-5 belongs to this class, and some workstation
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vendors such as Digital, Hewlett Packard, and IBM provide products that allow a network
of workstations to be used as a single machine in this way. For this class of machines,
the correspondence to the model in Figure 2.1 is very clear. Communication through
the network in these machines is much more expensive than computation on a processor
(often by two or three orders of magnitude); thus, programs must minimize the volume
of communication. Also, a message may have a large start-up cost; therefore, it often
pays to combine two short messages into one large one. O

Example 2.2 Another common type of parallel machine is the MIMD shared-memory
class. Like the MIMD message-passing machines, processors on these machines can
execute different instructions in parallel. Unlike those machines, at least part of the
memory is shared between processors; thus, data can be shared without explicit messages.
Engineering constraints, however, make it difficult to sustain enough memory bandwidth
to keep all the processors busy. One solution to this problem is to add caches to the
processors. When a processor references a location, the hardware delivers the data to
the processor’s cache if it is not already there; if it is there, then access is faster because
it is local. In terms of the HPF model, we consider the processor caches to correspond
to the memory modules of Figure 2.1. The hardware connections used to route the data
correspond to the communication and synchronization network there. Machines made
by Kendall Square Research fall into this category, as did Alliant and BBN machines
before those companies left the market. Machines made by Cray Research and Tera
Computer also fall into the shared-memory category, although they use ether mechanisms
for avoiding the memory bandwidth problem. In these machines the communications
time is much less than in message-passing machines (although the local access time is
typically higher). Still, efficient programs here will tend to make local accesses as much
as possible. O

Example 2.3 A final class of parallel machine is the SIMD architecture. SIMD stands
for “Single Instruction stream, Multiple Data stream,” meaning that all processors must
execute exactly the same instruction at the same time. (Processors may be turned off
temporarily, if not all are required for a computation.) Each processor has its own mem-
ory, and can communicate with other processors using special instructions. Typically,
this provides finer-grain communication than in the MIMD message-passing machine.
SIMD machines are often, however, sensitive to the pattern of data movement, since
routing must be resolved at a lew level. As with MIMD message-passing machines, the
correspondence with Figure 2.1 is clear. Machines made by MasPar are good exam-
ples of this class, as is the Thinking Machines CM-2. In SIMD machines, much of the
program complexity comes from ensuring that all processors execute precisely the same
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instructions. Also, because the performance is tied to the communications patterns it is
important to optimize the methods for sharing data. O

The conclusion to draw from these examples is that many current parallel machines
reward programmers for keeping many processors busy working on local data. HPF
provides ways to express both the parallelism in a program and the locality of data at
a relatively high level. The next two sections give more detail regarding HPF’s parallel
and locality features.

2.2 Parallel Computation

If HPF tied itself closely to any one style of parallelism, then programs would not be
easily portable to other machines. Instead, HPF expresses parallelism at a more ab-
stract level that can be efficiently implemented on many machines. Besides portability,
this abstraction mechanism has the advantage that it is a natural framework for many
programs.

Several varieties of parallelism appear in scientific and engineering applications:

e Data parallelism, in which operations are applied to many elements of an array (or
other data structure). An example of this would be adding the corresponding elements
of two arrays to produce a third array.

o Functional parallelism (sometimes called task parallelism), in which conceptually dif-
ferent operations are performed at the same time. An example of this would be a series
of filters used in image processing.

e Master-slave parallelism, in which one process assigns subtasks to other processes. An
example of this would be a numerical integration program that decomposed the problem
domain in a master process, leaving the work of integrating the resulting subdomains to
a set of slave processes.

All these types of parallelism, and others as well, are useful in certain applications. It
is difficult, however, to support all of them in the same language. HPF concentrates
primarily on data parallel computations, which is a widely useful class. To provide some
access to other types of parallelism, HPF also defines extrinsic procedures as an “escape
hatch” into other programming paradigms. Section 2.2.1 below introduces HPF’s data
parallel constructs, while Section 2.2.2 describes the extrinsic procedure interface.
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Operation type Example P?,rallel Number of

Time Processors
Elemental SIN(A(1:X)) o(1) O(N)
Array Manipulation CSHIFT(A(1:N),K) O(1) O(N)
Array Construction SPREAD (X, NCOPIES=N) 0(1) O(N)
Array Reduction SUM(A(1:X)) O(log N) O(N)
Prefix or Suffix SUM_PREFIX(A(1:N)) O(log N) O(N)
Sorting GRADE_UP(A(1:N)) O(logN) O(N)

Table 2.1

Theoretical performance of array intrinsic and HPF library operations

2.2.1 Data Parallel Operations
HPF can express data parallelism in several ways:

1. Fortran 90 array expressions and assignment (including masked assignment in the
WHERE statement).

2. Array intrinsics defined in Fortran 90.

3. The FORALL statement.

4. The INDEPENDENT assertion on DO and FORALL.

5. Array library functions defined in the HPF library.

Fortran 90 features are discussed in detail in Chapter 3; FORALL and INDEPENDENT are
discussed in Chapter 6; the HPF library is discussed in Chapter 7.

The granularity of parallelism in a construct is the amount of work that may be
performed in each parallel unit. Data parallel constructs generally have rather fine gran-
ularity. For example, array expressions define an independent computation for each
element of the result; the same can be said for every index value in a FORALL statement.
Similarly, the iterations of an INDEPENDENT loop can also be thought of as potentially
parallel. Array intrinsics and HPF library operations have degrees of parallelism that
vary by the type of intrinsic. Table 2.1 shows the best performance for these opera-
tions on a Concurrent-Read, Exclusive-Write Parallel Random Access Memory (CREW
PRAM) machine (one of several popular theoretical models). It should be noted that
the constant factors hidden in the “big O” notation are quite large for sorting; it may be
more realistic to consider sorting to be O(log? N') on O(N) processors.

Regardless of how the data parallelism is expressed, the easiest way for a user to un-
derstand what is happening is to think of a single stream of control. Operations are
executed in order, as defined by the usual DO and IF statements. When the program
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Figure 2.2

Distribution of three length-1,000,000 arrays onto 1,000,000 processors in a manner ideal for
elementwise computation

reaches a data parallel construct, many operations can be executed at once. The program
temporarily forks into many fine-grain tasks, each of which performs one parallel opera-
tion. When all the operations are complete, the tasks rejoin and the program continues
its execution. When parallel constructs are nested, the fork-and-join process happens
recursively. Because all processors are executing the same program during this process,
it is sometimes referred to as the SPMD (“Single Program Multiple Data”) model.!
Note that this is a conceptual model for how the program behaves and may not reflect
how HPF is actually implemented on a particular machine. In particular, much of the
fine-grain synchronization implied above can be eliminated in typical programs by using
compiler analysis.

Example 2.4 Suppose that the arrays A, B, and C each have one million elements. The
array assignment

C=A+8B

represents one million individual, independent assignments that could be carried out
simultaneously if only one had a million processors, assuming that processor P; were to
contain array elements A(J), B(J), and C(J) in its memory (see Figure 2.2).

The same computation might also be expressed using a FORALL statement:

FORALL (J = 1:1000000) C(J) = A(J) + B(J)

The FORALL statement has the same semantics as an array assignment and is parallel for
the same reason.

Yet another way to express the computation is a DO loop with an INDEPENDENT direc-
tive:

1Chapter 8 discusses a somewhat different “SPMD"” model, in which communication is explicit and
there are exactly as many tasks as processors. Unfortunately, the terminology of this field is still in flux,
creating confusion even among co-authors.
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'HPF$ INDEPENDENT
DO J = 1, 1000000
c(J3) = AQJ) + B(J)
END DO

Here, INDEPENDENT is an assertion that it is safe to execute all iterations of the loop in
parallel. (Some compilers would detect the potential parallelism of this loop without the
INDEPENDENT directive.)

All three of these program fragments express the same computation: one million in-
dependent and potentially concurrent assignments. O

For many programs and paralle]l machines, the extent of data parallelism is much
larger than the machine size. In Example 2.4, for example, no current machine has one
million processors. When this happens, the compiler must assign some (perhaps many)
conceptually parallel operations onto the same processor. Considering parallelism only,
the optimal assignment of tasks to processors is any pattern that puts the same amount of
work on each processor. Assigning tasks in this way is called load balancing. For example,
if the computations in Example 2.4 were executed on 100 processors, one load-balanced
scheme would be to assign each processor a contiguous block of 10,000 elements; another
would be to assign each processor every 100" element. Section 2.4 examines some of the
complications that arise when communication must also be taken into account. For now,
it is enough to observe that perfect load balancing is not always possible. For example,
one million is not evenly divisible by 128, so executing the computations in Example 2.4
would give some processors at least 7813 elements to compute and some 7812 elements (or
less). This effect is more important on smaller problems; for example, 500 computations
on 128 processors leaves 4 elements on some processors and 3 on others, a 25% difference.

2.2.2 Extrinsic Procedures

Although data parallelism is important for many problems, it is not the only type of
parallel execution. Moreover, even data parallel programs may benefit from tuning in the
target machine’s “native language.” The EXTRINSIC mechanism of Chapter 8 handles
Just such cases by providing an “escape hatch” to other programming paradigms. In
particular, EXTRINSIC(HPF_LOCAL) lets the programmer write a subroutine as a “node
program.” That is, the EXTRINSIC(HPF LOCAL) routine consists of code that will be
executed essentially without change on every processor, in much the same way that many
task parallel systems are programmed. This allows the programmer great control over
what will happen on the physical machine, which in turn allows highly efficient machine-
specific code to be written. On the other hand, it also means that the programmer must
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specify the details of data movement and synchronization, making the program harder
to read and write.

The execution model for EXTRINSIC(HPF_LOCAL) is closer to the physical machine than
the data parallel model. Essentially, all processors call the EXTRINSIC routine together.
Once inside the routine, however, each processor is totally independent of the others.
There is no coordination between processors unless the programmer explicitly puts it in.
Similarly, each processor has direct access only to its own data, rather than access to
all of memory. The EXTRINSIC call returns when all the processors have finished their
executions.

EXTRINSICroutines are not properly part of HPF—they are routines written in a differ-
ent programming paradigm, and possibly in a completely different language. Therefore,
we will not discuss them further in this chapter. However, these routines are very im-
portant to have in practice, and their interface forms a vital part of HPF.

2.3 Communication

While parallelism speeds programs up, moving data between processors slows them down.
The exact cost of this communication is machine-dependent, as is its most natural expres-
sion on a particular machine. HPF takes an abstract view of this sort of communication.

The basic HPF data model is simple. All data is stored in a global name space, which
means that all processors “see” the same set of variables. In particular, there are no
“private” variables visible to only a subset of the processors. Array declarations declare
the entire size of an array, not the portion on a single processor as in many task parallel
languages. The data mapping part of HPF (defined in Chapter 4) describes how a variable
can be divided among processors according to regular patterns.

Communication must occur when two data items are referenced together but are not
stored on the same processor. The basic idea is to apply the definitions of the HPF data
mapping directives to compute the home processor of each array element involved. Since
we have not given those definitions yet, we will present this through examples rather
than through formal definitions; we leave adding rigor to these examples as an exercise
for the reader.

The communication requirement for an operation with two inputs is clear from the
above; communication occurs if the inputs are mapped to different processors, and not
otherwise. Larger operations build their communication requirements up from their
parts. For the moment, we will present a simple model of this. Section 2.4 discuss some
more complex cases.
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We assume that the total communication for a program fragment is the sum of the
communications that are needed for its parts. Moreover, in this section we will assume
that every scalar expression and assignment to a scalar location (i.e., an assignment to
one array element, rather than to an array section) is executed on only one processor.
If one statement references several distributed array elements, then one element (such
as the left-hand side in an assignment) will be local, and the communications can be
computed relative to that reference. Iterative constructs like DO loops generate the sum
of the inherent communication for nested statements. The same is true of data paral-
lel statements like FORALL and array assignment; the communication is the sum of the
communications requirements for the individual elements. Perhaps less obviously, con-
ditional statements like the IF and CASE constructs require at least the communication
needed by the branch that is taken.

We will start with a series of examples involving FORALL statements and then gen-
eralize. The importance of the FORALL is not its parallelism (see Example 2.16 for an
explanation of why); rather, the FORALL is an easy way to specify operations on many
array elements at once. Our purpose here is to illustrate the effect of data distribution
specifications on communication requirements, not to suggest that this is the precise com-
piler implementation. The examples in this section use the declarations in Figure 2.3.
The lines starting with “'HPF$” are the HPF directives for mapping the arrays to pro-
cessors. In this case, there are four processors named PROCS(1), PROCS(2), PROCS(3),
and PROCS(4). Figure 2.4 shows how the arrays are mapped among the processors. The
DISTRIBUTE directives completely define the mappings for arrays A, B, C, D, and INDX.
The ALIGN directive does not specify the complete mapping of arrays X and Y, but does
indicate their relative alignment. It causes X(I) and Y(I+1) to be stored on the same
processor for all values of I, regardless of the actual distribution chosen by the compiler
for the arrays. Figure 2.4 shows this as pairs of elements grouped in imaginary processors
PROCS?. Elements Y(0) and Y(1) are not aligned with any element of X and therefore
occupy processors alone.

Example 2.5 Consider the following code:
FORALL (I = 1:16) A(I) = B(I)

The identical distribution of A and B ensures that for all values of I, A(I) and B(I) are
mapped to the same processor. Therefore, this statement requires not communication.
O

Example 2.6 Consider the following code:

FORALL (I = 1:16) A(I) = c(I)
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REAL, DIMENSION(16) : A, B, C
REAL, DIMENSION(32) ¢ D
REAL, DIMENSION(8) X
REAL, DIMENSION(O:9) Y
INTEGER, DIMENSION(16) :: INX
'HPF$ PROCESSORS, DIMENSION(4) :: PROC
IHPF$ DISTRIBUTE (BLOCK) ONTO PROCS : A, B, D, INX

'HPF$ DISTRIBUTE (CYCLIC) ONTO PROCS :: C
'HPF$ ALIGN (I) WITH Y(I+1) 0 X

Figure 2.3
HPF data mapping declarations

PROCS (1) PROCS (2) PROCS (3) PROCS (4)
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X
y
Figure 2.4

Data mappings from Figure 2.3

Copyrighted Material



Programming Model 33

The communication requirements here are very different from Example 2.5 due to the
different distributions of A and C. The first row of boxes in Figure 2.5 shows the data
movement needed for all values of I. Small squares represent array elements; larger gray
boxes represent the processors. Each arrow represents the assignment for one I value; if
the arrow crosses from one gray box into another, then communication is needed for that
value. The figure is difficult to read because of all the communicated elements; three-
fourths of the elements are not aligned with their “partners.” The total communication
i1s 12 elements; moreover, every processor must receive data from every other processor.
(]

Example 2.7 Consider the following code:
FORALL (I = 1:15) A(I) = B(I+1)

The A(I) and B(I) references are on the same processor for all but three of the possible
values of I. The exceptions to this are I=4#K for K=1, 2, or 3 (when A(I) is on PROCS(K)
and A(I+1) is on PROCS(K+1)). The second row of Figure 2.5 shows the resulting shift
communication pattern. Only one boundary element on each processor (except the end
processor) needs to be communicated, giving a total of 3 communicated elements. Each
processor receives data from at most one other processor. O

Example 2.8 Consider the following code:
A(I) = B(2*I-1)

As the third row of Figure 2.5 shows, the strided access to B means that each active
processor potentially receives data from two others. The total communications load is
12 elements. O

Example 2.9 Consider the following code:
FORALL (I = 1:16) A(I) = D(I)

The array sizes of A and D are different. This size difference in turn makes the data
mappings different, although both are described as BLOCK. The effect on communication
is shown in the fourth row of boxes in Figure 2.5. The total communications requirement
is 12 elements, with each processor receiving data from at most one other processor. A
processor must send values to at most two other processors. O

Example 2.10 Consider the following code:

FORALL (I = 1:16) A(I) = D(2*I-1)
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Communications patterns for some example assignments
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This assignment shows how different distributions may be used together without causing
communication: The fifth row of Figure 2.5 shows the reference pattern for the assign-
ment; note that no arrow crosses from one processor to another. It is easy to see why—the
strided entry “cancels out” the difference in array sizes. O

Example 2.11 Consider the following code:
FORALL (I = 1:15) C(I) = C(I+1)

While superficially similar to Example 2.7, this code has very different communication
behavior because the distribution of C is CYCLIC rather than BLOCK. This distribution
maps the references to C(I) and C(I+1) to different processors for any value of I. The
sixth row of Figure 2.5 shows that the resulting communications pattern moves 15 array
elements. Each processor receives data from one other processor in a shift pattern (with
wraparound on the ends). O

Example 2.12 The following code requires no communication:
FORALL (I = 1:8) X(I) = Y(I+1)

In this case, the relative alignment of the two arrays matches the assignment statement
for any actual distribution of the arrays. O

Example 2.13 The following code may require communication:
FORALL (I = 1:8) X(I) = Y(I)

The only information available in this example is that X(I) and Y(I+1) are on the
same processor; this has no logical consequences for the relationship between X(I) and
Y(I). The seventh row of Figure 2.5 shows this as communication between abstract
processors. Since there are more abstract processors than physical processors, some of
these communications may actually be local references. Whether this actually happens
is very machine- and compiler-dependent. O

Example 2.14 The following code also has very limited information regarding its com-
munication requirements.

FORALL (I = 1:16) A(I) = B(INX(I))

Clearly, A(I) and INX(I) are mapped together. Without knowledge of the values stored
in INX, however, the relation between A(I) and B(INX(I)) is unknown. Therefore, it
is impossible to say what the communications requirements are (except that a most 16
elements are sent and received). O
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A few generalizations are worth making.

Accessing arrays with different mappings will generally require communication even
for apparently simple operations. We saw this in Examples 2.6 and 2.9. In a simple
assignment between a BLOCK-distributed and a CYCLIC-distributed array, if each array
has n elements on p processors, then corresponding the elements are located on the same
processor if and only if |(i — 1)/(n/p)] = (i — 1) mod p. (This can be seen by inspecting
the definitions of BLOCK and CYCLIC in Chapter 4.) Such a coincidence happens 1/p of
the time, which is not often on large machines. Similar effects can occur for other com-
binations of distributions if the block sizes of the mappings are different. It is sometimes
possible to construct expressions to avoid this communication, as in Example 2.10, but
this is rather difficult for the programmer to write (and for the compiler to unravel).

Shift operations like Examples 2.7 and 2.11 are common in practice. Communicating
boundary elements as in Example 2.7 is the general case for BLOCK distributions and
small shift distances. (Shifting by a large distance—more than the number of elements
on a processor—requires communication for every element, however.) Similarly, com-
municating every element in a CYCLIC-distributed array is also the common case. (The
exception to this is shifting by a multiple of the number of processors, which avoids all
communication.) These characteristics make BLOCK a good choice for algorithms that
perform many operations involving neighboring array elements. CYCLIC distribution,
however, may provide better load balance in some situations—see Example 2.19.

Strided references as in Examples 2.8 and 2.10 produce more complications for the
general case. For BLOCK distributions, if the reference stride is k£ then a processor may
require data from k + 1 others. (The number is £ + 1 rather than k because boundaries
may not match evenly.) On most machines, this is more expensive than communicating
with one other processor as in Example 2.7. The compiler can, however, schedule this
data movement at compile-time. The situation with a CYCLIC distribution is similar, but
the communications pattern is quite different.

It is difficult or impossible to make general statements about arbitrary references like
Examples 2.12 through 2.14. This will tend to produce slower code, since the techniques
for handling such cases must be more general. We advise giving the compiler as much
information as possible using the HPF directives; this tends to make the programs more
efficient and portable.

Example 2.15 The above FORALL statements could be converted to array assignments
without changing the communications requirements. For example,

A(1:156) = B(2:16)

is equivalent to Example 2.7. O
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Example 2.16 Similarly, the communication needs of Examples 2.5 through 2.14 would
not change if the FORALL statements were changed to DO loops. For example,

DOI=1, 15
A(I) = B(I+1)
END DO

has the same communications requirements as Example 2.7. In general, converting a
FORALL statement to a DO loop changes its meaning and inherent parallelism, however.
This is an important point—the communication requirements of a program may be com-
pletely independent of its parallelism. O

Example 2.17 This loop must communicate between 0 and 12 elements, depending on
the original values in A.

'HPF$ INDEPENDENT

DOI =1, 16
IF (A(I) < 0.0) THEN
A(I) = B(I)
ELSE IF (A(I) > 0.0) THEN
A(I) = ¢c(I)
END IF
END DO

(Compare with Examples 2.5 and 2.6.) Negative elements of A do not require communi-
cation; most positive elements do. O

A few other complex features deserve mention. Some array intrinsics have inherent
communication costs as well. For example, consider the statements:

X = SUM(A(1:16)) ! Intrinsic 1
A(1:16) = SPREAD(B(1), NCOPIES=16) ! Intrinsic 2
A(1:16) = CSHIFT(A(1:16), 1) ! Intrinsic 3

In general, the inherent communication derives from the mathematical definition of the
function. For example, the inherent communication for computing SUM is one element
for each processor storing part of the operand, minus one. (Further communication may
be needed to store the result.) The optimal communication pattern is machine-specific.
Similar remarks apply to any accumulation operation. Prefix and suffix operations may
require a larger volume based on the distribution. The SPREAD intrinsic above requires a
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broadcast from PROCS(1) to all processors, which may take advantage of available hard-
ware. The CSHIFT operations produce a shift communication pattern (with wraparound).
This list of examples illustrating array intrinsics is not meant to be exhaustive.

A REALIGN directive (see Chapter 4) may change the location of every element of
the array. This will cause communication of all elements that change their home pro-
cessor; in some compilation schemes, data will also be moved to new locations on the
same processor. The communication volume is the same as an array assignment from
an array with the original alignment to another array with the new alignment. The
REDISTRIBUTE directive changes the distribution for every array aligned to the operand
of the REDISTRIBUTE. Therefore, its cost is similar to the cost of a REALIGN on many
arrays simultaneously. Compiler analysis may sometimes detect that data movement is
not needed because an array has no values that could be accessed; such analysis and the
resulting optimizations are beyond the scope of this book.

2.4 Putting It All Together

The purpose of this section is to show how parallelism and communication combine to
determine the total performance of an HPF program. As we move from simple examples
to more complex ones, it will become clear that our model does not describe all relevant
characteristics of HPF execution. The performance of an HPF program will depend
on the programming model, compiler design, target machine characteristics, and other
factors. This does not mean that HPF is not a useful language; it simply means that
programmers have to remember their computing environment,
A simple model for the total computation time of a parallel program is

Ttotal = Tpar/Pac!we + Tserzal + Tcomm (241)
where:

o Tiotai is the total execution time.

o Tp,r 1s the total work that can be executed in parallel.

® P tiwe is the number of (physical) processors that are active, that is, actually execut-
ing the work in Tpq;.

e Tyeria is the total work that is done serially.

® T omm is the cost of communications.

This formula assumes that all parallel parts of the program have the same number of
active processors; this is true of our examples, but not for most large programs. When
a program has several parallel phases, then a better model would define several Tp,,,
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and Pgetive,» and the total parallel time would be their sum. If a computation cannot be
load balanced, then the term Tpar/Pactive should be replaced with the largest time on
any processor. One can think of this as rounding the division result upwards (although
the real reason for the load imbalance may be more complex).

Example 2.18 Consider this bit of prototypical “stencil code”:

REAL, ARRAY(16,16) :: X, Y

FORALL (J=2:15, K=2:15)
Y(J,K) = (X(J,K)+X(J-1,K)+X(J+1,K)+X(J,K-1)+X(J,K+1))/5.0
END FORALL

Note that this code accesses all elements of X but updates only the interior elements of
Y.

If we have four processors P;, P3, P3, and P4, there are a number of ways we might
assign the elements of X to processors; some of these are illustrated in Figure 2.6, along
with the HPF directives that produce them. We will assume that the Y array is assigned
in the same way as X, and that each element of Y is computed on the processor to which
it 1s assigned.

One obvious approach might be to take the elements of X in the usual Fortran column-
major array element order, divide them into four equal groups, and assign one group to
each processor. The result is that each processor holds four adjacent columns of X—see
Figure 2.6(a)). With this organization, processors P and P3 each must compute 56
elements of Y (a 14 x 4 subarray of Y), while processors P; and P4 need compute only
42 elements of Y (a 14 x 3 subarray of Y). We can see already that while this distribution
of array elements equalizes the memory requirements of the four processors, it does not
equalize the computational load. Moreover, processor Py must exchange 14 elements of
X with processor P; and another 14 elements with processor P3. Processor P3 has the
same computation and communication load as P5. Processors P; and P4 have less work
to do, so the overall completion time will be dictated by the time required by processors
P and P3. So the computational load (Tpar/Pactive) is 56 element-computations and
the communications overhead (Tcomm) 1s 28 element-exchanges.

Alternatively, the processors might be organized in a 2 x 2 square, with each processor
holding an 8 x 8 subarray of X—see Figure 2.6(b). With this organization, each processor
must compute 49 elements of Y, that is, a 7 x 7 subarray of Y. For example, P; must
compute Y(2:8,2:8). Each processor can compute 36 elements of Y (the 6 x 6 interior
of the 8 x 8 subarray) without requiring elements of X from another processor; but to
compute the other 13 elements of Y it must obtain 7 elements of X from each of two other
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(c) DISTRIBUTE X(#, CYCLIC) (d) DISTRIBUTE X(CYCLIC, CYCLIC)

Figure 2.6
Various distributions of a 16 X 16 array onto four processors
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processors. So the computational requirement per processor (T'par/P gctive) is 49 element-
computations and the communications overhead (T ¢omm) is 14 element-exchanges. This
distribution of data onto processors is a notable improvement because it balances the
computational load and reduces the communications overhead.

The distributions shown in Figures 2.6(a) and 2.6(b) are examples of block distribu-
tions: each processor contains a contiguous subarray of the specified array. Figure 2.6(c)
illustrates a cyclic distribution in which columns of an array are distributed onto four
processors so that each processor, starting from a different offset, contains every fourth
column. Unfortunately, this happens to produce the same computational imbalance as
the block distribution of Figure 2.6(a) and furthermore has a higher communications
overhead.

Figure 2.6(d) shows a distribution that is cyclic in both dimensions onto four processors
arranged in a 2 x 2 square. This distribution, like the two-dimensional block distribution
shown in Figure 2.6(b), would balance the computational load evenly for our stencil
example. Unfortunately, the communications overhead would be far greater: for every
array element, all four nearest neighbors reside in other processors! O

Example 2.19 Lest the last example suggest that cyclic distributions are inefficient, we
present a different algorithm where they are useful. Consider this simple code for LU
decomposition by Gaussian elimination:

REAL X(16,16)

DOI = 1,15
FORALL (J = I+1:16)
X(J,I) = X(J,I) / X(I,I)
FORALL (K = I+1:16)
X(J,K) = X(J,K) - X(J,I)*X(I,K)
END FORALL
END FORALL
END DO

Incrementing the outer DO loop’s index must be done sequentially, creating a small T'serial
overhead. Also, all the elements assigned in the X(J,I) = ... statement are located on
the same processor in the one-dimensional mappings (Figures 2.6(a) and 2.6(c)); for the
purposes of this example, we will assume these are also serial overhead. The parallel
computation estimates below do not include this overhead.

For each value of I, the inner FORALL construct carries out (16-I)#**2 assignments,
potentially in parallel. Successive iterations of the DO loop update smaller and smaller
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second iteration
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Regions of an array updated during successive iterations of LU-decomposition

Figure 2.7
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regions of the array X, as illustrated in Figure 2.7. With the assignment shown in Fig-
ure 2.6(a), after the first eight iterations none of the elements assigned to processors P;
and P, will be updated again. Considering the load imbalance, the parallel computation
time (T par/Pactive) for all the inner FORALL index values is 470 element updates. The
situation is even worse for the two-dimensional block mapping (Figure 2.6(b)): after the
first eight iterations the elements of X to be updated all reside in one processor, giving
T par/ P active = 652. The cyclic distributions keep the computational load approximately
balanced across all the processors over the entire course of the computation; at every
stage, the busiest processor has at most one more column to compute than the most idle.
Figure 2.6(c) has a computation load of 356 element updates, taking these small load
imbalances into account; Figure 2.6(d) improves this to 344 element updates.

The communications overheads for the different mappings do not depend on whether a
block or cyclic mapping is used; instead, they only depend on the number of dimensions
that are partitioned. In Figures 2.6(a) and (c), the references to X(I,I) and X(J,K)
will cause communication. The total number of elements sent is 120, with most of
those elements received by more than one processor. For the two-dimensional mappings
(Figures 2.6(b) and (d)), the reference X(J,I) also causes communication, leading to a
T comm of 225. Because there are so few processors, each element is received only once;
in general, the elements would be sent to all processors in a row, or all processors in a
column. O

We now turn to some complications that real programs (and compilers) may bring to
the model on page 2.4.1. The assumptions in Section 2.3 may overestimate the commu-
nication, particularly for good compilers. A major optimization on parallel machines is
to reduce the communication cost. This can be done in several ways. One way is to
avoid redundant communication—if a data value has been communicated once and has
not changed, then it can be reused without another trip through the communications
network. Reuse like this is common in sequences of statements. Another optimization is
to carefully choose the location for a computation, possibly splitting the computation of
one statement among several processors. Such optimizations are particularly useful for
array expressions. There are far too many other optimizations to discuss here. Instead,
we show two simple examples to give a flavor of how these work.

Example 2.20 Toillustrate removing redundant communication, consider the following
statements.

REAL, DIMENSION(1000) :: R, S, T
IHPF$ PROCESSORS, DIMENSION(10) :: PROCS
‘HPF$ DISTRIBUTE (CYCLIC) ONTO PROCS :: R, S, T
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R(I)

= S(I+2) ! Statement 1
S(I) = T(I+3) ! Statement 2
S(I+2) = 2 * R(I+2) ! Statement 3
T(I) = R(I+1) + S(I+2) + T(I+3) ! Statement 4

To simplify the discussion, assume that all four statements are executed on the processor
storing the array element on the left-hand side. (This is an optimal strategy for this
example, although not for all programs.) Statements 1 and 2 each require one array
element to be communicated for any value of I. Statement 3 requires no communication.
All the references in Statement 4 are on different processors. There is no redundancy to
be exploited in the first three statements. However, for Statement 4:

e Element R(I+1) needs communication, since it is not local and was not used earlier.
e Element S(I+2) needs communication, since Statement 3 overwrote the value com-
municated for Statement 1.

e Element T(I+3) does not need new communication, since it was used in Statement 2
and not changed since.

Thus, the minimum total communication in this program fragment is four array ele-
ments, rather than five as Section 2.3 suggests. O

Example 2.21 The reader may think that Example 2.20 was a lot of work for little
gain. However, the same reasoning can be applied to aggregate operations with greater
effect. Consider the following FORALL statement.

REAL, DIMENSION(1000) e U, v, W
'HPF$ PROCESSORS, DIMENSION(10) :: PROCS(10)
'HPF$ DISTRIBUTE (BLOCK) ONTO PROCS :: U, V, W

FORALL (K = 3:998)

U(K) = (U(K-1)*W(K-1) + U(K)*W(K) + U(K+1)*W(K+1)) / 3.0

V(K) = (W(K-2) + W(K-1) + W(K) + W(K+1) + W(K+2)) / 5.0

W(K) = (U(K-1)+U(K)+U(K+1)) * (W(K-1)+W(K)+W(K+1)) / 9.0
END FORALL

Here, the total communication per processor (except for PROCS(1) and PROCS(10))is 8
elements:

e Two elements for W(K-1) and W(K+1), used in all the assignments.
o Two elements for U(K-1) and U(K+1), used in the assignment to U.
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e Two elements for W(K-2) and U(K+2), used in the assignment to V.
e Two elements for U(K-1) and U(K+1), used in the assignment to W. (These cannot be
reused from the assignment to U, because they were overwritten there.)

Values of W are not overwritten due to the definition of the FORALL statement. If each
statement and each index value were treated separately, as in Section 2.5, then two
values of the FORALL indices (the first and last on each processor) would produce 6
communicated elements each, and two other index values (next to the ends) would need
1 communicated element. The grand total would therefore be 14 elements; optimization
has gained almost a factor of 2 in communication volume in this case. O

Example 2.22 To illustrate computation placement (or scheduling, as it is sometimes
called), consider the following code.

REAL, DIMENSION(100,100) :: X, Y, Z
'HPF$ DISTRIBUTE (BLOCK,#*) o X, Y, 2
X = TRANSPOSE(Y) + TRANSPOSE(Z) + X

A straightforward implementation would require two transposition (communication) op-
erations, one for each of Y and Z. The communication pattern is similar to the CYCLIC
to BLOCK conversion in Example 2.6. An optimizing compiler might algebraically rewrite
this as:

REAL, DIMENSION(100,100) :: X, Y, Z, T1
IHPF$ DISTRIBUTE (BLOCK,*) cr X, Y, Z, T1

T1 =Y+ 2Z
X = TRANSPOSE(T1) + X

with only one use of transposition, thus cutting the communication volume in half. O

Example 2.23 After all that minimization, it is almost embarrassing to note that some-
times it is better to send more data than is really needed. In Example 2.17, the cost of
checking which data needed to be communicated might be more than the communication
itself. In this case, a good compiler would communicate the entire contents of array C
even though some of that data was not used due to the IF. O

Equatioh 2.4.1 also allows some tradeoffs to be made. An extreme example is com-
pletely eliminating communication by putting all the data on a single processor and
executing the entire computation there. Of course, this eliminates all parallelism (not
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to mention that there may not be enough local memory on one processor). Unless the
communication cost T comm is very high, this is unlikely to be an advantage. There are,
however, several more interesting tradeoffs that an implementation can make:

e Add communication to distribute parallel work among more processors. T comm in-
creases, but Tpar/P active decreases.

e Perform some parallel operations redundantly to avoid communication. Tpar/Pactive
increases, but T .omm decreases.

e Partially parallelize the serial work, perhaps reducing the number of active processors.
T'seriar decreases, T'par /P active increases.

e In practice, parallelizing serial work often means adding communication. The tradeoff
may actually be T'seriar decreases, T pqr/ P gctive and T comm increase.

Note that all of these tradeoffs can also be run in reverse—for example, restricting par-
allelism (creating coarser-grain parallelism) decreases T comm and increases Tpar/ P active-
There are other tradeoffs one can attempt to make; we leave listing them as an exercise
for the reader. When faced with options like this, the correct choice is always to think
about the system(s) the code will be running on. All of the parameters in our equa-
tion are system-dependent, and whether some of the tradeoffs are legal depends on the
algorithm.

Example 2.24 Choosing an intermediate storage location is sometimes more complex
than Example 2.22 showed. Consider the following array assignment.

REAL, DIMENSION(1000) ::Q, R, S, T
INTEGER, DIMENSION(1000) :: IX

'HPF$ PROCESSORS, DIMENSION(10) :: PROCS

{HPF$ DISTRIBUTE (CYCLIC) ONTO PROCS :: Q, R, S, T, IX

Q = R(IX) + S(IX) + T(IX)
and the following implementation strategies:

e Evaluate each element of the right-hand side on the processor where it will be stored.
This strategy potentially requires fetching three values (the elements of R, S, and T) for
each element computed. It always uses the maximum parallelism of the machine.

¢ Evaluate each element of the right-hand side on the processor where the corresponding
elements of R(IX), S(IX), and T(IX) are stored. This potentially communicates one
result for each element computed. If the values of IX are evenly distributed, then it also
uses the maximum machine parallelism. But if IX(I)=1 for all I, then all the computation
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is done on one processor. (Similarly, if IX(I)=10*((I+9)/10), then PROCS(10) does all
the work, even though IX contains many different values.)

On the basis of communication only, the second strategy is 3 times better. Considering
parallelism as well, the picture is much cloudier. Minimizing the total cost is a very
machine- and input-dependent problem. O

Example 2.25 Some algorithms have inherent, input-independent conflicts between
computation and communication. For example, consider the code below.

REAL, DIMENSION(6,6) X, ¥
{HPF$ PROCESSORS, DIMENSION(3) :: PROCS
IHPF$ DISTRIBUTE (*,BLOCK) ONTO PROCS :: X, Y

D0OI=2, 6

X(I, :) = X(I, :) - X(I-1, :)=*Y(I, :)
END DO
DO J =2, 6

XC:y J) = XC:y J) - X(C:y J-1)#*YC(:, J)
END DO

Figure 2.8 shows how data flows in this problem.

In the DO I loop, there is no conflict; the array assignments are perfectly parallel and
there is no communication. The DO J loop also has a potential parallelism of N on each
iteration. However, all elements of X(:,J) and Y(:,J) are located on the same processor.
Therefore, exploitation of any of the potential parallelism will require scattering the data
to other processors. (This is independent of the communication required for the reference
to X(:,J-1).) There are several implementation strategies available for the DO J loop:

1. Execute the vector operations in the DO J loop sequentially. Since each processor
must wait for a vector of values from its neighbor, the entire loop runs serially. In terms
of Equation 2.4.1, Tpar = T'seriai. This is the simplest possible strategy, but it means
that the program will spend most of its time in sequential computation.

2. Transpose X and Y before the DO J loop, and transpose them again at the end. The
DO J loop can then be executed exactly as the DO I loop—that is, in parallel without
communication. This allows parallel updates of both the rows and columns of X, at the
cost of two all-to-all communication operations. It corresponds to increasing T ¢comm and
T por in order to eliminate T seriar- This strategy works well if the target system has a
fast transpose operation and enough memory to store the transposed arrays.
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DOTI =2, 6
proc(1) proc(2) proc(3)
DOJ =2, 6
proc(1) proc(2) proc(3)
11 1,2 1314 1516
2,1 ->|2,2 2324 2526
3,1 —>|3,2 3334 35136
4,1 ->|42 43 44 450{46
5113452 53354 5513456
6,1 462 631364 6,5 f-) 6,6
Figure 2.8

Dataflow in Example 2.25
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Figure 2.9
Pipelined execution for Example 2.25

3. Compute the results in row order on each processor, sending the last value to the next
processor as soon as it is ready. This strategy can produce a pipelined effect, as shown in
Figure 2.9. The communications volume is the same as method 1, but the data is sent in
smaller packets. This allows some parallelism, but parts of the algorithm execute serially.
In terms of our model, work has been moved from T'seriq1 to Tpar. This strategy works
best if the target system can sustain fine-grain communication and synchronization.

4. A variant of the last method is for each processor to compute a few rows before com-
municating the results. The effect is much the same as in Figure 2.9, except that the
pipeline startup is longer. However, on machines with a large communications startup
time (for example, MIMD message-passing machines) this reduces the number of com-
munication events, thus reducing overhead. In terms of our model, this reduces T comm
while increasing Tpar/Pactive. This is the strategy of choice for machines which cannot
handle fine-grain communication.

This list is not exhaustive. It should be obvious that the optimal implementation of
this algorithm depends very much on the target machine. It is also true that any of the
above strategies could be implemented directly in HPF or could be incorporated into the

compiler. O
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In light of the tradeoffs described above, the reader may wonder what the “best” way
to write HPF programs is. There is no single answer. In some situations, programmers
are willing to invest extreme effort in tuning an application for a particular architecture;
in other situations, the ability to run on a variety of different machines is paramount.
The advice to the programmer for these environments would have to be quite different.
We can, however, make some general observations:

e Programs will execute operations fastest if the dimension encapsulating the parallelism
is distributed among processors.

o Programs will execute operations fastest if the work is evenly divided among proces-
sors; typically, this also implies that data should be evenly distributed.

o Programs will execute operations fastest if there are few (or no) elements communi-
cated.

Many data parallel algorithms fit these criteria for a number of data distributions; Fox
et al. [13] is full of such examples. Using such algorithms is highly recommended—they
will be reasonably efficient everywhere. This efficiency can be enhanced by carefully
matching the data mapping to a particular target machine. The particular mapping that
produces the highest performance will sometimes vary from system to machine (although
all machines should execute correctly with all distributions), so this process may be
considered machine-dependent optimization. In cases where conflicts cannot be avoided,
such as Example 2.25 (as written), the user may have to consider the characteristics of
his or her target machine(s) in detail to decide the best strategy. We hope that vendors
will eventually provide tools for such tasks, but as of this writing such tools are still
immature,
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This Chapter summarizes the new features of Fortran 90, particularly those that have
an impact on High Performance Fortran.

3.1 Fortran 90 Features

I don’t know what the technical characteristics of the standard language for
scientific and engineering computation in the year 2000 will be ... but I know
1t will be called Fortran.

remark attributed to John Backus

In addition to all of the FORTRAN 77 and Department of Defense standard language
features, Fortran 90 provides significant new facilities some of which, such as array syn-
tax, make it easier for a compiler to determine that operations may be carried out
concurrently.

FEase-of use improvements provide capabilities to ease the writing of programs, enhance
control over program execution, and facilitate data input and output.

Data facilities include an entity-oriented declaration syntax, user specification of nu-
merical precision of data and additional numeric data types, user-defined arbitrary data
structures, dynamically allocatable data, and pointer-based linked data structures,

Array features include array subsection notation, vector-valued subscripts, expressions,
assignment, and masked assignment; array constructors; elemental, transformational,
and inquiry array intrinsic functions; and array-valued user functions.

Modularization facilities allow the packaging of data and procedures; the definition
and packaging of data abstractions including the definition of operators and assignment
for defined types; procedure improvements such as optional and keyword arguments,
recursion, and internal procedures; and compiler checking across compilation units.

A large number of intrinsic procedures provide built-in support for mathematical oper-
ations, especially the construction of, computation on, and transformation of arrays. In
addition, there are procedures to inquire about numerical accuracy and bit manipulation
procedures.

The concept of language evolution, under which old language features are identified as
obsolescent and subject to possible removal in future standards, highlights the require-
ment for the use of modern programming practices and the choice of a modern coding
style.
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3.2 Ease-of-Use Improvements

Ease-of use improvements provide capabilities to ease the writing of programs, enhance
control over program execution, and facilitate data input and output.

3.2.1 Ease of Writing
Fortran 90 provides three capabilities to ease the writing of programs:

e Names can be up to 31 characters long, a significant improvement over the old limit
of 6.

e An expanded character set includes lower-case letters and the underscore character
for use in names, and the forms ==, /=, <, >, <=, and >= for the relational operators .EQ.,
.NE., .LT., .GT., .GE., and .LE.

e A new free source form removes the column dependences of the old fixed source form
and adds conveniences such as the use of significant blanks, “!”
which may end a line, and “;”-separated statements on a single line.

-delimited comments

3.2.2 Ease of Program Control
Control of program execution is enhanced by several new constructs:

e Named IF, CASE, and DO constructs allowing named matching of construct parts and
eliminating requirements for statement numbers. An example is:

CHECK_IT: IF (.NOT. DONE) THEN
ELSE IF (.NOT. HOME) THEN CHECK_IT
ELSE CHECK_IT

END IF CHECK_IT

e New DO statement capabilities including DO for infinite loops (with loop termination
programmed in the loop body); END DO to match DO without statement numbers; DO
WHILE some condition is true; CYCLE to the next iteration of a loop; and EXIT from a
nest of loops. For example:

FOREVER: DO
DO WHILE (I .NE. 10)
INNER: DOI =1, N
IF ( ... ) THEN CYCLE INNER
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IF ( ... ) THEN EXIT FOREVER

END DO INNER
END DO
END DO FOREVER

e A CASE construct that allows selection from a number of alternatives based on the
value of an expression. (You can almost think of an IF construct as merely a two-way
logical case construct.) Case alternatives may be selected for a single value or for a range
of values, as in:

SELECT CASE (I)
CASE (:-1) ! For values of I < 0
J = -1
CASE (0) 1 For I =0
J =0
CASE (1:5) ! For values of I =1, 2, 3, 4, or &
J=2=%1-1
CASE DEFAULT ! Or CASE (6:) for values of I > 6
J =10
END SELECT

3.2.3 Enhanced Input and Output
Input/output capabilities are enhanced in four areas:

e Non-advancing input/output, sometimes called partial record or stream I/0, allows
character-oriented I1/0O in addition to the traditional Fortran record-oriented 1/0.

e Namelist input/output, the ability to do I/O on a named group of data objects, has
been a de facto standard facility in Fortran implementations and now has been officially
standardized.

e New I/O edit descriptors support binary, octal, hexadecimal, engineering, and scien-
tific notations.

o Several new specifiers extend the operations of the INQUIRE, OPEN, READ, and WRITE
statements.
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3.3 Data Facilities

3.3.1 Intrinsic Data Types

Fortran 90, likeits predecessors, provides six intrinsic data types: INTEGER, REAL, DOUBLE
PRECISION, COMPLEX, CHARACTER, and LOGICAL. It gives the programmer greater choice
in the characteristics of these data types, however.

Processors may provide more than one representation for a data type. (For example,
Digital Equipment Corporation’s Fortran compilers for the Alpha microprocessor directly
support 1, 2, 4, and 8 byte integers and 2, 4, and 8 byte floating point numbers.) The
KIND facility provides for the parameterization of the intrinsic types, except for DOUBLE
PRECISION, providing data types with user-specified precision and range!. This allows
specification of, for example, short and long integers, more than two precisions for real
and complex, additional large character sets (as used in some foreign languages), and
both packed and unpacked logicals. Some examples are:

REAL(SELECTED_REAL_KIND(8,70)) :: A ! Precision of 8 digits,

! range of -10**70 to 10**70
INTEGER, PARAMETER :: SHORT = SELECTED_INT_KIND (4)
INTEGER(KIND=SHORT) :: K = 2345_SHORT ! Must allow -9999 to 9999
REAL (KIND(0.0DO)) :: R | Same as DOUBLE PRECISION
COMPLEX (KIND(0.0DO)) :: C ! Same as DOUBLE COMPLEX,

! which is not in Fortran 90
! (or FORTRAN 77)
CHARACTER (KIND=KANJI), PARAMETER :: ORIENTAL = KANJI_’...’

Numeric inquiry intrinsic functions such as MAXEXPONENT return information about the
actual representations of types and kinds of numbers while a program is running.

3.3.2 Structured Data Types

In addition to the capabilities of intrinsic data types, some programs need to define and
use arbitrary structures of data. Fortran 90 provides two extension mechanisms to do
this: arrays (described in Section 3.4) and derived types, sometimes called user-defined
types (described in Section 3.5). An array is a collection of objects of the same type
which are identified by their position within the array. Arrays have been a mainstay

1Most FORTRAN 77 compilers provide a similar capability through a de facto industry-standard
extension, the * notation for data typing as in INTEGER#*1, INTEGER+2, INTEGER«4, INTEGER8, REAL#*2,
REAL#4, REAL*8, and DOUBLE COMPLEX. The “#" notation, however, specifies the number of bytes in the
representation rather than the precision and range desired. Some processors support multiple floating
point representations of the same size.
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of Fortran since its earliest implementations, but Fortran 90 significantly expands their
set of supporting operations. A derived type, or structure,® is a collection of objects of
(possibly) different types which are identified by their name within the structure. Derived
types provide the ability to use structured data and, together with modules, the ability
to define abstract data types (see Section 3.7.3).

3.3.3 Entity-Oriented Declarations and Allocatable Arrays

Fortran 90 allows declarations organized either by attribute, as in FORTRAN 77, or
by entity, as in the declarations of SHORT and K above. The entity form allows the
programmer to group the type, attributes, and optional initialization value of an entity
into a single statement. As the example showed, one of the attributes may be PARAMETER,
meaning that the entity is a named constant of the specified type and value. Other
attributes, such as DIMENSION and SAVE can be specified similarly.

Often an array serves as a kind of working storage, and should take up space only when
required. Three ways of accomplishing this are automatic arrays, allocatable arrays, and
pointers to arrays.

Within a procedure, the extents in each dimension of an array are determined when
control enters the procedure. Storage for the array is then allocated, and freed when
control leaves the procedure. As a consequence, an array can be declared to be the same
size as a dummy argument, as in:

SUBROUTINE ARRAY_SWAP(X, Y)
REAL, DIMENSION (:), INTENT(INOUT) :: X, Y

REAL, DIMENSION (SIZE(X)) HEA
2 =X
X=Y
Y=2

END SUBROUTINE ARRAY_SWAP

Dynamic storage allocation of arrays is available via the mechanism of ALLOCATABLE
arrays. The declaration:

REAL, DIMENSION(:,:), ALLOCATABLE :: A

declares A to be a two-dimensional array for which storage has not yet been allocated.
Given this, the executable statement

ALLOCATE (A(2#N, 2#%N+1))

2Some programming languages use the term “record” to refer to what Fortran 90 meauns by “struc-
ture." In Fortran 90, a record is one of the elements of a file subject to input/output operations.
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calculates the values 2*N and 2*N+1 and allocates appropriate storage for A. This storage
continues to exist until a DEALLOCATE A statement is reached (or until flow of control
leaves the scope of the declaration of A). The ALLOCATED intrinsic can test whether or
not A is currently allocated.

Pointers are discussed in Section 3.6.

3.4 Array Features

Fortran 90 contains features to allow operations on entire arrays without explicit DO loops:
a programmer can now say A = B + C to add two arrays together and store them into a
third array. These features were introduced because many scientists have found them to
be a natural and readable way of expressing algorithms. In addition, they have proven
to have efficient implementations on a variety of computer architectures. We expect that
these facilities will make Fortran 90 the programming language of choice for scientific
and engineering numerical calculations on high performance computers. Their value has
already been proven in a number of compiler products. The introductory overview in
the Fortran 90 standard [17] states:

Operations for processing whole arrays and subarrays (array sections) are in-
cluded in Fortran 90 for two principal reasons: (1) these features provide
a more concise and higher level language that will allow programmers more
quickly and reliably to develop and maintain scientific/engineering applica-
tions, and (2) these features can significantly facilitate optimization of array
operations on many computer architectures.

3.4.1 Array Overview

Although the semantics of Fortran 90 are defined without reference to a particular under-
lying machine model, efficient execution can be realized on a variety of parallel machines.
This is true despite the fact that Fortran 90 programs can be viewed as providing a global
name space and a single thread of control Consider the following Fortran 90 declarations:

REAL :: S ! A scalar floating point variable
REAL, DIMENSION (N) :: A, B ! Two N element arrays
INTEGER :: I, J ! Two scalar integer variables

INTEGER, DIMENSION (N) :: P ! An integer index array

Fortran 90 provides for element-by-element operations on entire arrays, where the par-
ticular order of evaluation is not specified by the language. The semantics of Fortran
90 allows these statements to be executed in parallel. The following array assignment
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statement multiplies each element of B by itself, adds that value to the square root of
the corresponding element of A, and replaces the corresponding element of A with the
new value:

A = SQRT(A) + B**2

The following statement performs a masked array assignment in which each value of A
is replaced by that value divided by the corresponding value of B except in those cases
where the value of B is 0:

WHERE (B /= 0) A = A/B

A number of Fortran 90 statements imply communication in a distributed memory im-
plementation. Examples include broadcast, when a scalar is assigned to an array:

A =8/2

permutation, when array section notation, index vectors, or some array intrinsics are
used:

A(I:J) = B(J:1:-1)
A(P) = B ' A(P(i)) = B(i), forall i = 1:N
A = CSHIFT(A, 1) ! Circular shift left of A

and reduction, such as summing all of the elements of an array:
S = SUM(B)

As the last two examples hint, there are also a number of intrinsic functions for dealing
with arrays; these are listed in Tables 3.1 through 3.6.

3.4.2 Array Concepts and Terminology
Consider the following declarations:

REAL, DIMENSION(10, 5:24, -5:M) :: A
REAL, DIMENSION(0:9, 20, M+6) :: B

The rank of A is 3, the shape of A is (/10, 20, (M+6)/), the extent of dimension 2 of A
is 20, and the size of Ais 10 * 20 * (M+6). Arrays can be zero-sized if the extent of any
dimension is zero. The rank must be fixed when the program is written, but the extents
in any dimension, the lower bounds, upper bounds, and strides, do not have to be fixed
until the array comes into existence. We saw examples of this in the previous section.
Two arrays are conformable if they have the same shape, that is, the same rank and the
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same extents in corresponding dimensions; A and B are conformable. An arbitrary array
and ascalar are said to conform; the scalar is treated as if it were a conforming array each
of whose elements had the scalar as its value. An elemental operationelemental intrinsic
is an operation defined on scalars producing a scalar result, that has the property that,
when it is applied to conformable arrays, it operates on corresponding elements of the
arrays and produces a conformable array result.

3.4.3 Whole Array Operations and Assignment

An array, strictly speaking, is not a type; rather DIMENSION is an attribute that may
be applied in the declaration of objects of any type, intrinsic or user-defined. Thus,
Fortran 90 has no concept of “arrays of arrays,” although, of course, it does have multi-
dimensional arrays. The usual intrinsic arithmetic, comparison, and logical operations
for scalars of that type, as well as assignment, are elemental, and may be applied element-

by-element to arrays. Thus:
A =2.5%¥A + B + 2.0

replaces each element of A by its value multiplied by 2.5 and added to the corresponding
element of B, plus 2. Thus, this particular assignment statement is equivalent to the
triply nested set of loops (assuming the array bounds in Section 3.4.2):

DOi=1, 10
DO J =5, 24
DOK =-5, M
A(I,J,K) = 2.5%A(I,J,K) + B(I-1,J-4,K+6) + 2.0
END DO
END DO
END DO

except that the program does not restrict the order in which the elements as updated.
3.4.4 Array Subsections

Fortran 90 provides the ability to access elements of an array and parts, or sections, of
arrays using subscript triplet notation. If an array is declared:

REAL, DIMENSION(100, 100) :: A

the array element references A(1,1), A(100,1), A(1,100), and A(100,100) reference
the four corners of A while the array sections A(1,:), A(100,:), A(:,1), and A(:,100)
reference the first and last rows and the first and last columns of A. The array section
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A(2:99, 2:99) references the interior of A. Elements of an array section need not be
contiguous. For example, A(1,1:100:2) references the odd elements of the first row of
A and A(1:100:99,1:100:99) i1s a 2 by 2 array section that references all four corners.

Array element references behave just the same in expressions as do scalar references,
while array sections behave as do arrays. For example, A(1,:) is a rank-one array with
100 elements while A(2:99, 2:99) is a rank-two 98 by 98 element array. Syntactically,
however, the only references allowed are to an element or a section of a named array. To
reference an element of a section, for example, the section must first be assigned to an
array temporary.

A program can pass an array element or an array section (including a whole array)
as an actual argument to a procedure. In general, the dummy argument must have
the same type, kind, and rank as the actual argument. To use certain features the
programmer must provide an ezplicit interface to the caller so the compiler can check for
correctness and provide appropriate linkage conventions. Fortran 90 also supports an old
style of argument passage by sequence association in which an array element is passed
by reference to the procedure and can be used as either a scalar or the first element of
a sequence, such as a column, to the procedure. This form of argument passage puts
significant limits on both what can be expressed® and the execution performance of the
program on more advanced computers with distributed rather than linear memories. We
strongly recommend using the modern form of argument passing in all cases.

3.4.5 Expressions

Fortran 90 interpretation rules for expressions and assignment require freedom from side
effects, allow short-circuit evaluation, require the entire right-hand side of an assignment
to be evaluated before the left-hand side is modified, and prohibit attempts to do multiple
updates to a left-hand side. The following are some statements from the standard [17]:

e The evaluation of a function reference must neither affect nor be affected
by the evaluation of any other entily within the statement. [7.1.7)

e It is not necessary for the processor to evaluate all the operands of an
ezpression if the value of the expression can be determined otherwise. [7.1.7.1)

e FEzecution of an intrinsic assignment causes, in effect, the evaluation of the
ezpression [on the right-hand side] and all ezpressions within [the left-hand
side], the possible conversion of [the right-hand side] to the type and iype
parameters of [the left-hand side] and the definition of [the left-hand side]
with the resulting value. [7.5.1.5)

3 A program can pass a column this way, but not a row or more complex section.
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o When [the left-hand side] in an intrinsic assignment is an array, the as-
signment is performed element-by-element ... The processor may perform the
element-by-element assignment in any order. [7.5.1.5] A many-one array sec-
tion s an array section with a vector subscript having two or more elements
with the same value. A many-one array section must not appear on the left

of the equals in an assignment statement or as an input item in a READ
statement. [6.2.2.3.2]

(We note in passing that similar restrictions also appeared in older Fortran standards,
but many programmers are unaware of them.)

For example, since the entire right hand side is evaluated before the left hand side is
updated, the assignment statement:

V(LB:UB) = V(LB-1:UB-1)
has a meaning equivalent to

DO I = LB, UB
temp(I) = V(I-1)

END DO

DO I = LB, UB
V(I) = temp(I)

END DO

This, of course, is inefficient in both space and time. The “obvious” naive scalarization:

! *** WRONG!!! Produces incorrect answer!!! ***x*
DO I = LB, UB

V(I) = V(I-1)
END DO

is tncorrect. It takes a rather sophisticated compiler analysis to determine a correct,
efficient scalarization, running the loop backwards:

DO I = UB, LB, -1
V(I) = V(I-1)
END DO

Other array expressions require even more complex translations to scalar code.
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3.4.6 Vector-Valued Subscripts

Vector-valued subscripts provide a more general way to form an array section that does
the subscript triplet notation. An index vector can index an array along a particular
dimension; the elements of this index vector select the elements of the indexed array
to be in the subsection. In an expression, these selected elements may be arbitrary
and involve duplication. If a vector-valued subscript is used on the left-hand side of an
assignment, however, it may not have duplicate values. Since Fortran 90 does not specify
an order for update in an assignment, if duplicates were allowed the resulting value would
depend on the order chosen. Be careful; in general a compiler will probably not check
for duplicates because of the performance cost in doing so. For example:

INTEGER, DIMENSION(6) :: Ao = (/ 10, 20, 30, 40, 50, 60 /)
INTEGER, DIMENSION(3) :: B

INTEGER, DIMENSION(3) :: ODD_LOCATIONS = (/ (I, I=1:6:2) /)
INTEGER, DIMENSION(3) :: GENERAL_LOCATIONS = (/ 4, 2, 4 /)

B = A(ODD_LOCATIONS) ' B == (/ 10, 30, 50 /)

A(ODD_LOCATIONS) = 15 { A == (/ 15, 20, 15, 40, 15, 60 /)
B = A(GENERAL_LOCATIONS) ! B == (/ 40, 20, 40 /)

A(GENERAL_LOCATIONS) = 25 ! *** Not Fortran 90-conforming!!!
! Trying to update A(4) twice

3.4.7 Array Constructors

An array constructor provides a way to write a sequence of scalar values of the same
type to be interpreted as a rank-one array. A component of an array constructor may be
either an expression or an implied DO. If an expression has an array value, it is treated as
a sequence of elements in array sequence order, with the first subscript position varying
the fastest. An implied DO allows generation of a set of values by iteration. Since an
array constructor is of rank one, the RESHAPE intrinsic can be used function to construct
arrays of higher rank. If an array constructor is “simple enough”® it can be an initial
value for an array in a declaration.

(/ 1, 2, 3, M, N+2, F(X) /) ! Size is 6

(/ B/) ! Elements of B in element order
... (/ Q, A(I:J:K), 3.0/) ! Size is ((J-I)/K + 1) + 2
(/ (I, I=1,0N, 2)/) ! 0dd numbers <= N

4In general, an initialization expression must have every subexpression be a constant, reference only
certain intrinsic functions that can be evaluated at compile-time, and obey a few other restrictions.
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. RESHAPE(SOURCE=(/ (1, (0, I=1, N), J=1, ¥-1), 1 /), &
SHAPE =(/ N, N /)) ! Identity matrix
(/ ((FUN(D), I =1, F()), J, J =1, UB) /)
! Size can only be computed by calling F() UB times.
! Values of FUN(I) must computed at the same time.

3.4.8 Masked Array Assignments

A masked array assignment is an array assignment occurring in a WHERE statement or
construct in which assignment occurs only to elements selected by the true elements of a
logical array expression. In each such masked assignment statement, the mask expression,
the variable being assigned to, and the right-hand-side expression must be conformable,
and the assignment must be intrinsic and not defined. For example, in

INTEGER, DIMENSION(S) :: A = (/ 0, 1, 1, 1, 0 /)
INTEGER, DIMENSION(5) :: B = (/ 10, 11, 12, 13, 14 /)
INTEGER, DIMENSION(5) :: C = -1

WHERE (A .NE. 0) C=B / A

the resulting value of C will be (/ -1, 11, 12, 13, -1 /).
In a WHERE construct the mask expression is evaluated once and, effectively, its values
are saved. Every assignment statement following the WHERE is executed as if it were

WHERE (mask-ezpression-values) assignment-statement
and every assignment statement following the ELSEWHERE is executed as if it were
WHERE (.NOT. mask-ezpression-values) assignment-statement

This is important to remember if the statements have side effects or modify each other
or the mask expression. In this example of the WHERE construct:

REAL, DIMENSION(1000) :: PRESSURE, TEMP, PRECIPITATION
WHERE (PRESSURE .GE. 1.0)
PRESSURE = PRESSURE + 1.0
TEMP = TEMP - 10.0
ELSEWHERE
PRECIPITATION = .TRUE.
END WHERE
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the assignment to PRESSURE does not change the value of the mask as used in the other
assignment statements in the WHERE construct.

The mask is applied to the actual arguments of a function reference on the right-hand-
side of the masked array assignment only if the function is an elemental intrinsic function.
Otherwise the function’s actual arguments are not masked by the mask expression. For
example, since LOG is an elemental intrinsic function, in:

WHERE (A .GT. 0) B = LOG(A)

the mask is applied to A and LOG is executed only for the positive values of A. The result
is assigned to those elements of B for which the mask is true.

In the following example, since SUM is a transformational intrinsic and not an elemental,
it is evaluated fully for all values of A. The assignment only happens for those elements
of B that are greater than 0:

REAL, DIMENSION(10,10) :: A
REAL, DIMENSION(10) :: B
WHERE (B > 0.0) B = SUM(A, DIM=1)

In this example:

REAL, DIMENSION(10,10) :: A
REAL, DIMENSION(10) :: B, C
WHERE (C .GT. 0.0) B = SUM(LOG(A), DIM=1) / C

since SUM is not elemental, all of its arguments are evaluated fully regardless of whether
they are elemental or not. Thus LOG(A) is fully evaluated for all elements of A even
though LOG is elemental. Notice that the mask is applied to the result of the SUM and to
C to determine the right-hand-side. One way of thinking about this is that everything
inside the argument list of a non-elemental function does not use the mask, everything
outside does.

3.4.9 Array-Valued Functions with Array-Valued Arguments

Section 3.8 describes Fortran 90’s large set of intrinsic functions, most of which can take
array arguments and return array results. In addition to these, user-defined subroutines
and functions can take array arguments where appropriate and, in the case of functions,
return array results. A program can only select an element or take a section of a named
array, so to select an element or take a section of a function result it must first be stored
in a temporary variable.
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3.4.10 Array Objects and Their Specifications
Arrays may be specified in four different ways:

e An ezplicit-shape array is an array that is declared with explicit values for the bounds
in each array dimension. An automatic array is an explicit-shape array declared in a
procedure; its bounds do not have to be constant and their values are determined at
procedure entry. An explicit-shape array dummy whose size is determined by arguments
passed into the procedure is referred to as an adjustable array. Adjustable arrays de-
pend on the linear memory assumptions of sequence association; their function is better
performed by assumed-shape arrays.

e An assumed-shape array is a non-pointer dummy array whose shape is taken from its
associated actual array. The array inquiry intrinsic functions apply to an assumed-shape
array; this frees the programmer from the old-style Fortran practice of having to pass
array bounds information as extra arguments along with the array itself.

e A deferred-shape array must be specified with its rank, and has two forms: an allocat-
able array and an array pointer. A deferred-shape array assumes its shape when space
is allocated for it in an ALLOCATE statement or, in the case of an array pointer, when it
is associated with a target by pointer assignment.

e An assumed-size array is a dummy array argument whose size is assumed from its
associated actual. Its rank and extents may differ, from its actual, only its size is assumed,
and only in the last dimension. This is an old form that depends on the linear memory
assumptions of sequence association.

Some annotated examples follow:

REAL FUNCTION F(M, N, W, X, Y, 2)

INTEGER : M, N

REAL, DIMENSION(10, 10) :: W ! Explicit shape

REAL, DIMENSION(M, N) :: X ! Explicit shape adjustable
REAL, DIMENSION(:, 2:) :: Y ! Assumed shape

REAL, DIMENSION(N, *) Z ! Assumed size

REAL, DIMENSION(10, 10)
REAL, DIMENSION(M, N) ! Explicit shape, automatic
REAL, DIMENSION(SIZE(W, 1)) ! Explicit shape, automatic
REAL, DIMENSION(:), ALLOCATABLE :: D

! Deferred-shape allocatable
REAL, DIMENSION(:, :), POINTER :: P ! Deferred-shape pointer

- d

! Explicit shape

Q w
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3.5 User-Defined Data Types

A derived type is defined in a derived type definition in which the named components may
themselves be of any type, including other derived types or arrays. A variable (structure)
of that type is declared in a type declaration statement. Of course, a variable can be an
array of objects of derived type; indeed, a variable of derived type can have any attribute
(such as PARAMETER or INTENT) that a variable of intrinsic type can have. The following
example defines a derived type PERSON consisting of three components NAME, AGE, and
IS_FEMALE, each of different type, declares a parameter ANN of type PERSON with an initial
value given by a structure constructor, and an array called EMPLOYEE of 10 elements, each
of type PERSON:

TYPE PERSON
CHARACTER(LEN = 10) :: NAME
INTEGER ¢t AGE
LOGICAL :: IS_FEMALE
END TYPE PERSON

TYPE (PERSON) , PARAMETER :: ANN = PERSON("ANN", 35, .TRUE.)
TYPE (PERSON), DIMENSION(10) :: EMPLOYEE

Objects of derived types act like “ordinary” variables with “ordinary” values; they
are first-class citizens of Fortran 90. Assignment for objects of the same derived type
is defined intrinsically to be an order unspecified, component-by-component assignment.
No other operations are defined intrinsically for objects of derived type. The user-defined
operator and user-defined assignment mechanisms may be used, especially in conjunction
with modules, to provide abstract data types. Structure constructors may be used to
create structures, and a component of a structure may be accessed by use of the %
notation, as in the following continuation of the above example:

INTERFACE OPERATOR (==
LOGICAL FUNCTION EMPLOYEE_EQUAL_TEST(E1, E2)
TYPE(PERSON), INTENT(IN) :: E1
TYPE(PERSON), INTENT(IN) :: E2
END FUNCTION EMPLOYEE_EQUAL_TEST
END INTERFACE

INTEGER :: SUM, X
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EMPLOYEE(1) = PERSON ("EUNICE", 25, .TRUE.)
EMPLOYEE(2) = PERSON ("OSCAR", 42, .FALSE.)
EMPLOYEE(3) = ANN

SUM = 0

N=0

DO I =1, 10

IF (.NOT. (EMPLOYEE(I) == ANN) THEN
PRINT *, I, EMPLOYEE(I)

N=N+1
SUM = SUM + EMPLOYEE(I)’AGE
END IF
END DO

PRINT #*, "AVERAGE AGE OF ", N, "EMPLOYEES IS ", SUM/N

With an appropriate definition of EAPLOYEE_EQUAL_TEST to compare two objects of type
PERSON for equality, this example would calculate the average age of all employees who
are not equivalent to ANN.

In general, there is no order in memory implied by the order of the components in a
derived type definition. Thus, a compiler is free to reorder the components (consistently
of course) in order to achieve a better packing of data. If the program must have the com-
ponents in a structure allocated according to the Fortran rules for sequence association,
for example to be able to pass a structure consistently to a non-Fortran 90 procedure, it
must specify the SEQUENCE property in the derived type definition. This allows use of the
old-style Fortran memory tricks such as array reshaping and EQUIVALENCE on the new
derived types. We recommend that you avoid the use of the SEQUENCE property by using
a module to make the derived type definition visible to caller and callee. The resulting
code will be easier to maintain, and may even be faster on some machines.

As we have seen, the Fortran 90 array facilities allow a number of array section refer-
ences. These extend to arrays of structures, and subarrays of structure components. For
example:

TYPE STRUCT
REAL :: SCALAR_COMPONENT
REAL, DIMENSION(20) :: ARRAY_COMPONENT
END TYPE STRUCT
TYPE (STRUCT), DIMENSION(10) :: ARRAY_OF_STRUCTS

ARRAY_OF_STRUCTS(I)%ARRAY_COMPONENT(J:K) = ...
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assigns to “elements J through K of the ARRAY_COMPONENT of the Ith element of ARRAY_-
OF _STRUCTS.” A program can also access “the SCALAR_COMPONENT parts of the J through
K elements of ARRAY_OF_STRUCTS” or even “the Ith elements of the ARRAY_COMPONENT
parts of the J through K elements of ARRAY_OF _STRUCTS:”

. ARRAY_OF_STRUCTS(J:K)%SCALAR_COMPONENT
. ARRAY_OF _STRUCTS(J:K)%ARRAY_COMPONENT (I)

Both may be used in any context that any other array section can be used. The limitation
on such sectioning is that in a reference of the form A%B%C. .. only one of the components
may have a rank greater than 0. Thus, the following is not Fortran 90 conforming:

ARRAY_OF_STRUCTS(I:J)%ARRAY_COMPONENT(K:L) ! **=* Nonconforming!!!
3.6 Pointers

Fortran 90 provides a concept of pointers but be careful, your intuition about pointers,
derived from vendor-specific extensions to FORTRAN 77° or from other languages, is
liable to be incorrect. In Fortran 90 a pointer is an alias, or another name which can refer
to an object and is not a unique type of object itself. Thus, POINTER does not indicate
a data type, but rather is an attribute of an object such as an array, an arbitrary scalar
variable, or a structure. In addition, a pointer may alias a row, column, or more complex
slice of an array, or a component of a structure.

No storage is allocated for an object declared with the attribute POINTER. Thus, the
program may not reference it until some object is pointer associated with it by use of an
ALLOCATE statement or poinler assignmeni. The ASSOCIATED intrinsic function checks
whether a pointer is associated with a particular target, or with any target.

Anything that can be done with allocatable arrays can be done with pointers. The
earlier example of an allocatable array could have been done as:

REAL, DIMENSION(:,:), POINTER :: A

ALLOCATE (A(2*N, 2#N+1))

5Many vendors such as Cray, Digital, Sun Microsystems, and others provide an extension to their
FORTRAN 77 implementations known as Cray pointers. The meaning of Cray pointers is dependent on
the FORTRAN 77 concepts of sequence and storage association and the implementation assumption of a
linear memory address space. In effect, a Cray pointer is a memory address, on which address arithmetic
may be performed. This feature, with its implementation assumptions, is difficult to optimize and
difficult to implement on distributed memory hardware architectures. The Fortran 90 pointer concept
provides many of the capabilities of Cray pointers, but with a different syntax and an architecture-
independent semantics.
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Allocatable arrays are most appropriate in the simple situation where all that is really
required is control over storage allocation. An allocatable array has only one “name” or
alias, aiding compiler optimization, whereas an array that is pointed to can have multiple
aliases at the same time. This situation can occur by means of pointer assignment.
Continuing the previous example, suppose the program also declared:

REAL, DIMENSION(:,:), POINTER :: B
and, after the ALLOCATE statement, contained:
B =>A

This pointer assignment statement (notice the use of “=>” instead of “=”) causes B to
be an alias for (point to) A. As a result, an assignment to B(I,J) will change the value
referenced by A(I, J) and vice versa. Pointer assignment can be used to have the effect
of assignment without the copying of data.

When a pointer is used outside of pointer assignment, it refers to the object that it
points to. Continuing the last example:

ALLOCATE (B(2*N, 2*N+1))
B=A

makes B an alias for an anonymous array and copies the values of the array A into it.
Since A and B are now aliases for two different arrays, an assignment to B(I,J) will not
change the value referenced by A(I,J).

The allocated storage stays associated with B until either execution control leaves
the scope of the declaration of B or until it is explicitly deallocated through the use of a
DEALLOCATE statement. Storage that is not accessible by some name in the program is said
to be inaccessible. Since Fortran 90 does not require a compiler to reclaim inaccessible
storage, the programmer must ensure that all allocated storage is explicitly deallocated,
or risk running out of memory.

A declared data object that will be the target of a pointer must have the TARGET
attribute in its declaration. The TARGET attribute allows the compiler to know what may
be and what cannot be aliased, helping optimization. You should only give a data object
the TARGET attribute if you are going to alias it with a pointer.

Consider the following example (derived from examples in the Fortran 90 Handbook):

REAL, DIMENSION(100, 100), TARGET :: A

REAL, DIMENSION(:, :), POINTER :: CORNERS
REAL, DIMENSION(:, :), POINTER :: INTERIOR
REAL, DIMENSION(:, :), POINTER :: ODD_COLUMNS
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REAL, DIMENSION(:), POINTER ¢t ARBITRARY_ROW
REAL, POINTER :: ELEMENT_POINTER

CORNERS => A(1:100:99, 1:100:99)
INTERIOR => A(2:99, 2:99)
ODD_COLUMNS => A(:, 1:100:2)
ARBITRARY_ROW => A(I, :)
ELEMENT_POINTER => ARBITRARY_ROW(J)

The variable names accurately describe the sections of A that the pointers alias. The
pointers can now be used to operate on the targeted elements. For example, the following
doubles the elements in the row aliased by ARBITRARY ROW:

ARBITRARY_ROW = 2 * ARBITRARY_ROW

Pointers can also alias any other array section described by array section notation. They
can dynamically change their targets at runtime, but unfortunately cannot be initialized
when they are declared.

The previous examples showed the use of pointers to alias parts of existing arrays. A
more typical use is to control storage allocation and to construct dynamic data structures
such as trees or linked lists, as in the following example:

TYPE NODE
INTEGER :: VALUE
TYPE(NODE), POINTER :: NEXT
END TYPE NODE

TYPE(NODE), POINTER :: P, LIST
TYPE(NODE), TARGET :: FIRSTNODE

!Start with empty list
NULLIFY (FIRSTNODEYNEXT)
LIST => FIRSTNODE

! Prepend (append) to list

ALLOCATE (P)

P%VALUE = N

P%NEXT => LIST ! If append: LIST/NEXT => P
LIST => P
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! List walk

P => FIRSTNODE

DO WHILE (ASSOCIATED(P))
PRINT *, P%VALUE
P => P/NEXT

END DO

Note the use of the NULLIFY statement to make a pointer point to nothing. Since pointers
are not data types, there is no “value” to “assign” to a pointer to do this. Since functions
can return pointers, the types and operations above could be packaged in a module for
use as an abstract data type.

3.7 Modularization

3.7.1 The Structure of a Fortran Program

Fortran allows the top-down functional decomposition of a program by partitioning it
into program unils: a main program and some number of external, independently compiled
functions and subroutines. An ezplicit interface to a procedure, which may be provided
by an interface block for an external procedure, allows a high quality compiler to provide
better checking and optimization of procedure calls.

Module program units can be used to structure the bottom-up development of a pro-
gram as libraries of commonly used procedures, encapsulated derived data types and
their defined operators and assignment, and packages of related global data definitions:

e Using a module containing multiple module procedures provides a Fortran 90 library
mechanism,

o Using a module containing multiple interface blocks provides an interface to a pre-
existing library, possibly coded in a language other than Fortran.

o Using a module to provide a set of procedures accessing private data (data global to
them but invisible to others) eliminates the need to use procedures with multiple entry
points for the same purpose.

e Using a module to define a collection of optionally initialized data entities eliminates
the need to use common blocks, include lines, and block data program units for the same
purpose. It also avoids the need to maintain consistency of declarations across multiple
files, a well-known source of bugs using the older techniques.

Modules provide an effective method for defining in one place and controlling access to
global data, global procedures, and encapsulated data abstractions.
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3.7.2 Procedures

There are two forms of procedures, subroutines and functions. These are quite similar
except that a subroutine is invoked in a CALL statement and does not return a value
while a function is invoked in an expression and does return a value. Both forms of
procedures accept arguments that may pass data into, out of, or both into and out
of the procedure. This intention may be declared as an attribute of a dummy, either
INTENT(IN), INTENT(OUT), or INTENT(INOUT). Such a declaration allows a compiler to
check for incorrect usage, such as a procedure in which an assignment to an INTENT(IN)
dummy occurs. It also may allow the generation of more efficient code. For example, the
value of an actual argument corresponding to an INTENT(IN) dummy argument is known
not to be changed by the call; this may allow the optimization of constant propagation
to occur across the procedure call.

When a procedure is called, the actual arguments are “linked” to the dummy arguments
by means of argument association. The dummy must have the same type and kind as
the actual to which it is associated. The most straightforward way to pass an array
actual is to pass it to an assumed-shape dummy. Fortran does have other, older, ways
to pass arrays, such as assumed-size and explicit-shapeezplicit-shape array, but these
mechanisms depend on the use of sequence association and the assumption that the
hardware architecture provides a linear memory. Since the use of sequence association
and the assumption of a linear memory is not always efficient on modern machines, we
strongly recommend against its use.

Fortran allows for the use of argument keywords and for arguments to be optional.
By default, the list of actual arguments is matched one-for-one in order with the list
of dummy arguments. Alternatively, some of the arguments (possibly none) may be
matched in order and the remainder matched by expressions of the form D=A where D is the
name of a dummy argument and A is the actual argument. These keyword arguments may
occur in any order. In addition, if a dummy argument is given the attribute OPTIONAL,
it may be omitted from the argument list completely. In the procedure the intrinsic
function PRESENT can test whether, on a particular call, an OPTIONAL dummy argument
has a corresponding actual argument. These two facilities are very useful for invoking
procedures, such as graphics routines, with a large number of arguments many of which
optionally set various modes of usage. As a result, the old usage of the ENTRY statement
to provide an alternate entry to a procedure is now obsolescent.

Fortran allows a function to be called recursively, either directly or indirectly, if the
function is declared to be RECURSIVE. Ordinarily, the name of a function can be used
within the function as the value being returned by the function. The function RESULT
allows an unambiguous distinction between the value being calculated in the function
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and a recursive call of the function from within the function. The following example uses
an inefficient approach to summing an array as an illustration (the SUM intrinsic function
is much more efficient):

RECURSIVE REAL FUNCTION ARRAY_SUM(ARRAY) RESULT(A_SUM)
REAL, INTENT(IN), DIMENSION(:) :: ARRAY
REAL :: A_SUM
IF (SIZE(ARRAY) = 0) THEN

A_SUM = 0
ELSE

A_SUM = ARRAY(1) + ARRAY_SUM(ARRAY(2:))
END IF

END FUNCTION ARRAY_SUM

A main program, external function, or external subroutine may be a host for contained
internal procedures that have access to data in the host environment by means of host
association. In the following example A, B, C, D, and E are all accessible in INNER. However,
the X 1n SAM is not accessible because there is an overriding definition of X in INNER. Note
that INNER allocates E, which may be used in SAM after a call on INNER.

SUBROUTINE SAM(A)
USE LIB, ONLY: B ! Only B is available from LIB
TYPE Q
INTEGER D
END TYPE
TYPE(Q) :: C
INTEGER, ALLOCATABLE, DIMENSION(:) :: E
REAL X
CONTAINS
SUBROUTINE INNER (C)
INTEGER X
c%D = 3
X =B ! Assigns B in LIB to integer X in INNER
ALLOCATE (E(1000))

END SUBROUTINE INNER
END SUBROUTINE SAM

Using any of the following features requires an explicit interface:
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Keyword arguments.

User-defined operator or assignment.

Generic name references.

Optional and intent-specified arguments.
Array-valued and pointer-valued function results.
Assumed-shape, pointer, and target dummies.

An explicit interface provides information about the attributes of a procedure and its
dummy arguments so that a compiler can check a reference of that procedure for correct-
ness and can generate a correct and efficient invocation. Explicit interfaces are provided
“automatically” for internal procedures, module procedures, and intrinsic procedures.
If an external separately compiled procedure uses any of the features that requires an
explicit interface, the programmer must provide one, in the form of an interface block, to
each program unit that calls the procedure. Although this seems like a lot of effort, the
rewards include the use of the more advanced Fortran capabilities, better compile-time
checking of programs, and a better structured, easier to read, and easier to maintain
program. For multiple usage, an interface block can always be packaged in a module, as
the example in the next section shows.

3.7.3 Modules and Abstraction

A module can define new derived types and specify that the details of the structure of en-
tities of these types should be PRIVATE and not accessible to users of the module. Those
details are still accessible to procedures defined in the module, allowing the creation of
abstract data types and their operations. FORTRAN 77 provided generic intrinsic pro-
cedures where the same generic name refers to multiple specific procedures. Fortran 90
extends this concept to allow user-defined generic procedures. It further allows overload-
ing operators and assignment, to give them procedural definitions for user-defined data
types.

For example, consider an application that requires the concept of rational numbers.
(This example is derived from an example found in the Ada programming language
standard [4].) The module RATIONAL_NUMBERS provides a definition for the derived type
RATIONAL, the subroutine MAKE RATIONAL, and overloadings for the ==, and + operators.
Notice that in the module procedures an entity of type RATIONAL can be created by means
of the standard mechanism of using the name of the type as a structure constructor. A
user of the module, however, can not do this since the structure of the type RATIONAL is
PRIVATE. Thus, the module includes a subroutine MAKE_RATIONAL to serve that purpose.
A production implementation of the concept of rational numbers would, of course, be
more complex. (In particular, this version never reduces rationals to lowest terms, so
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cascaded arithmetic operations are likely to overflow.)

MODULE RATIONAL_NUMBERS
TYPE (RATIONAL)

PRIVATE
INTEGER :: NUMERATOR
INTEGER :: DENOMINATOR ! Must be kept positive

END TYPE (RATIONAL)

INTERFACE OPERATOR(==
LOGICAL FUNCTION EQUAL(X, Y)
TYPE (RATIONAL), INTENT(IN) :: X, Y
END FUNCTION EQUAL
END INTERFACE

INTERFACE OPERATOR(+)
TYPE (RATIONAL) FUNCTION ADD_RATIONALS(X, Y)
TYPE (RATIONAL), INTENT(IN) :: X, Y
END FUNCTION ADD_RATIONALS
END INTERFACE

! Et cetera, et cetera, et cetera...
CONTAINS

LOGICAL FUNCTION EQUAL(X, Y)

TYPE (RATIONAL), INTENT(IN) :: X, Y

EQUAL = XY%NUMERATOR*Y,DENOMINATOR==Y%NUMERATOR*X%DENOMINATOR
END FUNCTION EQUAL

TYPE (RATIONAL) FUNCTION MAKE_RATIONAL(X, Y)
INTEGER, INTENT(IN) :: X, Y
IF (Y > 0) THEN
MAKE_RATIONAL
ELSE
MAKE_RATIONAL
END IF
END FUNCTION MAKE_RATIONAL

RATIONAL(X, Y)

RATIONAL(-X, -Y)
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TYPE (RATIONAL) FUNCTION ADD_RATIONALS(X, Y)
TYPE (RATIONAL), INTENT(IN) :: X, Y
ADD_RATIONALS = RATIONAL( &
X%NUMERATOR*Y’DENOMINATOR + Y/NUMERATOR#X’DENOMINATOR, &
X%DENOMINATOR*Y%DENOMINATOR)
END FUNCTION ADD_RATIONALS

! Et cetera, et cetera, et cetera...
END MODULE RATIONAL_NUMBERS

PROGRAM TEST_RATIONALS
USE RATIONAL_NUMBERS
TYPE(RATIONAL) :: X, Y
X = MAKE_RATIONAL(1, 2)
Y = X + MAKE_RATIONAL(3, -6)
IF (Y == MAKE_RATIONAL(0,1)) THEN
PRINT *, '"Passes Test'
ELSE
PRINT *, "Fails Test"
END IF
END PROGRAM TEST_RATIONALS

3.8 Intrinsic Procedures

Fortran 90 defines 108 intrinsic functions and 5 intrinsic subroutines. Intrinsic proce-
dures are provided in Fortran 90 because they satisfy three major requirements:

e They provide functionality that is frequently required in applications.

e They can be implemented efficiently on a variety of computer architectures, including
pipelined RISC and parallel as well as conventional.

e Aspart of a Fortran 90 implementation they are well tested, documented, and reliable.

The names of the intrinsic procedures, being pre-defined by Fortran, are always available
unless the program creates its own procedure with the same name. All of the intrinsic
procedures have explicit interfaces. The names of the arguments of the intrinsic pro-
cedures are used consistently. For example, DIM is used as the name of the argument
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specifying the dimension of an array to be used and MASK is used to select values of inter-
est from an array in a way similar to the WHERE statement. Intrinsic procedures behave
like “ordinary” procedures and follow all of the ordinary rules for procedures. Argu-
ments may be passed by name and optional arguments may be omitted. For example,
SUM(ARRAY=A, DIM=2) sums all values of the array A in the second dimension.

There are four categories of intrinsic procedures. Elemental functions operate on a
single element, and return a single value. Given an array as an argument, they return an
array of the same shape, the result of applying the function to each of the elements of the
array in an unspecified order. For example, SQRT(4.0) returns 2.0 while SQRT((/4.0,
9.0, 16.0/)) returns [2.0,3.0,4.0]. Inquiry functions return properties of their argu-
ments. For example, SIZE((/4.0, 9.0, 16.0/)) returns 3. Transformational functions
usually have array arguments and return values that depend on many or all of the ele-
ments of its arguments. For example, SUM((/4.0, 9.0, 16.0/)) returns 29.0. Intrin-
sic subroutines perform a variety of tasks. For example, CALL DATE_AND_TIME (DATE=D)
where D is a scalar default character variable of length 8 will set D to a string of the form
ccyymmdd, corresponding to century, year, month, and day respectively.

Fortran 90 defines three representational models: the bit model, the integer number
system model, and the real number system model. The intrinsic functions that return
values related to these models allow applications to be both numerically accurate and
portable. For details of the models, we refer you to the Fortran 90 Standard.

Most of the intrinsic procedures are generic in that they may be called with arguments
of different types. The correct specific procedure will be determined by the types of the
arguments. In some cases a specific procedure may have the same name as the generic.
For example, the generic reference to SIN(X) refers to the specific function DSIN(X) if X
is double precision real, to CSIN(X) if X is default COMPLEX, or to SIN(X) if X is default
real. If an intrinsic function itself, as opposed to the result of a call, is used as an actual
argument to a procedure, only specific names can be used and the corresponding dummy
argument in the procedure can have only scalar arguments.

A brief summary of the Fortran 90 intrinsic procedures is presented in Tables 3.1
through 3.6 in which italics are used to indicate optional arguments.

3.9 Language Evolution

Users who change over to Fortran 90 will ... [want] to adapt their own style
of programming, dropping FORTRAN 77 features now regarded as outmoded
and embrace the newer facilities. Maurice V. Wilkes [30]
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Function

7

Value Returned

Argument Presence Inquiry Function

PRESENT(A)

Numeric Functions

ABS(A)

AIMAG(Z)

AINT(A, KIND)
ANINT(A, KIND)
CEILING(A)

CMPLX(X, Y, KIND)
CONJG(Z)

DBLE(A)

DIM(X, Y)

DPROD (X, Y)

FLOOR(A)

INT(A, KIND)
MAX(A1, A2, A3, ...)
MIN (A1, A2, A3, ...)
MOD (A, P)

MODULO(A, P)
NINT(A, KIND)
REAL(A, KIND)
SIGN(A, B)

True if an actual argument has been supplied for the
optional dummy argument A

Absolute value of &

Imaginary part of complex number Z

A truncated to a whole number

A rounded to the nearest whole number

Least integer greater than or equal to A
Complex number (X, Y)

Complex conjugate of Z

A converted to double precision

X-Y if positive, otherwise 0

Double precision product of reals X and Y
Greatest integer less than or equal to A
Truncated integer value of A

Maximum value of A1, A2, A3, ...

Minimum value of A1, A2, A3, ...
Remainder function of A and P, value has sign of A
Modulo function of A and P, value has sign of P
A rounded to the nearest integer

A converted to real type

Absolute value of A times the sign of B

Mathematical Functions

ACOS(X)
ASIN(X)
ATAN(X)
ATAN2(Y, X)
cos(x)
COSH(X)
EXP(X)
Table 3.1

Arc cosine of X

Arc sine of X

Arc tangent of X

Arc tangent of complex number (X, Y)
Cosine of X

Hyperbolic cosine of X

Exponential of X

Fortran 90 intrinsic procedures —argument presence, numeric, and mathematical
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Chapter 3

Value Returned

Mathematical Functions —continued

LOG(X)
L0OG10(X)
SIN(X)
SINH(X)
SQRT(X)
TAN(X)
TANH(X)

Character Functions

ACHAR(I)
ADJUSTL(STRING)

ADJUSTR(STRING)

CHAR(I, KIND)
IACHAR(C)
ICHAR(C)
INDEX (STRING,
SUBSTRING, BACK)
LEN_TRIM(STRING)
LGE(STRINGA,
STRING.B)
LGT(STRING.A,
STRING.B)
LLE(STRING A,
STRINGB)
LLT(STRINGA,
STRING_B)
REPEAT(STRING,
NCOPIES)
SCAN(STRING, SET,
BACK)
TRIM(STRING)
VERIFY(STRING, SET,
BACK)
Table 3.2

Natural logarithm of X
Common logarithm of X
Sine of X

Hyperbolic sine of X
Square root of X
Tangent of X
Hyperbolic tangent of X

Character in position I in ASCII collating sequence

Adjust STRING to the left by removing leading blanks
and padding on the right with blanks

Adjust STRING to the right by removing trailing blanks
and padding on the left with blanks

Character in position I in processor collating sequence

Position of character C in ASCII collating sequence

Position of character C in processor collating sequence

Starting position of SUBSTRING in STRING

Length of STRING excluding trailing blank characters

True if STRINGA is lexically greater than or equal to
STRINGB

True if STRINGA is lexically greater than STRING B

True if STRING A is lexically less than or equal to
STRING_B

True if STRING.A is lexically less than STRING B

Repeated concatenation of copies of STRING

Scan STRING for a character in SET

Remove trailing blank characters from STRING
True if all characters of STRING are in SET

Fortran 90 intrinsic procedur@prriweddm I al
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Function Value Returned

Character Inquiry Function
LEN(STRING) Number of characters in STRING

Kind Functions

KIND(X) Value of kind type parameter of X

SELECTED_INT KIND (R) Integer kind type parameter value for range R

SELECTED REAL KIND Real kind type parameter value for precision P and
(P, R) range R

Logical Function
LOGICAL(L, KIND) Convert logical L to logical kind KIND

Numeric Inquiry Functions

DIGITS(X) Number of significant digits for type and kind of X

EPSILON(X) A very small number of type and kind of X that is
almost negligible compared to one

HUGE(X) The largest number of the type and kind of X

MAXEXPONENT(X) Maximum exponent for type and kind of X

MINEXPONENT(X) Minimum(most negative) exponent for type and kind of
X

PRECISION(X) Decimal precision for type and kind of X

RADIX(X) Base for type and kind of X

RANGE(X) Decimal exponent range for type and kind of X

TINY(X) Smallest positive number for type and kind of X

Bit Inquiry Functions
BITSIZE(I) Number of bits for type and kind of integer I

Bit Manipulation Functions

BTEST(I, POS) True if bit position POS of T is 1

IAND(I, J) Logical and of I and J

IBCLR(I, POS) Clear bit position POS of I to 0

IBITS(I, POS, LEN) Bit sequence of I starting at position POS of length LEN
Table 3.3

Fortran 90 intrinsic procedures — character inquiry, kind, logical, numeric inquiry, and bit inquiry
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Function Value Returned

Bit Inquiry Functions —continued

IBSET(I, POS) Set bit POS in I to 1

IEOR(I, J) Exclusive or of I and J

IOR(I, J) Inclusive or of I and J

ISHFT(I, SHIFT) Logical end-off shift of SHIFT bits of I

ISEFTC(I, SHIFT, Circular shift of SHIFT bits of I
SIZE)

NOT(I) Logical complement of I

Transfer Function

TRANSFER (SOURCE, Treat physical representation of SOURCE as if it were of
MOLD, SIZE) the type and kind of MOLD

Floating-point Manipulation Functions

EXPONENT(X) Exponent part of X

FRACTION(X) Fractional part of X

NEAREST(X, S) Nearest different machine representable number to X in
the direction indicated by the sign of S

RRSPACING(X) Reciprocal of the relative spacing of model numbers
near X

SCALE(X, I) Multiply a real X by its base to an integer power I

SET_EXPONENT(X, I) Set exponent part of X to I

SPACING(X) Absolute spacing of model numbers near X

Vector and Matrix Multiply Functions

DOT_PRODUCT (VECTA, Dot product of two rank-one arrays VECT A and VECT_B
VECT B)

MATMUL(MATRIX A, Matrix multiplication of MATRIX_A and MATRIX B
MATRIX B)

Array Reduction Functions

ALL(MASK, DIM) True if all values of MASK are true
ANY(MASK, DIM) True if any value of MASK is true
Table 3.4

Fortran 90 intrinsic procedures —bit inquiry, transfer, floating-point manipulation, vector and matrix
multiply, and array reduction
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Function Value Returned

Array Reduction Functions — continued

COUNT(MASK, DIM) Number of true elements in MASK

MAXVAL(ARRAY, DIM, Maximum value in ARRAY
MASK)

MINVAL(ARRAY, DIM, Minimum value in ARRAY
MASK)

PRODUCT (ARRAY, DIM, Product of elements in ARRAY
MASK)

SUM(ARRAY, DIM, Sum of elements in ARRAY
MASK)

Array Inquiry Functions

ALLOCATED (ARRAY) True if ARRAY is allocated

LBOUND(ARRAY, DIM) Lower dimension bounds of ARRAY
SHAPE(SOURCE) Shape of an array or scalar SOURCE
SIZE(ARRAY, DIM) Total number of elements in ARRAY

UBOUND (ARRAY, DIM) Upper dimension bounds of ARRAY

Array Construction Functions

MERGE (TSOURCE, Choose value from TSOURCE or FSOURCE according to
FSOURCE, MASK) value of MASK

PACK(ARRAY, MASK, Pack ARRAY into a rank one array under a mask MASK
VECTOR)

SPREAD(SOURCE, DIM, Replicate array SOURCE NCOPIES times in dimension DIM
NCOPIES)

UNPACK (VECTOR, MASK, Unpack VECTOR into array of shapc MASK, FIELD
FIELD) replacing 0’s from MASK

Array Reshape Function
RESHAPE (SOURCE, Reshape SOURCE into shape of SHAPE
SHAPE, PAD,
ORDER)
Table 3.5

Fortran 90 intrinsic procedures — array reduction, array inquiry, array construction, and array reshape
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Function Value Returned

Array Manipulation Functions

CSHIFT(ARRAY, SHIFT, Circular shift of ARRAY SHIFT positions
DIM)

EOSHIFT (ARRAY, End-off shift of ARRAY SHIFT positions
SHIFT, DIM,
BOUNDARY)

TRANSPOSE (MATRIX) Transpose of MATRIX

Array Location Functions

MAXLOC(ARRAY, Location of a maximum value in ARRAY
MASK)

MINLOC(ARRAY, Location of a minimum value in ARRAY
MASK)

Pointer Association Status Inquiry

ASSOCIATED (POINTER, True if POINTER is associated
TARGET)

Intrinsic Subroutines
DATE_AND TIME(DATE, Returns date and time information

TIME, ZONE,
VALUES)

MVBITS (FROM, Elemental subroutine to copy a sequence of LEN bits
FROMPOS, LEN, TO, from FROMPOS in integer FROM to TOPOS in integer TO
TOPOS)

RANDOM _NUMBER Returns a pseudo-random number or an array of
(HARVEST) pseudo-random numbers

RANDOM_SEED(SIZFE, Initializes or queries the random number generator seed
PUT, GET)

SYSTEM_CLOCK(COUNT, Returns data from processor’s real time clock
COUNT_-RATE,
COUNT_-MAX)

Table 3.6
Fortran 90 intrinsic procedures — array manipulation, array location, pointer association status, and
intrinsic subroutines
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Removed and Obsolete Features Identified in Annex B of the Standard

For Use
No removed features at this time.
Arithmetic IF statements IF statements or IF constructs

Real and double precision DO control vari- Integer control variables and expressions
ables and DO loop control expressions

Shared DO termination and termination An END DO for each DO

on a statement other than END DO or

CONTINUE

Branch to an END IF from outside its IF  Branch to the statement directly follow-

block ing the END IF

Procedure alternate return Return code and a CASE construct on
return

PAUSE statement An appropriate READ statement

ASSIGN and assigned GO TO The internal procedures they are often
used to simulate

Assigned FORMAT specifiers Character variables and constants

cH edit descriptor Character constant edit descriptor

Table 3.7

Removed and Obsolete Features Identified in Annex B of the Standard

The Fortran 90 standard, for the first time, introduces a concept of language evolution in
which the addition of new features is understood to cause old features to become redun-
dant and, eventually to be phased out. The Standard sites some examples and identifies
(in Annex B) removed features and obsolescent or redundant features for which there
are better methods. In addition to these features, a number of authors have identified
antiquated features to be avoided by the use of more modern Fortran 90 features. Some
of these features, and their suggested replacements, are shown in Table 3.7 and Table 3.8.

3.9.1 Avoiding Assumptions of Linear Memory

Whenever a computer architecture is directly visible in a programming language, one
should expect two consequences: good performance on that architecture and difficulty
in porting applications to other computer architectures. Not surprisingly, traditional
Fortran implementations have tended to provide excellent execution performance on tra-
ditional linear memory computer architectures. To achieve good performance on dis-
tributed memory computer architectures, however, it is necessary to avoid those older
features of Fortran that depend on linear memory concepts. These features were avail-
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Antiquated Fortran Features and Their Replacements

For

Use

DOUBLE PRECISION

Numeric kind facility

Sequence association of array element
actual arguments with dummy arrays

Array section actual arguments
associated with assumed shape array
dummies

BLOCK DATA and COMMON

Modules

DO loop old forms and CONTINUE

The DO ... END DO form.

Statement labels and the GO TO
statement

Are still considered harmful and should
be avoided

Computed GO TO statement

CASE construct

DO WHILE statement

IF ... EXITinaDO ... END DO

The RETURN statement effect

Happens at procedure END

The STOP statement effect

Happens at END of main program

IMPLICIT statements

IMPLICIT NONE and explicit typing of
all variables

Attribute specification statements

«

::” form of type declaration statement
grouping all of the attributes of an
entity in one place

DATA statement

Initialization expression in type
declaration statements (except for
BOZ data)

Hollerith data

Character data type and constants

COMMON blocks

Modules

EQUIVALENCE statements

Modules, storage allocation, structures,
pointers, and TRANSFER intrinsic
function

Block data program units

Modules

Fixed source form

Free source form

Specific intrinsic functions

Generic intrinsic functions

FORMAT statements

Character variables

Arithmetic statement functions

Internal functions

Assumed size arrays

Assumed shape arrays

INCLUDE lines

Modules

ENTRY statements

Modules with PRIVATE procedures

Table 3.8

New features in Fortran 90 and what they replace
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able to provide such necessary capabilities as the ability to pass a column of an array as
an argument to a procedure and to reuse data storage no longer required. Fortunately,
Fortran 90 provides modern features to meet these requirements that are efficient and
do not depend on a model of memory.

A linear memory model is visible in Fortran in two ways:

o Sequence association is the definition of the mapping of multi-dimensional arrays to
a linear sequence ordering, the so-called column-major order. Sequence association is
particularly visible when an array expression or array element is associated with an
assumed size or explicit size dummy array argument. Sequence association may be
avoided in Fortran 90 through the use of assumed shape dummy array arguments and
the use of intrinsic functions to reshape arrays.

e Storage association is the definition of the mapping of data objects to underlying
storage units, and was typically used to reshape COMMON and EQUIVALENCE data and to
simulate allocatable storage. Storage association may be avoided in Fortran 90 through
the use of allocatable data and the use of intrinsic functions.

3.10 Fortran Coding Style

Fortran 90 is a large language with a number of alternative ways of expressing the same
intention, in part resulting from Fortran 90’s backwards compatibility with previous
Fortran standards. We strongly recommend that you choose a reasonable coding style
and stick with it. While conforming to a style may add a few minutes to your typing
time, it will be rewarded over and over as others, and you in the future, try to figure out
the meaning of a section of code. The following sections present a number of code style
guidelines that have proven to be useful. Figure 3.1 shows a number of these guidelines
in a single example.

3.10.1 Upper-Case and Lower-Case Conventions

Fortran 90 treats upper-case and lower-case letters in programs equivalently except, of
course, in character constants and H format specifiers. This allows a variety of coding
styles. For example, the following CALL statements are all equivalent:

CALL MY_SUB(MAX(A,3), LEN=12) ! all upper case

call my_sub(max(a,3), len=12) ! all lower case
CALL my_sub(MAX(a,3), LEN=12) ! Fortran 90 names in upper case
call MY_SUB(max(A,3), len=12) ! user names in upper case

Call My_Sub(Max(A,3), Len=12) ! initial letters in upper case
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PROGRAM PI_EXAMPLE
! Compute the value of pi by numerical integration

INTEGER, PARAMETER :: N = 1000 ! Number of rectangles
REAL, PARAMETER :: H=1.0/ N ! Width of a rectangle
REAL :: PI

REAL, DIMENSION(N) :: RECT_AREA

IHPF$ DISTRIBUTE (CYCLIC) :: RECT_AREA

INTERFACE
SUBROUTINE PRINT_RESULT(X)
REAL :: X

END SUBROUTINE PRINT_RESULT
END INTERFACE

FORALL (I=1:N)
RECT_AREA(I) = H * F(H*(I-0.5))
END FORALL
PI = SUM(RECT_AREA)
CALL PRINT_RESULT(PI)
CONTAINS
REAL FUNCTION F(X)
REAL :: X
F=4/ (1.0 + X*X)
END FUNCTION F
END PROGRAM PI_EXAMPLE

Figure 3.1
A complete Fortran 90 program
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There are advantages and disadvantages to all of these, and other conventions. We
recommend that you choose a style that you are comfortable with and use it consistently.
Our examples use the “all upper-case” convention for the simple reason that it tends to
make keywords and user names self-quoting when they appear in explanatory text.

3.10.2 Spacing Conventions

In choosing a horizontal spacing convention, there is a tradeoff between the improved
readability resulting from the addition of white space and the decreased readability if
the extra space forces continuation lines. We recommend using white space to improve
readability within reason.

We recommend following the free source form rules for blank characters even when
using fixed source form:

o Blank characters must not appear in lexical tokens, except within a character context.
For example, there can be no blanks between the two characters of the exponentiation
operator **,

o Blank characters must be used to separate names, constants, or labels from adjacent
keywords, names constants, or labels. For example, a blank is required between the DO
and its index variable.

In addition, we recommend that blank characters be used at natural breaks in the
program text, including around the = in assignments and following semicolons and most
commas.

3.10.3 Indentation, Alignment and Blank Line Conventions

As a result of its fixed source form and its origins in the days of punched cards, Fortran
programs have traditionally not used an indentation convention; programs have been
written as lists of statements all beginning in “column 7,” even though nothing in the
definition of Fortran required non-indentation. We believe that modern style calls for
appropriate indentation to show the nesting structure of a program unit. (As with blank
space, we temper this advice if the indentation causes continuation lines.) We have used
a two-space indentation style throughout this book; other programmers may prefer more
or less.
The following Fortran 90 constructs are candidates for nesting:

e The statements in the specification-part, execution-part, and internal-subprogram of
any of the forms of program-unit: main-program, function-subprogram, subroutine-sub-
program, module, or block-data.
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o The statements in the case-construct, forall-construct, if-construct, do-construct, and
where-construct.

e The components of a derived type definition or an interface block.

e In general, long assignment statements should break at a logical place in the right
hand side expression and continue aligned with the beginning of the right hand side
expression, unless deeper indentation (and perhaps more white space) makes the code
more readable. For example:

NEW_VAL(I,J) = .25 * ( OLD_VAL(I-1,J) + OLD_VAL(I,J-1) &
+ OLD_VAL(I+1,J) + OLD_VAL(I,J+1) )

In addition to nesting, we recommend that, in general, the :: symbols in multiple
succeeding declarations and the exclamation points in multiple succeeding trailing com-
ments should be lined up. Blank lines can also improve readability by, for example,
separating parameter declarations, variable declarations, interface-blocks, and sections
of executable code.

The HPF directives were designed so that if HPF ever becomes part of the Fortran
language, the 'HPF$ could be edited out to leave a correct program. In this book, we have
arranged things so that the directive bodies are aligned with the Fortran 90 statements
in the surrounding program. This allows the reader to skip over the !'HPF$ in the left
margin.

3.10.4 Free Source Form

We strongly recommend the use of Fortran 90 free source form to improve readability
and have used free source form exclusively, except when we need to illustrate specific
fixed source form features. Source code can be written to be interpreted correctly in
either free or fixed source form by following these rules:

o Limit statement labels, if they are absolutely necessary, to positions 1 through 5 and
statements to positions 7 through 72.

o Treat blanks as being significant.

o Use the exclamation point (!) for a comment, but don’t place it in position 6.

o To continue statements, use the ampersand (&) in position 73 of the line being contin-
ued, and position 6 of the continuation line. Following the ampersand in the line being
continued, there can be only blanks or a comment. Positions 1 to 5 in the continuation
line must be blank.

Figure 3.2 shows an example that is valid in both source forms. The “&” at the end of
line 4 appears in column 73, while the “¢” beginning line 5 appears in column 6.
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! Define the user function MY_SIN

DOUBLE PRECISION FUNCTION MY_SIN(X)
MY_SIN = X - X**3/FACTORIAL(3) + X**5/FACTORIAL(5)
& - X**7/FACTORIAL(7) + X**9/FACTORIAL(9)
CONTAINS
INTEGER FUNCTION FACTORIAL(N)
FACTOR = 1
DDI=2,0N
FACTORIAL = FACTORIAL * I
END DO
END FUNCTION FACTORIAL
END FUNCTION MY_SIN

Figure 3.2

A Fortran 90 function that can be interpreted as either free source form or fixed source form
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4 Data Mapping

HPF data alignment and distribution directives allow the programmer to advise the com-
piler about how data objects (especially array elements) should be assigned to processor
memories.

4.1 Overview of Data Mapping

The goal of data mapping directives in HPF is to allow the programmer to control the
distribution of data to processors. Chapter 2 showed how this distribution could be used
to improve the performance of programs (or could cause them to run slowly, if the data
mapping was misused).

Often, the most convenient way to specify a data mapping is to give a simple pattern
using the DISTRIBUTE directive. There are two major types of patterns that can be
specified this way: block and cyclic distributions. In a block distribution, each processor
contains a block—a contiguous subarray—of the specified array. For example,

REAL, DIMENSION(100,100) X
'HPF$ DISTRIBUTE (*, BLOCK) LD ¢
'HPF$ DISTRIBUTE (BLOCK, BLOCK) :: Y

, Y

breaks the arrays X and Y into groups of columns and into rectangular blocks, respectively.
In the form shown here, the block sizes are chosen to be as nearly equal as possible; it
is also possible to pick a specific block size, if one wants an unequal distribution. Cyclic
mappings distribute the elements of a dimension onto P processors so that each processor,
starting from a different offset, contains every P column. For example,

REAL, DIMENSION(100,100) :: X, Y
'HPF$ PROCESSORS PROC1(10), PROC2(2,5)
tHPF$ DISTRIBUTE (CYCLIC,*) ONTO PROC1 10 X
1HPF$ DISTRIBUTE (BLOCK,CYCLIC) ONTO PROC2 :: Y

places every 10" row of X on the same processor. Combining the block and cyclic distri-
butions as shown effectively places half of every fifth column on one processor; a given
processor will always have either all “top” halves, or all “bottom” halves. Examples 2.18
and 2.19 in Chapter 2 contain several similar examples.

Sometimes it more convenient to specify the desired distribution of an array by de-
scribing its relationship to another array. For example, one might have a 16 x 16 array
X and a 14 x 14 array Y, where elements of Y are intended to interact computationally
with the interior of X. Of course, one could simply declare Y to be the same size as X,
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P, P, P3 P,

(a) a 14 x 14 array aligned with (b) distribution (*,BLOCK)
the interior of a 16 x 16 array

Py Py
P1P2P3P4P1P2P3P4P1P2P3P4P1P2P4P4
P3 Py
(c) distribution (BLOCK, BLOCK) (d) distribution (*,CYCLIC)

Figure 4.1
Alignment of a 14 X 14 array with a 16 x 16 array
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distribute 1t in the same way as X, and then use only the interior of Y in the computation,
but this could result in a clumsier coding style throughout the program. The desired
relationship between X and Y can be expressed by an HPF alignment directive:

REAL X(16,16), Y(14,14)
'HPF$ ALIGN Y(I,J) WITH X(I+1i,J+1)

See Figure 4.1, which assumes four processors storing the arrays. Here I and J are
dummy variables that range over the valid subscript values for Y. For every element of
Y, a corresponding element of X is indicated; whatever processor memory contains that
element of X should also contain that element of Y. If X is distributed (*,BLOCK), whether
by an explicit directive or by the compiler’s discretion, Y will be distributed accordingly,
as illustrated in Figure 4.1(b). Note that while X is distributed evenly across the four
processors, Y is not, so as to assure that Y(I,J) is always in the same processor as
X(I+1,J+1). If X were to be distributed (BLOCK, BLOCK), the result would be as shown
in Figure 4.1(c); this distribution does coincidentally cut Y as well as X into four equal
pieces. The result of a (*,CYCLIC) distribution for X is shown in Figure 4.1(d).

It might be desirable to align several elements of one array to the same single element of
another array; this is called a collapsing alignment. Figure 4.2(a) illustrates an alignment
of a matrix M to a vector V, specified by the directive

'HPF$ ALIGN M(I,*) WITH V(I)

Wherever a given element of V is distributed, the entire corresponding row of M should
also be distributed. (The directive could also be written

'HPF$ ALIGN M(I,J) WITH V(I)

but the use of an asterisk provides a stronger visual cue that collapsing is intended.)
With this alignment established, the distribution of M is dictated by the distribution
of V. If V is given a BLOCK distribution:

'HPF$ DISTRIBUTE V(BLOCK)

then the rows of M are given a matching distribution, resulting in an assignment to
processors such as shown in Figure 4.2(b). If instead V were given a CYCLIC distribution:

IHPF$ DISTRIBUTE V(CYCLIC)

then the rows of M would be given a matching distribution, resulting in an assignment to
processors such as shown in Figure 4.2(c).
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(a) A collapsed alignment of the rows of M with V
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(c) Situation if V is given a CYCLIC distribution

Figure 4.2
Collapsed alignment of rows of a matrix with elements of a vector
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Replicated alignment of a lookup table with elements of an array
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The converse of collapsing is replication; HPF provides a form of replicating alignment.
Suppose that one must repeatedly evaluate a simple function from small integers to
arbitrary values not easily represented as a formula. An efficient solution is to construct
a lookup table and use the small integers as subscripts.

REAL LUT(1:147)

code to initialize lookup table

Now suppose that the function must be evaluated for every position of an array that may
be distributed over many processors:

FORALL (I=1:4, J=1:4) A(I,J) = A(I,J) * LUT(INT(B(I,J))

See Figure 4.3(a). Whether the lookup table resides in one processor or is split across
many processors, there can be a great deal of communications overhead when processors
need values from the lookup table that reside in the memories of other processors. In
this situation it is often advantageous to trade space for time by making many copies of
the lookup table so that each processor can have its own copy.

Now, the programmer could code such a replicated lookup table explicitly by making
it two-dimensional, with the extra dimension equal to the number of processors, and then
carefully distributing the table:

REAL LUT(147,4)
IHPF$ DISTRIBUTE LUT(*, BLOCK(1))

However, this requires some care; in particular, whenever the lookup table is updated,
all the copies must be updated. It is much easier to let the HPF compiler take care of
the details by specifying a replicating alignment:

REAL LUT(147)

REAL A(4,4),B(4,4)
'HPF$ ALIGN LUT(*) WITH A(*,*) Replicating
1HPF$ ALIGN B(I,J) WITH A(I,J)

The alignment of LUT is actually both replicated and collapsed: a copy of the entire
(collapsed) array LUT is to be aligned with every element of A. This situation is illustrated
in Figure 4.3(b). Wherever an element of A might reside, there will be a copy of LUT in
the same processor memory. The program is then written as if there were only a single
copy of LUT; whenever LUT is updated, the HPF compiler arranges to update all copies
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consistently. (In practice, a good HPF compiler will not make a copy of LUT for every
element of A, but only one copy in each processor that might contain elements of A. For a
(BLOCK, BLOCK) distribution of A onto four processors, this would produce the situation
shown in Figure 4.3(c). A (*,BLOCK) distribution for A would produce the situation
shown in Figure 4.3(d).)

The data mapping directives illustrated so far are all static. They are like declarations;
they take effect on entry to a scoping unit and describe how a data object is to be created.
HPF also provides the dynamic data mapping directives REDISTRIBUTE and —REALIGN.
They are just like DISTRIBUTE and and ALIGN with three differences:

e REDISTRIBUTE and REALIGN are like executable statements, not declarations, and so
must appear in the ezecution-part (R208) of a scoping unit.

e Because REDISTRIBUTE and REALIGN are not declarations, they may not be combined
with declaration-type directives using :: syntax.

e REDISTRIBUTE and REALIGN may not be applied to just any data object, but only to
an object having the DYNAMIC attribute, specified by an HPF DYNAMIC directive. (This
is similar in spirit to the Fortran 90 restriction that a pointer variable may not point to
just any data object, but only to an object having the TARGET attribute.)

Consider an elaboration of a previous example:

REAL, ARRAY(16,16) :: X, Y
'HPF$ PROCESSORS SQUARE(2,2), LINE(4)
'HPF$ ALIGN WITH X :: Y
'HPF$ DISTRIBUTE (BLOCK, BLOCK) ONTO SQUARE :: X
IHPF$ DYNAMIC X

Here the arrays X and Y are initially aligned and distributed as shown in Figure 4.1(c).
However, we have declared an additional processor arrangement LINE and have specified
the DYNAMIC attribute for X. (By the way, we could have combined the last two directives
thus:

'HPF$ DYNAMIC, DISTRIBUTE (BLOCK, BLOCK) ONTO SQUARE :: X

in exactly the same manner that attributes may be combined in a Fortran 90 type
declaration. HPF generalizes this syntax in not requiring a type declaration to be part
of a combined directive.)

Because X is DYNAMIC, it is permitted to change the mapping of X on the fly. Therefore
in the executable code we might insert this directive:

'HPF$ REDISTRIBUTE (*,BLOCK) ONTO LINE :: X
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This advises the compiler that X should be remapped at that point in the program
execution. Redistribution is required to maintain alignment relationships; because Y
is aligned with X, Y will also be redistributed when X is. After execution passes the
REDISTRIBUTE directive, the situation is roughly as shown in Figure 4.1(b).

We had to say “roughly” in the last remark because there is a subtle point about what
HPF does and does not guarantee about distributions onto processors. In our example
there are two declared processors arrangements, SQUARE and LINE. Each arrangement
has four processors. It is likely, but not guaranteed, that the physical processors used to
implement SQUARE will be the same physical processors used to implement LINE; that
i1s an implementation-dependent detail. Moreover, even if the same physical processors
are used, it is not guaranteeed that LINE(1) represents the same physical processor as
SQUARE(1,1); that is an implementation-dependent detail. So when X is remapped from
SQUARE to LINE, it is likely that there will be a great deal of interprocessor communication,
but the details of what must be communicated are implementation-dependent. One
might, for example, conclude from inspection of Figures 4.1(c) and 4.1(b) that processor
P, needs to export only half its data to perform the redistribution, but that conclusion
is not guaranteed by HPF. The processor numberings in the figures are only illustrative
and not definitive.

Another subtle point is that Y can be remapped even though it was not declared
DYNAMIC, because it is (statically) aligned to X, which is DYNAMIC. The absence of a
DYNAMIC attribute for Y does mean, however, that one may not use REALIGN to change
the alignment of Y. So while Y can be remapped implicitly whenever X is, the alignment
relationship between Y ands X is always maintained and cannot be changed.

4.2 The Data Mapping Model

HPF directives allow the user to advise the compiler on the allocation of data objects
to processor memories. The model is that there is a two-level mapping of data objects
to the memories of abstract processors. Data objects (typically array elements) are first
aligned relative to one another; a group of arrays is then distributed onto a rectilinear
arrangement of abstract processors. (The implementation then uses the same number, or
perhaps some smaller number, of physical processors to implement these abstract proces-
sors. This mapping of abstract processors to physical processors is system-dependent.)
This model is illustrated in Figure 4.4.

The basic concept is that every array (indeed, every object) is created with some
alignment to an entity, which in turn has some distribution onto some arrangement of
abstract processors. There are three cases of interest:
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Abstract
processors as a

Arrays or Group of user-declared Physical
other objects aligned objects Cartesian mesh processors

ALIGN DISTRIBUTE Optional

(static) or (static) or implementation-
REALIGN REDISTRIBUTE dependent
(dynamic) (dynamic) directive
Figure 4.4

The HPF data mapping model

o If the specification statements contain explicit specification directives specifying the
alignment of an array A with respect to another array B, then the distribution of A will
be dictated by the distribution of B.

e Otherwise, the distribution of A itself may be specified explicitly (and it may be that
other arrays are aligned with A).

e If the user does not provide explicit directives for mapping a data object, then the
compiler must choose a data mapping.

In any case, data mapping specifications are conceptually used as a data object is created
rather than as a separate step.

This model gives a better picture of the actual amount of work that needs to be done
than a model that says “the array is created in some default location, and then realigned
and/or redistributed if there is an explicit directive.” Using ALIGN and DISTRIBUTE
specification directives doesn’t have to cause any more work at run time than using the
implementation defaults.

There is a clear separation between directives that serve as specification statements
and directives that serve as executable statements. Specification statements are carried
out on entry to a program unit, as if all at once; only then are executable statements
carried out. (While it is often convenient to think of specification statements as being
handled at compile time, some of them contain specification expressions, which are per-
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mitted to depend on run-time quantities such as dummy arguments, and so the values of
these expressions may not be available until run time, specifically the very moment that
program control enters the scoping unit.)

In the case of an allocatable object, we say that the object is created whenever it is
allocated. Specification directives for allocatable objects (and allocated pointer targets)
may appear in the specification-part of a program unit, but take effect each time the
array is created, rather than on entry to the scoping unit.

Alignment is considered an attribute of a data object (in the Fortran 90 sense). If an
object A is aligned (statically or dynamically) with an object B, which in turn is already
aligned to an object C, this is regarded as an alignment of A with C directly, with B
serving only as an intermediary at the time of specification. (This matters only in the
case where B is subsequently realigned; the result is that A remains aligned with C.) We
say that A is immediately aligned with B but ultimately aligned with C. If an object is
not explicitly aligned with another object, we say that it is ultimately aligned with itself.
The alignment relationships form a tree with everything ultimately aligned to the object
at the root of the tree; however, the tree is always immediately “collapsed” so that every
object is related directly to the root. Any object that is not a root can be explicitly
realigned but not explicitly redistributed. Any object that is a root can be explicitly
redistributed but then cannot be explicitly realigned.

Every object that is the root of an alignment tree has an associated template or index
space. Typically, this template has the same rank and size in each dimension as the object
associated with it. (The most important exception to this rule is dummy arguments with
the INHERIT attribute, described in Section 5.4.) We often refer to “the template for an
array,” which means the template of the object to which the array is ultimately aligned.
(When an explicit TEMPLATE (see Section 4.9) is used, this may be simply the template
to which the array is explicitly aligned.)

The distribution step of the HPF model technically applies to the template of an array,
although because of the close relationship noted above we often speak loosely of the
distribution of an array rather than of its template. Distribution partitions the template
among a set of abstract processors according to a given pattern. The combination of
alignment (from arrays to templates) and distribution (from templates to processors)
thus determines the relationship of an array to the processors; we refer to this relationship
as the mapping of the array. These remarks also apply to a scalar, which may be regarded
as having an index space whose sole position is indicated by an empty list of subscripts.
So every atomic data object is ultimately aligned to some data object, possibly itself,
which is in turn distributed onto some specific abstract processor. (An atomic data object
is a data object that has no subobjects.)
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Every object is created as if according to some complete set of specification directives;
if the program does not include complete specifications for the mapping of some object,
the compiler provides defaults. HPF imposes certain constraints on default mappings
but also allows an HPF language processor certain specific freedoms.

e By default an object is not aligned with any other object; it is ultimately aligned with
itself.

e The default distribution is system dependent, but must be expressible as explicit
directives for that implementation. (The distribution of a sequential object has to be
expressible as explicit directives only if it is an aggregate cover (see Section 4.10.2).)

e Identically declared objects need not be provided with identical default distribution
specifications. The compiler may, for example, take into account the contexts in which
objects are used in executable code. (The programmer can, if necessary, force identically
declared objects to have identical distributions by specifying such distributions explicitly.)
e Unlike objects, identically declared processor arrangements are guaranteed to repre-
sent “the same processors arranged the same way.” This is discussed in more detail in
Section 4.8.

Once an object has been created, it can be remapped in one of two ways:

e by realigning the object itself; or
e by redistributing the object to which it is ultimately aligned.

Such remapping will typically carry some cost in interprocessor communication. Re-
alignment causes remapping of only the object to be realigned, but redistributing an
object causes all objects then ultimately aligned with it also to be redistributed so as to
maintain the alignment relationships.

By analogy with the Fortran 90 ALLOCATABLE attribute, HPF includes the attribute
DYNAMIC. It is not permitted to REALIGN an object that has not been declared DYNAMIC.
Similarly, it is not permitted to REDISTRIBUTE an object or template that has not been
declared DYNAMIC. (A subtle point: it is possible to remap an object A that has not been
declared DYNAMIC if it has been aligned to another object B that is declared DYNAMIC.
Redistributing B will then cause A to be redistributed as well, so as to maintain the
statically declared alignment relationship.)

Sometimes it is desirable to consider a large index space with which several smaller
arrays are to be aligned, but not to declare any array that spans the entire index space.
HPF allows one to declare a TEMPLATE, which is like an array whose elements have no
content and therefore occupy no storage; it is merely an abstract index space that can
be distributed and with which arrays may be aligned.
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It should be noted that HPF directives are technically regarded as advice to an HPF
compiler rather than as commands. Alignment and distribution directives merely recom-
mend to the compiler that certain data objects should reside in the same processor: if
two data objects are mapped (via the two-level mapping of alignment and distribution)
to the same abstract processor, it is a strong recommendation to the implementation that
they ought to reside in the same physical processor. The converse is not true; mapping
two data objects to different abstract processors is not necessarily a strong recommen-
dation that the objects reside in different physical processors. HPF takes this stance for
two reasons:

e To provide flexibility for compiler implementors. In particular, as the technology of
automatic data layout improves, compilers may judiciously override user directives in
order to improve performance. (This is similar to the situation in the C programming
language, which provides explicit register directives. When algorithms for automatic
register allocation became sufficiently powerful, the best C compilers would ignore or
override programmer directives when appropriate.)

e To provide for maximum portability of HPF codes. In particular, it is always legitimate
to compile an HPF program for a single-processor target machine.

While directives are technically merely advisory, all the directives in a complete HPF
program must be consistent. An HPF compiler is permitted to rely on the consistency
of directives across separately compiled program units.

4.3 Syntax of Data Alignment and Distribution Directives

Specification directives in HPF have two forms: specification statements, analogous to the
DIMENSION and ALLOCATABLE statements of Fortran 90; and an attribute form analogous
to type declaration statements in Fortran 90 using the “::” punctuation.

The attribute form allows more than one attribute to be described in a single directive.
HPF goes beyond Fortran 90 in not requiring that the first attribute, or indeed any of
them, be a type specifier.

For syntactic convenience, the executable directives REALIGN and REDISTRIBUTE also
come in two forms (statement form and attribute form) but may not be combined with
other attributes in a single directive.

The form of a combined-directive (H301) is:

combined-attribute-list :: entity-decl-list

where a combined-attribute (H302) is one of:
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ALIGN align-atiribute-stuff
DISTRIBUTE dist-attribute-stuff
DYNAMIC

INHERIT

TEMPLATE

PROCESSORS

DIMENSION ( ezplicit-shape-spec-list )

Rules and restrictions:

1. The same combined-attribute must not appear more than once in a given combined-
directive.

2. If the DIMENSION attribute appears in a combined-directive, any entity to which it
applies must be declared with the HPF TEMPLATE or PROCESSORS type specifier.

3. The HPF keywords PROCESSORS and TEMPLATE play the role of type specifiers in
declaring processor arrangements and templates. The HPF keywords ALIGN, DIS-
TRIBUTE, DYNAMIC, and INHERIT play the role of attributes. Attributes referring to
processor arrangements, to templates, or to entities with other types (such as REAL)
may be combined in an HPF directive without having the type specifier appear.

4. Dimension information may be specified after an object-name or in a DIMENSION
attribute. If both are present, the one after the object-name overrides the DIMENSION
attribute (this is consistent with the Fortran 90 standard).

Example 4.1 The directive
'HPF$ TEMPLATE, DIMENSION(64,64) :: A, B, C(32,32), D

specifies that A, B, and D are 64 x 64 templates; Cis 32 x 32. O

4.4 DISTRIBUTE and REDISTRIBUTE Directives

The DISTRIBUTE directive specifies a mapping of data objects to abstract processors in
a processor arrangement. For example,

REAL SALAMI(10000)
'HPF$ DISTRIBUTE SALAMI(BLOCK)

specifies that the array SALAMI should be distributed across some set of abstract proces-
sors by slicing it uniformly into blocks of contiguous elements. If there are 50 processors,
the directive implies that the array should be divided into groups of 200 elements, with
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1 6 11 16
P P> Ps Py 2 7 12 17
1 2 3 4 3 8 13 18
5 6 7 8 4 9 14 19
9 10 11 12 5 10 15 20
13 14 15 16 21 26 al 36
17 18 19 20 22 27 32 37
21 22 23 24 23 28 33 38
25 26 27 28 24 29 34 39
29 30 31 32 25 30 35 40
33 34 35 36 41 46 51 —
37 38 39 40 42 47 52 —
41 42 43 44 43 48 = —
45 46 47 48 44 49 — =
49 50 51 52 45 50 — =

(a) the 52 elements of DECK_OF_CARDS (b) the 52 elements of DECK_OF_CARDS
with distribution CYCLIC with distribution CYCLIC(5)
Figure 4.5

Cyclic and block-cyclic distributions of a deck of cards

SALAMI(1:200) mapped to the first processor, SALAMI (201:400) mapped to the second
processor, and so on. If there is only one processor, the entire array is mapped to that
processor as a single block of 10000 elements.

The block size may be specified explicitly:

REAL WEISSWURST(10000)
'HPF$ DISTRIBUTE WEISSWURST(BLOCK(256))

This specifies that groups of exactly 256 elements should be mapped to successive abstract
processors. (There must be at least [10000/256] = 40 abstract processors if the directive
is to be satisfied. The fortieth processor will contain a partial block of only 16 elements,
namely WEISSWURST(9985:10000).)

HPF also provides a cyclic distribution format:

REAL DECK_OF_CARDS(52)
'HPF$ DISTRIBUTE DECK_OF_CARDS(CYCLIC)

If there are 4 abstract processors, the first processor will contain DECK_OF _CARDS(1:49:4),
the second processor will contain DECK_OF_CARDS(2:50:4), the third processor will have
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DECK_OF _CARDS(3:51:4), and the fourth processor will have DECK DF _CARDS(4:52:4).
Successive array elements are dealt out to successive abstract processors in round-robin
fashion—see Figure 4.5(a). If the array elements were instead dealt out five at a time:

'HPF$ DISTRIBUTE DECK_OF_CARDS(CYCLIC(5))

the result would be a block-cyclic distribution that assigned the first processor DECK_OF _-
CARDS(1:5), DECK_OF_CARDS(21:25), and DECK_OF _CARDS(41:45)——see Figure 4.5(b).

Distributions may be specified independently for each dimension of a multidimensional
array:

INTEGER CHESS_BOARD(8,8), GO_BOARD(19,19)
'HPF$ DISTRIBUTE CHESS_BOARD(BLOCK, BLOCK)
'HPF$ DISTRIBUTE GO_BOARD(CYCLIC,*)

The CHESS_BOARD array will be carved up into contiguous rectangular patches, which will
be distributed onto a two-dimensional arrangement of abstract processors. The GO_BOARD
array will have its rows distributed cyclically over a one-dimensional arrangement of
abstract processors. (The “*” specifies that GO_BOARD is not to be distributed along its
second axis; thus an entire row is to be distributed as one object. This is sometimes
called “on-processor” distribution.)

The REDISTRIBUTE directive is similar to the DISTRIBUTE directive but is considered
executable. An array (or template) may be redistributed at any time, provided it has
been declared DYNAMIC (see Section 4.6). Any other arrays currently ultimately aligned
with an array (or template) when it is redistributed are also remapped to reflect the new
distribution, in such a way as to preserve alignment relationships (see Section 4.5). (This
can require a lot of computational and communication effort at run time; the programmer
must take care when using this feature.)

The form of a distribute-directive (H303) is:

DISTRIBUTE distributee dist-directive-stuff
DISTRIBUTE dist-atiribute-stuff :: distributee-list

(Note that the second form is a special case of a combined-directive (H301).)
The form of a redistribute-directive (H304) is one of:

REDISTRIBUTE distributee dist-directive-stuff
REDISTRIBUTE dist-attribute-stuff :: distributee-list

Although REDISTRIBUTE is not an attribute and so cannot be used in a combined-directive,
for convenience a redistribute-directive may be written in the style of attributed syntax,
using “::” punctuation, so as to resemble a distribute-directive.
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Either kind of directive mentions one or more distributees and some descriptive “stuff”
that is taken to apply to each distributee. Each distributee (H307) must be either an
object-name or a template-name.

The form of dist-directive-stuff (H305) is one of:

( dist-format-list )
( dist-format-list ) ONTO processors-name

The form of dist-attribute-stuff (H306) is one of:

( dist-format-list )
( dist-format-list ) ONTO processors-name
ONTO dist-target

The distinction between specification statement form and attributed form is merely that
a parenthesized dist-format list must appear in the specification statement form, whereas
it may be omitted in the attributed form if the ONTO clause appears. This admittedly
arbitrary restriction forestalls syntactic ambiguity in the directive form.

(There are actually other possibilities for dist-directive-stuff and dist-attribute-stuff
but they apply only to dummy arguments. Their complete syntax is discussed in Chap-
ter 5.)

A dist-format (H309) may be one of:

BLOCK [ ( int-ezpr ) |
CYCLIC [ ( int-ezpr ) ]
*

In a DISTRIBUTE or REDISTRIBUTE directive, the “formats” describe how each axis of
an array or template is to be distributed and the ONTO clause, if present, specifies the
particular abstract processor arrangement onto which the axes are distributed.

Rules and restrictions:

1. The DISTRIBUTE directive may appear only in the specification-part of a scoping unit.

2. The REDISTRIBUTE directive may appear only in the ezecution-part of a scoping unit.

3. An object-name mentioned as a distributee must be a simple name and not a subob-
ject designator.

4. An object-name mentioned as a distributee may not appear as an alignee in an ALIGN
or REALIGN directive.

5. A distributee that appears in a REDISTRIBUTE directive must have the DYNAMIC at-
tribute (see Section 4.6).

6. If a dist-format-list is specified, its length must equal the rank of each distributee.
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7. If an ONTO clause is present, the processors-name must name a processors arrange-
ment declared in a PROCESSORS directive (see Section 4.8).

8. If both a dist-format-list and a processors-name appear, the number of elements of
the dist-format-list that are not “*” must equal the rank of the named processor
arrangement.

9. If a processors-name appears but not a dist-format-list, the rank of each distributee
must equal the rank of the named processor arrangement.

10. Any int-ezpr appearing after BLOCK or CYCLIC in a dist-format of a DISTRIBUTE
directive must be a specification-ezpr.

11. The value of any int-ezpr appearing after CYCLIC in a dist-format of a DISTRIBUTE
or REDISTRIBUTE directive must be a positive integer.

12. The value of any int-ezpr appearing after BLOCK in a dist-format of a DISTRIBUTE or
REDISTRIBUTE directive must be a positive integer m such that, for every distributee,
m x p > d (equivalently, m > [d/p]) where d is the extent of the corresponding
dimension of the distributee and p is the corresponding dimension of the processors
arrangement onto which the distributee is to be distributed.

The meanings of the alternatives for dist-format are given below. But first, some
preliminaries.

Many of the formulas to come will use the subexpressions H—] and j ~k H—] for some
J and k. We note in passing that these play the role of integer division and remainder
in the formulas (except that the division is rounded upwards rather than truncated as in
standard Fortran usage). It is also true that this “remainder” is always negative or zero
if j is nonnegative and k is positive.

The dimensions of a processor arrangement appearing in an ONTO clause are said to
correspond in left-to-right order with those dimensions of a distributee for which the
corresponding dist-format is not *. In the example

{HPF$ DISTRIBUTE (BLOCK, *, BLOCK) ONTO SQUARE:: D1, D2

the arrays D1 and D2 are three-dimensional (though not necessarily of the same shape),
but the processor arrangement SQUARE must be two-dimensional. SQUARE'’s first dimen-
sion corresponds to the first dimensions of D1 and D2 and its second dimension corre-
sponds to the third dimensions of D1 and D2.

Let d be the extent of a distributee in a certain dimension and let p be the extent of
the processor arrangement in the corresponding dimension. For simplicity, assume all
dimensions have a lower bound of 1. Then BLOCK(m) means that a distributee position
whose index along that dimension is j is mapped to an abstract processor whose index
along the corresponding dimension of the processor arrangement is Hﬂ Also, that
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element of the distributee is position number m + j — m [fn—] (that is, 1 + (j mod m))
among elements mapped to that abstract processor. The first distributee position in
abstract processor k along that axis is position number 1+ m(k — 1).

BLOCK by definition means the same as BLOCK( [;‘-] ).

CYCLIC(m) means that a distributee position whose index along that dimension is j
is mapped to an abstract processor whose index along the corresponding dimension of
the processor arrangement is 1 + (4 mod p). Also, that distributee position is position

number 1 + m L—,{;J + (j mod m) among positions mapped to that abstract processor.
The first distributee position in abstract processor k along that axis is position number
1 + m(k — 1) (this formula is the same as for BLOCK(m)).

CYCLIC by definition means the same as CYCLIC(1).

CYCLIC(m) and BLOCK(m) imply the same distribution when mxp > d, but BLOCK ()
additionally asserts that the distribution will not wrap around in a cyclic manner, which
a compiler cannot determine at compile time if m is not constant. Note that CYCLIC and
BLOCK (without argument expressions) do not imply the same distribution unless p > d,
a degenerate case in which the block size is 1 and the distribution does not wrap around.

The formulas for “position numbers” in the preceding paragraphs suggest a specific im-
plementation of BLOCK and CYCLIC layouts. For simplicity, first consider one-dimensional
arrays only. A one-dimensional array of length d may be stored within p processors by
reserving a block of space within each processor. Let b; be the address of the block of
space within processor i (an implementation might or might not require the b; to have
the same value for all ¢). Then:

e For a BLOCK(m) distribution, element j of the array might be stored within processor
[L] at address bfj/m] + (j mod m).
e For a CYCLIC(m) distribution, element j of the array might be stored within processor

1+ (Hn—] — 1) mod p at address by 4([j/m]-1)modp + M L—#J + (j mod m).

For multidimensional arrays, one can separately apply the appropriate formula to each
dimension and then combine processor numbers (on the one hand) and position numbers
(on the other hand) in the same manner as one would combine ordinary subscripts for
a Fortran multidimensional array to produce a linear processor number and a linear
memory offset within that processor.

While these formulas are highly suggestive, HPF does not require this particular or-
ganization of processors or this particular memory layout within processors.
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Example 4.2 Suppose that we have 16 abstract processors and an array of length 100:

'HPF$ PROCESSORS SEDECIM(16)
REAL CENTURY(100)

Distributing the array BLOCK (which in this case would mean the same as BLOCK(7)):
'HPF$ DISTRIBUTE CENTURY(BLOCK) ONTO SEDECIM

results in this mapping of array elements onto abstract processors:

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
16 122|129 |36 |43 (5650|5764 |71 |78 |85]|92|99
9 [ 16 | 23|30 |37 |44 |51 | 58| 65| 72|79 |86 | 93 |100
10 | 17 | 24 | 31 | 38 | 45 (52 | 59166 | 73 | 80 | 87 | 94
11 18 | 25|32 | 39|46 | 53 | 60 | 67 | 74| 81 | 88 | 95
12119 {26 133 [40 |47 (54|61 |68 | 75|82 |89 |96
1312027 (34|41 |48 | 55| 62|69 | 76|83 | 90| 97
14121 12813514249 |56 |63|70]| 77|84 ]|91]98

N~N|lo|loa|dliw|lNv|m ]

Distributing the array BLOCK(8):
'HPF$ DISTRIBUTE CENTURY(BLOCK(8)) ONTO SEDECIM

results in this mapping of array elements onto abstract processors:

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
9 |17 | 25|33 |41 |49 |57 |65]|73181| 89|97
10|18 | 26 | 34 [ 42 | 50 | 58 | 66 | 74 | 82 | 90 | 98
11|19 | 27 | 35|43 |51 | 59|67 (|75 |83| 91|99
12 120|128 |36 (44| 52| 60|68 |76 84| 92 |100
13121 | 29|37 (45|53 61|69 |77 |85] 93
14 | 22 | 30|38 |46 |54 |62 | 70| 78 | 86 | 94
156123 |31139147|565(63[71]|79 (87|95
16 124 | 32|40 |48 |56 |64 | 72| 80| 88| 96

0| N[O (DW=~

Distributing the array BLOCK(6) is not HPF-conforming because 6 x 16 < 100.
Distributing the array CYCLIC (which means exactly the same as CYCLIC(1)):
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'HPF$ DISTRIBUTE CENTURY(CYCLIC) ONTO SEDECIM
results in this mapping of array elements onto abstract processors:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 2 3 4 5 6 7 8 9 |10| 1112 |13 | 14 | 156 | 16
17 118 [ 19 | 20|21 | 22|23 |24 | 25|26 | 27|28 |29 |30 31]}32
331343536 |37 (3839|4041 )42 |43 |44 |45 |46 | 47 | 48
49 | 50 | 561 | 52 | 53 | 564 { 5656 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64
656 | 66 |67 | 68 |69 |70 |71 |72 |73 |74|75]|76 |77 |78 | 79| 80
81182 |83|84|85)86|87 |8 |8 |90)]91|92]|93]|94]95]| 96
97 | 98 | 99 | 100

Distributing the array CYCLIC(3):
'HPF$ DISTRIBUTE CENTURY(CYCLIC(3)) ONTO SEDECIM
results in this mapping of array elements onto abstract processors:

1 4 5 6 7 8 9 100 11 12 13 14 15 16
10|13 |16 |19 |22} 25|28 | 31|34 | 37 |40 | 43 | 46
11114 |17 | 20|23 | 26 | 29 | 32 | 35 | 38 | 41 | 44 | 47
12 15|18 |21 |24 | 27 |30 | 33|36 |39]|42| 45| 48
49 | 52 | 65 | 68 |1 61 | 64 | 67T | 70 | 73 176 | 79 | 82 | 85 | 88 | 91 | 94
560 | 63 | 56 | 59 | 62 | 656 |68 | 71 | 74 | 77 | 80 | 83 | 86 | 89 | 92 | 95
61 | 54 | 57 | 60 | 63 |66 | 69 | 72 | 75| 78 | 81 |84 |87 | 90 | 93 | 96
97 | 100
98

99

© |00 | N]|w

2
1 4
2 5
3 6

Thus different distributions may require the reservation of differing amounts of space
within each processor. O

A DISTRIBUTE or REDISTRIBUTE directive must not cause any data object associated
with the distributee via storage association (COMMON or EQUIVALENCE) to be mapped
such that storage units of a scalar data object are split across more than one abstract
processor. See Section 4.10.2 for further discussion of storage association.
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The statement form of a DISTRIBUTE or REDISTRIBUTE directive may be considered
an abbreviation for an attributed form that happens to mention only one alignee; for
example,

'HPF$ DISTRIBUTE distributee ( dist-format-list ) ONTO dist-target
is equivalent to
'HPF$ DISTRIBUTE ( dist-format-list ) ONTO dist-target :: distributee

Note that, to prevent syntactic ambiguity, the dist-format-list must be present (with its
surrounding parentheses) in the statement form. But if a dist-format-list is present, at
least one dist-format must appear, in which case each distributee must be an array. It
follows that the statement form of the directive may not be used to specify the mapping
of scalars; the attributed form must be used:

'HPF$ DISTRIBUTE ONTO SCALARPROC :: REALSCALAR, INTSCALAR

If the dist-format-list is omitted from the attributed form, then the language processor
may make an arbitrary choice of distribution formats for each template or array. So the
directive

'HPF$ DISTRIBUTE ONTO P :: Di, D2, D3
means the same as

'HPF$ DISTRIBUTE ONTO P :: D1
'HPF$ DISTRIBUTE ONTO P :: D2
{HPF$ DISTRIBUTE ONTO P :: D3

to which a compiler, perhaps taking into account patterns of use of D1, D2, and D3 within
the code, might choose to supply three distinct distributions such as, for example,

‘HPF$ DISTRIBUTE D1(BLOCK, BLOCK) ONTO P
'HPF$ DISTRIBUTE D2(CYCLIC, BLOCK) ONTO P
{HPF$ DISTRIBUTE D3(BLOCK(43),CYCLIC) ONTO P

Then again, the compiler might happen to choose the same distribution for all three
arrays.

In either the statement form or the attributed form, if the ONTO clause is present, it
specifies the processor arrangement that is the target of the distribution. If the ONTO
clause is omitted, then a system-dependent processor arrangement is chosen arbitrarily
for each distributee. So, for example,
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REAL, DIMENSION(1000) :: ARTHUR, ARNOLD, LINUS, LUCY
'HPF$ PROCESSORS EXCALIBUR(32)
'HPF$ DISTRIBUTE (BLOCK) ONTO EXCALIBUR :: ARTHUR, ARNOLD
'HPF$ DISTRIBUTE (BLOCK) :: LINUS, LUCY

causes the arrays ARTHUR and ARNOLD to have the same mapping, so that corresponding
elements reside in the same abstract processor, because they are the same size and dis-
tributed in the same way (BLOCK) onto the same processor arrangement (EXCALIBUR).
However, LUCY and LINUS do not necessarily have the same mapping because they might,
depending on the implementation, be distributed onto differently chosen processor ar-
rangements; so corresponding elements of LUCY and LINUS might not reside on the same
abstract processor. (The ALIGN directive provides a way to ensure that two arrays have
the same mapping without having to specify an explicit processor arrangement.)

4.5 ALIGN and REALIGN Directives

The ALIGN directive is used to specify that certain data objects are to be mapped in
the same way as certain other data objects. Operations between aligned data objects
are likely to be more efficient than operations between data objects that are not known
to be aligned (because two objects that are aligned are intended to be mapped to the
same abstract processor). The ALIGN directive is designed to make it particularly easy
to specify explicit mappings for all the elements of an array at once. While objects can
be aligned in some cases through careful use of matching DISTRIBUTE directives, ALIGN
is more general and frequently more convenient.

The REALIGN directive is similar to the ALIGN directive but is considered executable. An
array (or template) may be realigned at any time, provided it has been declared DYNAMIC
(see Section 4.6) Unlike redistribution (see Section 4.4), realigning a data object does not
cause any other object to be remapped. (However, realignment of even a single object,
if it is large, could require a lot of computational and communication effort at run time;
the programmer must take care when using this feature.)

The ALIGN directive may appear only in the specification-part of a scoping unit. The
REALIGN directive is similar but may appear only in the ezecution-part of a scoping
unit. The principal difference between ALIGN and REALIGN is that ALIGN must contain
only a specification-ezpr as a subscript or in a subscript-triplet, whereas in REALIGN
such subscripts may be any integer expressions. Another difference is that ALIGN is an
attribute, and so can be combined with other attributes as part of a combined-directive,
whereas REALIGN is not an attribute (although a REALIGN statement may be written in
the style of attributed syntax, using “::” punctuation).
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The form of an align-directive (H312) is:

ALIGN alignee align-directive-stuff
ALIGN align-attribute-stuff :: alignee-list

(Note that the second form is a special case of a combined-directive (H301).)
The form of a realign-directive (H313) is:

REALIGN alignee align-directive-stuff
REALIGN align-attribute-stuff :: alignee-list

Although REALIGN is not an attribute and so cannot be used in a combined-directive, for
convenience a realign-directive may be written in the style of attributed syntax, using
“::” punctuation, so as to resemble an align-directive,

Either kind of directive mentions one or more alignees and some descriptive “stuff”
that is taken to apply to each alignee.

The form of an alignee (H316) is:
object-name
The form of align-directive-stuff (H314) is:
( align-source-list ) align-with-clause
whereas the form of an align-attribute-stuff (H315) is:
[ ( align-source-list ) ] align-with-clause

The distinction between directive form and attributed form is merely that the align-
source-list with its enclosing parentheses must appear in the directive form, whereas it
may be omitted in the attributed form. (This admittedly arbitrary restriction forestalls
syntactic ambiguity in the directive form.) One important consequence of this restriction
is that alignees that are not arrays require the use of the attributed form.

The form of each align-source (H317) is one of:

*
align-dummy

where an align-dummy (H318) is a scalar-int-variable.

Rules and restrictions:
1. An object-name mentioned as an alignee may not appear as a distributee in a DIS-
TRIBUTE or REDISTRIBUTE directive.
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2. Any alignee that appears in a REALIGN directive must have the DYNAMIC attribute
(see Section 4.6).

3. The align-source-list (and its surrounding parentheses) must be omitted if the alignee
is scalar. (In some cases this will preclude the use of the statement form of the
directive.)

4. If the align-source-list is present, its length must equal the rank of the alignee.

. An align-dummy must be a named variable.

6. An object may not have both the INEERIT attribute and the ALIGN attribute. (How-
ever, an object with the INHERIT attribute may appear as an alignee in a REALIGN
directive, provided that it does not appear as a disiributee in a DISTRIBUTE or
REDISTRIBUTE directive.)

ot

The statement form of an ALIGN or REALIGN directive may be considered an abbrevi-
ation of an attributed form that happens to mention only one alignee:

IHPF$ ALIGN alignee ( align-source-list ) WITH align-spec
is equivalent to
'HPF$ ALIGN ( align-source-list ) WITH align-spec :: alignee

If the align-source-list is omitted from the attributed form and the alignees are not
scalar, the align-source-list is assumed to consist of a parenthesized list of “:” entries,
equal in number to the rank of the alignees. Similarly, if the align-subscript-list is omitted
from the align-spec in either form, it is assumed to consist of a parenthesized list of “:”
entries, equal in number to the rank of the align-target. So the directive

'HPF$ ALIGN WITH B :: A1, A2, A3
means

'HPF$ ALIGN (:,:) WITH B(:,:) :: A1, A2, A3
which in turn means the same as

'HPF$ ALIGN A1(:,:) WITH B(:,:)
IHPF$ ALIGN A2(:,:) WITH B(:,:)
'HPF$ ALIGN A3(:,:) WITH B(:,:)

because an attributed-form directive that mentions more than one alignee is equivalent
to a series of identical directives, one for each alignee; all alignees must have the same
rank. With this understanding, we will assume below, for the sake of simplifying the
description, that an ALIGN or REALIGN directive has a single alignee.
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Each align-source corresponds to one axis of the alignee, and is specified as either “:”
or “*” or a dummy variable:

e Ifitis “;”, then positions along that axis will be spread out across the matching axis
of the align-spec (see below).

o Ifitis “#” then that axis is collapsed: positions along that axis make no difference in
determining the corresponding position within the align-target. (Replacing the “¥” with
a dummy variable name not used anywhere else in the directive would have the same
effect; “*” is merely a convenience that saves the trouble of inventing a variable name
and makes it clear that no dependence on that dimension is intended.)

e A dummy variable is considered to range over all valid index values for that dimension
of the alignee.

The form of an align-with-clause (H319) is:
WITH align-target [ ( align-subscript-list ) |

There is actually another possibility for an align-with-clause but it applies only to dummy
arguments. The complete syntax for an align-with-clause is discussed in Chapter 5.

An align-target (H321) must be an object-name or a template-name.

The form of an align-subscript (H322) is:

int-ezpr
align-subscript-use
subscript-triplet

*

An align-subscript-use is an integer expression that mentions some align-dummy variable
exactly once as a manifestly linear function of that variable. The form of an align-
subscript-use (H323) is one of:

[ [ int-level-two-ezpr | add-op ] align-add-operand
align-subscript-use add-op int-add-operand

where an align-add-operand (H324) is one of:

[ int-add-operand * ] align-primary
align-add-operand * int-mult-operand

and an align-primary (H325) is one of:

align-dummy
( align-subscript-use )
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An int-add-operand (H326) is simply a Fortran 90 add-operand (R706) of integer type.
Similarly, a int-mult-operand (H327) is a mult-operand (R705) of integer type and a
int-level-two-ezpr (H328) is an level-2-ezpr (R707) of integer type.

Rules and restrictions:

1. Each align-dummy may appear at most once in an align-subscript-list.

2. An align-subscript-use expression may contain at most one occurrence of an align-
dummy.

3. An align-dummy may not appear anywhere in the align-spec except where explicitly
permitted to appear by virtue of the grammar shown above. Paraphrased, one may
construct an align-subscript-use by starting with an align-dummy and then doing
additive and multiplicative things to it with any integer expressions that contain no
align-dummy.

4. A subscript in an align-subscript may not contain occurrences of any align-dummy.

5. An int-add-operand, int-mult-operand, or int-level-two-ezpr must be of type integer.

The syntax rules for an align-subscript-use take account of operator precedence issues,
but the basic idea is simple: an align-subscript-use is intended to be a linear function of
a single occurrence of an align-dummy.

For example, the following align-subscript-use expressions are valid, assuming that J,
K, and M are align-dummy names and N is not an align-dummy:

J J+1 3-K 2*M N*M 100-3*M
-J 4] -K+3 M+2%%3  M+N -(4*7+I0R(6,9))*K-(13-5/3)
M*2 N*(M-N) 2%(J+1) 5-K+3 10000-M*3 2%(3x(K-1)+13)-100

The following expressions are not valid align-subscript-use expressions:

J+J J-J 3%xK-2%xK M*(N-M) 2#%J-3*J+]J 2*(3*%(K-1)+13)-K
JxJ J+K 3/K 2%%M M*K K-3%M
K-J IOR(J,1) -K/3 M*(2+M) M*(M-N) 2%% (2% J-3%J+])

The align-spec must contain exactly as many subscript-triplets as the number of colons
(“:”) appearing in the align-source-list. These are matched up in corresponding left-to-
right order, ignoring, for this purpose, any align-source that is not a colon and any
align-subscript that is not a subscript-triplet. Consider a dimension of the alignee for
which a colon appears as an align-source and let the lower and upper bounds of that
array be LA and U A. Let the corresponding subscript triplet be LT : UT : ST or its
equivalent. Then the colon could be replaced by a new, as-yet-unused dummy variable,
say J, and the subscript triplet by the expression (J-LA)*ST+LT without affecting the
meaning of the directive. Moreover, the axes must conform, which means that
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max(0,UA - LA+ 1) = max (O, ”E—#])

must be true. (This is entirely analogous to the treatment of array assignment.)

To simplify the remainder of the discussion, we assume that every colon in the align-
source-list has been replaced by new dummy variables in exactly the fashion just de-
scribed, and that every “*” in the align-source-list has likewise been replaced by an
otherwise unused dummy variable. For example,

'HPF$ ALIGN A(:,*,K,:,:,*) WITH B(31:,:,K+3,20:100:3)
may be transformed into its equivalent

'HPF$ ALIGN A(I,J,K,L,M,N) WITH B(I-LBOUND(A,1)+31, &
'HPF$ L-LBOUND(A,4)+LBOUND(B,2),K+3, (M-LBOUND(A,5))*3+20)

with the attached requirements

SIZE(A,1) .EQ. UBOUND(B,1)-30
SIZE(A,4) .EQ. SIZE(B,2)
SIZE(A,5) .EQ. (100-20+3)/3

Thus we need consider further only the case where every align-source is a dummy variable
and no align-subscript is a subscript-triplet.

Each dummy variable is considered to range over all valid index values for the corre-
sponding dimension of the alignee. Every combination of possible values for the index
variables selects an element of the alignee. The align-spec indicates a corresponding el-
ement (or section) of the align-target with which that element of the alignee should be
aligned; this indication may be a function of the index values, but the nature of this
function is syntactically restricted (as discussed above) to linear functions in order to
limit the complexity of the implementation. Each align-dummy variable may appear at
most once in the align-spec and only in certain rigidly prescribed contexts. The result is
that each align-subscript expression may contain at most one align-dummy variable and
the expression is constrained to be a linear function of that variable. (Therefore skew
alignments are not possible.)

An asterisk “*” as an align-subscript indicates a replicated representation. Each ele-
ment of the alignee is aligned with every position along that axis of the align-target. It is
as if the compiler were, for each “*” align-subscript, to replace the “*” by a new dummy
variable, automatically to add an extra dimension to the alignee, and then use the same
new dummy variable as the align-source for the new dimension. Thus the replicating
alignment

Copyrighted Material



118 Chapter 4

‘HPF$ ALIGN A(J) WITH D(J,*)
roughly results in implementing A as a two-dimensional array with the specification

'HPF$ ALIGN A(J,K) WITH D(J,K)

The compiler then generates code that ensures that all the copies of the original A along
the extra dimension are updated consistently; for example, a piece of code such as

DO I =1, 200
A(I) = 3.7 ** 1
END DO

is compiled roughly as if it were first transformed into

DO I =1, 200
ACI, :) = 3.7 *x 1
END DO

By applying the transformations given above, all cases of an align-subscript may be
conceptually reduced to either an int-ezpr (not involving an align-dummy) or an align-
subscript-use, and the align-source-list may be reduced to a list of index variables with
no “#” or “:”. An align-subscript-list may then be evaluated for any specific combination
of values for the align-dummy variables simply by evaluating each align-subscript as an
expression. The resulting subscript values must be legitimate subscripts for the align-
target. (‘This implies that the alignee is not allowed to “wrap around” or “extend past
the edges” of an align-target.) The selected element of the alignee is then considered
to be aligned with the indicated element of the align-target; more precisely, the selected
element of the alignee is considered to be ultimately aligned with the same object with
which the indicated element of the align-target are currently ultimately aligned (possibly
itself).

Once a relationship of ultimate alignment is established, it persists, even if the ulti-
mate align-target is redistributed, unless and until the alignee is realigned by a REALIGN
directive, which is permissible only if the alignee has the DYNAMIC attribute.

More examples of ALIGN directives follow:

INTEGER D1(N)

LOGICAL D2(N,N)

REAL, DIMENSION(N,N):: X, A, B, C, AR1, AR2A, P, Q, R, S
IHPF$ ALIGN X(:,*) WITH D1(:)
IHPF$ ALIGN (:,*) WITH D1:: A, B, C, AR1, AR2A
IHPF$ ALIGN WITH D2, DYNAMIC:: P,Q,R,S
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Note that, in a alignee-list, the alignees must all have the same rank but need not all have
the same shape; the extents need match only for dimensions that correspond to colons
in the align-source-list. This turns out to be an extremely important convenience; one of
the most common cases in current practice is aligning arrays that match in distributed
(“parallel”) dimensions but may differ in collapsed (“on-processor”) dimensions:

REAL A(3,N), B(4,N), C(43,N), Q(N)
'HPF$ DISTRIBUTE Q(BLOCK)
1HPF$ ALIGN (*,:) WITH Q:: A, B, C

Here there are processors (perhaps N of them) and arrays of different sizes (3, 4, 43)
within each processor are required. As far as HPF is concerned, the numbers 3, 4, and
43 may be different, because those axes will be collapsed. Thus array elements with
indices differing only along that axis will all be aligned with the same element of Q (and
thus be specified as residing in the same processor).

In the following examples, each directive in the group means the same thing, assuming
that corresponding axis upper and lower bounds match:

!Second axis of X is collapsed
'HPF$ ALIGN X(:,*) WITH D1(:)
'HPF$ ALIGN X(J,*) WITH D1(J)
'HPF$ ALIGN X(J,K) WITH D1(J)

'Replicated representation along second axis of D3
'HPF$ ALIGN X(:,:) WITH D3(:,*,:)
'HPF$ ALIGN X(J,K) WITH D3(J,*,K)

!Transposing two axes

'HPF$ ALIGN X(J,K) WITH D2(K,J)

'HPF$ ALIGN X(J,:) WITH D2(:,J)

'HPF$ ALIGN X(:,K) WITH D2(K,:)

'But there isn’t any way to get rid of *both* index variables;

! the subscript-triplet syntax alone cannot express transposition.

'Reversing both axes

'HPF$ ALIGN X(J,K) WITH D2(M-J+1,N-K+1)
'HPF$ ALIGN X(:,:) WITH D2(M:1:-1,N:1:-1)
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!Simple case

'HPF$ ALIGN X(J,K) WITH D2(J,K)
'HPF$ ALIGN X(:,:) WITH D2(:,:)
'HPF$ ALIGN (J,K) WITH D2(J,K):: X
'HPF$ ALIGN (:,:) WITH D2(:,:):: X
'HPF$ ALIGN WITH D2:: X

4.6 D YNAMIC Directive

The DYNAMIC attribute specifies that an object may be dynamically realigned or redis-
tributed. The form of a dynamic-directive (H329) is:

DYNAMIC alignee-or-distributee-list

where each alignee-or-distributee (H330) must be either an alignee (H316) or a distributee
(H307).

Rules and restrictions:

1. An object in COMMON may not be declared DYNAMIC and may not be aligned to an
object (or template) that is DYNAMIC. (To get this kind of effect, Fortran 90 modules
must be used instead of COMMON blocks.)

2. An object with the SAVE attribute may not be declared DYNAMIC and may not be
aligned to an object (or template) that is DYNAMIC.

A REALIGN directive may not be applied to an alignee that does not have the DYNAMIC
attribute. A REDISTRIBUTE directive may not be applied to a distributee that does not
have the DYNAMIC attribute.

A DYNAMIC directive may be combined with other directives, with the attributes stated
in any order, consistent with the Fortran 90 attribute syntax.

Example 4.3 The following two directives mean exactly the same thing;:

'HPF$ DYNAMIC A, B, C, D, E
IHPF$ DYNAMIC :: A, B, C, D, E

(m

Example 4.4 The following two directives mean exactly the same thing:

'HPF$ DYNAMIC, ALIGN WITH SNEEZY :: X, Y, 2
'HPF$ ALIGN WITH SNEEZY, DYNAMIC :: X, Y, 2
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0

Example 4.5 The following two directives mean exactly the same thing:

'HPF$ DYNAMIC, DISTRIBUTE(BLOCK, BLOCK) :: X, Y
'HPF$ DISTRIBUTE(BLOCK, BLOCK), DYNAMIC :: X, Y

O

Example 4.6 The three directives

'HPF$ TEMPLATE A(64,64), B(64,64), C(64,64), D(64,64)
'HPF$ DISTRIBUTE(BLOCK, BLOCK) ONTO P:: A, B, C, D
'HPF$ DYNAMIC A, B, C, D

may be combined into a single directive as follows:

'HPF$ TEMPLATE, DISTRIBUTE(BLOCK, BLOCK) ONTO P, &
'HPF$ DIMENSION(64,64), DYNAMIC :: A, B, C, D

O

4.7 Allocatable Arrays and Pointers

A variable with the POINTER or ALLOCATABLE attribute may appear as an alignee in an
ALIGN directive or as a distributee in a DISTRIBUTE directive. Such directives do not
take effect immediately, however; they take effect each time the array is allocated by
an ALLOCATE statement, rather than on entry to the scoping unit. The values of all
specification expressions in such a directive are determined once on entry to the scoping
unit and may be used multiple times (or not at all). For example:

SUBROUTINE MILLARD_FILLMORE(N,M)

REAL, ALLOCATABLE, DIMENSION(:) :: A, B
'HPF$ ALIGN B(I) WITH A(I+N)
'HPF$ DISTRIBUTE A(BLOCK(M*2))

N = 43

M =91

ALLOCATE(A(27))

ALLOCATE(B(13))
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The values of the expressions N and M*2 on entry to the subprogram are conceptually
retained by the ALIGN and DISTRIBUTE directives for later use at allocation time. When
the array A is allocated, it is distributed with a block size equal to the retained value of
M#*2, not the value 182. When the array B is allocated, it is aligned relative to A according
to the retained value of N, not its new value 43.

Note that it would have been incorrect in the MILLARD FILLMORE example to perform
the two ALLOCATE statements in the opposite order. In general, when an object X is
created it may be aligned to another object Y only if Y has already been created or
allocated. The following example illustrates several other incorrect cases.

SUBROUTINE WARREN_HARDING(P,Q)
REAL P(:)

REAL Q(:)

REAL R(SIZE(Q))

REAL, ALLOCATABLE :: S(:),T(:)

'HPF$ ALIGN P(I) WITH T(I) t*x*x* Nonconforming!
'HPF$ ALIGN Q(I) WITH *T(I) t***x Nonconforming!
'HPF$ ALIGN R(I) WITH T(I) !**x Nonconforming!
'HPF$ ALIGN S(I) WITH T(I)
ALLOCATE(S(SIZE(Q))) t**x Nonconforming!
ALLOCATE(T(SIZE(Q)))

The ALIGN directives are not HPF-conforming because the array T has not yet been
allocated at the time that the various alignments must take place. The four cases differ
slightly in their details. The arrays P and Q already exist on entry to the subroutine,
but because T is not yet allocated, one cannot correctly prescribe the alignment of P or
describe the alignment of Q relative to T. (See Section 5.5 for a discussion of prescriptive
and descriptive directives.) The array R is created on subroutine entry and its size can
correctly depend on the SIZE of Q, but the alignment of R cannot be specified in terms
of the alignment of T any more than its size can be specified in terms of the size of T. It
is permitted to have an alignment directive for S in terms of T, because the alignment
action does not take place until S is allocated; however, the first ALLOCATE statement
is nonconforming because S needs to be aligned but at that point in time T is still
unallocated.

If an ALLOCATE statement is immediately followed by REDISTRIBUTE and/or REALIGN
directives, the meaning in principle is that the array is first created with the statically
declared alignment, then immediately remapped. In practice there is an obvious opti-
mization: create the array in the processors to which it is about to be remapped, in a
single step. HPF implementors are strongly encouraged to implement this optimization
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and HPF programmers are encouraged to rely upon it. Here is an example:

REAL, ALLOCATABLE(:,:) :: TINKER, EVERS
VHPF$ DYNAMIC :: TINKER, EVERS
REAL, POINTER :: CHANCE(:)

'HPF$ DISTRIBUTE(BLOCK), DYNAMIC :: CHANCE
READ 6,M,N
ALLOCATE(TINKER(N*M,N*M))

'HPF$ REDISTRIBUTE TINKER(CYCLIC, BLOCK)
ALLOCATE(EVERS(N,N))

'HPF$ REALIGN EVERS(:,:) WITH TINKER(M::M,1i::M)
ALLOCATE(CHANCE(10000))

tHPF$ REDISTRIBUTE CHANCE(CYCLIC)

While CHANCE is by default always allocated with a BLOCK distribution, it should be
possible for a compiler to notice that it will immediately be remapped to a CYCLIC
distribution. Similar remarks apply to TINKER and EVERS. (Note that EVERS is mapped
in a thinly-spread-out manner onto TINKER; adjacent elements of EVERS are mapped to
elements of TINKER separated by a stride M. This thinly-spread-out mapping is put in the
lower left corner of TINKER, because EVERS(1,1) is mapped to TINKER(M,1).)

An array pointer may be used in REALIGN and REDISTRIBUTE as an alignee, align-
target, or distributee if and only if it is currently associated with a whole array, not an
array section. One may remap an object by using a pointer as an alignee or distributee
only if the object was created by ALLOCATE but is not an ALLOCATABLE array.

Any directive that remaps an object constitutes an assertion on the part of the pro-
grammer that the remainder of program execution would be unaffected if all pointers
associated with any portion of the object were instantly to acquire undefined pointer
association status, except for the one pointer, if any, used to indicate the object in the
remapping directive.

If HPF directives were ever to be absorbed as actual Fortran statements, the previous
paragraph could be written as “Remapping an object causes all pointers associated with
any portion of the object to have undefined pointer association status, except for the
one pointer, if any, used to indicate the object in the remapping directive.” The more
complicated wording here is intended to avoid any implication that the remapping direc-
tives, in the form of structured comment annotations, have any effect on the execution
semantics, as opposed to the execution speed, of the annotated program.)

When an array is allocated, it will be aligned to an existing template if there is an
explicit ALIGN directive for the allocatable variable. If there is no explicit ALIGN directive,
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then the array will be ultimately aligned with itself. It is forbidden for any other object
to be ultimately aligned to an array at the time the array becomes undefined by reason
of deallocation. All this applies regardless of whether the name originally used in the
ALLOCATE statement when the array was created had the ALLOCATABLE attribute or the
POINTER attribute.

4.8 PROCESSORS Directive

The PROCESSORS directive declares one or more rectilinear processor arrangements, spec-
ifying for each one its name, its rank (number of dimensions), and the extent in each
dimension. It may appear only in the specification-part of a scoping unit. Every di-
mension of a processor arrangement must have nonzero extent; therefore a processor
arrangement cannot be empty.

In the language of Section 14.1.2 of the Fortran 90 standard, processor arrangements
are local entities of class (1); therefore a processor arrangement may not have the same
name as a variable, named constant, internal procedure, etc., in the same scoping unit.
Names of processor arrangements obey the same rules for host and use association as
other names in the long list in Section 12.1.2.2.1 of the Fortran 90 standard.

If two processor arrangements have the same shape, then corresponding elements of
the two arrangements are understood to refer to the same abstract processor. (It is
anticipated that system-dependent directives provided by some HPF implementations
could overrule the default correspondence of processor arrangements that have the same
shape.)

If directives collectively specify that two objects be mapped to the same abstract
processor at a given instant during the program execution, the intent is that the two
objects be mapped to the same physical processor at that instant.

The intrinsic functions NUMBER_OF PROCESSORS and PROCESSORS_SHAPE may be used to
inquire about the total number of actual physical processors used to execute the program.
This information may then be used to calculate appropriate sizes for the declared abstract
processor arrangements.

The form of a processors-directive (H331) is:

PROCESSORS processors-decl-list
where the form of a processors-decl (H332) is:
processors-name [ ( ecplicit-shape-spec-list ) ]

and a processors-name (H333) is simply an object-name.
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Examples:

'HPF$ PROCESSORS P(N)

IHPF$ PROCESSORS Q(NUMBER_OF_PROCESSORS()), &
'HPF$ R(8,NUMBER_OF_PROCESSORS()/8)
'HPF$ PROCESSORS BIZARRO(1972:1997,-20:17)

'HPF$ PROCESSORS SCALARPROC

If no shape is specified, then the declared processor arrangement is conceptually scalar.

A scalar processor arrangement may be useful as a way of indicating that certain
scalar data should be kept together but need not interact strongly with distributed data.
Depending on the implementation architecture, data distributed onto such a processor
arrangement may reside in a single “control” or “host” processor (if the machine has one),
or may reside in an arbitrarily chosen processor, or may be replicated over all proces-
sors. For target architectures that have a set of computational processors and a separate
scalar host computer, a natural implementation is to map every scalar processor arrange-
ment onto the host processor. For target architectures that have a set of computational
processors but no separate scalar “host” computer, data mapped to a scalar processor
arrangement might be mapped to some arbitrarily chosen computational processor or
replicated onto all computational processors.

An HPF compiler is required to accept any PROCESSORS declaration in which the
product of the extents of each declared processor arrangement is equal to the number
of physical processors that would be returned by the call NUMBER_OF PROCESSORS(). It
must also accept all declarations of scalar PROCESSOR arrangements. Other cases may be
handled as well, depending on the implementation.

For compatibility with the Fortran 90 attribute syntax, an optional “::”
inserted. The shape may also be specified with the DIMENSION attribute:

may be

'HPF$ PROCESSORS :: RUBIK(3,3,3)
'HPF$ PROCESSORS, DIMENSION(3,3,3) :: RUBIK

As in Fortran 90, an ezplicit-shape-spec-list in a processors-decl will override an explicit
DIMENSION attribute:

tHPF$ PROCESSORS, DIMENSION(3,3,3) :: &
'HPF$ RUBIK, RUBIKS_REVENGE(4,4,4), SOMA

Here RUBIKS_REVENGE is 4 x 4 x 4 while RUBIK and SOMA are each 3 x 3 x 3. (By
the rules enunciated above, however, such a statement may not be completely portable
because no HPF language processor is required to handle shapes of total sizes 27 and 64
simultaneously.)
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Returning from a subprogram causes all processor arrangements declared local to that
subprogram to become undefined. It is not HPF-conforming for any array or template
to be distributed onto a processor arrangement at the time the processor arrangement
becomes undefined unless at least one of two conditions holds:

e The array or template itself becomes undefined at the same time by virtue of returning
from the subprogram.
e Whenever the subprogram is called, the processor arrangement is always locally de-
fined in the same way, with identical lower bounds, and identical upper bounds.

Note that second condition is slightly less stringent than requiring all expressions to
be constant. This allows calls to NUMBER_OF PROCESSORS or PROCESSORS _SHAPE to appear
without violating the condition.

Variables in COMMON or having the SAVE attribute may be mapped to alocally declared
processor arrangement, but because the first condition cannot hold for such variables
(they don’t become undefined), the second condition must be observed. This allows
COMMON variables to work properly through the customary strategy of putting identical
declarations in each scoping unit that needs to use them, while allowing the proces-
sor arrangements to which they may be mapped to depend on the value returned by
NUMBER _OF PROCESSORS.

It may be desirable to have a way for the user to specify at compile time the number
of physical processors on which the program is to be executed. This might be speci-
fied either by a compiler-dependent directive, for example, or through the programming
environment (for example, as a UNIX command-line argument). Such facilities are be-
yond the scope of the HPF specification, but as food for thought we offer the following
illustrative hypothetical examples:

'Declaration for multiprocessor by ABC Corporation

'ABC$ PHYSICAL PROCESSORS(8)

'Declaration for mpp by XYZ Incorporated

'XYZ$ PHYSICAL PROCESSORS(66536)

!Declaration for hypercube machine by PDQ Limited

IPDQ$ PHYSICAL PROCESSORS(2,2,2,2,2,2,2)

'Declaration for two-dimensional grid machine by TLA GmbH
'TLA$ PHYSICAL PROCESSORS(128,64)

'One of the preceding might affect the following

IHPF$ PROCESSORS P(NUMBER_OF_PROCESSORS())

It may furthermore be desirable to have a way for the user to specify the precise map-
ping of the processor arrangement declared in a PROCESSORS statement to the physical
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processors of the executing hardware. Again, this might be specified either by a compiler-
dependent directive or through the programming environment (for example, as a UNIX
command-line argument); such facilities are beyond the scope of the HPF specification,
but as food for thought we offer the following illustrative hypothetical example:!

1PDQ$ PHYSICAL PROCESSORS(2,2,2,2,2,2,2,2,2,2,2,2,2)
IHPF$ PROCESSORS G(8,64,16)
1PDQ$ MACHINE LAYOUT G(:GRAY(0:2),:GRAY(6:11),:BINARY(3:5,12))

This might specify that the first dimension of G should use hypercube axes 0, 1, 2 with a
Gray-code ordering; the second dimension should use hypercube axes 6 through 11 with
a Gray-code ordering; and the third dimension should use hypercube axes 3, 4, 5, and
12 with a binary ordering.

4.9 TEMPLATE Directive

The TEMPLATE directive declares one or more templates, specifying for each the name,
the rank (number of dimensions), and the extent in each dimension. It must appear in
the specification-part of a scoping unit.

In the language of section 14.1.2 of the Fortran 90 standard, templates are local entities
of class (1); therefore a template may not have the same name as a variable, named
constant, internal procedure, etc., in the same scoping unit. Template names obey the
rules for host and use association as other names in the list in section 12.1.2.2.1 of the
Fortran 90 standard.

A template is simply an abstract space of indexed positions; it can be considered as
an “array of nothings” (as compared to an “array of integers,” say). A template may be
used as an abstract align-target that may then be distributed.

The form of a template-directive (H334) is:

TEMPLATE template-decl-list
where the form of a template-decl (H335) is:
template-name [ ( ezplicit-shape-spec-list ) ]

and a template-name (H336) is simply an object-name.

1This example assumes that PDQ Limited has extended Fortran to allow arrays of rank greater than
seven.
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Some examples follow:

'HPF$ TEMPLATE A(N)
'HPF$ TEMPLATE B(N,N), C(N,2*N)
1HPF$ TEMPLATE DOPEY(100,100),SNEEZY(24),GRUMPY(17,3,5)

If the “::” syntax is used, then the declared templates may optionally be distributed
in the same combined-directive. In this case all templates declared by the directive must
have the same rank so that the DISTRIBUTE attribute will be meaningful. The DIMENSION
attribute may also be used.

'HPF$ TEMPLATE, DISTRIBUTE(BLOCK,*) :: WHINEY(64,64), MOPEY(128,128)&
'HPF$ TEMPLATE, DIMENSION(91,91) :: BORED, WHEEZY, PERKY

Templates are useful in the particular situation where one must align several arrays
relative to one another but there is no need to declare a single array that spans the entire
index space of interest. For example, one might want four N x N arrays aligned to the
four corners of a template of size (N + 1) x (N + 1):

'HPF$ TEMPLATE, DISTRIBUTE(BLOCK, BLOCK) :: EARTH(N+1,N+1)
REAL, DIMENSION(N,N) :: NW, NE, SW, SE

IHPF$ ALIGN NW(I,J) WITH EARTH( I , J )

'HPF$ ALIGN NE(I,J) WITH EARTH( I ,J+1)

'HPF$ ALIGN SW(I,J) WITH EARTH(I+1, J )

'HPF$ ALIGN SE(I,J) WITH EARTH(I+1,J+1)

Templates may also be useful in making assertions about the mapping of dummy argu-
ments (see Section 5.5).

Unlike arrays, templates cannot be in COMMON. So two templates declared in different
scoping units will always be distinct, even if they are given the same name. The only
way for two program units to refer to the same template is to declare the template in a
module that is then used by the two program units.

Templates are not passed through the subprogram argument interface. The template
to which a dummy argument is aligned is always distinct from the template to which the
actual argument is aligned, though it may be a copy (see Section 5.4). On exit from a
subprogram, an HPF implementation arranges that the actual argument is aligned with
the same template with which it was aligned before the call.

Returning from a subprogram causes all templates declared local to that subprogram to
become undefined. It is not HPF-conforming for any variable to be aligned to a template
at the time the template becomes undefined unless at least one of two conditions holds:
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o The variable itself becomes undefined at the same time by virtue of returning from
the subprogram.
e Whenever the subprogram is called, the template is always locally defined in the same
way, with identical lower bounds, identical upper bounds, and identical distribution
information (if any) onto identically defined processor arrangements (see Section 4.8).
(Note that this second condition is slightly less stringent than requiring all expressions
to be constant. This allows calls to NUMBER_DF_PROCESSORS or PROCESSORS_SHAPE to
appear without violating the condition.)

Variables in COMMON or having the SAVE attribute may be mapped to a locally declared
template, but because the first condition cannot hold for such variable (they don’t become
undefined), the second condition must be observed.

4.10 Fortran Storage Association and HPF

So far our discussion, with the exception of some fine print, might lead the reader to
think that all variables are candidates for the mapping directives. For some codes this
may be true, but there are important restrictions that are covered in this section.

For most of the lifetime of the Fortran language, efficient use of memory has been
very important. One use of COMMON and EQUIVALENCE in Fortran programs has been to
conserve memory space. This is called storage association: storage units used for one set
of variables in one section of code that are reused for another set of variables elsewhere.
More formally stated:

Storage association is the association of two or more data objects that
occurs when two or more storage sequences share or are aligned with one or
more storage units.

— Fortran Standard (14.6.3.1)

It should not surprise the reader that this multiple use of storage has great potential
for mischief if mapping directives are applied, either explicitly or implicitly. The (useful)
Fortran tradition of separate compilation makes the problem worse because the compiler
may not know where and how the multiple use is taking place. For this reason, HPF
introduces certain rules that restrict the use of storage association. We first examine the
issues informally; in Section 4.10.2 we present a more formal and detailed discussion.

4.10.1 Informal Introduction to Storage Association

First, we want to assure the reader that it is still okay to use COMMON and EQUIVALENCE
in an HPF program. It is necessary, however, to sort out the safe uses of COMMON and
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SUBROUTINE ONE

COMMON /A_OK/ X(128,10), Y(256), INX(128)

COMMON /DANGER/ TEMP(10, 100), DEPTH(1000), L0C(1000,2)
COMMON /PELIGRO/ A(10,10), B(20,10), C€(30,10)

END SUBROUTINE ONE

SUBROUTINE TWO

COMMON /A_OK/ WORK(128,10), TEST(256), INX(128)

COMMON /DANGER/ L1(10,2), L2(200), FILL(1780), L0C(1000,2)
COMMON /PELIGRO/ A1(100), B1(200), C1(300)

END SUBROUTINE TWO

Figure 4.6
Checking COMMON blocks

EQUIVALENCE from the uses that have the potential to cause trouble. We strongly rec-
ommend that programmers writing new Fortran 90 code use features like MODULE with
the rename feature (R1108), derived types (structures), and allocatable storage to avoid
the use of COMMON and EQUIVALENCE completely in new code.

When is it safe to use common blocks? If COMMON is used solely as a way to create global
variables, rather than as a mechanism of storage reuse, then common variables can safely
be distributed. To be more specific, when a given common block is used for the same set
of variables (same size, same type, and same shape) everywhere it appears, then it is okay
to map the variables in the COMMON, but the mappings must also be the same everywhere.
Only the variable names may differ. When an INCLUDE statement is used to introduce
the declaration of COMMON and its variables, this rule is relatively straight forward for the
programmer to observe. Figure 4.6 gives a very simple example of some good and bad
uses of COMMON. The variables in common block /A 0K/ are the same shape, size, and
type. They may be mapped, either explicitly by the user or implicitly by the compiler.
The common blocks /DANGER/ and /PELIGRO/ both have problems. In SUBROUTINE TWO
the programmer has violated the rule in multiple ways. LOC is the same, and in the same
place in /DANGER/ in both subroutines, but the other variables in /DANGER/ are different
in number, type, size and shape. In /PELIGRO/ it is just the shape that differs. It is still
okay to have common blocks like /DANGER/ and /PELIGRO/ in a code. But they must be
marked as sequential everywhere they occur. The SEQUENCE directive is supplied for this
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purpose. The following directive should appear in both subroutines for this code to be
used in HPF.

'HPF$ SEQUENCE /DANGER/, /PELIGRO/

The notion sequential and nonsequential along with the form of the SEQUENCE directive
is given in the next section.

It should be fairly obvious why we require that the explicit mappings be the same
everywhere the COMMON is used. If this were not the case, a check for dynamic redis-
tribution would be required on entry to every subroutine and that overhead would be
unacceptable. The requirement for the variables to be the same shape comes from the
need to guarantee that the compiler can use the same method to access the (potentially
distributed) variable everywhere. If some component were a different shape or type, the
compiler might apply different default distributions.

What about EQUIVALENCE? As with COMMON, there are some uses of EQUIVALENCE that
are relatively benign such as a simple rename of a variable while other uses create complex
relationships between variables that inhibit mapping. In HPF, it is the case that any use
of EQUIVALENCE with (or overlapping) a variable causes that variable to be sequential.
It is not difficult to check the basic rule that applies to mapping a variable involved in
EQUIVALENCE: if there is one variable that is as big as (or bigger than) all of the other
variables related by EQUIVALENCE, this variable is called a cover. If this cover is a 1-
dimensional variable, it may be mapped. The precise definition of a cover is given in the
next section.

Why restrict covers to 1-dimensional for mapping? If a variable is a multi-dimensional
array, the mapping access functions can get quite sophisticated for some distributions.
Suppose this variable were a cover. If the other variables associated with this variable
via EQUIVALENCE were also multi-dimensioned, the access to these equivalenced variables
might be a very messy composite function. On the other hand, if the distributed cover is
a single dimensional array, the mapping is straightforward for all equivalenced variables.

4.10.2 Storage Association in More Detail

In this section we will define the notions of sequential and nonsequential as they apply to
variables and common blocks. But first we will introduce the form of the directives sup-
plied to designate the sequentiality of data. It is also useful to give the formal definition
of cover as used with EQUIVALENCE before discussing the sequentiality of variables.

Sequence Directives A SEQUENCE directive is defined to allow a user to declare ex-
plicitly that variables or common blocks are to be treated by the compiler as sequential.
The form of a sequence-directive (H701) is one of:

Copyrighted Material



132 Chapter 4

SEQUENCE

SEQUENCE [::] association-name-list

NO SEQUENCE

NO SEQUENCE [ :: ] association-name-list

and an assoctation-name (H702) is one of:

variable name
/ [common-block-name] /

Rules and restrictions:
1. A variable or common block name may appear at most once in a sequence-directive
within any scoping unit.
2. A sequence-directive belongs in the specification part of a program unit.
3. The result variable of an array-valued function that is not an intrinsic function is a
nonsequential array. It may not appear in any HPF SEQUENCE directive.

A sequence-directive with an empty association-name-list is treated as if it contained
the name of all implicitly mapped variables and common blocks in the scoping unit
that cannot otherwise be determined to be sequential or nonsequential by their language
context.

Normally, only the SEQUENCE directive is required, however some implementations may
supply an optional compilation environment where variables are sequential by default.
For completeness in such an environment, HPF defines the NO SEQUENCE directive to
allow a user to establish that the usual nonsequential default should apply to a scoping
unit, or selected variables and common blocks within the scoping unit.

Covers and Aggregates Often EQUIVALENCE is used simply to rename a variable or
to give a new name to a part of a variable. However, it is possible in Fortran to link
an elaborate string of variables together by overlapping the storage of multiple variables
with one or more EQUIVALENCE statements. In HPF we call this an aggregate variable
group. If there is a member variable that is exactly as big as the aggregate variable
group, we call it a cover. The reader is encouraged to look at the examples in Figure 4.7
to get an informal idea what these terms mean before reading the next paragraph which
gives a definition of the terms using some formal Fortran 90 terminology with reference
numbers from the Fortran 90 standard.

An aggregate variable group is a collection of variables whose individual storage se-
quences are parts of a single storage sequence. Variables associated by EQUIVALENCE
statements or by some combination of EQUIVALENCE and COMMON statements form an ag-
gregate variable group. The size of an aggregate variable group is the number of storage
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IMPLICIT REAL (A-Z)
COMMON /F00/ A(100), B(100), C(100), D(100), E(100)
DIMENSION X(100), Y(150), Z(200)

'Example 1: showing a simple cover of two variables
EQUIVALERCE ( A(1), z(1) )

IFour components: (A, B), C, D, E with sizes 200, 100, 100, 100

'Z is a cover of A, B

!Example 2: showing how an aggregate group consumes variables
EQUIVALENCE ( B(100), Y(1) )

!Three components A, (B, C, D), E with sizes 100, 300, 100

!B, C, and D are an aggregate variable group but there is no cover

!Example 3: showing that a group can extend the length of common
EQUIVALENCE ( E(1), Y(1) )

'Five components: A, B, C, D, E with sizes 100, 100, 100, 100, 150

'Y is a cover of E

'Example 4: showing how a group may be a composite of groups
EQUIVALENCE ( A(51), X(1) )
EQUIVALENCE ( B(100), Y(1) )

!Two components (A, B, C, D), E with sizes 400, 100

!There is no cover for the group with A, B, C, D, X and Y

!Example b6: showing local variables making an aggregate group
EQUIVALENCE (Y(100), Z(1))

!One aggregate variable group (Y, Z) with size 299

!No COMMON block involved and no cover

'Example 6: showing how a common block becomes sequential
'HPF$ SEQUENCE /F00/
!The COMMON has one component, (A, B, C, D, E) with size 500

Figure 4.7
Examples of aggregate variable groups and covers
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units in the group’s storage sequence (14.6.3.1). If there is a member in an aggregate
variable group whose storage sequence is totally associated (14.6.3.3) with the storage
sequence of the aggregate variable group, that variable is called an aggregate cover or
simply a cover.

Sequential and Nonsequential Common Blocks In HPF a common block is non-
sequential by definition, unless there is an explicit SEQUENCE directive to specify that it is
sequential. All of the common blocks in Figure 4.7 are nonsequential except Example 6.
A sequential common block has a single common block storage sequence (5.5.2.1). The
variables of a sequential common block are defined to form a single aggregate variable
group.

A common block contains a sequence of components. Each component is either an
aggregate variable group, or a variable that is not a member of any aggregate variable
group. Sequential common blocks contain a single component. Nonsequential common
blocks may contain multiple components that may be nonsequential or sequential vari-
ables or aggregate variable groups.

As an aid to porting old FORTRAN programs, some implementations may provide a
compilation environment where the default definition of a common block is sequential.

Sequential and Nonsequential Variables HPF variables are either sequential or
nonsequential as determined by their context in a program or by explicit directives. A
variable is sequential if and only if any of the following holds:

It appears in a sequential common block;

It is a member of an aggregate variable group;

It is an assumed-size array;

It is a component of a derived type with the Fortran 90 SEQUENCE attribute; or
It is declared to be sequential in an HPF SEQUENCE directive.

A sequential variable can be storage associated or sequence associated (see Section 5.9);
nonsequential variables cannot.

We say a variable is ezplicitly mapped if it appears in an HPF alignment or distribution
directive within the scoping unit in which it is declared; otherwise it is implicitly mapped.

Storage Association Rules There are some rules about storage association to which
HPF programs must conform:

e A sequential variable may not be explicitly mapped unless it is a scalar or rank-
one array that is an aggregate cover. If there is more than one aggregate cover for an
aggregate variable group, only one may be explicitly mapped.
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e No explicit mapping may be given for a component of a derived type having the
Fortran 90 SEQUERCE attribute. (By its definition, this attribute demands storage asso-
ciation.)

If a common block is nonsequential, then all of the following must hold:

e Every occurrence of the common block has exactly the same number of components
with each corresponding component having a storage sequence of exactly the same size;
e If a component is a nonsequential variable in any occurrence of the common block,
then it must be nonsequential with identical type, shape, and mapping attributes in every
occurrence of the common block;

e If a component is sequential and explicitly mapped (either a variable or an aggregate
variable group with an explicitly mapped aggregate cover) in any occurrence of the
common block, then it must be sequential and explicitly mapped with identical mapping
attributes in every occurrence of the common block. In addition, the type and shape of
the explicitly mapped variable must be identical in all occurrences; and

e Every occurrence of the common block must be nonsequential.

If any of these constraints are not met, it is the programmer’s responsibility to declare
every instance of the common block as sequential using a SEQUENCE directive.

Under these rules, variables in a common block can be mapped as long as the compo-
nents of the common block are the same in every scoping unit that declares the common
block. The rules above also allow variables involved in an EQUIVALENCE statement to
be mapped by the mechanism of declaring a rank-one array to cover exactly the aggre-
gate variable group and mapping that array. Notice in Figure 4.7 that every example
has a different set of components for /F00/. If these examples all came from the same
source program and each example were in a different subroutine, the programmer would
have to declare /F00/ sequential everywhere it is used, as was done in Example 6. This
is required even though the actual set of variables in the common block are identical
everywhere.

As a reminder, an HPF program is nonconforming if it specifies any mapping that
would cause a scalar data object to be mapped onto more than one abstract processor
(Section 4.4, page 110). This puts a constraint on the sequential variables and aggregate
covers that can be mapped. In particular, a program is nonconforming if it directs double
precision or complex arrays to be mapped such that the storage units of a single array
element are split because of some EQUIVALENCE statement or common block layout.

In Figure 4.8 we give an example of a common block with a mix of sequential and
nonsequential variables. /MIX/ in both subroutines is a nonsequential common block
with an identical set of four components. Components one and four are sequential and
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SUBROUTINE ALPHA
COMMON /MIX/ A(20,40),E(10,10),G(10,100,10),H(100),P(100)
REAL COVER (200)
EQUIVALENCE (COVER(1), H(1))
'HPF$  SEQUENCE :: A
'HPF$ ALIGN E ...
IHPF$ DISTRIBUTE COVER (CYCLIC(2))

END SUBROUTINE ALPHA

SUBROUTINE BETA

COMMON /MIX/ A(800), E(10,10), G(10,100,10), Z(200)
'HPF$ SEQUENCE :: A, 2
'HPF$ ALIGN E ...
'HPF$ DISTRIBUTE Z (CYCLIC(2))

END SUBROUTINE BETA

Figure 4.8
Examples of mapping covers
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components two and four are explicitly mapped, with the same type, shape and mapping
attributes.

The first component, A, is declared sequential in both subroutines because its shape is
different. It may not be explicitly mapped in either because it is not rank-one or scalar
in ALPHA. The second component, E, is explicitly mapped, while the third component, G
is implicitly mapped. E and G agree in type and shape in both occurrences. E must have
the same explicit mapping and G must have no explicit mapping in both occurrences,
since they are nonsequential variables.

The last component in BETA, Z, must be declared sequential because there is an
EQUIVALENCE statement in ALPHA. The variable COVER in ALPHA provides an aggregate
cover of the aggregate variable group (H, P). It is 1-dimensionalso it is eligible for map-
ping. Notice that Z and COVER are the same shape, size, and type. Notice also that the
mapping specified is the same in each subroutine.

As a summary, we give a check-list for a programmer to determine the status of a
variable or common block. The following questions can be applied, in order:

e Does the variable appear in some explicit language context which dictates sequential
(e.g., EQUIVALENCE) or nonsequential (e.g., array-valued function result variable)?

o If not, does the variable or common block name appear in the list of names on a
SEQUENCE or NO SEQUENCE directive?

e If not, does the variable appear in an explicit mapping directive?

e If not, does the scoping unit contain a nameless SEQUENCE or NO SEQUENCE?

e Ifnot, is the compilation affected by some special implementation-dependent environ-
ment which dictates that names default to SEQUENCE?

e Ifnot, then the compiler will consider the variable or common block name nonsequen-
tial and is free to apply data mapping optimizations disregarding Fortran sequence and
storage association.
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The rules for data mapping are more complicated when procedure calls are involved.
The HPF alignment and distribution directives have extra features that apply only to
dummy arguments: a directive for a dummy argument may be prescriptive, descriptive,
or transcriptive, and the template for a dummy argument may be natural or inherited.
There are also some restrictions on the use of sequence association.

5.1 Data Mapping for Dummy Variables

A general principle of the design of HPF is that a subprogram cannot permanently alter
the mappings of data visible to its caller. (This restriction is intended to allow a compiler
to generate more efficient code, because the compiler can rely on declared data mappings
throughout the body of a scoping unit without concern for the possibility that a call to
a subprogram might rearrange data.)

On the other hand, it is useful to allow a subprogram to remap data received through a
dummy argument. As a simple example, a subroutine might receive two array arguments
A and B and apply an algorithm that is much more efficient when A and B are aligned.
But generality demands that the subroutine operate correctly even when the actual array
arguments are not aligned.

The solution adopted in HPF is that a subprogram may include HPF directives that
prescribe the alignment or distribution of dummy arguments. Such directives are identical
to those for non-dummy variables. For example:

'HPF$ DISTRIBUTE Z(BLOCK,*,CYCLIC)

If the actual argument does not satisfy the directives, then an implicit remapping must
occur so as to satisfy the directives. Such an implicit remapping is not visible to the
caller; when execution resumes following the call, everything must be as if no remapping
had occurred.

On yet another hand, remapping a large piece of data may impose a large run-time
execution cost, so it is not desirable to require remapping on entry to a subprogram. HPF
allows a subprogram to specify, for a given dummy argument, that the corresponding
actual argument should never be implicitly remapped; instead, the subroutine should be
able to operate on the actual argument data however it happens to be distributed.

'HPF$ INHERIT Z

This avoids the overhead of remapping actual argument data, but the subprogram it-
self may execute more slowly because it must handle the generality of arbitrary data
mappings.
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Therefore HPF provides one more option: the subprogram may specify no remapping
of an actual argument but also assert that the actual argument will have a particular
alignment or distribution.

'HPF$ DISTRIBUTE *Z(BLOCK,*,CYCLIC)

This allows maximal efficiency but requires the caller to provide an actual argument that
satisfies the assertion.

Let us examine some more specific illustrations of these concepts. As we will see,
if ezplicit interfaces are used, then directives need not match in the caller and callee,
because the HPF compiler will have the necessary information at compile time to perform
a remapping. If explicit interfaces are not used, everything is still okay if the actual
mapping of the actual argument matches the declared mapping of the dummy argument,
or if the callee admits remapping of the actual argument.

Figure 5.1 shows five subroutines: KOVACS, W00D, ELDER, and CLARKE each call MINGO.
Now subroutine MINGO prefers to receive its argument M with (BLOCK ,BLOCK) distribution
(perhaps this minimizes communications costs within the subroutine) so it contains a
DISTRIBUTE directive for its dummy argument. This is called a prescriptive directive: it
prescribes a mapping for the dummy argument.

Subroutine KOVACS has a local array K that it declares to be (*,CYCLIC). When it passes
array K to MINGO, the data must be implicitly remapped so that the dummy argument has
a (BLOCK,BLQCK) distribution. When subroutine KOVACS resumes execution on return
from the call to MINGO, the array K within KQVACS still has (*,CYCLIC) distribution.

Subroutine WOOD has a local array W that it declares to be (BLOCK,BLOCK). When it
passes array W to MINGO, nothing needs to be done. (However, in some implementations
there might be a small run-time cost simply for testing whether remapping might be
necessary.)

Subroutine ELDER, like KOVACS, has a local array that it declares to be (*,CYCLIC). But
ELDER also contains a Fortran 90 interface block describing MINGO. When it passes array
E to MINGO, the data must be implicitly remapped so that the dummy argument has a
(BLOCK,BLOCK) distribution. If ELDER is compiled separately from MINGO, the information
in the interface block may allow the compiler to generate more efficient remapping code.
When subroutine ELDER resumes execution on return from the call to MINGO, the array E
within ELDER still has (*,CYCLIC) distribution.

Subroutine CLARKE, like WOOD, has a local array C that it declares to be (BLOCK,BLOCK).
But CLARKE also contains a Fortran 90 interface block describing MINGO. When it passes
array C to MINGO, nothing needs to be done. The information in the interface block allows
a compiler to determine at compile time that no remapping will be required.
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SUBROUTINE KOVACS
REAL K(100,100)
'HPF$ DISTRIBUTE K(*,CYCLIC)

CALL MINGO(K)

END K

SUBROUTINE WOOD
REAL W(100,100)
'HPF$ DISTRIBUTE W(BLOCK,BLOCK)

CALL MINGO(W)

END W

implicit remapping

no remapping required

SUBROUTINE ELDER
REAL E(100,100)
'HPF$ DISTRIBUTE E(*,CYCLIC)
INTERFACE
SUBROUTINE MINGO(M)
REAL M(100,100)
DISTRIBUTE M(BLOCK,BLOCK)
END SUBROUTINE MINGO
END INTERFACE

'HPF$

CALL MINGO(E)

END E

SUBROUTINE CLARKE
REAL €(100,100)
'HPF$ DISTRIBUTE C(BLOCK,BLOCK)
INTERFACE
SUBROUTINE MINGO (M)
REAL M(100,100)
DISTRIBUTE M(BLOCK,BLOCK)
END SUBROUTINE MINGO
END INTERFACE

'HPF$

CALL MINGO(C)

END c

implicit remapping
(known at compile time)

no remapping required
(known at compile time)

M

END

SUBROUTINE MINGO(M)
REAL M(100,100)
'HPF$ DISTRIBUTE M(BLOCK,BLOCK))

Figure 5.1

Treatment of a prescriptive directive for a dummy argument
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Figure 5.2 shows five more subroutines: PROHIAS, BERG, DAVIS, and GAINES each call
JAFFEE. Now subroutine JAFFEE is willing to receive its argument J with any distribution,
so it contains a DISTRIBUTE directive for its dummy argument that has simply asterisks
“#” in place of a distribution format list and processors arrangement. This is called a
transcriptive directive: the mapping of the dummy is simply copied, or transcribed, from
the mapping of the actual argument. The intent is that if the argument is passed by
reference, no movement of the data will be necessary at run time. Note, by the way, that
transcriptive directives are not included in Subset HPF.

(Asterisks may be used in two different ways in a DISTRIBUTE directive: within a dist-
format-list to indicate on-processor distribution, or to replace a dist-format-list and its
surrounding parentheses. Thus, if HUMOR is a dummy argument, then

'HPF$ DISTRIBUTE HUMOR (*)

1s a prescriptive specification of HUMOR as residing within a single abstract processor,
whereas

'HPF$ DISTRIBUTE HUMOR *

is a transcriptive specification indicating that any distribution is acceptable and that the
actual argument should not be remapped.)

Subroutine PROHIAS has a local array P that it declares to be (*,CYCLIC). When it
passes array P to JAFFEE, no remapping occurs. Subroutine JAFFEE must be prepared to
handle its dummy argument J with (*,CYCLIC) distribution.

Subroutine BERG has a local array B that it declares to be (BLOCK,BLOCK). When it
passes array B to JAFFEE, no remappingoccurs. Subroutine JAFFEE must be prepared to
handle its dummy argument J with (*,CYCLIC) distribution.

Subroutine DAVIS, like PROHIAS, has a local array that it declares to be (*,CYCLIC).
But DAVIS also contains a Fortran 90 interface block describing JAFFEE. When it passes
array D to JAFFEE, no remapping occurs. If DAVIS is compiled separately from JAFFEE,
the information in the interface block informs the compiler that JAFFEE will accept any
distribution, which may allow the compiler to generate more efficient code for the call.

Subroutine GAINES, like BERG, has a local array G that it declares to be (BLOCK,BLOCK).
But GAINES also contains a Fortran 90 interface block describing JAFFEE. When it passes
array G to JAFFEE, no remapping occurs. As with DAVIS, the information in the interface
block may allow the compiler to generate more efficient code.

Observe that subroutine JAFFEE specifies the INHERIT attribute for its dummy argu-
ment J. If it did not, then it might be necessary to remap the actual argument after
all, for the following subtle technical reason: for any given system (and the choices that
system might make concerning default mappings), it must be possible to describe the
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SUBROUTINE PROHIAS
REAL P(100,100)
'HPF$ DISTRIBUTE P(*,CYCLIC)

CALL JAFFEE(P)

END P

SUBROUTINE BERG
REAL B(100,100)
'HPF$ DISTRIBUTE B(BLOCK,BLOCK)

CALL JAFFEE(B)

END B

no remapping occurs

no remapping occurs

SUBROUTINE DAVIS
REAL D(100,100)
'HPF$ DISTRIBUTE D(*,CYCLIC)
INTERFACE
SUBROUTINE JAFFEE(J)
REAL J(100,100)

SUBROUTINE GAINES
REAL G(100,100)
'HPF$ DISTRIBUTE G(BLOCK,BLOCK)
INTERFACE
SUBROUTINE JAFFEE(J)
REAL J(100,100)

'HPF$ DISTRIBUTE J * ONTO =* 'HPF$ DISTRIBUTE J * ONTO =*
'HPF$ INHERIT J 'HPF$ INHERIT J
END SUBROUTINE JAFFEE END SUBROUTINE JAFFEE
END INTERFACE END INTERFACE
CALL JAFFEE(D) CALL JAFFEE(G)
END D END G
no remapping occurs no remapping occurs
(known at compile time) (known at compile time)
any
J subroutine JAFFEE
SUBROUTINE JAFFEE(J) handles any mapping for
REAL J(100,100) its dummy argument J
'HPF$ DISTRIBUTE J * ONTO =*
'HPF$ INHERIT J
END
Figure 5.2

Treatment of a transcriptive directive for a durnmy argument
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mapping of every data object through the use of HPF directives to that system. It is
always possible to describe the mapping of a dummy argument by means of an inherited
template or its equivalent, but not every possible data mapping can be specified by use
of a natural template. See Section 5.4 for further discussion of natural and inherited
templates and of the INHERIT directive.

For now, suffice it to remark that the INHERIT attribute always implies the default
distribution DISTRIBUTE * ONTO *, so it is convenient and perhaps stylistically pleasant
simply to omit transcriptive DISTRIBUTE directives such as

'HPF$ DISTRIBUTE J * ONTO *

and use INHERIT by itself to indicate transcriptive acceptance of any data mapping:

SUBROUTINE JAFFEE(J)
REAL J(100,100)
'HPF$ INHERIT J ! Implies DISTRIBUTE J * ONTO *

Figure 5.3 shows one more set of five subroutines: ARAGONES, NORTH, SIEGEL, and
TORRES each call RICKARD. Now subroutine RICKARD prefers to receive its argument R
with (BLOCK,BLOCK) distribution and furthermore asserts that the caller will provide
an actual argument that is so distributed. Therefore RICKARD contains a DISTRIBUTE
directive for its dummy argument that has an asterisk—meaning that no remapping will
be required—followed by a distribution format list. This is called a descriptive directive:
it describes the mapping of the dummy argument and claims that no remapping of the
actual will be required to satisfy this description. (The intent is that if the argument is
passed by reference, no movement of the data will be necessary at run time. All this is
under the assumption that the language processor has in fact observed all other directives.
While a conforming HPF language processor is not required to obey mapping directives, it
should handle descriptive directives with the understanding that their implied assertions
are relative to this assumption.)

Subroutine ARAGONES has a local array A that it declares to be (*,CYCLIC). When
it passes array A to RICKARD, the mapping of A does not satisfy the description for the
dummy R. This call is nonconforming and the behavior of the program is not specified
by HPF.

Subroutine NORTH has a local array N that it declares to be (BLOCK,BLOCK). When
it passes array N to RICKARD, nothing needs to be done; the mapping of N satisfies the
description for the dummy R.

Subroutine SIEGEL, like ARAGONES, has a local array that it declares to be (*,CYCLIC).
But SIEGEL also contains a Fortran 90 interface block describing RICKARD. When it
passes array S to RICKARD, the data must be implicitly remapped to the (BLOCK,BLOCK)
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'HPF$

SUBROUTINE ARAGONES
REAL A(100,100)
DISTRIBUTE A(*,CYCLIC)

CALL RICKARD(A)

END A

SUBROUTINE NORTH
REAL N(100,100)
'HPF$ DISTRIBUTE N(BLOCK,BLOCK)

CALL RICKARD(N)

END N

nonconforming call

no remapping required

SUBROUTINE SIEGEL SUBROUTINE TORRES
REAL S(100,100) REAL T(100,100)
‘HPF$ DISTRIBUTE S(*,CYCLIC) 'HPF$ DISTRIBUTE T(BLOCK,BLOCK)
INTERFACE INTERFACE
SUBROUTINE RICKARD(R) SUBROUTINE RICKARD(R)
REAL R(100,100) REAL R(100,100)
'HPF$ DISTRIBUTE *R(BLOCK,BLOCK) 'HPF$ DISTRIBUTE *R(BLOCK,BLOCK)
END SUBROUTINE RICKARD END SUBROUTINE RICKARD
END INTERFACE END INTERFACE
CALL RICKARD(S) CALL RICKARD(T)
END S END T
N ; I ; .
implicit remapping no remapping required
(known at compile time) (known at compile time)
R
SUBROUTINE RICKARD(R)
REAL R(100,100)
'HPF$ DISTRIBUTE *R(BLOCK,BLOCK))
END
Figure 5.3

Treatment of a descriptive directive for a durnmy argument
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distribution specified in the interface block. In other words, descriptive directives in an
interface block must be treated as if they were prescriptive. This is discussed further in
Section 5.5.

Subroutine TORRES, like NORTH, has alocal array that. it declares to be (BLOCK,BLOCK).
But TORRES also contains a Fortran 90 interface block describing RICKARD. When it passes
array T to RICKARD, nothing needs to be done. The information in the interface block
allows a compiler to confirm at compile time that the mapping of the actual argument
will satisfy the description of the dummy.

These examples, while perhaps exhausting, are not exhaustive. Some additional points
to observe:

o It is likely most helpful to an HPF compiler to specify, where possible, not only the
distribution formats for dummy arguments but the specific processors arrangement(s)
onto which they are distributed.

o Conversely, it is best to specify DISTRIBUTE #* ONTO * (or INHERIT), rather than
simply *, to ensure that an actual argument will not be remapped.

e The examples show only arrays of fixed shape (100, 100). There is no reason why
assumed-shape arrays, for example, cannot be specified.

e It is permitted to use an ALIGN directive instead of a DISTRIBUTE directive on a
dummy argument; ALIGN directives have both prescriptive and descriptive forms (but
not transcriptive).

As an illustration of some of these points, consider this code:

SUBROUTINE MELVIN(AXOLOTL,POIUYT)

REAL AXOLOTL(:,:),POIUYT(:,:)
'HPF$ INHERIT, DISTRIBUTE *(BLOCK,BLOCK) :: AXOLOTL
'HPF$ ALIGN POIUYT(:,:) WITH *AXOLOTL(:,:)

The two arguments are assumed-shape arrays. The HPF directives convey some inter-
esting information about them:

e The INHERIT attribute for AXOLOTL implies the default distribution DISTRIBUTE *
ONTO #*. Part of this default is then explicitly overridden, so the resulting specification
is DISTRIBUTE *(BLOCK,BLOCK) ONTO *. Therefore the actual argument for AXOLOTL is
never remapped.

o It is asserted that the template of the actual argument for AXOLOTL will already be
distributed (BLOCK,BLOCK).

o It is asserted that the actual argument for POIUYT will already be aligned with
AXOLOTL; this actual also should not be remapped.
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e It is asserted that AXOLOTL and POIUYT will have the same shape (though they may
have a different shared shape on each entry to MELVIN). (Note that the alternative

'EPF$ ALIGN POIUYT(I,J) WITH *AXOLOTL(I,J)

would allow the possibility that POIUYT not have the same shape as AXOLOTL—it might
be smaller along any or all dimensions—but still be aligned with the “upper left corner”
of AXOLOTL.

5.2 DISTRIBUTE Directives and Dummy Arguments

The syntax for the DISTRIBUTE directive given in Section 4.4 omitted certain options
relevant only to dummy arguments. The complete syntax for these options is explained
here. Note that the options related to dummy arguments may be used only in DISTRIBUTE
directives, not in REDISTRIBUTE directives.

The form of a distribute-directive (H303) is:

DISTRIBUTE distributee dist-directive-stuff
DISTRIBUTE dist-attribute-stuff :: distributee-list

(Note that the second form is a special case of a combined-directive (H301).)
The form of dist-directive-stuff (H305) is one of

dist-format-clause
dist-format-clause dist-onto-clause

The form of dist-attribute-stuff (H306) is one of:

dist-format-clause
dist-format-clause dist-onto-clause
dist-onto-clause

The form of a dist-format-clause (H308) is:

( dist-format-list )
* ( dist-format-list )
*

These forms are prescriptive, descriptive, and transcriptive, respectively; the last two
may be used only for dummy arguments.
A dist-format (H309) is one of:
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BLOCK [ ( int-ezpr ) ]
CYCLIC [ ( int-expr ) |
*x

An asterisk as a dist-format indicates on-processor distribution.
The form of a dist-onto-clause (H310) is:

ONTO dist-target
where the dist-target (H311) is one of:

processors-name
* Processors-name
*

where processors-name is defined by a PROCESSORS directive. These forms are prescrip-
tive, descriptive, and transcriptive, respectively; the last two may be used only for dummy
arguments.

Rules and restrictions:

1. If either the dist-format-clause or the dist-target in a DISTRIBUTE directive begins
with “#” then every distributee must be a dummy argument.

2. Neither the dist-format-clause nor the dist-target in a REDISTRIBUTE directive may
begin with “#”.

3. If an ONTO clause 1s present and mentions a processors-name, it must name a proces-
sors arrangement declared in a PROCESSORS directive (see Section 4.8).

4. The other rules given in Section 4.4 also apply.

8.3 ALIGN Directives and Dummy Arguments

The syntax for the ALIGN directive given in Section 4.5 omitted certain options relevant
only to dummy arguments. The complete syntax for these options is explained here. Note
that the options related to dummy arguments may be used only in ALIGN directives, not
in REALIGN directives.

The form of an align-with-clause (H319) is:

WITH align-spec

where the form of an align-spec (H320) is one of:
align-target [ ( align-subscript-list ) |
* align-target | ( align-subscript-list ) |
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These forms are prescriptive and descriptive respectively; the descriptive form may be
used only for dummy arguments. (To get the effect of a transcriptive ALIGN specification,
simply use INHERIT—see Section 5.4.)

Rules and restrictions:
1. If the align-spec in an ALIGN directive begins with “#” then every alignee must be a
dummy argument.
2. The align-spec in a REALIGN may not begin with “*”.
3. The other rules given in Section 4.5 also apply.

5.4 INHERIT Directive

The INHERIT attribute specifies that the template for a dummy argument should be a
copy of the template of the corresponding actual argument. This template may not have
the same size and shape as the dummy argument; the dummy argument is aligned to
the template copy in the same way that the actual argument is aligned to its original
template.

The form of an inherit-directive (H337) is:

INHERIT dummy-argument-name-list

The INHERIT directive causes the named subprogram dummy arguments to have the
INHERIT attribute.

Rules and restrictions:
1. Only dummy arguments may have the INHERIT attribute.
2. An object may not have both the INRERIT attribute and the ALIGN attribute.
3. The INHERIT directive may appear only in a specification-part of a scoping unit.

The INHERIT attribute specifies that the template for a dummy argument should be
inherited, by making a copy of the template of the actual argument. Moreover, the
INHERIT attribute implies a default distribution of DISTRIBUTE * ONTO *. Note that
this default distribution is not part of Subset HPF; if a program uses INHERIT, it must
override the default distribution with an explicit mapping directive in order to conform to
Subset HPF. If an explicit mapping directive appears for the dummy argument, thereby
overriding the default distribution, then the actual argument must be a whole array or
a regular array section; it may not be an expression of any other form.

If none of the attributes INHERIT, ALIGN, and DISTRIBUTE is specified explicitly for
a dummy argument, then the template of the dummy argument has the same shape as
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the dummy itself and the dummy argument is aligned to its template by the identity
mapping.

An INHERIT directive may be combined with other directives as part of a combined-
directive (H301).

Consider the following example:

REAL DOUGH(100)
'HPF$ DISTRIBUTE DOUGH( BLOCK(10) )
CALL PROBATE( DOUGH(7:23:2) )

SUBROUTINE PROBATE(BREAD)
REAL BREAD(9)
'HPF$ INHERIT BREAD

The template of BREAD (a copy of the template for DOUGH) has shape [100]. Element
BREAD(I) is aligned with element 5 + 2#*I of the inherited template. Since BREAD does
not appear in a prescriptive DISTRIBUTE directive, the new template is not remapped
and therefore has a BLOCK(10) distribution. Thus BREAD(1) and BREAD(2) reside on
the first abstract processor (of at least ten), BREAD(3:7) resides on the second abstract
processor, and BREAD(8:9) resides on the third abstract processor.

5.5 Rules for Explicit Interfaces

If, in a caller, there is an explicit interface for the called subprogram and that interface
contains mapping directives (whether prescriptive or descriptive) for the dummy argu-
ment in question, the actual argument will be remapped if necessary to conform to the
directives in the explicit interface. The template of the dummy will then satisfy any
constraints imposed by the declared interface.

The caller is required to treat descriptive directives in an explicit interface as if they
were prescriptive so that the directives in the interface may be an exact textual copy of
the directives appearing in the subprogram. If the caller enforces descriptive directives
as if they were prescriptive, then the descriptive directives in the called routine will in
fact be correct descriptions.

There are two subtle points to be remarked upon.

1. The term “explicit interface” is used here in the Fortran 90 sense. An interface block
is not the only way to specify an explicit interface; for example, module procedures and
internal procedures also are considered to have explicit interfaces.
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2. If there is an explicit interface, the remapping rule stated above applies even if there are
no explicit HPF directives associated with the explicit interface. Where the programmer
has not specified directives explicitly, the compiler is required to supply suitable defaults,
and to do so in a consistent manner so that the same defaulted specifications are provided
for a procedure and for any explicit interface for that procedure.

If there is no explicit interface, then actual arguments that are whole arrays or array
sections are not remapped before the call; the values of other expressions may be mapped
in any manner at the discretion of the language processor. (It follows that an HPF
program is nonconforming if all the following hold:

1. Some procedure P is called from some scoping unit S.

2. P has a descriptive declaration for a dummy.

3. The corresponding actual is not a whole array or array section.
4. S has no explicit interface for P.

The reasoning is that the descriptive declaration cannot provably describe the mapping
of the actual argument, as that mapping depends on the language processor.)

5.6 Descriptive DISTRIBUTE Directives

In order to specify explicitly the distribution of a dummy argument, whether prescrip-
tively or descriptively, the template that is subject to distribution must be determined.
A dummy argument does not have the same template as the corresponding actual argu-
ment (this is why remappings of durnmies by a subroutine or function have no effect on
the actual arguments as viewed by the caller). Its template is determined in one of three
ways:

1. If the dummy argument appears explicitly as an alignee in an ALIGN directive, its
template is specified by the align-target.

2. If the dummy argument is not explicitly aligned and does not have the INHERIT
attribute, then it has a brand-new, freshly created template that has the same shape and
bounds as the dummy argument; this is called the natural template for the dummy. In
this case the dummy is ultimately aligned with itself.

3. If the dummy argument is not explicitly aligned and does have the INHERIT attribute,
then the template is “inherited” from the actual argument as follows:

o If the actual argument is a whole array, the template of the dummy is a copy of
the template with which the actual argument is ultimately aligned.
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e If the actual argument is a regular array section of array A, then the template of
the dummy is a copy of the template with which A is ultimately aligned.

e If the actual argument is any other expression, a freshly created template is used, the
shape and distribution of which may be chosen arbitrarily by the language processor
(and therefore the programmer cannot know anything a priori about its distribution).

Then we say that the dummy has an inherited template rather than a natural template.
Consider the following example:

LOGICAL FRUG(128), TWIST(128)

VHPF$ PROCESSORS DANCE_FLOOR(16)

'HPF$ DISTRIBUTE (BLOCK) ONTO DANCE_FLOOR :: FRUG, TWIST
CALL TERPSICHORE(FRUG(1:40:3), TWIST(1:40:3))

The two array sections FRUG(1:40:3) and TWIST(1:40:3) are mapped onto abstract
processors in the same manner:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 25
10 34
19
4 28
13 37
22
7 31
16 40

However, the subroutine TERPSICHORE will view them in different ways because it
inherits the template for the second dummy but not the first:

SUBROUTINE TERPSICHORE(FOXTROT, TANGO)
LOGICAL FOXTROT(:), TANGO(:)
'HPF$ INHERIT TANGO

Therefore the template of TANGO is a copy of the 128 element template of the whole array
TWIST. The template is mapped like this:

Copyrighted Material



Data Mapping for Procedure Arguments 153

3 4 5 6 7 8 9 10 11 12 13 14 15 16
9 [117|125]]133||41|l49]|]|57||65]||73]||81||89|]97 ||106}|113]|121
10|} 18 |]|26(] 34142160 || 58]|66|]74]|82|]90]|]98]|]|106]|114]|122
11|19 || 27}|36|]43||b61|]|59||67||75]|83]||91]|]99[]107]|115]|123
12|20 || 28|36 (|44 ||62|]60||68||76||84|]|92]|100||]108]||116]||124
13112112937 |]45||53||61|[69]|]|77||85](|93||101]|[109]|117]]|126
14 || 22 || 30||38||46|| 54 || 62|70 ]| 78||86 || 94 ||102]||110]|118]]|126
15|23 ||31||39]||47||566]||63[|71]]79 |87 ||956||103]|[111]|]119]]|127
16 (|24 [|32|]40 (|48 || 56 |64 |] 72 || 80 [{88 ]| 96 |[104||112([120]]|128

o|l~N|lo|lo|w|lw|[o|w]~

TANGO(I) is aligned with element 3*I-2 of the template. But the template of FOXTROT
has the same size 14 as FOXTROT itself. The actual argument, FRUG(1:40:3) is mapped
to the 16 processors in this manner:

Abstract  Elements
processor  of FRUG

1 1,2,3

2 4,5,6

3 7,8

4 9, 10, 11

5 12,13, 14
6-16 none

It would seem reasonable to understand the mapping of the template of FOXTROT to
coincide in like manner with the layout of the array section:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 9
4 12
7
2 10
5 13
8
3 11
6 14
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but we shall see that this cannot properly be described in HPF. Within subroutine
TERPSICHORE it would be correct to make the descriptive assertion

'HPF$ DISTRIBUTE TANGO *(BLOCK)
but it would not be correct to declare
'HPF$ DISTRIBUTE FOXTROT *(BLOCK) 1 *kxk Nonconforming

Each of these asserts that the template of the specified dummy argument is already
distributed BLOCK on entry to the subroutine. The shape of the template for TANGO
is [128], inherited (copied) from the array TWIST, whose section was passed as the
corresponding actual argument, and that template does indeed have a BLOCK distribution.
But the shape of the template for FOXTROT is [14]; the layout of the elements of the
actual argument FRUG(1:40:3) (3 on the first processor, 3 on the second processor, 2
on the third processor, 3 on the fourth processor, ...) cannot properly be described as a
BLOCK distribution of a length-14 template, so the DISTRIBUTE declaration for FOXTROT
shown above would indeed be erroneous.

On the other hand, the layout of FRUG(1:40:3) can be specified in terms of an align-
ment to a length-128 template which, can be described by an explicit TEMPLATE declara-
tion (see Section 4.9), so the directives

'HPF$ PROCESSORS DANCE_FLOOR(16)
'HPF$ TEMPLATE, DISTRIBUTE(BLOCK) ONTO DANCE_FLOOR :: GURF(128)
'HPF$ ALIGN FOXTROT(J) WITH *GURF(3*J-2)

could be correctly included in TERPSICHORE to describe the layout of FOXTROT on entry
to the subroutine without using an inherited template.

Descriptive directives allow the programmer to make claims about the pre-existing
distribution of a dummy based on knowledge of the mapping of the actual argument.
But what claims may the programmer correctly make?

If the dummy argument has an inherited template, then the subprogram may contain
directives corresponding to the directives describing the actual argument. Sometimes it is
necessary, as an alternative, to introduce an explicit named template (using a TEMPLATE
directive) rather than inheriting a template; an example of this (GURF) appears above.

If the dummy argument has a natural template (no INHERIT attribute) then things
are more complicated. In certain situations the programmer is justified in inferring a
pre-existing distribution for the natural template from the distribution of the actual’s
template, that is, the template that would have been inherited if the INHERIT attribute
had been specified. In all these situations, the actual argument must be a whole array or
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array section, and the template of the actual must be coextensive with the array along
any axes having a distribution format other than “*.”

If the actual argument is a whole array, then the pre-existing distribution of the natural
template of the dummy is identical to that of the actual argument.

If the actual argument is an array section, then, from each section-subscript and the
distribution format for the corresponding axis of the array being subscripted, one con-
structs an axis distribution format for the corresponding axis of the natural template:

o If the section-subscript is scalar and the array axis is collapsed (as by an ALIGN direc-
tive) then no entry should appear in the distribution for the natural template.

o If the section-subscript is a subscript-iriplet and the array axis is collapsed (as by an
ALIGN directive), then * should appear in the distribution for the natural template.

o If the section-subscript is scalar and the array axis corresponds to an actual tem-
plate axis distributed *, then no entry should appear in the distribution for the natural
template.

o If the section-subscript is a subscript-triplet and the array axis corresponds to an
actual template axis distributed *, then * should appear in the distribution for the
natural template.

o If the section-subscript is a subscript-triplet l:u:s and the array axis corresponds to
an actual template axis distributed BLOCK (n) (which might have been specified as simply
BLOCK, but there will be some n that describes the resulting distribution) and LB is the
lower bound for that axis of the array, then BLOCK(n/s) should appear in the distribution
for the natural template, provided that s divides n evenly and that | — LB < s.

o If the section-subscript is a subscript-triplet |:u: s and the array axis corresponds to an
actual template axis distributed CYCLIC(n) (which might have been specified as simply
CYCLIC, in which case n = 1) and LB is the lower bound for that axis of the array, then
CYCLIC(n/s) should appear in the distribution for the natural template, provided that s
divides n evenly and that | — LB < s.

If the situation of interest is not described by the cases listed above, no assertion about
the distribution of the natural template of a dummy is HPF-conforming.

Here is a typical example of the use of this feature. The main program has a two-
dimensional array TROGGS, which is to be processed by a subroutine one column at a
time. (Perhaps processing the entire array at once would require prohibitive amounts of
temporary space.) Each column is to be distributed across many processors.

REAL TROGGS(1024,473)
IHPF$ DISTRIBUTE TROGGS(BLOCK,*)
DO J = 1, 473
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CALL WILD_THING(TROGGS(:,J))
END DO

Each column of TROGGS has a BLOCK distribution. The rules listed above justify the
programmer in saying so:

SUBROUTINE WILD_THING(GROOVY)
REAL GROOVY(:)
'HPF$ DISTRIBUTE GROOVY *(BLOCK) ONTO *

Consider now the ALIGN directive. The presence or absence of an asterisk at the start
of an align-spec has the same meaning as in a dist-format-clause: it specifies whether the
ALIGN directive is descriptive or prescriptive, respectively.

If an align-spec that does not begin with * is applied to a dummy argument, the
meaning is that the dummy argument will be forced to have the specified alignment
on entry to the subprogram (which may require temporarily remapping the data of the
actual argument or a copy thereof).

Note that a dummy argument may also be used as an align-target.

SUBROUTINE NICHOLAS(TSAR,CZAR)
REAL, DIMENSION(1918) :: TSAR,CZAR
'HPF$ INHERIT :: TSAR
'HPF$ ALIGN WITH TSAR :: CZAR

In this example the first dummy argument, TSAR, is allowed to remain aligned with the
corresponding actual argument, while the second dummy argument, CZAR, is forced to be
aligned with the first dummy argument. If the two actual arguments are already aligned,
no remapping of the data will be required at run time; but the subprogram will operate
correctly even if the actual arguments are not already aligned, at the cost of remapping
the data for the second dummy argument at run time.

If the align-spec begins with “*” then the alignee must be a dummy argument and the
directive must be ALIGN and not REALIGN. The “*” indicates that the ALIGN directive
constitutes a guarantee on the part of the programmer that, on entry to the subprogram,
the indicated alignment will already be satisfied by the dummy argument, without any
action to remap it required at run time. For example:

SUBROUTINE GRUNGE(PLUNGE, SPONGE)
REAL, DIMENSION(1000) :: PLUNGE, SPONGE
'HPF$ ALIGN PLUNGE WITH *SPONGE
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This asserts that, for every J in the range 1:1000, on entry to subroutine GRUNGE, the
directives in the program have specified that PLUNGE(J) is currently mapped to the same
abstract processor as SPONGE(J). (The intent is that if the language processor has in fact
honored the directives, then no interprocessor communication will be required to achieve
the specified alignment.)

The alignment of a general expression is up to the language processor and therefore
unpredictable by the programmer; but the alignment of whole arrays and array sections
is predictable. In the code fragment

REAL FIJI(5000), SQUEEGEE(2000)
'HPF$ ALIGN SQUEEGEE(K) WITH FIJI(2#K)
CALL GRUNGE(FIJI(2002:4000:2), SQUEEGEE(1001:))

it 1s true that every element of the array section SQUEEGEE(1001:) is aligned with the
corresponding element of the array section FIJI(2002:4000:2), so the claim made in
subroutine GRUNGE is satisfied by this particular call.

It is not permitted to say simply “ALIGN WITH *”; an align-target must follow the
asterisk. (The proper way to say “accept any alignment” is INHERIT.)

If a dummy argument has no explicit ALIGN or DISTRIBUTE attribute, then the compiler
provides an implicit alignment and distribution specification, one that could have been
described explicitly without any “assertion asterisks”.

5.7 Examples of DISTRIBUTE Directives for Dummy Arguments

A DISTRIBUTE directive for a dummy argument may have a dist-format-list and an ONTO
clause, and each one may be prescriptive, descriptive, transcriptive, or omitted. The
following examples of DISTRIBUTE directives for dummy arguments illustrate many of
the possible combinations:

Example 5.1 Prescriptive format, prescriptive processors arrangement:
'HPF$ DISTRIBUTE URANIA (CYCLIC) ONTO GALILEO

The language processor should do whatever it takes to cause URANIA to have a CYCLIC
distribution on the processor arrangement GALILEO. O

Example 5.2 Transcriptive format, prescriptive processors arrangement:

'HPF$ DISTRIBUTE POLYHYMNIA * ONTO ELVIS
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The language processor should do whatever it takes to cause POLYHYMNIA to be dis-
tributed onto the processor arrangement ELVIS, using whatever distribution format it

currently has (which might be on some other processor arrangement). (You can’t say
this in Subset HPF.) O

Example 5.3 Descriptive format, prescriptive processors arrangement:
'HPF$ DISTRIBUTE THALIA *(CYCLIC) ONTO FLIP

The language processor should do whatever it takes to cause THALIA to have a CYCLIC
distribution on the processor arrangement FLIP; THALIA already has a cyclic distribution,
though it might be on some other processor arrangement. O

Example 5.4 Prescriptive format, descriptive processors arrangement:
'HPF$ DISTRIBUTE CALLIOPE (CYCLIC) ONTO *HOMER

The language processor should do whatever it takes to cause CALLIOPE to have a CYCLIC
distribution on the processor arrangement HOMER; CALLIOPE is already distributed onto
HOMER, though it might be with some other distribution format. O

Example 5.5 Transcriptive format, descriptive processors arrangement:
'HPF$ DISTRIBUTE MELPOMENE * ONTO *EURIPIDES

MELPOMENE is asserted to already be distributed onto EURIPIDES; use whatever distribu-
tion format the actual argument had so, if possible, no data movement should occur.
(You can’t say this in Subset HPF.) O

Example 5.6 Descriptive format, descriptive processors arrangement:
'HPF$ DISTRIBUTE CLIO *(CYCLIC) ONTO *HERODOTUS

CLIO is asserted to already be distributed CYCLIC onto HERODOTUS so, if possible, no data
movement should occur. O

Example 5.7 Prescriptive format, transcriptive processors arrangement:

'HPF$ DISTRIBUTE EUTERPE (CYCLIC) ONTO *

The language processor should do whatever it takes to cause EUTERPE to have a CYCLIC
distribution onto whatever processor arrangement the actual was distributed onto. (You
can’t say this in Subset HPF.) O

Copyrighted Material



Data Mapping for Procedure Arguments 159

Example 5.8 Transcriptive format, transcriptive processors arrangement:
'HPF$ DISTRIBUTE ERATO * ONTO *

The mapping of ERATO should not be changed from that of the actual argument. (You
can’t say this in Subset HPF.) You’re probably better off just saying

'HPF$ INHERIT ERATO

which implies DISTRIBUTE ERATO * ONTO * as the default distribution. O

Example 5.9 Descriptive format, transcriptive processors arrangement:
'HPF$ DISTRIBUTE ARTHUR_MURRAY *(CYCLIC) ONTO *

ARTHUR_MURRAY is asserted to already be distributed CYCLIC onto whatever processor
arrangement the actual argument was distributed onto, and no data movement should
occur. (You can’t say this in Subset HPF.) O

Please note that DISTRIBUTE ERATO # ONTO * does not mean the same thing as
'HPF$ DISTRIBUTE ERATO *(*) ONTO *

This latter means: ERATO is asserted to already be distributed * (that is, on-processor)
onto whatever processor arrangement the actual was distributed onto. Note that the
processor arrangement is necessarily scalar in this case.

One may omit either the dist-format-clause or the dist-target-clause for a dummy ar-
gument. If such a clause is omitted and the dummy argument has the INHERIT attribute,
then the compiler must handle the directive as if * or ONTO * had been specified explic-
itly. If such a clause is omitted and the dummmy does not have the INHERIT attribute,
then the compiler may choose the distribution format or a target processor arrangement
arbitrarily.

Example 5.10 Descriptive format, defaulted processors arrangement:
1HPF$ DISTRIBUTE WHEEL_OF_FORTUNE *(CYCLIC)

WHEEL _OF FORTUNE is asserted to already be CYCLIC. As long as it is kept CYCLIC, it may
be remapped it onto some other processor arrangement, but there is no reason to. O

Example 5.11 Defaulted format, descriptive processors arrangement:

'HPF$ DISTRIBUTE ONTO *TV :: DAVID_LETTERMAN
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DAVID_LETTERMAN is asserted to already be distributed on TV in some fashion. The
distribution format may be changed as long as DAVID_LETTERMAN is kept on TV. (Note
that this declaration must be made in attributed form; the statement form

'HPF$ DISTRIBUTE DAVID_LETTERMAN ONTO *TV | **%* Nonconforming

does not conform to the syntax for a DISTRIBUTE directive.) O

5.8 Explicit Dynamic Remapping of Dummy Arguments

The rules on the interaction of the REALIGN and REDISTRIBUTE directives with a subpro-
gram argument interface are:

1. A dummy argument may be declared DYNAMIC. However, it is subject to the general
restrictions concerning the use of the name of an array to stand for its associated template.
2. If an array or any section thereof is accessible by two or more paths, it is not HPF-
conforming to remap it through any of those paths. For example, if an array 1s passed
as an actual argument, it is forbidden to realign that array, or to redistribute an array
or template to which it was aligned at the time of the call, until the subprogram has
returned from the call. This prevents nasty aliasing problems. An example follows:

MODULE FOO
REAL A(10,10)

'HPF$ DYNAMIC :: A
END

PROGRAM MAIN

USE FO0O
CALL SUB(A(1:5,3:9))
END

SUBROUTINE SUB(B)

USE FOO
REAL B(:,:)

'HPF$ REDISTRIBUTE A ! **x Nonconforming
END
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Situations such as this are forbidden, for the same reasons that an assignment to A at the
statement marked “Nonconforming” would also be forbidden. In general, in any situation
where assignment to a variable would be nonconforming by reason of aliasing, remapping
of that variable by an explicit REALIGN or REDISTRIBUTE directive is also forbidden.

An overriding principle is that any mapping or remapping of arguments is not visible
to the caller. This is true whether such remapping is implicit (in order to conform to
prescriptive directives, which may themselves be explicit or implicit) or explicit (specified
by REALIGN or REDISTRIBUTE directives). When the subprogram returns and the caller
resumes execution, all objects accessible to the caller after the call are mapped exactly as
they were before the call. It is not possible for a subprogram to change the mapping of any
object in a manner visible to its caller, not even by means of REALIGN and REDISTRIBUTE.

The implicit remapping of dummy arguments can be implemented in several ways.
One is for the subprogram to make a copy of the argument data and remap the copy for
use within the subprogram. Another is to remap the actual argument on entry to the
subprogram and later to perform a second remapping on exit from the subprogram to
restore the data to its original layout.

5.9 Argument Passing and Sequence Association

This section is primarily about making old codes work, but it is also important for
programmers writing new codes to understand. In the previous discussion there was
an assumption that the dummy argument and the actual argument matched in size
and shape. From its beginnings Fortran has allowed considerable flexibility across the
boundaries of a call. The basic rule is summarized in this statement from the standard:

The rank and shape of the actual argument need not agree with the rank
and shape of the dummy argument, ...
— Fortran Standard (12.4.1.4)

This works in Fortran programs because of sequence association: the order of array
elements that Fortran requires when an array, array expression, or array element is asso-
ciated with a dummy array argument. As with storage association, sequence association
is a natural concept only in systems with a linearly addressed memory.

As an aid to porting FORTRAN 77 codes, HPF allows codes that rely on sequence
association to be valid HPF; however, each argument must be checked and the program-
mer may have to insert sequence directives (Section 4.10.2) to instruct the HPF compiler
to support the linear sequencing of memory.
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Actual argument Dummy argument requirements

Scalar name The dummy argument must be a scalar.

Scalar expression or The dummy argument must be a scalar.

constant

Array element If dummy argument is an array both arrays must
be declared sequential.

Array section The dummy argument must match in size and
shape or both arrays must be declared
sequential.

Array name The dummy argument must match in size and
shape or both arrays must be declared
sequential.

Array expression The dummy argument must match in size and

shape. If this is not true, the actual argument
expression must first be stored in a sequential
array and the array name can be passed.
Assumed-size array The dummy argument must be declared sequential.
Character variable The explicit-length of the dummy argument must
match the length of the actual argument, in
addition to matching shape. Otherwise both the
actual and the dummy must be declared
sequential.

Table 5.1
Matching procedure arguments

5.9.1 Argument Requirements

In order to give a direct way to check all of the kinds of arguments for sequence associa-
tion, the different possibilities for actual arguments are listed in Table 5.1.

There are some very common FORTRAN 77 cases that must be examined carefully.
The practice of passing a portion of an array (e.g., a column) by passing an array element
which is treated as the starting address of a dummy array argument is incompatible with
distributed data. Fortran 90 provides the array section mechanism to accomplish this
same thing. When the shape of the array section conforms to the shape declared by the
dummy argument, then data mapping is still permitted.

Another special case to note is an array expression as an actual argument. HPF
provides no mechanism for the programmer to specify the mapping of an expression and
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also no mechanism to specify that an expression is sequential. In this case, the dummy
argument may not be a sequential array. The programmer will have to create an explicit
(sequential) temporary to hold the expression value and pass that temporary as the
argument.

Assumed size arrays are listed as one of the kinds of argument that require the associ-
ated dummy argument to be sequential. Assumed size arrays are themselves sequential
(see Section 4.10.2). It is easy to confuse assumed-size arrays and assumed shape arrays,
so we will take a step back to review what they are.

Assumed shape dummy arguments are of the form DIMENSION A(:,:,:). The rank of
the actual argument is reflected exactly in the associated dummy argument. Assumed
size arguments are of the form DIMENSION A (20, 10, *);they are a different story. By
their definition, storage and sequence association apply to the values of the array. The
programmer dictates a shape that the dummy argument assumes, regardless of the shape
of the actual argument. It is only the size of the last dimension that is left unspecified.
We treat these assumed-size variables as sequential. If such a variable is, in turn, passed
on to another subroutine, the associated dummy must be declared sequential.

The reader should notice that a single case of an argument that requires sequence
association and needs a sequential declaration can have a wider impact. If the actual
argument is in COMMON this will entail finding all instances of the common block to mark
that component sequential. In the long run, it is much better to correct a problem, such
as the mismatch in shape, wherever possible.

5.9.2 Sequence Association Examples

Figure 5.4 gives some code segments to illustrate sequence association in arguments. The
two calls to SEQ_ARGS and GOOD_ARGS look very similar. But on close examination, all of
the actual arguments in the call to GOOD_ARGS in subroutine TWO match the shape and size
of the corresponding dummy arguments exactly. The programmer will have to worry a
bit about the proper distribution for B because of the section used as an actual, but there
are no issues related to sequence association. The call to SEQ_ARGS in subroutine ONE, on
the other hand, illustrates sequence association requirements for every argument. The
reader will notice that we have inserted a SEQUENCE directive for each actual argument
and each dummy argument. Let’s just check them one at a time. The first argument
uses a very common FORTRAN 77 method to pass a column of the array A. The address
of the first element of the column is passed. The second and third arguments both
illustrate cases where the dummy argument is a different rank than the corresponding
actual arguments. The last argument is another common case where the programmer
passes in an array of one size, but only uses part of the array. In this example, the
programmer Wishes to send in a Fortran 90 array expression D+E, but is required by the
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SUBROUTINE ONE
REAL A(100,100), B(100), €(10,100), D(100), E(100)

REAL TEMP(100)
IHPF$ SEQUENCE A, B, C, TEMP
TEMP = D + E
CALL SEQ_ARGS(A(1,I), B(11:35), C, TEMP)
END SUBROUTINE ONE
SUBROUTINE SEQ_ARGS(COL, SQUARE, FLAT, PART)
REAL COL(100), SQUARE(5,5), FLAT(1000), PART(20)
'HPF$ SEQUENCE COL, SQUARE, FLAT, PART
END SUBROUTINE SEQ_ARGS

SUBROUTINE TWO
REAL A(100,100), B(100), C(10,100), D(100), E(100)

CALL GOOD_ARGS(A(1,I), B(11:35), C, D+E)
END SUBROUTINE TWO

SUBROUTINE GOOD_ARGS(SCALAR, X25, MATCH_C, MATCH_D)
REAL X25(25), MATCH_C(10,100), MATCH_D(100)

END SUBROUTINE GOOD_ARGS

Figure 5.4
Checking sequence association for arguments
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CHARACTER (LEN=44) A_LONG_WORD

'HPF$ SEQUENCE A_LONG_WORD
A_LONG_WORD=’Chargoggagoggmanchaugagoggchaubunagungamaugg’
CALL WEBSTER(A_LONG_WORD)

SUBROUTINE WEBSTER(SHORT_DICTIONARY)

CHARACTER (LEN=4) SHORT_DICTIONARY (11)

'Note that short_dictionary(3) is ’agog’
'HPF$ SEQUENCE SHORT_DICTIONARY

Figure 5.5
Character sequence association

rules to store the value into a temporary location first in order to designate that it is
sequential. As an alternative to using the SEQUENCE directives, the programmer might
have replaced the call to SEQ_ARGS with the following call.

CALL SEQ_ARGS(A((*,I)), RESHAPE(B(11:35),(/5,5/)), &
RESHAPE(C, (/1000/)), TEMP(1:20))

This uses the Fortran 90 RESHAPE intrinsic to pass the exact shapes and sizes required
to the subroutine. It avoids the use of the SEQUENCE directives on either side of the
call. While the SEQUENCE directive is certainly easier to use, and this is not backwards
compatible with FORTRAN 77, there may be performance reasons for avoiding the
SEQUENCE directives.

Figure 5.5 gives an example of the additional sequence association issue for character
variables. This code segment where the data is treated both as a single long character and
an array of short characters is legal in both FORTRAN 77 and Fortran 90. However in
HPF, both the actual argument and dummy argument must be sequential. (By the way,
“Chargoggagoggmanchaugagoggchaubunagungamaugg” is the original Nipmuc name for
what is now called “Lake Webster” in Massachusetts.)

Figure 5.6 shows the case of an assumed-size argument. In subroutine ONE, the declared
shape of WHAT_SIZE may match that of the incoming actual argument in its first two
dimensions, but the compiler does not know for sure. WHAT SIZE is sequential. When it
is passed on to subroutine TWO, it doesn’t matter how WHO_KNOWS is declared. It must be
declared sequential. If the declaration in subroutine ONE were WHAT SIZE(:,:,:) instead
then no directive would be required in subroutine TWO.
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SUBROUTINE ONE (WHAT_SIZE)
REAL WHAT_SIZE(10,50,%*)

CALL TWO (WHAT_SIZE)
END SUBROUTINE ONE

SUBROUTINE TWO (WHO_KNOWS)
INTEGER WHO_KNOWS(10,50,5)
'HPF$  SEQUENCE WHO_KNOWS

END SUBROUTINE TWO

Figure 5.6
Assumed size arguments

5.9.3 Formal Sequence Association Rules

For completeness, the formal rules about sequence association from the HPF document
are listed here.

1. When an array element or the name of an assumed-size array is used as an actual
argument, the associated dummy argument must be a scalar or specified to be a sequential
array.

An array-element designator of a nonsequential array must not be associated with a
dummy array argument.
2. When an actual argument is an array or array section and the corresponding dummy
argument differs from the actual argument in shape, then the dummy argument must be
declared sequential and the actual array argument must be sequential.
3. A variable of type character (scalar or array) is nonsequential if it conforms to the
requirements of Section 4.10.2. If the length of an explicit-length character dummy
argument differs from the length of the actual argument, then both the actual and dummy
arguments must be sequential.
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6 Data Parallelism

As explained in Chapter 2, the High Performance Fortran programming model consid-
ers two factors—parallelism and communication. Chapters 4 and 5 describe the data
mapping mechanisms that determine the communication in a program. This chapter
looks at some data parallel features of HPF. Other parallel features appear in Chapter 3
(array assignments), Chapter 7 (HPF library functions), and Chapter 8 (EXTRINSIC pro-
cedures).

6.1 Overview of Data Parallelism

This chapter describes three features of HPF: the FORALL statement, the PURE attribute,
and the INDEPENDENT directive. Of these, FORALL and INDEPENDENT are parallel in and
of themselves. PURE is not parallel by itself, but can be used in conjunction with the
FORALL statement to increase the generality of that construct.

The FORALL statement, described in Section 6.2, generalizes the Fortran 90 array as-
signment to handle new shapes of arrays. In the process, the FORALL statement ends
up looking a bit like a DO loop. (Note, however, that the FORALL statement is not itself
a loop—it assigns to a block of array elements, but does not iterate over them in any
specific order.) The meaning is the same as for array assignments: compute all right-
hand sides before making any assignments. For example, Figure 6.1 shows how a FORALL
statement can shift elements of the main diagonal of an array along the diagonal. There
is also a multi-statement FORALL, in which the array assignment semantics are applied
to each statement in turn. Figure 6.2 shows this form of the FORALL. As you can see,
FORALL statements can be nested and can have mask expressions.

The intent in defining the FORALL is to create a parallel construct with determinate
semantics. That is, the statement can execute in parallel, and the results are identical
if it is re-executed with the same data. Identical results will hold even if the number of
processors or the entire machine architecture changes (up to the differences in machine
arithmetic, such as floating-point precision, permitted by the Fortran 90 standard). To
ensure this level of determinacy, the FCRALL has a number of constraints. It is important
to realize that, because of these constraints, the FORALL is not the general “parallel loop”
that some other languages have; in particular, there is no way (and no need) to perform
explicit synchronization, schedule tasks, or pass messages in a FORALL.

The FORALL can apply a user-defined function to every element of an array if the func-
tion is PURE, as defined in Section 6.3. Figure 6.3 shows a FORALL applying EQN_OF_STATE
to elements of the arrays V, N, and T to produce array P. This is similar to using For-
tran 90 elemental intrinsics, except that PURE functions can be user-defined. A PURE
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FORALL (I = 2:5) A(I,I) = A(I-1,I-1)

11 12 13 14 15 11 12 13 14

21 22 23 24 25 21 11 23 24

31 32 33 34 35 — 31 32 22 34

41 42 43 44 45 41 42 43 33

51 52 53 54 55 51 52 53 54

A before A after

Figure 6.1
A single-statement FORALL

FORALL (I = 1:8)
A(I,I) = SQRT(A(I,I))

15

Chapter 6

FORALL (J = I-3:I+3, J/=I .AND. J>=1 .AND. J<=8)

A(1,3) = A(I,I) * AQJ,D)

END FORALL

END FORALL
100 0 0 0 0 O] 12
040 0 0 0 0 0 )
009 0 0 0 0 0 3 6
00016 0 0 0 0 4 8
000 032 0 0 0| ~ |0 10
000 0 03 0 0 0 0
000 0 0 0 49 0 0 0
(000 0 0 0 0 64 [0 0

A before

Figure 6.2
A multi-statement FORALL
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INTERFACE
PURE REAL FUNCTION EQN_OF_STATE(VOL, MOLES, TEMP)
REAL VOL, MOLES, TEMP
END FUNCTION EQN_OF_STATE
END INTERFACE

FORALL (I = 1:NUM, J = 1:NUM)
P(I,J) = EQN_OF_STATE(V(I,J), N(I,J), T(I,J))
END FORALL

Figure 6.3
A PURE function declaration and use

tHPF$ INDEPENDENT, NEW (J, N1)
DO I = 1, NBLACK
N1 = IBLACK_PT(I)
DO J = INITIAL_RED(N1), LAST_RED(N1)
X(N1) = X(N1) + A(J)*X(IRED_PT(J))
END DO
END DO

Figure 6.4
An INDEPENDERT directive

function cannot have side effects on global data or on its arguments; thus, it behaves
like a mathematically pure function. HPF puts some rather heavy restrictions on the
function before it can be declared PURE to ensure that the compiler can check for the
lack of side effects. Like the constraints on FORALL, these restrictions ensure determinate
execution at some cost in generality.

Sometimes the programmer knows that a loop is parallel in cases where the com-
piler cannot detect the parallelism. HPF introduces the INDEPENDENT directive for just
such situations. The INDEPENDENT directive is a promise by the user that the results
of the DO loop will be the same even if its iterations are executed in some other order
or asynchronously in parallel. Figure 6.4 shows how an INDEPENDENT directive allows
NBLACK sums to be computed in parallel. Without the INDEPENDENT directive, the com-
piler would have to assume that some elements of X were referenced as both X(N1) and
X(IRED_PT(J)), forcing the loop to run serially. Note the difference in philosophy from
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the FORALL statement. The FORALL is a new statement, with a different meaning from the
similar-looking DO loop. The INDEPENDENT directive is a statement about the behavior
of the program as it is written.

6.2 The FORALL Statement

The FORALL is a generalization of the Fortran 90 array assignment and WHERE statements.
It provides for more array shapes to be assigned, particularly when nested FORALL state-
ments are used. In addition, when used with PURE functions (see Section 6.3) it provides
a form of user-defined elemental functions. An HPF-conforming FORALL statement al-
ways has a well-defined meaning; no nondeterminacy is provided in the construct, and
most of the restrictions to ensure this can be checked by the compiler.

A FORALL statement is not a loop, nor is it a “parallel loop” as defined in some
languages. We say this for a very simple reason: the FORALL does not iterate in any
well-defined order. Parallel loops are often defined to express nondeterminate execution,
or as a basis for expressing arbitrary parallel computations. The FORALL, when used in
an HPF-conforming way, cannot do either of those things.

HPF defines two forms of the FORALL statement—the single-statement FORALL (called
the forall-stmt (H401) in the grammar) and the multi-statement FORALL (called the
forall-construct (H405)). We will use the term FORALL statement to refer to both forms.
Explanations of the few details where they differ will clearly identify either the single-
statement or multi-statement form. Note that the single-statement FORALL is included
in Subset HPF, but the multi-statement FORALL is not.

6.2.1 Form of the FORALL Statement
The form of the forall-stmt (H401) is:

FORALL ( forall-triplet-spec-list [ , scalar-mask-ezpr | ) forall-assignment
The form of the forall-construct (H405) is:

FORALL ( forall-triplet-spec-list [ , scalar-mask-expr | )
forall-body-stmt

[ forall-body-stmt ] ...

END FORALL
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The following rules and restrictions apply to both the forall-stmt and forall-con struct.

Rules and restrictions:

1. Any procedure referenced in the scalar-mask-ezpr of a FORALL must be PURE, as
defined in Section 6.3.

2. The evaluation of any expression in the forall-triplet-spec-list or scalar-mask-ezpr
of a FORALL must not affect the result of computing any other expression in the
forall-triplet-spec-list or the scalar-mask-ezpr.

3. If a FORALL is nested within a forall-construct (a multi-statement FORALL), then the
inner FORALL may not redefine any indez-name used in the outer forall-construct.
Note that a FORALL may not be nested within a forall-stmt, (a single-statement
FORALL).

4. Each assignment or pointer assignment nested within a FORALL assigns to data objects
specified by the statement for permitted values of the indez-name variables. (Note
that even for deeply nested FORALL statements, an innermost statement is always an
assignment or pointer assignment.) A single assignment of this type may not cause
multiple values to be assigned to the same atomic object. (Recall that an atomic
data object is a Fortran 90 object which has no subobjects.) An HPF-conforming
program may, however, assign to the same atomic objects in different assignment
statements.

The form of a forall-triplet-spec (H403) is:
indez-name = subscript : subscript [ : stride ]

Rules and restrictions:
1. The indez-name must be a scalar integer variable.
2. If stride is present, it must not have the value 0.
3. A subscript or stride in a forall-triplet-spec-list must not contain a reference to any
indez-name in the forall-iriplet-spec-list in which it appears.

Note that Fortran 90 restricts subscript (R617) and stride (R620) to be scalar integers
as well.
A forall-assignment (H404) is one of:

assignment-stmt
pointer-assignment-stmt

A forall-body-stmt (H406) is one of:
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forall-assignment
where-stmt
where-construct
forall-stmt
forall-construct

The following rules apply to both the forall-assignment and the forall-body-stmt.

Rules and restrictions:
1. Any procedure referenced in a forall-assignment or forall-body-stmt, including one
referenced by a defined operation or assignment, must be PURE (see Section 6.3).

See Section 6.2.3 for many examples of FORALL syntax.

6.2.2 Meaning of the FORALL Statement

A multi-statement FORALL is interpreted essentially as a series of single-statement FORALL
statements. We therefore describe the single-statement FORALL’s interpretation first, and
then the complications of the multi-statement form.

The descriptions below speak of the “index values” of a FORALL statement rather than
“Iterations” or any other term that might suggest an order to the operations. We hope
this helps the reader break out of the habit of thinking in terms of looping through a
space, with the corresponding implied serialization.

Part of the semantics of the FORALL statement depends on the concept of an atomic
object. Recall that this is a Fortran data object which contains no subobjects. For
example, an integer variable is an atomic object, but an array of integers is an object
that is not atomic.

Interpretation of a Single-statement FORALL A single-statement FORALL is ex-
ecuted in four stages.

1. Compute the valid set of index values. This is the set of values defined by the forall
index range(s), not considering the mask expression. If there is more than one index,
then the valid set is a set of tuples, where each tuple contains a value for each index. The
range of valid values for each index is computed separately. For the forall-triplet-spec

INDEX = [b : ub : step

step
the set of valid values for INDEX is b+ (k — 1) x step, k = 1,2, ...,max. The valid set for
the whole FORALL is the Cartesian product of the active sets for the individual indices.
If max < 0 for some index, the FORALL is not executed.

let mar = [ﬂ"—b*—l] . If step is missing, it is as if it were present with the value 1. Then
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2. Compute the active set of index values. This is the set of index values for which the
forall-assignment is actually executed. The active set is constructed by evaluating the
scalar-mask-ezpr for each element of the valid set. The mask elements may be calculated
in any order or perhaps in parallel. The active set of index values is the subset of the
valid index values for which the scalar-mask-ezpr evaluates to . TRUE. If there is no mask
expression, then it is as if it were present with the constant value .TRUE., and so the
active set equals the valid set.

3. For each index value tuple in the active set, compute the right-hand side for the body
of the FORALL; the tuple specifies the values for the index variables. (Note that in a single-
statement FORALL, the body will be either an assignment or a pointer assignment. In
the case of an assignment statement (including array assignment), this step is a standard
expression evaluation. In the case of pointer assignment, it may involve evaluating a
pointer-valued expression or constructing a pointer to an object (depending on the type
of the right-hand side).) At the same time, evaluate and save any subexpressions in the
left-hand side (such as array subscripts). The evaluations for different index values may
be done in any order or perhaps in parallel.

4. For each index value tuple in the active set, assign the right-hand side value computed
in the previous step to the left-hand side. Depending on the statement type, this may
be either a normal assignment or a pointer assignment. The left-hand side is determined
from the saved subexpression values, rather than being computed while assignments are
in progress. The assignments may be performed in any order or perhaps in parallel.
(Remember that it is nonconforming for execution of a FORALL assignment to assign
multiple values to the same memory location.)

The scope of a FORALL index is the FORALL statement itself. In other words, the value
of the FORALL index variable becomes undefined after the termination of the FORALL.

The importance of computing both the right-hand sides and the left-hand subexpres-
sions in step 3 is that it prevents them from being overwritten. Thus, the order of
assignments cannot aflect either the values being assigned or the locations to which they
are assigned. Similarly, computing the bounds and mask elements first ensures that they
are not affected by any assignments within the FORALL body.

Interpretation of a Multi-statement FORALL The multi-statement FORALL is
conceptually a sequence of single-statement FORALLs. Its interpretation is therefore sim-
ilar, with suitable elaborations for sequences of statements and nesting.

1. Compute the valid set of index values. This is done precisely as for the single-statement
FORALL and has the same meaning.
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2. Compute the active set of index values. This is done precisely as for the single-
statement FORALL and has the same meaning.
3. Execute the statements in the FORALL body in the order given according to the rules
below. Effectively, the rules specify that each statement takes effect for all active index
values before any following statements begin.

e An assignment or pointer assignment statement is executed as if it were within a
single-statement FORALL: the right-hand side is computed for all active index values,
then the computed values are assigned to the left-hand side for all active index values.
e A FORALL statement modifies the active set of index values; the new active set is
then used for executing the statements in the inner FORALL body. The process is more
complicated than simply computing a single range for each of the inner indices and
then taking a simple Cartesian product, because the ranges for the inner variables can
depend on outer FORALL index variables. Consider, as an example, this code:

FORALL (I=1:3, J=1:3, I > J)
FORALL(K=1:3, L=1:J, K+L > I)
ACI,J,K,L) = J*K + L
END FORALL
END FORALL

The (I, J) tuples in the active set for the outer FORALL are:

{21,
(3,1),
(3,2), }

For each index value tuple in the outer active set, a new valid set is computed for the
inner FORALL statement. Each tuple in the new active set includes all the index values
from the outer tuple as well as values for the index variables newly introduced by the
inner FORALL. In our example, there are three pairs in the outer active set, so three
new valid sets of (I,JK,L) tuples are computed:

{(2.1,1,1), (2,1,2,1), (2,1,31) }
{@3,1,1,1), (3,121, (3131 }
{3,2,1,1), (3,212, (3221), (3222), (3231), (3232 }

The union of all the new valid sets, one for each tuple in the outer active set, forms
the inner valid set of (I,JK,L) tuples:
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{(21,1,1), (2,1,2,1), (2,1,3,1)
(3,1,1,1), (3,1,2,1), (3,1,3,1)
(3,.2,1,1), (3,2,1,2), (3,2,2,1), (3,222), (323,1), (3,2,3,2) }

The inner FORALL then computes the inner active set of index tuples by evaluating its
mask expression for all index values in the inner valid set and discarding index value
tuples that result in a .FALSE. mask value. In our example, inner active value tuples
must satisfy K+L > I:

{ (2,1,2,1), (2,13,1)
(3,1,3,1)
(3.2,2,2), (3,23,1), (3232 }

Statements in the inner FORALL body are then executed using the inner active set of
index values. At the end of the inner FORALL, the active set reverts to the outer active
set.

e A WHERE statement or construct masks the array assignments in its body. The WHERE
first evaluates its mask expression for all active index values. The assignments within
the WHERE branch of the construct (or the single assignment in the one-line WHERE
statement) are then executed in order using the interpretation of array assignments
above. However, the only array elements assigned are those selected by both the active
set of index values and the WHERE mask. Finally, the assignments in the ELSEWHERE
branch are executed (if it is present). The assignments here are also treated as array
assignments, but elements are assigned only if they are selected by both the active set
of index values and by the negation of the WHERE mask.

6.2.3 Discussion of the FORALL Statement

The purpose of this section is to give some concrete examples of the FORALL statement
and suggest how it can be used in practical programs. Before that, however, we digress
to give a more visual explanation of the meaning of a FORALL.

Visualizing a FORALL The execution of the FORALL can be visualized by showing
its precedence graph. Such a graph shows all the computations performed in a FORALL
and tells when one computation must finish before another one starts. Figure 6.5 shows
the precedence graph for a small FORALL statement. For comparison, Figure 6.6 shows
the precedence graph for a DO statement with the same body.

In a precedence graph, the computations are shown as ellipses. The “Begin” ellipse
contains the computation of the FORALL active set and the DO loop bounds. There are two
computations for each assignment statement in the construct body—the right-hand side
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FORALL (I = 1:3)

a(I) = b(I)
c(I) = d(1I)
END FORALL

Figure 6.5
Precedence graph for a FORALL statement

computation and the assignment to the left-hand side. The “End” ellipse does not contain
any computation; it simply shows when the construct is complete. If two computations
may have to be done in order, then there is an arrow from the earlier computation to the
later one. The variables used in the FORALL in the figure are only for labeling; the arrows
do not represent the actual dependences for a computation using only those variables.
Instead, an arrow between, for example, b(1) and a(2) means that the right-hand side
of the first statement for index value 1 may need to be completed before updating the
left-hand side of the same statement for index value 2. Arrows from right-hand sides (b
and d labels) to left-hand sides (a and c) are there because the left-hand update could
overwrite some data needed to compute the right-hand side. Arrows from left-hand sides
to right-hand sides are easier to understand; they mean that the assigned value might
be used in a right-hand side computation.

The key point to note about Figure 6.5 is that every statement in the body essentially
has two synchronization points—one after the right-hand side is computed, and one after
the assignment to the left-hand side. An operation near the end of a FORALL (such as
the operation c(1)) may depend on an operation near the top for any index value. Note
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DOI=1, 3
a(I) = b(I)
c(I) = d(1)

END DO

Figure 6.6
Precedence graph for a D0 statement

how this differs from the DO loop. There, a dependence goes from the last operation in
each iteration to the first operation in the next, forming a single continuous chain. The
effect of this is that every row in the FORALL dependence diagram can be executed in
parallel, while no operations in the DO can execute in parallel.

In practice, many of the dependences shown in these diagrams do not actually occur
for a particular FORALL or DO statement. That is, Figures 6.5 and 6.6 are worst-case
scenarios as far as parallelism is concerned. For example, if the computation in d does
not use any elements from the array assigned in a, then none of the arrows from the
second to the third row in the FORALL diagram actually occur. In simple cases (like the
one we just described), a compiler may be able to detect that some dependences are not
needed. Section 6.4.3 shows how the INDEPENDENT directive can make assertions about
some DO and FORALL statements.

The precedence graph for nested FORALL statements 1s (not surprisingly) a bit more
complex. Figure 6.7 shows one small example. The key point to notice is the mass
of dependences between operations in the inner FORALL statement. Every c¢ operation
potentially depends on every d operation, even those with different I values. The remarks

Copyrighted Material



178

S

S

\WAJA
Wl
W

(K

\

FORALL (I = 1:3)
a(I) = b(I)
FORALL (J = 1:I)

c(I,J) = d(1,0)
END FORALL
END FORALL

Figure 6.7
Precedence graph for nested FORALL statements
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about dependences not occurring in practice apply doubly here. For example, in the
statement

FORALL (I = 1:100)
FORALL (J = 1:I)
A(1,]) = AQJ,I) * A(I,I)
END FORALL
END FORALL

the worst-case diagram has 25,502,500 dependences between left- and right-hand sides;
the number that actually occur is 5050. (The triangular index value space eliminates
dependences between different values of I, and the only dependences in the FORALL J
construct are from J=I to every value of J.) As before, every row in the FORALL precedence
diagram can be executed in parallel. Although we don’t show it, the diagram for a nested
DO loop is a long chain of operations, snaking its way through the inner loops.

FORALL Examples Examples 6.1 and 6.2 go through the interpretation of two
FORALL statements in some detail. The other examples in this section suggest ways
that the FORALL can be useful, as well as illustrating some subtleties of the definitions in
Sections 6.2.1 and 6.2.2.

Example 6.1 First, we consider the FORALL in Figure 6.1, reproduced below.
FORALL (I = 2:5) A(I, I) = A(I-1, I-1)
It is interpreted as follows:

1. The bounds are evaluated (trivially) to determine that the valid set of the FORALL is
{2,3,4,5}.

2. Since there is no mask expression, the active set is the same as the valid set.

3. The value of A(I-1, I-1) is computed for every index value in the active set. Using
the values shown in Figure 6.1 produces the values {11, 22, 33, 44}.

4. The values are assigned to the elements {A(2,2),4(3,3),A(4,4),A(5,5)}.

Figure 6.1 shows the overall effect of the FORALL statement. O

Example 6.2 We next consider the code in Figure 6.2, reproduced below.

FORALL (I = 1:8)
A(I, I) = SQRT(A(I,I))
FORALL (J = I-3: I+3, J/=I .AND. J>=1 .AND. J<=9)
ACI, J) = A(I, I) *= A(J, J)
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END FORALL
END FORALL

The interpretation is only slightly more complex than the last example.

1. The valid set for the FORALL I statement is easily computed as {1,2,3,4,5,6,7,8}.
2. The active set for the FORALL I statement is the same as the valid set.

3. The expression SQRT(A(I,I)) is computed for every active index value. Using the
values A(I,I) = I**2, as shown in Figure 6.2, produces the values {1,2,3,4,5,6,7,8}.
4. The values are assigned to elements A(I, I) for all elements of the active set. After
this, A is the following matrix.

71000000 0]
02000000
00300000
0 0040000
00005000
0 0000O0GE6 00
000000TO
(000000 0 8]

5. The valid set for the FORALL J is computed. The (I, J) values for that set are

{(11'2)’ (11'1): (1!0)1 (l’l)v (1’2)’ (1’3)’ (1’4)»
(2-1), (2,0), (2.1), (2,2), (2.3), (24), (2),
(3,0), (31), (32), (33), (34), (35), (3.,6),
(41), (42), (43), (44), (45), (46), (47),
(52), (53), (54), (5), (5,6), (5.7), (5.8),
(6,3), (6,4), (6,5), (6.6), (6,7), (6.8), (6.9),
(74), (7%, ((7.6), (7,7, (7,8), (7,9, (7,10),
(8,5), (8,6), (8,7, (88), (8,9), (8,10), (8,11) }
6. The active set for the FORALL J is computed. The (I,J) values for that set are
{ (1,2), (1,3), (14),
(2,1), (2,3), (24), (29),
(3.1), (3,2), (34), (3,8), (3.8),
(4,1), (4,2), (4,3), (4,5), (4,6), (4,7),
(572)’ (5’3)’ (5’4)1 (5’6)’ (5’7)’ (518)1
(6.3), (6.4), (6.5), (6,7), (6.8),
(7,4), (7,9), (7.6), (7.,8),
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(8,5), (8,6), (8,7) }

From the valid set, the J/=I condition masks out the middle column, and the J>=1 and
J<=8 conditions remove the upper left and lower right corners.

7. The values of A(I,I) * A(J,J) are computed for the active index value tuples. This
gives the values

{ 2, 3, 4,
2, 6, 8, 10,
3, 6, 12, 15, 18,
4, 8, 12, 20, 24, 28,
10, 15, 20, 30, 35 40,
18, 24, 30, 42, 48,
28, 35, 42, 56,
40, 48, 56 }

8. The computed values are assigned to the elements A(I,J) for all active index value
tuples. The list of elements is identical to the list of active index values shown above.

Figure 6.2 shows the overall effect of the FORALL statement. O

Since the semantics of FORALL statements parallel the semantics of array assignment,
it is not surprising that some FORALL statements can be translated fairly directly to array
assignments or WHERE statements.

Example 6.3 The following FORALL statements

FORALL (I = 2:N-1) X(I) = X(I-1) + X(I) + X(I+1) ! Ex.1
FORALL (I = 1:N) X(INDX(I)) = X(I) { Ex.2
FORALL (I = 1:N, J=1:M, B(I,J)/=0.0) A(I,J) = 1.0/B(I,J) ! Ex.3
FORALL (J = 1:M, I=1:N) A(I,J) = B(J,I) ! Ex.4
FORALL (I = 2:N-1, J = 2:M-1)

A(I,J) = ACI,J-1) + A(I,J+1) + A(I-1,3) + A(I+1,]) ! Ex.ba

B(1,J) = A(1,J) ' Ex.5b
END FORALL

are equivalent to the following Fortran 90 statements.

X(2:N-1) = X(1:N-2) + X(2:N-1) + X(3:X) ! Ex.1
X(INDX(1:N)) = X(1:N) ! Ex.2
WHERE (Y(1:N,1:M) /= 0.0) X(1:N,1:M) = 1.0/Y(1:N,1:M) ! Ex.3
A(1:N,1:M) = TRANSPOSE(B(1:M,1:N)) ! Ex.4
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A(2:N-1,2:M~1) = A(2:N-1,1:M-2) + A(2:N-1,3:M) & ! Ex.ba
+ A(1:N-2,2:M-1) + A(3:N,2:M-1) ! Ex.ba
B(2:N-1,2:M-1) = A(2:N-1,2:M-1) ! Ex.5b

A few details of these statements should be mentioned.

1. Statement Ex.1 uses the original values in the array X for all its computations. For
example, if X(I)=1 for all I initially, then after the statement X(I)=3 for elements 2
through N-1. Note that it does not have the same effect as the Fortran 90 loop

DOI =2, N-1
X(I) = X(I-1) + X(I) + X(I+1)
END DO

which produces X(I)=2#I+1 (for 2<=I<=N-1) from the same data.

2. Statement Ex.2, performs a permutation of the array X if INDX contains the integers
from 1 to N in some order. If INDX contains repeated values, neither the behavior of the
FORALL nor the equivalent array assignment is defined.

3. Statement Ex.3 takes the reciprocal of each nonzero element of array B(1:N,1:M).
Elements that are zero are filtered out before the computation is done, so the statement
1s safe from “division by zero” errors.

The reader can make up his or her own mind whether the FORALL or the array assign-
ment forms of these statements are more readable. Both forms have fans and detractors.
a

Not all FORALL statements have simple translations to Fortran 90. Translations some-
times become complex due to the shapes of array sections assigned, or because the FORALL
indices are used in computations besides subscripts.

Example 6.4 The following FORALL statements are difficult to translate to Fortran 90:

! Forall 1

FORALL (I = 1:N) A(I,INDX(I)) = X(I)

! Forall 2

FORALL (I = 1:N, J = 1:N) A(I,J) = 1.0 / REAL(I+J-1)

The shortest Fortran 90 equivalents we know of using array operations are below.
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! Forall 1
WHERE (SPREAD((/(I,I=1,N)/),DIM=2,NCOPIES=N) = &
SPREAD((/(I,I=1,N)/),DIM=1,NCOPIES=N)
A(1:N,INDX(1:N)) = SPREAD(X(1:N), DIM=2, NCOPIES=N)
END WHERE
! Forall 2
A(1:N,1:M) = 1.0 / REAL(SPREAD((/(I,I=1,N)/),DIM=2,NCOPIES=M) &
+ SPREAD((/(J,J=1,M)/),DIM=1,NCOPIES=N) - 1 )

Equivalent DO loops are shorter. However, if the right-hand sides used the array A then
the translations to DO loops would be more complex. Example 6.1, for example, requires
either using two DO loops or changing the natural iteration order. O

Example 6.5 The ability to nest a WHERE statement in a FORALL is sometimes useful.

FORALL (I = 1:5)
WHERE (A(I,:) /= 0.0 )
AC(I,:) = A(I-1,:) + A(I+1,:)
ELSEWHERE
B(I,:) = A(6-1,:)
END WHERE
END FORALL

This FORALL construct, when executed with the input arrays

0.0 0.0 0.0 0.0 0.0 [ 00 00 00 00 0.0 W
1.0 1.0 1.0 0.0 1.0 10.0 10.0 10.0 10.0 10.0
A= |20 20 00 20 20 |[,B=| 200 20.0 20.0 20.0 20.0
30 0.0 3.0 3.0 3.0 30.0 30.0 30.0 30.0 30.0
0.0 0.0 0.0 0.0 0.0 | 40.0 40.0 40.0 40.0 40.0 J

will produce as results

0.0 0.0 0.0 0.0 0.0 r 00 00 0.0 00 0.07
2.0 2.0 0.0 0.0 20 10.0 10.0 10.0 2.0 10.0
A= |40 10 00 3.0 40 |,B=| 20.0 200 0.0 200 200
20 00 0.0 20 20 30.0 2.0 30.0 30.0 30.0
0.0 0.0 0.0 0.0 0.0 L 00 00 00 00 0.0 ]

Note that, as with WHERE statements in ordinary Fortran 90, assignments in the WHERE
branch may affect computations in the ELSEWHERE branch. O

Copyrighted Material



184 Chapter 6

Example 6.6 The FORALL statement also allows pointer assignments in its body, which
is a clear extension of Fortran 90 array assignments.

TYPE MONARCH
INTEGER, POINTER :: P
END TYPE MONARCH
TYPE(MONARCH), DIMENSION(8) :: PATTERN
INTEGER, DIMENSION(8), TARGET :: OBJECT

! Set up a butterfly pattern
FORALL (J = 1:N) PATTERN(J)%P => OBJECT(1+IEOR(J-1,2))

This FORALL statement sets the elements 1 through 8 of array PATTERN to point to
elements [3,4,1,2,7,8,5, 6] of 0BJECT. (IEOR is allowed because all intrinsic functions are
PURE; see Section 6.3.) O

Example 6.7 Functions returning arrays can also be PURE, as Section 6.3 discusses.
This allows the programmer to think of subarrays as “elements” to be assigned, as in the
following code.

INTERFACE
PURE FUNCTION F(X)
REAL, DIMENSION(3) :: F
REAL, DIMENSION(3), INTENT(IN) :: X
END FUNCTION F
END INTERFACE
REAL, DIMENSION(3,L,M,N) :: V

FORALL (I = 1:L, J = 1:M, K = 1:N) V(:,I,J,K) = F(V(:,I,J,K))

Computations of this form are common in some areas of physics, such as quantum chro-
modynamics. O

6.3 The PURE Attribute

The PURE attribute applies to functions and subroutines, in much the same way as the
Fortran 90 RECURSIVE attribute. It constrains the statements allowed in the procedure so
that the procedure cannot have any side effects, except to return a value (in the case of a
PURE function) or modify INTENT(OUT) and INTENT(INOUT) parameters (in the case of a
PURE subroutine). This makes PURE functions safe for use in a FORALL statement; in fact,
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this is intended to be the major use of PURE procedures. PURE subroutines are mainly
intended to be called from other PURE procedures; they cannot be called from a FORALL
statement directly. A PURE procedure may also be used anywhere that a procedure of
the same type can be called.

The PURE attribute is not a part of Subset HPF. However, intrinsic functions are still
considered PURE in Subset HPF. This allows (single-statement) FORALL statement bodies
to call intrinsic functions, but not user-defined functions. Thus, Example 6.11 is not
Subset-conforming, but Example 6.12 is allowed in Subset HPF.

6.3.1 Form of the PURE Attribute

The PURE attribute is specified in the function-stmt (H409) or subroutine-stmi (H411) by
the prefiz (H407) part. The new form of a prefiz (H407) is:

prefiz-spec | prefiz-spec ] ...

where a prefiz-spec (H408) is one of:

type-spec
RECURSIVE
PURE
eztrinsic-prefic

See Chapter 8 for the definition of eztrinsic-prefizr (H601). The form of a function-stmt
(H409)) is not changed from rule R1217 of the Fortran 90 standard, but is rewritten here
for clarity:

[prefiz] FUNCTION function-name ([dummy-arg-name-list]) [RESULT(result-name)]

Similarly, the form of a subroutine-stmt (H411) is the same as Rule R1220 of the For-
tran 90 standard, and is rewritten here:

[prefiz) SUBROUTINE subroutine-name [([dummy-arg-list])]

Rules and restrictions:

1. A prefir must contain at most one of each variety of prefiz-spec.

2. The prefiz of a subroutine-stmt must not contain a type-spec.

3. Intrinsic functions, including the HPF intrinsic functions, are always PURE and require
no explicit declaration of this fact. Intrinsic subroutines are PURE if they are elemental
(i.e., MVBITS) but not otherwise.

4. A statement function is PURE if and only if all functions that it references are PURE.
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Functions in the HPF library are PURE.

In addition to the new definition of prefir, the PURE attribute adds a number of con-
straints to other Fortran 90 rules when they use a PURE function. When the constraints
mention “a PURE procedure” they mean a procedure that is declared PURE by the above
rules.

Add the following rules and restrictions to the definitions of function-subprogram
(R1215) and subroutine-subprogram (R1219) from the Fortran 90 standard:

Rules and restrictions:

1. The spectfication-part of a PURE function must specify that all dummy arguments have
INTENT(IN) except procedure arguments and arguments with the POINTER attribute.

2. The specification-part of a PURE subroutine must specify the INTENT of all dummy
arguments except procedure arguments and arguments that have the POINTER attri-
bute.

3. A local variable declared in a PURE procedure (including a variable declared in an
internal procedure) must not have the SAVE attribute.

4. A local variable declared in a PURE procedure (including a variable declared in an
internal procedure) cannot be initialized in a type declaration statement or a DATA
statement, since such initializations imply the SAVE attribute.

5. A PURE procedure (or its internal procedures) may not use global variables, dummy
arguments with INTENT (IN), or objects that are storage associated with any part of a
global variable in any operation that might cause their value to change. In addition,
a PURE function may not use any dummy argument, even without a declared INTENT
attribute, in these contexts. In particular, those variables cannot be used as:

e The left-hand side of an assignment statement or pointer assignment statement.
e An actual argument associated with an dummy argument with INTENT (OUT)
or INTENT(INOUT) or with the POINTER attribute.

An index variable in a DO statement, FORALL statement, or an implied DO clause.
The variable in an ASSIGN statement.

An input item in a READ statement.

An internal file unit in a WRITE statement.

The object to be allocated in an ALLOCATE, the object to be deallocated in a
DEALLOCATE statement, or the pointer to be nullified in a NULLIFY statement.

e An IOSTAT= or SIZE= specifier in an I/O statement, or the STAT= specifier in a
ALLOCATE or DEALLOCATE statement.

6. A PURE procedure (or its internal procedures) may not use global variables, dummy
arguments with INTENT(IN), or objects that are storage associated with any part
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9

10.

11.

12.

of a global variable in any operation that could create a pointer to that variable.
In addition, a PURE function may not use any dummy argument, even without a
declared INTENT attribute, in these contexts. In particular, those variables cannot
be used as:

e The target (right-hand side) of a pointer assignment statement.

o The right-hand side of an assignment to a derived-type variable (including a
variable that is a pointer to a derived type) if the derived type has a pointer
component at any level of component selection.

. If a PURE procedure calls another procedure, then the called procedure must also be
PURE.

. If a dummy argument to a PURE procedure or the dummy result of a PURE function
is explicitly mapped, then:

o If the dummy appears in an ALIGN directive as the alignee (H316) (i.e., as
the variable being aligned with something), then the align-target (H321) (i.e., the
thing being aligned to) must be another dummy argument or the dummy result.
e The dummy cannot appear in a DISTRIBUTE directive.

¢ The dummy cannot have the INHERIT attribute.

e The dummy cannot have the DYNAMIC attribute.

. If a local variable in a PURE procedure is explicitly mapped, then:

e If the variable appears in an ALIGN directive as the alignee (H316) (i.e., as
the variable being aligned with something), then the align-target (H321) (i.e., the
thing being aligned to) must be another local variable, a dummy argument or the
dummy result.

e The variable may not appear in a DISTRIBUTE directive.

e The variable cannot have the DYNAMIC attribute.

A global variable that appears in a PURE procedure must not be used in a REALIGN
or REDISTRIBUTE directive.

A PURE procedure may not contain any external input/output statement. The list
of external I/O statements includes the PRINT, OPEN, CLOSE, BACKSPACE, ENDFILE,
REWIND, and INQUIRE statements. It also includes READ and WRITE statements whose
I/O unit is an external file unit number or *.

A PURE function must not contain a PAUSE or STOP statement.

Add the following rules to the definition of interface-body (R1204).
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Rules and restrictions:
1. In an INTERFACE block, the interface specification of a PURE procedure must specify
the INTENT of all dummy arguments except POINTER and procedure arguments.
2. A procedure that is declared PURE at its definition may be declared PURE in an
INTERFACE block, but this is not required.
3. A procedure that is not declared PURE at its definition must not be declared PURE in
an INTERFACE block.

6.3.2 Meaning of the PURE Attribute

A call to a PURE procedure has exactly the same interpretation as a call to any other
procedure. However, it is legal to call a PURE procedure in contexts where an arbitrary
procedure is not allowed. In particular,

e A PURE function may be used in the mask expression or the body of a FORALL state-
ment.

e A PURE function or subroutine may be called from a PURE procedure.

e A PURE function or subroutine may be passed as an actual parameter to a dummy
parameter that is declared PURE.

If a procedure is used in any of these contexts, then its interface must be explicit and
the PURE attribute must be part of that interface. Note that all the restrictions on PURE
can be checked statically, that is, they refer to the syntax of the function, not to its
behavior. (Consistency of the declarations between compilation units cannot be checked
directly, unfortunately; however, it can be checked when the units are linked into a single
program.)

6.3.3 Discussion of the PURE Attribute

We first give some examples of functions that are (or are not) PURE, then illustrate their
use.

Example 6.8 The following statement functions are PURE:

REAL :: MY_EXP, MY_SINH, STD_SINH
MY_EXP(X) = 1 + X + X*X/2.0 + X**3/6.0
MY_SINH(X) = (MY_EXP(X) - MY_EXP(-X)) / 2.0
STD_SINH(X) = (EXP(X) - EXP(-X)) / 2.0

MY_EXP references no functions, so it cannot reference any non-PURE functions. The other
two functions reference only the PURE user-defined function MY _EXP and the intrinsic EXP.
0O
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Example 6.9 The following function is correctly declared to be PURE.
PURE INTEGER FUNCTION MANDELBROT(X)

COMPLEX, INTENT(IN) :: X
COMPLEX :: XTMP

INTEGER . K
! Assume SHARED_DEFS includes the declaration

! INTEGER ITOL
USE SHARED_DEFS

K=0

XTMP = -X

DO WHILE (ABS(XTMP)<2.0 .AND. K<ITOL)
XTMP = XTMP * XTMP - X
K=K+1

END DO

ITER = K

END FUNCTION
Example 6.11 shows how a FORALL might call this function to update all the elements
of an array. We expect that this will be a common use for PURE functions. A suitable
INTERFACE block for MANDELBROT would be as follows.
INTERFACE
PURE INTEGER FUNCTION MANDELBROT(X)
COMPLEX, INTENT(IN) :: X
END FUNCTION MANDELBROT
END INTERFACE

We note a few interesting points about this function.

o It uses shared data (ITOL), but does not assign to it. Read-only use of shared data is

allowed in PURE functions.
e It contains a loop construct. Arbitrary flow control is allowed in PURE functions.

These features make PURE functions quite useful, although they also make compilation
somewhat more complex. O

Example 6.10 The following function is not PURE. Any one of the commented state-
ments is enough to disqualify it from being PURE.
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REAL FUNCTION IMPURE_FCN(W, X, Y) ! *IMPURE* - No PURE attribute

! Assume SHARED_DEFS contains the declarations
! INTEGER, PARAMETER :: N = 1000

! INTEGER :: NUM_CALLS

! REAL, DIMENSION(N), TARGET :: LOOKUP_TABLE
USE SHARED_DEFS

REAL, INTENT(IN) ot W

REAL, DIMENSION(10), INTENT(IN) :: X

REAL, DIMENSION(N), TARGET R 4 ! *IMPURE* - No INTENT
INTEGER, SAVE :: LAST = 1 ! *IMPURE* - Has SAVE

REAL, DIMENSION(10), POINTER :: Z

INTERFACE
PURE SUBROUTINE BINARY_SEARCH(A, B, I)
REAL, INTENT(IN) A
REAL, INTENT(INOUT), DIHENSION(N)
INTEGER, INTENT(INOUT) o I

END PROCEDURE BINARY_SEARCH
END INTERFACE

! *IMPURE* - Passing global to INTENT(INOUT) parameter
CALL BINARY_SEARCH(W, LOOKUP_TABLE, LAST)
Z => Y(LAST:LAST+9) ! *IMPURE* - Pointer to dummy
NUM_CALLS = NUM_CALLS + 1 ! *IMPURE* - Assignment to global
IMPURE_FCN = SUM(X * 2Z)

END FUNCTION IMPURE_FCN

Notice that many of the “impurities” in this function do not actually cause side effects.

e Leaving out the PURE attribute is purely a syntactic matter.

e Although Y is not declared INTENT(IN), it is not assigned in the procedure.

e Assuming that BINARY _SEARCH does what its name implies, its second parameter will
not be modified. A more appropriate INTERFACE block might be

INTERFACE
PURE SUBROUTINE BINARY_SEARCH(A, B, I)
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REAL, INTENT(IN) t: A
REAL, INTENT(IN), DIMENSION(N) :: B
INTEGER, INTENT(INOUT) HEN §

END PROCEDURE BINARY_SEARCH
END INTERFACE

which would make the CALL statement legal in a PURE function.
e Although Z points to Y, there are no assignments to Z that modify Y.

The rules for PURE ensure that no side effects occur; it isnot the case that every subroutine
without side effects is PURE, O

Example 6.11 This FORALL applies the MANDELBROT function defined in Example 6.9 to
fill an array.

FORALL (I = 1:N, J = 1:M)
A(I,J) = MANDELBROT(COMPLX((I-1)*1.0/(N-1), (J-1)*1.0/(M-1))
END FORALL

Note that because of the control flow inside MANDELBROT this computation could not be
written as a FORALL statement without the PURE function. One of the major advantages

of PURE functions is that they allow more complex operations to be done in parallel by
FORALL statements. O

Example 6.12 Since intrinsic functions are PURE, they can be always be called from
FORALL statements. For example,

FORALL (K = 1:9) X(K) = SUM(X(1:10:K))
computes nine sums of subarrays of X. If X has the value
[1,2,3,4,5,6,7,8,9,10]
before the FORALL, then it have the value
[55,25,22,15,7,8,9,10,11,10]

afterwards. Note that, since SUM is not an elemental function, it cannot be applied
elementally in this way. O
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6.4 The INDEPENDENT Directive

The INDEPENDENT directive is an assertion that the programmer makes about the behavior
of a DO loop or FORALL statement. In particular, INDEPENDENT asserts that the iterations
of a DO or the computations for different active index values of a FORALL, do not interfere
with each other in any way. This implies that the DO or FORALL will produce exactly
the same answers if its iterations or computations are executed in parallel (or, for that
matter, in any sequential order). The compiler can use this information to produce more
efficient code.

Note that INDEPENDENT is providing new information to the compiler, not defining
a new meaning for the code. If it is used correctly, INDEPENDENT will not change the
meaning of a program. If it is misused (i.e., if the programmer is mistaken deliberately
lies about the interactions between iterations), then the program is not HPF-conforming.

While FORALL statements technically do not have “iterations” because they are not
loops, for simplicity of exposition in this section we use the term “iteration” to describe
either an iteration of a DO loop or the execution of the body of a FORALL for a single
active index value tuple.

Subset HPF includes the INDEPENDENT directive applied to both DO loops and FORALL
statements.

6.4.1 Form of the INDEPENDENT Directive

The INDEPENDENT directive precedes the DO loop or FORALL statement for which it is
asserting behavior, and is said to apply to that loop or statement. The form of the
independent-directive (H413) is:

INDEPENDENT [ , NEW ( wariable-list ) ]

Rules and restrictions:

1. The first non-comment line following an INDEPENDENT directive must be a DO or
FORALL statement.
If the NEW option is present, then the directive must apply to a DO loop.
A NEW option cannot name a pointer or dummy argument in its variable-list.
A variable named in the NEW option must not have the SAVE or TARGET attribute.
The DO or FORALL to which the INDEPENDENT directive applies must behave as de-
scribed in Section 6.4.2.

A

6.4.2 Meaning of the INDEPENDENT Directive

A DO loop with an INDEPENDENT assertion applied to it is called a DO INDEPENDENT
loop. The interpretation of a DO INDEPENDENT is identical to the interpretation of the

Copyrighted Material



Data Parallelism 193

corresponding DO loop with no INDEPENDENT. That is, INDEPENDENT (when correctly ap-
plied) does not change the results computed by the DO to which it applies. Similarly,
a FORALL statement with an INDEPENDENT assertion applied to it is called a FORALL
INDEPENDENT. The interpretation of a FORALL INDEPENDENT is identical to the corre-
sponding FORALL’s interpretation. The importance of the INDEPENDENT directive is that
it gives the compiler more information that may be used to optimize the program. Thus,
although the meaning of the program does not change, its performance is likely to be
better because the compiler can make less restrictive assumptions.

The interpretation of INDEPENDENT itself is essentially an explanation of what the
directive asserts. In short, it asserts two things:

e Bernstein’s conditions [8]: If R; is the set of locations “read” in iteration 7 of a
construct, and W, is the set of locations “written” in iteration i, then for any i # j it
must be true that

(RNW;))UW:NR)UW;NW;)=¢

The effect of this is that no atomic data object may be read in one iteration and written
in another, nor may any atomic object be written in more than one iteration.

e No control dependence: Once the construct begins execution, it will execute to com-
pletion.

Note that, unlike the restrictions on PURE functions, these are assertions about the behav-
ior of the INDEPENDENT construct, not about its syntax. For example, a DO INDEPENDENT
could legally contain a STOP statement, provided that statement was in a branch of an
IF that was never executed.

It is important to define precisely the terms “read” and “written” in Bernstein’s con-
ditions. Given that, we have the following:

e An assignment to an object is a write to all the atomic objects that it contains. For
example, an assignment to an integer variable is a write to one atomic object; an array
assignment to an integer array can be many atomic writes. Note that this is considered
a write even if the value does not change.

e Similarly, using an object as a DO or implied DO index; as FORALL index; as an input
item in a READ statement; as an internal file unit in a WRITE statement; as the variable in
an ASSIGN statement; as the pointer in an ALLOCATE, DEALLOCATE or NULLIFY statement;
or as a IOSTAT=, SIZE= or STAT= specifier is a write to all atomic objects in that object.
e A use of a variable in an expression (not including “use” in modifying that variable, as
detailed above) is a read of every atomic object in the (fully-qualified) use. For example,
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TYPE EXAMPLE

REAL, DIMENSION(3) :: X, Y
END TYPE EXAMPLE
REAL, DIMENSION(10) :: A, B
TYPE (EXAMPLE) :: C

A(1) = A(10)
B(2:9) = B(1:8)
CAX(1) = chY(3)

contains reads of A(10), B(1), B(2), B(3), B(4), B(5), B(6), B(7), B(8), and C/4Y(3).
It does not contain reads of (among other things) A(1), B(9), B(10), or C/Y taken as a
whole.

e Any file I/O statement except INQUIRE both reads and writes that file, where the file
itself is considered to be an object. (This is due to Fortran’s definition of how the file
position is affected by I/O statements; the position is defined after every operation, even
for direct access files.) An INQUIRE operation performs a read from its file.

e A REALIGN or REDISTRIBUTE directive reads and writes a variable and every atomic
object that it contains. (This is because the operation may change the processor storing
every array element, which interferes with any assignment or use of those elements.) In
addition, a REDISTRIBUTE directive reads and writes every element of any array aligned
to the array being distributed.

Obviously, some of these points do not apply to FORALL statements, which cannot contain
(for example) ASSIGN statements.

A construct has control dependence if the execution of one iteration determines whether
other iterations are executed. The following cases constitute control dependence in HPF
programs:

e A transfer of control (by a GO TO, alternate procedure return, or ERR= branch) to a
branch target statement outside the body of the loop.
e Any execution of an EXIT, STOP, or PAUSE statement.

A FORALL statement cannot be affected by either of these conditions.

The NEW clause modifies the meaning of the INDEPENDENT directive by restricting
the variables considered for inclusion in the read and write sets. The technical defi-
nition is that it changes the INDEPENDENT directive where it appears and all surrounding
INDEPENDENT directives to mean that those assertions would be true if new objects were
created for the named variables for each iteration of the DO loop. In other words,it asserts
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that the remainder of program execution is unaffected if all variables in the variable list
and any variables associated with them were to become undefined immediately before
execution of every iteration of the loop, and also become undefined immediately after
the completion of each iteration of the loop.

The English translation of the above definition is that the variables named in the KEW
clause should be treated as being private in the loop body. Effectively, the variables lose
their values at the end of each iteration. The reason for the strange circumlocution has
to do with the fact that NEW is part of a directive, rather than a first-class statement
in the language. Since directives can’t change the meaning of the program, they can’t
allocate new objects or make existing objects undefined. Therefore, the official definition
has to be phrased as a series of “what ifs.”

NEW variables provide the means to declare temporaries in INDEPENDENT loops. With-
out this feature, many conceptually independent loops would need substantial rewriting
(including expansion of scalars into arrays) to meet the rather strict requirements for
INDEPENDENT. Note that a temporary need only be declared NEW at the innermost lex-
ical level at which it is assigned, since all enclosing INDEPENDENT assertions must take
that NEW into account. Note also that index variables for nested DO loops must be de-
clared NEW; the alternative was to limit the scope of an index variable to the loop itself,
which changes Fortran semantics. FORALL indices, however, have scopes restricted by the
semantics of the FORALL statement; they require no NEW declarations.

The compiler is justified in producing a warning if it can prove that an INDEPENDENT
assertion is incorrect. It is not required to do so, however. Indeed, since deciding whether
a loop is INDEPENDENT is an undecidable problem, it is always possible to write an as-
sertion that the compiler cannot fully check. A program containing any false assertion
of this type is not HPF-conforming, thus is not defined by HPF, and the compiler may
take any action it deems appropriate.!

6.4.3 Discussion of the INDEPENDENT Directive

Like the FORALL statement, there is a good graphical representation of a DO INDEPENDENT
loop. We show that in Figure 6.8, and then give some examples of loops that are (and
are not) INDEPENDENT.

Visualizing INDEPENDENT Figure 6.8 shows the precedence graph for a DO IN-
DEPENDENT loop. If the INDEPENDENT assertion were applied to a FORALL statement, the
picture would look exactly the same. INDEPENDENT means that only the dependences
shown may occur, rather than the full sets of arrows from Figures 6.5 and 6.6. The

1At one point the HPF language draft suggested executing the programmer if such an error was
found, but tgat sentence was eventually removed.
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'HPF$ INDEPENDENT

DOI =1, 3
a(I) = b(I)
c(I) = 4(1)

END DO

Figure 6.8
Precedence graph for a D0 INDEPEEDEKNT loop
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assertion essentially tells the compiler that this particular statement is not a worst case;
in fact, it is far from the worst. It is clear from the figure that any operation in one
iteration can be performed in parallel with any operation from any other iteration. The
only ordering that needs to be enforced is within the same iteration. (Sometimes even
this ordering may be unnecessary—in particular, when the statements in the body do
not depend on each other. HPF has no way to express such fine control, however.)

Figure 6.9 shows a FORALL INDEPENDENT with a nested FORALL. Replacing the outer
FORALL statement with a DO loop would produce the same picture. We show it to point
out that the INDEPENDENT assertion does mean that FORALL statements (or DO loops)
nested within the INDEPENDENT statement are also INDEPENDENT. Compared to Figure 6.7,
however, it is clear that removing the dependences between iterations in the outer FORALL
is still a substantial improvement.

INDEPENDENT Examples For simplicity, our explanations in this section assume
there is no storage, sequence, or pointer association between any variables used in the
code. INDEPENDENT can be used when variables are associated, but only if the association
does not cause one of the rules in Section 6.4.2 to be violated.

Example 6.13 The following loop is INDEPENDENT regardless of the values of the vari-
ables involved.

'HPF$ INDEPENDENT
DO I = 2, N-1
X(I) = Y(I-1) + Y(I) + Y(I+1)
END DO

This is, of course, trivial to see—all iterations read from one array and write to another,
so there can be no interference. Note that many elements of Y are used repeatedly; this
is allowed by the definition of INDEPENDENT. The other conditions relate to constructs
not used in the loop. The loop could be written equivalently as follows.

'HPF$ INDEPENDENT
FORALL (I = 2:N-1) X(I) = Y(I-1) + Y(I) + Y(I+1)

It is always the case that a FORALL INDEPENDENT can be directly rewritten as a DO
INDEPENDENT. The converse is not true, due to the restrictions on the body of a FORALL
statement. O
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{HPF$ INDEPENDENT
FORALL (I = 1:3)
a(I) = b(I)
FORALL (J = 1:I)
c(1,3) = 4(1,3)
END FORALL
END FORALL

Figure 6.9
Precedence graph for INDEPENDENT with nested statements
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Example 6.14 The following loops are INDEPENDENT regardless of the data values used.

'HPF$ INDEPENDENT, NEW (I)
DO J =2, M-1, 2
'HPF$  INDEPENDENT, NEW(VL, VR, UL, UR)
D0OI =2, F-1, 2

VL = A(1,J) - A(I-1,))
VR = A(I+1,J) - A(I,J)
UL = A(I,J) - A(1,J-1)
UR = A(I,J+1) - A(I,J)
A(I,J) = B(I,J) + A(I,J) + 0.25 * (VR - VL + UR - UL)
END DO
END DO

There is no interference due to accesses of the array X because of the stride of the DO
loop (i.e., I and J are always even, therefore I-1, etc. are always odd.) Some compilers
can detect this independence without a directive, but the reasoning to do so is clearly
harder than in Example 6.13. Good discussions of compiler dependence tests can be
found in books by Wolfe [31] and Zima and Chapman [33]. Since different compilers
will perform different analyses, we recommend using explicit INDEPENDENT assertions
whenever portability to other systems is important.

Without the NEW clause on the I loop, neither INDEPENDENT assertion would be correct.
For intuition why, consider an interleaved execution of loop iterations, that is, performing
one statement from one iteration, followed by a statement from another iteration. It is
easy to see that this might cause some iteration to use values of VL, VR, UL, and UR in
the assignment to A(I,J) that another iteration computed. The NEW option, however,
specifies that this is not true if distinct storage units are used in each iteration of the
loop. O

Example 6.15 The truth of some INDEPENDENT assertions depends on the data used in
the construct.

'HPF$ INDEPENDENT
DOI =1, N
X(INDX(I)) = Y(I)
END DO

This directive asserts that the array INDX does not have any repeated entries in its first
N elements. If there were repeated entries, at least one element of X would receive two
values from Y, thus violating the Bernstein conditions. In general, there is no way for the
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compiler to know the values variables will have at runtime. When a loop is INDEPENDENT
because of properties of the input data, it is almost always advisable to use the explicit
directive. (Unfortunately, we cannot say it is always advisable—reports of directives
causing pathological behavior in compilers are legion.) O

Example 6.16 INDEPENDENT loops may contain loops with dependences, so long as
those dependences do not “escape” the INDEPENDENT loop. The code from Figure 6.4 is
an example of this.

'HPF$ INDEPENDENT, NEW (J, N1)
DO I = 1, NBLACK
N1 = IBLACK_PT(I)
DO J = INITIAL_RED(N1), LAST_RED(N1)
X(N1) = X(N1) + A(J)*X(IRED_PT(J))
END DO
END DO

As in the last example, the correctness of the INDEPENDENT assertion depends on the
data. Essentially, the assertion says that no element is both “black” (i.e., referenced by
IBLACKPT) and “red” (i.e., referenced by IRED_PT). It is clear, however, that the DO J
loop 1s not INDEPENDENT, since it repeatedly uses the value of and assigns to the same
element of X. O

Example 6.17 Although we have concentrated on assignments in the previous exam-
ples, a DO INDEPENDENT can contain arbitrary code if its behavior obeys the restrictions
in Section 6.4.2.

'HPF$ INDEPENDENT, NEW(K, L, N, ROOT)
Li: DO J =1, 10
L2: DO
READ (J, ’'(216,I3)’) K, L, N
IF (K<=0 .OR. L<=0 .OR. N<3) EXIT L2
ROOT = (K**N + L#*N) ** (1.0 / N)
WRITE(J+10, ’E18.6) ROOT
IF (ROOT_M = FLOOR(ROOT)) THEN
PRINT ’'Fermat was wrong!'’
EXIT L1
END IF
END DO
END DO

Copyrighted Material



Data Parallelism 201

The READ and WRITE operations use different I1/O units on every iteration. According
to standard Fortran, different I/O units must be associated with different files, so there
is no cross-iteration interference. The PRINT statement would cause an interference if
it were executed, and the EXIT statement would likewise invalidate the INDEPENDENT
assertion. However, those statements are only executed if there are four positive integers
K, L, M, N (with N > 2) such that

KN + LY = MV

Fermat’s Last Theorem, which was recently proved, guarantees that such integers do not
exist. O

The next three examples contain incorrect code. Be careful!

Example 6.18 The following loop is not a correct use of INDEPENDENT:

'HPF$ INDEPENDENT ! *** Nonconforming!!! ***
DOI=1, N
SCALAR = SCALAR + X(I)=*Y(I)
END DO

The reason is that SCALAR is both read and written by every iteration of the loop, creating
almost N*#*2 violations of the Bernstein conditions. Placing SCALAR in a NEW clause is
not correct either, since the results of the loop would change rather drastically if the
value of SCALAR was forgotten at the end of each iteration. In short, you cannot use a
DO INDEPENDENT to accumulate sums (or products, or other reduction operations), even
though there are parallel algorithms for such accumulations. The intrinsics in Chapter 7
are the correct way to perform these operations. O

Example 6.19 The following program is not correct usage of INDEPENDENT:

ERR = ERR_TOL + 1
DO WHILE (ERR > ERR_TOL)
VHPF$  INDEPENDENT, NEW(J) ! *** Nonconforming!!! **
DO J = 2, M-1
'HPF$ INDEPENDENT ! *** Nonconforming!!! **x*
DOI = 2, N-1
B(I,J) = A(L,J)

ACI,J) = 0.25%(A(I-1,J)+A(T+1,J)+A(I,J-1)+A(T,J+1))
B(I,J) = ABS(A(I,J) - B(I,J))
END DO
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END DO
ERR = MAXVAL(B(2:N-1,2:M-1))
END DO

As just one example of why the INDEPENDENT assertion is incorrect, consider A(3,3).
It is assigned by iteration (I,J) = (3,3), and is used in iterations (I,J) = (4,3),
(2,3), (3,4) and (3,2). It is true that the outer DO WHILE will produce the same
answer if the inner loops are executed in parallel, in the sense that it will terminate with
answers that are very close to the sequential execution. However, changing the order of
iterations does change the exact answer, which is what the Fortran and HPF language
specifications define. O

Example 6.20 The following loop is not a correct use of INDEPENDENT if SCALAR is ever
found in X.

'HPF$ INDEPENDENT ! **x Possibly Nonconforming!!! #*x*
Li: DOI=1,N
IF (X(I) = SCALAR) THEN
I_ANSWER = I
EXIT L1
END IF
END DO

When the IF condition is true for some value of I some iterations are not executed.
This constitutes control dependence, and makes the INDEPENDENT assertion invalid. As
in the last example, it does not matter that the answer will be the same if the loop
is executed in parallel. Note, however, that if the EXIT statement is deleted then the
loop may be INDEPENDENT, depending on the input data. Without the EXIT statement an
INDEPENDENT assertion would mean that there was at most one I such that X(I)=SCALAR.
O
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An important feature of Fortran 90 is the rich set of intrinsic functions and subroutines
with which it is endowed. These allow the coding of data parallel programs at a higher
level, and potentially with greater efficiency, than if their functions were programmed
by the users. HPF includes Fortran 90’s intrinsic procedures. Two of them, MAXLOC and
MINLOC, are enhanced in HPF. Three new intrinsic functions are included in HPF: two
system inquiry functions, and one new computational function.

In addition to the new intrinsic functions, HPF defines a library module, HPF_LIBRARY,
that adds further to the power of the language. Intrinsic procedures are unlike ordinary
procedures in that their interfaces are automatically known to the compiler. Some can
take arbitrarily many arguments (MAX, for example). These special features of intrinsic
procedures were judged unnecessary for most of the HPF procedures, which were there-
fore included in the HPF library module, where a USE statement is required to access
them. Note that the library is not part of subset HPF. The library contains a large
group of additional functions and subroutines. One of the most important facilities these
provide is the ability to query the alignment and distribution attributes of arrays or tem-
plates at run-time. The library also includes some important data parallel programming
primitives: new reduction operations, combining scatter operations, prefix and suffix
operations, and sorting.

Detailed specifications of the intrinsic and library procedures appear in Appendix B.

In order to make them more readable, the examples of this section use T and F to
denote the logical values . TRUE. and .FALSE.

7.1 System Inquiry Functions

In a multi-processor computer, the physical processors may be arranged in a multi-
dimensional processor array. The system inquiry functions return values that describe
the size and shape of the underlying processor array. NUMBER _OF PROCESSORS returns the
total number of processors available to the program or the number of processors available
to the program along a specified dimension of the processor array. PROCESSORS_SHAPE
returns the shape of the processor array. Therefore, SIZE(PROCESSORS SHAPE() ) returns
the rank of the processor array.

The values returned by the system inquiry intrinsic functions remain constant for
the duration of one program execution. For this reason, NUMBER_DF PROCESSORS and
PROCESSORS _SHAPE may be used wherever Fortran 90 requires a specification-ezpr. In
particular, references to system inquiry functions may occur in array declarations and in
HPF directives.
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Function Value returned

NUMBER OF PROCESSORS ~ Number of executing processors (intrinsic)
PROCESSORS SHAPE Shape of the executing processor array (intrinsic)

Table 7.1
System inquiry functions

Example 7.1 The code

INTEGER, DIMENSION(SIZE(PROCESSORS_SHAPE())) :: PSHAPE
REAL, DIMENSION(3*NUMBER_OF_PROCESSORS()) i A
'HPF$ TEMPLATE, DIMENSION(NUMBER_OF_PROCESSORS()) :: T

declares PSHAPE to have one element for each dimension of the processor array. It is
therefore the correct shape to contain the value of PROCESSORS SHAPE(), for example.
The array A has a size dependent on the number of physical processors; this helps ensure
that the data values in A are spread evenly between processors when A 1s explicitly
mapped. (It is still possible to unbalance the load due to A by choosing a bad parameter
to a CYCLIC(K) distribution.) The template T has one element per processor; this may
be convenient for defining some mappings, but is usually not necessary. O

The values of system inquiry functions may not occur in an initialization-ezpr, because
they may not be assumed to be constants. HPF programs may be compiled to run on
machines whose configurations are not known at compile time. We hope that vendors
will supply HPF compilers and linkers that allow an executable program to run on a
range of machines of varying size, using the system inquiry intrinsics to determine the
machine size and shape at run time.

Note that the system inquiry functions query the physical machine, and have nothing
to do with any PROCESSORS directive that may occur.

Table 7.1 summarizes the system inquiry functions.

7.2 Mapping Inquiry Subroutines

HPF provides data mapping directives that are advisory in nature. The mapping inquiry
library subroutines allow the program to determine the actual mapping of an array at run
time. For example, if REALIGN or REDISTRIBUTE are used the mapping inquiry procedures
can tell which data mapping is actually in effect. It may be especially important to know
the exact mapping when an EXTRINSIC subprogram is invoked. For these reasons, HPF
includes mapping inquiry subroutines that describe how an array is actually mapped
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onto the machine. To keep the number of routines small, the inquiry procedures are
structured as subroutines with optional INTENT (OUT) arguments.

Example 7.2 The distribution in effect may affect the choice of algorithm.

SUBROUTINE GAUSS(A, X)
REAL, DIMENSION(i:,1:) i A
REAL, DIMENSION(1:SIZE(A,2)) :: X
'HPF$  INHERIT :: A, X
LOGICAL SIMPLE
CHARACTER*10 DISTS(2)
INTEGER BLOCKS(2)

CALL HPF_ALIGNMENT(A, IDENTITY_MAP=SIMPLE)

IF (SIMPLE) THEN
CALL HPF_DISTRIBUTE(A, AXIS_TYPE=DISTS, AXIS_INFO=BLOCKS)
IF (DISTS(1)=='COLLAPSED’ .AND. DISTS(2)=='CYCLIC’) THEN

CALL FACTOR_NORMAL_ORDER(A, X, BLOCKS(2)) ! Cyclic
ELSE IF (DISTS(1)==’COLLAPSED’ .AND. DISTS(2)=='BLOCK’) THEN
CALL FACTOR_PERMUTED_ORDER(A, X, BLOCKS(2)) ! Block
ELSE
CALL REDIST_THEN_FACTOR(A, X) ! Other distributioms
END IF
ELSE
CALL REDIST_THEN_FACTOR(A, X) ! Other alignments
END IF

END SUBROUTINE GAUSS

This code checks the mapping of A, and calls one of three other subroutines to perform
the real work. For a Gaussian elimination routine (as the names here suggest), the
different routines might use different elimination orders to keep the computational load
balanced among processors. Another use might be to allow the called routines to use
descriptive mapping directives; some compilers may produce more efficient code from
these directives than from a simple INHERIT. O

Table 7.2 summarizes the mapping inquiry subroutines.
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Subroutine Effect

HPF_ALIGNMENT Returns information about the alignment of an array in
optional INTENT(OUT) arguments

HPF _TEMPLATE Returns information about the template or array to

which an array is ultimately aligned in optional
INTENT(OUT) arguments

HPF DISTRIBUTION Returns information about the distribution of the
template or array to which an array is ultimately
aligned in optional INTENT (OUT) arguments

Table 7.2
Mapping inquiry subroutines

7.3 Computational Functions

7.3.1 Array Location Functions

HPF generalizes the Fortran 90 MAXLOC and MINLOC intrinsic functions with an optional
DIM parameter for finding the locations of maximum or minimum elements along a given
dimension. This is analogous to the optional DIM argument in the MAXVAL and MINVAL
intrinsics. Table 7.3 summarizes the array location functions.

Function Value returned

MAXLOC Location of a maximum value in an array (intrinsic)

MINLOC Location of a minimum value in an array (intrinsic)
Table 7.3

Array location functions

7.3.2 Bit Manipulation Functions

HPF adds an elemental intrinsic function, ILEN, that computes the number of bits needed
to store an integer value. ILEN was included as an intrinsic because of its use in rounding
an integer up or down to the nearest power of two, a role that was deemed quite im-
portant. Three other elemental, bit-manipulation functions are included in the library:
LEADZ computes the number of leading zero bits in an integer’s representation; POPCNT
counts the number of one bits in an integer; POPPAR computes the parity of an integer.
Table 7.4 summarizes the new bit manipulation functions.
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Function Value returned
ILEN Number of bits to store an integer (intrinsic)
LEADZ Number of leading zeros
POPCNT Number of one bits
POPPAR Parity of an integer
Table 7.4

Bit manipulation functions

7.3.3 Array Reduction Functions

HPF adds additional array reduction functions that operate in the same manner as the
Fortran 90 SUM and ANY intrinsic functions. The new reduction functions are IALL,
IANY, IPARITY, and PARITY, which correspond to the commutative, associative binary
operations IAND, I0OR, IEOR, and .NEQV. respectively. Thus:

IALL(C (/ 7,3,10 /) ) has the value 2.

IANY( (/ 7,3,10 /) ) has the value 15.
IPARITY( (/ 7,3,10 /) ) has the value 14.
PARITY( (/ T,F,F,T,T /) ) has the value .TRUE.
PARITY( (/ T,F,F,T,F /) ) has the value .FALSE.

In the specifications of these functions and the prefix, suffix, and combining scatter
functions in Appendix B, the terms “XXX reduction” are used, where XXX is one of the
reduction functions defined above or the Fortran 90 array reduction intrinsics. These
are defined by means of an example. The IAND reduction of all the elements of ARRAY
for which the corresponding elements of MASK are true is the scalar integer computed in
RESULT by

RESULT
DO I_1

IAND_IDENTITY_ELEMENT
LBOUND(ARRAY,1), UBOUND(ARRAY,1)

DO I_N = LBOUND(ARRAY,N), UBOUND(ARRAY,N)
IF ( MASK(I_1,I_2,...,I.N) ) &
RESULT = IAND( RESULT, ARRAY(I_1,I_2,...,I_N))
END DO

END DO
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Function Value returned
IALL Bitwise logical AND reduction
IANY Bitwise logical OR reduction
IPARITY Bitwise logical EOR reduction
PARITY Logical EOR reduction

Table 7.5

Array reduction functions

Here, N is the rank of ARRAY and TAND_IDENTITY ELEMENT is the integer that has all bits

equal to one. (The interpretation of an integer as a sequence of bits is given in Section

13.5.7 of the Fortran 90 standard.) The other three reductions are similarly defined. The

identity elements for IOR and IEOR are zero. The identity element for PARITY is .FALSE.
Table 7.5 lists the new array reduction functions.

7.3.4 Array Combining Scatter Functions

Suppose that A is the array [ 10 20 30 ], X is the array [ 1 2 3 4 ], and V is the
array [ 321 ] In Fortran 90, one may write the array assignment

X(V) = A

after which X has the value [ 30 20 10 4 ] If, however, the elements of V are not
all different, the assignment is not standard-conforming in Fortran 90 (or HPF). The
combining scatter functions, in effect, allow duplicated indices and provide a means of
specifying how elements sent to the same position in the result are to be combined. Thus,
the combining scatter functions are generalized array reductions in which completely
general, but nonoverlapping, subsets of array elements can be combined.

There is a scatter function for each of twelve reduction operations. These functions all
have the form

XXX_SCATTER(ARRAY, BASE, INDX1, ..., INDXn, MASK)

The allowed values of XXX are ALL, ANY, COPY, COUNT, IALL, IANY, IPARITY, MAXVAL,
MINVAL, PARITY, PRODUCT, and SUM.

The result has the same shape and type as BASE. In fact, the result is equal to BASE
in positions for which no elements of ARRAY arrive.

The source data come from ARRAY, and the integer INDX arguments must be con-
formable with it. The number of INDX arguments must equal the rank of BASE. For
example, if ARRAY has rank two and BASE has rank three, then for all valid subscripts
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I and J, ARRAY(I,J) contributes to element (INDX1(I,J), INDX2(I,J), INDX3(I,J))
of the result.

Except for COUNT_SCATTER, ARRAY and BASE are arrays of the same type. (Because it
returns the number of true elements of ARRAY, COUNT_SCATTER has a logical ARRAY and
an integer BASE.)

The optional, logical MASK argument selects elements of ARRAY for inclusion in the
reduction. Only elements of ARRAY in positions for which MASK is true can contribute
to the result. (For ALL_SCATTER, ANY_SCATTER, COUNT_SCATTER, and PARITY_SCATTER,
ARRAY must be logical. These functions do not have an optional MASK argument.)

Here is a more precise description of the way the result is computed. For every element
a in ARRAY for which the MASK element is true there is a corresponding element in each
of the INDX arrays. Let s; be the value of the element of INDX1 that is indexed by the
same subscripts as element a of ARRAY. More generally, for each j = 1,2,...,n, let s; be
the value of the element of INDXj that corresponds to element a in ARRAY, where n is the
rank of BASE. The integers s;,j = 1, ..., n, form a subscript selecting an element of BASE:
BASE(sy, 52, ...,5n). Unless element a is masked out by the optional MASK argument,
(sy, 83, ..., 5n) must be a valid subscript for BASE.

Thus the INDX arrays establish a mapping from all the elements of ARRAY onto se-
lected elements of BASE. Viewed in the other direction, this mapping associates with
each element b of BASE a set S of elements from ARRAY.

Because BASE and the result are conformable, for each element of BASE there is a
corresponding element of the result.

If S is empty, then the element of the result corresponding to the element b of BASE
has the same value as b.

If S is non-empty, then the elements of S will be combined with element b to produce
an element of the result. For every combining-scatter function except COPY_SCATTER,
this combining is done by the corresponding reduction function. As an example, for
SUM_SCATTER, if the elements of S are ay,...,a,,, then the element of the result corre-
sponding to the element b of BASE is the result of evaluating SUM((/ay,az,...,am,b/)).
For COPY_SCATTER, one of the elements of S is chosen in a system-dependent way.

Note that, since a scalar is conformable with any array, a scalar may be used in place
of an INDX array, in which case one hyperplane of the result is selected. See the example
below.
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Example 7.3 If

1 2 3 -1 -2 —3}
Ais the array | 4 &5 6 |; Bis the array | -4 -5 -6 |;
789 -7 -8 -9 |
11 1 ]
Ilisthearray | 2 1 1 |; I2isthearray [ 1 1 2 |.
321 1J
then
14 6 O
SUM_SCATTER(A, B, I1, I2) has the value 8 -5 -6 |;
0 -8 -9
[ -1 -2 -3 ]
SUM_SCATTER(A, B, 2, I2) has the value [ 30 3 -3 |;
| -7 -8 -9 ]
[ -1 24 -3 ]
SUM_SCATTER(A, B, I1, 2) has thevalue | -4 7 -6 |;
-7 -1 -9 |
-1 -2 -3
SUM_SCATTER(A, B, 2, 2) has the value | -4 40 -6
-7 -8 -9
]

Table 7.6 lists the combining scatter functions.
7.3.5 Array Prefix and Suffix Functions

In a prefix function, or scan, of a vector, each element of the result is a function of the
elements of the vector that precede it. Similarly, in a suffix function each element of the
result is a function of the elements in the vector that follow it. For instance, SUM_PREFIX(
(/ 1, 2, 3, 4 /) ) has the value [ 1 3 6 10 ] Parallel implementations of these
functions are possible. They are important in building efficient parallel algorithm on
graphs and other general data structures. Because they are so useful, and because their
efficient parallel implementation may best be done for some machines at programming
levels below that of HPF, they have been included in the library.

These functions provide prefix and suffix operations on arrays and subarrays. The
functions all have the form
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Function

ALL_SCATTER
ANY _SCATTER
COPY_SCATTER

COUNT_SCATTER

IALL_SCATTER
IANY_SCATTER
IPARITY_SCATTER
MAXVAL_SCATTER
MINVAL_SCATTER
PARITY _SCATTER
PRODUCT_SCATTER
SUM_SCATTER

Table 7.6

Combining scatter functions

Value returned

Scatter of logical array, combining with logical AND
Scatter of logical array, combining with logical OR
Scatter of array, combining by (processor-dependent)
selection
Scatter of logical array, counting number of . TRUE.
elements
Scatter of integer array, combining with bitwise AND
Scatter of integer array, combining with bitwise OR
Scatter of integer array, combining with bitwise EOR
Scatter of array, combining by taking the maximum
Scatter of array, combining by taking the minimum
Scatter of logical array, combining with logical EOR
Scatter of array, combining by taking the product
Scatter of array, combining by taking the sum

XXX_PREFIX(ARRAY, DIM, MASK, SEGMENT, EXCLUSIVE)
XXX_SUFFIX(ARRAY, DIM, MASK, SEGMENT, EXCLUSIVE)

211

The allowed values of XXX are ALL, ANY, COPY, COUNT, IALL, IANY, IPARITY, MAXVAL,
MINVAL, PARITY, PRODUCT, and SUM.

A detailed and precise description of these routines will be given below. But to begin,
we give some examples to convey the general idea. In all of them we assume that:

B has the value

M has the value

S has the value

[ 1 2 3 4 6
6 7 8 9 10 |;
| 11 12 13 14 15
[T T T T T]
FFTTT]|;
| T FTFF|
[T T F F F]
FTTTFTF
| T TTTT)]

The elements of ARRAY are scanned in increasing (prefix) or decreasing (suffix) array

element order.
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1 20 42 67 95
Example 7.4 SUM_PREFIX(B) has the value 7 27 50 76 105
18 39 63 90 120
120 102 81 57 30
SUM_SUFFIX(B) has the value | 119 100 78 53 25 |. O
113 93 70 44 15

If DIM is present, one dimensional scans occur along the indicated dimension.

1 3 6 10 15
Example 7.5 SUM_PREFIX(B, DIM=2) has the value 6 13 21 30 40 |. O
11 23 36 50 65

If MASK is present, only the elements of ARRAY corresponding to true elements of MASK
can contribute to the result.

1 14 17 42 56
Example 7.6 SUM_PREFIX(B, MASK=M) has the value 1 14 25 51 66 |. O
12 14 38 51 66

If SEGMENT is present, then it divides ARRAY up into subarrays that are scanned inde-
pendently. Each such subarray corresponds to a run of contiguous identical values in
SEGMENT.

1 13 3 4 5
Example 7.7 SUM_PREFIX(B, SEGMENT=S) returns 6 20 8 13 15 (. O
11 32 21 14 15

If EXCLUSIVE is present and is true, then an element of ARRAY does not contribute to
the corresponding element of the result; only elements that precede (prefix) or succeed
(suffix) it can contribute to the corresponding element of the result.

Example 7.8 SUM_PREFIX(B, SEGMENT=S, EXCLUSIVE=.TRUE.) has the value
0 11 0 0 O
0 13 0 4 5 |.0O
0 20 8 0 O

Here is a precise discussion of how these routines function. When comments below
apply to both prefix and suffix forms of the routines, we will refer to them as YYYFIX
functions.

The arguments DIM, MASK, SEGMENT, and EXCLUSIVE are optional. The COPY_YYYFIX
functions do not have MASK or EXCLUSIVE arguments. The ALL_YYYFIX, ANY_YYYFIX,
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COUNT_YYYFIX, and PARITY_YYYFIX functions do not have MASK arguments. Their ARRAY
argument must be of type logical; it is denoted MASK in their specifications in Appendix B.

The arguments MASK and SEGMENT must be of type logical. SEGMENT must have the
same shape as ARRAY. MASK must be conformable with ARRAY. EXCLUSIVE is a logical
scalar. DIM is a scalar integer between one and the rank of ARRAY.

The result has the same shape as ARRAY, and, with the exception of COUNT_YYYFIX,
the same type and kind type parameter as ARRAY. (The result of COUNT_YYYFIX is default
integer.)

In all cases, every element of the result is determined by combining the values of certain
selected elements of ARRAY. For prefix and suffix functions based on array reduction
functions, the combining is done by the named reduction. For example, SUM_PREFIX
combines elements by addition. COPY_PREFIX chooses one of the selected elements in a
system-dependent way. The optional arguments affect the selection of elements of ARRAY
for each element of the result; the selected elements of ARRAY are said to contribute to
the result element. This section describes fully which elements of ARRAY contribute to a
given element of the result.

If no elements of ARRAY are selected for a given element of the result, that result element
is set to a default value that is specific to the particular function and is described in its
specification.

For any given element r of the result, let a be the corresponding element of ARRAY.
Every element of ARRAY contributes to r unless disqualified by one of the following rules.

1. If the function is XXX _PREFIX, no element that follows a in the array element ordering
of ARRAY contributes to r. If the function is XXX_SUFFIX, no element that precedes a in
the array element ordering of ARRAY contributes to r.

2. If the DIM argument is provided, an element z of ARRAY does not contribute to r
unless all its indices, excepting only the index for dimension DIM, are the same as the
corresponding indices of a. (It follows that if the DIM argument is omitted, then ARRAY,
MASK, and SEGMENT are processed in array element order, as if temporarily regarded as
rank-one arrays. If the DIM argument is present, then a family of completely independent
scan operations is carried out along the selected dimension of ARRAY.)

3. If the MASK argument is provided, an element z of ARRAY contributes to r only if the
element of MASK corresponding to z is true. (It follows that array elements corresponding
to positions where the MASK is false do not contribute anywhere to the result. However,
the result is nevertheless defined at all positions, even positions where the MASK is false.)
4. If the SEGMENT argument is provided, an element z of ARRAY does not contribute if
there is some intermediate element w of ARRAY, possibly z itself, with all of the following
properties:
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e If the function is XXX_PREFIX, w does not precede z but does precede a in the array
element ordering; if the function is XXX_SUFFIX, w does not follow z but does follow a
in the array element ordering.

e If the DIM argument is present, all the indices of w, excepting only the index for
dimension DIM, are the same as the corresponding indices of a.

e The element of SEGMENT corresponding to w does not have the same value as the
element of SEGMENT corresponding to a. (In other words, z can contribute only if there
is an unbroken string of SEGMENT values, all alike, extending from z through a.)

5. If the EXCLUSIVE argument is provided and is true, then a itself does not contribute
to r.

These general rules lead to the following important cases:

Case (1): If ARRAY has rank one, element i of the result of XXX_PREFIX(ARRAY) is de-
termined by the first i elements of ARRAY; element SIZE(ARRAY) — i + 1 of the result of
XXX_SUFFIX(ARRAY) is determined by the last 7 elements of ARRAY.

Case (ii): If ARRAY has rank greater than one, then each element of the result of
XXX _PREFIX(ARRAY) has a value determined by the corresponding element a of the ARRAY
and all elements of ARRAY that precede a in array element order. For XXX _SUFFIX, a is
determined by the elements of ARRAY that correspond to or follow a in array element
order.

Case (iii): Each element of the result of XXX _PREFIX (ARRAY ,MASK=MASK) is determined
by selected elements of ARRAY, namely the corresponding element a of the ARRAY and
all elements of ARRAY that precede a in array element order, but an element of ARRAY
may contribute to the result only if the corresponding element of MASK is true. If this
restriction results in selecting no array elements to contribute to some element of the
result, then that element of the result is set to the default value for the given function.

Case (iv): Each element of the result of XXX PREFIX (ARRAY ,DIM=DIM) is determined by
selected elements of ARRAY, namely the corresponding element a of the ARRAY and all ele-
ments of ARRAY that precede a along dimension DINM; for example, in SUM_ PREFIX(A(1:N,
1:N), DIM=2), result element (i1,73) could be computed as SUM(A(%;,1 : i2)). More
generally, in SUM_PREFIX(ARRAY, DIM), result element 7),%2,...,iprM,. .., in could be
computed as SUMCARRAY( i1,i2,...,:ipIM,---in )) . (Note the colon before iprps in
that last expression.)

Case (v): If ARRAY has rank one, then element i of the result of XXX _PREFIX(ARRAY,
EXCLUSIVE=.TRUE.) is determined by the first ¢ — 1 elements of ARRAY.

Case (vi): The options may be used in any combination.

Copyrighted Material



Intrinsic and Library Procedures 215

A new segment begins at every transition from false to true or true to false; thus a
segment 1s indicated by a maximal contiguous subsequence of like logical values:

(/t,T,T,F,T,F,F,F,T,F,F,T/)

- - - - == = seven segments

This organization deserves some comment. One library that influenced HPF delimited
the segments by indicating the start of each segment. Another delimited the segments
by indicating the stop of each segment. Each method had its advantages. There was also
the question of whether the convention should change when performing a suffix rather
than a prefix. HPF adopted the symmetric representation above for two reasons:

1. It is symmetrical, in that the same segment specifier may be meaningfully used for
prefix and suffix without changing its interpretation (start versus stop).

2. The start-bit or stop-bit representation is easily converted to this form by using
PARITY PREFIX or PARITY SUFFIX. These might be standard idioms for a compiler to
recognize:

SUM_PREFIX(FOO,SEGMENT=PARITY_PREFIX(START_BITS))
SUM_PREFIX(F0OO,SEGMENT=PARITY_SUFFIX(STOP_BITS))
SUM_SUFFIX(F0OO,SEGMENT=PARITY_SUFFIX(START_BITS))
SUM_SUFFIX(F0O0,SEGMENT=PARITY_PREFIX(STOP_BITS))

Table 7.7 lists the new array prefix and suffix functions.
7.3.6 Array Sorting Functions

HPF includes procedures for sorting multidimensional arrays. These are structured as
functions that return sorting permutations. An array can be sorted along a given axis,
or the whole array may be viewed as a sequence in array element order. The sorts are
stable, allowing for convenient sorting of structures by major and minor keys.

Suppose that ARRAY has shape [ 4 5 6 ]

S = GRADE_DOWN (ARRAY)

returns an integer array of shape [ 3 120 ] in S. It is such that if j < k then the element
ARRAY(S(1,3), S(2,3), S(3,j)) is greater than or equal to ARRAY(S(1,k), S(2,k),
S(3,k)). And if these two elements are equal, then ARRAY(S(1,3),5(2,j),S(3,3))
precedes ARRAY(S(1,k),S(2,k),S(3,k)) in the array element ordering of ARRAY.

If ARRAY has shape [ 4 5 6 ], and the optional argument is present, as in

S = GRADE_DOWN(ARRAY, DIM=2)
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Function Value returned (for each element)
ALL PREFIX Logical AND of preceding elements in array
ALL SUFFIX Logical AND of following elements in array
ANY_PREFIX Logical OR of preceding elements in array
ANY_SUFFIX Logical OR of following elements in array
COPY_PREFIX Selected (processor-dependent) value from preceding
array elements
COPY_SUFFIX Selected (processor-dependent) value from following
array elements
COUNT_PREFIX Number of preceding .TRUE. elements in array
COURT _SUFFIX Number of following .TRUE. elements in array
IALL_PREFIX Bitwise AND of preceding elements in array
IALL_SUFFIX Bitwise AND of following elements in array
IANY PREFIX Bitwise OR of preceding elements in array
IANY _SUFFIX Bitwise OR of following elements in array
IPARITY PREFIX Bitwise EOR of preceding elements in array
IPARITY SUFFIX Bitwise EOR of following elements in array
MAXVAL_PREFIX Maximum of preceding elements in array
MAXVAL_SUFFIX Maximum of following elements in array
MINVAL PREFIX Minimum of preceding elements in array
MINVAL SUFFIX Minimum of following elements in array
PARITY PREFIX Logical EOR of preceding elements in array
PARITY SUFFIX Logical EOR of following elements in array
PRODUCT PREFIX Product of preceding elements in array
PRODUCT SUFFIX Product of following elements in array
SUM_PREFIX Sum of preceding elements in array
SUM_SUFFIX Sum of following elements in array
Table 7.7

Prefix and suffix functions
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then the result has the same shape as ARRAY: [ 4 5 6 ] For every i and k the vector
ARRAY( i, S(i, :, k), k ) is sorted in descending order. Stability means that if
ARRAY( i, S(i, m, k), k )isequal to ARRAY( i, S(i, m+1, k), k ) thenS(i, m,
k) must be smaller than S(i, m+1, k).

Because of the stability requirement, GRADE DOWN(A(1:N)) does not, in general, equal
GRADEUP(A(N:1:-1)). Indeed, these results are equal if and only if A contains no
duplicate values.

Example 7.9 The stability requirement allows one to cascade grading operations in
order to sort on multiple fields. For example, consider the following code:

TYPE PERSON
INTEGER AGE
CHARACTER (LEN=50) NAME
END TYPE PERSON
TYPE(PERSON), DIMENSION(100000) :: MEMBERS, ROSTER
INTEGER, DIMENSION(100000) v

V = GRADE_UP(MEMBERSY%AGE, DIM=1)
V = V(GRADE_UP(MEMBERS(V)’NAME, DIM=1))
ROSTER = MEMBERS(V)

This would cause ROSTER to be a rearrangement of MEMBERS that is sorted primarily by
name and secondarily by age (that is, members with the same name are grouped together
in order of ascending age). Note that the minor sort field is graded first, and that more
statements like the second one may be inserted to sort on additional fields. Without the
use of the DIM argument, GRADE_UP returns a rank-two result of shape [ 1 100000 ],
which would make the example more cumbersome.

To list members with the same name in descending order of age, change the first
GRADE_UP to GRADE_DOWN:

V = GRADE_DOWN (MEMBERSYAGE, DIM=1)
V = V(GRADE_UP (MEMBERS(V)%NAME, DIM=1))
ROSTER = MEMBERS(V)

0

Table 7.8 summarizes the sorting functions.
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Function Value returned

GRADE DOWN Permutation that sorts into descending order

GRADE_UP Permutation that sorts into ascending order
Table 7.8

Sorting functions

7.4 Alphabetical List of Intrinsic and Library Procedures

Tables 7.9 through 7.11 contain an alphabetical listing of all HPF library procedures and
the intrinsics that are new to HPF or changed from Fortran 90. Intrinsic procedures are
marked with an asterisk (*); subroutines are marked with a dagger (t) The arguments
shown are the names that must be used for keywords when using the keyword form for
actual arguments. Many of the argument keywords have names that are indicative of
their usage, as is the case in Fortran 90. Detailed descriptions of all the procedures
appear in Appendix B.
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Function

ALL_PREFIX(MASK, DIM, SEGMENT, EXCLUSIVE)

ALL_SCATTER(MASK, BASE, INDX1 ...

ALL_SUFFIX(MASK, DIM, SEGMENT, EXCLUSIVE)

ANY_PREFIX(MASK, DIM, SEGMENT, EXCLUSIVE)

ANY SCATTER(MASK, BASE, INDXi, ...,
INDXn)

ANY SUFFIX(MASK, DIM, SEGMENT, EXCLUSIVE)

COPY PREFIX(ARRAY, DIM, SEGMENT)

COPY_SCATTER (ARRAY, BASE, INDX1, ...,
INDXn, MASK)

COPY_SUFFIX(ARRAY, DIM, SEGMENT)

COUNT_PREFIX(MASK, DIM, SEGMENT,
EXCLUSIVE)

COUNT_SCATTER(ARRAY, BASE, INDXi, ...,
INDXn, MASK)

COUNT_SUFFIX(MASK, DIM, SEGMENT,
EXCLUSIVE)

GRADE_DOWN(ARRAY, DIM)

GRADE _UP (ARRAY, DIM)

HPF_ALIGNMENT(ALIGNEE, LB, UB, STRIDE,
AXIS_MAP, IDENTITY.MAP, DYNAMIC,
NCOPIES) t

HPF _DISTRIBUTION(DISTRIBUTEE, AXIS_TYPE,
AXIS_INFO, PROCESSORS_RANK,
PROCESSORS_SHAPE) t

HPF_TEMPLATE (ALIGNEE, TEMPLATERANK, LB,
UB, AXIS_TYPE, AXIS_INFO,
NUMBER_ALIGNED, DYNAMIC) t

IALL(TARRAY, DIM, MASK)

Table 7.9
HPF intrinsic and library procedures

, INDXn)
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Optional arguments

DIM, SEGMENT, EXCLUSIVE

DIM, SEGMENT, EXCLUSIVE
DIM, SEGMENT, EXCLUSIVE

DIM, SEGMENT, EXCLUSIVE
DIM, SEGMENT
MASK

DIM, SEGMENT
DIM, SEGMENT, EXCLUSIVE

MASK
DIM, SEGMENT, EXCLUSIVE

DIM

DIM

LB, UB, STRIDE, AXIS_MAP,
IDENTITY MAP, DYNAMIC,
NCOPIES

AXIS_TYPE, AXIS_INFO,
PROCESSORS_RANK,
PROCESSORS _SHAPE

TEMPLATE RANK, LB, UB,
AXIS_TYPE, AXIS_INFO,
NUMBER_ALIGNED, DYNAMIC

DIM, MASK
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Function

IALL_PREFIX(ARRAY, DIM, MASK, SEGMENT,
EXCLUSIVE)

IALL_SCATTER(ARRAY, BASE, INDX1, ...,
INDXn, MASK)

IALL_SUFFIX(ARRAY, DIM, MASK, SEGMENT,
EXCLUSIVE)

IANY(IARRAY, DIM, MASK)

IANY PREFIX(ARRAY, DIM, MASK, SEGMENT,
EXCLUSIVE)

IANY SCATTER(ARRAY, BASE, INDX1, ...,
INDXn, MASK)

IANY SUFFIX(ARRAY, DIM, MASK, SEGMENT,
EXCLUSIVE)

ILEN(I) *

IPARITY(IARRAY, DIM, MASK)

IPARITY PREFIX(ARRAY, DIM, MASK, SEGMENT,

EXCLUSIVE)

IPARITY SCATTER(ARRAY, BASE, INDX1, ...,
INDXn, MASK)

IPARITY_SUFFIX(ARRAY, DIM, MASK, SEGMENT,

EXCLUSIVE)

LEADZ(I)

MAXLOC(ARRAY, DIM, MASK) *

MAXVAL PREFIX (ARRAY, DIM, MASK, SEGMENT,
EXCLUSIVE)

MAXVAL_SCATTER(ARRAY, BASE, INDX1, ...,
INDXn, MASK)

MAXVAL_SUFFIX(ARRAY, DIM, MASK, SEGMENT,
EXCLUSIVE)

MINLOC(ARRAY, DIM, MASK) *

Table 7.10
HPF intrinsic and library procedures (continued)

Optional arguments

DIM, MASK, SEGMENT,
EXCLUSIVE

MASK

DIM, MASK, SEGMENT,
EXCLUSIVE

DIM, MASK

DIM, MASK, SEGMENT,
EXCLUSIVE

MASK

DIM, MASK, SEGMENT,
EXCLUSIVE

DIM, MASK

DIM, MASK, SEGMENT,
EXCLUSIVE

MASK

DIM, MASK, SEGMENT,
EXCLUSIVE

DIM, MASK

DIM, MASK, SEGMENT,
EXCLUSIVE

MASK

DIM, MASK, SEGMENT,
EXCLUSIVE

DIM, MASK
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Function

MINVAL PREFIX(ARRAY, DIM, MASK, SEGMENT,
EXCLUSIVE)

MINVAL_SCATTER(ARRAY, BASE, INDX1, ...,
INDXn, MASK)

MINVAL SUFFIX(ARRAY, DIM, MASK, SEGMENT,

Optional arguments

DIM, MASK, SEGMENT,
EXCLUSIVE

MASK

DIM, MASK, SEGMENT,

EXCLUSIVE) EXCLUSIVE
NUMBER_OF _PROCESSORS (DIM) * DIM
PARITY(MASK, DIM) DIM

PARITY_PREFIX(MASK, DIM, SEGMENT,
EXCLUSIVE)

PARITY SCATTER(MASK, BASE, INDX1, ...,
INDXn)

PARITY SUFFIX(MASK, DIM, SEGMENT,
EXCLUSIVE)

POPCNT(I)

POPPAR(I)

PROCESSORS_SHAPE() *

PRODUCT PREFIX(ARRAY, DIM, MASK, SEGMENT,
EXCLUSIVE)

PRODUCT SCATTER(ARRAY, BASE, INDX1, ...,
INDXn, MASK)

PRODUCT SUFFIX(ARRAY, DIM, MASK, SEGMENT,
EXCLUSIVE)

SUM_PREFIX(ARRAY, DIM, MASK, SEGMENT,
EXCLUSIVE)

SUM_SCATTER(ARRAY, BASE, INDX1, ...,
INDXn, MASK)

SUM_SUFFIX(ARRAY, DIM, MASK, SEGMENT,
EXCLUSIVE)

DIM, SEGMENT, EXCLUSIVE

DIM, SEGMENT, EXCLUSIVE

DIM, MASK, SEGMENT,
EXCLUSIVE

MASK

DIM, MASK, SEGMENT,
EXCLUSIVE

DIM, MASK, SEGMENT,
EXCLUSIVE

MASK

DIM, MASK, SEGMENT,
EXCLUSIVE
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Table 7.11
HPF intrinsic and library procedures (continued)
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Fortran, wonderful as it may be, is not the only programming language in the world; and
HPF is not the only way to get good performance out of a parallel computer.

One important competing model is the so-called “SPMD style” in which many copies of
the same program execute at the same time, one on each available processor. (“SPMD”
stands for “Single Program Multiple Data.”) Communication of data among the various
running copies of the program is managed explicitly by the programmer, perhaps through
the use of common data in a shared memory or through a library of subroutines that
send and receive messages (packets of data).

It 1s beyond the scope of HPF to define all the facilities needed for SPMD program-
ming. However, HPF provides a mechanism by which HPF programs may call procedures
written in other parallel programming styles or other programming languages. Because
such procedures are themselves outside HPF, they are called extrinsic procedures. HPF
simply provides a way of labeling external procedures as being non-HPF; indeed, there
may be several different labels indicating several different kinds of extrinsic procedure.
This allows an HPF compiler to generate the right kind of subroutine linkage, to convert
data formats if necessary, and to rely on specific features of the “contract” between HPF
routines and any specific kind of non-HPF procedure.

A called procedure that is written in a language other than HPF should be declared
EXTRINSIC within an HPF program that calls it. The EXTRINSIC prefix declares what
sort of interface should be used when calling indicated subprograms. For example:

INTERFACE
EXTRINSIC(COBOL) SUBROUTINE PRINT_REPORT(DATA_ARRAY)
REAL DATA_ARRAY(:,:)
END SUBROUTINE PRINT_REPORT
END INTERFACE

might be used to indicate the use of a subroutine written in COBOL. Note, however, that
this is merely an illustrative example; the keyword COBOL itself is not actually defined by
HPF. Exactly which keywords are supported depends on the particular HPF language
processor.

Here is a perhaps more realistic example:

INTERFACE
EXTRINSIC(C_LOCAL) SUBROUTINE MUNCH_COLUMNS(A)
REAL A(:,:)
{HPF$ DISTRIBUTE A(*,BLOCK)
END SUBROUTINE MUNCH_COLUMNS
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END INTERFACE

Here the called routine is presumably SPMD code written in C. If the actual argument for
a call to MUNCH_COLUMNS is 100 x 100 and there are four processors, then each copy of the
C procedure, one on each processor, will receive a 100 x 25 portion of the array, namely
the elements that are mapped to the processor running that copy of MUNCH_COLUMNS. If
thcre were instead 8 processors, then the first seven processors would receive 100 x 13
portions of the actual argument and the last processor a 100 x 9 portion, again exactly
the elements mapped to that processor.

An extrinsic procedure might indeed be written in any of a number of languages and
programming styles:

e A single-thread-of-control language where one copy of the procedure is conceptually
executing and there is a single locus of control within the program text. Such a language
might be specifically designed for parallel implementation (C* is one example). On the
other hand, it might be a perfectly ordinary sequential language; a plausible scenario is
an HPF program calling user interface code (perhaps for X Windows) written in C.

o A multiple-thread-of-control language, perhaps with dynamic assignment of loop it-
erations to processors or explicit dynamic process forking. When a procedure in such a
language is first called, a single thread of control enters it, but it may spawn additional
threads, resulting in multiple loci of control within the procedure or multiple copies of the
procedure running on different processors. It is permissible for an extrinsic procedure to
use any sequential or parallel control discipline within itself, and to remap or rearrange
data among the processors as it pleases, so long as it leaves things in good order and
reverts to a single conceptual thread of control on return to its HPF caller. (Exactly
what this means is described more carefully in Section 8.1.2.)

e Any programming language targeted to a single processor, with the understanding
that, the instant a procedure is called, there will be many copies of the procedure exe-
cuting, one on each processor (“SPMD mode”). HPF refers to a procedure written in
this fashion as a local procedure, because there is a local copy on each processor that
operates principally on the data in that processor’s local memory. A local procedure
might be written in FORTRAN 77, Fortran 90, C, C++, Ada, or Pascal, for example. A
particularly interesting possibility is that a local procedure might be written in (a special
subset of) HPF! In this situation we sometimes call ordinary HPF code global code in
order to distinguish it from local code written in HPF.
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EXTRINSIC(HPF_LOCAL) SUBROUTINE MUNCH_COLUMNS(A)

REAL A(:,:)
'HPF$ INDEPENDENT, NEW( I )
INTEGER I, J
DO J = 1, UBOUND(A,2)
I=1
SEARCH: DO WHILE (I <= UBOUND(A,1))
IF (A(1,J) /= 0.0) THEN ! Found a nonzero element

A(1:1I-1,7) = A(I,])
EXIT SEARCH
END IF
I=I+1
END DO SEARCH
END DO
END SUBROUTINE MUNCH_COLUMNS

Figure 8.1
Local HPF code for the MUNCH COLUMNS example

SUBROUTINE MUNCH_COLUMNS(A)
REAL A(:,:)
VHPF$ DISTRIBUTE A(#*,BLOCK)

INTEGER I(UBOUND(A,2)), J, K

FORALL (J = 1:UBOUND(A,2))
I(J) = MIRLOC( (/ (K, XK = 1, UBOUND(A,1)) /), MASK = A(:,J) )
A(1:I(3)-1) = A(I(D))

END FORALL

END SUBROUTINE MUNCH_COLUMNS

Figure 8.2
Global HPF code for the MUNCH_COLUMES example
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The previous example of an interface to local C code is easily changed to indicate an
interface to local code written in HPF:

INTERFACE
EXTRINSIC(HPF_LOCAL) SUBROUTINE MUNCH_COLUMNS(A)
REAL A(:,:)
1HPF$ DISTRIBUTE A(*,BLOCK)
END SUBROUTINE MUNCH_COLUMNS
END INTERFACE

If the task of MUNCH_COLUMNS is to find the first nonzero element in each column and
overwrite the leading zeros with that value, then the code for the local routine might
appear as in Figure 8.1. (Note the use of an INDEPENDENT directive on a DO loop and of
array assignment, both of which are permitted in local HPF code. While these constructs
might not execute on multiple processors, use of these features could help a compiler to
generate good vector code, for example. A DISTRIBUTE directive is not included, despite
the fact that one appears in the interface block in the caller.)

While MUNCH_COLUMNS could be expressed as global HPF code (see Figure 8.2), the
local version might be faster because it expresses and exploits the idea that only a
prefix of each column needs to be examined and processed. Each processor might take a
different amount of time to process its first column; the local code clearly indicates that
the processors synchronize only after processing all columns, not after processing each
column. (A really smart HPF compiler might be able to exploit the same trick when
compiling the global code shown in Figure 8.2, but we doubt that HPF implementations
will achieve that level of optimization in the near future.)

The next section describes the extrinsic procedure interface as seen by a calling routine
written in HPF. This interface is used when calling any extrinsic procedure. The remain-
der of the chapter discusses the more specific topic of coding an extrinsic procedure in
the SPMD (local) style. This latter topic is not a required part of the HPF language
specification.

8.1 Definition and Invocation of Extrinsic Procedures
An explicit interface must be provided for each extrinsic procedure entry in the scope

where it is called, using an interface block. This interface defines the “HPF view” of the
extrinsic procedure.
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8.1.1 EXTRINSIC Prefix Syntax

The form of an eztrinsic-prefir (H601) is:
EXTRINSIC ( eztrinsic-kind-keyword )

where an eztrinsic-kind-keyword (H602) is one of:

HPF
HPF_LOCAL

or perhaps some other, system-dependent, keyword. (Only the two keywords HPF and
HPF_LOCAL are defined by the HPF language specification.)

An eztrinsic-prefiz may appear in a subroutine-stmt or function-stmt (as defined in
the Fortran 90 standard) in the same place that the keyword RECURSIVE might appear.
See Section 6.3.1 for the extended forms of the grammar rules for function-stmt and
subroutine-stmt covering this case.

The eztrinsic-kind-keyword indicates the kind of extrinsic interface to be used. (It may
be helpful to compare this to Fortran 90 KIND parameters for numeric types. However, an
extrinsic-kind is not integer-valued; it is merely a keyword.) HPF defines two such key-
words: HPF and HPF _LOCAL. The keyword HPF_LOCAL is intended for use in calling routines
coded in the “local HPF” style described in section 8.4. The keyword HPF refers to the in-
terface normally used for calling ordinary HPF routines. Thus, writing EXTRINSIC(HPF)
in an HPF program has exactly the same effect as not using an EXTRINSIC prefix at all.

(HPF defines the ertrinsic-kind-keyword HPF primarily to set an example for other pro-
gramming languages that might adopt this style of interface specification. For example, in
an extended Fortran 90 compiler it would not be redundant to specify EXTRINSIC(HPF),
though it might be redundant to specify EXTRINSIC(F90). The C++ language already
adds a linkage-specification feature to the C extern declaration; the result is quite sim-
ilar to (and predates) the HPF EXTRINSIC syntax. It would be quite plausible for a
declaration such as

extern "HPF" crunch_numbers (HPF_matrix<float> a);

to appear in a C++ program.)

Note that any particular HPF implementation is free to support any selection of extrin-
sic kind keywords, or none at all except for HPF itself. (While HPF defines the meaning
of the eztrinsic-kind keyword HPF LOCAL, a conforming implementation is not required
to support it.)

A subprogram with an extrinsic interface lies outside the scope of HPF. However,
explicit interfaces to such subprograms must conform to HPF in all respects. HPF data
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mapping directives may appear in interface blocks for extrinsic procedures even though
such extrinsic procedures might not be written in HPF; the point is that the caller, which
ts written in HPF, may be bound to observe and enforce such mapping directives.

Example 8.1 An interface for an ordinary function:

INTERFACE
EXTRINSIC(HPF_LOCAL) FUNCTION BAGEL(X)
REAL X(:)
REAL BAGEL(100)
'HPF$ DISTRIBUTE (CYCLIC) :: X, BAGEL

END FUNCTION BAGEL
END INTERFACE

Function BAGEL is declared to use the interface appropriate for local procedures coded in
HPF. The caller should ensure that the actual argument has been mapped to a CYCLIC

distribution. The returned result will be of size 100 and also have a CYCLIC distribution.
0O

Example 8.2 An interface for an operator:

INTERFACE OPERATOR (+)
EXTRINSIC(C_LOCAL) FUNCTION LATKES(X, Y) RESULT(Z)
REAL, DIMENSION(:,:) :: X
REAL, DIMENSION(SIZE(X,1), SIZE(X,2)) :: Y, 2
'HPF$ ALIGN WITH X :: Y, 2
'HPF$ DISTRIBUTE (BLOCK, BLOCK) X
END FUNCTION LATKES
END INTERFACE

The addition operator on real matrices is redefined to use a local SPMD procedure,
coded in C, whose name is LATKES. The arguments must have the same shape. This local
procedure expects its arguments to be aligned with a BLOCK,BLOCK distribution; the

result will be mapped in the same way and will have the same shape as the arguments.
O

Example 8.3 An interface for a generic function:

INTERFACE KNISH

FUNCTION RKNISH(X) 'normal HPF interface
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REAL X(:), RKNISH
END FUNCTION RKNISH

EXTRINSIC(SISAL) FUNCTION CKNISH(X) lextrinsic interface
COMPLEX X(:), CKNISH
END FUNCTION CKNISH

END INTERFACE

A generic procedure named KNISH is declared with two instantiations. The implementa-
tion for a REAL argument is an ordinary HPF procedure, but the implementation for a
COMPLEX argument is an extrinsic routine, presumably coded in SISAL. O

Overall, the intent is that a call to an extrinsic subprogram should behave, as observed
by a calling program coded in HPF, exactly as if the subprogram had been coded in HPF.
This is an obligation placed on the implementation of the interface and perhaps on the
programmer when coding an extrinsic routine. However, it is also desirable to grant
a certain freedom of implementation strategy so long as the obligation is satisfied. To
this end an implementation may place certain restrictions on the programmer; moreover,
each ertrinsic-kind-keyword may call for a different set of restrictions. For example,
an implementation on a parallel processor may find it convenient to replicate scalar
arguments so as to provide a copy on every processor. This is permitted so long as this
process is invisible to the caller. One way to achieve this is to place a restriction on the
programmer who codes the called procedure: on return from the subprogram, all the
copies of this scalar argument must have the same value. This implies that if the dummy
argument has INTENT(OUT) or INTENT(INOUT), then all copies must have been updated
consistently by the time of subprogram return.

8.1.2 Requirements on the Called Extrinsic Procedure
HPF requires a called extrinsic procedure to satisfy the following behavioral requirements:

1. The overall implementation must behave as if all actions of the caller preceding the
subprogram invocation are completed before any action of the subprogram is executed;
and as if all actions of the subprogram are completed before any action of the caller
following the subprogram invocation is executed.

2. IN/OUT intent restrictions declared in the interface for the extrinsic subroutine must
be obeyed.

3. Replicated variables, if updated, must be updated consistently. More precisely, if a
variable accessible to a local subprogram has a replicated representation and is updated
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by (one or more copies of) the local subroutine, then all copies of the replicated data
must have identical values when the last processor returns from the local procedure.

4. No HPF variable is modified unless it could be modified by an HPF procedure with
the same explicit interface.

5. When a subprogram returns and the caller resumes execution, all objects accessible
to the caller after the call are mapped exactly as they were before the call. (Note that,
as with a non-extrinsic (that is, ordinary HPF) subprogram, actual arguments may be
copied or remapped in any way, so long as the effect is undone on return from the
subprogram.)

6. Exactly the same set of processors is visible to the HPF environment before and after
the subprogram call.

The call to an extrinsic procedure that fulfills these rules is semantically equivalent to
the execution of an ordinary HPF procedure.

8.2 Coding Local Procedures

The remainder of this chapter defines a mechanism for coding single-processor local “per-
node” code in single-processor Fortran 90 or in a single-processor subset of HPF; the idea
is that only data that is mapped to a given physical processor is accessible to that proces-
sor. This allows the programming of MIMD multiprocessor machines in a single-program
multiple-data (SPMD) style. Implementation-specific libraries may be provided to facil-
itate communication between the physical processors that are independently executing
this code, but the specification of such libraries is outside the scope of HPF and outside
the scope of this book.

From the caller’s standpoint, an invocation of an extrinsic procedure from a “global”
HPF program has the same semantics as an invocation of a regular procedure. The callee
may see a different picture. This chapter describes a particular set of conventions for
coding callees in the “local” style in which a copy of the subprogram executes on each
processor (of which there may be one or many).

An extrinsic procedure can be defined as explicit SPMD code by specifying the local
procedure code that is to execute on each processor. HPF provides a mechanism for
defining local procedures in a subset of HPF that excludes only data mapping direc-
tives, which are not relevant to local code. If a subprogram definition or interface uses
the eztrinsic-kind-keyword HPF LOCAL, then an HPF compiler should assume that the
subprogram is coded as a local procedure. Because local procedures written in HPF
are thus syntactically distinguished, they may be intermixed unambiguously with global
HPF code if the implementor of an HPF language processor chooses to support such in-
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termixing. (Thus global and local HPF code might reside together within a single source
file, for example. An alternate implementation strategy might require the two kinds of
code to reside in separate files and to be compiled separately. Such implementation and
programming environment details are not specified by HPF.)

The following sections cover three distinct topics:

1. The contract between the caller and a callee that is a local procedure.

2. A specific version of this interface for the case where the callee is a local procedure
coded in HPF (eztrinsic-kind-keyword HPF_LOCAL). Such local procedures may be com-
piled separately or included as part of the text of a global- HPF program.

3. A specific version of this interface for the case where extrinsic procedures are defined
as explicit SPMD code with each local procedure coded in Fortran 90 (the eztrinsic-
kind-keyword might be, for instance, F90_LOCAL). Ideally these local procedures may be
separately compiled by a Fortran 90 compiler and then linked with HPF code, though
this depends on implementation details.

8.3 Conventions for Local Subprograms

All HPF arrays accessible to an extrinsic procedure (arrays passed as arguments) are
logically carved up into pieces; the local procedure executing on a particular physical
processor sees an array containing just those elements of the global array that are mapped
to that physical processor.

It is important not to confuse the extrinsic procedure, which is conceptually a single
procedural entity called from the HPF program, with the local procedures, which are
executed on each node, one apiece. An invocation of an extrinsic procedure results in a
separate invocation of a local procedure on each processor. The ezecution of an extrinsic
procedure consists of the concurrent execution of a local procedure on each executing
processor. Each local procedure invocation may terminate at any time by executing a
RETURN statement. However, the extrinsic procedure as a whole terminates only after
every local procedure has terminated; in effect, the processors are synchronized before
return to a global HPF caller.

With the exception of returning from a local procedure to the global caller that initiated
local execution, there is no implicit synchronization of the locally executing processors.
A local procedure may use any control structure whatsoever. To access data outside
the processor requires either preparatory communication to copy data into the processor
before running the local code, or communication among the separately executing copies of
the local procedure. Individual implementations may provide implementation-dependent
means for communicating, for example through a message-passing library or a shared-
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memory mechanism. Such communication mechanisms are beyond the scope of HPF
and of this book. Note, however, that many useful portable algorithms that require only
independence of control structure can take advantage of local routines, without requiring
a communication facility.

This model assumes only that array axes are mapped independently to axes of a
rectangular processor grid, each array axis to at most one processor axis (no “skew”
distributions) and no two array axes to the same processor axis. This restriction suffices
to ensure that each physical processor contains a subset of array elements that can be
locally arranged in a rectangular configuration. (To compute the global indices of an
element given its local indices, or vice versa, may be quite a tangled computation—but
it will be possible. See Section 8.4.3 for a description of recommended library routines
for performing these index transformations.)

It is recommended that if, in any given implementation, an interface kind does not
obey the conventions described in this section, then the name of that interface kind
should not end in “_LOCAL”.

8.3.1 Conventions for Calling Local Subprograms

The default mapping of scalar dummy arguments and of scalar function results is such
that the argument is replicated on each physical processor. These mappings may, op-
tionally, be explicit in the interface, but any other explicit mapping of a scalar dummy
argument or of a scalar function result is not HPF-conforming.

As in the case of non-extrinsic subprograms, actual arguments may be mapped in any
way; if necessary, they are copied automatically to correctly mapped temporaries before
invocation of and after return from the extrinsic procedure.

8.3.2 Calling Sequence

The actions detailed below have to occur prior to the invocation of the local procedure
on each processor. These actions are enforced by the compiler of the calling routine, and
are not the responsibility of the programmer, nor do they impact the local procedure.
(The next section discusses restrictions on the local procedure.)

1. The processors are synchronized. In other words, all actions that logically precede the
call are completed.

2. Each actual argument is remapped, if necessary, according to the directives (explicit
or implicit) in the declared interface for the extrinsic procedure. Thus, HPF mapping
directives appearing in the interface are binding—the compiler must obey these directives
in calling local extrinsic procedures. (The reason for this rule is that data mapping is
explicitly visible in local routines). Actual arguments corresponding to scalar dummy
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arguments are replicated (by broadcasting, for example) in all processors.

3. If a variable accessible to the called routine has a replicated representation, then all
copies are updated prior to the call to contain the correct current value according to the
sequential semantics of the source program.

After these actions have occurred, the local procedure is invoked on each processor.
The information available to the local invocation is described below in Section 8.3.3.
The following actions must occur before control is transferred back to the caller.

1. All processors are synchronized after the call. In other words, execution of every copy
of the local routine is completed before execution in the caller is resumed.

2. The original distribution of arguments (and of the result of an extrinsic function) is
restored, if necessary.

An implementation might check, before returning from the local subprogram, to make
sure that replicated variables have been updated consistently by the subprogram. How-
ever, there is certainly no requirement—perhaps not even any encouragement—to do so.
This is merely a tradeoff between speed and, for instance, debuggability.

8.3.3 Information Available to the Local Procedure

The local procedure invoked on each processor is passed a local argument for each global
argument passed by the caller to the (global) extrinsic procedure interface. Each global
argument is a distributed HPF array or a replicated scalar. The corresponding local
argument is the part of the global array stored locally, or the local copy of a scalar
argument. An array actual argument passed by an HPF caller is called a global array;
the subgrid of that global array passed to one copy of a local routine (because it resides
in that processor) is called a local array.

If the extrinsic procedure is a function, then the local procedure is also a function. Each
local invocation of that function will return the local part of the extrinsic function return
value. If the extrinsic function is scalar-valued then the implicit mapping of the return
value is replicated; in this case, all executed copies of the local function must return the
same value. If it is desired to return one, possibly distinct, value per processor, then
the extrinsic function should be declared to return a distributed rank-one array of size
NUMBER _OF _PROCESSORS().

The run-time interface should provide enough information that each local function
can discover for each local argument the mapping of the corresponding global argument,
translate global indices to local indices, and vice-versa. A specific set of procedures
that provide this information is described in Section 8.4.3. The manner in which this
information is made available to the local routine depends on the implementation and
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the programming language used for the local routine.

8.4 Local Routines Written in HPF

This section provides a specific design for providing the required information to local
procedures in the case these procedures are written in HPF. (This design is merely a
recommendation; a conforming HPF implementation is not required to support it.)

A local procedure may be declared within an HPF program (and be compiled by an
HPF compiler). The subroutine-stmt or function-stmt that begins the subprogram must
contain the prefix EXTRINSIC(HPF_LOCAL).

8.4.1 Restrictions

There are some restrictions on what HPF features may be used in writing a local, per-
processor procedure. These restrictions are detailed here.

(Look out! Here comes a pun!) The restricted language used for coding local
HPF procedures is sometimes called “HPF Lite” because it is lo-cal.

A local HPF program unit may invoke other local program units or internal procedures,
but it may not invoke an ordinary, “global” HPF routine. If a global HPF program calls
local subprogram A with an actual array argument X, and A receives a portion of array
X as dummy argument P, then A may call another local subprogram B and pass P or a
section of P as an actual argument to B.

A local HPF program unit may not access global HPF data other than data that is
accessible, either directly or indirectly, via the actual arguments. In particular, a local
HPF program unit does not have access to global HPF COMMON blocks; COMMON blocks
appearing in local HPF program units are not identified with global HPF COMMON blocks.
The same name may not be used to identify a COMMON block within both a loca] HPF
program unit and an HPF program unit in the same executable program.

Local program units can use all HPF constructs except for DISTRIBUTE, REDISTRIBUTE,
ALIGN, REALIGN, DYNAMIC, INHERIT, PROCESSORS, and TEMPLATE directives (and attri-
butes). The distribution query library subroutines HPF_ALIGNMENT, HPF_TEMPLATE, and
HPF DISTRIBUTION may be applied to local arrays. Their outcome is the same as for a
global array that happens to have all its elements on a single node.

Scalar dummy arguments must be mapped so that each processor has a copy of the
argument. This holds true, by convention, if no mapping is specified for the argument
in the interface. Thus, the constraint disallows only explicit alignment and distribu-
tion directives in an explicit interface that imply that a scalar dummy argument is not
replicated on all processors.
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An EXTRINSIC(HPF.LOCAL) routine may not be RECURSIVE.

An EXTRINSIC(HPF LOCAL) routine may not have alternate returns.

An EXTRINSIC(HPF LOCAL) routine may not be invoked, either directly or indirectly,
in the body of a FORALL construct or in the body of an INDEPENDENT loop.

The attributes (type, kind, rank, optional, intent) of the dummy arguments must
match the attributes of the corresponding dummy arguments in the explicit interface. A
dummy argument of an EXTRINSIC(HPF LOCAL) routine may not be a procedure name.

A dummy argument of an EXTRINSIC(HPF_LOCAL) routine may not have the POINTER
attribute.

A dummy argument of an EXTRINSIC(HPF LOCAL) routine must be nonsequential.

A dummy array argument of an EXTRINSIC(HPF_LOCAL) routine must have assumed
shape, even when it is explicit shape in the interface. Note that, in general, the shape of
a dummy array argument differs from the shape of the corresponding actual argument,
unless there is a single executing processor.

Explicit mapping directives for dummy arguments and function result variables may
not appear in a local procedure, although they may appear (in the case of the result of
an array-valued function, they must appear) in the required explicit interface accessible
to the caller.

A local procedure may have several ENTRY points. A global HPF caller must contain
a separate extrinsic interface for each entry point that can be invoked from the HPF
program.

8.4.2 Argument Association

If a dummy argument of an EXTRINSIC(HPF_LOCAL) routine is an array, then the cor-
responding dummy argument in the explicit interface for the local procedure must be
an array of the same rank, type, and type parameters. When the extrinsic procedure is
invoked, the local dummy argument is associated with the local array that consists of
the subgrid of the global array that is stored locally. This local array will be a valid HPF
array.

If a dummy argument of an EXTRINSIC (HPF LOCAL) routine is a scalar then the cor-
responding dummy argument of the local procedure must be a scalar of the same type.
When the extrinsic procedure is invoked then the local procedure is passed an argument
that consists of the local copy of the replicated scalar. This copy will be a valid HPF
scalar.

If an EXTRINSIC(HPF_LOCAL) routine is a function, then the local procedure is a func-
tion that returns a scalar of the same type and type parameters, or an array of the same
rank, type, and type parameters, as the HPF extrinsic function. The value returned by
each local invocation is the local part of the value returned by the HPF invocation.
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Each physical processor has at most one copy of each HPF variable.
Consider the following extrinsic interface:

INTERFACE
EXTRINSIC(HPF_LOCAL) FUNCTION MATZOH(X, Y) RESULT(Z)
REAL, DIMENSION(:,:) :: X
REAL, DIMENSION(SIZE(X,1)) :: Y, Z
'HPF$ ALIGN WITH X(:,*) :: Y(:), Z(:)
1HPF$ DISTRIBUTE X(BLOCK, CYCLIC)
END FUNCTION
END INTERFACE

The corresponding local HPF procedure is specified as follows.

EXTRINSIC(HPF_LOCAL) FUNCTION MATZOH(XX, YY) RESULT(ZZ)
REAL, DIMENSION(:,:) :: XX
REAL, DIMENSION(5:) :: YY, ZZ
NX1 = SIZE(XX, 1)

LX1 = LBOUND(XX, 1)
UX1 = UBOUND(XX, 1)
NX2 = SIZE(XX, 2)

LX2 = LBOUND(XX, 2)
UX2 = UBOUND(XX, 2)
NY = SIZE(YY, 1)

LY = LBOUND(YY, 1)
UY = UBOUND(YY, 1)

END FUNCTION

Assume that the function is invoked with an actual (global) array X of shape 3 x 3
and an actual vector Y of length 3 on a 4-processor machine, using a 2 x 2 processor
arrangement (assuming one abstract processor per physical processor).

Then the various local invocations of the function MATZOH receive actual arguments as
shown here:
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Processor (1,1)

Processor (1,2)

X(1,1) X(1,3) X(1,2)
X(2,1) X(2,3) X(2,2)
Y(1) Y(1)
Y(2) Y(2)

Processor (2,1) Processor (2,2)

[(xG.» [ xG.3) |

Each local invocation of MATZOH sees its own set of dummy arguments as shown here:

Processor (1,1) Processor (1,2)

Xx(1,1) XX(1,2) Xx(1,1)
XX(2,1) XX(2,2) XX(2,1)
YY(5) YY(5)
YY(6) YY(6)

Processor (2,1) Processor (2,2)

(@D [ 0,5 ]

Thus when processor (1,1) refers to its dummy argument element XX(1,2), it sees the
value of actual argument element X(1,3). But when processor (2,1) refers to its dummy
argument element XX(1,2), it sees the value of actual argument element X(3,3).

Here are the values to which each processor would set NX1, LX1, UX1, NX2, LX2, UX2,
NY, LY, and UY:

Processor (1,1) Processor (1,2)

NX1=2 LX1=1 UX1=2 NX1=2 LX1=1 UXi1i=2
NX2=2 [LX2=1 UX2=2 NX2 =1 LX2=1 UX2=1
NY =2 LY=5 Uuy==6 NY =2 LY=5 Uuy==6
Processor (2,1) Processor (2,2)

NX1=1 LX1=1 UXi=1 NXi=1 LXi1=1 UX1=1
NX2=2 LX2=1 UX2=2 NX2 =1 LX2=1 UX2=1
NY =1 LY=5 Uuy==5 NY=1 LY=5 Uy =5
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The return array ZZ is distributed identically to YY and therefore has a partially repli-
cated representation. Processors (1,1) and (1,2) should return identical rank-one arrays
of size 2; processors (2,1) and (2,2) should return identical rank-one arrays of size 1.

An actual argument to an extrinsic procedure may be a pointer. Since the corre-
sponding dummy argument may not have the POINTER attribute, the dummy argument
becomes associated with the target of the HPF global pointer. In no way may a local
pointer become pointer associated with a global HPF target. Therefore, an actual argu-
ment may not be of a derived type containing a pointer component. (It is expected that
global pointer variables will have a different representation from that of local pointer vari-
ables, at least on distributed memory machines, because of the need to carry additional
information for global addressing. This restriction could be lifted in the future.)

Other inquiry intrinsics, such as ALLOCATED or PRESENT, should also behave as ex-
pected. Note that when a global array is passed to a local routine, some processors may
receive an empty subarray. Such argument is PRESENT and has SIZE zero.

8.4.3 HPF Local Routine Library

Local HPF procedures can use any HPF intrinsic or library procedure. (The arguments
to such procedures will be local arrays. Depending on the implementation, the actual
code for the intrinsic and library routines used by local HPF procedures may or may not
be the same code used when called from global HPF code.)

In addition, several local library procedures are provided to query the global mapping
of an actual argument to an extrinsic function. These library procedures take as input
the name of a dummy argument and return information on the corresponding global
HPF actual argument. They may be invoked only by a local procedure that was directly
invoked by global HPF code. If module facilities are available, they reside in a module
called HPF _LOCAL LIBRARY; a local routine that calls them should include the statement

USE HPF_LOCAL_LIBRARY

or some functionally appropriate variant thereof.

The local HPF library also provides a new derived type PROCID, to be used for processor
identifiers. Each physical processor has a distinct identifier of type PROCID. It is assumed
that a function is available to find the identifier of each executing processor—the syntax
for calling such a function is beyond the scope of HPF and of this book. (It is likely that
in many implementations type PROCID will be effectively identical to type INTEGER—
perhaps a derived type with a single integer component.)

GLOBAL ALIGNMENT(ARRAY, ...) This has the same interface and behavior
as the HPF inquiry subroutine HPF_ALIGNMENT, but it returns information about the
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global HPF array actual argument associated with the local dummy argument ARRAY,
rather than returning information about the local array.

GLOBAL DISTRIBUTION(ARRAY, ...) Thishas the same interface and behav-
ior as the HPF inquiry subroutine HPF_DISTRIBUTION, but it returns information about
the global HPF array actual argument associated with the local dummy argument ARRAY,
rather than returning information about the local array.

GLOBAL _TEMPLATE(ARRAY, ...) This has the same interface and behavior as
the HPF inquiry subroutine HPF_TEMPLATE, but it returns information about the global
HPF array actual argument associated with the local dummy argument ARRAY, rather
than returning information about the local array.

ABSTRACT_TO_PHYSICAL(ARRAY, INDEX, PROC)

Description. Returns processor identification for the physical processor asso-
ciated with a specified abstract processor relative to a global actual argument
array.

Class. Subroutine.

Arguments.
ARRAY may be of any type; it must be a dummy array that is associated with
a global HPF array actual argument. It is an INTENT(IN) argument.

INDEX must be a rank-1 integer array containing the coordinates of an ab-
stract processor in the processors arrangement onto which the global
HPF array is mapped. It is an INTENT(IN) argument. The size of
INDEX must equal the rank of the processors arrangement.

PROC must be scalar and must be of type PROCID. It is an INTENT(QUT)
argument. It receives the identifying value for the physical processor
associated with the abstract processor specified by INDEX.

PHYSICAL.TO_ABSTRACT(ARRAY, PROC, INDEX)

Description. Returns coordinates for an abstract processor, relative to a global
actual argument array, corresponding to a specified physical processor.

Class. Subroutine.

Arguments.
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ARRAY may be of any type; it must be a dummy array that is associated with
a global HPF array actual argument. It is an INTENT(IN) argument.

PROC must be scalar and must be of type PROCID. It is an INTENT(IN)
argument. It contains an identifying value for a physical processor.

INDEX must be a rank-1 integer array. It is an INTENT(OUT) argument. The
size of INDEX must equal the rank of the processor arrangement onto
which the global HPF array is mapped. INDEX receives the coordi-
nates within this processors arrangement of the abstract processor
associated with the physical processor specified by PROC.

This procedure can be used only on systems where there is a one-to-one correspondence
between abstract processors and physical processors. On systems where this correspon-
dence is one-to-many an equivalent, system-dependent procedure should be provided.

LOCAL_TO_.GLOBAL(ARRAY, LINDEX, G INDEX)

Description. Converts a set of local coordinates within a local dummy array to
an equivalent set of global coordinates within the associated global HPF actual
argument array.

Class. Subroutine.
Arguments.

ARRAY may be of any type; it must be a dummy array that is associated with
a global HPF array actual argument. It is an INTENT(IN) argument.

L_INDEX must be a rank-1 integer array whose size is equal to the rank of
ARRAY. It is an INTENT(IN) argument. It contains the coordinates of
an element within the local dummy array ARRAY.

G_INDEX must be a rank-1 integer array whose size is equal to the rank of
ARRAY. It is an INTENT(OUT) argument. It receives the coordinates
within the global HPF array actual argument of the element identified
within the local array by L_INDEX.

GLOBAL_TO_LOCAL(ARRAY, GINDEX, LINDEX, LOCAL)

Optional arguments. L_INDEX, LOCAL

Description. Converts a set of global coordinates within a global HPF actual
argument array to an equivalent set of local coordinates within the associated
local dummy array.
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Class. Subroutine.

Arguments.

ARRAY

G_INDEX

may be of any type; it must be a dummy array that is associated with
a global HPF array actual argument. It is an INTENT(IN) argument.

must be a rank-1 integer array whose size is equal to the rank of
ARRAY. It is an INTENT(IN) argument. It contains the coordinates of
an element within the global HPF array actual argument associated
with the local dummmy array ARRAY.

L_INDEX (optional) must be a rank-1 integer array whose size is equal to the rank

of ARRAY. It is an INTENT(OUT) argument. It receives the coordi-
nates within the local dummy array of the element identified within
the global actual argument array by G_INDEX. However, the values
in L_INDEX are undefined if the value returned (or that would be re-
turned) in LOCAL is false.

LOCAL (optional) must be scalar and must be of type LOGICAL. It is an INTENT-

(OUT) argument. It is set to . TRUE. if the local array contains a copy
of the global array element and to .FALSE. otherwise.

8.5 Local Routines Written in Fortran 90

The suggested interface to local SPMD routines written in Fortran 90 is the same as that
for HPF local routines, with these few exceptions:

e Only Fortran 90
peculiar to HPF su

constructs should be used; it may not be possible to use extensions
ch as FORALL and the HPF intrinsic library procedures.

e It is recommended that Fortran 90 language processors to be used for this purpose
be extended to support the HPF local distribution query routines GLOBAL_ALIGNMENT,
GLOBAL _TEMPLATE, and GLOBAL DISTRIBUTION and the PROCID derived type as described

in Section 8.4.3. It
module named HPF

1s also recommended that these facilities be defined in a Fortran 90
_LOCAL_LIBRARY.

e Assuming that the intent is to compile such routines with a non-HPF Fortran 90
compiler, the Fortran 90 program text should be in separate files rather than incorporated
into HPF source code.

o The suggested eztrinsic-kind-keyword for this calling interface is F90_LOCAL.
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The restrictions listed in Section 8.4.1 ought to apply as well to local routines written
in Fortran 90.

The local HPF code example in Figure 8.1 could also serve as an example of local
Fortran 90 code simply by changing the keyword HPF _LOCAL in the first line to F90_LOCAL.

8.5.1 Argument Association

If a dummy argument in the HPF explicit extrinsic interface is an array, then the corre-
sponding dummy argument in the specification of the local procedure must be an array
of the same rank, type, and type parameters. When the extrinsic procedure is invoked,
the local dummy argument is associated with the local array that consists of the subgrid
of the global array that is stored locally. This local array will be a valid Fortran 90 array.

If a dummy argument in the HPF explicit extrinsic interface is a scalar then the
corresponding dummy argument of the local procedure must be a scalar of the same
type. When the extrinsic procedure is invoked then the local procedure is passed an
argument that consists of the local copy of the replicated scalar. This copy will be a
valid Fortran 90 scalar.

If an HPF explicit extrinsic interface defines a function, then the local procedure should
be a Fortran 90 function that returns a scalar of the same type and type parameters, or
an array of the same rank, type, and type parameters, as the HPF extrinsic function.
The value returned by each local invocation is the local part of the value returned by the
HPF invocation.

8.6 Example HPF Extrinsic Procedures

Figure 8.3 shows an INTERFACE block, call, and subroutine definition for matrix multi-
plication coded as a local subroutine.

Figure 8.4 shows an INTERFACE block, call, and subroutine definition for sum reduction
coded as a local function.
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! The caller:
¢ The NEWMATMULT routine computes C=A*B. Before calling NEWMATMULT,
the ALIGN directives require broadcasting copies of row A(I,*)

! and column B(*,J) to the processor that computes C(I,J).

INTERFACE
EXTRINSIC(HPF_LOCAL) SUBROUTINE NEWMATMULT(A, B, C)
REAL, DIMENSION(:,:), INTENT(IN) :: 4, B
REAL, DIMENSION(:,:), INTENT(OUT) :: C
‘HPF$ ALIGN A(I,J) WITH *C(I,*)
'HPF$ ALIGN B(I,J) WITH *C(*,J)

END SUBROUTINE NEWMATMULT
END INTERFACE
REAL P(100,93), Q(93,47), R(100,47)

CALL NEWMATMULT(P,Q,R)

! The local subroutine definition:
! Each processor is passed 3 arrays of rank 2. Assume that the
! global HPF arrays A, B, and C have dimensions LxM, MxN and LxN,
! respectively. The local array CC is (a copy of) a rectangular
! subarray of C. For each position (I,J) in this local array,
! the local array AA contains an entire row of A as AA(I,:) and
! the local array BB contains an entire column of B as BB(:,J).
' C may have a replicated representation, in which case copies
! of C(I,J) will be consistently updated at various processors.
EXTRINSIC(HPF_LOCAL) SUBROUTINE NEWMATMULT(AA, BB, CC)
REAL, DIMENSION(:,:), INTENT(IN) :: AA, BB
REAL, DIMENSION(:,:), INTENT(OUT) :: CC
' The loops use local indices into AA, BB, and CC.
DO I = LBOUND(CC,1), UBOUND(CC,1)
DO J = LBOUND(CC,2), UBOUND(CC,2)
cc(I1,J) = DOT_PRODUCT(AA(I,:), BB(:,J))
END DO
END DO
END SUBROUTINE NEWMATMULT

Figure 8.3
Matrix multiplication coded as a local HPF subroutine
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The SREDUCE routine computes at each processor the sum of

! the local elements of an array of rank 1. It returns an

array that consists of one sum per processor. The sum
reduction is completed by reducing this array of partial sums.
The function calls an error routine if the array is replicated.
! (Replicated arrays could be handled by a more complicated code.)

INTERFACE
EXTRINSIC(HPF_LOCAL) FUNCTION SREDUCE(A) RESULT(R)
REAL, DIMENSION(NUMBER_OF_PROCESSORS()) :: R
'HPF$ DISTRIBUTE (BLOCK) :: R
REAL, DIMENSION(:), INTENT(IN) :: A
END FUNCTION SREDUCE
END INTERFACE

TOTAL = SUM(SREDUCE(A))

.o

! The local subroutine definition
EXTRINSIC(HPF_LOCAL) FUNCTION SREDUCE(AA) RESULT R
REAL, DIMENSION(:) :: R
REAL, DIMENSION(:), INTENT(IN) :: AA

CALL GLOBAL_ALIGNMENT(AA, NUMBER_N= N)
IF (COPIES > 1) THEN

CALL ERROR ! Array is replicated--call error routine
ELSE
R=0 ! Array is not replicated--compute local sum

DO J = 1, UBOUND(AA)
R(1) = R(1) + AQJ)
END DO
END IF
END SUBROUTINE SREDUCE

Figure 8.4
Sum reduction coded as a local HPF function
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9 Subset High Performance Fortran

This subset of HPF is intended to define a minimal starting set of features from Fortran
90 and HPF. We will give the list of the HPF extensions that are in Subset HPF, followed
by the definition of the Fortran 90 subset. The purpose of a subset is to encourage early
release of compilers with HPF features. Actual HPF Subset implementations may include
more features than are listed here. The programmer should check the specific details of
each Subset compiler used.

9.1 HPF Extensions and Subset High Performance Fortran

The HPF extensions have been divided into two parts, those in Subset HPF, and those not
in Subset HPF. This division was primarily done on the basis of expected implementation
difficulty.

9.1.1 HPF Features in the Subset

The static data mapping features of HPF are in the subset. These include: the directives
for ALIGN, DISTRIBUTE, TEMPLATE, and PROCESSORS, as well as the combzined-directive.

The INHERIT directive is part of the subset, but only the descriptive and prescriptive
forms. That is, the programmer must specify what the distribution to be inherited
is, either by asserting its form or by instructing the compiler to convert to a specific
distribution.

The single-statement FORALL is part of the subset. The INDEPENDENT directive as
applied both to DO and FORALL is also part of the subset.

The three new HPF intrinsic functions are part of the subset: NUMBER_OF _PROCESSORS,
PROCESSORS_SHAPE and ILEN.

9.1.2 HPF Features Not in the Subset

For completeness, we also list the HPF extensions that are not required as part of Subset
HPF.

The dynamic mapping features are not part of the subset. These include the REALIGN,
REDISTRIBUTE, and DYNAMIC directives.

The transcriptive (“lone star”) form of the DISTRIBUTE directive and INHERIT directive
1s not part of the subset.

The PURE function attribute is not part of the subset. This means that only HPF
and Fortran 90 intrinsic functions can be called from the FORALL statement. No other
subprograms can be called.
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The forall-construct (multi-statement) FORALL is not in the subset.

The HPF library and the HPF_LIBRARY module are not part of the subset.

The EXTRINSIC function attribute is not in the subset. By implication, this means
that the optional HPF_LOCAL interface is not part of the subset.

9.2 Fortran 90 and Subset High Performance Fortran

The set of Fortran 90 features selected for Subset HPF is most definitely not an ideal
subset of the language. Features were selected either because they were already in com-
mon use or because they contributed to the performance-oriented goal of HPF. There
are numerous useful and popular features omitted from this subset.

9.2.1 Fortran 90 Features in the Subset

The Fortran 90 features listed here are the features of Subset HPF For reference, the
section numbers from the Fortran 90 standard are given along with the related syntax
rule numbers:

e All FORTRAN 77 standard conforming features, except for storage and sequence
association. (See Sections 4.10 and 5.9 for detailed discussion of the exception.)
e The Fortran 90 definitions of MIL-STD-1753 features:

DO WHILE statement (8.1.4.1.1 / R821)

END DO statement (8.1.4.1.1 / R825)

IMPLICIT NONE statement (5.3 / R540)

INCLUDE line (3.4)

Scalar bit manipulation intrinsic procedures: IOR, IAND, NOT, IEOR, ISHFT, ISHFTC,
BTEST, IBSET, IBCLR, IBITS, MVBITS (13.13)

¢ Binary, octal and hexadecimal constants for use in DATA statements (4.3.1.1 / R407
and 5.2.9 / R533)

e Arithmetic and logical array features:

e Array sections (6.2.2.3 / R618-621) using subscript triplet notation (6.2.2.3.1) and
vector-valued subscripts (6.2.2.3.2)

e Array constructors limited to one level of implied DO (4.5 / R431)

e Arithmetic and logical operations on whole arrays and array sections (2.4.3, 2.4.5,
and 7.1)

e Array assignment (2.4.5, 7.5, 7.5.1.4, and 7.5.1.5)
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e Masked array assignment (7.5.3) using the WHERE statement (7.5.3 / R738) and the
block WHERE . . . ELSEWHERE construct (7.5.3 / R739)

o Array-valued external functions (12.5.2.2)

e Automatic arrays (5.1.2.4.1)

e ALLOCATABLE arrays and the ALLOCATE and DEALLOCATE statements (5.1.2.4.3,6.3.1
/ R622, and 6.3.3 / R631)

e Assumed-shape arrays (5.1.2.4.2 / R516)

e Intrinsic procedures: The list of intrinsic functions and subroutines below is a combi-
nation of (a) routines that are entirely new to Fortran and (b) routines that have always
been part of Fortran, but now have been extended to new argument and result types.
The new or extended definitions of these routines are part of the subset. If a FORTRAN
77 routine is not included in this list, then only the original FORTRAN 77 definition is
part of the subset.

e The argument presence inquiry function: PRESENT (13.10.1)

e All the numeric elemental functions: ABS, AIMAG, AINT, ANINT, CEILING, CMPLX,
CONJG, DBLE, DIM, DPROD, FLOOR, INT, MAX, MIN, MOD, MODULO, NINT, REAL, SIGN
(13.10.2)

e All mathematical elemental functions: ACOS, ASIN, ATAN, ATAN2, COS, COSH, EXP,
LOG, LOG10, SIN, SINH, SQRT, TAN, TANH (13.10.3)

e All the bit manipulation elemental functions : BTEST, IAND, IBCLR, IBITS, IBSET,
IEOR, IOR, ISHFT, ISHFTC, NOT (13.10.10)

e All the vector and matrix multiply functions: DOT_PRODUCT, MATMUL (13.10.13)

e Allthe array reduction functions: ALLt, ANYt, COUNT{, MAXVAL{, MINVAL{, PRODUCT{,
SUM}(13.10.14)

e All the array inquiry functions: ALLOCATED, LBOUND{, SHAPE, SIZEf,
UBOUND{t(13.10.15)

e All the array construction functions: MERGE, PACK, SPREAD}, UNPACK (13.10.16)
The array reshape function: RESHAPE (13.10.17)

All the array manipulation functions: CSHIFT{, EOSHIFT}, TRANSPOSE (13.10.18)
All array location functions: MAXLOC{, MINLOC(13.10.19)

All the intrinsic subroutines: DATEANDTIME, MVBITS, RANDOMNUMBER, RANDOMSEED,

SYSTEMCLOCK (3.11)

For all of the intrinsics that have an optional argument DIM, only actual argument
expressions for DIM that are initialization expressions are part of the subset. The intrinsics
with this constraint are marked with a dagger (1) in the list above.

e Declarations:
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e Type declaration statements, with all forms of type-spec except kind-selector and
TYPE(type-name), and all forms of attr-spec except access-spec, TARGET, and POINTER.
(5.1 / R501-503, R510)

e Attribute specification statements: ALLOCATABLE, INTENT, OPTIONAL, PARAMETER,
SAVE (5.2)

e Procedure features: Interface blocks are included in the subset in order to facilitate use
of the HPF directives across subroutine boundaries. Interface blocks provide a mechanism
to specify the expected mapping of data, in addition to the types and intents of the
arguments.

o INTERFACE blocks with no generic-spec or module-procedure-stmi (12.3.2.1)
e Optional arguments (5.2.2)
e Keyword argument passing (12.4.1 /R1212)

e Syntax improvements:

Long (31 character) names (3.2.2)

Lower case letters (3.1.7)

Use of “.” in names (3.1.3)

“” initiated comments, both full line and trailing (3.3.2.1)

9.2.2 Fortran 90 Features Not in the Subset

We will not attempt a precise list of the Fortran 90 features not included in the subset,
but for the reader’s aid, we do give a short summary of features here. The following
are omitted: the free form source; control features such as CASE, CYCLE and EXIT; the
numeric precision KIND feature; the character array language, and full form of array con-
structors; POINTER and TARGET; derived type and operator definitions; generic procedures
and internal subprograms; MODULE and USE; extensions to I/O such as additional clauses
for OPEN and INQUIRE, NAMELIST formatting, and non-advancing, stream I/O.
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abstract processors: A rectilinear arrangement of processors that may be defined by
a PROCESSORS directive. The mapping of the abstract processors to physical processors
1s system-dependent.

aggregate cover: A member of an aggregate variable group whose storage is totally
associated with the storage sequence of the aggregate variable group. Informally stated,

this is a variable that is exactly the same size as the entire aggregate variable group.

aggregate variable group: A collection of variables whose individual storage sequences
are parts of a single storage sequence.

align target: A data object name or template name whose distribution serves as a
pattern for the distribution of the index space of other data objects.

alignee: A data object that is associated with an align target by an ALIGN or REALIGN
directive, for the purpose of determining the distribution of the index space.

alignment: An attribute of a data object that establishes the relationship between data
objects for distribution.

atomic object: A data object that contains no subobjects. These may not be split
across processors as a result of distribution. They also define the basic unit of write and

read operations for defining independent.

collapsed: A term used to describe a dimension of an array where every element of the
dimension is aligned to the same element of another array or template,

communication: The overhead incurred when an operation on one processor uses a
data object stored on a different processor.

component: Either a single variable or an aggregate variable group in a common block.

cover: See aggregate cover.

data locality: A term used to describe the likelihood that a processor operation uses
data objects stored in its local memory.
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data parallel: A description of parallelism potentially obtained when the same operation
is applied to many elements of an array or data object. The data parallel model is a
single-threaded control structure, global name space, and loosely synchronous parallel
execution

descriptive mapping: A method used to establish the mapping attributes of a dummy
procedure argument where the attribute of the actual argument is asserted to be of a
specified kind and thus requires no data motion.

directive: A special Fortran comment that suggests implementation strategies or asserts
facts about a program to the compiler.

distributee: A data object named in a DISTRIBUTE directive.

distribution: The partition of the index space of a data object among a set of abstract
processors according to a given pattern.

dynamic mapping: A mapping that may change during execution as a result of a
REDISTRIBUTE or REALIGN directive.

explicit interface: A definition of a procedure interface that is visible to the scoping
unit of a reference (call) to the procedure, e.g. via an interface block or MODULE procedure

definition.

explicit mapping: A mapping attribute specified in an ALIGN, DISTRIBUTE, or DYNAMIC
directive.

extrinsic procedure: A routine that is not properly part of HPF. It may be written in
a different programming paradigm and possibly in a different language.

extrinsic kind keyword: Description of the extrinsic interface. HPF defines HPF and
HPF_LOCAL.

global name space: Programming model where a data object name can be accessed by
more than one processor. This is the usual model on shared memory systems, but also

supported on distributed memory systems in languages such as HPF.

global variable: A variable accessible from more than one procedure.
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HPF conforming: A program that obeys all of the syntax and semantic rules of the
HPT language specification.

immediately aligned: Two data objects with an alignment established by a specific
ALIGN directive.

implicit mapping: A mapping attribute selected by the compiler when no explicit
mapping is given.

independent: A property of a DO loop or FORALL statement where the results are the
same whether executed serially or in parallel. This may be established by the compiler
or may be asserted by the programmer with an INDEPENDENT directive.

inherited template: A template for a dummy argument that is a copy of the template
of the corresponding actual argument. Note that the shape and size of this template may
differ from the shape and size of the dummy argument.

load balance: Refers to program optimization to give each processor approximately the
same amount of work.

local name space: Programming model where a data object name is accessibly only
by the local processor.

local variable: A variable that is accessible only within the procedure where it is
declared.

local procedure: A procedure from a programming model where each processor is
potentially executing different code.

loosely synchronous: Refers to an execution model where the processors are not nec-
essarily processing the exact same instruction (as in the SIMD model), but are forced
by periodic synchronization events (such as message communication) to stay in the same
general location in the program, possibly on the same line or control structure from the
source program.

mapping: The combination of alignment and distribution attributes used to describe
how a data object is allocated to an abstract processor arrangement.
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mapping inquiry subroutines: Subroutines to allow a program to determine the
actual mapping of an array at run time.

MIMD: Stands for Multiple Instruction stream, Multiple Data stream, meaning that
the processors can all be executing different instructions at the same time.

natural template: A freshly created template for a dummy argument that is not
explicitly aligned and does not have the INHERIT attribute. Causes the dummy argument
to be ultimately aligned with itself.

node program: See local procedure.
nonconforming: A program that does not obey one or more syntax and semantic rules
of the HPF language specification. The results of execution of the program are not

defined. The compiler may not detect all instances of a nonconforming program.

nonsequential variable: A variable that does not occur in a context involving storage
association and is not named on a SEQUENCE directive.

prescriptive mapping: A method used to establish the mapping attributes of a dummy
procedure argument where the attribute is explicitly specified and the incoming mapping
of the actual argument must be modified to match if it does not already conform.
processor arrangement: See abstract processor arrangement.

pure: An attribute of a procedure that constrains the statements allowed in the proce-
dure so that the procedure cannot have any side effects other than modification of output
arguments or the function value.

rank: The number of dimensions of an array. A scalar value has rank zero.

replication: A means of creating copies of a data object on more than one processor by
establishing a special alignment of the data object.

sequence association: The element sequence order of array elements that is required

when an array, array expression, or array element is associated with a dummy argument
in a call to a subprogram.
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sequential common: A common block that is named in a SEQUENCE directive. Required
for any common block whose components do not match exactly in shape, type, mapping
and sequentiality in every occurrence of the common block.

sequential variable: A variable that is involved in storage association or is named in
a SEQUENCE directive.

shape: For an array, the rank and extent of each dimension.
SIMD: Stands for Single Instruction stream, Multiple Data stream, meaning that all
processors execute exactly the same instruction at the same time (unless they have been

turned off).

SPMD: Stands for Single Program, Multiple Data, meaning that all processors are
executing the same program.

static mapping: Mapping attributes that stay the same throughout program execution,
except for possible remapping across procedure boundaries that are restored to their

original state on return from the procedure. Required for all variables in COMMON.

storage association: The association of two or more data objects that occurs when
two or more storage sequences share or are aligned with one or more storage units.

storage sequence: Contiguous storage units.
stride: An array increment specified in subscript triplet notation.

synchronization: A point in a program where the processor cannot proceed without a
result or event from another processor and must wait for it to happen.

system inquiry functions: Functions that return values to describe attributes of the
physical computing resource, including the size and shape of the processor array.

template: An index space associated with an array. This may be an array or an explicit
TEMPLATE defined by a directive.

totally associated: Term referring to entities which have the same storage sequence.
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transcriptive mapping: A method used to establish the mapping attributes of a
dummy procedure argument where the attribute is to be copied from the actual argument

and code is produced to adapt to the possibility that the attribute may be different from
call to call.

ultimately aligned: The final alignment target in a set of related alignments. An
object not explicitly aligned with another object is ultimately aligned with itself.
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B Description of HPF Library and Intrinsic Procedures

Procedures not marked “Intrinsic” are HPF library procedures. In order to save space
and enhance readability, the examples of this appendix use T and F to denote the logical
values .TRUE. and .FALSE. Optional arguments are marked with an asterisk (*).

B.1 ALL_PREFIX

Synopsis. ALL PREFIX(MASK, DIM, SEGMENT, EXCLUSIVE)
Optional Arguments. DIM, SEGMENT, EXCLUSIVE

Description. Computes a segmented logical AND scan along dimension DIM of
MASK.

Class. Transformational function.

Arguments.
MASK must be of type logical. It must not be scalar.
DIM=* must be scalar and of type integer with a value in the range 1 <

DIM < n, where n is the rank of MASK.
SEGMENT* must be of type logical and have the same shape as MASK.
EXCLUSIVE#* must be of type logical and must be scalar.

Result Type, Type Parameter, and Shape. Same as MASK.

Result Value. Element r of the result has the value ALL((/ aj,...,am /))
where (ai,... am) is the (possibly empty) set of elements of MASK selected to
contribute to r by the rules stated in Chapter 7.

Example. ALL_PREFIX( (/T,F,T,T,T/), SEGMENT= (/F,F,F,T,T/) ) is
[TFFTT]

B.2 ALL_SCATTER

Synopsis. ALL_SCATTER(MASK, BASE, INDX1, ..., INDXn)
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B.3

Appendix B

Description. Scatters elements of MASK to positions of the result indicated by
index arrays INDX1, ..., INDXn. An element of the result is true if and only if the
corresponding element of BASE and all elements of MASK scattered to that position
are true.

Class. Transformational function.

Arguments.
MASK must be of type logical. It must not be scalar.
BASE must be of type logical with the same kind type parameter as MASK.

It must not be scalar.

INDX1,...,INDXn must be of type integer and conformable with MASK. The num-
ber of INDX arguments must be equal to the rank of BASE.

Result Type, Type Parameter, and Shape. Same as BASE.

Result Value. The element of the result corresponding to the element b of BASE
has the value ALL( (/ay,a3,...,am,b/) ), where (a;,...,a,) are the elements
of MASK associated with b as described in Chapter 7.

Example. ALL_SCATTER( (/T, T, T, F/), (/T, T, T/), (/1, 1, 2, 2/) )
is[T F T].
ALL_SUFFIX

Synopsis. ALL_SUFFIX(MASK, DIM, SEGMENT, EXCLUSIVE)
Optional Arguments. DIM, SEGMENT, EXCLUSIVE

Description. Computes a reverse, segmented logical AND scan along dimension
DIM of MASK.

Class. Transformational function.

Arguments.
MASK must be of type logical. It must not be scalar.
DIM* must be scalar and of type integer with a value in the range 1 <

DIM < n, where n is the rank of MASK.
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B.4

SEGMENT* must be of type logical and have the same shape as MASK.

EXCLUSIVE* must be of type logical and must be scalar.
Result Type, Type Parameter, and Shape. Same as MASK.

Result Value. Element r of the result has the value ALL((/ ay,...,am /))
where (a@y,...,am) is the (possibly empty) set of elements of MASK selected to
contribute to r by the rules stated in Chapter 7.

Example. ALL SUFFIX( (/T,F,T,T,T/), SEGMENT= (/F,F,F,T,T/) ) is
[FFTTT]

ANY_PREFIX

Synopsis. ANY PREFIX(MASK, DIM, SEGMENT, EXCLUSIVE)
Optional Arguments. DIM, SEGMENT, EXCLUSIVE

Description. Computes a segmented logical OR scan along dimension DIM of
MASK.

Class. Transformational function.

Arguments.
MASK must be of type logical. It must not be scalar.
DIM=* must be scalar and of type integer with a value in the range 1 <

DIM < n, where n is the rank of MASK.
SEGMENT* must be of type logical and have the same shape as MASK.

EXCLUSIVE# must be of type logical and must be scalar.
Result Type, Type Parameter, and Shape. Same as MASK.

Result Value. Element r of the result has the value ANY((/ ai,...,am /))
where (ay,...,am) is the (possibly empty) set of elements of MASK selected to
contribute to r by the rules stated in Chapter 7.

Example. ANY_PREFIX( (/F,T,F,F,F/), SEGMENT= (/F,F,F,T,T/) ) is
[FTTFF]
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B.5

B.6

Appendix B

ANY_SCATTER

Synopsis. ANY _SCATTER (MASK, BASE, INDX1, ..., INDXn)

Description. Scatters elements of MASK to positions of the result indicated by
index arrays INDX1, ..., INDXn. An element of the result is true if and only if the
corresponding element of BASE or any element of MASK scattered to that position
is true.

Class. Transformational function.

Arguments.
MASK must be of type logical. It must not be scalar.
BASE must be of type logical with the same kind type parameter as MASK.

It must not be scalar.

INDX1,...,INDXn must be of type integer and conformable with MASK. The num-
ber of INDX arguments must be equal to the rank of BASE.

Result Type, Type Parameter, and Shape. Same as BASE.

Result Value. The element of the result corresponding to the element b of BASE
has the value ANY( (/a1,a2,...,am,b/) ), where (a;,...,a,) are the elements
of MASK associated with b as described in Chapter 7.

Example. ANY SCATTER( (/T, F, F, F/), (/F, F, T/), (/1, 1, 2, 2/) )
is[T F T].

ANY _SUFFIX

Synopsis. ANY SUFFIX(MASK, DIM, SEGMENT, EXCLUSIVE)

Optional Arguments. DIM, SEGMENT, EXCLUSIVE

Description. Computes a reverse, segmented logical OR scan along dimension
DIM of MASK.

Class. Transformational function.

Arguments.
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B.7

MASK must be of type logical. It must not be scalar.

DIM* must be scalar and of type integer with a value in the range 1 <
DIM < n, where n is the rank of MASK.

SEGMENT# must be of type logical and have the same shape as MASK.
EXCLUSIVE* must be of type logical and must be scalar.

Result Type, Type Parameter, and Shape. Same as MASK.

Result Value. Element r of the result has the value ANY((/ aj,...,am /))
where (ai,...,am) is the (possibly empty) set of elements of MASK selected to
contribute to r by the rules stated in Chapter 7.

Example. ANY SUFFIX( (/F,T,F,F,F/), SEGMENT= (/F,F,F,T,T/) )is
[TTFFF]

COPY_PREFIX

Synopsis. COPY_PREFIX (ARRAY, DIM, SEGMENT)
Optional Arguments. DIM, SEGMENT
Description. Computes a segmented copy scan along dimension DIM of ARRAY.

Class. Transformational function.

Arguments.
ARRAY may be of any type. It must not be scalar.
DIM=* must be scalar and of type integer with a value in the range 1 <

DIM < n, where n is the rank of ARRAY.
SEGMENT* must be of type logical and have the same shape as ARRAY.
Result Type, Type Parameter, and Shape. Same as ARRAY.

Result Value. Element r of the result has the value a; where (ay,...,am) is the
set, in array element order, of elements of ARRAY selected to contribute to r by
the rules stated in Chapter 7.

Example. COPY PREFIX( (/1,2,3,4,56/), SEGMENT= (/F,F,F,T,T/) )is
[1 114 4]
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B.8 COPY_SCATTER

Synopsis. COPY_SCATTER(ARRAY,BASE, INDX1, ..., INDXn, MASK)
Optional Argument. MASK

Description. Scatters elements of ARRAY selected by MASK to positions of the
result indicated by index arrays INDX1, ..., INDXn. Each element of the result
is equal to one of the elements of ARRAY scattered to that position or, if there is
none, to the corresponding element of BASE.

Class. Transformational function.

Arguments.
ARRAY may be of any type. It must not be scalar.
BASE must be of the same type and kind type parameter as ARRAY.

INDX1,...,INDXn must be of type integer and must be conformable with ARRAY.
The number of INDX arguments must be equal to the rank of BASE.

MASK* must be of type logical and must be conformable with ARRAY.
Result Type, Type Parameter, and Shape. Same as BASE.

Result Value. Let S be the set of elements of ARRAY associated with element &
of BASE as described in Chapter 7.

If S is empty, then the element of the result corresponding to the element b of
BASE has the same value as b.

If S is non-empty, then the element of the result corresponding to the element b
of BASE is the result of choosing one element from S. HPF does not specify how
the choice is to be made; the mechanism is processor dependent.

Example. COPY_SCATTER((/1, 2, 3, 4/), (/7, 8, 9/), (/1, 1, 2, 2/))
is [z, y, 9], where z is a member of the set {1,2} and y is a member of the set

{3,4}.
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B.9

B.10

COPY_SUFFIX

Synopsis. COPY_SUFFIX(ARRAY, DIM, SEGMENT)
Optional Arguments. DIM, SEGMENT

Description. Computes a reverse, segmented copy scan along dimension DIM of
ARRAY.

Class. Transformational function.

Arguments.
ARRAY may be of any type. It must not be scalar.
DIM=* must be scalar and of type integer with a value in the range 1 <

DIM < n, where n is the rank of ARRAY.

SEGMENT* must be of type logical and have the same shape as ARRAY.
Result Type, Type Parameter, and Shape. Same as ARRAY.

Result Value. Element r of the result has the value a,, where (aj,...,an) is
the set, in array element order, of elements of ARRAY selected to contribute to r
by the rules stated in Chapter 7.

Example. COPY SUFFIX( (/1,2,3,4,5/), SEGMENT= (/F,F,F,T,T/) ) is
[3 335 5]

COUNT_PREFIX

Synopsis. COUNT_PREFIX (MASK, DIM, SEGMENT, EXCLUSIVE)

Optional Arguments. DIM, SEGMENT, EXCLUSIVE

Description. Computes a segmented COUNT scan along dimension DIM of MASK.
Class. Transformational function.

Arguments.

MASK must be of type logical. It must not be scalar.
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DIM* must be scalar and of type integer with a value in the range 1 <
DIM < n, where n is the rank of MASK.

SEGMENT* must be of type logical and have the same shape as MASK.
EXCLUSIVE* must be of type logical and must be scalar.

Result Type, Type Parameter, and Shape. The result is of type default
integer and of the same shape as MASK.

Result Value. Element r of the result has the value COUNT((/ ai,...,am /))
where (a1,...,am) is the (possibly empty) set of elements of MASK selected to
contribute to r by the rules stated in Chapter 7.

Example. COUNT PREFIX( (/F,T,T,T,T/), SEGMENT= (/F,F,F,T,T/) )is
[001 21 2]

COUNT_SCATTER

Synopsis. COUNT_SCATTER(MASK, BASE, INDX1, ..., INDXn)

Description. Scatters elements of MASK to positions of the result indicated by
index arrays INDX1, ..., INDXn. Each element of the result is the sum of the
corresponding element of BASE and the number of true elements of MASK scattered
to that position.

Class. Transformational function.

Arguments.
MASK must be of type logical. It must not be scalar.
BASE must be of type integer. It must not be scalar.

INDX1,...,INDXn must be of type integer and must be conformable with MASK.
The number of INDX arguments must be equal to the rank of BASE.

Result Type, Type Parameter, and Shape. Same as BASE.

Result Value. The element of the result corresponding to the element b of
BASE has the value b + COUNT( (/aj,as,...,an/) ), where (ay,...,an) are the
elements of MASK associated with b as described in Chapter 7.

Example. COUNT SCATTER((/T, T, T, F/),(/1, -1, 0/),(/1, 1, 2, 2/))
is[3 0 0].
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B.13

COUNT_SUFFIX

Synopsis. COUNT_SUFFIX(MASK, DIM, SEGMENT, EXCLUSIVE)
Optional Arguments. DIM, SEGMENT, EXCLUSIVE

Description. Computes a reverse, segmented COUNT scan along dimension DIM
of MASK.

Class. Transformational function.

Arguments.
MASK must be of type logical. It must not be scalar.
DIM* must be scalar and of type integer with a value in the range 1 <

DIM < n, where n is the rank of MASK.
SEGMENT* must be of type logical and have the same shape as MASK.

EXCLUSIVE#* must be of type logical and must be scalar.

Result Type, Type Parameter, and Shape. The result is of type default
integer and of the same shape as MASK.

Result Value. Element r of the result has the value COUNT((/ ay,...,a;, /))
where (aj,...,am) is the (possibly empty) set of elements of MASK selected to
contribute to 7 by the rules stated in Chapter 7.

Example. COUNT SUFFIX( (/T,F,T,T,T/), SEGMENT= (/F,F,F,T,T/) )is
[2 112 1]

GRADE_DOWN

Synopsis. GRADE_DOWN (ARRAY, DIM)
Optional Argument. DIM

Description. Produces a permutation of the indices of an array, sorted by de-
scending array element values.

Class. Transformational function.
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Arguments.

ARRAY

DIM=*

must be of type integer, real, or character.

must be scalar and of type integer with a value in the range 1 < DIM <
n, where n is the rank of ARRAY. The corresponding actual argument
must not be an optional dummy argument.

Result Type, Type Parameter, and Shape. The result is of type default
integer. If DIM is present, the result has the same shape as ARRAY. If DIM is absent,
the result has shape (/ SIZE(SHAPE(ARRAY)), PRODUCT(SHAPE(ARRAY)) /).

Result Value.

Case (1):

Case (ii):

Examples.

Case (1):

The result of S = GRADE _DOWN (ARRAY) has the property that if one
computes the rank-one array B of size PRODUCT (SHAPE(ARRAY)) by
FORALL (K=1:SIZE(B,1))B(K)=ARRAY(S(1,K),S(2,K),...,S(N,K))
where N has the value SIZE(SHAPE(ARRAY) ), then B is sorted in de-
scending order; moreover, all of the columns of S are distinct, that
is, if j # m then ALL(S(:,j) .EQ. S(:,m)) will be false. The sort
is stable; if j < m and B(j) = B(m), then ARRAY(S(1,j), S(2,)),

., S(n,j)) precedes ARRAY(S(1,m),S(2,m),...,S(n,m)) in the
array element ordering of ARRAY.

The result of R = GRADE_DOWN (ARRAY,DIM=K) has the property that
if one computes the array B(iy,12,...,%,...,%,) = ARRAY(%y,1a,...,
R(iy,%2,...,k,...,%n),...,in) then for all 41,42, . .., (omit i), ..., i,
the vector B(iy,%3,...,:,...,1,) is sorted in descending order; more-
over, R(%y,1%2,...,:,...,1,) is a permutation of all the integers in the
range LBOUND (ARRAY,K) : UBOUND(ARRAY ,K) . The sort is stable; that
is, if j < m and B(éy,%2,...,J,.--,0p) = B(i1,ta,...,m,...,in),
then R(il,iz,...,j,...,in) < R(il,ig,...,m,...,in).

GRADEDOWN( (/30, 20, 30, 40, -10/) ) is a rank two array of
shape [ 15 ] with the value [ 4 1 3 265 ] (To produce a rank-
one result, the optional DIM = 1 argument must be used.)

Copyrighted Material



Description of HPF Library and Intrinsic Procedures 265

2

If A i1s the array 2 |, then GRADEDQWN(A) has the value

1 223 31
2 213 2 3

W N DR
- = N oo

1 9 2
Case (ii): If Aisthearray [ 4 5 2 |,then GRADEDOWN(A, DIM = 1) hasthe
1 2 4

value

w = N
w N =
N o= W

B.14 GRADE_UP

Synopsis. GRADE_UP (ARRAY, DIM)
Optional Argument. DIM

Description. Produces a permutation of the indices of an array, sorted by as-
cending array element values.

Class. Transformational function.

Arguments.
ARRAY must be of type integer, real, or character.
DIM=* must be scalar and of type integer with a value in the range 1 < DIM <

n, where n is the rank of ARRAY. The corresponding actual argument
must not be an optional dummy argument.

Result Type, Type Parameter, and Shape. The result is of type default
integer. If DIM is present, the result has the same shape as ARRAY. If DIM is absent,
the result has shape (/ SIZE(SHAPE (ARRAY)), PRODUCT(SHAPE(ARRAY)) /).

Result Value.

Case (i): Theresult of S = GRADE_UP(ARRAY) has the property that if one com-
putes the rank-one array B of size PRODUCT (SHAPE (ARRAY)) by
FORALL(K=1:SIZE(B,1))B(K)=ARRAY(S(1,K),S(2,K),...,S(N,K))
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Case (1i):

Examples.

Case (1):

Case (4):

Appendix B

where N has the value SIZE(SHAPE(ARRAY)), then B is sorted in as-
cending order; moreover, all of the columns of S are distinct, that
is, if j # m then ALL(S(:,j) .EQ. S(:,m)) will be false. The sort
is stable; if j < m and B(j) = B(m), then ARRAY(S(1,j), S(2,)),

..» S(n,j)) precedes ARRAY(S(1,m), S(2,m), ..., S(n,m)) in
the array element ordering of ARRAY.

The result of R = GRADE_UP(ARRAY,DIM=K) has the property that
if one computes the array B(iy,%3,...,%,...,in) = ARRAY(iy, o, ..,
R(i1,%3,...,%k,...,%n),...,0n) then for all iy, 45,..., (omit i¢),. .., in
the vector B(7y,43,...,:,...,%,) is sorted in ascending order; more-
over, R(¢1,%9,...,5...,1n) is a permutation of all the integers in the
range LBOUND (ARRAY ,K) : UBOUND (ARRAY,K) . The sort is stable; that
iS, if J < m and B(il,ig,...,j,...,in) = B(il,iz,...,m,...,in),
then R(41,%2,...,7,...,%n) < R(i1,%2,...,m,...,in).

GRADE.UP((/30, 20, 30, 40, -10/)) is a rank two array of shape
[1 8 ] with the value [6 2 1 3 4]. (To produce a rank-one
result, the optional DIM = 1 argument must be used.)

1 9 2
If A is the array | 4 5 2 |, then GRADE_UP(A) has the value
1 2 4
133122321
1123313 22]

If A is the array , then GRADE_UP(A, DIM = 1) has the

[ I
v o ©
D DN

value

N W =
- N W
W N =

B.15 HPF_ALIGNMENT

Synopsis. HPF_ALIGNMENT (ALIGNEE, LB, UB, STRIDE, AXIS_MAP, IDENTITY-

_MAP, DYNAMIC, NCOPIES)
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Optional Arguments. LB, UB, STRIDE, AXIS MAP, IDENTITY MAP, DYNAMIC,

NCOPIES

Description. Returns information regarding the correspondence of a variable
and the align-target (array or template) to which it is ultimately aligned.

Class. Mapping inquiry subroutine.

Arguments.

ALIGNEE

LB=*

UB=*

STRIDE#*

may be of any type. It may be scalar or array valued. It must not be
an assumed-size array. [t must not be a structure component. Ifitis a
member of an aggregate variable group, then it must be an aggregate
cover of the group. (See Chapter 4 for the definitions of “aggregate
variable group” and “aggregate cover.”) It must not be a pointer that
is disassociated or an allocatable array that is not allocated. It is an
INTENT (IN) argument.

If ALIGNEE is a pointer, information about the alignment of its target
is returned. The target must not be an assumed-size dummy argu-
ment or a section of an assumed-size dummy argument. If the target
is (a section of) a member of an aggregate variable group, then the
member must be an aggregate cover of the group. The target must
not be a structure component, but the pointer may be.

must be of type default integer and of rank one. Its size must be at
least equal to the rank of ALIGNEE. It is an INTENT (OUT) argument.
The first element of the i*" axis of ALIGNEE is ultimately aligned to
the LB(i)*™" align-target element along the axis of the align-target as-
sociated with the i*h axis of ALIGNEE. If the i*? axis of ALIGNEE is a
collapsed axis, LB(i) is processor dependent.

must be of type default integer and of rank one. Its size must be at
least equal to the rank of ALIGNEE. It is an INTENT (OUT) argument.
The last element of the ith axis of ALIGNEE is ultimately aligned to
the UB(i)*® align-target element along the axis of the align-target as-
sociated with the i*" axis of ALIGNEE. If the i*" axis of ALIGNEE is a
collapsed axis, UB(i) is processor dependent.

must be of type default integer and of rank one. Its size must be at
least equal to the rank of ALIGNEE. It is an INTENT (OUT) argument.
The i" element of STRIDE is set to the stride used in aligning the
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elements of ALIGNEE along its i! axis. If the i*" axis of ALIGNEE is a
collapsed axis, STRIDE(i) is zero.

must be of type default integer and of rank one. Its size must be at
least equal to the rank of ALIGNEE. It is an INTENT (OUT) argument.
The it element of AXIS_MAP is set to the align-target axis associated
with the i*® axis of ALIGREE. If the i*! axis of ALIGNEE is a collapsed
axis, AXIS MAP(1) is 0.

IDENTITY MAP* must be scalar and of type default logical. It is an INTENT (OUT)

DYNAMIC*

NCOPIES*

argument. It is set to true if the ultimate align-target associated
with ALIGNEE has a shape identical to ALIGNEE, the axes are mapped
using the identity permutation, and the strides are all positive (and
therefore equal to 1, because of the shape constraint); otherwise it is
set to false. If a variable has not appeared as an alignee in an ALIGN
or REALIGN directive, and does not have the INHERIT attribute, then
IDENTITY_MAP must be true; it can be true in other circumstances as
well.

must be scalar and of type default logical. It is an INTENT (QUT)
argument. It is set to true if ALIGNEE has the DYNAMIC attribute;
otherwise it is set to false. If ALIGNEE has the pointer attribute, then
the result applies to ALIGNEE itself rather than its target.

must be scalar and of type default integer. It is an INTENT (OUT)
argument. It is set to the number of copies of ALIGNEE that are
ultimately aligned to align-target. For a non-replicated variable, it is
set to one.

Examples. If ALIGNEE is scalar, then no elements of LB, UB, STRIDE, or AXIS.MAP

are set.

Given the declarations

REAL PI

= 3.1415927

POINTER P_TO_A(:)
DIMENSION A(10,10),B(20,30),C(20,40,10),D(40)
'HPF$ TEMPLATE T(40,20)
'HPF$ DYNAMIC A
IHPF$ ALIGN A(I,:) WITH T(1+3%I,2:20:2)
'HPF$ ALIGN C(I,*,J) WITH T(J,21-I)

Copyrighted Material



Description of HPF Library and Intrinsic Procedures 269

'HPF$ ALIGN D(I) WITH T(I,4)

{HPF$ PROCESSORS PROCS(4,2), SCALARPROC

'HPF$ DISTRIBUTE T(BLOCK,BLOCK) ONTO PROCS

'HPF$ DISTRIBUTE B(CYCLIC,BLOCK) ONTO PROCS

'HPF$ DISTRIBUTE ONTO SCALARPROC :: PI
P_TO_A => A(3:9:2, 6)

the results of HPF_ALIGNMENT are, assuming that the actual mappings are as the directives
specify:

( | A B C [ D JP.TOA
LB (4, 2] (1, 1] (1, N/A 1] 1] 10
UB [31, 20] | [20, 30] | [20, N/A, 10] | [40] 28
STRIDE 3,2 1, 1] 1,0, 1] 1 6]
AXIS_MAP 1,2 1,2 [2,0,1] 1 1
IDENTITY-MAP false true false false false
DYNAMIC true false false false false
NCOPIES 1 1 1 1 1

where “N/A” denotes a processor-dependent result. To illustrate the use of NCOPIES,
consider:

LOGICAL B0Z0(20,20),RONALD_MCDONALD(20)
'HPF$ TEMPLATE EMMETT_KELLY(100,100)
'HPF$ ALIGN RONALD_MCDONALD(I) WITH BOZO(I,*)
'HPF$ ALIGN BOZO(J,K) WITH EMMETT_KELLY(J,5#%K)

CALL HPF_ALIGNMENT(RONALD MCDONALD, NCOPIES = NC) sets NC to 20. Now consider:

LOGICAL B0Z0(20,20),RONALD_MCDONALD(20)
'HPF$ TEMPLATE WILLIE_WHISTLE(100)
'HPF$ ALIGN RONALD_MCDONALD(I) WITH BOZO(I,*)
VHPF$ ALIGN B0OZ0(J,*) WITH WILLIE_WHISTLE(E#J)

CALL HPF_ALIGNMENT(RONALD MCDONALD, NCOPIES = NC) sets NC to one.

B.16 HPF_DISTRIBUTION

Synopsis. HPF DISTRIBUTION(DISTRIBUTEE, AXISTYPE, AXISINFO, PROCES-
SORS_RANK, PROCESSORSSHAPE)
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Optional Arguments. AXIS_TYPE, AXIS_INFO, PROCESSORS RANK,
PROCESSORS_SHAPE

Description. The HPF_DISTRIBUTION subroutine returns information regarding
the distribution of the ultimate align-target associated with a variable.

Class. Mapping inquiry subroutine.

Arguments.

DISTRIBUTEE may be of any type. It may be scalar or array valued. It must

AXIS_TYPE*

not be an assumed-size array. It must not be a structure component.
If it is a member of an aggregate variable group, then it must be
an aggregate cover of the group. (See Chapter 4 for the definitions
of “aggregate variable group” and “aggregate cover.”) It must not
be a pointer that is disassociated or an allocatable array that is not
allocated. It is an INTENT (IN) argument.

If DISTRIBUTEE is a pointer, information about the distribution of its
target is returned. The target must not be an assumed-size dummy
argument or a section of an assumed-size dummy argument. If the
target is (a section of) a member of an aggregate variable group, then
the member must be an aggregate cover of the group. The target
must not be a structure component, but the pointer may be.

must be a rank one array of type default character. It may be of any
length, although it must be of length at least 9 in order to contain
the complete value. Its elements are set to the values below as if
by a character intrinsic assignment statement. Its size must be at
least equal to the rank of the align-target to which DISTRIBUTEE is
ultimately aligned; this is the value returned by HPF_TEMPLATE in
TEMPLATE RANK). It is an INTENT (OUT) argument. Its i*" element
contains information on the distribution of the i*P axis of that align-
target. The following values are defined by HPF (implementations
may define other values):

’BLOCK’ The axis is distributed BLOCK. The corresponding element
of AXIS_INFO contains the block size.

»COLLAPSED’ The axis is collapsed (distributed with the “*” specifi-
cation). The value of the corresponding element of AXIS_INFO is
processor dependent.
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"CYCLIC’ The axis is distributed CYCLIC. The corresponding element
of AXIS_INFO contains the block size.

AXIS_INFO#* must be a rank one array of type default integer, and size at least
equal to the rank of the align-target to which DISTRIBUTEE is ulti-
mately aligned (as returned by HPF_TEMPLATE in TEMPLATE RANK). It
is an INTENT (OUT) argument. The i*" element of AXIS_INFO con-
tains the block size in the block or cyclic distribution of the it? axis
of the ultimate align-target of DISTRIBUTEE,; if that axis is a collapsed
axis, then the value is processor dependent.

PROCESSORS_RANK#* must be scalar and of type default integer. It is set to the rank
of the processor arrangement onto which DISTRIBUTEE is distributed.
It is an INTENT (OUT) argument.

PROCESSORS SHAPE* must be a rank one array of type default integer and of
size at least equal to the value, m, returned in PROCESSORS_RANK.
It is an INTENT (OUT) argument. Its first m elements are set to
the shape of the processor arrangement to which DISTRIBUTEE is
mapped. (It may be necessary to call BPF DISTRIBUTION twice, the
first time to obtain the value of PROCESSORS RANK in order to allocate
PROCESSORSSHAPE.)

Example. Given the declarations in the example under HPF_ALIGN, and as-
suming that the actual mappings are as the directives specify, the results of
HPF DISTRIBUTION are:

[ A B [ PT ]
AXIS_TYPE BLOCK’, "BLOCK’] | [CYCLIC’, 'BLOCK]
AXISINFO [10, 10] 1, 15]
PROCESSORS_SHAPE [4, 2] [4, 2] [
PROCESSORS_RANK 2 2 0

B.17 HPF_TEMPLATE

Synopsis. HPF_TEMPLATE(ALIGNEE, TEMPLATERANK, LB, UB, AXISTYPE, AX-
ISINFO, NUMBER_ALIGNED, DYNAMIC)

Optional Arguments. LB, UB, AXIS_TYPE, AXIS_INFO, NUMBER_ALIGNED,
TEMPLATE RANK, DYNAMIC
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Description. The HPF _TEMPLATE subroutine returns information regarding the
ultimate align-target associated with a variable; HPF_TEMPLATE returns informa-
tion concerning the variable from the template’s point of view (assuming the
alignment is to a template rather than to an array), while HPF_ALIGNMENT returns
information from the variable’s point of view.

Class. Mapping inquiry subroutine.

Arguments.

ALIGNEE

may be of any type. It may be scalar or array valued. It must not be
an assumed-size array. It must not be a structure component. Ifitisa
member of an aggregate variable group, then it must be an aggregate
cover of the group. (See Chapter 4 for the definitions of “aggregate
variable group” and “aggregate cover.”) It must not be a pointer that
is disassociated or an allocatable array that is not allocated. It is an
INTENT (IN) argument.

If ALIGNEE is a pointer, information about the alignment of its target
is returned. The target must not be an assumed-size dummy argu-
ment or a section of an assumed-size dummy argument. If the target
is (a section of) a member of an aggregate variable group, then the
member must be an aggregate cover of the group. The target must
not be a structure component, but the pointer may be.

TEMPLATE RANK* must be scalar and of type default integer. It is an INTENT

LB*

UB=*

(OUT) argument. It is set to the rank of the ultimate align-target.
This can be different from the rank of the ALIGNEE, due to collapsing
and replicating.

must be of type default integer and of rank one. Its size must be
at least equal to the rank of the align-target to which ALIGNEE is
ultimately aligned; this is the value returned in TEMPLATE RANK. It
is an INTENT (OUT) argument. The i*? element of LB contains the
declared align-target lower bound for the it" template axis.

must be of type default integer and of rank one. Its size must be
at least equal to the rank of the clign-target to which ALIGNEE is
ultimately aligned; this is the value returned in TEMPLATE RANK. It
is an INTENT (OUT) argument. The i*" element of UB contains the
declared align-target upper bound for the i*h template axis.
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AXIS TYPE#*

AXIS_INFO=*

must be a rank one array of type default character. It may be of any
length, although it must be of length at least 10 in order to contain
the complete value. Its elements are set to the values below as if by
a character intrinsic assignment statement. Its size must be at least
equal to the rank of the align-target to which ALIGNEE is ultimately
aligned; this is the value returned in the INTENT (OUT) argument
TEMPLATE RANK. The i*" element of AXIS_TYPE contains information
about the i*" axis of the align-target. The following values are defined
by HPF (implementations may define other values):

’NORMAL’ An axis of ALIGNEE is aligned to the align-target axis. For
elements of AXIS_TYPE assigned this value, the corresponding el-
ement of AXIS_TNFO is set to the number of the axis of ALIGNEE
aligned to this align-target axis.

"REPLICATED’ ALIGNEE is replicated along this align-target axis. For
elements of AXIS_TYPE assigned this value, the corresponding el-
ement of AXIS_INFO is set to the number of copies of ALIGNEE
along this align-target axis.

»SINGLE’ ALIGNEE is aligned with one coordinate of the align-target
axis. For elements of AXIS_TYPE assigned this value, the corre-
sponding AXIS_INFO element is set to the align-target coordinate
to which ALIGNEE is aligned.

must be of type default integer and of rank one. Its size must be
at least equal to the rank of the align-target to which ALIGNEE is
ultimately aligned; this is the value returned in TEMPLATE RANK. It is
an INTENT (OUT) argument. See the description of AXIS_TYPE above.

NUMBER_ALIGNED* must be scalar and of type default integer. It is an INTENT

DYNAMIC*

(OUT) argument. It is set to the total number of variables aligned
to the ultimate align-target. This is the number of variables that are
moved if the align-target is redistributed.

must be scalar and of type default logical. It is an INTENT (OUT) ar-
gument. It is set to true if the align-target has the DYNAMIC attribute,
and to false otherwise.

Example. Given the declarations in the example under HPF_ALIGN, and assuming
that the actual mappings are as the directives specify, the results of HPF_TEMPLATE

are:
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‘ A [ C D
LB [, 1] [1,1] [1, 1]
UB [40, 20] (40, 20] [40, 20]
AXIS_TYPE NORMAL’, | [NORMAL’, NORMAL’,
’NORMAL’] | 'NORMAL’] ’SINGLE’]
AXISINFO [, 2] B.1] [1, 4]
NUMBER_ALIGNED 3 3 3
TEMPLATE_RANK 2 2 2
DYNAMIC false false false
B.18 TALL

Synopsis. IALL(ARRAY, DIM, MASK)
Optional Arguments. DIM, MASK

Description. Computes a bitwise logical AND reduction along dimension DIM of
ARRAY.

Class. Transformational function.

Arguments.

ARRAY must be of type integer. It must not be scalar.

DIM* must be scalar and of type integer with a value in the range 1 < DIM <
n, where n is the rank of ARRAY. The corresponding actual argument
must not be an optional dummy argument.

MASK* must be of type logical and must be conformable with ARRAY.

Result Type, Type Parameter, and Shape. The result is of type integer
with the same kind type parameter as ARRAY. It is scalar if DIM is absent or if
ARRAY has rank one; otherwise, the result is an array of rank n — 1 and shape

(dl, dy,...,dprm-1, dDIM-H, .. .,dn) where (d1,d2, Ceey dn) is the shape of ARRAY.

Result Value.

The result of IALL(ARRAY) is the IAND reduction of all the elements
of ARRAY. If ARRAY has size zero, the result is equal to a processor-
dependent integer value z with the property that IAND(I, x) = I
for all integers I of the same kind type parameter as ARRAY,

Case (1):
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Case (i1):

Case (iii):

Examples.
Case (i):
Case (11):

Case (iii):

The result of IALL(ARRAY, MASK=MASK) is the IAND reduction of all
the elements of ARRAY corresponding to the true elements of MASK;
if MASK contains no true elements, the result is equal to a processor-
dependent integer value x (of the same kind type parameter as ARRAY)
with the property that IAND(I, x) = I for all integers I.

If ARRAY has rank one, IALL(ARRAY, DIM=1 [,MASK]) has a value equal
to that of IALL(ARRAY [,MASK]). Otherwise, the value of element
(51,82,...,8DIM-1,5DIM+1, .. ., $n) of IALL(ARRAY, DIM=1[,MASK)])
is equal to TALL(ARRAY(s1,52,...,5DIM—1,:, SDIM+1,- - -, Sn)
[,MASK = MASK(s1,52,...,5DIM—1,%SDIM41,---,5n)1)

The value of IALL((/7, 6, 3, 2/))is 2.

The value of IALL(C, MASK = BTEST(C,0)) is the IAND reduction of
the odd elements of C.

. 2365
I t
fBis hearray[377

and IALL(B, DIM = 2)is [0 3 ].

], then IALL(B, DIM = 1)is[2 3 5]

IALL_PREFIX

Synopsis. IALL_ PREFIX(ARRAY, DIM, MASK, SEGMENT, EXCLUSIVE)

Optional Arguments. DIM, MASK, SEGMENT, EXCLUSIVE

Description. Computes a segmented bitwise logical AND scan along dimension
DIM of ARRAY.

Class. Transformational function.

Arguments.

ARRAY must be of type integer. It must not be scalar.

DIM=* must be scalar and of type integer with a value in the range 1 <
DIM < n, where n is the rank of ARRAY.

MASK* must be of type logical and must be conformable with ARRAY.
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SEGMENT* must be of type logical and have the same shape as ARRAY.
EXCLUSIVE#* must be of type logical and must be scalar.
Result Type, Type Parameter, and Shape. Same as ARRAY.

Result Value. Element r of the result has the value IALL((/ ai,...,am /))
where (ai,...,am) is the (possibly empty) set of elements of ARRAY selected to
contribute to r by the rules stated in Chapter 7.

Example. IALL PREFIX( (/1,3,2,4,5/), SEGMENT= (/F,F,F,T,T/) )is
[1 104 4]

IALL_SCATTER

Synopsis. IALL_SCATTER(ARRAY, BASE, INDXi, ..., INDXn, MASK)
Optional Argument. MASK

Description. Scatters elements of ARRAY selected by MASK to positions of the
result indicated by index arrays INDX1, ..., INDXn. The j*"bit of an element of
the result is 1 if and only if the j*'bits of the corresponding element of BASE and
of the elements of ARRAY scattered to that position are all equal to 1.

Class. Transformational function.

Arguments.
ARRAY must be of type integer. It must not be scalar.
BASE must be of type integer with the same kind type parameter as ARRAY.

It must not be scalar.

INDX1,...,INDXn must be of type integer and must be conformable with ARRAY.
The number of INDX arguments must be equal to the rank of BASE.

MASK* must be of type logical and must be conformable with ARRAY.
Result Type, Type Parameter, and Shape. Same as BASE.

Result Value. The element of the result corresponding to the element b of BASE
has the value IALL( (/ai,as,...,am,b/) ), where (a;,...,am) are the elements
of ARRAY associated with b as described in Chapter 7.

Example. IALL SCATTER((/1, 2, 3, &/), (/1, 3, 7/), (/1, 1, 2, 2/))
is[o 2 7].
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IALL_SUFFIX

Synopsis. IALL_ SUFFIX(ARRAY, DIM, MASK, SEGMENT, EXCLUSIVE)
Optional Arguments. DIM, MASK, SEGMENT, EXCLUSIVE

Description. Computes a reverse, segmented bitwise logical AND scan along
dimension DIM of ARRAY.

Class. Transformational function.

Arguments.
ARRAY must be of type integer. It must not be scalar.
DIM* must be scalar and of type integer with a value in the range 1 <

DIM < n, where n is the rank of ARRAY.
MASK# must be of type logical and must be conformable with ARRAY.
SEGMENT* must be of type logical and have the same shape as ARRAY.

EXCLUSIVE* must be of type logical and must be scalar.
Result Type, Type Parameter, and Shape. Same as ARRAY.

Result Value. Element r of the result has the value IALL((/ ay,...,am;, /))
where (ai1,...,am) is the (possibly empty) set of elements of ARRAY selected to
contribute to r by the rules stated in Chapter 7.

Example. IALL SUFFIX( (/1,3,2,4,5/), SEGMENT= (/F,F,F,T,T/) )is
[0 2 24 5]

IANY

Synopsis. IANY(ARRAY, DIM, MASK)
Optional Arguments. DIM, MASK

Description. Computes a bitwise logical OR reduction along dimension DIM of
ARRAY.

Class. Transformational function.
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Arguments.

ARRAY must be of type integer. It must not be scalar.

DIM=* must be scalar and of type integer with a value in the range 1 < DIM <
n, where n is the rank of ARRAY. The corresponding actual argument
must not be an optional dummy argument.

MASK=* must be of type logical and must be conformable with ARRAY.

Result Type, Type Parameter, and Shape. The result is of type integer
with the same kind type parameter as ARRAY. It is scalar if DIM is absent or if
ARRAY has rank one; otherwise, the result is an array of rank n — 1 and shape

(dl,dz, ..»dprmMm—1,dprm41, - - -, dn) where (dl, da, ..., dy) is the shape of ARRAY.

Result Value.

Case (1):

Case (u):

Case (iii):

Examples.
Case (i):
Case (u):

Case (1i1):

The result of IANY(ARRAY) is the IOR reduction of all the elements of
ARRAY. If ARRAY has size zero, the result has the value zero.

The result of IANY (ARRAY, MASK=MASK) is the IOR reduction of all
the elements of ARRAY corresponding to the true elements of MASK; if
MASK contains no true elements, the result is zero.

If ARRAY has rank one, IANY (ARRAY, DIM=1 [,MASK]) has a value equal
to that of IANY(ARRAY [,MASK]). Otherwise, the value of element
(51,82, ., SDIM—1,SDIM41,- - -, 5n) of IANY (ARRAY, DIM=1[,MASK))
is equal to TANY(ARRAY(S1,52,...,5DIM—1,",SDIM+1, - - -,Sn)
[,HASK = MASK(S1,52,---ySDIM=1,:SDIM+1)- -+, Sn)])

The value of IANY((/9, 8, 3, 2/)) is 11.

The value of IANY(C, MASK = BTEST(C,0)) is the IOR reduction of
the odd elements of C.

236
If B is th
B1s earray[o42

and IANY(B, DIM = 2) is [ 7 6 ].

], then IANY(B, DIM = 1)is [2 7 7|
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IANY_PREFIX

Synopsis. IANY PREFIX(ARRAY, DIM, MASK, SEGMENT, EXCLUSIVE)
Optional Arguments. DIM, MASK, SEGMENT, EXCLUSIVE

Description. Computes a segmented bitwise logical OR scan along dimension
DIM of ARRAY.

Class. Transformational function.

Arguments.
ARRAY must be of type integer. It must not be scalar.
DIM# must be scalar and of type integer with a value in the range 1 <

DIM < n, where n is the rank of ARRAY.
MASK=* must be of type logical and must be conformable with ARRAY.
SEGMENT* must be of type logical and have the same shape as ARRAY.

EXCLUSIVE* must be of type logical and must be scalar.
Result Type, Type Parameter, and Shape. Same as ARRAY.

Result Value. Element r of the result has the value IANY((/ ai,...,am /))
where (ai,...,am) is the (possibly empty) set of elements of ARRAY selected to
contribute to r by the rules stated in Chapter 7.

Example. IANY PREFIX( (/1,2,3,2,56/), SEGMENT= (/F,F,F,T,T/) ) is
(1 3327]

JIANY_SCATTER

Synopsis. IANY_SCATTER(ARRAY,BASE,INDX1,..., INDXn, MASK)

Optional Argument. MASK

Description. Scatters elements of ARRAY selected by MASK to positions of the
result indicated by index arrays INDX1, ..., INDXn. The j*Pbit of an element of
the result is 1 if and only if the j*Pbit of the corresponding element of BASE or of
any of the elements of ARRAY scattered to that position is equal to 1.
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Class. Transformational function.

Arguments.
ARRAY must be of type integer. It must not be scalar.
BASE must be of type integer with the same kind type parameter as ARRAY.

It must not be scalar.

INDX1,...,INDXn must be of type integer and must be conformable with ARRAY.
The number of INDX arguments must be equal to the rank of BASE.

MASK* must be of type logical and must be conformable with ARRAY.
Result Type, Type Parameter, and Shape. Same as BASE.

Result Value. The element of the result corresponding to the element b of BASE
has the value IANY( (/aj,az,...,am,b/) ), where (a,,...,an) are the elements
of ARRAY associated with b as described in Chapter 7.

Example. IANYSCATTER((/1, 2, 3, 6/), (/1, 3, 7/), (/1, 1, 2, 2/))
is[3 7 7].
IANY_SUFFIX

Synopsis. IANY SUFFIX(ARRAY, DIM, MASK, SEGMENT, EXCLUSIVE)
Optional Arguments. DIM, MASK, SEGMENT, EXCLUSIVE

Description. Computes a reverse, segmented bitwise logical OR scan along di-
mension DIM of ARRAY.

Class. Transformational function.

Arguments.
ARRAY must be of type integer. It must not be scalar.
DIM# must be scalar and of type integer with a value in the range 1 <

DIM < n, where n is the rank of ARRAY.
MASK* must be of type logical and must be conformable with ARRAY.

SEGMENT* must be of type logical and have the same shape as ARRAY.
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EXCLUSIVE* must be of type logical and must be scalar.
Result Type, Type Parameter, and Shape. Same as ARRAY.

Result Value. Element r of the result has the value IANY((/ a;i,...,am /))
where (ay,...,an,) is the (possibly empty) set of elements of ARRAY selected to
contribute to 7 by the rules stated in Chapter 7.

Example. IANY SUFFIX( (/4,2,3,2,5/), SEGMENT= (/F,F,F,T,T/) )is
[7 337 58]

ILEN

Synopsis. ILEN(I)

Description. Returns one less than the length, in bits, of the two’s-complement
representation of an integer.

Class. Elemental function. Intrinsic.
Argument. I must be of type integer.
Result Type and Type Parameter. Same as I.

Result Value. If I is nonnegative, ILEN(I) has the value [log2(I +1)]; if I is
negative, ILEN(I) has the value [log 2(—1I)].

Examples. ILEN(4) = 3. ILEN(-4) = 2. 2**ILEN(N-1) rounds N up to a
power of 2 (for N > 0), whereas 2#*(ILEN(N)-1) rounds N down to a power of 2.
Compare with LEADZ.

The value returned is one less than the length of the two’s-complement representa-
tion of I, as the following explains. The shortest two’s-complement representation
of 4 is 0100. The leading zero is the required sign bit. In 3-bit two’s complement,
100 represents —4.

IPARITY

Synopsis. IPARITY(ARRAY, DIM, MASK)

Optional Arguments. DIM, MASK
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Description. Computes a bitwise logical exclusive OR reduction along dimension
DIM of ARRAY.

Class. Transformational function.

Arguments.
ARRAY must be of type integer. It must not be scalar.
DIM=* must be scalar and of type integer with a value in the range 1 < DIM <

n, where n is the rank of ARRAY. The corresponding actual argument
must not be an optional dummy argument.

MASK* must be of type logical and must be conformable with ARRAY.

Result Type, Type Parameter, and Shape. The result is of type integer
with the same kind type parameter as ARRAY. It is scalar if DIM is absent or if
ARRAY has rank one; otherwise, the result is an array of rank n — 1 and shape

(d1,d2,...,dpriM-1,dpIM+1, - .-, dn) Where (dy,ds,...,dy,) isthe shape of ARRAY.

Result Value.

Case (i):  The result of IPARITY(ARRAY) is the IEOR reduction of all the ele-
ments of ARRAY. If ARRAY has size zero, the result has the value zero.

Case (i1): The result of IPARITY(ARRAY, MASK=MASK) is the IEOR reduction of
all the elements of ARRAY corresponding to the true elements of MASK;
if MASK contains no true elements, the result is zero.

Case (iii): If ARRAY is rank one, IPARITY(ARRAY, DIM=1 [,MASK]) is equiva-
lent to IPARITY(ARRAY [,MASK]). Otherwise, the value of element
(sl,sz, we sy SDIM=1ySDIM+1, -, sn) of IPARITY(ARRAY, DIM=1
[,MASK]) is equal to IPARITY(ARRAY (sy,52,...,SDIM =1, SDIM+1,
...y8n) [,MASK = MASK(s1,82,...,8DIM 1,5 SDIM+1,---,5n)])

Examples.
Case (1):  The value of IPARITY((/13, 8, 3, 2/)) is 4.

Case (ii): The value of IPARITY(C, MASK = BTEST(C,0)) is the IEOR reduction
of the odd elements of C.

Case (111): IfBisthearray [ 2 Z

and IPARITY(B, DIM = 2)is [ 6 6 ].

],then IPARITY(B, DIM = 1)is[2 7 5]

N N
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IPARITY_PREFIX

Synopsis. IPARITY PREFIX(ARRAY, DIM, MASK, SEGMENT, EXCLUSIVE)
Optional Arguments. DIM, MASK, SEGMENT, EXCLUSIVE

Description. Computes a segmented bitwise logical exclusive OR scan along
dimension DIM of ARRAY.

Class. Transformational function.

Arguments.
ARRAY must be of type integer. It must not be scalar.
DIM=* must be scalar and of type integer with a value in the range 1 <

DIM < n, where n is the rank of ARRAY.
MASK* must be of type logical and must be conformable with ARRAY.
SEGMENT* must be of type logical and have the same shape as ARRAY.
EXCLUSIVE* must be of type logical and must be scalar.

Result Type, Type Parameter, and Shape. Same as ARRAY.

Result Value. Element r of the result has the value IPARITY((/ ay,...,am /))
where (ay,...,am) is the (possibly empty) set of elements of ARRAY selected to
contribute to r by the rules stated in Chapter 7.

Example. IPARITY PREFIX( (/1,2,3,4,5/), SEGMENT= (/F,F,F,T,T/) ) is
[1 304 1]

IPARITY_SCATTER

Synopsis. IPARITY_SCATTER(ARRAY, BASE, INDX1, ..., INDXn, MASK)

Optional Argument. MASK

Description. Scatters elements of ARRAY selected by MASK to positions of the
result indicated by index arrays INDX{1, ..., INDXn. The j*Pbit of an element of
the result is 1 if and only if there are an odd number of ones among the j*!bits
of the corresponding element of BASE and the elements of ARRAY scattered to that
position.
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Class. Transformational function.

Arguments.
ARRAY must be of type integer. It must not be scalar.
BASE must be of type integer with the same kind type parameter as ARRAY.

It must not be scalar.

INDX1,...,INDXn must be of type integer and must be conformable with ARRAY.
The number of INDX arguments must be equal to the rank of BASE.

MASK=* must be of type logical and must be conformable with ARRAY.
Result Type, Type Parameter, and Shape. Same as BASE.

Result Value. The element of the result corresponding to the element b of
BASE has the value IPARITY( (/aj,a2,...,am,b/) ), where (a1,...,an) are the
elements of ARRAY associated with b as described in Chapter 7.

Example. IPARITY SCATTER((/1,2,3,6/), (/1,3,7/), (/1,1,2,2/))is
(2 6 7].

IPARITY._SUFFIX
Synopsis. IPARITY SUFFIX(ARRAY, DIM, MASK, SEGMENT, EXCLUSIVE)

Optional Arguments. DIM, MASK, SEGMENT, EXCLUSIVE

Description. Computes a reverse, segmented bitwise logical exclusive OR scan
along dimension DIM of ARRAY.

Class. Transformational function.

Arguments.
ARRAY must be of type integer. It must not be scalar.
DIM* must be scalar and of type integer with a value in the range 1 <

DIM < n, where n is the rank of ARRAY.
MASK=* must be of type logical and must be conformable with ARRAY.

SEGMENT* must be of type logical and have the same shape as ARRAY.
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EXCLUSIVE* must be of type logical and must be scalar.

Result Type, Type Parameter, and Shape. Same as ARRAY.

Result Value. Element r of the result has the value IPARITY((/ a1,...,am /))
where (ay,...,an) is the (possibly empty) set of elements of ARRAY selected to
contribute to r by the rules stated in Chapter 7.

Example. IPARITY SUFFIX( (/1,2,3,4,5/), SEGMENT= (/F,F,F,T,T/) )is
[0 1 31 5]

LEADZ

Synopsis. LEADZ(I)

Description. Return the number of leading zeros in an integer.
Class. Elemental function.

Argument. I must be of type integer.

Result Type and Type Parameter. Same as I.

Result Value. The result is a count of the number ofleading 0-bits in the integer
I. The model for the interpretation of an integer as a sequence of bits is in Section
13.5.7 of the Fortran 90 Standard. LEADZ(0) is BIT_SIZE(I). For nonzero I, if
the leftmost one bit of I occurs in position £ — 1 (where the rightmost bit is bit
0) then LEADZ(I) is BIT SIZE(I) - k.

Examples. LEADZ(3) has the value BIT SIZE(3) - 2. For scalar I, LEADZ(I) ==
MINVAL((/ (J, J=0, BITSIZE(I)) /), MASK=M) whereM = (/ (BTEST(I,J),
J=BITSIZE(I)-1, 0, -1), .TRUE. /). A given integer I may produce differ-
ent results from LEADZ(I), depending on the number of bits in the representation
of the integer (BITSIZE(I)). That is because LEADZ counts bits from the most
significant bit. Compare with ILEN.

MAXLOC

Synopsis. MAXLOC(ARRAY, DIM, MASK)
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Class. Transformational function. Intrinsic.
Optional Arguments. DIM, MASK

Description. Determine the locations of the first elements of ARRAY along di-
mension DIM having the maximum value of the elements identified by MASK.

Arguments.
ARRAY must be of type integer or real. It must not be scalar.
DIM=* must be scalar and of type integer with a valuein the range 1 < DIM <

n, where n is the rank of ARRAY. The corresponding actual argument
must not be an optional dummy argument.

MASK * must be of type logical and must be conformable with ARRAY.

Result Type, Type Parameter, and Shape. The result is of type default
integer. If DIM is absent the result is an array of rank one and size equal to
the rank of ARRAY; otherwise, the result is an array of rank n — 1 and shape
(d1,...,dprm-1,dDpIM+1, - .., dyn), where (dy,...,dy) is the shape of ARRAY.

Result Value.

Case (1):  The result of executing S = MAXLOC(ARRAY) + LBOUND(ARRAY) - 1
is a rank-one array S of size equal to the rank n of ARRAY. It is such
that ARRAY(S(1), ..., S(n)) has the maximum value of all of the
elements of ARRAY. If more than one element has the maximum value,
the element whose subscripts are returned is the first such element,
taken in array element order. If ARRAY has size zero, the result is
processor dependent.

Case (i1): The result of executing S = MAXLOC(ARRAY,MASK)+LBOUND (ARRAY)-1
is a rank-one array S of size equal to the rank n of ARRAY. It is such that
ARRAY(S(1), ..., S(n)) corresponds to a true element of MASK, and
has the maximum value of all such elements of ARRAY. If more than
one element has the maximum value, the element whose subscripts
are returned is the first such element, taken in array element order.
If there are no such elements (that is, if ARRAY has size zero or every
element of MASK has the value false), the result is processor dependent.
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Case (1ii):

Examples.
Case (i):
Case (11):

Case (u11):

If ARRAY has rank one, the result of MAXLOC(ARRAY, DIM [,MASK])
1s a scalar S such that ARRAY(S + LBOUND(ARRAY,1) - 1) corre-
sponds to a true element of MASK (if MASK is present) and has the
maximum value of all such elements (all elements if MASK is absent).
It is the smallest such subscript. Otherwise, the value of element
(81y...,8DIM—-1, SDIM41,---,8n) of MAXLOC(ARRAY, DIM [,HASK]) 1S
equal to MAXLOC(ARRAY(Sy,...,SDIM 1,5, 5DIM+1,--.,5n) [,MASK =
MASK (s, .. vSDIM—=1,:SDIM+1, - ..,s,,)]).

The value of MAXLOC((/ 5, -9, 3 /))is [ 1].

MAXLOC(C, MASK = C .LT. 0) finds the location of the first element
of C that is the maximum of the negative elements.

The value of MAXLOC((/ 6, -9, 3 /), DIM=1)is 1. If B is the array

1 3 -9
[ 22 6
B, DIM =2 ) is [ 2 3 ] Note that this is true even if B has a
declared lower bound other than 1.

], MAXLOC( B, DIM = 1 ) is [ 2 1 2] and MAXLOC(

MAXVAL_PREFIX

Synopsis. MAXVAL PREFIX(ARRAY, DIM, MASK, SEGMENT, EXCLUSIVE)

Optional Arguments. DIM, MASK, SEGMENT, EXCLUSIVE

Description. Computes a segmented MAXVAL scan along dimension DIM of ARRAY.

Class. Transformational function.

Arguments.

ARRAY must be of type integer or real. It must not be scalar.

DIM=* must be scalar and of type integer with a value in the range 1 <
DIM < n, where n is the rank of ARRAY.

MASK* must be of type logical and must be conformable with ARRAY.

SEGMENT* must be of type logical and have the same shape as ARRAY.
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EXCLUSIVE#* must be of type logical and must be scalar.
Result Type, Type Parameter, and Shape. Same as ARRAY.

Result Value. Element r of the result has the value MAXVAL((/ ay,...,am /))
where (ay,...,am) is the (possibly empty) set of elements of ARRAY selected to
contribute to 7 by the rules stated in Chapter 7.

Example. MAXVAL PREFIX( (/3,4,-5,2,5/), SEGMENT= (/F,F,F,T,T/) ) is
[3 4 42 5]

MAXVAL_SCATTER

Synopsis. MAXVAL SCATTER(ARRAY, BASE, INDX1, ..., INDXn, MASK)

Optional Argument. MASK

Description. Scatters elements of ARRAY selected by MASK to positions of the
result indicated by index arrays INDX1, ..., INDXn. Each element of the result
is assigned the maximum value of the corresponding element of BASE and the
elements of ARRAY scattered to that position.

Class. Transformational function.

Arguments.
ARRAY must be of type integer or real. It must not be scalar.
BASE must be of the same type and kind type parameter as ARRAY. It must

not be scalar.

INDX1,...,INDXn must be of type integer and must be conformable with ARRAY.
The number of INDX arguments must be equal to the rank of BASE.

MASK=* must be of type logical and must be conformable with ARRAY.
Result Type, Type Parameter, and Shape. Same as BASE.

Result Value. The element of the result corresponding to the element b of
BASE has the value MAXVAL( (/ay,a2,...,am,b/) ), where (ay,...,a,) are the
elements of ARRAY associated with b as described in Chapter 7.

Example. MAXVAL SCATTER((/1, 2, 3, 1/),(/4, -5, 7/),(/1, 1, 2, 2/))
s[4 3 7].
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MAXVALSUFFIX

Synopsis. MAXVAL SUFFIX(ARRAY, DIM, MASK, SEGMENT, EXCLUSIVE)
Optional Arguments. DIM, MASK, SEGMENT, EXCLUSIVE

Description. Computes a reverse, segmented MAXVAL scan along dimension DIM
of ARRAY.

Class. Transformational function.

Arguments.
ARRAY must be of type integer or real. It must not be scalar.
DIM* must be scalar and of type integer with a value in the range 1 <

DIM < n, where n is the rank of ARRAY.
MASK=* must be of type logical and must be conformable with ARRAY.
SEGMENT* must be of type logical and have the same shape as ARRAY.

EXCLUSIVE* must be of type logical and must be scalar.
Result Type, Type Parameter, and Shape. Same as ARRAY.

Result Value. Element r of the result has the value MAXVAL((/ a1,...,am /))
where (ai,...,am) is the (possibly empty) set of elements of ARRAY selected to
contribute to r by the rules stated in Chapter 7.

Example. MAXVAL_SUFFIX( (/3,4,-6,2,5/), SEGMENT= (/F,F,F,T,T/) )is
[4 4 -5 5 5].

MINLOC

Synopsis. MINLOC(ARRAY, DIM, MASK)
Optional Arguments. DIM, MASK

Description. Determine the locations of the first elements of ARRAY along di-
mension DIM having the minimum value of the elements identified by MASK.

Class. Transformational function. Intrinsic.
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Arguments.

ARRAY must be of type integer or real. It must not be scalar.

DIM=* must be scalar and of type integer with a value in the range 1 < DIM <
n, where n is the rank of ARRAY. The corresponding actual argument
must not be an optional dummy argument.

MASK=* must be of type logical and must be conformable with ARRAY.

Result Type, Type Parameter, and Shape. The result is of type default
integer. If DIM is absent the result is an array of rank one and size equal to
the rank of ARRAY; otherwise, the result is an array of rank n — 1 and shape
(d1,...,dprm—1,dpismy41, - .., dn), where (dy,...,d,) is the shape of ARRAY.

Result Value.

Case (i):

Case (ii):

Case (ii):

The result of executing S = MINLOC(ARRAY) + LBOUND(ARRAY) - 1
is a rank-one array S of size equal to the rank n of ARRAY. It is such
that ARRAY(S(1), ..., S(n)) has the minimum value of all of the
elements of ARRAY. If more than one element has the minimum value,
the element whose subscripts are returned is the first such element,
taken in array element order. If ARRAY has size zero, the result is
processor dependent.

The result of executing S = MINLOC(ARRAY ,MASK)+LBOUND (ARRAY)-1
is a rank-one array S of size equal to the rank n of ARRAY. It is such
that ARRAY(S(1), ..., S(n)) corresponds to a true element of MASK,
and has the minimum value of all such elements of ARRAY. If more than
one element has the minimum value, the element whose subscripts are
returned is the first such element, taken in array element order. If
there are no such elements (that is, if ARRAY has size zero or every
element of MASK has the value false), the result is processor dependent.

If ARRAY has rank one, the result of MINLOC(ARRAY, DIM [,MASK])
is a scalar S such that ARRAY(S + LBOUND(ARRAY,1) - 1) corre-
sponds to a true element of MASK (if MASK is present) and has the
minimum value of all such elements (all elements if MASK is absent).
It is the smallest such subscript. Otherwise, the value of element
(S1,...,SDIM=1,5DIM 41, - - -, 5n) of MINLOC(ARRAY, DIM [,MASK]) is
equal to MINLOC(ARRAY((S1,...,SDIM =1, SDIM+41,.-.,5n)) [,MASK
= HASK((Sl, v ySDIM~11'ySDIM41y. Sn))] ).
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Examples.

Case (i):  The value of MINLOC((/ 6, -9, 3 /))is [ 2].

Case (12): MINLOC(C, MASK = C .GT. 0) finds the location of the first element
of C that is the minimum of the positive elements.

Case (ii1): The value of MINLOC((/ 5, -9, 3 /), DIM=1)is 2. If B is the array
1 3 -9
[ 22 6
B, DIM = 2 ) is [ 3 1]. Note that this is true even if B has a
declared lower bound other than 1.

], MINLOC( B, DIM = 1 ) is [1 2 1] and MINLOC(

MINVAL_PREFIX

Synopsis. MINVAL_ PREFIX(ARRAY, DIM, MASK, SEGMENT, EXCLUSIVE)
Optional Arguments. DIM, MASK, SEGMENT, EXCLUSIVE
Description. Computes a segmented MINVAL scan along dimension DIM of ARRAY.

Class. Transformational function.

Arguments.
ARRAY must be of type integer or real. It must not be scalar.
DIM# must be scalar and of type integer with a value in the range 1 <

DIM < n, where n is the rank of ARRAY.
MASK* must be of type logical and must be conformable with ARRAY.
SEGMENT* must be of type logical and have the same shape as ARRAY.
EXCLUSIVE* must be of type logical and must be scalar.

Result Type, Type Parameter, and Shape. Same as ARRAY.

Result Value. Element r of the result has the value MINVAL((/ ay,...,am /))
where (aj,...,an) is the (possibly empty) set of elements of ARRAY selected to
contribute to r by the rules stated in Chapter 7.

Example. MINVAL PREFIX( (/1,2,-3,4,5/), SEGMENT= (/F,F,F,T,T/) )is
[1 1 -3 4 4]
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MINVAL_SCATTER

Synopsis. MINVAL_ SCATTER (ARRAY, BASE, INDX1, ..., INDXn, MASK)
Optional Argument. MASK

Description. Scatters elements of ARRAY selected by MASK to positions of the
result indicated by index arrays INDX1, ..., INDXn. Each element of the result
is assigned the maximum value of the corresponding element of BASE and the
elements of ARRAY scattered to that position.

Class. Transformational function.

Arguments.
ARRAY must be of type integer or real. It must not be scalar.
BASE must be of the same type and kind type parameter as ARRAY. It must

not be scalar.

INDX1,...,INDXn must be of type integer and must be conformable with ARRAY.
The number of INDX arguments must be equal to the rank of BASE.

MASK=* must be of type logical and must be conformable with ARRAY.
Result Type, Type Parameter, and Shape. Same as BASE.

Result Value. The element of the result corresponding to the element b of
BASE has the value MINVAL( (/ai,as,...,am,b/) ), where (a1,...,a,) are the
elements of ARRAY associated with b as described in Chapter 7.

Example. MINVAL SCATTER((/ 1,-2,-3,6 /),(/ 4,3,7 /),(/ 1,1,2,2 /))
is[-2 -3 7].

MINVAL_SUFFIX

Synopsis. MINVAL SUFFIX(ARRAY, DIM, MASK, SEGMENT, EXCLUSIVE)
Optional Arguments. DIM, MASK, SEGMENT, EXCLUSIVE

Description. Computes a reverse, segmented MINVAL scan along dimension DIM
of ARRAY.
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Class. Transformational function.

Arguments.
ARRAY must be of type integer or real. It must not be scalar.
DIM» must be scalar and of type integer with a value in the range 1 <

DIM < n, where n is the rank of ARRAY.
MASK=* must be of type logical and must be conformable with ARRAY.
SEGMENT* must be of type logical and have the same shape as ARRAY.

EXCLUSIVE#* must be of type logical and must be scalar.
Result Type, Type Parameter, and Shape. Same as ARRAY.

Result Value. Element r of the result has the value MINVAL((/ ay,...,am /))
where (ay,...,am) is the (possibly empty) set of elements of ARRAY selected to
contribute to r by the rules stated in Chapter 7.

Example. MINVAL SUFFIX( (/1,2,-3,4,5/), SEGMENT= (/F,F,F,T,T/) ) is
[-3 -3 -3 4 5],

NUMBER_OF_PROCESSORS

Synopsis. NUMBER _OF _PROCESSORS(DIM)
Optional Argument. DIM

Description. Returns the total number of processors available to the program
or the number of processors available to the program along a specified dimension
of the processor array.

Class. System inquiry function. Intrinsic.

Arguments.

DIM+* must be scalar and of type integer with a value in the range 1 <
DIM < n where n is the rank of the processor array.

Result Type, Type Parameter, and Shape. Default integer scalar.
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Result Value. The result has a value equal to the extent of dimension DIM of
the processor-dependent hardware processor array or, if DIM is absent, the total
number of elements of the processor-dependent hardware processor array. The
result is always greater than zero.

Examples. For a computer with 8192 processors arranged in a 128 by 64 rectan-
gular grid, the value of NUMBER_OF _PROCESSORS () is 8192; the value of NUMBER_OF -
PROCESSORS(DIM=1) is 128; and the value of NUMBER_OF_PROCESSORS(DIM=2) is
64. For a single-processor workstation, the value of NUMBER_OF PROCESSORS() is
1; since the rank of a scalar processor array is zero, no DIM argument may be used.

PARITY

Synopsis. PARITY(MASK, DIM)
Optional Argument. DIM

Description. Determine whether an odd number of values are true in MASK along
dimension DIM.

Class. Transformational function.

Arguments.
MASK must be of type logical. It must not be scalar.
DIM=* must be scalar and of type integer with a value in the range 1 < DIM <

n, where n is the rank of MASK. The corresponding actual argument
must not be an optional dummy argument.

Result Type, Type Parameter, and Shape. The result is of type logical with
the same kind type parameter as MASK. It is scalar if DIM is absent or if MASK has
rank one; otherwise, the result is an array of rank n — 1 and shape

(dl, dg, .. -)dDIM—ly leM+1, ey dn) where (dl,dg, .. -,dn) is the shape of MASK.
Result Value.

Case (i):  The result of PARITY(MASK) is the .NEQV. reduction of all the ele-
ments of MASK. If MASK has size zero, the result has the value false.
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Case (ii): 1fMASKisrank one, PARITY(MASK, DIM=1) has a value equal to that of
PARITY(MASK). Otherwise, the value of element (sy,ss,...,Sprpm—1,
SDIM41,- .-, 5n) of PARITY(MASK, DIM=1) is equal to
PARITY(MASK(s1,82,...,SDIM—1,: SDIM+1y--+,5n))

Examples.

Case (i):  The value of PARITY((/T, T, T, F/)) is true.

TTF
o 7):  1f Bis th
ase (1) is the array [ TTT

and PARITY(B, DIM = 2)is [F T ].

],then PARITY(B, DIM = 1)is [F F T |

B.42 PARITY_PREFIX

Synopsis. PARITY PREFIX(MASK, DIM, SEGMENT, EXCLUSIVE)
Optional Arguments. DIM, SEGMENT, EXCLUSIVE

Description. Computes a segmented logical exclusive OR scan along dimension
DIM of MASK.

Class. Transformational function.

Arguments.
MASK must be of type logical. It must not be scalar.
DIM* must be scalar and of type integer with a value in the range 1 <

DIM < n, where n is the rank of MASK.
SEGMENT* must be of type logical and have the same shape as MASK.

EXCLUSIVE#* must be of type logical and must be scalar.
Result Type, Type Parameter, and Shape. Same as MASK.

Result Value. Element r of the result has the value PARITY((/ ai,...,anp /))
where (ay,...,ay,) is the (possibly empty) set of elements of MASK selected to
contribute to r by the rules stated in Chapter 7.

Example. PARITY PREFIX( (/T,F,T,T,T/), SEGMENT= (/F,F,F,T,T/) ) is
[TTFTF]
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PARITY_SCATTER

Synopsis. PARITY SCATTER(MASK, BASE, INDX1, ..., INDXn)

Description. Scatters elements of MASK to positions of the result indicated by
index arrays INDX1, ..., INDXn. An element of the result is true if and only if the
number of true values among the corresponding element of BASE and the elements
of MASK scattered to that position is odd.

Class. Transformational function.

Arguments.
MASK must be of type logical. It must not be scalar.
BASE must be of type logical with the same kind type parameter as MASK.

It must not be scalar.

INDX1,...,INDXn must be of type integer and conformable with MASK. The num-
ber of INDX arguments must be equal to the rank of BASE.

Result Type, Type Parameter, and Shape. Same as BASE.

Result Value. The element of the result corresponding to the element b of
BASE has the value PARITY( (/ai,as,...,am,b/) ), where (ai,...,an) are the
elements of MASK associated with b as described in Chapter 7.

Example. PARITY SCATTER((/ T,T,T,T /), (/ T,F,F /), (/ 1,1,1,2 /))
is[F T F].
PARITY_SUFFIX

Synopsis. PARITY SUFFIX(MASK, DIM, SEGMENT, EXCLUSIVE)
Optional Arguments. DIM, SEGMENT, EXCLUSIVE

Description. Computes a reverse, segmented logical exclusive OR scan along
dimension DIM of MASK.

Class. Transformational function.

Arguments.
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MASK must be of type logical. It must not be scalar.

DIM* must be scalar and of type integer with a value in the range 1 <
DIM < n, where n is the rank of MASK.

SEGMENT* must be of type logical and have the same shape as MASK.
EXCLUSIVE* must be of type logical and must be scalar.

Result Type, Type Parameter, and Shape. Same as MASK.

Result Value. Element r of the result has the value PARITY((/ a1,...,am /))
where (aj,...,an) is the (possibly empty) set of elements of MASK selected to
contribute to r by the rules stated in Chapter 7.

Example. PARITY SUFFIX( (/T,F,T,T,T/), SEGMENT= (/F,F,F,T,T/) ) is
[FTTFT]

POPCNT

Synopsis. POPCNT(I)

Description. Return the number of one bits in an integer.
Class. Elemental function.

Argument. I must be of type integer.

Result Type and Type Parameter. Same as I.

Result Value. POPCNT(I) is the number of one bits in the binary representation
of the integer I. The model for the interpretation of an integer as a sequence of
bits is in Section 13.5.7 of the Fortran 90 Standard.

Example. POPCNT(I) = COUNT((/ (BTEST(I,J), J=0, BITSIZE(I)-1) /)),
for scalar I.

POPPAR

Synopsis. POPPAR(I)

Description. Return the parity of an integer.
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Class. Elemental function.
Argument. I must be of type integer.
Result Type and Type Parameter. Same as I.

Result Value. POPPAR(I) is 1 if there are an odd number of one bits in I and
zero if there are an even number. The model for the interpretation of an integer
as a sequence of bits is in Section 13.5.7 of the Fortran 90 Standard.

Example. For scalar I, POPPAR(x) = MERGE(1,0,BTEST(POPCNT(x),0)).

PROCESSORS_SHAPE

Synopsis. PROCESSORS _SHAPE()

Description. Returns the shape of the implementation-dependent processor ar-
ray.

Class. System inquiry function. Intrinsic.
Arguments. None

Result Type, Type Parameter, and Shape. The result is a default integer
array of rank one whose size is equal to the rank of the implementation-dependent
processor array.

Result Value. The value of the result is the shape of the implementation-
dependent processor array.

Example. In a computer with 2048 processors arranged in a hypercube, the value
of PROCESSORS_SHAPE() is [2,2,2,2,2,2,2,2,2,2,2]. In a computer with 8192 proces-
sors arranged in a 128 by 64 rectangular grid, the value of PROCESSORS_SHAPE()
is [128,64]. For a single processor workstation, the value of PROCESSORS _SHAPE()
is [] (the size-zero array of rank one).

PRODUCT_PREFIX

Synopsis. PRODUCT PREFIX(ARRAY, DIM, MASK, SEGMENT, EXCLUSIVE)

Optional Arguments. DIM, MASK, SEGMENT, EXCLUSIVE
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Description. Computes a segmented PRODUCT scan along dimension DIM of
ARRAY.

Class. Transformational function.

Arguments.
ARRAY must be of type integer, real, or complex. It must not be scalar.
DIM* must be scalar and of type integer with a value in the range 1 <

DIM < n, where n is the rank of ARRAY.
MASK* must be of type logical and must be conformable with ARRAY.
SEGMENT* must be of type logical and have the same shape as ARRAY.

EXCLUSIVE* must be of type logical and must be scalar.
Result Type, Type Parameter, and Shape. Same as ARRAY.

Result Value. Element r of the result has the value PRODUCT((/ ay,...,am /))
where (ai1,...,am) is the (possibly empty) set of elements of ARRAY selected to
contribute to r by the rules stated in Chapter 7.

Example. PRODUCT PREFIX( (/1,2,3,4,5/), SEGMENT= (/F,F,F,T,T/) )is
[1 264 2]

PRODUCT_SCATTER

Synopsis. PRODUCT SCATTER(ARRAY, BASE, INDX1, ..., INDXn, MASK)
Optional Argument. MASK

Description. Scatters elements of ARRAY selected by MASK to positions of the
result indicated by index arrays INDX1, ..., INDXn. Each element of the result is
equal to the product of the corresponding element of BASE and the elements of
ARRAY scattered to that position.

Class. Transformational function.

Arguments.

ARRAY must be of type integer, real, or complex. It must not be scalar.
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BASE must be of the same type and kind type parameter as ARRAY. It must
not be scalar.

INDX1,...,INDXn must be of type integer and must be conformable with ARRAY.
The number of INDX arguments must be equal to the rank of BASE.

MASK=* must be of type logical and must be conformable with ARRAY.
Result Type, Type Parameter, and Shape. Same as BASE.

Result Value. The element of the result corresponding to the element b of
BASE has the value PRODUCT( (/ai,asg,...,am,b/) ), where (ay,...,am) are the
elements of ARRAY associated with b as described in Chapter 7.

Example. PRODUCT SCATTER((/ 1,2,3,1 /),(/ 4,-5,7 /),(/ 1,1,2,2 /))
is[8 -16 7].

PRODUCT_SUFFIX

Synopsis. PRODUCT SUFFIX (ARRAY, DIM, MASK, SEGMENT, EXCLUSIVE)
Optional Arguments. DIM, MASK, SEGMENT, EXCLUSIVE

Description. Computes a reverse, segmented PRODUCT scan along dimension DIM
of ARRAY.

Class. Transformational function.

Arguments.
ARRAY must be of type integer, real, or complex. It must not be scalar.
DIM* must be scalar and of type integer with a value in the range 1 <

DIM < n, where n is the rank of ARRAY.
MASK* must be of type logical and must be conformable with ARRAY.
SEGMENT* must be of type logical and have the same shape as ARRAY.

EXCLUSIVE#* must be of type logical and must be scalar.

Result Type, Type Parameter, and Shape. Same as ARRAY.
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Result Value. Element 7 of the result has the value PRODUCT((/ ay,...,am /))

where (ay,...,a;) is the (possibly empty) set of elements of ARRAY selected to
contribute to r by the rules stated in Chapter 7.

Example. PRODUCT SUFFIX( (/1,2,3,4,5/), SEGMENT= (/F,F,F,T,T/) )is
[6 6 3 20 5].

SUM_PREFIX

Synopsis. SUM_PREFIX (ARRAY, DIM, MASK, SEGMENT, EXCLUSIVE)
Optional Arguments. DIM, MASK, SEGMENT, EXCLUSIVE
Description. Computes a segmented SUM scan along dimension DIM of ARRAY.

Class. Transformational function.

Arguments.
ARRAY must be of type integer, real, or complex. It must not be scalar.
DIM=* must be scalar and of type integer with a value in the range 1 <

DIM < n, where n is the rank of ARRAY.
MASK=* must be of type logical and must be conformable with ARRAY.
SEGMENT* must be of type logical and have the same shape as ARRAY.

EXCLUSIVE* must be of type logical and must be scalar.
Result Type, Type Parameter, and Shape. Same as ARRAY.

Result Value. Element r of the result has the value SUM((/ a1,...,amn /))
where (a1,...,am) is the (possibly empty) set of elements of ARRAY selected to
contribute to r by the rules stated in Chapter 7.

Example. SUM_PREFIX( (/1,2,3,4,5/), SEGMENT= (/F,F,F,T,T/) ) is
[1 3864 9]
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SUM_SCATTER

Synopsis. SUM_SCATTER(ARRAY,BASE, INDX1, ..., INDXn, MASK)
Optional Argument. MASK

Description. Scatters elements of ARRAY selected by MASK to positions of the
result indicated by index arrays INDX1, ..., INDXn. Each element of the result is
equal to the sum of the corresponding element of BASE and the elements of ARRAY
scattered to that position.

Class. Transformational function.

Arguments.
ARRAY must be of type integer, real, or complex. It must not be scalar.
BASE must be of the same type and kind type parameter as ARRAY. It must

not be scalar.

INDX1,...,INDXn must be of type integer and must be conformable with ARRAY.
The number of INDX arguments must be equal to the rank of BASE.

MASK=* must be of type logical and must be conformable with ARRAY.
Result Type, Type Parameter, and Shape. Same as BASE.

Result Value. The element of the result corresponding to the element b of BASE
has the value SUM( (/aj,az,...,am,b/) ), where (ai,...,an) are the elements
of ARRAY associated with b as described in Chapter 7.

Example. SUM_SCATTER((/1, 2, 3, 1/), (/4, -5, 7/), (/1, 1, 2, 2/))
is[7 -1 7].

SUM_SUFFIX

Synopsis. SUM_SUFFIX(ARRAY, DIM, MASK, SEGMENT, EXCLUSIVE)
Optional Arguments. DIM, MASK, SEGMENT, EXCLUSIVE

Description. Computes a reverse, segmented SUM scan along dimension DIM of
ARRAY.
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Class. Transformational function.

Arguments.
ARRAY must be of type integer, real, or complex. It must not be scalar.
DIM=* must be scalar and of type integer with a value in the range 1 <

DIM < n, where n is the rank of ARRAY.
MASK=* must be of type logical and must be conformable with ARRAY.
SEGMENT* must be of type logical and have the same shape as ARRAY.

EXCLUSIVE* must be of type logical and must be scalar.
Result Type, Type Parameter, and Shape. Same as ARRAY.

Result Value. Element r of the result has the value SUM((/ ay,...,a;, /))
where (aj,...,an) is the (possibly empty) set of elements of ARRAY selected to
contribute to 7 by the rules stated in Chapter 7.

Example. SUM_SUFFIX( (/1,2,3,4,5/), SEGMENT= (/F,F,F,T,T/) )is
[6 5 39 5]
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This Appendix collects the formal syntax definitions from the High Performance Fortran
Language Specification [14]. They use the same conventions as that document, which
are in turn taken (with slight modifications) from the Fortran 90 Language Specification
[17). To summarize these conventions:

e Each rule defines the form of a single syntactic term, called a nonterminal symbol or
simply a nonterminal. The nonterminal being defined appears on the first line, to the
left of the is.

e Each rule gives one or more syntactic forms for the nonterminal that it defines. The
first form appears on the first line to the right of the is; others appear on later lines,

separated from each other by or.
e Each rule 1s numbered for identification and cross-referencing. The form of an HPF

rule number is Hsnn, where s is a one-digit chapter number (from the HPF Language
Specification) and nn is a one- or two-digit sequence number. A Fortran 90 rule number
is of the form Rsnn, where s is a one- or two- digit chapter number (from the Fortran 90
Language Specification), and nn is a sequence number. HPF rules are reproduced below:
Fortran 90 rules are cross-referenced by number, but not reproduced.

e A nonterminal name appears in italic font.

e A terminal (that is, literal text) appears in TYPEWRITER FONT.

e Items that are optional are enclosed in [ square brackets ].

e Brackets around and trailing periods after an item indicate it may be [ repeated ] ...
e Line breaks in a BNF rule indicate separate lines in the syntactic form.

e A name of the form zyz-list means a comma-separated list of zyz items.

e A name of the form zyz-name means a name, which must refer to an entity of class
TY2.

e A name of the form scalar-zyz means an zyz which must evaluate to a scalar.

e A name of the form integer-zyz means an zyz which must evaluate to an integer.

References in the constraints refer to sections in the HPF Language Specification, not to
this book.

C.2 High Performance Fortran Terms and Concepts

C.2.3 Syntax of Directives

H201 hpf-directive-line is  directive-origin hpf-directive
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H202 directive-origin is !'HPF$
or CHPF$
or *HPF$
H203 hpf-directive i1s  specification-directive

or erecutable-directive

H204 specification-directive 18 processors-directive

or align-directive

or distribute-directive
or dynamic-directive
or inherit-directive
or template-directive
or combined-directive
or sequence-directive

H205 ezecutable-directive is realign-directive

Constraint:

Constraint:

Constraint:

Constraint:

or redistribute-directive
or independent-directive

An hpf-directive-line cannot be commentary following another statement on
the same line.

A specification-directive may appear only where a declaration-construct may
appear.

An ezecutable-directive may appear only where an ezecutable-construct may
appear.
An hpf-directive-line follows the rules of either Fortran 90 free form (3.3.1.1)

or fixed form (3.3.2.1) comment lines, depending on the source form of the
surrounding Fortran 90 source form in that program unit. (3.3)

C.3 Data Alignment and Distribution Directives

C.3.2 Syntax of Data Alignment and Distribution Directives

H301 combined-directive 1s combined-attribute-list :: entity-decl-list
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H302

combined-attribute is
or
or
or
or
or
or

307

ALIGK align-attribute-stuff
DISTRIBUTE dist-attribute-stuff
DYNAMIC

INHERIT

TEMPLATE

PROCESSORS

DIMENSION ( ezplicit-shape-spec-list )

Constraint: The same combined-attribute must not appear more than once in a given

Constraint:

combined-directive.

If the DIMENSION attribute appears in a combined-directive, any entity to

which it applies must be declared with the HPF TEMPLATE or PROCESSORS

type specifier.

C.3.3 DISTRIBUTE and REDISTRIBUTE Directives

H303
H304

H305
H306

H307

H308

H309

H310
H311

distribute-directive is

redistribute-directive 18
or

dist-directive-stuff is
dist-attribute-stuff is
or
distributee is
or
dist-format-clause is
or
or
dist-format is
or
or
dist-onto-clause is
dist-target is
or
or

DISTRIBUTE distributee dist-directive-stuff

REDISTRIBUTE distributee dist-directive-stuff
REDISTRIBUTE dist-attribute-stuff ::
distributee-list

dist-format-clause [ dist-onto-clause ]

dist-directive-stuff
dist-onto-clause

object-name
template-name

( dist-format-list )
* ( dist-format-list )
*

BLOCK [ ( int-ezpr ) ]
CYCLIC [ ( int-expr ) |
*

ONTO dist-target

processors-name
¥ processors-name
*
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Constraint:

Constraint:

Constraint:

Constraint:

Constraint:

Constraint:

Constraint:

Constraint:

Constraint:

Appendix C

An object-name mentioned as a distributee must be a simple name and not
a subobject designator.

An object-name mentioned as a distributee may not appear as an alignee in
an ALIGN or REALIGN directive.

A distributee that appears in a REDISTRIBUTE directive must have the DY-
NAMIC attribute (see Section 3.5).

If a dist-format-list is specified, its length must equal the rank of each dis-
tributee.

If both a dist-format-list and a processors-name appear, the number of el-
ements of the dist-format-list that are not “*” must equal the rank of the
named processor arrangement.

If a processors-name appears but not a dist-format-list, the rank of each
distributee must equal the rank of the named processor arrangement,

If either the dist-format-clause or the dist-targetin a DISTRIBUTE directive
begins with “*” then every distributee must be a dummy argument,.
Neither the dist-format-clause nor the dist-target in a REDISTRIBUTE may
begin with “*”.

Any int-ezpr appearing in a dist-format of a DISTRIBUTE directive must be
a specification-ezpr.

C.3.4 ALIGN and REALIGN Directives

H312 align-directive is ALIGN alignee align-directive-stuff
H313 realign-directive is REALIGN alignee align-directive-stuff

or REALIGN align-atiribute-stuff :: alignee-list
H314 align-directive-stuff is  ( align-source-list ) align-with-clause
H315 align-attribute-stuff is [ ( align-source-list ) | align-with-clause
H316 alignee is object-name
H317 align-source is

or *

or align-dummy

H318 align-dummy is  scalar-int-variable
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Constraint: An object-name mentioned as an alignee may not appear as a distributee in
a DISTRIBUTE or REDISTRIBUTE directive.

Constraint: Any alignee that appears in a REALIGN directive must have the DYNAMIC
attribute (see Section 3.5).

Constraint: The align-source-list (and its surrounding parentheses) must be omitted
if the alignee is scalar. (In some cases this will preclude the use of the
statement form of the directive.)

Constraint: If the align-source-list is present, its length must equal the rank of the
alignee.

Constraint: An align-dummy must be a named variable.

Constraint: An object may not have both the INEERIT attribute and the ALIGN attribute.
(However, an object with the INHERIT attribute may appear as an alignee
in a REALIGN directive, provided that it does not appear as a distributee in
a DISTRIBUTE or REDISTRIBUTE directive.)

H319 align-with-clause is WITH align-spec

H320 align-spec is align-target [ ( align-subscript-list ) ]

or * align-target [ ( align-subscript-list ) ]
H321 align-target is object-name

or template-name
H322 align-subscript i1s int-expr

or align-subscript-use

or subscript-triplet

or *

H323 align-subscript-use is  [[int-level-two-ezpr] add-op] align-add-operand

or align-subscript-use add-op int-add-operand

H324 align-add-operand is [ int-add-operand * | align-primary

or align-add-operand * int-mult-operand
H325 align-primary is align-dummy
or ( align-subscript-use )

H326 int-add-operand is add-operand

H327 int-mult-operand is mult-operand

H328 int-level-two-ezpr is level-2-ezpr
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Constraint:

Constraint:
Constraint:

Constraint:

Constraint:

Constraint:

Constraint:

Appendix C

If the align-spec in an ALIGN directive begins with “#” then every alignee
must be a dummy argument.

The align-spec in a REALIGN may not begin with “*”.
Each align-dummy may appear at most once in an align-subscript-list.

An align-subscript-use expression may contain at most one occurrence of an
align-dummy.

An align-dummy may not appear anywhere in the align-spec except where
explicitly permitted to appear by virtue of the grammar shown above. Para-
phrased, one may construct an align-subscripi-use by starting with an align-
dummy and then doing additive and multiplicative things to it with any
integer expressions that contain no align-dummy.

A subscript in an align-subscript may not contain occurrences of any align-
dummy.

An int-add-operand, int-mult-operand, or int-level-two-expr must be of type
integer.

C.3.5 DYNAMIC Directive

H329 dynamic-directive is DYNAMIC alignee-or-distributee-list

H330 alignee-or-distributee is alignee

Constraint:

Constraint:

or distributee

An object in COMMON may not be declared DYNAMIC and may not be aligned to
an object (or template) that is DYNAMIC. (To get this kind of effect, Fortran
90 modules must be used instead of COMMON blocks.)

An object with the SAVE attribute may not be declared DYNAMIC and may
not be aligned to an object (or template) that is DYNAMIC.

C.3.7 PROCESSORS Directive

H331 processors-directive is PROCESSORS processors-decl-list
H332 processors-decl is processors-name [ ( erplicit-shape-spec-list ) ]
H333 processors-name is object-name
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C.3.8 TEMPLATE Directive

H334 template-directive is TEMPLATE template-decl-list
H335 template-decl is template-name [ ( ezplicit-shape-spec-list ) |
H336 template-name is  object-name

C.3.9 INHERIT Directive

H337 inherit-directive is INHERIT dummy-argument-name-list

C.4 Data Parallel Statements and Directives

C.4.1 The FORALL Statement
H401 forall-stmt 1s FORALL forall-header forall-assignment

H402 forall-header is  ( forall-triplet-spec-list [ , scalar-mask-ezpr | )

Constraint: Any procedure referenced in the scalar-mask-ezpr of a forall-header must
be pure, as defined in Section 4.3.

H403 forall-triplet-spec is indez-name = subscript : subscript [ : stride ]

Constraint: indez-name must be a scalar integer variable.

Constraint: A subscript or stride in a forall-triplet-spec-list must not contain a reference
to any indez-name in the forall-triplet-spec-list in which it appears.

H404 forall-assignment 1S assignment-stmt
or pointer-assignment-stmi

Constraint: Any procedure referenced in a forall-assignment, including one referenced
by a defined operation or assignment, must be pure as defined in Section 4.3.

C.4.2 The FORALL Construct

H405 forall-construct is FORALL forall-header
forall-body-stmt
[ forall-body-stmt | ...
END FORALL
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H406 forall-body-stmt is forall-assignment
or where-stmi
or where-construct
or forall-stmt
or forall-construct

Constraint: Any procedure referenced in a forall-body-stmt, including one referenced by
a defined operation or assignment, must be pure as defined in Section 4.3.

Constraint: If a forall-stmt or forall-construct is nested in a forall-construct, then the
inner FORALL may not redefine any inder-name used in the outer forall-
construct.

C.4.3 Pure Procedures

H407 prefic is prefiz-spec [ prefiz-spec ] ...
H408 prefiz-spec is type-spec
or RECURSIVE
or PURE
or ertrinsic-prefic
H409 function-stmt is [prefiz] FUNCTION function-name function-stuff
H410 function-stuff is ([ dummy-arg-name-list ] )

[ RESULT ( result-name ) |

H411 subroutine-stmt is [ prefiz | SUBROUTINE subroutine-name
subroutine-stuff

H412 subroutine-stuff is [ ( [ dummy-arg-list ] ) ]
Constraint: A prefir must contain at most one of each variety of prefiz-spec.
Constraint: The prefiz of a subroutine-stmt must not contain a type-spec.

The following constraints are added to Rule R1215 in Section 12.5.2.2 of the Fortran 90
standard (defining function-subprogram):

Constraint: The specification-part of a pure function must specify that all dummy argu-
ments have INTENT(IN) except procedure arguments and arguments with
the POINTER attribute.

Constraint: A local variable declared in the specification-part or internal-subprogram-
part of a pure function must not have the SAVE attribute.
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Constraint:

Constraint:

Constraint:

Constraint:

Constraint:

Constraint:

Note local variable initialization in a type-declaration-stmt or a data-stmt
implies the SAVE attribute; therefore, such initialization is also disallowed.

The ezecution-part and internal-subprogram-part of a pure function may
not use a dummy argument, a global variable, or an object that is storage
associated with a global variable, or a subobject thereof, in the following
contexts:

e As the assignment variable of an assignment-stmt;

e As a DO variable or implied DO variable, or as an indez-name in a forall-
triplet-spec;

e As an input-item in a read-stmt;

e As an internal-file-unit in a write-stmdi,

e As an IOSTAT= or SIZE= specifier in an 1/O statement.

e In an assign-stmt;

e As the pointer-object or target of a pointer-assignment-stmit,;

e As the ezpr of an assignment-stmt whose assignment variable is of a de-
rived type, or is a pointer to a derived type, that has a pointer component
at any level of component selection;

e Asan allocate-object or stat-variable in an allocate-stmt or deallocate-stmt,
or as a pointer-object in a nullify-stmt; or

e As an actual argument associated with a dummy argument with INTENT
(QUT) or INTENT(INOUT) or with the POINTER attribute.

Any procedure referenced in a pure function, including one referenced via a
defined operation or assignment, must be pure.

A dummy argument or the dummy result of a pure function may be explic-
itly aligned only with another dummy argument or the dummy result, and
may not be explicitly distributed or given the INHERIT attribute.

In a pure function, a local variable may be explicitly aligned only with
another local variable, a dummy argument, or the result variable. A local
variable may not be explicitly distributed.

In a pure function, a dummy argument, local variable, or the result variable
must not have the DYNAMIC attribute.

In a pure function, a global variable must not appear in a realign-directive
or redistribute-directive.
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Constraint: A pure function must not contain a print-stmt, open-stmt, close-stmi, back-
space-stmi, endfile-stmi, rewind-stmt, inquire-stmt, or a read-stmi or wrile-
stmt whose i0-unit is an external-file-unit or *.

Constraint: A pure function must not contain a pause-stmt or stop-stmdt.

The following constraints are added to Rule R1219 in Section 12.5.2.3 of the Fortran 90
standard (defining subroutine-subprogram):

Constraint: The specification-part of a pure subroutine must specify the intents of all

dummy arguments except procedure arguments and arguments that have
the POINTER attribute.

Constraint: A local variable declared in the specification-part or internal-function-part
of a pure subroutine must not have the SAVE attribute.

Constraint: The ezecution-part or internal-subprogram-part of a pure subroutine must
not use a dummy parameter with INTENT(IN), a global variable, or an object
that is storage associated with a global variable, or a subobject thereof, in
the following contexts:

e As the assignment variable of an assignment-stmt;

e As a DO variable or implied DO variable, or as a indez-name in a forall-
triplet-spec;

o As an input-item in a read-stmt;

e As an internal-file-unit in a write-stmt;

e As an IOSTAT= or SIZE= specifier in an I/O statement.

e In an assign-stmt,;

o As the pointer-object or target of a pointer-assignment-stmdt;

o As the ezpr of an assignment-stm! whose assignment variable is of a de-
rived type, or is a pointer to a derived type, that has a pointer component
at any level of component selection;

o Asan allocate-object or stat-variable in an allocate-stmt or deallocate-stmt,
or as a pointer-object in a nullify-stmt,;

e As an actual argument associated with a dummy argument with INTENT
(OUT) or INTENT(INOUT) or with the POINTER attribute.

Constraint: Any procedure referenced in a pure subroutine, including one referenced via
a defined operation or assignment, must be pure.
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Constraint: A dummy argument of a pure subroutine may be explicitly aligned only
with another dummy argument, and may not be explicitly distributed or
given the INHERIT attribute.

Constraint: In a pure subroutine, a local variable may be explicitly aligned only with
another local variable or a dummy argument. A local variable may not be
explicitly distributed.

Constraint: In a pure subroutine, a dummy argument or local variable must not have
the DYNAMIC attribute.

Constraint: In a pure subroutine, a global variable must not appear in a realign-directive
or redistribute-directive.

Constraint: A pure subroutine must not contain a print-stmi, open-stmt, close-stmt,
backspace-stmt, endfile-stmt, rewind-stmt, inquire-stmt, or a read-stmt or
write-stmt whose io-unit is an external-file-unit or *,

Constraint: A pure subroutine must not contain a pause-stmt or stop-stmt.

To define interface specifications for pure procedures, the following constraints are
added to Rule R1204 in Section 12.3.2.1 of the Fortran 90 standard (defining interface-
body):

Constraint: An interface-body of a pure procedure must specify the intents of all dummy
arguments except POINTER and procedure arguments.

To define pure procedure references, the following extra constraint is added to Rules
R1209 and R1210 in Section 12.4.1 of the Fortran 90 standard (defining function-reference
and call-stmi):

Constraint: In a reference to a pure procedure, a procedure-name actual-arg must be
the name of a pure procedure.

C.4.4 The INDEPENDENT Directive
H413 independent-directive is INDEPENDENT [ , new-clause )

H414 new-clause is NEW ( variable-list )

Constraint: The first non-comment line following an independent-directive must be a
do-stmt, forall-stmt, or a forall-construct.

Constraint: If the NEW option is present, then the directive must apply to a DO loop.

Constraint: A variable named in the NEW option or any component or element thereof
must not:
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e Be a pointer or dummy argument; nor

e Have the SAVE or TARGET attribute.

C.6 Extrinsic Procedures

C.6.2 Definition and Invocation of Extrinsic Procedures

H601 eztrinsic-prefiz is EXTRINSIC ( eztrinsic-kind-keyword )

H602 eztrinsic-kind-keyword is HPF
or HPF_LOCAL

C.7 Storage and Sequence Association

C.7.1 Storage Association
H701 sequence-directive is SEQUENCE [ [ :: ] association-name-list ]
or NO SEQUENCE [ [ :: ] association-name-list ]

H702 association-name is wvariable-name

or / common-block-name /

Constraint: The result variable of an array-valued function that is not an intrinsic func-

tion is a nonsequential array. It may not appear in any HPF SEQUENCE
directive.

Constraint: A variable or COMMON block name may appear at most once in a sequence-
directive within any scoping unit.
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D Formal Syntax Cross-reference

This Appendix cross-references smbols used in the formal syntax rules. Rule identifiers
beginning with “H” are from the High Performance Fortran Language Specification [14];
the full rule may be found in Appendix C. Rule identifiers beginning with “R” are from
the Fortran 90 Standard [17]; the full rule may be found there, or in the appendix of the
Fortran 90 Handbook [1].

D.1 Nonterminal Symbols That Are Defined

Symbol Defined Referenced
add-op R710 H323
add-operand R706 H326
align-add-operand H324 H323 H324
align-attribute-stuff H315 H302 H313
align-directive H312 H204
align-directive-stuff H314 H312 H313
align-dummy H318 H317 H325
align-primary H325 H324
align-source H317 H314 H315
align-spec H320 H319
align-subscript H322 H320
align-subscript-use H323 H322 H323 H325
align-target H321 H320
align-with-clause H319 H314 H315
alignee H316 H312 H313 H330
alignee-or-distributee H330 H329
allocate-object R625

allocate-stmt R622

array-constructor R431

array-spec R512

assign-stmt R838

assignment-stmi R735 H404
assoctation-name H702 H701
call-stmt R1210

combined-attribute H302 H301
combined-directive H301 H204
data-stmt R529
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deallocate-stmt
directive-origin
dist-attribute-stuff
dist-directive-stuff
dist-format
dist-format-clause
dist-onto-clause
dist-target
distribute-directive
distributee
dummy-arg
dynamic-directive
end-function-stmt
end-subroutine-stmt
entity-decl
ezecutable-construct
ezecutable-directive
ezecution-part
ezplicit-shape-spec
ezpr

eztrinsic-kind-keyword

ezlrinsic-prefic
forall-assignment
forall-body-stmt
forall-construct
forall-header
forall-stmt
forall-triplet-spec
function-reference
function-stmt
function-stuff
function-subprogram
hpf-directive
hpf-directive-line
independent-directive
inherit-directive
input-item
int-add-operand

R631
H202
H306
H305
H309
H308
H310
H311
H303
H307
R1221
H329
R1218
R1222
R504
R215
H205
R208
R513
R723
H602
H601
H404
H406
H405
H402
H401
H403
R1209
H409
H410
R1215
H203
H201
H413
H337
R914
H326

H201
H302
H303
H308
H305
H305
H310
H204
H303
H412
H204

H301
H203
H302
H601
H408
H401
H405
H406
H401
H406
H402
H409
H201

H205
H204

H323

H304
H304 H306

H306

H304 H330

H332 H335

H406

H405

H324
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int-ezpr R728 H309 H322
int-level-two-ezpr H328 H323
int-mult-operand H327 H324
int-variable R607 H318
interface-body R1204
internal-subprogram-part R210

level-2-expr R707 H328
mask-ezpr R741 H402
mult-operand R705 H327
namelist-group-object R737
namelist-stmt R543

new-clause H414 H413
nulli fy-stmt R629

oulput-item R915

pause-stmt R844
pointer-assignment-stmt R736 H404
pointer-object R630

prefic H407 H409 H411
prefiz-spec H408 H407
processors-decl H332 H331
processors-directive H331 H204
processors-name H333 H311 H332
read-stmt R737
realign-directive H313 H205
redistribute-directive H304 H205
section-subscript R618
sequence-directive H701 H204
specification-directive H204 H203
specification-ezpr R734
specification-part R204

stat-variable R623

stop-stmt R842

stride R620 H403
subroutine-stmt H411
subroutine-stuff H412 H411
subscript R617 H403
subscript-triplet R619 H322
target R737

Copyrighted Material



320 Appendix D

template-decl H335 H334
template-directive H334 H204
template-name H336 H307 H321 H335
type-declaration-stmt R501

type-spec R502 H408

variable R601 H414
where-construct R739 H406

where-stmt R738 H406

write-stmt R737

D.2 Nonterminal Symbols That Are Not Defined

Symbol Referenced
common-block-name H702

dummy-arg-name H410

dummy-argument-name H337

function-name H409

indez-name H403

object-name H307 H316 H321 H333 H336
result-name H410

subroutine-name H411

variable-name H702

D.3 Terminal Symbols

Symbol Referenced
'HPF$ H202
( H302 H308 H309 H314 H315

H320 H325 H332 H335 H402
H410 H412 H414 H601

) H302 H308 H309 H314 H315
H320 H325 H332 H335 H402
H410 H412 H414 H601

* H308 H309 H311 H317 H320
H322 H324
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*HPF$

-

ALIGN
BLOCK

CHPF$
CYCLIC
DIMENSION
DISTRIBUTE
DYNAMIC

END
EXTRINSIC
FORALL
FUNCTION
HPF
HPF_LOCAL
INDEPENDENT
INHERIT

NEW

NO

ONTO
PROCESSORS
PURE
REALIGN
RECURSIVE
REDISTRIBUTE
RESULT
SEQUENCE
SUBROUTINE
TEMPLATE
WITH

H202
H402
H702
H317
H301
H403
H302
H309
H202
H309
H302
H302
H302
H405
H601
H401
H409
H602
H602
H413
H302
H414
H701
H310
H302
H408
H313
H408
H304
H410
H701
H411
H302
H319

H413

H403
H304

H312

H303
H329

H405

H337

H331

H334
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*

* notation, 54

A

abstract processors, 98, 249

ABSTRACT.TO_PHYSICAL, 239

active set, 173, 174

Ada, 73

adjustable array, 64

Advanced Research Projects Agency (ARPA),
xiii

aggregate cover, 134, 249

aggregate variable group, 132, 249

alias, 67, 160

ALIGN directive, 103, 112ff, 148ff, 187, 245

align-add-operand, 115, 309

align-attribute-stuff, 113, 308

align-directive, 113, 308

align-directive-stuff, 113, 308

align-dummy, 113, 116, 308

align-primary, 115, 309

align-source, 113, 308

align-spec, 148, 309

align-subscript, 115, 309

align-subscript-use, 115, 116, 309

align-target, 115, 187, 249, 309

align-with-clause, 115, 148, 309

alignee, 113, 187, 249, 308

alignee-or-distributee, 120, 310

alignment, 100, 249

ALL_PREFIX, 255

ALL_SCATTER, 255

ALL_SUFFIX, 256

Alliant, 25

allocatable array, 55, 64

ALLOCATABLE attribute, 121ff

ALLOCATE statement, 121ff, 186, 193

American National Standards Institute (ANSI),
xii, 9

American Standards Association (ASA), 9

ANY_PREFIX, 257

ANY_SCATTER, 258

ANY_SUFFIX, 258

argument association, 71

array, 54

array assignment, 27, 56, 167, 170, 173

array combining scatter function, 208

array constructor, 61

array expression, 27

array features, 51

array intrinsic, 27

array location function, 206

array pointer, 64

array prefix function, 210

array reduction function, 207
array sequence order, 61

array sorting function, 215

array suffix function, 210
ASSIGN statement, 186, 193
assignment statement, 173, 174, 186, 187
assignment-stmt, 171
association-name, 132, 316
assumed-shape array, 64, 71, 163
assumed-size array, 64, 71, 163
atomic data object, 171, 193
atomic object, 100, 172, 249
attribute, 100

automatic array, 55, 64

B

BACKSPACE statement, 187
BBN, 25

Bell Laboratories, xiii
Bernstein conditions, 199
Bernstein’s conditions, 193

bit manipulation function, 206
bit model, 76

block data program unit, 70
block distribution, 91, 103, 107
BLOCK(m) distribution, 107
block-cyclic distribution, 105

C

call-stmt, 315
Center for Research on Parallel Computation
(CRPC), 11
CLOSE statement, 187
collapsed, 115, 249
collapsing alignment, 93
combined-attribute, 102, 307
combined-directive, 102, 113, 147, 306
combining scatter function,
see array combining scatter function
comment, 17
COMMON, 70, 120, 129
communication, 24, 30ff, 249
COMPASS, Inc., 11
component, 134, 249
conformable, 57
control dependence, 193, 194
Convex Computer, 11
COPY_PREFIX, 259
COPY_SCATTER, 260
COPY_SUFFIX, 261
Cornell Theory Center, xiii
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correspond, 107
COUNT_PREFIX, 261
COUNT_SCATTER, 262
COUNT_SUFFIX, 263

cover, 131, 134, 249

Cray pointer, 67

Cray Research, xiii, 11, 25, 67
currently allocated, 56

cyclic distribution, 91, 104, 108
CYCLIC(m) distribution, 108

D

data facilities, 51
data locality, 249
data mapping, 30, 31, 91ff, 100, 139ff, 251
model, 98fF
specification, 102
data object, 172
data parallel, 26, 27ff, 250
data remapping, see dynamic mapping
DATA statement, 186
DEALLOCATE statement, 186, 193
deferred-shape array, 64
derived type, 54, 65, 187
derived type definition, 65
descriptive mapping, 139, 144, 151ff, 245, 250
Digital Equipment Corporation, xiv, 11, 25, 54,
67

DIMENSION attribute, 103

directive, 14, 17ff, 250

directive-origin, 306

dist-attribute-stuff, 106, 147, 307
dist-directive-stuff, 106, 147, 307
dist-format, 106, 147, 307
dist-format-clause, 147, 307
dist-onto-clause, 148, 307

dist-target, 148, 307

DISTRIBUTE directive, 103ff, 147ff, 187, 245
distribute-directive, 105, 147, 307
distributee, 106, 113, 250, 307
distribution, 100, 250

distribution formats, 106

DO INDEPENDENT, 192

DO statement, 170, 186, 192, 193
dummy argument, 186, 187, 188

dummy result, 187

DYNAMIC attribute, 114, 187
DYNAMIC directive, 101, 103, 120ff, 245
dynamic mapping, 97, 140, 160, 245, 250
dynamic-directive, 120, 310

Index

E

ease-of use improvements, 51, 52

edit descriptor, 53

element, 58

elemental intrinsic, 58, 76, 167
ENDFILE statement, 187
EQUIVALENCE, 129ff

ESPRIT, xiii

executable-directive, 306

explicit interface, 59, 70, 72, 140, 150ff, 250
explicit mapping, 134, 187, 250
explicit-shape array, 64, 71

extent, 57

external function, 70

external I/0, 187

EXTRINSIC attribute, 246
EXTRINSIC procedure, 29ff, 223ff, 250
extrinsic-kind-keyword, 227, 250, 316
extrinsic-prefix, 185, 227, 316

F

FORALL INDEPENDENT, 193

FORALL statement, 27, 167, 170, 174, 186,
188, 192

forall-assignment, 171, 311

forall-body-stmt, 171, 312

forall-construct, 170, 311

forall-header, 311

forall-stmt, 170, 311

forall-triplet-spec, 171, 311

forall-triplet-spec-list, 171

FORTRAN 77, 10, 246

Fortran 8x, 10

Fortran 90, 10, 14, 21, 27, 51ff, 241, 246ff

function, 71

function-reference, 315

function-stmt, 185, 312

function-stuff, 312

function-subprogram, 186, 312

functional parallelism, 26

G

generic procedure, 73, 76

global argument, 233

global array, 233

global code, 224

global name space, 250

global name space, 30

global variable, 186, 187, 250
GLOBAL_ALIGNMENT, 238
GLOBAL_DISTRIBUTION, 239
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GLOBAL.TEMPLATE, 239
GLOBAL_TO_LOCAL, 240
GMD-I1.T (Sankt Augustin), xiii
GOTO statement, 194
GRADE_DOWN, 263
GRADE_UP, 265

granularity, 27

H

Hewlett Packard, 25

High Performance Fortran Forum (HPFF), xiii,
11, 22

host association, 72

HPF intrinsic procedure, 203, 218, 255ff

HPF library, 15, 27, 186, 203, 218, 246, 255ff

HPF local library, 2381

HPF-conforming, 16, 170, 171, 192, 251

hpf-directive, 306

hpf-directive-line, 305

HPF_ALIGNMENT, 266

HPF_DISTRIBUTION, 269

HPF_LOCAL, 230ff

HPF_.TEMPLATE, 271

I

IALL, 274

IALL_PREFIX, 275

IALL_SCATTER, 276

IALL_SUFFIX, 277

IANY, 277

IANY_PREFIX, 279

IANY_SCATTER, 279

IANY_SUFFIX, 280

IBM, 9, 11, 25

ILEN, 245, 281

immediately aligned, 100, 251

implicit mapping, 98, 134, 251

implied DO, 61, 186, 193

inaccessible, 68

include line, 70

INDEPENDENT directive, 27, 169, 192, 245,
251

independent-directive, 192, 315

independently compiled, 70

index-name, 171

INHERIT attribute, 187

INHERIT directive, 103, 149ff, 245

inherit-directive, 149, 311

inherited template, 139, 149ff, 152, 251

initialization expression, 61

inner active set, 175

inner valid set, 174

input/output statement, 186, 187, 194
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INQUIRE statement, 187, 194
inquiry function, 76
int-add-operand, 309
int-level-two-expr, 309
int-mult-operand, 309

integer number system model, 76
Intel, 24

INTENT attribute, 184, 186, 188
interconnection network, 23
interface block, 70, 188
interface-body, 187, 315

internal I/O, 186

internal procedure, 186
International Standards Organization (ISO), 10
intrinsic data type, 54

intrinsic procedure, 51, 75, 76, 185
IPARITY, 281
IPARITY_PREFIX, 283
IPARITY_SCATTER, 283
IPARITY_SUFFIX, 284

K

Kendall Square Research, 25
keyword argument, 71

L

language evolution, 51, 83

Lawrence Livermore National Laboratory, xiv
LEADZ, 285

linear function, 116

load balance, 29, 251

local argument, 233

local array, 233

local memory, 24

local name space, 251

local procedure, 224, 251

local variable, 187, 251
LOCAL_TO_GLOBAL, 240

location function, see array location function
loosely synchronous, 251

M

main program, 70

many-one array section, 60

mapping inquiry subroutine, 204, 252
masked array assignment, 27, 57, 62, 170, 175
MasPar, xiii, 25

master-slave parallelism, 26
MAXLOC, 206, 285

MAXVAL, 206

MAXVAL_PREFIX, 287
MAXVAL.SCATTER, 288
MAXVAL_SUFFIX, 289
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Meiko, 24

memory, 23

message-passing, 24

MIL-STD-1753, 10, 246

MIMD, see Multiple Instruction Multiple Data
(MIMD)

MINLOC, 206, 289

MINVAL, 206

MINVAL_PREFIX, 291

MINVAL_SCATTER, 292

MINVAL_SUFFIX, 292

modularization, 51, 70ff

module program unit, 70

multi-statement FORALL, 170, 173, 246

multiple entry point, 70

Multiple Instruction Multiple Data (MIMD), 24

Multiple Instruction Multiple Data (SIMD), 252

N

namelist 1/O, 53

National Science Foundation (NSF), xiii

natural template, 139, 151, 252

nCUBE, 24

new-clause, 315

node program, 252

non-advancing I/0O, 53

nonconforming, 252

nonsequential, 131, 134fF

nonsequential variable, 252

NOSEQUENCE directive, 131ff

NULLIFY statement, 186, 193

NUMBER_OF PROCESSORS, 124, 203, 245,
293

(o)

Oak Ridge National Laboratory, xiii
obsolescent feature, 83

ONTO clause, 107, 111, 148

OPEN statement, 187

optional argument, 71

outer active set, 174

P

parallel computation, 23, 26ff

parallel computer, 23

Parallel Computing Forum (PCF), 11

Parallel Random Access Memory (PRAM), 27
PARITY, 294

PARITY_PREFIX, 295

PARITY_SCATTER, 296

PARITY_SUFFIX, 296

partial record 1/0, 53

PAUSE statement, 187

Index

PHYSICAL_-TO_-ABSTRACT, 239
pointer, 55, 67

POINTER attribute, 186

pointer assignment, 67, 173, 174, 186, 187
pointer associated, 67

POINTER attribute, 121ff, 186, 188
pointer-assignment-stmt, 171

POPCNT, 297

POPPAR, 297

precedence graph, 175

prefix, 185, 312

prefix function, see array prefir function
prefix-spec, 185, 312

prescriptive mapping, 139, 140, 245, 252
PRINT statement, 187

processor, 23

processor arrangement, 124, 252
processor-dependent, 17

PROCESSORS directive, 103, 124ff, 245
processors-decl, 124, 310
processors-directive, 124, 310
processors-name, 124, 310
PROCESSORS_SHAPE, 124, 203, 245, 298
PRODUCT_PREFIX, 298
PRODUCT_.SCATTER, 299
PRODUCT_SUFFIX, 300

program unit, 70

programming model, 23

PURE attribute, 171, 172, 184, 245, 252
PURE procedure, 167

R

rank, 57, 252

READ statement, 186, 187, 193

real number system model, 76

REALIGN directive, 101, 112ff, 187, 194, 245

realign-directive, 113, 308

record, 55

RECURSIVE attribute, 184, 185

REDISTRIBUTE directive, 101, 103ff, 187, 194,
245

redistribute-directive, 105, 307

reduction function,
see array reduction function

redundant feature, 83

remote memory, 24

removed feature, 83

replicating alignment, 96

replication, 96, 252

representational model, 76

Research Institute for Advanced Computer Sci-
ence (RIACS), xiv

REWIND statement, 187

Rice University, xiii, 11
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rule number, 15

S

SAVE attribute, 120, 129, 186, 192
scalar processor arrangement, 125
section, 58
sequence association, 15, 85, 139, 161, 252
SEQUENCE attribute, 135
SEQUENCE directive, 131ff
sequence-directive, 131, 316
sequential, 131, 134ff
sequential common, 134, 253
sequential variable, 134, 253
shape, 57, 253
shared memory, 25
SIMD,
see Single Instruction Multiple Data (SIMD)
Single Instruction Multiple Data (SIMD), 25,
253
Single Program Multiple Data (SPMD), 28, 223,
253
single-statement FORALL, 170, 172, 245
size, 57
sorting functinn, see array sorling function
specific procedure, 76
specification-directive, 306
SPMD,
see Single Program Multiple Data (SPMD)
standard-conforming, 16
statement functions, 185
static mapping, 97, 245, 253
STOP statement, 187
storage association, 15, 85, 129ff, 186, 253
storage sequence, 253
stream 1/0, 53
stride, 171, 253
structure, 55
structure constructor, 65
subobject, 172
subroutine, 71
subroutine-stmt, 185, 312
subroutine-stuff, 312
subroutine-subprogram, 186, 314
subscript, 171
subscript triplet notation, 58, 61
Subset HPF, 245fF
Subset-conforming, 16
suffix function, see array suffiz function
SUM_PREFIX, 301
SUM_SCATTER, 302
SUM_SUFFIX, 302
Sun Microsystems, 67
synchronization, 24, 253
syntax rule, 15
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Syracuse University, xiii, 11
system inquiry function, 203, 253

T

TARGET attribute, 68, 192

task parallel, 26, 29ff

template, 100, 253

TEMPLATE directive, 101, 103, 127ff, 245
template-decl, 127, 311

template-directive, 127, 311
template-name, 127, 311

Tera Computer, 25

Texas, xiv

Thinking Machines, xiii, 11, 24, 25

totally associated, 253

transcriptive mapping, 139, 142, 245, 254
transformational function, 76

triplet notation, see subscript triplet notation
type declaration statement, 65, 186
type-spec, 185

U

ultimately aligned, 100, 254
University of Vienna, 11
user-defined assignment, 65
user-defined operator, 65
user-defined type, 54

A%

valid set, 172, 173
vector-valued subscript, 61

w

WHERE statement,

see masked array assignment
where-construct, 172
where-stmt, 172
WITH clause, 115, 148

WRITE statement, 186, 187, 193
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