
P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-FM CB496-Akin September 27, 2002 18:0

Object-Oriented Programming via Fortran 90/95

Learn how to write technical applications in a modern object-oriented
approach using Fortran 90 or 95. This book will teach you how to stop focusing
on the traditional procedural abilities of Fortran and to employ the principles
of object-oriented programming (OOP) to produce clear, highly efficient,
executable codes. Get ready now to take advantage of all the features of the
finalized, fully object-oriented Fortran 200X!

In addition to covering the OOP methodologies, the book covers the basic
foundation of the language and good programming skills, making the book
valuable also as a good migration tool for experienced Fortran programmers
who want to pick up the OOP paradigm smoothly. The author highlights
common themes by using comparisons with Matlab and C++ and uses nu-
merous cross-referenced examples to convey all concepts quickly and clearly.
Complete code for the examples is included on the accompanying CD-ROM.

Ed Akin is Professor of Mechanical Engineering and Professor of Compu-
tational and Applied Mathematics at Rice University.

i

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-FM CB496-Akin September 27, 2002 18:0

ii

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-FM CB496-Akin September 27, 2002 18:0

Object-Oriented Programming via
Fortran 90/95
� �

ED AKIN
Rice University

iii

CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press
40 West 20th Street, New York, NY 10011–4211, USA

www.cambridge.org
Information on this title:www.cambridge.org/9780521524087

© Ed Akin 2003

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,

no reproduction of any part may take place without
the written permission of Cambridge University Press.

First published 2003
Reprinted 2003

Printed in the United States of America

A catalogue record for this book is available from the British Library.

ISBN-13 978-0-521-52408-7 paperback
ISBN-10 0-521-52408-3 paperback

Cambridge University Press has no responsibility for
the persistence or accuracy of URLs for external or

third-party Internet Web sites referred to in this publication
and does not guarantee that any content on such

Web sites is, or will remain, accurate or appropriate.

We make no warranties, express or implied, that the programs contained in this volume
are free of error, or are consistent with any particular standard of merchantability, or that
they will meet your requirements for any particular application. They should not be relied
on for solving a problem whose incorrect solution could result in injury to a person or loss

of property. If you do use the programs in such a manner, it is at your own risk. The
authors and publisher disclaim all liability for direct or consequential damages resulting

from your use of the programs.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-FM CB496-Akin September 27, 2002 18:0

Contents

Preface page ix

One. Program Design 1
1.1 Introduction 1
1.2 Problem Definition 4
1.3 Modular Program Design 6
1.4 Program Composition 11
1.5 Program Evaluation and Testing 18
1.6 Program Documentation 21
1.7 Object-Oriented Formulations 21
1.8 Exercises 24

Two. Data Types 26
2.1 Intrinsic Types 26
2.2 User-Defined Data Types 28
2.3 Abstract Data Types 31
2.4 Classes 33
2.5 Exercises 35

Three. Object-Oriented Programming Concepts 36
3.1 Introduction 36
3.2 Encapsulation, Inheritance, and Polymorphism 37
3.3 Object-Oriented Numerical Calculations 42
3.4 Discussion 51
3.5 Exercises 51

Four. Features of Programming Languages 56
4.1 Comments 57
4.2 Statements and Expressions 57
4.3 Flow Control 63
4.4 Subprograms 76
4.5 Interface Prototype 84
4.6 Characters and Strings 85
4.7 User-Defined Data Types 92
4.8 Pointers and Targets 99
4.9 Accessing External Source Files and Functions 102

v

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-FM CB496-Akin September 27, 2002 18:0

vi Contents

4.10 Procedural Applications 103
4.11 Exercises 115

Five. Object-Oriented Methods 119
5.1 Introduction 119
5.2 The Drill Class 119
5.3 Global Positioning Satellite Distances 121
5.4 Exercises 136

Six. Inheritance and Polymorphism 137
6.1 Introduction 137
6.2 Sample Applications of Inheritance 137
6.3 Polymorphism 142
6.4 Subtyping Objects (Dynamic Dispatching) 152
6.5 Exercises 156

Seven. OO Data Structures 157
7.1 Data Structures 157
7.2 Stacks 157
7.3 Queues 159
7.4 Linked Lists 164
7.5 Direct (Random) Access Files 175
7.6 Exercises 177

Eight. Arrays and Matrices 178
8.1 Subscripted Variables: Arrays 178
8.2 Matrices 195
8.3 Exercises 206

Nine. Advanced Topics 209
9.1 Managing Dynamic Memory 209
9.2 Large-Scale Code Development 216
9.3 Nonstandard Features 227
9.4 Exercises 227

Appendix A. Fortran 90 Overview 229
A.1 List of Language Tables 229
A.2 Alphabetical Table of Fortran 90 Intrinsic Routines 246
A.3 Syntax of Fortran 90 Statements 258

Appendix B. Selected Exercise Solutions 277
B.1 Problem 1.8.1: Checking Trigonometric Identities 277
B.2 Problem 1.8.2: Newton–Raphson Algorithm 278
B.3 Problem 1.8.3: Game of Life 278
B.4 Problem 2.5.1: Conversion Factors 280
B.5 Problem 3.5.3: Creating a Vector Class 282
B.6 Problem 3.5.4: Creating a Sparse Vector Class 289
B.7 Problem 3.5.5: Creating an Inventory Object 297
B.8 Problem 4.11.1: Count the Lines in an External File 299
B.9 Problem 4.11.3: Computing CPU Time Usage 300
B.10 Problem 4.11.4: Converting a String to Uppercase 301
B.11 Problem 4.11.8: Read Two Values from Each Line of an External File 301

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-FM CB496-Akin September 27, 2002 18:0

Contents vii

B.12 Problem 4.11.14: Two-line Least-square Fits 301
B.13 Problem 4.11.15: Find the Next Available File Unit 305
B.14 Problem 5.4.4: Polymorphic Interface for the Class ‘Position Angle’ 306
B.15 Problem 5.4.5: Building an Object Inventory System 307
B.16 Problem 6.4.1: Using a Function with the Same Name in Two Classes 312
B.17 Problem 6.4.3: Revising the Employee–Manager Classes 312
B.18 Problem 8.3.5: Design a Tridiagonal Matrix Class 312
B.19 Problem 9.1: Count the Integer Word Memory Leak 317

Appendix C. Companion C++ Examples 319
C.1 Introduction 319

Bibliography 327

Glossary of Object-Oriented Terms 329

Index 335

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-FM CB496-Akin September 27, 2002 18:0

viii

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-FM CB496-Akin September 27, 2002 18:0

Preface

There has been an explosion of interest in, and books on, object-oriented programming
(OOP). Why have yet another book on the subject? In the past a basic education was in-
tended to result in mastery of the three r’s: reading, ’riting, and ’rithmetic. Today a sound
education in engineering programming leads to producing code that satisfies the four r’s:
readability, reusability, reliability, and real efficiency. Although some object-oriented pro-
gramming languages have some of these abilities, Fortran 90/95 offers all of them for engi-
neering applications. Thus, this book is intended to take a different tack by using the Fortran
90/95 language as its main OOP tool. With more than 100 pure and hybrid object-oriented
languages available, one must be selective in deciding which ones merit the effort of learning
to utilize them. There are millions of Fortran programmers, and so it is logical to present
the hybrid object-oriented features of Fortran 90/95 to them to update and expand their
programming skills. This work provides an introduction to Fortran 90 as well as to OOP
concepts. Even with the current release (Fortran 95) we will demonstrate that Fortran offers
essentially all of the tools recommended for OOP techniques. It is expected that Fortran
200X will offer additional object-oriented capabilities such as declaring “extensible” (or
virtual) functions. Thus, it is expected that the tools learned here will be of value far into the
future.

It is commonly agreed that the two-decade-old F77 standard for the language was miss-
ing several useful and important concepts of computer science that evolved and were made
popular after its release, but it also had a large number of powerful and useful features.
The following F90 standard included many improvements that have often been overlooked
by programmers. It is fully compatible with all old F77 standard code, but it declared sev-
eral features of that standard obsolete. That was done to encourage programmers to learn
better methods even though the standard still supports those now obsolete language con-
structs. The F90 standards committee brought into the language most of the best features of
other more recent languages like Ada, C, C++, Eiffel, and so forth. In part those additions
included structures, dynamic memory management, recursion, pointers (references), and
abstract data types along with their supporting tools of encapsulation, inheritance, and the
overloading of operators and routines. Equally important for those involved in numerical
analysis, the F90 standard added several new features for efficient array operations that are
very similar to those of the popular Matlab environment. Most of those features include
additional options to employ logical filters on arrays. All of the new array features were
intended for use on vector or parallel computers and allow programmers to avoid the bad
habit of writing numerous serial loops. The current standard, F95, went on to add more spe-
cific parallel array tools, provided “pure” routines for general parallel operations, simplified

ix

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-FM CB496-Akin September 27, 2002 18:0

x Preface

the use of pointers, and made a few user-friendly refinements of some F90 features. Indeed,
at this time one can view F90/95 as the only cross-platform international standard language
for parallel computing. Thus, Fortran continues to be an important programming language
that richly rewards the effort of learning to take advantage of its power, clarity, and user
friendliness.

We begin that learning process in Chapter 1 with an overview of general programming
techniques. Primarily the older “procedural” approach is discussed there, but the chapter
closes with an outline of the newer “object” approach to programming. An experienced
programmer may want to skip directly to the last section of Chapter 1, where we outline
some object-oriented methods. In Chapter 2, we introduce the concept of the abstract data
types and their extension to classes. Chapter 3 provides a fairly detailed introduction to
the concepts and terminology of object-oriented programming. A much larger supporting
glossary is provided as a supplement.

For the sake of completeness, Chapter 4 introduces language-specific details of the topics
discussed in the first chapter. The Fortran 90/95 syntax is used there, but in several cases cross
references are made to similar constructs in the C++ language and the Matlab environment.
Although some readers may want to skip Chapter 4, it will help others learn the Fortran
90/95 syntax, or they may read related publications that use C++ or Matlab. All of the syntax
of Fortran 90 is also given in an appendix.

Since many Fortran applications relate to manipulating arrays or doing numerical ma-
trix analysis, Chapter 5 presents a very detailed coverage of the powerful intrinsic features
Fortran 90 has added to provide for more efficient operations with arrays. It has been demon-
strated in the literature that object-oriented implementations of scientific projects requiring
intensive operations with arrays execute much faster in Fortran 90 than in C++. Since Fortran
90 was designed for operations on vector and parallel machines, that chapter encourages the
programmer to avoid unneeded serial loops and to replace them with more efficient intrinsic
array functions. Readers not needing to use numerical matrix analysis may skip Chapter 5.

Chapter 6 returns to object-oriented methods with a more detailed coverage of using
object-oriented analysis and object-oriented design to create classes and demonstrates how
to implement them using OOP in Fortran 90. Additional Fortran 90 examples of inheri-
tance and polymorphism are given in Chapter 7. Object-oriented programs often require
the objects to be stored in some type of “container” or data structure such as a stack or
linked list. Fortran 90 object-oriented examples of typical containers are given in Chapter 8.
Some specialized topics for more advanced users are given in Chapter 9, and so beginning
programmers may skip that chapter.

To summarize the two optional uses of this text: it is recommended that experienced
Fortran programmers wishing to learn to use OOP cover Chapters 2, 3, 6, 7, 8, and 9, whereas
persons studying Fortran for the first time should cover Chapters 1, 2, 3, and. Anyone needing
to use numerical matrix analysis should also include Chapter 5.

An OO glossary is included to aid in reading this text and the current literature on OOP.
Another appendix on Fortran 90 gives an alphabetical listing of its intrinsic routines, a
subject-based list of them, a detailed syntax of all the F90 statements, and a set of examples
demonstrating the use of every statement. Selected solutions for many of the assignments
are included in another appendix, along with comments on those solutions. The final ap-
pendix gives the C++ versions of several of the F90 examples in the text. They are provided
as an aid to understanding other OOP literature. Since F90 and Matlab are so similar, the
corresponding Matlab versions often directly follow the F90 examples in the text.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-FM CB496-Akin September 27, 2002 18:0

Preface xi

Acknowledgments

We are all indebted to the hundreds of programmers who labor on various standards commit-
tees to improve all programming languages continuously. Chapter 1 is a modification of in-
troductory programming notes developed jointly with Prof. Don Johnson at Rice University.
I would like to thank Tinsley Oden and the Texas Institute for Computational Mathematics
for generously hosting my sabbatical leave, during which most of this work was developed,
and Rice University for financing the sabbatical. Special thanks go to my wife, Kimberly,
without whose support and infinite patience this book would not have been completed.

Source Codes

All of the program examples and selected solutions are included on the CD-ROM provided
with the book. To be readable on various platforms they have been written with the ISO9660
standard format. Additional files are provided to relate the ISO standard short file names
to the full-length program names used in the book. Of course, the source files will have to
be processed through a Fortran 90 or 95 or 2000 compiler to form executables. All of the
figures are also provided as encapsulated PostScript R© files.

Ed Akin, Rice University, 2002

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-FM CB496-Akin October 7, 2002 11:48

xii

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-01 CB496-Akin September 13, 2002 15:51

CHAPTER ONE
� �

Program Design

1.1 Introduction

The programming process is similar in approach and creativity to writing a paper. In compo-
sition, you are writing to express ideas; in programming, you are expressing a computation.
Both the programmer and the writer must adhere to the syntactic rules (grammar) of a
particular language. In prose, the fundamental idea-expressing unit is the sentence; in pro-
gramming, two units – statements and comments – are available.

Composition, from technical prose to fiction, should be organized broadly, usually through
an outline. The outline should be expanded as the detail is elaborated and the whole reex-
amined and reorganized when structural or creative flaws arise. Once the outline settles,
you begin the actual composition process using sentences to weave the fabric your outline
expresses. Clarity in writing occurs when your sentences, both internally and globally, com-
municate the outline succinctly and clearly. We stress this approach here with the aim of
developing a programming style that produces efficient programs humans can easily under-
stand.

To a great degree, no matter which language you choose for your composition, the idea
can be expressed with the same degree of clarity. Some subtleties can be better expressed in
one language than another, but the fundamental reason for choosing your language is your
audience: people do not know many languages, and if you want to address the American
population, you had better choose English over Swahili. Similar situations happen in pro-
gramming languages, but they are not nearly so complex or diverse. The number of languages
is far fewer, and their differences minor. Fortran is the oldest language among those in use
today. The C and C++ languages differ from it somewhat, but there are more similarities
than not (see Bar-David [6], Barton and Nackman [7], Hanly [22], Hubbard [24], and Nielsen
[30]). Matlab, written in C and Fortran, was created much later than these two, and its
structure is so similar to the others that it can easily be mastered (see Hanselman and Little-
field [23], and Pratap [33]). The C++ language is an extension of the C language that places its
emphasis on object-oriented programming (OOP) methods. Fortran added object-oriented
capabilities with its F90 standard, and additional enhancements for parallel machines were
issued with F95(see Adams et al. [1], Gehrke [17], Hahn [21], Kerrigan [25], and Press et al.
[34]). The Fortran 200X standard is planned to contain more user-friendly constructs for
polymorphism and will thus enhance its object-oriented capabilities. This creation of a new
language and its similarity to more established ones are this book’s main points: more com-
puter programming languages will be created during your career, but these new languages
will probably not be much different than ones you already know. Why should new languages

1

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-01 CB496-Akin September 13, 2002 15:51

2 Program Design

evolve? In the case of Matlab, the desire to express matrix-like expressions easily motivated
its creation. The difference between Matlab and Fortran 90 is infinitesimally small compared
with the gap between English and Swahili.

An important difference between programming and composition is that in programming
you are writing for two audiences: people and computers. As for the computer audience,
what you write is “read” by interpreters and compilers specific to the language you used.
They are very rigid about syntactic rules, and perform exactly the calculations you say. It is
like a document you write being read by the most detailed, picky person you know; every
pronoun is questioned, and if the antecedent is not perfectly clear, then they throw up their
hands, rigidly declaring that the entire document cannot be understood. Your picky friend
might interpret the sentence “Pick you up at eight” to mean that you will literally lift him
or her off the ground at precisely 8 o’clock and will then demand to know whether the time
is in the morning or afternoon and what the date is.

Humans demand even more from programs. This audience consists of two main groups
whose goals can conflict. The larger of the two groups consists of users. Users care about
how the program presents itself, its user interface, and how quickly the program runs that
is, how efficient it is. To satisfy this audience, programmers may use statements that are
overly terse because they know how to make the program more readable by the computer’s
compiler, enabling the compiler to produce faster but less human-intelligible programs. This
approach causes the other portion of the audience – programmers – to boo and hiss. The
smaller audience, of which you are also a member, must be able to read the program to
enhance or change it. A characteristic of programs that further distinguishes it from prose is
that you and others will seek to modify your program in the future. For example, in the 1960s,
when the first version of Fortran was created, useful programs by today’s standards (such as
matrix inversion) were written. Back then, the user interface possibilities were quite limited,
and the use of visual displays was limited. Thirty years later, you would (conceivably) want
to take an old program, and provide a modern user interface. If the program is structurally
sound (a good outline and organized well) and is well written, reusing the “good” portions
is easy accomplished.

The three-audience situation has prompted most languages to support both computer-
and human-oriented “prose.” The program’s meaning is conveyed by statements and is what
the computer interprets. Humans read this part, which in virtually all languages bears a strong
relationship to mathematical equations, and also read comments. Comments are not read by
the computer at all but are there to help explain what might be expressed in a complicated
way by programming language syntax. The document or program you write today should
be understandable tomorrow, not only by you, but also by others. Sentences and paragraphs
should make sense after a day or so of gestation. Paragraphs and larger conceptual units
should not contain assumptions or leaps that confuse the reader. Otherwise, the document
you write for yourself or others serves no purpose. The same is true with programming; the
program’s organization should be easy to follow, and the way you write the program, using
both statements and comments, should help you and others understand how the computation
proceeds. The existence of comments permits the writer to express the program’s outline
directly in the program to help the reader comprehend the computation.

These similarities highlight the parallels between composition and programming. Dif-
ferences become evident because programming is, in many ways, more demanding than
prose writing. On one hand, the components and structure of programming languages are
far simpler than the grammar and syntax of any verbal or written language. When read-
ing a document, you can figure out the misspelled words and not be bothered about every
little imprecision in interpreting what is written. On the other hand, simple errors, akin to

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-01 CB496-Akin September 13, 2002 15:51

1.1 Introduction 3

misspelled words or unclear antecedents, can completely undermine a program, rendering
it senseless or causing it to go wildly wrong during execution. For example, there is no
real dictionary when it comes to programming. You can define variable names containing
virtually any combination of letters (upper- and lowercase), underscores, and numbers. A
typographical error in a variable’s name can therefore lead to unpredictable program behav-
ior. Furthermore, computer execution speeds are becoming faster and faster, meaning that
increasingly complex programs can run very quickly. For example, the program (actually
groups of programs) that runs NASA’s space shuttle might be comparable in size to Hugo’s
Les Misérables, but its complexity and immediate importance to the “user” far exceed that
of the novel.

As a consequence, program design must be extremely structured and have the ultimate
intentions of performing a specific calculation efficiently with attractive, understandable,
efficient programs. Achieving these general goals means breaking the program into compo-
nents, writing and testing them separately, and then merging them according to the outline.
Toward this end, we stress modular programming. Modules can be on the scale of chapters
or paragraphs and share many of the same features. They consist of a sequence of statements
that by themselves express a meaningful computation. They can be merged to form larger
programs by specifying what they do and how they interface to other packages of software.
The analogy in prose is agreeing on the character’s names and what events are to happen
in each paragraph so that events happen to the right people in the right sequence once the
whole is formed. Modules can be reused in two ways. As with our program from the 1960s,
we would “lift” the matrix inversion routine and put a different user interface around it. We
can also reuse a routine within a program several times. For example, solving the equations
of space flight involves the inversion of many matrices. We would want our program to use
the matrix inversion routine over and over, presenting it with a different matrix each time.

The fundamental components of good program design are

1. Problem definition, leading to a program specification;
2. Modular program design, which refines the specification;
3. Module composition, which translates specification into executable program;
4. Module and program evaluation and testing, during which you refine the program and

find errors; and
5. Program documentation, which pervades all other phases.

The result of following these steps is an efficient, easy-to-use program that has a user’s
guide (to enable someone else run your program) and internal documentation so that other
programmers can decipher the algorithm.

Today it is common in a university education to be required to learn at least one foreign
language. Global interactions in business, engineering, and government make such a skill
valuable to one’s career. So it is in programming. One often needs to be able to read two
or three programming languages – even if you compose programs in only one language. It is
common for different program modules, in different languages, to be compiled separately
and then brought together by a “linker” to form a single executable. When something goes
wrong in such a process it is usually helpful to have a reading knowledge of the programming
languages being used.

When one composes to express ideas there are, at least, two different approaches to con-
sider: poetry and prose. Likewise, in employing programming languages to create software
distinctly different approaches are available. The two most common ones are “procedural
programming” and “object-oriented programming.” The two approaches are conceptually

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-01 CB496-Akin September 13, 2002 15:51

4 Program Design

Generation n Generation n+1

• • • • • •

Figure 1.1: Here, the game is played on an 8 × 8 square array, and the filled squares indicate the
presence of life. The arrows emanating from one cell radiate to its eight neighbors. The rules are
applied to the nth generation to yield the next. The row of three filled cells becomes a column of three,
for example. What is going to happen to this configuration in the next generation?

sketched in Figure 1.1. They differ in the way that the software development and mainte-
nance are planned and implemented. Procedures may use objects, and objects usually use
procedures called methods. Usually the object-oriented code takes more planning and is
significantly larger, but it is generally accepted to be easier to maintain. Today when one can
have literally millions of users active for years or decades, maintenance considerations are
very important.

1.2 Problem Definition

The problem the program is to solve must be well specified. The programmer must broadly
frame the program’s intent and context by answering several questions.

� What must the program accomplish?
From operating the space shuttle to inverting a small matrix, some thought must be given
to how the program will do what is needed. In technical terms, we need to define the
algorithm employed in small-scale programs. In particular, numeric programs need to
consider well how calculations are performed. For example, finding the roots of a general
polynomial demands a numeric (non-closed form) solution. The choice of algorithm is
influenced by the variations in polynomial order and the accuracy demanded.

� What inputs are required and in what forms?
Most programs interact with humans and other programs. This interaction needs to be
clearly specified as to what format the data will take and when the data need to be
requested or arrive.

� What is the execution environment and what should be in the user interface?
Is the program a stand-alone program, calculating the quadratic formula for example,
or do the results need to be plotted? In the former case, simple user input is probably
all that is needed, but the programmer might want to write the program so that its key
components could be used in other programs. In the latter, the program probably needs
to be written so that it meshes well with some prewritten graphics environment.

� What are the required and optional outputs, and what are their formats (printed, magnetic,
graphical, audio)?
In many cases, output takes two forms: interactive and archival. Interactive output means
that the programs results must be provided to the user or to other programs. The data

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-01 CB496-Akin September 13, 2002 15:51

1.2 Problem Definition 5

format must be defined so that the user can quickly see or hear the programs results.
Archival results need to be stored on long-term media, such as disk, so that later inter-
pretation of the file’s contents is easy (recall the notion of being able to read tomorrow
what is written today) and the reading process is easy.

The answers to these questions help programmers organize their thoughts and can lead to
decisions about programming language and operating environment. At this point in the pro-
gramming process, the programmer should know what the program is to do and for whom
the program is written. We do not yet have a clear notion of how the program will accomplish
these tasks; that comes down the road. This approach to program organization and design
is known as top–down design. Here, broad program goals and context are defined first with
additional detail filled in as needed. This approach contrasts with bottom–up design, where
the detail is decided first and then merged into a functioning whole. For programming,
top–design makes more sense, but you as well as professional programmers are frequently
lured into writing code immediately, which is usually motivated by the desire to get some-
thing running and figure out later how to organize it all. That approach is prompted by
expediency but usually winds up being more inefficient than a more considered, top–down
approach that takes longer to get off the ground but has increased likelihood of working
more quickly. The result of defining the programming problem is a specification: how the
program is structured, what computations it performs, and how it should interact with the
user.

An Extended Example: The Game of Life
� �

To illustrate how to organize and write a simple program, let us structure a program that
plays The Game of Life. Conway's “Game of Life" was popularized in Martin Gardner's Math-
ematical Games column in the October 1970 and February 1971 issues of Scientific Amer-
ican. This game is an example of what is known in computer science as cellular automata.
An extensive description of the game can be found in The Recursive Universe by William
Poundstone (Oxford University Press, 1987).

The rules of the game are quite simple. Imagine a rectangular array of square cells that are
either empty (no living being present) or filled (a being lives there). As shown in Figure 1.1,
each cell has eight neighboring cells. At each tick of the clock, a new generation of beings
is produced according to how many neighbors surround a given cell.

� If a cell is empty, fill it if three of its neighboring cells are filled; otherwise, leave it empty.
� If a cell is filled, it

dies of loneliness if it has zero or one neighbors,
continues to live if it has two or three neighbors, or
dies of overcrowding if it has more than three neighbors.

The programming task is to allow the user to “play the game" by letting him or her define
initial configurations, start the program, which applies the rules and displays each genera-
tion, and stop the game at any time the user wants, returning to the initialization stage so
that a new configuration can be tried. To understand the program task, we as programmers
need to pose several questions, some of which might be

� What computer(s) are preferred, and what kind of display facilities do they have?
� Is the size of the array arbitrary or fixed?
� Am I the only programmer?

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-01 CB496-Akin September 13, 2002 15:51

6 Program Design

No matter how these questions are answered, we start by forming the program's basic out-
line. Here is one way we might outline the program in a procedural fashion.

1. Allow the user to initialize the rectangular array or quit the program.
2. Start the calculation of the next generation.

(a) Apply game rules to the current array.
(b) Generate a new array.
(c) Display the array.
(d) Determine whether the user wants to stop or not.

i. If not, go back to 2a.
ii. If so, go to step 1.

Note how the idea of reusing the portion of the program that applies game rules arises
naturally. This idea is peculiar to programming languages, having no counterpart in prose
(it's like being told at the end of a chapter to reread it!). This kind of looping behavior also
occurs when we go back and allow the user to restart the program.
� �

This kind of outline is a form of pseudocode: ∗ a programming–language-like expression
of how the program operates. Note that at this point, the programming process is language
independent. Thus, informal pseudocode allows us to determine the program’s broad struc-
ture. We have not yet resolved the issue of how, or if, the array should be displayed: Should
it be refreshed as soon as a generation is calculated, or should we wait until a final state is
reached or a step limit is exceeded? Furthermore, if calculating each generation takes a fair
amount of time, our candidate program organization will not allow the user to stop the pro-
gram until a generation’s calculations have been finished. Consequently, we may, depending
on the speed of the computer, want to limit the size of the array. A more detailed issue is
how to represent the array internally. These issues can be determined later; programmers
frequently make notes at this stage about how the program would behave with this structure.
Informal pseudocode should remain in the final program in the form of comments.

Writing a program’s outline is not a meaningless exercise. How the program will behave
is determined at that point. An alternative would be to ask the user how many generations
should be calculated and then calculate all generations and display the results as a movie,
allowing the user to go backward, play in slow motion, freeze-frame, and so forth. Our
outline will not allow such visual fun. Thus, programmers usually design several candidate
program organizations, understand the consequences of each, and determine which best
meets the specifications.

1.3 Modular Program Design

We now need to define what the routines are and how they are interwoven to archieve the
program’s goals. (We will deepen this discussion to include objects and messages when we
introduce object-oriented formulations in Sec. 1.7.) What granularity – how large should a
routine be – comes with programming experience and depends somewhat on the language

∗ The use of the word code is interesting here. It means program as both a noun and a verb: From the earliest
days of programming, what the programmer produced was called code, and what he or she did was “code
the algorithm.” The origin of this word is somewhat mysterious. It may have arisen as an analogy to Morse
code, which used a series of dots and dashes as an alternative to the alphabet. This code is tedious to read
but ideal for telegraphic transmission. A program is an alternate form of an algorithm better suited to
computation.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-01 CB496-Akin September 13, 2002 15:51

1.3 Modular Program Design 7

Program

Main Control

Subprogram #2

Subprogram #1

Figure 1.2: Modular program organization relies on self-contained routines in which the passage of
data (or messages) from one to the other is very well defined and each routine’s (or objects) role in the
program becomes evident.

used to express it. A program typically begins with a main segment that controls or directs the
solution of the problem by dividing it into subtasks (see Figure 1.2). Each of these may well
be decomposed into other routines. This stepwise refinement continues as long as necessary
and as long as it benefits program clarity and efficiency. This modular program design is the
key feature of modern programming design practice. Furthermore, routines can be tested
individually and replaced or rewritten as needed. Before actually writing each routine, a
job known in computer circles as the implementation, the program’s organization can be
studied: Will the whole satisfy design specifications? Will the program execute efficiently?
As the implementation proceeds, each routine’s interface is defined: How does it interact
with its master – the routine that called it – and how are data exchanged between the two?
In some languages, this interface can be prototyped: the routine’s interface – what it expects
and what values it calculates – can be defined and the whole program merged and compiled
to check for consistency without performing any calculations. In small programs, where you
can have these routine definitions easily fitting onto one page, this prototyping can almost
be performed visually. In complex programs, where there may be hundreds or thousands of
routines, such prototyping really pays off. Once the interfaces begin to form, we ask whether
they make sense: Do they exchange information efficiently? Does each routine have the
information it needs, or should the program be reorganized so that data exchange can be
accomplished more efficiently?

From another viewpoint, you should develop a programming style that “hedges your
bets:” programs should be written in such a way that allows their components to be used in a
variety of contexts. Again, using a modular programming style, the fundamental components
of the calculation should be expressed as a series of subroutines or functions, the interweaving
of which is controlled by a main program that reads the input information and produces the
output. A modular program can have its components extracted and used in other programs
(program reuse) or interfaced to environments. So-called monolithic programs, which tend
not to use routines and express the calculation as a single, long-winded program, should not
be written.

We emphasize that this modular design process proceeds without actually writing
program statements. We use a programming-like language known as formal pseudocode to
express in prose what routines call others and how. This prose might reexpress a graphic

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-01 CB496-Akin September 13, 2002 15:51

8 Program Design

representation of program organization such as that shown in Figure 1.2. In addition,
expressing the program’s design in pseudocode eases the transition to program composi-
tion, the actual programming process. The components of formal pseudocode at this point
are few:

� comments that we allow to include the original outline and to describe computational
details;

� functions that express each routine, whether it be computational or concerned with the
user interface;

� conditionals that express changing the flow of a program; and
� loops that express iteration.

Comments. A comment begins with a comment character, which in our pseudocode we
take to be the exclamation point !, and ends when the line ends. Comments can consume
an entire line or the right portion of some line.

! This is a comment: you can read it, but the computer won’t

statements

statement ! From the comment character to end of this line is a comment

statements

The statements cited in the lines above share the status of the sentence that characterizes
most written languages. They are made up of components specific to the syntax of the
programming language in use. For example, most programming books begin with a program
that does nothing but print “Hello world” on the screen (or other output device). The
pseudocode for this might have the following form:

! if necessary, include the device library

initiate my program, say main

send the character string ‘‘Hello world’’ to the output device library

terminate my program

Figure 1.3 illustrates this in three common languages beginning with F90. At this point
it is possible to say we are multilingual in computer languages. Here, too, we may note
that, unlike the other two languages shown, in Fortran, when we begin a specific type of
software construct, we almost always explicitly declare where we are ending its scope. Here
the construct pair was program and end program, but the same style holds true for if and
end if pairs, for example. All languages have rules and syntax to terminate the scope of
some construct, but when several types of different constructs occur in the same program
segment, it may be unclear in which order they are terminating.

Functions. To express a program’s organization through its component routines we use
the notation of mathematical functions. Each program routine accepts inputs expressed as
arguments of a function, performs its calculations, and returns the computational results as
functional values.

output 1 = routine (input 1,...,input m)

or

call routine (input 1,..., input m, output 1,..., output n)

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-01 CB496-Akin September 13, 2002 15:51

1.3 Modular Program Design 9

[1] ! This is a comment line in Fortran 90

[2]

[3] program main ! a program called main

[4] ! begin the main program

[5] print *,"Hello, world" ! * means default format

[6] end program main ! end the main program

[1] // This is a comment line in C++

[2] #include <iostream.h> // standard input output library

[3]

[4] main () // a program called main

[5] // begin the main program

[6] cout << "Hello, world" << endl ; // endl means new line

[7] return 0; // needed by some compilers

[8] // end the main program

[1] % This is a comment line in MATLAB

[2]

[3] function main () % a program called main

[4] % begin the main program

[5] disp (’Hello, world’); % display the string

[6] % end the main program

Figure 1.3: ‘Hello World’ program and comments in three languages.

In Fortran, a routine evaluating a single-output object, as in the first style, is called a
function and, otherwise, it is called a subroutine. Other languages usually use the term
function in both cases. Each routines’s various inputs and results are represented by variables,
which, in sharp contrast to mathematical variables, have text-like names that indicate what
they contain. These names contain no spaces but may contain several words. There are two
conventions for variable names containing two or more words: either words are joined by the
underbar character “ ” (like next generation) or each word begins with an uppercase
letter (like NextGeneration). The results of a routines’s computation are always indicated
by a sequence of variables on the left side of the equals sign =. The use of an equals sign
does not mean mathematical equality; it is a symbol in our pseudocode that means “assign
a routines’s results to the variables (in order) listed on the left.”

Conditionals. To create something other than a sequential execution of routines, condition-
als form a test on the values of one or more variables and continue execution at one point
or another depending on whether the test was true or false. That is usually done with the
if statement. It either performs the instruction(s) that immediately follow (after the then
keyword) if some condition is valid (like x>0) or those that follow the else statement if
the condition is not true.

if test then

statement group A ! executed if true

else

statement group B ! executed if false

end if

The test here can be very complicated but is always based on values of variables. Parentheses
should be used to clarify exactly what the test is. For example,

((x > 0) and (y = 2))

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-01 CB496-Akin September 13, 2002 15:51

10 Program Design

One special statement frequently found in if statements is stop: This command means to
stop or abort the program – usually with a fatal error message.

Conditionals allow the program to execute nonsequentially (the only mode allowed by
statements). Furthermore, program execution order can be data-dependent. In this way, how
the program behaves – what output it produces and how it computes the output – depends
on what data, or messages, it is given. This means that exact statement execution order is
determined by the data, messages, or both, and the programmer – not just the programmer.
It is this aspect of programming languages that distinguishes them from written or spo-
ken languages. An analogy might be chapters in a novel being read in the order specified
by the reader’s birthday; what that order might be is determined by the novelist through
logical constructs. The tricky part is that, in programming languages, each execution or-
der must make sense and not lead to inconsistencies or, at worst, errors: the novel must
make sense in all the ways the novelist allows. This data- and message-dependent execu-
tion order can be applied at all programming levels from routine execution to statements.
Returning to our analogy with the novel, we recall that chapter (routine) and sentence
(statement) order depend on the reader’s birthday. Such complexity in prose has little utility
but does in programming. How else can a program be written that informs the user on what
day of the week and under what phase of the moon he or she was born given the birth
date?

Loops. Looping constructs in our formal pseudocode take the form of do loops, where the
keyword do is paired with the key phrase end do to mean that the expressions and routine
invocations contained therein are calculated in order (from top to bottom), then calculated
again starting with the first, then again, then again, . . . , forever. The loop ceases only when
we explicitly exit it with the exit command. The pseudocode loop shown below on the left
has the execution history shown on the right.

do

y = routine 1(x)

z = routine 2(y)

x = routine 3(z)

if x > 0 then

exit

end if

end do

y = routine 1(x)

z = routine 2(y)

x = routine 3(z) [let’s say x=-1]

y = routine 1(x)

z = routine 2(y)

x = routine 3(z) [let’s say x=1]

[program ends]

Infinite loops occur when the Boolean expression always evaluates to true; these are
usually not what the programmer intended and represent one type of program error – a
“bug.”∗ The constructs enclosed by the loop can be anything: statements, logical constructs,
and other loops! Because of this variety, programs can exhibit extremely complex behaviors.
How a program behaves depends entirely on the programmer and how his or her definition
of the program flows based on user-supplied data and messages. The pseudocode loops are
defined in Table 1.1.

∗ This term was originated by Grace Hopper, one of the first programmers. In the early days of computers,
they were partially built with mechanical devices known as relays. A relay is a mechanical switch that
controls which way electric current flows: the realization of the logical construct in programming languages.
One day, a previously working program stopped being so. Investigation revealed that an insect had crawled
into the computer and had become lodged in a relay’s contacts. She then coined the term “bug” to refer not
only to such hardware failures but to software ones as well since the user becomes upset no matter which
occurs.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-01 CB496-Akin September 13, 2002 15:51

1.4 Program Composition 11

Table 1.1: Pseudocode Loop Constructs

Loop Pseudocode

Indexed loop do index = b,i,e
statements

end do
Pretest loop while (test)

statements

end while
Posttest loop do

statements

if (test) exit
end do

1.4 Program Composition

Composing a program is the process of expressing or translating the program design into
computer language(s) selected for the task. Whereas the program design can often be ex-
pressed as a broad outline, each routine’s algorithm must be expressed in complete detail.
This writing process elaborates the formal pseudocode and contains more explicit statements
that more greatly resemble generic program statements.

Generic programming language elements fall into five basic categories: the four we had
before – comments, loops, conditionals, and functions – and statements. We will expand the
variety of comments, conditionals, loops, and functions/subroutines that define routines and
their interfaces. The new element is the statement, the workhorse of programming. It is
the statement that actually performs a concrete computation. In addition to expanding the
repertoire of programming constructs for formal pseudocode, we also introduce what these
constructs are in Matlab, Fortran, and C++. As we shall see, formal pseudocode parallels
these languages; the translation from pseudocode to executable program is generally easy.

1.4.1 Comments
Comments need no further elaboration for pseudocode. However, programmers are encour-
aged to make heavy use of comments.

1.4.2 Statements
Calculation is expressed by statements, which share the structure (and the status) of the
sentence that characterizes virtually all written language. Statements are always executed
one after the other as written. A statement in most languages has a simple, well-defined
structure common to them all such as

variable = expression

Statements are intended to bear a great resemblance to mathematical equations. This anal-
ogy with mathematics can appear confusing to the first-time programmer. For example, the
statementa = a+1, which means “increment the variableaby one” makes perfect sense as a
programming statement but no sense as an algebraic equality since it seems to say that 0 = 1.
Once you become more fluent in programming languages, what is mathematics and what is
programming become easily apparent. Statements are said to be terminated when a certain

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-01 CB496-Akin September 13, 2002 15:51

12 Program Design

character is encountered by the interpreter or the compiler. In Fortran, the termination char-
acter is a carriage return or a semicolon (;). In C++, all statements must be terminated with
a semicolon or a comma; carriage returns do not terminate statements. Matlab statements
may end with a semicolon ‘;’ to suppress display of the calculated expression’s value. Most
statements in Matlab programs end thusly.

Sometimes, statements become quite long, becoming unreadable. Two solutions to im-
prove clarity can be used: decompose the expression into simpler expressions or use contin-
uation markers to allow the statement to span more than one line of text. The first solution
requires you to use intermediate variables, which only results in program clutter. Multiline
statements can be broken at convenient arithmetic operators, and this approach is generally
preferred. In C++, there is no continuation character; statements can span multiple text lines
and end only when the semicolon is encountered. In Matlab, the continuation character
sequence comprises three periods ‘...’ placed at the end of each text line (before the car-
riage return or comment character). In Fortran, a statement is continued to the next line
when an ampersand & is the last character on the line.

Variables. A variable is a named sequence of memory locations to which values can be
assigned. As such, every variable has an address in memory, which most languages conceal
from the programmer so as to present the programmer with a storage model independent
of the architecture of the computer running the program. Program variables correspond
roughly to mathematical variables that can be integer, real, or, complex-valued. Program
variables can be more general than this, being able in some languages to have values equal
to a user-defined data type or object which, in turn, contains sequences of other variables.
Variables in all languages have names: a sequence of alphanumeric characters that cannot
begin with a number. Thus, a, A, a2, and a9bare feasible variable names (i.e., the interpreter
or compiler will not complain about these), whereas 3d is not. Since programs are meant to
be read by humans as well as interpreters and compilers, such names may not lead to program
clarity even if they are carefully defined and documented. The compiler and interpreter do
not care whether humans can read a program easily or not, but you should: Use variable
names that express what the variables represent. For example, use force as a name rather
than f; use i, j, and k for indices rather than ii or i1.

In most languages, variables have type: the kind of quantity stored in them. Frequently
occurring data types are integer and floating point, for example. Integer variables would be
chosen if the variable were only used as an array index; floating point if the variable might
have a fractional part.

In addition to having a name, type, and address, each variable has a value of the proper
type. The value should be assigned before the variable is used elsewhere. Compilers should
indicate an error if a variable is used before it has been assigned a value. Some lan-
guages allow variables to have aliases, which are usually referred to as “pointers” or “refer-
ences.” Most higher-level languages also allow programmers to create “user-defined” data
types.

Assignment Operator. The symbol = in a statement means assignment of the expression into
the variable provided on the left. This symbol does not mean algebraic equality; it means
that once expression is computed, its value is stored in the variable. Thus, statements
that make programming sense, like a=a+1, make no mathematical sense because ‘=’ means
different things in the two contexts. Fortran 90 and other languages allow the user to extend
the meaning of the assignment symbol (=) to other operations. Such advanced features are
referred to as “operator overloading.”

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-01 CB496-Akin September 13, 2002 15:51

1.4 Program Composition 13

Expressions. Just as in mathematics, expressions in programming languages can have a
complicated structure. Most encountered in engineering programs amount to a mathematical
expression involving variables, numbers, and functions of variables, numbers, or both. For
example, the following are all valid statements:

A = B

x = sin (2*z)

force = G * mass1 * mass2 / (r*r)

Thus, mathematical expressions obey the usual mathematical conventions but with one
added complexity: vertical position cannot be used help express what the calculation is;
program expressions have only one dimension. For example, the notation a

b c clearly ex-
presses to you how to perform the calculation. However, the one-dimensional equivalent
obtained by smashing this expression onto one line becomes ambiguous: Does a/bc mean
divide a by b then multiply by c or divide a by the product of b and c? This ambiguity is
relieved in program expressions in two ways. The first, the human-oriented way, demands
the use of parentheses – grouping constructs – to clarify what is being meant, as in (a/b)c.
The language-oriented way makes use of precedence rules: What an expression means is
inferred from a set of rules that specify what operations take effect first. In our example,
because division is stronger than multiplication, a/bc means (a/b)c. Most people find that
frequent reliance on precedence rules leads to programs that take a long time to decipher;
the compiler/interpreter is “happy” either way.

Expressions make use of the common arithmetic and relational operators. They may also
involve function evaluations; the sin function was called in the second expression given in
the previous example. Programming expressions can be as complicated as the arithmetic or
Boolean algebra ones they emulate.

1.4.3 Flow Control
If a program consisted of a series of statements, statements would be executed one after the
other in the order they were written. Such is the structure of all prose, where the equivalent
of a statement is the sentence. Programming languages differ markedly from prose in that
statements can be meaningfully executed over and over with details of each execution differ-
ing each time (the value of some variable might be changed) or some statements skipped with
statement ordering dependent on which statements were executed previously or upon exter-
nal events (the user clicked the mouse). With this extra variability, programming languages
can be more difficult for the human to trace program execution than the effort it takes to
read a novel. In written languages, sentences can be incredibly complex, much more so than
program statements; in programming, the sequencing of statements – program flow – can
be more complex.

The basic flow control constructs present in virtually all programming languages are
loops – repetitive execution of a series of statements – and conditionals – diversions around
statements.

Loops. Historically, the loop has been a major tool in designing the flow control of a proce-
dure, and one would often code a loop segment without giving it a second thought. Today,
massively parallel computers are being widely used, and one must learn to avoid coding ex-
plicit loops in order to take advantage of the power of such machines. Later we will review
which intrinsic tools are included in F90 for use on parallel (and serial) computers to offer
improved efficiency over explicit loops.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-01 CB496-Akin September 13, 2002 15:51

14 Program Design

The loop allows the programmer to repeat a series of statements, and parameter – the
loop variable – takes on a different value for each repetition. The loop variable can be an
integer or a floating-point number. Loops can be used to control iterative algorithms such as
the Newton–Raphson algorithm for finding solutions to nonlinear equations, to accumulate
results for a sequential calculation, or merely to repeat a program phrase such as awaiting
for the next typed input. Loops are controlled by a logical expression, which when
evaluated to true allows the loop to execute another iteration and when false terminates
the loop and commences program execution with the statement immediately following those
statements enclosed within the loop.

There are three basic kinds of looping constructs, the choice of which is determined by the
kind of iterative behavior most appropriate to the computation. The indexed loop occurs
most frequently in programs. Here, one loop variable varies across a range of values. In
pseudocode, the index’s value begins at b and increments each time through the loop by i;
the loop ends when the index exceeds e. For example,

do j = b, e, i

or through the default increment of unity:

do j = b, e

As an example of an indexed loop, let us explore summing the series of numbers stored
in the array A. If we know the number of elements in the array when we write the program,
the sum can be calculated explicitly without using a loop as follows:

sum = A1+ A2+ A3+ A4

However, we have already said that our statements must be on a single line, and so we need
a way to represent the subscript attached to each number. We develop the convention that
a subscript is placed inside parentheses like

sum = A(1) + A(2) + A(3) + A(4)

Such programs are very inflexible, and this hard-wired programming style is discouraged. For
example, suppose in another problem the array contains 1,000 elements. With an indexed
loop, a more flexible, easier to read program can be obtained. Here, the index assumes
a succession of values, its value tested against the termination value before the enclosed
statements are executed with the loop terminating once this test fails to be true. The following
generic indexed loop also sums array elements but in a much more flexible, concise way.

sum = 0

for i = 1, n

sum = sum + A(i)

end for

Here, the variable n does not need to be known when the program is written; this value can
wait until the program executes and can be established by the user or after data are read.

In F90 the extensive support for matrix expressions allows implicit loops. For example,
consider the calculation of

∑N
i=1 xi yi . The language provides at least three ways of performing

this calculation. If it is assumed the vectors x and y are column vectors,

1. sum xy = 0

N = size (x)

do i = 1,N

sum xy = sum xy + x(i)*y(i)

end do

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-01 CB496-Akin September 13, 2002 15:51

1.4 Program Composition 15

2. sum xy = sum (x*y)

3. sum xy = dot product (x,y)

The first method is based on the basic loop construct and yields the slowest-running
program of the three versions. In fact, avoiding the do statement by using implicit loops will
almost always lead to faster running programs. The second and third statements employ
intrinsic functions, operators designed for arrays, or both. In many circumstances, calculation
efficiency and clarity of expression must be balanced. In practice, it is usually necessary to
set aside memory to hold subscripted arrays, such as x and y above, before they can be
referenced or used.

Conditionals. Conditionals test the veracity of logical expressions and execute blocks of
statements accordingly (see Table 1.2). The most basic operation occurs if we want to
execute a series of statements when a logical expression, say test, evaluates to true. We
call that a simple if conditional; the beginning and end of the statements to be executed
when test evaluates to true are enclosed by special delimiters, which differ according to
language. When only one statement is needed, C++ and Fortran allow that one statement
to end the line that begins with the if conditional. If you want one group of statements to
be executed when test is true and another set to be executed when false, you use the
if-else construct. When you want to test a series of logical expressions that are not necessarily
complementary, the nested-if construct allows for essentially arbitrarily complex structure
to be defined. In such cases, the logical tests can interlock, thereby creating programs that
are quite difficult to read. Here is where program comments become essential. For example,
suppose you want to sum only the positive numbers less than or equal to 10 in a given
sequence. Let us assume the entire sequence is stored in array A. In informal pseudocode,
we might write

loop across A

if A(i) > 0 and A(i) < = 10 add to sum

end of loop

More formally, this program fragment as a complete pseudocode would be

Table 1.2: Syntax of Pseudocode Conditionals

Conditional Pseudocode

if if (test) statement
if if (test) then

statements

end if
if-else if (test) then

statements A

else
statements B

end if
nested if if (test1) then

statements A

if (test2) then
statements B

end if % end of test2
end if

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-01 CB496-Akin September 13, 2002 15:51

16 Program Design

sum = 0

do i=1, n

if (A(i) > 0) & (A(i) <= 10)

sum = sum + A(i)

end if

end do

Several points are illustrated by this pseudocode example. First of all, the statements that can
be included with a loop can be arbitrary – that is, composed of simple statements, loops, and
conditionals in any order. This same generality applies to statements within a conditional as
well. Secondly, logical expressions can themselves be quite complicated. Finally, note how
each level of statements in the program is indented, visually indicating the subordination of
statements within higher-level loops or conditionals. This stylistic practice lies at the heart of
structured programming: explicit indication of each statement within the surrounding hier-
archy. In modern programming, the structured approach has become the standard because
it leads to greater clarity of expression, allowing others to understand the program more
quickly and the programmer to find bugs more readily. Employing this style only requires
the programmer to use the space key liberally when typing the program. Since sums are
computed so often you might expect that a language would provide an intrinsic function to
compute it. For F90 and Matlab you would be correct.

1.4.4 Functions
Functions, which define subprograms having a well-defined interface to other parts of the
program, are an essential part of programming languages. For, if properly developed, these
functions can be included in future programs, and they allow several programmers to work on
complex programs. The function takes an ordered sequence of messages, objects, or variables
as its arguments and returns to the calling program a value (or set of values) that can be
assigned to an object or variable. Familiar examples of a function are the mathematical ones:
the sin function takes a real-valued argument, uses this value to calculate the trigonometric
sine, and returns that value, which can be assigned to a variable.

y = sin (x)

Note that the argument need not be a variable: a number can be explicitly provided or an
expression can be used. Thus, sin(2.3) and sin(2*cos(x)) are all valid. Functions may
require more than one argument. For example, the atan2 function, which computes the
arctangent function in such a way that the quadrant of the calculated angle is unambiguous,
needs the x and y components of the triangle.

z = atan2(x, y)

Note that the order of the arguments – the x component must be the first – and the number
of arguments – both x and y are needed – matter for all functions: The calling program’s
argument ordering and number must agree with those imposed by the function’s definition.
Said another way, the interface between the two must agree. This is analogous to the rela-
tionship between plugs and electric sockets in the home: a three-prong plug will not fit into
a two-hole socket, and, if you have a two-prong plug, you must plug it in the right way. A
function is usually defined separately outside the body of any program or other function.
We call a program’s extent its scope. In Matlab, a program’s scope is equivalent to what
is in a file; in C and C++, scope is defined by brace pairs; and in Fortran, scope equals what
occurs between function declaration and its corresponding end statement. Variables are also
defined within a program’s and a function’s scope. What this means is that a variable named

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-01 CB496-Akin September 13, 2002 15:51

1.4 Program Composition 17

x defined within a function is available to all statements occurring within that function, and
different functions can use the same variable name without any conflict occurring. What this
means is that two functionsf1andf2can each make use of a variable namedx, and the value
of x depends on which function is being referred to. In technical terms, the scope of every
variable is limited to its defining function. At first, this situation may seem terribly confusing
(“There are two variables both of which are named x?”); further thought brings the real-
ization that this convention is what you want. Because each function is to be a routine – a
program having a well-defined interface – execution of the function’s internal statements
must not depend on the program that uses it. This convention becomes especially important
when different people write the programs or functions. Thus, such local variables – those
defined locally within a function – do not conflict, and they are stored in different memory
locations by the compiler or interpreter.

This limited scope convention can be countermanded when you explicitly declare vari-
ables to be global. Such variables are now potentially available to all functions, and each
function cannot define a variable having the same name. For example, you may well want a
variable pointedly named pi to be available to all functions; you can do so by declaring it
to be a global variable. To demonstrate scope, consider the following simple example. Here,
we want to clip the values stored in the array x and store the results in the array y.

Main Pseudocode Program
! Clip the elements of an array

limit = 3

do i=1,n

y(i) = clip(x(i), limit)

end do

Function Pseudocode Definition
! function clip(x, edge)

! x - input variable

! edge - location of breakpoint

function clip(x, edge)

if abs(x) > edge then

y = sign (x) * edge

else

y = x

end if

end

The clipping function has the generic form show in Figure 1.4. Thus, values of the argument
that are less than L in magnitude are not changed, and those exceeding this limit are set
equal to the limiting value. In the program example, note that the name of the array in
the calling program –x– is the same as the argument’s name used in the definition of the
function. Within the scope of a program or function, an array and a scalar variable cannot
have the same name. In our case, because each variable’s scope is limited to the function
or program definition, no conflict occurs: Each is well defined, and the meaning should be
unambiguous. Also note that the second argument has a different name in the program than

L
–L

L

–L

clip(x, L)

x

Figure 1.4: Input–output relationship for the function clip(x). So long as |x | < L , this function equals
its argument; for larger values, the output equals the clipping constant L no matter how large the input
might be.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-01 CB496-Akin September 13, 2002 15:51

18 Program Design

in the function. No matter how the arguments are defined, we say that they are passed to the
function with the function’s variables set equal to values specified in the calling program.
These interface rules allow the function to be used in other programs, which means that we
can reuse functions whenever we like!

1.4.5 Modules
Another important programming concept is that of packaging a group of related routines,
selective variables, or both into a larger programming entity. In the Ada language they
are called packages, whereas C++ and Matlab call them classes. The F90 language has a
generalization of this concept that it calls a module. As we will see later, the F90 module
includes the functionality of the C++ classes as well as other uses such as defining global
constants. Therefore, we will find the use of F90 modules critical to our object-oriented
programming goals. In that context modules provide us with the means to take several
routines related to a specific data type and to encapsulate them into a larger programming
unit that has the potential to be reused for more than one application.

1.4.6 Dynamic Memory Management
From the very beginning, several decades ago, there was a clear need to be able to allocate
and deallocate segments of memory dynamically for use by a program. The initial standards
for Fortran did not allow for this. It was necessary to invoke machine language programs
to accomplish that task or to write tools to manage arrays directly by defining “pseudo-
pointers” to move things around manually in memory or to overwrite space that was no
longer needed. It was very disappointing that the F77 standard failed to offer that ability,
although several “nonstandard” compilers offered such an option. Beginning with the F90
standard a full set of dynamic memory management abilities is now available within Fortran.
Dynamic memory management is mainly needed for arrays and pointers. Both of these will
be considered later with a whole chapter devoted to arrays. Both of these entities can be
declared as ALLOCATABLE, and later one will ALLOCATE and then DEALLOCATE
them. There are also new “automatic arrays” that have the necessary memory space supplied
and then freed as needed.

Pointers are often used in “data structures,” abstract data types, and objects. To check
on the status of such features one can invoke the ALLOCATED intrinsic and use
ASSOCIATED to check on the status of pointers and apply NULLIFY to pointers that
need to be freed or initialized. Within F90 allocatable arrays cannot be used in the defini-
tions of derived types, abstract data types, or objects. However, allocatable pointers to arrays
can be used in such definitions. To assist in creating efficient executable codes, entities that
might be pointed at by a pointer must have the TARGET attribute.

Numerous examples of dynamic memory management will be seen later. Specific addition
discussion will be given in Chapter 9. Persons who write compilers suggest that, in any
language, it is wise to deallocate dynamic memory in the reverse order of its creation. The
F90 language standard does not require that procedure, but you see that advice followed in
most of the examples.

1.5 Program Evaluation and Testing

Your fully commented program, written with the aid of an editor, must now come alive
and be translated into another language that more closely matches computer instructions;
it must be executed or run. Statements expressed in Matlab, Fortran, or C++ may not

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-01 CB496-Akin September 13, 2002 15:51

1.5 Program Evaluation and Testing 19

directly correspond to computational instructions. However, the Fortran syntax was designed
to match mathematical expressions more clearly. These languages are designed to allow
humans to define computations easily and also allow easy translation. Writing programs in
these languages provides some degree of portability: a program can be executed on very
different computers without modification. So-called assembly languages allow more direct
expression of program execution but are very computer specific. Programmers that write
in assembly language must worry about the exquisite details of computer organization – so
much so that writing of what the computation is doing takes much longer. What they produce
might run more rapidly than the same computation expressed in Fortran, for example, but
no portability results and programs become incredibly hard to debug.

Programs become executable machine instructions in two basic ways. They are either
interpreted or compiled. In the first case, an interpreter reads your program and translates it
to executable instructions “on the fly.” Because interpreters essentially examine programs
on a line-by-line basis, they usually allow instructions and accept typed user instructions
as well as fully written programs. Matlab is an example of an interpreter.∗ It can accept
typed commands created as the user thinks of them (plot a graph, see that a parameter must
have been typed incorrectly, change it, and replot, for example) or entire programs. Because
interpreters examine programs locally (line-by-line), program execution tends to be slower
than when a compiler is used.

Compilers are programs that take your program in its entirety and produce an executable
version of it. Compiler output is known as an executable file that, in UNIX for example, can
become a command essentially indistinguishable from others that are available. The C++
language is an example of one that is frequently compiled rather than interpreted. Compilers
will produce much more efficient (faster running) programs than interpreters, but if you find
an error, you must edit and recompile before you can attempt execution again. Because
compilation takes time, this cycle can be time-consuming if the program is large.

Interpreters are themselves executable files written in compiled languages: Matlab is
written in C. Executable programs produced by compilers are stand-alone programs: ev-
erything (user input and output, file reading, etc.) must be handled by the user’s program.
In an interpreter, you can supplement a program’s execution by typed instructions. For
example, in an interpreter you can type a simple command to make the variable a equal
to 1; in a compiled program, you must include a program that asks for the value of a.
Consequently, users frequently write programs in the context of an interpreter, understand
how to make the program better by interacting with it, and then reexpress it in a compiled
language.

Interpreters and compilers make extensive use of what are known as library commands
or functions. A natural example of a library function is the sin function: users typically do
not want to program the computation of the trigonometric sine function explicitly. Instead,
they want to be able to pull it “off the shelf” and use as need be. Library modules are just
programs written in a computer language one would write. Consequently, both interpreters
and compilers allow user programs to become part of the library, which is usually written by
many programmers over a long period. It is through modules available in a library that pro-
gramming teams cooperate. Library modules tend to be more extensive and do more things
in an interpreter. For example, Matlab provides a program that produces pseudo-three-
dimensional plots of functions. Such routines usually do not come with a compiler but may
be purchased separately from graphics programming specialists. For compiled languages, we

∗ This statement is only partially true. Matlab does have some features of a compiler such as looking ahead
to determine if interface errors exist with respect to functions called by the main program.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-01 CB496-Akin September 13, 2002 15:51

20 Program Design

refer to linking the library routines to the user’s program (in interpreters, this happens as a
matter of course). A linker is a program that takes modules produced by the compiler, be
they yours or others, associates the modules, and produces the executable file we mentioned
earlier. Most C++ compilers “hide” the linking step from you; you may think you are typing
just the command to compile the program, but it is actually performing that step for you.
When you are compiling a module not intended for stand-alone execution, a compiler option
that you type can prevent the compiler from performing the linking step.

Debugging is the process of discovering and removing program errors. Two main types of
errors occur in writing programs: what we would generally term “typos” and what are design
errors. The first kind may readily be found (where is the function sni?) or more subtle (you
type aa instead of a for a variable’s name and aa also exists!). The second kind of error can
be hard or subtle to find. The main components of this process are

1. Search the program module by eye as you do a “mental run through” of its task. This kind
of error searching begins when you first think about program organization and continues
as you refine the program. Why write a program that is logically flawed?

2. If written in a compiled language, compile the program to find syntax errors or warnings
about unused or undefined variables. If in an interpreted language, attempt preliminary
execution to obtain similar error messages. Linking can also locate modules or libraries
that are improperly referenced.

3. Running the executable file with typical data sets often causes the program to abort –
a harsh word that expresses the situation in which the program goes crazy and ceases
to behave – and the system to supply an error message such as division by zero. Error
messages may help locate the programming error.

Easy errors to find are syntactic errors: You have violated the language’s rules of what
a well-formed program must be. Usually, the interpreter or compiler complains bitterly
on encountering a syntax error. Compilers find these at compile time (when the program
is compiled), interpreters at run time. Design errors are only revealed when we supply
the program with data. The programmer should design test data that exercise each of the
program’s valid operations. Invalid user input (asking for the logarithm of a negative number,
for example) should be caught by the program and warning messages sent to the user.

The previous description of generic programming languages indicates why finding bugs
can be complicated. Programs can exhibit very complex behaviors, and tracing incorrect be-
haviors can be correspondingly difficult. One often hears the (true) statement, “Computers
do what we say, not what we want.” Users frequently want computers to be smart, fixing
obvious design (mental) errors because they obviously conflict with what we want. However,
this situation is much like what the novelist faces. Inexact meaning can confuse the reader;
he or she does not have a direct pathway to the novelist’s mind. As opposed to the novelist,
extensive testing of your program can detect such errors and make your program approach
perfection. Many operating systems supply interactive debugger programs that can trace the
execution of a program in complete detail. They can display the values of any variable, stop
at selected positions for evaluation, execute parts of the code in a statement-by-statement
fashion, and so forth. These can be very helpful in finding difficult-to-locate bugs, but they
still cannot read your mind.

Be that as it may, what can the programmer do when the program compiles (no syntactic
errors) and does not cause system error messages (no dividing by zero) but the results are
not correct? The simplest approach is to include extra statements in the program, referred
to as debugging statements, that display (somewhat verbosely) values of internal variables.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-01 CB496-Akin September 13, 2002 15:51

1.7 Object-Oriented Formulations 21

For example, in a loop you would print the value of the loop index and all variables that the
loop might be affecting. Because this output can be voluminous, the most fruitful approach is
to debug smaller problems. With this debugging information, you can usually figure out the
error, correct it, and change the comments accordingly. Without debugging, your program
and internal documentation are unsynchronized.

Once the program is debugged, you could delete the added debugging statements. A
better approach is just to hide them. You can do this two ways: comment them out or encase
them in a conditional that is true when the program is in “debugging mode.” The commenting
approach completely removes the debugging statements from the program execution stream
and allows you to put them back easily if further program elaborations result in errors. The
use of conditionals does put an overhead on computational efficiency, but usually a small one.

1.6 Program Documentation

Comments inside a program are intended to help you and others understand program design
and how it is organized. Frequently, comments describe what each variable means, how
program execution is to proceed, and what each module’s interface might be (what are
the expected inputs and their formats and what outputs are produced). Program comments
occur in the midst of the program’s source and temporarily interrupt the highly restricted
syntax of most programming languages. Comments are entirely ignored by the interpreter
or compiler and are allowed to enhance program clarity for humans.

Documentation includes program comments but also external prose that describes what
the program does, how the user interface controls program behavior, and what the output
means. Making an executable program available to users does not help them understand
how to use it. In UNIX, all provided commands are accompanied by what are referred to as
manual pages: concise descriptions of what the program does, all user options, and descrip-
tions of what error messages mean. Programs are useless without such documentation. Many
programs provide such documentation whenever the user types something that clearly indi-
cates a lack of knowledge about how to use the program. This kind of documentation must
also be supplemented by prose a user can read. Professional programmers frequently write
the documentation as the program is being designed. This simultaneous development of the
program and documentation of how it is used often uncover user-interface design flaws.

1.7 Object-Oriented Formulations

The discussion above follows the older programming style in which the emphasis is placed
on the procedures that a subprogram is to apply to the supplied data. Thus, it is referred to as
procedural programming. The alternate approach focuses on the data and their supporting
functions and is known as an object-oriented approach; it is the main emphasis of this work.
It also generalizes the concept of data types and is usually heavily dependent on user-
defined data types and their extension to abstract data types. These concepts are sketched
in Figure 1.5.

The process of creating an object-oriented (OO) formulation involves at least three stages:
object-oriented analysis (OOA), object-oriented design (OOD), and object-oriented pro-
gramming (OOP). Many books and articles have been written on each of these three
subjects. See, for example, the works of Coad and Yourdon [9], Filho and Devloo [15],
Graham [19], Mossberg, Otto, and Thune [29], Meyer [28], Norton, Szymanski, and Decyk

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-01 CB496-Akin September 13, 2002 15:51

22 Program Design

Figure 1.5: Two approaches to programming.

[32], and Rumbaugh et al. [36]. Formal graphical standards for representing the results
of OOA and OOD have been established and are widely used in the literature [9].
Here the main emphasis will be placed on OOP on the assumption that the two earlier
stages have been completed. In an effort to give some level of completeness, summaries

Table 1.3: OO Analysis Summary

Find objects and classes:

� Create an abstraction of the problem domain.
� Give attributes, behaviors, classes, and objects meaningful names.
� Identify structures pertinent to the system’s complexity and responsibilities.
� Observe information needed to interact with the system as well as information to be stored.
� Look for information reuse: are there multiple structures; can subsystems be inherited?

Define the attributes :

� Select meaningful names.
� Describe the attribute and any constraints.
� What knowledge does it possess or communicate?
� Put it in the type or class that best describes it.
� Select accessibility as public or private.
� Identify the default and lower and upper bounds.
� Identify the different states it may hold.
� Note items that can either be stored or recomputed.

Define the behavior :

� Give the behaviors meaningful names.
� What questions should each be able to answer?
� What services should it provide?
� Which attribute components should it access?
� Define its accessibility (public or private).
� Define its interface prototype.
� Define any input–output interfaces.
� Identify a constructor with error checking to supplement the intrinsic constructor.
� Identify a default constructor.

Diagram the system :

� Employ an OO graphical representation such as the Coad–Yourdon method [9] or its
extension by Graham [19].

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-01 CB496-Akin September 13, 2002 15:51

1.7 Object-Oriented Formulations 23

Table 1.4: OO Design Summary

� Improve and add to the OOA results during OOD.
� Divide the member functions into constructors, accessors, agents, and servers.
� Design the human interaction components.
� Design the task management components.
� Design the data management components.
� Identify operators to be overloaded.
� Identify operators to be defined.
� Design the interface prototypes for member functions and for operators.
� Design code for reuse through “kind of” and “part of” hierarchies.
� Identify base classes from which other classes are derived.
� Establish the exception-handling procedures for all possible errors.

of OOA and OOD procedures are given in Tables 1.3 and 1.4, respectively. Having
completed OOA and OOD studies one must select a language to actually implement
the design. More than 100 objected-oriented languages are in existence and use today.
They include such “pure” OO languages as Crisp, Eiffel [39], Rexx, Simula, Smalltalk
and “hybrid” OO languages like C++, F90, Object Pascal, and so forth. In which of
them should you invest your time? To get some insight into answers to this question,
we should study the advice of some of the recognized leaders in the field. In his 1988
book on OO software construction B. Meyer [28] listed seven steps necessary to achieve
object-orientedness in an implementation language. They are summarized in Table 1.5,
and are all found to exist in F90 and F95. Thus, we proceed with F90 as our language

Table 1.5: Seven Steps to Object-Orientedness [28]

1. Object-based modular structure :

� Systems are modularized on the basis of their data structure (in F90).

2. Data Abstraction :

� Objects should be described as implementations of abstract data types (in F90).

3. Automatic memory management :

� Unused objects should be deallocated by the language system (most in F90, in F95).

4. Classes :

� Every nonsimple type is a module and every high-level module is a type (in F90).

5. Inheritance :

� A class may be defined as an extension or restriction of another (in F90).

6. Polymorphism and dynamic binding :

� Entities are permitted to refer to objects of more than one class, and operations can
have different realizations in different classes (partially in F90/F95; expected in Fortran
200X).

7. Multiple and repeated inheritance :

� A class can be delared as heir to more than one class and more than once to the same
class (in F90).

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-01 CB496-Akin September 13, 2002 15:51

24 Program Design

of choice. The basic F90 procedures for OOP will be illustrated in some short examples in
Chapter 3 after some preliminary material on abstract data types are covered in Chapter 2.
Examples of employing F90 as an OOP language for mathematical and technical applica-
tions have been given by Akin and Singh [4], Akin [3], Cary et al. [8], Decyk Norton and
Szymanski [10, 11], Gray and Roberts [20], George and Liu [18], Machiels and Deville [27],
Norton et al. [31, 32], and Rumbaugh et al. [36] and Szymanski et al. [37, 38]. Additional
OOP applications will also be covered in later chapters.

1.8 Exercises

1 Checking trigonometric identities

We know that the sine and cosine functions obey the trigonometric identity sin2 θ +
cos2 θ = 1 no matter what value of θ is used. Write a pseudocode, or MATLAB, or F90 pro-
gram that checks this identity. Let it consist of a loop that increments across N equally
spaced angles between 0 and π and calculates the quantity in question, printing the an-
gle and the result. Test your program for several values of N. (Later we will write a second
version of this program that does not contain any analysis loops but uses instead MATLAB's
or F90's ability to calculate functions of arrays.)

2 Newton–Raphson algorithm

A commonly used numerical method of solving the equation f (x) = 0 has its origins with
the beginnings of calculus. Newton noted that the slope of a function tends to cross the
x-axis near a function's position of zero value (called a root).

xi
xxi+1

f(x)

f(x)i

Because the function's slope at some point xi equals its derivative f ′(xi), the equation of
the line passing through f (xi) is f ′(xi)x + (f (xi) − f ′(xi)xi). Solving for the case when this
expression equals the next trial root xi+1 is accomplished through the equation

xi+1 = xi − f (xi)
f ′(xi)

The algorithm proceeds by continuously applying this iterative equation until the error
is “small." The definition of “small" is usually taken to mean that the absolute relative
difference between successive iterations is less than some tolerance value ε. (Raphson
extended these concepts to an array of functions.)
(a) In pseudocode, write a program that performs the Newton–Raphson algorithm. As-

sume that functions that evaluate the function and its derivative are available. What
is the most convenient form of loop to use in your program?

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-01 CB496-Akin September 13, 2002 15:51

1.8 Exercises 25

(b) Translate your pseudocode into F90 or MATLAB and apply your program to the simple
function f (x) = e2x − 5x − 1. Use the functional expressions directly in your program
or make use of functions.

3 Game of Life pseudocode

Develop a pseudocode outline for the main parts of the “Game of Life" discussed ear-
lier and shown in Figure 1.3. Include pseudocode for a function to compute the next
generation.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-02 CB496-Akin August 23, 2002 20:46

CHAPTER TWO
� �

Data Types

Any computer program is going to have to operate on the available data. The valid data types
that are available will vary from one language to another. Here we will examine the intrinsic
or built-in data types and user-defined data types or structures and, finally, introduce the
concept of the abstract data type, which is the basic foundation of object-oriented methods.
We will also consider the precision associated with numerical data types. The Fortran data
types are listed in Table 2.1. Such data can be used as constants, variables, pointers, and
targets.

2.1 Intrinsic Types

The simplest data type is the LOGICAL type, which has the Boolean values of either .true.
or .false. and is used for relational operations. The other nonnumeric data type is the
CHARACTER. The sets of valid character values will be defined by the hardware system on
which the compiler is installed. Character sets may be available in multiple languages such
as English and Japanese. There are international standards for computer character sets. The
two most common ones are the English character sets defined in the ASCII and EBCDIC
standards that have been adapted by the International Standards Organization (ISO).
Both of these standards for defining single characters include the digits (0 to 9), the 26
uppercase letters (A to Z), the 26 lowercase letters (a to z), common mathematical symbols,
and many nonprintable codes known as control characters. We will see later that strings of
characters are still referred to as being of the CHARACTER type, but they have a length that
is greater than one. In other languages such a data type is often called a string. [Although
not part of the F95 standard, the ISO Committee created a user-defined type known as the
ISO VARIABLE LENGTH STRING, which is available as a F95 source module.]

For numerical computations, numbers are represented as integers or decimal values
known as floating point numbers or floats. The former is called an INTEGER type. The deci-
mal values supported in Fortran are the REAL and COMPLEX types. The range and precision
of these three types depend on the hardware being employed. At the present, 2002, most
computers have 32-bit processors, but some offer 64-bit processors. This means that the
precision of a calculated result from a single program could vary from one brand of com-
puter to another. One would like to have a portable precision control so as to get the same
answer from different hardware; whereas some languages, like C++, specify three ranges of
precision (with specific bit widths), Fortran provides default precision types as well as two
functions to allow the user to define the “kind” of precision desired.

26

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-02 CB496-Akin August 23, 2002 20:46

2.1 Intrinsic Types 27

Table 2.1: F90/95 Data types and pointer attributes

Data Option

DerivedIntrinsic

Character Logical Numerical

Floating Point
(selected_real_kind)

Integer
(selected_int_kind)

Complex Real Double Precision
(obsolete)

Still, it is good programming practice to employ a precision that is of the default, double,
or quad precision level. Table 2.2 lists the default precisions for 32-bit processors. The first
three entries correspond to types int, float, and double, respectively, of C++. Examples of
F90 integer constants are

–32 0 4675123 24 short 24 long

and typical real constant examples are

–3. 0.123456 1.234567e+2 0.0 0.3 double

7.6543e+4 double 0.23567 quad 0.3d0

In both cases, we note that it is possible to impose a user-defined precision kind by appending
an underscore () followed by the name of the integer variable that gives the precision kind
number. For example, one could define

long = selected int kind(9)

to denote an integer in the range of −109 to 109, whereas

double = selected real kind(15,307)

Table 2.2: Numeric Types on 32-Bit Processors

Significant
Type Bit Width Digits Common Range

integer 16 10 −32,768 to 32,767

real 32 6 −1037 to 1037

double precisiona 64 15 −10307 to 10307

complex 2@32 2@6 two reals

a Obsolete in F90; see selected real kind.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-02 CB496-Akin August 23, 2002 20:46

28 Data Types

defines a real with 15 significant digits with an exponent range of ±307. Likewise, a higher
precision real might be defined by the integer kind

quad = selected real kind(18,4932)

to denote 18 significant digits over the exponent range of ±4932. If these kinds of precision
are available on your processors, then the F90 types of “integer (long),” “real (double),”
and “real (quad)” would correspond to the C++ precision types of “long int,” “double,” and
“long double,” respectively. If the processor cannot produce the requested precision, then
it returns a negative number as the integer kind number. Thus, one should always check
that the kind (i.e., the preceding integer values of long, double, or quad) is not negative and
report an exception if it is negative.

The old F77 intrinsic type of DOUBLE PRECISION has been declared obsolete since it is
now easy to set any level of precision available on a processor. Another way to always define
a double precision real on any processor is to use the “kind” function such as

double = kind(1.0d0)

where the symbol ‘d’ is used to denote the I/O of a double precision real. For completeness it
should be noted that it is possible on some processors to define different kinds of character
types, such as “greek” or “ascii,” but in that case, the kind value comes before the underscore
and the character string such as ascii “a string.”

To illustrate the concept of a defined precision intrinsic data type, consider a program
segment to make available useful constants such as pi (3.1415 . . .) or Avogadro’s number
(6.02 . . . × 1023). These are real constants that should not be changed during the use of the
program. In F90, an item of that nature is known as a PARAMETER. In Figure 2.1, a selected
group of such constants have been declared to be of double precision and stored in a MODULE
named Math Constants. The parameters in that module can be made available to any
program one writes by including the statement “use math constants” at the beginning
of the program segment. The figure actually ends with a short sample program that converts
the tabulated value of pi (line 23) to a default precision real (line 42) and prints both.

2.2 User-Defined Data Types

Although the intrinsic data types above have been successfully employed to solve a vast
number of programming requirements, it is logical to want to combine these types in some
structured combination that represents the way we think of a particular physical object or
business process. For example, assume we wish to think of a chemical element in terms of
the combination of its standard symbol, atomic number, and atomic mass. We could create
such a data structure type and assign it a name, say chemical element, so that we could
refer to that type for other uses just like we might declare a real variable. In F90 we would
define the structure with a TYPE construct as shown below (in lines 3–7):

[1] program create a type

[2] implicit none

[3] type chemical element ! a user defined data type

[4] character (len=2) :: symbol

[5] integer :: atomic number

[6] real :: atomic mass

[7] end type

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-02 CB496-Akin August 23, 2002 20:46

2.2 User-Defined Data Types 29

[1] Module Math Constants ! Define double precision math constants

[2] implicit none

[3] ! INTEGER, PARAMETER :: DP = SELECTED REAL KIND (15,307)

[4] INTEGER, PARAMETER :: DP = KIND (1.d0) ! Alternate form

[5] real(DP), parameter:: Deg Per Rad = 57.295779513082320876798155 DP

[6] real(DP), parameter:: Rad Per Deg = 0.017453292519943295769237 DP

[7]

[8] real(DP), parameter:: e Value = 2.71828182845904523560287 DP

[9] real(DP), parameter:: e Recip = 0.3678794411714423215955238 DP

[10] real(DP), parameter:: e Squared = 7.389056098930650227230427 DP

[11] real(DP), parameter:: Log10 of e = 0.4342944819032518276511289 DP

[12]

[13] real(DP), parameter:: Euler = 0.5772156649015328606 DP

[14] real(DP), parameter:: Euler Log = -0.5495393129816448223 DP

[15] real(DP), parameter:: Gamma = 0.577215664901532860606512 DP

[16] real(DP), parameter:: Gamma Log = -0.549539312981644822337662 DP

[17] real(DP), parameter:: Golden Ratio = 1.618033988749894848 DP

[18]

[19] real(DP), parameter:: Ln 2 = 0.6931471805599453094172321 DP

[20] real(DP), parameter:: Ln 10 = 2.3025850929940456840179915 DP

[21] real(DP), parameter:: Log10 of 2 = 0.3010299956639811952137389 DP

[22]

[23] real(DP), parameter:: pi Value = 3.141592653589793238462643 DP

[24] real(DP), parameter:: pi Ln = 1.144729885849400174143427 DP

[25] real(DP), parameter:: pi Log10 = 0.4971498726941338543512683 DP

[26] real(DP), parameter:: pi Over 2 = 1.570796326794896619231322 DP

[27] real(DP), parameter:: pi Over 3 = 1.047197551196597746154214 DP

[28] real(DP), parameter:: pi Over 4 = 0.7853981633974483096156608 DP

[29] real(DP), parameter:: pi Recip = 0.3183098861837906715377675 DP

[30] real(DP), parameter:: pi Squared = 9.869604401089358618834491 DP

[31] real(DP), parameter:: pi Sq Root = 1.772453850905516027298167 DP

[32]

[33] real(DP), parameter:: Sq Root of 2 = 1.4142135623730950488 DP

[34] real(DP), parameter:: Sq Root of 3 = 1.7320508075688772935 DP

[35]

[36] End Module Math Constants

[37]

[38] Program Test

[39] use Math Constants ! Access all constants

[40] real :: pi ! Define local data type

[41] print *, ’pi Value: ’, pi Value ! Display a constant

[42] pi = pi Value; print *, ’pi = ’, pi ! Convert to lower precision

[43] End Program Test ! Running gives:

[44] ! pi Value: 3.1415926535897931 ! pi = 3.14159274

Figure 2.1: Defining global double-precision constants.

Having created the new data type, we would need ways to define its values and to refer to
any of its components. The latter is accomplished by using the component selection symbol
“%.” Continuing the program segment above we could write the following:

[8] type (chemical element) :: argon, carbon, neon ! elements

[9] type (chemical element) :: Periodic Table(109) ! an array

[10] real :: mass ! a scalar

[11]

[12] carbon%atomic mass = 12.010 ! set a component value

[13] carbon%atomic number = 6 ! set a component value

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-02 CB496-Akin August 23, 2002 20:46

30 Data Types

[14] carbon%symbol = "C" ! set a component value

[15]

[16] argon = chemical element ("Ar", 18, 26.98) ! construct element

[17]

[18] read *, neon ! get "Ne" 10 20.183

[19]

[20] Periodic Table(5) = argon ! insert element into array

[21] Periodic Table(17) = carbon ! insert element into array

[22] Periodic Table(55) = neon ! insert element into array

[23]

[24] mass = Periodic Table(5) % atomic mass ! extract component

[25]

[26] print *, mass ! gives 26.9799995

[27] print *, neon ! gives Ne 10 20.1830006

[28] print *, Periodic Table(17) ! gives C 6 12.0100002

[29] end program create a type

In the preceding program segment, we have introduced some new concepts:

� Defined argon, carbon, and neon to be of the chemical element type (line 8).
� Defined a subscripted array to contain 109 chemical element types (line 9).
� Used the selector symbol, %, to assign a value to each of the components of the carbon

structure (line 15).
� Used the intrinsic “structure constructor” to define the argon values (line 16). The

intrinsic construct or initializer function must have the same name as the user-defined
type. It must be supplied with all of the components, and they must occur in the order
that they were defined in the TYPE block.

� Read in all the neon components, in order (line 18). [The ‘*’ means that the system is
expected to find the next character automatically, integer and real, respectively, and to
insert them into the components of neon.]

� Inserted argon, carbon, and neon into their specific locations in the periodic table array
(lines 20–22).

� Extracted the atomic mass of argon from the corresponding element in the
periodic element array (line 24).

� Printed the real variable, mass (line 26). [The ‘*’ means to use a default number of digits.]
� Printed all components of neon (line 27). [Using a default number of digits.]
� Printed all the components of carbon by citing its reference in the periodic table array

(line 28). [Note that the printed real value differs from the value assigned in line 12. This
is due to the way reals are represented in a computer.]

A defined type can also be used to define other data structures. This is but one small example
of the concept of code reuse. If we were developing a code that involved the history of
chemistry, we might use the type above to create a type called history as shown below.

type (chemical element) :: oxygen

type history ! a second type using the first

character (len=31) :: element name

integer :: year found

type (chemical element) :: chemistry

end type history

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-02 CB496-Akin August 23, 2002 20:46

2.3 Abstract Data Types 31

type (history) :: Joseph Priestley ! Discoverer

oxygen = chemical element ("O", 76, 190.2) ! construct element

Joseph Priestley = history ("Oxygen", 1774, oxygen) ! construct

print *, Joseph Priestley ! gives Oxygen 1774 O 76 1.9020000E+02

Shortly we will learn about other important aspects of user-defined types such as how to
define operators that use them as operands.

2.3 Abstract Data Types

Clearly, data alone are of little value. We must also have the means to input and output the
data, subprograms to manipulate and query the data, and the ability to define operators for
commonly used procedures. The coupling or encapsulation of the data with a select group of
functions defining everything that can be done with the data type introduces the concept of
an abstract data type (ADT). An ADT goes a step further in that it usually hides the details
of how functions accomplish their tasks from the user. Only knowledge of input and output
interfaces to the functions is described in detail. Even the components of the data types are
kept private.

The word abstract in the term abstract data type is used to (1) indicate that we are
interested only in the essential features of the data type, (2) to indicate that the features
are defined in a manner that is independent of any specific programming language, and (3)
to indicate that the instances of the ADT are being defined by their behavior and that the
actual implementation is secondary. An ADT is an abstraction that describes a set of items
in terms of a hidden or encapsulated data structure and a set of operations on that data
structure.

Previously we created user-defined entity types such as thechemical element. The pri-
mary difference between entity types and ADTs is that all ADTs include methods for operat-
ing on the type. Although entity types are defined by a name and a list of attributes, an ADT
is described by its name, attributes, encapsulated methods, and possibly encapsulated rules.

Object-oriented programming is primarily a data abstraction technique. The purpose of
abstraction and data hiding in programming is to separate behavior from implementation.
For abstraction to work, the implementation must be encapsulated so that no other program-
ming module can depend on its implementation details. Such encapsulation guarantees that
modules can be implemented and revised independently. Hiding of the attributes and some
or all of the methods of an ADT is also important in the process. In F90 the PRIVATE state-
ment is used to hide an attribute or a method; otherwise, both will default to PUBLIC. Public
methods can be used outside the program module that defines an ADT. We refer to the set
of public methods or operations belonging to an ADT as the public interface of the type.

The user-defined data type, as given above, in F90 is not an ADT even though each is
created with three intrinsic methods to construct a value, read a value, or print a value.
Those methods cannot modify a type; they can only instantiate the type by assigning it a
value and display that value. (Unlike F90, in C or C++, a user-defined type, or “struct,” does
not have an intrinsic constructor method or input/output methods.) Generally ADTs will
have methods that modify or query a type’s state or behavior.

From the preceding discussion we see that the intrinsic data types in any language (such
as complex, integer and real in F90) are actually ADTs. The system has hidden methods

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-02 CB496-Akin August 23, 2002 20:46

32 Data Types

ADT name

Public attributes

Public ADT with private attributes

Private attributes

Public members

Private members

Component

Send
Message

Receive
Message

Type

Send
Type

Receive
Type

Name

Member Name

Member Name

Receive,
Send

Modified
Type

Member Name

Figure 2.2: Graphical representation of ADTs.

(operators) to assign them values and to manipulate them. For example, we know that we
can multiply any one of the numerical types by any other numerical type.

We do not know how the system does the multiplication, and we do not care. All computer
languages provide functions to manipulate the intrinsic data types. For example, in F90 a
square-root function, named sqrt, is provided to compute the square root of a real or complex
number. From basic mathematics you probably know that two distinctly different algorithms
must be used, and the choice depends on the type of the supplied argument. Thus, we call the
sqrt function a generic function since its single name, sqrt, is used to select related functions
in a manner hidden from the user. In F90 you can not take the square root of an integer; you
must convert it to a real value and you receive a real answer. The preceding discussions of
the methods (routines) that are coupled to a data type and describe what you can and can
not do with the data type should give the programmer good insight into what must be done
to plan and implement the functions needed to yield a relatively complete ADT.

It is common to have a graphical representation of the ADTs, and several different
graphical formats are suggested in the literature. We will use the form shown in Figure 2.2,
where a rectangular box begins with the ADT name and is followed by two partitions of that
box that represent the lists of attribute data and associated member routines. Items that are
available to the outside world are in subboxes that cross over the right border of the ADT
box. They are the parts of the public interface to the ADT. Likewise, those items that are
strictly internal, or private, are contained fully within their respective partitions of the ADT
box. There is a common special case in which the name of the data type itself is available
for external use but its individual attribute components are not. In that case the right edge
of the private attributes lists lies on the right edge of the ADT box. In addition, we will
often segment the smallest box for an item to give its type (or the most important type for
members) and the name of the item. Public member boxes are also supplemented with an

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-02 CB496-Akin August 23, 2002 20:46

2.4 Classes 33

chemical_element ADT

Figure 2.3: Representation of the public chemical element ADT.

arrow to indicate which take in information (<--) or send out information (-->). Such a
graphical representation of the previous chemical elementADT, with all its items public,
is shown in Figure 2.3.

The sequence of numbers known as Fibonacci numbers is the set that begins with 1 and
2 and where the next number in the set is the sum of the two previous numbers (1, 2, 3, 5,
8, 13, . . .). A primarily private ADT to print a list of Fibonacci numbers up to some limit is
represented graphically in Figure 2.4.

2.4 Classes

A class is basically the extension of an ADT by providing additional member routines to
serve as constructors. Usually, those additional members should include a default constructor
that has no arguments. Its purpose is to ensure that the class is created with acceptable default
values assigned to all its data attributes. If the data attributes involve the storage of large
amounts of data (memory), then one usually also provides a destructor member to free up
the associated memory when it is no longer needed. The F95 language has an automatic
deallocation feature not present in F90 and thus we will often formally deallocate memory
associated with data attributes of classes.

As a short example we will consider an extension of the preceding Fibonacci Number
ADT. The ADT for Fibonacci numbers simply keeps up with three numbers (low, high, and

Fibonacci_number ADT

Figure 2.4: Representation of a Fibonacci number ADT.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-02 CB496-Akin August 23, 2002 20:46

34 Data Types

Fibonacci_number Class

Figure 2.5: Representation of a Fibonacci number Class.

limit). Its intrinsic initializer has the (default) name Fibonacci. We generalize that ADT
to a class by adding a constructor named new Fibonacci number. The constructor ac-
cepts a single number that indicates how many values in the infinite list we wish to see.
It is also a default constructor because, if we omit the one optional argument, it will list
a minimum number of terms set in the constructor. The graphical representation of the
Fibonacci Number class extends Figure 2.4 for its ADT by at least adding one public con-
structor, called new Fibonacci number, as shown in Figure 2.5. Technically, it is generally
accepted that a constructor should only be able to construct a specific object once. This
differs from the intrinsic initializer that could be invoked multiple times to assign different
values to a single user-defined type. Thus, an additional logical attribute has been added
to the previous ADT to allow the constructor, new Fibonacci number, to verify that it is
being invoked only once for each instance of the class. The coding for this simple class is illus-
trated in Figure 2.6. There the access restrictions are given on lines 4, 5, and 7, the attributes
are declared on line 8, and the member functions are given in lines 13–38. The validation
program is in lines 40–47, with the results shown as comments at the end (lines 49–53).

[1] ! Fortran 90 OOP to print list of Fibonacci Numbers

[2] Module class Fibonacci Number ! file: Fibonacci Number.f90

[3] implicit none

[4] public :: Print ! member access

[5] private :: Add ! member access

[6] type Fibonacci Number ! attributes

[7] private

[8] integer :: low, high, limit ! state variables & access

[9] end type Fibonacci Number

[10]

[11] Contains ! member functionality

[12]

[13] function new Fibonacci Number (max) result (num) ! constructor

[14] implicit none

[15] integer, optional :: max

[16] type (Fibonacci Number) :: num

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-02 CB496-Akin August 23, 2002 20:46

2.5 Exercises 35

[17] num = Fibonacci Number (0, 1, 0) ! intrinsic

[18] if (present(max)) num = Fibonacci Number (0, 1, max) ! intrinsic

[19] num%exists = .true.

[20] end function new Fibonacci Number

[21]

[22] function Add (this) result (sum)

[23] implicit none

[24] type (Fibonacci Number), intent(in) :: this ! cannot modify

[25] integer :: sum

[26] sum = this%low + this%high ; end function add ! add components

[27]

[28] subroutine Print (num)

[29] implicit none

[30] type (Fibonacci Number), intent(inout) :: num ! will modify

[31] integer :: j, sum ! loops

[32] if (num%limit < 0) return ! no data to print

[33] print *, ’M Fibonacci(M)’ ! header

[34] do j = 1, num%limit ! loop over range

[35] sum = Add(num) ; print *, j, sum ! sum and print

[36] num%low = num%high ; num%high = sum ! update

[37] end do ; end subroutine Print

[38] End Module class Fibonacci Number

[39]

[40] program Fibonacci !** The main Fibonacci program

[41] implicit none

[42] use class Fibonacci Number ! inherit variables and members

[43] integer, parameter :: end = 8 ! unchangeable

[44] type (Fibonacci Number) :: num

[45] num = new Fibonacci Number(end) ! manual constructor

[46] call Print (num) ! create and print list

[47] end program Fibonacci ! Running gives:

[48]

[49] ! M Fibonacci(M) ; ! M Fibonacci(M)

[50] ! 1 1 ; ! 5 8

[51] ! 2 2 ; ! 6 13

[52] ! 3 3 ; ! 7 21

[53] ! 4 5 ; ! 8 34

Figure 2.6: A simple Fibonacci class.

2.5 Exercises

1 Create a module of global constants of common (a) physical constants, (b) common units
conversion factors.

2 Teams in a sports league compete in matches that result in a tie or a winning and los-
ing team. When the result is not a tie, the status of the teams is updated. The winner is
declared better that the loser and better than any team that was previously bettered by
the loser. Specify this process by ADTs for the league, team, and match. Include a logi-
cal member function is better than, which expresses whether a team is better than
another.

3 Several computing environments like Matlab and TK Solver provide a function, named
pi (), to return the value of pi. Develop such a function as an enhancement of the
Math Constants module. Test it with a simple main program.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-03 CB496-Akin September 16, 2002 12:36

CHAPTER THREE
� �

Object-Oriented Programming Concepts

3.1 Introduction

The use of object-oriented (OO) design and object-oriented programming (OOP) methods
is becoming increasingly popular. Thus, it is useful to have an introductory understanding
of OOP and some of the programming features of OO languages. You can develop OO
software in any high-level language like C or Pascal. However, newer languages such as
Ada, C++, and F90 have enhanced features that make OOP much more natural, practical,
and maintainable. Appearing before F90, C++ currently is probably the most popular OOP
language, yet F90 was clearly designed to have almost all of the abilities of C++. However,
rather than study the new standards, many authors simply refer to the two-decade-old F77
standard and declare that Fortran can not be used for OOP. Here we will overcome that
misinformed point of view.

Modern OO languages provide the programmer with three capabilities that improve
and simplify the design of such programs: encapsulation, inheritance, and polymorphism
(or generic functionality). Related topics involve objects, classes, and data hiding. An object
combines various classical data types into a set that defines a new variable type or structure.
A class unifies the new entity types and supporting data that represent its state with routines
(functions and subroutines) that access or modify those data, or both. Every object created
from a class, by providing the necessary data, is called an instance of the class. In older lan-
guages like C and F77, the data and functions are separate entities. An OO language provides
a way to couple or encapsulate the data and its functions into a unified entity. This is a more
natural way to model real-world entities that have both data and functionality. The encapsula-
tion is done with a “module” block in F90 and with a “class” block in C++. This encapsulation
also includes a mechanism whereby some or all of the data and supporting routines can be
hidden from the user. The accessibility of the specifications and routines of a class is usually
controlled by optional “public” and “private” qualifiers. Data hiding allows one the means to
protect information in one part of a program from access and especially from being changed
in other parts of the program. In C++ the default is that data and functions are “private”
unless declared “public,” whereas F90 makes the opposite choice for its default protection
mode. In an F90 “module” it is the “contains” statement that, among other things, couples
the data, specifications, and operators before it to the functions and subroutines that follow it.

Class hierarchies can be visualized when we realize that we can employ one or more
previously defined classes (of data and functionality) to organize additional classes. Func-
tionality programmed into the earlier classes may not need to be recoded to be usable in
the later classes. This mechanism is called inheritance. For example, if we have defined an

36

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-03 CB496-Akin September 16, 2002 12:36

3.2 Encapsulation, Inheritance, and Polymorphism 37

Employee class, then a Manager classwould inherit all of the data and functionality of
an employee. We would then only be required to add only the totally new data and functions
needed for a manager. We may also need a mechanism to redefine specificEmployee class

functions that differ for a Manager class. By using the concept of a class hierarchy,
less programming effort is required to create the final enhanced program. In F90 the earlier
class is brought into the later class hierarchy by the “use” statement followed by the name
of the “module” statement block that defined the class.

Polymorphism allows different classes of objects that share some common functionality to
be used in code that require only that common functionality. In other words, routines having
the same generic name are interpreted differently depending on the class of the objects pre-
sented as arguments to the routines. This is useful in class hierarchies where a small number
of meaningful function names can be used to manipulate different but related object classes.
The concepts above are those essential to object-oriented design and OOP. In the later
sections we will demonstrate by example additional F90 implementations of these concepts.

3.2 Encapsulation, Inheritance, and Polymorphism

We often need to use existing classes to define new classes. The two ways to do this are called
composition and inheritance. We will use both methods in a series of examples. Consider a
geometry program that uses two different classes: class Circle and class Rectangle,
as represented graphically in Figures 3.1 and 3.2. and as partially implemented in F90, as
shown in Figure 3.3. Each class shown has the data types and specifications to define the
object and the functionality to compute its respective areas (lines 3–23). The operator %
is employed to select specific components of a defined type. Within the geometry (main)
program a single routine, compute area, is invoked (lines 40 and 46) to return the area for
any of the defined geometry classes. That is, a generic function name is used for all classes
of its arguments and it, in turn, branches to the corresponding functionality supplied with
the argument class. To accomplish this branching the geometry program first brings in the
functionality of the desired classes via a “use” statement for each class module (lines 26
and 27). Those “modules” are coupled to the generic function by an “interface” block that
has the generic function name compute area (lines 30, 31). A “module procedure” list is
included that gives one class routine name for each of the classes of argument(s) the generic

Circle Class

Figure 3.1: Representation of a circle class.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-03 CB496-Akin September 16, 2002 12:36

38 Object-Oriented Programming Concepts

Rectangle Class

Figure 3.2: Representation of a rectangle class.

function is designed to accept. The ability of a function to respond differently when supplied
with arguments that are objects of different types is called polymorphism. In this example we
have employed different names,rectangular areaandcircle area, in their respective
class modules, but that is not necessary. The “use” statement allows one to rename the class
routines, to bring in only selected members of the functionality, or to do both.

Another terminology used in OOP is that of constructors and destructors for objects. An
intrinsic constructor is a system function automatically invoked when an object is declared
with all of its possible components in the defined order (see lines 39 and 45). In C++ and F90,
the intrinsic constructor has the same name as the “type” of the object. One is illustrated in
the statement

four sides = Rectangle (2.1,4.3),

where previously we declared

type (Rectangle) :: four sides,

which, in turn, was coupled to the class Rectangle, which had two components, base and
height, defined in that order, respectively. The intrinsic constructor in the sample statement
sets componentbase = 2.1and componentheight = 4.3for that instance,four sides,
of the type Rectangle. This intrinsic construction is possible because all the expected com-
ponents of the type were supplied. If all the components are not supplied, then the object
cannot be constructed unless the functionality of the class is expanded by the programmer
to accept a different number of arguments.

Assume that we want a special member of theRectangleclass, a square, to be constructed
if the height is omitted. That is, we would use height = base in that case. Or, we may want
to construct a unit square if height and base are omitted so that the constructor defaults to
base = height = 1. Such a manual constructor, named make Rectangle, is illustrated
in Figure 3.4 (see lines 6–9). It illustrates some additional features of F90. Note that the last
two arguments were declared to have the additional type attributes of “optional” (line 4)
and that an associated logical function “present” is utilized (lines 7 and 9) to determine if
the calling program supplied the argument in question. That figure also shows the results
of the area computations for the corresponding variables “square” and “unit sq” defined
if the manual constructor is called with one or no optional arguments (line 6), respectively.

In the next section we will illustrate the concept of data hiding by using the private

attribute. The reader is warned that the intrinsic constructor can not be employed if any of
its arguments have been hidden. In that case a manual constructor must be provided to deal

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-03 CB496-Akin September 16, 2002 12:36

3.2 Encapsulation, Inheritance, and Polymorphism 39

[1] ! Areas of shapes of different classes, using different

[2] ! function names in each class

[3] module class Rectangle ! define the first object class

[4] implicit none

[5] type Rectangle

[6] real :: base, height ; end type Rectangle

[7] contains ! Computation of area for rectangles.

[8] function rectangle area (r) result (area)

[9] type (Rectangle), intent(in) :: r

[10] real :: area

[11] area = r%base * r%height ; end function rectangle area

[12] end module class Rectangle

[13] module class Circle ! define the second object class

[14] implicit none

[15] real :: pi = 3.1415926535897931d0 ! a circle constant

[16] type Circle

[17] real :: radius ; end type Circle

[18] contains ! Computation of area for circles.

[19] function circle area (c) result (area)

[20] type (Circle), intent(in) :: c

[21] real :: area

[22] area = pi * c%radius**2 ; end function circle area

[23] end module class Circle

[24]

[25] program geometry ! for both types in a single function

[26] use class Circle

[27] use class Rectangle

[28] implicit none

[29] ! Interface to generic routine to compute area for any type

[30] interface compute area

[31] module procedure rectangle area, circle area ; end interface

[32]

[33] ! Declare a set geometric objects.

[34] type (Rectangle) :: four sides

[35] type (Circle) :: two sides ! inside, outside

[36] real :: area = 0.0 ! the result

[37]

[38] ! Initialize a rectangle and compute its area.

[39] four sides = Rectangle (2.1, 4.3) ! implicit constructor

[40] area = compute area (four sides) ! generic function

[41] write (6,100) four sides, area ! implicit components list

[42] 100 format ("Area of ",f3.1," by ",f3.1," rectangle is ",f5.2)

[43]

[44] ! Initialize a circle and compute its area.

[45] two sides = Circle (5.4) ! implicit constructor

[46] area = compute area (two sides) ! generic function

[47] write (6,200) two sides, area

[48] 200 format ("Area of circle with ",f3.1," radius is ",f9.5)

[49] end program geometry ! Running gives:

[50] ! Area of 2.1 by 4.3 rectangle is 9.03

[51] ! Area of circle with 5.4 radius is 91.60885

Figure 3.3: Multiple geometric shape classes.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-03 CB496-Akin September 16, 2002 12:36

40 Object-Oriented Programming Concepts

[1] function make Rectangle (bottom, side) result (name)

[2] ! Constructor for a Rectangle type

[3] implicit none

[4] real, optional, intent(in) :: bottom, side

[5] type (Rectangle) :: name

[6] name = Rectangle (1.,1.) ! default to unit square

[7] if (present(bottom)) then ! default to square

[8] name = Rectangle (bottom, bottom) ; end if

[9] if (present(side)) name = Rectangle (bottom, side) ! intrinsic

[10] end function make Rectangle

[11] . . .

[12] type (Rectangle) :: four sides, square, unit sq

[13] ! Test manual constructors

[14] four sides = make Rectangle (2.1,4.3) ! manual constructor, 1

[15] area = compute area (four sides) ! generic function

[16] write (6,100) four sides, area

[17] ! Make a square

[18] square = make Rectangle (2.1) ! manual constructor, 2

[19] area = compute area (square) ! generic function

[20] write (6,100) square, area

[21] ! "Default constructor", here a unit square

[22] unit sq = make Rectangle () ! manual constructor, 3

[23] area = compute area (unit sq) ! generic function

[24] write (6,100) unit sq, area

[25] . . .

[26] ! Running gives:

[27] ! Area of 2.1 by 4.3 rectangle is 9.03

[28] ! Area of 2.1 by 2.1 rectangle is 4.41

[29] ! Area of 1.0 by 1.0 rectangle is 1.00

Figure 3.4: A manual constructor for rectangles.

with any hidden components. Since data hiding is so common, it is probably best to plan on
providing a manual constructor.

3.2.1 Sample Date, Person, and Student Classes
Before moving to some mathematical examples we will introduce the concept of data hiding
and combine a series of classes to illustrate composition and inheritance.∗ First, consider a
simple class to define dates and to print them in a pretty fashion, as shown in Figures 3.5 and
3.6. Although other modules will have access to the Date class they will not be given access to
the number of components it contains (three), nor their names (month, day, year), nor their
types (integers) because they are declared “private” in the defining module (lines 5 and 6).
The compiler will not allow external access to data, routines, or both declared as private. The
module, class Date, is presented as a source “include” file in Figure 3.6 and in the future
will be referenced by the file name class Date.f90. Since we have chosen to hide all the
user-defined components, we must decide what functionality we will provide to the users,
who may have only executable access. The supporting documentation would have to name
the public routines and describe their arguments and return results. The default intrinsic
constructor would be available only to those who know full details about the components of
the data type and if those components are “public.” The intrinsic constructor, Date (lines 15
and 35), requires all the components be supplied, but it does no error or consistency checks.

∗ These examples mimic those given in Chapters 11 and 8 of the J.R. Hubbard book Programming with C++,
McGraw-Hill, 1994, and usually use the same data for verification.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-03 CB496-Akin September 16, 2002 12:36

3.2 Encapsulation, Inheritance, and Polymorphism 41

Date Class

Figure 3.5: Graphical representation of a date class.

My practice is also to define a “public constructor” whose name is the same as the intrinsic
constructor except for an appended underscore, that is, Date . Its sole purpose is to do
data checking and invoke the intrinsic constructor, Date. If the function Date (line 11)
is declared “public” it can be used outside the module class Date to invoke the intrinsic
constructor even if the components of the data type being constructed are all “private.” In
this example we have provided another manual constructor to set a date,set Date(line 32)
with a variable number of optional arguments. Also supplied are two subroutines to read
and print dates, read Date (line 28) and print Date (line 17), respectively.

A sample main program that employs this class is given in Figure 3.7, which contains
sample outputs as comments. This program uses the default constructor as well as all three
programs in the public class functionality. Note that the definition of the class was copied in
via an “include” (line 1) statement and activated with the “use” statement (line 4).

Now we will employ theclass Datewithin aclass Person, which will use it to set the
date of birth (DOB) and date of death (DOD) in addition to the other Person components
of name, nationality, and sex. As shown in Figure 3.8, we have made all the type components
“private” but make all the supporting functionality public, as represented graphically in
Figure 3.8. The functionality shown provides a manual constructor, make Person, routines
to set the DOB or DOD, and those for the printing of most components. The source code
for the new Person class is given in Figure 3.9. Note that the manual constructor (line 13)
utilizes “optional” arguments and initializes all components in case they are not supplied to
the constructor. TheDate public function from theclass Date is “inherited” to initialize
the DOB and DOD (lines 18, 56, and 61). That function member from the previous module
was activated with the combination of the “include” and “use” statements. Of course,
the “include” could have been omitted if the compile statement included the path name to
that source. A sample main program for testing the class Person is in Figure 3.10 along
with comments containing its output. It utilizes the constructors Date (line 8), Person
(line 11), and make Person (line 25).

Next, we want to use the previous two classes to define aclass Studentthat adds some-
thing else special to the general class Person. The student person will have additional
“private” components for an identification number, the expected date of matriculation
(DOM), the total course credit hours earned (credits), and the overall grade point average

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-03 CB496-Akin September 16, 2002 12:36

42 Object-Oriented Programming Concepts

[1] module class Date ! filename: class Date.f90

[2] implicit none

[3] public :: Date ! and everything not "private"

[4]

[5] type Date

[6] private

[7] integer :: month, day, year ; end type Date

[8]

[9] contains ! encapsulated functionality

[10]

[11] function Date (m, d, y) result (x) ! public constructor

[12] integer, intent(in) :: m, d, y ! month, day, year

[13] type (Date) :: x ! from intrinsic constructor

[14] if (m < 1 .or. d < 1) stop ’Invalid components, Date ’

[15] x = Date (m, d, y) ; end function Date

[16]

[17] subroutine print Date (x) ! check and pretty print a date

[18] type (Date), intent(in) :: x

[19] character (len=*),parameter :: month Name(12) = &

[20] (/ "January ", "February ", "March ", "April ",&

[21] "May ", "June ", "July ", "August ",&

[22] "September", "October ", "November ", "December "/)

[23] if (x%month < 1 .or. x%month > 12) print *, "Invalid month"

[24] if (x%day < 1 .or. x%day > 31) print *, "Invalid day "

[25] print *, trim(month Name(x%month)),’ ’, x%day, ", ", x%year;

[26] end subroutine print Date

[27]

[28] subroutine read Date (x) ! read month, day, and year

[29] type (Date), intent(out) :: x ! into intrinsic constructor

[30] read *, x ; end subroutine read Date

[31]

[32] function set Date (m, d, y) result (x) ! manual constructor

[33] integer, optional, intent(in) :: m, d, y ! month, day, year

[34] type (Date) :: x

[35] x = Date (1,1,1997) ! default, (or use current date)

[36] if (present(m)) x%month = m ; if (present(d)) x%day = d

[37] if (present(y)) x%year = y ; end function set Date

[38]

[39] end module class Date

Figure 3.6: Defining a date class.

(GPA), as represented in Figure 3.11. The source lines for the type definition and selected
public functionality are given in Figure 3.12. There the constructors aremake Student(line
20) and Student (line 48). A testing main program with sample output is illustrated in
Figure 3.13. Since there are various ways to utilize the various constructors, three alternate
methods have been included as comments to indicate some of the programmer’s options. The
first two include statements (lines 1, 2) are actually redundant because the third include
automatically brings in those first two classes.

3.3 Object-Oriented Numerical Calculations

Object-oriented programming is often used for numerical computation, especially when the
standard storage mode for arrays is not practical or efficient. Often one will find specialized

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-03 CB496-Akin September 16, 2002 12:36

3.3 Object-Oriented Numerical Calculations 43

[1] include ’class Date.f90’ ! see previous figure

[2] program Date test

[3] use class Date

[4] implicit none

[5] type (Date) :: today, peace

[6]

[7] ! peace = Date (11,11,1918) ! NOT allowed for private components

[8] peace = Date (11,11,1918) ! public constructor

[9] print *, "World War I ended on " ; call print Date (peace)

[10] peace = set Date (8, 14, 1945) ! optional constructor

[11] print *, "World War II ended on " ; call print Date (peace)

[12] print *, "Enter today as integer month, day, and year: "

[13] call read Date(today) ! create today’s date

[14]

[15] print *, "The date is "; call print Date (today)

[16] end program Date test ! Running produces:

[17] ! World War I ended on November 11, 1918

[18] ! World War II ended on August 14, 1945

[19] ! Enter today as integer month, day, and year: 7 10 1997

[20] ! The date is July 10, 1997

Figure 3.7: Testing a date class.

Person Class

Figure 3.8: Graphical representation of a person class.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-03 CB496-Akin September 16, 2002 12:36

[1] module class Person ! filename: class Person.f90
[2] use class Date
[3] implicit none
[4] public :: Person
[5] type Person
[6] private
[7] character (len=20) :: name
[8] character (len=20) :: nationality
[9] integer :: sex
[10] type (Date) :: dob, dod ! birth, death
[11] end type Person
[12] contains
[13] function make Person (nam, nation, s, b, d) result (who)
[14] ! Optional Constructor for a Person type
[15] character (len=*), optional, intent(in) :: nam, nation
[16] integer, optional, intent(in) :: s ! sex
[17] type (Date), optional, intent(in) :: b, d ! birth, death
[18] type (Person) :: who
[19] who = Person (" ","USA",1,Date (1,1,0),Date (1,1,0)) ! defaults
[20] if (present(nam)) who % name = nam
[21] if (present(nation)) who % nationality = nation
[22] if (present(s)) who % sex = s
[23] if (present(b)) who % dob = b
[24] if (present(d)) who % dod = d ; end function
[25]
[26] function Person (nam, nation, s, b, d) result (who)
[27] ! Public Constructor for a Person type
[28] character (len=*), intent(in) :: nam, nation
[29] integer, intent(in) :: s ! sex
[30] type (Date), intent(in) :: b, d ! birth, death
[31] type (Person) :: who
[32] who = Person (nam, nation, s, b, d) ; end function Person
[33]
[34] subroutine print DOB (who)
[35] type (Person), intent(in) :: who
[36] call print Date (who % dob) ; end subroutine print DOB
[37]
[38] subroutine print DOD (who)
[39] type (Person), intent(in) :: who
[40] call print Date (who % dod) ; end subroutine print DOD
[41]
[42] subroutine print Name (who)
[43] type (Person), intent(in) :: who
[44] print *, who % name ; end subroutine print Name
[45]
[46] subroutine print Nationality (who)
[47] type (Person), intent(in) :: who
[48] print *, who % nationality ; end subroutine print Nationality
[49]
[50] subroutine print Sex (who)
[51] type (Person), intent(in) :: who
[52] if (who % sex == 1) then ; print *, "male"
[53] else ; print *, "female" ; end if ; end subroutine print Sex
[54]
[55] subroutine set DOB (who, m, d, y)
[56] type (Person), intent(inout) :: who
[57] integer, intent(in) :: m, d, y ! month, day, year
[58] who % dob = Date (m, d, y) ; end subroutine set DOB
[59]
[60] subroutine set DOD(who, m, d, y)
[61] type (Person), intent(inout) :: who
[62] integer, intent(in) :: m, d, y ! month, day, year
[63] who % dod = Date (m, d, y) ; end subroutine set DOD
[64] end module class Person

Figure 3.9: Definition of a typical person class.

44

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-03 CB496-Akin September 16, 2002 12:36

[1] include ’class Date.f90’
[2] include ’class Person.f90’ ! see previous figure
[3] program Person inherit
[4] use class Date ; use class Person ! inherit class members
[5] implicit none
[6] type (Person) :: author, creator
[7] type (Date) :: b, d ! birth, death
[8] b = Date (4,13,1743) ; d = Date (7, 4,1826) ! OPTIONAL
[9] ! Method 1
[10] ! author = Person ("Thomas Jefferson", "USA", 1, b, d) ! NOT if private
[11] author = Person ("Thomas Jefferson", "USA", 1, b, d) ! constructor
[12] print *, "The author of the Declaration of Independence was ";
[13] call print Name (author);
[14] print *, ". He was born on "; call print DOB (author);
[15] print *, " and died on "; call print DOD (author); print *, ".";
[16] ! Method 2
[17] author = make Person ("Thomas Jefferson", "USA") ! alternate
[18] call set DOB (author, 4, 13, 1743) ! add DOB
[19] call set DOD (author, 7, 4, 1826) ! add DOD
[20] print *, "The author of the Declaration of Independence was ";
[21] call print Name (author)
[22] print *, ". He was born on "; call print DOB (author);
[23] print *, " and died on "; call print DOD (author); print *, ".";
[24] ! Another Person
[25] creator = make Person ("John Backus", "USA") ! alternate
[26] print *, "The creator of Fortran was "; call print Name (creator);
[27] print *, " who was born in "; call print Nationality (creator);
[28] print *, ".";
[29] end program Person inherit ! Running gives:
[30] ! The author of the Declaration of Independence was Thomas Jefferson.
[31] ! He was born on April 13, 1743 and died on July 4, 1826.
[32] ! The author of the Declaration of Independence was Thomas Jefferson.
[33] ! He was born on April 13, 1743 and died on July 4, 1826.
[34] ! The creator of Fortran was John Backus who was born in the USA.

Figure 3.10: Testing the date and person classes.

Student Class

Figure 3.11: Graphical representation of a student class.

45

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-03 CB496-Akin September 16, 2002 12:36

[1] module class Student ! filename class Student.f90

[2] use class Person ! inherits class Date

[3] implicit none

[4] public :: Student, set DOM, print DOM

[5] type Student

[6] private

[7] type (Person) :: who ! name and sex

[8] character (len=9) :: id ! ssn digits

[9] type (Date) :: dom ! matriculation

[10] integer :: credits

[11] real :: gpa ! grade point average

[12] end type Student

[13] contains ! coupled functionality

[14]

[15] function get person (s) result (p)

[16] type (Student), intent(in) :: s

[17] type (Person) :: p ! name and sex

[18] p = s % who ; end function get person

[19]

[20] function make Student (w, n, d, c, g) result (x) ! constructor

[21] ! Optional Constructor for a Student type

[22] type (Person), intent(in) :: w ! who

[23] character (len=*), optional, intent(in) :: n ! ssn

[24] type (Date), optional, intent(in) :: d ! matriculation

[25] integer, optional, intent(in) :: c ! credits

[26] real, optional, intent(in) :: g ! grade point ave

[27] type (Student) :: x ! new student

[28] x = Student (w, " ", Date (1,1,1), 0, 0.) ! defaults

[29] if (present(n)) x % id = n ! optional values

[30] if (present(d)) x % dom = d

[31] if (present(c)) x % credits = c

[32] if (present(g)) x % gpa = g ; end function make Student

[33]

[34] subroutine print DOM (who)

[35] type (Student), intent(in) :: who

[36] call print Date(who%dom) ; end subroutine print DOM

[37]

[38] subroutine print GPA (x)

[39] type (Student), intent(in) :: x

[40] print *, "My name is "; call print Name (x % who)

[41] print *, ", and my G.P.A. is ", x % gpa, "." ; end subroutine

[42]

[43] subroutine set DOM (who, m, d, y)

[44] type (Student), intent(inout) :: who

[45] integer, intent(in) :: m, d, y

[46] who % dom = Date (m, d, y) ; end subroutine set DOM

[47]

[48] function Student (w, n, d, c, g) result (x)

[49] ! Public Constructor for a Student type

[50] type (Person), intent(in) :: w ! who

[51] character (len=*), intent(in) :: n ! ssn

[52] type (Date), intent(in) :: d ! matriculation

[53] integer, intent(in) :: c ! credits

[54] real, intent(in) :: g ! grade point ave

[55] type (Student) :: x ! new student

[56] x = Student (w, n, d, c, g) ; end function Student

[57] end module class Student

Figure 3.12: Defining a typical student class.

46

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-03 CB496-Akin September 16, 2002 12:36

3.3 Object-Oriented Numerical Calculations 47

[1] include ’class Date.f90’

[2] include ’class Person.f90’

[3] include ’class Student.f90’ ! see previous figure

[4] program create Student ! create or correct a student

[5] use class Student ! inherits class Person, class Date also

[6] implicit none

[7] type (Person) :: p ; type (Student) :: x

[8] ! Method 1

[9] p = make Person ("Ann Jones","",0) ! optional person constructor

[10] call set DOB (p, 5, 13, 1977) ! add birth to person data

[11] x = Student (p, "219360061", Date (8,29,1955), 9, 3.1) ! public

[12] call print Name (p) ! list name

[13] print *, "Born :"; call print DOB (p) ! list dob

[14] print *, "Sex :"; call print Sex (p) ! list sex

[15] print *, "Matriculated:"; call print DOM (x) ! list dom

[16] call print GPA (x) ! list gpa

[17] ! Method 2

[18] x = make Student (p, "219360061") ! optional student constructor

[19] call set DOM (x, 8, 29, 1995) ! correct matriculation

[20] call print Name (p) ! list name

[21] print *, "was born on :"; call print DOB (p) ! list dob

[22] print *, "Matriculated:"; call print DOM (x) ! list dom

[23] ! Method 3

[24] x = make Student (make Person("Ann Jones"), "219360061") !optional

[25] p = get Person (x) ! get defaulted person data

[26] call set DOM (x, 8, 29, 1995) ! add matriculation

[27] call set DOB (p, 5, 13, 1977) ! add birth

[28] call print Name (p) ! list name

[29] print *, "Matriculated:"; call print DOM (x) ! list dom

[30] print *, "was born on :"; call print DOB (p) ! list dob

[31] end program create Student ! Running gives:

[32] ! Ann Jones

[33] ! Born : May 13, 1977

[34] ! Sex : female

[35] ! Matriculated: August 29, 1955

[36] ! My name is Ann Jones, and my G.P.A. is 3.0999999.

[37] ! Ann Jones was born on: May 13, 1977 , Matriculated: August 29, 1995

[38] ! Ann Jones Matriculated: August 29, 1995 , was born on: May 13, 1977

Figure 3.13: Testing the student, person, and date classes.

storage modes like linked lists or tree structures used for dynamic data structures. Here
we should note that many matrix operators are intrinsic to F90, and so one is more likely
to define a class sparse matrix than a class matrix. However, either class would
allow us to encapsulate several matrix functions and subroutines into a module that could be
reused easily in other software. Here, we will illustrate OOP applied to rational numbers and
introduce the important topic of operator overloading. Additional numerical applications
of OOP will be illustrated in later chapters.

3.3.1 A Rational Number Class and Operator Overloading
To illustrate an OOP approach to simple numerical operations we will introduce a fairly
complete rational number class, called class Rational, which is represented graphically
in Figure 3.14. The defining F90 module is given in Figure 3.15. The type components have
been made private (line 4), but not the type itself, and so we can illustrate the intrinsic
constructor (lines 39 and 102); however, extra functionality has been provided to allow

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-03 CB496-Akin September 16, 2002 12:36

48 Object-Oriented Programming Concepts

Rational Class

Figure 3.14: Representation of a rational number class.

users to get either of the two components (lines 53 and 57). The provided routines shown in
that figure are

add Rational convert copy Rational delete Rational

equal integer gcd get Denominator get Numerator

invert is equal to ist make Rational

mult Rational Rational reduce

Procedures with only one return argument are usually implemented as functions instead of
subroutines.

Note that we would form a new rational number, z, as the product of two other rational
numbers, x and y, by invoking the mult Rational function (line 91),

z = mult Rational (x,y),

which returns z as its result. A natural tendency at this point would be simply to write this
as z = x ∗ y. However, before we could do that we would need to tell the operator, “*”,
how to act when provided with this new data type. This is known as overloading an intrinsic
operator. We had the foresight to do this when we set up the module by declaring which of
the “module procedures” were equivalent to this operator symbol. Thus, from the “inter-
face operator (*)” statement block (line 14) the system now knows that the left and right
operands of the “*” symbol correspond to the first and second arguments in the function

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-03 CB496-Akin September 16, 2002 12:36

3.3 Object-Oriented Numerical Calculations 49

[1] module class Rational ! filename: class Rational.f90

[2] implicit none

[3] ! public, everything but following private routines

[4] private :: gcd, reduce

[5] type Rational

[6] private ! numerator and denominator

[7] integer :: num, den ; end type Rational

[8]

[9] ! overloaded operators interfaces

[10] interface assignment (=)

[11] module procedure equal Integer ; end interface

[12] interface operator (+) ! add unary versions & (-) later

[13] module procedure add Rational ; end interface

[14] interface operator (*) ! add integer mult Rational, etc

[15] module procedure mult Rational ; end interface

[16] interface operator (==)

[17] module procedure is equal to ; end interface

[18] contains ! inherited operational functionality

[19] function add Rational (a, b) result (c) ! to overload +

[20] type (Rational), intent(in) :: a, b ! left + right

[21] type (Rational) :: c

[22] c % num = a % num*b % den + a % den*b % num

[23] c % den = a % den*b % den

[24] call reduce (c) ; end function add Rational

[25]

[26] function convert (name) result (value) ! rational to real

[27] type (Rational), intent(in) :: name

[28] real :: value ! decimal form

[29] value = float(name % num)/name % den ; end function convert

[30]

[31] function copy Rational (name) result (new)

[32] type (Rational), intent(in) :: name

[33] type (Rational) :: new

[34] new % num = name % num

[35] new % den = name % den ; end function copy Rational

[36]

[37] subroutine delete Rational (name) ! deallocate allocated items

[38] type (Rational), intent(inout) :: name ! simply zero it here

[39] name = Rational (0, 1) ; end subroutine delete Rational

[40]

[41] subroutine equal Integer (new, I) ! overload =, with integer

[42] type (Rational), intent(out) :: new ! left side of operator

[43] integer, intent(in) :: I ! right side of operator

[44] new % num = I ; new % den = 1 ; end subroutine equal Integer

[45]

[46] recursive function gcd (j, k) result (g) ! Greatest Common Divisor

[47] integer, intent(in) :: j, k ! numerator, denominator

[48] integer :: g

[49] if (k == 0) then ; g = j

[50] else ; g = gcd (k, modulo(j,k)) ! recursive call

[51] end if ; end function gcd

[52]

[53] function get Denominator (name) result (n) ! an access function

[54] type (Rational), intent(in) :: name

[55] integer :: n ! denominator

[56] n = name % den ; end function get Denominator

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-03 CB496-Akin September 16, 2002 12:36

50 Object-Oriented Programming Concepts

[57] function get Numerator (name) result (n) ! an access function

[58] type (Rational), intent(in) :: name

[59] integer :: n ! numerator

[60] n = name % num ; end function get Numerator

[61]

[62] subroutine invert (name) ! rational to rational inversion

[63] type (Rational), intent(inout) :: name

[64] integer :: temp

[65] temp = name % num

[66] name % num = name % den

[67] name % den = temp ; end subroutine invert

[68]

[69] function is equal to (a given, b given) result (t f)

[70] type (Rational), intent(in) :: a given, b given ! left == right

[71] type (Rational) :: a, b ! reduced copies

[72] logical :: t f

[73] a = copy Rational (a given) ; b = copy Rational (b given)

[74] call reduce(a) ; call reduce(b) ! reduced to lowest terms

[75] t f = (a%num == b%num) .and. (a%den == b%den) ; end function

[76]

[77] subroutine list(name) ! as a pretty print fraction

[78] type (Rational), intent(in) :: name

[79] print *, name % num, "/", name % den ; end subroutine list

[80]

[81] function make Rational (numerator, denominator) result (name)

[82] ! Optional Constructor for a rational type

[83] integer, optional, intent(in) :: numerator, denominator

[84] type (Rational) :: name

[85] name = Rational(0, 1) ! set defaults

[86] if (present(numerator)) name % num = numerator

[87] if (present(denominator)) name % den = denominator

[88] if (name % den == 0) name % den = 1 ! now simplify

[89] call reduce (name) ; end function make Rational

[90]

[91] function mult Rational (a, b) result (c) ! to overload *

[92] type (Rational), intent(in) :: a, b

[93] type (Rational) :: c

[94] c % num = a % num * b % num

[95] c % den = a % den * b % den

[96] call reduce (c) ; end function mult Rational

[97]

[98] function Rational (numerator, denominator) result (name)

[99] ! Public Constructor for a rational type

[100] integer, optional, intent(in) :: numerator, denominator

[101] type (Rational) :: name

[102] if (denominator == 0) then ; name = Rational (numerator, 1)

[103] else ; name = Rational (numerator, denominator) ; end if

[104] end function Rational

[105]

[106] subroutine reduce (name) ! to simplest rational form

[107] type (Rational), intent(inout) :: name

[108] integer :: g ! greatest common divisor

[109] g = gcd (name % num, name % den)

[110] name % num = name % num/g

[111] name % den = name % den/g ; end subroutine reduce

[112] end module class Rational

Figure 3.15: A fairly complete rational number class.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-03 CB496-Akin September 16, 2002 12:36

3.4 Discussion 51

mult Rational. Here it is not necessary to overload the assignment operator, “=”, when
both of its operands are of the same intrinsic or defined type. However, to convert an inte-
ger to a rational we could, and have, defined an overloaded assignment operator procedure
(line 10). Here we have provided the procedure,equal Integer, which is automatically in-
voked when we write type (Rational) y; y = 4. That would be simpler than invoking
the constructor called make rational. Before moving on, note that the system does not
yet know how to multiply an integer times a rational number, or vice versa. To do that one
would have to add more functionality such as a function, sayint mult rn, and add it to the
“module procedure” list associated with the “*” operator. A typical main program that exer-
cises most of the rational number functionality is given in Figure 3.16, along with typical nu-
merical output. It tests the constructors Rational (line 9), make Rational (lines 15, 19,
26), and a simple destructor delete Rational (line 39). The intrinsic constructor (line 7)
could have been used only if all the attributes were public, and that is considered an undesir-
able practice in OOP. The simple destructor actually just sets the “deleted” number to have
a set of default components. Later we will see that constructors and destructors often must
dynamically allocate and deallocate, respectively, memory associated with a specific
instance of some object.

When considering which operators to overload for a newly defined object one should
consider those that are used in sorting operations, such as the greater-than, >, and less-
than, <, operators. They are often useful because of the need to sort various types of objects.
If those symbols have been correctly overloaded, then a generic object sorting routine might
be used or would require only a few changes.

3.4 Discussion

The previous sections have only briefly touched on some important OOP concepts. More
details will be covered later after a general overview of the features of the Fortran language.
There are more than 100 OOP languages. Persons involved in software development need to
be aware that F90 can meet almost all of their needs for an OOP language. At the same time
F90 includes the F77 standard as a subset and thus allows efficient use of the many millions of
Fortran functions and subroutines developed in the past. The newer F95 standard is designed
to make efficient use of super computers and massively parallel machines. It includes most
of the high-performance Fortran features that are in wide use. Thus, efficient use of OOP
on parallel machines is available through F90 and F95.

None of the OOP languages have all the features one might desire. For example, the
useful concept of a “template,” which is standard in C++, is not in the F90 standard. Yet the
author has found that a few dozen lines of F90 code will define a preprocessor that allows
templates to be defined in F90 and expanded in line at compile time. The real challenge in
OOP is the actual OOA and OOD that must be completed before programming can begin
regardless of the language employed. For example, several authors have described widely
different approaches for defining classes to be used in constructing OO finite element sys-
tems. Additional sample applications of OOP in F90 will be given in the following chapters.

3.5 Exercises

1 Use the class Circle to create a class Sphere that computes the volume of a
sphere. Have a method that accepts an argument of a Circle. Use the radius of the
Circle via a new member get Circle radius to be added to the class Circle.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-03 CB496-Akin September 16, 2002 12:36

52 Object-Oriented Programming Concepts

[1] include ’class Rational.f90’

[2] program Rational test

[3] use class Rational

[4] implicit none

[5] type (Rational) :: x, y, z

[6] ! ------- only if Rational is NOT private ----------

[7] ! x = Rational(22,7) ! intrinsic constructor if public components

[8]

[9] x = Rational (22,7) ! public constructor if private components

[10] write (*,’("public x = ")’,advance=’no’); call list(x)

[11] write (*,’("converted x = ", g9.4)’) convert(x)

[12] call invert(x)

[13] write (*,’("inverted 1/x = ")’,advance=’no’); call list(x)

[14]

[15] x = make Rational () ! default constructor

[16] write (*,’("made null x = ")’,advance=’no’); call list(x)

[17] y = 4 ! rational = integer overload

[18] write (*,’("integer y = ")’,advance=’no’); call list(y)

[19] z = make Rational (22,7) ! manual constructor

[20] write (*,’("made full z = ")’,advance=’no’); call list(z)

[21] ! Test Accessors

[22] write (*,’("top of z = ", g4.0)’) get numerator(z)

[23] write (*,’("bottom of z = ", g4.0)’) get denominator(z)

[24] ! Misc. Function Tests

[25] write (*,’("making x = 100/360, ")’,advance=’no’)

[26] x = make Rational (100,360)

[27] write (*,’("reduced x = ")’,advance=’no’); call list(x)

[28] write (*,’("copying x to y gives ")’,advance=’no’)

[29] y = copy Rational (x)

[30] write (*,’("a new y = ")’,advance=’no’); call list(y)

[31] ! Test Overloaded Operators

[32] write (*,’("z * x gives ")’,advance=’no’); call list(z*x) ! times

[33] write (*,’("z + x gives ")’,advance=’no’); call list(z+x) ! add

[34] y = z ! overloaded assignment

[35] write (*,’("y = z gives y as ")’,advance=’no’); call list(y)

[36] write (*,’("logic y == x gives ")’,advance=’no’); print *, y==x

[37] write (*,’("logic y == z gives ")’,advance=’no’); print *, y==z

[38] ! Destruct

[39] call delete Rational (y) ! actually only null it here

[40] write (*,’("deleting y gives y = ")’,advance=’no’); call list(y)

[41] end program Rational test ! Running gives:

[42] ! public x = 22 / 7 ! converted x = 3.143

[43] ! inverted 1/x = 7 / 22 ! made null x = 0 / 1

[44] ! integer y = 4 / 1 ! made full z = 22 / 7

[45] ! top of z = 22 ! bottom of z = 7

[46] ! making x = 100/360, reduced x = 5 / 18

[47] ! copying x to y gives a new y = 5 / 18

[48] ! z * x gives 55 / 63 ! z + x gives 431 / 126

[49] ! y = z gives y as 22 / 7 ! logic y == x gives F

[50] ! logic y == z gives T ! deleting y gives y = 0 / 1

Figure 3.16: Testing the rational number class.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-03 CB496-Akin September 16, 2002 12:36

3.5 Exercises 53

2 Use theclass Circleandclass Rectangle to create aclass Cylinder that com-
putes the volume of a right circular cylinder. Have a method that accepts arguments of
a Circle and a height and a second method that accepts arguments of a Rectangle
and a radius. In the latter member use the heightof the Rectangle via a new member
get Rectangle height to be added to the class Rectangle.

3 Create a vector class to treat vectors with an arbitrary number of real coefficients. Assume
that the class Vector is defined as follows:

Vector Class

Overload the common operators of (+) with add Vector and
add Real to Vector, (–) with subtract Vector and subtract Real, (*) with
dot Vector, real mult Vector and Vector mult real, (=) with equal Real

to set all coefficients to a single real number, and (==) with routine is equal to.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-03 CB496-Akin September 16, 2002 12:36

54 Object-Oriented Programming Concepts

Include two constructors assign and make Vector. Let assign convert a real array
into an instance of a vector. Provide a destructor and means to read and write a vector,
normalize a vector, and determine its extreme values.

4 Modify the preceding vector class to extend it to a Sparse Vector Classwhere the
vast majority of the coefficients are zero. Store and operate only on the nonzero entries.

Sparse_Vector Class

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-03 CB496-Akin September 16, 2002 12:36

3.5 Exercises 55

5 Consider an object for a simple inventory item as shown below:

[1] module inventory object

[2] implicit none

[3] public ! all member functions

[4] type inventory

[5] private ! all attributes

[6] character(len=50) :: name

[7] real :: cost

[8] real :: price

[9] integer :: in stock ! number in stock

[10] integer :: lead time ! work days to re-stock

[11] end type inventory

[12]

[13] contains ! functionality . . .

Plan the supporting methods needed to initialize an item, get or revise its attribute
components, determine if it is empty, interactively input or output an item, save or restore
to a binary file, and so forth. Consider if additional attributes, like the number of items,
might be useful. Plan how such an object class could be used by an inventory system that
keeps track of a large number of such items.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-04 CB496-Akin September 18, 2002 8:41

CHAPTER FOUR
� �

Features of Programming Languages

The preceding chapter described the programming process as starting with a clearly specified
task, expressing it mathematically as a set of algorithms, translating the algorithms into
pseudocode, and finally, translating the pseudocode into a “real” programming language.
The final stages of this prescription work because most (if not all) computational languages
have remarkable similarities: they have statements, the sequencing of which is controlled by
various loop and conditional constructs, and functions that foster program modularization.
We indicated how similar Matlab, C++, and Fortran are at this level, but these languages
differ the more they are detailed. It is the purpose of this chapter to describe those details and
bring you from a superficial acquaintance with a computational language to fluency. Today,
the practicing engineer needs more than one programming language or environment. Once
achieving familiarity with one, you will find that learning other languages is easy.

When selecting a programming tool for engineering calculations, one is often faced with
two different levels of need. One level occurs when you need to solve a small problem quickly
once, such as a homework assignment, and computational efficiency is not important. You
may not care if your code takes 10 seconds or 100 seconds to execute; you want convenience.
At that level it may make sense to use an engineering environment like Matlab or Mathe-
matica. At the other extreme you may be involved in wide-area weather prediction for which
a 1-day run time instead of a 10-day run time defines a useful versus a nonuseful product.
You might be developing a hospital laboratory system for reporting test results to an emer-
gency room physician for whom an answer in 10 seconds versus an answer in 10 minutes can
literally mean the difference between life or death for a patient. For programming at this
level one wants an efficient language. Since such projects can involve programming teams in
different countries, you want your language to be based on an international standard. Then
you would choose to program a language such as C++ or F90. Because most students have
experienced only the first-need level, they tend to overvalue the first approach and devalue
the second. This chapter will illustrate that the skills needed for either approach are similar.

The structure of this chapter follows our usual progression in learning a language: what
variables are, how variables can be combined into expressions, what constructs are available
to control program flow, and how functions are defined so that we can employ modularity.
The basics are described in Chapter 1; we assume you are familiar with the language ba-
sics described there. Initially, this chapter will parallel the program composition section of
Chapter 1 as applied in the C++, F90, and Matlab languages and then it will bring in more
advanced topics.

The features of F90 to be discussed here have been combined in a series of tables and
placed in Appendix A. It is expected that we will want to refer to those tables as we read

56

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-04 CB496-Akin September 18, 2002 8:41

4.2 Statements and Expressions 57

Table 4.1: Comment Syntax

Language Syntax Location

Matlab % comment (to end of line) anywhere
C++ // comment (to end of line) anywhere
F90 ! comment (to end of line) anywhere
F77 * comment (to end of line) column 1

this section as well as later when we program. At times, references to C++ and Matlab have
been given to show the similarities between most languages and to provide an aid for when
having to interface in reading codes in those languages.

4.1 Comments

In Matlab and Fortran, a single character – ‘%’ in Matlab, ‘!’ in F90 – located anywhere in
a line of text means that the remainder of the text on that line constitutes the comment.
In C, an entirely different structure for comments occurs. Comments begin with the two-
character sequence ‘/*’ and end with the next occurrence of the two-character sequence
‘*/’. In C, comments can occur anywhere in a program; they can consume a portion of a
line, temporarily interrupting a statement, or they can span multiple lines of text. Although
C++ allows the use of the C comment syntax, it has added a more popular two-character
sequence ‘//’ to precede a comment to the end of a line. Table 4.1 gives a summary of these
comments syntax. It is also in the “Fortran 90 Overview” for quick reference. Samples of
comment statements are shown in Figure 1.3, which gives the corresponding versions of the
classic “hello world” program included in most introductory programming texts.

4.2 Statements and Expressions

Before introducing statements and expressions, we offer a word about documenting what
you program. We encourage the heavy use of comments. The three languages of concern
here all allow comment lines and comments appended to the end of statements. Their form
is given in Figure 1.3 and Table 4.1.

The preceding languages currently allow variable names to contain up to 31 characters
and allow the use of the underscore, ‘ ’, to aid in clarity by serving as a virtual space
character, as in my name. Another useful convention is to use uppercase first letters for
words composing part of a variable’s name: MyName. Fortran and Matlab allow a program
line to contain up to 132 characters, whereas C++ has no limit on line length. Since the old
F77 standard was physically limited to holes punched in a card, it allowed only a line length
of 72 characters and a maximum name length of 6 characters but did not allow the use of the
underscore in a name. In this text, we will usually keep line lengths to less than 65 characters
in order to make the programs more readable.

A statement in these three languages has a structure common to them all:

variable = expression

The built-in, or intrinsic, data types allowed for variables are summarized in Table 4.2.
Additional user-defined types will be considered later. The expressions usually involve the
use of arithmetic operators (Table 4.3) relational operators (Table 4.4), or both. The order

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-04 CB496-Akin September 18, 2002 8:41

58 Features of Programming Languages

Table 4.2: Intrinsic Data Types of Variables

Storage MATLABa C++ F90 F77

byte char character:: character
integer int integer:: integer
single precision float real:: real
double precision double real∗8:: double precision
complex b complex:: complex
Boolean bool logical:: logical
argument parameter:: parameter
pointer ∗ pointer::
structure struct type::

a Matlab4 requires no variable type declaration; the only two distinct types in Matlab are strings and
reals (which include complex). Booleans are just 0’s and 1’s treated as reals. Matlab5 allows the user
to select more types.

b There is no specific data type for a complex variable in C++; they must be created by the programmer.

in which the language applies these operators is called their precedence, which is shown in
Table 4.5. The precedence is also given in the “Fortran 90 Overview” for quick reference.

In moving from Matlab to high-level languages one finds that it is necessary to define
the type of each variable. Fortran has a default-naming convention for its variables, and it
allows an easy overriding of that built-in “implicit” convention. Since most engineering and
mathematical publications used the letters from “i” through “n” as subscripts, summation
ranges, loop counters, and so forth, Fortran first was released with implicit variable typing
such that all variables whose name began with the letters “i” through “n,” inclusive, defaulted
to integers unless declared otherwise. All other variables defaulted to be real unless declared
otherwise. In other words, you can think of the default code as if it contained the statements

IMPLICIT INTEGER (I-N) ! F77 and F90 Default

IMPLICIT REAL (A-H, O-Z) ! F77 and F90 Default

Table 4.3: Arithmetic Operators

Description MATLABa C++ Fortranb

addition + + +

subtractionc - - -

multiplication * and .* * *

division / and ./ / /

exponentiation ^ and .^ pow d **

remainder %

increment ++

decrement --

parentheses (expression grouping) () () ()

a When performing arithmetic operations on matrices in Matlab, a period (‘.’) must be placed before
the operator if scalar arithmetic is desired. Otherwise, Matlab assumes matrix operations; figure
out the difference between ‘*’ and ‘.*’. Note that since matrix and scalar addition coincide, no ‘.+’
operator exists (same holds for subtraction).

b Fortran 90 allows the user to change operators and to define new operator symbols.
c In all languages the minus sign is used for negation (i.e., changing sign).
d In C++ the exponentiation is calculated by function pow (x, y).

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-04 CB496-Akin September 18, 2002 8:41

4.2 Statements and Expressions 59

Table 4.4: Relational Operators (Arithmetic and Logical)

Description MATLAB C++ F90 F77

Equal to == == == .EQ.
Not equal to ~= != /= .NE.
Less than < < < .LT.
Less or equal <= <= <= .LE.
Greater than > > > .GT.
Greater or equal >= >= >= .GE.
Logical NOT ~ ! .NOT. .NOT.
Logical AND & && .AND. .AND.
Logical inclusive OR ! || .OR. .OR.
Logical exclusive OR xor .XOR. .XOR.
Logical equivalent == == .EQV. .EQV.
Logical not equivalent ~= != .NEQV. .NEQV.

The effect is automatic even if the statements are omitted.
Explicit-type declarations override any given IMPLICIT types. For example, if the code

had the implicit defaults above, one could also explicitly identify the exceptions to those
default rules such as the statements

INTEGER :: Temp row

REAL :: Interest = 0.04 ! declare and initialize

CHARACTER (Len=8) :: Months of year(12)

Table 4.5: Precedence Pecking Order

MATLAB

Operators C++ Operators F90 Operatorsa F77 Operators

() () [] -> . () ()
+ - ! ++ -- + ** **

- * & (type)
sizeof

* / * / % * / * /
+ -b + -b + -b + -b

< <= > >= << >> // //
==~= < <= > >= == /= < <= > .EQ. .NE.

>= .LT. .LE.
.GT. .GE.

~ == != .NOT. .NOT.
& && .AND. .AND.
| || .OR. .OR.
= | .EQV. .NEQV. .EQV. .NEQV.

?:
= += -= *= /=
%= &=^= |=
<<= >>=
,

a User-defined unary (binary) operators have the highest (lowest) precedence in F90.
b These are binary operators representing addition and subtraction. Unary operators + and - have

higher precedence.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-04 CB496-Akin September 18, 2002 8:41

60 Features of Programming Languages

We will also see that the programmer can define new data types and explicitly declare their
type as well.

The F90 standard discourages the use of any IMPLICIT variables such as

IMPLICIT COMPLEX (X-Z) ! Complex variables

IMPLICIT DOUBLE PRECISION (A-H) ! Double Precision reals

and encourages the use of

IMPLICIT NONE,

which forces the programmer to specifically declare the type of each and every variable used
and is referred to as strong typing. However, you need to know that such default variable
types exist because they are used in many millions of lines of older Fortran code, and at
some point you will need to use or change such an existing program.

A sample program that employs the typical math operators in F90 is shown in Figure 4.1.
It presents examples of addition (line 12), subtraction (line 15), multiplication (line 18),
division (line 21), as well as the use of the remainder or modulo function (line 24), exponen-
tiation (line 27), and square root operators (line 30). In addition it shows a way of inputting
data from the default input device (line 10). The results are appended as comments (lines
33–41). Observe that a program must include one and only one segment that begins with the
word program (line 1) and ends with the line end program (line 33). If a name is assigned
to the program, then it must be appended to both of these lines. Often the name of main
is used, as here, but it is not required as it is in C++ . A C++ formulation of this exam-
ple is included for comparison in the appendix C as are several other examples from this
chapter.

A special expression available in Matlab and F90 uses the colon operator (:) to indicate
forming a vector (row matrix) of numbers according to an arithmetic progression. In Matlab,
the expression b:i:e means the vector [b (b + i) (b + 2i) · · · (b + Ni)], where (b + Ni) is
the largest number less than or equal to (greater than or equal to if i is negative) the value of
the variable e. Thus, bmeans “beginning value,” imeans the increment, and e the end value.
The expression b:emeans that the increment equals 1. You can use this construct to excise a
portion of a vector or matrix. For example, x(2:5) equals the vector comprising the second
through fifth elements of x, and A(3:5,i:j) creates a matrix from the third, fourth, and
fifth rows, ith through jth columns of the matrix A. The language F90 uses the convention
of b:e:i and has the same defaults when :i is omitted. This operator, also known as the
subscript triplet, is described in Table 4.6.

Of course, expressions often involve the use of functions. A tabulation of the built-in
functions in our languages is given in Table 4.7 and the F90 overview as are all the remaining
tables of this chapter.

The arguments of functions and subprograms have some important properties that vary
with the language used. Primarily, we are interested in how actual arguments are passed to
the dummy arguments in the subprogram. This data passing happens by either of two fun-
damentally different ways: by reference or by value. One should understand the difference
between these two mechanisms.

“Passing by reference” means that the address in memory of the actual argument is passed
to the subprogram instead of the value stored at that address. The corresponding dummy
argument in the subprogram has the same address. That is, both arguments refer to the same
memory location, and thus any change to that argument within the subprogram is passed back
to the calling code. A variable is passed by reference to a subroutine whenever it is expected
that it should be changed by the subprogram. A related term is “dereferencing.” When you

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-04 CB496-Akin September 18, 2002 8:41

4.2 Statements and Expressions 61

[1] program simple arithmetic

[2] ! Examples of simple arithmetic in F90

[3] implicit none

[4] integer :: Integer Var 1, Integer Var 2 ! user inputs

[5] integer :: Mult Result, Div Result, Add Result

[6] integer :: Sub Result, Mod Result

[7] real :: Pow Result, Sqrt Result

[8]

[9] print *, ’Enter two integers:’

[10] read *, Integer Var 1, Integer Var 2

[11]

[12] Add Result = Integer Var 1 + Integer Var 2

[13] print *, Integer Var 1,’ + ’, Integer Var 2,’ = ’, Add Result

[14]

[15] Sub Result = Integer Var 1 - Integer Var 2

[16] print *, Integer Var 1,’ - ’, Integer Var 2,’ = ’, Sub Result

[17]

[18] Mult Result = Integer Var 1 * Integer Var 2

[19] print *, Integer Var 1,’ * ’, Integer Var 2,’ = ’, Mult Result

[20]

[21] Div Result = Integer Var 1 / Integer Var 2

[22] print *, Integer Var 1,’ / ’, Integer Var 2,’ = ’, Div Result

[23]

[24] Mod Result = mod (Integer Var 1, Integer Var 2) ! remainder

[25] print *, Integer Var 1,’ mod ’, Integer Var 2,’ = ’, Mod Result

[26]

[27] Pow Result = Integer Var 1 ** Integer Var 2 ! raise to power

[28] print *, Integer Var 1,’ ^ ’, Integer Var 2,’ = ’, Pow Result

[29]

[30] Sqrt Result = sqrt(real(Integer Var 1))

[31] print *,’Square root of ’, Integer Var 1,’ = ’, Sqrt Result

[32]

[33] end program simple arithmetic ! Running produces:

[34] ! Enter two integers: 25 4

[35] ! 25 + 4 = 29

[36] ! 25 - 4 = 21

[37] ! 25 * 4 = 100

[38] ! 25 / 4 = 6, note integer

[39] ! 25 mod 4 = 1

[40] ! 25 ^ 4 = 3.9062500E+05

[41] ! Square root of 25 = 5.0000000

Figure 4.1: Typical math and functions in F90.

Table 4.6: Colon Operator Syntax and Its Applications

Syntax F90 MATLAB

Default B:E:Ia B:I:E
≥ B B: B:
≤ E :E :E
Full range : :

Use F90 MATLAB

Array subscript ranges yes yes
Character positions in a string yes yes
Loop control no yes
Array element generation no yes

a B= Beginning, E= Ending, I= Increment

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-04 CB496-Akin September 18, 2002 8:41

62 Features of Programming Languages

Table 4.7: Mathematical functions

Description MATLAB C++ F90 F77

exponential exp(x) exp(x) exp(x) exp(x)
natural log log(x) log(x) log(x) log(x)
base 10 log log10(x) log10(x) log10(x) log10(x)
square root sqrt(x) sqrt(x) sqrt(x) sqrt(x)
raise to power (xr) x. ^r pow(x,r) x**r x**r
absolute value abs(x) fabs(x) abs(x) abs(x)
smallest integer>x ceil(x) ceil(x) ceiling(x)
largest integer<x floor(x) floor(x) floor(x)
division remainder rem(x,y) fmod(x,y) mod(x,y)a mod(x,y)
modulo modulo(x,y)a

complex conjugate conj(z) conjg(z) conjg(z)
imaginary part imag(z) imag(z) aimag(z)
drop fraction fix(x) aint(x) aint(x)
round number round(x) nint(x) nint(x)
cosine cos(x) cos(x) cos(x) cos(x)
sine sin(x) sin(x) sin(x) sin(x)
tangent tan(x) tan(x) tan(x) tan(x)
arccosine acos(x) acos(x) acos(x) acos(x)
arcsine asin(x) asin(x) asin(x) asin(x)
arctangent atan(x) atan(x) atan(x) atan(x)
arctangentb atan2(x,y) atan2(x,y) atan2(x,y) atan2(x,y)
hyperbolic cosine cosh(x) cosh(x) cosh(x) cosh(x)
hyperbolic sine sinh(x) sinh(x) sinh(x) sinh(x)
hyperbolic tangent tanh(x) tanh(x) tanh(x) tanh(x)
hyperbolic arccosine acosh(x)
hyperbolic arcsine asinh(x)
hyperbolic arctan atanh(x)

a Differ for x < 0.
b atan2(x,y) is used to calculate the arctangent of x/y in the range [−π, +π]. The one-argument

function atan(x) computes the arctangent of x in the range [−π/2, +π/2].

dereference a memory address, you are telling the computer to get the information located
at the address. Typically, one indirectly gives the address by citing the name of a pointer
variable or a reference variable.

“Passing by value” means that the value of the actual argument stored at its address
in memory is copied and the copy is passed to the dummy argument in the subprogram.
Thus, any change to the argument within the subprogram is not passed back to the calling
code. The two passing methods do not clearly show the intended use of the argument within
the subprogram. Is it to be passed in for use only, passed in for changing and returned,
or is it to be created in the subprogram and passed out for use in the calling code? For
additional safety and clarity modern languages provide some way to allow the programmer
to optionally specify such intent explicitly.

Both C++ and Matlab use the pass-by-value method as their default mode. This means
the value associated with the argument name, sayarg name, is copied and passed to the func-
tion. That copying could be very inefficient if the argument is a huge array. To denote that you
want to have the C++ argument passed by reference you must precede the argument name
with an ampersand (&), such as &arg name, in the calling code. Then within the subprogram

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-04 CB496-Akin September 18, 2002 8:41

4.3 Flow Control 63

Table 4.8: Flow Control Statements

Description C++ F90 F77 MATLAB

Conditionally execute statements if if if if
{ } end if end if end

Loop a specific number of times for k=1:n do k=1,n do # k=1,n for k=1:n
{ } end do # continue end

Loop an indefinite number of times while do while — while
{ } end do — end

Terminate and exit loop break exit go to break

Skip a cycle of loop continue cycle go to —

Display message and abort error() stop stop error

Return to invoking function return return return return

Conditional array action — where — if

Conditional alternate statements else else else else
else if elseif elseif elseif

Conditional array alternatives — elsewhere — else
— — — elseif

Conditional case selections switch { } select case if if
end select end if end

the corresponding dummy variable must be dereferenced by preceding the name with an
asterisk (*) such as *arg name. Conversely, Fortran uses the passing-by-reference method
as its default mode. On the rare occasions when one wants to pass by value simply sur-
round the argument name with parentheses, for example (arg name), in the calling code.
In either case it is recommended that you cite each argument with the optional “intent”
statement within the subprogram. Examples of the two passing options are covered in
Section 4.5.

4.3 Flow Control

The basic flow control constructs present in our selected engineering languages are loops –
repetitive execution of a block of statements – and conditionals – diversions around blocks
of statements. A typical set of flow-control statement types are summarized in Table 4.8.
Most of these will be illustrated in detail in the following sections.

4.3.1 Explicit Loops
The following discussion will introduce the important concept of loops. These are required
in most programs. However, the reader is warned that today the writing of explicit loops is
generally not the most efficient way to execute a loop operation in Fortran90 and Matlab.
Of course, older languages like F77 and C do require them; thus, the time spent here not only

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-04 CB496-Akin September 18, 2002 8:41

64 Features of Programming Languages

covers the explicit loop concepts but aids one in reading older languages. Our pseudocode
for the common loops is

Loop Pseudocode

Indexed loop for index=b,i,e
statements
end for

Pretest loop while (test)
statements
end while

Posttest loop do
statements
if (test) exit
end do

In engineering programming one often needs to perform a group of operations repeatedly.
Most computer languages have a statement to execute this powerful and widely used feature.
In Fortran this is the DO statement, and in C++ and Matlab it is the FOR statement. This
one statement provides for the initialization, incrementing, and testing of the loop variable
plus repeated execution of a group of statements contained within the loop. In Fortran77,
the loop always cites a label number that indicates the extent of the statements enclosed in
the loop. This is allowed in F90, but not recommended, and is considered obsolete. Instead,
the END DO indicates the extent of the loop, and the number label is omitted in both places.
However, F90 does allow a name to be assigned to a loop. Then the structure is denoted
as NAME:DO followed by END DO NAME. Examples of the syntax for these statements for the
languages of interest are given in Table 4.9.

A simple example of combining loops and array indexing is illustrated in Figures. 4.2 and
4.3. Note in Figure 4.2 that the final value of a loop counter (called Integer Var here) upon
exiting the loop (line 10) can be language- or compiler-dependent despite their being same
here. In Figure 4.3, we introduce for the first time a variable with a single subscript (line 5)
containing five numbers (integers) to be initialized manually (lines 8–10) and then to be

Table 4.9: Basic Loop Constructs

Loop MATLAB C++ Fortran

Indexed loop for index=matrix for (init;test;inc) do index=b,e,i
statements { statements
end statements end do

}

Pretest loop while (test) while (test) { do while (test)
statements statements statements
end } end do

Posttest loop do { do
statements statements
} while (test) if (test) exit

end do

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-04 CB496-Akin September 18, 2002 8:41

4.3 Flow Control 65

[1] program simple loop

[2] ! Examples of a simple loop in F90

[3] implicit none

[4] integer Integer Var

[5]

[6] do Integer Var = 0,4,1

[7] print *, ’The loop variable is:’, Integer Var

[8] end do ! over Integer Var

[9]

[10] print *, ’The final loop variable is:’, Integer Var

[11]

[12] end program simple loop ! Running produces:

[13] ! The loop variable is: 0

[14] ! The loop variable is: 1

[15] ! The loop variable is: 2

[16] ! The loop variable is: 3

[17] ! The loop variable is: 4

[18] ! The final loop variable is: 5 <- NOTE

Figure 4.2: Typical looping concepts in F90.

listed in a loop (lines 12–15) over all their values. Note that C++ stores the first entry in an
array at position zero (see appendix C listing), Matlab uses position one, and F90 defaults
to position one.

In C++ and Fortran 90, a special option is allowed to create loops that run “forever.”
These could be used, for example, to read an unknown amount of data until terminated,

[1] program array indexing

[2] ! Examples of simple array indexing in F90

[3] implicit none

[4] integer, parameter :: max = 5

[5] integer Integer Array(max) ! =(/ 10 20 30 40 50 /), or set below

[6] integer loopcount

[7]

[8] Integer Array(1) = 10 ! F90 index starts at 1, usually

[9] Integer Array(2) = 20 ; Integer Array(3) = 30

[10] Integer Array(4) = 40 ; Integer Array(5) = 50

[11]

[12] do loopcount = 1, max ! & means continued

[13] print *, ’The loop counter is: ’, loopcount, &

[14] ’ with an array value of: ’,Integer Array(loopcount)

[15] end do ! over loopcount

[16]

[17] print *, ’The final loop counter is: ’, loopcount

[18]

[19] end program array indexing

[20] ! Running produces:

[21] ! The loop counter is: 1 with an array value of: 10

[22] ! The loop counter is: 2 with an array value of: 20

[23] ! The loop counter is: 3 with an array value of: 30

[24] ! The loop counter is: 4 with an array value of: 40

[25] ! The loop counter is: 5 with an array value of: 50

[26] ! The final loop counter is: 6

Figure 4.3: Simple array indexing in F90.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-04 CB496-Akin September 18, 2002 8:41

66 Features of Programming Languages

in a nonfatal way, by the input statement. In C++, one omits the three loop controls,
such as

for (;;) {// forever loop

loop block

} // end forever loop,

whereas in F90, one simply omits the loop control and gives only the DO command:

do ! forever

loop block

end do ! forever

Most of the time, an infinite loop is used as a loop while true or a loop until true con-
struct. These will be considered shortly.

4.3.2 Implied Loops
Fortran and Matlab have shorthand methods for constructing “implied loops.” Both lan-
guages offer the colon operator to imply an incremental range of integer values. Its syntax
and types of applications are given in Table 4.6 (page 61). The allowed usages of the operator
differ slightly between the two languages. Note that this means that the loop controls are
slightly different in that the do control employs commas instead of colons. For example, two
equivalent loops are

Fortran MATLAB

do k=B,E,I for k=B:I:E

A(k) = k**2 A(k) = k∧2
end do end

Fortran offers an additional formal implied do loop that replaces the doand end dowith
a closed pair of parentheses in the syntax

(object, k = B,E,I),

where again the increment, I, defaults to unity if not supplied. The implied do above is
equivalent to the formal loop

do k=B,E,I

define the object ...

end do.

However, the object defined in the implied loop can only be utilized for four specific Fortran
operations: (1) read actions, (2) print and write actions, (3) data variables (not value)
definitions, and (4) definition of array elements. For example,

print *, (4*k-1, k=1,10,3) ! 3, 15, 27, 39

read *, (A(j,:), j=1,rows) ! read A by rows, sequentially.

The implied do loops can be nested to any level like the standard do statement. One simply
makes the inner loop the object of the outer loop so that

((object j k, j=min, max), k=k1,k2,inc)

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-04 CB496-Akin September 18, 2002 8:41

4.3 Flow Control 67

implies the nested loop

do k=k1,k2,inc

do j=min, max

utilize the object j k

end do ! over j

end do ! over k.

For example,

print *, (((A(k)*B(j)+3), j=1,5), k=1,max)

! read array by rows in each plane

read *, (((A(i,j,k), j=1,cols), i=1,rows), k=1,max).

Actually, there is even a simpler default form of implied dos for reading and writing arrays.
That default is to access arrays by columns. That is, process the leftmost subscript first. Thus,
for an array with three subscripts,

read *, A ⇐⇒ read *, (((A(i,j,k), i=1,rows), j=1,cols), k=1,planes).

Both languages allow the implied loops to be employed to create an array vector simply
by placing the implied loop inside the standard array delimit symbols. For example, we may
want an array to distribute N + 1 points equally over the distance from zero to D.

F90: X = (/(k,k=0,N)/)* D/(N+1)

Matlab : X = [0:N] * D / (N+1),

which illustrates that Matlab allows the use of the colon operator to define arrays, but F90
does not.

In addition to locating elements in an array by the regular incrementing of loop variables,
both Fortran90 and Matlab support even more specific selections of elements: by random
location via vector subscripts, or by value via logical masks such as where and if in F90 and
Matlab, respectively.

4.3.3 Conditionals
Logic tests are frequently needed to control the execution of a block of statements. The most
basic operation occurs when we want to do something when a logic test gives a true answer.
We call that a simple IF statement. When the test is true, the program executes the block of
statements following the IF. Often only one statement is needed, and so C++ and Fortran
allow that one statement to end the line that begins with the IF logic. Frequently we will
nest another IFwithin the statements from a higher level IF. The common language syntax
forms for the simple IF are given in Table 4.10 along with the examples of where a second
true group is nested inside the first, as shown in Table 4.11.

The next simplest case occurs where we need to do one thing when the answer is true and
a different thing when the logic test is false. Then the syntax changes simply to an IF {true
group} ELSE {false group}mode of execution. The typicalIF-ELSEsyntaxes of the various
languages are given in Table 4.12. Of course, the statement groups above can contain other
IF or IF-ELSE statements nested within them. They can also contain any valid statements,
including DO or FOR loops.

The most complicated logic tests occur when the number of cases for the answer goes be-
yond the two (true-false) of theIF-ELSEcontrol structure. These multiple case decisions can
be handled with the IF-ELSEIF-ELSEcontrol structures whose syntax is given in Table 4.13.
They involve a sequence of logic tests, each of which is followed by a group of statements to be

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-04 CB496-Akin September 18, 2002 8:41

68 Features of Programming Languages

Table 4.10: IFConstructs. The quantity Expressionmeans a logical expression
having a value that is either TRUE of FALSE. The term true statement or true
groupmeans that the statement or group of statements, respectively, are executed if
the conditional in the if Statement evaluates to TRUE

MATLAB Fortran C++

if l expression IF (l expression) THEN if (l expression)
true group true group {

end END IF true group;
}

IF (l expression) true statement if (l expression)
true statement;

executed if, and only if, the test answer is true. There can be any number of such tests. They are
terminated with an ELSEgroup of default statements to be executed if none of the logic tests
are true. Actually, the ELSEaction is optional. For program clarity or debugging, it should be
included even if it only prints a warning message or contains a comment statement. Typical
“if” and “if-else” coding is given in Figures 4.4, 4.5, and 4.6. Figure 4.4 simply uses the three
logical comparisons of “greater than” (line 9), “less than” (line 12), or “equal to” (line 15),
respectively. Figure 4.5 goes a step further by combining two tests with a logical “and” test
(line 9) and includes a second else branch (line 11) to handle the case where the if is false.
Although the input to these programs was numbers (line 7), the third sample program in
Figure 4.6 accepts logical input (lines 6,8) that represents either true or false values and
carries out Boolean operations to negate an input (via NOT in line 9) or to compare two
inputs (with an AND in line 11, or OR in line 17, etc.) to produce a third logical value.

Since following the logic of many IF-ELSEIF-ELSE statements can be very confusing,
both the C++ and Fortran languages allow a CASE selection or “switching” operation based
on the value (numerical or character) of some expression. For any allowed specified CASE

value, a group of statements is executed. If the value does not match any of the specified
allowed CASE values, then a default group of statements are executed. These are illustrated
in Table 4.14.

Table 4.11: Nested IFConstructs

MATLAB Fortran C++

if l expression1 IF (l expression1) THEN if (l expression1)
true group A true group A {
if l expression2 IF (l expression2) THEN true group A

true group B true group B if (l expression2)
end END IF {
true group C true group C true group B

end END IF }
statement group D statement group D true group C

}
statement group D

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-04 CB496-Akin September 18, 2002 8:41

4.3 Flow Control 69

Table 4.12: Logical IF-ELSEConstructs

MATLAB Fortran C++

if l expression IF (l expression) THEN if (l expression)
true group A true group A {

else ELSE true group A
false group B false group B }

end END IF else
{
false group B
}

Fortran90 offers an additional optional feature called construct names that can be em-
ployed with the IF and SELECT CASE constructs above to improve the readability of the
program. The optional name, followed by a colon, precedes the key words IF and SELECT

CASE. To be consistent, the name should also follow the key words END IF or END SELECT,
which always close the constructs. The construct name option is also available for loops
where it offers an additional pair of control actions that will be explained later. Examples
of these optional F90 features are given in Table 4.15.

Although C++ and Matlab do not formally offer this option, the same enhancement
of readability can be achieved by using the trailing comment feature to append a name or
description at the beginning and end of these logic construct blocks.

Both C++ and Fortran allow statement labels and provide controls to branch to specific
labels. Today you are generally advised not to use a GO TO and its associated label! How-
ever, they are common in many F77 codes. There are a few cases in which a GO TO is still
considered acceptable. For example, the pseudo-WHILE construct of F77 requires a GO TO

Table 4.13: Logical IF-ELSE-IF constructs

MATLAB Fortran C++

if l expression1 IF (l expression1) THEN if (l expression1)

true group A true group A {
elseif l expression2 ELSE IF (l expression2) THEN true group A

true group B true group B }
elseif l expression3 ELSE IF (l expression3) THEN else if (l expression2)

true group C true group C {
else ELSE true group B

default group D default group D }
end END IF else if (l expression3)

{
true group C

}
else

{
default group D

}

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-04 CB496-Akin September 18, 2002 8:41

70 Features of Programming Languages

[1] program relational operators

[2] ! Examples of relational "if" operator in F90

[3] implicit none

[4] integer :: Integer Var 1, Integer Var 2 ! user inputs

[5]

[6] print *, ’Enter two integers:’

[7] read *, Integer Var 1, Integer Var 2

[8]

[9] if (Integer Var 1 > Integer Var 2) &

[10] print *, Integer Var 1,’ is greater than ’, Integer Var 2

[11]

[12] if (Integer Var 1 < Integer Var 2) &

[13] print *, Integer Var 1,’ is less than ’, Integer Var 2

[14]

[15] if (Integer Var 1 == Integer Var 2) &

[16] print *, Integer Var 1,’ is equal to ’, Integer Var 2

[17]

[18] end program relational operators

[19]

[20] ! Running with 25 and 4 produces:

[21] ! Enter two integers:

[22] ! 25 is greater than 4

Figure 4.4: Typical relational operators in F90.

as follows:

initialize test

IF (l expression) THEN

true statement group

modify logical value

GO TO #

END IF.

The GO TO can also be utilized effectively in both Fortran and C++ to break out of several
nested loops. This is illustrated in Table 4.16. The “break-out” construct can be used in
the situation when, as a part of a subroutine, you want the program to exit the loop and
also the subroutine, returning control to the calling program. To do that, one would simply

[1] program if else logic

[2] ! Illustrate a simple if-else logic in F90

[3] implicit none

[4] integer Integer Var

[5]

[6] print *,’Enter an integer: ’

[7] read *, Integer Var

[8]

[9] if (Integer Var > 5 .and. Integer Var < 10) then

[10] print *, Integer Var, ’ is greater than 5 and less than 10’

[11] else

[12] print *, Integer Var, ’ is not greater than 5 and less than 10’

[13] end if ! range of input

[14]

[15] end program if else logic

[16] !

[17] ! Running with 3 gives: 3 is not greater than 5 and less than 10

[18] ! Running with 8 gives: 8 is greater than 5 and less than 10

Figure 4.5: Typical If-Else uses in F90.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-04 CB496-Akin September 18, 2002 8:41

4.3 Flow Control 71

[1] program Logical operators

[2] ! Examples of Logical operators in F90

[3] implicit none

[4] logical :: Logic Var 1, Logic Var 2

[5] print *,’Print logical value of A (T or F):’

[6] read *, Logic Var 1

[7] print *,’Print logical value of B (T or F):’

[8] read *, Logic Var 2

[9] print *,’NOT A is ’, (.NOT. Logic Var 1)

[10]

[11] if (Logic Var 1 .AND. Logic Var 2) then

[12] print *, ’A ANDed with B is true’

[13] else

[14] print *, ’A ANDed with B is false’

[15] end if ! for AND

[16]

[17] if (Logic Var 1 .OR. Logic Var 2) then

[18] print *, ’A ORed with B is true’

[19] else

[20] print *, ’A ORed with B is false’

[21] end if ! for OR

[22]

[23] if (Logic Var 1 .EQV. Logic Var 2) then

[24] print *, ’A EQiValent with B is true’

[25] else

[26] print *, ’A EQiValent with B is false’

[27] end if ! for EQV

[28]

[29] if (Logic Var 1 .NEQV. Logic Var 2) then

[30] print *, ’A Not EQiValent with B is true’

[31] else

[32] print *, ’A Not EQiValent with B is false’

[33] end if ! for NEQV

[34]

[35] end program Logical operators

[36] ! Running with T and F produces:

[37] ! Print logical value of A (T or F): T

[38] ! Print logical value of B (T or F): F

[39] ! NOT A is F

[40] ! A ANDed with B is false

[41] ! A ORed with B is true

[42] ! A EQiValent with B is false

[43] ! A Not EQiValent with B is true

Figure 4.6: Typical logical operators in F90.

replace the GO TO statement with the RETURN statement. In F90, one should also append the
comment “! to calling program” to assist in making the subroutine more readable.

You may find it necessary to skip a cycle in loop execution, exit from a single loop, or
do both. Both Fortran and C++ provide these control options without requiring the use of
a GO TO. To skip a loop cycle, Fortran90 and C++ use the statements CYCLE and continue,
respectively, and EXIT and break to abort a loop. These constructs are shown in Tables 4.17
and 4.18. Other forms of the GO TO in F77 were declared obsolete in F90 and should not be
used. The Fortran abort examples could also use the RETURN option described above in the
rare cases when it proves to be more desirable or efficient.

As mentioned earlier, F90 allows the programmer to use “named” DO constructs. In
addition to improving readability, this feature also offers additional control over nested loops

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-04 CB496-Akin September 18, 2002 8:41

72 Features of Programming Languages

Table 4.14: Case Selection Constructs

F90 C++

SELECT CASE (expression) switch (expression)
CASE (value 1) {
group 1 case value 1 :

CASE (value 2) group 1
group 2 break;
... case value 2 :

CASE (value n) group 2
group n break;

CASE DEFAULT
...

default group case value n :
END SELECT group n

break;
default:
default group
break;

}

because we can associate the CYCLE and EXIT commands with a specific loop (Table 4.19).
Without the optional name, the CYCLE and EXIT commands act only on the innermost loop
in which they lie. We will see later that Fortran90 allows another type of loop called WHERE
that is designed to operate on arrays.

4.3.3.1 Looping While True or Until True. It is very common to need to perform a loop
so long as a condition is true or to run the loop until a condition becomes true. The two are
very similar, and both represent loops that would run forever unless specifically terminated.
We will refer to these two approaches as WHILE loops and UNTIL loops. The WHILE logic test
is made first to determine if the loop will be entered. Clearly, this means that if the logic
test is false the first time it is tested, the statement blocks controlled by the WHILEare never
executed. If the WHILE loop is entered, something in the loop must eventually change the
value of a variable in the logic test or the loop would run forever. Once a change causes the
WHILE logic test to be false, control is transferred to the first statement following the WHILE
structure. By way of comparison, an UNTIL loop is always entered at least once. When the

Table 4.15: F90 Optional Logic Block Names

F90 Named IF F90Named SELECT

name: IF (logical 1) THEN name: SELECT CASE (expression)
true group A CASE (value 1)

ELSEIF (logical 2) THEN group 1
true group B CASE (value 2)

ELSE group 2
default group C CASE DEFAULT

ENDIF name default group
END SELECT name

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-04 CB496-Akin September 18, 2002 8:41

4.3 Flow Control 73

Table 4.16: GO TOBreak-out of nested loops.
This situation can be an exception to the general
recommendation to avoid GO TO statements.

Fortran 77 C++

DO 1 ... for (...) {
DO 2 ... for (...) {
... ...
IF (disaster) THEN if (disaster)
GO TO 3 go to error

END IF ...
... }

2 END DO }
1 END DO error:
3 next statement

loop is entered, a beginning statement group is executed. Then the logic test is evaluated.
If the test result is true, the loop is exited and control is passed to the next statement after
the group. If the test is false, then an optional second statement group is executed before
the loop returns to the beginning statement group. The pseudocode for these two similar
structures are given as follows :

while true until true

logic variable = true logic variable = false

begin: begin:

if (logic variable) then % true statements

true group if (logic variable) then

re-evaluate logic variable exit the loop

go to begin else % false

else % false false group

exit loop re-evaluate logic variable

end if go to begin

end if

Table 4.17: Skip a Single Loop Cycle

F77 F90 C++

DO 1 I = 1,N DO I = 1,N for (i=1; i<n; i++)

... ... {
IF (skip condition) THEN IF (skip condition) THEN if (skip condition)

GO TO 1 CYCLE ! to next I continue; // to next

ELSE ELSE else if

false group false group false group

END IF END IF end

1 continue END DO }

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-04 CB496-Akin September 18, 2002 8:41

74 Features of Programming Languages

Table 4.18: Abort a Single Loop

F77 F90 C++

DO 1 I = 1,N DO I = 1,N for (i=1; i<n; i++)

IF (exit condition) THEN IF (exit condition) THEN {
GO TO 2 EXIT ! this do if (exit condition)

ELSE ELSE break;// out of loop

false group false group else if

END IF END IF false group

1 CONTINUE END DO end

2 next statement next statement }
next statement

Since these constructs are commonly needed, several programming languages offer some
support for them. For example, Pascal has a REPEAT UNTIL command, and C++ has the
DO-WHILE pair for the until-true construct. For the more common while-true loops, C++
and Matlab offer a WHILE command, and Fortran 90 includes the DO WHILE. However,
F77 only has the obsolete IF-GO TO pairs, as illustrated in Tables 4.17, 4.18. Many current
programmers consider the WHILE construct obsolete because it is less clear than a DO-EXIT
pair or a “for-break” pair. Indeed, the F90 standard has declared the DO WHILE as obsolete
and eligible for future deletion from the language. We can see how the loop-abort feature of
C++ and F90 includes both the WHILE and UNTIL concepts. For example, the F90 construct

initialize logical variable

DO WHILE (logical variable) ! is true

true group

re-evaluate logical variable

END DO ! while true
.
.
.

Table 4.19: F90 DO’s named for
control

main: DO ! forever

test: DO k=1,k max

third: DO m=m max,m min,-1

IF (test condition) THEN

CYCLE test ! loop on k

END IF

END DO third ! loop on m

fourth: DO n=n min,n max,2

IF (main condition) THEN

EXIT main ! forever loop

END DO fourth ! on n

END DO test ! over k

END DO main

next statement

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-04 CB496-Akin September 18, 2002 8:41

4.3 Flow Control 75

is entirely equivalent to the aborted endless loop

initialize logical variable

DO ! forever while true

IF (.NOT. logical variable) EXIT ! as false

true group

re-evaluate logical variable

END DO ! while true
.
.
.

Likewise, a minor change includes the following UNTIL construct:

DO ! forever until true

beginning statements and initialization

IF (logical expression) EXIT ! as true

false group

re-evaluate logical variable

END DO ! until true.

When approached in the C++ language, we have the following WHILE loop:

initialize logical variable

while (logical variable)

{ // is true

true group

re-evaluate logical variable

} // end while true.

Recalling the standard for syntax, one could view

for (expr 1; expr 2; expr 3)

{
true group

} // end for

as equivalent to the preceding WHILE in for form as follows:

expr 1;

while (expr 2)

{ // is true

true group

expr 3;

} // end while true.

If we omit all three for expressions, then it becomes an “infinite loop” or a “do forever”
that can represent a WHILEor UNTIL construct by proper placement of the break command.
Furthermore, C has the do-while construct that is equivalent to Pascal’s REPEAT-UNTIL as
follows:

do // forever until true

statements

evaluate logical variable

while (logical variable) // is true.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-04 CB496-Akin September 18, 2002 8:41

76 Features of Programming Languages

Table 4.20: Looping While a Condition is True

MATLAB C++

initialize test initialize test

while l expression while (l expression)

true group {
change test true group

end change test

}

F77 F90

initialize test initialize test

continue do while (l expression)

IF (l expression) THEN true group

true group change test

change test end do

go to #

END IF

The syntax for the classical WHILE statements in C++, Fortran, and Matlab are given in
Table 4.20. Fortran90 has declared the DO WHILE obsolete and recommends the DO-EXIT
pair instead. Using infinite loops with clearly aborted stages is a less error-prone approach
to programming.

4.4 Subprograms

The concept of modular programming requires the use of numerous subprograms or pro-
cedures to execute independent segments of the calculations or operations. Typically, these
procedures fall into classes such as functions, subroutines, and modules. We will con-
sider examples of the procedures for each of our target languages. These are shown in
Table 4.21.

Recall that Table 4.7 compared several intrinsic functions that are common to both F90
and Matlab. For completeness, all of the Fortran90 functions are listed both alphabetically
and by subject in Appendix A. Similar listings for Matlab can be found in the Matlab
Primer.

4.4.1 Functions and Subroutines
Historically, a function was a subprogram employing one or more input arguments and
returning a single result value. For example, a square root or logarithm function would
accept a single input value and return a single result. All of the languages of interest allow
the user to define such a function, and they all provide numerous intrinsic or built-in functions
of this type. As you might expect, such a procedure is called a function in C++, Fortran, and
Matlab. As an example of such a procedure, consider the calculation of the mean value of
a sequence of numbers defined as

mean = 1
n

n∑
k=1

xk .

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-04 CB496-Akin September 18, 2002 8:41

4.4 Subprograms 77

Table 4.21: Function definitions. In each case, the function being defined is named f and is
called with m arguments a1,...,am

Function
Type MATLABa C++ Fortran

program statements main(argc,char **argv) program main

[y1 ...yn]=f(a1,...,am) { type y

[end of file] statements type a1, ...,type am

y = f(a1,I,am); statements

} y = f(a1, ...,am)

call s(a1, ...,am)

end program

subroutine void f subroutine s(a1, ...,am)

(type a1, ...,type am) type a1, ...,type am

{ statements

statements end

}

function function [r1 ...rn] type f function f(a1, ...,am)

=f(a1, ...,am) (type a1, ...,type am) type f

statements { statements } type a1, ...,type am

statements

end

a Every function or program in Matlab must be in separate files.

In Fortran 90, a subprogram to return the mean (average) could be

function mean(x)

! mean = sum of vector x, divided by its size

real :: mean, x(:)

mean = sum(x)/size(x)

end function mean.

Note that our function has employed two other intrinsic functions: size to determine the
number of elements in the array x and sum to carry out the summation of all elements in
x. Originally in Fortran, the result value was required to be assigned to the name of the
function. That is still a valid option in F90, but today it is considered better practice to
specify a result value name to be returned by the function. The mean function is a Matlab
intrinsic and can be used directly.

To illustrate the use of a result value, consider the related “median” value in F90:

function mid value(x) result(median)

! return the middle value of vector x

real :: median, x(:)

median = x(size(x)/2) ! what if size = 1 ??

end function mid value.

To apply these two functions to an array, say y, we would simply write y ave = mean(y),
and y mid = mid value(y), respectively. Although Fortran allows a “function” to re-
turn only a single object, both C++ and Matlab use that subprogram name to return any
number of result objects. Fortran employs the name “subroutine” for such a procedure. Such

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-04 CB496-Akin September 18, 2002 8:41

78 Features of Programming Languages

Table 4.22: Arguments and Return Values of Subprograms

One-Input, One-Result Procedures

Matlab function out = name (in)
F90 function name (in) ! name = out

function name (in) result (out)
C++ name (in, out)a

Multiple-Input, Multiple-Result Procedures

Matlab function [inout, out2] = name (in1, in2, inout)
F90 subroutine name (in1, in2, inout, out2)a

C++ name(in1, in2, inout, out2)a

a Other arrangements acceptable

procedures are allowed to have multiple inputs and multiple outputs (including none). The
syntax of the first line of these two subprogram classes is shown in Table 4.22. Note that
a typical subprogram may have no arguments, multiple input arguments (in1, in2, in-

out), multiple result arguments (inout, out2), and arguments that are used for both input
and result usage (inout). These representative names have been selected to reflect that a
programmer usually intends for arguments to be used for input only, or for result values
only, or for input, modification, and output. It is considered good programming practice to
declare such intentions to aid the compiler in detecting unintended uses; F90 provides the
INTENT statement for this purpose but does not require its use.

Having outlined the concepts of subprograms, we will review some presented earlier and
then give some new examples. Figure 1.3 presented a clipping function earlier expressed in
pseudocode. A corresponding Fortran implementation of such a clipping function is given
in Figure 4.7. Note that it is very similar to the pseudocode version.

For the purpose of illustration, an alternate F90 version of the Game of Life, shown earlier
in Chapter 1 as pseudocode, is given in the assignment solutions section. Clearly we have
not introduced all the features utilized in these sample codes, and thus you should continue
to refer back to them as your programming understanding grows.

A simple program that illustrates program composition is maximum.f90, which asks the
user to specify several integers from which the program finds the largest. It is given in
Figure 4.8. Note how the main program accepts the user input (lines 15,20), and the maxint
function (line 22) finds the maximum (lines 25–34). Perhaps modularity would have been
better served by expressing the input portion by a separate function. Of course, this routine
is not really needed since F90 provides intrinsic functions to find maximum and minimum
values (maxval, minval) and their locations in any array (maxloc, minloc). A similar
C++ program composition is shown for comparison in the appendix C.

4.4.2 Global Variables
We have seen that variables used inside a procedure can be thought of as dummy variable
names that exist only in the procedure unless they are members of the argument list. Even
if they are arguments to the procedure, they can still have names different from the names
employed in the calling program. This approach can have disadvantages. For example, it
might lead to a long list of arguments, say 20 lines, in a complicated procedure. For this
and other reasons, we sometimes desire to have variables that are accessible by any and all
procedures at any time. These are called global variables regardless of their type.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-04 CB496-Akin September 18, 2002 8:41

4.4 Subprograms 79

[1] program clip an array

[2] ! clip the elements of an array

[3] implicit none

[4] real, parameter :: limit = 3

[5] integer, parameter :: n = 5

[6] real :: y(n), x(n)

[7] ! Define x values that will be clipped

[8] x = (/ (-8. + 3.*k, k = 1,n) /) ! an implied loop

[9] do i = 1, n

[10] y(i) = clip (x(i), limit)

[11] end do

[12] print *, x

[13] print *, y

[14]

[15] contains ! methods

[16]

[17] function clip (x, L) result (c)

[18] ! c = clip(x, L) - clip the variable x, output

[19] ! x = scalar variable, input

[20] ! L = limit of the clipper, input

[21] !

[22] real, intent(in) :: x, L ! variable types

[23] real :: c ! variable types

[24] intent (in) x, L ! argument uses

[25] if (abs(x) <= L) then ! abs of x less than or equal L

[26] c = x; ! then use x

[27] else ! absolute of x greater than L ?

[28] c = sign(L,x) ! sign of x times L

[29] end if ! of value of x

[30] end function ! clip

[31] end program clip an array

[32] !

[33] ! produces:

[34] ! -5.0000000 -2.0000000 1.0000000 4.0000000 7.0000000

[35] ! -3.0000000 -2.0000000 1.0000000 3.0000000 3.0000000

Figure 4.7: Clipping a set of array values in F90.

Generally, we explicitly declare them to be global and provide some means by which
they can be accessed, and thus modified, by selected procedures. When a selected procedure
needs, or benefits from, access to a global variable, one may wish to control which subset
of global variables is accessible by the procedure. The typical initial identification of global
variables and the ways to access them are shown in Table 4.23.

An advanced aspect of the concept of global variables is the topics of inheritance and
object-oriented programming. Fortran 90, and other languages like C++, offer these ad-
vanced concepts. In F90, inheritance is available to a module, a main program, or both, and
their “internal subprograms” defined as those procedures following a contains statement
but occurring before an end module or the end program statement. Everything that ap-
pears before the contains statement is available to, and can be changed by, the internal
subprograms. Those inherited variables are more than local but not quite global; thus, they
may be thought of as territorial variables. The structure of these internal subprograms with
inheritance is shown in Figure 4.9.

Perhaps the most commonly used global variables are those necessary to calculate the
amount of central processor unit (cpu) time, in seconds, that a particular code segment used
during its execution. All systems provide utilities for that purpose, but some are more friendly

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-04 CB496-Akin September 18, 2002 8:41

80 Features of Programming Languages

[1] program maximum ! of a set of integers (see intrinsic maxval)

[2] implicit none

[3] interface ! declare function interface prototype

[4] function maxint (input, input length) result(max)

[5] integer, intent(in) :: input length, input(:)

[6] integer :: max

[7] end function ! maxint

[8] end interface

[9]

[10] integer, parameter :: ARRAYLENGTH=100

[11] integer :: integers(ARRAYLENGTH);

[12] integer :: i, n;

[13]

[14] ! Read in the number of integers

[15] print *,’Find maximum; type n: ’; read *, n

[16] if (n > ARRAYLENGTH .or. n < 0) &

[17] stop ’Value you typed is too large or negative.’

[18]

[19] do i = 1, n ! Read in the user’s integers

[20] print *, ’Integer ’, i, ’?’; read *, integers(i)

[21] end do ! over n values

[22] print *, ’Maximum: ’, maxint (integers, n)

[23] end program maximum

[24]

[25] function maxint (input, input length) result(max)

[26] ! Find the maximum of an array of integers

[27] integer, intent(in) :: input length, input(:)

[28] integer :: i, max

[29]

[30] max = input(1); ! initialize

[31] do i = 1, input length ! note could be only 1

[32] if (input(i) > max) max = input(i);

[33] end do ! over values

[34] end function maxint ! produces this result:

[35] ! Find maximum; type n: 4

[36] ! Integer 1? 9

[37] ! Integer 2? 6

[38] ! Integer 3? 4

[39] ! Integer 4? -99

[40] ! Maximum: 9

Figure 4.8: Search for largest value in F90.

than others. Matlab provides a pair of functions, called tic and toc, that act together to
provide the desired information. To illustrate the use of global variables we will develop an
F90 module called tic toc to hold the necessary variables along with the routines ticand
toc. It is illustrated in Figure 4.10, where the module constants (lines 4–7) are set (lines 18,
27) and computed (line 28) in the two internal functions.

4.4.3 Bit Functions
We have discussed the fact that the digital computer is based on the use of individual bits. The
subject of bit manipulation is one that we do not wish to pursue here. However, advanced
applications do sometimes require these abilities, and the most common uses have been
declared in the so-called military standards USDOD-MIL-STD-1753 and made part of the

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-04 CB496-Akin September 18, 2002 8:41

4.4 Subprograms 81

Table 4.23: Defining and Referring to Global Variables

Global Variable Declaration

Matlab global list of variables
F77 common /set name/ list of variables
F90 module set name

save
type (type tag) :: list of variables

end module set name
C++ extern list of variables

Access to Global Variables

Matlab global list of variables
F77 common /set name/ list of variables
F90 use set name, only subset of variables

use set name2 list of variables
C++ extern list of variables

Fortran 90 standard. Several of these features are also a part of C++. Table 4.24 gives a list
of those functions.

4.4.4 Exception Controls
An exception handler is a block of code invoked to process specific error conditions. Stan-
dard exception control keywords in a language are usually associated with the allocation of
resources, such as files or memory space, or input–output operations. For many applications
we simply want to catch an unexpected result and output a message so that the programmer
can correct the situation. In that case we may not care if the exception aborts the execution.
However, if one is using a commercial execute-only program, then it is very disturbing to
have a code abort. We would at least expect the code to respond to a fatal error by closing

module or program name inherit

Optional territorial variable, type specification, and calls

contains

subroutine Internal 1

territorial specifications and calls

contains

subroutine Internal 2

local computations

end subroutine Internal 2

subroutine Internal 3

local computations

end subroutine Internal 3

end subroutine Internal 1

end name inherit

Figure 4.9: F90 internal subprogram structure.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-04 CB496-Akin September 18, 2002 8:41

82 Features of Programming Languages

[1] module tic toc

[2] ! Define global constants for timing increments

[3] implicit none

[4] integer :: start ! current value of system clock

[5] integer :: rate ! system clock counts/sec

[6] integer :: finish ! ending value of system clock

[7] real :: sec ! increment in sec, (finish-start)/rate

[8] ! Useage: use tic toc ! global constant access

[9] ! call tic ! start clock

[10] ! . . . ! use some cpu time

[11] ! cputime = toc () ! for increment

[12] contains ! access to start, rate, finish, sec

[13] subroutine tic

[14] ! ---

[15] ! Model the matlab tic function, for use with toc

[16] ! ---

[17] implicit none

[18] call system clock (start, rate) ! Get start value and rate

[19] end subroutine tic

[20]

[21] function toc () result(sec)

[22] ! ---

[23] ! Model the matlab toc function, for use with tic

[24] ! ---

[25] implicit none

[26] real :: sec

[27] call system clock (finish) ! Stop the execution timer

[28] sec = 0.0

[29] if (finish >= start) sec = float(finish - start) / float(rate)

[30] end function toc

[31] end module tic toc

Figure 4.10: A module for computing CPU times.

Table 4.24: Bit Function Intrinsics

Action C++ F90

Bitwise AND & iand
Bitwise exclusive OR ∧ ieor
Bitwise exclusive OR | ior
Circular bit shift ishftc
Clear bit ibclr
Combination of bits mvbits
Extract bit ibits
Logical complement ∼ not
Number of bits in integer sizeof bit size
Set bit ibset
Shift bit left � ishft
Shift bit right � ishft
Test on or off btest
Transfer bits to integer transfer

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-04 CB496-Akin September 18, 2002 8:41

4.4 Subprograms 83

[1] module exceptions

[2] implicit none

[3] integer, parameter :: INFO = 1, WARN = 2, FATAL = 3

[4] integer :: error count = 0

[5] integer :: max level = 0

[6] contains

[7]

[8] subroutine exception (program, message, flag)

[9] character(len=*) :: program

[10] character(len=*) :: message

[11] integer, optional :: flag

[12]

[13] error count = error count + 1

[14]

[15] print *, ’Exception Status Thrown’

[16] print *, ’ Program :’, program

[17] print *, ’ Message :’, message

[18] if (present(flag)) then

[19] print *, ’ Level :’, flag

[20] if (flag > max level) max level = flag

[21] end if ! flag given

[22] end subroutine exception

[23]

[24] subroutine exception status ()

[25] print *

[26] print *, "Exception Summary:"

[27] print *, " Exception count = ", error count

[28] print *, " Highest level = ", max level

[29] end subroutine exception status

[30] end module exceptions

Figure 4.11: A minimal exception handling module.

down the program in some gentle fashion that saves what was completed before the error
and maybe even offers us a restart option. Here we provide only the minimum form of an
exceptions module that can be used by other modules to pass warnings of fatal messages
to the user. It includes an integer flag that can be utilized to rank the severity of possible
messages. It is shown in Figure 4.11. In the following list we will summarize the F90 optional
error flags that should always be checked and are likely to lead to a call to the exception
handler.

Dynamic Memory: The ALLOCATE and DEALLOCATE statements both use the optional
flag STAT= to return an integer flag that can be tested to invoke an exception handler.
The integer value is zero after a successful (de)allocation and a positive value otherwise.
If STAT= is absent, an unsuccessful result stops execution.

File Open/Close: TheOPEN,CLOSE, andENDFILEstatements allow the use of the optional
keyword IOSTAT= to return an integer flag which is zero if the statement executes suc-
cessfully, and a positive value otherwise. They also allow the older standard exception
keywordERR= to be assigned a positive integer constant label number of the statement
to which control is passed if an error occurs. An exception handler could be called by
that statement.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-04 CB496-Akin September 18, 2002 8:41

84 Features of Programming Languages

File Input/Output: The READ, WRITE, BACKSPACE, and REWIND statements allow the IO-
STAT= keyword to return a negative integer if an end-of-record (EOR) or end-of-file
(EOF) is encountered, a zero if there is no error, and a positive integer if an error
occurs (such as reading a character during an integer input). They also allow the ERR=
error label branching described in the last entry for the file open/close operations.

In addition, the READ statement also retains the old standard keyword END= to identify
a label number to which control transfers when an end-of-file (EOF) is detected.

Status Inquiry: Whether in UNIT mode or FILE mode, the INQUIRE statement for file
operations allows the IOSTAT= and ERR= keywords like the OPEN statement. In addi-
tion, either mode supports two logical keywords : EXISTS= to determine if the UNIT
(or FILE) exists, and OPENED= to determine if a (the) file is connected to this (an) unit.

Optional Arguments: The PRESENT function returns a logical value to indicate whether
an optional argument was provided in the invocation of the procedure in which the
function appears.

Pointers and Targets: The ASSOCIATED function returns a logical value to indicate
whether a pointer is associated with a specific target or with any target.

4.5 Interface Prototype

Compiler languages are more efficient than interpreted languages. If the compiler is going
to generate calls to functions or subprograms correctly, it needs to know certain things about
the arguments and returned values. The number of arguments, their type, their rank, their
order, and so forth, must be the same. This collection of information is called the “interface”
to the function or subprogram. In most of our sample codes the functions and subprograms
have been included in a single file. In practice they are usually stored in separate external
files and often written by others. Thus, the program that is going to use these external files
must be given a “prototype” description of them. In other words, a segment of prototype,
or interface, code is a definition used by the compiler to determine what parameters are
required by the subprogram as it is called by your program. The interface prototype code
for any subprogram can usually be created by simply copying the first few lines of the
subprogram (and maybe the last one) and placing them in an interface directory.

To compile a subprogram successfully modern computer science methods sometimes
require the programmer to specifically declare the interface to be used in invoking a sub-
program even if that subprogram is included in the same file. This information is called a
“prototype” in C and C++ and an “interface” in F90. If the subprogram already exists, one
can easily create the needed interface details by making a copy of the program and deleting
from the copy all information except that which describes the arguments and subprogram
type. If the program does not exist, you write the interface first to define what will be ex-
pected of the subprogram regardless of who writes it. It is considered good programming
style to include explicit interfaces, or prototype code, even if they are not required.

If in doubt about the need for an explicit interface, see if the compiler gives an error
because it is not present. In F90 the common reasons for needing an explicit interface
are (1) passing an array that has only its rank declared (e.g., A(:,:), B(:); these are
known as “assumed-shape” arrays) and (2) using a function to return a result that is (a)
an array of unknown size, or (b) a pointer, or (c) a character string with a dynamically de-
termined length. Advanced features like optional argument lists, user-defined operators,

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-04 CB496-Akin September 18, 2002 8:41

4.6 Characters and Strings 85

or generic subprogram names (to allow differing argument types) also require explicit
operators.

In C++ before calling an external function, it must be declared with a prototype of its
parameters. The general form for a function is

function type function name (argument type list);

where the argument type list is the comma separated list of pairs of type and name for
each argument of the function. These names are effectively treated as comments and may be
different from the names in the calling program or even omitted. The use of a prototype was
shown in Figure 4.8 and is used again in Figure 4.12, which also illustrates passing arguments
by reference or by value.

An interface block for external subprograms is not required by F77 (thereby leading to
hard-to-find errors) but is strongly recommended in F90 and is explicitly required in several
situations. The general form for an F90 interface is

interface interface name

function interface body

subroutine interface body

module procedure interface body

end interface interface name,

where a typical function interface body would be

function type function name (argument name list) result (name)

implicit none

argument type, intent class :: name list

end function function name,

where the argument name list is the comma separated list of names. Of course, the func-
tion type refers to the result argument name. These names may be different from the names
in the calling program. A typical subroutine interface body would be

subroutine subroutine name (argument name list)

implicit none

argument type, intent class :: name list

end subroutine subroutine name,

where the argument name list is the comma separated list of names. The topic of a module
procedure is covered elsewhere. The use of an interface block was shown in Figure 4.8 and
used in two new codes, shown in Figure 4.12 and the corresponding C++ code in the appendix
C, which also illustrate passing arguments by reference (line 23) and by value (line 19) in
both F90 and C++. The important, and often confusing, topic of passing by reference or
value was discussed in Section 4.2 and is related to other topics to be considered later such
as the use of “pointers” in C++ and F90 and the “intent” attribute of F90 arguments. Passing
by reference is default in F90, and passing by value is default in C++ .

4.6 Characters and Strings

All of our languages offer convenient ways to manipulate and compare strings of characters.
The characters are defined by one of the international standards such as ASCII, which is
usually used on UNIX, or the EBCDIC set. These contain both printable and nonprintable

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-04 CB496-Akin September 18, 2002 8:41

86 Features of Programming Languages

[1] program declare interface

[2] implicit none

[3] ! declare the interface prototypes

[4] interface

[5] subroutine Change (Refer)

[6] integer :: Refer; end subroutine Change

[7] subroutine No Change (Value)

[8] integer :: Value; end subroutine No Change

[9] end interface

[10]

[11] ! illustrate passing by reference and by value in F90

[12]

[13] integer :: Input Val, Dummy Val

[14]

[15] print *, "Enter an integer: "

[16] read *, Input Val; print *, "Input value was ", Input Val

[17]

[18] ! pass by value

[19] call No Change ((Input Val)) ! Use but do not change

[20] print *, "After No Change it is ", Input Val

[21]

[22] ! pass by reference

[23] call Change (Input Val) ! Use and change

[24] print *, "After Change it is ", Input Val

[25] end program declare interface

[26]

[27] subroutine Change (Refer)

[28] ! changes Refer in calling code IF passed by reference

[29] integer :: Refer

[30] Refer = 100;

[31] print *, "Inside Change it is set to ", Refer

[32] end subroutine Change

[33]

[34] subroutine No Change (Value)

[35] ! does not change Value in calling code IF passed by value

[36] integer :: Value

[37] Value = 100;

[38] print *, "Inside No Change it is set to ", Value

[39] end subroutine No Change

[40]

[41] ! Running gives:

[42] ! Enter an integer: 12

[43] ! Input value was 12

[44] ! Inside No Change it is set to 100

[45] ! After No Change it is 12

[46] ! Inside Change it is set to 100

[47] ! After Change it is 100

Figure 4.12: Passing arguments by reference and by value in F90.

(control) characters. On a UNIX system, the full set can be seen with the command man

ascii. In the 256-character ASCII set, the uppercase letters begin at character number 65,
‘A’, and the corresponding lowercase values are 32 positions higher (character 97 is ‘a’).
These printable characters begin at character 32, as shown in Table 4.25 for the ASCII
standard. The first 33 characters are “nonprinting” special control characters. For example,
NUL = null, EOT = end of transmission, BEL = bell, BS = backspace, and HT = horizontal tab.
To enter a control character, one must simultaneously hold down the CONTROL key and hit

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-04 CB496-Akin September 18, 2002 8:41

4.6 Characters and Strings 87

Table 4.25: The ASCII Character Set

0 NUL 1 SOH 2 STX 3 ETX 4 EOT 5 ENQ 6 ACK 7 BEL

8 BS 9 HT 10 NL 11 VT 12 NP 13 CR 14 SO 15 SI

16 DLE 17 DC1 18 DC2 19 DC3 20 DC4 21 NAK 22 SYN 23 ETB

24 CAN 25 EM 26 SUB 27 ESC 28 FS 29 GS 30 RS 31 US

32 SP 33 ! 34 " 35 # 36 $ 37 % 38 & 39 ’

40 (41) 42 * 43 + 44 , 45 - 46 . 47 /

48 0 49 1 50 2 51 3 52 4 53 5 54 6 55 7

56 8 57 9 58 : 59 ; 60 < 61 = 62 > 63 ?

64 @ 65 A 66 B 67 C 68 D 69 E 70 F 71 G

72 H 73 I 74 J 75 K 76 L 77 M 78 N 79 O

80 P 81 Q 82 R 83 S 84 T 85 U 86 V 87 W

88 X 89 Y 90 Z 91 [92 \ 93] 94 ˆ 95 --

96 ‘ 97 a 98 b 99 c 100 d 101 e 102 f 103 g

104 h 105 i 106 j 107 k 108 l 109 m 110 n 111 o

112 p 113 q 114 r 115 s 116 t 117 u 118 v 119 w

120 x 121 y 122 z 123 { 124 | 125 } 126 ~ 127 DEL

the letter that is 64 positions higher in the list. That is, an end of transmission EOT is typed as
CONTROL-D. The code SP denotes the space character, and we will use the underscore “ ”
to represent a blank in strings.

We can employ the standard relational operators (e.g., less than) to compare strings and
would find that ’bad’ < ’dog’ < ’same’ == ’same ’, that ’word’ > ’WORD’, and that
’four’ < ’one’ < ’two,’ whereas ’1’ < ’2’ < ’4’. Note that the preceding equality occurred
because trailing blanks are not considered in relational operations, but leading blanks are
considered: ’same’ �= ’ same’. The F90 function adjustL removes leading blanks and
appends them to the right end. Thus, it adjusts the string to the left so that ’same’ ==
adjustL(’ same’). This and other F90 intrinsic character functions are summarized in
Table 4.26.

All blanks are considered when determining the length of a character string. In F90 the
intrinsic function LEN provides these data so that LEN(’same’) = 4, LEN(’ same’) = 6,
and LEN(’same ’) = 7. There is another intrinsic function, LEN TRIM, that provides the
string length but ignores trailing blanks. By way of comparison: LEN TRIM(’same’) = 4,
LEN TRIM(’ same’) = 6, and LEN TRIM(’same ’) = 4. Each character in a string or
any internal substrings may be referenced by the colon operator. Given a character variable
we can define a substring, say sub, as

sub = variable(K:L) for 0 < K,L <= LEN(variable)

= null for K > L

= error for K or L > LEN(variable).

For example, given the string ’howl’, we can define bird = string(2:4) = ’owl’, and
prep = string(1:3) = ’how’.

The F90 and F77 operator used to concatenate strings into larger strings is “//.” Contin-
uing the last example, we see that the concatenation string(1:3)//’ ’//string(2:4)

//’?’ is ’how owl?’, whereas the concatenation ’same ’//’word’ becomes
’same word’, and ’bad’//’ ’//’dog’ becomes ’bad dog’. Programs illustrating the
reading and concatenating two strings are given in Figure 4.13 and in the companion C++
code in the appendix C.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-04 CB496-Akin September 18, 2002 8:41

88 Features of Programming Languages

Table 4.26: F90 Character Functions

ACHAR (I) Character number I in ASCII collating set
ADJUSTL (STRING) Adjust left
ADJUSTR (STRING) Adjust right
CHAR (I) ∗ Character I in processor collating set
IACHAR (C) Position of C in ASCII collating set
ICHAR (C) Position of C in processor collating set
INDEX (STRING, SUBSTRING)a Starting position of a substring
LEN (STRING) Length of a character entity
LEN TRIM (STRING) Length without trailing blanks
LGE (STRING A, STRING B) Lexically greater than or equal
LGT (STRING A, STRING B) Lexically greater than
LLE (STRING A, STRING B) Lexically less than or equal
LLT (STRING A, STRING B) Lexically less than
REPEAT (STRING, NCOPIES) Repeated concatenation
SCAN (STRING, SET)a Scan a string for a character in a set
TRIM (STRING) Remove trailing blank characters
VERIFY (STRING, SET)a Verify the set of characters in a string
STRING A//STRING B Concatenate two strings

a Optional arguments not shown.

Sometimes one needs to type in a nonprinting character such as a tab or a newline. To
allow this, special transmissions have been allowed for, as summarized in Table 4.27.

Remember the ASCII character features: the uppercase letters correspond to numbers
65 through 90 in the list, and the lowercase letters are numbers 97 through 122; thus, if we
wanted to convert “G” to “g” we could use commands such as

character (len = 1) :: lower_g, UPPER_G

lower_g = achar(iachar(’G’) + 32)

or vice versa,

UPPER_G = achar(iachar(’g’) - 32),

since they differ by 32 locations. Likewise, because the zero character “0” occurs in position
48 of the ASCII set we could convert a single digit to the same numerical value with

integer :: number_5

number_5 = iachar(’5’) - 48

and so forth for all 10 digits. To convert a string of digits, such as ’5623’, to the corresponding
number 5623, we could use a looping operation such as

character (len = 132) :: digits

integer :: d_to_n, power, number

! Now build the number from its digits

if (digits == ’ ’) then

print *, ’warning, no number found’

number = 0

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-04 CB496-Akin September 18, 2002 8:41

4.6 Characters and Strings 89

[1] program operate on strings

[2] ! Compare two strings

[3] ! Concatenate two character strings together

[4] ! Get the combined length

[5] implicit none

[6] character(len=20) :: String1, String2

[7] character(len=40) :: String3

[8] integer :: length

[9]

[10] print *,’Enter first string (20 char max):’

[11] read ’(a)’, String1 ! formatted

[12]

[13] print *,’Enter second string (20 char max):’

[14] read ’(a)’, String2 ! formatted

[15]

[16] ! compare (also see LGE LGT functions)

[17] if (String1 == String2) then

[18] print *, "They are the same."

[19] else

[20] print *, "They are different."

[21] end if

[22]

[23] ! concatenate

[24] String3 = trim (String1) // trim (String2)

[25]

[26] print *,’The combined string is:’, String3

[27] length = len trim (String3)

[28] print *,’The combined length is:’, length

[29]

[30] end program operate on strings

[31] ! Running with "red" and "bird" produces:

[32] ! Enter first string (20 char max): red

[33] ! Enter second string (20 char max): bird

[34] ! They are different.

[35] ! The combined string is: redbird

[36] ! The combined length is: 7

[37] ! Also "the red" and "bird" works

Figure 4.13: Using two strings in F90.

Table 4.27: How to Type Nonprinting Characters

Action ASCII Character F90 Inputa C++ Input

Alert (Bell) 7 Ctrl-G \a
Backspace 8 Ctrl-H \b
Carriage Return 13 Ctrl-M \r
End of Transmission 4 Ctrl-D Ctrl-D
Form Feed 12 Ctrl-L \f
Horizontal Tab 9 Ctrl-I \t
New Line 10 Ctrl-J \n
Vertical Tab 11 Ctrl-K \v

a “Ctrl-” denotes control action; that is, simultaneous pressing of the CONTROL key and the letter following.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-04 CB496-Akin September 18, 2002 8:41

90 Features of Programming Languages

[1] program string to numbers

[2] ! Convert a character string to an integer in F90

[3] implicit none

[4] character(len=5) :: Age Char

[5] integer :: age

[6]

[7] print *, "Enter your age: "

[8] read *, Age Char ! a character string

[9]

[10] ! convert using an internal file read

[11] read (Age Char, fmt = ’(i5)’) age ! convert to integer

[12]

[13] print *, "Your integer age is ", age

[14] print ’(" Your binary age is ", b8)’, age

[15] print ’(" Your hexadecimal age is ", z8)’, age

[16] print ’(" Your octal age is ", o8)’, age

[17]

[18] end program string to numbers

[19] !

[20] ! Running gives:

[21] ! Enter your age: 45

[22] ! Your integer age is 45

[23] ! Your binary age is 101101

[24] ! Your hexadecimal age is 2D

[25] ! Your octal age is 55

Figure 4.14: Converting a string to an integer with F90.

else

number = 0

k = len_trim(digits)

do m = k, 1, -1 ! right to left

d_to_n = iachar(digits(m:m)) - 48

power = 10**(k-m)

number = number + d_to_n*power

end do ! over digits

print *, ’number = ’, number.

However, since loops can be inefficient, it is better to learn that, in F90, an “internal file”
can be (and should be) employed to convert one data type to another. Here we could simply
code

! internal file called convert

write(convert, ‘‘(A)’’) digit

read(convert, ‘‘(I4)’’) number

to convert a character to an integer (or real) number. Converting strings to integers is shown
in the codes given in Figure 4.14 (line 11) and the corresponding C++ appendix routine.
Similar procedures would be used to convert strings to reals. The C++ version (see appendix
C) uses the intrinsic function “atoi,” whereas the F90 version uses an internal file for the
conversion.

One often finds it useful to change the case of a string of characters. Some languages
provide intrinsic functions for that purpose. In C++ and Matlab, the functions to convert a

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-04 CB496-Akin September 18, 2002 8:41

4.6 Characters and Strings 91

[1] function to lower (string) result (new string) ! like C

[2] ! ---

[3] ! Convert a string or character to lower case

[4] ! (valid for ASCII or EBCDIC processors)

[5] ! ---

[6] implicit none

[7] character (len = *), intent(in) :: string ! unknown length

[8] character (len = len(string)) :: new string ! same length

[9] character (len = 26), parameter :: &

[10] UPPER = ’ABCDEFGHIJKLMNOPQRSTUVWXYZ’, &

[11] lower = ’abcdefghijklmnopqrstuvwxyz’

[12] integer :: k ! loop counter

[13] integer :: loc ! position in alphabet

[14] new string = string ! copy everything

[15] do k = 1, len(string) ! to change letters

[16] loc = index (UPPER, string(k:k)) ! first upper

[17] if (loc /= 0) new string(k:k) = lower(loc:loc) ! convert it

[18] end do ! over string characters

[19] end function to lower

Figure 4.15: Converting a string to lowercase with F90.

string to all lowercase letters are called tolower and lower, respectively. Here we define
a similar F90 function called to lower, which is shown in Figure 4.15 along with a testing
program in Figure 4.16. Note that the testing program uses an interface toto lower(lines 5–
14) that presupposes the routine was compiled and stored externally to the testing program.
The to lower function employs the intrinsic function index (line 16) to see if the kth

[1] program up down ! test character case inversion functions

[2] implicit none

[3] character (len = 24) :: test=’ABCDefgh1234abcdZYXWzyxw’

[4]

[5] interface

[6] function to lower (string) result (new string)

[7] character (len = *), intent(in) :: string

[8] character (len = len(string)) :: new string

[9] end function to lower

[10] function to upper (string) result (new string)

[11] character (len = *), intent(in) :: string

[12] character (len = len(string)) :: new string

[13] end function to upper

[14] end interface

[15]

[16] print *, test

[17] print *, to lower (test)

[18] print *, to upper (test)

[19] end program ! running gives

[20] ! ABCDefgh1234abcdZYXWzyxw

[21] ! abcdefgh1234abcdzyxwzyxw

[22] ! ABCDEFGH1234ABCDZYXWZYXW

Figure 4.16: Testing string conversions with F90.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-04 CB496-Akin September 18, 2002 8:41

92 Features of Programming Languages

Table 4.28: Referencing Defined Data-Type
Structure Components

C, C++ Variable.component.sub component
F90 Variable%component%sub component

character of the input string is an uppercase letter. The intrinsic function len is also used
(line 8) to force the new string to be the same length as the original string.

4.7 User-Defined Data Types

Variables, as in mathematics, represent some quantity; unlike mathematics, many languages
force the programmer to define what type the variable is. Generic kinds of type are inte-
ger, floating point (single, double, and quadruple precision), and complex-valued floating
point. Table 4.2 (page 58) presents the data types inherent in the various languages. The
majority of beginning programmers find the requirement most languages impose of defin-
ing explicitly each variable’s type to be tedious, unnecessary, and a source of bugs. It is
tedious because the programmer must think not only about what the variable represents
but also how the computations calculate its value, unnecessary because mathematics does
not work that way (the variable x represents a quantity regardless of whether it turns out
to be an integer or a complex value), and bug-creating because computations involving
different types and assigned to a typed variable can yield nonmathematical results (for ex-
ample, dividing the integers 1 with 3 and assigning the results to an integer yields a zero
value).

Matlab is one language in which variables are not explicitly typed. (Beginning program-
mers cheer!) Internally, Matlab represents numbers in double-precision floating point. If a
variable’s value corresponds to an integer, Matlab will gleefully print it that way, effectively
hiding its floating point representation. A surprise occurs when a calculation accidentally be-
comes complex: Matlab will (silently) change what the variable represents from being real
to being complex. For example, Matlab will, without complaint, calculate x=log(-1) and
assign the value 3.14159i to x. In many applications, the expression yielded the value of −1
because of an error, and Matlab will let the error propagate. (Beginning programmers sigh!)
Most, if not all typed languages will immediately announce the evaluation of the logarithm

Table 4.29: Defining New Types of Data Structure

C, C++ struct data tag {
intrinsic type 1 component names;

intrinsic type 2 component names;

} ;
F90 type data tag

intrinsic type 1 :: component names;

intrinsic type 2 :: component names;

end type data tag

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-04 CB496-Akin September 18, 2002 8:41

4.7 User-Defined Data Types 93

Table 4.30: Nested Data Structure Definitions

C, C++ struct data tag {
intrinsic type 1 component names;

struct tag 2 component names;

} ;

F90 type data tag

intrinsic type :: component names;

type (tag 2) :: component names;

end type data tag

of a negative number and halt execution. Explicitly defining the kinds of values a variable
will assume helps programming clarity and run-time debugging to some degree.

In C++ there are four intrinsic (i.e., built-in) types of data – integer, single- and double-
precision reals, and character – and F90 has the similar set: integer, real, complex, logical,
and character; F90 also allows the user to create a specific precision level for integer and real
data. The C++ language has specified byte sizes for 3 character, 6 integer, 1 single-precision
real, and 2 double-precision real data types for a total of 12 intrinsic data types.

In addition to intrinsic types, C, C++, and F90 allow the formation of new types of data –
structures – that are collections of values of not necessarily the same type. These procedures
are named struct or type in C and F90, respectively.

To go along with this freedom, F90 allows you to define new operations to act on the
derived types. Although C++ retains the struct keyword, it is viewed as a class with only
public data members and no functions. In other words, in C++ class is a generalization of
struct and, thus, class is the preferred keyword to use. As an example of a task made easier
by derived data, consider creating parts of a data structure to be used in an address book.
We will need a variable that can have components and sub-components. They are refer-
enced by a special syntax and defined as illustrated in Tables 4.28 and 4.29. This procedure
for defining a new type of data structure can be “nested” by referring to other derived
type entities defined earlier in the program. These concepts are shown in Table 4.30. One
should declare the data type of all variables used in a program module. This is also true for
user-defined data structures. Table 4.31 outlines the forms of these statements, how structures
are initialized, and how component values are assigned.

There are times when either the derived type variable or its components, or both, could
be subscripted objects (i.e., arrays). Then care must be taken in the interpretation of which
variable or component is being addressed. Table 4.32 illustrates the typical combinations
with the F90 syntax.

Table 4.31: Declaring, Initializing, and Assigning Components of
User-Defined Data Types

C, C++ struct data tag variable list; /* Definition */

struct data tag variable = {component values}; /* Initialization */

variable.component.sub component = value; /* Assignment */

F90 type (data tag) :: variable list ! Definition

variable = data tag (component values) ! Initialization

variable%component%sub component = value ! Assignment

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-04 CB496-Akin September 18, 2002 8:41

94 Features of Programming Languages

Table 4.32: F90-derived type component interpretation

INTEGER, PARAMETER :: j max = 6

TYPE meaning demo

INTEGER, PARAMETER :: k max = 9, word = 15

CHARACTER (LEN = word) :: name(k max)

END TYPE meaning demo

TYPE (meaning demo) derived(j max)

Construct Interpretation

derived All components of all derived’s elements
derived(j) All components of jth element of derived
derived(j)%name All k max components of namewithin jth element of derived
derived%name(k) Component k of the name array for all elements of derived
derived(j)%name(k) Component k of the name array of jth element of derived

As a concrete example, consider a phone type and address type definition.

F90 C++

type phone type

integer :: area code, number, extension

end type phone type

type address type

integer :: number

character (len = 35) :: street, city

character (len = 2) :: state

integer :: zip code

end type address type

struct phone type {
int area code, number, extension;

};
struct address type {
int number;

char street[35], city[35];

char state[2];

int zip code;

} ;

These could be used to define part of a person type

F90 C++

type person type

character (len = 50) :: name

type (phone type) :: phone

type (address type) :: address

integer :: born year

end type person type

struct person type {
char name[50];

struct phone type phone;

struct address type address;

int born year;

};

We define two people with

F90 C++

type (person type) :: sammy, barney struct person type sammy, barney;

or build an address-book array filled with the data structures above by defining

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-04 CB496-Akin September 18, 2002 8:41

4.7 User-Defined Data Types 95

F90

integer, parameter :: number = 99

type (person type), dimension (number) :: address book

C++

#define NUMBER 99

struct person type address book[NUMBER];

and then initialize, or “construct” Sammy’s phone and zip code as

F90 C++

sammy%phone = phone type (713, 5278100, 0)

sammy%zip code = 770051892

sammy.phone = {713, 5278100, 0};
sammy.zip code = 770051892;

and print them with

F90 C++

print ∗, sammy%phone

print ∗, sammy%address%zip code

printf("(%d)%d, extension %d",

sammy.area code,

sammy.number,

sammy.extension);

printf("%d", sammy.zip code);

and then define specific members for Barney with the “constructor”

F90 C++

barney = person type("Barn Owl", &

phone type(0,0,0), &

sammy%address, 1892, "Sammy’s cousin")

barney = {"Barn Owl", {0,0,0},
sammy.address, 1892,

"Sammy’s cousin"};

Note the difference in the defined type constructors. Two are actually used here because
the second component must be defined as a phone type. In C++ brackets are used to
enclose the supplied components of each user-defined type. In contrast F90 has an intrinsic
function that is created automatically by the type definition, and this function accepts all of
the components required by the type. That is why the function name “phone type” appears
in the intrinsic constructor routine “person type.” Finally, put them in the book.

F90 C++

address book(1) = sammy

address book(2) = barney

address book[1] = sammy;

address book[2] = barney;

Figure 4.17 presents a sample code for utilizing user-defined structure types using F90
(there is a C++ version in the appendix C). First a “person” structure is created (lines 4–7)

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-04 CB496-Akin September 18, 2002 8:41

96 Features of Programming Languages

[1] program structure components

[2] ! Define structures and components, via F90

[3] implicit none

[4] type Person ! define a person structure type

[5] character (len=20) :: Name

[6] integer :: Age

[7] end type Person

[8]

[9] type Who Where ! use person type in a new structure

[10] type (Person) :: Guest

[11] character (len=40) :: Address

[12] end type Who Where

[13]

[14] ! Fill a record of the Who Where type components

[15] type (Who Where) Record;

[16]

[17] print *,"Enter your name: "

[18] read *, Record % Guest % Name

[19]

[20] print *,"Enter your city: "

[21] read *, Record % Address

[22]

[23] print *,"enter your age: "

[24] read *, Record % Guest % Age

[25]

[26] print *,"Hello ", Record % Guest % Age, " year old ", &

[27] Record % Guest % Name, " in ", Record % Address

[28]

[29] end program structure components

[30]

[31] ! Running with input: Sammy, Houston, 104 gives

[32] ! Hello 104 year old Sammy in Houston

[33] !

[34] ! But try: Sammy Owl, Houston, 104 for a bug

Figure 4.17: Using multiple structures in F90.

by using only the intrinsic types of integers and characters. It then is used in turn within an
additional data structure (line 10). The components of the structures are read (lines 18, 21,
24) and outputted (lines 26, 27). For more general data suggested in the comments, formatted
input–output controls would be necessary.

4.7.1 Overloading Operators
As a complete short example of utilizing many of the new programming features that come
with user-defined data structures we will consider the use of a familiar old mathematics
system: fractions. Recall that a fraction is the ratio of two integers. We will therefore define
a new data type called Fraction. It will simply consist of two integer types named num and
denom. New data types can be defined in any program unit. For maximum usefulness we
will place the definition in a module named Fractions. To use this new data type we will want
to have subprograms to define a fraction, list its components, and multiply two fractions
together, and to equate one fraction to another. In addition to the intrinsic constructor
function fractionwe will create a manual constructor function called assign having two

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-04 CB496-Akin September 18, 2002 8:41

4.7 User-Defined Data Types 97

arguments – the numerator value and denominator value – and will use them to return
a fraction type. The listing subroutine, called list Fraction, simply needs the name of
the fraction to be printed. The function mult Fraction accepts two fraction names and
returns the third fraction as their product. Finally, we provide a function that equates the
components of one fraction to those in a new fraction.

This data structure is presented in Figure 4.18. There we note that the module starts
with the definition of the new data type (lines 2–4) and is followed with the “contains”
statement (line 13). The subprograms that provide the functionality of the fraction data

[1] module Fractions ! F90 "Fraction" data structure and functionality

[2] implicit none

[3] type Fraction ! define a data structure

[4] integer :: num, den ! with two "components"

[5] end type Fraction

[6]

[7] interface operator (*) ! extend meaning to fraction

[8] module procedure mult Fraction ; end interface

[9]

[10] interface assignment (=) ! extend meaning to fraction

[11] module procedure equal Fraction ; end interface

[12]

[13] contains ! functionality

[14] subroutine assign (name, numerator, denominator)

[15] type (Fraction), intent(inout) :: name

[16] integer, intent(in) :: numerator, denominator

[17]

[18] name % num = numerator ! % denotes which "component"

[19] if (denominator == 0) then

[20] print *, "0 denominator not allowed, set to 1"

[21] name % den = 1

[22] else; name % den = denominator

[23] end if ; end subroutine assign

[24]

[25] subroutine list(name)

[26] type (Fraction), intent(in) :: name

[27]

[28] print *, name % num, "/", name % den ; end subroutine list

[29]

[30] function mult Fraction (a, b) result (c)

[31] type (Fraction), intent(in) :: a, b

[32] type (Fraction) :: c

[33]

[34] c%num = a%num * b%num ! standard = and * here

[35] c%den = a%den * b%den ; end function mult Fraction

[36]

[37] subroutine equal Fraction (new, name)

[38] type (Fraction), intent(out) :: new

[39] type (Fraction), intent(in) :: name

[40]

[41] new % num = name % num ! standard = here

[42] new % den = name % den ; end subroutine equal Fraction

[43] end module Fractions

Figure 4.18: Overloading operations for new data types.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-04 CB496-Akin September 18, 2002 8:41

98 Features of Programming Languages

[1] program test Fractions

[2] use Fractions

[3] implicit none

[4] type (Fraction) :: x, y, z

[5]

[6] x = Fraction (22,7) ! default constructor

[7] write (*,’("default x = ")’, advance=’no’) ; call list(x)

[8] call assign(y,1,3) ! manual constructor

[9] write (*,’("assigned y = ")’, advance=’no’) ; call list(y)

[10] z = mult Fraction (x,y) ! function use

[11] write (*,’("x mult y = ")’, advance=’no’) ; call list(z);

[12] print *, "Trying overloaded * and = for fractions:"

[13] write (*,’("y * x gives ")’, advance=’no’) ; call list(y*x) ! multi

[14] z = x*y ! new operator uses

[15] write (*,’("z = x*y gives ")’, advance=’no’) ; call list(z) ! add

[16] end program test Fractions ! Running gives:

[17] ! default x = 22/7 ! assigned y = 1/3 ! x mult y = 22/21

[18] ! Trying overloaded * and = for fractions:

[19] ! y * x gives 22/21 ! z = x*y gives 22/21

Figure 4.19: Testing overloading for new data types.

type follow the “contains” statement and are thus coupled to the definition of the new type.
When we have completed defining the functionality to go with the new data type we end the
module.

In this example the program to invoke the fraction type follows in Figure 4.19. To access
the module, which defines the new data type and its supporting functions, we simply employ
a “use” statement at the beginning of the program (line 2). The program declares three
Fraction type variables (line 4): x , y, and z. The variable x is defined to be 22/7 with the
intrinsic type constructor (line 6), and y is assigned a value of 1/3 by using the function
assign (line 8). Both values are listed for confirmation. Then we form the new fraction,
z = 22/21, by invoking the mult Fraction function (line 10),

z = mult Fraction (x, y),

which returns z as its result. A natural tendency at this point would be simply to write this as
z = x ∗ y. However, before we could do that we would have to tell the operators “*” and ”=”
how to act when provided with this new data type. This is known as overloading an intrinsic
operator. We had the foresight to do this when we set up the module by declaring which of the
“module procedures” were equivalent to each operator symbol. Thus, from the “interface
operator (*)” statement block the system now knows that the left and right operands of the
“*” symbol correspond to the first and second arguments in the function mult Fraction.
Likewise, the left and right operands of “=” are coupled to the first and second arguments,
respectively, of subroutineequal Fraction. The testingtest Fractionsand verification
results are in Figure 4.19. Before moving on, note that the system does not yet know how to
multiply an integer times a fraction, or vice versa. To do that one would have to add more
functionality such as a function, sayint mult frac, and add it to the “module procedure”
list associated with the “*” operator.

When considering which operators to overload for a newly defined data type, one should
consider those that are used insortingoperations such as the greater-than, >, and less-than,
<, operators. They are often useful because of the need to sort various types of data. If those

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-04 CB496-Akin September 18, 2002 8:41

4.8 Pointers and Targets 99

symbols have been correctly overloaded, then a generic sorting routine might be used and
would require few changes.

4.7.2 User-Defined Operators
In addition to the many intrinsic operators and functions we have seen so far, the F90
user can also define new operators or extend existing ones. User-defined operators can
employ intrinsic data types, user-defined data types, or both. The user-defined operators, or
extensions, can be unary or binary (i.e., have one or two arguments). The operator symbol
must be included between two periods such as ‘.op.’. Specific examples will be given in the
next chapter.

4.8 Pointers and Targets

The beginning of every data item must be stored in a computer memory at a specific address.
The address of that data item is called a pointer to the data item, and a variable that can
hold such an address is called a pointer variable. Often it is convenient to have a pointer to
a variable, an array, or a subarray. Matlab, F90, and C++ provide this sophisticated feature.
The major benefits of pointers are that they allow dynamic data structures, such as “linked
lists” and “tree structures,” as well as recursive algorithms. Note that rather than containing
data themselves, pointer variables simply exist to point to where some data are stored.
Unlike C and Matlab the F90 pointers are more like the “reference variables” of the C++
language in that they are mainly an alias or synonym for another variable, or part of another
variable. They do not allow one to get the literal address easily in memory as does C. This
is why programmers who write computer operating systems usually prefer C over F90. But
F90 pointers allow easy access to array partitions for computational efficiency, which C++
does not. Pointers are often used to pass arguments by reference.

The item to which a pointer points is known as a target variable. Thus, every pointer has
a logical status associated with it that indicates whether or not it is currently pointing to a
target. The initial value of the association is .false., or undefined.

4.8.1 Pointer-Type Declaration
For every type of data object that can be declared in the language, including derived types,
a corresponding type of pointer and target can be declared (Table 4.33).

Table 4.33: Definition of Pointers and Accessing Their Targets

C++ F90

Declaration type tag *pointer name; type (type tag), pointer ::

pointer name

Target &target name type (type tag), target :: target name

Examples char *cp, c; character, pointer :: cp

int *ip, i; integer, pointer :: ip

float *fp, f; real, pointer :: fp

cp = & c; cp => c

ip = & i; ip => i

fp = & f; fp => f

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-04 CB496-Akin September 18, 2002 8:41

100 Features of Programming Languages

Table 4.34: Nullifying a Pointer to Break
Target Association

C, C++ pointer name = NULL

F90 nullify (list of pointer names)
F95 pointer name = NULL()

Although the use of pointers gives programmers more options for constructing algo-
rithms, they also have a potentially severely detrimental effect on program execution effi-
ciency. To ensure that compilers can produce code that executes efficiently, F90 restricts the
variables to which a pointer can point to those specifically declared to have the attribute
target. This, in part, makes the use of pointers in F90 and C++ somewhat different. Another
major difference is that C++ allows arithmetic to be performed on the pointer address, but
F90 does not.

So far, we have seen that F90 requires specific declarations of a pointer and a potential
target. However, C++ employs two unary operators, & and *, to deal with pointers and
targets, respectively. Thus, in C++ the operator &variable name means “the address of”
variable name, and the C++ operator *pointer namemeans “the value at the address
of” pointer name.

4.8.2 Pointer Assignment
In F90, a pointer is required to be associated with a target by a single pointer assignment
statement; however, C allows, but does not require, a similar statement (see Table 4.33).
After such a statement, the pointer has a new association status, and one could employ
the F90 intrinsic inquiry function associated(pointer name, target name) to return
.true. as the logical return value. If a programmer wishes to break or nullify a pointer’s
association with a target but not assign it another target, he or she can nullify the pointer,
as shown in Table 4.34.

4.8.3 Using Pointers in Expressions
The most important rule about using pointers in F90 expressions is that, wherever a pointer
occurs, it is treated as its associated target. That is, the target is automatically substituted for
the pointer when the pointer occurs in an expression. For example, consider the actions in
Figure 4.20 (where the results are stated as comments).

4.8.4 Pointers and Linked Lists
Pointers are the simplest available mechanism for dynamic memory management of arrays
such as stacks, queues, trees, and linked lists. These are extraordinarily flexible data structures
because their size can grow or shrink during the execution of a program. For linked lists the
basic technique is to create a derived type that consists of one or more data elements and at
least one pointer. Memory is allocated to contain the data, and a pointer is set to reference
the next occurrence of data. If one pointer is present, the list is a singly linked list and can only
be traversed in one direction: head to tail, or vice versa. If two pointers are present, the list is
doubly linked and can be traversed in either direction. Linked lists allow the data of interest
to be scattered all over memory and use pointers to weave through memory, gathering data
as required. Detailed examples of the use of linked lists are covered in Chapter 8.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-04 CB496-Akin September 18, 2002 8:41

4.8 Pointers and Targets 101

[1] program pt expression

[2] !

[3] ! F90 example of using pointers in expressions

[4] implicit none

[5] integer, POINTER :: p, q, r

[6] integer, TARGET :: i = 1, j = 2, k = 3

[7]

[8] q => j ! q points to integer j

[9] p => i ! p points to integer i

[10] !

[11] ! An expression that "looks like" pointer arithmetic

[12] ! automatically substitutes the target value:

[13] !

[14] q = p + 2 ! means: j = i + 2 = 1 + 2 = 3

[15] print *, i, j, k ! print target values

[16] p => k ! p now points to k

[17] print *, (q-p) ! means print j - k = 3 - 3 = 0

[18] !

[19] ! Check associations of pointers

[20] print *, associated (r) ! false

[21] r => k ! now r points to k, also

[22] print *, associated (p,i) ! false

[23] print *, associated (p,k) ! true

[24] print *, associated (r,k) ! true

[25] end program pt expression

Figure 4.20: Using F90 pointers in expressions.

As a conceptual example of when one might need to use linked lists, think of applications
where one never knows in advance how many data entries will be needed. For example,
when a surveyor determines the exact perimeter of a building or plot of land, critical mea-
surements are taken at each angle. If the perimeter has N sides, the surveyor measures
the length of each side and the interior angle each side forms with the next. Often the
perimeter has visual obstructions, and offsets around them must be made, recorded, and
corrected for later use. Regardless of how careful the surveyor is, errors are invariably intro-
duced during the measurement process. However, the error in angle measurements can be
bounded.

The program for implementing the recording and correcting of the angles in a survey
could be written using a singly linked list. A linked list is chosen because the programmer
has no idea how many sides the perimeter has, and linked lists can grow arbitrarily. Because
of the linked list’s ability to absorb a short or long data stream, the user does not have to be
asked to count the number of legs in the traverse. The program begins by declaring a derived
type that contains one angle measurement and a pointer to the next measurement. A count
is kept of the number of legs in this loop, and the forward pointer for the last angle read
is cleared (set to null) to signal the end of list. After all the data are read, the entire list of
angles is reviewed to get the total of the measurements. This starts by revisiting the head of
the list and adding together all the angle measurements until a null pointer is encountered,
signaling the end of list. Then the error can be computed and distributed equally among the
legs of the traverse.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-04 CB496-Akin September 18, 2002 8:41

102 Features of Programming Languages

4.9 Accessing External Source Files and Functions

At times one finds it necessary or efficient to utilize other software from libraries, other
users, or different paths in directories. Of course, you could always resort to the brute
force approach by using a text editor to copy the desired source code into your program.
However, this is unwise not only because it wastes storage but more important because it
gives multiple copies of a module that must all be found and changed if future revisions are
needed or desired. Better methods of accessing such codes can be defined either inside your
program, or external to it in the “linking” phase after compiling has been completed.

High-level languages like C, C++, and F90 allow one or more approaches for accessing
such software from within your code. One feature common to all these languages is the
availability of an “include” statement that gives the system path to the desired code file.
At compile time, and only then, a temporary copy of the indicated code from that file is
literally copied and inserted into your program at the location of the corresponding “include”
statement.

It is common practice, but not required, to denote such code fragments with name exten-
sions of “.h” and “.inc,” in C++ and F90, respectively. For example, to use a program called
“class Person” the following statement could be inserted in your program:

C, C++: include <class Person.h>

F90 : include ’class Person.inc’

if the files, class Person.h or class Person.inc, were in the same directory as your program.
Otherwise, it is necessary to give the complete system path to the file such as

include ‘/home/caam211/Include/inv.f90’

include ‘/home/caam211/Include/SolveVector.f90’,

which gives source links to the caam211 course files for the function inv(A) for returning
the inverse of a matrix A and the function SolveVector(A,B), which returns the solution
vector X for the matrix system A*X = B.

In F90 one can also provide a “module” that defines constants, user-defined types, sup-
porting subprograms, operators, and so forth. Any of those features can be accessed by first
including such an F90 module before the main program and later invoking it with a “use”
statement that cites the “module” name. For example, the F90 program segments

include ‘/home/caam211/Include/caam211 operators.f90’

Program Lab2 A 2

...

call test matrix (A, B, X) ! form and invert test matrix

...

subroutine test matrix (A, B, X)

use caam211 operators ! included above

implicit none

real :: A(:,:), B(:), X(:)

real :: A inv(size(A,1),size(A,1)) ! automatic array allocation

A inv = inv(A)

X = A .solve. B ! like X = A \ B in Matlab

...

gives a source link to the caam211 course “module” source file named caam211

operators.f90, which contains subprograms, such as the function inv(), and operator
definitions like .solve., which is equivalent to the “\” operator in Matlab.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-04 CB496-Akin September 18, 2002 8:41

4.10 Procedural Applications 103

In the last example the omission of the “include” statement would require a compiler-
dependent statement to allow the system to locate the module cited in the “use” statement.
For the National Algorithms Group (NAG) F90 compiler that link would be given as

f90 -o go /home/caam211/Include/caam211 operators.f90 my.f90

if the segment above were stored in the file named my.f90, whereas for the Cray F90
compiler a path flag, -p, to the compiled version is required such as

f90 -o go -p /home/caam211/Include/caam211 op CRAY.o my.f90.

Either would produce an executable file, which is named “go” in this example.

4.10 Procedural Applications

In this section we will consider two common examples of procedural algorithms: fitting curves
to experimental data and sorting numbers, strings, and derived types. Sorting concepts will
be discussed again in Chapter 7.

4.10.1 Fitting Curves to Data
We must often deal with measurements and what they result in: data. Measurements are
never exact because they are limited by instrument sensitivity and are contaminated by noise.
To determine trends (how measurements are related to each other), confirm theoretical
predictions, and the like, engineers must frequently fit functions to data. The “curve” fit is
intended to be smoother than a raw plot of the data and will, it is hoped, reveal more about
the underlying relation between the variables than would otherwise be apparent.

Often, these functions take parametric form: The functional form is specified but has
unknown coefficients. Suppose you want to fit a straight line to a dataset. With y denoting the
measurement and x the independent variable, we wish to fit the function y = f (x) = mx + b
to the data. The fitting process amounts to determining a few quantities of the assumed linear
functional form – the parameters m and b – from the data. You know that two points define a
straight line; consequently, only two of the (x, y) pairs need be used. But which two should be
used? In virtually all real-world circumstances, the measurements do not precisely conform
to the assumed functional form. Thus, fitting a curve by selecting a few values (two in the
linear case) and solving for the function’s parameters produce a circumspect “fit,” to say the
least. Instead, the most common approach is to use all the data in the curve-fitting process.
Because you frequently have much more data than parameters, you have what is known
as an overdetermined problem. In most cases, no parameter values produce a function that
will fit all the data exactly. Overdetermined problems can be solved by specifying an error
criterion (what is an error and how large is the deviation of data from the assumed curve) and
finding the set of parameter values that minimizes the error criterion. With this approach,
we can justifiably claim to have found the best parameter choices.

4.10.1.1 The “Least-Squares” Approach. Far and away the most common error crite-
rion is the mean-squared error: Given measurement pairs (xi , yi), i = 1, . . . , N , the mean
squared error ε2 equals the average across the dataset of

(
yi − f (xi)

)2
, the squared error

between the ith measurement and the assumed parametric function f (xi):

ε2 = 1
N

N∑
i=1

[
yi − f (xi)

]2
.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-04 CB496-Akin September 18, 2002 8:41

104 Features of Programming Languages

Least-squares fitting of functions to data amounts to minimizing the dataset’s mean-squared
error with respect to the parameters.

To illustrate the least-squares approach, we will fit a linear function to a dataset. Substi-
tuting the assumed functional form f (x) = mx + b into the expression for the mean-squared
error, we have

ε2 = 1
N

N∑
i=1

[
yi − (mxi + b)

]2
.

We can find a set of equations for the parameters m and b that minimize this quantity by
evaluating the derivative of ε2 with respect to each parameter and setting each to zero as
follows:

dε2

dm
= 1

N

N∑
i=1

−2xi
[
yi − (mxi + b)

] = 0

dε2

db
= 1

N

N∑
i=1

−2
[
yi − (mxi + b)

] = 0.

After some simplification, we find that we have two linear equations to solve for the fitting
parameters:

m ·
(

1
N

N∑
i=1

x2
i

)
+ b ·

(
1
N

N∑
i=1

xi

)
= 1

N

N∑
i=1

xi yi

m ·
(

1
N

N∑
i=1

xi

)
+ b = 1

N

N∑
i=1

yi .

Thus, finding the least-squares fit of a straight line to a set of data amounts to solving a set
of two linear equations, the coefficients of which are computed from the data. Note that the
four summations in the last equation have the same range count (N) and could be evaluated
in a single explicit loop.

An Aside
� �

Because fitting data with a linear equation yields a set of two easily solved equations for
the parameters, one approach to fitting nonlinear curves to data is to convert the nonlinear
problem into a linear one. For example, suppose we want to fit a power law to the data:
f (x) = axb. Instead of minimizing the mean-squared error directly, we transform the data
so that we are fitting it with a linear curve. In the power-law case, the logarithm of the fit-
ting curve is linear in the parameters: log f (x) = log a + blog x. This equation is not linear
in the parameter a. For purposes of least-squares fits, we instead treat a′ = log a as the lin-
ear fit parameter, solve the resulting set of linear equations for a′, and calculate a = exp a′

to determine the power-law fitting parameter. By evaluating the logarithm of xi and yi and
applying the least-squares equations governing the fitting of a linear curve to data, we can
fit a power-law function to data. Thus, calculating a linear least-squares fit to data underlies
general approximation of measurements by smooth curves. For an insight to the types of
relationships that can be determined, see the following summary.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-04 CB496-Akin September 18, 2002 8:41

4.10 Procedural Applications 105

x-axis y-axis Relationship

Linear Linear y = mx + b linear
Linear Logarithmic log y = mx + b exponential: y = eb · e mx

Logarithmic Linear y = m log x + b logarithmic
Logarithmic Logarithmic log y = m log x + b power-law: y = eb · x m

� �

We can now specify the computations required by the least-squares fitting algorithm
mathematically.

Algorithm: Least-Squares Fitting of Straight Lines to Data
� �

1. Given N pairs of data points (xi , yi)
2. Calculate∗ a11 = 1

N

∑N
i=1 x2

i , a12 = 1
N

∑N
i=1 xi , a21 = 1

N

∑N
i=1 xi , a22 = 1, c1 = 1

N

∑N
i=1 xi yi , and

c2 = 1
N

∑N
i=1 yi .

3. Solve the set of linear equations[
a11 a12

a21 a22

] [
m
b

]
=

[
c1

c2

]
,

which for two equations can be done by hand to yield

m = (a12 · c2 − N · c1)/(a12 · a21 − N · a11)

b = (c2 − m · a12)/N.

4. Calculate the mean-squared error ε2 = 1
N

∑N
i=1[yi − (mxi + b)]2.

� �

4.10.1.2 Implementing the Least-Squares Algorithm. In F90, such calculations can be
performed two different ways: one expresses the looping construct directly; the other uses
more efficient intrinsic array routines inside F90. On the assumption that the {xi } are stored
in the vector x, the coefficient a12 can be calculated (at least) two ways:

1. sum x = 0

N = size(x)

do i = 1,N

sum x = sum x + x(i)

end do

a12 = sum x/N

2. a12 = sum(x)/size(x).

Clearly, the second method produces a somewhat simpler expression than the first and is
vastly superior to the first. In the sample code that follows in Figure 4.21 we use the intrinsic
array functions but encourage the reader to check the results with a single loop that computes
all six terms needed to find m and b.

∗ Note that these calculations can be performed in one loop rather than four.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-04 CB496-Akin September 18, 2002 8:41

106 Features of Programming Languages

[1] program linear fit

[2] ! --

[3] ! F90 linear least-squares fit on data in file

[4] ! specified by the user.

[5] ! --

[6] implicit none

[7] integer, parameter :: filenumber = 1 ! RISKY

[8] real, allocatable :: x(:), y(:) ! data arrays

[9] character (len = 64) :: filename ! name of file to read

[10] integer :: lines ! number of input lines

[11] real :: fit(3) ! final results

[12]

[13] interface

[14] function inputCount(unit) result(linesOfInput)

[15] integer, intent(in) :: unit ! file unit number

[16] integer :: linesOfInput ! result

[17] end function inputCount

[18] subroutine readData (inFile, lines, x, y)

[19] integer, intent(in) :: inFile, lines ! file unit, size

[20] real, intent(out) :: x(lines), y(lines) ! data read

[21] end subroutine readData

[22] end interface

[23]

[24] ! Get the name of the file containing the data.

[25] write (*,*) ’Enter the filename to read data from:’

[26] read (*,’(A64)’) filename

[27]

[28] ! Open that file for reading.

[29] open (unit = filenumber, file = filename)

[30]

[31] ! Find the number of lines in the file

[32] lines = inputCount (filenumber)

[33] write (*,*) ’There were ’,lines,’ records read.’

[34]

[35] ! Allocate that many entries in the x and y array

[36] allocate (x(lines), y(lines))

[37]

[38] call readData (filenumber, lines, x, y) ! Read data

[39] close (filenumber)

[40]

[41] call lsq fit (x, y, fit) ! least-squares fit

[42] print *, "the slope is ", fit(1) ! display the results

[43] print *, "the intercept is ", fit(2)

[44] print *, "the error is ", fit(3)

[45] deallocate (y, x)

[46] contains

[47]

[48] subroutine lsq fit (x, y, fit)

[49] ! --

[50] ! Linear least-squares fit, A u = c

[51] ! --

[52] ! fit = slope, intercept, and mean squared error of fit.

[53] ! lines = the length of the arrays x and y.

[54] ! x = array containing the independent variable.

[55] ! y = array containing the dependent variable data.

[56] implicit none

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-04 CB496-Akin September 18, 2002 8:41

4.10 Procedural Applications 107

[57] real, intent(in) :: x(:), y(size(x))

[58] real, intent(out) :: fit(3)

[59] integer :: lines

[60] real :: m, b, mse

[61] real :: sumx, sumx2, sumy, sumxy

[62]

[63] ! Summations

[64] sumx = sum (x) ; sumx2 = sum (x**2)

[65] sumy = sum (y) ; sumxy = sum (x*y)

[66]

[67] ! Calculate slope intercept

[68] lines = size(x)

[69] m = (sumx*sumy - lines*sumxy)/(sumx**2 - lines*sumx2)

[70] b = (sumy - m*sumx)/lines

[71]

[72] ! Predicted y points and the sum of squared errors.

[73] mse = sum ((y - m*x - b)**2)/lines

[74] fit(1) = m ; fit(2) = b ; fit(3) = mse ! returned

[75] end subroutine lsq fit

[76]

[77] end program linear fit

[78]

[79] ! Given test set 1 in file lsq 1.dat:

[80] ! -5.000000 -2.004481

[81] ! -4.000000 -1.817331

[82] ! -3.000000 -1.376481

[83] ! -2.000000 -0.508725

[84] ! -1.000000 -0.138670

[85] ! 0.000000 0.376678

[86] ! 1.000000 0.825759

[87] ! 2.000000 1.036343

[88] ! 3.000000 1.815817

[89] ! 4.000000 2.442354

[90] ! 5.000000 2.636355

[91] ! Running the program yields:

[92] !

[93] ! Enter the filename to read data from: lsq 1.dat

[94] ! There were 11 records read.

[95] ! the slope is 0.4897670746

[96] ! the intercept is 0.2988743484

[97] ! the error is 0.2139159478E-01

Figure 4.21: A typical least-squares linear fit program.

There are a few new features demonstrated in this sample code. In line 7 we have specified
a fixed unit number to associate with the data file to be specified by the user. But we did not
do an INQUIRE to see if that unit was already in use. We will accept a user input filename
(lines 9, 26 and 29) that contains the data to be fitted. An interface (lines 12–21) is provided
to external routines that will determine the number of lines of data in the file and read those
data into the two arrays. Those two routines are given elsewhere. Of course, the memory for
the data arrays must be dynamically allocated (line 36) before they can be read (line 38).
After the least-squares fit is computed (line 41) and printed, the memory space for the data
is freed (line 45).

In the lsq fit subroutine (line 48) the three items of interest are passed in the array
fit. (Routine lsq fit could have been written as a function; try it.) Observe that ymust

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-04 CB496-Akin September 18, 2002 8:41

108 Features of Programming Languages

b

a

c

d

e

f

b

a

c

d

e

f

b
a

c

d
e

f

b
a

c

d
e
f

b
a

c

d
e
f

b
a

c

d
e

f

Pass 1

a

d

f

e

b

c

a
b

f

e
d

c

a
b

f

d
e
c

a
b

f

d
c
e

b
a

c

d
e

f

Pass 2

?
?

?
?

?

?
?

?
?

Figure 4.22: Example passes of the bubble-sort algorithm through data.

be the same length as array x, and so the size intrinsic was used to ensure that (line 57).
The data summations are evaluated with the sum intrinsic (lines 63–65) and it is used again
to evaluate the mean-squared error mse (line 72), as described in step 4 of the algorithm.
The test data (lines 80–90) and results (lines 93–97) are given as comments, as usual. Since
no explicit loops have been used, this form would be more efficient on vector computers
and some parallel computers.

4.10.2 Sorting
One of the most useful computational routines is sorting: ordering a sequence of data ac-
cording to some rule. For example, the alphabetized list of filenames producted by a system
directory command is far easier to read than an unsorted list would be. Furthermore, data
can be fruitfully sorted in more than one way. As an example, you can sort system files by
their creation date.

Sorting algorithms have been well studied by computer scientists in a quest to find the
most efficient. We use here the bubble sort algorithm, which is perhaps the oldest but not
most efficient. This algorithm makes multiple passes over a list, going down the list and
interchanging adjacent elements in the list if necessary to put them in order. For example,
consider the list [b, e, a, d, f, c], shown in Figure 4.22, that we wish to sort to alpha-
betical order. In the first pass, the algorithm begins by examining the first two list elements
(b, e). Since they are in order, these two are left alone. The next two elements (e, a)

are not in order; these two elements of the list are interchanged. In this way, we “bubble”
the element a toward the top and e toward the bottom. The algorithm proceeds through
the list, interchanging elements if need be until the last element is reached. Note that the
bottom of the list at the end of the first pass contains the correct entry. This effect occurs
because of the algorithm’s structure: the “greatest” element will always propagate to the
list’s end. Once through the pass, we see that the list is in better, but not perfect, order. We
must perform another pass just like the first to improve the ordering. Thus, the second pass
need consider only the first n − 1 elements, the third n − 2, and so forth. The second pass
does make the list better formed. After more passes, the list eventually becomes sorted. To
produce a completely sorted list, the bubble-sort algorithm requires no more passes than
the number of elements in the list minus one.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-04 CB496-Akin September 18, 2002 8:41

4.10 Procedural Applications 109

The following F90 routines illustrate some of the initial features of a simple procedural
approach to a simple process like the bubble-sort algorithm. We begin by considering the
sorting of a list of real numbers as shown in subroutine Sort Reals in Figure 4.23.

In line 1 we have passed in the size of the array and the actual array (called database). Note
that the database has (intent) inout because we plan to overwrite the original database with
the newly sorted order, which is done in lines 18–20. For efficiency’s sake we have included
an integer counter, swaps Made, so that we can determine if the sort has terminated early.
If we wished to apply the same bubble-sort algorithm to an integer array, all we would have
to do is change the procedure name and lines 6 and 10 that describe the type of data being
sorted (try it).

That is true because the compiler knows how to apply the > operator to all the standard
numerical types in the language. But what if we want to sort character strings, or other types
of objects? Fortran has lexical operators (like LGE) to deal with strings, but user-defined
objects would require that we overload the > operator if the expected users would not find
the overloading to be confusing. In other words, you could develop a fairly general sort
routine if we changed lines 6 and 10 to be

[6] type (Object), intent(inout) :: database (lines)

[10] type (Object) :: temp

and provided an overloading of > so that line 17 made sense for the defined object (or for
selected component of it).

[1] subroutine Sort Reals (lines, database)

[2] ! Bubble Sort of (changed) Real Database

[3]

[4] implicit none

[5] integer, intent(in) :: lines ! number of records

[6] real, intent(inout) :: database (lines) ! records in database

[7]

[8] integer :: swaps Made ! number of swaps made in one pass

[9] integer :: count ! loop variable

[10] real :: temp ! temporary holder for making swap

[11]

[12] do ! Repeat this loop forever... (until we break out of it)

[13] swaps Made = 0 ! Initially, we’ve made no swaps

[14] ! Make one pass of the bubble sort algorithm

[15] do count = 1, (lines - 1)

[16] ! If item is greater than the one after it, swap them

[17] if (database (count) > database (count + 1)) then

[18] temp = database (count)

[19] database (count) = database (count + 1)

[20] database (count + 1) = temp

[21] swaps Made = swaps Made + 1

[22] end if

[23] end do

[24] ! If we made no swaps, break out of the loop.

[25] if (swaps Made == 0) exit ! do count swaps

[26] end do

[27] end subroutine Sort Reals

Figure 4.23: Bubble sort of a real array.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-04 CB496-Akin September 18, 2002 8:41

110 Features of Programming Languages

[1] subroutine Sort String (lines, database)

[2] ! Bubble Sort of (Changed) String Database

[3] implicit none

[4]

[5] integer, intent(in) :: lines ! input size

[6] character(len=*), intent(inout) :: database (lines) ! records

[7]

[8] character (len = len(database (1))) :: temp ! swap holder

[9] integer :: swaps Made ! number of swaps in a pass

[10] integer :: count ! loop variable

[11]

[12] interface ! to lower

[13] function to lower (string) result (new String)

[14] character (len = *), intent(in) :: string

[15] character (len = len(string)) :: new String

[16] end function to lower

[17] end interface ! to lower

[18]

[19] do ! Repeat this loop forever... (until we break out of it)

[20] swaps Made = 0 ! Initially, we’ve made no swaps

[21] ! Make one pass of the bubble sort algorithm

[22] do count = 1, (lines - 1)

[23] ! If the element is greater than the one after it, swap them

[24] if (LGT (to lower (database (count)),

[25] to lower (database (count + 1)))) then

[26] temp = database (count)

[27] database (count) = database (count + 1)

[28] database (count + 1) = temp

[29] swaps Made = swaps Made + 1

[30] end if

[31] end do

[32] ! If we made no swaps, berak out of the loop.

[33] if (swaps Made == 0) exit ! do count swaps

[34] end do

[35] end subroutine Sort String

Figure 4.24: Bubble sort of an array of character strings.

To illustrate the sort of change that is necessary to sort character strings, consider sub-
routine Sort String (Figure 4.24):

To keep the same style as the previous algorithm and overload the > operator we would
have to have a procedure that utilizes the lexical operators in lines 24 and 25, along with
the interface definition on lines 12 through 17, to define the meaning of > in the context of
a string. Although the concept of a “template” for a code to carry out a bubble-sort on any
list of objects may maximize code reuse it may not always be obvious what > means when it
is overloaded by you or some other programmer.

Note that in the two sorting examples above we have assumed that we had the authority
to change the original database and that it was efficient to do so. Often that is not the
case. Imagine the case in which the database represents millions of credit card users, each
with large number of components of numbers, character strings, or general objects. If many
workers are accessing those data for various sorting needs, you probably would not allow
the original dataset to be changed for reasons of safety or security. Then we consider an
alternative to moving around the actual database components. That is, we should consider

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-04 CB496-Akin September 18, 2002 8:41

4.10 Procedural Applications 111

[1] subroutine Integer Sort (lines, database, order)

[2] ! Ordered Bubble Sort of (Unchanged) Integer Database

[3]

[4] implicit none

[5] integer, intent(in) :: lines ! number of records

[6] integer, intent(in) :: database (lines) ! records in database

[7] integer, intent(out) :: order (lines) ! the order array

[8]

[9] integer :: swaps Made ! number of swaps made in one pass

[10] integer :: count ! loop variable

[11] integer :: temp ! temporary holder for making swap

[12]

[13] order = (/ (count, count = 1, lines) /) ! default order

[14] do ! Repeat this loop forever... (until we break out of it)

[15] swaps Made = 0 ! Initially, we’ve made no swaps

[16] ! Make one pass of the bubble sort algorithm

[17] do count = 1, (lines - 1)

[18] ! If item is greater than the one after it, swap them

[19] if (database (order (count)) > &

[20] database (order (count + 1))) then

[21] temp = order (count)

[22] order (count) = order (count + 1)

[23] order (count + 1) = temp

[24] swaps Made = swaps Made + 1

[25] end if

[26] end do

[27] ! If we made no swaps, break out of the loop.

[28] if (swaps Made == 0) exit ! do count swaps

[29] end do

[30] end subroutine Integer Sort

Figure 4.25: An ordered bubble sort of an integer array.

using moving pointers to large data components, or pseudopointers such as an ordering
array. The use of an ordering array is shown in Figure 4.25 where subroutine Integer Sort
now includes an additional argument.

The third argument has intent (out), as shown in line 7, and is an integer array of the same
length as the original database, which has now been changed to intent (in) so the compiler
will not allow us to change the original data. If the data are properly sorted as supplied, then
it should not be changed and the new order should be the same as the original sequential
input. That is why line 13 initializes the return order to a sequential list. Then we slightly
change the previous sort logic so that lines 19 through 23 now check what is in an ordered
location and change the order number when necessary but never the original data. After
exiting this routine you could list the information, in sorted order, without changing the
original data simply by using vector subscripts in a print statement like

print *, database (order).

Clearly you could write a very similar program using a true “pointer” array since they are
now standard in Fortran.

Next we will start to generalize the idea of sorting to include the sorting of objects that
may have numerous components. Assume the each record object to be read is defined as
in Figure 4.26. There may be thousands, or millions, of such records to be read from a file,

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-04 CB496-Akin September 18, 2002 8:41

112 Features of Programming Languages

[1] module record Module

[2] !---

[3] ! record Module holds the "record" type

[4] !---

[5] ! record is a data structure with two names and an id number.

[6] type record

[7] character (len=24) :: last Name ! last name

[8] character (len=24) :: first Name ! first name

[9] integer :: id ! id number

[10] end type record

[11] end module record Module

Figure 4.26: A typical record in a list to be sorted.

sorted by name, or both, number, and then displayed in sorted order. Program test bubble in
Figure 4.27 illustrates one approach to such a problem. Here, since the database of records
is to read from a file we do not yet know how many there are to be stored. Therefore,
the database is declared allocatable in line 13 and allocated later in line 35 after we have
evaluated the file size of a file named by the user. Although not generally necessary, we
have selected to have an order array for names and a different one for numbers. They are
sort by Name and sort by Number, respectively and are treated in a similar fashion to
the database memory allocation, as noted in lines 13–14, and line 35.

In line 21 we have arbitrarily set a unit number to be used for the file. That is okay for
a very small code but an unnecessary and unwise practice in general. The Fortran intrinsic
“inquire” allows one to determine which units are inactive, and we could create a function,
say Get Next Unit, to select a safe unit number for our input operation. After accepting a
file name we open the unit and count the number of lines present in the file (see line 30). Had
the database been on the standard input device and not contained any nonprinting control
characters, we could have easily read it with the statement

read *, database

However, it does contain tabs (ASCII character number 9) and is in a user-defined file
instead of the standard input device; thus, line 38 invokes subroutine read Data to get the
database. Of course, once the tabs and commas have been accounted for and the names
and identification number extracted, it uses an intrinsic constructor on each line to form its
database entry such as

database (line Count) = Record (last, first, id)

After all the records have been read into the database, note that line 42 extracts all the last
names with the syntax

database (:) last Name

so they are copied into subroutine String Sort, as its second argument, and the ordered
list sort by Name) is returned to allow operations that need a last name sort. Likewise,
subroutine Integer Sort, shown above, is used in line 50 to sort the identification numbers
and save the data in order list sort by Number. The ordered lists are used in show Data,
in lines 46 and 53, to display the sorted information without changing the original data.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-04 CB496-Akin September 18, 2002 8:41

4.10 Procedural Applications 113

[1] program test bubble

[2] !---

[3] ! test bubble asks for a filename for a file of names and id

[4] ! numbers, loads in the data from a file into the database,

[5] ! finds sorting orders, and prints sorted data

[6] !---

[7] use record Module ! need this to use the ’record’ type

[8] implicit none

[9] ! We define the database as an allocatable array of records.

[10] type (record), allocatable :: database (:)

[11]

[12] ! These arrays hold the sorted order of the database entries.

[13] integer, allocatable :: sort by Name (:)

[14] integer, allocatable :: sort by Number (:)

[15]

[16] character (len = 64) :: file Name ! file to read data from

[17] integer :: lines ! number of lines of input

[18] integer :: file Number ! the input file number

[19] integer :: loop Count ! loop counter

[20]

[21] file Number = 1 ! arbitrarily set file Number to 1

[22]

[23] write (*,*) ’Enter the filename to read data from:’

[24] read (*,’(A64)’) file Name

[25]

[26] ! Open our file and assign the number to ’file Number’

[27] open (unit = file Number, file = file Name)

[28]

[29] ! Find the number of lines in the input file with input Count.

[30] lines = input Count (file Number)

[31] write (*,*) ’There are ’, lines,’ records.’

[32]

[33] ! Allocate that many entries in the database and order arrays

[34] allocate (database (lines))

[35] allocate (sort by Name (lines), sort by Number (lines))

[36]

[37] ! Read the data from file into the database and close the file.

[38] call read Data (file Number, lines, database)

[39] close (file Number)

[40]

[41] ! Sort the database by name; the order will be in sort by Name.

[42] call String Sort (lines, database (:)%last Name, sort by Name)

[43] write (*,*); write (*,*) ’Data sorted by name: ’; write (*,*)

[44]

[45] ! Print out the data in the database sorted by name

[46] call show Data (lines, database, sort by Name)

[47] write (*,*); write (*,*) ’Data sorted by number:’; write (*,*)

[48]

[49] ! Sort the database by id numbers; new order is sort by Number.

[50] call Integer Sort (lines, database (:)%id, sort by Number)

[51]

[52] ! Print out the data in the database sorted by number.

[53] call show Data (lines, database, sort by Number)

[54] end program test bubble

Figure 4.27: Testing of ordered bubble sorts.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-04 CB496-Akin September 18, 2002 8:41

114 Features of Programming Languages

If the supplied file, say namelist, contained data in the format of (String comma String
tab Number) with the entries

[1] Indurain, Miguel 5623

[2] van der Aarden, Eric 1245

[3] Rominger, Tony 3411

[4] Sorensen, Rolf 341

[5] Yates, Sean 8998

[6] Vandiver, Frank 45

[7] Smith, Sally 3821

[8] Johnston, David 3421

[9] Gillis, Malcolm 3785

[10] Johns, William 7234

[11] Johnston, Jonathan 7234

[12] Johnson, Alexa 5190

[13] Kruger, Charlotte 2345

[14] Butera, Robert 7253

[15] Armstrong, Lance 2374

[16] Hegg, Steve 9231

[17] LeBlanc, Lucien 23

[18] Peiper, Alan 5674

[19] Smith-Jones, Nancy 9082

the output would be

[1] ! Enter the filename to read data from: namelist

[2] ! There are 19 records.

[3] !

[4] ! Data sorted by name:

[5] !

[6] ! Armstrong Lance 2374

[7] ! Butera Robert 7253

[8] ! Gillis Malcolm 3785

[9] ! Hegg Steve 9231

[10] ! Indurain Miguel 5623

[11] ! Johns William 7234

[12] ! Johnson Alexa 5190

[13] ! Johnston David 3421

[14] ! Johnston Jonathan 7234

[15] ! Kruger Charlotte 2345

[16] ! LeBlanc Lucien 23

[17] ! Peiper Alan 5674

[18] ! Rominger Tony 3411

[19] ! Smith Sally 3821

[20] ! Smith-Jones Nancy 9082

[21] ! Sorensen Rolf 341

[22] ! van der Aarden Eric 1245

[23] ! Vandiver Frank 45

[24] ! Yates Sean 8998

[25] !

and

[26] ! Data sorted by number:

[27] !

[28] ! LeBlanc Lucien 23

[29] ! Vandiver Frank 45

[30] ! Sorensen Rolf 341

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-04 CB496-Akin September 18, 2002 8:41

4.11 Exercises 115

Pass 1

Level
1 2 3 4 5 6

Sorted

b b b b b b
e e a a a a
a a e d d d
d d d e e e
f f f f f c
c c c c c f

Pass 2

Level
1 2 3 4 5

Sorted

b a a a a
a b b b b
d d d d d
e e e e c
c c c c e
f f f f f

Pass 3

Level
1 2

Sorted

a a
b b
c c
d d
e e
f f

Is Wasa

1 1 1 1
2 3 3 3
3 2 4 4
4 4 2 2
5 5 5 6
6 6 6 5

Is Was

1 3 3
3 1 1
4 4 4
2 2 6
6 6 2
5 5 5

Is Was

3 3
1 1
4 6
6 4
2 2
5 5

a Is Was (j) = k . What is position j was position k .

Figure 4.28: Sorting via an order vector, array (Is Was) → a b c d e f.

[31] ! van der Aarden Eric 1245

[32] ! Kruger Charlotte 2345

[33] ! Armstrong Lance 2374

[34] ! Rominger Tony 3411

[35] ! Johnston David 3421

[36] ! Gillis Malcolm 3785

[37] ! Smith Sally 3821

[38] ! Johnson Alexa 5190

[39] ! Indurain Miguel 5623

[40] ! Peiper Alan 5674

[41] ! Johns William 7234

[42] ! Johnston Jonathan 7234

[43] ! Butera Robert 7253

[44] ! Yates Sean 8998

[45] ! Smith-Jones Nancy 9082

[46] ! Hegg Steve 9231

4.11 Exercises

1 Frequently we need to know how many lines exist in an external file that is to be used
by our program. Usually we need that information todynamically allocatememory
for the arrays that will be constructed from the file data to be read. Write an F90 program
or routine that will accept a unit number as input, open that unit, loop over the lines of
data in the file connected to the unit, and return the number of lines found in the file.
(An external file ends when the iostat from a read is less than zero.)

2 A related problem is to read a table of data from an external file. In addition to knowing
the number of lines in the file it is necessary to know the number of entities (columns)
per line and to verify that all lines of the file have the same number of columns. Develop

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-04 CB496-Akin September 18, 2002 8:41

116 Features of Programming Languages

an F90 program for that purpose. (This is the sort of checking that the Matlab load

function must do before loading an array of data.)

3 Write a program that displays the current date and time and uses the moduletic toc,
in Figure 4.10, to display the CPU time required for a calculation.

4 Develop a companion function called to upper that converts a string to all uppercase
letters. Test it with the program above.

5 Develop a function that will take an external file unit number and count the number of
lines in the file connected to that unit. This assumes that the file has been “opened" on
that unit. The interface to the function is to be

interface

function inputCount(unit) result(linesOfInput)

integer, intent(in) :: unit ! file unit number

integer :: linesOfInput ! result

end function inputCount

end interface

6 Assume the file in the previous problem contains two real values per line. Develop a
subroutine that will read the file and return two vectors holding the first and second
values, respectively. The interface to the subroutine is to be

interface

subroutine readData (inFile, lines, x, y)

integer, intent(in) :: inFile, lines ! file unit, size

real, intent(out) :: x(lines), y(lines) ! data read

end subroutine readData

end interface

7 Written replies to the questions given below will be required. All of the named files
are provided in source form as well as being listed in the text. The cited figure number
indicates where some or all of the code is discussed in the text.

(a) Figure 1.3 — hello.f90

What is it necessary to split the printing statement so that “Hello" and “world"
occur on different program lines, that is, to continue it over two lines?

(b) Figure 4.1 — arithmetic.f90

What is the meaning of the symbol (mod) used to get the Mod Result?
What is the meaning of the symbol (**) used to get the Pow Result?

(c) Figure 4.3 — array index.f90

Is it good practice to use a loop index outside the loop? Why?
(d) Figure 4.4 — more or less.f90

What does the symbol (>) mean here?
What does the symbol (==) mean here?

(e) Figure 4.5 — if else.f90

What does the symbol (.and.) mean here? Can its preceding and following argu-
ments be interchanged (is it commutative)?

(f) Figure 4.6 — and or not.f90

What does the symbol (.not.) mean here?
What does the symbol (.or.) mean here? Can its preceding and following argu-
ments be interchanged (is it commutative)?

(g) Figure 4.7 — clip.f90

What does the symbol (<=) mean here?

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-04 CB496-Akin September 18, 2002 8:41

4.11 Exercises 117

(h) Figure 4.8 — maximum.f90

What are the input and output arguments for the maxint function?

8 The vertical motion of a projectile at any time t has a position given by y = y0 + V0 ∗
t − 1/2 ∗ g ∗ t2 and a velocity of V = V0 − g ∗ t when upward is taken as positive and
where the initial conditions on the starting position and velocity at t = 0 are y0 and
V0, respectively. Here the gravitational acceleration term g has been taken downward.
Recall that the numerical value of g depends on the units employed. Use metric units
with g = 9.81 m/s2 for distances measured in meters and time in seconds.
Write a C++ or F90 program that will accept initial values of y0 and V0 and then compute
and print y and V for each single input value of time t. Print the results for y0 = 1.5
meters and V0 = 5.0 m/s for times t = 0.5, 2.0, and 4.0 seconds.

9 Modify the projectile program written in Problem 2 to have it print the time, position,
and velocity for times ranging from 0.0 to 2.0 seconds in increments of 0.05 seconds. If
you use a direct loop, do not use real loop variables. Conclude the program by having
it list the approximate maximum (positive) height reached and the time when that oc-
curred. The initial data will be the same but should be printed for completeness. The
three columns of numbers should be neat and right justified. In that case the default
print format (print * in F90) will usually not be neat, and one must employ a “formatted"
print or write statement.

10 The greatest common divisor of two positive integers can be computed by at least two
different approaches. There is a looping approach known as the Euclidean algorithm
that has the following pseudocode:

Rank two positive integers as max and min.

do while min > 0

Find remainder of max divided by min.

Replace max by min.

Replace min by the remainder

end do

Display max as the greatest common divisor.

Implement this approach and test with max = 532 = 28 ∗ 19 and min = 112 = 28 ∗ 8. The
names of the remainder functions are given in Table 4.7.

Another approach to some algorithms is to use a “recursive" method that employs a
subprogram, which calls itself. This may have an advantage in clarifying the algorithm,
reducing the roundoff error associated with the computations, or both. For example, in
computer graphics Bernstein polynomials are often used to display curves and surfaces
efficiently by using a recursive definition in calculating their value at a point.

The greatest common divisor evaluation can also be stated in terms of a recursive func-
tion, say gcd, having max and min as its initial two arguments. The following pseu-
docode defines the function:

gcd(max, min) is

a) max if min = 0, otherwise

b) gcd(min, remainder of max divided by min) if min > 0.

Also implement this version and verify that it gives the same result as the Eulerian algo-
rithm. Note that F90 requires the use of the word "recursive" when defining the sub-
program statement block. For example,

recursive function gcd(...) result(g)

....

end function gcd.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-04 CB496-Akin September 18, 2002 8:41

118 Features of Programming Languages

11 It is not uncommon for data files to be prepared with embedded tabs. Since a tab is a
nonprinting control character, you can not see it in a listing. However, if you read the
file expecting an integer, real, or complex variable, the tab will cause a fatal read error.
So one needs a tool to clean up such a file.
Write a program to read a file and output a duplicate copy with the exception that all
tabs are replaced with a single space. One could read a complete line and check its char-
acters or read the file character by character. Remember that C++ and F90 have opposite
defaults when advancing to a new line. That is, F90 advances to the next line, after any
read or write, unless you include the format control, advance = ’no’, whereas C++
does not advance unless you include the new line control, “<< endl," and C does not
advance unless you include the new line control, “\n."

12 Engineering data files consisting of discrete groups of variable types often begin with
a control line that lists the number of rows and columns of data of the first variable
type that follow beginning with the next line. At the end of the data block, the format
repeats: control line, variable type, data block, and so forth, until all the variable types
are read (or an error occurs where the end of file is encountered). Write a program that
reads such a file and contains an integer set, a real set, and a second real set.

13 Neither C++ or F90 provides an inverse hyperbolic tangent function. Write such a func-
tion, called arctanh. Test it with three different arguments against the values given by
MATLAB.

14 Often if one is utilizing a large number of input–output file units it may be difficult to
keep up with which one you need. One approach to dealing with that problem may
be to define a unit Class or to create an units Module to provide functionality and
global access to file information. In the latter case assume that we want to provide a
function simply to find a unit number that is not currently in use and utilize it for our
input–output action:

interface

function get next io unit () result (next)

integer :: next ! the next available unit number

end function get next io unit

end interface.

Use the Fortran INQUIRE statement to build such a utility. If you are familiar with MATLAB

you will see this is similar to its fopen feature.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-05 CB496-Akin September 18, 2002 8:48

CHAPTER FIVE
� �

Object-Oriented Methods

5.1 Introduction

In Section 1.7 we outlined procedures that should be considered while conducting the object-
oriented analysis and object-oriented design phases that are necessary before the OOP can
begin. Here we will expand on those concepts, but the reader is encouraged to read some
of the books on those subjects. Many of the references on OOA and OOD rely heavily
on detailed graphical diagrams to describe the classes, their attributes and states, and how
they interact with other classes. Often those OO methods do not go into any programming
language–specific approaches. Our interest is on OOP, and so we usually will assume that the
OOA and OOD have been completed and supplied to us as a set of tables that describe the
application and possibly a software interface contract. Sometimes we will use a subset of
the common OO methods diagrams to represent the attributes and members of our classes
graphically. Since they are being used for OOP, the graphical representations will contain,
in part, the intrinsic-data type descriptions of the language being employed as well as the
derived types created with them.

5.2 The Drill Class

Our first illustration of typical OO methods will be to apply them to a common electric drill.
It feeds a rotating cutting bit through a workpiece, thereby removing a volume of material.
The effort (power or torque) required to make the hole clearly depends on the material of
the workpiece as well as the attributes of the drill.

Table 5.1 contains a summary of the result of an OO analysis for the drill object. They
are further processed in Table 5.2, which gives the results of the OO design phase. When
the OOD phase is complete, we can create the graphical representation of our Drill class,
as shown in Figure 5.1. At this point one can begin the actual OOP in the target language.
The coding required for this object is so small we could directly put it all together in one
programming session. However, that is usually not the case. Often segments of the coding will
be assigned to different programming groups that must interface with each other to produce
a working final code. Frequently this means that the OOP design starts with defining the
interfaces to each member function. That is, all of the given and return arguments must be
defined with respect to their type, whether they are changed by the member, and so forth.
Such an interface can be viewed as a contract between a software supplier and a client user

119

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-05 CB496-Akin September 18, 2002 8:48

120 Object-Oriented Methods

Table 5.1: Electric Drill OO Analysis

Attributes
What knowledge does it possess or require?

� Rotational speed (revolutions per minute)
� Feed rate per revolution (mm/rev)
� Diameter of the bit (mm)
� Power consumed (W)

Behavior
What questions should it be able to answer?

� What is the volumetric material removal rate?
(mm3/s)

� What is the cutting torque? (N·m)
� What is the material being removed?

Interfaces
What entities need to be inputted or outputted?

� Material data
� Torque produced
� Power

Formulas

Area : A = π d2/4 (mm2)
Angular velocity : ω , 1 rev/min = 2π

60 rad/s (rad/s)
Material removal rate : M = A · feed · ω (mm3/s)

Power : P = m · u = T · ω (W)
Torque : T = P/ω , 1 m = 1000 mm (N·mm)

Diameter : d (mm)
Feed rate : feed (mm/rev)

Material dissipation : u (W·s/mm3)

of the software. Once the interface has been finalized, it can be written and given to the
programmer to flesh out the full routine, but the interface itself cannot be changed.

The interface prototype for our drill object members is given in Figure 5.2. In this case the
remaining coding is defined by a set of equations that relate the object attributes, selected
member results, material data, and a few conversion constants to obtain the proper units.
Those relationships are given in Table 5.1.

The full implementation of the drill class is given in Figure 5.3, and a main program to
test the drill class is given in Figure 5.4. When we wrote the manual constructor, Drill , in
this example we chose to utilize the intrinsic constructor Drill (in lines 18 and 21) rather
than to include lines assigning values to each of the components of our data type. If at
some later time we add or delete a component in the type declaration, then the number
of required arguments for the intrinsic constructor would also change. That would require
the revision of all members that used the intrinsic constructor. An advantage of the object-
oriented approach to programming is that we know that all such routines (that can access
the intrinsic constructor) are encapsulated within this class-declaration module, and we can
be sure that no other code segments need to be changed to remain consistent with the new
version. That is, OOP helps with code maintenance.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-05 CB496-Akin September 18, 2002 8:48

5.3 Global Positioning Satellite Distances 121

Table 5.2: Electric Drill OO Design

Attributes
Name Type Private Description
diameter real Y Bit diameter (mm)
feed real Y Bit feed rate (mm/rev)
speed real Y Bit rotational speed (rpm)

Behavior
Name Private Description
drill N Default constructor using all attributes, or none
get mr rate N Material removal rate (mm3/sec)
get torque N Required torque (N·m)
power N Required power (W)

Data
Name Description
u Material power description per unit volume (W s/mm3)

Interfaces
Name Description
read Input drill and material data
print Output object results

5.3 Global Positioning Satellite Distances

Consider the problem of traveling by ship or airplane between two points on the earth. Here
we assume that there are no physical obstructions that prevent the vehicle from following
the shortest path, which is an arc of a “great circle” on the earth’s surface. We will neglect the

Drill Class

Figure 5.1: Graphical representation of an electric drill class.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-05 CB496-Akin September 18, 2002 8:48

122 Object-Oriented Methods

[1] interface

[2] ! type (Drill) :: x ; x = Drill (d, f, s) ! intrinsic constructor

[3]

[4] function Drill (d, f, s) result (x) ! default constructor

[5] real, optional :: d, f, s ! given diameter, feed, speed

[6] type (Drill) :: x ! the Drill instance

[7] end function Drill

[8]

[9] function get mr rate (x) result (r) ! material removal rate

[10] type (Drill), intent(in) :: x ! a given drill instance

[11] real :: r ! volume cut rate

[12] end function get mr rate

[13]

[14] function get torque (x, unit Power) result (t) ! torque from power

[15] type (Drill), intent(in) :: x ! given drill instance

[16] real, intent(in) :: unit Power ! dissipated in cutting

[17] real :: t ! resulting torque

[18] end function get torque

[19]

[20] subroutine in (x) ! read a Drill instance

[21] type (Drill), intent(out) :: x ; end subroutine in

[22]

[23] subroutine out (x) ! output a Drill instance

[24] type (Drill), intent(in) :: x ! given drill instance

[25] end subroutine out

[26] end interface

Figure 5.2: Drill object contract interface prototype.

altitude of the airplane in comparison with the earth’s radius. The original and final positions
are to be defined in terms of their angles of latitude (measured N or S from the equator)
and longitude (measured E or W from Greenwich, England). These two attributes define
an angular position from a defined reference point on the spherical surface of the earth.
They are measured in terms of whole degrees, whole minutes (1 degree = 60 minutes), and
seconds (1 minute = 60 seconds). Historically, whole seconds are usually used, but they give
positions that are only accurate to about 300 meters. Thus, we will use a real variable for
the seconds to allow for potential reuse of the software for applications that require more
accuracy, such as those using Global Positioning Satellite (GPS) data. Recall that latitude
and longitude have associated directional information of north or south, and east or west,
respectively. Also, in defining a global position point it seems logical to include a name for
each position. Depending on the application, the name may identify a city or port, or a
“station number” in a land survey, or a “path point number” for a directed robot motion.

Eventually, we want to compute the great arc distance between given pairs of
latitude and longitude. That solid geometry calculation requires that one use angles
that are real numbers measured in radians (2pi = 360 degrees). Thus, our prob-
lem description begins with an Angle class as its basic class. Both latitude and lon-
gitude will be defined to be of the Position Angle class, and we observe that a
Position Angle is a “Kind-Of” Angle, or a Position Angle has an “Is-A” relation-
ship to an Angle. The positions we seek are on a surface, and so only two measures
(latitude and longitude) are needed to define the location uniquely, which we will refer

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-05 CB496-Akin September 18, 2002 8:48

5.3 Global Positioning Satellite Distances 123

[1] module class Drill ! class name

[2] implicit none ! enforce strong typing

[3] real, parameter :: pi = 3.141592654 ! or use math constants

[4] public :: Drill, Drill , get mr rate, get torque

[5] real, private :: diameter, feed, speed

[6]

[7] type Drill ! defined type, private data

[8] real :: diameter, feed, speed ; end type

[9]

[10] contains ! member functions, overloaded & new operators

[11]

[12] ! type (Drill) :: x ; x = Drill (d, f, s) ! intrinsic constructor

[13]

[14] function Drill (d, f, s) result (x) ! default constructor

[15] real, optional :: d, f, s ! given diameter, feed, speed

[16] type (Drill) :: x ! the Drill instance

[17] if (present(d) .and. present(f) .and. present(s)) then

[18] x = Drill (d, f, s) ! intrinsic constructor

[19] else ! check various input options

[20] if (.not. (present(d))) then ! no diameter given

[21] x = Drill (10., 0., 0.) ! default 10mm, at rest zero

[22] end if ! default form

[23] end if ! full form

[24] end function Drill

[25]

[26] function get mr rate (x) result (r) ! material removal rate, mm3̂/sec
[27] type (Drill), intent(in) :: x ! a given drill instance

[28] real :: r ! volume cut rate

[29] r = 0.25 * pi * x%diameter * x%diameter * x%feed * x%speed/60.

[30] end function get mr rate

[31]

[32] function get torque (x, unit Power) result (t) ! torque from power

[33] type (Drill), intent(in) :: x ! given drill instance

[34] real, intent(in) :: unit Power ! dissipated in cutting

[35] real :: t ! resulting torque

[36] real :: rad per sec ! radians per second

[37] rad per sec = 2 * pi * x%speed / 60.

[38] t = get mr rate(x) * unit Power / rad per sec ! torque

[39] end function get torque

[40]

[41] subroutine in (x) ! input a Drill instance

[42] type (Drill), intent(out) :: x ! given drill instance

[43] read *, x ! get intrinsic data

[44] end subroutine in

[45]

[46] subroutine out (x) ! output a Drill instance

[47] type (Drill), intent(in) :: x ! given drill instance

[48] print *,"Drill"; print *, " Diameter: ",x % diameter

[49] print *," Feed : ",x % feed; print *," Speed : ",x % speed

[50] end subroutine out

[51] end module class Drill ! close class definition

Figure 5.3: An electrical drill class.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-05 CB496-Akin September 18, 2002 8:48

124 Object-Oriented Methods

[1] program test Drill ! test the Drill class

[2] use class Drill ! i.e., all public members and public data

[3] implicit none

[4] type (Drill) :: drill A, drill B, drill C

[5] real :: unit Power

[6] print *, "Enter diameter (mm), feed (mm/rev), speed (rpm):"

[7] call in (drill A)

[8] print *, "Enter average power unit for material (W.s/mm**3):"

[9] read *, unit Power ; call out (drill A) ! user input

[10] print *, "Material removal rate is: ", get mr rate(drill A), &

[11] " mm**3/sec"

[12] print *, "Torque in this material is: ", &

[13] & get torque (drill A, unit Power), " W.s"

[14] drill B = Drill (5., 4., 3.); call out (drill B) ! manual

[15] drill C = Drill (); call out (drill C) ! default

[16] end program test Drill ! Running gives

[17] ! Enter diameter (mm), feed (mm/rev), speed (rpm): 10 0.2 800

[18] ! Enter average power unit for material (W.s/mm**3): 0.5

[19] ! Drill

[20] ! Diameter: 10.

[21] ! Feed : 0.200000003

[22] ! Speed : 800.

[23] ! Material removal rate is: 209.439514 mm**3/sec

[24] ! Torque in this material is: 1.25 W.s

[25] ! Drill

[26] ! Diameter: 5.

[27] ! Feed : 4.

[28] ! Speed : 3.

[29] ! Drill

[30] ! Diameter: 10.

[31] ! Feed : 0.E+0

[32] ! Speed : 0.E+0

Figure 5.4: Testing an electrical drill class.

Angle Class

Figure 5.5: Graphical representation of an angle class.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-05 CB496-Akin September 18, 2002 8:48

Table 5.3: Great Arc OO Analysis

Attributes
What knowledge does it possess or require?

� Global position 1 (latitude, longitude)
� Global position 2 (latitude, longitude)
� Smallest arc (km)
� Radius of the earth (km)

Behavior
What questions should it be able to answer?

� What is the (smallest) great arc between the points?

What services should it provide?

� Default value (Greenwich, Greenwich, 0.0)
� Initialize for two positions
� Convert kilometers to miles

Relationships
What are its related classes?

� Has-A pair of Global Positions

Interfaces
What entities need to be input or output?

� The distance between two positions.

Table 5.4: Global Position OO Analysis

Attributes
What knowledge does it possess or require?

� Latitude (degrees, minutes, seconds, and direction)
� Longitude (degrees, minutes, seconds, and direction)

Behavior
What questions should it be able to answer?

� What is the latitude of the location?
� What is the longitude of the location?

What services should it provide?

� Default position (Greenwich)
� Initialize a position (latitude and longitude)

Relationships
What are its related classes?

� Part-Of GreatArc
� Has-A pair of Position Angles

Interfaces
What entities need to be inputted or outputted?

� The latitude and longitude and a position name.

125

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-05 CB496-Akin September 18, 2002 8:48

126 Object-Oriented Methods

Table 5.5: Position Angle OO Analysis

Attributes
What knowledge does it possess or require?

� Magnitude (degrees, minutes, seconds)
� Direction (N or S or E or W)

Behavior
What questions should it be able to answer?

� What is its magnitude and direction?

What services should it provide?

� Default value (0, 0, 0.0, N)
� Initialization to input value

Relationships
What are its related classes?

� Part-Of Global Positions
� Is-A Angle

Interfaces
What entities need to be inputted or outputted?

� None

Table 5.6: Angle OO Analysis

Attributes
What knowledge does it possess or require?

� Signed value (radians)

Behavior
What questions should it be able to answer?

� What is the current value?

What services should it provide?

� Default values (0.0)
� Conversion to signed decimal degrees
� Conversion to signed degree, minutes, and decimal seconds
� Conversion from signed decimal degrees
� Conversion from signed degree, minutes, and decimal seconds

Relationships
What are its related classes?

� Base Class for Position Angle

Interfaces
What entities need to be inputted or outputted?

� None

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-05 CB496-Akin September 18, 2002 8:48

5.3 Global Positioning Satellite Distances 127

Table 5.7: Class Great Arc OO Design

Attributes
Name Type Private Description
point 1 Global Position Y Lat-Long-Name of point 1
point 2 Global Position Y Lat-Long-Name of point 2
arc real Y Arc distance between points

Behavior
Name Private Description
Great Arc N Constructor for two position points
get Arc N Compute great arc between two points

Data
Name Description
Earth Radius Mean Conversion factor
m Per Mile Conversion factor

Interfaces
Name Description
List Great Arc Print arc values (two positions and distance)
List Pt to Pt Print distance and two points

Table 5.8: Class Global Position OO Design

Attributes
Name Type Private Description
latitude Position Angle Y Latitude
longitude Position Angle Y Longtitude
name characters Y Point name

Behavior
Name Private Description
Global Position N Constructor for d-m-s pairs and point name
set Lat and Long at N Constructor for lat-long-name set
get Latitude N Return latitude of a point
get Longitude N Return longitude of a point
set Latitude N Insert latitude of a point
set Longitude N Insert longitude of a point

Data
Name Description
None

Interfaces
Name Description
List Position Print name and latitude, longitude of a position

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-05 CB496-Akin September 18, 2002 8:48

128 Object-Oriented Methods

Table 5.9: Class Position Angle OO Design

Attributes
Name Type Private Description
deg integer Y Degrees of angle
min integer Y Minutes of angle
sec real Y Seconds of angle
dir character Y Compass direction

Behavior
Name Private Description
Default Angle N Default constructor
Decimal min N Constructor for decimal minutes
Decimal sec N Constructor for decimal seconds
Int deg N Constructor for whole deg
Int deg min N Constructor for whole deg, min
Int deg min sec N Constructor for whole deg, min, sec
to Decimal Degrees N Convert position angle values to decimal degree
to Radians N Convert position angle values to decimal radian

Data
Name Description
None

Interfaces
Name Description
List Position Angle Print values for position angle
Read Position Angle Read values for position angle

to as the Global Position. Here we see that the two Position Angleobject values are
a “Part-Of” the Global Position class, or we can say that a Global Position“Has-A”
Position Angle.

The sort of relationships between classes that we have noted above are quite common and
relate to the concept of inheritance as a means of reusing code. In an “Is-A” relationship, the
derived class is a variation of the base class. Here the derived class Position Angle forms
an “Is-A” relation to the base class, Angle. In a “Has-A” relationship, the derived class has

Table 5.10: Class Angle OO Design

Attributes
Name Type Private Description
rad real Y Radian measure of the angle (rad)

Behavior
Name Private Description
Angle N A generic constructor
List Angle N List angle value in radians and degrees

Data
Name Description
Deg per Rad Unit conversion parameter

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-05 CB496-Akin September 18, 2002 8:48

[1] module class Angle ! file: class Angle.f90

[2] implicit none

[3] type Angle ! angle in (signed) radians

[4] private

[5] real :: rad ! radians

[6] end type

[7] real, parameter:: Deg Per Rad = 57.2957795130823209d0

[8] contains

[9]

[10] function Angle (r) result (ang) ! public constructor

[11] real, optional :: r ! radians

[12] type (Angle) :: ang

[13] if (present(r)) then

[14] ang = Angle (r) ! intrinsic constructor

[15] else ; ang = Angle (0.0) ! intrinsic constructor

[16] end if ; end function Angle

[17]

[18] subroutine List Angle (ang)

[19] type (Angle), intent(in) :: ang

[20] print *, ’Angle = ’, ang % rad, ’ radians (’, &

[21] Deg Per Rad * ang % rad, ’ degrees)’

[22] end subroutine List Angle

[23] end module class Angle

Figure 5.6: A definition of the class angle.

Position_Angle Class

Figure 5.7: Graphical representation of a position angle class.

129

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-05 CB496-Akin September 18, 2002 8:48

130 Object-Oriented Methods

[1] module class Position Angle ! file: class Position Angle.f90

[2] use class Angle

[3] implicit none

[4] type Position Angle ! angle in deg, min, sec

[5] private

[6] integer :: deg, min ! degrees, minutes

[7] real :: sec ! seconds

[8] character :: dir ! N | S, E | W

[9] end type

[10] contains

[11]

[12] function Default Angle () result (ang) ! default constructor

[13] type (Position Angle) :: ang

[14] ang = Position Angle (0, 0, 0., ’N’) ! intrinsic

[15] end function Default Angle

[16]

[17] function Decimal min (d, m, news) result (ang) ! public

[18] integer, intent(in) :: d ! degrees

[19] real, intent(in) :: m ! minutes

[20] character, intent(in) :: news ! N | S, E | W

[21] type (Position Angle) :: ang ! angle out

[22] integer :: min ! minutes

[23] real :: s ! seconds

[24] min = floor (m) ; s = (m - min)*60. ! convert

[25] ang = Position Angle (d, m, s, news) ! intrinsic

[26] end function Decimal min

[27]

[28] function Decimal sec (d, m, s, news) result (ang) ! public

[29] integer, intent(in) :: d, m ! degrees, minutes

[30] real, intent(in) :: s ! seconds

[31] character, intent(in) :: news ! N | S, E | W

[32] type (Position Angle) :: ang ! angle out

[33] ang = Position Angle (d, m, s, news) ! intrinsic

[34] end function Decimal sec

[35]

[36] function Int deg (d, news) result (ang) ! public

[37] integer, intent(in) :: d ! degrees, minutes

[38] character, intent(in) :: news ! N | S, E | W

[39] type (Position Angle) :: ang ! angle out

[40] ang = Position Angle (d, 0, 0.0, news) ! intrinsic

[41] end function Int deg

[42]

[43] function Int deg min (d, m, news) result (ang) ! public

[44] integer, intent(in) :: d, m ! degrees, minutes

[45] character, intent(in) :: news ! N | S, E | W

[46] type (Position Angle) :: ang ! angle out

[47] ang = Position Angle (d, m, 0.0, news) ! intrinsic

[48] end function Int deg min

[49]

[50] function Int deg min sec (d, m, s, news) result (ang) ! public

[51] integer, intent(in) :: d, m, s ! deg, min, seconds

[52] character, intent(in) :: news ! N | S, E | W

[53] type (Position Angle) :: ang ! angle out

[54] ang = Position Angle (d, m, real(s), news) ! intrinsic

[55] end function Int deg min sec

[56]

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-05 CB496-Akin September 18, 2002 8:48

5.3 Global Positioning Satellite Distances 131

[57] subroutine List Position Angle (a)

[58] type (Position Angle) :: a ! angle

[59] print 5, a ; 5 format (i3, " ", i2,"’ ", f8.5, ’" ’, a1)

[60] end subroutine

[61]

[62] subroutine Read Position Angle (a)

[63] type (Position Angle) :: a ! angle

[64] read *, a%deg, a%min, a%sec, a%dir ; end subroutine

[65]

[66] function to Decimal Degrees (ang) result (degrees)

[67] type (Position Angle), intent(in) :: ang

[68] real :: degrees

[69] degrees = ang%deg + ang%min/60. + ang%sec/60.

[70] if (ang%dir == "S" .or. ang%dir == "s" .or. &

[71] ang%dir == "W" .or. ang%dir == "w") degrees = -degrees

[72] end function to Decimal Degrees

[73]

[74] function to Radians (ang) result (radians)

[75] type (Position Angle), intent(in) :: ang

[76] real :: radians

[77] radians = (ang%deg + ang%min/60. + ang%sec/60.)/Deg Per Rad

[78] if (ang%dir == "S" .or. ang%dir == "s" .or. &

[79] ang%dir == "W" .or. ang%dir == "w") radians = -radians

[80] end function to Radians

[81] end module class Position Angle

Figure 5.8: A Definition of the class position angle.

Global_Position Class

Figure 5.9: Graphical representation of a global position class.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-05 CB496-Akin September 18, 2002 8:48

132 Object-Oriented Methods

[1] module class Global Position

[2] use class Position Angle

[3] implicit none

[4] type Global Position

[5] private

[6] type (Position Angle) :: latitude, longitude

[7] character (len=31) :: name

[8] end type Global Position

[9] contains

[10]

[11] function Global Position (d1, m1, s1, c1, & ! constructor

[12] d2, m2, s2, c2, n) result (GP)

[13] integer, intent(in) :: d1, m1, s1 ! deg, min, sec

[14] integer, intent(in) :: d2, m2, s2 ! deg, min, sec

[15] character, intent(in) :: c1, c2 ! compass

[16] character (len=*) :: n ! name

[17] type (Global Position) :: GP ! returned position

[18] GP % latitude = Int deg min sec (d1, m1, s1, c1)

[19] GP % longitude = Int deg min sec (d2, m2, s2, c2)

[20] GP % name = n ; end function Global Position

[21]

[22] function set Lat and Long at (lat, long, n) result (GP) ! cons

[23] type (Position Angle), intent(in) :: lat, long ! angles

[24] character (len=*), intent(in) :: n ! name

[25] type (Global Position) : GP ! position

[26] GP % latitude = lat ; GP % longitude = long

[27] GP % name = n ; end function set Lat and Long at

[28]

[29] function get Latitude (GP) result (lat)

[30] type (Global Position), intent(in) :: GP

[31] type (Position Angle) :: lat

[32] lat = GP % latitude ; end function get Latitude

[33]

[34] function get Longitude (GP) result (long)

[35] type (Global Position), intent(in) :: GP

[36] type (Position Angle) :: long

[37] long = GP % longitude ; end function get Longitude

[38]

[39] subroutine set Latitude (GP, lat)

[40] type (Global Position), intent(inout) :: GP

[41] type (Position Angle), intent(in) :: lat

[42] GP % latitude = lat ; end subroutine set Latitude

[43]

[44] subroutine set Longitude (GP, long)

[45] type (Global Position), intent(inout) :: GP

[46] type (Position Angle), intent(in) :: long

[47] GP % longitude = long ; end subroutine set Longitude

[48]

[49] subroutine List Position (GP)

[50] type (Global Position), intent(in) :: GP

[51] print *, ’Position at ’, GP % name

[52] write (*,’(" Latitude: ")’, advance = "no")

[53] call List Position Angle (GP % latitude)

[54] write (*,’(" Longitude: ")’, advance = "no")

[55] call List Position Angle (GP % longitude)

[56] end subroutine List Position

[57] end module class Global Position

Figure 5.10: A definition of the class global position.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-05 CB496-Akin September 18, 2002 8:48

5.3 Global Positioning Satellite Distances 133

Great_Arc Class

Figure 5.11: Graphical representation of a great arc class.

an attribute or property of the base class. Here the derived class ofGlobal Position forms
a “Has-A” relation to its base class of Position Angle. Also, the Great Arc class forms
a “Has-A” relation to the Global Position class.

Looking back at previous classes in Chapter 3, we observe that the class Student “Is-A”
variation of the class Person and the class Person forms at least one “Has-A” relationship
with the class Date. In general we know that a graduate student is a “Kind-Of” student,
but not every student is a graduate student. This subtyping, or “Is-A” relationship, is also
called interface inheritance. Likewise, complicated classes can be designed from simpler or
composition inheritance.

The OO analysis tables for the classes of Great Arc, Global Position, Position
Angle, and Angle are given in Tables 5.3 through 5.6, respectively. Historically people
have specified latitude and longitude mainly in terms of whole (integer) degrees, minutes,
and seconds. Sometimes you find navigation charts that give positions in whole degrees and
decimal minutes. Today GPS data are being used for various types of high-accuracy posi-
tioning such as land surveys, or the control of robots as they move over distances of a few
meters. The latter will clearly need decimal-second values in their constructor. Thus, we will
create several constructors for the position angles. In the next chapter we will review how
to access any of them, based on the signature of their arguments, through the use of a single
polymorphic routine name. These considerations and the OOA tables lead to the construc-
tion of the corresponding set of OO Design tables given in Tables 5.7 through 5.10. Those
OOD tables can lead to software interface contracts to be distributed to the programming
groups. When combined and tested, they yield the corresponding class modules, which are
shown for the classes Angle, Position Angle, Global Position, and Great Arc

in Figures 5.6 to 5.12, respectively. They, in turn, are verified by the main program given in
Figure 5.13 along with its output.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-05 CB496-Akin September 18, 2002 8:48

134 Object-Oriented Methods

[1] module class Great Arc

[2] use class Global Position

[3] implicit none

[4] real, parameter :: Earth Radius Mean = 6.371d6 ! meters

[5] real, parameter :: m Per Mile = 1609.344

[6] type Great Arc

[7] type (Global Position) :: point 1, point 2

[8] real :: arc

[9] end type Great Arc

[10] contains

[11]

[12] function Great Arc (GP1, GP2) result (G A) ! constructor

[13] type (Global Position), intent(in) :: GP1, GP2 ! points

[14] type (Great Arc) :: G A ! earth arc

[15] G A = Great Arc (GP1, GP2, get Arc (GP1, GP2)) ! intrinsic

[16] end function Great Arc

[17]

[18] function get Arc (GP1, GP2) result (dist)

[19] type (Global Position), intent(in) :: GP1, GP2

[20] real :: dist

[21] real :: lat1, lat2, long1, long2

[22] ! convert latitude, longitude to radians

[23] lat1 = to Radians (get Latitude (GP1))

[24] lat2 = to Radians (get Latitude (GP2))

[25] long1 = to Radians (get Longitude (GP1))

[26] long2 = to Radians (get Longitude (GP2))

[27] ! compute great circle arc of earth

[28] dist = 2 * Earth Radius Mean &

[29] * asin(sqrt ((sin((lat1 - lat2)/2.))**2 &

[30] + cos(lat1)*cos(lat2)*(sin((long1-long2)/2.))**2))

[31] end function get Arc

[32]

[33] subroutine List Great Arc (A to B)

[34] type (Great Arc), intent(in) :: A to B

[35] real :: dist ! in meters

[36] print * ; print *, "The great circle arc between"

[37] call List Position (A to B % point 1)

[38] call List Position (A to B % point 2)

[39] dist = A to B % arc ! convert to km and miles

[40] print *, "is ", dist/1000, " km (", dist/m Per Mile, "miles)."

[41] end subroutine List Great Arc

[42]

[43] subroutine List Pt to Pt (GP1, GP2) ! alternate

[44] type (Global Position), intent(in) :: GP1, GP2 ! points

[45] real :: arc ! distance

[46] print * ; print *, "The great circle arc between"

[47] call List Position (GP1) ; call List Position (GP2)

[48] arc = get Arc (GP1, GP2) ! in meters

[49] print *, "is ", arc/1000, " km (", arc/m Per Mile, "miles)"

[50] end subroutine List Pt to Pt

[51] end module class Great Arc

Figure 5.12: Definition of the class great arc.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-05 CB496-Akin September 18, 2002 8:48

5.3 Global Positioning Satellite Distances 135

[1] program test Great Arc

[2] use class Great Arc

[3] implicit none

[4] type (Great Arc) :: arc

[5] type (Global Position) :: g1, g2

[6] type (Position Angle) :: a1, a2

[7] type (Angle) :: ang

[8] real :: deg, rad

[9] a1 = Decimal sec (10,30, 0.,"N"); call List Position Angle(a1)

[10] a1 = Int deg min sec(10,30, 0, "N"); call List Position Angle(a1)

[11] a1 = Int deg min (10, 30, "N"); call List Position Angle(a1)

[12] a1 = Int deg (20, "N"); call List Position Angle(a1)

[13] ! call Read Position Angle (a2)

[14] a2 = Decimal sec (30,48, 0.,"E"); call List Position Angle(a2)

[15] ang = Angle (1.0) ; call List Angle (ang)

[16] deg = to Decimal Degrees (a1) ; print *, deg, deg/Deg Per Rad

[17] rad = to Radians (a1) ; print *, rad

[18] !

[19] g1 = set Lat and Long at (a1, a2, ’g1’)

[20] call List Position (g1)

[21] g2 = Global Position (20, 5, 40, "S", 75, 0, 20, "E", ’g2’)

[22] call List Position (g2)

[23] print *, "Arc = ", get Arc (g1, g2), " (meters)"

[24] g1 = Global Position (0, 0, 0, "N", 0, 0, 0, "E", ’equator’)

[25] g2 = Global Position (90, 0, 0, "N", 0, 0, 0, "E", ’N-pole’)

[26] call List Pt to Pt (g1, g2)

[27] arc = Great Arc (g1, g2) ; call List Great Arc (arc)

[28] end program test Great Arc ! running gives:

[29] ! 10 30’ 0.00000" N ; ! 10 30’ 0.00000" N ; ! 10 30’ 0.00000" N

[30] ! 20 0’ 0.00000" N ; ! 30 48’ 0.00000" N

[31] ! Angle = 1.000000000 radians (57.29578018 degrees)

[32] ! 20.00000000 0.3490658402 ; ! 0.3490658402

[33] ! Position at g1 ; ! Position at g2

[34] ! Latitude: 20 0’ 0.00000" N ; ! Latitude: 20 5’ 40.00000" S

[35] ! Longitude: 30 48’ 0.00000" E ; ! Longitude: 75 0’ 20.00000" E

[36] ! Arc = 6633165.000 (meters)

[37] !

[38] ! The great circle arc between

[39] ! Position at equator ; ! Position at N-pole

[40] ! Latitude: 0 0’ 0.00000" N ; ! Latitude: 90 0’ 0.00000" N

[41] ! Longitude: 0 0’ 0.00000" E ; ! Longitude: 0 0’ 0.00000" E

[42] ! is 10007.54297 km (6218.398926 miles)

[43] !

[44] ! The great circle arc between

[45] ! Position at equator ; ! Position at N-pole

[46] ! Latitude: 0 0’ 0.00000" N ; ! Latitude: 90 0’ 0.00000" N

[47] ! Longitude: 0 0’ 0.00000" E ; ! Longitude: 0 0’ 0.00000" E

[48] ! is 10007.54297 km (6218.398926 miles)

Figure 5.13: Testing the great arc class interactions.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-05 CB496-Akin September 18, 2002 8:48

136 Object-Oriented Methods

5.4 Exercises

1 Referring to Chapter 3, develop OOA and OOD tables for the (a) Geometric class,
(b) Date class, (c) Person class, and (d) Student class.

2 Develop the graphical representations for the classes in the (a) drill study and (b) global
position study.

3 Use the classes in the GPS study to develop a main program that will read a list (vector)
of Global Position types and use them to output a square table of great arc distances
from one site to each of the others. That is, the table entry in row j, column k gives the
arc from sitej to sitek. Such a table would be symmetric (with zeros along one diagonal),
and so you may want to give only half of it.

4 Modify the given Class Position Angle to provide a polymorphic interface for a
constructor Position Angle that will accept decimal, integer, or no data for the
seconds value. Also allow for the omission of the minutes value.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-06 CB496-Akin September 16, 2002 9:59

CHAPTER SIX
� �

Inheritance and Polymorphism

6.1 Introduction

As we saw earlier in our introduction to OOP, inheritance is a mechanism for deriving a
new class from an older base class. That is, the base class, sometimes called the super class,
is supplemented or selectively altered to create the new derived class. Inheritance provides
a powerful code reuse mechanism since a hierarchy of related classes can be created that
share the same code. A class can be derived from an existing base class using the module
construct illustrated in Figure 6.1.

We note that the inheritance is invoked by the USE statement. Sometimes an inherited
entity (attribute or member) needs to be slightly amended for the purposes of the new
classes. Thus, at times one may want to bring into the new class selectively only certain
entities from the base class. The modifier ONLY in a USE statement allows one to select the
desired entities from the base class as illustrated in Figure 6.2. It is also common to develop
name conflicts when combining entities from one or more related classes. Thus, a rename
modifier, =>, is also provided for a USE statement to allow the programmer to pick a new
local name for an entity inherited from the base class. The form for that modifier is given in
Figure 6.3.

It is logical to extend any or all of the aforementioned inheritance mechanisms to produce
multiple inheritance. Multiple Inheritance allows a derived class to be created by using inher-
itance from more than a single base class. Although multiple inheritance may at first seem
like a panacea for efficient code reuse, experience has shown that a heavy use of multiple
inheritance can result in entity conflicts and be otherwise counterproductive. Nevertheless
it is a useful tool in OOP. In F90 the module form for selective multiple inheritance would
combine the USE options above in a single module, as illustrated in Figure 6.4.

6.2 Sample Applications of Inheritance

6.2.1 The Professor Class
In the introductory examples of OOP in Chapter 3 we introduced the concepts of inheritance
and multiple inheritance by the use of the Date class, Person class, and Student class. To
reinforce those concepts we will reuse those three classes and will have them be inherited
by a Professor class. Given the common “publish or perish” aspect of academic life, the
Professor class must keep up with the number of publications of the professor. The new
class is given in Figure 6.5 along with a small validation program in Figure 6.6.

137

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-06 CB496-Akin September 16, 2002 9:59

module derived class name
use base class name

! new attribute declarations, if any
. . .

contains

! new member definitions
. . .

end module derived class name

Figure 6.1: F90 single inheritance form.

module derived class name
use base class name, only: list of entities

! new attribute declarations, if any
. . .

contains

! new member definitions
. . .

end module derived class name

Figure 6.2: F90 selective single inheritance form.

module derived class name
use base class name, local name => base entity name

! new attribute declarations, if any
. . .

contains

! new member definitions
. . .

end module derived class name

Figure 6.3: F90 single inheritance form with local renaming.

module derived class name
use base1 class name
use base2 class name
use base3 class name, only: list of entities
use base4 class name, local name => base entity name

! new attribute declarations, if any
. . .

contains

! new member definitions
. . .

end module derived class name

Figure 6.4: F90 multiple selective inheritance with renaming.

138

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-06 CB496-Akin September 16, 2002 9:59

6.2 Sample Applications of Inheritance 139

[1] module class Professor ! file: class Professor.f90

[2] implicit none

[3] public :: print, name

[4] private :: publs

[5] type Professor

[6] character (len=20) :: name

[7] integer :: publs ! publications

[8] end type Professor

[9] contains

[10] function make Professor (n, p) result (who)

[11] character (len=*), optional, intent(in) :: n

[12] integer, optional, intent(in) :: p

[13] type (Professor) :: who ! out

[14] who%name = " " ! set defaults

[15] who%publs = 0.0

[16] if (present(n)) who%name = n ! construct

[17] if (present(p)) who%publs = p

[18] end function make Professor

[19]

[20] function print (who)

[21] type (Professor), intent(in) :: who

[22] print *, "My name is ", who%name, &

[23] ", and I have ", who%publs, " publications."

[24] end function print

[25] end module class Professor

Figure 6.5: A professor class.

Note that the validation program brings in three different versions of the “print” member
(lines 7–9) and renames two of them to allow a polymorphic print statement (lines 12–14)
that selects the proper member based solely on the class of its argument. Observe that the
previous Date class is brought into the main through the use of the Person class (in line 7).
Of course, it is necessary to have an interface defined for the overloaded member name so
that the compiler knows which candidate routines to search at run time. This example also
serves to remind the reader that Fortran does not have keywords that are not allowed to be
used by the programmer. In this case the print function (lines 20, 23, 26) has automatically
replaced the intrinsic print function of Fortran. Most languages, including C++, do not allow
one to do that.

6.2.2 The Employee and Manager Classes
Next we will begin the popular employee–manager classes as examples of common related
classes demonstrating the use of inheritance. Once again the idea behind encapsulating
these data and their associated functionality is to model a pair of real-world entities – an
employee and a manager. As we go through possible relations between these two simple
classes it becomes clear that there is no unique way to establish the classes and how they
should interact. We begin with a minimal approach and then work through two alternate
versions to reach the point where an experienced OO programmer might have begun. The
first Employee class, shown in Figure 6.7, has a name and pay rate as its attributes. Only
the intrinsic constructor is used within the member setDataE to concatenate a first name
and last name to form the complete name attribute and to accept the pay rate. To query
members, getNameE and getRate are provided to extract either of the desired attributes.
Finally, member payE is provided to compute the pay earned by an employee. It assumes

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-06 CB496-Akin September 16, 2002 9:59

140 Inheritance and Polymorphism

[1] ! Multiple Inheritance and Polymorphism of the "print" function

[2] include ’class Person.inc’ ! also brings in class Date

[3] include ’class Student.inc’

[4] include ’class Professor.inc’

[5]

[6] program test four classes

[7] use class Person ! no changes

[8] use class Student, print S => print ! renamed to print S

[9] use class Professor, print F => print ! renamed to print F

[10] implicit none

[11]

[12] ! Interface to generic routine, print, for any type argument

[13] interface print ! using renamed type dependent functions

[14] module procedure print Name, print S, print F

[15] end interface

[16]

[17] type (Person) :: x; type (Student) :: y; type (Professor) :: z

[18]

[19] x = Person ("Bob"); ! default constructor

[20] call print(x); ! print person type

[21]

[22] y = Student ("Tom", 3.47); ! default constructor

[23] call print(y); ! print student type

[24]

[25] z = Professor ("Ann", 7); ! default constructor

[26] call print(z); ! print professor type

[27] ! alternate constructors not used

[28] end program test four classes ! Running gives:

[29] ! Bob

[30] ! My name is Tom, and my G.P.A. is 3.4700000.

[31] ! My name is Ann, and I have 7 publications.

Figure 6.6: Bringing four classes and three functions together.

that an employee is paid by the hour. A simple testing main program is shown in Figure 6.8
It simply defines two employees (l1 and l2), assigns their names and pay rates, and then
computes and displays their pay based on the respective number of hours worked. Note
that both l1 and l2 are each an instance of a class, and therefore they are objects and thus
distinctly different from a class.

Next we deal with a manager, which Is-A “kind of” employee. One difference is that some
managers may be paid a salary rather than an hourly rate. Thus we have the Manager class
inherit the attributes of the Employee class and add a new logical attribute isSalaried,
which is true when the manager is salary based. To support such a case we must add a new
membersetSalaried, which can turn the new attribute on or off, and a corresponding mem-
ber payM that uses the isSalaried flag when computing the pay. The class Manager 1

module is shown in Figure 6.9. Note that the constructor Manager defaults to an hourly
worker (line 34), and it uses the inherited employee constructor (line 32). Figure 6.10 shows
a test program to validate the manager class (and indirectly the employee class). It defines
a salaried manager, mgr1, an hourly manager mgr2, and prints the name and weekly pay for
both. (Verify these weekly pay amounts.)

With these two classes we have mainly used different program names for members that do
similar things in each class (the author’s preference). However, many programmers prefer
to use a single member name for a typical operation regardless of the class of the operand.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-06 CB496-Akin September 16, 2002 9:59

6.2 Sample Applications of Inheritance 141

[1] module class Employee 1

[2] ! The module class Employee 1 contains both the

[3] ! data and functionality of an employee.

[4] !

[5] implicit none

[6] public :: setDataE, getNameE, payE ! the Functionality

[7]

[8] type Employee ! the Data

[9] private

[10] character(30) :: name

[11] real :: payRate ; end type Employee

[12]

[13] contains ! inherited internal variables and subprograms

[14]

[15] function setDataE (lastName, firstName, newPayRate) result (E)

[16] character(*), intent(in) :: lastName

[17] character(*), intent(in) :: firstName

[18] real, intent(in) :: newPayRate

[19] type (Employee) :: E ! employee

[20] ! use intrinsic constructor

[21] E = Employee((trim(firstName)//" "//trim(lastName)),newPayRate)

[22] end function setDataE

[23]

[24] function getNameE (Person) result (n)

[25] type (Employee), intent(in) :: Person

[26] character(30) :: n ! name

[27] n = Person % name ; end function getNameE

[28]

[29] function getRate (Person) result (r)

[30] type (Employee), intent(in) :: Person

[31] real :: r ! rate

[32] r = Person % payRate ; end function getRate

[33]

[34] function payE (Person, hoursWorked) result (amount)

[35] type (Employee), intent(in) :: Person

[36] real, intent(in) :: hoursWorked

[37] real :: amount

[38] amount = Person % payRate * hoursWorked ; end function payE

[39] end module class Employee 1

Figure 6.7: First definition of an employee class.

We also restricted all the attributes to private and allowed all the members to be public.
We could use several alternate approaches to building our Employee and Manager classes.
For example, assume we want a single member name called pay to be invoked for an em-
ployee or manager (or executive). Furthermore we will allow the attributes to be public
instead ofprivate. Lowering the access restrictions to the attributes makes it easier to write
an alternate program, but it is not a recommended procedure since it breaks the data-hiding
concept that has been shown to be important to OO software maintenance and reliability.
The alternate Employee and Manager classes are shown in Figures 6.11 and 6.12, respec-
tively. Note that they both have a paymember, but their arguments are of different classes
and their internal calculations are different. Now we want a validation program that will
create both classes of individuals and use a single member name, PrintPay, to print the
proper pay amount from the single member name pay. This can be done in different ways.
One problem that arises in our plan to reuse the code in the two alternate class modules is

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-06 CB496-Akin September 16, 2002 9:59

142 Inheritance and Polymorphism

[1] program test Employee 1

[2] ! Example use of employees

[3] use class Employee 1

[4] type (Employee) empl1, empl2

[5]

[6] ! Set up 1st employee and print out his name and pay

[7] empl1 = setDataE ("Jones", "Bill", 25.0)

[8] print *, "Name: ", getNameE (empl1)

[9] print *, "Pay: ", payE (empl1, 40.0)

[10]

[11] ! Set up 2nd employee and print out her name and pay

[12] empl2 = setDataE ("Doe", "Jane", 27.5)

[13] print *, "Name: ", getNameE (empl2)

[14] print *, "Pay: ", payE (empl2, 38.0)

[15] end program test Employee 1 ! Running produces;

[16] ! Name: Bill Jones ! Pay: 1000.

[17] ! Name: Jane Doe ! Pay: 1045.

Figure 6.8: First test of an employee class.

that neither contains a pay-printing member. We will need two new routines, PrintPayEm-
ployee and PrintPayManager, and a generic or polymorphic interface to them. We have
at least three ways to do this. One way is to place the two routines in an external file (or
external to the main program if in the same file), leave the two class modules unchanged,
and have the main program begin with (or INCLUDE) an external interface prototype. This
first approach to main is shown in Figure 6.13. Note that the two new external routines must
each use their respective class module.

A second approach would be to have the two new routines become internal to the main,
after line 32, and occur before end program. Another change would be that each routine
would have to omit its use statement (such as lines 35 and 42). Why? Because they are now
internal to main and it has already made use of the two classes (in line 2). That approach is
shown in Figure 6.13.

A third approach would be the most logical and consistent with OOP principles. It is to
make all the class attributesprivate, place the print members in each respective class, insert
a single generic name interface in each class, and modify the test Manager 2 program
to use the polymorphic name regardless of the class of the argument it acts upon. The
improved version of the classes is given in Figures 6.14, 6.15, and 6.16. Observe that generic
interfaces for PrintPay and getName have been added, but that we could not do that for
a corresponding setData. Do you know why? A final improvement will be given as an
assignment.

6.3 Polymorphism

Fortran 90 and 95 do not include the full range of polymorphism abilities that one would
like to have in an object-oriented language. It is expected that the Fortran 2000 standard
will add those abilities.

Some of the code “reuse” features can be constructed through the concept of subprogram
“templates,” which will be discussed below. The lack of a standard “Is-A” polymorphism can
be overcome in F90/95 by the use of theSELECT CASEfeature to define “subtypes” of objects.
This approach of subtyping programming provides the desired additional functionality, but

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-06 CB496-Akin September 16, 2002 9:59

6.3 Polymorphism 143

[1] module class Manager 1

[2] ! Gets class Employee 1 and adds additional functionality

[3] use class Employee 1

[4] implicit none

[5] public :: setSalaried, payM

[6]

[7] type Manager ! the Data

[8] private

[9] type (Employee) :: Person

[10] integer :: isSalaried ! (or logical)

[11] end type Manager

[12]

[13] contains ! inherited internal variables and subprograms

[14]

[15] function getEmployee (M) result (E)

[16] type (Manager), intent(in) :: M

[17] type (Employee) :: E

[18] E = M % Person ; end function getEmployee

[19]

[20] function getNameM (M) result (n)

[21] type (Manager), intent(in) :: M

[22] type (Employee) :: E

[23] character(30) :: n ! name

[24] n = getNameE(M % Person); end function getNameM

[25]

[26] function Manager (lastName, firstName, newPayRate) result (M)

[27] character(*), intent(in) :: lastName

[28] character(*), intent(in) :: firstName

[29] real, intent(in) :: newPayRate

[30] type (Employee) :: E ! employee

[31] type (Manager) :: M ! manager constructor

[32] E = setDataE (lastName, firstName, newPayRate)

[33] ! use intrinsic constructor

[34] M = Manager(E, 0) ! default to no salary

[35] end function Manager

[36]

[37] function setDataM (lastName, firstName, newPayRate) result (M)

[38] character(*), intent(in) :: lastName

[39] character(*), intent(in) :: firstName

[40] real, intent(in) :: newPayRate

[41] type (Employee) :: E ! employee

[42] type (Manager) :: M ! manager

[43] E = setDataE (lastName, firstName, newPayRate)

[44] M % Person = E

[45] end function setDataM

[46]

[47] subroutine setSalaried (Who, salariedFlag)

[48] type (Manager), intent(inout) :: Who

[49] integer, intent(in) :: salariedFlag

[50] Who % isSalaried = salariedFlag ; end subroutine setSalaried

[51]

[52] function payM (Human, hoursWorked) result (amount)

[53] type (Manager), intent(in) :: Human

[54] real, intent(in) :: hoursWorked

[55] real :: amount, value

[56] value = getRate(getEmployee(Human))

[57] if (Human % isSalaried == 1) then ! (or use logical)

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-06 CB496-Akin September 16, 2002 9:59

144 Inheritance and Polymorphism

[58] amount = value

[59] else

[60] amount = value * hoursWorked

[61] end if ; end function payM

[62] end module class Manager 1

Figure 6.9: A first declaration of a manager class.

it is clearly not as easy to change or extend as an inheritance feature built into the language
standard. A short example will be provided.

6.3.1 Templates
One of our goals has been to develop software that can be reused for other applications.
There are some algorithms that are effectively independent of the object type on which they
operate. For example, in a sorting algorithm one often needs to interchange, or swap, two
objects. A short routine for that purpose follows:

subroutine swap integers (x, y)

implicit none

integer, intent(inout) :: x, y

integer :: temp

temp = x

x = y

y = temp

end subroutine swap integers.

[1] program test Manager 1 ! Example use of managers

[2] use class Manager 1

[3] implicit none

[4] type (Manager) mgr1, mgr2

[5]

[6] ! Set up 1st manager and print out her name and pay

[7]

[8] mgr1 = setDataM ("Smith", "Kimberly", 1900.0)

[9] call setSalaried (mgr1, 1) ! Has a salary

[10]

[11] print *, "Name: ", getNameM (mgr1)

[12] print *, "Pay: ", payM (mgr1, 40.0)

[13]

[14] ! Set up 2nd manager and print out his name and pay

[15]

[16] ! mgr2 = setDataM ("Danish", "Tom", 46.5)

[17] ! call setSalaried (mgr2, 0) ! Doesn’t have a salary

[18] ! or

[19] mgr2 = Manager ("Danish", "Tom", 46.5)

[20]

[21] print *, "Name: ", getNameM (mgr2)

[22] print *, "Pay: ", payM (mgr2, 40.0)

[23] end program test Manager 1 ! Running produces;

[24] ! Name: Kimberly Smith ! Pay: 1900.

[25] ! Name: Tom Danish ! Pay: 1860.

Figure 6.10: First test of a manager class.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-06 CB496-Akin September 16, 2002 9:59

6.3 Polymorphism 145

[1] module class Employee 2 ! Alternate

[2] implicit none

[3] public :: setData, getName, pay ! the Functionality

[4]

[5] type Employee ! the Data

[6] character(30) :: name

[7] real :: payRate

[8] end type Employee

[9]

[10] contains ! inherited internal variables and subprograms

[11]

[12] subroutine setData (Person, lastName, firstName, newPayRate)

[13] type (Employee) :: Person

[14] character(*) :: lastName

[15] character(*) :: firstName

[16] real :: newPayRate

[17] Person % name = trim (firstName) // " " // trim (lastName)

[18] Person % payRate = newPayRate

[19] end subroutine setData

[20]

[21] function getName (Person)

[22] character(30) :: getName

[23] type (Employee) :: Person

[24] getName = Person % name

[25] end function getName

[26]

[27] function pay (Person, hoursWorked)

[28] real :: pay

[29] type (Employee) :: Person

[30] real :: hoursWorked

[31] pay = Person % payRate * hoursWorked

[32] end function pay

[33] end module class Employee 2

Figure 6.11: Alternate public access form of an employee class.

Observe that in this form it appears necessary to have one version for integer arguments
and another for real arguments. Indeed we might need a different version of the routine for
each type of argument that you may need to swap. A slightly different approach would be
to write our swap algorithm as

subroutine swap objects (x, y)

implicit none

type (Object), intent(inout) :: x, y

type (Object) :: temp

temp = x

x = y

y = temp

end subroutine swap objects,

which would be a single routine that would work for any Object, but it has the disadvantage
that one needs to find a way to redefine the Object type for each application of the routine.
That would not be an easy task. (Although we will continue with this example using the
algorithm in the preceding forms, it should be noted that the approaches above would not
be efficient if x and ywere very large arrays or derived-type objects. In that case we would

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-06 CB496-Akin September 16, 2002 9:59

146 Inheritance and Polymorphism

[1] module class Manager 2 ! Alternate

[2] use class Employee 2, payEmployee => pay ! renamed

[3] implicit none

[4] public :: setSalaried, payManager

[5]

[6] type Manager ! the Data

[7] type (Employee) :: Person

[8] integer :: isSalaried ! (or logical)

[9] end type Manager

[10]

[11] contains ! inherited internal variables and subprograms

[12]

[13] subroutine setSalaried (Who, salariedFlag)

[14] type (Manager) :: Who

[15] integer :: salariedFlag

[16] Who % isSalaried = salariedFlag

[17] end subroutine setSalaried

[18]

[19] function pay (Human, hoursWorked)

[20] real :: pay

[21] type (Manager) :: Human

[22] real :: hoursWorked

[23]

[24] if (Human % isSalaried == 1) then ! (or use logical)

[25] pay = Human % Person % payRate

[26] else

[27] pay = Human % Person % payRate * hoursWorked

[28] end if

[29] end function pay

[30] end module class Manager 2

Figure 6.12: Alternate public access form of a manager class.

modify the algorithm slightly to employ pointers to the large data items and simply swap
the pointers for a significant increase in efficiency.)

Consider ways that we might be able to generalize these routines so that they could
accept and swap any specific type of arguments. For example, the first two versions could be
rewritten in a so-called template form as

subroutine swap Template$ (x, y)

implicit none

Template$, intent(inout) :: x, y

Template$:: temp

temp = x

x = y

y = temp

end subroutine swap Template$.

In this template, the dollar sign ($) was included in the “wildcard” because, although it is a
valid member of the F90 character set, it is not a valid character for inclusion in the name
of a variable, derived type, function, module, or subroutine. In other words, a template in
the illustrated form would not compile, but such a name could serve as a reminder that its
purpose is to produce a code that can be compiled after the “wildcard” substitutions have
been made.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-06 CB496-Akin September 16, 2002 9:59

6.3 Polymorphism 147

[1] program test Manager 2 ! Alternate employee and manager classes

[2] use class Manager 2 ! and thus Employee 2

[3] implicit none

[4] ! supply interface for external code not in classes

[5] interface PrintPay ! For TYPE dependent arguments

[6] subroutine PrintPayManager (Human, hoursWorked)

[7] use class Manager 2

[8] type (Manager) :: Human

[9] real :: hoursWorked

[10] end subroutine

[11] subroutine PrintPayEmployee (Person, hoursWorked)

[12] use class Employee 2

[13] type (Employee) :: Person

[14] real :: hoursWorked

[15] end subroutine

[16] end interface

[17]

[18] type (Employee) empl ; type (Manager) mgr

[19]

[20] ! Set up an employee and print out his name and pay

[21] call setData (empl, "Burke", "John", 25.0)

[22]

[23] print *, "Name: ", getName (empl)

[24] call PrintPay (empl, 40.0)

[25]

[26] ! Set up a manager and print out her name and pay

[27] call setData (mgr % Person, "Kovacs", "Jan", 1200.0)

[28] call setSalaried (mgr, 1) ! Has a salary

[29]

[30] print *, "Name: ", getName (mgr % Person)

[31] call PrintPay (mgr, 40.0)

[32] end program test Manager 2

[33]

[34] subroutine PrintPayEmployee (Person, hoursWorked)

[35] use class Employee 2

[36] type (Employee) :: Person

[37] real :: hoursWorked

[38] print *, "Pay: ", pay (Person, hoursworked)

[39] end subroutine

[40]

[41] subroutine PrintPayManager (Human, hoursWorked)

[42] use class Manager 2

[43] type (Manager) :: Human

[44] real :: hoursWorked

[45] print *, "Pay: ", pay (Human , hoursworked)

[46] end subroutine

[47] ! Running produces;

[48] ! Name: John Burke

[49] ! Pay: 1000.

[50] ! Name: Jan Kovacs

[51] ! Pay: 1200.

Figure 6.13: Testing the alternate employee and manager classes.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-06 CB496-Akin September 16, 2002 9:59

148 Inheritance and Polymorphism

[1] module class Employee 3 ! the base class

[2] implicit none ! strong typing

[3] private :: PrintPayEmployee, payE ! private members

[4] type Employee ! the Data

[5] private ! all attributes private

[6] character(30) :: name

[7] real :: payRate ; end type Employee

[8]

[9] interface PrintPay ! a polymorphic member

[10] module procedure PrintPayEmployee ; end interface

[11] interface getName ! a polymorphic member

[12] module procedure getNameE ; end interface

[13] ! NOTE: can not have polymorphic setData. Why ?

[14]

[15] contains ! inherited internal variables and subprograms

[16]

[17] function setDataE (lastName, firstName, newPayRate) result (E)

[18] character(*), intent(in) :: lastName

[19] character(*), intent(in) :: firstName

[20] real, intent(in) :: newPayRate ! amount per period

[21] type (Employee) :: E ! employee

[22] ! use intrinsic constructor

[23] E = Employee((trim(firstName)//" "//trim(lastName)),newPayRate)

[24] end function setDataE

[25]

[26] function getNameE (Person) result (n)

[27] type (Employee), intent(in) :: Person

[28] character(30) :: n ! name

[29] n = Person % name ; end function getNameE

[30]

[31] function getRate (Person) result (r)

[32] type (Employee), intent(in) :: Person

[33] real :: r ! rate of pay

[34] r = Person % payRate ; end function getRate

[35]

[36] function payE (Person, hoursWorked) result (amount)

[37] type (Employee), intent(in) :: Person

[38] real, intent(in) :: hoursWorked

[39] real :: amount

[40] amount = Person % payRate * hoursWorked ; end function payE

[41]

[42] subroutine PrintPayEmployee (Person, hoursWorked)

[43] type (Employee) :: Person

[44] real :: hoursWorked

[45] print *, "Pay: ", payE (Person, hoursworked)

[46] end subroutine

[47] end module class Employee 3

Figure 6.14: A better private access form of an employee class.

With this type of template it would be very easy to use a modern text editor to do a global
substitution of any one of the intrinsic types character, complex, double precision,

integer, logical, or real for the “wildcard” keyword Template$ to produce a source
code to swap any or all of the intrinsic data types. There would be no need to keep up with
all the different routine names if we placed all of them in a single module and also created
a generic interface to them such as

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-06 CB496-Akin September 16, 2002 9:59

6.3 Polymorphism 149

[1] module class Manager 3 ! the derived class

[2] ! Get class Employee 3, add additional attribute & members

[3] use class Employee 3 ! inherited base class

[4] implicit none ! strong typing

[5] private :: PrintPayManager, payM, getNameM ! private members

[6]

[7] type Manager ! the Data

[8] private ! all attributes private

[9] type (Employee) :: Person

[10] integer :: isSalaried ! 1 if true (or use logical)

[11] end type Manager

[12]

[13] interface PrintPay ! a polymorphic member

[14] module procedure PrintPayManager ; end interface

[15] interface getName ! a polymorphic member

[16] module procedure getNameM ; end interface

[17]

[18] contains ! inherited internal variables and subprograms

[19]

[20] function getEmployee (M) result (E)

[21] type (Manager), intent(in) :: M

[22] type (Employee) :: E

[23] E = M % Person ; end function getEmployee

[24]

[25] function getNameM (M) result (n)

[26] type (Manager), intent(in) :: M

[27] type (Employee) :: E

[28] character(30) :: n ! name

[29] n = getNameE(M % Person); end function getNameM

[30]

[31] function Manager (lastName, firstName, newPayRate) result (M)

[32] character(*), intent(in) :: lastName

[33] character(*), intent(in) :: firstName

[34] real, intent(in) :: newPayRate

[35] type (Employee) :: E ! employee

[36] type (Manager) :: M ! manager constructed

[37] E = setDataE (lastName, firstName, newPayRate)

[38] ! use intrinsic constructor

[39] M = Manager(E, 0) ! default to hourly

[40] end function Manager

[41]

[42] function setDataM (lastName, firstName, newPayRate) result (M)

[43] character(*), intent(in) :: lastName

[44] character(*), intent(in) :: firstName

[45] real, intent(in) :: newPayRate ! hourly OR weekly

[46] type (Employee) :: E ! employee

[47] type (Manager) :: M ! manager constructed

[48] E = setDataE (lastName, firstName, newPayRate)

[49] M % Person = E ; M % isSalaried = 0 ! default to hourly

[50] end function setDataM

[51]

[52] subroutine setSalaried (Who, salariedFlag) ! 0=hourly, 1=weekly

[53] type (Manager), intent(inout) :: Who

[54] integer, intent(in) :: salariedFlag ! 0 OR 1

[55] Who % isSalaried = salariedFlag ; end subroutine setSalaried

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-06 CB496-Akin September 16, 2002 9:59

150 Inheritance and Polymorphism

[56]

[57] function payM (Human, hoursWorked) result (amount)

[58] type (Manager), intent(in) :: Human

[59] real, intent(in) :: hoursWorked

[60] real :: amount, value

[61] value = getRate(getEmployee(Human))

[62] if (Human % isSalaried == 1) then

[63] amount = value ! for weekly person

[64] else

[65] amount = value * hoursWorked ! for hourly person

[66] end if ; end function payM

[67]

[68] subroutine PrintPayManager (Human, hoursWorked)

[69] type (Manager) :: Human

[70] real :: hoursWorked

[71] print *, "Pay: ", payM (Human , hoursworked)

[72] end subroutine

[73] end module class Manager 3

Figure 6.15: A better private access form of a manager class.

module swap library

implicit none

interface swap ! the generic name

module procedure swap character, swap complex

module procedure swap double precision, swap integer

module procedure swap logical, swap real

end interface

contains

subroutine swap characters (x, y)

. . .

[1] program test Manager 3 ! Final employee and manager classes

[2] use class Manager 3 ! and thus class Employee 3

[3] implicit none

[4]

[5] type (Employee) empl ; type (Manager) mgr

[6]

[7] ! Set up a hourly employee and print out his name and pay

[8] empl = setDataE ("Burke", "John", 25.0)

[9]

[10] print *, "Name: ", getName (empl)

[11] call PrintPay (empl, 40.0) ! polymorphic

[12]

[13] ! Set up a weekly manager and print out her name and pay

[14] mgr = setDataM ("Kovacs", "Jan", 1200.0)

[15] call setSalaried (mgr, 1) ! rate is weekly

[16]

[17] print *, "Name: ", getName (mgr)

[18] call PrintPay (mgr, 40.0) ! polymorphic

[19] end program test Manager 3 ! Running produces;

[20] ! Name: John Burke

[21] ! Pay: 1000.

[22] ! Name: Jan Kovacs

[23] ! Pay: 1200.

Figure 6.16: Testing the better employee–manager forms.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-06 CB496-Akin September 16, 2002 9:59

6.3 Polymorphism 151

end subroutine swap characters

subroutine swap . . .

. . .

end module swap library.

The use of a text editor to make such substitutions is not very elegant, and we expect that
there may be a better way to pursue the concept of developing a reusable software template.
The concept of a text editor substitution also fails when we go to the next logical step and
try to use a derived-type argument instead of any of the intrinsic data types. For example,
if we were to replace the “wildcard” with our previous type (chemical element) that
would create

subroutine swap type (chemical element) (x,y)

implicit none

type (chemical element), intent (inout)::x,y

type (chemical element) ::temp

temp = x

x = y

y = temp

end subroutine swap type (chemical element).

This would fail to compile because it violates the syntax for a valid function or subroutine
name as well as the end function or end subroutine syntax. Except for the first- and last-line
syntax errors, this would be a valid code. To correct the problem we simply need to add a
little logic and omit the characters type ()when we create a function, module, or subrou-
tine name that is based on a derived-type data entity. Then we obtain

subroutine swap chemical element (x,y)

implicit none

type (chemical element), intent (inout)::x,y

type (chemical element) ::temp

temp = x

x = y

y = temp

end subroutine swap chemical element,

which yields a completely valid routine.
Unfortunately, text editors do not offer us such logic capabilities. However, as we have

seen, high-level programming languages like C++ and F90 do have those abilities. At this
point you should be able to envision writing a pre-processor program that would accept
a file of template routines and replace the template “wildcard” words with the desired
generic forms to produce a module or header file containing the expanded source files
that can then be brought into the desired program with an include or use statement. The
C++ language includes a template preprocessor to expand template files as needed. Some
programmers criticize F90/95 for not offering this ability as part of the standard. A few C++
programmers criticize templates and advise against their use. Regardless of the merits of
including template preprocessors in a language standard, it should be clear that it is desirable
to plan software for its efficient reuse.

With F90, if one wants to take advantage of the concepts of templates, then the only
choices are to carry out a little text editing or develop a preprocessor with the outlined
capabilities. The former is clearly the simplest and for many projects may take less time
than developing such a template preprocessor. However, if one makes the time investment

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-06 CB496-Akin September 16, 2002 9:59

152 Inheritance and Polymorphism

to produce a template preprocessor, a tool would be obtained that could be applied to
basically any coding project.

6.4 Subtyping Objects (Dynamic Dispatching)

One polymorphic feature missing from the Fortran 90 standard that is common to most
object-oriented languages is called run-time polymorphism or dynamic dispatching. (This
feature is expected in Fortran 200X as an “extensible” function.) In the C++ language this
ability is introduced in the so-called virtual function. To emulate this ability is quite straight-
forward in F90 but is not elegant since it usually requires a group of if-elseif statements
or other selection processes. It is only tedious if the inheritance hierarchy contains many
unmodified subroutines and functions. The importance of the lack of standardized dynamic
dispatching depends on the problem domain to which it must be applied. For several appli-
cations demonstrated in the literature the alternate use of subtyping has worked quite well
and resulted in programs that have been shown to run several times faster than equivalent
C++ versions.

We implement dynamic dispatching in F90 by a process often called subtyping. Two
features must be constructed to do this. First, a pointer object, which can point to any
subtype member in an inheritance hierarchy, must be developed. Remember that F90 uses
the operator ‘=>’ to assign pointers to objects, and any object to be pointed at must have
the TARGET attribute. Second, we must construct a (dynamic) dispatching mechanism to
select the single appropriate procedure to execute at any time during the dynamic execution
of the program. This step is done by checking which of the pointers actually points to an
object and then passing that (unique) pointer to the corresponding appropriate procedure.
In F90 the necessary checking can be carried out by using the ASSOCIATED intrinsic. Here,
an if-elseif or other selection method is developed to serve as a dispatch mechanism to select
the unique appropriate procedure to be executed based on the actual class referenced in
the controlling pointer object. This subtyping process is also referred to as implementing
a polymorphic class. Of course, the details of the actual dispatching process can be hidden
from the procedures that utilize the polymorphic class. The polymorphic class knows only
about the interfaces and data types defined in the hierarchy and nothing about how those
procedures are implemented.

This process will be illustrated by creating a specific polymorphic class, in this case
calledIs A Member Class, which has polymorphic procedures namednew,assign, and
display. They will construct a new instance of the object, assign it a value, and list its compo-
nents. The minimum example of such a process requires two members and is easily extended
to any number of member classes. We begin by illustrating a short dynamic dispatching pro-
gram and then defining each of the subtype classes of interest. The validation of this dynamic
dispatching through a polymorphic class is shown in Figure 6.17. There a target is declared
for reach possible subtype, and then each of them is constructed and sent on to the other
polymorphic functions. The results clearly show that different display procedures were used
depending on the class of object supplied as an argument. It is expected that the new Fortran
200X standard will allow such dynamic dispatching in a much simpler fashion.

The first subtype is a class, Member 1 Class, which has two real components and the
encapsulated functionality to construct a new instance and another to accept a pointer to
such a subtype and display related information. It is shown in Figure 6.18. The next subtype
class,Member 2 Class, has three components: two reals and one of typeMember 1. It has

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-06 CB496-Akin September 16, 2002 9:59

6.4 Subtyping Objects (Dynamic Dispatching) 153

[1] program Dynamic Dispatching

[2] use Is A Member Class

[3] implicit none

[4]

[5] type (Is A Member) :: generic member

[6] type (member 1), target :: pt to memb 1

[7] type (member 2), target :: pt to memb 2

[8] character(len=1) :: c

[9]

[10] c = ’A’

[11] call new (pt to memb 1, 1.0, 2.0)

[12] call assign (generic member, pt to memb 1)

[13] call display members (generic member, c)

[14]

[15] c = ’B’

[16] call new (pt to memb 2, 1.0, 2.0, 3.0, 4.0)

[17] call assign (generic member, pt to memb 2)

[18] call display members (generic member, c)

[19]

[20] end program Dynamic Dispatching

[21] ! running gives

[22] ! display memb 1 A

[23] ! display memb 2 B

Figure 6.17: Test of dynamic dispatching.

[1] Module Member 1 Class

[2] implicit none

[3] type member 1

[4] real :: real 1, real 2

[5] end type member 1

[6]

[7] contains

[8]

[9] subroutine new member 1 (member, a, b)

[10] real, intent(in) :: a, b

[11] type (member 1) :: member

[12] member%real 1 = a ; member%real 2 = b

[13] end subroutine new member 1

[14]

[15] subroutine display memb 1 (pt to memb 1, c)

[16] type (member 1), pointer :: pt to memb 1

[17] character(len=1), intent(in) :: c

[18] print *, ’display memb 1 ’, c

[19] end subroutine display memb 1

[20]

[21] End Module Member 1 Class

Figure 6.18: The first subtype class member.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-06 CB496-Akin September 16, 2002 9:59

154 Inheritance and Polymorphism

[1] Module Member 2 Class

[2] Use Member 1 class

[3] implicit none

[4] type member 2

[5] type (member 1) :: r 1 2

[6] real :: real 3, real 4

[7] end type member 2

[8]

[9] contains

[10]

[11] subroutine new member 2 (member, a, b, c, d)

[12] real, intent(in) :: a, b, c, d

[13] type (member 2) :: member

[14] call new member 1 (member%r 1 2, a, b)

[15] member%real 3 = c ; member%real 4 = d

[16] end subroutine new member 2

[17]

[18] subroutine display memb 2 (pt to memb 2, c)

[19] type (member 2), pointer :: pt to memb 2

[20] character(len=1), intent(in) :: c

[21] print *, ’display memb 2 ’, c

[22] end subroutine display memb 2

[23]

[24] End Module Member 2 Class

Figure 6.19: The second subtype class member.

the same sort of functionality but clearly must act on more components. It has also inherited
the functionally from the Member 1 Class; as displayed in Figure 6.19.

The polymorphic class, Is A Member Class, is shown in Figure 6.20. It includes all
of the encapsulated data and functions of the two subtypes above by including their use
statements. The necessary pointer object is defined as an Is A Member type that has a
unique pointer for each subtype member (two in this case). That is, at any given time during
execution it will associate only one of the pointers in this list with an actual pointer object,
and the other pointers are nullified. That is why this dispatching is referred to as “dynamic.”
Dispatching also defines a polymorphic interface to each of the common procedures to
be applied to the various subtype objects. In the polymorphic function assignment of the
dispatching is done very simply. First, all pointers to the family of subtypes are nullified, and
then the unique pointer component to the subtype of interest is set to point to the desired
member. The dispatching process for the display procedure is different. It requires an if-
elseif construct that contains calls to all of the possible subtype members (two here) and a
fail-safe default state to abort the process or undertake the necessary exception handling.
Since all but one of the subtype pointer objects have been nullified, the dispatching process
employs the ASSOCIATED intrinsic function to select the one, and only, procedure to call
and passes the pointer object on to that procedure. In F90 a pointer can be nullified by using
the NULLIFY statement, whereas F95 allows the alternative of pointing at the intrinsic
NULL function, which returns a disassociated pointer. The NULL function can also be used
to define the initial association status of a pointer at the point it is declared. That is a better
programming style.

There are other approaches for implementing the dynamic dispatching concepts. Several
examples are give in the publications by the group Decyk, Norton, and Szymanski [10, 11,
37, 38] and on Professor Szymanski’s Website [47].

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-06 CB496-Akin September 16, 2002 9:59

[1] Module Is A Member Class

[2] Use Member 1 Class ; Use Member 2 Class

[3] implicit none

[4]

[5] type Is A Member

[6] private

[7] type (member 1), pointer :: pt to memb 1

[8] type (member 2), pointer :: pt to memb 2 ! etc for others

[9] end type Is A Member

[10]

[11] interface new

[12] module procedure new member 1

[13] module procedure new member 2 ! etc for others

[14] end interface

[15]

[16] interface assign

[17] module procedure assign memb 1

[18] module procedure assign memb 2 ! etc for others

[19] end interface

[20]

[21] interface display

[22] module procedure display memb 1

[23] module procedure display memb 2 ! etc for others

[24] end interface

[25]

[26] contains

[27]

[28] subroutine assign memb 1 (Family, member)

[29] type (member 1), target, intent(in) :: member

[30] type (Is A Member), intent(out) :: Family

[31] call nullify Is A Member (Family) ! nullify all

[32] Family%pt to memb 1 => member

[33] end subroutine assign memb 1

[34]

[35] subroutine assign memb 2 (Family, member)

[36] type (member 2), target, intent(in) :: member

[37] type (Is A Member), intent(out) :: Family

[38] call nullify Is A Member (Family) ! nullify all

[39] Family%pt to memb 2 => member

[40] end subroutine assign memb 2 ! etc for others

[41]

[42] subroutine nullify Is A Member (Family)

[43] type (Is A Member), intent(inout) :: Family

[44] nullify (Family%pt to memb 1)

[45] nullify (Family%pt to memb 2) ! etc for others

[46] end subroutine nullify Is A Member

[47]

[48] subroutine display members (A Member, c)

[49] type (Is A Member), intent(in) :: A Member

[50] character(len=1), intent(in) :: c

[51]

[52] ! select the one proper member

[53] if (associated (A Member%pt to memb 1)) then

[54] call display (A Member%pt to memb 1, c)

[55] else if (associated (A Member%pt to memb 2)) then

[56] call display (A Member%pt to memb 2, c) ! etc for others

[57] else ! default case

[58] stop ’Error, no member defined in Is A Member Class’

[59] end if

[60] end subroutine display members

[61] End Module Is A Member Class

Figure 6.20: The polymorphic class for subtypes.

155

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-06 CB496-Akin September 16, 2002 9:59

156 Inheritance and Polymorphism

6.5 Exercises

1 Write a main program that will use the Class X and Class Y given below to invoke each
of the f(v) routines and assign a value of 66 to the integer component in X and 44 to the
integer component in Y. (Solution given.)

module class X

public :: f

type X ; integer a; end type X

contains ! functionality

subroutine f(v); type (X), intent(in) :: v

print *,"X f() executing"; end subroutine

end module class X

module class Y

use class X, X f => f ! renamed

public :: f

type Y ; integer a; end type Y ! dominates X a

contains ! functionality, overrides X f()

subroutine f(v); type (Y), intent(in) :: v

print *,"Y f() executing"; end subroutine

end module class Y

2 Create the generic interface that would allow a single constructor name, Posi-
tion Angle , to be used for all the constructors given in the previous chapter for the
class Position Angle. Note that this is possible because they all had unique argument
signatures. Also provide a new main program to test this polymorphic version.

3 Modify the last Manager class by deleting the member setDataM and replace its appear-
ance in the last test Manager 3 with an existing constructor (but not used) in that
class. Also provide a generic setData interface in the class Employee as a nicer name
and to allow for other employees, like executives, who may have different kinds of at-
tributes that may need to be set in the future. Explain why we could not use setDataM
in the generic setData.

4 The final member setDataE in Employee is actually a constructor, and the name is mis-
leading since it does not just set data values but also builds the name. Rename setDataE
to the constructor notation Employee and provide a new member in Employee called
setRateE that only sets the employee pay rate.

5 Design and build an inventory system that will utilize and support the inventory object
developed earlier. It should be able to initialize an allocatable array of such objects, add
to it, revise the objects, and save the inventory array to a binary file that could be used
as backup or to restart the system. It is desirable to be able to reallocate the inventory
array when it gets full. Develop a program to test the inventory system and the objects it
contains. Remember that most of the attributes are private.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-07 CB496-Akin August 24, 2002 0:0

CHAPTER SEVEN
� �

OO Data Structures

7.1 Data Structures

We have seen that F90 has a very strong intrinsic base for supporting the use of subscripted
arrays. Fortran arrays can contain intrinsic data types as well as user-defined types (i.e.,
ADTs). One cannot directly have an array of pointers, but an array containing defined types
that are pointers or that have components that are pointers is allowable. Arrays offer an
efficient way to contain information and to insert and extract information. However, there
are many times when creating an efficient algorithm dictates that we use some specialized
storage method, or container, and a set of operations to act with that storage mode. The
storage representation and the set of operations that are allowed for it are known as a data
structure. How you store and retrieve an item from a container is often independent of the
nature of the item itself. Thus, different instances of a data structure may produce containers
for different types of objects. Data structures have the potential for a large amount of code
reuse, which is a basic goal of OOP methods. In the following sections we will consider some
of the more commonly used containers. We will begin with stacks and queues, which are
illustrated in Figure 7.1.

7.2 Stacks

A stack is a data structure in which access is restricted to the last inserted object. It is
referred to as a last-in first-out (LIFO) container. In other words, a stack is a container to
which elements may only be inserted or removed at one end of the container called the top
of the stack. It behaves much like a pile of dinner plates. You can place a new element on the
pile (widely known as a push), remove the top element from the pile (widely known as a pop),
and identify the element on the top of the pile. You can also have the general concept of an
empty pile, and possibly a full pile if it is associated with some type of restrictive container.
Since at this point we only know about using arrays as containers, we will construct a stack
container by using an array.

Assume that we have defined the attributes of the “object” that is to use our container by
building a module called object type. Then we could declare the array implementation
of a stack type to be

module stack type

use object type ! to define objects in the stack

implicit none

157

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-07 CB496-Akin August 24, 2002 0:0

158 OO Data Structures

E
D
C
B
A

Top

a) Stack

Front A B C D E Rear

b) Queue

Figure 7.1: Simple containers.

integer, parameter :: limit = 999 ! stack size limit

type stack

private

integer :: size ! size of array

integer :: top ! top of stack

type (Object) :: a(limit) ! stack items array

end type stack

end module stack type.

The interface contract to develop one such stack support system (or ADT) is given as

module stack of objects

implicit none

public :: stack, push on Stack, pop from Stack, &

is Stack Empty, is Stack Full

interface ! for a class Stack contract

function make Stack (n) result (s) ! constructor

use stack type ! to define stack structure

integer, optional :: n ! size of stack

type (stack) :: s ! the new stack

end function make Stack

subroutine push on Stack (s, item) ! push item on top of stack

use stack type ! for stack structure

type (stack), intent(inout) :: s

type (Object), intent(in) :: item

end subroutine push on Stack

function pop from Stack (s) result (item) ! pop item from top

use stack type ! for stack structure

type (stack), intent(inout) :: s

type (Object) :: item

end function pop from Stack

function is Stack Empty (s) result (b) ! test stack

use stack type ! for stack structure

type (stack), intent(in) :: s

logical :: b

end function is Stack Empty

function is Stack Full (s) result (b) ! test stack

use stack type ! for stack structure

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-07 CB496-Akin August 24, 2002 0:0

7.3 Queues 159

type (stack), intent(in) :: s

logical :: b

end function is Stack Full

end interface

end module stack of objects.

In the interface we see that some of the member services (is Stack Empty and
is Stack Full) are independent of the contained objects. Others (pop from Stack

and push on Stack) explicitly depend on the object utilizing the container. Of course,
the constructor (here make Stack) always indirectly relates to the object being contained
in the array. The full details of a Stack class are given in Figure 7.2.

For a specific implementation test we will simply utilize objects that have a single integer
attribute. That is, we define the object of interest by a code segment like

module object type

type Object

integer :: data ; end type ! one integer attribute

end module object type.

Obviously, there are many other types of objects one may want to create and place in a
container like a stack. At present one would have to edit the segment above to define all
the attributes of the object. (Begin to think about how you might seek to automate such
a process.) The new Stack class is tested in Figure 7.3, and a history of a typical stack is
sketched in Figure 7.4. The only part of that code that depends on a specific object is in
line 7, where the (public) intrinsic constructor, Object, was utilized rather that some more
general constructor, say Object .

In Figure 7.2 note that we have used an alternate syntax and specified the type of function
result (logical, object, or stack) as a prefix to the function name (lines 17, 29, 37, 40). The
author thinks that the form used in the interface contract is easier to read and understand
since it requires an extra line of code; however, some programmers prefer the condensed style
of Figure 7.2. Later we will examine an alternate implementation of a stack by using a linked
list.

The stack implementation shown here is not complete. For example, some programmers
like to include a member, sayshow Stack top, to display the top element on the container
without removing it from the stack. Also we need to be concerned about preconditions that
need to be satisfied for a member and may require that we throw an exception message. You
cannot pop an item off of an empty stack, nor can you push an item onto the top of a full
stack. Only the member pop from Stackdoes such pre-condition checking in the sample
code. Note that members is Stack Empty and is Stack Full are called accessors, as
is show Stack top, since they query the container but do not change it.

7.3 Queues

A comparison of a stack and another simple container, a queue, is given in Figure 7.1. The
name queue comes from the British word that means waiting in a line for service. A queue is
a container into which elements may be inserted at one end, called the rear, and leave only
from the other end, called the front. The first element in the queue expects to be the first
serviced and, thus, be the first out of line. A queue is a first-in first-out (FIFO) container
system. In planning our first queue container we will again make use of an array of objects.
In doing so it is quickly found that you are much less likely to encounter a full queue if it

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-07 CB496-Akin August 24, 2002 0:0

160 OO Data Structures

[1] module class Stack

[2] implicit none

[3] use exceptions ! to warn of errors

[4] use object type

[5] public :: stack, push on Stack, pop from Stack, &

[6] is Stack Empty, is Stack Full

[7] integer, parameter :: limit = 999 ! stack size limit

[8]

[9] type stack

[10] private

[11] integer :: size ! size of array

[12] integer :: top ! top of stack

[13] type (Object) :: a(limit) ! stack items array

[14] end type

[15] contains ! encapsulated functionality

[16]

[17] type (stack) function make Stack (n) result (s) ! constructor

[18] integer, optional :: n ! size of stack

[19] s%size = limit ; if (present (n)) s%size = n

[20] s%top = 0 ! object array not initialized

[21] end function make Stack

[22]

[23] subroutine push on Stack (s, item) ! push item on top of stack

[24] type (stack), intent(inout) :: s

[25] type (Object), intent(in) :: item

[26] s%top = s%top + 1 ; s%a(s%top) = item

[27] end subroutine push on Stack

[28]

[29] type (Object) function pop from Stack (s) result (item) ! off top

[30] type (stack), intent(inout) :: s

[31] if (s%top < 1) then

[32] call exception ("pop from Stack","stack is empty")

[33] else

[34] item = s%a(s%top) ; s%top = s%top - 1

[35] end if ; end function pop from Stack

[36]

[37] logical function is Stack Empty (s) result (b)

[38] type (stack), intent(in) :: s

[39] b = (s%top == 0) ; end function is Stack Empty

[40]

[41] logical function is Stack Full (s) result (b)

[42] type (stack), intent(in) :: s

[43] b = (s%top == s%size) ; end function is Stack Full

[44]

[45] end module class Stack

Figure 7.2: A typical stack class.

is stored as a so-called fixed circular array with a total of Q Size Limit storage slots. At
this point we define the structure of our queue to be

module Queue type

! A queue stored as a so-called fixed circular array with a total

! of Q Size Limit storage slots; requires remainder function, mod.

! (version 1, i.e., without allocatable arrays and pointers)

use object type ! to define objects in the Container

implicit none

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-07 CB496-Akin August 24, 2002 0:0

7.3 Queues 161

[1] include ’class Stack.f’ ! previous figure

[2] program Testing a Stack

[3] use class Stack

[4] implicit none

[5] type (stack) :: b

[6] type (object) :: value, four, five, six

[7]

[8] four = Object(4) ; five = Object(5) ; six = Object(6) ! initialize

[9]

[10] b = make Stack(3) ! private constructor

[11] print *, is Stack Empty(b), is Stack Full(b) ! b = [], empty

[12]

[13] call push on Stack (b, four) ! b = [4]

[14] call push on Stack (b, five) ! b = [5,4]

[15] call push on Stack (b, six) ! b = [6,5,4], full

[16] print *, is Stack Empty(b), is Stack Full(b) ! F T

[17]

[18] value = pop from Stack (b) ; print *, value ! b = [5,4]

[19] print *, is Stack Empty(b), is Stack Full(b) ! F F

[20]

[21] value = pop from Stack (b) ; print *, value ! b = [4]

[22] print *, is Stack Empty(b), is Stack Full(b) ! F F

[23]

[24] value = pop from Stack (b) ; print *, value ! b = [], empty

[25] print *, is Stack Empty(b), is Stack Full(b) ! T F

[26]

[27] value = pop from Stack (b) ! nothing to pop

[28] end program Testing a Stack ! running gives:

[29] ! T F ! F T

[30] ! 6 ! F F

[31] ! 5 ! F F

[32] ! 4 ! T F

[33] ! Exception occurred in subprogram pop from Stack

[34] ! With message: stack is empty

Figure 7.3: Testing a stack of objects.

integer, parameter :: Q Size Limit = 999

type Queue

private

integer :: head ! index of first element

integer :: tail ! index of last element

integer :: length ! size of used storage

type (Object) :: store (Q Size Limit) ! a circular array

end type Queue

end module Queue type.

An interface contract that will allow us to build a typical queue is

module Queue of Objects

implicit none

public :: Queue, Add to Q, Create Q, Get Front of Q, Is Q Empty,&

Is Q Full, Get Length of Q, Remove from Q

interface ! for a class Queue contract

subroutine Add to Q (Q, item) ! add to tail of queue

use Queue type ! for Queue structure

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-07 CB496-Akin August 24, 2002 0:0

162 OO Data Structures

F
T
N

F
F
N

F
F
N

T
F
N

F
F
N

F
F
N

F
T
N

F
T
Y

Full ?
Empty ?
Error ?

6
5
4

5
4

4 5
4

4Stack :

1413129 17 20 23 26Source Line :

Figure 7.4: Steps in the stack testing.

type (Queue), intent(inout) :: Q

type (Object), intent(in) :: item ; end Subroutine Add to Q

function Create Q (N) result (Q) ! manual constructor

use Queue type ! for Queue structure

integer, intent(in) :: N ! size of the new array

type (Queue) :: Q ; end function Create Q

function Get Capacity of Q (Q) result (item)

use Queue type ! for Queue structure

type (Queue), intent(in) :: Q

type (Object) :: item ; end function Get Capacity of Q

function Get Front of Q (Q) result (item)

use Queue type ! for Queue structure

type (Queue), intent(in) :: Q

type (Object) :: item ; end function Get Front of Q

function Is Q Empty (Q) result(B)

use Queue type ! for Queue structure

type (Queue), intent(in) :: Q

logical :: B ; end function Is Q Empty

function Is Q Full (Q) result(B)

use Queue type ! for Queue structure

type (Queue), intent(in) :: Q

logical :: B ; end function Is Q Full

function Get Length of Q (Q) result (N)

use Queue type ! for Queue structure

type (Queue), intent(in) :: Q

integer :: N ; end function Get Length of Q

subroutine Remove from Q (Q) ! remove from head of queue

use Queue type ! for Queue structure

type (Queue), intent(inout) :: Q; end subroutine Remove from Q

end interface

end module Queue of Objects.

For a specific version we provide full details for objects containing an integer in Figure 7.5
and test and display the validity of the implementation in Figure 7.6, where again the objects
are taken to be integers (lines 15, 19, 20).

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-07 CB496-Akin August 24, 2002 0:0

7.3 Queues 163

[1] module class Queue ! file: class Queue.f90

[2]

[3] ! A queue stored as a so-called fixed circular array with a total of

[4] ! Q Size Limit storage slots; requires remainder function, mod.

[5] ! (i.e., without allocatable arrays and pointers)

[6]

[7] use exceptions ! inherit exception handler

[8] implicit none

[9]

[10] public :: Queue, Add to Q, Create Q, Get Front of Q

[11] Is Q Full, Get Length of Q, Remove from

[12]

[13] integer, parameter :: Q Size Limit = 3

[14]

[15] type Queue

[16] private

[17] integer :: head ! index of first element

[18] integer :: tail ! index of last element

[19] integer :: length ! size of used storage

[20] integer :: store (Q Size Limit) ! a circular array of elements

[21] end type Queue

[22]

[23] contains ! member functionality

[24]

[25] Subroutine Add to Q (Q, item) ! add to tail of queue

[26] type (Queue), intent(inout) :: Q

[27] integer, intent(in) :: item

[28]

[29] if (Is Q Full(Q)) call exception ("Add to Q","full Q")

[30] Q%store (Q%tail) = item

[31] Q%tail = 1 + mod (Q%tail, Q Size Limit)

[32] Q%length = Q%length + 1 ; end Subroutine Add to Q

[33]

[34] type (Queue) function Create Q (N) result (Q) ! manual constructor

[35] integer, intent(in) :: N ! size of the new array

[36] integer :: k ! implied loop

[37]

[38] if (N > Q Size Limit) call exception("Create Q","increase size")

[39] Q = Queue (1, 1, 0, (/ (0, k=1,N) /)) ! intrinsic constructor

[40] end function Create Q

[41]

[42] integer function Get Capacity of Q (Q) result (item)

[43] type (Queue), intent(in) :: Q

[44]

[45] item = Q size Limit - Q%length ; end function Get Capacity

[46]

[47] integer function Get Front of Q (Q) result (item)

[48] type (Queue), intent(in) :: Q

[49]

[50] if (Is Q Empty(Q)) call exception("Get Front of Q","em

[51] item = Q%store (Q%head) ; end function Get Front of Q

[52]

[53] logical function Is Q Empty (Q) result(B)

[54] type (Queue), intent(in) :: Q

[55]

[56] B = (Q%length == 0) ; end function Is Q Empty

[57]

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-07 CB496-Akin August 24, 2002 0:0

164 OO Data Structures

[58] logical function Is Q Full (Q) result(B)

[59] type (Queue), intent(in) :: Q

[60]

[61] B = (Q%length == Q Size Limit) ; end function Is Q Full

[62]

[63] integer function Get Length of Q (Q) result (N)

[64] type (Queue), intent(in) :: Q

[65] N = Q%length ; end function Get Length of Q

[66]

[67] subroutine Remove from Q (Q) ! remove from head of queue

[68] type (Queue), intent(inout) :: Q

[69]

[70] if (Is Q Empty(Q)) call exception("Remove from Q","empty Q"

[71] Q%head = 1 + mod (Q%head, Q Size Limit)

[72] Q%length = Q%length - 1 ; end subroutine Remove from Q

[73]

[74] end module class Queue ! file: class Queue.f

Figure 7.5: A typical queue class.

7.4 Linked Lists

From our limited discussion of stacks and queues it should be easy to see that to try to insert
or remove an object at the middle of a stack or queue is not an efficient process. Linked lists
are containers that make it easy to perform the operations of insertion and deletion. A linked
list of objects can be thought of as a group of boxes, usually called nodes, each containing
an object to be stored and a pointer, or reference, to the box containing the next object in
the list. In most of our applications a list is referenced by a special box, called the header or
root node, which does not store an object but serves mainly to point to the first linkable box
and thereby produces a condition in which the list is never truly empty. This simplifies the
insertion scheme by removing an algorithmic special case. We will begin our introduction
of these topics with a singly linked list, also known as a simple list. It is capable of being
traversed in only one direction, from the beginning of the list to the end, or vice versa.

As we have seen, arrays of data objects work well so long as we know, or can compute in
advance, the amount of data to be stored. The data structures (linked lists and trees) to be
considered here employ pointers to store and change data objects when we do not know the
required amount of storage in advance. During program execution linked lists and trees allow
separate memory allocations for each individual data object. However, they do not permit di-
rect access to an arbitrary object in the container. Instead some searching must be performed,
and thus linked lists and trees incur an execution time penalty for such an access operation.
That penalty is smaller in tree structures than in linked lists (but is smallest of all in arrays).

Linked lists and trees must use pointer (reference) variables. Fortran pointers can simply
be thought of as an alias for other variables of the same type. We are beginning to see that
pointers give a programmer more power. However, that includes more power to “shoot
yourself in the foot”; they make it hard to find some errors and can lead to new types
of errors such as the so-called memory leaks. Recall that each pointer must be in one of
three states: undefined, null, or associated. As dummy arguments within routines, pointer
variables cannot be assigned the INTENT attribute. That means they have a greater potential
for undesired side effects. To avoid accidentally changing a pointer it is good programming
practice to state clearly in comments the INTENT of all dummy pointer arguments and
to copy those immediately with an INTENT IN attribute. Thereafter, working with the

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-07 CB496-Akin August 24, 2002 0:0

[1] program Testing a Queue

[2] use class Queue ! inherit its methods & class global constants

[3] implicit none

[4]

[5] type (Queue) :: C, B ! not used, used

[6] integer :: value, limit = 3 ! work items

[7]

[8] C = Create Q (limit) ! private constructor

[9] print *, "Length of C = ", Get Length of Q (C)

[10] print *, "Capacity of C = ", Get Capacity of Q (C)

[11] print *, "C empty? full? ", is Q Empty (C), is Q Full (C) !

[12]

[13] B = Create Q (3) ! private constructor

[14] print *, "B empty? full? ", is Q Empty (B), is Q Full (B) !

[15]

[16] call Add to Q (B, 4); print *, "B = [4]"

[17] print *, "Length of B = ", Get Length of Q (B)

[18] print *, "B empty? full? ", is Q Empty (B), is Q Full (B) !

[19]

[20] call Add to Q (B, 5); print *, " B = [4,5]"

[21] call Add to Q (B, 6); print *, " B = [4,5,6], full"

[22] print *, "Length of B = ", Get Length of Q (B)

[23] print *, "B empty? full? ", is Q Empty (B), is Q Full (B) !

[24] print *, "Capacity of B = ", Get Capacity of Q (B)

[25]

[26] value = Get Front of Q (B); print *, "Front Q value = ", value

[27]

[28] call Remove from Q (B); print *, "Removing from B"

[29] print *, "Length of B = ", Get Length of Q (B)

[30] print *, "B empty? full? ", is Q Empty (B), is Q Full (B) !

[31] value = Get Front of Q (B); print *, "Front Q value = ", value

[32]

[33] call Remove from Q (B); print *, "Removing from B"

[34] print *, "Length of B = ", Get Length of Q (B)

[35] print *, "B empty? full? ", is Q Empty (B), is Q Full (B) !

[36]

[37] call Remove from Q (B); print *, "Removing from B"

[38] print *, "Length of B = ", Get Length of Q (B)

[39] print *, "B empty? full? ", is Q Empty (B), is Q Full (B) !

[40]

[41] print *, "Removing from B"; call Remove from Q (B)

[42] call exception status

[43] end program Testing a Queue ! running gives:

[44] ! Length of C = 0 ! Capacity of C = 3 ! C empty? full? T, F

[45] ! B empty? full? T, F

[46] ! B = [4] ! Length of B = 1 ! B empty? full? F, F

[47] ! B = [4,5]

[48] ! B = [4,5,6], full ! Length of B = 3 ! B empty? full? F, T

[49] ! Capacity of B = 0 ! Front Q value = 4 ! Removing from B

[50] ! Length of B = 2 ! B empty? full? F, F ! Front Q value = 5

[51] ! Removing from B ! Length of B = 1 ! B empty? full? F, F

[52] ! Removing from B ! Length of B = 0 ! B empty? full? T, F

[53] ! Removing from B

[54] ! Exception Status Thrown

[55] ! Program :Remove from Q

[56] ! Message :empty Q

[57] ! Level : 5

[58] !

[59] ! Exception Summary:

[60] ! Exception count = 1

[61] ! Highest level = 5

Figure 7.6: Testing of the queue class.

165

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-07 CB496-Akin August 24, 2002 0:0

166 OO Data Structures

First

Next Obj_1

Next Obj_m
Next

Next Null

Obj_n

Singly_Linked_List % First (An empty object instance)

Previous_pointer

Current_pointer

b) List of singly linked nodes

Next Null

First

Singly_Linked_List % First

Previous_pointer

Current_pointer

c) An "empty" (one-node) singly linked list

Object
instance

Next
pointer

Type (Singly_Linked_List) ::
An Object instance attribute

and one pointer attribute

a) Singly linked node

Figure 7.7: Singly linked list terminology.

copied pointer guarantees that an error or later modification of the routine cannot produce
a side effect on the pointer. We also want to avoid a dangling pointer, which is caused by a
deallocation that leaves its target object forever inaccessible. A related problem is a memory
leak or unreferenced storage such as the program segment

real, pointer :: X ptr (:)

allocate (X ptr (Big number))

... ! use X ptr

nullify (X ptr) ! dangling pointer

because now there is no way to release memory for X ptr. To avoid this we need to free
the memory before the pointer is nullified, and so the segment becomes

real, pointer :: X ptr (:)

allocate (X ptr(Big number))

... ! use X ptr

deallocate (X ptr) ! memory released

nullify (X ptr).

Remember that in F95 the memory is automatically deallocated at the end of the scope of
the variable unless one retains the variable with a SAVE statement (and formally deallocates
it elsewhere).

7.4.1 Singly Linked Lists
We begin the study of the singly linked list by showing the notations employed in Figure 7.7.
From experience we have chosen to have a dummy first node, called first, to simplify
our algorithms so that a list is never truly empty. Also, as we scan through a list we will

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-07 CB496-Akin August 24, 2002 0:0

7.4 Linked Lists 167

Trailing_pointer

Current_pointer

Null

A

C

D

Trailing_pointer

Current_pointer

Null

A

C

D

Trailing_pointer

Current_pointer

Null

A

B

C

D

=>

a) List prior to insertion of B

Trailing_pointer % next % value = B
Trailing_pointer % next % next => Current_pointer

allocate (Trailing_pointer % next)

b) Allocating a new node for the list

c) Inserting the new data

=>

=>

Figure 7.8: Inserting an object in a singly linked list.

use one pointer, called current, to point to the current object in the list and a companion,
called previous, to point to the directly preceding object (if any). If no objects have been
placed in the list, then both of these simply point to the first node. The end of the list is
denoted by the next pointer attribute taking on the null value. To insert or delete objects
one must be able to rank two objects. This means that to have a generic linked list one must
overload the relational operators (< and ==) when the object to be placed in the container
is defined. Since most objects have different types of attributes, the overloading process is
clearly application dependent. The process for inserting an object is sketched in Figure 7.8,
and that for deleting an object is in Figure 7.9.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-07 CB496-Akin August 24, 2002 0:0

168 OO Data Structures

Trailing_pointer

Null

A

C

D

Trailing_pointer

Current_pointer

Null

A

C

D

Trailing_ pointer

Current_ pointer

Null

A

B

C

D

=>

Trailing_pointer % next => Current_pointer % next

a) Locating deletion position B

=>

=>

B

b) Removing node B from the list

deallocate (Current_pointer)

c) Freeing the memory

Figure 7.9: Deleting an object from a singly linked list.

The Singly Linked List class is given in Figure 7.10. It starts with the definition
of a singly linked node (lines 5–9) that has an object attribute and a pointer attribute to
locate the next node. Then a list is begun (lines 11–14) by creating the dummy first node
that is considered to represent an empty list. The object deletion member must employ an
overloaded operator (line 29), as must the insertion member (line 53). Observe that a list
never gets “full,” unless the system runs out of memory. The empty list test member (line 63)
depends on the pointer status but is independent of the objects stored. The constructor for
a list (line 69) simply creates the first node and nullifies it. The printing member (line 75)
is called an iterator since it runs through all objects in the list. The testing program for
this container type and its output results are given in Figure 7.11. To test such a container it

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-07 CB496-Akin August 24, 2002 0:0

7.4 Linked Lists 169

[1] module singly linked list

[2] use class Object

[3] implicit none

[4]

[5] type S L node ! Singly Linked Node

[6] private

[7] type (Object) :: value ! Object attribute

[8] type (S L node), pointer :: next ! Pointer to next node

[9] end type S L node

[10]

[11] type S L list ! Singly Linked List of Nodes

[12] private

[13] type (S L node), pointer :: first ! Dummy first object in list

[14] end type S L list

[15]

[16] contains

[17] subroutine S L delete (links, Obj, found)

[18] type (S L list), intent (inout) :: links

[19] type (Object), intent (in) :: Obj

[20] logical, intent (out) :: found

[21] type (S L node), pointer :: previous, current

[22]

[23] ! find location of Obj

[24] previous => links%first ! begin at top of list

[25] current => previous%next ! begin at top of list

[26] found = .false. ! initialize

[27] do

[28] if (found .or. (.not. associated (current))) return ! list end

[29] if (Obj == current%value) then ! *** OVERLOADED ***

[30] found = .true. ; exit ! this location search

[31] else ! move the next node in list

[32] previous => previous%next

[33] current => current%next

[34] end if

[35] end do ! to find location of node with Obj

[36] ! delete if found

[37] if (found) then

[38] previous%next => current%next ! redirect pointer

[39] deallocate (current) ! free space for node

[40] end if

[41] end subroutine S L delete

[42]

[43] subroutine S L insert (links, Obj)

[44] type (S L list), intent (inout) :: links

[45] type (Object), intent(in) :: Obj

[46] type (S L node), pointer :: previous, current

[47]

[48] ! Find location to insert a new object

[49] previous => links%first ! initialize

[50] current => previous%next ! initialize

[51] do

[52] if (.not. associated (current)) exit ! insert at end

[53] if (Obj < current%value) exit ! *** OVERLOADED ***

[54] previous => current ! inserbefor current

[55] current => current%next ! move to next node

[56] end do ! to locate insert node

[57] ! Insert before current (duplicates allowed)

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-07 CB496-Akin August 24, 2002 0:0

170 OO Data Structures

[58] allocate (previous%next) ! get new node space

[59] previous%next%value = Obj ! new object inserted

[60] previous%next%next => current ! new next pointer

[61] end subroutine S L insert

[62]

[63] function is S L empty (links) result (t or f)

[64] type (S L list), intent (in) :: links

[65] logical :: t or f

[66] t or f = .not. associated (links%first%next)

[67] end function is S L empty

[68]

[69] function S L new () result (new list)

[70] type (S L list) :: new list

[71] allocate (new list%first) ! get memory for the object

[72] nullify (new list%first%next) ! begin with empty list

[73] end function S L new

[74]

[75] subroutine print S L list (links)

[76] type (S L list), intent (in) :: links

[77] type (S L node), pointer :: current

[78] integer :: counter

[79] current => links%first%next

[80] counter = 0 ; print *,’Link Object Value’

[81] do

[82] if (.not. associated (current)) exit ! list end

[83] counter = counter + 1

[84] print *, counter, ’ ’, current%value

[85] current => current%next

[86] end do

[87] end subroutine print S L list

[88] end module singly linked list

Figure 7.10: A typical singly linked list class of objects.

is necessary to have an object type defined. Here an object with a single integer value was
selected, and thus it was easy to overload the relational operators with a clear meaning, as
shown in Figure 7.12.

7.4.1.1 Example: A List of Sparse Vectors. In this example we want to create a linked list
to hold sparse vectors (singly subscripted arrays) where the length of each vector is specified.
We will perform simple operations on all the vectors such as input them, normalize them,
add them (if their sizes are the same), and so. In doing this we will make use of some of the
efficiencies that F90 provides for arrays such as using the subscript array triplet to avoid serial
loops forth, and operating on arrays by name alone. This is an example in which a similar C++
implementation would be much longer because of the need to provide all the serial loops.

7.4.2 Doubly Linked Lists
The notations of the doubly linked list are shown in Figure 7.13. Again we have chosen to
have a dummy first node, called header, to simplify our algorithms so that a list is never
truly empty. Also, as we scan through a list we will use one pointer, called current, to point
to the current object in the list and a companion, called previous, to point to the directly
preceding object (if any). If no objects have been placed in the list, then both of these
simply point to the headernode. The end of the list is denoted by the nextpointer attribute
taking on the null value. To insert or delete objects one must be able to rank two objects.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-07 CB496-Akin August 24, 2002 0:0

7.4 Linked Lists 171

[1] program test singly linked ! test a singly linked object list

[2] use singly linked list

[3] implicit none

[4] type (S L list) :: container

[5] type (Object) :: Obj 1, Obj 2, Obj 3, Obj 4

[6] logical :: delete ok

[7]

[8] Obj 1 = Object(15) ; Obj 2 = Object(25) ! constructor

[9] Obj 3 = Object(35) ; Obj 4 = Object(45) ! constructor

[10] container = S L new()

[11] print *, ’Empty status is ’, is S L empty (container)

[12] call S L insert (container, Obj 4) ! insert object

[13] call S L insert (container, Obj 2) ! insert object

[14] call S L insert (container, Obj 1) ! insert object

[15] call print S L list (container)

[16]

[17] call S L delete (container, obj 2, delete ok)

[18] print *, ’Object: ’, Obj 2, ’ deleted status is ’, delete ok

[19] call print S L list (container)

[20] print *, ’Empty status is ’, is S L empty (container)

[21]

[22] call S L insert (container, Obj 3) ! insert object

[23] call print S L list (container)

[24] call S L delete (container, obj 1, delete ok)

[25] print *, ’Object: ’, Obj 1, ’ deleted status is ’, delete ok

[26] call S L delete (container, obj 4, delete ok)

[27] print *, ’Object: ’, Obj 4, ’ deleted status is ’, delete ok

[28] call print S L list (container)

[29] print *, ’Empty status is ’, is S L empty (container)

[30]

[31] call S L delete (container, obj 3, delete ok)

[32] print *, ’Object: ’, Obj 3, ’ deleted status is ’, delete ok

[33] print *, ’Empty status is ’, is S L empty (container)

[34] call print S L list (container)

[35] end program test singly linked ! running yields

[36] ! Empty status is T

[37] ! Link Object Value

[38] ! 1 15

[39] ! 2 25

[40] ! 3 45

[41] ! Object: 25 deleted status is T

[42] ! Link Object Value

[43] ! 1 15

[44] ! 2 45

[45] ! Empty status is F

[46] ! Link Object Value

[47] ! 1 15

[48] ! 2 35

[49] ! 3 45

[50] ! Object: 15 deleted status is T

[51] ! Object: 45 deleted status is T

[52] ! Link Object Value

[53] ! 1 35

[54] ! Empty status is F

[55] ! Object: 35 deleted status is T

[56] ! Empty status is T

[57] ! Link Object Value

Figure 7.11: Testing the singly linked list with integers.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-07 CB496-Akin August 24, 2002 0:0

172 OO Data Structures

[1] module class Object

[2] implicit none

[3] type Object ! An integer object for testing lists

[4] integer :: data ; end type Object

[5]

[6] interface operator (<) ! for sorting or insert

[7] module procedure less than Object ; end interface

[8] interface operator (==) ! for sorting or delete

[9] module procedure equal to Object ; end interface

[10]

[11] contains ! overload definitions only

[12] function less than Object (Obj 1, Obj 2) result (Boolean)

[13] type (Object), intent(in) :: Obj 1, Obj 2

[14] logical :: Boolean

[15] Boolean = Obj 1%data < Obj 2%data ! standard (<) here

[16] end function less than Object

[17] function equal to Object (Obj 1, Obj 2) result (Boolean)

[18] type (Object), intent(in) :: Obj 1, Obj 2

[19] logical :: Boolean

[20] Boolean = Obj 1%data == Obj 2%data ! standard (==) here

[21] end function equal to Object

[22] end module class Object

Figure 7.12: Typical object definition to test a singly linked list.

This means that in order to have a generic linked list one must again overload the relational
operators (< and ==) when the object to be placed in the container is defined.

An incomplete but illustrative Doubly Linked List class is given in Figure 7.14. It
starts with the definition of a doubly linked node (lines 4–8) that has an object attribute and
a pair of pointer attributes to locate the nodes on either side of the object. Then a list is
begun (lines 11–14) by creating the dummy first node that is consider to represent an empty

Header

Object_1

Object

Object_m

Object_n Null_pointer

Next_pointer

Current_pointer

Trailing_pointer

Doubly_Linked =>

Previous_pointer

Figure 7.13: Notations for a doubly linked list.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-07 CB496-Akin August 24, 2002 0:0

7.4 Linked Lists 173

[1] module doubly linked list

[2] use class Object

[3] implicit none

[4] type D L node

[5] private

[6] type (Object) :: Obj

[7] type (D L node), pointer :: previous

[8] type (D L node), pointer :: next

[9] end type D L node

[10]

[11] type D L list

[12] private

[13] type (D L node), pointer :: header

[14] end type D L list

[15]

[16] contains

[17]

[18] function D L new () result (new list) ! constructor

[19] type (D L list) :: new list

[20] allocate (new list % header)

[21] nullify (new list % header % previous)

[22] nullify (new list % header % next)

[23] end function D L new

[24]

[25] subroutine destroy D L List (links) ! destructor

[26] type (D L list), intent (in) :: links

[27] type (D L node), pointer :: current

[28] do

[29] current => links % header % next

[30] if (.not. associated (current)) exit

[31] current % previous % next => current % next

[32] if (associated (current % next)) then

[33] current % next % previous => current % previous

[34] end if

[35] nullify (current % previous)

[36] nullify (current % next)

[37] print *, ’Destroying object ’, current % Obj

[38] deallocate (current)

[39] end do

[40] deallocate (links % header)

[41] print *,’D L List destroyed’

[42] end subroutine destroy D L List

[43] subroutine D L insert before (links, values)

[44] type (D L list), intent (in) :: links

[45] type (Object), intent (in) :: values

[46] type (D L node), pointer :: current ! Temp traversal pointer

[47] type (D L node), pointer :: trailing ! Preceding node pointer

[48] ! Find location to insert new node, in ascending order

[49] trailing => links % header ! initialize

[50] current => trailing % next ! initialize

[51] do

[52] if (.not. associated (current)) exit ! insert at end

[53] if (values < current % Obj) exit ! insert before current

[54] trailing => current ! move to next node

[55] current => current % next ! move to next node

[56] end do

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-07 CB496-Akin August 24, 2002 0:0

174 OO Data Structures

[57] ! Insert before current (duplicates allowed)

[58] allocate (trailing % next) ! get new node space

[59] trailing % next % Obj = values ! new object inserted

[60] ! Insert the new pointers

[61] if (.not. associated (current)) then ! End of list (special)

[62] nullify (trailing % next % next)

[63] trailing % next % previous => trailing

[64] else ! Not the end of the list

[65] trailing % next % next => current

[66] trailing % next % previous => trailing

[67] current % previous => trailing % next

[68] end if

[69] end subroutine D L insert before

[70]

[71] function Get Obj at Ptr (ptr to Obj) result (values)

[72] type (D L node), intent (in) :: ptr to Obj

[73] type (Object) :: values ! intent out

[74] values = ptr to Obj % Obj

[75] end function Get Obj at Ptr

[76]

[77] function Get Ptr to Obj (links, values) result (ptr to Obj)

[78] type (D L list), intent (in) :: links ! D L list header

[79] type (Object), intent (in) :: values ! Node identifier Object

[80] type (D L node), pointer :: ptr to Obj ! Pointer to the Object

[81] type (D L node), pointer :: current ! list traversal pointer

[82] current => links % header % next

[83] do ! Search list, WARNING: runs forever if values not in list

[84] if (current % Obj == values) exit ! *** OVERLOADED ***

[85] current => current % next

[86] end do

[87] ptr to Obj => current ! Return pointer to node

[88] end function Get Ptr to Obj

[89]

[90] subroutine print D L list (links)

[91] type (D L list), intent (in) :: links

[92] type (D L node), pointer :: current ! Node traversal pointer

[93] integer :: counter ! Link position

[94] ! Traverse the list and print its contents to standard output

[95] current => links % header % next

[96] counter = 0 ; print *,’Link Object Value’

[97] do

[98] if (.not. associated (current)) exit

[99] counter = counter + 1

[100] print *, counter, ’ ’, current % Obj

[101] current => current % next

[102] end do

[103] end subroutine print D L list

[104] end module doubly linked list

Figure 7.14: A typical doubly linked list class of objects.

list. The object insertion member must employ an overloaded operator (line 53) as before.
Observe that a list never gets “full” unless the system runs out of memory. The constructor
for a list (line 18) simply creates the first node and nullifies its pointers. A corresponding
destructor (line 25) has been provided to delete everything associated with the list when we
are done with it. The printing member (line 90) is called an iterator since it runs through
all objects in the list. The testing program for this container type and its output results are

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-07 CB496-Akin August 24, 2002 0:0

7.5 Direct (Random) Access Files 175

[1] program Test doubly linked

[2] use doubly linked list

[3] implicit none

[4] type (D L list) :: container

[5] type (Object) :: Obj 1, Obj 2, Obj 3, Obj 4

[6] type (Object) :: value at pointer

[7] type (D L node), pointer :: point to Obj 3

[8]

[9] Obj 1 = Object (15) ; Obj 2 = Object (25)

[10] Obj 3 = Object (35) ; Obj 4 = Object (45)

[11] container = D L new ()

[12] ! print *, ’Empty status is ’, is D L empty (container)

[13] call D L insert before (container, Obj 4)

[14] call D L insert before (container, Obj 2)

[15] call D L insert before (container, Obj 1)

[16] call D L insert before (container, Obj 3)

[17] call print D L list (container)

[18]

[19] ! find and get Obj 3

[20] point to Obj 3 = Get Ptr to Obj (container, ObjL

[21] value at pointer = Get Obj at Ptr (point to

[22] print *, ’Object: ’, Obj 3, ’ has a value of ’, value at pointer

[23] call destroy D L List (container)

[24] end program Test doubly linked ! Running gives:

[25] ! Link Object Value

[26] ! 1 15

[27] ! 2 25

[28] ! 3 35

[29] ! 4 45

[30] ! Object: 35 has a value of 35

[31] ! Destroying object 15

[32] ! Destroying object 25

[33] ! Destroying object 35

[34] ! Destroying object 45

[35] ! D L List destroyed

Figure 7.15: Testing a partial doubly linked list.

given in Figure 7.15. Here an object with a single integer value was selected, and thus it was
easy to overload the relational operators with a clear meaning, as shown in Figure 7.12.

7.5 Direct (Random) Access Files

Often it may not be necessary to create special-object data structures such as those outlined
above. From its beginning Fortran has had the ability to create a sophisticated random
access data structure in which the implementation details are hidden from its user. This was
necessary originally since the language was utilized on computers with memory sizes that
are considered tiny by today’s standard (e.g., 16 Kb), but it was still necessary to create and
modify large amounts of data efficiently. The standard left the actual implementation details
to the compiler writers. That data structure is known as a “direct access file.” It behaves like
a single subscript array in that the object at any position can be read, modified, or written at
random so long as the user keeps up with the position of interest. The user simply supplies

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-07 CB496-Akin August 24, 2002 0:0

176 OO Data Structures

[1] program random access file

[2] ! create a file and access or modify it randomly

[3] implicit none

[4] character(len=10) :: name

[5] integer :: j, rec len, no name, no open

[6] integer :: names = 0, unit = 1

[7]

[8] ! find the hardware dependent record length of the object

[9] ! to be stored and modified. Then open a binary file.

[10] inquire (iolength = rec len) name

[11] open (unit, file = "random list", status = "replace",

[12] access = "direct", recl = rec len,

[13] form = "unformatted", iostat = no open)

[14] if (no open > 0) stop ’open failed for random list’

[15]

[16] ! read and store the names sequentially

[17] print *, ’ ’; print *, ’Original order’

[18] do ! forever from standard input

[19] read (*, ’(a)’, iostat = no name) name

[20] if (no name < 0) exit ! the read loop

[21] names = names + 1 ! record number

[22] write (unit, rec = names) name ! save record

[23] print *, name ! echo

[24] end do

[25] if (names == 0) stop ’no records read’

[26]

[27] ! list names in reverse order

[28] print *, ’ ’; print *, ’Reverse order’

[29] do j = names, 1, -1

[30] read (unit, rec = j) name

[31] print *, name

[32] end do ! of random read

[33]

[34] ! change the middle name in random file

[35] write (unit, rec = (names + 1)/2) ’New Name’

[36]

[37] ! list names in original order

[38] print *, ’ ’; print *, ’Modified data’

[39] do j = 1, names

[40] read (unit, rec = j) name

[41] print *, name

[42] end do ! of random read

[43]

[44] close (unit) ! replace previous records and save

[45] end program random access file

[46] ! Running with input of: Name 1

[47] ! B name

[48] ! 3 name

[49] ! name 4

[50] ! Fifth

[51] ! Yields:

[52] ! Original order Reverse order Modified data

[53] ! Name 1 Fifth Name 1

[54] ! B name name 4 B name

[55] ! 3 name 3 name New Name

[56] ! name 4 B name name 4

[57] ! Fifth Name 1 Fifth

Figure 7.16: Utilizing a random access file as a data structure.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-07 CB496-Akin August 24, 2002 0:0

7.6 Exercises 177

the position, known as the record number, as additional information in the read and write
statements. With today’s hardware, if the file is stored on a virtual disk (stored in random
access memory) there is practically no difference in access times for arrays and direct files.

It should be noted here that, since pointers are addresses in memory, they can not be
written to any type of file. That, of course, means that no object having a pointer as an
attribute can be written either. Thus, in some cases one must employ the other types of data
structures illustrated earlier in the chapter.

To illustrate the basic concepts of a random access file consider the program called ran-
dom access file, which is given in Figure 7.16. In this case the object is simply a character
string, as defined in line 4. The hardware transportability of this code is assured by establish-
ing the required constant record with the inquire function given in line 10. It is then used in
opening the file, which is designated as a direct file in line 12. Lines 16–24 create the object
record numbers in a sequential fashion. They also define the new object to be stored with
each record. In lines 27–32 the records are accessed in a backwards order but could have
been accessed in any random or partial order. In line 35 a random object is given a new
value. Finally, the changes are outputed in a sequential order in lines 37–42. Sample input
data and program outputs are included as comments at the end of the program.

7.6 Exercises

1 Write a subprogram that traverses a singly linked list, removing each node and freeing
the memory, thus leaving it empty.

2 Write a subprogram that traverses a doubly linked list, removing each node and freeing
the memory, thus leaving it empty.

3 Write a subprogram that traverses a circular linked list, removing each node and freeing
the memory, thus leaving it empty.

4 Write a subprogram for inserting an item after some other given element in a doubly
linked list.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-08 CB496-Akin September 17, 2002 12:23

CHAPTER EIGHT
� �

Arrays and Matrices

8.1 Subscripted Variables: Arrays

It is common in engineering and mathematics to employ a notation in which one or more
subscripts are appended to a variable that is a member of some larger set. Such a variable
may be a member of a list of scalars, or it may represent an element in a vector, matrix,
or Cartesian tensor.∗ In engineering computation, we usually refer to subscripted variables
as arrays. Since programming languages do not have a convenient way to append the sub-
scripts, we actually denote them by placing them in parentheses or square brackets. Thus,
an element usually written as A jk becomes A(j,k) in Fortran and Matlab, and A[j][k]

in C++.
Arrays have properties that need to be understood in order to utilize them correctly in

any programming language. The primary feature of an array is that it must have at least one
subscript. The “rank” of an array is the number of subscripts, or dimensions, it has. Fortran
allows an array to have up to seven subscripts, C++ allows four, and Matlab allows only
two since it deals only with matrices. An array with two subscripts is called a rank-two array,
and one with a single subscript is called a rank-one array, or a vector. Matrices are rank-two
arrays that obey special mathematical operations. A scalar variable has no subscripts and is
sometimes called a rank-zero array. Rank-one arrays with an extent of one are also viewed
as a scalar.

The “extent” of a subscript or dimension is the number of elements allowed for that
subscript. That is, the extent is an integer that ranges from the lower bound of the subscript
to its upper bound. The lower bound of a subscript is zero in C++, and it defaults to unity in
Fortran. However, Fortran allows the programmer to assign any integer value to the lower
and upper bounds of a subscript.

The “size” of an array is the number of elements in it. That is, the size is the product of
the extents of all of its subscripts. Most languages require the extent of each subscript be
provided in order to allocate memory storage for the array.

The “shape” of an array is defined by its rank and extents. The shape is a rank-one array
in which each of its elements is the extent of the corresponding subscript of the array whose
shape is being determined. Both Fortran and Matlab have statements that return the shape
and size of an array as well as statements for defining a new array by reshaping an existing
array.

∗ An nth order tensor has n subscripts and transforms to different coordinate systems by a special law. The
most common uses are scalars (n = 0) and vectors (n = 1).

178

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-08 CB496-Akin September 17, 2002 12:23

8.1 Subscripted Variables: Arrays 179

Table 8.1: Typical Vector Initialization

Action C++a F90 F77 MATLAB

Preallocate integer A[100] INTEGER A(100) INTEGER A(100) A(100)=0

Initialize for j=0,99 A=12 do 5 J=1,100 for j=1:100

A[j]=12 A(J)=12 A(j)=12

end 5 continue end

a Arrays in C++ have a starting index of zero.

It is also important to know which of two “storage mode” options a language employs to
store and access array elements. This knowledge is especially useful when reading or writing
full arrays. Arrays are stored either by varying their leftmost subscript first or by varying the
rightmost subscript first. These are referred to as “column-wise” and “row-wise” access, re-
spectively. Clearly, they are the same for rank-one arrays and differ for arrays of higher rank.
Column-wise storage is used by Fortran and C++, whereas Matlab uses row-wise storage.

Matrices are arrays that usually have only two subscripts: the first represents the row
number, and the second the column number where the element is located. Matrix alge-
bra places certain restrictions on the subscripts of two matrices when they are added or
multiplied, and so forth. The fundamentals of matrices are covered in detail in this chapter.

Both Fortran and C++ require you to specify the maximum range of each subscript of an
array before the array or its elements are used. Matlab does not have this as a requirement,
but preallocating the array space can drastically improve the speed of Matlab as well as make
much more efficient use of the available memory. If you do not preallocate Matlab arrays,
then the interpreter must check at each step to see if a position larger than the current maxi-
mum has been reached. If so, the maximum value is increased, and memory is found to store
the new element. Thus, failure to preallocate Matlab arrays is permissible but inefficient.

For example, assume we want to set a vector A having 100 elements to an initial value
of 12. The procedures are compared in Table 8.1. This example could also have been done
efficiently in F90 and Matlab by using the colon operator:A(1:100) = 12. The programmer
should be alert for the chance to replace loops with the colon operator (:) because it is more
concise, but retains readability, and executes more quickly. The joys of the colon operator
are described more fully in Section 8.1.3 (page 186).

Array operations often use special characters and operators. Fortran has “implied” DO
loops associated with its array operations (see Section 4.3.2, page 66). Similar features in
Matlab and F90 are listed in Table 8.2.

Table 8.2: Special Array Characters

Purpose F90 MATLAB

Form subscripts () ()
Separate subscripts and elements , ,
Generate elements and subscripts : :
Separate commands ; ;
Form arrays (/ /) []
Continue to new line & . . .
Indicate comment ! %
Suppress printing default ;

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-08 CB496-Akin September 17, 2002 12:23

180 Arrays and Matrices

Fortran has always had efficient array-handling features, but until the release of F90 it was
not easy to dynamically create and release the memory space needed to store arrays. That
is a useful feature for arrays that require large amounts of space but are not needed for the
entire life of the program. Several types of arrays are available in F90, and the most recent
types have been added to allow the use of array operations and intrinsic functions similar
to those in Matlab. Without getting into the details of the F90 standards and terminology,
we will introduce the most common array usages in historical order:

F77: Constant Arrays, Dummy Dimension Arrays, Variable Rank Arrays

F90: Automatic Arrays, Allocatable Arrays.

These different approaches all have the common feature that memory space needed for an
array must be set aside (allocated) before any element in the array is utilized.

The new F90 array features include the so-called automatic arrays. An automatic array
is one that appears in a subroutine or function and has its size, but not its name, provided in
the argument list of the subprogram. For example,

subroutine auto A B (M, N, Other arguments)

implicit none

integer :: M, N

real :: A(M, N), B(M) ! Automatic arrays

! Create arrays A & B and use them for some purpose

...

end subroutine auto A B.

would automatically allocate space for the M rows and N columns of the array A and for
the M rows of array B. When the purpose of the subroutine is finished and it “returns”
to the calling program – the array space is automatically released and the arrays A and
B cease to exist. This is a useful feature – especially in object-oriented programs. If the
system does not have enough space available to allocate for the array, the program stops
and gives an error message to that effect. With today’s large memory computers, that is
unlikely to occur except for the common user error in which the dimension argument is
undefined.

An extension of this concept that allows more flexibility and control is the allocatable
array. An allocatable array is one that has a known rank (number of subscripts) but an
initially unknown extent (range over each subscript). It can appear in any program, function,
or subroutine. For example,

program make A B ! Allocatable arrays

implicit none

real, allocatable :: A(:,:), B(:) ! Declares rank of each

integer :: M, N ! Row and column sizes

integer :: A B Status ! Optional status check

print *,"Enter the number of rows and columns: "

read *, M, N ! Now know the (default) extent of each subscript

allocate (A(M, N), B(M), stat = A B Status) ! dynamic storage

! Verify that the dynamic memory was available

if (A B Status /= 0) stop "Memory not available in make A B"

! Create arrays A & B and use them for some purpose

...

deallocate (A, B) ! free the memory space

! Do other things

...

end program make A B

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-08 CB496-Akin September 17, 2002 12:23

8.1 Subscripted Variables: Arrays 181

would specifically allocate space for the M rows and N columns of the array A and for the
M rows of array B and optionally verify space availability. When the purpose of the arrays is
finished, the space is specifically released and the arrays A and B cease to exist. The optional
status-checking feature is useful in the unlikely event that the array is so large that the system
does not have that much dynamic space available. Then the user has the option of closing
down the program in some desirable way or simply stopping on the spot.

The old F77 standard often encouraged the use of dummy dimension arrays. The dummy
dimension array is one that appears in a subroutine, or function, and has its size and its name
provided in the argument list of the subprogram. For example,

subroutine dummy A B (M, N, A, B, Other things)

implicit none

integer :: M, N

real :: A(M, N), B(M) ! dummy arrays

! Create arrays A & B and use them for some purpose

...

end subroutine dummy A B

would imply that existing space for the M rows and Ncolumns of the array Aand for the M rows
of arrayB(or more) had been declared or allocated in the calling program. When the purpose
of the subroutine is finished and it “returns” to the calling program, the space in the calling
program for the arraysAandBcontinues to exist until the declaring program unit terminates.

Of course the use of constant-dimensioned arrays is always allowed. The constant-
dimension array is one that appears in any program unit and has integer constants, or integer
parameter variables (preferred) as given extents for each subscript of an array. For example,

program main

implicit none

integer, parameter :: M max=20, N max=40 ! Maximum expected

integer :: Days per Month(12) ! Constant array

integer :: M, N ! User sizes

real :: A(M max, N max), B(M max) ! Constant arrays

print *,"Enter the number of rows and columns: "

read *, M, N ! The user extent of each subscript

! Verify that the constant memory is available

if (M > M max) stop "Row size exceeded in main"

if (N > N max) stop "Column size exceeded in main"

! Create arrays A & B and use them for some purpose

call dummy A B (M, N, A, B, Other things) ! dummy arrays

...

end program main

subroutine dummy A B (M, N, A, B, Other things) ! dummy arrays

implicit none

integer :: M, N

real :: A(M, N), B(M)

! Create arrays A & B and use them for some purpose

...

end subroutine dummy A B.

In general it is considered very bad style to use integer constants like 12 in a dimension
or in a DO loop control except for the unusual case in which its meaning is obvious and you
never expect to have to change the number. In the sample declaration,

integer :: Days per Month(12) ! Constant array.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-08 CB496-Akin September 17, 2002 12:23

182 Arrays and Matrices

Table 8.3: Typical Array Definitions

Action F90 MATLAB

Define sizea integer :: A (2, 3) A(2,3)=0;

Enter rows A(1,:)=(/1,7,-2/) A=[1,7,-2;

A(2,:)=(/3,4,6/) 3,4,6];

a Optional in Matlab but improves efficiency.

It is obvious that we are thinking about 12 months per year and that we do not expect the
number of months per year ever to change in other potential applications of this program.

8.1.1 Initializing Array Elements
Explicit lists of the initial elements in an array are allowed by C++, Fortran, and Matlab.
Matlab is oriented to enter element values in the way that we read, that is, row by row.
Fortran and C also allow array input by rows, but the default procedure is to accept values
by ranging over its subscripts from left to right. That is, both F90 and C++ read by columns
as their default mode. For example, consider the 2 × 3 array

A =
[

1 7 −2
3 4 6

]
.

This array could be typed as explicit input with the commands shown in Table 8.3. An
alternative for F90 and Matlab is to define the full array by column order as a vector that
is then reshaped into a matrix with a specified number of rows and columns. The use of the
RESHAPE operator is shown in Table 8.4.

Returning to the previous example, we see that the matrix A could have also been
defined as

F90 A = reshape((/1,3,7,4, -2,6/), (/2,3/))

A = reshape((/1,3,7,4, -2,6/),shape(A))

Matlab A = reshape([1,3,7,4, -2,6], 2,3)

To initialize the elements of an array to zero or unity, F90 and Matlab have special
constructs or functions that fill the bill. For example, for A to be zero and B to have unity

Table 8.4: Array Reshape Intrinsics

F90 MATLAB Result

M =


 1 4

2 5
3 6


data = (/(k, k=1,6)/) data = [1 : 6]

M = reshape(data,(/3,2/)) M = reshape(data,3,2)

N = reshape(data,(/2,3/)) N = reshape(data,2,3) N =
[

1 3 5
2 4 6

]

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-08 CB496-Akin September 17, 2002 12:23

8.1 Subscripted Variables: Arrays 183

elements, we could use the following commands:

Action F90 MATLAB

Define size integer :: A (2, 3) A(2,3)=0;

integer :: B (3) B(3)=0;

Zero A A=0 A=zeros(2,3);

Initialize B B=1 B=ones(3);

If we want to create a new array Bwith the first three even numbers, we would use implied
loops as follows:

Action F90 MATLAB

Even set B=(/(2*k,k=1,3)/) B=2*[1:1:3];

B=(/(k,k=2,6,2)/) B=[2:2:6];

Arrays can also be initialized by reading their element values from a stored data file.
The two most common types of files are ASCII (standard characters) and binary (machine
language) files. The former files are easy to read and edit, but binary files make more efficient
use of storage and are read or written much faster than ASCII files. Often, ASCII files are
denoted by the name extension of “dat.” Binary files are denoted by the name extension
“mat” in Matlab, whereas in Fortran the extension “bin” is commonly employed.

For example, assume that the preceding A(2,3) array is to be initialized by reading its
values from an ASCII file created by a text editor and given the name of A.dat. Further,
assume that we wish to multiply all elements by 3 and store them as a new ASCII file. Then
we could use read procedures like those in Table 8.5 in which the last Matlab command
associated a file name and a file type with the desired input/output (I/O) action. Fortran
requires an OPEN statement to do this if the default I/O files (unit 5 to read and unit 6 to
write) are not used in the read or write.

8.1.2 Intrinsic Array Functions
Note that Matlab has intrinsic functions, ones and zeros, to carry out a task that F90
does with an operator. Often the reverse is true. Matlab has several operators that in
Fortran correspond to an intrinsic function or a CALLed function. A comparison of the
similar F90 and Matlab array mathematical operators is given in Table 8.5. They generally
only differ slightly in syntax. For example, to transpose the matrix A, the F90 construct is
transpose(A), and in Matlab it is simply A′.∗ In F90, the * operator means, for matrices,
term-by-term multiplication: when A=[1

2
3
4

5
6] and B=[1

3
2
5

4
6],A*Byields [1

6
6

20
20
36]. In Matlab, the

same operation is expressed as A.*B. To multiply the matrices A and B, Fortran requires the
intrinsic function matmul (i.e., matmul(A,B)), whereas Matlab uses the * operator (A*B).

Another group of commonly used functions that operate on arrays in Fortran90 and
Matlab are briefly described in Table 8.6. Both languages have several other more special-
ized functions, but those in Table 8.6 are probably the most commonly used in programs.

∗ In Matlab, A′ actually means conjugate transpose. If A is real, this operator performs the transpose as
desired. If A is complex and we want its transpose, the Matlab construct is A′.

Table 8.5: Array Operations in Programming Constructs. Lowercase letters denote scalars or scalar elements of
arrays. MATLAB arrays are allowed a maximum of two subscripts, whereas Fortran allows seven. Uppercase
letters denote matrices or scalar elements of matrices

Description Equation Fortran90 Operator MATLAB Operator Original Sizes Result Size

Scalar plus scalar c = a ± b c = a ± b c = a ± b; 1, 1 1, 1
Element plus scalar c jk = a jk ± b c = a ± b c = a ± b; m, n and 1, 1 m, n
Element plus element c jk = a jk ± b jk c = a ± b c = a ± b; m, n and m, n m, n
Scalar times scalar c = a × b c = a ∗ b c = a ∗ b; 1, 1 1, 1
Element times scalar c jk = a jk × b c = a ∗ b c = a ∗ b; m, n and 1, 1 m, n
Element times element c jk = a jk × b jk c = a ∗ b c = a. ∗ b; m, n and m, n m, n
Scalar divide scalar c = a/b c = a/b c = a/b; 1, 1 1, 1
Scalar divide element c jk = a jk/b c = a/b c = a/b; m, n and 1, 1 m, n
Element divide element c jk = a jk/b jk c = a/b c = a./b; m, n and m, n m, n
Scalar power scalar c = ab c = a∗∗b c = a ∧ b; 1, 1 1, 1
Element power scalar c jk = ab

jk c = a∗∗b c = a ∧ b; m, n and 1, 1 m, n

Element power element c jk = a
b jk

jk c = a∗∗b c = a. ∧ b; m, n and m, n m, n
Matrix transpose Ckj = A jk C = transpose (A) C = A′; m, n n, m
Matrix times matrix Ci j = ∑

k Aik Bkj C = matmul(A, B) C = A ∗ B; m, r and r, n m, n

Vector dot vector c = ∑
k Ak Bk c = sum(A ∗ B) c = sum(A. ∗ B); m, 1 and m, 1 1, 1

c = dot product(A, B) c = A ∗ B ′; m, 1 and m, 1 1, 1

184

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-08 CB496-Akin September 17, 2002 12:23

8.1 Subscripted Variables: Arrays 185

Table 8.6: Equivalent Fortran90 and MATLAB Intrinsic Functions. The following KEY
symbols are utilized to denote the TYPE of the intrinsic function, or subroutine, and
its arguments: A-complex, integer, or real; I-integer; L-logical; M-mask (logical);
R-real; X-real; Y-real; V-vector (rank 1 array); and Z-complex. Optional arguments are
not shown. Fortran90 and MATLAB also have very similar array operations and colon
operators

Type Fortran90 MATLAB Brief Description

A ABS(A) abs(a) Absolute value of A.
R ACOS(X) acos(x) Arccosine function of real X.
R AIMAG(Z) imag(z) Imaginary part of complex number.
R AINT(X) real(fix(x)) Truncate X to a real whole number.
L ALL(M) all(m) True if all mask elements M are true.
R ANINT(X) real(round(x)) Real whole number nearest to X.
L ANY(M) any(m) True if any mask element M is true.
R ASIN(X) asin(x) Arcsine function of real X.
R ATAN(X) atan(x) Arctangent function of real X.
R ATAN2(Y,X) atan2(y,x) Arctangent for complex number(X, Y).
I CEILING(X) ceil(x) Least integer >= real X.
Z CMPLX(X,Y) (x+yi) Convert real(s) to complex type.
Z CONJG(Z) conj(z) Conjugate of complex number Z.
R COS(R Z) cos(r z) Cosine of real or complex argument.
R COSH(X) cosh(x) Hyperbolic cosine function of real X.
I COUNT(M) sum(m==1) Number of true mask M elements.
R,L DOT PRODUCT(X,Y) x’�y Dot product of vectors X and Y.
R EPSILON(X) eps Number, like X, 	 1.
R,Z EXP(R Z) exp(r z) Exponential of real or complex number.
I FLOOR(X) floor Greatest integer ≤ X.
R HUGE(X) realmax Largest number like X.
I INT(A) fix(a) Convert A to integer type.
R LOG(R Z) log(r z) Logarithm of real or complex number.
R LOG10(X) log10(x) Base 10 logarithm function of real X.
R MATMUL(X,Y) x�y Conformable matrix multiplication, X*Y.
I,V I=MAXLOC(X) [y,i]=max(x) Location(s) of maximum array element.
R Y=MAXVAL(X) y=max(x) Value of maximum array element.
I,V I=MINLOC(X) [y,i]=min(x) Location(s) of minimum array element.
R Y=MINVAL(X) y=min(x) Value of minimum array element.
I NINT(X) round(x) Integer nearest to real X.
A PRODUCT(A) prod(a) Product of array elements.
call RANDOM NUMBER(X) x=rand Pseudorandom numbers in (0, 1).
call RANDOM SEED rand(’seed’) Initialize random number generator.
R REAL (A) real(a) Convert A to real type.
R RESHAPE(X, (/ I, I2 /)) reshape(x, i, i2) Reshape array X into I×I2 array.
I,V SHAPE(X) size(x) Array (or scalar) shape vector.
R SIGN(X,Y) Absolute value of X times sign of Y.
R SIGN(0.5,X)-SIGN(0.5,-X) sign(x) Signum, normalized sign, –1, 0, or 1.
R,Z SIN(R Z) sin(r z) Sine of real or complex number.
R SINH(X) sinh(x) Hyperbolic sine function of real X.
I SIZE(X) length(x) Total number of elements in array X.
R,Z SQRT(R Z) sqrt(r z) Square root of real or complex number.
R SUM(X) sum(x) Sum of array elements.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-08 CB496-Akin September 17, 2002 12:23

186 Arrays and Matrices

Type Fortran90 MATLAB Brief Description

R TAN(X) tan(x) Tangent function of real X.
R TANH(X) tanh(x) Hyperbolic tangent function of real X.
R TINY(X) realmin Smallest positive number like X.
R TRANSPOSE(X) x’ Matrix transpose of any type matrix.
R X=1 x=ones(length(x)) Set all elements to 1.
R X=0 x=zero(length(x)) Set all elements to 0.

For more detailed descriptions and sample uses of these intrinsic functions, see Adams, J.C et al., [1].

Often one needs to truncate a real number in some special fashion. Table 8.7 illustrates
how to do that using some of the functions common to the languages of interest. That table
also implies how one can convert reals to integers and vice versa.

8.1.3 Colon Operations on Arrays (Subscript Triplet)
The syntax of the colon operator, which is available in Matlab and F90, is detailed in
Table 4.6. What the colon operator concisely expresses is a sequence of numbers in an arith-
metic progression. As shown in the table, the Matlab expression B:I:E expresses the se-
quence B, B+I, B+2*I, ..., B+� E−B

I �I. The complicated expression for the sequence’s
last term simply means that the last value of the sequence does not exceed (in magnitude)
the end value E.

You can also use the colon operator to extract smaller arrays from larger ones. If we
wanted to extract the second row and third column of the array, A = [1

3
7
4

−2
6], to get, re-

Table 8.7: Truncating Numbers

C++ – int – – floor ceil
F90 aint int anint nint floor ceiling
MATLAB real (fix) fix real (round) round floor ceil

Argument Value of Result

−2.000 −2.0 −2 −2.0 −2 −2 −2
−1.999 −1.0 −1 −2.0 −2 −2 −1
−1.500 −1.0 −1 −2.0 −2 −2 −1
−1.499 −1.0 −1 −1.0 −1 −2 −1
−1.000 −1.0 −1 −1.0 −1 −1 −1
−0.999 0.0 0 −1.0 −1 −1 0
−0.500 0.0 0 −1.0 −1 −1 0
−0.499 0.0 0 0.0 0 −1 0

0.000 0.0 0 0.0 0 0 0
0.499 0.0 0 0.0 0 0 1
0.500 0.0 0 1.0 1 0 1
0.999 0.0 0 1.0 1 0 1
1.000 1.0 1 1.0 1 1 1
1.499 1.0 1 1.0 1 1 2
1.500 1.0 1 2.0 2 1 2
1.999 1.0 1 2.0 2 1 2
2.000 2.0 2 2.0 2 2 2

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-08 CB496-Akin September 17, 2002 12:23

8.1 Subscripted Variables: Arrays 187

spectively,

G = [3 4 6], C =
{−2

6

}
,

we could use the colon operator as follows:

Action F90 MATLAB

Define size integer :: B (3) B(3)=0;

integer :: C (2) C(2)=0;

Extract row B=A(2,:) B=A(2,:);

Extract columns C=A(:,3) C=A(:,3);

One can often use colon operators to avoid having loops act on arrays to define new
arrays. For example, consider a square matrix

A =

 1 2 3

4 5 6
7 8 9


 .

We can flip it left to right to create a new matrix (in F90 syntax)

B=A(:, n:1:-1)=

 3 2 1

6 5 4
9 8 7




or flip it up to down

C=A(n:1:-1, :)=

 7 8 9

4 5 6
1 2 3




or flip it up to down and then left to right

D = A (n:1:-1, n:1:-1)=

 9 8 7

6 5 4
3 2 1


 ,

where n = 3 is the number of rows in the matrix A. In the Matlab syntax, the second and
third numbers would be interchanged in the colon operator. Actually, Matlab has intrinsic
operators to flip the matrices, and thus one could simply write

B = fliplr(A); C = flipud(A); D = rot90(A);

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-08 CB496-Akin September 17, 2002 12:23

188 Arrays and Matrices

Table 8.8: F90 WHEREConstructs

WHERE (logical array expression)

true array assignments

ELSEWHERE

false array assignments

END WHERE

WHERE (logical array expression)

true array assignment

8.1.4 Array Logical Mask Operators
By default most Matlab commands are designed to operate on arrays. Fortran77 and C++
have no built-in array operations, and it is necessary to program each loop. The Fortran90
standard has many of the Matlab array commands – often with the identical syntax, as shown
in Table 8.5 and 8.6. Frequently the F90 versions of these functions have optional features
(arguments) that give the user more control than Matlab does by including a logical control
mask to be defined shortly.

To emphasize that an IF type of relational operator is to act on all elements of an array,
Fortran90 also includes an array WHERE block or statement control (that is, an IF statement
acting on all array elements), which is outlined in Table 8.8.

Note that the necessary loops are implied and need not be written. As an example, if

A =
[

0 3 5
7 4 8

]
, B =

[
1 3 5
2 4 6

]
,

then, WHERE (A > B) B = A gives a new B = [1
7

3
4

5
8]. By default, Matlab always acts on

matrices and considers scalars a special case. Thus, it would employ the standard syntax, if
A > B, B=A, to do the same task.

A more sophisticated way to pick subscripts of an array selectively is to use a mask array.
A mask array is the same size and shape as the array on which it will act. It is a Boolean
array: all its elements have either true or false values. When associated with an operator,
the operator will only act on those elements in the original array whose corresponding mask
location is true (i.e., .true. in Fortran, true in C++, and 1 in Matlab and C). Fortran90
has several operations that allow or require masks (Table 8.9). Matlab functions with the
same name exist in some cases, as seen in Table 8.6. Usually, they correspond to the F90
operator where the mask is true everywhere.

A general Fortran principle underlies the fact that the array mentioned in the WHERE

mask may be changed within the WHERE construct. When an array appears in the WHERE

statement mask, the logical test is executed first and the host system retains the result
independent of whatever happens later inside the WHERE construct. Thus, in the program
fragment

integer, parameter :: n = 5

real :: x (n) = (/ (k, k = 1, n) /)

where (x > 0.0)

x = -x

end where

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-08 CB496-Akin September 17, 2002 12:23

8.1 Subscripted Variables: Arrays 189

Table 8.9: F90 Array Operators with Logic Mask Control (T and F denote true and
false, respectively). Optional arguments: b -- DIM & MASK, d -- DIM, m -- MASK,
v-- VECTOR and DIM = 1 implies for any rows, DIM = 2 for any columns, and DIM =
3 for any plane.

Function Description Opt Example

all Find if all values are true for a fixed
dimension.

d all (B = A, DIM = 1)

(true, false, false)
any Find if any value is true for a fixed

dimension.
d any (B > 2, DIM = 1)

(false, true, true)
count Count number of true elements for

a fixed dimension.
d count (A = B, DIM = 2)

(1, 2)
maxloc Locate first element with maximum

value given by mask.
m maxloc (A, A < 9)

(2, 3)
maxval Max element for fixed dimension

given by mask.
b maxval (B, DIM=1, B > 0)

(2, 4, 6)
merge Pick true array A or false array B

according to mask L.
– merge (A, B, L)[

0
2

3
4

5
8

]
minloc Locate first element with minimum

value given by mask.
m minloc (A, A > 3)

(2, 2)
minval Min element for fixed dimension

given by mask.
b minval (B, DIM = 2)

(1, 2)
pack Pack array A into a vector under

control of mask.
v pack (A, B < 4)

(0, 7, 3)
product Product of all elements for fixed

dimension; controlled by mask.
b product (B) ; (720)

product (B, DIM = 1, T)

(2, 12, 30)
sum Sum all elements for fixed

dimension; controlled by mask.
b sum (B) ;(21)

sum (B, DIM = 2, T)

(9, 12)
unpack Replace the true locations in array

B controlled by mask L with
elements from the vector U.

– unpack (U, L, B)[
7
2

3
4

8
9

]

A =
[

0 3 5
7 4 8

]
, B =

[
1 3 5
2 4 6

]
, L =

[
T F T
F F T

]
, U = (7, 8, 9)

the sign is reversed for all elements of xbecause they all pass the initial logical mask. It is as
if a classic DO sequence had been programmed

do i = 1, n, 1

if (x(i) > 0.0) x(i) = -x(i)

end do

instead of the WHERE construct.
A more ominous and subtle issue surrounds the use of other transformational intrinsic

functions listed in Table 8.10.
The danger is that when these intrinsics appear inside the body of a WHERE construct, the

WHERE statement’s initial mask may no longer apply. Hence, in the following example the
transformational intrinsic function SUM operates over all five elements of X rather than just

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-08 CB496-Akin September 17, 2002 12:23

190 Arrays and Matrices

Table 8.10: Intrinsic Functions Allowing
Logical Mask Control

ALL ANY COUNT

CSHIFT DOT PRODUCT EOSHIFT

MATMUL MAXLOC MAXVAL

MINLOC MINVAL PACK

PRODUCT REPEAT RESHAPE

SPREAD SUM TRANSFER

TRANSPOSE TRIM UNPACK

the two elements of X that exceed six:

integer, parameter :: n = 5

real :: x(n) = (/ 2, 4, 6, 8, 10 /)

where (x > 6.0)

x = x / sum(x)

end where.

Thus, the new values for x are { 2, 4, 6, 8/30, 10/30 } rather than {2, 4, 6, 8/18, 10/18}.
This standard-conforming, but otherwise “unexpected,” result should raise a caution for the
programmer. If one did not want the result illustrated above, it would be necessary to use
the same mask of the WHERE as an optional argument to SUM: sum(x, mask = x > 6.0).
Much care needs to be taken to ensure that transformational intrinsics that appear in a
WHERE construct use exactly the same mask.

8.1.5 User-Defined Operators
In addition to the many intrinsic operators and functions we have seen so far, the F90
user can also define new operators or extend existing ones. User-defined operators can
employ intrinsic data types, user-defined data types, or both. The user-defined operators, or
extensions, can be unary or binary (i.e., have one or two arguments). The operator symbol
must be included between two periods such as ‘.op.’. As an example, consider a program
to be used to create a shorthand notation to replace the standard F90 matrix transpose and
matrix multiplication functions so that we could write

B = .t. A
C = B .x. D

or C = (.t.A) .x. D

instead of B = TRANSPOSE(A)
C = MATMUL (B, D)

or C = MATMUL(TRANSPOSE (A), D)

To do this, one must have a MODULE PROCEDURE to define the operator actions for all en-
visioned (and incorrect) inputs and an INTERFACE OPERATOR that informs F90 what your
operation symbol is.

Figure 8.1 illustrates the code that would partially define the operator ‘.t.’. Note that,
although TRANSPOSE accepts any type of matrix of any rank, our operator works only for
real or integer rectangular arrays (of rank 2). It would not transpose LOGICAL arrays or
vectors. That oversight can be extended by adding more functions to the interface.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-08 CB496-Akin September 17, 2002 12:23

8.1 Subscripted Variables: Arrays 191

[1] MODULE Ops Example ! User defined matrix transpose example

[2]

[3] IMPLICIT NONE

[4] INTERFACE OPERATOR (.t.) ! transpose operator

[5] MODULE PROCEDURE Trans R, Trans I ! for real or integer matrix

[6] ! Remember to add logicals and vectors later

[7] END INTERFACE ! defining .t.

[8]

[9] CONTAINS ! the actual operator actions for argument types

[10]

[11] FUNCTION Trans R (A) ! defines .t. for real rank 2 matrix

[12] REAL, DIMENSION (:,:), INTENT(IN) :: A

[13] REAL, DIMENSION (SIZE(A,2), SIZE(A,1)) :: Trans R

[14] Trans R = TRANSPOSE (A)

[15] END FUNCTION Trans R ! for real rank 2 transpose via .t.

[16]

[17] FUNCTION Trans I (A) ! defines .t. for integer rank 2 matrix

[18] INTEGER, DIMENSION (:,:), INTENT(IN) :: A

[19] INTEGER, DIMENSION (SIZE(A,2), SIZE(A,1)) :: Trans I

[20] Trans I = TRANSPOSE (A)

[21] END FUNCTION Trans I ! for integer rank 2 transpose via .t.

[22]

[23] END MODULE Ops Example ! User defined matrix transpose example

[24]

[25] PROGRAM Demo Trans ! illustrate the .t. operator

[26] USE Ops Example ! module with user definitions

[27] IMPLICIT NONE

[28] INTEGER, PARAMETER :: M = 3, N = 2 ! rows, columns

[29] REAL, DIMENSION (M,N) :: A ; REAL, DIMENSION (N,M) :: B

[30]

[31] ! define A, test operator, print results

[32] A = RESHAPE ((/ ((I*J , I=1,M), J=1,N) /), SHAPE(A))

[33] B = .t. A

[34] PRINT *, ’MATRIX A’ ; CALL M print (A, M, N)

[35] PRINT *, ’MATRIX B’ ; CALL M print (B, N, M)

[36] ! Produces the result:

[37] ! MATRIX A

[38] ! RC 1 2

[39] ! 1 1.000 2.000

[40] ! 2 2.000 4.000

[41] ! 3 3.000 6.000

[42] !

[43] ! MATRIX B

[44] ! RC 1 2 3

[45] ! 1 1.000 2.000 3.000

[46] ! 2 2.000 4.000 6.000

[47] END PROGRAM Demo Trans

Figure 8.1: Creating and applying user-defined operators.

If one works with matrices often, then it may be advisable to define a library of matrix
operators. Such operators are not standard in F90 as they are in Matlab but can be easily
added. To provide a foundation for such a library, we provide aMatrix Operatorsmodule
with the operators defined in Table 8.11. The reader is encouraged to expand the initial
support provided in that module.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-08 CB496-Akin September 17, 2002 12:23

192 Arrays and Matrices

Table 8.11: Definitions in Matrix Operators

Operator Action Use Algebra

.t. transpose .t.A AT

.x. multiplication A.x.B AB

.i. inverse of matrix .i.A A−1

.ix. solution A.ix.B A−1 B

.tx. transpose times matrix A.tx.B AT B

.xt. matrix times transpose A.xt.B ABT

.eye. identity matrix .eye.N I, N × N

8.1.6 Connectivity Lists and Vector Subscripts
When using an array with constant increments in its subscripts, we usually provide its sub-
script in the form of a colon operator or a control variable in a DOor FOR loop. In either case,
the array subscripts are integers. There are several practical programming applications for
which the required subscripts are not known in advance. Typically, this occurs when we are
dealing with an assemblage of components that can be connected in an arbitrary fashion by
the user (e.g., electric circuits, truss structures, volume elements in a solid model). To get the
subscripts necessary to build the assemblage we must read an integer data file that lists the
junction numbers to which each component is attached. We call those data a connectivity
file. If we assume each component has the same number of junction points, then the list
can be inputted as a two-dimensional array. One subscript will range over the number of
components, and the other will range over the number of possible junctions per component.
For ease of typing these data, we usually assume that the kth row of the array contains the
integer junction or connection points of that component. Such a row of connectivity data is
often used in two related operations: gather and scatter. A gather operation uses the
lists of connections to gather or collect information from the assembly necessary to describe
the component or its action. The scatter operation has the reverse effect. It takes infor-
mation about the component and sends it back to the assembly. Usually, values from the
component are added into corresponding junction points of the assembly.

The main point of this discussion is that another way to define a nonsequential set of
subscripts is to use an integer vector array that contains the set. Then one can use the array
name as a way to range over the subscripts. This is a compact way to avoid an additional FOR
or DO loop. The connectivity list for a component is often employed to select the subscripts
needed for that component.

To illustrate the concept of vector subscripts, we will repeat the array flip example shown
in Section 8.1.3 via the colon operators. Here we will define an integer vector called Reverse
that has constant increments to be used in operating on the original arrayA. By using the vec-
tor name as a subscript, it automatically invokes an implied loop over the contents of that vec-
tor. As shown in Figure 8.2, this has the same effect as employing the colon operator directly.

The real power of the vector subscripts comes in the case in which it has integers in a
random, or user input, order rather than in an order that has a uniform increment. For
example, if we repeat the preceding example using a vector Random=[3 1 2], then both
Matlab and F90 would give the result

E = A (:, Random)=


 3 1 2

6 4 5
9 7 8


 .

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-08 CB496-Akin September 17, 2002 12:23

8.1 Subscripted Variables: Arrays 193

A =




1 2 3

4 5 6

7 8 9


 , Reverse = [3 2 1]

Flip left to right:

B=A (: , Reverse) =




3 2 1

6 5 4

9 8 7




Flip up to down:

C = A (Reverse, :) =




7 8 9

4 5 6

1 2 3




Flip up to down, left to right:

D = A (Reverse,Reverse) =




9 8 7

6 5 4

3 2 1




Figure 8.2: F90 and Matlab vector subscripts and array shifts.

Although the reshape option of F90 and Matlab allows the array elements to change
from one rectangular storage mode to another, one can also move elements around in
the fixed-shape array by utilizing the colon operators or by the use of “shift operators.” The
latter accept an integer to specify how many locations to move or shift an element. A positive
number moves an element up a column, a negative value moves it down the column, and a
zero leaves it unchanged. The elements that are moved out of the array either move from
the head of the queue to the tail of the queue (called a “circular shift”) or are replaced by
a user-specified “pad” value (called an “end off shift”). If no pad is given, its value defaults
to zero. These concepts are illustrated for F90 in Figures 8.3 and 8.4.

8.1.7 Component Gather and Scatter
Often the equations governing a system balance principle are assembled from the relative
contributions of each component. When the answers for a complete system have been ob-
tained, it is then possible to recover the response of each component. The automation of
these processes has six basic requirements:

1. a component balance principle written in matrix form,
2. a joint connectivity data list that defines where a given component type connects into the

system,

five = (/ 1 2 3 4 5 /)

! without a pad

three = eoshift(five,2) ! = (/ 3 4 5 0 0 /)

three = eoshift(five,-2) ! = (/ 0 0 1 2 3 /)

! with a pad

pad = eoshift(five,2,9) ! = (/ 3 4 5 9 9 /)

pad = eoshift(five,-2,9) ! = (/ 9 9 1 2 3 /)

Figure 8.3: F90 end-off shift (eoshift) intrinsic.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-08 CB496-Akin September 17, 2002 12:23

194 Arrays and Matrices

five = (/ 1 2 3 4 5 /)

left 3 = cshift(five,3) ! = (/ 3 4 5 1 2 /)

right 3 = cshift(five,-3) ! = (/ 4 5 1 2 3 /)

Figure 8.4: F90 circular shift (cshift) intrinsic.

3. a definition of ascatteroperator that scatters the coefficients of the component matrices
into corresponding locations in the governing system equations,

4. an efficient system equation solver,
5. a gather operator to gather the answers from the system for those joints connected to a

component, and
6. a recovery of the internal results in the component.

The first of these is discipline dependent. We are primarily interested in the gather–scatter
operations. These are opposites that both depend on the component connectivity list, which
is often utilized as a vector subscript. The number of rows in the component equations is less
than the number of rows in the assembled system except for the special case in which the
system has only a single component. Thus, it is the purpose of the gather–scatter operators to
define the relation between a system row number and a particular component row number.
That is, they describe the relation that defines the subset of component unknowns, say Ve for
component e, in terms of all the system unknowns, say V: Ve ⊂e V. Here the containment
⊂ is defined by the component’s connection list and the number of unknowns per joint. If
there is only one unknown per joint, then the subset involves only the connection list. The
preceding process gathers the subset of component unknowns from the full set of system
unknowns.

Let the list of joints or nodes connected to the component be called Le. The kth member
in this list contains the corresponding system node number, K: that is K = L e(k). Thus,
for a single unknown per joint, one simply has Ve = V(Le) ⊂e V. Written in full loop form,
the component gather operation would be

DO k = 1, size(L e)

V e (k) = V(L e (k))

END DO ! OVER LOCAL JOINTS,

whereas in F90 or Matlab vector subscript form, it is simply V e = V(L e) for a single
unknown per joint. When there is more than one unknown per joint, the relation can be
written in two ways.

We pick the one that counts (assigns equation numbers to) all unknowns at a joint before
going on to the next joint. Let the number of unknowns per joint be N. Then by deduction,
one finds that the equation number for the jth unknown at the Kth system node is

E(K , j) = N ∗ (K − 1) + j, 1 ≤ j ≤ N .

But to find which equation numbers go with a particular component, we must use the con-
nection list L e. For the kth local node, K = L e (k) and

E(k, j) = N ∗ (L e(k) − 1) + j , 1 ≤ j ≤ N .

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-08 CB496-Akin September 17, 2002 12:23

8.2 Matrices 195

If we loop over all nodes on a component, we can build an index list, say I e, that tells
which equations relate to the component.

INTEGER, ALLOCATABLE :: I e(:), V e(:)

ALLOCATE(I e(N * SIZE (L e)), V e (N*SIZE(L e)))

DO k = 1, SIZE(L e) ! component nodes

DO j = 1, N ! unknowns per node

LOCAL = N *(k-1) + j

SYSTEM = N *(L e (k) - 1) + j

I e (LOCAL) = SYSTEM

END DO ! on unknowns

END DO ! on local nodes.

Therefore, the generalization of the component gather process is

DO m = 1, SIZE(I e)

V e (m) = V(I e (m))

END DO ! over local unknowns,

or in vector subscript form V e = V(I e) for an arbitrary number of unknowns per joint.
To illustrate the scatter concept, consider a system shown in Figure 8.5, which has six

components and five nodes. If there is only one unknown at each joint (like voltage or
axial displacement), then the system equations will have five rows. Since each component
is connected to two nodes, each will contribute to (scatter to) two of the system equation
rows. Which two rows? That is determined by the connection list shown in the figure. For
example, component (4) is joined to nodes 4 and 3. Thus, the coefficients in the first row
of the local component balance low would scatter into (be added to) the fourth row of the
system, and the second row of the component would scatter to the third system equation
row. If the component balance law is symmetric, then the column locations scatter in the
same fashion.

8.2 Matrices

Matrices are very commonly used in many areas of applied mathematics and engineering.
Although they can be considered a special case of the subscripted arrays given above, they
have their own special algebra and calculus notations that are useful to know. In the following

(1)

(2)

(6)
(4)

(3)

(5)

1 2

4

3 5
Component Nodes Property

(1) 1, 2 1
(2) 2, 3 2
(3) 2, 4 1
(4) 4, 3 3
(5) 4, 3 4
(6) 3, 5 1

Figure 8.5: Representative circuit or axial spring system.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-08 CB496-Akin September 17, 2002 12:23

196 Arrays and Matrices

sections we will describe matrices and the intrinsic operations on them that are included in
F90 and Matlab. Neither C nor C++ has such useful intrinsics but requires the programmer
to develop them or extract them from a special library.

A matrix is a rectangular array of quantities arranged in rows and columns. The array
is enclosed in brackets, and thus if there are m rows and n columns, the matrix can be
represented by

A =




a11 a12 a13 · · · a1 j · · · a1n

a21 a22 a23 · · · a2 j · · · a2n

...
...

ai1 ai2 ai3 · · · ai j · · · ain

...
...

am1 am2 am3 · · · amj · · · amn




= [A], (8.1)

where the typical element ai j has two subscripts, of which the first denotes the row (ith) and
the second denotes the column (jth) the element occupies in the matrix. A matrix with m
rows and n columns is defined as a matrix of order m × n, or simply an m × n matrix. The
number of rows is always specified first. In Equation 8.1, the symbol A stands for the matrix
of m rows and n columns, and it is usually printed in boldface type. If m = n = 1, the matrix
is equivalent to a scalar. If m = 1, the matrix A reduces to the single row

A = [a11 a12 a13 · · · a1 j · · · a1n] = (A),

which is called a row matrix. Similarly, if n = 1, the matrix A reduces to the single column

A =




a11

a21
...
am1


 = col[a11 a21 · · · am1] = {A},

which is called a column matrix or vector. When all the elements of matrix are equal to zero,
the matrix is called null or zero and is indicated by 0. A null matrix serves the same function
as zero does in ordinary algebra. To set all the elements of A to zero, one writes A = 0 in
F90 and A = zeros [m, n] in Matlab.

If m = n, the matrix is said to be square.

A =




a11 a12 · · · a1n

...
...

an1 an2 · · · ann




Before considering some of the matrix algebra implied by the equation above, a few other
matrix types need definition. A diagonal matrix is a square matrix that has zero elements

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-08 CB496-Akin September 17, 2002 12:23

8.2 Matrices 197

outside the principal diagonal. It follows, therefore, that for a diagonal matrix ai j = 0 when
i �= j , and not all aii are zero. A typical diagonal matrix may be represented by

A =




a11 0 · · · 0
0 a22 · · · 0...

...
0 0 · · · ann


 ,

or more concisely as A = diag[a11a22 · · · ann].
A unit or identity matrix is a diagonal matrix whose elements are equal to 0 except those

located on its main diagonal, which are equal to 1. That is, ai j = 1 if i = j , and ai j = 0 if
i �= j . The unit matrix will be given the symbol I throughout these notes. An example of a
3 × 3 unit matrix is

I =

1 0 0

0 1 0
0 0 1


 = diag[1 1 1] .

A Toeplitz matrix has constant-valued diagonals. An identity matrix is a Toeplitz one, as
is the following matrix:

A =




1 −2 3 5
4 1 −2 3

−1 4 1 −2
10 −1 4 1


 .

Note how the values of a Toeplitz matrix’s elements are determined by the first row and the
first column. Matlab uses the Toeplitz function to create this unusual matrix.

A symmetric matrix is a square matrix whose elements ai j = a ji for all i, j . For example,

A =

 12 2 −1

2 33 0
−1 0 15




is symmetric: The first row equals the first column, the second row the second column, and
so forth.

An antisymmetric or skew symmetric matrix is a square matrix whose elements ai j = −a ji

for all i, j . Note that this condition means that the diagonal values of an antisymmetric matrix
must equal zero. An example of such a matrix is

A =

 0 2 −1

−2 0 10
1 −10 0


 .

The transpose of a matrix A, denoted by AT, is obtained by interchanging the rows and
columns. Thus, the transpose of an m × n matrix is an n × m matrix. For example,

A =

2 1

3 5
0 1


 AT =

[
2 3 0
1 5 1

]
.

In Matlab an appended prime is used to denote the transpose of any matrix, such as
B = A′, whereas in F90 we employ the intrinsic function B = transpose (A) or a user-defined
operator like B = .t.A, which we defined earlier.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-08 CB496-Akin September 17, 2002 12:23

198 Arrays and Matrices

If all the elements on one side of the diagonal of a square matrix are zero, the matrix is
called a triangular matrix. There are two types of triangular matrices: (1) an upper triangular
U, whose elements below the diagonal are all zero, and (2) a lower triangular L, whose
elements above the diagonal are all zero. An example of a lower triangular matrix is

L =

10 0 0

1 3 0
5 1 2


 .

A matrix may be divided into smaller arrays by horizontal and vertical lines. Such a matrix
is then referred to as a partitioned matrix, and the smaller arrays are called submatrices. For
example, we can partition a 3 × 3 matrix into four submatrices

A =




a11 a12 | a13

a21 a22 | a23

− − − − − −|− − −
a31 a32 | a33


 =

[
A11 A12

A21 A22

]
=




2 1 | 3
10 5 | 0

− − − − − −|− − −
4 6 | 10


 ,

where, in the F90 and Matlab colon notation,

A11 =
[

a11 a12

a21 a22

]
=

[
2 1

10 5

]
= A(1 : 2, 1 : 2)

A12 =
[

a13

a23

]
=

[
3
0

]
= A(1 : 2, 3)

A21 = [
a31 a32

] = [
4 6

] = A(3, 1 : 2)

A22 = [a33] = [10] = A(3, 3).

Note that the elements of a partitioned matrix must be so ordered that they are compatible
with the whole matrix A and with each other. That is, A11 and A12 must have an equal number
of rows. Likewise, A21 and A22 must have an equal number of rows. Matrices A11 and A21

must have an equal number of columns; likewise for A12 and A22. Note that A22 is a matrix
even though it consists of only one element. Provided the general rules for matrix algebra
are observed, the submatrices can be treated as if they were ordinary matrix elements.

8.2.1 Matrix Algebra
To define what addition and multiplication means for matrices, we need to define an algebra
for arrays of numbers so that they become useful to us. Without an algebra, all we have is a
sequence of definitions without the ability to manipulate what they mean!

Addition of two matrices of the same order is accomplished by adding corresponding
elements of each matrix. The matrix addition C = A + B (as we write it in F90 and Matlab),
where A, B, and C are matrices of the same order m × n, can be indicated by the equation

ci j = ai j + bi j , 1 ≤ i ≤ m, 1 ≤ j ≤ n,

where ci j , ai j , and bi j are typical elements of the C, A, and B matrices, respectively. An
example of matrix addition is

3 0 1
2 −1 2
1 1 1


 +


−1 1 −1

2 5 6
−3 4 9


 =


 2 1 0

4 −4 8
−2 5 10


 .

Matrix subtraction, C = A − B, is performed in a similar manner.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-08 CB496-Akin September 17, 2002 12:23

8.2 Matrices 199

Matrix addition and subtraction are associative and commutative. That is, with the previ-
ous definitions for matrix addition and subtraction, grouping and ordering with respect to
these operations does not affect the result, that is,

A ± (B ± C) = (A ± B) ± C and C ± B ± A.

Multiplication of the matrix A by a scalar c is defined as the multiplication of every element
of the matrix by the scalar c. Thus, the elements of the product B = cA are given by bi j =
cai j and are written as B = C ∗ A in both F90 and Matlab. Clearly, scalar multiplication
distributes over matrix addition.

We could define special multiplication in the somewhat boring way as the term-by-term
product of two identical-sized matrices: C = AB =⇒ ci j = ai j bi j . This feature is allowed in
both F90 and Matlab, where it is written as C = A*B and C = A.*B, respectively. Although
this definition might be useful in some applications, this choice for what multiplication means
in our algebra does not give us much power. Instead, we define the matrix product C = AB
to mean

ci j =
p∑

k=1

aikbk j , 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Matrices A and B can be multiplied together only when the number of columns in A, p,
equals the number of rows in B. When this condition is fulfilled, the matrices A and B are
said to be conformable for multiplication. Otherwise, matrix multiplication of two matrices
cannot be defined. The product of two conformable matrices A and B having orders m × p
and p × n, respectively, yields an m × n matrix C. In Matlab this is simply written as C =
A*B, where, as in F90, one would use the intrinsic function C = matmul (A, B) or a user-
defined operator such as C = A.x.B, which we defined earlier.

This definition for matrix multiplication was chosen so that we can concisely represent a
system of linear equations. The verbose form explicitly lists the equations as follows:

a11x1+a12x2+a13x3+· · ·+a1n xn= c1

a21x1+a22x2+a23x3+· · ·+a2n xn= c2

a31x1+a32x2+a33x3+· · ·+a3n xn= c3
...

...
an1x1+an2x2+an3x3+· · ·+ann xn= cn,

where the ai j ’s and ci ’s usually represent known coefficients and the xi ’s unknowns. To ex-
press these equations more precisely, we define matrices for each of these arrays of numbers
and lay them out as a matrix–vector product equaling a vector as follows:



a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n

a31 a32 a33 · · · a3n

...
an1 an2 an3 · · · ann







x1

x2

x3
...

xn


 =




c1

c2

c3
...

cn


 .

We thus obtain the more compact matrix form AX = C. A represents the square matrix of
coefficients, X the vector (column matrix) of unknowns, and C the vector of known quantities.

Matrix multiplication is associative and distributive. For example,

(AB)C = A(BC)

A(B + C) = AB + AC.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-08 CB496-Akin September 17, 2002 12:23

200 Arrays and Matrices

However, matrix multiplication is not commutative. In general, AB �= BA. Consequently,
the order in which matrix multiplication is specified is by no means arbitrary. Clearly, if the
two matrices are not conformable, attempting to commute the product makes no sense (the
matrix multiplication BA is not defined). In addition, when the matrices are conformable so
that either product makes sense (the matrices are both square and have the same dimensions,
for example), the product cannot be guaranteed to commute. You should try finding a
simple example that illustrates this point. When two matrices A and B are multiplied, the
product AB is referred to either as B premultiplied by A or as A postmultiplied by B. When
AB = BA, the matrices A and B are then said to be commutable. For example, the unit
matrix I commutes with any square matrix of the same order: AI = IA = A.∗

The process of matrix multiplication can also be extended to partitioned matrices, pro-
vided the individual products of submatrices are conformable for multiplication. For exam-
ple, the multiplication

AB =
[

A11 A12

A21 A22

] [
B11 B12

B21 B22

]
=

[
A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

]

is possible provided the products A11B11, A12B21, and so forth are conformable. For this
condition to be fulfilled, it is only necessary for the vertical partitions in A to include a
number of columns equal to the number of rows in the corresponding horizontal partitions
in B.

The transpose of a product of matrices equals (AB · · · YZ)T = ZTYT · · · BTAT. As an
example of matrix multiplication, let B = [

3
1
2
] and A = [2 1 0

1 0 1]; then

AB =
[

2 1 0
1 0 1

] 
 3

1
2


 =

[
7
6

]

BTAT = [
3 1 2

] 
2 1

1 0
0 1


 = [

7 6
]
.

8.2.2 Inversion
Every (nonsingular) square matrix A has an inverse, indicated by A−1, such that by definition
the product AA−1 is a unit matrix I. The reverse is also true: A−1A = I. Inverse matrices
are very useful in the solution of simultaneous equations AX = C such as the one above,
where A and C are known and X is unknown. If the inverse of A is known, the unknowns
of the X matrix can be (symbolically) found by premultiplying both sides of the equation by
the inverse A−1AX = A−1C so that

X = A−1C .

In this way, in theory we have “solved” our system of linear equations. To employ this
approach, we must find the inverse of the matrix A, which is not any easy task. Despite this
computational difficulty, using matrix algebra to express complicated linear combinations of
quantities concisely often provides much insight into a problem and its solution techniques.

∗ This result is why I is called the identity matrix: It is the identity element with respect to matrix multiplication.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-08 CB496-Akin September 17, 2002 12:23

8.2 Matrices 201

Various methods can be used to determine the inverse of a given matrix. For very large
systems of equations it is probably more practical to avoid the calculation of the inverse and
solve the equations by a procedure called factorization. Various procedures for computing
an inverse matrix can be found in texts on numerical analysis. The inverse of 2 × 2 or 3 × 3
matrices can easily be written in closed form by using Cramer’s rule. For a 2 × 2 matrix, we
have the classic formula, which no engineering student should forget:

[
a b
c d

]−1

=

[
d −b

−c a

]
ad − bc

However, finding the inverse of larger arrays using Cramer’s rule is very inefficient computa-
tionally. In Matlab, an inverse matrix of A is computed as inv(A), but this is only practical
for matrices of a small size, say those less than 100. There is no intrinsic matrix inversion
function in F90, but we provide such a function, named inv, in our operator library.

8.2.3 Factorizations
We have indicated that we will frequently employ matrices to solve linear equation systems
like A ∗ x = b, where A is a known square matrix, B is a known vector, and X is an unknown
vector. Although in theory the solution is simply the inverse of A times the vector B, x =
A(−1) ∗ b, that is computationally the least efficient way to find the vector X. In practice,
one usually uses some form of factorization of the matrix A. A very common method is
to define A to be the product of two triangular matrices, defined above, say L ∗ U = A,
where L is a square lower triangular matrix and U is a square upper triangular matrix.
Skipping the details of this “LU-factorization,” we could rewrite the original matrix system
as L ∗ U ∗ x = b, which can be viewed as two matrix identities

L ∗ h = b

U ∗ x = h,

where h is a new temporary vector, and where both L and U are much cheaper to compute
than the inverse of A. We do not need the inverse of L or U since, as triangular matrices,
their first or last row contains only one nonzero term. That allows us to find one term in the
unknown vector from one scalar equation. The process of recovering the vectors from these
two identities is called substitution.

We illustrate this process with a representative set of four equations with A and b
given as

A =




1800 600 −360 900

0 4500 −2700 2250

0 −2700 2700 −1890

6300 5250 −1890 3795




bT = [6300 −2250 1890 21405] .

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-08 CB496-Akin September 17, 2002 12:23

202 Arrays and Matrices

The LU-factorization process mentioned above gives the first of two lower triangular
systems; L ∗ h = b :




60 0 0 0

0 150 0 0

0 −90 36 0

210 105 42 −10







h1

h2

h3

h4




=




6300

−2250

1890

21405




.

Observe that the significant difference from A ∗ x = b is that the first row of this identity
has one equation and one unknown:

60 ∗ h1 = 6300,

which yields h1 = 105. This process continues through all the rows, solving for one un-
known, hk in row k, because all the h values above are known. For example, the next row
gives 0 ∗ 105 + 150 ∗ h2 = −2250, which yields h2 = −15. This process is known as “forward
substitution.” When completed, the substitution yields the intermediate answer:

hT = [105 −15 15 −30] .

Now that h is known we can write the upper triangular identity, U ∗ x = h, as




30 10 −6 15

0 30 −18 15

0 0 30 −15

0 0 0 30







x1

x2

x3

x4




=




105

−15

15

−30




.

This time the bottom row has only one unknown, 30 ∗ x4 = −30, and so the last un-
known is x4 = −1. Working backward up to the next row again, we find there is only one
unknown:

30 ∗ x3 + −15 ∗ (−1) = 15

so that x3 = 0. Proceeding back up through the remaining rows to get all the unknowns is
called “back substitution.” It yields

xT = [4 0 0 − 1] .

By inspection you can verify that this satisfies the original system of linear equations, A ∗ x =
b. With a little more work one can employ matrix multiplication to verify that L ∗ U = A.
Although we have not given the simple algorithm for computing L and U from A, it is widely
known as the “LU Factorization” and is in many texts on numerical analysis. Other common
factorizations are the “QR factorization,” the “Cholesky factorization” for a symmetric
positive definite A, and the “SVD factorization” for the case in which A is rectangular or
ill-conditioned and one is seeking a best approximation to X.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-08 CB496-Akin September 17, 2002 12:23

8.2 Matrices 203

The factorization process is relatively expensive to compute but is much less expen-
sive that an inversion. The forward and backward substitutions are very fast and cheap.
In problems where you have many different b vectors (and corresponding x vectors,
such as time-dependent problems), one carries out the expensive factorization process
only once and then executes the cheap forward and back substitution for each b vector
supplied.

8.2.4 Determinant of a Matrix
Every square matrix, say A, has a single scalar quantity associated with it. That scalar is
called the determinant |A| of the matrix. The determinant is important in solving equations
and inverting matrices. A very important result is that the inverse A−1 exists if and only if
|A| �= 0. If the determinant is zero, the matrix A (and the equivalent set of equations) is said
to be singular. Simple conditions on a matrix’s structure can be used to infer the determinant
or its properties.

� If two rows or columns are equal, the determinant is zero.
� Interchanging two rows, or two columns, changes the sign of the determinant.
� The determinant is unchanged if any row, or column, is modified by adding to it a linear

combination of any of the other rows, or columns.
� A singular square matrix may have nonsingular square partitions.

The last two items will become significant when we consider how to apply boundary condi-
tions and how to solve a system of equations.

8.2.5 Matrix Calculus
At times you might find it necessary to differentiate or integrate matrices. These operations
are simply carried out on each and every element of the matrix. Let the elements ai j of A
be a function of a parameter t . Then, the derivative and integral of a matrix simply equal
term-by-term differentiation and integration, respectively as follows:

B = dA
dt

←→ bi j = dai j

dt
, 1 ≤ i ≤ m, 1 ≤ j ≤ n

C =
∫

A dt ←→ ci j =
∫

ai j dt, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

When dealing with functional relations, the concept of rate of change is often very im-
portant. If we have a function f (·) of a single independent variable, say x , then we call
the rate of change the derivative with respect to x , which is written as df/dx. Generalizing
this notion to functions of more than two variables, say z = f (x, y), we may define two
distinct rates of change. One is the function’s rate of change with respect to one variable
with the other held constant. We thus define partial derivatives. When x is allowed to vary,
the derivative is called the partial derivative with respect to x and is denoted by ∂ f/∂x .
By analogy with the usual definition of derivative, this partial derivative is mathematically
defined as

fx = ∂ f

∂x
= lim

	x→0

f (x + 	x, y) − f (x, y)
	x

.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-08 CB496-Akin September 17, 2002 12:23

204 Arrays and Matrices

A similar definition describes the partial derivative with respect to y denoted by ∂ f/∂y. The
second notion of rate of change is the total derivative, which is expressed as df:

df = ∂ f

∂x
dx + ∂ f

∂y
dy.

These definitions can be extended to include a function of any number of independent
variables.

Often one encounters a scalar u defined by a symmetric square n × n matrix, A, a column
vector B, and a column vector X of n parameters. The combination we have in mind has the
form

u = 1
2

XTAX + XTB + C. (8.2)

If we calculate the derivative of the scalar u with respect to each xi , the result is the column
vector

∂u

∂X
= AX + B,

which is a result that can be verified by expanding Equation 8.2, differentiating with respect
to every xi in X, and rewriting the result as a matrix product.

8.2.6 Computation with Matrices
Clearly, matrices are useful in representing systems of linear equations and expressing the
solution. As said earlier, we need to be able to express linear equations in terms of ma-
trix notation so that analytic manipulations become easy. Furthermore, calculations with
linear equations become easy if we can directly express our matrix formulas in terms of
programs. This section describes programming constructs for the simple matrix expressions
and manipulations covered in this chapter.

In most languages, we must express the fact that a variable is an ordered array of numbers –
a matrix – rather than a scalar (or some other kind of variable). Such declaration statements
usually occur at the beginning of the program or function. Table 8.12 shows the declaration of
an integer array for our suite of programming languages. Both Fortran and C++ require you

Table 8.12: Array Initialization Loop Constructs.

MATLAB C++ F90

Preallocate linear
array

A(100)=0 int A[100];a integer A(100)

Initialize to a
constant value
of 12

for j=1:100 % slow for (j=0; j<100; j++) A=12

A(j)=12 A[j]=12;

end

% better way

A=12*ones(1,100)

Preallocate
two-dimensional
array

A=ones(10,10) int A[10][10]; integer A(10,10)

a C++ has a starting subscript of 0, but the argument in the allocation statement is the array’s size.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-08 CB496-Akin September 17, 2002 12:23

8.2 Matrices 205

Table 8.13: Array Initialization Constructors

Action MATLAB C++ F90

Define size A=zeros(2,3)a int A[2][3]; integer, dimension (2,3)::A

Enter rows A=[1,7,-2; int A[2][3]={ A(1,:)=(/1,7,-2/)

3, 4, 6]; {1,7,2}, A(2,:)=(/3,4,6/)

{3,4,6}
};

a Optional in Matlab, but improves efficiency.

to specify the maximum range of each subscript of an array before the array or its elements
are used. Such range specification is not required by Matlab, but preallocating the array
space can drastically improve the speed of Matlab as well as make much more efficient
use of the available memory. If you do not preallocate Matlab arrays, the interpreter must
check at each step if a position in a row or column is larger than the current maximum. If
so, the maximum value is increased and the memory found to store the new element. Thus,
failure to preallocate Matlab arrays is permissible but inefficient.

Array initialization is concisely expressed in both Fortran and Matlab; in C++, you must
write a small program to initialize an array to a nonzero value.∗ If an array contains a variety
of different numbers, we can concisely express the initialization; again, in C++, we must
explicitly write statements for each array element.

An Aside: Matrix Storage
� �

Most computer languages do not make evident how matrices are stored. More frequently
than you might think, it becomes necessary to know how an array is actually stored in the
computer's memory and retrieved. The procedure both Fortran and MATLAB use to store the
elements of an array is known as column major order: all the elements of the first column
are stored sequentially, then all of the second, and so forth Another way of saying this is
that the first (leftmost) subscript ranges over all its values before the second is incremented.
After the second subscript has been incremented, the first again ranges over all its values.
In C++, row major order is used: The first row of an array is stored sequentially, then the
second, and so forth Clearly, translating programs from Fortran to C++ or vice versa must
be done with care.

However, this knowledge can be used to execute some operations more efficiently. For
example, the matrix addition procedure could be written as ck = ak + bk, 1 ≤ k ≤ m× n. One
circumstance where knowing the storage format becomes crucial is extracting submatrices
in partitioned arrays. Such a Fortran subroutine would have to dimension the arrays with a
single subscript.
� �

Expressing the addition, subtraction, or multiplication of arrays in Fortran or Matlab
is concise and natural. Explicit programs must be written in C++ to accomplish these

∗ Global arrays – those declared outside of any function definition – are initialized to zero in many versions
of C++. Arrays declared within the scope of a function have no predefined values.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-08 CB496-Akin September 17, 2002 12:23

206 Arrays and Matrices

Table 8.14: Elementary Matrix Computational Routines (for n×nMatrices)

MATLAB C++ F90

Addition C=A+B for (i=0; i<n; i++){ C=A+B

C = A + B for (j=0; j<n; j++){
C[i][j]=A[i][j]+B[i][j];

}
}

Multiplication C=A*B for (i=0; i<n; i++){ C=matmul(A,B)

C = AB for (j=0; j<n; j++){
C[i][j] = 0;

for (k=0; k<n; k++){
C[i][j] += A[i][k]*B[k][j];

}
}

}
Scalar
multiplication C=a*B for (i=0; i<n; i++){ C=a*B

C = aB for (j=0; j<n; j++){
C[i][j] = a*B[i][j];

}
}

Matrix inverse B=inv(A) a B=inv(A)a

B = A−1

a Neither C++ nor F90 has matrix inverse functions as part of its language definition nor as part of
standard collections of mathematical functions (like those listed in Table 4.7). Instead, a special
function, usually drawn from a library of numerical functions or a user-defined operation, must be
used.

calculations. Table 8.14 displays what these constructs are for the special case of square
matrices with n rows.

8.3 Exercises

1 Often it is necessary to check computer programs that invert matrices. One approach is
to use test matrices for which the inverse is known analytically. Few such matrices are
known, but one is the following n × n matrix:




n+2
2n+2 − 1

2 0 0 · · · 0 1
2n+2

− 1
2 1 − 1

2 0 · · · 0 0

0 − 1
2 1 − 1

2 · · · 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
0 0 · · · · · · − 1

2 1 − 1
2

1
2n+2 0 · · · · · · 0 − 1

2
n+2
2n+2




−1

=




n n − 1 n − 2 · · · 2 1

n − 1 n n − 1 · · · 3 2

n − 2 n − 1 n · · · 4 3

.

.

.

.

.

.
2 3 4 · · · n n − 1

1 2 3 · · · n − 1 n



.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-08 CB496-Akin September 17, 2002 12:23

8.3 Exercises 207

Develop two routines that will create each of these two matrices for a given n value and
test them with a main program that uses matmul to compute their matrix product. The
result should be the identity matrix.

2 The numerical accuracy in calculating an inverse is always an issue: To what extent can
you believe the accuracy of the numbers that computer programs calculate? Because of
the finite precision used to represent floating-point numbers, floating-point calculations
can only rarely yield exact answers. We want to compute the difference between the in-
verse of the first matrix in the previous exercise empirically by using a library inversion
routine and comparing its result with the exact answer. Because the error varies through-
out the matrix, we need to summarize the error with a single quantity. Two measures are
routinely used: the peak absolute error maxi, j

∣∣ai j − bi j

∣∣ and the root-mean-squared (rms)

error
√

1
n2 Σi, j (ai j − bi j)

2.∗ The first captures the biggest difference between the elements
of two matrices, and the second summarizes the error throughout the entire difference.
Clearly, the peak absolute error is always larger than the rms error. Comparing these two
error measures provides some insight into the distribution of error: If the two are com-
parable, the errors have about the same size; if not, the errors deviate greatly throughout
the matrix.

3 Combine the intrinsic array features of F90 with the concepts of OO classes to create a
Vector class built around a type that has attributes consisting of the integer length of a
vector and an array of its real components. Provide members to construct vectors, delete
the arrays, read vectors, list vectors, and carry out basic mathematics operations. Over-
load the operators +, -, *, =, and ==. Avoid writing any serial loops.

4 Extend the Vector class concepts above to a Sparse Vector class in which it is assumed that
most of the values in the vector are zero and that for efficiency only the nonzero entries
are to be stored. This clearly exceeds the intrinsic array features of F90 and begins to show
the usefulness of OOP. The defined type must be extended to include an integer array
that contains the location (row number) of the nonzero values. In addition to changing
the input and output routines to utilize the extra integer position list, all the mathematical
member functions such as addition will have to be changed so that the resulting vector
has nonzero terms in locations that are a union of the two given location sets (unless the
operation creates new zero values). Use the concept of logical array masks in computing
the dot product. Avoid writing any serial loops.

5 A tridiagonal matrix is a common special case of a square matrix that is zero except for its
main diagonal and the adjacent diagonals above and below it. Plan software for a tridiago-
nal matrix object. For a matrix with n rows the main diagonal has n entries and the other
two diagonals have n−1 entries. Often each diagonal has a constant value or constant
except for a different value in a single row. Design a set of constructors that will (1) ac-
cept three vectors with which to populate the matrix, (2) accept three scalars with which
to populate the matrix, and (3) accept two vectors with which to populate a symmetric
matrix.

6 Applying the finite difference method to an ordinary differential equation is a common
way to create a tridiagonal linear systems of equations to be solved by factorization.

∗ The 1/n2 term occurs in this expression because that equals the number of terms in the sum. The rms
error is used frequently in practice to measure error; you average the squared error across the dataset and
evaluate the square root of the result.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-08 CB496-Akin September 17, 2002 12:23

208 Arrays and Matrices

Extend the tridiagonal object software above to define an operator, say .solve., to solve
such a system. Note, for the ODE

x′′ + p∗ x′ + q ∗ x = f

the terms in a typical row of the system of equations are

(1 − p∗ h/2), (−2 + q ∗ h ∗ h), (1 + p∗ h/2), (f ∗ h ∗ h)

for the three diagonal terms and right-hand side, respectively, for a grid-spacing distance
of h.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-09 CB496-Akin September 18, 2002 8:53

CHAPTER NINE
� �

Advanced Topics

9.1 Managing Dynamic Memory

9.1.1 Grouping Tasks
Fortran 90 includes several features to give the programmer the tools necessary to manage
dynamic memory usage. However, one tends to think of these tools as completely free-
standing statements or functions. In practice, a large code often has several related arrays
or pointers that need to be created and released from memory at the same time. Basically,
that means we should supply subprograms that generalize the operations provided by the
intrinsic functions allocated and associated.

Here we illustrate this concept with a segment of a class that came from a classic finite
element analysis system. The attributes are various types of allocatable arrays – local inte-
gers that will establish the array sizes. Additional items required to manage the memory are
accessed through the use association of the module, called system constants. The encap-
sulated members include initialization, debugging, and printing subprograms as well as the
actual memory management members.

Figure 9.1 shows segments of the code Elem Type Data Class. Here the word “type”
is not used in the language sense but to identify one of about 18 possible finite elements from
an existing library (such as a line, triangle, tetrahedron, etc.). Among the class attributes note
that the local integer array item, line 5, serves the purpose of checking for local fatal error
checks. It is sized to receive the number of subgroup allocations. Recall that the allocate
function has an optional status return code, stat=, lines 36, 37, and so forth. It is given the
value of zero if the memory allocation is successful. Different values are assigned if the item
has already been allocated or if not enough memory is available. In our past examples we
often did not utilize that error-checking status. It really should always be used – especially
when dealing with very large allocatable data.

In this simplified module application there are about a dozen activities where related
arrays or pointers must be allocated at the same time. The logical attributes in this class
are used for testing the status of the grouped activities rather than checking each memory
management act required by the related tasks. Those logical variables are assigned names
that always end in alloc. Two representative subroutines are allocate type application
and deallocate type application. The former begins by testing the group allocation status,
line 35, of the first subgroup. If a memory allocation is needed, the error flag is set to zero,
line 34, and each array or pointer is allocated and its status flag returned. When finished with
this subgroup task the allocation status is checked for any fatal allocation error, and aborts

209

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-09 CB496-Akin September 18, 2002 8:53

210 Advanced Topics

[1] module elem type data class ! for group memory management

[2] use system constants ! for debug, dp, n space

[3] implicit none

[4] integer :: lt free, lt n, lt qp, lt geom, lt parm ! sizes

[5] integer, parameter :: limit = 6 ; integer :: item (limit) ! status

[6]

[7] logical :: type aply alloc = .false., type eqs alloc = .false.

[8] logical :: type gaus alloc = .false., type topo alloc = .false.

[9]

[10] ! element type gauss quadrature points

[11] real(dp), allocatable :: wt (:), pt (:, :) ! quadratures

[12]

[13] ! basic type geometry arrays

[14] integer, allocatable :: el nodes (:) ! node numbers

[15] real(dp), allocatable :: coord (:, :) ! coordinates

[16]

[17] ! application specific element type arrays

[18] integer, allocatable :: index (:) ! equation numbers

[19] real(dp), allocatable :: d (:) ! element solution vector

[20] real(dp), allocatable :: c (:) ! element source vector

[21] real(dp), allocatable :: s (:, :) ! element square matrix

[22]

[23] contains

[24]

[25] subroutine list type alloc status

[26] print *, ’** type allocation status **’

[27] print *, ’type aply alloc = ’, type aply alloc ! overall

[28] print *, ’type eqs alloc = ’, type eqs alloc ! equations

[29] print *, ’type gaus alloc = ’, type gaus alloc ! quadratures

[30] print *, ’type topo alloc = ’, type topo alloc ! topology

[31] end subroutine list type alloc status

[32]

[33] subroutine allocate type application ! group allocate

[34] item = 0 ! default to no allocate error

[35] if (.not. type topo alloc) then ! 1st sub-group

[36] allocate (el nodes (lt n), stat=item(1)) ! topology

[37] allocate (coord (lt n, n space), stat=item(2)) ! coordinates

[38] if (any (item (1:2) /= 0)) stop ’type topo alloc failed’

[39] type topo alloc = .true. ! ok

[40] if (debug) print *, ’allocated type topology’

[41] else ; print *, ’warning: type topo already allocated’ ; end if

[42]

[43] if (.not. type eqs alloc) then ! 2nd sub-group

[44] allocate (index (lt free), stat=item(3)) ! equations

[45] allocate (d (lt free), stat=item(4)) ! solution

[46] allocate (c (lt free), stat=item(5)) ! force

[47] allocate (s (lt free, lt free), stat=item(6)) ! stiffness

[48] if (any (item (3:6) /= 0)) stop ’type topo alloc failed’

[49] type eqs alloc = .true. ! ok

[50] if (debug) print *, ’allocated type equations’

[51] else ; print *, ’warning: type eqs already allocated’ ; end if

[52]

[53] if (type topo alloc .and. & ! now flag all groups

[54] type eqs alloc) type aply alloc = .true.

[55] end subroutine allocate type application

[56]

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-09 CB496-Akin September 18, 2002 8:53

9.1 Managing Dynamic Memory 211

[57] subroutine deallocate type application ! group deallocates

[58] if (type eqs alloc) then ! last sub-group

[59] deallocate (s) ; deallocate (c) ! reverse order

[60] deallocate (d) ; deallocate (index) ! reverse order

[61] type eqs alloc = .false. ! ok

[62] if (debug) print *, ’deallocated type equations’

[63] else ; print *, ’warning: type eqs already deallocated’ ; end if

[64]

[65] if (type aply alloc) then ! first sub-group

[66] deallocate (coord) ; deallocate (el nodes) ! reverse order

[67] type topo alloc = .false. ! ok

[68] if (debug) print *, ’deallocated type topology’

[69] else ; print *, ’warning: topology already deallocated’ ; end if

[70]

[71] if (.not. type topo alloc .and. & ! now flag all groups

[72] .not. type eqs alloc) type aply alloc = .false.

[73] end subroutine deallocate type application

[74]

[75] ! other similar members omitted

[76]

[77] end module elem type data class

Figure 9.1: A grouping of memory management tasks.

if necessary. Here if the subgroup has already been allocated, a warning is issued. Usually
that would be considered a fatal error. Additional subgroups are treated similarly.

In the latter routine, lines 57–73, the corresponding (but reverse) logic is employed to
deallocate the subgroup of arrays or pointers. In theory, the order in which memory is
released makes no difference. However, in practice it depends on the quality of the compiler.
Compiler authors suggest that, to be safe, memory should be released (deallocated) by the
programmer in the reverse order of creation. That practice is illustrated here.

Because memory management is a very common source of fatal errors in executing a
program, one wants to be able to check allocation status easily. A debug tool is provided
via subroutine list type alloc status, lines 25–31. It presents a quick look at large groups
of allocations without employing many allocated functions. Also, another subroutine (not
shown) is provided to assign initial default values to all of the integer–element-type variables
that appear in the allocate statements within this class.

9.1.2 Memory Leaks
Common serious problems with allocatable arrays and pointers are that they can be difficult
to debug and can yield memory leaks. A memory leak, usually in a frequently invoked
subprogram, causes the memory required to run the program to grow constantly with time.
Press et al. [34] discuss this common problem and suggest how to avoid it for allocatable
arrays and allocatable pointers. They give sample F90 codes to illustrate the approach.
Memory leaks are common in any language that utilizes pointers or allocatable memory,
and the programming advice is generally the same. Do not forget to deallocate and nullify
the dynamic memory space of pointers and arrays after you are done with them. Do not
assign a new address to an allocatable pointer before you either delete it or assign its address
to another pointer. Failing to do so causes memory leaks.

Here we will simply illustrate a program that has a memory leak. It is given in Figure 9.2.
Try to envision what happens after a subprogram that had been envoked inside a large loop.
Note that the dynamic memory allocation status was checked for an error in lines 11, 12, and

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-09 CB496-Akin September 18, 2002 8:53

212 Advanced Topics

[1] Program Memory Leak

[2] Implicit None

[3] Integer :: i, item (2) ! loops, status

[4] Integer, Pointer :: ptr 1 (:), ptr 2 (:) ! allocatable

[5]

[6] Print *, ’Are pointers associated ? ’, & ! Initial associations

[7] associated (ptr 1), associated (ptr 2)

[8]

[9] ! Allocate and fill the arrays

[10] item (1:2) = 0 ! set error flags

[11] Allocate (ptr 1 (5), stat = item(1)) ! first pointer

[12] Allocate (ptr 2 (5), stat = item(2)) ! second pointer

[13] If (Any (item /= 0)) Stop ’Allocation failed’ ! status

[14]

[15] ptr 1 = (/ (i, i = 21,25) /) ; ptr 2 = (/ (i, i = 30,34) /)

[16] Print *, ’Pointer 1 = ’, ptr 1 ! echo data

[17] Print *, ’Pointer 2 = ’, ptr 2 ! echo data

[18] Print *, ’Are pointers associated ? ’, & ! associations now

[19] associated (ptr 1), associated (ptr 2)

[20]

[21] ptr 2 => ptr 1 ; Print *, ’Now set ptr 2 => ptr 1’

[22] Print *, ’Note: memory assigned to Pointer 2 is lost’

[23] Print *, ’Pointer 1 = ’, ptr 1 ! echo data

[24] Print *, ’Pointer 2 = ’, ptr 2 ! echo data

[25] Print *, ’Are pointers associated ? ’, & ! associations now

[26] associated (ptr 1), associated (ptr 2)

[27]

[28] Print *, ’Deallocate & Nullify all pointers’

[29] Deallocate (ptr 1) ! deallocate memory

[30] Nullify (ptr 1) ! nullify after deallocate

[31] Deallocate (ptr 2) ! deallocate memory fails

[32] Nullify (ptr 2) ! nullify after deallocate

[33] Print *, ’Are pointers associated ? ’, & ! associations now

[34] associated (ptr 1), associated (ptr 2)

[35] End Program Memory Leak ! Running gives:

[36] ! Are pointers associated ? F F

[37] ! Pointer 1 = 21 22 23 24 25

[38] ! Pointer 2 = 30 31 32 33 34

[39] ! Are pointers associated ? T T

[40] ! Now set ptr 2 => ptr 1

[41] ! Note: memory assigned to Pointer 2 is lost

[42] ! Pointer 1 = 21 22 23 24 25

[43] ! Pointer 2 = 21 22 23 24 25

[44] ! Are pointers associated ? T T

[45] ! Deallocate & Nullify all pointers

[46] !

[47] ! ****** FORTRAN RUN-TIME SYSTEM ******

[48] ! Error 1185: deallocating an object not allocated by

[49] ! an ALLOCATE statement

[50] ! Location: DEALLOCATE statement at line 32 of ‘‘memory leak.f90"

[51] ! Abort

[52]

[53] ! Commenting out line 31 stops abort, but memory still leaks

[54] ! !b Deallocate (ptr 2) !b but adding stat= is better

[55] !

[56] ! Are pointers associated ? T T

[57] ! Pointer 1 = 21 22 23 24 25

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-09 CB496-Akin September 18, 2002 8:53

9.1 Managing Dynamic Memory 213

[58] ! Pointer 2 = 30 31 32 33 34

[59] ! Are pointers associated ? T T

[60] ! Now set ptr 2 => ptr 1

[61] ! Note: memory assigned to Pointer 2 is lost

[62] ! Pointer 1 = 21 22 23 24 25

[63] ! Pointer 2 = 21 22 23 24 25

[64] ! Are pointers associated ? T T

[65] ! Deallocate & Nullify all pointers

[66] ! Are pointers associated ? F T

Figure 9.2: Illustrating a memory leak.

13, but the corresponding actions were not taken at lines 29 and 31. That omission means
that we were hoping the compiler would allow the operating system to catch our error rather
than writing good code in the first place. Try adding the status checks and see what happens
when you run the program.

It is possible to write code that will actually keep up with your memory usage. Although
this will be educational for beginners, it is not necessary once you have learned to follow
practices that avoid memory leaks. Such memory word counting software will be illustrated
in the next section. If utilized here, the output in Figure 9.3 would show five integer words
lost.

9.1.3 Reallocating Arrays and Pointers
There are times when we can only estimate the size of an allocatable array. Then we allocate
the estimated size, and when we expect it to overflow we must then reallocate its memory.
No language provides an intrinisic function for that purpose. Thus, we must develop our
own tools for such a case. If you can afford the memory space to have two copies of the
array (one small, one big), then it is not a difficult task. Press et al. [34] show several detailed
ways to do that. However, in practice arrays needing to be reallocated are usually extremely
large. Here we avoid two copies and thus avoid a likely memory crash by employing a binary
write to auxiliary storage (an external scratch file) followed by a corresponding read. They
are very fast operations (much faster than any formatted I/O) but not as fast as a memory
access such as that used when the copy is retained in memory.

! Are pointers associated ? F F

! INTEGER WORDS = 5

! INTEGER WORDS = 10

! Pointer 1 = 21 22 23 24 25

! Pointer 2 = 30 31 32 33 34

! Are pointers associated ? T T

! Now set ptr 2 => ptr 1

! Note: memory assigned to Pointer 2 is lost

! Pointer 1 = 21 22 23 24 25

! Pointer 2 = 21 22 23 24 25

! Are pointers associated ? T T

! Deallocate & Nullify all pointers

! INTEGER WORDS = 5

! WARNING: Unable to Deallocate a call from Memory Leak 2

! INTEGER WORDS = 5

! Are pointers associated ? F F

! Integer word memory leak = 5

Figure 9.3: Counting the memory leak.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-09 CB496-Akin September 18, 2002 8:53

214 Advanced Topics

[1] Module Memory Status Count

[2] Implicit None

[3] Public :: DOUBLE WORDS, INTEGER WORDS

[4] Integer, parameter :: Dp = kind(1.d0)

[5] Integer :: INTEGER WORDS = 0 ! initially zero

[6] Integer :: DOUBLE WORDS = 0 ! initially zero

[7]

[8] ! Add a generic interface here for double, etc

[9]

[10] CONTAINS

[11]

[12] Subroutine Alloc Count Int (status, sub, increment)

[13] Implicit None ! Increase memory word count

[14] Integer, Intent(In) :: status ! of allocate

[15] Integer, Intent(In) :: increment ! array size

[16] Character(Len=*), Intent(In) :: sub ! prog name

[17]

[18] If (status /= 0) Then ! error occured

[19] Print *, ’Unable to Allocate a call from ’ // sub

[20] Stop ’Allocation failed’

[21] Else ; INTEGER WORDS = INTEGER WORDS + increment ; Endif

[22] End Subroutine Alloc Count Int

[23]

[24] Subroutine Dealloc Count Int (status, sub, decrement)

[25] Implicit None ! Decrease memory word count

[26] Integer, Intent(In) :: status !of deallocate

[27] Integer, Intent(In) :: decrement ! array size

[28] Character(Len=*), Intent(In) :: sub ! prog name

[29]

[30] If (status /= 0) Then ! error occured

[31] Print *, ’Unable to Deallocate a call from ’ // sub

[32] Stop ’Deallocation failed’

[33] Else ; INTEGER WORDS = INTEGER WORDS - decrement ; Endif

[34] End Subroutine Dealloc Count Int

[35]

[36] Subroutine Resize Count Int OneD (Array, new)

[37] Implicit None ! Reallocates and Zeros new part of the array

[38] Integer, Pointer :: Array (:) ! Intent (inout)

[39] Integer, Intent(in) :: new ! new size

[40] Integer :: a stat, d stat ! Status variables

[41] Integer :: old, unit ! old size & unit

[42]

[43] If (Associated (Array)) Then

[44] old = Size (Array)

[45] If (old /= new) Then ! need to resize

[46] unit = get next io unit () ! get file

[47] Open (unit, form=’unformatted’, status=’scratch’) ! binary

[48] Write (unit) Array ! save old values

[49] Deallocate (Array, STAT=d stat) ; Nullify (Array)

[50] CallDealloc Count Int (d stat,"Resize Count Int OneD 1st", old)

[51] Allocate (Array(new), STAT=a stat) ! allocating to new size

[52] Call Alloc Count Int (a stat, "Resize Count Int OneD 1st", new)

[53] Array = 0 ; rewind (unit) ! clear to refill

[54] If (new >= old) Then ! use all old values

[55] Read (unit) Array(1:old) ! recover original values

[56] Array (old + 1:new) = 0 ! zero the rest

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-09 CB496-Akin September 18, 2002 8:53

9.1 Managing Dynamic Memory 215

[57] Else

[58] Read (unit) Array(1:new) ! recover first values

[59] End If ! new array is bigger

[60] End If ! need new size

[61] Else ! not associated

[62] Allocate (Array(new), STAT=a stat) ! completely new

[63] Call Alloc Count Int (a stat, "Resize Count Int OneD 1st", new)

[64] Array = 0 ! initialize

[65] End If ! if not Associated

[66] End Subroutine Resize Count Int OneD

[67] End Module Memory Status Count

[68]

[69] Program No Copy Reallocate

[70] Use Memory Status Count

[71] Implicit none

[72] Integer, Pointer :: Array (:) ! allocatable

[73] Integer :: ten=10, more=20, a stat, d stat

[74]

[75] INTEGER WORDS = 0 ! zero count

[76] Print *, ’INTEGER WORDS = ’, INTEGER WORDS

[77] Allocate (Array(ten), STAT=a stat) ! allocate 10

[78] Call Alloc Count Int (a stat,"Main", ten) ! count 10

[79] Print *, ’INTEGER WORDS = ’, INTEGER WORDS

[80] Array (1:ten) = 5 ; print *, Array ! insert 5’s

[81] Call Resize Count Int OneD (Array, more) ! expand to 20, zero new part

[82] Print *, ’INTEGER WORDS = ’, INTEGER WORDS

[83] Print *, Array ! verify old

[84] Print *, ’INTEGER WORDS = ’, INTEGER WORDS

[85] Array (ten:more) = 9 ; Print *, Array ! change some to 9’s

[86] Deallocate (Array, STAT=d stat) ! delete

[87] Call Dealloc Count Int (d stat,"Main", more) ! finalize word count

[88] Print *, ’INTEGER WORDS = ’, INTEGER WORDS

[89] If (INTEGER WORDS == 0) Print *, ’No memory leak.’

[90] End Program No Copy Reallocate ! Running gives

[91] ! INTEGER WORDS = 0

[92] ! INTEGER WORDS = 10

[93] ! 5 5 5 5 5 5 5 5 5 5

[94] ! INTEGER WORDS = 20

[95] ! 5 5 5 5 5 5 5 5 5 5 0 0 0 0 0 0 0 0 0 0

[96] ! INTEGER WORDS = 20

[97] ! 5 5 5 5 5 5 5 5 5 9 9 9 9 9 9 9 9 9 9 9

[98] ! INTEGER WORDS = 0

[99] ! No memory leak.

Figure 9.4: Reallocating an array without copying it.

Figure 9.4 illustrates memory counting described in the previous section as well as
memory reallocation. There in module Memory Status Count we use the partial name
alloc Count to indicate that we are both allocating and counting memory use in subrou-
tines Alloc Count Int Dealloc Count Int, and so on. They rely on memory word counters
as attributes (lines 5–6). They can be expanded to include any intrinsic or user-defined data
types. These two subroutines are employed in turn to create the two reallocation operations
in Resize Count Int OneD, which keeps the contents of the original array and pads it with
zeros if the new size is larger. Otherwise, the function fills the smaller array with the front
section of the old array. Note that the binary write/read actions occur at lines 48, 55, and 58.
A test program, No Copy Reallocate, validates the reallocation and counting operations.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-09 CB496-Akin September 18, 2002 8:53

216 Advanced Topics

9.2 Large-Scale Code Development

This section will describe the OO design and implementation of a typical engineering number
crunching application: a P-Adaptive finite element method (FEM) employed to solve ellipti-
cal partial differential equations such as heat transfer and potential flow. We will demonstrate
how various OO principles were successfully employed to achieve greater code reuse, flex-
ibility, and easier maintainability and extensibility. This is helpful for a complex program
like an adaptive finite element method. The p-adaptive application required a dozen classes,
about 40 generic functions, 140 actual functions, about 20 classes, and over 200 subroutines.
They combined to form about 10,000 lines of source code. That is too large a programming
effort to cover in detail. Thus, only the highlights of its OOP implementation will be dis-
cussed here to give some insight into the practical application of the techniques covered in
this book.

We will begin by giving a very brief outline of finite element analysis (FEA). For more
extensive details the reader can review the finite element analysis text by Akin [4] or one of
the dozens of texts in that field. The finite element method replaces a differential equation
with an equivalent integral formulation, and then the integral form is solved approximately
by using interpolation to convert it to a system of algebraic equations. The approximation
gives the value of the primary unknown at every grid point in a mesh. The mesh consists of
those grid points and their connections to a large group of quadrilateral or triangular cells
(finite elements) that cover the original domain in a nonoverlapping fashion. The solution
relies on a consistent set of interpolations over each cell space and along the corresponding
edges of each cell (element). Usually all the elements have the same number of points on each
edge. The number of points on any edge defines the degree of the polynomial interpolation
to be used on that edge. For example, three points on an edge would define a quadratic
interpolation because it takes three constants to define a unique one-dimensional quadratic
function (along that edge).

Since its origin in the 1950s, the finite element method has matured and is now employed
in a wide range of problems from solid mechanics to heat transfer, fluid mechanics, acoustics,
and electromagnetism. The main advantage of finite element analysis is its ability to model
complex and arbitrary shaped domains. It also supports modeling of general boundary con-
ditions and nonhomogeneous materials. To achieve a greater degree of confidence in the
accuracy of an FEA analysis, adaptive techniques have been developed. At the core of an
adaptive FEA program is the error estimator, which provides numerical estimates of the
errors in the solution and identifies where they occur in the mesh. Then, on the basis of this
error information, the data structures are accordingly modified. Analysis points are added
edges with high error and are removed from those with low errors. That cycle is repeated until
the global error less than or equal to the specified threshold is achieved. There are four basic
approaches for mesh adaptation that are known as h-, hp-, p-, and r-methods. H-refinement
is based on changing the element geometric size h by subdividing the selected elements into
smaller elements. It increases the number of elements, the number of points, and the number
of equations to be solved. P-refinement reduces the error in the solution by increasing the
polynomial order p of the element-interpolating functions. Although the number of ele-
ments might remain constant, the number of points or the number of unknowns per point
is increased. R-refinement only relocates the position of points in a finite element mesh but
does not increase the number of equations to be solved. The hp-refinement has been shown
to be the best approach because it gives the maximum accuracy with the fewest equations to
solve. However, it has by far the most complicated data structures and is the most difficult
to program. This section will outline the implementation of a p-adaptive FEM in which the

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-09 CB496-Akin September 18, 2002 8:53

9.2 Large-Scale Code Development 217

P_Element

P_Edge

P_Edge

P_Edge
P_Edge

Grid Point

Figure 9.5: Adaptive polynomial edge and element interpolation.

number of elements is held constant but the number of points on any element edge can be
increased to reduce the error. A typical p-adaptive element is shown in Figure 9.5. More
details are available in the paper by Akin and Singh [2].

Here an adaptive solution is utilized in conjunction with an error estimator so as to obtain
a more efficient iterative solution process until a user-specified level of accuracy is reached.
It is called a p-adaptive method because it changes the polynomial interpolation degree.
One algebraic equation must be solved for each point in the mesh. Since the number and
location (connections) of the points constantly changes, a special dynamic data structure
was required to establish the total system of algebraic equations to be solved to obtain the
approximate solution for each adaptive mesh. In this example a linked list of pointers was
selected to describe the polynomial degree (number of points) of all the edges in the mesh.
Because most edges had a cell on either side it was also necessary to plan to search those
edge data in two directions. That required a circular-linked list. In the usual finite element
process the equation system is established by a constant integer array defined by the original
connection order of the points to each cell.

Since finite element solutions are based on an integral over the domain, it is common
to have the integral over each cell carried out by the Gaussian numerical integration tech-
nique. There a different set of points is used. Unlike the grid points that have attributes such
as their physical coordinates and the solution value, the Gauss points each have tabulated
nondimensional coordinates as well as a tabulated integration weight. The number of inte-
gration points in each cell had to be increased as the number of cell edge points (polynomial
degree) increased. Thus, a p-adaptive finite element solution is much more complicated to
program [2] than the classical nonadaptive approach [4] or an h-adaptive approach.

Rehak and Baugh [35] and Forde, Foschi, and Stiemer [16] probably first applied mod-
ern OO principles to finite element programming. In a series of papers Dubois-Pèlerin
et al. [12–14] presented an OO finite element toolkit implemented in Smalltalk and C++.
Dubois-P‘elerin et al. [12] proposed further modularity by delineating two kinds of behav-
ior of finite element software: analysis type (solvers used, static or dynamic analysis) and
domain information (elements, grid points, boundary conditions). We will illustrate various
concepts of OO programming in an FEA flavor with examples from the actual implemen-
tation.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-09 CB496-Akin September 18, 2002 8:53

218 Advanced Topics

9.2.1 Main OO Features in FEA

9.2.1.1 Classes. Figure 9.6 shows a Point class within a module; that class encapsulates
the coordinates and number of dimensions of the point. The USE statement provides access
to the methods of one object to other objects in different modules. This can be seen in the
case of the Point class, located in Point module, which gets access to the data and methods
in the Utils Module and Dbl Precision Module. We can declare contents in a module as
private or public to provide the outside user access only to relevant information and to hide
the complexity within the module.

9.2.1.2 Polymorphism. It is the property of OO languages to allow the use of identical
function names for logically similar methods in different types. This property can be seen
in some intrinsic functions like int(a), where a can be of integer, real, or complex type
and the result is an integer. This can be extended to user-defined objects using generic
programming, operator overloading, and the interface construct. For example, in Figure 9.6
Init Point is bound to Init using the interface construct. This binding can be performed
in all the classes in the program, with the result that the user only utilizes one call Init
instead of Init Element, Init Point or Init Point Vector, and so forth. At compile time,
the compiler uses the information about the unique argument types to determine which
procedure to execute. Similarly, intrinsic operators can be overloaded for user-defined types,
and additional operators can also be defined. Figure 9.6, shows how the ’==’ equality operator
is defined for the Point class. The assignment operator ’=’ between two objects of same type
is implicitly implemented by the language.

We employed inheritance by composition: This type of inheritance uses other classes to
build bigger and complex classes. This is also known as ’has-a’ inheritance. This is demon-
strated in Figure 9.7 where the Gauss Type class contains an instance of Point class to define
its position in the space. The Gauss Type class is granted access to contents of the Point
class using public declarations and the use statement.

Finite element analysis requires many large arrays. The array syntax in F90 provides
advanced numerical capabilities. Through the use of the assumed shape array, automatic
array, and size command the procedures can be made independent of the length of the
array arguments, lending more flexibility to the code. Fortran 90 also provides some safety
features: pointers can be checked if they are associated (pointing to something valid), and
dynamic arrays can be checked if they have been allocated.

9.2.1.3 Design of the Program. Design of an OO program is crucial to its success. First
we determine the type of object needed, depending on the specific application. Next we
define their interfaces, that is, what these objects need to do and how they will communicate
with each other. After these specifications are ready, we can start implementing. It is a good
habit to test various pieces of program as we are implementing them. Then the final testing
is conducted.

For any application there is no one optimum design of the classes. A good design should
exploit the benefits offered by the object-oriented approach. Along with that it needs to
address issues like efficiency and ease of implementation. The design of this prototype pro-
gram consists of several modules. Each module contains one or more logically related classes.
There are eight major classes: Problem, Adaptor, Solver, Domain, Element, Edge, Constraint
and Grid Point. There are eight auxiliary classes: Skyline (sparse equation storage), Patch
(superconvergent patch recovery), Grid Point SubList, Gauss, Material, DOF (degree of
freedom), Point, and Solution. There are six modules containing data and procedures used

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-09 CB496-Akin September 18, 2002 8:53

9.2 Large-Scale Code Development 219

[1] Module Point Module ! define a "point" in 1 or 2 dimensions

[2] Use Utils Module

[3] Use DBL Precision Module ! for Dp

[4] Implicit none

[5]

[6] Private ! All unless made public

[7] Public :: Point, Init, Set ! Type, Constructor, Initializers

[8] Public :: MyPrint ! Method

[9] Public :: GetX, GetY ! Accessors

[10] Public :: operator (==) ! Overloading

[11]

[12] Type Point

[13] Private

[14] Real (Dp) :: x, y

[15] Integer :: Dimen

[16] End Type Point

[17]

[18] Interface Init

[19] Module Procedure Init Point

[20] Module Procedure Init Point Vctr

[21] Module procedure Init Point Another

[22] End Interface

[23]

[24] Interface MyPrint

[25] Module Procedure MyPrint Point ; End Interface

[26]

[27] Interface Set

[28] Module Procedure Set XY, Set Point

[29] Module Procedure Set X, Set Vec ; End Interface

[30]

[31] Interface operator (==)

[32] Module procedure equality operator point ; End Interface

[33]

[34] Contains

[35]

[36] Subroutine Init Point (p1, x val, y val) ! Constructor

[37] Implicit none

[38] Type (Point), Intent (InOut) :: p1

[39] Real (Dp), Intent (In), Optional :: x val, y val

[40] if (Present (x val) .and. (Present (y val))) Then

[41] Call Set (p1, x val, y val)

[42] Else if (Present (x val)) Then

[43] Call Set (p1, x val)

[44] Else ; p1 % x= 0.0 ; p1 % y= 0.0 ; p1 % Dimen = 1 ; End if

[45] End Subroutine Init Point

[46]

[47] Subroutine Init Point Vctr (p1, ptarr) ! Constructor

[48] Implicit none

[49] Type (Point), Intent (InOut) :: p1

[50] real (Dp), Intent (in) :: ptArr (:)

[51] Integer :: length ! local

[52] length = Size (ptarr)

[53] select case (length)

[54] case (1) ; call Set (p1, ptarr (1))

[55] case (2) ; call Set (p1, ptarr (1), ptarr (2))

[56] case default ; stop ’Invalid space Init Point Vctr’

[57] end select

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-09 CB496-Akin September 18, 2002 8:53

220 Advanced Topics

[58] End Subroutine Init Point Vctr

[59]

[60] Subroutine Init Point Another (p1, pos) ! Constructor

[61] Implicit none

[62] Type (Point), Intent (InOut) :: p1

[63] Type (Point), Intent (In) :: pos

[64] p1 = pos ! Implicitly implemented in f90

[65] End Subroutine Init Point Another

[66]

[67] Subroutine MyPrint Point (p1)

[68] implicit none

[69] Type (Point), Intent (In) :: p1

[70] if (p1 % dimen == 1) then

[71] print *, p1 % x

[72] else ; print *, p1 % x, p1 % y ; end if

[73] End Subroutine MyPrint Point

[74]

[75] Function equality operator point (p1, p2) Result (res)

[76] Implicit none

[77] Type (Point), Intent (In) :: p1, p2

[78] Logical :: res

[79] if ((p1 % X == p2 % X) .and. &

[80] (p1 % Y == p2 % Y) .and. &

[81] (p1 % Dimen == p2 % Dimen)) Then

[82] res = .true.

[83] else ; res = .false. ; End if

[84] End Function equality operator point

[85]

[86] Function GetX (p1) Result (res)

[87] Implicit none

[88] Type (Point), Intent (In) :: p1

[89] Real (Dp) :: res

[90] res = p1 % x

[91] End Function GetX

[92]

[93] Function GetY (p1) Result (res)

[94] Implicit none

[95] Type (Point), Intent (In) :: p1

[96] Real (Dp) :: res

[97] res = p1 % y

[98] End Function GetY

[99]

[100] Subroutine Set X (p1, xval)

[101] Implicit none

[102] Type (Point), Intent (InOut) :: p1

[103] Real (Dp), Intent (In) :: xval

[104] p1 % x = xval ; p1 % y = 0.d0 ; p1 % Dimen = 1

[105] End Subroutine Set X

[106]

[107] Subroutine Set XY (p1, xval, yval)

[108] Implicit none

[109] Type (Point), Intent (InOut) :: p1

[110] Real (Dp), Intent (In) :: xval, yval

[111] p1 % x = xval ; p1 % y = yval ; p1 % Dimen = 2

[112] End Subroutine Set XY

[113]

[114] Subroutine Set Point (this, inp pt)

[115] Implicit none

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-09 CB496-Akin September 18, 2002 8:53

9.2 Large-Scale Code Development 221

[116] Type (Point), Intent (InOut) :: this

[117] Type (Point), Intent (In) :: inp pt

[118] this = inp pt ! Since there is no pointer component

[119] End Subroutine Set Point

[120]

[121] Subroutine Set Vec (this, vec)

[122] Implicit none

[123] Type (Point), Intent (InOut) :: this

[124] Real (Dp), Intent (in) :: vec (:)

[125] Integer :: S ! local

[126] S = Size (vec)

[127] select case (S)

[128] case (1)

[129] this % x = vec (1) ; this % y = 0.d0 ; this % Dimen = 1

[130] case (2)

[131] this % x = vec (1) ; this % y = vec (2) ; this % Dimen = 2

[132] case default ; stop ’Invalid space Set Vec’

[133] end select

[134] End Subroutine Set Vec

[135] End Module Point Module

Figure 9.6: A point class for simple grids.

by more than one class: User Specific, Interpolation, Element Assembly, Control Data,
Utils, and Precision. These common data and methods are grouped on the basis of logical or
functional similarities. Figure 9.8 graphically depicts the design of this OO FEA system. The
notation followed in that figure is that the class from where the arrow starts is either directly
contained in, or its functions are used by, the class that is pointed to by the arrowhead. So,
the higher-level class is at the top, the highest one being the Problem class.

Thus, relationships can be of containment of lower classes or only using their methods.
This is an appropriate place to note an important detail. To remove confusion between a
finite element point and a node in the link (and circular) lists, we note that the finite element

[1] Module Gauss Module

[2] Use Point Module ! for Dp and Point

[3] Implicit none

[4]

[5] Private

[6] Public :: Gauss type, Init

[7]

[8] Type Gauss type

[9] Real (Dp) :: Weight

[10] Type (Point) :: pos

[11] End Type Gauss type

[12]

[13] Interface Init

[14] Module Procedure Init Gauss Empty, Init gauss

[15] End Interface

[16]

[17] ! skipping details

[18]

[19] End Module Gauss Module

Figure 9.7: Example of inheritance by composition.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-09 CB496-Akin September 18, 2002 8:53

222 Advanced Topics

Problem

Adaptor

Domain

Solver

Constraint Element Edge GridPt

Skyline Solution GridPt_SublistSpr

Dof Interpolation Material

Elem_Assembly Gauss

Global: Precision, Control_Data, Utils, Point, User_Specific

Figure 9.8: Graphical representation of OO adaptive FEA.

node is referred to as grid point whereas a list node is simply called a node. We will now
discuss the role of these modules in more detail.

In this code design the information about the finite element model is separated from the
details of finding the solution. In other words data are separated from the analysis method.
This makes the program flexible and easy to debug. The highest level is the Problem class,
its structure is shown in Figure 9.9. The model information is contained in the Domain class,
and the adaptation and solver functionality is in the Adaptor and Solver classes.

The Adaptor and the Solver classes are illustrated in Figure 9.9. These classes need access
to the data and methods in the Domain class to compute the solution. Thus, a pointer link
to the Domain class is stored in these classes. The solver class contains the finite element
stiffness matrix in variable Stiff Mat, which is an instance of Skyline class. The class DOF ,
an array of type DOF, stores the mapping between the local and the system numbering
schemes. The class Soln, an instance of the Solution class, holds the solution values for each
degree of freedom.

The Domain class contains data structures for the elements, edges, and grid points as well
as the iterators for these lists. The iterators are used for implementing efficient traverse and
query algorithms.

The Element module contains the Element, Element link , Element List iterator,
and Element Pointer classes. The Element List class and the Element iterator class pro-
vide methods for link list manipulation and traversal. The Element class is shown in Fig-
ure 9.10. In adaptive analysis, to recover an accurate gradient of an element, requires
information about the neighboring elements. This information is stored in an array of

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-09 CB496-Akin September 18, 2002 8:53

9.2 Large-Scale Code Development 223

Problem Class Adapter Class

Attributes: Type; Variable Attributes: Typ Variable

Domain; Domain 1 Domain, Pointer; Ptr to Domain 1

Adapter; Adapt 1 Solve; Solve1

Tasks: Tasks:

Initialize the domain Solve the system

Run the program Recover superconvergent gradients

Perform higher level tasks Perform error estimation

Perform adaptivity

Perform postprocess

Solver Class Domain Class

Attributes: Type; Variable Attributes: Type; Variable

Domain, Pointer; Ptr to Domain Grid pt circular list; GrdPtList

Skyline; Stiff Matrix Grid pt list iterator; GrdPtList iter

Array of Real; Sys Col Vctr Edge link list; EdgeList

Array of DOF; DOF Arr Edge list iterator; EdgeList iter

Solution; Soln Element link list; ElementList

Integer; No Sys dof Element list iterator; ElementList iter

Tasks: Constraint; Dirchlet bc

Assemble system matrix and vector Boundary flux; Neumann bc

Apply boundary conditions Tasks:

Solve the system of equations Read, store and manage the components

Perform domain-level Postprocess

Figure 9.9: OO FEA adaptor, domain, problem, and solver classes.

pointers to the adjacent elements. Information about the edges is stored in another array of
pointers.

The geometric grid point coordinates are calculated and stored in Gm GrdPt Crds to
avoid expensive recomputation for each adaptivity iteration. DOF Map contains the system
degree of freedom numbers for the local element degree of freedom numbers. Sample Data
is a link list containing the sampling point data for the element used for accurate gradient
recovery needed by the error estimator.

The Edge module contains the Edge class, Edge List class, and the Edge List iterator
class. The Edge class is depicted in Figure 9.10. Each edge contains a circular linked list,
GrdPtSubList, which stores pointers to the grid points lying on the edge. IsBndryFlux is a
logical field used to distinguish edges with a flux boundary condition from the rest of the
edges.

The Grid Point module also has a structure similar to the element and edge modules; it
contains the Grid Point class, Grid Point List class, and Grid Point List iterator class.
The Grid Point class is shown in Figure 9.10. Pos, an instance of Point class, keeps track of
the coordinates of the grid point. DOF Info is an integer flag used to classify the analytic
or geometric nature of the grid point. Given the use of different interpolation functions
for the geometry and the solution, a grid point could be analytical, geometric, or both. The
functions Get Is PureGeometric() and Get Is PureAnalytic() make this transparent to
the user. DOF Info also serves to identify each grid point uniquely. After each adaption
iteration the DOF Info is regenerated. The Constraint module contains the Dirchlet and
Boundary Flux classes. The Dirchlet class is outlined in Figure 9.10. The integer flag Param
tells to which parameter of each grid point the boundary condition is applied.

The auxiliary classes also deserve some description. The Skyline class is used to im-
plement the skyline storage of a square matrix. The functions like Get (row,col) hide the

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-09 CB496-Akin September 18, 2002 8:53

224 Advanced Topics

Element Class Edge Class

Attributes: Type; Variable Attributes: Type; Variable

Integer; Id Integer; Id

Integer; No An GrdPt Integer; No An GrdPt

Material; Mat Prop List of pointers to Grid Pts; GridPtSubList

Array of integer; CrNrGrdPt Seq Logical; IsBndryFlux

Array of Edge pointers; Edg Tasks:

Array of Element pointers; Adj Functionality for higher level classes

Array of Real; Gm GrdPt Crds Get number of analysis grid points on edge

Array of Real; Elem Sq Matrix

Array of Real; Elem Col Vctr

Array of Integer; DOF Map

Sampling data list Sample data

Tasks:

Read the element properties

Generate DOF Map

Generate element stiffness matrix

Find element bandwidth

Find element column height Grid Point Class

Get number of analysis points Attributes: Type; Variable

Perform postprocess Integer; Id

Point; Pos

Dirc Bc Class Material; Mat Prop

Attributes: Type; Variable Integer; DOF Info

Array of Real; values Integer; Cnstrnt Indicator

Array of Integer; GrdPtIds Tasks:

Array of Integer; Param Position itself in space

Tasks: Reset system degree of freedom

Read and initialize itself Functionality for other classes

Functionality for other classes Store information about a grid point.

Figure 9.10: OO FEA Dirc Bc, Edge, Element, and Grid Point Classes.

implementation complexity from the user. This allows us the flexibility to use a different
matrix storage method, since by implementing the corresponding Get (row,col) method
the rest of the program will remain unchanged. For recovering the superconvergent gra-
dients we need a list to store the sampling point information of the element. The Sam-
pling Point Data class and the corresponding list and iterator classes in the Patch module
provide this functionality. The GridPtSubList class forms a circular list of grid point point-
ers. This list is used to represent the grid points on an edge. The Gauss class, outlined in
Figure 9.7, stores the position and the weight associated with a Gauss point. The Material
class is used to read and store the properties. The DOF (degree of freedom) class is used to
form mapping between system and local degrees of freedom. The DOF class also provides
equation renumbering algorithms. The Point class, which was illustrated in Figure 9.6 imple-
ments a point in one- or two-dimensional space. The Solution class is used to hold the system
solution.

This FEA program also has some modules, which contain common data and methods. The
Interpolation module provides methods for both geometric and solution interpolation. The
User Specific class holds procedures like exact solution for benchmark test cases and source
functions. The Element Assembly module provides the structures needed to generate the
element stiffness matrix. The Control Data module stores global level tags and flags, and
the Utils module stores globally used procedures for implementing validation and error
checking. The Precision module defines the precision type used in the program.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-09 CB496-Akin September 18, 2002 8:53

9.2 Large-Scale Code Development 225

9.2.1.4 OOP Strengths and Weaknesses. In this section we will discuss using the OO
approach and demonstrate that it is worth the effort. Some of the advantages of observing
OO policies are as follows:

� The main advantage of an OO scheme lies in data encapsulation. First, the informa-
tion is decentralized; as such, it may be stored at easily reachable places (no compli-
cated pointing devices) and processed at suitable times. Second, objects possess more
than integer identifiers; they can possess other objects. For example, the Element class
does not contain the number of material properties but the material properties them-
selves.

� In OO programming we group data (attributes) and functions (methods) in a class. We
do not have to pass all the arguments; just by passing the object we can use its methods to
find information about its. For example, the element class has functions for constructing
and initializing an element, generating an element stiffness matrix, and element-level
postprocessing.

� The program is more organized and intuitive when objects present themselves to the
external world in a more meaningful way (for example, “I am a beam on the third floor
connecting such and such” as opposed to “I am an array element 5 in element array”). A
finite element application maps very well into the computational domain using the OO
design techniques.

� It is easier to debug and modify the implementation of one part of code without affecting
the rest of it. This is of great relevance to scientific research, for the researcher can try new
algorithms, new data structures, and different problems with less programming effort. In
this application the solver is uncoupled from the domain information (element, edges,
etc). The Domain is also independent of the sparse matrix storage technique and the
data structures. These benefits were experienced in our research as we experimented
with different element types, different solvers, different data structures, and different
precisions with relative ease without affecting the rest of the program.

� It is easy for other people to understand the code written by us. This is gained by separating
“what we are doing” from “how we are doing it.”

� Concurrency issues: An OO approach encourages localized, distributed grouping of data
and tasks. It is relatively natural to see how data and tasks can be distributed over proces-
sors (useful for parallel machines) and among individuals (good for a team-programming
environment).

� By making use of the inheritance, we can add new components and reuse previously
written code.

Now we will study some of the weakness and perceived weaknesses of using OO techniques:

� One of the main weaknesses of OO programming is its overhead, which makes it in-
herently inefficient with respect to speed mostly because of the addition of new proce-
dure calls for implementing encapsulation and in some cases owing to late (run-time)
binding typically associated with OO environments. An increase in overhead due to
more function calls in many cases can be offset by the reduction in human time and
effort, for human time is a more precious commodity than computer time. The num-
ber of function calls can be reduced by the use of pointers. In some instances, for the
critical operations that are performed repeatedly, the encapsulation can be broken for
efficiency.

� Another criticism of OO methodologies is creation of rigid hierarchies of classes. Too
much emphasis on the code reuse coupled with the tendency to classify all objects into

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-09 CB496-Akin September 18, 2002 8:53

226 Advanced Topics

an existing class hierarchy can lead to deep hierarchies of unrelated classes. This type
of framework can break when an object that has multiple characteristics is encountered.
This was also discussed in a posting on the C++ users mailing list [5], as Platypus effect.
A platypus is a fur-bearing, egg-laying, aquatic creature, and to classify it in the class
hierarchy of species using only “is-a” inheritance can lead to breakdown of the hierarchy.
This is due to overuse of inheritance (“is-a”) in the design and is not necessarily a weakness
of OO method. With proper design – use of clear logical distinguishing classes and judicial
use of inheritance (“is-a”) and composition (“has-a”) – a flexible infrastructure can be
achieved. In this program we only used composition.

Fortran 90/95 provides good support for OO development; however, it lacks some of
the features of other OO languages like C++ and Java. One of the missing features is the
lack of direct intrinsic support for “is-a” inheritance. This type of inheritance can lead to
code reuse and is more useful when there are multiple classes of similar kind. This type
of inheritance is used successfully in places like GUI (Graphical User Interface) develop-
ment but is not as useful in scientific computing. In the present application the OO in-
frastructure was constructed only using composition. One place where “is-a” inheritance
could be used is to represent the element hierarchy by utilizing multiple types of ele-
ments without having to modify the rest of the code. However, this is achieved in the
present code without inheritance by using parameters to distinguish the various element
types. Integer parameters were used to make the methods of Element class general enough
to be used by element objects with different geometric shape functions. The parameters
were N Space (dimension of computational domain), GrdPt per El (number of grid
points in a element), and No Params per GrdPt (number of degrees of freedom per grid
point). We also use a function that generates element shape functions depending upon these
parameters.

Another related feature absent in Fortran 90 is run-time polymorphism. This is a concept
related to “is-a” inheritance. It can be useful in some situations, though it adds expense and
makes it difficult for the compiler to optimize the code. This can also be implemented in
F90 using Szymanski’s method (see the dynamic dispatching section of Chapter 6). Fortran
90 has many other useful features missing in other languages – especially for scientific
computing.

The p-adaptive finite element application developed during this study has shown good
results. Benchmark problems were run to verify the adaptive analysis method applied to
various Poisson equations like heat transfer and potential flow. Other tests were carried
out to determine the effect of using even-degree polynomials versus odd-degree polyno-
mials. Zienkiewicz-Zhu [40] suggested that even-degree polynomials give a faster rate of
convergence. The results agree with the suggestion.

Much has been said about the ability of object orientation to make tasks easy for
the software developer. However, OO programming does not obviate the need for for-
ward thinking nor does it make it impossible to introduce a bug. The success of an OO
program heavily depends on its design. Because the program is supposed to be flexible
and easily extensible in the future, the developer needs to think beyond the present ap-
plication. Initially the program design can consume a large amount of total application
development time; this was also the case with this application. As the developer gains
experience in OO principles, the subsequent projects will spend less time on the design
board. The language selected for the development depends upon the type of application.
Fortran 90/95 is well equipped to perform OO development for scientific and technical
community.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-09 CB496-Akin September 18, 2002 8:53

9.4 Exercises 227

9.3 Nonstandard Features

Elsewhere in this book only features of Fortran included in the 1995 standard have been
utilized. It is common for compiler developers to provide addition enhancements that are
hardware or environment specific and for the most useful of those features to appear in the
next standard release. Compiler releases by Cray (R©), Digitial (R©), and Silicon Graphics
(R©) computers are examples of versions with extensive enhancements. Some compilers, like
the Digitial (R©) Visual Fortran (R©), are designed to develop applications for the Microsoft
(R©) Windows (R©) system and contain library modules for “standard” graphical displays via
QuickWin (R©), for dialog routines to the Graphical User Interface (GUI), for interfacing
with multiple programming languages or the operating system, and for multiple “thread”
operations. Threads are not currently in the F90 standard. They allow for response to the
user interaction with any of a set of multiple buttons or dials in an active GUI.

Fortran 90 is a subset of the High Performance Fortran (HPF) standard that has been
developed for use on massively parallel computers [26]. We have not discussed those en-
hancements.

Even without these special enhancements the OOP abilities of F90 provide an important
tool in engineering and scientific programming. In support of that position we close with a
quote from computer scientist Professor Boleslaw K. Szymanski’s Web page [47] on High
Performance Object-Oriented Programming in Fortran 90. His group concluded that “all
of our Fortran 90 programs execute more quickly than the equivalent C++ versions, yet the
abstraction modeling capabilities that we needed were comparably powerful.”

9.4 Exercises

1 Employ the Memory Status Count module to convert program Memory Leak to a new
version, Memory Leak Counted, that will produce output similar to that in Figure 9.3.
Note that this will require the use of the status code returned to the deallocate statement.

2 Modify the Memory Status Count module to add a generic interface to keep up also
with the counts for single- and double-precision reals. Provide a test program to illustrate
their validity.

3 Write a reallocation module for relatively small arrays that actually uses a temporary copy
of the given array; that is, one where both the old- and new-size arrays exist in memory
at the same time.

4 Write a reallocation module like Realloc Count Int OneD for relatively large real vec-
tors but without the counting features so we can get the maximum speed with the mini-
mum memory use.

5 Write a reallocation module like Realloc Count Int OneD for a relatively large dou-
bly subscripted real array (matrix) but without the counting features so we can get the
maximum speed with the minimum memory use.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-09 CB496-Akin September 18, 2002 8:53

228

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

app-a CB496-Akin September 18, 2002 10:59

APPENDIX A
� �

Fortran 90 Overview

This overview of Fortran 90 (F90) features is presented as a series of tables that illustrate
the syntax and abilities of F90. Frequently, comparisons are made with similar features in
the C++ and F77 languages and the Matlab environment.

These tables show that F90 has significant improvements over F77 and matches or ex-
ceeds newer software capabilities found in C++ and Matlab for dynamic memory manage-
ment, user-defined data structures, matrix operations, operator definition and overloading,
intrinsics for vector and parallel processors and the basic requirements for object-oriented
programming.

They are intended to serve as a condensed quick-reference guide for programming in F90
and for understanding programs developed by others.

A.1 List of Language Tables

1. Comment Syntax . 231

2. Intrinsic Data Types of Variables . 231

3. Arithmetic Operators . 231

4. Relational Operators (Arithmetic and Logical) .232

5. Precedence Pecking Order. .232

6. Colon Operator Syntax and its Applications. .233

7. Mathematical Functions . 233

8. Flow Control Statements . 234

9. Basic Loop Constructs .234

10. IF Constructs .235

11. Nested IF Constructs . 235

12. Logical IF-ELSE Constructs . 235

13. Logical IF-ELSE-IF Constructs . 236

14. Case Selection Constructs . 236

15. F90 Optional Logic Block Names . 237

16. GO TO Break-out of Nested Loops . 237

17. Skip a Single Loop Cycle . 237

18. Abort a Single Loop . 238

229

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

app-a CB496-Akin September 18, 2002 10:59

230 Fortran 90 Overview

19. F90 DO’s Named For Control . 238

20. Looping While a Condition is True . 238

21. Function Definitions. .239

22. Arguments and Return Values of Subprograms . 239

23. Defining and Referring to Global Variables . 240

24. Bit Function Intrinsics . 240

25. The ASCII Character Set . 241

26. F90 Character Functions. .241

27. How to Type Nonprinting Characters . 241

28. Referencing Structure Components . 242

29. Defining New Types of Data Structure . 242

30. Nested Data Structure Definitions . 242

31. Declaring, Initializing, and Assigning Components of
User-defined Data Types . 242

32. F90 Derived-type Component Interpretation . 243

33. Definition of Pointers and Accessing their Targets 243

34. Nullifying a Pointer to Break Association with Target 243

35. Special Array Characters . 243

36. Array Operations in Programming Constructs .244

37. Equivalent Fortran90 and MATLAB Intrinsic Functions 245

38. Truncating Numbers . 246

39. F90 WHERE Constructs . 246

40. F90 Array Operators with Logic Mask Control . 247

41. Array Initialization Loop Constructs . 247

42. Array Initialization Constructors . 248

43. Elementary Matrix Computational Routines . 248

44. Dynamic Allocation of Arrays and Pointers . 249

45. Automatic Memory Management of Local Scope Arrays 249

46. F90 Single Inheritance form . 249

47. F90 Selective Single Inheritance form . 250

48. F90 Single Inheritance form with Local Renaming.250

49. F90 Multiple Selective Inheritance with Renaming 250

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

app-a CB496-Akin September 18, 2002 10:59

A.1 List of Language Tables 231

Table A.1: Comment Syntax

Language Syntax Location

Matlab % comment (to end of line) anywhere
C /∗comment∗/ anywhere
F90 ! comment (to end of line) anywhere
F77 ∗ comment (to end of line) column 1

Table A.2: Intrinsic Data Types of Variables

Storage MATLABa C++ F90 F77

byte char character:: character

integer int integer:: integer

single-precision float real:: real

double-precision double real*8:: double precision

complex b complex:: complex

Boolean bool logical:: logical

argument parameter:: parameter

pointer ∗ pointer::

structure struct type::

a Matlab4 requires no variable-type declaration; the only two distinct types in Matlab are strings and
reals (which include complex). Booleans are just 0’s and 1’s treated as reals. Matlab5 allows the user
to select more types.

b There is no specific data type for a complex variable in C++; it must be created by the programmer.

Table A.3: Arithmetic Operators

Description MATLABa C++ Fortranb

addition + + +

subtractionc - - -

multiplication ∗ and .∗ ∗ ∗

division / and ./ / /

exponentiation ˆ and . ˆ powd ∗∗

remainder %

increment ++

decrement --

parentheses (expression grouping) () () ()

a When doing arithmetic operations on matrices in Matlab, a period (‘.’) must be put before the
operator if scalar arithmetic is desired. Otherwise, Matlab assumes matrix operations; figure out the
difference between ‘∗’ and ‘.∗’. Note that since matrix and scalar addition coincide, no ‘.+’ operator
exists (same holds for subtraction).

b Fortran 90 allows the user to change operators and to define new operator symbols.
c In all languages the minus sign is used for negation (i.e., changing sign).
d In C++ the exponentiation x y is calculated by function pow (x, y).

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

app-a CB496-Akin September 18, 2002 10:59

232 Fortran 90 Overview

Table A.4: Relational Operators (Arithmetic and Logical)

Description MATLAB C++ F90 F77

Equal to == == == .EQ.

Not equal to ~= != /= .NE.

Less than < < < .LT.

Less or equal <= <= <= .LE.

Greater than > > > .GT.

Greater or equal >= >= >= .GE.

Logical NOT ~ ! .NOT. .NOT.

Logical AND & && .AND. .AND.

Logical inclusive OR ! || .OR. .OR.

Logical exclusive OR xor .XOR. .XOR.

Logical equivalent == == .EQV. .EQV.

Logical not equivalent ~= != .NEQV. .NEQV.

Table A.5: Precedence Pecking Order

MATLAB

Operators C++ Operators F90 Operatorsa F77 Operators

() () [] -> . () ()

+ - ! ++ -- + ∗∗ ∗∗

- ∗ & (type)

sizeof
∗ / ∗ / % ∗ / ∗ /

+ -b + -b + -b + -b

< <= > >= << >> // //

== ~= < <= > => == /= < <= > .EQ. .NE.

>= .LT. .LE.

.GT. .GE.

~ == != .NOT. .NOT.

& && .AND. .AND.

| || .OR. .OR.

= | .EQV. .NEQV. .EQV. .NEQV.

?:

= += -= *= /=

%= &= ^= |=

<<= >>=

,

a User-defined unary (binary) operators have the highest (lowest) precedence in F90.
b These are binary operators representing addition and subtraction. Unary operators + and - have

higher precedence.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

app-a CB496-Akin September 18, 2002 10:59

A.1 List of Language Tables 233

Table A.6: Colon Operator Syntax and Its Applications

Syntax F90 MATLAB

Default B:E:I B:I:E

≥ B B: B:

≤ E :E :E

Full range : :

Use F90 MATLAB

Array subscript ranges yes yes
Character positions in a string yes yes
Loop control no yes
Array element generation no yes

B = Beginning, E = Ending, I = Increment

Table A.7: Mathematical Functions

Description MATLAB C++ F90 F77

exponential exp(x) exp(x) exp(x) exp(x)

natural log log(x) log(x) log(x) log(x)

base 10 log log10(x) log10(x) log10(x) log10(x)

square root sqrt(x) sqrt(x) sqrt(x) sqrt(x)

raise to power (xr) x. ^r pow(x,r) x**r x**r

absolute value abs(x) fabs(x) abs(x) abs(x)

smallest integer>x ceil(x) ceil(x) ceiling(x)

largest integer<x floor(x) floor(x) floor(x)

division remainder rem(x,y) fmod(x,y) mod(x,y)a mod(x,y)

modulo modulo(x,y)a

complex conjugate conj(z) conjg(z) conjg(z)

imaginary part imag(z) imag(z) aimag(z)

drop fraction fix(x) aint(x) aint(x)

round number round(x) nint(x) nint(x)

cosine cos(x) cos(x) cos(x) cos(x)

sine sin(x) sin(x) sin(x) sin(x)

tangent tan(x) tan(x) tan(x) tan(x)

arccosine acos(x) acos(x) acos(x) acos(x)

arcsine asin(x) asin(x) asin(x) asin(x)

arctangent atan(x) atan(x) atan(x) atan(x)

arctangentb atan2(x,y) atan2(x,y) atan2(x,y) atan2(x,y)

hyperbolic cosine cosh(x) cosh(x) cosh(x) cosh(x)

hyperbolic sine sinh(x) sinh(x) sinh(x) sinh(x)

hyperbolic tangent tanh(x) tanh(x) tanh(x) tanh(x)

hyperbolic arccosine acosh(x)

hyperbolic arcsine asinh(x)

hyperbolic arctan atanh(x)

a Differ for x < 0.
b atan2(x,y) is used to calculate the arctangent of x/y in the range [−π, +π]. The one-argument

function atan(x) computes the arctangent of x in the range [−π/2, +π/2].

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

app-a CB496-Akin September 18, 2002 10:59

234 Fortran 90 Overview

Table A.8: Flow Control Statements

Description C++ F90 F77 MATLAB

Conditionally execute statements if if if if

{ } end if end if end

Loop a specific number of times for k=1:n do k=1,n do # k=1,n for k=1:n

{ } end do # continue end

Loop an indefinite number of times while do while — while

{ } end do — end

Terminate and exit loop break exit go to break

Skip a cycle of loop continue cycle go to —

Display message and abort error() stop stop error

Return to invoking function return return return return

Conditional array action — where — if

Conditional alternate statements else else else else

else if elseif elseif elseif

Conditional array alternatives — elsewhere — else

— — — elseif

Conditional case selections switch { } select case if if

end select end if end

Table A.9: Basic Loop Constructs

Loop MATLAB C++ Fortran

Indexed loop for index=matrix for (init;test;inc) do index=b,e,i

statements { statements

end statements end do

}

Pretest loop while (test) while (test) { do while (test)

statements statements statements

end } end do

Posttest loop do { do

statements statements

} while (test) if (test) exit

end do

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

app-a CB496-Akin September 18, 2002 10:59

A.1 List of Language Tables 235

Table A.10: IF Constructs. The quantity l expression means a logical
expression having a value that is either TRUE of FALSE. The term true statement

or true group means that the statement or group of statements, respectively,
are executed if the conditional in the IF statement evaluates to TRUE.

MATLAB Fortran C++

if l expression IF (l expression) THEN if (l expression)

true group true group true group;

end END IF }

IF (l expression) true statement if (l expression)

true statement;

Table A.11: Nested IF Constructs

MATLAB Fortran C++

if l expression1 IF (l expression1) THEN if (l expression1)

true group A true group A {
if l expression2 IF (l expression2) THEN true group A

true group B true group B if (l expression2)

end END IF {
true group C true group C true group B

end END IF }
statement group D statement group D true group C

}
statement group D

Table A.12: Logical IF-ELSE Constructs

MATLAB Fortran C++

if l expression IF (l expression) THEN if (l expression)

true group A true group A {
else ELSE true group A

false group B false group B }
end END IF else

{
false group B

}

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

app-a CB496-Akin September 18, 2002 10:59

236 Fortran 90 Overview

Table A.13: Logical IF-ELSE-IF Constructs

MATLAB Fortran C++

if l expression1 IF (l expression1) THEN if (l expression1)

true group A true group A {
elseif l expression2 ELSE IF (l expression2) THEN true group A

true group B true group B }
elseif l expression3 ELSE IF (l expression3) THEN else if (l expression2)

true group C true group C {
else ELSE true group B

default group D default group D }
end END IF else if (l expression3)

{
true group C

}
else

{
default group D

}

Table A.14: Case Selection Constructs

F90 C++

SELECT CASE (expression) switch (expression)

CASE (value 1) {
group 1 case value 1 :

CASE (value 2) group 1

group 2 break;
... case value 2 :

CASE (value n) group 2

group n break;

CASE DEFAULT
...

default group case value n :

END SELECT group n

break;

default:

default group

break;

}

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

app-a CB496-Akin September 18, 2002 10:59

A.1 List of Language Tables 237

Table A.15: F90 Optional Logic Block Names

F90 Named IF F90 Named SELECT

name: IF (logical 1) THEN name: SELECT CASE (expression)

true group A CASE (value 1)

ELSE IF (logical 2) THEN group 1

true group B CASE (value 2)

ELSE group 2

default group C CASE DEFAULT

ENDIF name default group

END SELECT name

Table A.16: GO TO Break-out of Nested Loops. This Situation can be an
Exception to the General Recommendation to Avoid GO TO Statements

F77 C++

DO 1 ... for (...) {
DO 2 ... for (...) {
... ...

IF (disaster) THEN if (disaster)

GO TO 3 go to error

END IF ...

... }
2 END DO }
1 END DO error:

3 next statement

Table A.17: Skip a Single Loop Cycle

F77 F90 C++

DO 1 I = 1,N DO I = 1,N for (i=1; i<n; i++)

... ... {
IF (skip condition) THEN IF (skip condition) THEN if (skip condition)

GO TO 1 CYCLE ! to next I continue; // to next

ELSE ELSE else if

false group false group false group

END IF END IF end

1 continue END DO }

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

app-a CB496-Akin September 18, 2002 10:59

Table A.18: Abort a Single Loop

F77 F90 C++

DO 1 I = 1,N DO I = 1,N for (i=1; i<n; i++)

IF (exit condition) THEN IF (exit condition) THEN {
GO TO 2 EXIT ! this do if (exit condition)

ELSE ELSE break;// out of loop

false group false group else if

END IF END IF false group

1 CONTINUE END DO end

2 next statement next statement }
next statement

Table A.19: F90 DO’s Named for
Control

main: DO ! forever

test: DO k=1,k max

third: DO m=m max,m min,-1

IF (test condition) THEN

CYCLE test ! loop on k

END IF

END DO third ! loop on m

fourth: DO n=n min,n max,2

IF (main condition) THEN

EXIT main ! forever loop

END DO fourth ! on n

END DO test ! over k

END DO main

next statement

Table A.20: Looping While a Condition is True

MATLAB C++

initialize test initialize test

while l expression while (l expression)

true group {
change test true group

end change test

}

F77 F90

initialize test initialize test

continue do while (l expression)

IF (l expression) THEN true group

true group change test

change test end do

go to #

END IF

238

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

app-a CB496-Akin September 18, 2002 10:59

A.1 List of Language Tables 239

Table A.21: Function Definitions. In Each Case, the Function Being Defined is Named f and
is Called with m Arguments a1,...,am.

Function
Type MATLABa C++ Fortran

program statements main(argc,char **argv) program main

[y1...yn]=f(a1,...,am) { type y

[end of file] statements type a1,...,type am

y = f(a1,I,am); statements

} y = f(a1,...,am)

call s(a1,...,am)

end program

subroutine void f subroutine s(a1,...,am)

(type a1,...,type am) type a1,...,type am

{ statements

statements end

}

function function [r1...rn] type f function f(a1,...,am)

=f(a1,...,am) (type a1,...,type am) type f

statements { type a1,...,type am

statements statements

} end

a Every function or program in Matlab must be in separate files.

Table A.22: Arguments and Return Values of Subprograms

One-Input, One-Result Procedures

Matlab function out = name (in)

F90 function name (in) ! name = out

function name (in) result (out)

C++ name (in, out)

Multiple-Input, Multiple-Result Procedures

Matlab function [inout, out2] = name (in1, in2, inout)

F90 subroutine name (in1, in2, inout, out2)

C++ name(in1, in2, inout, out2)

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

app-a CB496-Akin September 18, 2002 10:59

240 Fortran 90 Overview

Table A.23: Defining and Referring to Global Variables

Global Variable Declaration

Matlab global list of variables
F77 common /set name/ list of variables
F90 module set name

save

type (type tag) :: list of variables
end module set name

C++ extern list of variables

Access to Variable Declaration

Matlab global list of variables
F77 common /set name/ list of variables
F90 use set name, only subset of variables

use set name2 list of variables
C++ extern list of variables

Table A.24: Bit Function Intrinsics

Action C++ F90

Bitwise AND & iand

Bitwise exclusive OR ∧ ieor

Bitwise exclusive OR | ior

Circular bit shift ishftc

Clear bit ibclr

Combination of bits mvbits

Extract bit ibits

Logical complement ∼ not

Number of bits in integer sizeof bit size

Set bit ibset

Shift bit left
 ishft

Shift bit right � ishft

Test on or off btest

Transfer bits to integer transfer

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

app-a CB496-Akin September 18, 2002 10:59

Table A.25: The ASCII Character Set

0 NUL 1 SOH 2 STX 3 ETX 4 EOT 5 ENQ 6 ACK 7 BEL

8 BS 9 HT 10 NL 11 VT 12 NP 13 CR 14 SO 15 SI

16 DLE 17 DC1 18 DC2 19 DC3 20 DC4 21 NAK 22 SYN 23 ETB

24 CAN 25 EM 26 SUB 27 ESC 28 FS 29 GS 30 RS 31 US

32 SP 33 ! 34 " 35 # 36 $ 37 % 38 & 39 ’

40 (41) 42 * 43 + 44 , 45 - 46 . 47 /

48 0 49 1 50 2 51 3 52 4 53 5 54 6 55 7

56 8 57 9 58 : 59 ; 60 < 61 = 62 > 63 ?

64 @ 65 A 66 B 67 C 68 D 69 E 70 F 71 G

72 H 73 I 74 J 75 K 76 L 77 M 78 N 79 O

80 P 81 Q 82 R 83 S 84 T 85 U 86 V 87 W

88 X 89 Y 90 Z 91 [92 \ 93] 94 ^ 95

96 ‘ 97 a 98 b 99 c 100 d 101 e 102 f 103 g

104 h 105 i 106 j 107 k 108 l 109 m 110 n 111 o

112 p 113 q 114 r 115 s 116 t 117 u 118 v 119 w

120 x 121 y 122 z 123 { 124 | 125 } 126 ~ 127 DEL

Table A.26: F90 Character Functions

ACHAR (I) Character number I in ASCII collating set
ADJUSTL (STRING) Adjust left
ADJUSTR (STRING) Adjust right
CHAR (I) ∗ Character I in processor collating set
IACHAR (C) Position of C in ASCII collating set
ICHAR (C) Position of C in processor collating set
INDEX (STRING, SUBSTRING)a Starting position of a substring
LEN (STRING) Length of a character entity
LEN TRIM (STRING) Length without trailing blanks
LGE (STRING A, STRING B) Lexically greater than or equal
LGT (STRING A, STRING B) Lexically greater than
LLE (STRING A, STRING B) Lexically less than or equal
LLT (STRING A, STRING B) Lexically less than
REPEAT (STRING, NCOPIES) Repeated concatenation
SCAN (STRING, SET)a Scan a string for a character in a set
TRIM (STRING) Remove trailing blank characters
VERIFY (STRING, SET)a Verify the set of characters in a string
STRING A//STRING B Concatenate two strings

a Optional arguments not shown.

Table A.27: How to Type Nonprinting Characters

Action ASCII Character F90 Inputa C++ Input

Alert (Bell) 7 Ctrl-G \a
Backspace 8 Ctrl-H \b
Carriage Return 13 Ctrl-M \r
End of Transmission 4 Ctrl-D Ctrl-D
Form Feed 12 Ctrl-L \f
Horizontal Tab 9 Ctrl-I \t
New Line 10 Ctrl-J \n
Vertical Tab 11 Ctrl-K \v

a “Ctrl-” denotes control action; That is, simultaneous pressing of the CONTROL key and the
letter following.

241

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

app-a CB496-Akin September 18, 2002 10:59

242 Fortran 90 Overview

Table A.28: Referencing Structure Components

C, C++ Variable.component.sub component

F90 Variable%component%sub component

Table A.29: Defining New Types of Data Structure

C, C++ struct data tag {
intrinsic type 1 component names;

intrinsic type 2 component names;

} ;

F90 type data tag

intrinsic type 1 :: component names;

intrinsic type 2 :: component names;

end type data tag

Table A.30: Nested Data Structure Definitions

C, C++ struct data tag {
intrinsic type 1 component names;

struct tag 2 component names;

} ;

F90 type data tag

intrinsic type :: component names;

type (tag 2) :: component names;

end type data tag

Table A.31: Declaring, Initializing, and Assigning Components of User-defined Data
Types

C, C++ struct data tag variable list; /* Definition */

struct data tag variable = {component values}; /* Initialization */

variable.component.sub component = value; /* Assignment */

F90 type (data tag) :: variable list ! Definition

variable = data tag (component values) ! Initialization

variable%component%sub component = value ! Assignment

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

app-a CB496-Akin September 18, 2002 10:59

Table A.32: F90–Derived-type Component Interpretation

INTEGER, PARAMETER :: j max = 6

TYPE meaning demo

INTEGER, PARAMETER :: k max = 9, word = 15

CHARACTER (LEN = word) :: name(k max)

END TYPE meaning demo

TYPE (meaning demo) derived(j max)

Construct Interpretation

derived All components of all derived’s elements
derived(j) All components of jth element of derived
derived(j)%name All k max components of namewithin jth element of derived
derived%name(k) Component k of the name array for all elements of derived
derived(j)%name(k) Component k of the name array of jth element of derived

Table A.33: Definition of Pointers and Accessing their Targets

C++ F90

Declaration type tag *pointer name; type (type tag), pointer ::

pointer name

Target &target name type (type tag), target :: target name

Examples char *cp, c; character, pointer :: cp

int *ip, i; integer, pointer :: ip

float *fp, f; real, pointer :: fp

cp = & c; cp => c

ip = & i; ip => i

fp = & f; fp => f

Table A.34: Nullifying a Pointer to Break
Association with Target

C, C++ pointer name = NULL

F90 nullify (list of pointer names)

F95 pointer name = NULL()

Table A.35: Special Array Characters

Purpose F90 MATLAB

Form subscripts () ()
Separate subscripts and elements , ,
Generate elements and subscripts : :
Separate commands ; ;
Form arrays (/ /) []
Continue to new line & . . .
Indicate comment ! %
Suppress printing default ;

243

P
1:F

C
H

/SP
H

P
2:F

C
H

/SP
H

Q
C

:F
C

H
/T

K
J

T
1:F

C
H

app-a
C

B
496-A

kin
Septem

ber
18,2002

10:59

Table A.36: Array Operations in Programming Constructs. Lowercase letters denote scalars or scalar elements of arrays. MATLAB arrays
are allowed a maximum of two subscripts, whereas Fortran allows seven. Uppercase letters denote matrices or scalar elements of
matrices

Description Equation Fortran 90 Operator MATLAB Operator Original Sizes Result Size

Scalar plus scalar c = a ± b c = a ± b c = a ± b; 1, 1 1, 1
Element plus scalar c jk = a jk ± b c = a ± b c = a ± b; m, n and 1, 1 m, n
Element plus element c jk = a jk ± b jk c = a ± b c = a ± b; m, n and m, n m, n

Scalar times scalar c = a × b c = a ∗ b c = a ∗ b; 1, 1 1, 1
Element times scalar c jk = a jk × b c = a ∗ b c = a ∗ b; m, n and 1, 1 m, n
Element times element c jk = a jk × b jk c = a ∗ b c = a. ∗ b; m, n and m, n m, n

Scalar divide scalar c = a/b c = a/b c = a/b; 1, 1 1, 1
Scalar divide element c jk = a jk/b c = a/b c = a/b; m, n and 1, 1 m, n
Element divide element c jk = a jk/b jk c = a/b c = a./b; m, n and m, n m, n

Scalar power scalar c = ab c = a∗∗b c = a ∧ b; 1, 1 1, 1
Element power scalar c jk = ab

jk c = a∗∗b c = a ∧ b; m, n and 1, 1 m, n

Element power element c jk = a
b jk

jk c = a∗∗b c = a. ∧ b; m, n and m, n m, n

Matrix transpose Ckj = A jk C = transpose (A) C = A′; m, n n, m
Matrix times matrix Ci j = ∑

k Aik Bkj C = matmul(A, B) C = A ∗ B; m, r and r, n m, n
Vector dot vector c = ∑

k Ak Bk c = sum(A ∗ B) c = sum(A. ∗ B); m, 1 and m, 1 1, 1
c = dot product(A, B) c = A ∗ B ′; m, 1 and m, 1 1, 1

244

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

app-a CB496-Akin September 18, 2002 10:59

A.1 List of Language Tables 245

Table A.37: Equivalent Fortran 90 and MATLAB Intrinsic Functions. The following KEY
symbols are utilized to denote the TYPE of the intrinsic function, or subroutine, and
its arguments: A-complex, integer, or real; I-integer; L-logical; M-mask (logical);
R-real; X-real; Y-real; V-vector (rank 1 array); and Z-complex. Optional arguments are
not shown. Fortran 90 and MATLAB also have very similar array operations and colon
operators

Type Fortran 90 MATLAB Brief Description

A ABS(A) abs(a) Absolute value of A
R ACOS(X) acos(x) Arc cosine function of real X
R AIMAG(Z) imag(z) Imaginary part of complex number
R AINT(X) real(fix(x)) Truncate X to a real whole number
L ALL(M) all(m) True if all mask elements M are true
R ANINT(X) real(round(x)) Real whole number nearest to X
L ANY(M) any(m) True if any mask element M is true
R ASIN(X) asin(x) Arcsine function of real X
R ATAN(X) atan(x) Arctangent function of real X
R ATAN2(Y,X) atan2(y,x) Arctangent for complex number(X, Y)
I CEILING(X) ceil(x) Least integer >= real X
Z CMPLX(X,Y) (x+yi) Convert real(s) to complex type
Z CONJG(Z) conj(z) Conjugate of complex number Z
R COS(R Z) cos(r z) Cosine of real or complex argument
R COSH(X) cosh(x) Hyperbolic cosine function of real X
I COUNT(M) sum(m==1) Number of true mask M elements
R,L DOT PRODUCT(X,Y) x’�y Dot product of vectors X and Y
R EPSILON(X) eps Number, like X,
 1
R,Z EXP(R Z) exp(r z) Exponential of real or complex number
I FLOOR(X) floor Greatest integer ≤ X
R HUGE(X) realmax Largest number like X
I INT(A) fix(a) Convert A to integer type
R LOG(R Z) log(r z) Logarithm of real or complex number
R LOG10(X) log10(x) Base 10 logarithm function of real X
R MATMUL(X,Y) x�y Conformable matrix multiplication, X*Y
I,V I=MAXLOC(X) [y,i]=max(x) Location(s) of maximum array element
R Y=MAXVAL(X) y=max(x) Value of maximum array element
I,V I=MINLOC(X) [y,i]=min(x) Location(s) of minimum array element
R Y=MINVAL(X) y=min(x) Value of minimum array element
I NINT(X) round(x) Integer nearest to real X
A PRODUCT(A) prod(a) Product of array elements
call RANDOM NUMBER(X) x=rand Pseudorandom numbers in (0, 1)
call RANDOM SEED rand(’seed’) Initialize random number generator
R REAL (A) real(a) Convert A to real type
R RESHAPE(X, (/ I, I2 /)) reshape(x, i, i2) Reshape array X into I×I2 array
I,V SHAPE(X) size(x) Array (or scalar) shape vector
R SIGN(X,Y) Absolute value of X times sign of Y
R SIGN(0.5,X)-SIGN(0.5,-X) sign(x) Signum, normalized sign, –1, 0, or 1
R,Z SIN(R Z) sin(r z) Sine of real or complex number
R SINH(X) sinh(x) Hyperbolic sine function of real X
I SIZE(X) length(x) Total number of elements in array X
R,Z SQRT(R Z) sqrt(r z) Square root, of real or complex number

(continued)

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

app-a CB496-Akin September 18, 2002 10:59

246 Fortran 90 Overview

(continued)

Type Fortran 90 MATLAB Brief Description

R SUM(X) sum(x) Sum of array elements
R TAN(X) tan(x) Tangent function of real X
R TANH(X) tanh(x) Hyperbolic tangent function of real X
R TINY(X) realmin Smallest positive number like X
R TRANSPOSE(X) x’ Matrix transpose of any type matrix
R X=1 x=ones(length(x)) Set all elements to 1
R X=0 x=zero(length(x)) Set all elements to 0

For more detailed descriptions and sample uses of these intrinsic functions see [1].

Table A.38: Truncating Numbers

C++ -- int -- -- floor ceil

F90 aint int anint nint floor ceiling

MATLAB real (fix) fix real (round) round floor ceil

Argument Value of Result

–2.000 –2.0 –2 –2.0 –2 –2 –2
–1.999 –1.0 –1 –2.0 –2 –2 –1
–1.500 –1.0 –1 –2.0 –2 –2 –1
–1.499 –1.0 –1 –1.0 –1 –2 –1
–1.000 –1.0 –1 –1.0 –1 –1 –1
–0.999 0.0 0 –1.0 –1 –1 0
–0.500 0.0 0 –1.0 –1 –1 0
–0.499 0.0 0 0.0 0 –1 0

0.000 0.0 0 0.0 0 0 0
0.499 0.0 0 0.0 0 0 1
0.500 0.0 0 1.0 1 0 1
0.999 0.0 0 1.0 1 0 1
1.000 1.0 1 1.0 1 1 1
1.499 1.0 1 1.0 1 1 2
1.500 1.0 1 2.0 2 1 2
1.999 1.0 1 2.0 2 1 2
2.000 2.0 2 2.0 2 2 2

Table A.39: F90 WHERE Constructs

WHERE (logical array expression)

true array assignments

ELSEWHERE

false array assignments

END WHERE

WHERE (logical array expression) true array assignment

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

app-a CB496-Akin September 18, 2002 10:59

Table A.40: F90 Array Operators with Logic Mask Control. T and F denote true and false,
respectively. Optional arguments: b -- DIM & MASK, d -- DIM, m -- MASK, v -- VECTOR and
DIM = 1 implies for any rows, DIM = 2 for any columns, and DIM = 3 for any plane

Function Description Opt Example

all Find if all values are true for a fixed
dimension.

d all(B = A, DIM = 1)
(true, false, false)

any Find if any value is true for a fixed
dimension.

d any (B > 2, DIM = 1)
(false, true, true)

count Count number of true elements for a fixed
dimension.

d count(A = B, DIM = 2)
(1, 2)

maxloc Locate first element with maximum value
given by mask.

m maxloc(A, A < 9)
(2, 3)

maxval Max element for fixed dimension given by
mask.

b maxval (B, DIM=1, B > 0)
(2, 4, 6)

merge Pick true array A or false array B according
to mask L.a

– merge(A, B, L)[
0 3 5
2 4 8

]

minloc Locate first element with minimum value
given by mask.

m minloc(A, A > 3)
(2, 2)

minval Min element for fixed dimension given by
mask.

b minval(B, DIM = 2)
(1, 2)

pack Pack array A into a vector under control of
mask.

v pack(A, B < 4)
(0, 7, 3)

product Product of all elements for fixed dimension
controlled by mask.

b product(B) ; (720)
product(B, DIM = 1, T)
(2, 12, 30)

sum Sum all elements for fixed dimension
controlled by mask.

b sum(B) ;(21)
sum(B, DIM = 2, T)
(9, 12)

unpack Replace the true locations in array B
controlled by mask L with elements from
the vector U.a

– unpack(U, L, B)[
7 3 8
2 4 9

]

a
A =

[
0 3 5
7 4 8

]
, B =

[
1 3 5
2 4 6

]
, L =

[
T F T
F F T

]
, U = (7, 8, 9)

Table A.41: Array Initialization Loop Constructs

MATLAB C++ F90

Preallocate linear array A(100)=0 int A[100];a integer A(100)

Initialize to a constant
value of 12

for j=1:100 % slow for (j=0; j<100; j++) A=12
A(j)=12 A[j]=12;

end

% better way
A=12*ones(1,100)

Preallocate two-
dimensional array

A=ones(10,10) int A[10][10]; integer A(10,10)

a C++ has a starting subscript of 0, but the argument in the allocation statement is the array’s size.

247

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

app-a CB496-Akin September 18, 2002 10:59

248 Fortran 90 Overview

Table A.42: Array Initialization Constructors

Action MATLAB C++ F90

Define size A=zeros(2,3)a int A[2][3]; integer,dimension(2,3)::A

Enter rows A=[1,7,-2; int A[2][3]={ A(1,:)=(/1,7,-2/)

3, 4, 6]; {1,7,2} A(2,:)=(/3,4,6/)

{3, 4, 6}
};

aOptional in Matlab but improves efficiency.

Table A.43: Elementary Matrix Computational Routines

MATLAB C++ F90

Addition
C = A + B C=A+B for (i=0; i<10; i++){ C=A+B

for (j=0; j<10; j++){
C[i][j]=A[i][j]+B[i][j];

}
}

Multiplication
C = AB C=A*B for (i=0; i<10; i++){ C=matmul(A,B)

for (j=0; j<10; j++){
C[i][j] = 0;

for (k=0; k<10; k++){
C[i][j] += A[i][k]*B[k][j];

}
}

}
Scalar multiplication
C = aB C=a*B for (i=0; i<10; i++){ C=a*B

for (j=0; j < 10; j++){
C[i][j] = a*B[i][j];

}
}

Matrix inverse

B = A−1 B=inv(A) a B=inv(A)a

a Neither C++ nor F90 has matrix inverse functions as part of language definitions or as part of standard
collections of mathematical functions (like those listed in Table 4.7). Instead, a special function,
usually drawn from a library of numerical functions, or a user-defined operation, must be used.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

app-a CB496-Akin September 18, 2002 10:59

Table A.44: Dynamic Allocation of Arrays and Pointers

C++ int* point, vector, matrix

...

point = new type tag

vector = new type tag [space 1]

if (vector == 0) {error process}
matrix = new type tag [space 1 * space 2]

...

delete matrix

...

delete vector

delete point

F90 type tag, pointer, allocatable :: point

type tag, allocatable :: vector (:), matrix (:,:)

...

allocate (point)

allocate (vector (space 1), STAT = my int)

if (my int /= 0) error process

allocate (matrix (space 1, space 2))

...

deallocate (matrix)

if (associated (point, target name)) pointer action ...

if (allocated (matrix)) matrix action ...

...

deallocate (vector)

deallocate (point)

Table A.45: Automatic Memory Management of Local Scope Arrays

SUBROUTINE AUTO ARRAYS (M,N, OTHER)

USE GLOBAL CONSTANTS ! FOR INTEGER K

IMPLICIT NONE

INTEGER, INTENT (IN) :: M,N

type tag, INTENT (OUT) :: OTHER (M,N) ! dummy array

! Automatic array allocations

type tag :: FROM USE (K)

type tag :: FROM ARG (M)

type tag :: FROM MIX (K,N)

...

! Automatic deallocation at end of scope

END SUBROUTINE AUTO ARRAYS

Table A.46: F90 Single Inheritance Form

module derived class name
use base class name

! new attribute declarations, if any
. . .

contains

! new member definitions
. . .

end module derived class name

249

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

app-a CB496-Akin September 18, 2002 10:59

250 Fortran 90 Overview

Table A.47: F90 Selective Single Inheritance
Form

module derived class name
use base class name, only: list of entities

! new attribute declarations, if any
. . .

contains

! new member definitions
. . .

end module derived class name

Table A.48: F90 Single Inheritance Form with Local Renaming

module derived class name
use base class name, local name => base entity name

! new attribute declarations, if any
. . .

contains

! new member definitions
. . .

end module derived class name

Table A.49: F90 Multiple Selective Inheritance with Renaming

module derived class name
use base1 class name
use base2 class name
use base3 class name, only: list of entities
use base4 class name, local name => base entity name

! new attribute declarations, if any
. . .

contains

! new member definitions
. . .

end module derived class name

A.2 Alphabetical Table of Fortran 90 Intrinsic Routines

The following KEY symbols are utilized to denote the TYPE of the intrinsic function,
or subroutine, and its arguments: A-complex, integer, or real; B-integer bit; C-character;
D-dimension; I-integer; K-kind; L-logical; M-mask (logical); N-integer, or real; P-pointer;
R-real; S-string; T-target; V-vector (rank-one array); X-real; Y-real; Z-complex; and *-any
type. For more detailed descriptions and sample uses of these intrinsic functions, see [1].

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

app-a CB496-Akin September 18, 2002 10:59

A.2 Alphabetical Table of Fortran 90 Intrinsic Routines 251

Alphabetical Table of Fortran 90 Intrinsic Functions

Type Intrinsic Description

A ABS (A) Absolute value of A
C ACHAR (I) Character in position I of ASCII collating sequence
R ACOS (X) Arc cosine (inverse cosine) function of real X
C ADJUSTL (S) Adjust S left; move leading blanks to trailing blanks
C ADJUSTR (S) Adjust S right; move trailing blanks to leading blanks
R AIMAG (Z) Imaginary part of complex number Z
R AINT (X [,K]) Truncate X to a real whole number of the given kind
L ALL (M [,D]) True if all mask M elements are true in dimension D
L ALLOCATED (* ARRAY P) True if the array or pointer is allocated
R ANINT (X [,K]) Real whole number nearest to X of the given kind
L ANY (M [,D]) True if any mask M element is true in dimension D
R ASIN (X) Arcsine (inverse sine) function of real X
L ASSOCIATED (P [,T]) True if pointer P is associated with any target or T
R ATAN (X) Arctangent (inverse tangent) function of real X
R ATAN2 (Y,X) Arctangent for argument of complex number (X, Y)
I BIT SIZE (I) Maximum number of bits integer I can hold (e.g., 32)
L BTEST (I,I POS) True if bit location I POS of integer I has value 1
I CEILING (X) Least integer ≥ real X of the given kind
C CHAR (I [,K]) Character in position I of processor collating sequence
Z CMPLX (X [,Y][,K]) Convert real(s) to complex type of given kind
Z CONJG (Z) Conjugate of complex number Z
R COS (R Z) Cosine function of real or complex argument
R COSH (X) Hyperbolic cosine function of real X
I COUNT (M [,D]) Number of true mask M elements in dimension D
� CSHIFT (� ARAY,I SHIF [,D]) Circular shift out and in for I SHIF elements
call DATE AND TIME ([S DATE] Real-time clock date, time, zone, and vector

[,S TIME] [,S ZONE]
[,I V VALUES])

with year, month, day, UTC, hour, minutes, seconds,
and milliseconds

R DBLE (A) Convert A to double-precision real
N DIGITS (N) Number of significant digits for N (e.g., 31)
R DIM (X,Y) The difference, MAX (X – Y, 0.0)
N,L DOT PRODUCT (V,V 2) Dot product of vectors V and V 2
R DPROD (X,Y) Double-precision real product of two real scalars
� EOSHIFT (� ARRAY, Perform vector end-off shift by ± I shift terms

I SHIFT [,� FILL][,D]) and fill in dimension D
R EPSILON (X) Number
 1 for numbers like X (e.g. 2��–23)
R,Z EXP (R Z) Exponential function of real or complex argument
I EXPONENT (X) Exponent part of the model for real X
I FLOOR (X) Greatest integer less than or equal to X
R FRACTION (X) Fractional part of the model for real X
N HUGE (N) Largest number for numbers like N (e.g., 2��128)
I IACHAR (C) Position of character C in ASCII collation
B IAND (I,I 2) Logical AND on the bits of I and I 2
B IBCLR (I,I POS) Clear bit I POS to zero in integer I
B IBITS (I,I POS,I LEN) Extract an I LEN sequence of bits at I POS in I
B IBSET (I,I POS) Set bit I POS to one in integer I
I ICHAR (C) Position of character C in processor collation
B IEOR (I,I 2) Exclusive OR on the bits of I and I 2
I INDEX (S,S SUB [,L BACK]) Left starting position of S SUB within S (right)

(continued)

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

app-a CB496-Akin September 18, 2002 10:59

252 Fortran 90 Overview

(continued)

Type Intrinsic Description

I INT (A [,K]) Convert A to integer type of given kind
B IOR (I,I 2) Inclusive OR on the bits of I and I 2
B ISHFT (I,I SHIFT) Logical shift of bits of I by I SHIFT pad with 0
B ISHFTC (I,I SHIFT [,I SIZE]) Logical circular shift of I SIZE rightmost bits of I
I KIND (ANY) Kind type integer parameter value for any argument
I,V LBOUND (� ARRAY [,D]) ARRAY lower bound(s) vector along dimension D
I LEN (S) Total character string length
I LEN TRIM (S) Length of S without trailing blanks
L LGE (S,S 2) True if S > or equal to S 2 in ASCII sequence
L LGT (S,S 2) True if S follows S 2 in ASCII collating sequence
L LLE (S,S 2) True if S < or equal to S 2 in ASCII sequence
L LLT (S,S 2 True if S precedes S 2 in ASCII collating sequence
R LOG (R Z) Natural (base e) logarithm of real or complex number
L LOGICAL (L [,K]) Convert L to logical of kind K
R LOG10 (X) Common (base 10) logarithm function of real X
N,L MATMUL (MATRIX,MATRIX 2) Conformable matrix multiplication
N MAX (N,N 2 [,N 3,...]) Maximum value of two or more numbers of the same

type
I MAXEXPONENT (X) Maximum exponent for real numbers like X (e.g. 128)
I,V MAXLOC (N ARRAY [,M]) Location(s) of maximum ARRAY element passing M
N MAXVAL (N ARRAY [,D] [,M]) Maximum ARRAY term in dimension D passing M
� MERGE (� TRUE,� FALSE,M) Use � TRUE when M is true; � FALSE otherwise
N MIN (N,N 2 [,N 3,...]) Minimum value of two or more same type numbers
I MINEXPONENT (X) Minimum exponent for real numbers like X (e.g., –125)
I,V MINLOC (N ARRAY [,M]) Location(s) of minimum ARRAY term, passing M
N MINVAL (N ARRAY [,D] [,M]) Minimum ARRAY term in dimension D passing M
N MOD (N,N 2) Remainder for N 2. That is, N–INT(N/N 2)� N 2
N MODULO (N,N 2) Modulo, that is, N–FLOOR(N/N 2)�N 2
call MVBITS (I FROM,I LOC, Copy I LEN bits at I LOC in I FROM to I TO at

I POSI LEN,I TO,I POS)
R NEAREST (X,Y) Nearest number at X in the direction of sign Y
I NINT (X [,K]) Integer nearest to real X of the stated kind
I NOT (I) Logical complement of the bits of integer I
�,V PACK (� ARRAY,M [,V PAD]) Pack ARRAY at true M into vector using V PAD
I PRECISION (R Z) Decimal precision for a real or complex R Z (e.g., 6)
L PRESENT (OPTIONAL) True if optional argument is present in call
A PRODUCT (A ARRAY [,D] [,M]) Product of ARRAY elements along D for mask M
I RADIX (N) Base of the model for numbers like N (e.g., 2)
call RANDOM NUMBER (X) Pseudorandom numbers in range 0 < X < 1
call RANDOM SEED ([I SIZE] Initialize random number generator; defaults to

[,I V PUT][,I V GET]) processor initialization
I RANGE (A) Decimal exponent range in the model for A (e.g., 37)
R REAL (A [,K]) Convert A to real type of type K
S REPEAT (S,I COPIES) Concatenates I COPIES of string S
� RESHAPE (� ARAY,I V SHAP Reshape ARAY using vector SHAP pad from

[,� PAD] [,V ORDER]) an array and reorder
R RRSPACING (X) Relative spacing reciprocal of numbers near X
R SCALE (X,I) Return X times b��I, for base of b = RADIX (X)
I SCAN (S,S SET [,L BACK]) Leftmost character index in S found in S SET;

(rightmost)
I SELECTED INT KIND (I r) Integer kind with range, –(10��I r) to (10��I r)

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

app-a CB496-Akin September 18, 2002 10:59

A.3 Subject Table of Fortran 90 Intrinsic Routines 253

Type Intrinsic Description

I SELECTED REAL KIND Kind for real of decimal precision I and exponent
I ([I] [,I r]) range I r
R SET EXPONENT (X,I) Number with mantissa of X and exponent of I
I,V SHAPE (� ARRAY) ARRAY (or scalar) shape vector
N SIGN (N,N 2) Absolute value of N times sign of same type N 2
R,Z SIN (R Z) Sine function of real or complex number
R SINH (X) Hyperbolic sine function of real X
I SIZE (� ARRAY [,D]) ARRAY size along dimension D
R SPACING (X) Absolute spacing of numbers near real X (e.g., 2��–17)
� SPREAD (� ARAY,D,I COPIES) I COPIES along dimension D of ARAY into an array

of rank 1 greater
R,Z SQRT (R Z) Square root function of real or complex number
A SUM (A ARRAY [,D] [,M]) Sum of ARRAY elements along D passing mask M
call SYSTEM CLOCK ([I NOW] Integer data from real-time clock. CPU time is

[,I RATE] [,I MAX]) (finish now - start now) / rate
R TAN (X) Tangent function of real X
R TANH (X) Hyperbolic tangent function of real X
R TINY (N) Smallest positive number, like N (e.g., 2��–126)
� TRANSFER (� ARAY, V MOLD Same representation as ARAY but type of MOLD in

vector of length SIZE[,I SIZE])
� TRANSPOSE (MATRIX) Matrix transpose of any type matrix
S TRIM (S) Remove trailing blanks from a single string
I,V UBOUND (� ARRAY [,D]) ARRAY upper bound(s) vector along dimension D
� UNPACK (V,M,� USE) Unpack vector V at true elements of M into USE
I VERIFY (S,S SET [,L BACK]) First position in S not found in S SET (or last)

A.3 Subject Table of Fortran 90 Intrinsic Routines

The following KEY symbols are utilized to denote the TYPE of the intrinsic function,
or subroutine, and its arguments: A-complex, integer, or real; B-integer bit; C-character;
D-dimension; I-integer; K-kind; L-logical; M-mask (logical); N-integer, or real; P-pointer;
R-real; S-string; T-target; V-vector (rank one array); X-real; Y-real; Z-complex; and *-any
type. For more detailed descriptions and illustrative uses of these intrinsic functions, see
Adams, J.C. et al., [1].

Subject Table of Fortran 90 Intrinsic Routines

Type Intrinsic Description

ALLOCATION
L ALLOCATED (� ARRAY) True if the array is allocated

ARGUMENT
L PRESENT (OPTIONAL) True if optional argument is present in the call

ARRAY: CONSTRUCTION
� MERGE (� TRUE,� FALSE,M) Use � TRUE if M is true; � FALSE otherwise
�,V PACK (� ARRAY,M [,V PAD]) Pack ARRAY for true M into vector and pad from

V PAD

� RESHAPE (� ARRAY,I V Reshape ARRAY using vector SHAPE, pad from an
array, and reorderSHAPE [,� PAD] [,V ORDER])

(continued)

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

app-a CB496-Akin September 18, 2002 10:59

254 Fortran 90 Overview

(continued)

Type Intrinsic Description

� SPREAD (� ARRAY,D,I COPIES) I COPIES along D of ARRAY to rank 1 greater array
� UNPACK (V,M,� USE) Unpack V at true elements of M into USE

ARRAY: DIMENSIONS
I,V LBOUND (� ARRAY [,D]) ARRAY lower bound(s vector) along dimension D
I,V SHAPE (� ARRAY) ARRAY (or scalar) shape vector
I SIZE (� ARRAY [,D]) ARRAY size along dimension D
I,V UBOUND (� ARRAY [,D]) ARRAY upper bound(s vector) along dimension D

ARRAY: INQUIRY
L ALL (M [,D]) True if all mask M elements are true along D
L ALLOCATED (� ARRAY) True if the array is allocated
L ANY (M [,D]) True if any mask M element is true along D
I,V LBOUND (� ARRAY [,D]) ARRAY lower bound(s) vector along dimension D
I,V SHAPE (� ARRAY) ARRAY (or scalar) shape vector
I,V UBOUND (� ARRAY [,D]) ARRAY upper bound(s) vector along dimension D

ARRAY: LOCATION
I,V MAXLOC (N ARRAY [,M]) Location(s) of maximum ARRAY term passing M
I,V MINLOC (N ARRAY [,M]) Location(s) of minimum ARRAY term passing M
ARRAY: MANIPULATION
� CSHIFT (� ARRAY,I SHIFT [,D]) Circular shift out and in for I SHIFT elements
� EOSHIFT (� ARRAY,I SHIFT End-off shift ARRAY and fill in dimension D

[,� FIL][,D])
� TRANSPOSE (MATRIX) Matrix transpose of any type matrix

ARRAY: MATHEMATICS
N,L DOT PRODUCT (V,V 2) Dot product of vectors V and V 2
N,L MATMUL (MATRIX,MATRIX 2) Conformable matrix multiplication
N MAXVAL (N ARRAY [,D] [,M]) Value of max ARRAY term along D passing M
N MINVAL (N ARRAY [,D] [,M]) Value of min ARRAY term along D passing M
A PRODUCT (A ARRAY [,D] [,M]) Product of ARRAY terms along D for mask M
A SUM (A ARRAY [,D] [,M]) Sum of ARRAY terms along D passing mask M

ARRAY: PACKING
�,V PACK (� ARRAY,M [,V PAD]) Pack ARRAY for true M into vector and pad from

V PAD
� UNPACK (V,M,� USE) Unpack V at true elements of M into USE

ARRAY: REDUCTION
L ALL (M [,D]) True if all mask M terms are true along D
L ANY (M [,D]) True if any mask M term is true along D
I COUNT (M [,D]) Number of true mask M terms along dimension D
N MAXVAL (N ARRAY [,D] [,M]) Value of max ARRAY term along D passing M
N MINVAL (N ARRAY [,D] [,M]) Value of min ARRAY term along D passing M
A PRODUCT (A ARRAY [,D] [,M]) Product of ARRAY terms along D for mask M
A SUM (A ARRAY [,D] [,M]) Sum of ARRAY terms along D passing mask M

BACK SCAN
I INDEX (S,S SUB [,L BACK]) Left starting position of S SUB within S (or right)
I SCAN (S,S SET [,L BACK]) Left character index in S also in S SET (or right)
I VERIFY (S,S SET [,L BACK]) First position in S not belonging to S SET (or last)

BIT: INQUIRY
I BIT SIZE (I) Max number of bits possible in integer I (e.g., 32)

BIT: MANIPULATION
L BTEST (I,I POS) True if bit location I POS of integer I has value 1

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

app-a CB496-Akin September 18, 2002 10:59

A.3 Subject Table of Fortran 90 Intrinsic Routines 255

Type Intrinsic Description

B IAND (I,I 2) Logical AND on the bits of I and I 2
B IBCLR (I,I POS) Clear bit I POS to zero in integer I
B IBITS (I,I POS,I LEN) Extract I LEN bits at I POS in integer I
B IBSET (I,I POS) Set bit I POS to one in integer I
B IEOR (I,I 2) Exclusive OR on the bits of I and I 2
B IOR (I,I 2) Inclusive OR on the bits of I and I 2
B ISHFT (I,I SHIFT) Logical shift of bits of I by I SHIFT, pad with 0
B ISHFTC (I,I SHIFT [,I SIZE]) Logical circular shift of I SIZE rightmost bits of I
call MVBITS (I GET, I LOC, I,

I TO,I POS) Copy I bits at I LOC in I GET to I TO at I POS
I NOT (I) Logical complement of the bits of integer I
� TRANSFER (� ARRAY,

V MOLD [,I SIZE]) Same representation as ARRAY but type of MOLD

BOUNDS
I CEILING (X) Least integer greater than or equal to real X
I FLOOR (X) Greatest integer less than or equal to X
I,V LBOUND (� ARRAY [,D]) ARRAY lower bound(s) vector along dimension D
N MAX (N,N 2 [,N 3,...]) Maximum value of two or more numbers same type
N MAXVAL (N ARRAY [,D] [,M]) Value of max ARRAY term along D passing M
N MINVAL (N ARRAY [,D] [,M]) Value of min ARRAY term along D passing M
I,V UBOUND (� ARRAY [,D]) ARRAY upper bound(s) vector along dimension D

CALLS
call MVBITS (I GET,I LOC,I, Copy I bits at I LOC in I GET to I TO at I POS

I TO,I POS)
call DATE AND TIME ([S DATE] Real-time clock data

[,S TIME] [,S ZONE]
[,I V VALUES])

call RANDOM NUMBER (X) Pseudorandom numbers in range 0 < X < 1
call RANDOM SEED ([I SIZE] Initialize random number generator

[,I V P] [,I V G])
call SYSTEM CLOCK ([I NOW] Integer data from real-time clock

[,I RAT] [,I MX])

CHARACTERS
C ACHAR (I) Character in position I of ASCII collating sequence
C CHAR (I [,K]) Character in position I of processor collation
I IACHAR (C) Position of character C in ASCII collating sequence
I ICHAR (C) Position of character C in processor collation

CLOCK
call SYSTEM CLOCK ([I NOW] Integer data from real-time clock

[,I RAT] [,I MX])

COMBINING
� MERGE (� TRUE,� FALSE,M) Use � TRUE term if M is true or � FALSE otherwise

COMPLEX
R AIMAG (Z) Imaginary part of complex number
Z CMPLX (X [,Y][,K]) Convert real(s) to complex type of given kind
Z CONJG (Z) Conjugate of complex number Z
R COS (R Z) Cosine function of real or complex argument
R,Z EXP (R Z) Exponential function of real or complex argument
R LOG (R Z) Natural (base e) logarithm of real or complex number
I PRECISION (R Z) Decimal precision of real or complex value (e.g. 6)
R,Z SIN (R Z) Sine function of real or complex number

(continued)

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

app-a CB496-Akin September 18, 2002 10:59

256 Fortran 90 Overview

(continued)

Type Intrinsic Description

R,Z SQRT (R Z) Square root function of real or complex number

CONVERSIONS
R AIMAG (Z) Imaginary part of complex number
R AINT (X [,K]) Truncate X to a real whole number
Z CMPLX (X [,Y][,K]) Convert real (s) to complex type of given kind
R DBLE (A) Convert A to double-precision real
R DPROD (X,Y) Double-precision product of two default real scalars
I INT (A [,K]) Convert A to integer type of given kind
L LOGICAL (L [,K]) Convert L to logical of kind K
I NINT (X [,K]) Integer nearest to real X of the stated kind
R REAL (A [,K]) Convert A to real type of type K
N SIGN (N,N 2) Absolute value of N times sign of same type N 2
� TRANSFER (� ARRAY, Same representation as ARRAY but type of MOLD

V MOLD [,I SIZ])

COPIES
� MERGE (� TRUE,� FALSE,M) Use � TRUE if M is true or � FALSE otherwise
call MVBITS (I FROM,I LOC, I, Copy I bits at I LOC in I FROM to I TO at I POS

I TO,I POS)
S REPEAT (S,I COPIES) Concatenate I COPIES of string S
� SPREAD (� ARRAY,D,I COPIES) I COPIES along D of ARRAY to rank 1 greater array

COUNTING
I COUNT (M [,D]) Number of true mask M terms along dimension D

DATE
call DATE AND TIME ([S DATE] Real-time clock data

[,S TIME] [,S ZONE]
[,I V VALUES])

DIMENSION OPTIONAL ARGUMENT
L ALL (M [,D]) True if all mask M terms are true along D
L ANY (M [,D]) True if any mask M term is true along D
I COUNT (M [,D]) Number of true mask M terms along dimension D
� CSHIFT (� ARRAY,I SHIFT [,D]) Perform circular shift out and in for I SHIFT terms
� EOSHIFT (� ARRAY, Perform end-off shift and fill in dimension D

I SHIFT [,� FIL][,D])
I,V LBOUND (� ARRAY [,D]) ARRAY lower bound(s) vector along dimension D
N MAXVAL (N ARRAY [,D] [,M]) Value of max ARRAY term along D passing M
N MINVAL (N ARRAY [,D] [,M]) Value of min ARRAY term along D passing M
A PRODUCT (A ARRAY [,D] [,M]) Product of ARRAY terms along D for mask M
I SIZE (� ARRAY [,D]) ARRAY size along dimension D
A SUM (A ARRAY [,D] [,M]) Sum of ARRAY terms along D passing mask M
I,V UBOUND (� ARRAY [,D]) ARRAY upper bound(s) vector along dimension D

DIMENSIONS
I,V LBOUND (� ARRAY [,D]) ARRAY lower bound(s) vector along dimension D
I,V SHAPE (� ARRAY) ARRAY (or scalar) shape vector
I SIZE (� ARRAY [,D]) ARRAY size along dimension D
I,V UBOUND (� ARRAY [,D]) ARRAY upper bound(s) vector along dimension D

DOUBLE PRECISION (see SELECTED REAL KIND)
R DBLE (A) Convert A to double-precision real
R DPROD (X,Y) Double-precision product of two default real scalars

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

app-a CB496-Akin September 18, 2002 10:59

A.3 Subject Table of Fortran 90 Intrinsic Routines 257

Type Intrinsic Description

EXISTENCE
L ALLOCATED (� ARRAY) True if the array is allocated
L ASSOCIATED (P [,T]) True if pointer P is associated with any target or T
L PRESENT (OPTIONAL) True if optional argument is present in call

FILE

FILL IN
� EOSHIFT (� ARRAY,I SHIFT

[,� FIL][,D]) End-off shift ARRAY and fill in dimension D

INQUIRY: ARRAY
L ALL (M [,D]) True if all mask M terms are true along D
L ALLOCATED (� ARRAY) True if the array is allocated
L ANY (M [,D]) True if any mask M term is true along D
I,V LBOUND (� ARRAY [,D]) ARRAY lower bound(s) vector along dimension D
I,V SHAPE (� ARRAY) ARRAY (or scalar) shape vector
I SIZE (� ARRAY [,D]) ARRAY size along dimension D
I,V UBOUND (� ARRAY [,D]) ARRAY upper bound(s) vector along dimension D

INQUIRY: BIT
I BIT SIZE (I) Max number of bits possible in integer I (e.g., 32)

INQUIRY: CHARACTER
I LEN (S) Total character string length
I LEN TRIM (S) Length of S without trailing blanks

INQUIRY: NUMBER MODEL
N DIGITS (N) Number of significant digits in number N (e.g., 31)
R EPSILON (X) Number
 1 for numbers like X (e.g., 2��–23)
N HUGE (N) Largest number for numbers like N (e.g. 2��128)
I MAXEXPONENT (X) Max exponent for real numbers like X (e.g., 128)
I MINEXPONENT (X) Min exponent for real numbers like X (e.g., –125)
I PRECISION (R Z) Decimal precision for real or complex value (e.g., 6)
I RADIX (N) Base of the model for numbers like N (e.g., 2)
I RANGE (A) Decimal exponent range for A (e.g., 37)
I,V SHAPE (� ARRAY) ARRAY (or scalar) shape vector
I SIZE (� ARRAY [,D]) ARRAY size along dimension D
R TINY (N) Smallest positive number like N (e.g., 2��–126)

INQUIRY: MISCELLANEOUS
I COUNT (M [,D]) Number of true mask M elements along D
I INDEX (S,S SUB [,L BACK]) Left starting position of S SUB within S (or right)
I SCAN (S,S SET [,L BACK]) Left character index in S also in S SET; (or right)
I VERIFY (S,S SET [,L BACK]) First position in S not belonging to S SET, (or last)

INTEGERS
I CEILING (X) Least integer greater than or equal to real X
I FLOOR (X) Greatest integer less than or equal to X
I MAX1 (X,X2 [,X3]) Maximum integer from list of reals
I MIN1 (X,X2 [,X3]) Minimum integer from list of reals
N MODULO (N,N 2) Modulo, N-FLOOR(N/N 2)�N 2
I SELECTED INT KIND (I r) Integer with exponent, –(10��I r) to (10��I r)

KIND: INQUIRY
I KIND (ANY) Kind type integer parameter value for any argument

KIND: DEFINITION
I SELECTED INT KIND (I r) Integer with exponent, –(10��I r) to (10��I r)

(continued)

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

app-a CB496-Akin September 18, 2002 10:59

258 Fortran 90 Overview

(continued)

Type Intrinsic Description

I SELECTED REAL KIND ([I] Real with precision I and exponent range I r
[,I r])

KIND: USE OPTION
R AINT (X [,K]) Truncate X to a real whole number
R ANINT (X [,K]) Real whole number nearest to X
C CHAR (I [,K]) Character in position I of processor collation
Z CMPLX (X [,Y][,K]) Convert real(s) to complex type of given kind
I INT (A [,K]) Convert A to integer type of given kind
L LOGICAL (L [,K]) Convert L to logical of kind K
I NINT (X [,K]) Integer nearest to real X of the stated kind
R REAL (A [,K]) Convert A to real type of type K

LOCATION
I IACHAR (C) Position of character C in ASCII collating sequence
I ICHAR (C) Position of character C in processor collation
I INDEX (S,S SUB [,L BACK]) Left starting position of S SUB within S (or right)
I,V MAXLOC (N ARRAY [,M]) Vector location(s) of ARRAY maximum passing M
I,V MINLOC (N ARRAY [,M]) Vector location(s) of ARRAY minimum passing M
I SCAN (S,S SET [,L BACK]) Left character index in S found in S SET; (or right)

LOGICAL
L ALL (M [,D]) True if all mask M terms are true along D
L ALLOCATED (� ARRAY) True if the array is allocated
L ANY (M [,D]) True if any mask M term is true along D
L ASSOCIATED (P [,T]) True if pointer P is associated with any target or T
L BTEST (I,I POS) True if bit location I POS of integer I has value one
N,L DOT PRODUCT (V,V 2) Dot product of vectors V and V 2
B IAND (I,I 2) Logical AND on the bits of I and I 2
B IEOR (I,I 2) Exclusive OR on the bits of I and I 2
B IOR (I,I 2) Inclusive OR on the bits of I and I 2
B ISHFT (I,I SHIFT) Logical shift of bits of I by I SHIFT; pad with 0
L LGE (S,S 2) True if S is ≥ S 2 in ASCII collating sequence
L LGT (S,S 2) True if S follows S 2 in ASCII collating sequence
L LLE (S,S 2) True if S is ≤ to S 2 in ASCII collating sequence
L LLT (S,S 2) True if S precedes S 2 in ASCII collating sequence
N,L MATMUL (MATRIX,MATRIX 2) Conformable matrix multiplication
L LOGICAL (L [,K]) Convert L to logical of kind K
I NOT (I) Logical complement of the bits of integer I
L PRESENT (OPTIONAL) True if optional argument is present in call

MASK, or MASK OPTIONAL ARGUMENT
L ALL (M [,D]) True if all mask M terms are true along D
L ANY (M [,D]) True if any mask M term is true along D
I COUNT (M [,D]) Number of true mask M terms, along dimension D
I,V MAXLOC (N ARRAY [,M]) Vector of location(s) of ARRAY max’s passing M
N MAXVAL (N ARRAY [,D] [,M]) Value of ARRAY maximum along D passing M
� MERGE (� TRUE,� FALSE,M) Use � TRUE if M is true or � FALSE otherwise.
I,V MINLOC (N ARRAY [,M]) Vector location(s) of ARRAY minimum passing M
N MINVAL (N ARRAY [,D] [,M]) Value of ARRAY minimum along D passing M
�,V PACK (� ARRAY,M [,V PAD]) Pack ARRAY for true M into vector; pad from V PAD
A PRODUCT (A ARRAY [,D] [,M]) Product of ARRAY terms along D for mask M
A SUM (A ARRAY [,D] [,M]) Sum of ARRAY terms along D passing mask M

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

app-a CB496-Akin September 18, 2002 10:59

A.3 Subject Table of Fortran 90 Intrinsic Routines 259

Type Intrinsic Description

MATHEMATICAL FUNCTIONS
R ACOS (X) Arccosine (inverse cosine) function of real X
R ASIN (X) Arcsine (inverse sine) function of real X
R ATAN (X) Arctangent (inverse tangent) function of real X
R ATAN2 (Y,X) Arctangent for argument of complex number (X, Y)
R COS (R Z) Cosine function of real or complex argument
R COSH (X) Hyperbolic cosine function of real X
R,Z EXP (R Z) Exponential function of real or complex argument
R LOG (R Z) Natural logarithm of real or complex number
R LOG10 (X) Common (base 10) logarithm function of real X
R,Z SIN (R Z) Sine function of real or complex number
R SINH (X) Hyperbolic sine function of real X
R TAN (X) Tangent function of real X
R TANH (X) Hyperbolic tangent function of real X

MATRICES (See ARRAYS)
N,L DOT PRODUCT (V,V 2) Dot product of vectors V and V 2
N,L MATMUL (MATRIX,MATRIX 2) Conformable matrix multiplication
� TRANSPOSE (MATRIX) Matrix transpose of any type matrix

NUMBER MODEL
N DIGITS (N) Number of significant digits for N (e.g., 31)
R EPSILON (X) Number
 1 for numbers like X (e.g., 2��–23)
I EXPONENT (X) Exponent part of the model for real X
R FRACTION (X) Fractional part of the model for real X
N HUGE (N) Largest number for numbers like N (e.g., 2��128)
R NEAREST (X,Y) Nearest number at X in the direction of sign Y
I RADIX (N) Base of the model for numbers like N (e.g., 2)
I RANGE (A) Decimal exponent range for A (e.g., 37)
R RRSPACING (X) Reciprocal of relative spacing of numbers near X
R SCALE (X,I) Return X times b��I, where base b = RADIX (X)
R SET EXPONENT (X,I) Real with mantissa part of X and exponent part of I
R SPACING (X) Absolute spacing of numbers near X (e.g., 2��-17)
R TINY (N) Smallest positive number like N (e.g., 2��–126)

NUMERIC FUNCTIONS
A ABS (A) Absolute value of A
R AIMAG (Z) Imaginary part of complex number
R ANINT (X [,K]) Real whole number nearest to X
I CEILING (X) Least integer greater than or equal to real X
Z CMPLX (X [,Y][,K]) Convert real(s) to complex type of given kind
Z CONJG (Z) Conjugate of complex number Z
R DBLE (A) Convert A to double-precision real
R DPROD (X,Y) Double-precision real product of two real scalars
I FLOOR (X) Greatest integer less than or equal to X
I INT (A [,K]) Convert A to integer type of given kind
N MAX (N,N 2 [,N 3,...]) Maximum value of two or more numbers same type
N MIN (N,N 2 [,N 3,...]) Minimum value of two or more same type numbers
N MOD (N,N 2) Remainder for N 2, i.e., N-INT(N/N 2)�N 2
N MODULO (N,N 2) Modulo, N-FLOOR(N/N 2)�N 2
R REAL (A [,K]) Convert A to real type of type K
N SIGN (N,N 2) Absolute value of N times sign of same type N 2

PADDING
B ISHFT (I,I SHIFT) Logical shift of bits of I by I SHIFT; pad with 0

(continued)

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

app-a CB496-Akin September 18, 2002 10:59

260 Fortran 90 Overview

(continued)

Type Intrinsic Description

�,V PACK (� ARRAY,M [,V PAD]) Pack ARRAY for true M into vector; pad from V PAD
� RESHAPE (� ARRAY,I V SHAPE

[,� PAD] [,V ORDER]) Reshape ARRAY to vector SHAPE, pad, reorder
POINTER
L ASSOCIATED (P [,T]) True if pointer P is associated with any target or T

PRESENCE
L PRESENT (OPTIONAL) True if optional argument is present in call

RANDOM NUMBER
call RANDOM NUMBER (X) Pseudorandom numbers in range 0 < X < 1
call RANDOM SEED ([I SIZE]

[,I V P][,I V G]) Initialize random number generator

REALS
R AINT (X [,K]) Truncate X to a real whole number
R ANINT (X [,K]) Real whole number nearest to X
R AMAX0 (I,I2 [,I3]) Maximum real from list of integers
R AMIN0 (I,I2 [,I3]) Minimum real from list of integers
R REAL (A [,K]) Convert A to real type, of type K
I SELECTED REAL KIND ([I] Real with precision I and exponent range I r

[,I r])

REDUCTION
L ALL (M [,D]) True if all mask M terms are true along D
L ANY (M [,D]) True if any mask M term is true along D
I COUNT (M [,D]) Number of true mask M terms along dimension D
N MAXVAL (N ARRAY [,D] [,M]) Value of max ARRAY term along D passing M
N MINVAL (N ARRAY [,D] [,M]) Value of min ARRAY term along D passing M
A PRODUCT (A ARRAY [,D] [,M]) Product of ARRAY terms along D for mask M
A SUM (A ARRAY [,D] [,M]) Sum of ARRAY terms along D passing mask M

RESHAPING ARRAYS
� CSHIFT (� ARRAY,I SHIFT [,D]) Perform circular shift out and in for I SHIFT terms.
� EOSHIFT (� ARRAY,I SHFT End-off shift ARRAY and fill in dimension D

[,� FIL] [,D])
�,V PACK (� ARRAY,M [,V PAD]) Pack ARRAY for true M into vector; pad from V PAD
� RESHAPE (� ARRAY,I V SHAPE

[,� PAD] [,V ORDER]) Reshape ARRAY to vector SHAPE, pad, reorder
� UNPACK (V,M,� USE) Unpack V for true elements of M into USE

REVERSE ORDER
I INDEX (S,S SUB [,L BACK]) Left starting position of S SUB within S (rightmost)
I SCAN (S,S SET [,L BACK]) Left character index in S found in S SET; (rightmost)
I VERIFY (S,S SET [,L BACK]) First position in S not found in S SET, (or last)

SHIFTS
� CSHIFT (� ARRAY,I SHIFT [,D]) Perform circular shift out and in for I SHIFT terms
� EOSHIFT (� ARRAY,I SHIFT

[,� FILL][,D]) Perform end-off shift, and fill, in dimension D
B ISHFT (I,I SHIFT) Logical shift of bits of I by I SHIFT; pad with 0
B ISHFTC (I,I SHIFT [,I SIZE]) Logical circular shift of I SIZE rightmost bits of I

STRING
C ADJUSTL (S) Adjust S left; move leading blanks to trailing blanks
C ADJUSTR (S) Adjust S right; move trailing to leading blanks

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

app-a CB496-Akin September 18, 2002 10:59

A.4 Syntax of Fortran 90 Statements 261

Type Intrinsic Description

I INDEX (S,S SUB [,L BACK]) Left starting position of S SUB within S (or right)
I LEN (S) Total character string length
I LEN TRIM (S) Length of S without trailing blanks
L LGE (S,S 2) True if S is ≥ to S 2 in ASCII collating sequence
L LGT (S,S 2) True if S follows S 2 in ASCII collating sequence
L LLE (S,S 2) True if S is ≤ to S 2 in ASCII collating sequence
L LLT (S,S 2) True if S precedes S 2 in ASCII collating sequence
S REPEAT (S,I COPIES) Concatenates I COPIES of string S
I SCAN (S,S SET [,L BACK]) Left character index in S found in S SET; (or right)
S TRIM (S) Remove trailing blanks from a single string
I VERIFY (S,S SET [,L BACK]) First position in S not found in S SET, (or last)

TARGET
L ASSOCIATED (P [,T]) True if pointer P is associated with any target or T

TIME
call DATE AND TIME ([S DATE] Real-time clock data

[,S TIME] [,S ZONE]
[,I V VALUES])

call SYSTEM CLOCK ([I NOW] Integer data from real-time clock
[,I RAT] [,I MX])

VECTOR (See ARRAYS)
N,L DOT PRODUCT (V,V 2) Dot product of vectors V and V 2
I,V LBOUND (� ARRAY [,D]) ARRAY lower bound(s) vector along D
I,V MAXLOC (N ARRAY [,M]) Location(s) of maximum ARRAY term passing M
I,V MINLOC (N ARRAY [,M]) Location(s) of minimum ARRAY term passing M
�,V PACK (� ARRAY,M [,V PAD]) Pack ARRAY for true M into vector; pad from V PAD
� RESHAPE (� ARRAY,I V SHAPE

[,� PAD] [,V ORDER]) Reshape ARRAY to vector SHAPE, pad, reorder
I,V SHAPE (� ARRAY) ARRAY (or scalar) shape vector
� TRANSFER (� ARRAY, V MOLD

[,I SIZE]) Same representation as ARRAY but type of MOLD
I,V UBOUND (� ARRAY [,D]) ARRAY upper bound(s) vector along dimension D

A.4 Syntax of Fortran 90 Statements

The following is a list of the recommended Fortran 90 statements. Additional statements are
allowed but have been declared obsolete and are expected to be deleted in future standards.
Thus, they should not be utilized in new programs. They are appended to the end of this
list. Below we list the standard syntax for the Fortran 90 statements. In some cases the most
common simple form of a statement is shown before its more general options. Such optional
features are shown included in brackets, [], and a vertical bar | means “or.” Note that the
new attribute terminator symbol :: is always optional, but its use is recommended.

The following abbreviations are employed: arg=argument, attr=attribute,
exp=expression, i =integer, r =real, s =string, spec=specifier, and here [type] means
CHARACTER | COMPLEX | INTEGER | LOGICAL | REAL or a user-defined name
given in a TYPE statement. Recall that F90 allows variable names to be 31 characters long,
and they may include an underscore (but F77 allows only 6 characters and no underscore);
F90 lines may contain up to 132 characters (but just 72 in F77). All standard F77 statements

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

app-a CB496-Akin September 18, 2002 10:59

262 Fortran 90 Overview

are a subset of F90. Attribute options, and their specifiers, for each statement are given in
the companion table “Fortran 90 Attributes and Specifiers.” The numerous options for the
INQUIRE statement are given in the table entitled “Options for F90 INQUIRE.”

In addition to the statements given below, F90 offers intrinsic array operations, implied
do loops, vector subscripts, and about 160 intrinsic functions. Those functions, with their
arguments, are given in the tables “Alphabetical Table of Fortran 90 Intrinsic Functions and
Subroutines,” and “Subject Table of Fortran 90 Intrinsic Functions and Subroutines.”

F90 Syntax

! preceeds a comment in F90
in column one denotes a comment line in F77

& continues a line in F90 (must be in column 6 for F77)
; terminates a statement in F90 (allows multiple statements per line)
variable = expression or statement ! is an assignment (column 7 in F77)

ALLOCATABLE [::] array name[(extents)] [, array name[(extents)]]
ALLOCATE (array name)
ALLOCATE (array name [, STAT=status] [,array name [, STAT=status]])
BACKSPACE i exp ! file unit number
BACKSPACE ([UNIT=]i value [, IOSTAT=i variable] [, ERR=i label])
C in column one denotes a comment line in F77
CALL subroutine name [([args])]
CASE (range list) [select name] ! purpose
CASE DEFAULT [select name] ! purpose
CHARACTER LEN=i value [::] s list
CHARACTER [(LEN=i value | * [, KIND=]i kind)] [[, attr list] ::] s list
CHARACTER [(i value | *, [KIND=]i kind)] [[, attr list] ::] s list
CHARACTER [([KIND=i kind] [, LEN=i value | *])] [[, attr list] ::] s list
CLOSE (i value) ! unit number
CLOSE ([UNIT=]i value [, ERR=i label] [, IOSTAT=i variable] [, STATUS=exp])
COMPLEX [::] variable list
COMPLEX [([KIND=]i kind)] [[, attr list] ::] variable list
CONTAINS ! internal definitions follow
CYCLE ! current do only for a purpose
CYCLE [nested do name] ! and terminate its sub do’s for a purpose
DEALLOCATE (array name)
DEALLOCATE (array name [, STAT=status] [, array name [, STAT=status]])
DIMENSION array name(extents) [, array name(extents)]
DO ! forever
DO i variable = i start, i stop ! loop name or purpose
DO [i variable = i start, i stop [, i inc]] ! loop name or purpose
DO [i label,] [i variable = i start, i stop [, i inc]] ! loop name
[loop name:] DO [i variable = i start, i stop [, i inc]] ! purpose
[loop name:] DO [i label,] [i variable = i start, i stop [, i inc]]
DO WHILE (logical expression) ! obsolete, use DO-EXIT pair
DO [i label,] WHILE (logical expression) ! obsolete-obsolete
[name:] DO [i label,] WHILE (logical expression) ! obsolete
ELSE [if name]
ELSE IF (logical expression) THEN [if name]
ELSE WHERE (logical expression)
END [name] ! purpose

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

app-a CB496-Akin September 18, 2002 10:59

A.4 Syntax of Fortran 90 Statements 263

END DO [do name] ! purpose
END FUNCTION [function name] ! purpose
END IF [if name] ! purpose
END INTERFACE ! purpose
END MODULE [module name] ! purpose
END PROGRAM [program name] ! purpose
END SELECT [select name] ! purpose
END SUBROUTINE [name] ! purpose
END TYPE [type name] ! purpose
END WHERE ! purpose
ENDFILE i exp ! for file unit number
ENDFILE ([UNIT=]i value [, IOSTAT=i variable] [, ERR=i label])
ENTRY entry name [([args])] [RESULT(variable name)]
EXIT ! current do only for a purpose
EXIT [nested do name] ! and its sub do’s for a purpose
EXTERNAL program list
i label FORMAT (specification and edit list)
FUNCTION name ([args]) ! purpose
FUNCTION name ([args]) [RESULT(variable name)] ! purpose
[type] [RECURSIVE] FUNCTION name ([args]) [RESULT(variable name)]
[RECURSIVE] [type] FUNCTION name ([args]) [RESULT(variable name)]
GO TO i label ! for a reason
IF (logical expression) executable statement
[name:] IF (logical expression) THEN ! state purpose
IMPLICIT type (letter list) ! F77 (a-h,o-z) real, (i-n) integer
IMPLICIT NONE ! F90 recommended default
INCLUDE source file path name ! purpose
INQUIRE ([FILE=]’name string’ [, see INQUIRE table]) ! re file
INQUIRE ([NAME=]s variable [, see INQUIRE table]) ! re file
INQUIRE (IOLENGTH=i variable [, see INQUIRE table]) ! re output
INQUIRE ([UNIT=]i value [, see INQUIRE table]) ! re unit
INTEGER [::] variable list
INTEGER [([KIND=]i kind)] [[, attr list] ::] variable list
INTENT ([IN | INOUT | OUT]) argument list
INTERFACE ASSIGNMENT (+ | - | * | / | = | **) ! user extension
INTERFACE OPERATOR (.operator.) ! user defined
INTERFACE [interface name]
INTRINSIC function list
LOGICAL [::] variable list
LOGICAL [([KIND=]i kind)] [[, attr list] ::] variable list
MODULE PROCEDURE program list
MODULE module name ! purpose
NULLIFY (pointer list)
OPEN (i value) ! unit number
OPEN ([UNIT=]i value [, ERR=i label] [, IOSTAT=i variable] [, other spec])
OPTIONAL [::] argument list
PARAMETER (variable=value [, variable=value])
POINTER [::] name[(extent)] [, name[(extent)]] ! purpose
PRINT * , output list ! default free format
PRINT * , (io implied do) ! default free format
PRINT ’(formats)’ , output list ! formatted
PRINT ’(formats)’ , (io implied do) ! formatted

(continued)

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

app-a CB496-Akin September 18, 2002 10:59

264 Fortran 90 Overview

(continued)

PRIVATE [[::] module variable list] ! limit access
PROGRAM [program name] ! purpose
PUBLIC [[::] module variable list] ! default access
READ * , input list ! default free format
READ * , (io implied do) ! default free format
READ ’(formats)’ input list ! formatted
READ ’(formats)’ (io implied do) ! formatted
READ ([UNIT=]i value, [FMT=]i label [, io spec list]) input list ! formatted
READ ([UNIT=]i value, s variable [, io spec list]) input list ! formatted
READ ([UNIT=]i value, ’(formats)’ [, io spec list]) input list ! formatted
READ (i value) input list ! binary read
READ ([UNIT=]i value, [, io spec list]) input list ! binary read
READ (s variable, [FMT=]i label) input list ! internal file type change
READ ([UNIT=]s variable, [FMT=]i label [, io spec list]) input list ! internal file change
REAL [::] variable list
REAL [([KIND=]i kind)] [[, attr list] ::] variable list
RECURSIVE FUNCTION name ([args]) [RESULT(variable name)] ! purpose
[type] RECURSIVE FUNCTION name ([args]) [RESULT(variable name)] ! purpose
RECURSIVE SUBROUTINE name [([args])] ! purpose
RETURN ! from subroutine name
REWIND i exp ! file unit number
REWIND ([UNIT=]i value [, IOSTAT=i variable] [, ERR=i label])
SAVE [[::] variable list]
[name:] SELECT CASE (value)

SEQUENCE
STOP [’stop message string’]
SUBROUTINE name [([args])] ! purpose
SUBROUTINE name [([args])] [args, optional args] ! purpose
[RECURSIVE] SUBROUTINE name [([args])] ! purpose
TARGET [::] name[(extent)] [, name[(extent)]]
TYPE (type name) [[, attr list] ::] variable list
TYPE [, PRIVATE | PUBLIC] name
USE module name [, ONLY: list in module name] ! purpose
USE module name [, new var or sub=>old name] ! purpose
WHERE (logical array expression) ! then
WHERE (logical array expression) array variable = array expression
WRITE * , output list ! default free format
WRITE * , (io implied do) ! default free format
WRITE ’(formats)’ output list ! formatted write
WRITE ’(formats)’ (io implied do) ! formatted write
WRITE ([UNIT=]i value, [FMT=]i label [, io spec list]) output list ! formatted write
WRITE ([UNIT=]i value, s variable [, io spec list]) output list ! formatted write
WRITE ([UNIT=]i value, ’(formats)’ [, io spec list]) output list ! formatted write
WRITE (i value) output list ! binary write
WRITE (i value) (io implied do) ! binary write
WRITE ([UNIT=]i value, [, io spec list]) output list ! binary write
WRITE (s variable, [FMT=]i label) output list ! internal file type change
WRITE ([UNIT=]s variable, [FMT=]i label [, io spec list]) output list ! internal file change

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

app-a CB496-Akin September 18, 2002 10:59

A.5 Examples of F90 Statements 265

The attributes lists for the type declarations (e.g., REAL) are ALLOCATABLE, DIMENSION,
INTENT,OPTIONAL,KIND,POINTER,PARAMETER,PRIVATE,PUBLIC,SAVE, andTARGET; those
for OPEN and CLOSE are ACCESS, ACTION, BLANK, and DELIM; whereas those for READ and
WRITE are ADVANCE, END, EOR, ERR, and FMT.

Obsolescent statements are those from Fortran 77 that are redundant and for which better
methods are available in both Fortran 77 and Fortran 90.

Obsolete Syntax

ASSIGN i label TO i variable
BLOCK DATA [block data name]
COMMON [/common block name/] r variable list, i variable list
[i label] CONTINUE ! from do [do name]
DATA variable list / value list /
DATA (array implied do) / value list /
DOUBLE PRECISION [[, attr list] ::] variable list
DO [i label,] [r variable = r start, r stop [, r inc]] ! real control
DO CONTINUE pair
[name:] DO [i label,] WHILE (logical expression) ! obsolete
END BLOCK DATA [block data name]
EQUIVALENCE (variable 1, variable 2) [, (variable 3, variable 4)]
GO TO (i label 1,i label 2,...,i label n)[,] i variable
IF (arithmetic exp) i label neg, i label zero, i label pos
NAMELIST /group name/ variable list
PAUSE ! for human action
RETURN alternates
statement function (args) = expression

A.5 Examples of F90 Statements

The following is a list of examples of the recommended Fortran90 statements. Some have
been declared obsolete and are expected to be deleted in future standards. Thus, they should
not be used in new programs. They are noted in the comments. In some cases the most com-
mon simple form of a statement is shown along with its more general options. Note that the
new attribute terminator symbol :: is always optional, but its use is recommended. Although
Fortran is not case-sensitive, this table employs uppercase letters to denote standard fea-
tures and lowercase letters for user-supplied information. The following abbreviations are
employed: arg=argument, attr=attribute, exp=expression, i =integer, l =logical, r =real,
s =string, spec=specifier, z =complex.

Recall that F90 allows variable names to be 31 characters long, and they may include an
underscore (but F77 allows only 6 characters and no underscore). The F90 lines may contain
up to 132 characters (but just 72 in F77). All standard F77 statements are a subset of F90.

The attributes lists for the type declarations (e.g., REAL) are ALLOCATABLE, DIMEN-

SION, INTENT, OPTIONAL, KIND, POINTER, PARAMETER, PRIVATE, PUBLIC, SAVE,
and TARGET. Those optional attributes for OPEN are ACCESS = [DIRECT, SEQUENTIAL],
ACTION = [READ, READWRITE, WRITE], BLANK = [NULL, ZERO], DELIM = [APOSTROPHE,
NONE, QUOTE], ERR = i label, FILE = s name, FORM = [FORMATTED, UNFORMATTED],

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

app-a CB496-Akin September 18, 2002 10:59

266 Fortran 90 Overview

IOSTAT = i var, PAD = [NO, YES], POSITION = [APPEND, ASIS, REWIND], RECL = i len,
STATUS = [NEW, OLD, REPLACE, SEARCH, UNKNOWN], and UNIT = i unit; whereas CLOSE
utilizes only ERR, IOSTAT, STATUS, and UNIT.

The io spec list options for READ and WRITE are ADVANCE = [NO, YES], END = i label,
EOR= i label, ERR= i label, FMT= [*, i label, s var], IOSTAT= i var, NML= var list, REC
= i exp, SIZE = i size, and UNIT = i unit.

Fortran Statement Examples

Name Examples Comments

Allocatable ALLOCATABLE :: force, stiffness By name
ALLOCATABLE :: force(:), stiffness(:,:) Ranks

Allocate ALLOCATE (hyper matrix(5, 10, 3))
ALLOCATE (force(m))
ALLOCATE (array name(3, 3, 3, 3), STAT=i err) Error status

Assign ASSIGN 9 TO k Obsolete

Assignment c = ’b’ Character
s = "abc" String
s = c // ’abc’ Concatenation
s = string(j:m) Substring
s fmt = ’(2F5.1)’ Stored format

l = l 1 .OR. l 2 Logical
l = m < = 80
poor = (final > = 60) .AND. (final < 70)
proceed = .TRUE.

n = n + 1 Arithmetic
x = b’1010’ Binary
z = (0.0, 1.0) Complex
r = SQRT (5.) Function

converged = (ABS (x0 – x) < 2*SPACING (x))
x = z’B’ Hexadecimal
k = 123 Integer
x = o’12’ Octal
r = 321. Real
a = 23. ; j = 120 ; ans = .TRUE.; Semicolon

k = SELECTED INTEGER KIND (20) Kind
m = SELECTED REAL KIND (16, 30)
long = SELECTED REAL KIND (9, 20)
pi = 3.1459265 long

a = b + c Matrix add
d = MATMUL (a, b) Matrix multiply
e = TRANSPOSE (d) Matrix transpose
f = 0 ; g = (/ 2. , 4. , 6. /) Matrix initialize
B = Al:, n:(:–1) Matrix flipped
x = (/ (k, k = 0, n) /) * d Implied do

kth row => a(k,:) Pointer
corners => a(1:n:(n-1), 1:m:(m-1))
p 2 => r

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

app-a CB496-Akin September 18, 2002 10:59

A.5 Examples of F90 Statements 267

Name Examples Comments

student record%rank = 51 Defined type
patient data%city = ’houston’

sqrt(x) = DSQRT(x) ! function statement Obsolete

Backspace BACKSPACE i exp Compute unit
BACKSPACE 8 Unit
BACKSPACE (UNIT=9, IOSTAT=i, ERR=5) Error go to
BACKSPACE (9, IOSTAT=io ok, ERR=99)
BACKSPACE (UNIT=9, IOSTAT=io ok, ERR=99)
BACKSPACE (8, IOSTAT=io ok) I/O status

Block Data BLOCK DATA ! Obsolete
BLOCK DATA winter ! Obsolete Named

C C in column one denotes a comment line in F77 Obsolete
* in column one denotes a comment line in F77 Obsolete
! anywhere starts a comment line in F90

Call CALL sub1 (a, b)
CALL sub2 (a, b, *5) ! Obsolete, use CASE Alt return to 5
CALL sub3 No arguments
CALL subroutine name (args, optional args) Optional arg

Case CASE (range list) See SELECT
CASE (range list) select name Named

Case CASE DEFAULT See SELECT

Default CASE DEFAULT select name Named

Character CHARACTER (80) s, s 2*3(4)
CHARACTER *16 a, b, c
CHARACTER * home team :: recommended
CHARACTER (*), INTENT(IN) :: home team Intent
CHARACTER (LEN=3) :: b = ’xyz’ Initialize b
CHARACTER LEN=40 :: monday, wednesday, friday
CHARACTER (LEN=40), attr list :: last, first, middle
CHARACTER (40), attr list :: name, state
CHARACTER (*), PARAMETER :: reply = “Invalid Data”
CHARACTER (*, KIND=greek), attr list :: s1 list Kind
CHARACTER (*, KIND=greek), attr list :: last, first, middle
CHARACTER (KIND=cyrillic, LEN=40) :: name, state
CHARACTER (KIND=cyrillic, *), attr list :: s list

Close CLOSE (7) Unit number
CLOSE (UNIT=k)
CLOSE (UNIT=8, ERR=90, IOSTAT=i) Error go to
CLOSE (8, ERR=99, IOSTAT=io ok, STATUS=’KEEP’) I/O status
CLOSE (9, ERR=99, IOSTAT=io, STATUS=’DELETE’) File status
CLOSE (UNIT=8, ERR=95, IOSTAT=io ok)

Common COMMON / name / h, p, t ! Obsolete Named common
COMMON p, d, q(m,n) ! Obsolete Blank common

Complex COMPLEX u, v, w(3, 6) :: recommended
COMPLEX :: u = (1.0,1.0), v = (1.0,10.0) Initialize u and v
COMPLEX :: variable list

(continued)

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

app-a CB496-Akin September 18, 2002 10:59

268 Fortran 90 Overview

(continued)

Name Examples Comments

COMPLEX attr list :: variable list
COMPLEX (KIND=i2 kind), attr list :: variable list Kind

Contains CONTAINS Internal definitions
CONTAINS

FUNCTION mine (b) Or subroutines
. . .

END FUNCTION mine
Continuation ! any non-block character in column 6 flags continuation F77 obsolete

& at the end flags continuation to next line F90 standard
& at the beginning flags continuation from above line
a long name = a constant value* &
another value ! on following line
a long name here is set to = value
& * another value ! continued from above

Continue 100 CONTINUE Obsolete

Cycle CYCLE Current do only
CYCLE nested do name Terminate sub dos

Data DATA a, s / 4.01, ’z’ / Obsolete
DATA s fmt / ’(2F5.1)’ / Stored format
DATA (r(k), k=1,3) / 0.7, 0.8, 1.9 / Implied do
DATA array (4,4) / 1.0 / Single value
DATA bit val / b’0011111’ / Binary

Deallocate DEALLOCATE (force) File name
DEALLOCATE (force, STAT=i err) Error status

Dimension DIMENSION array (4, 4)
DIMENSION v(1000), w(3) = (/ 1., 2., 4. /) Initialize w
DIMENSION force(20), stiffness(:,:)
DIMENSION (5,10,3) :: triplet :: recommended
INTEGER, DIMENSION (:,:) :: material, nodes list Typed
REAL, DIMENSION (m, n) :: a, b
REAL, DIMENSION (:,:) :: force, stiffness
REAL, DIMENSION (5,10,3), INTENT(IN) :: triplet Intent

Do DO 100 j = init, last, incr ! Obsolete Labeled do
. . .

100 CONTINUE Obsolete
DO j = init, last Unlabeled do
. . .

END DO
DO ! forever Unlabeled do
. . .

END DO ! forever
DO WHILE (diff <= delta) Unlabeled while
. . .

END DO
DO 100 WHILE (diff < = delta) ! Obsolete Labeled while
. . .

100 CONTINUE Obsolete
DO Forever
DO k = i start, i stop Integer range

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

app-a CB496-Akin September 18, 2002 10:59

A.5 Examples of F90 Statements 269

Name Examples Comments

DO k = i start, i stop, i inc Increment
DO 10, k = i start, i stop Obsolete
do name: DO k = i start, i stop, i inc Named
do name: DO 10, k = i start, i stop, i inc Named label
DO 10, r variable = r start, r stop, r inc ! Obsolete Real range

Do While DO WHILE (.NOT. converged) Use DO-EXIT pair
DO 10, WHILE (.NOT. converged) Obsolete
do name: DO 10, WHILE (.NOT. converged) Obsolete

Double DOUBLE PRECISION a, d, y(2) Obsolete

Precision DOUBLE PRECISION :: a, d = 1.2D3, y(2) Initialize D
DOUBLE PRECISION, attr list :: variable list Obsolete

Else ELSE Then

ELSE leap year Named

Else If ELSE IF (k > 50) THEN
ELSE IF (days in year == 364) THEN
ELSE IF (days in year == 364) THEN leap year Named

Elsewhere ELSEWHERE See WHERE

End END
END name Named

End Block END BLOCK DATA Obsolete

Data END BLOCK DATA block data name Obsolete
End Do END DO

END DO do name Named

End Function END FUNCTION function name
END FUNCTION

End If END IF leap year Named
END IF

End Interface END INTERFACE

End Module END MODULE my matrix operators
END MODULE

End Program END PROGRAM program name
END PROGRAM

End Select END SELECT select name Named
END SELECT

End END SUBROUTINE name
Subroutine END SUBROUTINE

End Type END TYPE type name See TYPE
END TYPE

End Where END WHERE See WHERE

Endfile ENDFILE i exp Compute unit
ENDFILE (UNIT=k) Unit number
ENDFILE k
ENDFILE (UNIT=8, ERR=95) Error go to
ENDFILE (7, IOSTAT=io ok, ERR=99) I/O status

(continued)

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

app-a CB496-Akin September 18, 2002 10:59

270 Fortran 90 Overview

(continued)

Name Examples Comments

ENDFILE (UNIT=8, IOSTAT=k, ERR=9)
ENDFILE (UNIT=9, IOSTAT=io ok, ERR=99)

Entry ENTRY sec1 (x, y) Arguments
ENTRY sec2 (a1, a2, *4) ! Obsolete, use CASE Alternate return to 4
ENTRY section No arguments
ENTRY entry name RESULT(variable name) Result

Equivalence EQUIVALENCE (v (1), a (1,1)) Obsolete
EQUIVALENCE (v, a)
EQUIVALENCE (x, v(10)), (p, q, d)

Exit EXIT Current do only
EXIT nested do name Current and subdos

External EXTERNAL my program

Format 10 FORMAT (2X, 2I3, 3F6.1, 4E12.2, 2A6, 3L2) X I F E A L
10 FORMAT (// 2D6.1, 3G12.2) D, G
10 FORMAT (2I3.3, 3G6.1E3, 4E12.2E3) Exponent w
10 FORMAT (’a quoted string’, ”another”, I2) Strings
10 FORMAT (1X, T10, A1, T20, A1) Tabs
10 FORMAT (5X, TR10, A1, TR10, A1, TL5, A1) Tab right, left
10 FORMAT (”Init=”, I2, :, 3X, ”Last=”, I2) : stop if empty
10 FORMAT (’Octal ’, o6, ’, Hex ’ z6) Octal, hex
10 FORMAT (specification and edit list)

Function FUNCTION z (a, b) Arguments
FUNCTION w (e, d) RESULT (a) Result
FUNCTION name (args)
FUNCTION name No argument
FUNCTION name (args) RESULT(variable name)
INTEGER FUNCTION n (j, k) Type
INTEGER FUNCTION name (args)
COMPLEX RECURSIVE FUNCTION dat (args)
RECURSIVE REAL FUNCTION name (args)

Go To GO TO 99 Unconditional
GO TO (10,20,35,95), i variable ! Obsolete Computed

If IF (arithmetic exp) 95, 10, 20 ! Obsolete Arithmetic
IF (logic) RETURN Logical if
IF (logic) n = n + 2
IF (logic) THEN if block

n = n + 1
k = k + 1

END IF
leap year: IF (logical expression) THEN Named
IF (logic) THEN if else block

n = n + 1
ELSE

k = k + 1
END IF
IF (c == ’a’) THEN if else-if block

na = na + 1
CALL sub a

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

app-a CB496-Akin September 18, 2002 10:59

A.5 Examples of F90 Statements 271

Name Examples Comments

ELSE IF (c == ’b’) THEN (Use CASE)
nb = nb + 1

ELSE IF (c == ’c’) THEN
nc = nc + 1
CALL sub c

END IF

Implicit IMPLICIT INTEGER (i-n) F77 default

Type IMPLICIT REAL (a-h,o-z) F77 default
IMPLICIT NONE Recommended F90
IMPLICIT CHARACTER *10 (f,l) Character
IMPLICIT COMPLEX (a-c,z) Complex
IMPLICIT TYPE (color) (b,g,r) Derived type
IMPLICIT LOGICAL (KIND=bit) (m) Logical

Include INCLUDE ’path/source.f’

Inquire INQUIRE (UNIT=3, OPENED=t or f) Opened
INQUIRE (FILE=’mydata’, EXIST=t or f) Exists
INQUIRE (UNIT=3, OPENED=ok, IOSTAT=k) I/O status
INQUIRE (FILE=’name string’, see INQUIRE table) Refile
INQUIRE (NAME=s variable, see INQUIRE table) Refile
INQUIRE (IOLENGTH=i var, see INQUIRE table) Reoutput
INQUIRE (7, see INQUIRE table) Reunit
INQUIRE (UNIT=8, see INQUIRE table) Reunit

Integer INTEGER c, d(4) :: Recommended
INTEGER (long), attr list :: variable list
INTEGER, DIMENSION (4) :: a, d, e
INTEGER, ALLOCATABLE, DIMENSION (:,:) :: a, b Allocatable
INTEGER :: a = 100, b, c = 9 Initialize a & c
INTEGER :: i, j, k, l, m, n, month, year = 1996
INTEGER, attr list :: variable list
INTEGER (KIND=i2 kind), attr list :: variable list Kind

Intent INTENT (IN) :: credit card owners
INTENT (INOUT) :: amount due
INTENT (OUT) income rank

Interface INTERFACE ASSIGNMENT (=) User extension
INTERFACE OPERATOR (+) User extension
INTERFACE OPERATOR (–) User extension
INTERFACE OPERATOR (/) User extension
INTERFACE OPERATOR (*) User extension
INTERFACE OPERATOR (**) User extension
INTERFACE OPERATOR (.operator.) User-defined
INTERFACE
INTERFACE interface name

Intrinsic INTRINSIC SQRT, EXP Functions

Logical LOGICAL c :: recommended
LOGICAL, ALLOCATABLE :: mask(:), mask 2(:,:) Allocatable
LOGICAL (KIND = byte) :: flag, status Kind
LOGICAL :: b = .FALSE., c Initialize b

(continued)

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

app-a CB496-Akin September 18, 2002 10:59

272 Fortran 90 Overview

(continued)

Name Examples Comments

Module MODULE PROCEDURE mat x mat, mat x vec Generics
MODULE my matrix operators

Namelist NAMELIST /data/ s, n, d Obsolete

Nullify NULLIFY (pointer list)
Open OPEN (7) Unit number

OPEN (UNIT=3, FILE="data.test") Name
OPEN (UNIT=2, FILE="data", STATUS = "old") File status
OPEN (UNIT=3, IOSTAT=k) I/O status
OPEN (9, ERR = 12, ACCESS ="direct") Access type
OPEN (8, ERR=99, IOSTAT=io ok) Error go to
OPEN (UNIT=8, ERR=99, IOSTAT=io ok)

Optional OPTIONAL slow, fast Argument list
OPTIONAL :: argument list

Parameter PARAMETER (a="xyz"), (pi=3.14159) Character
PARAMETER (a=”z”, pi=3.14159) Real
PARAMETER (x=11, y = x/3) Computed
PARAMETER, REAL :: weight = 245.6 Type

Pause PAUSE ! for human action Obsolete

Pointer POINTER current, last :: recommended
POINTER :: name(4,5) Rank
REAL, POINTER :: y(:), x(:,:,:) Type

Print PRINT *, a, j List-directed
PRINT *, output list Default unformatted
PRINT *, (io implied do) Implied do
PRINT *, “The squre root of”, n, ’is’, SQRT(n) Function
PRINT *, (4*k-1, k=1,10,3)
PRINT 10, a, j Formatted
PRINT 10, m array Array
PRINT 10, (m(i), i = j,k) Implied do
PRINT 10, s(j:k) Substring
PRINT ’(A6, I3)’, a, j Character, integer
PRINT FMT=’(A6, I3)’, a, j Included format
PRINT data namelist ! Obsolete Name list
PRINT ’(formats)’, output list Formatted
PRINT ’(formats)’, (io implied do) Implied do
PRINT ’(I4)’, (2*k, k=1,5)

Private PRIVATE
PRIVATE :: module variable list Specific items

Program PROGRAM my job
PROGRAM

Public PUBLIC
PUBLIC :: module variable list Specific items

Read READ *, a, j List-directed
READ 1, a , j Formatted
READ 10, m array Formatted array
READ 10, (m(i), i=j, k) Implied do

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

app-a CB496-Akin September 18, 2002 10:59

A.5 Examples of F90 Statements 273

Name Examples Comments

READ 10, s(i:k) Substring
READ ’(A6, I3)’ a, i Character, integer
READ (1, 2) x, y Formatted file
READ (UNIT=1, FMT=2) x, y
READ (1, 2, ERR=8, END=9) x, y End of file go to
READ (UNIT=1, FMT=2, ERR=8, END=9) x, y Error go to
READ (*, 2) x, y Formatted, std out
READ (*, 10) m array Unformatted array
READ (*, 10) (m(i), i=j, k) Implied do
READ (*, 10) s(i:k) Substring
READ (1, *) x, y Unformatted file
READ (*, *) x, y Unformatted, std out
READ (1, ’(A6, I3)’) x, y Character, integer
READ (1, FMT=’(A6, I3)’) x, y Included format
READ (1, s fmt) x, y Format in a string
READ (1, FMT=s fmt) x, y
READ (*, NML=data) ! Obsolete Name list read
READ (1, NML=data) ! Obsolete Name list from a file
READ (1, END=8, ERR=9) x, y Unformatted
READ (s2, 1, ERR=9) x Internal, formatted
READ (s2, *, ERR=9) x Unformatted
READ (s2, REC=4, END=8) x Internal, direct
READ (1, REC=3) v Unformatted direct
READ (1, 2, REC=3) v Formatted direct
READ *, input list Default unformatted
READ *, (io implied do) Implied do
READ *, (a(j,:), j=1, rows)
READ ’(formats)’ input list Formatted read
READ ’(formats)’ (io implied do) Formatted read
READ ’(5I5, (5I5))’, (num(k), k=1, n)
READ (8, FMT=20) input list Formatted
READ (8, FMT=20, ADVANCE=’NO’) input Advance
READ (9, FMT=20, io spec list) input list I/O Specification
READ (UNIT=7, 20, io spec list) input list
READ (UNIT=8, FMT=10, io spec list) input
READ (7, s fmt, io spec list) input list Stored format
READ (UNIT=7, s fmt, io spec list) input
READ (9, ’(formats)’ io spec list) input list Inline format
READ (UNIT=9, ’(formats)’ io spec list) input
READ (8) input list Binary read
READ (UNIT=7) input list
READ (8, io spec list) input list I/O Specification
READ (UNIT=9, io spec list) input list
READ (s variable, FMT=20) input list Internal file,
READ (UNIT=s variable, 10, io spec list) input type change

Real REAL*4 :: recommended
REAL :: r, m(9)
REAL*16 :: a, b, c Quad Precision
REAL*8, DIMENSION (n) :: a, b, c Double Precision

(continued)

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

app-a CB496-Akin September 18, 2002 10:59

274 Fortran 90 Overview

(continued)

Name Examples Comments

REAL :: a = 3.14, b, c = 100.0 Initialize a & c
REAL :: variable list
REAL, attr list :: variable list
REAL, POINTER :: a(:,:)
REAL (KIND=i2 kind), attr list :: variable list Kind
REAL (double), attr list :: variable list

Recursive RECURSIVE FUNCTION name Function
RECURSIVE FUNCTION a(n) RESULT(fac) Result
INTEGER RECURSIVE FUNCTION name (args)
RECURSIVE SUBROUTINE name (args) Subroutine
RECURSIVE SUBROUTINE name

Return RETURN Standard return

Rewind REWIND i exp Compute unit
REWIND 2 Unit number
REWIND k
REWIND (UNIT=8, IOSTAT=k, ERR=9) Error go to
REWIND (UNIT=8, ERR=95)
REWIND (8, IOSTAT=io ok, ERR=99) I/O status

Save SAVE a, /name/, c Scalars, common
SAVE Everything
SAVE :: variable list

Select Case SELECT CASE (value)
name: SELECT CASE (value) Named
u or l SELECT CASE (letter) Block

CASE ("a":"z") ! lower case
lower = .TRUE.

CASE ("A":"Z") ! upper case
lower = .FALSE.

CASE DEFAULT ! not a letter
PRINT *, "Symbol is not a letter", letter
lower = .FALSE.

END SELECT u or l

Sequence SEQUENCE Forced storage

Stop STOP
STOP "invalid data" With message

Subroutine SUBROUTINE sub1 (a, b)
SUBROUTINE sub1 No arguments
SUBROUTINE name (args, optional args) Optional arguments
SUBROUTINE sub3 (a, b, *9) ! Obsolete, use CASE Return to 9
RECURSIVE SUBROUTINE sub2 (a, b) Recursive

Target TARGET :: name, name 2 See Pointer
TARGET :: name(4,5), name 2(3)

Type TYPE (person) car pool(5) User-defined type
Declaration TYPE (color), DIMENSION (256) :: hues

TYPE (type name), attr list :: variable list

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

app-a CB496-Akin September 18, 2002 10:59

A.5 Examples of F90 Statements 275

Name Examples Comments

TYPE (person), DIMENSION (n) :: address book
TYPE (type name) :: variable list
TYPE (student record) Definition block

CHARACTER (name len) :: last, first
INTEGER :: rank

END TYPE student record

Type TYPE, PRIVATE name Access

Statement TYPE, PUBLIC :: name

Use USE module name
USE module name, ONLY: list in module name Only
USE module name, var subr fun name => old name Rename

Where WHERE (logical array mask) Then
WHERE (a array > 0.0) Where block

sqrt a = SQRT(a array)
END WHERE
WHERE (mask > 0.0) Elsewhere block

a array = mask
ELSEWHERE

a array = 0.0
END WHERE
WHERE (a array>0) b array = SQRT(a array) Statement

Write WRITE (*, 10) s(j:k) Substring
WRITE (1, *) x, y Unformatted file
WRITE (*, *) x, y Unformatted
WRITE (1, ’(A6, I3)’) x, y Character, integer
WRITE (1, FMT=’(A6, I3)’) x, y Included format
WRITE (1, s fmt) x, y Stored format string
WRITE (1, FMT=s fmt) x, y
WRITE (*, NML=data) ! Obsolete Namelist to stdout
WRITE (1, NML=data) ! Obsolete Namelist to a file
WRITE (1, END=8, ERR=9) x, y Unformatted
WRITE (1, REC=3) v Unformatted direct
WRITE (1, 2, REC=3) v Formatted direct
WRITE (s2, 1, ERR=9) x Internal, format
WRITE (s2, *, ERR=9) x Unformatted
WRITE (s2, REC=4, END=8) x Internal, direct
WRITE *, output list Unformatted
WRITE *, (io implied do) Implied do
WRITE *, ((a(i, j), j=1, cols) i=1, rows)
WRITE ’(formats)’ output list Formatted write
WRITE ’(formats)’ (io implied do) Implied do
WRITE (7, 10, ADVANCE=’NO’) output list Advance
WRITE (8, 10, io spec list) output list I/O specification
WRITE (9, FMT=20, io spec list) output list
WRITE (UNIT=7, 10, io spec list) output list
WRITE (9, s fmt, io spec list) output list Stored format
WRITE (UNIT=8, s fmt, io spec list) output

(continued)

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

app-a CB496-Akin September 18, 2002 10:59

276 Fortran 90 Overview

(continued)

Name Examples Comments

WRITE (9, ’(formats)’ io spec list), output list Inline format
WRITE (UNIT=7, ’(formats)’ io spec list), output
WRITE (8), output list Binary write
WRITE (7), (io implied do) Implied do
WRITE (8, ADVANCE=’NO’), output list Advance
WRITE (9, io spec list), output list I/O specification
WRITE (UNIT=9, io spec list), output list
WRITE (s variable, FMT=20), output list Internal file
WRITE (UNIT=s variable, FMT=20), output list
WRITE (s variable, 20, io spec list), output list I/O specification
WRITE (UNIT=s var, FMT=20, io spec), output

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-AppB CB496-Akin September 16, 2002 12:41

APPENDIX B
� �

Selected Exercise Solutions

B.1 Problem 1.8.1 : Checking Trigonometric Identities

The Fortran 90 program and output follow. The error levels reflect that F90 defaults to single-
precision reals; however, F90 is easily extended to double precision and in theory supports
any level of user-specified precision. For simplicity, the F77 default-naming convention for
integers and reals is used. That is not a good practice since safety dictates declaring the
type of each variable at the beginning of each program. (Try changing the reals to double
precision to verify that the error is indeed reduced.)

[1] implicit none

[2] integer :: k,n = 16

[3] real, parameter :: pi = 3.141592654 ! set constant

[4] real :: cost, sint, theta, test

[5] print *,’ Theta sin^2+cos^2 error’

[6] do k = 0, n ! Loop over (n+1) points

[7] theta = k*pi/n

[8] sint = sin(theta)

[9] cost = cos(theta)

[10] test = sint*sint + cost*cost

[11] write (*, ’(3(1pe14.5))’) theta, test, 1.-test

[12] end do ! over k

Theta sin^2+cos^2 error

0.00000E+00 1.00000E+00 0.00000E+00

1.96350E-01 1.00000E+00 5.96046E-08

3.92699E-01 1.00000E+00 0.00000E+00

5.89049E-01 1.00000E+00 0.00000E+00

7.85398E-01 1.00000E+00 5.96046E-08

9.81748E-01 1.00000E+00 0.00000E+00

1.17810E+00 1.00000E+00 5.96046E-08

1.37445E+00 1.00000E+00 0.00000E+00

1.57080E+00 1.00000E+00 0.00000E+00

1.76715E+00 1.00000E+00 5.96046E-08

1.96350E+00 1.00000E+00 0.00000E+00

2.15985E+00 1.00000E+00 0.00000E+00

2.35619E+00 1.00000E+00 5.96046E-08

2.55254E+00 1.00000E+00 0.00000E+00

2.74889E+00 1.00000E+00 0.00000E+00

2.94524E+00 1.00000E+00 0.00000E+00

3.14159E+00 1.00000E+00 0.00000E+00

277

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-AppB CB496-Akin September 16, 2002 12:41

278 Selected Exercise Solutions

B.2 Problem 1.8.2 : Newton–Raphson Algorithm

The most convenient form of loop is the posttest loop, which allows each iteration to be
calculated and the error checked at the end.

xnew = x

do {
x = xnew

xnew = x - f(x)/fprime(x)

}
while (abs(xnew-x) < tolerance)

The alternate logic constructs employ tests at the end of the loop and transfer out the end
of the loop when necessary. Matlab and C++ transfer using the “break” command, whereas
F90 uses the “exit” command.

An F90 program with an infinite loop namedtestnewton.f90and its result are given be-
low. Be warned that this version uses the IMPLICIT name styles for integers and reals instead
of the better strong typing that results from the recommended use of IMPLICIT NONE.

[1] function f(x) result(y)

[2] real, intent (in) :: x

[3] real :: y

[4] y = exp(2*x) - 5*x - 1

[5] end function f

[6]

[7] function fprime(x) result(y)

[8] real, intent (in) :: x

[9] real :: y

[10] y = 2*exp(2*x) - 5

[11] end function fprime

[12]

[13] program Newton

[14] implicit none

[15] real, parameter :: tolerance = 1.e-6 ! set constant

[16] real :: f, fprime, x, xnew = 3. ! Initial value

[17] integer :: iteration

[18] iteration = 0

[19] ! Iteration count

[20] do ! forever until true

[21] iteration = iteration + 1

[22] x = xnew

[23] xnew = x - f(x)/fprime(x)

[24] if (abs(xnew - x) < tolerance) exit ! converged is true

[25] end do ! forever

[26] print *, ’Solution: ’, xnew, ’, Iterations:’, iteration

[27] end program Newton

>>f90 -o newton testnewton.f90

>>newton

Solution: 0.8093941 , Iterations: 10

B.3 Problem 1.8.3 : Game of Life

[1] program game of life ! procedural version

[2] implicit none

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-AppB CB496-Akin September 16, 2002 12:41

B.3 Problem 1.8.3 : Game of Life 279

[3] integer, parameter :: boardsize = 10

[4] integer :: board (boardsize, boardsize) = 0

[5] integer :: newboard (boardsize, boardsize)

[6] character(len=1) :: ok ! page prompt

[7] integer :: k, number ! loops

[8]

[9] ! Initial life data, the "Glider"

[10] board (3, 3) = 1; board (4, 4) = 1; board (5, 4) = 1

[11] board (5, 3) = 1; board (5, 2) = 1

[12]

[13] print *, "Initial Life Display:"

[14] call spy (board) ! show initial lifeforms

[15] print *, "Initially alive = ", sum (board); print *, " "

[16]

[17] print *, "Enter number of generations to display:"

[18] read *, number

[19] do k = 1, number

[20] newboard = next generation (board)

[21] board = newboard ! save current lifeforms

[22] call spy (board) ! show current lifeforms

[23] print * ; print *, "Generation number = ", k

[24] print *, "Currently alive = ", sum (newboard)

[25]

[26] print *, ’continue? (y, n)’

[27] read *, ok ! read any character to continue

[28] if (ok == ’n’) exit ! this do loop only

[29] end do ! on k for number of generations

[30]

[31] contains ! internal (vs external) subprograms

[32]

[33] function next generation (board) result (newboard)

[34] ! Compute the next generation of life

[35] integer, intent(in) :: board (:, :)

[36] integer :: newboard (size(board, 1), size(board, 2))

[37] integer :: i, j, neighbors ! loops

[38]

[39] newboard = 0 ! initialize next generation

[40] do i = 2, boardsize - 1

[41] do j = 2, boardsize - 1

[42] neighbors = sum (board (i - 1:i + 1, j - 1:j + 1)) %

[43] - board (i, j)

[44] if (board (i, j) == 1) then ! life in the cell

[45] if ((neighbors > 3 .or. neighbors < 2)) then

[46] newboard (i, j) = 0 ! it died

[47] else

[48] newboard (i, j) = 1 ! newborn

[49] end if ! on number of neighbors

[50] else ! no life in the cell

[51] if (neighbors == 3) then

[52] newboard (i, j) = 1 ! newborn

[53] else

[54] newboard (i, j) = 0 ! died

[55] end if ! on number of neighbors

[56] end if ! life status

[57] end do ! on column j

[58] end do ! on row i

[59] end function next generation

[60]

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-AppB CB496-Akin September 16, 2002 12:41

280 Selected Exercise Solutions

[61] Subroutine spy (board) ! model matlab spy function

[62] ! Show an X at each non-zero entry of board, else show -

[63] integer, intent(in) :: board (:, :)

[64] character (len=1) :: line (size(board, 1)) ! a line on screen

[65] integer :: i ! loops

[66]

[67] line = ’ ’ ! blank out the line

[68] do i = 1, size (board, 1) ! loop over each row

[69] line (1:size (board, 2)) = ’-’ ! current board width

[70] where (board (i, :) /= 0) line = ’X’ ! mark non-zero columns

[71] write (*, ’(80a1)’) line ! print current row

[72] end do ! over all rows

[73] end subroutine spy

[74] end program ! game of life

[75]

[76] ! Running gives:

[77] ! Initial Life Display:

[78] ! ----------

[79] ! ----------

[80] ! --X-------

[81] ! ---X------

[82] ! -XXX------

[83] ! ----------

[84] ! ----------

[85] ! ----------

[86] ! ----------

[87] ! ----------

[88] ! Initially alive = 5

[89] !

[90] ! Enter number of generations to display: 4

[91] ! ----------

[92] ! ----------

[93] ! ----------

[94] ! -X-X------

[95] ! --XX------

[96] ! --X-------

[97] ! ----------

[98] ! ----------

[99] ! ----------

[100] ! ----------

[101] !

[102] ! Generation number = 1

[103] ! Currently alive = 5

[104] ! continue? (y, n) n

B.4 Problem 2.5.1 : Conversion Factors

This code illustrates the type of global units conversion factors you can define for your field of
study. They can be accessed by any program that includes a use Conversion Constants

line and cites a parameter name, as shown on line 16.

[1] Module Conversion Constants ! DefineUnits Conversion

[2] ! Define selected precision

[3] INTEGER, PARAMETER :: DP = KIND (1.d0) ! Alternate form

[4] ! ========== Metric Conversions ==========

[5] real(DP), parameter:: cm Per Inch = 2.54 DP

[6] real(DP), parameter:: kg Per Pound = 0.45359237 DP

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-AppB CB496-Akin September 16, 2002 12:41

B.4 Problem 2.5.1 : Conversion Factors 281

[7] real(DP), parameter:: kg Per Short Ton = 907.18474 DP

[8] real(DP), parameter:: kg Per Long Ton = 1016.0469088 DP

[9] real(DP), parameter:: m Per Foot = 3.048 DP

[10] real(DP), parameter:: m Per Mile = 1609.344 DP

[11] real(DP), parameter:: m Per Naut Mile = 1852.0 DP

[12] real(DP), parameter:: m Per Yard = 0.9144 DP

[13] end Module Conversion Constants

[14] Program Test Conversion

[15] use Conversion Constants

[16] print *, ’cm Per Inch = ’, cm Per Inch ; End Program

[17] ! Running gives: cm Per Inch = 2.54000000000000004

This code illustrates the type of common physical constants that can be made available as
global variables you can define for your field of study. They can be accessed by any program
that includes a use Physical Constants line and cites a parameter name, as shown on
line 60 below.

[1] Module Physical Constants ! Define Physical Constants

[2] ! Define selected precision

[3] INTEGER, PARAMETER :: DP = KIND (1.d0) ! Alternate form

[4]

[5] ! ========== Physics Constants and units ==========

[6] real(DP), parameter:: AMU Value = 1.6605402E-27 DP ! kg

[7] real(DP), parameter:: Atmosphere Pres = 9.80665E+04 DP ! Pa

[8] real(DP), parameter:: Avogadro = 6.0221367E+23 DP ! 1/mol

[9] real(DP), parameter:: Bohr Magneton = 9.2740154E-24 DP ! J/T

[10] real(DP), parameter:: Bohr Radius = 5.29177249E-11 DP ! m

[11] real(DP), parameter:: Boltzmann = 1.380657E-23 DP ! J/K

[12] real(DP), parameter:: c Light = 2.997924580E+8 DP ! m/s

[13] real(DP), parameter:: Electron Compton = 2.42631058E-12 DP ! m

[14] real(DP), parameter:: Electron Angular = 5.2729E-35 DP ! J*s

[15] real(DP), parameter:: Electron Charge =-1.60217738E-19 DP ! coul

[16] real(DP), parameter:: Electron Mass Rest = 9.1093897E-31 DP ! kg

[17] real(DP), parameter:: Electron Moment = 9.2847700E-24 DP ! J/T

[18] real(DP), parameter:: Electron Radius = 2.81794092E-15 DP ! m

[19] real(DP), parameter:: Faraday = 9.6485309E+04 DP ! C/mo

[20] real(DP), parameter:: G Universal = 6.67260E-11 DP ! m^3/(s^2*kg)

[21] real(DP), parameter:: Light Year = 9.46073E+15 DP ! m

[22] real(DP), parameter:: Mech equiv Heat = 4.185E+3 DP ! J/kcal

[23] real(DP), parameter:: Molar Volume = 0.02241410 DP ! m^3/mol

[24] real(DP), parameter:: Neutron Mass = 1.6749286E-27 DP ! kg

[25] real(DP), parameter:: Permeability = 1.25663706143E-06 DP ! H/m

[26] real(DP), parameter:: Permittivity = 8.85418781762E-12 DP ! F/m

[27] real(DP), parameter:: Planck Const = 6.6260754E-34 DP ! J*s

[28] real(DP), parameter:: Proton Mass = 1.6726230E-27 DP ! kg

[29] real(DP), parameter:: Proton Moment = 1.41060761E-26 DP ! J/T

[30] real(DP), parameter:: Quantum charge r = 4.13556E+12 DP ! J*s/C

[31] real(DP), parameter:: Rydberg inf = 1.0973731534E+07 DP! 1/m

[32] real(DP), parameter:: Rydberg Hydrogen = 1.09678E+07 DP ! 1/m

[33] real(DP), parameter:: Std Atmosphere = 1.01325E+05 DP ! Pa

[34] real(DP), parameter:: Stefan Boltzmann = 5.67050E-08 DP ! W/(m^2*K^4)

[35] real(DP), parameter:: Thomson cross sect = 6.6516E-29 DP ! m^2

[36] real(DP), parameter:: Universal Gas C = 8.314510 DP ! J/mol*K

[37]

[38] ! ========== Astronomy Constants and units ==========

[39] real(DP), parameter:: AU Earth Sun = 1.4959787E+11 DP ! m

[40] real(DP), parameter:: Anomal Month = 27.5546 DP ! days

[41] real(DP), parameter:: Anomal Year = 365.2596 DP ! days

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-AppB CB496-Akin September 16, 2002 12:41

282 Selected Exercise Solutions

[42] real(DP), parameter:: Dracon Month = 27.2122 DP ! days

[43] real(DP), parameter:: Earth G = 9.80665 DP ! m/s^2

[44] real(DP), parameter:: Earth Mass = 5.974E+24 DP ! kg

[45] real(DP), parameter:: Earth Radius Eq = 6.37814E+6 DP ! m

[46] real(DP), parameter:: Earth Radius Mean = 6.371E+6 DP ! m

[47] real(DP), parameter:: Earth Radius Polar = 6.356755E+6 DP ! m

[48] real(DP), parameter:: Julian Year = 365.25 DP ! days

[49] real(DP), parameter:: Rotation Day = 23.93447222 DP ! hours

[50] real(DP), parameter:: Sidereal Day = 23.93446944 DP ! hours

[51] real(DP), parameter:: Sidereal Month = 27.3217 DP ! days

[52] real(DP), parameter:: Sidereal Ratio = 1.0027379092558 DP

[53] real(DP), parameter:: Sidereal Year = 365.2564 DP ! days

[54] real(DP), parameter:: Solar Day = 24.06571111 DP ! hours

[55] real(DP), parameter:: Synodic Month = 29.5306 DP ! days

[56] real(DP), parameter:: Tropical Year = 365.2422 DP ! days

[57] end Module Physical Constants ! Define Physical Constants

[58] Program Test Physical

[59] use Physical Constants

[60] print *, ’Avogadro = ’, Avogadro ; End Program Test Physical

[61] ! Running gives: Avogadro = 0.602213669999999967E+24

B.5 Problem 3.5.3 : Creating a Vector Class

We begin by defining the components to be included in our vector object. They include the
length of each vector and a corresponding real array of pointers to the vector components:

[1] module class Vector ! filename: class Vector.f90

[2] ! public, everything by default, but can specify any

[3] implicit none

[4] type Vector

[5] private

[6] integer :: size ! vector length

[7] real, pointer, dimension(:) :: data ! component values

[8] end type Vector

For persons familiar with vectors the use of overloaded operators makes sense (but it often
does not make sense). Thus, we overload the addition, subtraction, multiplication, assign-
ment, and logical equal to operators by defining the correct class members to be used for
different argument types:

[9] ! Overload common operators

[10] interface operator (+) ! add others later

[11] module procedure add Vector, add Real to Vector; end interface

[12] interface operator (-) ! add unary versions later

[13] module procedure subtract Vector, subtract Real; end interface

[14] interface operator (*) ! overload *

[15] module procedure dot Vector, real mult Vector, Vector mult real

[16] end interface

[17] interface assignment (=) ! overload =

[18] module procedure equal Real; end interface

[19] interface operator (==) ! overload ==

[20] module procedure is equal to; end interface

[21]

Then we encapsulate the supporting member functions, beginning with two constructors,
assign and make Vector:

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-AppB CB496-Akin September 16, 2002 12:41

B.5 Problem 3.5.3 : Creating a Vector Class 283

[22] contains ! functions & operators

[23]

[24] function assign (values) result (name) ! array to vector constructor

[25] real, intent(in) :: values(:) ! given rank 1 array

[26] integer :: length ! array size

[27] type (Vector) :: name ! Vector to create

[28] length = size(values); allocate (name%data(length))

[29] name % size = length; name % data = values; end function assign

[30]

[31] function make Vector (len, values) result(v) ! Optional Constructor

[32] integer, optional, intent(in) :: len ! number of values

[33] real, optional, intent(in) :: values(:) ! given values

[34] type (Vector) :: v

[35] if (present (len)) then ! create vector data

[36] v%size = len ; allocate (v%data(len))

[37] if (present (values)) then ; v%data = values ! vector

[38] else ; v%data = 0.d0 ! null vector

[39] end if ! values present

[40] else ! scalar constant

[41] v%size = 1 ; allocate (v%data(1)) ! default

[42] if (present (values)) then ; v%data(1) = values(1) ! scalar

[43] else ; v%data(1) = 0.d0 ! null

[44] end if ! value present

[45] end if ! len present

[46] end function make Vector

[47]

The remainder of the members are given in alphabetical order:

[48] function add Real to Vector (v, r) result (new) ! overload +

[49] type (Vector), intent(in) :: v

[50] real, intent(in) :: r

[51] type (Vector) :: new ! new = v + r

[52] if (v%size < 1) stop "No sizes in add Real to Vector"

[53] allocate (new%data(v%size)) ; new%size = v%size

[54] ! new%data = v%data + r ! as array operation

[55] new%data(1:v%size) = v%data(1:v%size) + r ; end function

[56]

[57] function add Vector (a, b) result (new) ! vector + vector

[58] type (Vector), intent(in) :: a, b

[59] type (Vector) :: new ! new = a + b

[60] if (a%size /= b%size) stop "Sizes differ in add Vector"

[61] allocate (new%data(a%size)) ; new%size = a%size

[62] new%data = a%data + b%data ; end function add Vector

Note that lines 55 and 62 above are similar ways to avoid writing serial loops that would have
to be used in most languages. This keeps the code cleaner and shorter and, more important,
it lets the compiler carry out those operations in parallel on some machines.

Although copy members are very important to C++ programmers, the following
copy Vector should probably be omitted since you would not usually pass big arrays
as copies and F90 defaults to passing-by reference unless forced to pass by value.

[63]

[64] function copy Vector (name) result (new)

[65] type (Vector), intent(in) :: name

[66] type (Vector) :: new

[67] allocate (new%data(name%size)) ; new%size = name%size

[68] new%data = name%data ; end function copy Vector

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-AppB CB496-Akin September 16, 2002 12:41

284 Selected Exercise Solutions

The routine delete Vector is the destructor for this class. In some sense it is incomplete
because it does not delete the size attribute. It was decided that, although the actual array
of data may take a huge amount of storage, the single integer is not important. To be more
complete one would need to make size an integer pointer and allocate and deallocate it at
numerous locations within this module.

[69]

[70] subroutine delete Vector (name) ! deallocate allocated items

[71] type (Vector), intent(inout) :: name

[72] integer :: ok ! check deallocate status

[73] deallocate (name%data, stat = ok)

[74] if (ok /= 0) stop "Vector not allocated in delete Vector"

[75] name%size = 0 ; end subroutine delete Vector

[76]

[77] function dot Vector (a, b) result (c) ! overload *

[78] type (Vector), intent(in) :: a, b

[79] real :: c

[80] if (a%size /= b%size) stop "Sizes differ in dot Vector"

[81] c = dot product(a%data, b%data); end function dot Vector

[82]

[83] subroutine equal Real (new, R) ! overload =, real to vector

[84] type (Vector), intent(inout) :: new

[85] real, intent(in) :: R

[86] if (associated (new%data)) deallocate (new%data)

[87] allocate (new%data(1)); new%size = 1

[88] new%data = R ; end subroutine equal Real

[89]

[90] logical function is equal to (a, b) result (t f) ! overload ==

[91] type (Vector), intent(in) :: a, b ! left & right of ==

[92] t f = .false. ! initialize

[93] if (a%size /= b%size) return ! same size ?

[94] t f = all (a%data == b%data) ! and all values match

[95] end function is equal to

[96]

[97] function length (name) result (n) ! accessor member

[98] type (Vector), intent(in) :: name

[99] integer :: n

[100] n = name % size ; end function length

[101]

[102] subroutine list (name) ! accessor member, for prettier printing

[103] type (Vector), intent(in) :: name

[104] print *,"[", name % data(1:name%size), "]"; end subroutine list

[105]

[106] function normalize Vector (name) result (new)

[107] type (Vector), intent(in) :: name

[108] type (Vector) :: new

[109] real :: total, nil = epsilon(1.0) ! tolerance

[110] allocate (new%data(name%size)) ; new%size = name%size

[111] total = sqrt (sum (name%data**2)) ! intrinsic functions

[112] if (total < nil) then ; new%data = 0.d0 ! avoid division by 0

[113] else ; new%data = name%data/total

[114] end if ; end function normalize Vector

[115]

[116] subroutine read Vector (name) ! read array, assign

[117] type (Vector), intent(inout) :: name

[118] integer, parameter :: max = 999

[119] integer :: length

[120] read (*,’(i1)’, advance = ’no’) length

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-AppB CB496-Akin September 16, 2002 12:41

B.5 Problem 3.5.3 : Creating a Vector Class 285

[121] if (length <= 0) stop "Invalid length in read Vector"

[122] if (length >= max) stop "Maximum length in read Vector"

[123] allocate (name % data(length)) ; name % size = length

[124] read *, name % data(1:length) ; end subroutine read Vector

[125]

[126] function real mult Vector (r, v) result (new) ! overload *

[127] real, intent(in) :: r

[128] type (Vector), intent(in) :: v

[129] type (Vector) :: new ! new = r * v

[130] if (v%size < 1) stop "Zero size in real mult Vector"

[131] allocate (new%data(v%size)) ; new%size = v%size

[132] new%data = r * v%data ; end function real mult Vector

[133]

[134] function size Vector (name) result (n) ! accessor member

[135] type (Vector), intent(in) :: name

[136] integer :: n

[137] n = name % size ; end function size Vector

[138]

[139] function subtract Real(v, r) result(new) ! vector-real, overload -

[140] type (Vector), intent(in) :: v

[141] real, intent(in) :: r

[142] type (Vector) :: new ! new = v + r

[143] if (v%size < 1) stop "Zero length in subtract Real"

[144] allocate (new%data(v%size)) ; new%size = v%size

[145] new%data = v%data - r ; end function subtract Real

[146]

[147] function subtract Vector (a, b) result (new) ! overload -

[148] type (Vector), intent(in) :: a, b

[149] type (Vector) :: new

[150] if (a%size /= b%size) stop "Sizes differ in subtract Vector"

[151] allocate (new%data(a%size)) ; new%size = a%size

[152] new%data = a%data - b%data ; end function subtract Vector

[153]

[154] function values (name) result (array) ! accessor member

[155] type (Vector), intent(in) :: name

[156] real :: array(name%size)

[157] array = name % data ; end function values

The routine delete Vector is the manual constructor for this class. It has no optional
arguments, and so both arguments must be supplied; it duplicates the constructor on line 31
but uses the naming convention preferred by the author.

[158]

[159] function Vector (length, values) result(name) ! constructor

[160] integer, intent(in) :: length ! array size

[161] real, target, intent(in) :: values(length) ! given array

[162] real, pointer :: pt to val(:) ! pointer to array

[163] type (Vector) :: name ! Vector to create

[164] integer :: get m ! allocate flag

[165] allocate (pt to val (length), stat = get m) ! allocate

[166] if (get m /= 0) stop ’allocate error’ ! check

[167] pt to val = values ! dereference values

[168] name = Vector(length, pt to val) ! intrinsic constructor

[169] end function Vector

[170]

[171] function Vector max value (a) result (v) ! accessor member

[172] type (Vector), intent(in) :: a

[173] real :: v

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-AppB CB496-Akin September 16, 2002 12:41

286 Selected Exercise Solutions

[174] v = maxval (a%data(1:a%size)) ; end function Vector max value

[175]

[176] function Vector min value (a) result (v) ! accessor member

[177] type (Vector), intent(in) :: a

[178] real :: v

[179] v = minval (a%data(1:a%size)) ; end function Vector min value

[180]

[181] function Vector mult real(v, r) result(new) ! vec*real, overload *

[182] type (Vector), intent(in) :: v

[183] real, intent(in) :: r

[184] type (Vector) :: new ! new = v * r

[185] if (v%size < 1) stop "Zero size in Vector mult real"

[186] new = Real mult Vector(r, v); end function Vector mult real

[187]

[188] end module class Vector

A first test of this class is given below along with comments that give the verifications of the
members.

[1] ! Testing Vector Class Constructors & Operators

[2] include ’class Vector.f90’ ! see previous figure

[3] program check vector class

[4] use class Vector

[5] implicit none

[6]

[7] type (Vector) :: x, y, z

[8]

[9] ! test optional constructors: assign, and copy

[10] x = make Vector () ! single scalar zero

[11] write (*,’("made scalar x = ")’,advance=’no’); call list(x)

[12]

[13] call delete Vector (x) ; y = make Vector (4) ! 4 zeros

[14] write (*,’("made null y = ")’,advance=’no’); call list(y)

[15]

[16] z = make Vector (4, (/11., 12., 13., 14./)) ! 4 non-zeros

[17] write (*,’("made full z = ")’,advance=’no’); call list(z)

[18] write (*,’("assign [31., 32., 33., 34.] to x")’)

[19]

[20] x = assign((/31., 32., 33., 34./)) ! (4) non-zeros

[21] write (*,’("assigned x = ")’,advance=’no’); call list(x)

[22]

[23] x = Vector (4, (/31., 32., 33., 34./)) ! 4 non-zeros

[24] write (*,’("public x = ")’,advance=’no’); call list(x)

[25] write (*,’("copy x to y =")’,advance=’no’)

[26] y = copy Vector (x) ; call list(y) ! copy

[27]

[28] ! test overloaded operators

[29] write (*,’("z * x gives ")’,advance=’no’); print *, z*x ! dot

[30] write (*,’("z + x gives ")’,advance=’no’); call list(z+x) ! add

[31] y = 25.6 ! real to vector

[32] write (*,’("y = 25.6 gives ")’,advance=’no’); call list(y)

[33] y = z ! equality

[34] write (*,’("y = z gives y as ")’, advance=’no’); call list(y)

[35] write (*,’("logic y == x gives ")’,advance=’no’); print *, y==x

[36] write (*,’("logic y == z gives ")’,advance=’no’); print *, y==z

[37]

[38] ! test destructor, accessors

[39] call delete Vector (y) ! destructor

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-AppB CB496-Akin September 16, 2002 12:41

B.5 Problem 3.5.3 : Creating a Vector Class 287

[40] write (*,’("deleting y gives y = ")’,advance=’no’); call list(y)

[41] print *, "size of x is ", length (x) ! accessor

[42] print *, "data in x are [", values (x), "]" ! accessor

[43] write (*,’("2. times x is ")’,advance=’no’); call list(2.0*x)

[44] write (*,’("x times 2. is ")’,advance=’no’); call list(x*2.0)

[45] call delete Vector (x); call delete Vector (z) ! clean up

[46] end program check vector class

[47] ! Running gives the output: ! made scalar x = [0]

[48] ! made null y = [0, 0, 0, 0] ! made full z = [11, 12, 13, 14]

[49] ! assign [31, 32, 33, 34] to x ! assigned x = [31, 32, 33, 34]

[50] ! public x = [31, 32, 33, 34] ! copy x to y = [31, 32, 33, 34]

[51] ! z * x gives 1630 ! z + x gives [42, 44, 46, 48]

[52] ! y = 256 gives [256000004] ! y = z, y = [11, 12, 13, 14]

[53] ! logic y == x gives F ! logic y == z gives T

[54] ! deleting y gives y = [] ! size of x is 4

[55] ! data in x : [31, 32, 33, 34] ! 2 times x is [62, 64, 66, 68]

[56] ! x times 2 is [62, 64, 66, 68]

Having tested the vector class, we will now use it in some typical vector operations. We want
a program that will work with arrays of vectors to read in the number of vectors. The array
of vectors will use an automatic storage mode. That could be risky because, if the system
runs out of memory, we will get a fatal error message and the run will abort. If we make the
alternate choice of allocatable arrays, then we can check the allocation status and have a
chance (but not a good chance) of closing down the code is some “friendly” manner. Once
the code reads the number of vectors, then, for each one it reads the number of components
and the the component values. After testing some simple vector math, we compute a more
complicated result known as the orthonormal basis for the given set of vectors:

[1] ! Test Vector Class Constructors, Operators and Basis

[2] include ’class Vector.f’

[3]

[4] program check basis ! demonstrate a typical Vector class

[5] use class Vector

[6] implicit none

[7]

[8] interface

[9] subroutine testing basis (N V)

[10] integer, intent(in) :: N V

[11] end subroutine testing basis

[12] end interface

[13]

[14] print *, "Test automatic allocate, deallocate"

[15] print *, " " ; read *, N V

[16] print *, "The number of vectors to be read is: ", N V

[17] call testing basis (N V) ! to use automatic arrays

[18] end program check basis

[19]

[20] subroutine testing basis (N V)

[21] ! test vectors AND demo automatic allocation/deallocation

[22] use class Vector

[23]

[24] integer, intent(in) :: N V

[25] type (Vector) :: Input(N V) ! automatic array

[26] type (Vector) :: Ortho(N V) ! automatic array

[27] integer :: j

[28] real :: norm

[29]

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-AppB CB496-Akin September 16, 2002 12:41

288 Selected Exercise Solutions

[30] interface

[31] subroutine orthonormal basis (Input, Ortho, N given)

[32] use class Vector

[33] type (Vector), intent(in) :: Input(N given)

[34] type (Vector), intent(out) :: Ortho(N given)

[35] integer, intent(in) :: N given

[36] end subroutine orthonormal basis

[37] end interface

[38]

[39] print *, " " ; print *, "The given ", N V, " vectors:"

[40] do j = 1, N V

[41] call read Vector (Input(j))

[42] call list (Input(j))

[43] end do ! for j

[44]

[45] print *, " "

[46] print *, "The Orthogonal Basis of the original set is:"

[47]

[48] call orthonormal basis (Input, Ortho, N V)

[49] do j = 1, N V ! list new orthogonal basis

[50] call list (Ortho(j))

[51] end do ! for j

[52]

[53] ! use vector class features & operators

[54] print *, ’ ’ ; print *,"vector 1 + vector 2 = "

[55] call list (Input(1)+Input(2))

[56] print *,"vector 1 - vector 2 = "

[57] call list (Input(1)-Input(2))

[58] print *,"vector 1 dot vector 2 = ", Input(1)*Input(2)

[59] print *,"vector 1 * 3.5 = "

[60] call list (3.5*Input(1))

[61] norm = sqrt (dot Vector(Input(1), Input(1)))

[62] print *,"norm(vector 1) = ", norm

[63] print *,"normalized vector 1 = "

[64] call list (normalize Vector(Input(1)))

[65] print *,"max(vector 1) = ", vector max value (Input(1))

[66] print *,"min(vector 1) = ", vector min value (Input(1))

[67] print *,"length of vector 1 = ", length (Input(1))

[68] end subroutine testing basis

[69]

[70] subroutine orthonormal basis (Input, Ortho, N given)

[71] ! Find Orthonormal Basis of a Set of Vector Classes

[72] use class Vector

[73] !***

[74] ! =, -, +, * are overloaded operators from class Vector

[75] !***

[76]

[77] type (Vector), intent(in) :: Input(N given)

[78] type (Vector), intent(out) :: Ortho(N given)

[79] integer, intent(in) :: N given

[80] integer :: i, j ! loops

[81] real :: dot

[82] do i = 1, N given ! original set of vectors

[83] Ortho(i) = Input(i) ! copy input vector class

[84] do j = 1, i ! for previous copies

[85] dot = dot Vector(Ortho(i), Ortho(j))

[86] Ortho(i) = Ortho(i) - (dot*Ortho(j))

[87] end do ! for j

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-AppB CB496-Akin September 16, 2002 12:41

B.6 Problem 3.5.4 : Creating a Sparse Vector Class 289

[88] Ortho(i) = normalize Vector (Ortho(i))

[89] end do ! over i

[90] end subroutine orthonormal basis

[91]

[92] ! Compiling and inputting :

[93] ! 4

[94] ! 3 0.625 0 0

[95] ! 3 7.5 3.125 0

[96] ! 3 13.25 -7.8125 6.5

[97] ! 3 14.0 3.5 -7.5

[98] ! Gives:

[99] ! Test automatic allocate, deallocate

[100] !

[101] ! The number of vectors to be read is: 4

[102] ! The given 4 vectors:

[103] ! [0.6250 0.0000 0.0000]

[104] ! [7.5000 3.1250 0.0000]

[105] ! [13.2500 -7.8125 6.5000]

[106] ! [14.0000 3.5000 -7.5000]

[107] !

[108] ! The Orthogonal Basis of the original set is:

[109] ! [1.0000 0.0000 0.0000]

[110] ! [0.0000 -1.0000 0.0000]

[111] ! [0.0000 0.0000 -1.0000]

[112] ! [0.0000 0.0000 0.0000]

[113] !

[114] ! vector 1 + vector 2 = [8.1250 3.1250 0.0000]

[115] ! vector 1 - vector 2 = [-6.8750 -3.1250 0.0000]

[116] ! vector 1 dot vector 2 = 4.6875

[117] ! vector 1 * 3.5 = [2.1875 0.0000 0.0000]

[118] ! norm(vector 1) = 0.6250

[119] ! normalized vector 1 = [1.0000 0.0000 0.0000]

[120] ! max(vector 1) = 0.6250

[121] ! min(vector 1) = 0.0000

[122] ! length of vector 1 = 3

B.6 Problem 3.5.4 : Creating a Sparse Vector Class

This class begins like the previous vector class except that we must add a row entry (line 5)
for each data value entry (line 6). This is done for efficiency since we expect most values
in sparse vectors to be zero (and hence their name). The attribute non zero is the size of
both rows and values.

[1] module class sparse Vector

[2] implicit none

[3] type sv ! a sparse vector

[4] integer :: non zeros

[5] integer, pointer :: rows(:)

[6] real, pointer :: values(:)

[7] end type

[8]

The overloading process is similar, but now we will see that much more logic is required to
deal with the zero entries and new zeros created by addition or multiplication.

[8] interface assignment (=)

[9] module procedure equal Vector ; end interface

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-AppB CB496-Akin September 16, 2002 12:41

290 Selected Exercise Solutions

[10] interface operator (.dot.) ! define dot product operator

[11] module procedure dot Vector ; end interface

[12] interface operator (==) ! Boolean equal to

[13] module procedure is equal to ; end interface

[14] interface operator (*) ! term by term product

[15] module procedure el by el Mult, real mult Sparse

[16] module procedure Sparse mult real

[17] end interface

[18] interface operator (-) ! for sparse vectors

[19] module procedure Sub Sparse Vectors ; end interface

[20] interface operator (+) ! for sparse vectors

[21] module procedure Sum Sparse Vectors ; end interface

[22]

[23] contains ! operators and functionality

In the following constructor for the class note that both of the pointer array attributes are
allocated (line 32) the same amount of storage in memory. One should also include the
allocation status flag here and check its value to raise a possible exception (as seen in lines
41–46).

[24] subroutine make Sparse Vector (s,n,r,v)

[25] ! allows zero length vectors

[26] type (sv) :: s ! name

[27] integer, intent(in) :: n ! size

[28] integer, intent(in) :: r(n) ! rows

[29] real, intent(in) :: v(n) ! values

[30] if (n < 0) stop &

[31] "Error, negative rows in make Sparse Vector"

[32] allocate (s%rows(n), s%values(n))

[33] s%non zeros = n ! copy size

[34] s%rows = r ! row array assignment

[35] s%values = v ! value array assignment

[36] end subroutine make Sparse Vector

[37]

This is really a destructor. Again, it is incomplete because the integer array size was not
made allocatable for simplicity.

[38] subroutine delete Sparse Vector (s)

[39] type (sv) :: s ! name of sparse vector

[40] integer :: error ! deallocate status flag, 0 no error

[41] deallocate (s%rows, s%values, stat = error) ! memory released

[42] if (error == 0) then

[43] s%non zeros = 0 ! reset size

[44] else ! never created

[45] stop "Sparse vector to delete does not exist"

[46] end if ; end subroutine delete Sparse Vector

[47]

This creates a user-defined operator called .dot. to be applied to sparse vectors.

[48] function dot Vector (u, v) result (d) ! defines .dot.

[49] ! dot product of sparse vectors

[50] type (sv), intent(in) :: u, v ! sparse vectors

[51] type (sv) :: w ! sparse vector, temporary

[52] real :: d ! dot product value

[53] d = 0.0 ! default

[54] if (u%non zeros < 1 .or. v%non zeros < 1) return ! null

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-AppB CB496-Akin September 16, 2002 12:41

B.6 Problem 3.5.4 : Creating a Sparse Vector Class 291

[55] w = el by el Mult (u, v) ! element by element sparse product

[56] if (w%non zeros > 0) &

[57] d = sum(w%values(1:w%non zeros)) ! summed

[58] call delete Sparse Vector (w) ! delete temp

[59] end function dot Vector

[60]

The dot Vector above is more complicated in this format because it is likely that stored
nonzero values will be multiplied by (unstored) zeros. Thus, the real work is done in the
following member function that employs Boolean logic. The terms for the summation that
creates the scalar dot product are first computed in a full vector equal in length to the
minimum row number given. Observe that its size is established through the use of the min
intrinsic acting on the two given sizes within the dimensionattribute for the full array (lines
67,68). Three logical arrays (line 68) are used as “masks,” which are true when a nonzero
exists in the corresponding row of their associated sparse vector (down to the minimum row
cited above). The three logical vectors are initialized in lines 77 to 92. That process ends with
the third vector’s being created as a Boolean product (line 91), and the maximum possible
number of nonzero products is found from the count intrinsic (line 92).

It is also important to note that the working space vector full is an automatic array,
and memory for it is automatically allocated for it each time the function is called. It could
be an extremely long vector, and thus it is possible (but not likely) that there would not be
enough memory available. Then the system would abort with an error message. To avoid that
possibility one could have declared full to be anallocatablevector and then allocated its
memory by using a similarminconstruct. That allocation request should (always) include the
STAT flag so that, if the memory allocation fails, it would be possible to issue an exception
to try to avoid a fatal crash of the system (not likely).

[61] function el by el Mult (u, v) result (w) ! defines * operator

[62] ! element by element product of sparse vectors: 0 * real ?

[63] type (sv), intent(in) :: u, v ! given vectors

[64] type (sv) :: w ! new vector

[65] real :: full(min(u%rows(u%non zeros), & ! automatic

[66] & v%rows(v%non zeros))) ! workspace

[67] logical, dimension(min(u%rows(u%non zeros), &

[68] v%rows(v%non zeros))) :: u m, v m, w m ! logical product masks

[69] integer :: j, k, last, n, row

[70] ! is either u or v null ?

[71] if (u%non zeros < 1 .or. v%non zeros < 1) then ! w is null

[72] allocate (w%rows(0), w%values(0))

[73] w%non zeros = 0

[74] return ! a null sparse vector

[75] end if ! no calculation necessary

[76]

[77] ! Initialize logic masks

[78] last = min(u%rows(u%non zeros), v%rows(v%non zeros)) ! max size

[79] u m = .false. ! assume no contributions

[80] do j = 1, size(u%rows)

[81] row = u%rows(j) ! get row number to flag

[82] if (row > last) exit ! j loop

[83] u m(row) = .true. ! possible contribution

[84] end do ! to initialize u mask

[85] v m = .false. ! assume no contributions

[86] do j = 1, size(v%rows)

[87] row = v%rows(j) ! get row number to flag

[88] if (row > last) exit ! j loop

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-AppB CB496-Akin September 16, 2002 12:41

292 Selected Exercise Solutions

[89] v m(row) = .true. ! possible contribution

[90] end do ! to initalize v mask

[91] w m = (u m .and. v m) ! Boolean product logic

[92] n = count (w m) ! count possible products

[93] ! if (n == 0) print *,"Warning: zero length sparse" ! debug

[94]

The vector full is set to zero (line 96) and comparison DO loops (lines 97,101) over the
two given vectors are minimized (lines 100,103) by testing where the mask vector w m is
true (thereby indicating a nonzero product). When all the products are stored in the full
vector it is converted to the sparse vector storage mode (line 109) for release as the return
result. Because full is an automatic array, its memory is automatically released when
the function is exited.

[95] ! Fill the product workspace, full

[96] full = 0.0 ! initialize

[97] do j = 1, size(u%rows) ! loop over u

[98] row = u%rows(j) ! row in u

[99] if (row > last) exit ! this loop in u ! past end of w

[100] if (.not. w m(row)) cycle ! to next j ! not in product

[101] do k = 1, size(v%rows) ! loop over v

[102] if (v%rows(k) > last) exit ! this loop ! past end of w

[103] if (.not. w m(v%rows(k))) cycle ! to k+1 ! not in product

[104] if (row == v%rows(k)) then ! same row, u & v

[105] full(row) = u%values(j)*v%values(k) ! get product

[106] end if

[107] end do ! on k in v

[108] end do ! on j in u

[109] w = Vector To Sparse (full) !delete any zeros

[110] end function el by el Mult ! deletes full & 3 masks

[111]

The operator overloading members are given with the next function (line 112) as well as
in lines 140, 231, and 320.

[112] subroutine equal Vector (new, s) ! overload =

[113] type (sv), intent(inout) :: new

[114] type (sv), intent(in) :: s

[115] allocate (new%rows(s%non zeros))

[116] allocate (new%values(s%non zeros))

[117] new%non zeros = s%non zeros

[118] if (s%non zeros > 0) then

[119] new%rows (1:s%non zeros) = s%rows (1:s%non zeros) ! array copy

[120] new%values(1:s%non zeros) = s%values(1:s%non zeros) ! copy

[121] end if ; end subroutine equal Vector

[122]

[123] function get element (name, row) result (v)

[124] type (sv), intent(in) :: name ! sparse vector

[125] integer, intent(in) :: row ! row in sparse vector

[126] integer :: j ! loops

[127] real :: v ! value at row

[128] v = 0.0 ! default

[129] if (row < 1) stop "Invalid row number, get element"

[130] if (name%non zeros < 1) return ! not here

[131] if (row > name%rows(name%non zeros)) return ! not here

[132] do j = 1, name%non zeros

[133] if (row == name%rows(j)) then

[134] v = name%values(j) ! found the value

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-AppB CB496-Akin September 16, 2002 12:41

B.6 Problem 3.5.4 : Creating a Sparse Vector Class 293

[135] return ! search done

[136] end if ! in the vector

[137] end do ! over possible values

[138] end function get element

[139]

[140] function is equal to (a, b) result (t or f) ! define ==

[141] type (sv), intent(in) :: a, b ! two sparse vectors

[142] logical :: t or f

[143] integer :: i ! loops

[144] t or f = .true. ! default

[145] if (a%non zeros == b%non zeros) then ! also check values

[146] do i = 1, a%non zeros ! or use count function for simplicity

[147] if (a%rows(i) /= b%rows(i) .or. &

[148] a%values(i) /= b%values(i)) then

[149] t or f = .false. ! because rows and/or values differ

[150] return ! no additional checks needed

[151] end if ! same values

[152] end do ! over sparse rows

[153] else ! sizes differ so vectors must be different

[154] t or f = .false.

[155] end if ! sizes match

[156] end function is equal to

[157]

[158] function largest index (s) result(row)

[159] type (sv), intent(in) :: s ! sparse vector

[160] integer :: row ! last non-zero in full vector

[161] integer :: j ! loops

[162] row = 0 ! initalize

[163] if (s%non zeros < 1) return ! null vector

[164] do j = s%non zeros, 1, -1 ! loop backward

[165] if (s%values(j) /= 0.0) then ! last non-zero term

[166] row = s%rows(j) ! actual row number

[167] return ! search done

[168] end if

[169] end do

[170] end function largest index

[171]

[172] function length (name) result (n)

[173] type (sv), intent(in) :: name

[174] integer :: n

[175] n = name % non zeros ! read access to size, if private

[176] end function length

[177]

Once again we observe that the next two functions employ the colon operator (lines
185,196,199, and 201) to avoid explicit serial loops, which would make them faster on certain
vector and parallel computers.

[178] function norm (name) result (total)

[179] type (sv), intent(in) :: name

[180] real :: total

[181] if (name%non zeros < 1) then

[182] ! print *, "Warning: empty vector in norm"

[183] total = 0.0

[184] else

[185] total = sqrt(sum(name%values(1:name%non zeros)**2))

[186] end if ! a null vector

[187] end function norm

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-AppB CB496-Akin September 16, 2002 12:41

294 Selected Exercise Solutions

[188]

[189] function normalize Vector (s) result (new)

[190] type (sv), intent(in) :: s

[191] type (sv) :: new

[192] real :: total, epsilon = 1.e-6

[193] allocate (new%rows (s%non zeros))

[194] allocate (new%values(s%non zeros))

[195] new%non zeros = s%non zeros ! copy size

[196] new%rows(1:s%non zeros) = s%rows(1:s%non zeros) ! copy rows

[197] total = sqrt(sum(s%values(1:s%non zeros)**2)) ! norm

[198] if (total <= epsilon) then ! divide by 0 ?

[199] new%values(1:s%non zeros) = 0.d0 ! set to zero

[200] else ! or real values

[201] new%values(1:s%non zeros) = s%values(1:s%non zeros)/total

[202] end if ! division by zero

[203] end function normalize Vector

[204]

[205] subroutine pretty (s) ! print all values if space allows

[206] type (sv), intent(in) :: s ! sparse vector

[207] integer, parameter :: limit = 20 ! for print size

[208] integer :: n

[209] real :: full(s%rows(s%non zeros)) ! temp

[210] n = s%non zeros

[211] if (s%non zeros < 1 .or. s%rows(s%non zeros) > limit) then

[212] print *, "Wrong size to pretty print"

[213] else

[214] full = 0. ! initialize to zero

[215] if (n > 0) full(s%rows) = s%values ! array copy non zeros

[216] print *,"[", full,"]" ! pretty print

[217] end if ; end subroutine pretty ! automatic deallocate of full

[218]

[219] subroutine read Vector (name) ! sparse vector data on unit 1

[220] type (sv), intent(inout) :: name

[221] integer :: length, j

[222] read (1,’(i1)’, advance = ’no’) length

[223] if (length <= 0) stop "Invalid length in read Vector"

[224] name % non zeros = length

[225] allocate (name % rows (length))

[226] allocate (name % values (length))

[227] read (1,*) (name%rows(j), name%values(j), j = 1, length)

[228] name%rows = name%rows + 1 ! default to 1 not 0 in F90

[229] end subroutine read Vector

[230]

[231] function real mult Sparse (a, b) result (new)

[232] ! scalar * vector

[233] real, intent(in) :: a

[234] type (sv), intent(in) :: b

[235] type (sv) :: new

[236] allocate (new%rows (b%non zeros))

[237] allocate (new%values(b%non zeros))

[238] new%non zeros = b%non zeros

[239] if (b%non zeros < 1) then

[240] print *, "Warning: zero size in real mult Sparse "

[241] else ! copy array components

[242] new%rows (1:b%non zeros) = b%rows (1:b%non zeros)

[243] new%values(1:b%non zeros) = a * b%values(1:b%non zeros)

[244] end if ! null vector

[245] end function real mult Sparse

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-AppB CB496-Akin September 16, 2002 12:41

B.6 Problem 3.5.4 : Creating a Sparse Vector Class 295

[246]

[247] function rows of (s) result(n) ! copy rows array of s

[248] type (sv) :: s ! sparse vector

[249] integer :: n(s%non zeros) ! standard array

[250] if (s%non zeros < 1) stop "No rows to extract, rows of"

[251] n = s%rows ! array copy

[252] end function rows of

[253]

[254] subroutine set element (s, row, value)

[255] ! Set, or insert, value into row of a sparse vector, s

[256] type (sv), intent(inout) :: s ! sparse vector

[257] integer, intent(in) :: row ! full vector row

[258] real, intent(in) :: value ! full vector value

[259] type (sv) :: new ! workspace

[260] logical :: found ! true if row exists

[261] integer :: j, where ! loops, locator

[262] found = .false. ! initialize

[263] where = 0 ! initialize

[264] do j = 1, s%non zeros

[265] if (s%rows(j) == row) then ! found it

[266] s%values(j) = value ! value changed

[267] return ! no insert needed

[268] end if

[269] if (s%rows(j) > row) then

[270] where = j ! insert before j

[271] exit ! the loop search

[272] else ! s%rows(j) < row, may be next or last

[273] where = j + 1

[274] end if

[275] end do ! over current rows in s

[276] if (.not. found) then ! expand and insert at where

[277] if (where == 0) stop "Logic error, set element"

[278] new%non zeros = s%non zeros + 1

[279] allocate (new%rows (new%non zeros))

[280] allocate (new%values(new%non zeros))

[281] ! copy preceeding rows

[282] if (where > 1) then ! copy to front of new

[283] new%rows (1:where-1) = s%rows (1:where-1) ! array copy

[284] new%values(1:where-1) = s%values(1:where-1) ! array copy

[285] end if ! copy to front of new

[286] ! insert, copy following rows of s

[287] new%rows (where) = row ! insert

[288] new%values(where) = value ! insert

[289] new%rows (where+1:) = s%rows (where:) ! array copy

[290] new%values(where+1:) = s%values(where:) ! array copy

[291] ! deallocate s, move new to s, deallocate new

[292] call delete Sparse Vector (s) ! delete s

[293] call equal Vector (s, new) ! s <- new

[294] call delete Sparse Vector (new) ! delete new

[295] end if ! an insert is required

[296] end subroutine set element

[297]

[298] subroutine show (s) ! alternating row number and value

[299] type (sv) :: s ! sparse vector

[300] integer :: j, k ! implied loops

[301] k = length (s)

[302] if (k == 0) then

[303] print *, k ; else ; ! print in C++ style rows

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-AppB CB496-Akin September 16, 2002 12:41

296 Selected Exercise Solutions

[304] print *, k, ((s%rows(j)-1), s%values(j), j = 1, k)

[305] end if ; end subroutine show

[306]

[307] subroutine show r v (s) ! all rows then all values

[308] type (sv) :: s ! sparse vector

[309] print *, "Vector has ", s%non zeros, " non zero terms."

[310] if (s%non zeros > 0) then

[311] print *, "Rows: ", s%rows - 1 ! to look like C++

[312] print *, "Values: ", s%values

[313] end if ; end subroutine show r v

[314]

[315] function size of (s) result(n)

[316] type (sv) :: s

[317] integer :: n

[318] n = s%non zeros ; end function size of

[319]

[320] function Sparse mult real (a, b) result (new)

[321] ! vector * scalar

[322] real, intent(in) :: b

[323] type (sv), intent(in) :: a

[324] type (sv) :: new

[325] new = real mult Sparse (b, a) ! reverse the order

[326] end function Sparse mult real

[327]

In the following subtraction and addition functions we again note that sparse terms with
the same values but opposite signs can yield new zero terms in the resulting vector. A
temporary automatic workspace vector, full, is used to hold the preliminary results. In
this case it must have a size that is the maximum of the two given vectors. Thus, the max

intrinsic is employed in its dimensionattribute (lines 331, 344), which is opposite the earlier
multiplication example (line 65).

[328] function Sub Sparse Vectors (u, v) result (w) ! defines -

[329] type (sv), intent(in) :: u, v

[330] type (sv) :: w

[331] real :: full(max(u%rows(u%non zeros), & ! automatic

[332] & v%rows(v%non zeros))) ! workspace

[333] if (u%non zeros <= 0) stop "First vector doesn’t exist"

[334] if (v%non zeros <= 0) stop "Second vector doesn’t exist"

[335] full = 0.0 ! set to zero

[336] full(u%rows) = u%values ! copy first values

[337] full(v%rows) = full(v%rows) - v%values ! less second values

[338] w = Vector To Sparse (full) ! delete any zeros

[339] end function Sub Sparse Vectors ! automatically deletes full

[340]

[341] function Sum Sparse Vectors (u, v) result (w) ! defines +

[342] type (sv), intent(in) :: u, v

[343] type (sv) :: w

[344] real :: full(max(u%rows(u%non zeros), & ! automatic

[345] & v%rows(v%non zeros))) ! workspace

[346] if (u%non zeros <= 0) stop "First vector doesn’t exist"

[347] if (v%non zeros <= 0) stop "Second vector doesn’t exist"

[348] full = 0. ! set to zero

[349] full(u%rows) = u%values ! copy first values

[350] full(v%rows) = full(v%rows) + v%values ! add second values

[351] w = Vector To Sparse (full) ! delete any zeros

[352] end function Sum Sparse Vectors ! automatically deletes full

[353]

[354] function values of (s) result(v) ! copy values of s

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-AppB CB496-Akin September 16, 2002 12:41

B.7 Problem 3.5.5 : Creating an Inventory Object 297

[355] type (sv) :: s ! sparse vector

[356] real :: v(s%non zeros) ! standard array

[357] if (s%non zeros < 1) &

[358] stop "No values to extract, in values of"

[359] v = s%values ! array copy

[360] end function values of

[361]

[362] function Vector max value (a) result (v)

[363] type (sv), intent(in) :: a

[364] real :: v

[365] v = maxval (a%values(1:a%non zeros)) ! intrinsic function

[366] ! is it a sparse vector with a false negative maximum ?

[367] if (a%non zeros < a%rows(a%non zeros) .and. v < 0.) v = 0.0

[368] end function Vector max value

[369]

[370] function Vector min value (a) result (v)

[371] type (sv), intent(in) :: a

[372] real :: v

[373] v = minval (a%values(1:a%non zeros)) ! intrinsic function

[374] ! is it a sparse vector with a false positive minimum ?

[375] if (a%non zeros < a%rows(a%non zeros) &

[376] .and. v > 0.) v = 0.0

[377] end function Vector min value

[378]

This function is invoked several times in other member functions. It simply accepts a
standard (dense) vector and converts it to the sparse storage mode in the return result.

[379] function Vector To Sparse (full) result (sparse)

[380] real, intent(in) :: full(:) ! standard array

[381] type (sv) :: sparse ! sparse vector copy

[382] integer :: j, n, number ! loops and counters

[383] n = count (full /= 0.0) ! count non zeros

[384] ! if (n == 0) print *, "Warning: null full vector "

[385] allocate (sparse%rows(n), sparse%values(n))

[386] sparse%non zeros = n ! sparse size

[387] number = 0 ! non zeros inserted

[388] do j = 1, size(full)

[389] if (full(j) == 0.0) cycle ! to next j value

[390] number = number + 1 ! non zeros inserted

[391] sparse%rows(number) = j ! row number in full

[392] sparse%values(number) = full(j) ! value

[393] if (number == n) exit ! all non zeros found

[394] end do ; end function Vector To Sparse

[395]

[396] function zero sparse () result (s)

[397] type (sv) :: s ! create sparse null vector

[398] s%non zeros = 0

[399] allocate (s%rows(0), s%values(0)); end function zero sparse

[400] end module class sparse Vector

B.7 Problem 3.5.5 : Creating an Inventory Object

We begin with the given components for the object and the initialization process.

[1] module inventory object

[2] implicit none

[3]

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-AppB CB496-Akin September 16, 2002 12:41

298 Selected Exercise Solutions

[4] public ! all member functions

[5]

[6] type inventory

[7] private

[8] character(len=50) :: name

[9] real :: cost

[10] real :: price

[11] integer :: in stock ! number in stock

[12] integer :: lead time ! work days to re-stock

[13] end type inventory

[14]

[15] contains

[16]

[17] function initialize item () result (item)

[18] type (inventory) :: item

[19] item % name = ""

[20] item % cost = 0.0

[21] item % in stock = 0

[22] item % lead time = 0

[23] end function initialize item

[24]

The next group of functions provide access to the private attributes.

[25] function get item name (item) result (name)

[26] type (inventory), intent(in) :: item

[27] character(len=50) :: name

[28] name = item % name

[29] end function get item name

[30]

[31] function get item cost (item) result (cost)

[32] type (inventory), intent(in) :: item

[33] real :: cost

[34] cost = item % cost

[35] end function get item cost

[36]

[37] function get item count (item) result (count)

[38] type (inventory), intent(in) :: item

[39] integer :: count

[40] count = item % in stock

[41] end function get item count

[42]

[43] function get item delay (item) result (delay)

[44] type (inventory), intent(in) :: item

[45] integer :: delay

[46] delay = item % in stock

[47] end function get item delay

[48]

If we are going to list or save items it makes sense to do so only for nonempty items; thus,
access to an empty test is included.

[49] function is item empty (item) result (t f)

[50] type (inventory), intent(in) :: item

[51] logical :: t f

[52] t f = ((get item name (item)) == ’’)

[53] end function is item empty

[54]

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-AppB CB496-Akin September 16, 2002 12:41

B.8 Problem 4.11.1 : Count the Lines in an External File 299

A standard input–output interface is provided for

[55] subroutine enter item (one)

[56] type (inventory), intent(inout) :: one

[57] one = initialize item () ! initialize

[58] print *, "Enter the requested data:"

[59] print *, "Product (name) : "; read *, one % name

[60] print *, "Cost ($) : "; read *, one % cost

[61] print *, "Price ($) : "; read *, one % price

[62] print *, "In Stock (#) : "; read *, one % in stock

[63] print *, "Re-Stock (days): "; read *, one % lead time

[64] end subroutine enter item

[65]

[66] subroutine print item (one)

[67] type (inventory), intent(in) :: one

[68] print *, "Current Inventory Status:"

[69] print *, "Product (name) : ", one % name

[70] print *, "Cost ($) : ", one % cost

[71] print *, "Price ($) : ", one % price

[72] print *, "In Stock (#) : ", one % in stock

[73] print *, "Re-Stock (days): ", one % lead time

[74] end subroutine print item

[75]

For long-term storage it is desirable to keep the information in its most compact (binary)
form. Thus, file access with status checking is a useful option.

[76] subroutine file read (unit, one, ok)

[77] integer, intent(in) :: unit

[78] type (inventory), intent(out) :: one

[79] integer, intent(out) :: ok ! status

[80] read (unit, iostat=ok) one ! private components

[81] end subroutine file read

[82]

[83] subroutine file write (unit, one, ok)

[84] integer, intent(in) :: unit

[85] type (inventory), intent(in) :: one

[86] integer, intent(out) :: ok ! status

[87] write (unit, iostat=ok) one ! private components

[88] end subroutine file write

[89]

[90] end module inventory object

Later we will use this object in building an inventory system.

B.8 Problem 4.11.1 : Count the Lines in an External File

[1] function inputCount(unit) result(linesOfInput)

[2] !---

[3] ! takes a file number, counts the number of lines in that

[4] ! file, and returns the number of lines.

[5] !---

[6] implicit none

[7] integer, intent(in) :: unit ! file unit number

[8] integer :: linesOfInput ! result

[9] integer ioResult ! system I/O action error code

[10] character temp ! place to hold the character read

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-AppB CB496-Akin September 16, 2002 12:41

300 Selected Exercise Solutions

[11]

[12] rewind (unit) ! go to the front of the file

[13] linesOfInput = 0 ! initially, there are 0 lines

[14]

[15] do ! Until iostat says we’ve hit the end of file

[16] read (unit,’(A)’, iostat = ioResult) temp ! one char

[17]

[18] if (ioResult == 0) then ! there were no errors

[19] linesOfInput = linesOfInput + 1 ! increment lines

[20] else if (ioResult < 0) then ! we’ve hit end-of-file

[21] exit ! so exit this loop.

[22] else ! ioResult is positive, which is a user error

[23] write (*,*) ’inputCount: no data at unit =’, unit

[24] stop ’user read error’

[25] end if

[26] end do

[27] rewind(unit) ! go to the front of the file

[28] end Function inputCount

B.9 Problem 4.11.3 : Computing CPU Time Usage

Although this is mainly designed to show the use of the module tic toc, you should note
that the intrinsic way of printing a date or time is not “pretty” and could easily be improved.

[1] program watch

[2] ! ---

[3] ! Exercise DATE AND TIME and SYSTEM CLOCK functions.

[4] ! ---

[5] use tic toc

[6] implicit none

[7] character* 8 :: the date

[8] character*10 :: the time

[9] integer :: j, k

[10] !

[11] call date and time (DATE = the date)

[12] call date and time (TIME = the time)

[13] print *, ’The date is ’, the date, &

[14] & ’ and the time is now ’, the time

[15] ! Display facts about the system clock.

[16] print *, ’ ’

[17] call system clock (COUNT RATE = rate)

[18] print *, ’System clock runs at ’, rate,&

[19] & ’ ticks per second’

[20] !

[21] ! Call the system clock to start an execution timer.

[22] call tic

[23] !

[24] ! call run the job, or test with next 3 lines

[25] do k = 1, 9999

[26] j = sqrt (real(k*k))

[27] end do

[28] ! Stop the execution timer and report execution time.

[29] print *, ’ ’

[30] print *, ’Job took ’, toc (), ’ seconds to execute.’

[31] end program watch ! Running gives

[32] ! The date is 19980313 and the time is now 171837.792

[33] ! System clock runs at 100 ticks per second

[34] ! Job took 0.9999999776E-02 seconds to execute.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-AppB CB496-Akin September 16, 2002 12:41

B.12 Problem 4.11.14 : Two-line Least-square Fits 301

B.10 Problem 4.11.4 : Converting a String to Uppercase

The change from the to lower should be obvious here. It seems desirable to place these
two routines and others that deal with strings into a single strings utility module.

[1] function to upper (string) result (new string) ! like C

[2] ! ---

[3] ! Convert a string or character to upper case

[4] ! (valid for ASCII or EBCDIC processors)

[5] ! ---

[6] implicit none

[7] character (len = *), intent(in) :: string ! unknown length

[8] character (len = len(string)) :: new string ! same length

[9] character (len = 26), parameter :: &

[10] UPPER = ’ABCDEFGHIJKLMNOPQRSTUVWXYZ’, &

[11] lower = ’abcdefghijklmnopqrstuvwxyz’

[12] integer :: k ! loop counter

[13] integer :: loc ! position in alphabet

[14] new string = string ! copy everything

[15] do k = 1, len(string) ! to change letters

[16] loc = index (lower, string(k:k)) ! locate

[17] if (loc /= 0) new string(k:k) = UPPER(loc:loc) ! convert

[18] end do ! over string characters

[19] end function to upper

B.11 Problem 4.11.8 : Read two Values from Each Line of an External File

[1] subroutine readData (inFile, lines, x, y)

[2] ! --

[3] ! Take a file number, the number of lines to be read,

[4] ! and put the data into the arrays x and y

[5] ! --

[6] ! inFile is unit number to be read

[7] ! lines is number of lines in the file

[8] ! x is independent data

[9] ! y is dependent data

[10] implicit none

[11] integer, intent(in) :: inFile, lines

[12] real, intent(out) :: x(lines), y(lines)

[13] integer :: j

[14]

[15] rewind (inFile) ! go to front of the file

[16] do j = 1, lines ! for the entire file

[17] read (inFile, *) x(j), y(j) ! get the x and y values

[18] end do ! over all lines

[19] end subroutine readData

B.12 Problem 4.11.14 : Two-line Least-square Fits

The extension of the single-line least-squares fit shown in Figure 4.21 is rather straightforward
in that we will call subroutine lsq fit multiple times. In line 37 we first call it in case a single-
line fit may be more accurate than the expected two-line fit.

[1] program two line lsq fit

[2] !--

[3] ! Best two-line linear least-squares fit of data in

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-AppB CB496-Akin September 16, 2002 12:41

302 Selected Exercise Solutions

[4] ! file specified by the user, and split in two sets

[5] !--

[6] implicit none

[7] real, allocatable :: x (:) ! independent data

[8] real, allocatable :: y (:) ! dependent data

[9]

[10] real :: fit(3), fit1(3), fit2(3) ! error results

[11] real :: left(3), right(3) ! best results

[12] real :: error ! current error

[13] real :: error min ! best error

[14] integer :: split ! best division

[15]

[16] integer, parameter :: filenumber = 1 ! input unit

[17] character (len = 64) :: filename ! input file

[18] integer :: lines ! of input

[19] integer :: inputCount, j ! loops

[20]

[21] ! Get the name of the file containing the data.

[22] write (*, *) ’Enter the data input filename:’

[23] read (*, *) filename

[24]

[25] ! Open that file for reading.

[26] open (unit = filenumber, file = filename)

[27]

[28] ! Find the number of lines in the file

[29] lines = inputCount (filenumber)

[30] write (*, *) ’There were ’,lines,’ records read.’

[31]

[32] ! Allocate that many entries in the x and y array

[33] allocate (x(lines), y(lines))

[34] call read xy file (filenumber, lines, x, y) ! Read data

[35] close (filenumber)

[36]

[37] call lsq fit (lines, x, y, fit) ! single line fit

[38] print *, "Single line fit"

[39] print *, "the slope is ", fit(1)

[40] print *, "the intercept is ", fit(2)

[41] print *, "the error is ", fit(3)

[42]

After that we want to try all the reasonable choices for reading the dataset into two
adjacent regions that are each to be fitted with a different straight line. Trial variables were
defined in lines 10 and 12, whereas the best results found are in variables declared in lines
11, 13, and 14. Note that on line 48 we have required that at least three points be used to
define an approximate straight line. If we allowed two points to be employed we would get
a false (or misleading) indication of zero error for such a choice. Thus, in line 48 we begin a
loop over all possible sets of three or more data points and call lsq fit for each of the two
segments, as seen in lines 50 and 51.

[43] ! Loop to determine the mean squared error for each

[44] ! of the possible two divisions of the data

[45] !

[46] error min = HUGE(error min) ! initialize the error min

[47] split = 3 ! initialize split point

[48] do j = 3, lines-3 ! 3 pts to approximate a line

[49] ! least-squares fit of two data subsets

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-AppB CB496-Akin September 16, 2002 12:41

B.12 Problem 4.11.14 : Two-line Least-square Fits 303

[50] call lsq fit (j, x(1:j), y(1:j), fit1)

[51] call lsq fit (lines-j, x(j+1:lines), y(j+1:lines), fit2)

[52] error = fit1(3) + fit2(3)

[53]

In splitting up the two data regions note that it was not necessary to copy segments of
the independent and dependent data. Instead the colon operator, or implied do loops, were
used in lines 50 and 51 to pass vectors with j and (lines – j) entries, respectively to the two
calls to lsq fit. After combining the two errors in line 52, we update the current best choice
for the dataset division point in lines 55 through 58.

[54] ! does this division gives you a smaller error ?

[55] if (error < error min) then

[56] error min = error ; split = j

[57] left = fit1 ; right = fit2

[58] end if ! current best choice

[59] end do ! of split choices

After we exit the loop, at line 59 we simply list the best results obtained. In line 73 we
have also deallocated the data arrays even though it is just a formality at this point since all
memory is released because the program terminates immediately afterwards. Had this been
a subroutine or function, then we would need to have been sure that allocated variables
were released when their access scope terminated. Later versions of Fortran will do that for
you, but good programmers should keep up with memory allocations.

[60] ! Display the results

[61] print *, "Two line best fit; combined error is ", error min

[62] print *, "Best division of the data is:"

[63] print *, "data(:j), data(j+1:), where j = ", split

[64] print *, "Left line fit:"

[65] print *, "the slope is ", left(1)

[66] print *, "the intercept is ", left(2)

[67] print *, "the error is ", left(3)

[68] print *, "Right line fit:"

[69] print *, "the slope is ", right(1)

[70] print *, "the intercept is ", right(2)

[71] print *, "the error is ", right(3)

[72]

[73] deallocate (y, x)

[74] end program two line lsq fit

[75]

For completeness an input routine, read xy file is illustrated. It is elementary since it
does not check for any read errors and thus does not allow for any exception control if the
read somehow fails.

[76] subroutine read xy file (infile, lines, x, y)

[77] !--

[78] ! Take a file number, the number of lines to be read,

[79] ! and put the data into the arrays x and y

[80] !--

[81] implicit none

[82] integer, intent(in) :: inFile ! unit to read

[83] integer, intent(in) :: lines ! length of the file

[84] real, intent(out) :: x(lines) ! independent data

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-AppB CB496-Akin September 16, 2002 12:41

304 Selected Exercise Solutions

[85] real, intent(out) :: y(lines) ! dependent data

[86] integer :: j

[87] rewind (inFile) ! go to front of the file

[88] do j = 1, lines ! for the entire file

[89] read (infile, *) x(j), y(j) ! get the x and y values

[90] end do ! over all lines

[91] end subroutine read xy file

[92]

If the supplied data file were huge, say the argument lines have a value of ten million,
then such data would probably have been stored in a binary rather than a formatted file. In
that case we would simply invoke a binary read by rewriting line 89 as

[89] read (infile) x(j), y(j) ! binary read of x and y

Such a change would yield a much faster input but would still be relatively slow owing to its
being in the loop starting at line 88. To get the fastest posible input we would have needed
to save the binary data on the file such that all the x values were stored first followed by all
the corresponding y values. In that case, we avoid the loop and get the fastest possible input
by replacing lines 88–90 with

[88] ! sequential binary read of x and y values

[89] read (infile) x, y

[90] ! input complete, add iostat for exceptions

Here we will not go into the details about how we would have to replace subroutine input-
Count with an equivalent one for binary files. To do that you will have to study the Fortran
INQUIRE statement for files and its IOLENGTH option to get a hardware-independent
record length of a real variable.

[93] ! Given test data in file two line.dat:

[94] ! 0.0000000e+00 1.7348276e+01

[95] ! 1.0000000e+00 6.5017349e+01

[96] ! 2.0000000e+00 8.7237749e+01

[97] ! 3.0000000e+00 1.2433478e+02

[98] ! 4.0000000e+00 1.5456681e+02

[99] ! 5.0000000e+00 1.8956219e+02

[100] ! 6.0000000e+00 2.1740486e+02

[101] ! 7.0000000e+00 2.3138619e+02

[102] ! 8.0000000e+00 2.7995041e+02

[103] ! 9.0000000e+00 3.1885162e+02

[104] ! 1.0000000e+01 3.4628642e+02

[105] ! 1.1000000e+01 3.3522546e+02

[106] ! 1.2000000e+01 3.7626218e+02

[107] ! 1.3000000e+01 3.9577060e+02

[108] ! 1.4000000e+01 4.2217988e+02

[109] ! 1.5000000e+01 4.3388828e+02

[110] ! 1.6000000e+01 4.5897959e+02

[111] ! 1.7000000e+01 4.9506511e+02

[112] ! 1.8000000e+01 5.0747649e+02

[113] ! 1.9000000e+01 5.2168101e+02

[114] ! 2.0000000e+01 5.2976511e+02

Assuming the formatted data are stored in file two line.dat as shown above, we obtain
the best two straight-line fits.

[115] ! Running the program gives:

[116] !

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-AppB CB496-Akin September 16, 2002 12:41

B.13 Problem 4.11.15 : Find the Next Available File Unit 305

[117] ! Enter the data input filename: two line.dat

[118] ! There were 21 records read.

[119] ! Single line fit

[120] ! the slope is 25.6630135

[121] ! the intercept is 53.2859993

[122] ! the error is 343.854675

[123] ! Two line best fit; combined error is 126.096634

[124] ! Best division of the data is:

[125] ! data(:j), data(j+1:), where j = 11

[126] ! Left line fit:

[127] ! the slope is 31.9555302

[128] ! the intercept is 24.9447269

[129] ! the error is 46.060421

[130] ! Right line fit:

[131] ! the slope is 21.6427555

[132] ! the intercept is 112.166664

[133] ! the error is 80.0362091

[134]

Verify this by plotting the data points and the three straight-line segments. Just remember
that the first line covers the whole domain, whereas the second goes only up to halfway be-
tween points 11 and 12 and the third line runs from there to the end of the independent data.

B.13 Problem 4.11.15 : Find the Next Available File Unit

The INQUIRE statement has many very useful features that return information based on the
unit number or the file name. It can also tell you how much storage a particular type of record
requires (like the sizeof function in C and C++). Here we use only the ability to determine
if a unit number is currently open. To do that we begin by checking the unit number that
follows the last one we used. Line 9 declares that variable, last unit, and initializes it to 0.
The save attribute in that line ensures that the latest value of last unit will always be saved
and available on each subsequent use of the function. Since the standard input–output units
have numbers less that 10, we allow the unit numbers to be used to range from 10 to 999, as
seen in line 8. However, the upper limit could be changed.

Lines 14–18 determine if the unit after last unit is closed. If so, that unit will be used and
we are basically finished. We set the return value, next, update last unit, and return.

[1] function get next io unit () result (next)

[2] ! *

[3] ! find a unit number available for i/o action

[4] ! *

[5] implicit none

[6] integer :: next ! the next available unit number

[7]

[8] integer, parameter :: min unit = 10, max unit = 999

[9] integer, save :: last unit = 0 ! initialize

[10] integer :: count ! number of failures

[11] logical :: open ! file status

[12]

[13] count = 0 ; next = min unit - 1

[14] if (last unit > 0) then ! check next in line

[15] next = last unit + 1

[16] inquire (unit=next, opened=open)

[17] if (.not. open) last unit = next ! found it

[18] return

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-AppB CB496-Akin September 16, 2002 12:41

306 Selected Exercise Solutions

Otherwise, if the unit after last unit is open, we must loop over all the higher-unit numbers
in search of one that is closed. If we succeed, then we update last unit and return by exiting
the forever loop, as seen in lines 24 and 25.

[19] else ! loop through allowed units

[20] do ! forever

[21] next = next + 1

[22] inquire (unit=next, opened=open)

[23] if (.not. open) then

[24] last unit = next ! found it

[25] exit ! the unit loop

[26] end if

At this point it may be impossible to find a unit. However, with 999 units available it is
likely that one that was previously in use has now been closed and is available again. Before
aborting we reset the search and allow three cycles to find a unit that is now free. That is
done in lines 27–31.

[27] if (next == max unit) then ! attempt reset 3 times

[28] last unit = 0

[29] count = count + 1

[30] if (count <= 3) next = min unit - 1

[31] end if ! reset try

In the unlikely event that all allowed units are still in use, we abort the function after
giving some insight into the reason.

[32] if (next > max unit) then ! abort

[33] print *,’ERROR: max unit exceeded in get next io unit’

[34] stop ’ERROR: max unit exceeded in get next io unit’

[35] end if ! abort

[36] end do ! over unit numbers

[37] end if ! last unit

[38] end function get next io unit

B.14 Problem 5.4.4 : Polymorphic Interface for the Class ‘Position Angle’

[1] module class Position Angle ! file: class Position Angle.f90

[2] use class Angle

[3] implicit none

[4] type Position Angle ! angle in deg, min, sec

[5] private

[6] integer :: deg, min ! degrees, minutes

[7] real :: sec ! seconds

[8] character :: dir ! N | S, E | W

[9] end type

The type definitions above are unchanged. The only new part of the module for this class is
the INTERFACE given in the following five lines.

[10] interface Position Angle ! generic constructor

[11] module procedure Decimal sec, Decimal min

[12] module procedure Int deg, Int deg min, Int deg min sec

[13] end interface

[14] contains . . .

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-AppB CB496-Akin September 16, 2002 12:41

B.15 Problem 5.4.5 : Building an Object Inventory System 307

Returning to the original main program

[1] program Another Great Arc

[2] use class Great Arc

[3] implicit none

[4] type (Great Arc) :: arc

[5] type (Global Position) :: g1, g2

[6] type (Position Angle) :: a1, a2

[7] type (Angle) :: ang

[8] real :: deg, rad

we simply replace all the previous constructor calls with the generic function Posi-

tion Angle as shown on lines 9 through 18 below.

[9] a1 = Position Angle (10, 30, 0., "N") ! note decimal point

[10] call List Position Angle (a1)

[11] a1 = Position Angle (10, 30, 0, "N")

[12] call List Position Angle (a1)

[13] a1 = Position Angle (10, 30, "N")

[14] call List Position Angle (a1)

[15] a1 = Position Angle (20, "N")

[16] call List Position Angle (a1)

[17] a2 = Position Angle (30, 48, 0., "N")

[18] call List Position Angle (a2)

B.15 Problem 5.4.5 : Building an Object Inventory System

[1] module inventory system

[2] use inventory object

[3] implicit none

[4]

[5] public ! members

[6] integer, save, private :: Size = 0, old size = 0

[7] integer, save, private :: Saved = 0

[8] integer, parameter, private :: save file = 9

[9]

The preceding private integers keep up with the current and previous size of the allocat-
able arrays to be created. Among the methods below set Size is used only once, whereas
increase Size is used every time the system gets full and needs to be reallocated.

[10] contains

[11]

[12] subroutine set Size (n)

[13] integer, intent (in) :: n

[14] if (Size == 0) then ; Size = n

[15] else ! inventory already exists

[16] print *, ’System exists with a size = ’, Size

[17] print *, ’You must save the system, resize it, ’

[18] print *, ’and restore present system.’

[19] end if

[20] end subroutine set Size

[21]

[22] subroutine increase Size (n)

[23] integer, intent (in) :: n

[24] print *, ’Increased size from ’, Size, ’ to ’, n

[25] if (Size == 0) then ; Size = n

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-AppB CB496-Akin September 16, 2002 12:41

308 Selected Exercise Solutions

[26] else ! inventory already exists

[27] old size = Size

[28] Size = n

[29] end if

[30] end subroutine increase Size

[31]

We assign the name inventory.bin to a binary file that can serve either to back up the contents
for long-term storage or as a very short-term storage while the inventory list is being real-
located. Note that the private status of an item’s components requires that the item object
have methods for binary file I/O as seen at lines 42 and 66. Additional logic is provide to
process only nonempty items in the array.

[32] subroutine save system (inv)

[33] type (inventory), intent(in) :: inv(Size)

[34] integer :: j, total, ok

[35] open (save file, file=’inventory.bin’, form=’unformatted’, &

[36] status=’unknown’) ! for a binary sequential write

[37] ! if public components: write (save file) inv

[38] total = 0

[39] print *,’Saving inventory to file inventory.bin’

[40] do j = 1, Size ! save used items

[41] if (.not. is item empty (inv(j))) then

[42] call file write (save file, inv(j), ok)

[43] if (ok == 0) then ! write ok

[44] total = total + 1

[45] else ; print *,’Abort at record ’, total

[46] stop ’Write to inventory.bin failed’

[47] end if ! write error

[48] end if ! not empty

[49] end do ! of private component attribute

[50] old size = Size

[51] print *, total, ’inventory items saved to file inventory.bin’

[52] saved = total ; close (save file)

[53] end subroutine save system

[54]

Note that the saved counter attribute has been used, at lines 52 and 65, to compress the
binary copy by accessing only nonempty items.

[55] subroutine restore system (inv)

[56] type (inventory), intent(out) :: inv(Size)

[57] integer :: exists, j, ok

[58] open (save file, file=’inventory.bin’, form=’unformatted’, &

[59] status=’old’, iostat=exists) ! for a binary read

[60] if (exists > 0) stop ’Error: file inventory.bin not found’

[61] if (Size >= old size) then ! restore old part

[62] call initialize sys (inv)

[63] ! iff public: read (save file, iostat=ok) inv (1:old size)

[64] print *,’Restoring from inventory.bin’

[65] do j = 1, saved

[66] call file read (save file, inv(j), ok)

[67] if (ok /= 0) then ! read not ok

[68] print *,’Abort at record ’, j

[69] stop ’Read from inventory.bin failed’

[70] end if

[71] end do

[72] old size = Size ! no read error

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-AppB CB496-Akin September 16, 2002 12:41

B.15 Problem 5.4.5 : Building an Object Inventory System 309

[73] print *,’Restored ’, saved, ’ non-empty items’

[74] end if ! new size larger

[75] close (save file)

[76] end subroutine restore system

[77]

Likewise, the display feature only shows nonempty objects. The display would be prettier if
formatted output were used for the dollar values.

[78] subroutine display all (inv)

[79] type (inventory), intent(in) :: inv(Size)

[80] integer :: j

[81] do j = 1, Size ! to find a non-empty product

[82] if (.not. is item empty (inv(j))) call print item (inv(j))

[83] end do

[84] end subroutine display all

[85]

The following is a rather inefficent way to change all components in an object interactively
even if only one needs revision. Propose a more efficient approach.

[86] subroutine enter update (inv)

[87] type (inventory), intent(inout) :: inv(Size)

[88] character(len=50) :: name

[89] integer :: j, k

[90] print *, "Enter product name:" ; read *, name

[91] k = 0

[92] do j = 1, Size

[93] if (name == get item name (inv(j))) then

[94] k = j

[95] call print item (inv(k)) ! echo status

[96] call enter item (inv(k)) ! input status

[97] exit ! this loop

[98] end if

[99] end do

[100] if (k == 0) print *, "Item not present. Try again."

[101] end subroutine enter update

[102]

We must be able to initialize the system at the beginning and after memory has been real-
located.

[103] subroutine initialize sys (inv)

[104] type (inventory), intent(out) :: inv(Size)

[105] integer :: j

[106] do j = 1, Size

[107] inv (j) = initialize item ()

[108] end do ! on products

[109] end subroutine initialize sys

[110]

The interactive filling of an item is fairly efficient. Note that the name (or description) must
be inputted in between quotes if it contains blanks or commas because we have employed
a default-free format read.

[111] subroutine enter entry (inv) ! place new item in inventory

[112] type (inventory), intent (inout) :: inv(Size)

[113] integer :: j, k

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-AppB CB496-Akin September 16, 2002 12:41

310 Selected Exercise Solutions

[114] k = 0 ! initialize

[115] do j = 1, Size ! to find an empty product

[116] if (is item empty (inv(j))) then

[117] k = j ; exit ! empty slot at k

[118] end if

[119] end do

[120] if (k == 0) then

[121] print *, "Sorry, system is full."

[122] else ! room for more

[123] call enter item(inv(k))

[124] end if

[125] end subroutine enter entry

[126]

[127] end module inventory system

Now we provide a simple test program to verify most of the features of the initial system
design:

[1] program test inventory system

[2] use inventory system

[3] use inventory object

[4] implicit none

[5] integer :: start = 2, new

[6] type (inventory), allocatable :: inv sys(:)

[7] character :: c

[8]

[9] print *, "Welcome to the Inventory System"

[10] allocate (inv sys (start))

[11] call set Size (start) ; print *,’System size = ’, start

[12] call initialize sys (inv sys)

[13]

[14] print *, "Choose inventory action. Enter Q to quit."

[15] ! loop until done

[16] do ! forever

Note the next line employs a simple screen menu feature supplied as an internal subprogram
at the end.

[17] c = get menu () ! get interactive user input

[18] select case (c)

[19] case (’E’, ’e’) ! Enter new data

[20] call enter entry (inv sys)

[21] case (’D’, ’d’) ! Display all entries

[22] call display all (inv sys)

[23] case (’U’, ’u’) ! Update an entry

[24] call enter update (inv sys)

[25] case (’Q’, ’q’) ! Quit

[26] exit ! the do forever

[27] case (’S’, ’s’) ! Save the inventory

[28] call save system (inv sys)

[29] case (’N’, ’n’) ! Give a new larger size

[30] print *,’Give new size greater than ’, start

[31] read *, new ; new = max0 (new, start)

[32] call save system (inv sys)

[33] deallocate (inv sys) ; allocate (inv sys (new))

[34] call increase size (new) ! to test restore

[35] call restore system (inv sys) ; start = new

[36] case (’R’, ’r’) ! Restore the inventory

[37] call restore system (inv sys)

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-AppB CB496-Akin September 16, 2002 12:41

B.15 Problem 5.4.5 : Building an Object Inventory System 311

[38] case default

[39] print *, ’Unknown response, Exiting’

[40] exit ! the do forever

[41] end select

[42] end do

[43]

[44] contains

A simple character-driven menu function is defined here. It is based on the index function
for operating on strings. Clearly, a case-selection process might be more efficient for a large
number of choices (as seen in the main program above).

[45]

[46] function get menu () result (c)

[47] character :: c

[48] print *, "(D)isplay (E)nter (R)estore (S)ave (U)pdate:"

[49] do ! forever

[50] read *, c

[51] if (index (’EeDdUuQq’, c) > 0) exit ! acceptable input

[52] if (index (’SsRrNn’, c) > 0) exit ! acceptable input

[53] print *, ’Enter Q to quit’ ! if you got here

[54] end do ! for user input

[55] end function get menu

[56]

[57] end program test inventory system ! Running gives

Validation results:

[58] ! Welcome to the Inventory System

[59] ! System size = 9

[60] ! Choose inventory action. Enter Q to quit.

[61] ! (D)isplay (E)nter (R)estore (S)ave (U)pdate: E

[62] ! Enter the requested data:

[63] ! Product (name) : "Drill, Electric"

[64] ! Cost ($) : 45

[65] ! Price ($) : 23

[66] ! In Stock (#) : 9

[67] ! Re-Stock (days): 11

[68] ! (D)isplay (E)nter (R)estore (S)ave (U)pdate: e

[69] ! Enter the requested data:

[70] ! Product (name) : Hammer

[71] ! Cost ($) : 4.5

[72] ! Price ($) : 5.6

[73] ! In Stock (#) : 5

[74] ! Re-Stock (days): 3

[75] ! (D)isplay (E)nter (R)estore (S)ave (U)pdate: s

[76] ! Saving inventory to file inventory.bin

[77] ! 2 inventory items saved to file inventory.bin

[78] ! (D)isplay (E)nter (R)estore (S)ave (U)pdate: r

[79] ! Restoring from inventory.bin

[80] ! Restored 2 non-empty items

[81] ! (D)isplay (E)nter (R)estore (S)ave (U)pdate: d

[82] ! Current Inventory Status:

[83] ! Product (name) : Drill, Electric

[84] ! Cost ($) : 45.0000000

[85] ! Price ($) : 23.0000000

[86] ! In Stock (#) : 9

[87] ! Re-Stock (days): 11

[88] ! Current Inventory Status:

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-AppB CB496-Akin September 16, 2002 12:41

312 Selected Exercise Solutions

[89] ! Product (name) : Hammer

[90] ! Cost ($) : 4.5000000

[91] ! Price ($) : 5.5999999

[92] ! In Stock (#) : 5

[93] ! Re-Stock (days): 3

[94] ! (D)isplay (E)nter (R)estore (S)ave (U)pdate: q

B.16 Problem 6.4.1 : Using a Function With the Same Name
in two Classes

[1] include ’class X.f90’

[2] include ’class Y.f90’

[3] program Revise employee manager ! modified from Fig. 4.6.2-3F

[4] use class Y, Y f => f ! renamed in main

[5] implicit none

[6] type (X) :: x, z ; type (Y) :: y

[7] x%a = 22 ! assigns 22 to the a defined in X

[8] call X f(x) ! invokes the f() defined in X

[9] print *,"x%a = ", x%a ! lists the a defined in X

[10] y%a = 44 ! assigns 44 to the a defined in Y

[11] x%a = 66 ! assigns 66 to the a defined in X

[12] call Y f(y) ! invokes the f() defined in Y

[13] call X f(x) ! invokes the f() defined in X

[14] print *,"y%a = ", y%a ! lists the a defined in X

[15] print *,"x%a = ", x%a ! lists the a defined in X

[16] z%a = y%a ! assign Y a to z in X

[17] print *,"z%a = ", z%a ! lists the a defined in X

[18] end program Revise employee manager ! Running gives:

[19] ! X f() executing ! x%a = 22

[20] ! Y f() executing ! X f() executing

[21] ! y%a = 44 ! x%a = 66

[22] ! z%a = 44

B.17 Problem 6.4.3 : Revising the Employee–manager Classes

The changes are relatively simple. First we add two lines in the Employee class:

interface setData ! a polymorphic member

module procedure setDataE ; end interface

Then we change two other lines:

[8] empl = setData ("Burke", "John", 25.0)

. . .

[14] mgr = Manager ("Kovacs", "Jan", 1200.0) ! constructor

The generic setData could not also contain setDataM because it has the same argument
signature as setDataE, and the compiler would not be able to tell which dynamic binding
to select.

B.18 Problem 8.3.5 : Design a Tridiagonal Matrix Class

We begin by defining the attributes needed in a triadiagonal matrix system, the three di-
agonals, and their size. However, the reader is warned that there are two common ways of
implementing such matrices. One is to use three equal-sized arrays in which the off diagonals
each have one term that is always zero. The other is to have the off diagonals with a length

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-AppB CB496-Akin September 16, 2002 12:41

B.18 Problem 8.3.5 : Design a Tridiagonal Matrix Class 313

that is one smaller than the main diagonal. We use the latter except for one routine in which
we illustrate changing storage modes.

[1] MODULE tridiagonal matrix class

[2] IMPLICIT NONE

[3] PUBLIC :: tri diag matrix, tri diag maker

[4] PUBLIC :: tri diag free, tri diag print

[5] PUBLIC :: OPERATOR (*), OPERATOR (.solve.), transpose

[6] PRIVATE :: tri diag by vector, tri diag solve

[7] PRIVATE ! components accessed by these methods only

[8]

[9] TYPE :: tri diag matrix ! tridiagonal matrix

[10] INTEGER :: size ! dimension

[11] DOUBLE PRECISION, POINTER :: lower (:) ! lower diagonal

[12] DOUBLE PRECISION, POINTER :: main (:) ! main diagonal

[13] DOUBLE PRECISION, POINTER :: upper (:) ! upper diagonal

[14]

[15] ! Warning: the above allocatable vectors will have sizes of

[16] ! lower (size - 1), main (size), upper (size - 1).

[17] ! Some logic might be simpler if we waste two reals and make

[18] ! them all the same length with lower(1) = upper(size) = 0

[19]

[20] ! | b(1) c(1) 0 0 0 0 | | u(1) | | r(1) |

[21] ! | a(1) b(2) c(2) 0 0 0 | | u(2) | | r(2) |

[22] ! | | | .. | | .. |

[23] ! | 0 a(I-1) b(I) c(I) 0 0 | | u(I) | = | r(I) |

[24] ! | | | .. | | .. |

[25] ! | a(L-2) b(L-1) c(L-1)| |u(L-1)| |r(L-1)|

[26] ! | a(L-1) b(L) | | u(L) | | r(L) |

[27] !

[28] END TYPE tri diag matrix

[29]

Here we overload only the most obvious operators and define a few of the generic operations
that are common to matrix operations in general.

[30] INTERFACE TRANSPOSE ! interface for transpose function

[31] MODULE PROCEDURE tri diag trans ; END INTERFACE

[32]

[33] INTERFACE tri diag maker ! generic constructor

[34] MODULE PROCEDURE tri diag alloc ! null matrix

[35] MODULE PROCEDURE tri diag scalars ! build from scalars

[36] MODULE PROCEDURE tri diag vectors ! build from vectors

[37] END INTERFACE

[38]

[39] INTERFACE OPERATOR (*) ! matrix times vector

[40] MODULE PROCEDURE tri diag by vector ; END INTERFACE

[41]

[42] INTERFACE OPERATOR (.solve.) ! by factorization

[43] MODULE PROCEDURE tri diag solve ; END INTERFACE

[44]

[45] CONTAINS

[46]

Here we overload the common transpose operation.

[47] FUNCTION tri diag trans (S) RESULT (T) ! T = transpose (S)

[48] TYPE (tri diag matrix), INTENT(IN) :: S

[49] TYPE (tri diag matrix) :: T ! intent (out)

[50] T = tri diag alloc (S % size) ! allocate T

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-AppB CB496-Akin September 16, 2002 12:41

314 Selected Exercise Solutions

[51] T % upper = S % lower ! lower --> upper

[52] T % main = S % main ! same main diagonal

[53] T % lower = S % upper ! upper --> lower

[54] END FUNCTION tri diag trans

[55]

Next we provide subprograms to allocate, deallocate, and print a tridiagonal matrix.

[56] FUNCTION tri diag alloc (n) RESULT (T) ! allocate tri diag matrix

[57] INTEGER, INTENT(IN) :: n ! desired size

[58] TYPE (tri diag matrix) :: T ! intent(out)

[59] T % size = n ! (consider all size n)

[60] ALLOCATE (T % lower (n-1), T % main (n), T % upper (n-1))

[61] END FUNCTION tri diag alloc

[62]

[63] SUBROUTINE tri diag print (T) ! print tri diag matrix

[64] TYPE (tri diag matrix), INTENT(IN) :: T ! matrix

[65] INTEGER :: n, j ! work

[66] n = T % size ! size

[67] print *, 1, 0.d0, T % main (1), T % upper (1)

[68] if (n > 2) then ! more rows

[69] do j = 2, n-1 ! row loop

[70] print *, j, T % lower (j-1), T % main (j), T % upper (j)

[71] end do

[72] end if ! add last row

[73] print *, n, T % lower (n-1), T % main (n), 0.d0

[74] END SUBROUTINE tri diag print

[75]

[76] SUBROUTINE tri diag free (A) ! deallocate tri diag matrix

[77] TYPE (tri diag matrix), INTENT(INOUT) :: A ! destroy

[78] A % size = 0 ; DEALLOCATE (A % lower, A % main, A % upper)

[79] END SUBROUTINE tri diag free

[80]

We need basic constructors. The first is for a common special case in which each diago-
nal contains a single scalar constant. The second employes three vectors to copy onto the
diagonals. We may also want a default construction that is an identity matrix.

[81] FUNCTION tri diag scalars (n, sl, sm, su) RESULT (T)

[82] INTEGER, INTENT(IN) :: n ! size from scalars

[83] DOUBLE PRECISION, INTENT(IN) :: sl, sm, su ! scalars

[84] TYPE (tri diag matrix) :: T ! matrix, intent(out)

[85] T = tri diag alloc (n) ; T % lower = sl ! allocate

[86] T % main = sm ; T % upper = su ! fill

[87] END FUNCTION tri diag scalars

[88]

[89] FUNCTION tri diag vectors (n, vl, vm, vu) RESULT (T)

[90] INTEGER, INTENT(IN) :: n ! size

[91] DOUBLE PRECISION, INTENT(IN) :: vl(n-1), vm(n), vu(n-1) ! vectors

[92] TYPE (tri diag matrix) :: T ! intent(out)

[93] T = tri diag alloc (n) ; T % lower = vl ! allocate

[94] T % main = vm ; T % upper = vu ! fill

[95] END FUNCTION tri diag vectors

[96]

We often need to multiply a matrix by a vector and to solve a linear equation system, and
thus we give two members that are used to overload common symbols for those operations.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-AppB CB496-Akin September 16, 2002 12:41

B.18 Problem 8.3.5 : Design a Tridiagonal Matrix Class 315

We have not provided other common operations like adding two tridiagonals, pre- and
postmultiplying by a scalar, multiplying two tridiagonals, and so forth.

[97] FUNCTION tri diag by vector (T, v) RESULT (w)

[98] TYPE (tri diag matrix), INTENT(IN) :: T

[99] DOUBLE PRECISION, INTENT(IN) :: v (T % size)

[100] DOUBLE PRECISION :: w (T % size) ! intent(out)

[101] INTEGER :: i, n ! loops

[102] n = T % size ! system size

[103] w(1) = T % main (1)*v(1) + T % upper (1)*v(2) ! first row

[104] DO i = 2, n-1 ! middle rows

[105] w(i) = T % lower (i-1) * v(i-1) &

[106] + T % main (i) * v(i) &

[107] + T % upper (i) * v(i+1) ; END DO

[108] w(n) = T % lower (n-1)*v(n-1) + T % main (n)*v(n) ! last row

[109] END FUNCTION tri diag by vector

[110]

[111] FUNCTION tri diag solve (T, b) RESULT (x) ! linear system

[112] TYPE (tri diag matrix), INTENT(IN) :: T ! matrix

[113] DOUBLE PRECISION, INTENT(IN) :: b (T % size) ! rhs

[114] DOUBLE PRECISION :: x (T % size) ! intent(out)

[115] ! Copies to be destroyed (note size)

[116] DOUBLE PRECISION :: dl (T % size), dm (T % size), &

[117] du (T % size), r (T % size)

[118] INTEGER :: n ! system size

[119] n = T % size ; x = 0.d0 ! initialize

[120] dl(1) = 0.d0 ; du(n) = 0.d0 ; r = b ! initialize

[121] ! Copies to be expanded and destroyed

[122] dl(2:n) = T % lower ; dm = T % main ; du(1:n-1) = T % upper

[123] x = Thomas tri diag (du, dm, dl, r) ! Solve the system for x

[124] END FUNCTION tri diag solve

[125]

The arguments of the preceding solver are not destroyed, but it employed the Thomas
algorithm below that (as written) does destroy its input arguments. Also, the function
Thomas tri diag uses three equal-length diagonals and thus differs from our class. āāEither
observation requires the definition of copied diagonals used above. The code below is an
old procedural code, and so the interfacing above illustrates how to reuse codes and update
their interface.

[126] FUNCTION Thomas tri diag (a, d, b, r) result (x)

[127] ! WARNING all input vectors are destroyed herein

[128] ! Solve Tridiagonal matrix system, T x = r for x

[129] ! Where a = upper diagonal of T, a(n) = 0

[130] ! d = main diagonal of T

[131] ! b = lower diagonal of T, b(1) = 0

[132] ! r = right hand side vector

[133] Implicit none ! note size change below

[134] DOUBLE PRECISION, INTENT(INOUT) :: a (:), d (size(a)), &

[135] b (size(a)), r (size(a))

[136] DOUBLE PRECISION :: x (size(a)) ! intent (out)

[137] DOUBLE PRECISION :: denom, tol = epsilon (1.d0)

[138] INTEGER :: n, i

[139]

[140] ! | d(I) a(I) 0 0 0 0 | | x(I) | | r(I) |

[141] ! |b(I+1) d(I+1) a(I+1) 0 0 0 | |x(I+1)| |r(I+1)|

[142] ! | 0 b(I+2) d(I+2) a(I+2) 0 0 | |x(I+2)| |r(I+2)|

[143] ! | | | .. | = | .. |

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-AppB CB496-Akin September 16, 2002 12:41

316 Selected Exercise Solutions

[144] ! | b(n-1) d(n-1) a(n-1)| |x(n-1)| |r(n-1)|

[145] ! | b(n) d(n) | | x(n) | | r(n) |

[146] ! NOTE: all vectors are equal length, b(1)=a(n)=0 always

[147] n = size(a) ! system size

[148] ! factor the upper triangle

[149] a(1) = a(1) / d(1) ; r(1) = r(1) / d(1) ! first row

[150] do i = 2, n-1 ! down rows

[151] denom = d(i) - b(i) * a(i-1) ! pivot

[152] if (abs(denom) <= tol) stop ’zero pivot in Thomas’

[153] a(i) = a(i) / denom

[154] r(i) = (r(i) - b(i) * r(i-1)) / denom

[155] end do ! down rows

[156] denom = d(n) - b(n) * a(n-1) ! pivot

[157] if (abs(denom) <= tol) stop ’zero pivot in Thomas’

[158] r(n) = (r(n) - b(n)*r(n-1)) / denom ! last row

[159] ! back substitute for solution

[160] x(n) = r(n) ! last row

[161] do i = n-1,1,-1

[162] x(i) = r(i) - a(i) * x(i+1) ! up rows

[163] end do ! up rows

[164] END FUNCTION Thomas tri diag

[165]

[166] END MODULE tridiagonal matrix class

[167]

Finally, we test most but not all of this incomplete tridiagonal class.

[168] PROGRAM Test tridiagonal class

[169] USE tridiagonal matrix class

[170] IMPLICIT NONE

[171] INTEGER, PARAMETER :: n eqs = 3 ! define matrix system data

[172] DOUBLE PRECISION :: rhs (n eqs) = (/ 3.d0, 8.d0, 16.d0 /)

[173] DOUBLE PRECISION :: low (n eqs-1) = (/ 1.d0, 3.d0 /)

[174] DOUBLE PRECISION :: high (n eqs-1) = (/ 2.d0, 4.d0 /)

[175] DOUBLE PRECISION :: mid (n eqs) = (/ 1.d0, 3.d0, 13.d0 /)

[176] DOUBLE PRECISION :: ans (n eqs) ! to be found

[177] TYPE (tri diag matrix) :: A

[178]

[179] A = tri diag maker (n eqs, low, mid, high) ! allocate and fill

[180] print *, ’Given tridiagonal matrix diagonals:’

[181] call tri diag print (A) ! verify data

[182] print *, ’Given right hand side:’ ; print *, rhs ! verify data

[183]

[184] ans = A .solve. rhs ! solve system

[185] print *, ’Computed solution is:’ ; print *, ans ! answer

[186] print *, ’Error is:’ ! verify answer

[187] print *, sum (abs ((A * ans) - rhs)) ! overloaded *

[188]

[189] CALL tri diag free (A) ! free tridiagonal matrix memory

[190] END PROGRAM Test tridiagonal class ! Running gives

[191] ! Given tridiagonal matrix diagonals:

[192] ! 1 0.0E+0 1.0 2.0

[193] ! 2 1.0 3.0 4.0

[194] ! 3 3.0 13.0 0.0E+0

[195] ! Given right hand side: 3.0 8.0 16.0

[196] ! Computed solution is: 1.0 1.0 1.0

[197] ! Error is: 0.0E+0

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-AppB CB496-Akin September 16, 2002 12:41

B.19 Problem 9.1 : Count the Integer Word Memory Leak 317

B.19 Problem 9.1 : Count the Integer Word Memory Leak

[1] Program Memory Leak Counted

[2] Use Memory Status Count

[3] Implicit None

[4] Integer :: i, item (2) ! loops, status

Note that item will now be used for both allocations and deallocations.

[5] Integer, Pointer :: ptr 1 (:), ptr 2 (:)

[6]

[7] Print *, ’Are pointers associated ? ’, & ! Initial associations

[8] associated (ptr 1), associated (ptr 2)

[9]

[10] ! Allocate and fill the arrays

[11] item (1:2) = 0 ! set error flags

[12] Allocate (ptr 1 (5), stat = item(1)) ! first pointer

The following line uses a successful allocation to increase the memory count. A failure to
allocate gives a warning here but almost always would be a fatal error.

[13] Call Alloc Count Int (item(1), "Memory Leak 1", 5)

[14] Print *, ’INTEGER WORDS = ’, INTEGER WORDS

[15] Allocate (ptr 2 (5), stat = item(2)) ! second pointer

[16] Call Alloc Count Int (item(2), "Memory Leak 2", 5)

[17] Print *, ’INTEGER WORDS = ’, INTEGER WORDS

[18] If (Any (item /= 0)) Stop ’Allocation failed’ ! status

[19]

[20] ptr 1 = (/ (i, i = 21,25) /) ; ptr 2 = (/ (i, i = 30,34) /)

[21] Print *, ’Pointer 1 = ’, ptr 1 ! echo data

[22] Print *, ’Pointer 2 = ’, ptr 2 ! echo data

[23] Print *, ’Are pointers associated ? ’, & ! associations now

[24] associated (ptr 1), associated (ptr 2)

[25]

[26] ptr 2 => ptr 1 ; Print *, ’Now set ptr 2 => ptr 1’

[27] Print *, ’Note: memory assigned to Pointer 2 is lost’

[28] Print *, ’Pointer 1 = ’, ptr 1 ! echo data

[29] Print *, ’Pointer 2 = ’, ptr 2 ! echo data

[30] Print *, ’Are pointers associated ? ’, & ! associations now

[31] associated (ptr 1), associated (ptr 2)

[32]

[33] Print *, ’Deallocate & Nullify all pointers’

This is where the reduction-in-memory count occurs. Except in this case it happens to fail
and a warning is issued.

[34] Deallocate (ptr 1, stat = item(1)) ! deallocate memory fails

[35] Call Dealloc Count Int (item(1), "Memory Leak 1", 5)

[36] Print *, ’INTEGER WORDS = ’, INTEGER WORDS

[37] Nullify (ptr 1) ! nullify after deallocate

[38] Deallocate (ptr 2, stat = item(2)) ! deallocate memory fails

[39] Call Dealloc Count Int (item(2), "Memory Leak 2", 5)

[40] Print *, ’INTEGER WORDS = ’, INTEGER WORDS

[41] Nullify (ptr 2) ! nullify after deallocate

[42] Print *, ’Are pointers associated ? ’, & ! associations now

[43] associated (ptr 1), associated (ptr 2)

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-AppB CB496-Akin September 16, 2002 12:41

318 Selected Exercise Solutions

[44] If (INTEGER WORDS == 0) Then

[45] Print *, ’No memory leak.’

[46] Else

[47] Print *, ’Integer word memory leak = ’, INTEGER WORDS

[48] End If

[49] End Program Memory Leak Counted ! Running gives:

[50] ! Are pointers associated ? F F

[51] ! INTEGER WORDS = 5

[52] ! INTEGER WORDS = 10

[53] ! Pointer 1 = 21 22 23 24 25

[54] ! Pointer 2 = 30 31 32 33 34

[55] ! Are pointers associated ? T T

[56] ! Now set ptr 2 => ptr 1

[57] ! Note: memory assigned to Pointer 2 is lost

[58] ! Pointer 1 = 21 22 23 24 25

[59] ! Pointer 2 = 21 22 23 24 25

[60] ! Are pointers associated ? T T

[61] ! Deallocate & Nullify all pointers

[62] ! INTEGER WORDS = 5

[63] ! WARNING: Unable to Deallocate a call from Memory Leak 2

[64] ! INTEGER WORDS = 5

[65] ! Are pointers associated ? F F

[66] ! Integer word memory leak = 5

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-APP-C CB496-Akin August 24, 2002 4:2

APPENDIX C
� �

Companion C++ Examples

C.1 Introduction

It is necessary to be multilingual in computer languages today. Since C++ is often used in
the OOP literature, it should be useful to have C++ versions of the same code given earlier
in F90. In most cases these examples have the same variable names and the line numbers
are usually very close to each other. This appendix will allow you to flip from F90 examples
in Chapter 4 of the main body of the text to see similar operations in C++.

[1] #include <iostream.h> // system i/o files

[2] #include <math.h> // system math files

[3] main ()

[4] // Examples of simple arithmetic in C++

[5] {
[6] int Integer Var 1, Integer Var 2; // user inputs

[7] int Mult Result, Div Result, Add Result

[8] int Sub Result, Mod Result;

[9] double Pow Result, Sqrt Result;

[10] cout << "Enter two integers: ";

[11] cin >> Integer Var 1, Integer Var 2;

[12]

[13] Add Result = Integer Var 1 + Integer Var 2;

[14] cout << Integer Var 1 << " + " << Integer Var 2 << " = "

[15] << Add Result << endl;

[16] Sub Result = Integer Var 1 - Integer Var 2 ;

[17] cout << Integer Var 1 << " - " << Integer Var 2 << " = "

[18] << Sub Result << endl;

[19] Mult Result = Integer Var 1 * Integer Var 2 ;

[20] cout << Integer Var 1 << " * " << Integer Var 2 << " = "

[21] << Mult Result << endl;

[22] Div Result = Integer Var 1 / Integer Var 2 ;

[23] cout << Integer Var 1 << " / " << Integer Var 2 << " = "

[24] << Div Result << endl;

[25] Mod Result = Integer Var 1 % Integer Var 2; // remainder

[26] cout << Integer Var 1 << " % " << Integer Var 2 << " = "

[27] << Mod Result << endl;

[28] Pow Result = pow ((double)Integer Var 1, (double)Integer Var 2);

[29] cout << Integer Var 1 << " ^ " << Integer Var 2 << " = "

[30] << Pow Result << endl;

[31] Sqrt Result = sqrt((double)Integer Var 1);

319

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-APP-C CB496-Akin August 24, 2002 4:2

320 Companion C++ Examples

[32] cout << "Square root of " << Integer Var 1 << " is "

[33] << Sqrt Result << endl;

[34] } // end main, Running produces:

[35] // Enter two integers: 25 4

[36] // 25 + 4 = 29

[37] // 25 - 4 = 21

[38] // 25 * 4 = 100

[39] // 25 / 4 = 6, note integer

[41] // 25 % 4 = 1

[42] // 25 ^ 4 = 390625

[43] // Square root of 25 = 5

Figure C.1: Typical math and functions in C++.

[1] #include <iostream.h> // system i/o files

[2] main ()

[3] // Examples of a simple loop in C++

[4] {
[5] int Integer Var;

[6]

[7] for (Integer Var = 0; Integer Var < 5; Integer Var ++)

[8] {
[9] cout << "The loop variable is: " << Integer Var << endl;

[10] } // end for

[11]

[12] cout << "The final loop variable is: " << Integer Var << endl;

[13]

[14] } // end main // Running produces:

[15] // The loop variable is: 0

[16] // The loop variable is: 1

[17] // The loop variable is: 2

[18] // The loop variable is: 3

[19] // The loop variable is: 4

[20] // The final loop variable is: 5 <- NOTE

Figure C.2: Typical looping concepts in C++.

[1] #include <iostream.h> // system i/o files

[2] main ()

[3] // Examples of simple array indexing in C++

[4] {
[5] int MAX = 5, loopcount;

[6] int Integer Array[5] ;

[7] // or, int Integer Array[5] = {10, 20, 30, 40, 50 };
[8]

[9] Integer Array[0] = 10 ; // C arrays start at zero

[10] Integer Array[1] = 20 ; Integer Array[2] = 30 ;

[11] Integer Array[3] = 40 ; Integer Array[4] = 50 ;

[12]

[13] for (loopcount = 0; loopcount < MAX; loopcount ++)

[14] cout << "The loop counter is: " << loopcount

[15] << " with an array value of: " << Integer

[16] // end for loop

[17] cout << "The final loop counter is: " << loopcount << endl ;

[18]

[19] } // end main

[20]

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-APP-C CB496-Akin August 24, 2002 4:2

[21] // Running produces:

[22] // The loop counter is: 0 with an array value of: 10

[23] // The loop counter is: 1 with an array value of: 20

[24] // The loop counter is: 2 with an array value of: 30

[25] // The loop counter is: 3 with an array value of: 40

[26] // The loop counter is: 4 with an array value of: 50

[27] // The final loop counter is: 5

Figure C.3: Simple array indexing in C++.

[1] #include <iostream.h> // system i/o files

[2] main ()

[3] // Examples of relational "if" operator, via C++

[4] {
[5] int Integer Var 1, Integer Var 2; // user inputs

[6]

[7] cout << "\nEnter two integers: ";

[8] cin >> Integer Var 1, Integer Var 2;

[9]

[10] if (Integer Var 1 > Integer Var 2)

[11] cout << Integer Var 1 << " is greater than " << Integer Var 2;

[12]

[13] if (Integer Var 1 < Integer Var 2)

[14] cout << Integer Var 1 << " is less than " << Integer Var 2;

[15]

[16] if (Integer Var 1 == Integer Var 2)

[17] cout << Integer Var 1 << " is equal to " << Integer Var 2;

[18]

[19] } // end main

[20]

[21] // Running with 25 and 4 produces: 25 4

[22] // Enter two integers:

[23] // 25 is greater than 4

Figure C.4: Typical relational operators in C++.

[1] #include <iostream.h>

[2] main ()

[3] // Illustrate a simple if-else logic in C++

[4] {
[5] int Integer Var;

[6]

[7] cout << "Enter an integer: ";

[8] cin >> Integer Var;

[9]

[10] if (Integer Var > 5 && Integer Var < 10)

[11] {
[12] cout << Integer Var << " is greater than 5 and less than 10"

[13] << endl; }
[14] else

[15] {
[16] cout << Integer Var << " is not greater than 5 and less than 10"

[17] << endl; } // end of range of input

[18]

[19] } // end program main

[20]

[21] // Running with 3 gives: 3 is not greater than 5 and less than 10

[22] // Running with 8 gives: 8 is greater than 5 and less than 10

Figure C.5: Typical if-else uses in C++.

321

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-APP-C CB496-Akin August 24, 2002 4:2

[1] #include <iostream.h>

[2] main ()

[3] // Examples of Logical operators in C++

[4] {
[5] int Logic Var 1, Logic Var 2;

[6]

[7] cout << "Enter logical value of A (1 or 0): ";

[8] cin >> Logic Var 1;

[9]

[10] cout << "Enter logical value of B (1 or 0): ";

[11] cin >> Logic Var 2;

[12]

[13] cout << "NOT A is " << !Logic Var 1 << endl;

[14]

[15] if (Logic Var 1 && Logic Var 2)

[16] {
[17] cout << "A ANDed with B is true " << endl;

[18] }
[19] else

[20] {
[21] cout << "A ANDed with B is false " << endl;

[22] } // end if for AND

[23]

[24] if (Logic Var 1 || Logic Var 2)

[25] {
[26] cout << "A ORed with B is true " << endl;

[27] }
[28] else

[29] {
[30] cout << "A ORed with B is false " << endl;

[31] } // end if for OR

[32]

[33] if (Logic Var 1 == Logic Var 2)

[34] {
[35] cout << "A EQiValent with B is true " << endl;

[36] }
[37] else

[38] {
[39] cout << "A EQiValent with B is false " << endl;

[40] } // end if for EQV

[41]

[42] if (Logic Var 1 != Logic Var 2)

[43] {
[44] cout << "A Not EQiValent with B is true " << endl;

[45] }
[46] else

[47] {
[48] cout << "A Not EQiValent with B is false " << endl;

[49] } // end if for NEQV

[50]

[51] } // end main

[52] // Running with 1 and 0 produces:

[53] // Enter logical value of A (1 or 0): 1

[54] // Enter logical value of B (1 or 0): 0

[55] // NOT A is 0

[56] // A ANDed with B is false

[57] // A ORed with B is true

[58] // A EQiValent with B is false

[59] // A Not EQiValent with B is true

Figure C.6: Typical logical operators in C++.

322

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-APP-C CB496-Akin August 24, 2002 4:2

C.1 Introduction 323

[1] // Program to find the maximum of a set of integers

[2] #include <iostream.h>

[3] #include <stdlib.h> // for exit

[4] #define ARRAYLENGTH 100

[5] long integers[ARRAYLENGTH];

[6]

[7] // Function interface prototype

[8] long maxint(long [], long);

[9]

[10] // Main routine

[11]

[12] main() { // Read in the number of integers

[13] long i, n;

[14]

[15] cout << "Find maximum; type n: "; cin >> n;

[16] if (n > ARRAYLENGTH || n < 0) {
[17] cout << "Value you typed is too large or negative." << endl;

[18] exit(1);

[19] } // end if

[20]

[21] for (i = 0; i < n; i++) { // Read in the user’s integers

[22] cout << "Integer " << (i+1) << ": "; cin >> integers[i]; cout

[23] << endl; } // end for

[24] cout << "Maximum: ", cout << maxint(integers, n); cout << endl;

[25] } // end main

[26]

[27] // Find the maximum of an array of integers

[28] long maxint(long input[], long input length) {
[29] long i, max;

[30]

[31] for (max = input[0], i = 1; i < input length; i++) {
[32] if (input[i] > max) {
[33] max = input[i]; } // end if

[34] } // end for

[35] return(max);

[36] } // end maxint // produces this result

[37] // Find maximum; type n: 4

[38] // Integer 1: 9

[39] // Integer 2: 6

[40] // Integer 3: 4

[41] // Integer 4: -99

[42] // Maximum: 9

Figure C.7: Search for largest value in C++.

[1] #include <iostream.h>

[2]

[3] // declare the interface prototypes

[4] void Change (int& Input Val);

[5] void No Change (int Input Val);

[6]

[7] main ()

[8] // illustrate passing by reference and by value in C++

[9] {
[10] int Input Val;

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-APP-C CB496-Akin August 24, 2002 4:2

324 Companion C++ Examples

[11]

[12] cout << "Enter an integer: ";

[13] cin >> Input Val;

[14] cout << "Input value was " << Input Val << endl;

[15]

[16] // pass by value

[17] No Change (Input Val); // Use but do not change

[18] cout << "After No Change it is " << Input Val << endl;

[19]

[20] // pass by reference

[21] Change (Input Val); // Use and change

[22] cout << "After Change it is " << Input Val << endl;

[23] }
[24]

[25] void Change (int& Value)

[26] {
[27] // changes Value in calling code IF passed by reference

[28] Value = 100;

[29] cout << "Inside Change it is set to " << Value << endl;

[30] }
[31]

[32] void No Change (int Value)

[33] {
[34] // does not change Value in calling code IF passed by value

[35] Value = 100;

[36] cout << "Inside No Change it is set to " << Value << endl;

[37] }
[38] // Running gives:

[39] // Enter an integer: 12

[40] // Input value was 12

[41] // Inside No Change it is set to 100

[42] // After No Change it is 12

[43] // Inside Change it is set to 100

[44] // After Change it is 100

Figure C.8: Passing arguments by reference and by value in C++.

[1] #include <iostream.h>

[2] main ()

[3] // Compare two character strings in C++

[4] // Concatenate two character strings together

[5] {
[6] char String1[40];

[7] char String2[20];

[8] int length;

[9]

[10] cout << "Enter first string (20 char max):";

[11] cin >> String1;

[12]

[13] cout << "Enter second string (20 char max):";

[14] cin >> String2;

[15]

[16] // Compare

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-APP-C CB496-Akin August 24, 2002 4:2

C.1 Introduction 325

[17] if (!strcmp(String1, String2)) {
[18] cout << "They are the same." << endl;

[19] }
[20] else {
[21] cout << "They are different." << endl;

[22] } // end if the same

[23]

[24] // Concatenate

[25] strcat(String1, String2) ; // add onto String1

[26]

[27] cout << "The combined string is: " << String1 << endl;

[28] length = strlen(String1);

[29] cout << "The combined length is: " << length << endl;

[30] length = strlen(String1);

[31]

[32] } // end main

[33] // Running with "red" and "bird" produces:

[34] // Enter first string (20 char max): red

[35] // Enter second string (20 char max): bird

[36] // They are different.

[37] // The combined string is: redbird

[38] // The combined length is: 7

[39] // But, "the red" and "bird" gives unexpected results

Figure C.9: Using two strings in C++.

[1] #include <iostream.h>

[2] #include <stdlib.h>

[3] #include <math.h> // system math files

[4]

[5] main()

[6] // Convert a character string to an integer in C++

[7] {
[8] char Age Char[5];

[9] int age;

[10]

[11] cout << "Enter your age: ";

[12] cin >> Age Char;

[13]

[14] // convert with intrinsic function

[15] age = atoi(Age Char);

[16]

[17] cout << "Your integer age is " << age << endl;

[18] cout << "Your hexadecimal age is " << hex << age << endl;

[19] cout << "Your octal age is " << oct << age << endl;

[20]

[21] } // end of main

[22]

[23] // Running gives:

[24] // Enter your age: 45

[25] // Your integer age is 45.

[26] // Your hexadecimal age is 2d.

[27] // Your octal age is 55.

Figure C.10: Converting a string to an integer with C++.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-APP-C CB496-Akin August 24, 2002 4:2

326 Companion C++ Examples

[1] #include <iostream.h>

[2]

[3] // Define structures and components in C++

[4]

[5] struct Person // define a person structure type

[6] {
[7] char Name[20];

[8] int Age;

[9] };
[10]

[11] struct Who Where // use person type in a new structure

[12] {
[13] struct Person Guest;

[14] char Address[40];

[15] };
[16]

[17] // Fill a record of the Who Where type components

[18] main ()

[19] {
[20] struct Who Where Record;

[21]

[22] cout << "Enter your name: ";

[23] cin >> Record.Guest.Name;

[24]

[25] cout << "Enter your city: ";

[26] cin >> Record.Address;

[27]

[28] cout << "Enter your age: ";

[29] cin >> Record.Guest.Age;

[30]

[31] cout << "Hello " << Record.Guest.Age << " year old "

[32] << Record.Guest.Name << " in " << Record.Address << endl;

[33] }
[34] // Running with input: Sammy, Houston, 104 gives

[35] // Hello 104 year old Sammy in Houston

[36] //

[37] // But try: Sammy Owl, Houston, 104 for a bug

Figure C.11: Using multiple structures in C++.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-BIB CB496-Akin August 24, 2002 4:22

Bibliography

1. Adams, J.C., Brainerd, W.S., Martin, J.T., Smith, B.T., Wagener, J.L., Fortran 90 Handbook:
Complete ANSI / ISO Reference, Intertext Publications, McGraw-Hill Book Company, New
York, 1992.

2. Akin, J.E., Finite Elements for Analysis and Design, Academic Press, London, 1996.
3. Akin, J.E., “Object-Oriented Programming via Fortran 90,” Engineering Computations, 16(1)

26–48, 1999.
4. Akin, J.E., and Singh, M., “Object-Oriented Fortran 90 P-Adaptive Finite Element Method,”

Developments in Engineering Computational Technology, (Ed. B.H.V. Topping), Civil-Comp
Press, Edinburgh, 141–149, 2000.

5. Anonymous, “Encapsulation, Inheritance and the Platypus Effect,” The C++ developer dis-
cussion diary, May 2000, www.advogato.org/article/83.html.

6. Bar-David, T., Object-Oriented Design for C++, Prentice-Hall, Englewood Cliffs, NJ, 1993.
7. Barton, J.J., and Nackman L.R., Scientific and Engineering C++, Addison-Wesley, Reading,

MA, 1994.
8. Cary, J.R., Shasharina, S.G., Cummings, J.C., Reynders, J.V.W., Hinker, P.J., “A Comparison of

C++ and Fortran 90 for Object-Oriented Scientific Programming,” Computer Phys. Comm.,
105, 20, 1997.

9. Coad, P., and Yourdon, E., Object Oriented Design, Prentice-Hall, Englewood Cliffs, NJ,
1991.

10. Decyk, V.K., Norton, C.D., Szymanski, B.K., “Expressing Object-Oriented Concepts in
Fortran90,” ACM Fortran Forum, 16(1), April 1997.

11. Decyk, V.K., Norton, C.D., Szymanski, B.K., “How to Express C++ Concepts in Fortran90,”
Scientific Programming, 6, 363–390, 1997.

12. Dubois-Pèlerin, Y., and Pegon, P., “Improving Modularity in Object-Oriented Finite Element
Programming,” Communications in Numerical Methods in Engineering, 13, 193–198, 1997.

13. Dubois-Pèlerin, Y., and Zimmermann, T., “Object-Oriented Finite Element Programming:
III. An efficient implementation in C++,” Comp. Meth. Appl. Mech. Engr., 108, 165–183,
1993.

14. Dubois-Pèlerin, Y., Zimmermann, T., Bomme, P., “Object-Oriented Finite Element Program-
ming: II A Prototype Program in Smalltalk” Comp. Meth. Appl. Mech. Engr., 98, 361–397,
1992.

15. Filho, J.S.R.A., and Devloo, P.R.B. “Object Oriented Programming in Scientific Computa-
tions,” Engineering Computations, 8(1), 81–87, 1991.

16. Forde, B.W.R., Foschi, R.B., Stiemer, S.F., “Object-oriented Finite Element Analysis,” Com-
put. & Struct., 34, 355–374, 1990.

17. Gehrke, W., Fortran 90 Language Guide, Springer, Verlag London, 1995.
18. George, A., and Liu, J., “An Object-Oriented Approach to the Design of a User Interface

for a Sparse Matrix Package,” SIAM J. Matrix Anal. Appl., 20(4), 953–969, 1999.

327

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-BIB CB496-Akin August 24, 2002 4:22

328 Bibliography

19. Graham, I., Object Oriented Methods, Addison-Wesley, Reading, MA, 1991.
20. Gray, M.G., and Roberts, R.M., “Object-Based Programming in Fortran 90,” Computers in

Physics, 11, 355, 1997.
21. Hahn, B.D., Fortran 90 for Scientists and Engineers, Edward Arnold, London, 1994.
22. Hanly, J.R., Essential C++ for Engineers and Scientists, Addison-Wesley, 1997.
23. Hanselman, D., and Littlefield, B., Mastering Matlab 5, Prentice-Hall, Englewood Cliffs, NJ,

1998.
24. Hubbard, J.R., Programming with C++, McGraw-Hill, New York, NY, 1994.
25. Kerrigan, J., Migrating to Fortran 90, O’Reilly & Associates, Sebastopol, CA, 1993.
26. Koelbel, C.H., Loveman, D.B., Schreiber, R.S., Steele, G.L., Jr., Zosel, M.E., The High Per-

formance Fortran Handbook, MIT Press, Cambridge, MA, 1994.
27. Machiels, L., and Deville, M.O., “Fortran 90: On Entry to Object Oriented Programming for

the Solution of Partial Differential Equations,” ACM Trans. Math. Software, 23(1), 32–49,
March 1997.

28. Meyer, B., Object-Oriented Software Construction, Prentice-Hall, Englewood Cliffs, NJ, 1988.
29. Mossberg, E., Otto, K., Thune, M. “Object-Oriented Software Tools for the Construction of

Preconditioners” Scientific Programming, 6, 285–295, 1997.
30. Nielsen, K., Object-Oriented Development with C++, International Thomson Computer

Press, 1997.
31. Norton, C.D., Decyk, V.K., Szymanski, B.K., “High Performance Object-Oriented Scientific

Programming in Fortran 90,” Proc. Eighth SIAM Conf. on Parallel Processing for Scientific
Programming, (Ed. Heath et al.), March 1997.

32. Norton, C.D., Szymanski, B.K., Decyk, V.K., “Object Oriented Parallel Computation for
Plasma Simulation,” Comm. ACM, 38(10), 88, 1995.

33. Pratap, R., Getting Started with Matlab, Saunders College Publishing, Ft. Worth, TX, 1996.
34. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P., Numerical Recipes in Fortran

90, 2nd ed., Cambridge University Press, Cambridge, 1996.
35. Rehak, D.R., and Baugh, J.W., Jr., “Alternative Programming Techniques for Finite Element

Program Development,” Proc. IABSE Colloquium on Expert Systems in Civil Engineering,
Bergamo, Italy, 1989.

36. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W., Object Oriented Modeling
and Design, Prentice-Hall, Englewood Cliffs, NJ, 1991.

37. Szymanski, B.K., Decyk, V.K., Norton, C.D., “Expressing Object-Oriented Concepts in
Fortran90,” ACM Fortran Forum, 16, 1, April 1997.

38. Szymanski, B.K., Decyk, V.K., Norton, C.D., “How to Support Inheritance and Run-Time
Polymorphism in Fortran 90,” Computer Physics Communications, 115, 9–17, 1998.

39. Thomas, P., and Weedon, R., Object-Oriented Programming in Eiffel, Addison-Wesley, Read-
ing, MA, 1995.

40. Zienkiewicz, O.C., and Zhu, J.Z., “The Superconvergent Patch Recovery (SPR) and Adap-
tive Finite Element Refinement,” Comp. Meth. Appl. Mech. Engr., 101, 207–224, 1992. Links
to Worldwide Websites (as of January 2002, subject to change):

41. http://blas.mcmaster.ca/f̃red/oo.html
42. http://citeseer.nj.nec.com/242268.html
43. http://epubs.siam.org/sam-bin/dbq/article/31773
44. http://kanaima.ciens.ucv.ve/hpf/HTMLNotesnode29.html
45. http://webserv.gsfc.nasa.gov/ESS/annual.reports/ess98/cdn.html
46. http://www.amath.washington.edu/l̃f/software/CompCPP F90SciOOP.html
47. http://www.cs.rpi.edu/s̃zymansk/oof90.html
48. http://www.nasatech.com/Briefs/Mar98/NPO20180.html
49. http://www.ssec.wisc.edu/r̃obert/Software/F90-ObjOrientProg.html
50. http://www.tdb.uu.se/ñgssc/OOP00/module2/
51. http://www.ticra.dk/ooa.htm

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

glossary CB496-Akin August 24, 2002 4:42

Glossary of Object-Oriented Terms

abstract class: A class primarily intended to de-
fine an instance but one that cannot be instan-
tiated without additional methods.

abstract data type: An abstraction that describes
a set of items in terms of a hidden data structure
and operations on that structure.

abstraction: A mental facility that permits one to
view problems with varying degrees of detail
depending on the current context of the prob-
lem.

accessor: A public member subprogram that pro-
vides query access to a private data member.

actor: An object that initiates behavior in other
objects but cannot be acted upon itself.

ADT: Abstract data type.
agent: An object that can initiate behavior in

other objects and be operated upon by other
objects.

AKO: A kind of. The inheritance relationship be-
tween classes and their superclasses.

allocatable array: A named array having the abil-
ity to obtain memory dynamically. Only when
space has been allocated for it does it have a
shape and may it be referenced or defined.

argument: A value, variable, or expression that
provides input to a subprogram.

array: An ordered collection that is indexed.
array constructor: A means of creating a part of

an array by a single statement.
array overflow: An attempt to access an array el-

ement with a subscript outside the array size
bounds.

array pointer: A pointer whose target is an array
or an array section.

array section: A subobject that is an array and is
not a defined type component.

assertion: A programming means to cope with er-
rors and exceptions.

assignment operator: The equal symbol, “=,”
which may be overloaded by a user.

assignment statement: A statement of the form
“variable = expression.”

association: Host association, name association,
pointer association, or storage association.

attribute: A property of a variable that may be
specified in a type declaration statement.

automatic array: An explicit-shape array in a pro-
cedure, which is not a dummy argument, some
or all of whose bounds are provided when the
procedure is invoked.

base class: A previously defined class whose pub-
lic members can be inherited by another class.
(Also called a super class.)

behavior sharing: A form of polymorphism, when
multiple entities have the same generic inter-
face. This is achieved by inheritance or operator
overloading.

binary operator: An operator that takes two
operands.

bintree: A tree structure in which each node has
two child nodes.

browser: A tool to find all occurrences of a vari-
able, object, or component in a source code.

call-by-reference: A language mechanism that
supplies an argument to a procedure by pass-
ing the address of the argument rather than its
value. If it is modified, the new value will also
take effect outside of the procedure.

call-by-value: A language mechanism that sup-
plies an argument to a procedure by passing a
copy of its data value. If it is modified, the new
value will not take effect outside of the proce-
dure that modified it.

329

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

glossary CB496-Akin August 24, 2002 4:42

330 Glossary of Object-Oriented Terms

class: An abstraction of an object that specifies
the static and behavioral characteristics of it, in-
cluding their public and private nature. A class
is an ADT with a constructor template from
which object instances are created.

class attribute: An attribute whose value is com-
mon to a class of objects rather than a value
peculiar to each instance of the class.

class descriptor: An object representing a class
containing a list of its attributes and methods as
well as the values of any class attributes.

class diagram: A diagram depicting classes, their
internal structure and operations, and the fixed
relationships between them.

class inheritance: Defining a new derived class in
terms of one or more base classes.

client: A software component that uses services
from another supplier class.

concrete class: A class having no abstract opera-
tions and can be instantiated.

compiler: Software that translates a high-level
language into machine language.

component: A data member of a defined type
within a class declaration.

constructor: An operation by a class member
function that initializes a newly created instance
of a class. (See default and intrinsic construc-
tor.)

constructor operations: Methods that create and
initialize the state of an object.

container class: A class whose instances are con-
tainer objects. Examples include sets, arrays,
and stacks.

container object: An object that stores a collec-
tion of other objects and provides operations to
access or iterate over them.

control variable: The variable that controls the
number of loop executions.

data abstraction: The ability to create new data
types together with associated operators and to
hide the internal structure and operations from
the user, thus allowing the new data type to
be used in a fashion analogous to intrinsic data
types.

data hiding: The concept that some variables, op-
erations, or both in a module may not be acces-
sible to a user of that module; a key element of
data abstraction.

data member: A public data attribute, or instance
variable, in a class declaration.

data type: A named category of data character-
ized by a set of values together with a way to
denote these values and a collection of opera-
tions that interpret and manipulate the values.
For an intrinsic type, the set of data values de-
pends on the values of the type parameters.

deallocation statement: A statement that releases
dynamic memory that has previously been allo-
cated to an allocatable array or a pointer.

debugger software: A program that allows one to
execute a program in segments up to selected
break points and to observe the program vari-
ables.

debugging: The process of detecting, locating,
and correcting errors in software.

declaration statement: A statement that specifies
the type and, optionally, attributes of one or
more variables or constants.

default constructor: A class member function
with no arguments that assigns default initial
values to all data members in a newly created
instance of a class.

defined operator: An operator that is not an in-
trinsic operator and is defined by a subprogram
associated with a generic identifier.

deque: A container that supports inserts or re-
movals from either end of a queue.

dereferencing: The interpretation of a pointer as
the target to which it is pointing.

derived attribute: An attribute that is determined
from other attributes.

derived class: A class whose declaration indicates
that it is to inherit the public members of a pre-
viously defined base class.

derived type: A user-defined data type with com-
ponents, each of which is either of the intrinsic
type or of another derived type.

destructor: An operation that cleans up an exist-
ing instance of a class that is no longer needed.

destructor operations: Methods that destroy ob-
jects and reclaim their dynamic memory.

domain: The set over which a function or relation
is defined.

dummy argument: An argument in a procedure
definition that will be associated with the ac-
tual (reference or value) argument when the
procedure is invoked.

dummy array: A dummy argument that is an
array.

dummy pointer: A dummy argument that is a
pointer.

dummy procedure: A dummy argument that is
specified or referenced as a procedure.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

glossary CB496-Akin August 24, 2002 4:42

Glossary of Object-Oriented Terms 331

dynamic binding: The allocation of storage at run
time rather than compile time or the run time
association of an object and one of its generic
operations.

edit descriptor: An item in an input–output for-
mat that specifies the conversion between inter-
nal and external forms.

encapsulation: A modeling and implementation
technique (information hiding) that separates
the external aspects of an object from its inter-
nal implementation details.

exception: An unexpected error condition caus-
ing an interruption to the normal flow of pro-
gram control.

explicit interface: For a procedure referenced in
a scoping unit, the property of being an inter-
nal procedure, a module procedure, an exter-
nal procedure that has an interface (prototype)
block, a recursive procedure reference in its
own scoping unit, or a dummy procedure that
has an interface block.

explicit shape array: A named array that is de-
clared with explicit bounds.

external file: A sequence of records that exists in
a medium external to the program.

external procedure: A procedure defined by an
external subprogram.

FIFO: First-in, first-out storage; a queue.
friend: A method, in C++ that is allowed privi-

leged access to the private implementation of
another object.

function body: A block of statements manipulat-
ing parameters to accomplish the subprogram’s
purpose.

function definition: A program unit that asso-
ciates a return type, a list of arguments, and a se-
quence of statements with a subprogram name
that manipulate the arguments to accomplish
the subprogram’s purpose

function header: A line of code at the beginning
of a function definition; it includes the argument
list and the function return variable name.

generic function: A function that can be called
with different types of arguments.

generic identifier: A lexical token that appears in
an INTERFACE statement and is associated
with all the procedures in the interface block.

generic interface block: A form of interface block
used to define a generic name for a set of pro-
cedures.

generic name: A name used to identify two or
more procedures, the required one being de-
termined by the types of the nonoptional argu-
ments in the procedure invocation.

generic operator: An operator that can be in-
voked with different types of operands.

Has-A: A relationship in which the derived class
has a property of the base class.

hashing technique: A technique used to create a
hash table in which the array element where an
item is to be stored is determined by converting
some item feature into an integer in the range
of the size of the table.

heap: A region of memory used for data struc-
tures dynamically allocated and deallocated by
a program.

host: The program unit containing a lower
(hosted) internal procedure.

host association: Data and variables automati-
cally available to an internal procedure from
its host.

information hiding: The principle that the state
and implementation of an object should be pri-
vate to that object and only accessible via its
public interface.

inheritance: The relationship between classes
whereby one class inherits part or all of the
public description of another base class and in-
stances inherit all the properties and methods
of the classes they contain.

instance: An individual example of a class in-
voked via a class constructor.

instance diagram: A drawing showing the in-
stance connection between two objects along
with the number or range of mapping that may
occur.

instantiation: The process of creating (giving a
value to) instances from classes.

intent: An attribute of a dummy argument that
indicates whether it may be used to transfer
data into the procedure, out of the procedure,
or both.

interaction diagram: A diagram that shows the
flow of requests or messages between objects.

interface: The set of all signatures (public meth-
ods) defined for an object.

internal file: A character string used to trans-
fer and convert data from one internal storage
mode to a different one.

internal procedure: A procedure contained
within another program unit or class that can
only be invoked from within that program unit
or class.

internal subprogram: A subprogram contained in
a main program or another subprogram.

intrinsic constructor: A class member function
with the same name as the class that receives
initial values of all the data members as argu-
ments.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

glossary CB496-Akin August 24, 2002 4:42

332 Glossary of Object-Oriented Terms

Is-A: A relationship in which the derived class is
a variation of the base class.

iterator: A method that permits all parts of a data
structure to be visited.

keyword: A programming language word already
defined and reserved for a single special pur-
pose.

LIFO: Last-in, first-out storage; a stack.
link: The process of combining compiled program

units to form an executable program.
linked list: A data structure in which each element

identifies its predecessor and successor by some
form of pointer.

linker: Software that combines object files to cre-
ate an executable machine language program.

list: An ordered collection that is not indexed.
map: An indexed collection that may be ordered.
matrix: A rank-two array.
member data: Variables declared as components

of a defined type and encapsulated in a class.
member function: Subprograms encapsulated as

members of a class.
message: A request, from another object, for an

object to carry out one of its operations.
message passing: The philosophy that objects

only interact by sending messages to each other
that request some operations to be performed.

method: A class member function encapsulated
with its class data members.

method resolution: The process of matching a
generic operation on an object to the unique
method appropriate to the object’s class.

module: A program unit that allows other pro-
gram units to access variables, derived type defi-
nitions, classes, and procedures declared within
it by USE association.

module procedure: A procedure contained
within a module and usually used to define
generic interfaces and to overload or define
operators.

nested: Placement of a control structure inside
another control structure.

object: A concept or thing with crisp boundaries
and meanings for the problem at hand; an in-
stance of a class.

object diagram: A graphical representation of an
object model showing relationships, attributes,
and operations.

object-oriented (OO): A software development
strategy that organizes software as a collection
of objects that contain both data structure and
behavior (abbreviated OO).

object-oriented analysis (OOA): A method that
examines the requirements of an application
from the perspective of the classes and objects
in the domain.

object-oriented design (OOD): A method that
takes the results of an OOA and shifts its em-
phasis from the application domain to the com-
putational (and language) domain.

object-oriented programming (OOP): Program-
ming approach that is object- and class-based
and supports inheritance between classes and
base classes and allows objects to send and re-
ceive messages.

object-oriented programming language: A lan-
guage that supports objects (encapsulating
identity, data, and operations), method resolu-
tion, and inheritance.

octree: A tree structure in which each node has
eight child nodes.

OO (acronym): Object-oriented.
operand: An expression or variable that precedes

or succeeds an operator.
operation: Manipulation of an object’s data by its

member function when it receives a request.
operator overloading: A special case of polymor-

phism; attaching more than one meaning to
the same operator symbol. “Overloading” is
also sometimes used to indicate using the same
name for different objects.

overflow: An error condition arising from an at-
tempt to store a number that is too large for the
storage location specified; typically caused by
an attempt to divide by zero.

overloading: Using the same name for multiple
functions or operators in a single scope.

overriding: The ability to change the definition of
an inherited method or attribute in a subclass.

parameterized classes: A template for creating
real classes that may differ in well-defined ways
as specified by parameters at the time of cre-
ation. The parameters are often data types or
classes but may include other attributes such
as the size of a collection (also called generic
classes).

pass-by-reference: Method of passing an argu-
ment that permits the function to refer to the
memory holding the original copy of the argu-
ment.

pass-by-value: Method of passing an argument
that evaluates the argument and stores this
value in the corresponding formal argument so
the function has its own copy of the argument
value.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

glossary CB496-Akin August 24, 2002 4:42

Glossary of Object-Oriented Terms 333

pointer: A single data object that stands for an-
other (a “target”), which may be a compound
object such as an array or defined type.

pointer array: An array declared with the pointer
attribute. Its shape and size may not be deter-
mined until they are created for the array by
means of a memory allocation statement.

pointer assignment statement: A statement of the
form “pointer-name ⇒ target.”

polymorphism: The ability of a function/operator
with one name to refer to arguments or return
types of different classes at run time.

postcondition: Specifies what must be true after
the execution of an operation.

precondition: Specifies the condition(s) that must
be true before an operation can be executed.

private: That part of a class, methods or attributes,
that may not be accessed by other classes but
only by instances of that class.

protected: (Referring to an attribute or operation
of a class in C++) accessible by methods of any
descendent of the current class.

prototype: A statement declaring a function’s re-
turn type, name, and list of argument types.

pseudocode: A language of structured English
statements used in designing a step-by-step ap-
proach to solving a problem.

public: That part of an object, methods or at-
tributes, that may be accessed by other objects
and thus constitutes its interface.

quadtree: A tree structure in which each tree
node has four child nodes.

query operation: An operation that returns a
value without modifying any objects.

rank: Number of subscripted variables an array
has. A scalar has rank zero, a vector has rank
one, and a matrix has rank two.

scope: That part of an executable program within
which a lexical token (name) has a single inter-
pretation.

section: Part of an array.
sequential: A kind of file in which each record

is written (read) after the previously written
(read) record.

server: An object that can only be operated upon
by other objects.

service: A class member function encapsulated
with its class data members.

shape: The rank of an array and the extent of each
of its subscripts. It is often stored in a rank-one
array.

side effect: A change in a variable’s value as a
result of using it as an operand or argument.

signature: The combination of a subprogram’s
(operator’s) name and its argument (operand)
types; it does not include function result types.

size: The total number of elements in an array.
stack: Region of memory used for allocation of

function data areas; allocation of variables on
the stack occurs automatically when a block
is entered, and deallocation occurs when the
block is exited

stride: The increment used in a subscript triplet.
strong typing: The property of a programming

language such that the type of each variable
must be declared.

structure component: The part of a data object of
derived type corresponding to a component of
its type.

subobject: A portion of a data object that may be
referenced or defined independently of other
portions. It may be an array element, an array
section, a structure component, or a substring.

subprogram: A function or subroutine subpro-
gram.

subprogram header: A block of code at the be-
ginning of a subprogram definition; includes the
name and the argument list if any.

subscript triplet: A method of specifying an array
section by means of the initial and final sub-
script integer values and an optional stride (or
increment).

super class: A class from which another class in-
herits. (See base class.)

supplier: Software component that implements a
new class with services to be used by a client
software component.

target: The data object pointed to by a pointer or
reference variable.

template: An abstract recipe with parameters for
producing concrete code for class definitions or
sub-program definitions.

thread: The basic entity to which the operating
system allocates CPU time.

tree: A form of linked list in which each node
points to at least two other nodes, thus defin-
ing a dynamic data structure.

unary operator: An operator that has only one
operand.

undefined: A data object that does not have a de-
fined value.

underflow: An error condition in which a number
is too close to zero to be distinguished from zero
in the floating-point representation being used.

utility function: A private subprogram that can
only be used within its defining class.

vector: A rank-one array. An array with one sub-
script.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

glossary CB496-Akin August 24, 2002 4:42

334 Glossary of Object-Oriented Terms

vector subscript: A method of specifying an array
section by means of a vector containing the sub-
scripts of the elements of the parent array that
are to constitute the array section.

virtual function: A genetic function with a spe-
cific return type extended later for each new
argument type.

void subprogram: A C++ subprogram with an
empty argument list, a subroutine with no re-
turned argument, or both.

work array: A temporary array used for the stor-
age of intermediate results during processing.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-Ind CB496-Akin September 18, 2002 8:55

Index

−, 58, 60
<=, 59
>=, 59
\, 102
*, 13, 60
**, 59
+, 58, 59
/, 13, 59
::, 28, 59
=, 13
=>, 101, 137, 138, 167
%, 37, 57, 167
&, 12, 37, 38, 41, 47, 51
/=, 59
==, 59
=>, 99, 101, 140, 212

ABS function, 62, 78, 185, 278, 316, 317
absolute value, 62, 185
abstract class, 329
abstract data type, 18, 26, 31
abstraction, 22, 31
access, 40
access operation, 164
access restriction, 22
ACCESS= specifier, 175
accessibility, 22
accessor, 24, 159
ACHAR function, 87, 88, 90
ACOS function, 62, 187
actual argument, 60
Ada, 18, 36
Adams, J.C., 1, 186
addition, 60
ADJUSTL function, 88
ADJUSTR function, 88
ADT, see abstract data type, 31
ADVANCE specifier, 51, 118
agent, 24
AIMAG function, 62, 185
AINT function, 62, 185

Akin, J.E., 24, 216, 217
algorithm, 56
ALL function, 189, 285
all mask elements true, 187
allocatable array, 180, 329
ALLOCATABLE attribute, 213
ALLOCATABLE statement, 18
allocate, 51
ALLOCATE statement, 18, 83, 107, 209, 211, 212
ALLOCATED function, 18, 209, 211
allocation status, 83, 209, 290
AND operand, 51, 58, 68, 128
ANINT function, 185
ANY function, 185, 189
any mask element true, 187
arccosine, 62, 185
arcsine, 62, 185
arctangent, 62, 185
arctangent for complex number, 185
area, 38
argument, 329

inout, 78
input, 78
interface, 84
none, 78
number of, 84
optional, 81, 84, 85
order, 84
output, 78
rank, 84
returned value, 84
type, 84

array, 30, 64, 65, 72, 93, 157, 170, 329
allocatable, 180
assumed shape, 85
automatic, 102, 180
Boolean, 189
constant, 180
dummy dimension, 180
flip, 193
mask, 189, 209

335

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-Ind CB496-Akin September 18, 2002 8:55

336 Index

array, (Continued)
of pointers, 157
rank, 84, 178, 180, 191
rectangular, 191
reshape, 178
shape, 178
shift, 194
size, 178
total, 187
unknown size, 85
variable rank, 180

array form, 179
array operations, 187
array pointer, 329
array shape vector, 187
ASCII character set, 26, 85, 87, 112, 184
ASIN function, 62, 185
assembly language, 19
assignment operator, 12, 51, 218, 329
assignment statement, 329
ASSOCIATED function, 18, 84, 100, 152, 154, 209
association, 329
associative, 199, 200
asterisk (*), 63
ATAN function, 62, 185
ATAN2 function, 16, 62, 185
attribute, 119, 121, 128, 137, 144, 225, 329

name, 22
private, 32, 144
public, 32
terminator, 28

attribute terminator, 28
attributes, 22, 31
automatic array, 102, 180, 329
automatic deallocation, 33

BACKSPACE statement, 84
bad style, 182
Bar-David, T., 1
Barton, J.J., 1
base 10 logarithm, 62, 185
base class, 137, 329
behavior, 121, 128
binary file, 184
binary number, 90
binary operator, 329
binary read, 304
binary write, 215
bit

clear, 82
extract, 82
set, 82
shift, 82
test, 82

bit function
BIT SIZE, 82
BTEST, 82
IAND, 82

IBCLR, 82
IBITS, 82
IBSET, 82
IEOR, 82
IOR, 82
ISHFT, 82
ISHFTC, 82
MVBITS, 82
NOT, 82
TRANSFER, 82

bit manipulation, 82
blanks

all, 87
leading, 87
trailing, 87

Boolean type, 58
Boolean value, 26
bottom-up, 5
boundary condition, 223
bounds, 178
bubble sort, 108, 110

ordered, 111
bug, 10

C, 1, 36, 57
C++, 1, 12, 16, 26, 36, 57, 63, 65, 85, 93, 118, 139
call-by-reference, 329
call-by-value, 329
CALL statement, 51, 85, 98, 102, 107, 112, 139, 144,

154, 156, 159, 164, 166, 170, 175
Cary, J.R., 24
CASE DEFAULT statement, 68, 218
CASE statement, 68, 218, 311
cases, 67
CEILING function, 62, 185
central processor unit, 80
CHAR function, 87
character, 93

case change, 90
control, 85
from number, 90
functions, 87
nonprint, 85, 118
strings, 85
to number, 90

character set, 26
CHARACTER type, 26, 29, 60
chemical element, 28
chemical element, 33, 151
circuits, 193, 196
circular shift, 194
circular-linked list, 217
class, 18, 22, 36, 330

base, 24
Date, 136, 137
derived, 24
Drill, 119
Employee, 141, 145, 148

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-Ind CB496-Akin September 18, 2002 8:55

Index 337

Geometric, 136
Global Position, 133
Great Arc, 133
hierarchy, 37
instance, 36
iterator, 224
Manager, 140, 142, 156
Person, 136, 137, 139
polymorphic, 154
Position Angle, 128, 133
Professor, 137
sparse vector, 289
Student, 136, 137

class attribute, 330
class code

class Angle, 129
class Circle, 37
class Date, 42
class Employee 1, 141
class Employee 2, 145
class Employee 3, 148
class Fibonacci Number, 34
class Great Arc, 134
class Manager 1, 143
class Manager 2, 146
class Manager 3, 149
class Object, 170
class Person, 44, 47
class Position Angle, 306
class Professor, 139
class Queue, 163
class Rational, 49
class Rectangle, 39
class sparse Vector, 289
class Stack, 160
class Student, 46
class Vector, 53, 282
Drill, 119, 122, 128
elem type data class, 209
Global Position, 133
Great Arc, 133
Is A Member Class, 153, 156
Member 1 Class, 153
Member 2 Class, 154
Position Angle, 133
tridiagonal matrix class, 313

class descriptor, 330
class inheritance, 330
clipping function, 17, 78
CLOSE statement, 83, 107, 112, 308, 309
CMPLX function, 187
Coad, P., 22, 24
Coad/Yourdon method, 22
code reuse, 226
colon operator, 61, 66, 67, 87, 179, 187, 188,

193, 303
syntax, 62

column major order, 207

column matrix, 197
column order, 183
comma, 112
comment, 1, 2, 8, 11, 15, 57
commutative, 116, 199, 200
compiler, 12, 19, 103
complex, 12, 93, 186
complex conjugate, 62
COMPLEX type, 26, 60
component

assigning, 93
assignment, 93
constructs, 93
declaring, 93
initializing, 93
interpretation, 93
referencing, 93
subscripted, 93
syntax, 93

component selector, 38, 41, 47, 51
composition, 37, 40, 218, 226
concatanate, 140
concatenation

repeated, 190
conditional, 8, 10, 11, 13, 56, 63
conformable, 200
CONJG function, 62, 185
conjugate of complex number, 185
connectivity, 193
constant array, 180
constructor, 22, 34, 38, 140, 156, 159, 172, 285, 330

default, 22
intrinsic, 22, 30, 38, 47
manual, 38
public, 41
structure, 30

container, 157
container class, 330
CONTAINS statement, 34, 36, 38, 79, 81, 98
continuation marker, 12
control key, 88
conversion factors, 35
convert real to complex, 185
convert to integer, 185
convert to real, 185
COS function, 62, 185, 277
COSH function, 62, 185
cosine, 62, 185
COUNT function, 185, 291, 292, 297
count-controlled DO, 15, 16
CPU, see central processor unit, 80
cpu time, 80
CSHIFT function, 195
curve fit, 103
CYCLE statement, 63, 70, 71, 292, 297

data abstraction, 22
data hiding, 36, 40, 330

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-Ind CB496-Akin September 18, 2002 8:55

338 Index

data structure, 157
data types, 12

intrinsic, 26
user defined, 26

date, 116, 300
DATE AND TIME intrinsic, 301
deallocate, 23, 51, 211
DEALLOCATE statement, 18, 83, 213
deallocation, 330
debugger, 20, 330
debugging, 20
declaration statement, 330
Decyk, V.K., 24, 154
default case, 68
default constructor, 330
default value, 33
defined operator, 330
dereference, 63
dereferencing, 60, 330
derived class, 137
derived type, 18, 26, 330

component, 94
nested, 93
print, 96
read, 96

derived-type, 31
chemical element, 29
Circle, 38
Fibonacci Number, 35
Fraction, 97
object, 159
Queue, 161, 164
record, 112
Rectangle, 38
stack, 158
Who Where, 96

destructor, 33, 38, 51, 54, 284, 330
determinant, 205
Deville, M.O., 24
Devloo, P.R.B., 24
diagonal matrix, 198
dimension

constant, 182
extent, 178
lower bound, 178
upper bound, 178

distributive, 200
division, 60
division remainder, 62
DO statement, 34, 64, 67
DO WHILE statement, 72
DO-EXIT pair, 74, 76
documentation, 21
domain, 22
dot product, 185
dot product, 15, 185
DOT PRODUCT intrinsic, 15, 185
double, 27

DOUBLE PRECISION type, 26, 28, 60
doubly linked list, 175
drop fraction, 62
Dubois-Pèlerin, Y., 217
dummy argument, 60, 78, 330
dummy array, 330
dummy dimension, 182
dummy dimension array, 180
dummy pointer, 330
dummy variable, 78
dynamic binding, 23, 331
dynamic data structures, 47
dynamic dispatching, 152
dynamic memory, 83, 209

allocation, 18
deallocation, 18
management, 18

dynamic memory management, 18, 100

e, 28
EBCDIC character set, 26, 85
efficiency, 225
Eiffel, 23
electric drill, 119
ELSE IF statement, 63, 67, 156, 300
ELSE statement, 51, 68, 71, 156, 300
encapsulate, 18
encapsulation, 31, 36, 225, 331
end off shift, 194
end-of-file, 84
end-of-record, 84
end-of-transmission, 87
EOF, see end-of-file, 84
EOR, see end-of-record, 84
EOSHIFT function, 195
EOT, see end of transmission, 87
EPSILON function, 185, 316
equation

number, 195
EQV operator, 58
error checking, 22
example functions, 266
example statements, 266
example syntax rules, 259
exception, 83, 331
exception handler, 83
exception handling, 24
exercises, 24, 35, 51, 115, 136, 156, 177, 208, 227
EXISTS= specifier, 84
EXIT statement, 71, 280, 292, 296, 297, 300, 306,

309–311
EXP function, 62, 185, 278
explicit interface, 331
explicit loop, 14
exponent range, 28
exponential, 62, 185
exponentiation, 60
expression, 12, 13, 56, 57, 100

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-Ind CB496-Akin September 18, 2002 8:55

Index 339

external
file, 102
subprogram, 102

external file, 331
external procedure, 331
external subprogram, 85

factorization, 203, 204, 210, 316
FALSE result, 68
Fibonacci number, 33
file, 83

access, 175
binary, 213
column count, 116
direct access, 175
I/O, 175
internal, 90
line count, 115
modify, 175
random, 175
random access, 175
read status, 115
record number, 175
scratch, 213
unit number, 116

FILE= specifier, 107, 112, 175, 302, 308, 309
Filho, J.S.R.A., 24
finite difference method, 210
finite element, 51
finite element analysis, 209
flip, 188, 193
float, 58
floating point, see real, 12, 26, 209
FLOOR function, 62, 185
flow control, 13, 56, 63
Forde, B.W.R., 217
forever loop, see infinite loop, 306
FORM= specifier, 175, 308, 309
FORMAT expression, 51, 90, 98, 107, 112, 133, 277,

280, 285, 287, 296, 300
FORMAT statement, 38, 133
function, 8, 11, 56, 76

argument, 16, 18
extensible, 152
generic, 216
INTEGER, 164
LOGICAL, 159, 164
recursive, 51, 117
result, 77
return, 16
TYPE, 159, 164
variable, 18

function code
Add, 35
add Rational, 49
add Real to Vector, 283
add Vector, 283
Angle , 129

assign, 97, 283
circle area, 39
clip, 79
convert, 49
copy Rational, 49
copy Vector, 283
Create Q, 162
Date , 41, 47
Decimal min, 130
Decimal sec, 130
Default Angle, 130
dot Vector, 284, 291
Drill , 122, 128
D L new, 173
el by el Mult, 291
equality operator point, 220
equal to Object, 172
f, 278
fprime, 278
gcd, 49, 117
getEmployee, 143, 149
getName, 144
getNameE, 141, 143, 148
getNameM, 143, 149
getRate, 140, 143, 148
GetX, 220
GetY, 220
get Arc, 134
Get Capacity of Q, 162, 163
get Denominator, 49
get element, 293
Get Front of Q, 162, 163
get item cost, 298
get item count, 298
get item delay, 298
get item name, 298
get Latitude, 132
Get Length of Q, 162, 166
get Longitude, 132
get menu, 311
get mr rate, 122, 128
get next io unit, 118, 306
Get Next Unit, 112
get Numerator, 50
Get Obj at Ptr, 174
get person, 46
Get Ptr to Obj, 174
get torque, 122, 128
Global Position , 132
Great Arc , 134
initialize item, 298
inputCount, 106, 300, 302
Int deg, 130
Int deg min, 130
Int deg min sec, 130
is equal to, 50, 284, 293
is item empty, 298
Is Q Empty, 162

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-Ind CB496-Akin September 18, 2002 8:55

340 Index

function code (Continued)
is Q Empty, 166
Is Q Full, 162
is Q Full, 166
is Stack Empty, 160
is Stack Full, 160
is S L empty, 170
largest index, 293
length, 293
lengthnormalize Vector, 285
less than Object, 172
make Person, 44, 47
make Professor, 139
make Rational, 50
make Rectangle, 40
make Stack, 160, 161
make Student, 46
make Vector, 283
Manager , 143, 149
maximum, 78
mid value, 77
mult Fraction, 97, 98
mult Rational, 51
new Fibonacci Number, 35
next generation, 279
norm, 293
normalize Vecto, 294
pay, 145
payE, 141, 144, 148
payM, 143, 149
Person, 140
Person , 44
pop from Stack, 158
print, 139
Professor, 140
Rational, 50, 52
Rational , 50, 52
real mult Sparse, 294
real mult Vector, 285
rectangle area, 38
rows of, 295
setDataE, 141, 142, 148
setDataM, 143, 149
set Date, 42
set Lat and Long at, 132
size of, 296
size Vector, 285
Sparse mult real, 296
Student, 47, 140
Student , 46
subtract Real, 285
subtract Vector, 285
Sub Sparse Vectors, 296
Sum Sparse Vectors, 296
S L new, 170
Thomas tri diag, 316
toc, 82
to Decimal Degrees, 131

to lower, 91, 110
to Radians, 131
to upper, 91, 116, 301
Trans I, 191
Trans R, 191
tri diag alloc, 314
tri diag by vector, 315
tri diag maker, 317
tri diag scalars, 314
tri diag solve, 315
tri diag trans, 314
tri diag vectors, 314
values, 285
values of, 297
Vector , 285
Vector max value, 286, 297
Vector min value, 286, 297
Vector mult real, 286
Vector To Sparse, 297
zero sparse, 297

function definition, 331
function examples, 266
FUNCTION statement, 34

Game of Life, 5, 280
Gamma, 28
gather-scatter, 193
gcd, see greatest common divisor, 117
Gehrke, W., 1
generic function, 36, 38, 216, 331
generic interface, 156
generic linked list, 172
generic name, 37, 151
generic object, 51
generic operator, 331
generic routine, 139
generic subprogram, 85
geometric shape, 38
George, A., 24
global positioning satellite, 121
global variable, 17, 78–80
GO TO statement, 69, 70
GPS, see global positioning satellite, 121
Graham method, 22
Graham, I., 22, 24
graphical representation, 32, 136
Gray, M.G., 24
greatest common divisor, 51, 117
greatest integer, 187
grid, 222

Hahn, B.D., 1
Hanly, J.R., 1
Hanselman, D., 1
Has-A, 128, 226
header file, 151
heat transfer, 216
Hello world, 9

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-Ind CB496-Akin September 18, 2002 8:55

Index 341

hello world, 116
hexadecimal number, 90
hierarchy

kind of, 24
part of, 24

High Performance Fortran, 227
horizontal tab, 87
host association, 331
Hubbard, J.R., 1, 40
HUGE function, 187
hyperbolic cosine, 62, 187
hyperbolic sine, 62, 187
hyperbolic tangent, 62, 118, 187

I/O, see Input–Output, 175
IACHAR function, 87, 88, 90
ICHAR function, 88
identity matrix, 209
IF, 67

nested, 67
if, 15
IF ELSE statement, 67
IF statement, 34, 41, 51, 67, 156
if–else, 15
IF-ELSE pair, 68
IF-ELSEIF, 152
imaginary part, 62, 185
IMPLICIT COMPLEX, 60
IMPLICIT DOUBLE PRECISION, 60
IMPLICIT INTEGER, 59
implicit loop, 14, 15
IMPLICIT NONE, 29, 34
IMPLICIT REAL, 59
implied loop, 66, 180, 193
INCLUDE line, 41, 42, 51, 102
INDEX function, 88, 90, 92, 301, 311
indexed loop, 14
infinite loop, 10, 75, 76, 306
information hiding, 331
inheritance, 23, 36, 37, 79, 137, 218, 225, 226, 331

rename, 139
selective, 139

inherited, 41
initialize random number, 185
inner loop, 66
INQUIRE intrinsic, 84, 107, 112, 118, 304–306
INQUIRE statement, 84
instance, 36, 140, 331
INT function, 185
integer, 12, 93, 186
integer nearest to real, 185
INTEGER type, 26, 60
intent, 63, 331

in, 34, 116
inout, 34
out, 116
statement, 34

INTENT attribute, 166

INTENT statement, 34, 63, 78, 109
interface, 3, 7, 11, 16, 18, 31, 37, 84, 107, 121, 128,

139, 158, 218, 290, 331
general form, 85
human, 24
input/output, 22
prototype, 22

interface assignment, 290
INTERFACE ASSIGNMENT (=) block, 49, 97
interface block, 38, 85
interface body, 85
interface code

.solve., 313
Add to Q, 162
assign, 156
Create Q, 162
display, 156
getName, 144
Get Capacity of Q, 162
Get Front of Q, 162
Get Length of Q, 162
Init, 218
Is Q Empty, 162
Is Q Full, 162
is Stack Empty, 159
is Stack Full, 159
make Stack, 159
MyPrint, 218
new, 156
orthonormal basis, 289
pop from Stack, 159
Position Angle , 307
PrintPay, 144
push on Stack, 159
Remove from Q, 162
Set, 218
swap, 151
testing basis, 289
transpose, 313
tri diag maker, 313

interface operator, 218, 290
interface operator (<), 170
interface operator (*), 48
interface operator (==), 170
INTERFACE OPERATOR block, 97, 98
INTERFACE OPERATOR statement, 191
interface prototype, 84, 120, 122, 142
INTERFACE statement, 38
internal file, 90, 331
internal subprograms, 79
internal subprogram, 79, 280, 331
interpreter, 12, 19
intrinsic, 191
intrinsic constructor, 97, 112, 120, 159, 331
intrinsic function, 15, 76
inverse, 208
IOLENGTH result, 304
IOSTAT= variable, 83, 84, 308, 309

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-Ind CB496-Akin September 18, 2002 8:55

342 Index

Is-A, 122, 133, 142, 226
ISO VARIABLE LENGTH STRING, 26
iterator, 170, 175, 222, 224, 332

Jezequel, J-M., 24

Kerrigan, J., 1
keyword, 139, 332
KIND intrinsic, 28
Kind-Of, 133, 140
Koelbel, C.H., 227

largest integer, 62
largest number, 187
latitude, 122
least integer, 187
least squares, 103, 301, 303
LEN function, 87, 90, 92, 110, 301
LEN intrinsic, 88, 90
LEN= specifier, 29, 41, 47, 81, 90, 96, 110, 112, 133,

139, 154
length

line, 57
name, 57

LEN TRIM function, 88
LEN TRIM intrinsic, 88
lexical operator, 109
lexically

greater than, 87
less than, 87
less than or equal, 87

LGE function, 87
LGT function, 87, 90, 110
library function, 20
line continuation, 116
linear equations, 200, 203, 210, 216, 315
linked list, 47, 99, 100, 164, 170, 332

doubly, 175
linked list, 223
linker, 20, 102, 332
list

circular, 161, 217, 222
doubly linked, 100
empty, 172
length, 161
singly linked, 100

Liu, J., 24
LLE function, 88
LLT function, 88
local name, 139
LOG function, 62, 185
LOG10 function, 62, 185
logarithm, 76, 104, 185
logical, 93

AND, 59, 68
equal to, 68
EQV, 59, 68
greater than, 68

less than, 68
NEQV, 59, 68
NOT, 59, 68
operator, 68
OR, 59, 68

logical expression, 14
logical mask, 67
LOGICAL type, 26, 51, 159
long, 27
long double, 28
long int, 28
longitude, 122
loop, 6, 8–10, 11, 13, 56, 63, 209

abort, 73, 74
breakout, 70
counter, 64
cycle, 70, 71, 73
exit, 64, 70, 73
explicit, 64
implied, 66
index, 116
infinite, 65, 75
nested, 66, 70
pseudocode, 64
skip, 70, 71
until, 72, 75
variable, 64
while, 72

loop construct, 64
loop control, 66, 182
loop index, 116
loop variable, 14
lower triangle, 198, 203

Machiels, L., 24
manual constructor, 97, 120
manual page, 21
mask, 186, 189, 191, 209, 266, 291
masks, 67
Mathematica, 56
mathematical constants, 28
mathematical functions, 62
Matlab, 1, 12, 16, 57, 66, 76, 116, 118
MATMUL intrinsic, 185, 200
matrix, 178, 196, 197

addition, 199
algebra, 179
column, 197
compatible, 199
determinant, 205
diagonal, 198
factorization, 203
flip, 188
identity, 201
inverse, 102, 201, 203
multiplication, 184, 199, 313, 315
nonsingular, 201
null, 197

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-Ind CB496-Akin September 18, 2002 8:55

Index 343

skew symmetric, 198
solve, 102
sparse, 225
square, 198
symmetric, 198
Toeplitz, 198
transpose, 184, 191, 198, 313
triangular, 198, 203
tridiagonal, 209

matrix addition, 207
matrix algebra, 179, 199
matrix multiplication, 185, 191, 201, 207
matrix operator, 47
matrix transpose, 187, 191
maximum array element location, 185
maximum array element value, 185
maximum values, 78
MAXLOC function, 78, 185
MAXVAL function, 78, 185, 297
mean, 77
member, 137
memory count, 213, 317
memory leak, 166, 211, 213, 215
memory management, 209
message, 32
message passing, 332
method, 225, 332
methods, 4

private, 32
public, 32

Meyer, B., 24
military standards, 81
minimum array element location, 185
minimum array element value, 185
minimum values, 78
MINLOC function, 78, 185
MINVAL function, 78, 185
MOD function, 60, 62, 164
modular design, 6
module, 18, 28, 36, 76, 332
module code

class Angle, 129
class Circle, 37
class Date, 42
class Drill, 123
class Employee 1, 141
class Employee 2, 145
class Employee 3, 148
class Fibonacci Number, 34
class Global Position, 132
class Great Arc, 134
class Manager 1, 143
class Manager 2, 146
class Manager 3, 149
class Object, 170
class Person, 44, 47
class Position Angle, 133, 306
class Professor, 139

class Queue, 163
class Rational, 49
class Rectangle, 39
class sparse Vector, 289
class Stack, 160
class Student, 46
class Vector, 282, 287, 289
Conversion Constants, 281
doubly linked list, 173
elem type data class, 210
exceptions, 83, 159
Fractions, 97
Gauss Module, 221
inventory object, 55, 297
inventory system, 307
Is A Member Class, 156
Math Constants, 29
Member 1 Class, 153
Member 2 Class, 154
Memory Status Count, 214, 215, 317
object type, 159
Ops Example, 191
Physical Constants, 282
Point Module, 219
Queue of Objects, 161
Queue type, 161
record Module, 112, 113
singly linked list, 169
stack type, 157
swap library, 150
tic toc, 82, 116
tridiagonal matrix class, 313, 317

module procedure, 332
MODULE PROCEDURE statement, 37, 38, 48,

98, 191
MODULE statement, 34
module variable, 34
modulo, 62
MODULO function, 60, 62
modulo function, 60
Mossberg, E., 24
multiple inheritance, 137
multiplication, 60
Myer, B., 18

NAG, see National Algorithms Group, 103
named

CYCLE, 71, 72
DO, 64, 71, 72
EXIT, 71, 72
IF, 69
SELECT CASE, 69

National Algorithms Group, 103
natural logarithm, 62
NEQV operator, 58
nested, 332

DO, 72
IF, 67

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-Ind CB496-Akin September 18, 2002 8:55

344 Index

new line, 88, 118
Nielsen, K., 1
Newton–Raphson method, 14, 24
NINT function, 62, 187
node

current, 167, 172
dummy, 172
header, 161, 164, 172
linked list, 164
next, 172
null, 167
previous, 167, 172
root, 164
tail, 161

nonadvancing I/O, 51
normalized sign, 187
Norton, C.D., 24, 154
NOT operator, 58
NULL function (f95), 100
nullify, 154
NULLIFY statement, 18, 100, 154
number

bit width, 26
common range, 26
label, 64
significant digits, 26
truncating, 187
type, 26

number of true masks, 187
numeric type, 26
numeric types, 26
numerical computation, 42

object, 18, 22, 36
object-oriented

analysis, 21, 51, 119, 126, 136
approach, 21
design, 21, 51, 119, 128, 136, 218
language, 23
programming, 21, 119
representation, 22

Object Pascal, 24
object-oriented analysis, 332
object-oriented design, 332
obsolete statements, 262
octal number, 90
ONLY keyword, 137, 139
OOA, see object-oriented analysis, 21
OOD, see object-oriented design, 21
OOP, see object-oriented programming, 21
OPEN statement, 83, 107, 112, 184, 308, 309
OPENED= status, 306
operator, 32

.dot., 290

.op., 99, 191

.solve., 102, 313, 317

.t., 191

.x., 191
assignment, 51

binary, 99
defined, 24, 99
extended, 99
overloaded, 24, 170, 175, 218
overloading, 47, 98, 290
symbol, 99
unary, 99
user-defined, 85, 191

operator overloading, 12, 218, 292, 332
operator precedence, 58
operator symbol, 191
optional argument, 34, 41, 84
OPTIONAL attribute, 34, 38, 122, 128, 159
OR operator, 41, 58
order vector, 115
ordering array, 111
orthonormal basis, 287, 289
outer loop, 66
overflow, 332
overloaded member, 139
overloading, 47, 53, 98, 218, 332

operators, 51
testing, 98
transpose, 314

package, 18
parallel computer, 51
PARAMETER attribute, 28, 35, 41, 64, 78, 81, 93,

128, 133
Part-Of, 133
partial derivative, 205
partial differential equation, 216
partitioned matrix, 199
pass-by-reference, 60, 85, 99, 283
pass-by-value, 60, 62, 63, 85, 283, 332
path name, 41
pi, 28
Platypus, 226
pointer, 12, 26, 84, 99, 333

address, 177
allocatable, 18
allocate, 166
arithmetic, 100
array, 157
assignment, 100
association, 99
dangling, 166
deallocate, 166
declaration, 100
dereference, 63
detrimental effect, 100
in expression, 100
inquiry, 100
nullify, 100
nullifying, 100
status, 18, 99
target, 99
writting, 177

pointer arithmetic, 100

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-Ind CB496-Akin September 18, 2002 8:55

Index 345

pointer array, 333
pointer assignment, 101, 333
POINTER attribute, 100
pointer object, 154
pointer variable, 99
polymorphic class, 154
polymorphic interface, 136
polymorphism, 23, 36–38, 137, 142, 226, 333
pop, 159
portability, 19
Poundstone, W., 5
Pratap, R., 1
precondition checking, 159
preprocessor, 151
precedence order, 58
precedence rules, 13
precision, 209, 225

double, 93
kind, 27
portable, 93
single, 93
specified, 93
underscore, 27
user-defined, 27

precision kind, 26
PRESENT function, 34, 35, 38, 40, 41, 47, 51, 81,

84, 283
Press, W.H., 1
PRINT * statement, 34
private, 36, 121, 218
PRIVATE attribute, 34, 38
private attributes, 41
PRIVATE statement, 31
procedural programming, 21
procedure, 76
PRODUCT function, 185
product of array elements, 185
program

documentation, 21
executable, 21
scope, 16

program code
Another Great Arc, 307
array indexing, 65
check basis, 287
check vector class, 286
clip an array, 79
create a type, 28, 30
create Student, 47
Date test, 43
declare interface, 86
Demo Trans, 191
Dynamic Dispatching, 153
Fibonacci, 35
game of life, 278
geometry, 39
if else logic, 70
linear fit, 106
Logical operators, 70

maximum, 80
Memory Leak, 212
Memory Leak Counted, 317
Newton, 278
No Copy Reallocate, 215
operate on strings, 89
Person inherit, 45
random access file, 176
Rational test, 52
relational operators, 70
Revise employee manager, 312
simple arithmetic, 61
simple loop, 65
string to numbers, 90
structure components, 96
Testing a Queue, 165
Testing a Stack, 161
test bubble, 113
Test Conversion, 281
Test doubly linked, 175
test Drill, 124
test Employee 1, 142
test four classes, 140
test Fractions, 98
test Great Arc, 135
test inventory system, 310
test Manager 2, 147
test Manager 3, 150, 156
Test Physical, 282
test singly linked, 171
Test tridiagonal class, 316
two line lsq fit, 302
watch, 300

program keyword, 60
PROGRAM statement, 29, 34
projectile, 117
prototype, 7, 84
pseudopointer, 111
pseudorandom numbers, 187
pseudocode, 6, 17, 56, 78, 117, 333

if, 16
if–else, 16
indexed loop, 10
nested if, 16
posttest loop, 10
pretest loop, 10

public, 36, 142, 159, 218, 333
PUBLIC attribute, 34
public constructor, 41
public method, 31
PUBLIC statement, 31
push, 159

quadratic equation, 4
query, 222
queue, 100, 157, 159

raise to power, 62
random access, 175

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-Ind CB496-Akin September 18, 2002 8:55

346 Index

RANDOM NUMBER subroutine, 185
RANDOM SEED subroutine, 185
rank, 180, 333
rational number, 47, 48
read error, 118
READ statement, 30, 34, 41, 60, 66–68, 84, 90, 107,

175, 296
real, 12, 93, 186
REAL function, 185
REAL type, 26, 60
real whole number, 185
reallocate, 213, 227
REC= specifier, 175
RECL= specifier, 175
recursive algorithm, 99
RECURSIVE qualifier, 51, 117
reference, 12
referencing components, 93
Rehak, D.R., 217
relational operator, 57, 58, 68, 87, 167, 170, 175
remainder, 60
rename, 139
rename modifier, 137
REPEAT function, 88, 190
reshape, 183
reshape an array, 187
RESHAPE intrinsic, 183, 185, 190, 191
RESULT option, 34
result value, 77
return, 182
RETURN statement, 70
REWIND statement, 84, 213, 300, 301, 304
Roberts, R.M., 24
round number, 62
Rumbaugh, J., 24

sample data, 114
SAVE statement, 166
SCAN function, 88
scatter, 193
scope, 16, 333
SELECT CASE statement, 63, 69, 218, 311
SELECTED INT KIND, 27, 28
SELECTED REAL KIND, 27, 28
selector symbol, 30, 34, 37, 38
separate commands, 179
server, 24
SHAPE function, 187, 191
short, 27
side effect, 166, 333
SIGN function, 78, 185
signum, 187
SIN function, 62, 187, 277
sine, 62, 187
Singh, M., 24, 217
SINH function, 62, 185
size, 15
SIZE intrinsic, 77, 102, 105, 107, 178, 185, 191, 195,

196, 280, 283, 292, 297, 316

smallest integer, 62
smallest number, 187
smallest positive number, 187
Smalltalk, 24
sort, 99, 103, 108, 111, 144

bubble, 108
characters, 109
object, 111
objects, 109
strings, 109, 110

sorting, 51
sparse matrix, 225
sparse storage, 297
sparse vector, 54, 170, 289
sparse vector class, 209
specification, 5, 218
spring, 196
SQRT function, 32, 60, 62, 133, 185
STAT = variable, 83
square root, 32, 60, 62, 76, 185
stack, 100, 157, 159, 333
statement, 2, 11
statement block, 15, 63
statement examples, 266
statement syntax examples, 259
statements, 1
statements, alphabetical list, 266
status

EXISTS=, 84
FILE, 84
IOSTAT=, 84
MODE, 84
OPENED=, 84

status checking, 182
STATUS= specifier, 308, 309
stiffness matrix, 222, 224, 225
STOP statement, 41, 78, 175, 209, 218
storage

column wise, 179
row wise, 179

string, 26, 62, 177
adjust, 87
case change, 90
character number, 87
collating sets, 87
colon operator, 87
concatenate, 87
copy, 87
dynamic length, 85
from number, 90
functions, 87
length, 87
logic, 87
repeat, 87
scan, 87
to number, 90
trim, 87
verify, 87

strings, 85

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-Ind CB496-Akin September 18, 2002 8:55

Index 347

strong typing, 60, 333
struct, 58
structure, 26, 28, 36, 95
structure constructor, 30
structured programming, 16
submatrix, 199
subprogram, 76

recursive, 117
subroutine, 76, 77
subroutine code

Add to Q, 163, 166
allocate type application, 210
Alloc Count Int, 214
assign, 97, 98, 154
assign memb 1, 155
assign memb 2, 155
Change, 86
deallocate type application,

210
Dealloc Count Int, 214
delete Rational, 49
delete Sparse Vector, 290
delete Vector, 284
detroy D L List, 173
display all, 309
display members, 154, 155
display memb 1, 153
display memb 2, 154
D L insert before, 173
enter entry, 310
enter item, 299
enter update, 309
equal Fraction, 97
equal Integer, 49
equal Real, 284
equal Vector, 292
exception, 159, 164
exception status, 83, 166
file read, 299
file write, 299
in, 123, 128
increase Size, 307
initialize sys, 309
Init Point, 219
Init Point Another, 220
Init Point Vctr, 219
Integer Sort, 111, 113
invert, 50
list, 51, 97, 284
List Angle, 129
List Great Arc, 134
List Position, 133
List Position Angle, 133
List Pt to Pt, 134
list type alloc status, 210
lsq fit, 106
make Sparse Vector, 290
mult Fraction, 97
MyPrint Point, 220

new, 154
new member 1, 153
new member 2, 154
No Change, 86
nullify Is A Member, 155
orthonormal basis, 288
out, 123, 128
pretty, 294
Print, 35
print, 139
PrintPay, 150
PrintPayEmployee, 144, 147, 148
PrintPayManager, 144, 147, 150
print Date, 42, 47
print DOB, 44
print DOD, 44
print DOM, 46
print D L list, 174
print GPA, 46
print item, 299
print Name, 44
print Nationality, 44
print Sex, 44
print S L list, 170
push on Stack, 160, 161
readData, 106, 116, 301
read Date, 42
Read Position Angle, 131
read Vector, 284, 294
read xy file, 303, 304
reduce, 50
Remove from Q, 164
Resize Count Int OneD, 214
restore system, 309
save system, 308
setData, 145
setSalaried, 143, 146, 149
set DOB, 47
set DOD, 47
set DOM, 47
set element, 295
set Latitude, 132
set Longitude, 132
Set Point, 220
set Size, 307
Set Vec, 220
Set X, 220
Set XY, 220
show, 295
show Data, 113
show r v, 296
simple arithmetic, 60
Sort Reals, 109
Sort String, 110
Spy, 280
String Sort, 112
swap objects, 145
swap real, 151
swap type, 151

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-Ind CB496-Akin September 18, 2002 8:55

348 Index

subroutine code (Continued)
S L delete, 169, 170
S L insert, 169
testing basis, 287
test Manager 1, 144
test matrix, 102
tic, 82, 300
tri diag free, 314, 317
tri diag print, 314, 317

SUBROUTINE statement, 34
subroutines, 36
subscript, 30, 64, 178

bounds, 178
range, 206
vector, 193

subscript triplet, 60, 333
subtraction, 60
subtype, 152
subtyping, 142, 152
sum, 15
SUM function, 15, 77, 105, 185, 191, 317
sum of array elements, 187
super class, 137
syntactic error, 20
syntax examples, 259
SYSTEM CLOCK intrinsic, 80
Szymanski, B.K., 24, 154, 227

tab, 88, 112, 118
TAN function, 62, 186
tangent, 62, 187
TANH function, 62, 186
target, 26, 84, 99, 100, 333
TARGET attribute, 18, 100, 152, 154, 156
template, 51, 110, 142, 146, 333
tensor, 178
testing, 19
time, 300
time of day, 116
TINY function, 186
Toeplitz matrix, 198
top-down, 5
total of elements in array, 186
TRANSFER intrinsic, 81
transformational functions, 190
transpose, 184, 198, 201
TRANSPOSE intrinsic, 186, 191
tree, 333
tree structure, 47, 99, 100
tridiagonal matrix, 209

TRIM function, 88, 90, 140, 144
triplet, see colon operator, 187
TRUE result, 68
true, 15
truncate to real whole number, 187
truncating a number, 187
truss, 193
type

conversion, 90
default, 58
implicit, 58

TYPE declaration, 29, 30, 34
TYPE statement, 31, 38

unary operator, 59, 333
underflow, 333
unexpected result, 191
UNIT= specifier, 107, 112, 302, 306
upper triangle, 198, 203
USE association, 137, 142, 218
USE statement, 35, 37, 38, 41, 98, 102
USE, ONLY, 137, 139
user-defined operator, 191
user interface, 2

validation, 34
variable, 9, 12, 26, 56

global, 17
name, 12
type, 12

variable rank array, 180
vector, 178, 333
vector class, 53, 209, 282, 287
vector subscript, 67, 193, 334
VERIFY function, 88
volume, 51

weakness, 225
WHERE construct, 189
WHERE statement, 63, 189
while-true, 74
wildcard, 146
WRITE statement, 38, 67, 84

XOR operator, 58

Yourdon, E., 22, 24

Zhu, J.Z., 226
Zienkiewicz, O.C., 226
Zimmermann, T., 217

