

Statistics and Computing

Series Editors:
J. Chambers
W. Eddy
W. Härdle
S. Sheather
L. Tierney

David R. Lemmon
Joseph L. Schafer

Developing Statistical
Software in Fortran 95

David R. Lemmon
The Methodology Center
The Pennsylvania State University
204 East Calder Way, Suite 401
University Park, PA 16802
USA

Joseph L. Schafer
Department of Statistics and
The Methodology Center
The Pennsylvania State University
204 East Calder Way, Suite 401
University Park, PA 16802
USA

Series Editors:

J. Chambers
Bell Labs, Lucent Technologies
600 Mountain Avenue
Murray Hill, NJ 07974
USA

W. Eddy
Department of Statistics
Carnegie Mellon University
Pittsburgh, PA 15213
USA

W. Härdle
Institut für Statistik und Ökonometrie
Humboldt-Universität zu Berlin
Spandauer Str. 1
D-10178 Berlin
Germany

S. Sheather
Australian Graduate School

of Management
University of New South Wales
Sydney, NSW 2052
Australia

L. Tierney
School of Statistics and Actuarial Science
University of Iowa
Iowa City, IA 52242-1419
USA

Library of Congress Cataloging-in-Publication Data
Lemmon, David R.

Developing statistical software in Fortran 95 / David R. Lemmon, Joseph L. Schafer.
p. cm. — (Statistics and computing)

Includes bibliographical references and index.
ISBN 0-387-23817-4 (alk. paper)
1. FORTRAN (Computer program language) 2. Statistics—Data processing. I. Schafer,

J. L. (Joseph L.) II. Title. III. Series.
QA76.5.L453 2005
005.13′3—dc22 2004061447

ISBN 0-387-23817-4 Printed on acid-free paper.

ActivePerl is a trademark of ActiveState Tool Corporation. Intel Fortran and Intel Visual Fortran are registered
trademarks of Intel Corporation. Java is a registered trademark of Sun Microsystems, Inc. Lahey/Fujitsu Fortran
is a trademark of Lahey Computer Systems Inc. Linux is a registered trademark for Mr. Linus Torvalds in the
United States and other countries. Macintosh is a registered trademark of Apple Computer, Inc. MATLAB is a
registered trademark of The MathWorks, Inc. Salford FTN95 is a trademark of Salford Software Ltd. SAS and all
other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in
the United States and other countries. S-PLUS is a registered trademark of the Insightful Corporation. SPSS is a
registered trademark of SPSS Inc. Unix is a registered trademark of The Open Group. Windows, Excel, Visual
Basic .NET and Visual Studio .NET are registered trademarks of Microsoft Corporation in the United States and
other countires. Magic 8-ball is a registered trademark of Mattel, Inc.

© 2005 Springer Science+Business Media, Inc.
All rights reserved. This work may not be translated or copied in whole or in part without the written permission
of the publisher (Springer Science+Business Media, Inc., 233 Spring Street, New York, NY 10013, USA), except
for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known
or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary
rights.

Printed in the United States of America. (MVY)

9 8 7 6 5 4 3 2 1 SPIN 10969267

springeronline.com

Preface

This book grew from our own need to write good computer programs. We
work in an interdisciplinary research center whose mission is to develop and
evaluate statistical methodologies and disseminate them to a broad scien-
tific community. Computing and software development play an increasingly
important role both in our research and in dissemination. When faced with
the task of actually writing a statistical program, however, we found our-
selves without a road map. We needed an overall strategy.

After initial discussions, we drafted a brief document for our colleagues
that contained guidelines for programming in Fortran. We also wrote li-
braries of Fortran procedures that could be shared among applications and
a sample program to serve as a template for other projects. These materials
proved extremely valuable. Those who followed the template—even if they
had little or no prior experience in Fortran—quickly learned to produce
code that was easy to maintain and debug.

At the same time, we wrestled with another crucial issue: how to dissem-
inate statistical software to reach a wider audience. Some of our consumers
would have no problem using an old-fashioned program that runs from the
command line. But others had grown accustomed to graphical applications
with windows, menus, buttons, etc. Still others were clamoring for add-ons
to statistical programs such as SAS r©. Given the diversity of environments
in which data are being analyzed today, it seemed impossible to satisfy
everyone without implementing our methods many times. As we began to
learn about the Component Object Model (COM), however, we soon re-
alized that packaging statistical routines as COM servers would help us
to reach more potential users. With COM, we found that computational

vi Preface

procedures would have to be written carefully and methodically, but they
would only have to be written once, as a single COM server can be called
by many different client programs.

As this book took shape, a number of thorny (but in hindsight not too
difficult) obstacles arose that needed special attention. One was the issue
of how to invoke array-valued properties in a COM object from S-PLUS r©.
We learned from Insightful Corporation, the producers of S-PLUS, that
this feature was available but undocumented. More generally, we struggled
with how to best package Fortran arrays as variants. Our solution, which
we implemented in our variant_conversion module, was to follow the
practice of Excel and store an array as a variant containing an array of
variants.

Another major hurdle was figuring out how to invoke a COM server from
SAS. Interoperability with SAS was offered through the SAS Component
Language but not through ordinary SAS programs. This prompted us to
create the tool we call sascomio, a dynamic-link library that allows a SAS
user to write COM client within PROC IML.

Finally, our preferred method for creating COM servers from Fortran
code, which relied on a Compaq tool called the COM Server Wizard, be-
came unavailable when the product was acquired by Intel in 2003. We
suddenly found that the latter part of the book hinged upon a commercial
product that had been discontinued! Fortunately, we were able to reimple-
ment the functions of the COM Server Wizard through a Perl script that
creates all of the necessary extra code. This new method for creating COM
servers, which is described in Chapter 7, is almost completely automatic
and requires very little knowledge of COM on the part of the programmer.

We would like to thank Linda Collins, Susan Murphy, and other folks
from The Methodology Center at Penn State who encouraged us to publish
this material as a book. Along the way, many individuals tested our ideas,
provided suggestions, and helped to solve problems small and large. Brian
Flaherty participated in the initial discussions as we developed our own
unique style of pseudo object-oriented programming. Hwan Chung, Recai
Yucel, and Hakan Demirtas tried these strategies and gave feedback. Jerry
Maples did an outstanding job in writing the first version of our Perl script.

Portions of Chapter 8 rely on features of commercial software products
that are not well documented. We wish to thank Steve Lionel of Intel
for promptly answering our technical questions and giving us permission
to modify the old Compaq templates for generating COM server code.
Bob Rodriguez and Simon Smith at the SAS Institute were friendly and
responsive as we worked out strategies for interfacing COM servers with
SAS. Insightful’s Jim Schimert helped us to learn about S-PLUS’s COM
interface. Thomas Baier, the author of rcom, gave helpful tips on calling
COM servers from R.

Finally, we wish to thank John Kimmel and the staff at Springer for their
help and patience as they waited for the completed manuscript. Three

Preface vii

anonymous reviewers gave many excellent suggestions that we took to
heart. Based upon their advice, we expanded the introductory material
on Fortran 95 in Chapters 2 and 3; added Chapter 4 on computational
routines and numerical issues; added Chapter 6 on dynamic-link libraries;
and removed all but the most necessary jargon and technical descriptions
about COM and Windows r© from Chapters 7 and 8.

Support for this project was provided by the National Institute on Drug
Abuse grant 1-P50-DA10075 and by the National Institute on Mental
Health grant 1-R01-MH60213.

David R. Lemmon University Park, Pennsylvania
Joseph L. Schafer September 2004

Contents

Preface v

1 Motivation 1
1.1 Why We Wrote This Book 1
1.2 For Whom We Are Writing 2

1.2.1 Those Accustomed to Fortran 77 2
1.2.2 Those Who Want to Create Windows Applications . 2
1.2.3 Those Who Want to Interface Fortran with Other

Applications . 3
1.3 The Need for Good Programming Practice 4

1.3.1 Programming for Research Dissemination 4
1.3.2 Programming Standards 4
1.3.3 Benefits of Good Programming Style 5
1.3.4 Benefits of Uniformity 5

1.4 Why We Use Fortran . 6
1.4.1 History of Fortran 6
1.4.2 Fortran’s Advantages 6
1.4.3 Useful New Features 7
1.4.4 What this book does not cover 7
1.4.5 Differences Between Fortran 90 and Fortran 95 . . . 7
1.4.6 Pseudo Object-Oriented Programming in Fortran . . 8
1.4.7 Fortran 2003 . 8
1.4.8 Which Compiler Should I Use? 8

1.5 Developing Applications for a Broad Audience 9

x Contents

1.5.1 Console Applications and COM Servers 9
1.5.2 COM Servers and Clients 10

1.6 Scope of the Rest of This Book 11
1.7 Our Source Code and Web Site 12

2 Introduction to Modern Fortran 13
2.1 Getting Started . 13

2.1.1 A Very Simple Program 13
2.1.2 Fixed and Free-Form Source Code 15
2.1.3 Compiling, Linking and Running 15
2.1.4 Compiler Options 17
2.1.5 Standard Input and Output 19
2.1.6 Intrinsic Uniform Generator 20
2.1.7 Integer and Real Kinds 20
2.1.8 Do, if, case, goto . 22
2.1.9 Exercises . 25

2.2 Arrays . 26
2.2.1 Rank, Size and Shape 26
2.2.2 Array Functions . 27
2.2.3 Operations on Arrays and Array Sections 28
2.2.4 Your Mileage May Vary 29
2.2.5 Array Allocation . 30
2.2.6 Exercises . 31

2.3 Basic Procedures . 32
2.3.1 Subroutines . 32
2.3.2 Assumed-Shape and Optional Arguments 33
2.3.3 Functions . 36
2.3.4 Pure, Elemental and Recursive Procedures 38
2.3.5 On the Behavior of Local Variables 39
2.3.6 Exercises . 41

2.4 Manipulating Character Strings 42
2.4.1 Character Variables 42
2.4.2 Assigning, Comparing, and Concatenating Strings . 43
2.4.3 More String Functions 44
2.4.4 Internal Files . 45
2.4.5 Exercises . 46

2.5 Additional Topics . 47
2.5.1 Expressions with Mixed Types and Kinds 47
2.5.2 Explicit Type Conversion 48
2.5.3 Generic Procedures 49
2.5.4 Don’t Pause or Stop 50

2.6 Additional Exercises . 50

3 A Pseudo Object-Oriented Style 55
3.1 Basic Concepts of Object-Oriented Programming 56

Contents xi

3.1.1 Objects and Classes 56
3.1.2 Properties . 56
3.1.3 Put and Get . 57
3.1.4 Methods and Constructors 57
3.1.5 Conceptualizing an Interface 58
3.1.6 Other Object-Oriented Concepts 60
3.1.7 Exercises . 60

3.2 Modules . 61
3.2.1 What Is a Module? 61
3.2.2 How Not to Use Modules 62
3.2.3 How to Use Modules 64
3.2.4 Generic Module Procedures 65
3.2.5 Exercises . 66

3.3 Derived Types . 67
3.3.1 What Is a Derived Type? 67
3.3.2 Using Derived Types 69
3.3.3 Constructors and Default Initialization 71
3.3.4 Exercises . 73

3.4 Pointers . 73
3.4.1 Fear Not the Pointer 73
3.4.2 Pointer Assignment 74
3.4.3 Pointer Status . 76
3.4.4 Pointer Allocation 77
3.4.5 Pointer Deallocation 77
3.4.6 Memory Leaks . 78
3.4.7 Exercises . 79

3.5 Why We Need Pointers . 79
3.5.1 Pointers in Derived Types 79
3.5.2 Pointers as Dummy Arguments 80
3.5.3 Recursive Data Structures 82
3.5.4 Procedures for Linked Lists 83
3.5.5 Exercises . 86

3.6 Example Module: A Generic Error Handler 88
3.6.1 Strategy for Managing Run-Time Errors 88
3.6.2 Structure of the Module 89
3.6.3 Module Procedures 91
3.6.4 Using the Module 96
3.6.5 General Guidelines for Modules 99

3.7 Additional Exercises . 100

4 Implementing Computational Routines 101
4.1 Issues of Numerical Accuracy 101

4.1.1 Accuracy Is Crucial 101
4.1.2 Floating-Point Approximation 102
4.1.3 Roundoff and Cancellation Error 103

xii Contents

4.1.4 Arithmetic Exceptions 104
4.1.5 Resources for Numerical Programming 106
4.1.6 Exercises . 106

4.2 Example: Fitting a Simple Finite Mixture 109
4.2.1 The Problem . 109
4.2.2 Programming Constants 110
4.2.3 A Computational Engine Module 111
4.2.4 A Public Procedure With Safeguards 112
4.2.5 The Computations 114
4.2.6 Strategies for Calling the Engine 115
4.2.7 A Simple Calling Program 116
4.2.8 Test, and Test Again 118
4.2.9 Exercises . 119

4.3 Efficient Routines at Lower Levels 120
4.3.1 What Is a Lower-Level Procedure? 120
4.3.2 Keeping Overhead Low 121
4.3.3 Taking Advantage of Structure 122
4.3.4 Loop Reordering, Stride and Saxpy 123
4.3.5 Optimization, Pipelining and Multiple Processors . . 125
4.3.6 A Simple Example 126
4.3.7 Hidden Allocation of Temporary Arrays 127
4.3.8 Exercises . 128

4.4 More Computational Procedure Examples 128
4.4.1 An Improved Cholesky Factorization 128
4.4.2 Inverting a Symmetric Positive-Definite Matrix . . . 130
4.4.3 Weighted Least Squares 132
4.4.4 Computational Routines in Object-Oriented Program-

ming . 134
4.5 Additional Exercises . 136

5 Developing a Console Application 139
5.1 A Program for Logistic Regression 140

5.1.1 The logistic regression model 140
5.1.2 Motivation for the ELOGIT Console Program 140
5.1.3 Dependency Map for Source Components 140
5.1.4 Developing Program Units Incrementally 141

5.2 Where to Begin . 142
5.2.1 Before You Start . 142
5.2.2 Program Constants 143
5.2.3 The Control File Interface 144
5.2.4 First Snapshot of ELOGIT 148
5.2.5 Exercises . 150

5.3 Starting the Main Types Module 151
5.3.1 An Object-Oriented Design 151
5.3.2 Storing the Dataset 152

Contents xiii

5.3.3 A Module for Pointer Allocation 156
5.3.4 Putting and Getting Data 158
5.3.5 Reading Data from Files 163
5.3.6 Second Snapshot of ELOGIT 165
5.3.7 Exercises . 167

5.4 Specifying the Model . 167
5.4.1 Storing the Model Specification 167
5.4.2 Putting and Getting Model Properties 168
5.4.3 Third Snapshot . 172
5.4.4 Exercises . 175

5.5 Fitting the Model . 176
5.5.1 The Computational Task 176
5.5.2 Newton-Raphson and Weighted Least Squares . . . 176
5.5.3 Parameters and Results 178
5.5.4 The Model-Fitting Procedure 179
5.5.5 Reporting the Results 183
5.5.6 Looking Ahead . 188

5.6 Additional Exercises . 188

6 Creating and Using Dynamic-Link Libraries 191
6.1 Extending the Functionality of Statistical Packages with For-

tran DLLs . 191
6.1.1 Compiled Procedures Run Faster 191
6.1.2 When to Use a DLL 192

6.2 Understanding Libraries . 193
6.2.1 Source-Code Libraries 193
6.2.2 Static Libraries . 194
6.2.3 Dynamic-Link Libraries 194

6.3 How Programs Use DLLs 195
6.3.1 Locating the DLL 195
6.3.2 DLL Hell . 196
6.3.3 Dynamic Loading and Linking 196
6.3.4 Load-Time and Run-Time Linking 197

6.4 Creating a Fortran DLL . 198
6.4.1 The Basic Steps . 198
6.4.2 Passing Arguments 198
6.4.3 Calling Conventions 199
6.4.4 Compiling and Linking the Source Code 201
6.4.5 Compiler Options 202

6.5 Example: a Fortran DLL for Fitting an Exponential Mixture 202
6.5.1 Creating a Wrapper 202
6.5.2 Building the DLL with Intel Visual Fortran and La-

hey/Fujitsu Fortran 207
6.5.3 Building with Salford Fortran 209
6.5.4 Calling the DLL Procedure from S-PLUS and R . . 211

xiv Contents

6.5.5 Calling the Function from SAS/IML 214
6.6 Shared Objects in Unix and Linux 216

6.6.1 An Example: Extending S-Plus and R via a Fortran
Shared Object in Linux 217

7 Creating COM Servers 219
7.1 A Simple Example . 220

7.1.1 The magic8 Fortran Module 220
7.1.2 The Magic8 COM Server 222
7.1.3 Installing the Magic8 COM Server 222
7.1.4 The 8-Ball Speaks in Excel 223
7.1.5 The 8-Ball Speaks in S-PLUS and R 225
7.1.6 The 8-Ball Speaks in MATLAB 226
7.1.7 The 8-Ball Speaks in SAS 227
7.1.8 Exercises . 228

7.2 COM Server Basics . 228
7.2.1 References on COM 228
7.2.2 COM, Windows, and .NET 228
7.2.3 COM Servers versus Conventional DLLs 229
7.2.4 The Object-Oriented Contract 230
7.2.5 In-Process versus Out-of-Process Servers 231

7.3 Example: A COM Server for Logistic Regression 233
7.3.1 Producing COM Servers with Intel Visual Fortran . 233
7.3.2 Getting Ready . 233
7.3.3 Naming the Server and the Class 234
7.3.4 Fortran Style Conventions 235
7.3.5 Automatically Generating the COM Server Code . . 236
7.3.6 Building the Project in Visual Studio 237
7.3.7 Building and registering the server 243
7.3.8 Creating a Simple Client 245

7.4 Exercises . 248
7.5 How the Fortran COM Server Works 249

7.5.1 Overview of the Automatically Generated Code . . . 249
7.5.2 The Interface Definition Language File 250
7.5.3 The Instance Code 250
7.5.4 The Interface Code 253
7.5.5 Passing Arrays as Variants 255
7.5.6 How the COM Server Handles Errors 259

7.6 Distributing and Installing COM Servers 260
7.7 Additional Exercises . 262

8 Creating COM Clients 265
8.1 An Improved Client for Excel 265

8.1.1 Excel As a Graphical User Interface 265
8.1.2 Starting to Write the Client 266

Contents xv

8.1.3 How Did It Work? 269
8.1.4 Debugging the Client and Server 270
8.1.5 Finishing the Excel Client 274
8.1.6 Exercises . 277

8.2 Clients for Other Environments 277
8.2.1 Keeping It Simple 277
8.2.2 Clients for S-PLUS and R 277
8.2.3 A Client for SAS . 281
8.2.4 SPSS . 288
8.2.5 MATLAB . 293

8.3 Creating a Standalone GUI Application 296
8.3.1 Component-Based Design 296
8.3.2 Visual Basic .NET 296
8.3.3 An XML Data Format 296
8.3.4 Starting the Graphical Interface 298
8.3.5 Reading the Data File 299
8.3.6 Specifying the Model 301
8.3.7 Invoking the Model Fit Procedure 304
8.3.8 Displaying the Results 308
8.3.9 Finishing Up . 312
8.3.10 Exercises . 312

References 315

1
Motivation

1.1 Why We Wrote This Book

Few statisticians consider themselves to be professional computer program-
mers, but many find it necessary to write code at one time or another. Many
excellent books have been written on topics of statistical computing—
techniques for inverting and decomposing symmetric, positive-definite ma-
trices; methods for generating random variates; calculating tail areas from
normal, t, and F distributions; and so on (e.g., Kennedy and Gentle, 1980;
Thisted, 1988). The rapid growth of computationally intensive approaches
to solving statistical problems—such as Markov chain Monte Carlo and
the jackknife—has begun to define a new field of study known as computa-
tional statistics (Gentle, 2002). Graduate courses offered by statistics and
biostatistics departments tend to emphasize these topics, but less time is
devoted to the nuts and bolts of how to write a good program. The excel-
lent Numerical Recipes series by Press, Flannery, Teukolsky, and Vetterling
(1992, 1996) contains a wealth of functions and subroutines, but these books
say little about the infrastructure needed to turn computational procedures
into robust, useful programs. General textbooks that teach how to program
in Fortran, C++, or Java r© are essential for learning these languages, but
they target a broad audience and contain few examples of direct interest
to statisticians.

After perusing these resources, statisticians who need to begin program-
ming are unsure how to start. What they lack is a framework or paradigm
for developing statistical applications. Most of us, through trial and error,

2 1. Motivation

gradually settle into a self-styled routine for generating code. Eventually
we finish a program that seems to work well enough for the immediate
purpose, but we are never quite satisfied with the finished product. It fre-
quently crashes and we cannot tell why. In hindsight, we realize that un-
fortunate decisions made early in the development process locked in some
major limitations, and afterward the program is very difficult to change.

Fortunately, good programming styles can be taught and learned. The
purpose of this book is to help a statistician, methodologist, or statistically
oriented researcher to write a good Fortran program the first time. We
hope to make the experience of developing Fortran applications as quick,
painless, and rewarding as possible.

1.2 For Whom We Are Writing

1.2.1 Those Accustomed to Fortran 77

This book may prove helpful to anyone with a broad interest in statistical
computing. However, we have written it in a particular way to address
the special needs of certain groups. One such group is those accustomed
to Fortran 77 who do not use the modern features of Fortran 90 and
Fortran 95, because these new features are unfamiliar or the benefits of
using them seem unclear. Through this book, we want to help researchers
to update their Fortran skills quickly. Those who graduate from Fortran
77 to Fortran 95 will soon find that programs are simpler to write, easier to
debug, and more reliable. (Following a convention that others have used,
we will write “Fortran” in small capitals when referring to versions before
Fortran 90 and “Fortran” for later ones.)

1.2.2 Those Who Want to Create Windows Applications

Another target group is those who write Fortran console applications—i.e.,
programs that are invoked from a DOS or Unix command line—but are
now interested in programming for the Windows environment. Console ap-
plications are highly linear; they perform a set of actions in a predefined se-
quence and then stop. In contrast, Windows applications are event-driven,
reacting incrementally to mouse clicks and keystrokes. An event-driven pro-
gram needs to be robust; it must allow the user to vary the event sequence,
providing helpful guidance and preventing illegal operations along the way.
At present, many programmers accustomed to writing console applications
have no idea how to create routines that operate in the graphical, point-
and-click world of Windows. By adopting the pseudo object-oriented style
described in this book, it is not difficult to convert a Fortran console pro-
gram into a Windows application with a graphical user interface (GUI).

1.2 For Whom We Are Writing 3

If you want to add a GUI to statistical routines written in Fortran, you
have two basic options: create the GUI yourself or find someone to do it
for you. Either way, it’s a good idea to clearly demarcate the source code,
keeping the computational engine separate from the GUI. Using modern
development tools (e.g., Microsoft r© Visual Studio r© .NETTM), creating an
interface with a professional look and feel is not beyond the reach of those
with moderate programming skills. The mechanisms by which the GUI
communicates with Fortran computational code can be tricky, however,
even for experienced programmers, and have not been well-documented.
This book provides a step-by-step guide for bringing statistical applications
written in Fortran into the Windows environment. We also present our own
distinctive strategy for separating the Fortran engine from the GUI. In our
approach, the essential aspects of the event-driven programming style are
built into the Fortran part, keeping the GUI short and simple.

1.2.3 Those Who Want to Interface Fortran with Other
Applications

A third target group is those who want to develop custom statistical rou-
tines that can be called from other applications, such as Excel r©, SAS,
S-PLUS, SPSS r©, and MATLAB r©. All of these commercial packages allow
the user to write macros or functions for performing a sequence of tasks
automatically. Some of them even provide one or more ways to call external
routines written in Fortran. Because interoperability is often considered to
be an advanced topic, however, documentation for these features tends to
be sparse or difficult to penetrate.

The Windows environment provides mechanisms by which programs
written in different languages can communicate with each other. Com-
putational routines written in Fortran can be packaged as dynamic-link
libraries (DLLs) and loaded into other applications as they are running.
Over the years, DLLs have evolved and given way to more refined methods
of communication among software components. The Component Object
Model (COM) standard has extended the concepts of object-oriented soft-
ware design beyond the boundaries of a single language. Using COM, a
programmer can bundle data structures and computational routines to-
gether into a single object and make it available to Windows applications
running on the same computer. These applications can pass data to the
COM server, invoke computational procedures, and retrieve results in a
very straightforward manner.

A recent advance in software development is object-oriented software
components that run within virtual machines on computers. A virtual ma-
chine is a computer program that acts as a small computer within a com-
puter and provides a uniform environment within which programs can run.
The best-known examples are Sun’s Java language and Microsoft’s .NET

4 1. Motivation

(pronounced “dot-net”) initiative. They allow interoperability across com-
puters and networks. In this book we will develop a graphical user interface
using the Visual Basic .NET r© language. The technology of DLLs, COM,
and .NET, still unfamiliar to many, opens up exciting possibilities for sta-
tistical researchers to disseminate new methods to a broad audience.

1.3 The Need for Good Programming Practice

1.3.1 Programming for Research Dissemination

Statisticians are in the business of creating new statistical methods. As
data analysis and modeling have become more computer-intensive, imple-
mentation and software development have become an essential part of the
dissemination process.

In the past, one could propose a new procedure, publish an article about
it, and believe that interested readers would successfully carry out the
method by hand calculator. Those days are gone. Journals in statistics and
biostatistics are now filled with articles that feature computationally de-
manding optimization routines, genetic algorithms, simulation by Markov
chain Monte Carlo methods, and so on. Some of these techniques would be
applied more widely by researchers if software were available. However, it
takes a very long time for new statistical methods to be incorporated into
mainstream statistical packages or more specialized commercial products.
Statisticians who wish to make an impact are now finding that they need
to take a more active role in programming.

1.3.2 Programming Standards

If a new procedure merits publication in a major journal, shouldn’t it be
implemented by the authors in such a way that others may actually use it?
The following story may sound painfully familiar. An interesting journal
article appears with a statement like this: “The method was implemented in
a Fortran program that is available from the authors upon request.” Upon
contacting the authors, one receives a large file of uncommented code that,
if it successfully compiles, seems to work only for the single data example
that appears in the published article. In most cases, the program was never
really intended to be shared with others. By the time the article actually
appeared in print, the authors had long since put it aside to work on other
projects; their memories have faded, and to go back now and clean up the
code or create documentation is simply too daunting.

The solution to this problem must come from two directions. On one
hand, editorial boards of scientific journals may consider adopting policies
about code sharing. Referees and editors may need to examine code as
part of the review process and enforce minimal standards (e.g., requiring a

1.3 The Need for Good Programming Practice 5

reasonable amount of documentation). Many journals have already created
stable Web sites where resources—code, data files, unpublished technical
reports, etc.—are made available to interested readers; submission of these
resources in an acceptable format may be required before the article ap-
pears in print. From the other direction, statisticians embarking on com-
puting projects need to write code that is clean enough and sufficiently
documented to share with others.

1.3.3 Benefits of Good Programming Style

Through painful experience, we have now concluded that if a computer
program is worth writing at all, it is worth writing well from the start. All
too often, a programmer will say to himself, “I just want to get this pro-
gram working as quickly as possible; I’ll clean it up and add documentation
later.” This is self-delusion. The only real window of opportunity to create
useful documentation is while the code is being written. The source code
itself should be a document. Variables, functions, and methods should be
given descriptive names. The greatest beneficiary of well-designed and doc-
umented code is the programmer, who will be able to return to it months
or years later and understand it once again.

Good programming style is not difficult to learn, especially if good ex-
amples are available. In our research center at The Pennsylvania State
University, we have created a template for statistical applications in For-
tran 95 for newcomers to imitate. Initially there may be resistance. Some
will say, “I don’t want to do it your way; it takes too much time.” But
good programming practice invariably saves time. A well-written program
is much easier to debug, maintain, and improve upon than a poorly written
one. Novices may not understand why we do things in a certain way, but
once they experience the satisfaction of creating a successful application
they are quickly converted.

1.3.4 Benefits of Uniformity

From the developers’ side, all of our statistical programs have a similar look
and feel. Uniformity of style produces many benefits. Multiple programmers
can work together on a project more easily. Code modules can be shared
among applications. Producing the source code is much less cumbersome
because the same basic strategies are being used over and over; much of
the writing is simply cut-and-paste. Finally, staff turnover is less likely to
cause a project to fall apart. Professional software developers use uniform
styles; why shouldn’t we?

6 1. Motivation

1.4 Why We Use Fortran

1.4.1 History of Fortran

Statisticians program in a variety of languages. Some are acquainted with
modern object-oriented styles and have written programs in Java, C++, or
Visual Basic. Others are adept at writing scripts in SAS IML, S, GAUSS,
MATLAB, or (for those old-timers) APL. When computational efficiency
is an issue, some create subroutines in Fortran or C and call them from
S-PLUS or R. And many of us still return to the decades-old tradition of
writing stand-alone console applications in Fortran that are invoked by a
command line from a DOS or Unix prompt.

Fortran was among the first—and arguably, the very first—of the high-
level programming languages. Originally developed by a team of researchers
at IBM in the 1950s, its name was derived from Formula Translation be-
cause it was seen as a tool for automatically translating mathematical for-
mulas into machine-level instructions. When different dialects of the lan-
guage began to proliferate, the forerunner of the American National Stan-
dards Institute (ANSI) developed the first standardization in 1966. The
next major revision, Fortran 77, was released in 1978 and quickly be-
came the dominant language for engineering and scientific work. By the
mid-1980s, however, competition from newer languages such as C began to
expose serious limitations in Fortran and drove another effort to mod-
ernize, producing a major extension in 1990 and a minor revision in 1995.
After the introduction of the 1990 standard, the name of the language was
no longer regarded as an abbreviation but as a proper name in its own
right.

1.4.2 Fortran’s Advantages

Many current Fortran users acquired their basic skills during the 1970s or
1980s and continue to follow a classic programming style that has changed
little over the last quarter century. While their younger colleagues may take
pleasure in calling them “dinosaurs,” these die hards know that there are
still many good reasons to program in Fortran. No matter how sophisti-
cated the operating systems may become in the future, there will always
be a way to get back to a command prompt. Fortran programmers have
at their disposal a huge number of computational subroutines available in
books such as Numerical Recipes (Press et al., 1992, 1996), in back issues of
journals such as Applied Statistics, and in commercially licensed libraries
such as NAG and IMSL. Moreover, although the Fortran language itself
has vastly improved and many excellent new features have been added,
the essential features of the early language remain intact; programmers are
still able to incorporate or update their legacy code into modern applica-
tions with only moderate effort. Even in modern computing environments,

1.4 Why We Use Fortran 7

Fortran remains an excellent choice for high-performance applications in
engineering, mathematics, and statistics.

1.4.3 Useful New Features

The reader of this book who is accustomed to Fortran 77 will be intro-
duced to many attractive features of modern Fortran, including:

• modules, which help to organize large, complex programs;

• derived types, which allow variables to be bundled together and passed
as a single argument;

• dynamic allocation, by which the dimensions of arrays can be deter-
mined at run-time;

• pointers, which increase the power and flexibility of the language in
countless ways;

• many other syntactical niceties, including optional arguments and
function overloading.

1.4.4 What this book does not cover

This book is not a comprehensive guide to the Fortran 95 language. For
example, we do not provide a complete listing of all Fortran statements,
intrinsic procedures, or input/output format descriptors. Many excellent
and complete references on the Fortran language are already available;
one that we highly recommend is the text by Metcalf and Reid (1999).
Moreover, reference material on the language itself is distributed with many
commercial Fortran compilers in printed or electronic form. Most Fortran
programmers already have at their fingertips the ability to locate manual
pages and help files to quickly answer their specific questions. Rather than
writing another Fortran users’ manual, we aspire to teach programming
strategies and design principles to statisticians who want to create high-
quality, reliable software.

1.4.5 Differences Between Fortran 90 and Fortran 95

Fortran 90 was an extensive expansion of Fortran 77, but the differences
between Fortran 90 and Fortran 95 are rather minor. Nevertheless, there
are some good reasons to use Fortran 95 rather than Fortran 90. For exam-
ple, the null() constructor, which was introduced in Fortran 95, is highly
useful, as it avoids the tedious initialization of pointers at the start of a
program. The example modules and programs included in this book have
been tested and validated with Fortran 95, but many of them will not work

8 1. Motivation

with Fortran 90. Readers who have Fortran 90 are strongly encouraged to
upgrade their compilers; it will definitely be worthwhile.

1.4.6 Pseudo Object-Oriented Programming in Fortran

Unlike C++ and Java, Fortran 95 is not a true object-oriented language.
Nevertheless, by adopting certain programming practices, it is possible to
mimic many of the essential qualities of the object-oriented style and real-
ize their benefits. The key features of Fortran 95 that make this possible
are modules, derived types, and pointers. By adopting the pseudo object-
oriented style recommended in this book, the developer gains many advan-
tages of object-oriented programming—for example, the ability to recreate
or enhance one part of the program without breaking the functionality of
other parts. Adopting this style leads to programs that are more reliable
and easier to develop, maintain, and extend.

1.4.7 Fortran 2003

The final committee draft of the next version of Fortran has recently been
adopted. The next standard, called Fortran 2003, is a major enhancement
of Fortran 95. We allude to some of the features of this new standard,
but we do not emphasize them because Fortran 2003 compilers may not
be available for some time. None of the language features described in
this book have been deleted in the 2003 standard, so our techniques and
examples will work for many years to come.

1.4.8 Which Compiler Should I Use?

We do not wish to promote or discourage the use of any specific product.
As this book goes to press, we know of six Fortran 95 compilers currently
being sold for the Windows environment. We have personally tried three of
them—Lahey/FujitsuTM Fortran (Version 7.1), Salford FTN95TM(Version
4.60), and Intel r©Visual Fortran (Version 8.0)—and found them to be ex-
cellent. Each of these compilers fully implements the Fortran 95 standard
and is suitable for creating console applications and dynamic-link libraries
(DLLs). Compilers for Windows that we have not tried are sold by Absoft,
The Portland Group, and NA Software.

On the Unix or Linux r© side, we have only tried Intel r© Fortran. This
compiler is suitable for creating console applications and shared objects,
which are analogous to Windows DLLs.

For developing COM servers, our experience is limited to Intel (formerly
Compaq) Visual Fortran. Our methods and tools for turning Fortran code
into a COM server, which we cover at length in Chapter 7, rely on Intel
Visual Fortran and Microsoft Visual Studio .NET. Other compilers may

1.5 Developing Applications for a Broad Audience 9

be capable of producing COM servers as well, but the procedures may be
substantially different.

1.5 Developing Applications for a Broad Audience

1.5.1 Console Applications and COM Servers

It is not hard for statisticians to write programs for their own personal
use or for the statistical community; an S-PLUS or R function may suffice.
But creating software that proves useful to behavioral scientists, medical
researchers, biologists, or engineers can be very challenging. Consumers
of statistical methods are accustomed to analyzing data in many differ-
ent environments. They will say, “Your method sounds interesting, but my
colleagues won’t try it unless they can do it in SAS.” Others are heav-
ily invested in SPSS. Medical researchers may want to store and analyze
data from a clinical trial within an Excel spreadsheet. Writing different
versions of the same program for these various computing environments is
unattractive and often impractical.

Ideally, a statistician would like to implement a method once, packaging
it in a form that can be used by a wide audience. What is the best way
to accomplish this? Consider a Fortran console application. By adhering to
the ANSI standard and avoiding compiler-specific features, the code will
be platform-independent and can be compiled and run with little or no
modification on Windows, Macintosh, Unix, or Linux machines. (Platform
independence is also achievable with Java, but we feel that Java is still a
less than ideal tool for statistical computation, and migration to Java is
unattractive for those who are accustomed to programming in other lan-
guages.) Compiled console applications are still hard to beat in terms of
simplicity of development, portability, and speed. Unfortunately, modern
computer users have grown so accustomed to working in Windows envi-
ronments that many will balk at an application with no GUI, and console
applications do not readily interact with packages such as Excel or SAS.

In our research center, we encourage our researchers to write Fortran
console programs using the template that we have created. The template
conforms to the ANSI Fortran 95 standard, so the program can be written,
debugged, and tested using whatever facilities the programmer chooses—
on a Unix workstation, a Linux computer, or a Windows PC at the office or
at home. After the console program is working satisfactorily, we then take
one more step: turning the program into a COM server. Creating a COM
server makes it possible to call the same computational engine from a wide
variety of Windows applications: an Excel spreadsheet; a SAS, SPSS, or
S-PLUS session; or a rudimentary or elaborate graphical interface created
in Visual Basic at a later time. If the console application is developed from
our template, the process of turning it into a COM server is quite simple

10 1. Motivation

and can be carried out in a matter of hours using the development tools
that we have created in conjunction with the Intel Visual Fortran compiler.

1.5.2 COM Servers and Clients

The Component Object Model (COM) is a programming standard that
emerged and evolved during the 1990s. COM began with a technology
called object linking and embedding (OLE) to facilitate communication
between software products. Users of Windows began to notice that they
could put Excel spreadsheets into Word documents, drag and drop text and
graphics from one application into another, launch various applications
from a Powerpoint presentation, and so on. OLE worked because all of
these applications were built from components using a common standard.
As OLE evolved into COM, developers of Windows applications outside of
Microsoft began to build their own applications on it as well. Another major
development was automation, which allows COM objects to be accessed
from scripting languages such as Visual Basic for Applications (VBA). VBA
is an abbreviated version of the Visual Basic language used by popular
data-management programs, including Excel, to write macros.

A COM-compliant software component is called a COM server. A COM
server is binary (compiled) code that contains object definitions, called
classes, from which objects can be instantiated at run time. COM servers
are packaged and distributed to Windows computers as .dll or .exe files.
A COM client, on the other hand, is any program, application, or compo-
nent that uses a COM server’s classes. The client may be written in any
programming language, as long as both the client and server adhere to the
COM standard on a binary level. Because this interface has been standard-
ized, any COM server can potentially be used by any COM client. COM has
been widely accepted by professional developers of Windows applications.

Knowledge of COM opens abundant possibilities for statisticians who
write programs. Scientific and statistical applications, including SAS, S-
PLUS, SPSS, MATLAB, and others, now provide COM client and COM
server capabilities. The primary reason why a statistician ought now to
consider creating a COM server is that, by developing and maintaining
this single component, the same set of computational procedures can be
used in an ever-growing number and variety of applications.

In this book, we present an approach to COM server development using
Fortran. Although COM itself is rather complicated, we provide guidance,
recommendations, and development tools that take care of most of the
details.

1.6 Scope of the Rest of This Book 11

1.6 Scope of the Rest of This Book

In the remaining chapters, we provide detailed guidance for nonprofessional
programmers who want to create quality statistical applications in Fortran.
Chapters 2 and 3 review important aspects of the Fortran language, focus-
ing on new features introduced in the Fortran 90 and Fortran 95 standards
that can help improve program architecture. These features allow us to
write Fortran programs in a pseudo object-oriented style. We illustrate
these techniques by developing a generic module for handling run-time er-
rors, which becomes a key component in all the programs that follow.

Chapter 4 describes strategies for writing computational procedures while
paying attention to issues of numerical accuracy, reliability, and efficiency.
We offer general strategies and practical advice on how to package routines
so that they can be easily shared among applications. To illustrate the
principles of good design, we show how to create a computational engine
for logistic regression.

Chapter 5 is a step-by-step guide for turning computational routines
into a reliable, platform-independent Fortran console program. The basic
steps involved in a logistic regression analysis—loading the data, selecting
model options, running the estimation procedure, examining the parameter
estimates, and diagnostic measures—follow a basic pattern that is common
to many statistical applications and thus can serve as a template for many
projects.

Those who want to go beyond console applications will be interested
in Chapters 6–8. Chapter 6 covers the creation and use of Fortran DLLs.
DLLs provide a basic mechanism by which a running program—which may
or may not be written in Fortran—can communicate with and access the
functionality of a Fortran procedure. Interoperability across languages re-
quires careful attention to how data are passed back and forth.

Chapter 7 describes what COM servers are and demonstrates how to cre-
ate them. This chapter also guides the reader through the steps of turning
a working Fortran console program into a COM server.

A COM server is useless without a COM client. Chapter 8 discusses the
process of building COM clients for statistical applications. The first client
we discuss is a simple Visual Basic for Applications (VBA) script that
allows you to perform logistic regression analysis from within an Excel
spreadsheet. From there, we present clients in S-PLUS, SAS, SPSS, and
MATLAB. Finally we describe by example how to develop a stand-alone
Windows application with the GUI written in Visual Basic .NET.

12 1. Motivation

1.7 Our Source Code and Web Site

The strategies described in this book for creating console applications,
dynamic-link libraries, and COM servers were developed for internal use
within our research center. We have chosen to publish this material as a
service to the statistical profession in the hope that others may learn from
it and improve upon it. Please feel free to use our ideas and even our source
code in your own projects, as long as you acknowledge us in the same way
that you would acknowledge any helpful book, journal article, or software
product. Our purpose in disseminating these tools is educational, so we can-
not assume any liability for their use or misuse. All resources mentioned in
this book are available online at our Web site:

http://methodology.psu.edu/fortranbook

2
Introduction to Modern Fortran

This chapter and the next provide a crash course in modern Fortran. Some
knowledge of programming, such as mild experience with Fortran 77,
Basic, or C, will be helpful but is not absolutely required. These chapters
cover the basic syntax of Fortran and features of the language that are
most useful for statistical applications. We do not attempt to provide a
comprehensive reference to Fortran 95. For example, we do not list all of
the available edit descriptors or intrinsic functions and subroutines. Those
details are readily available in reference manuals distributed with Fortran
compilers. Rather, we focus on larger concepts and strategies to help the
reader quickly build familiarity and fluency.

2.1 Getting Started

2.1.1 A Very Simple Program

A simple Fortran program that generates uniform random numbers is
shown below.

uniform1.f90

!###

program uniform

! Generates random numbers uniformly distributed between a and b

! Version 1

implicit none

integer :: i, n

real :: a, b, u

14 2. Introduction to Modern Fortran

print "(A)", "Enter the lower and upper bounds:"

read(*,*) a, b

print "(A)", "How many random numbers do ya want?"

read(*,*) n

print "(A)", "Here they are:"

do i = 1, n

call random_number(u)

print *, a + u*(b-a)

end do

end program uniform

!###

We have displayed the source code within a box to indicate that this ex-
ample appears within a file maintained on the book’s Web site; in this case,
the file is named uniform1.f90. The integer and real statements declare
that the variables a, b, and u are to be regarded as floating-point real num-
bers, whereas i and n are integers. Understanding the differences between
these types of variables is crucial. Generally speaking, real variables are
used for data storage and computational arithmetic, whereas integer vari-
ables are used primarily for counting and for defining the dimensions of data
arrays and indexing their elements. Readers with programming experience
may already understand the purpose of the read and print statements
and the meaning of the do construct, but these will be explained later in
this section. We will also explain random_number, a new Fortran intrinsic
procedure for generating pseudorandom variates.

Style tip

Notice the use of implicit none in this program. This statement over-
rides the implicit typing of variables used in many old-fashioned Fortran
programs. Under implicit typing,

• a variable beginning with any of the letters i, j, . . . , n is assumed to
be of type integer unless explicitly declared otherwise, and

• a variable beginning with any other letter is assumed to be real
unless explicitly declared otherwise.

Modern Fortran still supports implicit typing, but we strongly discourage
its use. With implicit typing, misspellings cause additional variables to be
created, leading to programming errors that are difficult to detect. Placing
the implicit none statement at the beginning forces the programmer to
explicitly declare every variable. We will use this statement in all of our
programs, subroutines, functions, and modules.

2.1 Getting Started 15

2.1.2 Fixed and Free-Form Source Code

Readers familiar with Fortran 77 may notice some differences in the
appearance of the source code file. In old-fashioned Fortran, source lines
could not exceed 72 characters. Program statements could not begin before
column 7; column 6 was reserved for continuation symbols; columns 1–5
held statement labels; and variable names could have no more than six
characters. These rules, which originated when programs were stored on
punch cards, make little sense in today’s computing environments.

Modern Fortran compilers still accept source code in the old-fashioned
fixed format, but that style is now considered obsolescent. New code should
be written in the free-form style introduced in 1990. The major features of
the free-form style are:

• program statements may begin in any column and may be up to 132
characters long;

• any text appearing on a line after an exclamation point (!) is regarded
as a comment and ignored by the compiler;

• an ampersand (&) appearing as the last nonblank character on a line
indicates that the statement will be continued on the next line;

• variable names may have up to 31 characters.

As a matter of taste, most programmers use indentation to improve the
readability of their code, but this has no effect on program behavior. For-
tran statements and names are not case-sensitive; the sixth line of the
uniform generator could be replaced by

Integer :: I, N

without effect.
By convention, source files whose names end with the suffix *.f, *.for

or *.f77 are expected to use fixed format, whereas files named *.f90 or
*.f95 are assumed to follow the free format. Programs consisting of mul-
tiple source files, some with fixed format and others with free format, are
acceptable; however, you are not allowed to combine these two styles within
a single file. Some compilers expect all free-format source files to have the
.f90 filename extension, even those that use new features introduced in
Fortran 95. For this reason, all of the example source files associated with
this book have names ending in .f90, even if they contain features of For-
tran 95 that are not part of the Fortran 90 standard.

2.1.3 Compiling, Linking and Running

Before a program can be run, the Fortran code must be converted into
sequences of simple instructions that can be carried out by the computer’s

16 2. Introduction to Modern Fortran

processor. The conversion process is called building. Building an application
requires two steps: compiling, in which each of the Fortran source-code
files is transformed into machine-level instructions called object code; and
linking, in which the multiple object-code files are collected and connected
into a complete executable program.

Building can be done at a command prompt, but the details vary from
one compiler to another. Some will compile and link with a single com-
mand. For example, if you are using Lahey/Fujitsu Fortran in a Windows
environment, the program uniform1.f90 can be compiled and linked by
typing

lfc uniform1.f90

at the command line. Once the application is built, the file of executable
code is ready to be run. In Windows, this file is typically given the *.exe
suffix, whereas in Unix or Linux it may be given the default name a.out.
The program is usually invoked by typing the name of the executable file
(without the *.exe suffix, if present) at a command prompt.

Many compilers are accompanied by an Integrated Development Envi-
ronment (IDE), a graphical system that assists the programmer in editing
and building programs. A good IDE can be a handy tool for managing large,
complex programs and can help with debugging. The IDE will typically in-
clude an intelligent editor specially customized for Fortran and providing
automatic indentation, detection of syntax errors, and other visual aids
such as coloring of words and symbols.

For example, to build the uniform program in the Microsoft Visual Stu-
dio .NET 2003 IDE, using Intel Visual Fortran 8.0, begin by creating a new
project. Select File → New → Project... from the menu, and the New Project
dialog window appears. Specify a Console Application project, and name
the project uniform (Figure 2.1). The next window will prompt for further
information; select “Application Settings” and choose “Empty Project” as
the console application type (Figure 2.2). Next, add the file uniform1.f90
to the project in the “Solution Explorer” under “Source Files.” To do this,
right-click on the folder “Source Files,” choose Add → Add existing item ...
from the pop-up menu, and select the source file (or files) to add.

In the “Solution Explorer,” double-click on the source file’s name to open
the file in the code editor (Figure 2.3). To build the program, select Build →
Build uniform from the menu, or press the “Build” button, . The IDE will
provide output from the build, indicating success or failure. If a compiler
error occurred—due to incorrect syntax, for example—the IDE will direct
you to the location of the error in the source-code editor.

Once the program has been successfully built, it can be executed from
within the IDE by selecting Debug → Start from the menu, by pressing the
“Start” button, , or by pressing the F5 keyboard key.

2.1 Getting Started 17

FIGURE 2.1. Intel Fortran New Project dialog.

FIGURE 2.2. Selecting an “Empty Project”.

2.1.4 Compiler Options

Most implementations of Fortran allow the developer to choose among a
wide variety of options when the code is compiled. Some of these options are
of minor importance and primarily a matter of personal taste—for exam-

18 2. Introduction to Modern Fortran

FIGURE 2.3. The Visual Studio IDE.

ple, whether the messages appearing on the screen during the compilation
process will be brief or verbose. Other options are more crucial and can
have a significant impact on program behavior. The optimal choice of op-
tions will vary depending on whether the program is under development
and needs to be continually checked and modified or has been tested and
validated and is basically ready for use and release. In the former situation,
which may be called “debugging mode,” the following features tend to be
extremely helpful:

• options that, when the program crashes, tell the programmer the
exact line(s) in the source code that produced the infraction; and

• safeguards that check whether the physical bounds of an array are
exceeded at run time (e.g., the program tries to access x(4) when x
is an array of size 3).

An IDE, such as Microsoft Visual Studio, usually provides two possi-
ble build configurations: debug and release. The programmer can select
the desired configuration before building and executing the application.
Whenever the debug configuration is used, the IDE can step through your
application’s source code one line at a time. It also allows the programmer
to watch the values of the variables (including arrays) at each step. The
programmer can set breakpoints in the editor window at which execution

2.1 Getting Started 19

will automatically pause and then step into subprocedures. These features
are extremely helpful for identifying and fixing code errors.

Because these special features embed extra code into a program and cause
it to run slowly, they should be turned off when the program is compiled for
release. When compiling in release mode, the most useful options are the
optimization settings that help to increase execution speed. Optimization
features will be discussed in Chapter 4.

2.1.5 Standard Input and Output

Like many simple textbook example programs, uniform accepts informa-
tion from standard input (the computer keyboard) and provides results
to standard output (the screen). More elaborate programs that receive and
send information via files will appear in Chapter 5. A command-line session
that runs the program is displayed below.

d:\jls\software\demos>uniform1
Enter the lower and upper bounds:
0 100
How many random numbers do ya want?
5
Here they are:

3.9208680E-05
2.548044
35.25161
66.69144
96.30555

In this simple program, the statements that perform input/output (I/O)
are easy to understand. In the statement

print "(A)", "Enter the lower and upper bounds:"

"(A)" is a format string indicating that the value of the subsequent expres-
sion will be printed verbatim as alphanumeric or character data. In

read(*,*) a, b

the first asterisk (*) indicates that the data will come via standard in-
put, and the second means that the values for a and b will be read in a
list-directed fashion. In list-directed input—also commonly known as “free
format” input—multiple items may be separated by any amount of white
space (blank spaces, tabs, commas, or new line characters). If one were to
apply list-directed input to character variables, like

character(len=15) :: first_name, last name
read(*,*) first_name, last_name

20 2. Introduction to Modern Fortran

the user who interacts with the program would have to enclose the string
values in single or double quotes:

"Bozo" "The Clown"

On the other hand, if one specifies alphanumeric input as in

read(*,"(A)") first_name
read(*,"(A)") last_name

then the user may type

Bozo
The Clown

without quotation marks, and any leading or trailing spaces on the in-
put lines will be retained in the string variables. String variables will be
discussed in greater detail in Section 2.4.

2.1.6 Intrinsic Uniform Generator

Program uniform includes a call to the intrinsic random number generator,

call random_number(u)

which sets the argument u to a pseudorandom real number x such that
0 ≤ x < 1. Every version of Fortran 95 has a uniform random generator that
can be called using this syntax, but the details of the implementation vary;
compiling and running this program on different platforms could produce
different number streams. The argument to random_number may also be
a real array, in which case the entire array would be filled with random
numbers.

One feature of random_number is that, if the programmer does not ex-
plicitly initialize the generator with one or more integer seed values, it will
be seeded with processor-dependent integers and produce the same stream
of numbers each time the program is run. To produce different results each
time, we may include the following line at the beginning of the program,
which sets the seeds to values determined by a call to the system clock:

call random_seed()

This intrinsic subroutine random_seed can also be used to set the seeds
to specific values and to query the system to find the current state of the
seeds, but the details of this usage may vary slightly from one compiler to
another; consult your reference manual for details.

2.1.7 Integer and Real Kinds

In old-fashioned Fortran programs, floating-point real variables were de-
clared as real or double precision, the latter being used when round-

2.1 Getting Started 21

TABLE 2.1. Kind parameters for real variables in popular compilers.

Precision
Kind Bits (digits) Comments

Lahey/Fujitsu 4 32 6 default kind
8 64 15 double precision

16 128 33
Salford 1 24 6 default kind

2 53 15 double precision
3 64 18

Intel 4 32 6 default kind
8 64 15 double precision

16 128 33 VMS/Unix/Linux only

off error was a potentially serious issue (e.g., when accumulating suffi-
cient statistics over large datasets). A real variable typically occupied
up to 32 bits of storage and was precise to 6 significant digits, whereas a
double precision variable used up to 64 bits and was precise to at least
15 digits.

The real and double precision declarations still work, but now the
preferred way to determine the precision of real variables is through a
real statement with the optional kind parameter. A variable may now be
declared as

real(kind=i) :: x

or, equivalently, as

real(i) :: x

where i is a positive integer that determines the overall length of the datum
in memory. The available floating-point models and the values of kind
that correspond to them vary from one compiler to another. The kind
parameters for some popular compilers are shown in Table 2.1. Omitting
the parameter produces a real variable of the default kind.

Integer variables also have kind parameters. On most compilers, the
default representation is a 32-bit integer that, because the first bit is used
for signing, has a maximum value of 231 − 1 = 2,147,483,647. (In older
Fortran compilers, the 32-bit representation was often called a “long
integer” and had to be specially requested; now it is typically given by
default.) The kind parameters for integers in some popular compilers are
shown in Table 2.2.

To write source code that migrates well from one compiler or platform
to another, it is essential to avoid setting the kind parameters to specific
numeric values such as 3 or 4. This leaves us with two options. The first
is to leave kind unspecified and pray that the default data types are suf-
ficiently large and precise to yield good results. The second, and clearly

22 2. Introduction to Modern Fortran

TABLE 2.2. Kind parameters for integer variables in popular compilers.

Kind Bits Maximum value Comments
Lahey/Fujitsu 1 8 127

2 16 32,767
4 32 2,147,483,647 default kind
8 64 9,223,372,036,854,775,807

Salford 1 8 127
2 16 32,767
3 32 2,147,483,647 default kind

Intel 1 8 127
2 16 32,767
4 32 2,147,483,647 default kind
8 64 9,223,372,036,854,775,807

more desirable, option is to create your own global parameters for desired
kinds and use them consistently throughout the source code. For example,
if you are using Intel Visual Fortran, you can specify

integer, parameter :: my_int = 4

and then declare your integers as

integer(kind=my_int) :: i, j, k

in every procedure. If you want to compile the same code in Salford, you
would only need to change the value of my_int from 4 to 3. To make
the kind parameters accessible to all parts of the program, it is conve-
nient to keep them in a module; this will be described in Section 3.2.
Modern Fortran also has two intrinsic functions, selected_real_kind and
selected_int_kind, which can be used to query the compiler and set the
kind parameters automatically; use of these functions will be described in
Chapter 4.

2.1.8 Do, if, case, goto

Iteration in the uniform program is carried out by a do loop, one of the
most frequently used programming constructs:

do i = 1, n
call random_number(u)
print *, a + u*(b-a)

end do

In this do loop, i is the do variable. A Fortran 95 do variable must be
an integer. The loop continues to execute as long as the value of the do
variable is less than or equal to the upper limit n. By default, the do variable

2.1 Getting Started 23

is incremented by one at each cycle, but the increment may be changed by
including an optional integer after the upper limit:

do i = 2, 2*n, 2 ! gives exactly the same result
call random_number(u)
print *, a + u*(b-a)

end do

A do loop may be written without a do variable, but the programmer must
then provide another way to stop the execution at the desired moment.
One way is to include a while statement followed by a logical expression:

i = 0
do while (i < n)

i = i + 1
call random_number(u)
print *, a + u*(b-a)

end do

Another way is to use an if construct with exit:

i = 0
do

i = i + 1
call random_number(u)
print *, a + u*(b-a)
if(i == n) exit

end do

The exit statement causes the point of execution to jump down to the line
immediately following the next end do statement; therefore, exit within a
nested do loop will cause the program to jump out of the innermost loop. A
close relative of exit is cycle, which causes the point of execution to jump
up to the do statement above it and begin another cycle of the innermost
loop.

Style tip

Notice that in the last two examples, i and n were compared by the re-
lational operators < and == rather than the old Fortran operators .lt.
and .eq. . The old-fashioned operators still work, but the new ones are
preferred. The old and new relational operators are shown in Table 2.3.

The syntax of the Fortran if construct is essentially unchanged from
previous versions. Conditional execution of a single statement looks like

if(logical-expression) statement

whereas conditional execution of a group of statements looks like

24 2. Introduction to Modern Fortran

TABLE 2.3. Relational operators in Fortran.

Old New Meaning
.lt. < less than
.le. <= less than or equal to
.eq. == equal to
.ne. /= not equal to
.gt. > greater than
.ge. >= greater than or equal to

if(logical-expression) then
statement
statement

...
end if

or like this:

if(logical-expression) then
statement

...
else

statement
...

end if

Because the if construct depends on a logical expression, it can condition-
ally execute only one or two groups of program statements. A more flexible
structure that handles any number of conditions is the case construct,

select case(expression)
case(value-1)

statement
...

case(value-2)
statement

...
case default

statement
...

end select

where expression is a variable or an expression that evaluates to an integer,
logical value, or character string, and value-1, value-2, . . . are some or all of
the possible values that expression may take. The optional case default
statement designates actions to be taken if expression evaluates to some-

2.1 Getting Started 25

thing other than value-1, value-2, A programming example that uses
the case construct will appear in Section 3.6.

Numbered statements have become less common in Fortran, but they
are still useful, particularly in conjunction with goto. The use of goto
is commonly denounced, with some authors saying that it should never
be used under any circumstances. For the most part, we agree. Frequent
use of goto can make a program very difficult to understand and hard to
debug. On the other hand, we find goto to be a prudent way to trap errors.
An if statement with goto can be used to detect an error condition and
immediately jump to the bottom of the procedure to report the error and
exit. The same effect could be achieved without goto, of course, but goto
enables us to collect all the error-handling statements into one section to
keep our code clean and legible. The use of goto for error handling will be
illustrated at the end of Chapter 3. In this book, we use goto for trapping
errors but not for any other purpose.

2.1.9 Exercises

1. Write a simple program that converts temperatures from Fahrenheit
to Celsius and vice versa using C = 5(F − 32)/9 and F = 9C/5 + 32.

2. Modify one of the uniform generator programs to generate random
samples from an exponential density

f(y) = λe−λy, y > 0. (2.1)

Use the inverse-cdf method y = F−1(u), u ∼ U(0, 1), where F is the
cumulative distribution function.

3. Write a program that simulates rolling a pair of six-sided dice. It
should produce 2 with probability 1/6, 3 with probability 2/36, and
so on. Then describe a strategy for generalizing the result to rolling
n dice, each with k sides.

4. Write a program that simulates random draws from the negative bi-
nomial distribution

P (Y = y) =
(

y − 1
r − 1

)
pr(1 − p)y−r,

y = r, r + 1, r + 2, . . . for any given p ∈ (0, 1) and positive integer
r. Use the fact that Y is the number of Bernoulli trials required to
obtain r successes, with p as the per-trial success rate.

5. Fortran 95 introduced the new intrinsic subroutines date_and_time,
system_clock, and cpu_time. Learn how to use them and demon-
strate each one with a simple programming example.

26 2. Introduction to Modern Fortran

6. If the birthdays of n individuals are independently and uniformly
distributed over 365 days of the year, then the probability that at
least two individuals share the same birthday is

1 −
n∏

j=1

(
365 − j + 1

365

)
.

Write a program that computes and prints these probabilities for
n = 2, 3, . . . , 365.

2.2 Arrays

2.2.1 Rank, Size and Shape

Like its predecessors, modern Fortran supports arrays of logical, integer,
real, complex, and character data. A real vector y = (y1, y2, . . . , y10) with
ten elements may be declared as

real :: y
dimension :: y(10)

as

real, dimension(10) :: y

or like this:

real :: y(10)

Once this array has been created, we refer to the individual elements as
y(1), y(2), . . . , y(10). The dimension of an array can also be declared as
an integer pair i:j, where i is the lower bound (the subscript of the first
element) and j is the upper bound (the subscript of the last element). For
example,

real :: y(0:14)

creates an array with elements y(0), y(1), . . . , y(14). Even more generally,
an array can be dimensioned as i:j:k, where k is the increment between
the subscript values of successive elements; for example,

real :: y(0:6:2)

has elements y(0), y(2), y(4), and y(6).
Multiple dimensions of an array are separated by commas. For example,

a matrix with five rows and three columns may be dimensioned as

real :: x(5,3)

2.2 Arrays 27

and its elements will then be x(1,1), x(1,2), and so on. Fortran arrays
may have up to seven dimensions. The number of dimensions is called the
rank. The rank of an array is fixed by the compiler and cannot be changed
while a program is running. The Fortran intrinsic function rank returns
the rank of its argument; if x is declared as shown above, then rank(x)
evaluates to the integer 2.

The functions lbound and ubound return the lower or upper bounds of
an array along any or all dimensions. If we dimension an array as

integer :: iarr(2,0:50)

then lbound(iarr,1) is 1; ubound(iarr,1) is 2; lbound(iarr,2) is 0;
ubound(iarr,2) is 50; lbound(iarr) is an integer array with elements 1
and 0; and ubound(iarr) is an integer array with elements 2 and 50.

The size of an array is the number of elements in the entire array or the
number of elements along a single dimension. The size of an array can be
queried through the intrinsic function size. If we declare

real :: mat(0:5,10)

then size(mat) returns 60, size(mat,1) returns 6, and size(mat,2) re-
turns 10. Taken together, the sizes of all dimensions of an array are called
its shape. The intrinsic function shape returns the shape of an array as
a rank-one array of integers; in this case, shape(mat) is an integer array
with elements 6 and 10.

2.2.2 Array Functions

The intrinsic functions maxval, minval, sum, and product can find the
minimum, maximum, sum, or product of all the elements across a whole
array or across any of its dimensions. These functions share the same basic
syntax. For example, if x is a 2 × 3 real array, then:

• sum(x,1) returns a rank-one real array of size 3 whose elements are
x(1,1) + x(2,1), x(1,2) + x(2,2) and x(1,3) + x(2,3);

• sum(x,2) returns a rank-one real array of size 2 whose elements are
x(1,1) + x(1,2) + x(1,3) and x(2,1) + x(2,2) + x(2,3); and

• sum(x) returns a real scalar equal to the sum of all six elements of x.

These functions can also be applied to integer arrays, in which case the
values returned will be of the integer type.

The functions all, any, and count perform similar operations on logical
arrays. If x is a logical array, then all(x) returns .true. if every element
of x is .true; any(x) returns .true. if at least one of the elements of x
is .true.; and count(x) returns an integer value equal to the number of
elements of x that are .true.

28 2. Introduction to Modern Fortran

The generic intrinsic functions transpose and matmul return whole ar-
rays whose size, type, and kind depend on those of the arguments you
provide. If x is a q × r array, then transpose(x) is an r × q array of the
same type and kind. If x is q×r and y is r×s, then matmul(x,y) is q×s. Ma-
trix multiplication usually involves real arrays, but it can also be applied to
arrays of integers or logical values, with the result being integer or logical.
Before invoking transpose or matmul, make sure that you have available an
array of the correct type and shape to hold the result. The matmul function
can also be used to multiply a matrix by a vector or a vector by a matrix,
but at least one of the arguments must have rank two; multiplication of
vectors of the same length is accomplished by dot_product, which returns
a scalar. Note that matmul is designed for arbitrary arguments and may
be inefficient for problems with special structure—for example, computing
symmetric matrices such as XTX or multiplying matrices that are known
to be diagonal, banded, or triangular.

2.2.3 Operations on Arrays and Array Sections

Modern Fortran can perform some intelligent assignment and comparison
operations on entire arrays. If x is an array, then

x = 0

sets each element of x to zero. If x and y have the same shape, then

x = y

sets each element of x equal to the corresponding element of y. To check
the arrays for conformity, the previous statement could be preceded by

if(.not. all(shape(x)==shape(y))) goto 100

with subsequent statements to handle the error condition. The result of a
comparison operation applied to two arrays of the same shape produces a
logical array of that shape. In the previous example, shape(x)==shape(y)
evaluates to a logical array indicating, for each dimension, whether the sizes
of x and y match.

In a similar way, operations can be performed on array sections. The
colon (:) denotes the entire extent of an array along a particular dimension;
for example,

sum(x(i,:) * y(:,j))

or

dot_product(x(i,:), y(:,j))

computes the inner product of the ith row of x with the jth column of y.
A colon preceded or followed by integers limits the range of elements along
a dimension. If x is a rank-one array of size n, then

2.2 Arrays 29

• x(2:4) refers to x(2), x(3), and x(4),

• x(:2) refers to x(1) and x(2), and

• x(1:), x(:n), x(:), and x are equivalent.

Assignment statements that operate on arrays or array sections are con-
venient for keeping source code concise, but on some systems they may
also yield benefits in terms of efficiency because they allow the compiler to
choose an order for the elementwise operations to optimize execution. The
new Fortran 95 statements where and forall also signal to the compiler
that a group of elementwise operations may be performed in any order for
optimal performance. The forall statement can replace any do loop in
which the order of the operations is unimportant. For example, a sum of
squared deviations

∑n
i=1(yi − a)2 can be computed as

ssdev = 0.
do i = 1, n

ssdev = ssdev + (y(i) - a)**2
end do

as

ssdev = 0.
forall(i = 1:n) ssdev + (y(i) - a)**2

or like this:

ssdev = sum((y - a)**2)

In the last statement, the scalar value in a is implicitly broadcast to an
array of the same shape as y prior to the computation of y-a.

The where statement carries out an operation on selected array elements
corresponding to the .true. values in another array of logical values. For
example, if n is an integer array and x is a real array of the same shape,
then

where(n == 2) x = 0.

sets each element of x to zero only if the corresponding element of n is 2.

2.2.4 Your Mileage May Vary

Programmers who use array functions such as sum, dot_product, and
matmul sometimes find that the resulting performance is slower than if
they code these operations themselves using do loops, especially if they
pay attention to issues of data storage, loop order, and stride (see Section
4.3). These Fortran intrinsics are guaranteed to work in implementations
of the Fortran 95 standard, but they are not guaranteed to be fast. In re-
sponse, some vendors have begun to offer specially optimized versions of

30 2. Introduction to Modern Fortran

these functions for users who demand high performance. Similarly, the new
statements where and forall were designed to promote efficiency, but de-
pending on your compiler and your computer’s architecture, you may not
see any improvement over expressions involving whole arrays or array sec-
tions with colon notation. You may not even see any improvement over
conventional do loops because many compilers already have optimization
features that can reorganize these loops.

Given these complexities, we do not categorically advise programmers to
apply all of these new features in all of their coding. On the other hand,
we do not want to discourage their use either because the architects of
the Fortran standard had good reasons for adding these features to the
language; even when they do not increase efficiency, they may have other
important benefits (e.g., keeping source code clean and concise). If you are
migrating from Fortran 77 to Fortran 95, don’t feel obligated to revise
your existing code to use these features, as traditional do loops still work
and are not going away in the foreseeable future.

2.2.5 Array Allocation

One of the major advances since Fortran 77 is that the size of an array no
longer has to be determined at compilation time; it can now be established
while the program is running. This feature, called dynamic allocation, is
illustrated by the revised uniform generator program below.

uniform2.f90

!###

program uniform

! Generates random numbers uniformly distributed between a and b

! Version 2

implicit none

integer :: i, n

real :: a, b

real, allocatable :: x(:)

print "(A)", "Enter the lower and upper bounds:"

read(*,*) a, b

print "(A)", "How many random numbers do ya want?"

read(*,*) n

allocate(x(n))

call random_number(x)

x = a + x*(b-a)

print "(A)", "Here they are:"

do i = 1, n

print *, x(i)

end do

deallocate(x) ! not really necessary

end program uniform

!###

In this program,

2.2 Arrays 31

real, allocatable :: x(:)

declares x to be a rank-one array of real numbers whose size has not yet
been determined. The statement

allocate(x(n))

sets aside a section of the heap (the currently unused portion of memory)
large enough to hold n real numbers. The call to random_number then fills
the entire array with random variates.

If the allocate statement were removed, this program could crash at
the random_number call because the size of x and its location in memory
would be undefined. Similarly, applying the intrinsic functions size, shape,
lbound, or ubound to an allocatable array that has not yet been allocated
may cause a program to crash. To prevent crashes, you can test the array
beforehand with the logical function allocated(x), which returns .true.
if x has been allocated and .false. otherwise.

Although allocate reserves memory locations, it may not initialize them,
so the contents of an array immediately after allocation may not be mean-
ingful. Therefore, after allocating an array, one should not attempt to view
or print its contents, use it in an expression, or let it appear on the right-
hand side of an assignment statement until the array has been filled with
data; doing so could lead to unpredictable results.

The deallocate statement returns memory to the heap. Explicit deal-
location of arrays at the end of a program is usually unnecessary because
the operating system does that automatically. It tends to be good practice
to explicitly deallocate arrays, however, as it forces the programmer to pay
greater attention to issues of memory management. To change the size of
an allocated array, you need to first deallocate and then reallocate. Apply-
ing deallocate to an array that has not yet been allocated will cause a
crash, so if the allocation status is in doubt, be sure to check it first with
the allocated function.

2.2.6 Exercises

1. Consider the arrays declared below.

real :: x(10,4)
integer, dimension(0:5,0:4,0:3) :: y
logical :: larr(0:100:4)

What are the returned values of rank(y), size(larr), lbound(x,1),
ubound(y), and shape(y)?

2. Write a program that draws a random sample of size n without
replacement from the population {1, 2, . . . , N} for any N ≥ 1 and
n ≤ N .

32 2. Introduction to Modern Fortran

3. Using allocatable arrays, write a program that tabulates and prints
the binomial probability mass function

f(y) =
(

n
y

)
py(1 − p)n−y, y = 0, 1, . . . , n,

and the cumulative distribution F (y) =
∑y

z=0 f(z) for user-specified
values of n and p. Use double- precision arithmetic and take reason-
able measures to avoid overflows in the computation of n! for large
n.

2.3 Basic Procedures

2.3.1 Subroutines

Only very short programs can be effectively written as a single unit. Sub-
routines became a part of Fortran in 1958 and are indispensable for pro-
gram organization. A re-revised version of our uniform random generator
that uses a subroutine is shown below.

uniform3.f90

!###

subroutine fill_with_uniforms(vec_len, vec, lower, upper)

! Fills the rank-one array vec with random numbers uniformly

! distributed from lower to upper

implicit none

! declare arguments

integer, intent(in) :: vec_len

real, intent(in) :: lower, upper

real, intent(out) :: vec(vec_len)

! begin

call random_number(vec)

vec = lower + vec * (upper - lower)

end subroutine fill_with_uniforms

!###

program uniform

! Generates random numbers uniformly distributed between a and b

! Version 3

implicit none

integer :: i, n

real :: a, b

real, allocatable :: x(:)

print "(A)", "Enter the lower and upper bounds:"

read(*,*) a, b

print "(A)", "How many random numbers do ya want?"

read(*,*) n

allocate(x(n))

call fill_with_uniforms(n, x, a, b)

print "(A)", "Here they are:"

2.3 Basic Procedures 33

do i = 1, n

print *, x(i)

end do

deallocate(x) ! not really necessary

end program uniform

!###

In this example, vec_length, vec, lower, and upper are the dummy argu-
ments, whereas n, x, a, and b are the actual arguments. Notice that each of
the dummy arguments in fill_with_uniforms has an intent attribute,
a highly useful feature introduced in Fortran 90. A dummy argument may
be declared to be:

• intent(in), which means that it is considered to be an input and
its value may not be changed within the procedure;

• intent(out), which means that it functions only as an output, and
any data values contained in the actual argument just before the
subroutine is called are effectively wiped out; or

• intent(inout), which means that the argument may serve as both
input and output.

If the intent attribute is not specified, it is automatically taken to be
inout. Explicitly declaring the intent for each dummy variable is an ex-
cellent practice because it forces the programmer to be more careful and
instructs the compiler to prevent unwanted side effects. A program will
not compile successfully if, for example, an intent(in) dummy argument
appears on the left-hand side of an assignment statement. We will follow
the practice of explicitly declaring the intent for all dummy arguments in
our subroutines and functions. (The only exception to this rule is pointers,
to be discussed in the next chapter; Fortran 95 does not allow intent for
pointer arguments.)

2.3.2 Assumed-Shape and Optional Arguments

In the previous example, notice that vec_length, the size of vec, is being
passed as an argument. In old-fashioned Fortran programs, the dimen-
sions of all array arguments had to be arguments themselves. In modern
Fortran, this is no longer the case; we can remove vec_length from the
argument list and make it a local variable, like this:

subroutine fill_with_uniforms(vec, lower, upper)
! Fills the rank-one array vec with random numbers
! uniformly distributed from lower to upper
implicit none
! declare arguments

34 2. Introduction to Modern Fortran

real, intent(in) :: lower, upper
real, intent(out) :: vec(:)
! begin
call random_number(vec)
vec = lower + vec * (upper - lower)

end subroutine fill_with_uniforms

The dummy argument vec is now called an assumed-shape array; it derives
its shape from the actual argument being passed. If the size of the array
had been needed within the procedure, we could have obtained it with the
intrinsic function size or shape.

Using assumed-shape arrays is an excellent way to shorten argument
lists, reducing the chance that the subroutine will be called incorrectly.
However, if we simply insert this new version of fill_with_uniforms into
uniform3.f90 and remove the actual argument n from the call statement,
the program will not work. The reason is that any function or subroutine
that uses assumed-shape arrays must have an explicit interface. The ex-
plicit interface, a concept introduced in Fortran 90, is a new set of rules
governing how actual and dummy arguments interact. Among other things,
it forces the dummy and actual arguments to agree in type, kind, and rank.
The implicit interface used by old-fashioned Fortran procedures had min-
imal checking, which made certain kinds of programming errors difficult to
detect. For this reason, many experienced Fortran programmers now insist
upon using explicit interfaces for all procedures.

It is possible to create an explicit interface for a subroutine by using an
interface block. An easier way is to simply place the subroutine within a
module because any function or subroutine placed in a module is automat-
ically given an explicit interface by Fortran. Modules will be discussed at
length in Section 3.2; for now, we simply illustrate how to place a subrou-
tine within one. Here is yet another version of our uniform generator that
uses a module.

uniform4.f90

!###

module my_mod

! a simple module that contains one subroutine

contains

!##

subroutine fill_with_uniforms(vec, lower, upper)

! Fills the rank-one array vec with random numbers uniformly

! distributed from lower to upper, which default to 0.0 and

! 1.0, respectively

implicit none

! declare arguments

real, intent(out) :: vec(:)

real, intent(in), optional :: lower, upper

! declare locals

real :: a, b

! begin

2.3 Basic Procedures 35

a = 0.0

b = 1.0

if(present(lower)) a = lower

if(present(upper)) b = upper

call random_number(vec)

vec = a + vec * (b - a)

end subroutine fill_with_uniforms

!##

end module my_mod

!###

program uniform

! Generates random numbers uniformly distributed between a and b

! Version 4

use my_mod ! allows the program to use fill_with_uniforms

implicit none

integer :: i, n

real :: a, b

real, allocatable :: x(:)

print "(A)", "Enter the lower and upper bounds:"

read(*,*) a, b

print "(A)", "How many random numbers do ya want?"

read(*,*) n

allocate(x(n))

call fill_with_uniforms(x, upper=b, lower=a)

print "(A)", "Here they are:"

do i = 1, n

print *, x(i)

end do

deallocate(x) ! not really necessary

end program uniform

!###

Placing our subroutine in a module also allowed us to apply another
new feature, the optional attribute, to the dummy arguments lower and
upper. Declaring a dummy argument as optional means that the calling
program no longer needs to supply an actual argument for it. The intrinsic
function present, which returns .true. if the actual argument has been
provided and .false. if it has not, is used within the subroutine to define
default values for the optional arguments. In this example, if the calling
statement were

call fill_with_uniforms(x)

then x would be filled with random variates uniformly distributed on the
unit interval. Notice that in our actual calling statement,

call fill_with_uniforms(x, upper=b, lower=a)

the order of the actual arguments and dummy arguments differs; the pro-
gram still works properly, however, because the names of the dummy ar-
guments lower and upper appear as keywords, enabling the interface to
associate the arguments correctly.

36 2. Introduction to Modern Fortran

Optional arguments and keywords are very helpful when modifying or en-
hancing subroutines that are already in use by existing programs. It is now
possible to add new arguments and options to a subroutine without hav-
ing to change any of the preexisting call statements. These new features
require an explicit interface, however, so when using optional arguments
or keywords you should make sure that the subroutine is placed within a
module.

Style tip

Optional arguments should usually be placed at the end of the argument
list, after the required arguments.

Because the names of dummy arguments now function as keywords, it
has become more important to choose these names carefully to make them
descriptive and meaningful. Well-chosen names will make your source code
easier to read and more understandable.

2.3.3 Functions

A function is a procedure that, when it is called, evaluates to a result.
For a nontrivial example, let us imagine that the Fortran intrinsic function
sqrt did not exist. How could we then compute the square root of a real
number? The well-known Newton-Raphson procedure solves f(y) = 0 by
computing

y(t+1) = y(t) − f(y(t))/f ′(y(t))

for t = 0, 1, 2, . . ., where f ′ denotes the first derivative of f , and y(0) is a
starting value. To compute y =

√
x, we can take f(y) = y2 − x, and the

iteration becomes

y(t+1) =
1
2

(
y(t) +

x

y(t)

)
.

This algorithm converges for any x > 0, but if x = 0 we must be careful to
avoid division by zero. Here is a simple function that computes y =

√
x to

single precision using a starting value of y(0) = 1:

real function square_root(x) result(answer)
implicit none
real, intent(in) :: x
real :: old
answer = 1.
do

old = answer
answer = (old + x/old) / 2.
if(answer == old) exit
if(answer == 0.) exit

2.3 Basic Procedures 37

end do
end function square_root

Here is a very simple program that calls the function:

program i_will_root_you
implicit none
real :: x, square_root
read(*,*) x
print *, square_root(x)

end program i_will_root_you

Notice that square_root has to be explicitly declared as real in the main
program because it is an external function and because implicit none has
been used. If square_root had been placed in a module, Fortran would
have given it an explicit interface and this type declaration would have
been unnecessary.

Any function can be made into a subroutine by adding one more dummy
argument with the attribute intent(out). Similarly, any subroutine with
a single intent(out) argument can be reexpressed as a function. Whether
one uses a subroutine or a function to perform a task is primarily a matter
of taste. In general, we will adopt the following conventions:

• If a procedure cannot fail to produce the desired result, we will express
it as a subroutine.

• If a procedure has a possibility of failing for any reason, we will ex-
press it as a function that returns an integer 0, indicating successful
completion, or a positive integer, indicating failure.

This rule will allow us to develop a unified approach to handling run-time
errors, which we will introduce at the end of Chapter 3. In keeping with
this rule, let us revise our square-root function to handle the possibility of
a negative or zero input value.

integer function square_root(x,y) result(answer)
implicit none
real, intent(in) :: x
real, intent(out) :: y
real :: old
if(x < 0.) then

goto 5
else if(x == 0.) then

y = 0.
else

y = 1.
do

old = y

38 2. Introduction to Modern Fortran

y = (old + x/old) / 2.
if(y == old) exit

end do
end if
! normal exit
answer = 0
return
! error trap

5 answer = 1
end function square_root

The revised calling program is

program i_will_root_you
implicit none
real :: x, y
integer :: square_root
read(*,*) x
if(square_root(x,y) > 0) then

print "(A)", "I can’t handle that."
else

print *, y
end if

end program i_will_root_you

2.3.4 Pure, Elemental and Recursive Procedures

A function is called pure if all of its arguments are intent(in). A pure
function cannot modify the values of its actual arguments; results are com-
municated to the calling program only through the function’s returned
value. Our first version of square_root was a pure function. We could
have notified the compiler that the function was intended to be pure by
including the keyword pure in our function definition, like this:

pure real function square_root(x) result(answer)

If we had done this, the compiler would have generated an error message
if the dummy argument x appeared on the left-hand side of an assignment
operation. Any function called within a pure function must also be pure.
Declaring functions as pure helps us to protect ourselves against unwanted
side effects.

All of the intrinsic functions in Fortran 95 are pure. Many of these func-
tions are also elemental, which means that they can be applied both to
scalars and arrays. When applied to arrays, the result is the same as if the
function had been applied to each element individually. For example, if x
is a real array, then log(x) is a real array of the same shape containing

2.3 Basic Procedures 39

the logarithms of the elements of x. We can write our own elemental func-
tions by including the elemental keyword in the definition. An elemental
function must be given an interface, which we can easily do by placing it
in a module. For example, if we define our square-root function as

module mymod
contains
elemental real function square_root(x) result(answer)

implicit none
real, intent(in) :: x
real :: old
answer = 1.
do

old = answer
answer = (old + x/old) / 2.
if(answer == old) exit

end do
end function square_root

end module mymod

then we can apply it to a real array of any shape. An elemental function is
assumed to be pure.

A procedure is considered to be recursive if it calls itself. We can allow a
procedure to call itself by including the keyword recursive. For example,
here is a recursive function for calculating x! with no argument checking
or overflow protection:

recursive integer function factorial(x) result(answer)
implicit none
integer, intent(in) :: x
if(x == 0) then

answer = 1
else

answer = x * factorial(x-1)
end if

end function factorial

Recursive procedures can be useful for sorting data, finding sample medians
and quantiles, and managing linked lists and other recursive data structures
(Section 3.5.3).

2.3.5 On the Behavior of Local Variables

Any variable in a subroutine or function that is not passed as an argument
is a local variable, defined only within the scope of that procedure. A local
variable can be declared and initialized in the same statement, like this:

40 2. Introduction to Modern Fortran

logical :: converged = .false.

This ensures that converged is .false. when the procedure is invoked
the first time. In subsequent calls, however, the initial value of converged
could vary. The reason is that any local variable initialized in a declaration
statement is automatically given the save attribute, allowing its value to
persist from one call to another. That is, the statement above is equivalent
to

logical, save :: converged = .false.

because save is implied. If the procedure is called a second time in the
same program, the initial value of converged will be the value it had upon
completion of the first call. If you want the local variable to be initialized
each time the procedure is invoked, you need to include the executable
statement

converged = .false.

within the procedure. On the other hand, if you really do want the value
of a variable to persist, it’s better to pass the variable as an argument.

Style tip

Don’t rely on save to store persistent data locally within a procedure
because it may produce unexpected results if the procedure is embedded
in a DLL or in a COM server.

Subroutines and functions may also have local allocatable arrays to serve
as temporary workspaces. If the shape of the array is not known in advance
but is determined inside the procedure, then the array should be explicitly
dimensioned within the procedure by an allocate statement. It is not ab-
solutely necessary to explicitly destroy the array with deallocate because
unless the array has been given the save attribute, Fortran 95 automat-
ically deallocates the local array when it exits the procedure. However,
explicit deallocation is still a good practice.

Alternatively, if the dimensions of a local array enter the procedure as
integer arguments, Fortran will allocate the array automatically. This is
called an automatic array. For example, if m and n are dummy arguments,
then declaring a local array

real :: workspace(m,n)

will cause workspace to be dynamically allocated when the procedure is
called. In this case, Fortran will automatically deallocate the array when
the procedure is finished.

2.3 Basic Procedures 41

2.3.6 Exercises

1. Optional arguments to procedures were discussed in Section 2.3.2. A
dummy argument that has been declared optional may be passed
as an actual argument to another procedure, provided that the corre-
sponding dummy argument in the latter procedure is also optional.
Try this in an example.

2. Create a procedure for matrix multiplication using assumed-shape ar-
rays and write a simple program that calls it. Within your procedure,
check the dimensions of the argument arrays for conformity.

3. Write a recursive procedure for generating any term of the Fibonacci
sequence

0, 1, 1, 2, 3, 5, 8, . . . ,

in which each element is the sum of the two preceding elements. Then
use this procedure in a program that prints out the first n terms for
a user-specified n. Does this procedure seem efficient? Explain.

4. Write elemental functions for computing the logistic transformation

logit(p) = log
(

p

1 − p

)
and its inverse

expit(x) =
ex

1 + ex

for real arrays of arbitrary shape.

5. Suppose that a procedure begins like this:

subroutine do_something(arg1, arg2)
integer, intent(in) :: arg1
integer, intent(out) :: arg2
real, allocatable, save :: x(:)
allocate(x(arg1))

Explain why this subroutine may cause a program to crash. What
can be done to fix it?

6. In a Fortran procedure, the name of a function may be passed as
an argument. If we want to pass the name of a real-valued function,
for example, the corresponding dummy argument should be declared
as a real variable of the appropriate kind. Write a procedure that
accepts the name of a function f as an argument and numerically
approximates the first derivative,

f ′(x) ≈ f(x + δ/2) − f(x − δ/2)
δ

,

for a given x and δ > 0.

42 2. Introduction to Modern Fortran

2.4 Manipulating Character Strings

2.4.1 Character Variables

Modern Fortran has many helpful features for storing and manipulating
character data. In statistical applications, these features are useful for han-
dling filenames, reading and processing data from files, interpreting user-
supplied text expressions, handling error messages, and so on.

A character variable can be declared as a single string of a fixed length,

character(len=name_length) :: my_name

as an array of fixed-length strings,

character(len=name_length) :: my_parents_names(2)

or as an allocatable array of fixed-length strings:

character(len=name_length), allocatable :: &
all_my_children(:)

In these three examples, the integer name_length must either be a constant,

integer, parameter :: name_length = 80

or, if the string or string array appears in a procedure, name_length must
be included among the dummy arguments.

Under many circumstances, it is also possible to declare character vari-
ables of assumed length (len=*). A character-string constant of assumed
length, created as

character(len=*), parameter :: &
program_version = "Beta version"

automatically takes the length of the literal string on the right-hand side of
the equal sign. A string that serves as a dummy argument to a procedure
may have an assumed length, in which case it derives its length from that
of the corresponding actual argument.

Style tip

When writing procedures for character strings, it’s an excellent idea to use
dummy arguments of assumed length. This makes the procedures easier to
call and more general, reducing the chance that the procedure will need to
be changed as the program develops.

The colon (:) allows us to access individual characters or substrings
within a character string. Suppose we declare and set a character variable
as follows:

character(len=10) :: my_name

2.4 Manipulating Character Strings 43

my_name = "Charlie"

Then my_name(2:2) is "h", my_name(2:4) is "har", my_name(:4) is "Char",
and my_name(4:) is "rlie ". If strarray is a rank-one string array, then
strarray(i)(j:j) extracts the jth character from the ith element.

2.4.2 Assigning, Comparing, and Concatenating Strings

The equal sign may be used for character assignment as follows. If a and b
are strings of equal length, then

a = b

copies the contents of b into a. If a is shorter than b, the initial part of b
goes into a and the rest is discarded. If a is longer than b, then the contents
of b go into the initial part of a, and the rest of a is padded with blank
spaces. Therefore,

a = ""

has the effect of filling a with space, and

a(i:) = ""

has the effect of blanking out the ith and all subsequent characters of a.
Strings can also be compared by the relational operators shown in Table

2.3. If two strings are not of the same length, then the shorter one is implic-
itly padded with blank spaces on the right-hand side before the comparison
is made. Two strings are judged to be equal if characters in every pair of
corresponding positions agree; for example, ("boy" == "boy ") evaluates
to .true., and (a == "") evaluates to .true. if and only if a is entirely
blank.

Applying the inequality operators <, <=, >, and >= to character strings is
not recommended because the outcome of these operations depends on a
collating sequence that may vary from one compiler to another. Instead, we
recommend using the intrinsic lexical functions llt (less than), lle (less
than or equal to), lgt (greater than), and lge (greater than or equal to) be-
cause these functions rely on the universal ASCII collating sequence. Each
of these functions takes two character strings as arguments and returns a
logical value; for example, the expression lgt(string1, string2) evalu-
ates to .true. if string1 is lexically greater than string2. One character
is considered to be greater than another if it appears later in the ASCII
sequence; multicharacter strings are compared one character at a time,
moving from left to right, with the first nonidentical pair of characters
determining which string is the greater one.

Strings are concatenated (i.e., joined together) by the double forward
slash (//) operator. For example, the expression

"Tom" // " " // "Sawyer" == "Tom Sawyer"

44 2. Introduction to Modern Fortran

evaluates to .true. . Concatenation is useful for defining literal strings
that are too long to comfortably appear in a single line of source code:

gettysburg_address = "Four score and seven years ago " &
// "our fathers brought forth on this continent " &
// "a new nation..."

2.4.3 More String Functions

The Fortran intrinsic function len returns the length of a string, whereas
len_trim returns the length without counting trailing spaces. For exam-
ple, len("boy ") returns the integer 4, but len_trim("boy ") returns 3.
The function adjustl returns a character string of the same length as its
input, with leading blanks removed and reinserted at the end; adjustr
performs the opposite operation, removing trailing blanks and reinserting
them at the beginning. Thus adjustl(" boy") evaluates to "boy " and
adjustr("boy ") evaluates to " boy".

An extremely useful function is index, which allows us to search for a
single character or string within another string. More precisely,

index(string, substring)

returns an integer indicating the starting position of the first occurrence of
substring within string. For example, index("hello","l") evaluates to
3, as does index("hello","llo"). If the substring does not occur within
the string, the returned value is 0. This function has an optional third
argument, back, whose default value is .false. . Specifying back=.true.
will begin the search from the right side rather than the left, returning the
starting position of the last occurrence of the substring within the string.
The following function, which uses both index and len_trim, removes any
existing suffix from a filename and replaces it with a new three-character
suffix supplied by the user.

suffix.f90

!###

integer function add_suffix(file_name, suffix) result(answer)

! Returns 0 if operation is successful, 1 otherwise.

implicit none

character(len=*), intent(inout) :: file_name

character(len=3), intent(in) :: suffix

integer :: i

if(suffix(1:1)=="") goto 5 ! suffix begins with blank

i = index(file_name, ".", back=.true.) ! look for last period

if(i==0) i = len_trim(file_name) + 1 ! if no period was found

if(len(file_name) < i+3) goto 5 ! not enough room for suffix

file_name(i:) = "." // suffix

! normal exit

answer = 0

return

! error trap

2.4 Manipulating Character Strings 45

5 answer = 1

return

end function add_suffix

!###

2.4.4 Internal Files

Fortran now allows character variables to be used for input and output;
data may be written to them or read from them as if they were files. When
character variables are used in this manner, they are called internal files.
Internal files provide a convenient mechanism to convert numeric data to
character representations and vice versa. If str is a character string and a
is a variable, then

write(str, *) a

writes the value of a to str in free format, and

read(str, *) a

attempts to read a value of a from str. An error will result in the former
case if the written value of a exceeds the length of the string, or in the latter
case if the contents of str cannot be interpreted as data of the expected
type.

For a more detailed example, suppose we are writing a statistical appli-
cation that operates on a rectangular dataset consisting of p variables. The
user may supply character-string names for the variables, but if names are
not given, we will create the default names "VAR_1", "VAR_2", and so on.
The code below shows how these default names can be created by writing
integers to an internal file.

integer :: p ! the number of variables
integer, parameter :: var_name_length = 8
character(len=var_name_length), allocatable :: var_names(:)
character(len=4) :: sInt
integer :: i

! lines omitted

allocate(var_names, p)
do i = 1, p

write(sInt, "(I4)", err=5) i
var_names(i) = "VAR_" // adjustl(sInt)

end do
! error trap

5 continue

46 2. Introduction to Modern Fortran

In the write statement, the format string "(I4)" declares that the integer
is to be written to a field four characters wide. In the unlikely event that
10,000 or more variables are present, the err specifier will cause the point
of execution to jump to a trap where the problem can be handled gracefully.

In Fortran read and write statements, the format string does not need to
be a literal character string such as "(I4)"; it may also be a character vari-
able whose value is altered during program execution. This feature greatly
facilitates run-time formatting, which was very awkward in Fortran 77.
For example, in Fortran 77 it was difficult to print out a nicely format-
ted rectangular table for which the number of columns was not known in
advance. By writing integers to internal files, one can now build a format
string and then use it in a subsequent write statement.

2.4.5 Exercises

1. Write a function that accepts a character string of arbitrary length
as input and centers the text within the string. For example, if the
input string is "aa ", the result should be " aa ".

2. Write a program that reads a single line of text (up to, say, 128 char-
acters long) and prints out the line with the words given in reverse
order. For this purpose, words may be defined as strings of text de-
limited by any amount of blank space. For example, if the user types

hello, my name is Bob

then the response should be

Bob is name my hello,

3. The intrinsic function achar returns the character corresponding to
any position in the ASCII collating sequence. That is, if i is an integer
between 0 and 127 inclusive, then achar(i) is a character string of
length one containing the character in ASCII position i. Write a
program that prints to the screen all the characters in the ASCII
sequence (but note that some characters are nonprintable). From this
output, identify the ASCII positions of the lowercase letters (a, . . . ,
z), the uppercase letters (A, . . . , Z), and the numerals (0, . . . , 9).

4. The intrinsic function iachar accepts a character-string argument
of length one and returns as an integer the ASCII position of that
character. Using this function, write a procedure that converts all the
lowercase letters within a string to uppercase or vice versa.

2.5 Additional Topics 47

2.5 Additional Topics

2.5.1 Expressions with Mixed Types and Kinds

In general, one should be very cautious with integer division and with
expressions or statements that mix integers with reals. Consider the simple
test program below.

program test
implicit none
real :: x
x = 2/3
print *, x

end program test

Many novice programmers would be surprised by the result:

D:\jls\software\demos>test
0.0000000E+00

In this example, Fortran interprets the literals 2 and 3 as integers of the
default kind. It then computes 2/3 by integer division, which truncates
the result to zero. Finally, the zero value is converted to a floating-point
representation and stored in x. If 2/3 were changed to 2./3, 2/3., or
2./3., the result would become 0.666 . . . because the literals 2. and 3. are
interpreted as real numbers of the default kind (single precision).

Whenever an expression involving only integers is evaluated, Fortran
returns the result as an integer. If an expression involves integers and reals
of a given kind, the integers may be implicitly converted to reals of that
kind, and the result is returned as real. If an expression involves reals of
different kinds, those that are less precise may be converted to the higher
precision, and the returned result is of the higher precision. If the expression
is complicated, however, it may be partially evaluated before any conversion
takes place. For example,

2/3 + 1.6

will evaluate to 1.6. Finally, when an assignment

variable = expression

is made, some conversion takes place if the value returned by expression
does not match variable in type and kind. If expression is real and variable is
an integer, the conversion will be made by truncation rather than rounding.

Large errors can arise in computational statements that mix data of dif-
ferent types or kinds because floating-point arithmetic is only approximate
and because many integers have no exact representation in a floating-point
model. For example, in

real :: a, b

48 2. Introduction to Modern Fortran

integer :: i
a = 0.2
b = 3.8
i = a + b

the resulting value of i could be 3 or 4. For these reasons, mixed-type
expressions should be avoided.

2.5.2 Explicit Type Conversion

To avert problems arising from mixing types and kinds, you can perform
conversions yourself using the intrinsic functions real and int. If x is an
integer or real variable, then real(x,mykind) returns a real value of the
kind mykind. If the kind argument is omitted, the result will be a real value
of the default kind. Similarly, int(x,mykind) converts the value in x to a
mykind integer, and int(x) converts it to a default integer. Note that For-
tran converts reals to integers by truncation toward zero, so int(1.9989)
returns 1 and int(-2.732) returns −2. Both of these functions are ele-
mental, so they can also be applied to arrays of arbitrary shape.

It is also important to understand how Fortran interprets literal con-
stants in your source code. Numbers such as 0, 10, and -97 are regarded
as integers. Anything involving a decimal point, such as 3.7, -9.0, and 6.,
is stored as a floating-point real number, but the kind may vary. Usually
it will be of the default or single-precision kind, but if that model appears
to be inadequate, the precision may or may not be increased. For exam-
ple, some compilers will store 123456789.0 in double precision, noticing
that this constant has more than six significant digits. However, others will
disregard the extra digits and store it in single precision as approximately
1.23456 × 108. Putting the value into a double-precision variable, as in

double precision :: k
k = 123456789.0

or turning it into a double-precision named constant as in

double precision, parameter :: k = 123456789.0

may not recover the extra digits because the compiler may still interpret
the literal with single precision before converting it to double precision.
The best way to guarantee greater accuracy is to specify the literal in ex-
ponential notation using D rather than E. That is, the constant could be
written as 1.23456789D8, 1.23456789D+8, or 1.23456789D+08. Exponen-
tial notation using an E, as in 1.4E-06, is generally interpreted with single
precision, whereas D is interpreted as double precision.

If you still have any doubts about what your compiler is doing, the
intrinsic function kind may be used to query the system to determine

2.5 Additional Topics 49

the actual kind parameter of any variable or constant. To see how your
compiler handles the previous example, run this test program:

program test
real :: a
double precision :: b
print *, "Single precision is kind", kind(a)
print *, "Double precision is kind", kind(b)
print *, "123456789.0 is kind", kind(123456789.0)

end program test

The way that literals are written may have important implications not
only for accuracy but also for computational efficiency. For example, the
statements

y = x**2

and

y = x**2.0

may seem equivalent, but a compiler implements them quite differently. The
first simply computes x*x, whereas the second—raising a floating-point
number to a floating-point power—is a far more complicated operation.
Wherever possible, it is a good idea to use integer rather than floating-
point exponents. It is also beneficial to express square roots as sqrt(x)
rather than x**0.5, as the former allows the compiler to take advantage
of highly efficient routines for computing square roots. More issues of nu-
merical accuracy and efficiency will be taken up in Chapter 4.

2.5.3 Generic Procedures

Many Fortran intrinsic functions are generic. A generic function may ac-
cept arguments of different types and return values of different types. For
example, the generic absolute value function abs may be applied to inte-
ger or real variables. If x is real, then abs(x) returns a real number of
the same kind; if x is an integer, then abs(x) returns an integer of the
same kind. Other commonly used generic functions include sqrt, exp, log,
log10, sign,] sin, cos, and tan. All of these functions are elemental and
can thus be applied to arrays.

When using these generic functions, it is helpful to check the language
reference material supplied with the compiler to see what types of argu-
ments are expected and what type of value will be returned; not doing
so could produce unexpected results. For example, the generic square root
function sqrt expects to operate on real numbers of various kinds but not
on integers. Depending on the options of your compiler, sqrt may accept
an integer argument and perform a type conversion to real or it may not.

50 2. Introduction to Modern Fortran

That is, the expression sqrt(4) might possibly evaluate to 2.000. . . as in-
tended, or it might produce an error when the program is compiled. To help
ensure consistency of results across compilers, it would be wise to explicitly
convert the argument with real in this case.

Fortran allows you to write your own generic procedures. This will be
discussed in the next chapter, when we take up the subject of modules.

2.5.4 Don’t Pause or Stop

We strongly recommend that you never use the Fortran statement stop
within any subroutine or function, or even in a main program. This state-
ment, along with its diabolical cousin pause (which was declared obsoles-
cent in Fortran 90 and deleted from Fortran 95), appear in old-fashioned
Fortran programs to halt execution in the event of an error. These state-
ments may have unfortunate consequences for procedures embedded in
DLLs or in COM servers. Rather than using stop, it’s better to antici-
pate the possible errors that may arise and structure your procedures to
exit gracefully if one occurs.

2.6 Additional Exercises

1. Explain why this snippet of Fortran code prints three different values:

double precision :: x, a, b
print *, 2./7.
x = 2./7.
print *, x
a = 2.
b = 7.
x = a/b
print *, x

What result do you expect from this?

real :: x
x = 4.0
print *, x**(1/2)

2. Write a procedure that takes as input an n × p data matrix X and
a vector of weights w = (w1, . . . , wn)T and computes the matrix of
weighted sums of squares and cross products, XT WX, where W =
Diag(w). Streamline the procedure by making use of the fact that
XT WX is symmetric. Make the argument for w optional, so that if
no weights are provided, the procedure computes XTX by default.

2.6 Additional Exercises 51

3. Write a procedure that accepts as input an n × p data matrix

X =

⎡
⎢⎢⎢⎣

x11 x12 · · · x1p

x21 x22 · · · x2p

...
...

. . .
...

xn1 xn2 · · · xnp

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

xT
1

xT
2
...

xT
n

⎤
⎥⎥⎥⎦

and computes the p × 1 vector of sample means

x̄ =
1
n

n∑
i=1

xi

and the sample covariance matrix S = k−1A, where

A =
n∑

i=1

(xi − x̄)(xi − x̄)T = XT X − nx̄x̄T

and k = n−1 by default or k = n by the caller’s request. Use the one-
pass method that updates x̄ and A by incorporating rows of the data
matrix one at a time. That is, letting x̄(i) and A(i) denote the values
of x̄ and A based on the first i rows of the data matrix, initialize x̄(0)

and A(0) to zero and compute

x̄(i) = x̄(i−1) +
1
i

(
xi − x̄(i−1)

)
A(i) = A(i−1) +

i − 1
i

(
xi − x̄(i−1)

) (
xi − x̄(i−1)

)T

for i = 1, . . . , n.

4. Explain why the expression (2. == 2.D0) may evaluate to .true.,
whereas (exp(2.) == exp(2.D0)) may not. If you are not sure, write
a test program to print out the value and kind of each subexpression.

5. Expanding ex in a Taylor series about x = 0 and substituting x = 1
yields

e = 1 +
1
1!

+
1
2!

+
1
3!

+ · · · .
This suggests that the constant e = 2.71828 . . . may be computed by
this simple algorithm: set a, n, and e equal to 1, and repeat

a = a/n,

e = e + a,

n = n + 1,

until a is indistinguishable from zero. Write a Fortran program to
compute e using the most precise floating-point model offered by
your compiler.

52 2. Introduction to Modern Fortran

6. If (X, Y) is uniformly distributed over the unit square—that is, if X
and Y are independent U(0, 1) random variates—then the probability
of falling within the unit circle (X − 1/2)2 + (Y − 1/2)2 ≤ 1 is π/4.
Therefore, we can simulate the value of π = 3.14159 . . . by generating
a sample of n random points within the unit square, computing the
proportion of the sample that falls within the circle, and multiplying
by 4. Write a simple program that simulates the value of π in this
manner for any given value of n.

7. Given a full-rank n×p data matrix X, there are many ways to trans-
form it into another n×p matrix whose columns span the same linear
space but are mutually orthogonal. One simple method is the Mod-
ified Gram-Schmidt (MGS) procedure (Golub and van Loan, 1996).
This bit of Fortran code will decompose X into X = QR, where Q is
an n × p orthonormal matrix and R is p × p upper-triangular. The
X matrix is overwritten with Q.

double precision :: x(n,p), r(p,p)
integer :: n, p, j, k
r(:,:) = 0.D0
do j = 1, p

r(j,j) = sqrt(sum(x(:,j)**2))
x(:,j) = x(:,j) / r(j,j)
do k = (j+1), p

r(j,k) = dot_product(x(:,j), x(:,k))
x(:,k) = x(:,k) - x(:,j) * r(j,k)

end do
end do

Implement this MGS procedure in a function or subroutine, including
a provision to prevent division by zero in case X is rank-deficient.
Test your procedure on an X matrix filled with random numbers,
and verify that QT Q ≈ I and QR ≈ X.

8. Consider a two-way contingency table with elements xij , i = 1, . . . , r,
j = 1, . . . , c. The estimated expected counts under a model of row-
column independence are x̂ij = xi+x+j/x++, where

xi+ =
c∑

j=1

xij , x+j =
r∑

i=1

xij , x++ =
r∑

i=1

c∑
j=1

xij .

A test for row-column independence is usually carried out by com-
paring the Pearson goodness-of-fit statistic

X2 =
r∑

i=1

c∑
j=1

(x̂ij − xij)2

x̂ij

2.6 Additional Exercises 53

or the deviance statistic

G2 = 2
r∑

i=1

c∑
j=1

xij log
xij

x̂ij

to a chi-square distribution with (r − 1)(c − 1) degrees of freedom.
Write a procedure that accepts an assumed-shape two-way real array
of nonnegative observed counts and computes the two-way array of
estimated expected counts, X2, G2, and the degrees of freedom. When
calculating G2, handle observed counts of zero by treating 0 log 0 as
zero. If any expected count is zero, then X2 and G2 are undefined
and the procedure should signal a failure.

3
A Pseudo Object-Oriented Style

Subroutines and functions are excellent tools for breaking up complicated
programs into smaller, more manageable units. After the introduction of
C++ in 1983, however, a more sophisticated paradigm for modular develop-
ment began to take hold, and the world of programming is now dominated
by object-oriented languages and styles. A hallmark of object-oriented pro-
gramming is encapsulation: grouping program variables and computational
routines together intelligently and organizing them into logical units with
only limited communication allowed between them.

Fortran 95 is not a true object-oriented language. The full object-oriented
paradigm has been promised for Fortran 2003. Nevertheless, recent work
by Akin (2003) and others has demonstrated that it is indeed possible to
write structured Fortran 95 code that mimics many of the key qualities
of object-orientedness. In this chapter, we first describe some important
concepts from object-oriented programming. We then describe three new
features of Fortran—modules, derived types, and pointers—and discuss
their role in the development of self-contained software components. The
chapter concludes with a detailed example of an object class, a generic
error handler, which will be used to store and retrieve error and warning
messages in all of our subsequent program examples.

56 3. A Pseudo Object-Oriented Style

3.1 Basic Concepts of Object-Oriented
Programming

3.1.1 Objects and Classes

Loosely speaking, an object is a self-contained package of data bundled
together with computational procedures that operate upon the data. More
precisely, the archetype or design for the package is called a class, and an
object is a particular instance or realization of the class created by a pro-
gram. For example, consider the following variable declaration statement:

integer :: i, n

In this statement, integer can be regarded as the class, and i and n are
two objects or instances of it.

Many objects of interest to a statistical programmer will be considerably
more complicated than a single integer. For example, consider the classical
weighted linear regression model

y = Xβ + ε, (3.1)

where y is a response vector of length n, X is an n×p matrix of covariates,
β is a vector of p coefficients to be estimated, ε ∼ N(0, σ2V), and

V −1 = W = Diag(w1, . . . , wn)

is a diagonal matrix of weights. An object designed to hold the input data
for this analysis may contain two rank-one real arrays—one for holding the
response variable and one for holding the weights—and a rank-two array
for the covariates. The source code that defines the object class might be
packaged together with routines that compute the weighted least-squares
estimate

β̂ = (XT WX)−1XT Wy,

the estimated covariance matrix for β̂, fitted values, residuals, and other
diagnostics.

3.1.2 Properties

A property is an attribute of an object that may or may not be altered
during program execution. In Fortran, even the simplest objects have a
surprising number of properties. The properties of an array declared as

real(kind=our_dble), allocatable :: x(:)

include

• the rank (in this case, 1), type (integer), and kind (our_dble), which
cannot be changed;

3.1 Basic Concepts of Object-Oriented Programming 57

• the allocation status, size, shape, and lower and upper bounds, which
can be set or changed by allocate and deallocate; and

• the floating-point data values held within the elements of the array,
which can be set or changed by assignment statements.

From the programmer’s perspective, each of these properties has impor-
tant ramifications for how x may be used in a program. For example, in
well-written code, any expression involving an element x(i) will never be
evaluated unless x has been allocated and i lies between lbound(x) and
ubound(x). Depending on what purpose x serves within the program, only
a few properties may be of interest to the user or influenced by what the
user does. Recall, for example, the rank-one real array x used in the uniform
generator program of Section 2.2.5 to hold random variates. The user, who
may be entirely unaware of how Fortran works, is unlikely to care about
the array’s kind parameter or its lower and upper bounds; however, the
program does require the user to set the array’s size and then prints the
data values stored in the array when the random generation is complete.

3.1.3 Put and Get

In the terminology of object-oriented programming, “put” is the process
by which a property of an object is set or changed by an external entity,
and “get” is the process by which an entity queries the object to determine
the value of one of its properties. Consider the size of a rank-one real
allocatable array x. We put the size by first deallocating x, if necessary,
and then allocating it. We get the size by evaluating size(x).

Whenever we design an object, we must first decide what the object’s
properties will be. Then, for each property, we must decide whether it will
be a read-write property, whose value can be put or gotten by an external
entity; a write-only property, whose value can be put but will never have
to be gotten; or a read-only property, whose value can be gotten but not
put. Read-only does not mean that the property’s value will never change;
rather, it means that a user of the object cannot change that property di-
rectly. For example, putting one read-write property could automatically
change the values of many read-only properties. Restricting certain prop-
erties to be read-only is an excellent strategy for preventing the occurrence
of unwanted events.

3.1.4 Methods and Constructors

A method is any operation or procedure applied to an object. Put is one
special kind of method that sets a property, and get is another special
kind of method that retrieves a property. Other methods may be more
complicated, performing nontrivial computations and altering the values

58 3. A Pseudo Object-Oriented Style

of one or more properties simultaneously. Consider again a rank-one real
array x designed to hold random variates. It may be useful to make the
size of x a read-write property and then create a method that fills x with
random variates once its size has been set. The data values stored within x
could then be made read-only, so that a user could never set them directly
but only retrieve them after the random generation method has been called.

Another important type of method, called a constructor, defines the ac-
tions taken whenever a new instance of an object is created. The constructor
determines the initial or default state of the object. For example, suppose
that we design an object to hold the parameters θ = (µ,Σ) of a multivari-
ate normal distribution, where µ is a p×1 vector of means and Σ is a p×p
positive-definite covariance matrix. One possible constructor for this object
would set p = 1, µ = 0, and Σ = 1 so that by default it specifies a univari-
ate standard normal distribution. Another possible constructor would set
p = 0 and leave the µ and Σ arrays in an unallocated state. In the latter
case, one would probably want to create a put method for p that allocates
µ and Σ and perhaps initializes µ to be a vector of zeroes and Σ to be an
identity matrix.

3.1.5 Conceptualizing an Interface

The puts, gets, and other methods implemented for an object determine
the manner in which the object may be used by the outside world. Taken
together, these methods are called the interface. (This use of the term “in-
terface,” an important idea from object-oriented programming, should not
be confused with the concept of an interface in Fortran, the specific rules
by which dummy arguments in a function or subroutine are associated with
their actual arguments. To remain consistent with the common terminol-
ogy, we will use “interface” to refer to both, trusting that the reader will
infer from the context which of the two is being discussed at any particu-
lar time.) By nature, statisticians who write programs or procedures may
have a tendency to focus primarily on computational details and numerical
methods, paying relatively little attention to the interface. In many cases,
however, the quality of the interface is ultimately the most crucial factor
in determining how useful the procedure will be.

Before embarking on a new project, it is an excellent idea to first con-
ceptualize the interface. This exercise clarifies exactly what the software
component will do and helps the programmer to remain focused through-
out the development process.

Example: Testing Independence in a Two-Way Table

Imagine that you are given the task of writing a self-contained software
component that performs the classical chi-square test for independence in
an r × c contingency table. That is, given a table of nonnegative observed

3.1 Basic Concepts of Object-Oriented Programming 59

frequencies
{xij : i = 1, . . . , r; j = 1, . . . , c},

your code will calculate the estimated expected frequencies under the model
of row-column independence,

x̂ij =
c∑

j′=1

xij′

r∑
i′=1

xi′j

⎛
⎝ r∑

i′=1

c∑
j′=1

xi′j′

⎞
⎠

−1

, (3.2)

the degrees of freedom
ν = (r − 1)(c − 1), (3.3)

the Pearson test statistic

X2 =
r∑

i=1

c∑
j=1

(x̂ij − xij)2

x̂ij
, (3.4)

and the asymptotically equivalent deviance statistic

G2 = 2
r∑

i=1

c∑
j=1

xij log
xij

x̂ij
(3.5)

(see, e.g., Agresti, 2002). From an object-oriented standpoint, it makes
sense to devise a new type of object—say, the two_way_table class—with
the following properties and methods:

• observed, a write-only or read-write property that allows the user to
input the matrix of xij ’s;

• run_chisquare_test, a method that performs the computations in
(3.2)–(3.5); and

• a set of read-only properties, expected, df, Pearson, and deviance,
that allow the user to retrieve the matrix of x̂ij ’s and the values of
ν, X2, and G2.

An intelligent interface for the two_way_table class would perform neces-
sary checks to anticipate and prevent illegal operations. For example:

• The put method for observed may test the input array to ensure
that r > 1, c > 1, and xij ≥ 0 for every i and j, returning an error if
any of these conditions is violated.

• The run_chisq_test method may return an error if observed has
not been put.

• The get methods for expected, df, Pearson, and deviance may re-
turn errors if run_chisq_test has not yet been invoked.

• Putting a new matrix of xij ’s into observed may reset or nullify
expected, df, Pearson, and deviance, so that run_chisq_test will
have to be invoked again before any of these properties can be gotten.

60 3. A Pseudo Object-Oriented Style

3.1.6 Other Object-Oriented Concepts

Another key idea in object-oriented programming is polymorphism, whereby
a single method or procedure can operate on objects of different classes
with potentially different behavior in each case. A primitive kind of poly-
morphism has been implemented in Fortran. In Section 2.5.2, we discussed
generic intrinsic functions, such as abs, that can be applied to integer and
real variables of various kinds. More generally, Fortran programmers can
write their own functions or subroutines that accept arguments of different
types and perform type-specific operations on them. This feature, called
overloading, can be implemented within a Fortran module using an inter-
face block; this will be explained in the next section.

Inheritance is an asymmetric relationship between classes of objects in
which one class shares all the properties and behavior of another class.
Under this concept, “Class B inherits from Class A” means that B has all
the properties and methods that apply to A and possibly more; A is then
called the base or parent class, and B is called the derived or child class.
For example, consider a class of objects wls_reg for performing weighted
least-squares regression. If a class ols_reg for ordinary least-squares re-
gression has already been developed, the programmer may create wls_reg
by inheriting the properties of ols_reg and introducing an additional prop-
erty, weights. Languages that support inheritance are convenient because
they allow a programmer to create multiple classes of similar objects with
minimal duplication of code.

Fortran 95 was never designed to support inheritance. It is possible, how-
ever, to write Fortran 95 code that implements both inheritance and run-
time polymorphism, in which Fortran procedures dynamically distinguish
objects of different types while a program is executing (Decyk, Norton, and
Szymanski, 1998). In this book, we will not attempt to do either. We will,
however, show the statistical programmer how to use modern Fortran to
develop object classes with their own methods and interfaces, which may
then become the building blocks of high-quality, reliable applications.

3.1.7 Exercises

1. Investigate the history of object-oriented programming. Which major
programming languages implement all aspects of the object-oriented
paradigm? Which languages are only partially object-oriented?

2. What is a method? Should every method alter one or more properties
of an object? Explain.

3. What are the practical reasons for making a property of an object
read-only? Would it ever be sensible to have a property that is write-
only? Explain.

3.2 Modules 61

4. Choose a simple but nontrivial statistical procedure that is familiar
to you. For example, if you have some background in survival anal-
ysis, the procedure could be computing the Kaplan-Meier estimate
of a survivor function from a sample of failure times, some of which
are right-censored. Conceptualize an object class for this procedure.
Describe what actions will be taken by the constructor whenever an
object of this class is created. List all the relevant properties of the
object class, and decide for each property whether it will be read-
write or read-only. List all the methods, and describe what each one
will do, including any side effects.

3.2 Modules

3.2.1 What Is a Module?

A typical Fortran 77 application contained a main program that called
various subroutines and functions. The source code for these subroutines
and functions did not have to reside in the same file as the main program;
it could be divided up into an arbitrary number of files that were com-
piled separately. After compilation, the multiple object-code files would be
linked together to produce a single executable file, and the behavior of the
resulting program would be no different than if all the source code had
existed in one file.

With the advent of Fortran 90, a new organizational unit was introduced,
called the module. A simple module may be nothing more than a collection
of interrelated subroutines and functions, much like a source-code file in
Fortran 77. But the module is capable of much more because it may also
contain its own constants, variables, and derived-type definitions.

The essential syntax of a module is shown below.

module artichoke
public
! declare constants, variables, and derived types here
contains
! put subroutines and functions here

end module artichoke

The statement contains is optional and should only be included if subrou-
tines and functions appear below it. The statement public declares that,
unless otherwise specified, all of the contents of the module (e.g., named
constants, variables, and procedures) will be accessible to any program unit
that uses the module. Substituting private for public will declare that,
unless otherwise specified, all the contents of the module will be hidden
from all other program units whether they use the module or not. A mod-

62 3. A Pseudo Object-Oriented Style

ule whose contents are all private can be of no use to other program units,
so at least some features must be made public. On the other hand, auto-
matically declaring all contents public can be undesirable because it makes
the module less self-contained and increases the possibility that the module
will interact with other program units in undesirable ways (e.g., conflicts
arising because variables or subroutines in different modules have the same
names). Artful design of modules must strike a careful balance between the
desire to have unfettered communication with the outside world and the
desire to minimize conflicts.

To use the public aspects of a module in another program unit, you need
to include a use statement near the beginning of that unit. A module can
be used by a program,

program cook_dinner
use artichoke
implicit none

by a subroutine or function,

subroutine make_antipasto(arg1, arg2, arg3)
use artichoke
implicit none

or by another module,

module cream_of_anything_soup
use artichoke
implicit none

In the last example, the public aspects of artichoke will be accessible to
any function or subroutine contained within cream_of_anything_soup.

If a module is used by another program unit, that module must be com-
piled before compiling the other unit. For this reason, the source code for
each module is typically placed in its own file, apart from the code for other
modules or programs. Among other things, compilation allows Fortran to
construct explicit interfaces for all of the module’s procedures, which helps
to ensure consistency between dummy and actual arguments.

3.2.2 How Not to Use Modules

One possible use for a module is to bundle together a group of variables
that will be operated on by a function or subroutine. Consider the following
modules designed to hold arrays used in weighted least-squares regression.

module wls_data
public
real(kind=our_dble), allocatable :: y(:), x(:,:), w(:)

end module wls_data

3.2 Modules 63

module wls_workspaces
public
real(kind=our_dble), allocatable :: xtwx(:,:), &

xtwxinv(:,:), xtwy(:)
end module wls_workspaces

module wls_results
public
real(kind=our_dble), allocatable :: betahat(:), &

cov_betahat(:,:), residuals(:), fitted_vals(:)
real(kind=our_dble) :: sigma2hat

end module wls_results

Each of these modules creates variables that are global in the sense that
they become accessible within any program or program unit that uses the
modules. For example, consider this subroutine for calculating the symmet-
ric matrix XT WX:

subroutine make_xtwx
use wls_data
use wls_workspaces
implicit none
integer :: n, p, i, j, k
n = size(x,1)
p = size(x,2)
allocate(xtwx, p, p)
do j = 1, p

do k = j, p
xtwx(j,k) = sum(x(:,j) * w(:) * x(:,k))
xtwx(k,j) = xtwx(j,k)

end do
end do

end subroutine make_xtwx

In this fashion, one could write additional subroutines for computing the
inverse of XT WX, calculating XT Wy, and then multiplying them together
to obtain the weighted least-squares estimate

β̂ = (XT WX)−1XT Wy.

A subroutine for fitting the regression might then look like this:

subroutine fit_wls
call make_xtwx
call make_xtwy
call invert_xtwx

64 3. A Pseudo Object-Oriented Style

call make_betahat
end subroutine fit_wls

At first glance, this programming style seems attractive. The source code
looks clean and compact because no arguments are being passed. However,
this strategy violates a number of principles of good programming practice,
and we do not recommend it. One reason is that, when data exist as global
variables within a module, it becomes tedious to create or use multiple
instances of them. For example, suppose we wanted to write a program
that tests the fit of a null model against an alternative model that contains
additional covariates; to keep the workspaces for the two models separate,
we would have to create two copies of the wls_workspaces module in our
source code and give them different names (e.g., wls_workspace_null and
wls_workspace_alt). If we decided to make changes to the workspaces
(e.g., adding additional arrays), we would need to make changes to the
source code for both of the modules, and it would be impossible for one
subroutine to use both workspaces because the arrays within them have
been given the same names.

In our experience, we have found it undesirable for Fortran modules to
contain any variables at all, whether public or private. Module parame-
ters (i.e., named constants) are very useful, but module variables can be
troublesome. In modern operating systems, it is possible to have multiple
copies of the same program running simultaneously, and variables within
modules can create unexpected conflicts that are difficult to diagnose and
resolve. For these reasons, we will refrain from using variables in any of our
modules from this point onward, and we urge our readers to do the same.

3.2.3 How to Use Modules

If we are not to use modules to hold data as variables, then how should we
use them? One excellent way is to use modules to hold definitions for one or
more public derived types and the subroutines and functions that operate
on those derived types. Derived types—the subject of the next section—
are custom-designed data structures of arbitrary complexity that can be
instantiated within programs and passed as arguments to functions and
subroutines. The definition of a derived type within a module determines
its properties and forms the nucleus of an object class. Functions and sub-
routines that operate on the derived type become the gets, puts, and other
methods that create an interface between the object and the outside world.
Judicious use of public and private enables the objects to be created and
manipulated by external programs while keeping the inner workings of the
module hidden from them.

If you find this discussion to be somewhat abstract and confusing right
now, don’t worry. Gaining familiarity with object-oriented programming

3.2 Modules 65

takes practice and time. Our approach of using Fortran modules to create
object classes will be illustrated profusely throughout the rest of this book.

3.2.4 Generic Module Procedures

One benefit of modules is that they make it easy to create your own generic
procedures. A generic procedure is actually a group of functions or subrou-
tines that can be invoked by a common name. This feature, which is also
called overloading, is illustrated by the following example.

Consider the subroutine below, which converts a single-precision real
number to a left-justified character string.

subroutine real_to_string(arg, str)
implicit none
real, intent(in) :: arg
character(len=*), intent(out) :: str
character(len=20) :: tmp ! to prevent I/O errors
write(tmp, *) arg
str = adjustl(tmp)

end subroutine real_to_string

Here is another subroutine that does the same thing for an integer argu-
ment.

subroutine int_to_string(arg, str)
implicit none
integer, intent(in) :: arg
character(len=*), intent(out) :: str
character(len=20) :: tmp ! to prevent I/O errors
write(tmp, *) arg
str = adjustl(tmp)

end subroutine int_to_string

Because these two procedures are so similar, it may be helpful to refer to
them by the same name, thereby reducing the number of procedures that
we will have to remember in the future. To do this, we first place the two
subroutines in a module below the contains statement. Then we write a
simple interface block above the contains statement, like this:

module string_conversion
private ! by default
public :: convert_to_string
interface convert_to_string

module procedure real_to_string
module procedure int_to_string

end interface
contains

66 3. A Pseudo Object-Oriented Style

The real_to_string and int_to_string subroutines are now private and
cannot be called outside the module. However, both procedures are publicly
available through the generic name convert_to_string. If we say

call convert_to_string(3.14159, str)

or if we say

call convert_to_string(-897, str)

then Fortran automatically calls one procedure or the other, depending on
the actual arguments that are supplied. By writing additional subroutines
and listing them in the interface block, we can easily expand the capa-
bilities of the generic procedure to handle double-precision reals, logical
values, and so on.

An interface block can group either a set of subroutines or a set of
functions, but we cannot have both subroutines and functions in the same
block. When a generic procedure is called, Fortran chooses among the spe-
cific procedures by the nature of the nonoptional arguments. Therefore,
the specific procedures must differ with respect to their arguments’ num-
ber, type, kind, or rank.

3.2.5 Exercises

1. What are the most important differences between a module and an
ordinary source-code file containing subroutines or functions?

2. A subroutine or function is considered to be external if its source
code is located outside of the main program and is not a part of
any other module or procedure. An external procedure does not have
an explicit interface, so the compiler may not require the actual and
dummy arguments to agree in type, kind, or rank.

a. Show that it is possible (but not recommended) to write an
external function whose dummy argument is a rank-one array
but whose actual argument has rank two.

b. Why do you think that we avoid the use of external procedures,
placing them instead within modules? Give as many reasons as
you can.

3. If module mymod_a is used by module mymod_b, then mymod_b cannot
be used by mymod_a. Why not? (Hint: Think about the build process.)

4. Create a simple module that defines some useful double-precision real
constants such as

π ≈ 3.141592653589793,

e ≈ 2.718281828459045.

3.3 Derived Types 67

Demonstrate how to use the constants from another procedure, mod-
ule, or program.

5. Create a generic module procedure for computing variances. If the
input is a rank-one real array of size n ≥ 2, it should compute the
sample variance of the n observations. If the input is a rank-two real
array representing an n× p data matrix, it should compute the p× p
covariance matrix. Use double-precision arithmetic throughout.

3.3 Derived Types

3.3.1 What Is a Derived Type?

In our discussion and programming examples thus far, all of our variables
have either been scalars of one of the five atomic types (integer, real, com-
plex, logical, or character) or arrays whose elements are one of those types.
Arrays, although powerful, are limited in important respects. It is not pos-
sible to create a mixed-type matrix with one column containing reals and
another containing integers. Nor is it possible to add properties to an ar-
ray beyond the basic ones already provided by Fortran (kind, rank, shape,
etc.). For example, there is no way to attach row or column names to a
matrix. If there were no way to add properties to data structures, pseudo
object-oriented programming in Fortran would be effectively impossible.

The derived type, first introduced in Fortran 90, is an arbitrary collection
of scalar or array variables that have been glued together into a single entity.
(Readers familiar with C will recognize that a derived type is basically the
same as a “struct” in that language. Users of S-PLUS and R will recognize it
as a list.) The concept is well-illustrated by a simple example. Suppose that
you want to construct a database for holding vital information for people
whom you know—names, addresses, telephone numbers, birthdates, and so
on. Here is a definition for a derived type called person_info_type that
can hold the desired data for a single person:

! change these parameters if you like
integer, parameter :: name_string_length = 30, &

address_string_length = 40, phone_string_length = 20

type :: person_info_type
character (len=name_string_length) :: last_name, &

first_and_middle_names, nickname
character (len=1) :: sex
integer :: birth_day, birth_month, birth_year
character (len=address_string_length) :: &

email_address, snail_mail_address(4)

68 3. A Pseudo Object-Oriented Style

character (len=phone_string_length) :: home, office, &
mobile, fax

end type person_info_type

Once this type definition has been included in a program, procedure, or
module, we are free to create instances of the type and store data in them.
The individual parts of the type, called components, are accessed by the
component selector symbol %.

type(person_info_type) :: person_info

person_info%last_name = "Clemens"
person_info%first_and_middle_names = "Samuel Langhorne"
person_info%nickname = "Mark Twain"
person_info%sex = "M"
person_info%snail_mail_address(1) = "Woodlawn Cemetery"
person_info%snail_mail_address(2) = "Elmira, NY"

Style tip

Notice that the new type was called person_info_type, whereas the spe-
cific instance of it was called person_info. We add the _type suffix to the
name of every derived type to help maintain the crucial distinction between
object classes and objects.

The components of a derived type may be scalars, arrays, pointers, and
even derived types. For example, we may create a derived type to hold a
birthdate,

type :: birthdate_type
integer :: day, month, year

end type birthdate_type

use it within another type,

type :: person_info_type
character (len=info_string_length) :: last_name, &

first_and middle_names, nickname
character (len=1) :: sex
type(birthdate_type) :: birth

! declare additional components here
end type person_info_type

and access it like this:

type(person_info_type) :: myself
myself%birth%year = 1963

3.3 Derived Types 69

3.3.2 Using Derived Types

The variety of ways in which derived types may be used makes them ex-
tremely powerful. One may create arrays, even allocatable arrays, whose
elements are instances of a derived type:

type(person_info_type), allocatable :: my_address_book(:)
allocate(my_address_book(100))

Derived types and derived-type arrays may also be used as arguments
to functions and subroutines. A function with a derived-type argument
is shown below.

integer function find_person_by_nickname(nickname, &
address_book, position) result(answer)

! Finds the position of the first person in address_book
! with a given nickname.
character(len=*), intent(in) :: nickname
type(person_info_type), intent(in) :: address_book(:)
integer, intent(out) :: position
! locals
integer :: i, n
! begin
answer = 1
position = 0
n = size(address_book)
do i = 1, n

if(address_book(i)%nickname == nickname) then
position = i
answer = 0
exit

end if
end do

end function find_person_by_nickname

Notice that the dummy argument address_book is an assumed-shape
array. Therefore, as discussed in Section 2.3.2, this function ought to be
placed in a module. To compile successfully, we will have to place the
definition of person_info_type in the same module, or in another module
used by it, so that this type will be recognized. Here is the skeleton of
a module that contains both the definition of the derived type and the
function:

module mymod
implicit none
private ! by default
public :: person_info_type, find_person_by_nickname
integer, parameter :: name_string_length = 30, &

70 3. A Pseudo Object-Oriented Style

address_string_length = 40, phone_string_length = 20
type :: person_info_type

character (len=name_string_length) :: last_name, &
first_and_middle_names, nickname

! declare additional components here
end type person_info_type

contains
integer function find_person_by_nickname(nickname, &

address_book, position) result(answer)
! put rest of statements here

end function find_person_by_nickname
end module mymod

Any program or program unit that uses the module will be able to cre-
ate instances of person_info_type and call find_person_by_nickname.
The module’s private parts—in this case, the string-length parameters—
are hidden from the outside world, but the derived type and the procedure
that uses it are accessible because both are public.

This strategy of placing the definition of a derived type, and any proce-
dures that operate on the type, into a module is eminently sensible. In fact,
it is the key idea of pseudo object-oriented programming in Fortran. We
will use this technique extensively to develop self-contained code modules
that can be shared among many applications yet are easy to maintain and
extend without breaking the applications that use them.

To see how useful derived types can be in statistical programming, let us
imagine a class of objects designed to hold the data for a weighted least-
squares regression analysis, as we first described in Section 3.1.1. Suppose
that we define a new type, wls_data_type, whose components include

• a rank-one real array y to hold the response variable,

• a rank-two real array x to hold the covariates, and

• a rank-one real array w to hold the weights.

In the future, we may wish to add additional features, such as character-
string names for the response variable and the covariates; for now, however,
let’s consider only a bare-bones type that holds the numeric data. We will
certainly want the new type to accommodate datasets of different sizes,
allowing the number of observations and the number of covariates to vary.
At this point, however, we have not yet discussed how to create a derived
type whose components may vary in size. If we try to define the type in
this way,

type :: wls_data_type
integer :: n, p
real :: y(n), x(n,p), w(n)

end type wls_data_type

3.3 Derived Types 71

the compilation will fail; the computer would have no way of knowing how
much memory to set aside when creating an instance of the type. The
definition

type :: wls_data_type
real, allocatable :: y(:), x(:,:), w(:)

end type wls_data_type

will not work either because Fortran does not yet allow allocatable arrays
to appear as components of derived types. (This feature has been promised
for Fortran 2003, but it is not part of the 95 standard.) Every derived type
created by Fortran 95 must have a physical size that can be discerned at
the time of compilation, yet we clearly need components whose sizes may
vary at run time. The solution to this problem is found in pointers; this
will be discussed in Section 3.5.1.

3.3.3 Constructors and Default Initialization

A circle in two-dimensional space may be defined by its radius and by the
x and y coordinates of its center. Here is a simple module that defines a
derived type for a circle and a function that calculates its area:

module mymod
type :: circle_type

real :: center_x, center_y, radius
end type circle_type

contains
real function area(circle) result(answer)

implicit none
type(circle_type), intent(in) :: circle
answer = 3.141593 * circle%radius**2

end function area
end module mymod

If we declare an instance of a circle and immediately try to calculate its
area,

type(circle_type) :: circle
print *, area(circle)

the result is unpredictable because the components of circle have not yet
been defined. The problem is that we have not written a constructor. A
constructor, as described in Section 3.1.4, determines the initial state of a
newly instantiated object. For example, here is a procedure that initializes
an instance to a unit circle centered at the origin:

subroutine initialize_circle_type(circle)
implicit none

72 3. A Pseudo Object-Oriented Style

type(circle_type), intent(out) :: circle
circle%center_x = 0.
circle%center_y = 0.
circle%radius = 1.

end subroutine initialize_circle_type

To use this constructor, we could place it within the module, make it public,
and then invoke it from a program immediately after the instance is created.

type(circle_type) :: circle
call initialize_circle_type(circle)

Alternatively, we could assign initial values to all of the components within
the definition of the derived type, like this:

type :: circle_type
real :: center_x=0., center_y=0., radius=1.

end type circle_type

This latter method is called default initialization.
Unlike the initialization of local variables (Section 2.3.5), default initial-

ization does not give components the save attribute. Default initialization
affects the behavior of a derived type appearing as a dummy argument in a
function or subroutines. If the dummy argument is intent(out), the com-
ponents will be given the initial values each time the procedure is called.
For example, suppose that we create a derived type that defines a triangle
in two-dimensional space. Then suppose we write a procedure that, given a
triangle, finds the unique circle that circumscribes it. The procedure might
begin like this.

subroutine circumscribe(triangle, circle)
implicit none
type(triangle_type), intent(in) :: triangle
type(circle_type), intent(out) :: circle

Whenever this procedure is called, the components of the dummy argument
circle are initially set to the values given by the default initialization of
circle_type. If default initialization were not used, then the components
of circle would be undefined at the beginning of the procedure. In that
case, we would need to be careful to explicitly set every component of
circle to something within the procedure; otherwise, components of the
corresponding actual argument would be undefined after the procedure is
called.

Style tip

When creating a derived type, apply default initialization to each of the
components.

3.4 Pointers 73

3.3.4 Exercises

1. Create a derived type that can store a calendar date of the form
“March 18, 2004” using a character string and two integers. Write a
procedure that accepts this derived type as an argument and obtains
the current date via a call to the intrinsic routine date_and_time.
Write another procedure that writes the left-justified date to a char-
acter string.

2. The location of any point in two-dimensional space R2 can be repre-
sented by a pair of real numbers (x, y).

a. Create a derived type that defines a point in R2-space. Then use
this type to build additional derived types that define a circle
(by its center and radius) and a triangle (by the locations of its
three vertices).

b. In two dimensions, a counterclockwise rotation of angle θ about
a pivot point (x0, y0) transforms (x, y) to (x′, y′), where

x′ = x0 + (x − x0) cos(θ) − (y − y0) sin(θ),
y′ = y0 + (x − x0) sin(θ) + (y − y0) cos(θ).

Write a procedure that rotates a point for any given angle and
pivot. Overload the procedure to rotate circles and triangles as
well.

3. Euclid (c. 365–275 B.C.) showed how to circumscribe a circle about
any given triangle, as shown in Figure 3.1. Choose any two sides of
the triangle and construct their perpendicular bisectors. The point
at which these bisectors intersect is the center of the circle. (The
bisector of the third side passes through this point as well.) The
radius is simply the distance from this center to any of the three
vertices. Implement Euclid’s method as a Fortran procedure using
derived types.

3.4 Pointers

3.4.1 Fear Not the Pointer

Please do not skip this section! Many novice programmers avoid pointers,
finding them mysterious and frightening. This is unfortunate. Pointers,
once understood, are an extremely valuable addition to the programmer’s
toolkit.

In other languages, pointers are flexible almost to the point of being dan-
gerous; careless use of pointers leads to memory leakage and bugs that are

74 3. A Pseudo Object-Oriented Style

FIGURE 3.1. Euclid’s method for circumscribing a circle about a triangle.

difficult to identify. In Fortran, however, use of pointers is much more lim-
ited. The architects of Fortran 90 and Fortran 95 enforced restrictions on
pointers to enhance the ability of compilers to optimize code for faster ex-
ecution. These restrictions also bring a degree of safety to the programmer
because many pointer-related mistakes are detected during compilation.

3.4.2 Pointer Assignment

In other languages, a pointer can be regarded as a reference to a specific
memory location. In Fortran, however, a pointer is best thought of as an
alias, a portable name, that can be attached to any object of a given type.
Consider the following snippet of code:

integer :: i
integer, target :: x(5,5)
integer, pointer :: a, b(:), c(:,:), d(:,:)
do i = 1, 5

x(:,i) = i
end do

For the moment, let’s ignore the word target in the second line; x is simply
an array of integers whose present value is⎡

⎢⎢⎢⎢⎣
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5

⎤
⎥⎥⎥⎥⎦ .

The declaration of c as an integer pointer of rank two does not create an
array called c. Rather, c is a name that can be assigned to an already
existing rank-two integer array. Pointer assignment is accomplished by the
symbols =>, like this:

3.4 Pointers 75

c => x

After this statement is executed, c is another name for x. The statements

print *, c(2,3)
print *, size(c)

will display the results 3 and 25, and

c(2,:) = 7

will change the value of x to⎡
⎢⎢⎢⎢⎣

1 2 3 4 5
7 7 7 7 7
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5

⎤
⎥⎥⎥⎥⎦ .

A pointer is different from an allocatable array. If we had declared

integer, allocatable :: c(:,:)

then the statements

allocate(c(size(x,1), size(x,2)))
c = x

would have made c an independent copy of x occupying its own section
of memory. As a pointer, however, statements involving c access the same
memory locations as statements involving x; c and x refer to a single array.

Before a variable can be “pointed to,” it must be given the target at-
tribute; this is why

integer, target :: x(5,5)

had to be used. A pointer may point to any variable with the target
attribute, provided that the target is of the same type, kind, and rank. For
example, the statement

b => x

is not allowed because x has rank two but b was declared to have rank one.
However, the name b may be assigned to a section of x, provided that the
section has rank one:

b => x(1,:)

Similarly,

a => x(4,5)

is also allowed. A pointer may also be pointed to another pointer, in which
case it is actually directed to the latter’s target; for example,

76 3. A Pseudo Object-Oriented Style

c => x
d => c

and

c => x
d => x

do precisely the same thing.

3.4.3 Pointer Status

Once a pointer has been directed to a target, it is said to be associated.
A pointer can be made to point to nothing, in which case it is said to be
disassociated or null; this is accomplished by the nullify command:

nullify(a)

If a pointer has been nullified, we should not attempt to access its contents
until it is assigned to another target; doing so, as in

nullify(a)
print *, a

may cause a crash. To prevent such mistakes, we may test the status of
a pointer using the intrinsic inquiry function associated. The expression
associated(a) evaluates to .true. if a is associated with a target and
.false. if a is null.

In addition to being associated or nullified, a pointer’s status may be
undefined. A pointer declared at the beginning of a program, as in

program test
real :: x
integer, pointer :: a

remains undefined until it is either assigned to a target or explicitly nul-
lified. (This behavior is no different from any other kind of variable; in
the example above, x is also undefined until it is given a value.) Leaving a
pointer dangling in an undefined state is extremely undesirable because any
operation upon it—even testing its status with the associated function—
could cause a crash. For this reason, programmers are strongly encouraged
to nullify all pointers at the beginning of a program. In Fortran 90, this
had to be done through nullify statements. Repeated use of nullify at
the beginning of a program or procedure is simple enough, but it can also
be somewhat tedious. To simplify matters, a feature was added in Fortran
95 to declare and nullify new pointer variables at the same time. The new
feature is the null() constructor, which can be used like this:

real, pointer :: x => null()
integer, pointer :: c(:,:) => null(), b(:) => null()

3.4 Pointers 77

3.4.4 Pointer Allocation

The allocate statement may be applied to a pointer, but the effect is
somewhat different from when it is applied to an allocatable array. Suppose
we declare a pointer to a real value,

real, pointer :: x

and then allocate it within a program:

allocate(x)

Three actions will be taken. First, if x happens to be associated with a
target, it is disassociated from that target. Second, the processor sets aside
a section of the heap (currently unused memory) large enough to hold a
single real value. Third, x is pointed to that new section of memory, so that
x can now be used to store a datum.

In a similar fashion, we can also allocate array pointers. If x is declared
as

integer, pointer :: x(:,:)

then the statement

allocate(x(100,2))

disassociates x from any current target, sets aside a section of the heap
large enough to hold a 100× 2 array of integers, and points x to those new
memory locations.

Suppose that we apply allocate to a pointer that is presently assigned
to an allocatable array:

integer, allocatable, target :: y(:,:)
integer, pointer :: c(:,:) => null()
c => y
allocate(c(2,2))

In this case, y is not allocated; rather, c is first disassociated from y, and
then c is allocated, so that y and c become two different arrays. This is
a rather bad practice and should be discouraged for reasons that we now
describe.

3.4.5 Pointer Deallocation

If c is a pointer that was previously allocated, then

deallocate(c)

returns the target section of memory to the heap and nullifies c. When
deallocating pointers, we need to be careful because deallocate should
only be applied to a pointer

78 3. A Pseudo Object-Oriented Style

• that is currently associated with a target, and

• whose target was previously created by an allocate statement.

We should never, for example, attempt to deallocate a pointer that is null or
undefined. Nor should we attempt to deallocate a pointer that is currently
pointing to an allocatable array or an array section.

Violations of the first kind are easily preventable if we (a) nullify every
pointer with null() at the outset and (b) always test the association status
with associated before deallocating. But the second kind of violation—
trying to deallocate a pointer whose target goes by another name—is more
insidious. To prevent those mistakes, it is an excellent practice to draw a
sharp distinction in any program between two kinds of pointers: those that
will be pointed only to targets that already go by other names, and those
whose targets will only be created by allocation. If we decide beforehand
never to apply allocate or deallocate to a pointer designated for the
first purpose, and never to point the second kind of pointer to a preexisting
variable, array, or array section, then we will protect ourselves from trouble.

3.4.6 Memory Leaks

What happens if we allocate repeatedly? Consider this:

allocate(x(100, 2))
allocate(x(40, 7))
allocate(x(5,23))

If x were an allocatable array, then the program could crash at the second
line; an allocatable array must be deallocated before it can be allocated
again. If x is an array pointer, however, the program does not crash; the
second line disassociates x from the 100 × 2 array and points it to a new
section of size 40×7, and the third line disassociates x from the 40×7 array
and points it to a new section of size 5× 23. After the third allocation, the
100 × 2 and 40 × 7 sections are inaccessible. Data can no longer be stored
in or retrieved from them, nor can they be deallocated and returned to the
heap, because they no longer have names.

This undesirable effect is called memory leakage. Leaky programs can be
inefficient, occupying more space than necessary. If pointers are repeatedly
allocated within an iterative procedure, the program may eventually run
out of memory and crash. Leaks can be stopped by judiciously checking
the status of pointers, putting a statement such as

if(associated(x)) deallocate(x)

before each allocation.

3.5 Why We Need Pointers 79

3.4.7 Exercises

1. Explain what action is taken by each line of code below, and identify
the state of x, y, p, and q at each step.

integer, target :: x = 5, y = 0
integer, pointer :: p => null(), q => null()
p => x
y = p
q => y
q = 7
p => q
allocate(q)
q => p

2. Suppose that a pointer appears as a local variable within a proce-
dure. If the pointer is allocated in the procedure but never explicitly
deallocated or nullified, what is its status the next time the procedure
is called? Does this depend on whether the null() constructor was
used? (If you are not sure, write a test program.)

3. Fortran allows you to write a procedure in which a dummy argument
is not a pointer but the corresponding actual argument is. To see how
this can be useful, apply a simple matrix operation (e.g., transpose)
to a rank-two layer of a rank-three array.

4. Fortran does not allow you to create an array whose elements are
pointers. It is possible, however, to define a derived type whose only
component is a pointer and then create an array of that type. Demon-
strate with an example.

3.5 Why We Need Pointers

3.5.1 Pointers in Derived Types

At this point, the reader should understand what a pointer is and how
to avoid common pointer-related mistakes and bad practices. However, we
have not yet presented any compelling reasons why pointers are necessary
or even helpful.

Is it true that anything one can do with pointers can also be done just
as effectively—and perhaps more safely—with ordinary variables, arrays,
and allocatable arrays? Not at all. One very important reason for using
pointers is that they allow us to create derived types whose components
vary in size. In Section 3.3, we were wondering how to design an object to

80 3. A Pseudo Object-Oriented Style

hold the data needed for weighted least-squares regression. The only way
to do this in Fortran 95 is to use pointers within a derived type:

type :: wls_data_type
real, pointer :: y(:) => null(), x(:,:) => null()
logical :: weights_present = .false.
real, pointer :: w(:) => null()

end type wls_data_type

We create an instance of this type within a program simply by declaring
it:

type(wls_data_type) :: data

Style tip

Using the null() constructor within the type definition ensures that the
pointers within any new instance of the type are nullified.

Once we have determined the number of cases n and the number of
covariates p for the current dataset, we may allocate the components of
data, like this:

if(associated(data%x)) deallocate(data%x)
allocate(data%x(n,p))

3.5.2 Pointers as Dummy Arguments

A second reason why we need pointers is to pass them as arguments to
functions or subroutines that may alter their size or shape.

Continuing with the weighted least-squares example, suppose that we
define a derived type called wls_results_type to hold the results of the
regression analysis. The components of this type may include the estimated
coefficients β̂, the estimated covariance matrix for β̂, fitted values, and
residuals:

type :: wls_results_type
real, pointer :: beta(:) => null(), &

cov_beta(:,:) => null(), fitted(:) => null(), &
residuals(:) => null()

end type wls_results_type

It would not make sense to allow a user to assign values to the components
of the wls_results_type directly because these values are computed from
the data by the regression procedure. Rather, the user should be allowed
only to retrieve values of these components after the regression procedure

3.5 Why We Need Pointers 81

has been run. In the language of object-oriented programming, the prop-
erties of wls_results_type should be read-only. To make them read-only,
two things must be done. First, wls_results_type should be defined in a
module, and its contents should be kept private so that its components may
not be accessed directly outside the module. This can be done by placing
a private statement in the derived type definition, like this:

type :: wls_results_type
private
real, pointer :: beta(:) => null(), &

Second, we should place in the same module a set of public procedures for
getting the values of the components. A function for getting the estimated
coefficients β̂ is shown below.

integer function get_wls_beta(beta, results) result(answer)
! For getting the estimated coefficients from WLS.
! Returns 0 if successful, 1 if error.
implicit none
! arguments
real, pointer :: beta(:)
type(wls_results_type), intent(in) :: results
! locals
integer :: p
! begin
answer = 1
if(.not.associated(results%beta)) goto 500
p = size(results%beta)
if(associated(beta)) deallocate(beta)
allocate(beta(p))
beta(:) = results%beta(:)
! normal exit
answer = 0
return
! error trap

500 continue
! Later we ought to add something here to report a
! meaningful error message, telling the user
! that there are no estimated coefficients to
! be gotten.

end function get_wls_beta

Notice that the dummy argument beta is a pointer to a rank-one real array.
This means that the user does not need to worry about the length of the
coefficient vector in advance; he or she simply passes a rank-one real pointer
to the procedure, and the pointer is automatically allocated to the correct
size.

82 3. A Pseudo Object-Oriented Style

In this example, it seems logical to give the dummy argument beta the
attribute intent(out). However, Fortran does not allow us to declare in-
tent for pointer dummy arguments; doing so would create confusion because
it would be unclear whether this attribute refers to the pointer or to its
target.

3.5.3 Recursive Data Structures

A third reason why we need pointers is to create recursive data structures,
such as linked lists and binary trees. Recursive data structures tend to be
an unpopular topic among students in introductory programming courses.
Nevertheless, these structures are quite useful. In statistical applications,
linked lists and trees provide efficient ways to tabulate and sort data, to
find medians and other quantiles, and to accumulate data incrementally
without having to repeatedly resize arrays and copy their contents.

To implement a recursive data structure in Fortran, we need to create
a derived type that “contains itself” in the following sense: one or more
components of the type are pointers to objects of that type. To see why
this can be useful, suppose that we want to create a data structure to
store text message lines that can grow during program execution to hold
as many additional strings of text as necessary. One way to accomplish this
is to create an allocatable array to hold the first message line:

integer, parameter :: msg_width = 70
character (len=msg_width), allocatable :: msgs(:)
allocate(msgs(1))

To add additional lines, we would need to copy the messages to a temporary
array, resize the original one, and transfer the contents back. All of this
allocation, deallocation, and copying makes the process quite inefficient. A
much better strategy is to implement the message handler as a linked list.

To build a linked list, we first create a derived type to serve as a single
node. This type has two components: a text string and a pointer to another
instance of the type.

type :: msg_line_type
! a single node in the linked list
character (len=msg_width) :: line = ""
type(msg_line_type), pointer :: next => null()

end type msg_line_type

By declaring one instance, we create the first node; additional nodes are
introduced by pointer allocation. For example,

type(msg_line_type) :: first_line
allocate(first_line%next)

creates two linked nodes, as shown in Figure 3.2. To build a longer linked

3.5 Why We Need Pointers 83

ptr

string

ptr

string

FIGURE 3.2. Two linked instances of a recursive derived type.

list, we can declare another pointer of the same type

type(msg_line_type), pointer :: current_line

and allocate it repeatedly, always keeping it pointed to the last node in the
list:

current_line => first_line
do i = 1, n

allocate(current_line%next)
current_line => current_line%next

end do

3.5.4 Procedures for Linked Lists

To make the linked list easier to use, it helps to create a derived type
that “contains” the entire list. An object of this new type can then be
passed as an argument to procedures that will insert additional nodes,
print the contents of the list, and so on. Let’s define a msg_list_type,
whose elements include pointers to the first and last nodes, along with a
logical variable to indicate whether the list is empty:

type :: msg_list_type
! structure to contain the entire list
logical :: msg_present = .false.
type(msg_line_type), pointer :: head => null(), &

tail => null()
end type msg_list_type

A new instance of this type will be an empty list. Here is a procedure for
adding a new message line to the list:

subroutine insert_msg_line(text_line, msg_list)
! inserts a new message line at the end of the list
implicit none
character(len=*), intent(in) :: text_line
type(msg_list_type), intent(inout) :: msg_list
if(.not. msg_list%msg_present) then

! begin a linked list
allocate(msg_list%head)

84 3. A Pseudo Object-Oriented Style

ptr

string

ptr

string

ptr

string

ptr

string

logical

ptrptr
tailhead

FIGURE 3.3. A linked list for storing text message lines.

msg_list%tail => msg_list%head
msg_list%head%line = text_line
msg_list%msg_present = .true.

else
! add a node to the list
allocate(msg_list%tail%next)
msg_list%tail => msg_list%tail%next
msg_list%tail%line = text_line

end if
end subroutine insert_msg_line

If we create a new instance of the msg_list_type and call the procedure
four times,

type(msg_list_type) :: msg_list
call insert_msg_line("Good morning.", msg_list)
call insert_msg_line("How are you today?", msg_list)
call insert_msg_line("I’m so glad to see you.", msg_list)
call insert_msg_line("That’s all for now.", msg_list)

then the list will have four nodes, as shown in Figure 3.3.
The next procedure prints all of the message lines to the screen in the

order in which they were stored.

subroutine print_msg_contents(msg_list)
! prints the text message lines to standard output
implicit none
type(msg_list_type), intent(in) :: msg_list
type(msg_line_type), pointer :: current_line
if(msg_list%msg_present) then

current_line => msg_list%head
do

3.5 Why We Need Pointers 85

print "(A)", current_line%line
if(.not.associated(current_line%next)) exit
current_line => current_line%next

end do
end if

end subroutine print_msg_contents

Finally, we need a procedure to delete all messages from the list. Merely
nullifying the head and tail pointers is unacceptable because that will cause
a memory leak; we need to explicitly deallocate each node.

subroutine delete_msg_contents(msg_list)
! deletes all messages from the list
implicit none
type(msg_list_type), intent(inout) :: msg_list
type(msg_line_type), pointer :: current_line
if(.not. msg_list%msg_present) return
do

current_line => msg_list%head
msg_list%head => msg_list%head%next
deallocate(current_line)
if(.not.associated(msg_list%head)) exit

end do
nullify(msg_list%tail)
msg_list%msg_present = .false.

end subroutine delete_msg_contents

Writing procedures for linked lists takes a little practice and requires a
good understanding of pointers and derived types. Notice, however, that
once these procedures are written, they are extremely easy to use:

type(msg_list_type) :: msg_list
call insert_msg_line("Hello, world.", msg_list)
call print_msg_contents(msg_list)
call delete_msg_contents(msg_list)

From the user’s perspective, the derived type msg_list_type and its proce-
dures have become a “black box.” The user may remain blissfully ignorant
of how they work and does not even need to know that the msg_list_type
is a linked list. This illustrates perhaps the greatest advantage of the object-
oriented approach to programming. Details about the inner workings of the
objects are kept hidden from the outside world and may be enhanced or
changed in the future without requiring changes to programs and proce-
dures that use them. To make sure that the details are kept hidden, we need
to encapsulate the type definition and its procedures in a Fortran module,
making some of the module’s contents public but keeping others private.

86 3. A Pseudo Object-Oriented Style

3.5.5 Exercises

1. Using pointers, write a subroutine called matrix_transpose that ac-
cepts a rank-two real array (not necessarily square) as its only argu-
ment and transposes it. Can you do this without pointers? Explain.

2. In Section 2.3.3, we presented a function that calculates y =
√

x
to single precision by a Newton-Raphson algorithm. Using pointers,
modify this procedure so that it optionally returns the number of
iterations performed and the estimated value of y at each iteration.

3. An object class for performing the standard chi-square test for inde-
pendence in an r × c contingency table was described conceptually
in Section 3.1.5. We can now begin to implement this object class in
Fortran using modules, derived types, and pointers.

a. Create a derived type called two_way_table_type whose com-
ponents include observed, expected, df, Pearson, and deviance
(note that some of these must be pointers). Provide default ini-
tialization for all components. Place the derived type within a
module. Declare the derived type to be public but keep all of
its components private.

b. Write a public procedure put_observed for entering a table of
observed counts xij into the derived type. The dummy argu-
ments for this procedure should include a two_way_table_type
and a pointer to a rank-two real array containing the xij ’s.

c. Write a public procedure run_chisquare_test that performs
the computations shown in Equations (3.2)–(3.5) on an instance
of the two_way_table_type.

d. Write public procedures for getting the values of the read-only
properties expected, df, Pearson, and deviance.

e. Write a simple test program that calls each of these module
procedures.

4. Recursive data structures naturally lend themselves to recursive pro-
cedures. Create a derived type that can serve as a node in a linked
list. Write recursive subroutines for adding another node to the end
of the list and for deleting the entire list.

5. Implement a personal telephone directory as a linked list. Each node
in the list should include a left-justified character string for the per-
son’s name, the telephone number, and a pointer to the next node.
Write procedures for adding a new node, for printing the entire list,
and for deleting the list.

3.5 Why We Need Pointers 87

John

RL

Joe

RL

Claudine

RL

Lyndal

RL

Leanne

RL

Natasha

RL

Phil

RL

Kris

RL

Lorraine

RL

FIGURE 3.4. Binary tree containing an alphabetically ordered list of names.

6. Modify the linked list from the previous exercise so that entries are
stored in alphabetical order with respect to name. That is, instead
of inserting new nodes at the end of the list, insert them at an ap-
propriate place to maintain the ordering. For simplicity, determine
alphabetical order by comparing character strings with the intrinsic
functions llt, lle, lgt, or lge.

7. A binary tree is a recursive data structure in which each node contains
pointers to two additional nodes. The left-hand pointer is directed
toward a node that is (in some sense) less than the current node,
and the right-hand pointer is directed at a node that is greater. A
simple binary tree containing an alphabetically ordered list of names
is shown in Figure 3.4.

a. Create a derived type called tree_node_type that represents a
single node in the binary tree shown in Figure 3.4.

b. Write a recursive subroutine that adds a new name to a tree
by allocating a node at the appropriate place. This subroutine
should have two dummy arguments: a node and a character
string.

c. Write a recursive procedure that prints all of the tree’s names
in alphabetical order.

88 3. A Pseudo Object-Oriented Style

d. Write a recursive procedure for destroying (i.e., deallocating)
the entire tree.

e. Write a test program that adds the names shown in Figure 3.4
to the tree in an arbitrary order, prints out the ordered list, and
then destroys the tree.

8. Using a binary tree, write a procedure that tabulates numeric data.
That is, given a rank-one array of real numbers x1, x2, . . . , xN , find
the unique values

x∗
1 < x∗

2 < · · · < x∗
n

(n ≤ N) and their associated frequencies f1, f2, . . . , fn.

3.6 Example Module: A Generic Error Handler

3.6.1 Strategy for Managing Run-Time Errors

Except for the most trivial examples, all applications crash at countless
points during their development, testing, and use. Just a few reasons are:

• attempting to open a file for read-access when the file does not exist;

• attempting to read past the end of a record (EOR) or the end of a
file (EOF);

• attempting to allocate an array that is already allocated; and

• attempting to invert a matrix that is apparently singular.

Sometimes the problem arises because someone attempts to use the pro-
gram incorrectly or in a manner that the author does not anticipate. At
other times, the crash reflects a genuine bug that needs to be fixed within
the source code.

All too often, programmers think, “I’ll just get the program working
for now, and put in some error-handling features later.” Of course, “later”
never arrives because run-time errors cannot be handled by adding a few
lines of code here and there. Effective error management requires careful
planning and influences the design of procedures at every level. Recognizing
that run-time errors are inevitable, one should develop a coherent strategy
for handling them and apply it consistently from the start.

Ideally, we would like to isolate any problem before a run-time error (such
as an arithmetic exception) occurs, diverting the flow of control to prevent
a crash. The subject of anticipating exceptions is discussed in the next
chapter. (See section 4.1.4.) We also want to report meaningful messages
to users at run time so that they may understand what happened and take

3.6 Example Module: A Generic Error Handler 89

corrective measures. The error messages should also be detailed enough to
facilitate debugging, helping the developer or support staff to quickly locate
the portion of source code where the problem occurred. Finally, we want
the error-handling facility to be simple to use, to avoid tedious repetition,
and to keep the code clean and compact.

As mentioned in Section 2.5.4, the statement pause is obsolete and no
longer acceptable, and the use of stop is strongly discouraged. These state-
ments halt the flow of control as soon as they are encountered, preventing
the program from choosing alternative actions more appropriate to the
context. Consider a procedure for matrix inversion. If the procedure en-
counters a singular matrix, halting the program may be reasonable in some
situations, but in others we may want to continue execution, switching to a
method capable of computing a generalized (e.g., Moore-Penrose) inverse.
In general, when an error occurs within a procedure, the ultimate decision
about what action to take should not be made within the procedure itself
but should be deferred to the program unit that calls it.

We now develop a unified strategy for handling errors that will be used
in programs throughout the rest of the book. Our strategy has two crucial
features. First, whenever an error occurs within a procedure, control is
returned to the program unit that calls it. Second, we create a class of
objects for storing a sequence of text error messages. Whenever an error
occurs, we store an informative message that includes a precise description
of the error to help the program user to understand what happened. In
addition, we also store the name of the program unit in which the error
occurred, along with the names of any higher-level units that called it, so
that a traceback of the calling sequence is available to the programmer.
The code that defines the object class for holding error messages is placed
in a module, along with its methods, illustrating the major principles of
pseudo object-oriented design.

3.6.2 Structure of the Module

Our module, which we call error_handler, will allow us to store an ar-
bitrary number of error message text lines and retrieve them at any time.
As in the previous section, we will implement the messaging system as a
linked list. Details of how the list works will be hidden from the outside
world; from the user’s perspective, the entire error messaging system will
act like a “black box.”

The heart of the module is error_type, an object class for holding the
linked list of messages. The type itself is public so that it can be used by
the outside world, but its contents are kept private. All communication
between an instance of error_type and the outside world is handled by
public functions and subroutines. The module without its procedures is
shown below.

90 3. A Pseudo Object-Oriented Style

error handler.f90

!###

module error_handler

! Generic error message handler for both console and non-console

! applications. The routines in this module do not halt program

! execution; they merely store error messages for subsequent

! retrieval.

! Written by J.L. Schafer, 4/19/02; revised 6/03/03

implicit none

private ! by default

! declare public types

public :: error_type

! declare public subroutines and functions

public :: err_reset, err_handle, err_msg_present, err_get_msgs

! Parameters private to this module

integer, parameter :: &

! max width of any single error message line

err_msg_width = 70

!##

type :: msg_line_type

! Private type for a single node in the linked list

sequence

character (len=err_msg_width) :: line = ""

type(msg_line_type), pointer :: next => null()

end type msg_line_type

!##

type :: error_type

! Public type for holding a linked list of messages

sequence

private ! contents of this type are private to this module

logical :: msg_present = .false.

type(msg_line_type), pointer :: head => null(), tail => null()

end type error_type

!##

contains

!##

! all subroutines and functions will be placed here

!##

end module error_handler

!###

Style tip

The private statement near the beginning of the module makes every-
thing defined in the module—parameters, derived types, functions, and
subroutines—private unless otherwise stated. For pseudo object-oriented
programming, it’s usually a good idea to use the private statement and
explicitly list the public parts below it.

3.6 Example Module: A Generic Error Handler 91

In this module, notice that msg_line_type is private; this derived type
is used to set up the data structure within the module but will not be
known to the outside world. Similarly, the contents of error_type are kept
private even though the type itself is public.

Notice also the sequence statement in the definition of each derived type.
Using sequence causes the data within a type to be stored in memory in
the same sequence as the components are declared. This statement does not
affect how the type will be used in other parts of the program, but it does
facilitate the transfer of data between Fortran and applications written in
other languages. Using sequence will be necessary when creating COM
servers as described in the later chapters of this book. We will use this
directive in all of our derived-type definitions from now on.

3.6.3 Module Procedures

All access to the error-handling system is managed by four public proce-
dures:

• err_handle, which appends an error message to an error_type ob-
ject;

• err_msg_present, which queries the object to see if any messages
are currently stored;

• err_get_msgs, which extracts all of the messages stored in the object
and places them in a character-string buffer, allowing them to be
easily printed to the screen or written to a text file; and

• err_reset, which deletes all messages currently stored in the object,
returning it to its initial null state.

These public procedures, and any private procedures used by them, ap-
pear in the module below the contains statement. First, let’s look at
err_reset, which is essentially identical to the procedure in Section 3.5.4
for emptying a linked list.

error handler.f90

!##

subroutine err_reset(err)

! Public: deletes all messages from the list

implicit none

type(error_type), intent(inout) :: err

type(msg_line_type), pointer :: current_line

if(.not. err%msg_present) return

do

current_line => err%head

err%head => err%head%next

92 3. A Pseudo Object-Oriented Style

deallocate(current_line)

if(.not.associated(err%head)) exit

end do

nullify(err%tail)

err%msg_present = .false.

end subroutine err_reset

!##

The next function returns .true. if a message is present and .false.
otherwise.

error handler.f90

!##

logical function err_msg_present(err)

! Public: Queries the error_type to see if a message is present

implicit none

type(error_type), intent(inout) :: err

err_msg_present = err%msg_present

end function err_msg_present

!##

Next, we have a routine for appending a single line to the list. This
procedure is private and will be used by err_handle.

error handler.f90

!##

subroutine insert_msg_line(text_line, err)

! inserts a new message line at the end of the list

implicit none

! declare arguments

character(len=*), intent(in) :: text_line

type(error_type), intent(inout) :: err

! begin

if(.not. err%msg_present) then

! begin a linked list

allocate(err%head)

err%tail => err%head

err%head%line = text_line

err%msg_present = .true.

else

! add a node to the list; point tail to the new node

allocate(err%tail%next)

err%tail => err%tail%next

err%tail%line = text_line

end if

end subroutine insert_msg_line

!##

Now let’s consider err_handle itself. This subroutine has two required
arguments: an error_type object and an integer code for reporting a vari-
ety of common errors. It also has a number of optional arguments through

3.6 Example Module: A Generic Error Handler 93

which the programmer can report very specific and useful information de-
pending on the type of error. With input/output errors, for example, one
may report the name of the file in question and perhaps even the line num-
ber in the file where the problem arose. One may also supply the name
of the subroutine or function where the error occurred. If we adhere to
the practice of always returning control to the calling procedure if an error
occurs and always reporting the name of the program unit to the error han-
dler, then a complete traceback of the calling sequence will be stored for
debugging purposes. This subroutine, whose major parts are shown below,
also provides a good example of the case construct described in Section
2.1.8.

error handler.f90

!##

subroutine err_handle(err, err_code, called_from, file_name, &

line_no, object_name, custom_1, custom_2, custom_3)

! Public: Stores a message in the error handler

! Meaning of err_code

! 0 = no error

! 1-99: I/O errors

! 1 = file could not be opened for read-access

! 2 = file could not be opened for write-access

! 3 = error in reading file

! 4 = error in writing to file

! 5 = error in reading file: EOR/EOF encountered

! 6 = file open for write-access could not be closed

! 7 = file open for read-access could not be closed

! 100-199: numerical errors

! 100 = matrix apparently singular

! 101 = matrix not positive definite

! 102 = attempted division by zero

! 103 = attempted logarithm of non-positive number

! 104 = argument to exp function too large

! 105 = attempted square root of negative number

! 200-299: memory errors

! 200 = unable to dynamically allocate memory for object

! 201 = unable to deallocate memory for object

! 300-399: array dimension errors

! 300 = non-square matrix encountered where square

! matrix expected

! 301 = dimensions of matrix arguments not conformable

! 1000: other error

! 1000 = reserved for custom error messages

implicit none

! declare required arguments

type(error_type), intent(inout) :: err

integer, intent(in) :: err_code

! declare optional arguments

character (len=*), optional :: called_from, file_name, &

object_name, custom_1, custom_2, custom_3

integer, optional :: line_no

! local variables

94 3. A Pseudo Object-Oriented Style

character(len=12) :: ichar

! begin

select case(err_code)

case(0)

call insert_msg_line(&

"No errors", err)

! I/O errors

case(1)

call insert_msg_line(&

"File could not be opened for read-access", err)

case(2)

call insert_msg_line(&

"File could not be opened for write-access", err)

! lines omitted for brevity

case(301)

call insert_msg_line(&

"Dimensions of matrix arguments not conformable", &

err)

! custom error message

case(1000)

! don’t do anything yet

! anything else

case default

call insert_msg_line("Unknown error code.", err)

end select

! append other optional information if present

if(present(custom_1)) &

call insert_msg_line(custom_1, err)

if(present(custom_2)) &

call insert_msg_line(custom_2, err)

if(present(custom_3)) &

call insert_msg_line(custom_3, err)

if(present(file_name)) &

call insert_msg_line("FILE: " // trim(file_name), err)

if(present(line_no)) then

write(ichar,"(I12)") line_no

ichar = adjustl(ichar)

call insert_msg_line("LINE: " // trim(ichar), err)

end if

if(present(object_name)) &

call insert_msg_line(trim(object_name), err)

if(present(called_from)) &

call insert_msg_line("OCCURRED IN: " // &

trim(called_from), err)

end subroutine err_handle

!##

Finally, the public procedure err_get_msgs retrieves the stored messages
from the object as a single string. In the string, message lines are separated
by characters that signal the on-screen printing mechanism to advance to

3.6 Example Module: A Generic Error Handler 95

new lines. In Windows operating systems, a new line is indicated by a car-
riage return (CR) (character 13 in the ASCII collating sequence) followed
by a line feed (LF) (ASCII character 10). Unix and Linux use only LF,
whereas Macintosh r© systems use CR. These nonprinting characters can
be inserted through the Fortran intrinsic function achar.

error handler.f90

!##

subroutine err_get_msgs(err, msg_string, platform)

! Public: Retrieves all stored messages as a single character

! string, with message lines separated by platform-appropriate

! ASCII carriage control characters.

! Values for platform may be "UNIX", "MAC" or "PC"

implicit none

! required arguments

type(error_type), intent(inout) :: err

character(len=*), intent(out) :: msg_string

! optional arguments

character(len=*), intent(in), optional :: platform

! local variables

character(len=4) :: plat

integer :: posn

logical :: first_time

type(msg_line_type), pointer :: cur_line

! determine platform

if(present(platform)) then

plat = platform

else

plat = "PC"

end if

! clean out msg_string

msg_string = ""

! step through the linked list, appending the lines

first_time = .true.

cur_line => err%head

do

if(.not.associated(cur_line)) exit

posn = len_trim(msg_string)

if((posn+3) >= len(msg_string)) exit ! out of space

posn = posn + 1

if(.not.first_time) then

select case(plat)

case("UNIX")

! Separate lines with LF

msg_string(posn:) = achar(10)

posn = posn + 1

case("MAC")

! Separate lines with CR

msg_string(posn:) = achar(13)

posn = posn + 1

case default

msg_string(posn:) = achar(13) // achar(10)

posn = posn + 2

96 3. A Pseudo Object-Oriented Style

end select

end if

msg_string(posn:) = trim(cur_line%line)

first_time = .false.

cur_line => cur_line%next

end do

end subroutine err_get_msgs

!##

3.6.4 Using the Module

Notice that our module contains the definition of error_type and its as-
sociated procedures, but it does not contain any instances of the type. As
discussed in Section 3.2, it’s best to declare instances not within the mod-
ule itself but in the program that uses the module. The instance can then
be passed by argument to any procedure that may generate an error.

Example: In-Place Cholesky Factorization

If A is a symmetric, positive-definite matrix, then there is a unique lower-
triangular matrix C, called the Cholesky factor, whose diagonal elements
are all positive and that satisfies CCT = A. Below is a module containing a
procedure that overwrites the lower triangle of a matrix with its Cholesky
factor based on an algorithm given by Thisted (1988). The dummy argu-
ment for the input matrix has assumed shape. The procedure will fail if
the actual argument is not square or not positive.

cholesky.f90

!###

module cholesky

use error_handler

implicit none

private ! by default

public :: cholesky_lower

character(len=*), parameter :: modname = "cholesky"

contains

integer function cholesky_lower(a, err) result(answer)

!### Overwrites lower triangle of a symmetric, pos.-def. matrix

!### with its cholesky factor. The upper triangle is untouched.

!### Returns 0 if successful, 1 if failed.

implicit none

! declare arguments

double precision, intent(inout) :: a(:,:)

type(error_type), intent(inout) :: err

! declare local variables and parameters

character(len=*), parameter :: subname = "cholesky_lower"

integer :: p, i, j, k

double precision :: sum

! begin

answer = 1

3.6 Example Module: A Generic Error Handler 97

p = size(a,1)

if(p /= size(a,2)) goto 700

do j = 1, p

sum = 0.D0

do k = 1, j-1

sum = sum + a(j,k)**2

end do

if(sum >= a(j,j)) goto 710

a(j,j) = sqrt(a(j,j) - sum)

do i = j + 1, p

sum = 0.D0

do k = 1, j-1

sum = sum + a(j,k)*a(i,k)

end do

if(a(j,j) == 0.D0) goto 710

a(i,j) = (a(i,j) - sum) / a(j,j)

end do

end do

! normal exit

answer = 0

return

! error traps

700 call err_handle(err, 300, &

called_from = subname//" in MOD "//modname)

return

710 call err_handle(err, 101, &

called_from = subname//" in MOD "//modname)

return

end function cholesky_lower

!##

end module cholesky

!###

Style tip

Character-string parameters containing the module and procedure names
provide a convenient way to pass these names to the error handler.

Below is a simple program for testing the Cholesky routine on a 3 × 3
positive-definite matrix.

err test.f90

!###

!### A simple program for testing the error_handler module #######

!###

program err_test

use error_handler

use cholesky

implicit none

! declare variables and parameters

double precision :: s(3,3) = 0.D0

98 3. A Pseudo Object-Oriented Style

integer :: i, j

type(error_type) :: err

character(len=*), parameter :: platform = "PC"

character(len=256) :: msg_string

! enter a pos.def. matrix into lower triangle

s(1,1) = 0.75

s(2,1) = -0.20

s(3,1) = -0.04

s(2,2) = 4.66

s(3,2) = 1.43

s(3,3) = 5.45

! attempt cholesky factorization and print result

if(cholesky_lower(s, err) /= 0) goto 800

do i = 1, 3

print "(3F10.5)", (s(i,j), j=1, 3)

end do

800 continue

! report error message

if(err_msg_present(err)) then

call err_get_msgs(err, msg_string, platform)

print "(A)", trim(msg_string)

print "(A)", "Aborted"

end if

end program err_test

!###

The screen output from this test program looks like this:

d:\jls\software\demos>err_test
0.86603 0.00000 0.00000
-0.23094 2.14631 0.00000
-0.04619 0.66129 2.23843

If the (3, 1) element of the matrix is changed to

s(3,1) = -2.00

then an error occurs:

d:\jls\software\demos>err_test
Matrix not positive definite
OCCURRED IN: cholesky_lower in MOD cholesky
Aborted

If cholesky_in_place were called from another procedure and an error
occurred, then placing statements such as

if(cholesky_lower(s, err) /= 0) goto 800
! lines omitted

! error trap
800 call err_handle(err, 1000, &

3.6 Example Module: A Generic Error Handler 99

called_from = subname//" in MOD "//modname)
return

in the calling procedure would append the name of that procedure to the
error message list for traceback purposes.

3.6.5 General Guidelines for Modules

We conclude this chapter with some general guidelines for creating modules
for pseudo object-oriented programming in Fortran.

1. A module should contain no variables, whether public or private.
Local variables within module procedures are acceptable, but there
should be no variables declared in a module before the contains
statement.

2. Module parameters are acceptable, both public and private. But con-
sider carefully before making a parameter public because from that
point on the parameter’s name is effectively retired and cannot be
used for any other purpose within program units that use the mod-
ule.

3. Placing derived-type definitions within modules is encouraged. These
derived types will often be made public, but in most cases it’s a good
idea to keep the contents (i.e., components) of the types private.

4. If a module contains a public derived type whose contents are private,
then communication between an instance of the type and the outside
should be accomplished by public functions or subroutines placed in
the same module.

5. When developing a module, do not presume that your public func-
tions or subroutines will be used intelligently or correctly by other
program units—even if the developer of the other program units is
you. Rather, assume that the procedures will be misused. Extensively
check the input arguments for correctness and consistency, and pro-
vide some means for reporting inconsistencies and error messages to
the outside world (e.g., by using the error_handler module).

6. Make your source code self-documenting by including extensive com-
ments, especially in public functions and subroutines. This small in-
vestment of time and effort will greatly pay off in the future.

Don’t fall into the trap of thinking that if you write a module today,
you will remember the details of the module’s inner workings in the weeks,
months, or years ahead. Don’t presume that you will even remember how
to use the module’s public procedures correctly. In the future, you will be
a different person from the one you are today. Therefore, strive to make

100 3. A Pseudo Object-Oriented Style

each module as self-contained as possible so that it acts as an intelligent
“black box.” Strive to make the module crash-proof by including extensive
checks within the public procedures.

3.7 Additional Exercises

1. The modified Gram-Schmidt procedure for orthogonalizing a matrix
was presented in Exercise 7 of Section 2.6. Implement this method in
a function or subroutine that uses the error handler module.

2. Our error handler module can be enhanced in many ways. In the
err_handle procedure, for example, one could add an optional argu-
ment append that, depending on whether it is .true. or .false.,
appends the new error message lines to the current list or wipes out
the stored messages to start a new list. Revise error_handler to add
this new feature and any other features that you may find useful, but
do it in such a way that existing applications that may already use
the module will not need to be revised.

3. The parameters of a multivariate normal distribution are usually ex-
pressed as θ = (µ,Σ), where µ is a mean vector of length p and Σ is a
p×p covariance matrix. Create a derived type for storing θ as a single
object, and place your type definition in a module. Write a module
procedure for computing the maximum-likelihood estimate of θ from
an n × p data matrix.

4. Many datasets can be represented in a rectangular form, with rows
corresponding to observational units and columns corresponding to
variables. If all of the variables are numeric, then the dataset can
be stored very simply as a rank-two real array. If both numeric and
nonnumeric (e.g., nominal) variables are present, however, it may be
better to store the dataset in some other fashion. Devise a strategy
for storing variables in a linked list, with one node per variable, and
implement it in a Fortran module.

5. The empirical distribution function F̂ (x), which assigns probability
mass 1/n to each of the data values x1, x2, . . . , xn in a sample, plays a
central role in the bootstrap (Efron and Tibshirani, 1994) and other
nonparametric statistical techniques. Create a derived type for stor-
ing an empirical distribution function, with procedures for computing
it from a sample and for drawing random samples from it. For com-
puting F̂ (x), you may find it helpful to sort the data values with a
binary tree, as discussed in Exercises 7 and 8 of Section 3.5.5.

4
Implementing Computational Routines

The last chapter introduced the key ideas of modules, derived types and
pointers in Fortran, showing how they form the basis of a new pseudo
object-oriented style. We now turn our attention to the heart of a sta-
tistical application, the computational routines. Efficient computation has
always been one of the most appealing aspects of Fortran. Volumes of pro-
cedures written since the late 1970s, many of them in Fortran 77, are still
widely used. In this chapter, we discuss how to incorporate new features of
the Fortran language into computational routines without sacrificing good
performance.

4.1 Issues of Numerical Accuracy

4.1.1 Accuracy Is Crucial

First and foremost, a computational routine should produce accurate re-
sults. Accuracy should not be sacrificed to enhance speed, to conserve
memory, or for any other reason. In the early days of computing, many
routines developed by scientists and engineers were seriously flawed. For ex-
ample, the infamous pseudorandom generator RANDU developed at IBM
and used by many throughout the 1970s was later found to be “really hor-
rible” (Knuth, 1981, p. 173). Fortunately, we have learned much from past
mistakes. Many texts on numerical methods are available that are filled
with cautionary tales to help us avoid dangerous pitfalls. Golub and van
Loan (1996) provide excellent coverage of general matrix computations,

102 4. Implementing Computational Routines

whereas Kennedy and Gentle (1980), Thisted (1988), and Lange (1999)
write specifically for a statistical audience. A respectable treatment of nu-
merical accuracy and error analysis is beyond the scope of this book. We
would feel irresponsible, however, if we did not mention some key ideas and
provide a few simple guidelines dictated by common sense.

4.1.2 Floating-Point Approximation

When writing computational routines, the first thing to realize is that non-
integer computer arithmetic is inexact. Real numbers are rationally ap-
proximated by floating-point models that may vary across platforms. With
any given compiler, different models are made available by changing the
kind parameter as described in Section 2.1.7.

A typical 64-bit real number, which corresponds to double precision, is
precise to 15 significant digits and has a decimal exponent range of 307; it
takes a maximum value of

1.797693134862316 × 10308 ≈ e709.7827

and a minimum positive value of

2.225073858507201 × 10−308 ≈ e−708.3964.

In this model, the number 1 + ε for any

0 < ε < 2.220446049250313 × 10−16

will be recognized as 1. In contrast, a typical 32-bit or single-precision
real number has only 6 significant digits and takes a maximum value of
3.4028235 × 1038 and a minimum positive value of 1.1754944 × 10−38.

The first step in maintaining accuracy is to make sure that you under-
stand what kind of real variables you are using. Simply declaring

real :: x

is not good enough; the kind parameter should be explicitly set. This can
be confusing, as the values of kind corresponding to the different floating-
point models vary from one compiler to another. Consult your compiler’s
documentation to learn what kinds are available. Information is also avail-
able through several Fortran intrinsic query functions. If x is a real variable
of any kind, then precision(x) returns the number of significant digits
of decimal precision retained by this kind; range(x) returns the range of
decimal exponents that can be represented; huge(x) returns the largest
representable value; and tiny(x) returns the smallest positive value. As
an experiment, run this test program to see the characteristics of your
compiler’s default real kind.

4.1 Issues of Numerical Accuracy 103

program test
real :: x
print *, precision(x)
print *, range(x)
print *, huge(x)
print *, tiny(x)

end program test

In the days when physical memory was scarce, programmers had to worry
about whether to store values in single or double precision and make painful
decisions about accuracy versus the ability to handle large datasets. To-
day, unless we are processing large volumes of data, it often makes sense
simply to declare all real variables to have 64 bits. As the kind parameters
corresponding to 64-bit reals may vary, it is convenient to select the kind
automatically using the Fortran intrinsic function selected_real_kind.
The declarations

integer, parameter :: my_dble = selected_real_kind(15,307)
real(kind=my_dble) :: x

automatically define x to be the smallest real kind with at least 15 signif-
icant digits of precision and a decimal exponent range of at least 307. A
similar intrinsic function is available for integers. The declaration

integer, parameter :: my_int = selected_int_kind(9)

identifies the shortest kind capable of holding numbers between −109 and
109. That is, it will select a 32-bit integer, which has a maximum value of
231 − 1 =2,147,483,647. The functions range and huge can also be applied
to integer variables.

4.1.3 Roundoff and Cancellation Error

Reasonable measures should be taken to prevent large errors of cancellation.
Despite the algebraic identity

n∑
i=1

(xi − x̄)2 =
n∑

i=1

x2
i − nx̄2, (4.1)

it is well known that the errors produced by the method on the right-
hand side can be disastrous. The problem is that when the dataset has a
small coefficient of variation—i.e., when the sample mean x̄ = n−1

∑
i xi

is large relative to the standard deviation—then
∑

i x2
i and nx̄2 become

relatively close, differing only in their final digits. The roundoff errors that
arise in the accumulation of

∑
i xi and

∑
i x2

i then move to the leading
digits when the difference is taken. When computing sample variances and
covariances, it’s safer to pass through the data twice—first to compute x̄

104 4. Implementing Computational Routines

and then to accumulate the sum of (xi − x̄)2—even though it takes more
time. Alternatively, you can use the one-pass updating method described in
Exercise 10 of Section 2.6. Another famous example of where catastrophic
cancellation error may occur is in the computation of ex for x < 0 by Taylor
series. A good introduction to the causes and impact of roundoff error in
scientific computation is given by Kahaner, Moler, and Nash (1988).

To reduce the effects of roundoff error, sums of real numbers should
always be accumulated in double precision. The product of two single-
precision reals can be computed and stored exactly in double precision.
Therefore, if we compute the inner product of two single-precision real
vectors in double precision, no precision is lost. Large errors of rounding
and truncation may be inadvertently introduced through mixed-type ex-
pressions involving integers and reals, as described in Section 2.5.2, so it’s
a good idea to avoid mixed-type expressions. Also avoid integer division
unless you are absolutely sure that you know what you are doing.

Because floating-point arithmetic is approximate, it does not have many
of the familiar properties of ordinary arithmetic. Floating-point addition
is not associative, so (x + y) + z may be slightly different from x + (y +
z). When computing with matrices, a matrix result that is theoretically
symmetric may not be exactly symmetric. If exact symmetry is required,
we can replace a(i,j) and a(j,i) by their average for all i > j. Or we
can compute the upper triangle of the matrix and copy its contents into
the lower triangle, eliminating calculations that are redundant.

Some compilers offer integers longer than 32 bits or floating-point models
with precision and range beyond 64-bit reals. These extended-range rep-
resentations may be helpful in certain circumstances but should not be
used as a matter of routine, as they may cause a program to be slow and
nonportable.

4.1.4 Arithmetic Exceptions

A computational result that exceeds the largest possible value for a variable
of that kind is called an overflow. The effect of an overflow may vary from
one compiler to another, and it may also vary according to the options
chosen when the code is compiled. In some cases, an overflow will cause
the program to immediately terminate. In other cases, the result may be
represented by a special code such as NaN or Inf, and the program may
continue to run. If execution continues, these undefined values are likely to
propagate to other program variables and eventually cause a crash.

Because measurements like 10307 are uncommon in the real world, one
might think that overflows in 64-bit reals are so rare that we needn’t worry
about them. This is simply not true. Numbers of this magnitude do arise as
intermediate quantities in computations whose final results are reasonable.
For example, consider the density function for a Student’s t random variable

4.1 Issues of Numerical Accuracy 105

with ν > 0 degrees of freedom,

f(y) =
Γ
(

ν+1
2

)
Γ
(

ν
2

)√
πν

(
1 +

y2

ν

)−(ν+1
2)

. (4.2)

The gamma function in the numerator produces a double-precision overflow
for ν = 343. A simple remedy in this case is to work with the log of the
gamma function.

Many compilers offer special platform-specific tools for handling over-
flows. If you are reluctant to invest the time and effort to learn how to use
these tools, or if you want to maintain portability, a good strategy is to
anticipate where overflows are likely to occur and prevent them from hap-
pening. This is not as difficult as it may seem. With 64-bit real variables,
overflows caused by summation are rare. The main culprit is exponentia-
tion. Before evaluating any expression involving exp(x), for example, one
may first compare x with log(huge(x)); if x is too large, we can report
the problem to our own error-messaging system (Section 3.6) and gracefully
exit. Another common culprit is cumulative multiplication, which arises in
computing likelihood functions and determinants of large matrices. To cal-
culate

∏
i xi, a less efficient but safer method is to accumulate

∑
i log |xi|.

Any real result of magnitude less than the smallest representable value
produces an underflow . When an underflow occurs, the usual default be-
havior is to set the result to zero and continue. In most cases, this is ac-
ceptable. We should, however, make sure that a zero value does not cause
any problems later (e.g., through attempted division by zero). As a matter
of routine, one should incorporate checks to prevent division by zero, log-
arithms of nonpositive numbers, square roots of negative numbers, and so
on.

Many novice programmers fail to put enough safeguards into their com-
putational routines, and the resulting programs crash too often. Carried
to an extreme, however, too much vigilance may cause the programmer
and the program itself to get bogged down. With enough safeguards, it
is theoretically possible to thwart every conceivable arithmetic exception
that might ever occur, but the code would be too cumbersome to write
and would run too slowly. Expert programmers who produce very-high-
performance numerical procedures, such as those in LAPACK, strike a
careful balance between preventing exceptions through coded safeguards
and allowing exceptions to occur, with the subsequent actions determined
by special exception-handling procedures. A useful discussion on this bal-
ance is given by Hauser (1996). For most of us, the commonsense strategy is
to add enough safeguards to prevent crashes during routine use and in ex-
ceptional circumstances, yet allow them to be theoretically possible under
rare and highly extreme conditions.

106 4. Implementing Computational Routines

4.1.5 Resources for Numerical Programming

Many of the computational tasks required within a statistical application—
solving linear systems, calculating eigenvalues and eigenvectors, computing
determinants, finding tail areas of probability distributions, etc.—can be
done in a variety of ways. Some of these tend to be numerically stable and
accurate, whereas others are inherently ill-conditioned and susceptible to
major error. One excellent way to ensure accuracy and efficiency is to call
external procedures that have been professionally coded and tested. Many
high-performance procedures are available in LAPACK or libraries from
the Numerical Algorithms Group (NAG) or IMSL. If the source code is
provided, the source can simply be copied and placed in your own pro-
gram. If the source is not available, you will have to link to the procedures
either during the build process or at run time using dynamic link libraries
(DLLs). If you choose to use procedures from any of these libraries, make
sure that you understand the implications of any copyright restrictions or
licensing requirements before distributing your program to others. On the
other hand, if you choose to code a procedure yourself, take some time to
learn about the properties of the algorithm that you intend to use.

The well-known Numerical Recipes textbooks by Press et al. (1992, 1996)
are invaluable references for scientific programming in Fortran, that contain
many open-source procedures for performing matrix computations, approx-
imating functions, numerical integration, and so on. Until 1997, hundreds of
procedures of interest to statisticians were published in Applied Statistics,
and they have been partially collected by Griffiths and Hill (1985). Most
of these procedures were written in Fortran 77, and some of them will
need revision to conform to practices suggested in this book—e.g., changing
from single to double precision and eliminating the use of pause and stop.
Adaptations of some Applied Statistics algorithms to modern Fortran are
publicly available from the Statlib archives at Carnegie Mellon University
and other Web sites. Source code from the Internet may be useful, but it
comes with no guarantees of accuracy or good performance; be sure to test
it thoroughly and give proper credit to the authors if you find it useful.

4.1.6 Exercises

1. Write a procedure for computing a sample variance with single pre-
cision using the right-hand side of the identity (4.1), and show by
example how the result can be quite inaccurate.

2. Write a sample program to demonstrate that floating-point addition
is not associative.

3. The Taylor series

ex = 1 + x +
x2

2!
+

x2

3!
+ · · ·

4.1 Issues of Numerical Accuracy 107

converges for all values of x. This suggests that y = ex may be com-
puted as follows: set y = a = n = 1 and repeat

a = ax/n,

y = y + a,

n = n + 1,

until a is indistinguishable from zero. Implement this procedure in
a Fortran procedure using single-precision arithmetic. Compare your
computed values of ex to those from the intrinsic function exp for
increasingly negative values x = −1,−2,−3, . . . until exp(x) under-
flows. Try to explain what you find. To solve the problem, modify
your function to compute e|x| and take its reciprocal if x < 0.

4. There are many ways to compute tail areas from a normal distribu-
tion,

1 − Φ(z) =
1√
2π

∫ ∞

z

e−t2/2dt.

One way uses a continued fraction derived by Laplace (1749–1827),∫ ∞

z

e−t2/2dt =
e−z2/2

z +
1

z +
2

z +
3

z + · · ·

.

Write a procedure for approximating Φ(z) to any given number of
terms in the continued fraction. Compare your results with values for
Φ(z) obtained from published tables or from one or more standard
statistical packages.

5. To compute the gamma function

Γ(x) =
∫ ∞

0

yx−1e−ydy

for x > 0, Press et al. (1992) recommend the approximation

Γ(x) ≈ x−1

(
x +

11
2

)x+1/2

e−(x+11/2)

×
√

2π

[
c0 +

c1

x + 1
+

c2

x + 2
+ · · · + c6

x + 6

]
,

with coefficients as shown in Table 4.1. Using this method, write a
procedure for evaluating log Γ(x) in double precision. Investigate its
accuracy by comparing your estimates of Γ(x + 1) with exact values
of x! computed by integer arithmetic for x = 0, 1, 2,

108 4. Implementing Computational Routines

TABLE 4.1. Coefficients for approximating the gamma function.

c0 1.000000000190015
c1 76.18009172947146
c2 −86.50532032941677
c3 24.01409824083091
c4 −1.231739572450155
c5 1.208650973866179 × 10−3

c6 −5.395239384953 × 10−6

6. Using your log-gamma approximation from the previous exercise,
write a procedure for computing the Student’s t density function
(4.2). Compare your results to those from a well-established statisti-
cal package for reasonable values of y and ν.

7. Many interesting and elegant formulas exist for the constant π, but
they are not equally good for computation. For example, Wallis (1616–
1703) found that

π

2
=

2 · 2 · 4 · 4 · 6 · 6 · 8 · 8 · · ·
1 · 3 · 3 · 5 · 5 · 7 · 7 · 9 · · ·

and
2
π

=
(

1 − 1
22

)(
1 − 1

42

)(
1 − 1

62

)
· · · .

A continued fraction due to Brouncker (1620–1684) is

4
π

= 1 +
12

2 +
32

2 +
52

2 +
72

2 + · · ·

.

Euler (1707–1783) presented the well-known series

π2

6
=

1
12

+
1
22

+
1
32

+
1
42

+ · · · ,

and an early product derived by Vieta (1540–1603) is

2
π

=

√
2

2
·
√

2 +
√

2
2

·

√
2 +

√
2 +

√
2

2
· · · .

Implement each of these methods in double-precision arithmetic and
see how many terms you need to match π ≈ 3.14159265 to single-
precision accuracy.

4.2 Example: Fitting a Simple Finite Mixture 109

4.2 Example: Fitting a Simple Finite Mixture

4.2.1 The Problem

To illustrate some good practices for designing and coding computational
routines, we now turn to a simple example. Suppose we have a sample
y1, . . . , yn from a population with density

f(yi) = π λ1 exp(−λ1yi) + (1 − π) λ2 exp(−λ2yi),

yi > 0, where the parameters π ∈ [0, 1], λ1 > 0, and λ2 > 0 are to be
estimated. That is, some proportion π of the population follows an expo-
nential distribution with mean λ−1

1 , and the remainder follows an exponen-
tial distribution with mean λ−1

2 . This is one of the simplest examples of
a finite-mixture model (McLachlan and Peel, 2000). Maximum-likelihood
(ML) estimates can be easily calculated by the following EM algorithm.
First, calculate the posterior probability that yi came from the first popu-
lation component,

δi =
πλ1 exp(−λ1yi)

πλ1 exp(−λ1yi) + (1 − π)λ2 exp(−λ2yi)
,

i = 1, . . . , n, using provisional estimates π = π̂, λ1 = λ̂1 and λ2 = λ̂2.
Second, update the estimates by

π̂ =
∑

i δi

n
, λ̂1 =

∑
i δi∑

i δiyi
, λ̂2 =

∑
i(1 − δi)∑

i(1 − δi)yi
.

Alternating between these two steps produces a sequence of estimates that
converges reliably to a local or global maximum of the loglikelihood func-
tion l =

∑
i log f(yi). If the sample is large enough for the loglikelihood

function to be approximately quadratic in the vicinity of the ML estimate,
then reasonably accurate inferences may be obtained from the estimated
covariance matrix [−l′′]−1, where l′′ is the Hessian (i.e., the matrix of sec-
ond derivatives of l with respect to the parameters). For this model, the
score functions are

∂l

∂π
=

∑
i(δi − π)

π(1 − π)
,

∂l

∂λ1
= −

∑
i

δi(yi − λ−1
1),

∂l

∂λ2
= −

∑
i

(1 − δi)(yi − λ−1
2),

the diagonal elements of the Hessian are

∂2l

∂π2
= −

∑
i(δi − π)2

π2(1 − π)2
,

110 4. Implementing Computational Routines

∂2l

∂λ2
1

=
∑

i

{−δiλ
−2
1 + δi(1 − δi)(yi − λ−1

1)2
}

,

∂2l

∂λ2
2

=
∑

i

{−(1 − δi)λ−2
2 + δi(1 − δi)(yi − λ−1

2)2
}

,

and the off-diagonal elements are

∂2l

∂π∂λ1
= −

∑
i δi(1 − δi)(yi − λ−1

1)
π(1 − π)

,

∂2l

∂π∂λ2
=

∑
i δi(1 − δi)(yi − λ−1

2)
π(1 − π)

,

and
∂2l

∂λ1∂λ2
= −

∑
i

δi(1 − δi)(yi − λ−1
1)(yi − λ−1

2).

Likelihood functions for finite mixtures have unusual properties that can
make statistical inference challenging (Titterington, Smith, and Makov,
1985; McLachlan and Peel, 2000). Difficulties in likelihood-based inference
for this model were investigated by Chung, Loken, and Schafer (2004).
Nevertheless, ML via the EM algorithm remains the most widely used
estimation technique for finite mixtures. EM increases the loglikelihood at
each step and will eventually converge to something, but the solution may
not be well-behaved. Sometimes EM will converge to an estimate on the
boundary of the parameter space. Likelihood functions for finite mixtures
are invariant to permutations of the component labels. In this problem, if
a mode occurs at π = 0.4, λ1 = 1.0, λ2 = 3.0, then an equivalent mode
will exist at π = 0.6, λ1 = 3.0, λ2 = 1.0, and EM could converge to
either one depending on the starting values. The parameter space also has
continuous regions of indeterminacy. In this example, π is indeterminate
where λ1 = λ2, and the Hessian matrix is singular anywhere within this
plane. For these reasons, it is a good idea to examine the score functions
at the EM solution to see whether they are zero and to check the Hessian
to see if the loglikelihood is concave.

4.2.2 Programming Constants

We will now write a Fortran procedure that implements the EM algorithm
and computes the first and second derivatives at the solution. Our first act
of coding is to create a module of programming constants. This module
has no executable statements but merely provides a convenient location to
define parameters that will be used throughout the program. In particular,
this is where we will define the kind parameters for integer and real vari-
ables to help ensure consistency of results across compilers, as discussed in
Section 4.1.2. A bare-bones module of constants is shown below.

4.2 Example: Fitting a Simple Finite Mixture 111

constants.f90

!##

module program_constants

implicit none

public

! Define compiler-specific KIND numbers for integers,

! single and double-precision reals to help ensure consistency

! of performance across platforms:

integer, parameter :: our_int = selected_int_kind(9), &

our_sgle = selected_real_kind(6,37), &

our_dble = selected_real_kind(15,307)

! Common integer values returned by all functions to indicate

! success or failure:

integer(kind=our_int), parameter :: RETURN_SUCCESS = 0, &

RETURN_FAIL = -1

end module program_constants

8!##

Style tip

Place important parameters in a module so that, if it becomes necessary
to change them, the changes can be made quickly.

4.2.3 A Computational Engine Module

When creating a computational routine, whether it will be used for a single
application or shared among applications, we highly recommend placing it
in a module. Making it a public procedure within a module has many ben-
efits. First, the procedure will automatically be given an explicit interface.
As a result, during the build process, the linker will check to make sure
that when a program calls the procedure, the actual and dummy argu-
ments all agree in type and kind. With a module procedure, the argument
list may use enhanced features such as assumed-shape arrays and optional
arguments to make the calling process more convenient and less prone to
error. Most importantly, if the procedure is placed within a module, all of
its inner workings—the parameters, data types, and procedures used by
it—can be kept private, so that future changes and enhancements are less
likely to propagate errors.

Here is the skeleton of the module that will hold the computational en-
gine. This module has one public procedure; everything else is kept private.

em exponential engine.f90

!##

module em_exponential_engine

use error_handler

use program_constants

112 4. Implementing Computational Routines

implicit none

private ! by default

public :: run_em_exponential

! parameters private to this module

character(len=*), parameter :: modname = "em_exponential_engine"

!###

contains

!###

! all public and private procedures will be placed here

!###

end module em_exponential_engine

!##

4.2.4 A Public Procedure With Safeguards

Now we begin to write the procedure itself. Because it is public, we should
presume that it will be misused and put in safeguards to prevent common
errors and provide feedback through informative messages. Here are the
parts of the procedure that define its interface with the outside world.

!##

integer(kind=our_int) function run_em_exponential(y, &

pi, lambda_1, lambda_2, iter, converged, loglik, &

score, hessian, err, maxits, eps) result(answer)

! EM algorithm for computing ML estimates for the mixture of

! two exponentials,

! pi * exponential with mean 1/lambda_1

! + (1 - pi) * exponential with mean 1/lambda_2

implicit none

! Input data containing the sample:

real(kind=our_dble), intent(in) :: y(:)

! Starting values for parameters; these will also return

! the estimates:

real(kind=our_dble), intent(inout) :: pi, lambda_1, lambda_2

! Number of EM iterations performed:

integer(kind=our_int), intent(out) :: iter

! T if EM converged, F otherwise:

logical, intent(out) :: converged

! Loglikelihood function and its first two derivatives at

! the parameter estimates:

real(kind=our_dble), intent(out) :: loglik, score(3), &

hessian(3,3)

! Error messages:

type(error_type), intent(inout) :: err

! Optional: maximum number of iterations and

! criterion for judging convergence.

integer(kind=our_int), intent(in), optional :: maxits

real(kind=our_dble), intent(in), optional :: eps

! locals

integer(kind=our_int) :: max_iter, i, n

real(kind=our_dble) :: epsilon, oldpi, oldlambda_1, &

4.2 Example: Fitting a Simple Finite Mixture 113

oldlambda_2, d, f, sumd, sumy, sumdy

character(len=12) :: sInt

character(len=*), parameter :: subname = "run_em_exponential"

! begin

answer = RETURN_FAIL

score(:) = 0.

hessian(:,:) = 0.

! check input arguments and set defaults

if((pi < 0.) .or. (pi > 1.)) goto 300

if((lambda_1 <= 0.) .or. (lambda_2 <= 0.)) goto 400

if(present(maxits)) then

if(maxits < 0) goto 500

max_iter = maxits

else

max_iter = 1000

end if

if(present(eps)) then

if(eps < 0.) goto 600

epsilon = eps

else

epsilon = .00001

end if

! run EM

!!!! lines omitted !!!!

! normal exit

answer = RETURN_SUCCESS

return

! error traps

300 call err_handle(err, 1000, &

called_from = subname//" in MOD "//modname, &

custom_1 = "Argument pi out of range.")

return

400 call err_handle(err, 1000, &

called_from = subname//" in MOD "//modname, &

custom_1 = "Argument lambda_1 or lambda_2 out of range.")

return

500 call err_handle(err, 1000, &

called_from = subname//" in MOD "//modname, &

custom_1 = "Invalid value for argument maxits.")

return

600 call err_handle(err, 1000, &

called_from = subname//" in MOD "//modname, &

custom_1 = "Invalid value for argument eps.")

return

!!!! lines omitted !!!!

end function run_em_exponential

!###

114 4. Implementing Computational Routines

Notice how easy it is to add safeguards and error messages using the
system that we developed in Section 3.6. If necessary, more can be added
in the future. For example, we should probably check to make sure that
all the data values in y are positive. But life is hectic, and despite our
good intentions we may never actually do it later. Try to anticipate as
many errors as you can and incorporate checks when writing the procedure
for the first time. Notice also that we’ve added comments to describe the
procedure and each of the dummy arguments. With these comments, an
intelligent person won’t need an extra document to understand how to
use it. As a rule, force yourself to add comments generously to all public
procedures so that they become self-documenting.

4.2.5 The Computations

The remaining parts of the function that implements the EM algorithm are
shown below. The function’s returned value is RETURN_SUCCESS if the algo-
rithm runs normally, whether or not it has converged within the specified
maximum number of iterations; a value of RETURN_FAIL indicates that ex-
ecution had to be aborted to prevent a crash. This function calls a private
procedure, eval_score_and_hessian, which is not shown; it is a straight-
forward implementation of derivative formulas given in Section 4.2.1.

! run EM

n = size(y)

if(n == 0) goto 700

sumy = sum(y)

converged = .false.

iter = 0

do

iter = iter + 1

write(sInt, "(I12)") iter

sInt = adjustl(sInt)

oldpi = pi

oldlambda_1 = lambda_1

oldlambda_2 = lambda_2

loglik = 0.

sumd = 0.

sumdy = 0.

do i = 1, n

f = pi * lambda_1 * exp(-lambda_1 * y(i)) &

+ (1 - pi) * lambda_2 * exp(-lambda_2 * y(i))

loglik = loglik + log(f)

d = pi * lambda_1 * exp(-lambda_1 * y(i)) / f

sumd = sumd + d

sumdy = sumdy + d * y(i)

end do

pi = sumd / real(n)

if(sumdy == 0.) goto 700

lambda_1 = sumd / sumdy

4.2 Example: Fitting a Simple Finite Mixture 115

if(sumy == sumdy) goto 700

lambda_2 = (real(n) - sumd) / (sumy - sumdy)

converged = (abs(pi - oldpi) < epsilon) .and. &

(abs(lambda_1 - oldlambda_1) < epsilon) .and. &

(abs(lambda_2 - oldlambda_2) < epsilon)

if((iter >= max_iter) .or. converged) exit

end do

if(.not. converged) &

call err_handle(err, 1000, &

called_from = subname//" in MOD "//modname, &

custom_1 = "Algorithm failed to converge by " &

// "iteration " // trim(sInt))

if(eval_score_and_hessian(y, pi, lambda_1, lambda_2, &

score, hessian, err) == RETURN_FAIL) goto 800

! normal exit

answer = RETURN_SUCCESS

!!!! lines omitted !!!!

700 call err_handle(err, 1000, &

called_from = subname//" in MOD "//modname, &

custom_1 = "Attempted division by zero;", &

custom_2 = "EM algorithm aborted at iteration " &

// trim(sInt))

return

800 call err_handle(err, 1000, &

called_from = subname//" in MOD "//modname)

return

end function run_em_exponential

!###

Style tip

If an iterative procedure must be aborted, report to the error handler the
iteration at which the problem occurred.

This procedure as shown is still not entirely safe. For greater safety, we
should probably check to prevent overflows before the calls to exp, and we
should check for underflow in the variable f before computing log(f).

4.2.6 Strategies for Calling the Engine

The final, crucial step is to actually call the engine, test it, and use it. We
may approach this task in at least three ways. First, we can write a console
program that reads in a dataset, calls the EM procedure, and reports the
results. A second way is to encapsulate the procedure in a dynamic link
library (DLL) and call it from another application (e.g., a computational

116 4. Implementing Computational Routines

package such as S-PLUS, R, or MATLAB). A third way is to package it as
a COM server and call it from another application.

Each method has its own advantages and drawbacks. A stand-alone con-
sole program is highly portable. Writing a program for your own personal
use that works on a single dataset is easy. But creating a robust application
that can be used by others for a variety of datasets is not trivial; lots of
code is needed to set up the user interface, to handle file I/O for reading the
data, and to format, print, and save the results. Moreover, console applica-
tions tend to be poor environments for testing. Our program may produce
answers, but we cannot be certain that the answers are correct until we
carefully analyze them and obtain independent verification. This means
that we may have to read the results into a computational package and do
some sophisticated postprocessing; or we may need to try out the program
on artificial, simulated, or published data for which the correct answers
are already known. Either way, this requires sending data back and forth
between our console program and a computational package, which can be
tedious.

If we want to test the procedure as quickly as possible and then move
on to other tasks, a better method is to produce a DLL. Most Fortran
compilers can create DLLs quite easily. However, the methods by which
applications communicate with DLLs may be crude or poorly documented.
It is easy to make mistakes by passing data incorrectly, and if there is a
problem, the system may not tell us where it occurred. With DLLs it may
also be difficult to locate certain types of errors within the Fortran code
(e.g., subscripts that stray outside the boundaries of an array). The process
of creating and using DLLs will be described in Chapter 6.

The third option, creating a COM server, opens up elegant and robust
channels of communication between your engine and the outside world.
Ultimately, this may be the best way to package your software to make
it versatile and easy for others to use. It does, however, require a fair
amount of additional coding to create and document all the properties and
methods. It also requires us to wrap our Fortran with additional, compiler-
specific code to create the server. The subject of COM servers will be
taken up in detail beginning with Chapter 7. Most statisticians will find
these techniques useful for packaging and delivering the finished product
but not for preliminary testing or incremental development.

4.2.7 A Simple Calling Program

As an initial test of our procedure, let’s run the EM algorithm on this
example dataset of n = 50 observations:

5.6 0.7 2.4 2.2 4.5 0.6 2.3 3.1 1.6 2.2
0.1 4.9 9.0 7.4 1.8 9.7 0.9 1.0 0.7 3.4
1.8 0.5 0.1 0.7 0.1 6.6 1.6 8.6 0.3 0.1

4.2 Example: Fitting a Simple Finite Mixture 117

4.2 0.8 3.1 0.2 1.0 2.0 2.3 0.8 6.6 1.2
0.3 2.7 0.5 0.7 1.8 1.5 2.8 18.3 1.2 0.6

These data, exactly as shown, were placed in an ASCII text file called
good50.dat. Below is a crude test program that reads in this particular
dataset, calls the EM procedure with arbitrarily chosen starting values of
π = 0.3, λ1 = 0.5, and λ2 = 2.0, and prints all results to the console.

em test.f90

!###

program em_test

! quick and dirty test program

use error_handler

use program_constants

use em_exponential_engine

implicit none

! declare variables

type(error_type) :: err

real(kind=our_dble) :: y(50), pi=.30, lambda_1=0.5, lambda_2=2.0, &

loglik, score(3), hessian(3,3)

integer(kind=our_int) :: iter, i

logical :: converged

character(len=*), parameter :: platform = "PC"

character(len=256) :: msg_string

! begin

open(10, file="good50.dat")

read(10, *) (y(i), i = 1, 50)

close(10)

if(run_em_exponential(y, pi, lambda_1, lambda_2, iter, &

converged, loglik, score, hessian, err) == RETURN_FAIL) &

goto 800

print *, "Iterations:", iter

print *, "Converged:", converged

print *, "Pi = ", pi

print *, "Lambda_1 = ", lambda_1

print *, "Lambda_2 = ", lambda_2

print *, "Loglik = ", loglik

print *, "Score:"

print *, score(:)

print *, "Hessian:"

do i = 1, 3

print *, hessian(i,:)

end do

800 continue

! report error message

if(err_msg_present(err)) then

call err_get_msgs(err, msg_string, platform)

print "(A)", trim(msg_string)

print "(A)", "Aborted"

end if

end program em_test

!###

118 4. Implementing Computational Routines

This is what we see when we run the program from a command line.

D:\jls\software\em_exponential>em_test
Iterations: 278
Converged: T
Pi = 0.464573293051795
Lambda_1 = 0.237951775412863
Lambda_2 = 0.678085120778212
Loglik = -99.3683135052164
Score:
-1.934833778779978E-003 -8.597519091892991E-004
-4.530797434227907E-004
Hessian:
-40.3950981345350 87.5777163156822 21.4024109210376
87.5777163156822 -328.830858103097 -21.9849166839296
21.4024109210376 -21.9849166839296 -21.7180169385656

4.2.8 Test, and Test Again

Our procedure ran, converged, and produced an answer. How can we be
sure that this answer is correct? The fact that the first derivatives are
close to zero at the solution looks promising. To have greater confidence,
however, it would be a good idea to evaluate the loglikelihood function
at these estimates independently with a computational package such as
S-PLUS, R, or MATLAB. Having a second procedure outside of Fortran
for evaluating the loglikelihood, even if it is inefficient, is very useful. With
such a procedure, we can perturb the estimated values of π, λ1, and λ2 to
see if the loglikelihood drops. We can also obtain numerical estimates of
derivatives by finite differencing,

g′(θ) ≈ g(θ + δ/2) − g(θ − δ/2)
δ

for a small positive δ. That is, we can perturb each parameter while holding
the others fixed to approximate the first and second partial derivatives
numerically. This would help us to verify not only that the program is
running as intended but that our formulas for the derivatives are correct.

Most Fortran projects will be substantially larger than this one. Our
em_exponential_engine module contains one public and one private func-
tion and just under 200 lines of source, including comments. In practice, it
is unwise to write much more than this without stopping to test what we
have written and verify that the results are correct. Novice programmers
often make the mistake of writing long programs without stopping to check
them along the way. Inevitably, the result is a hodgepodge of errors that
are extremely difficult to locate. Any program, aside from a very short one,
should be written incrementally and tested repeatedly throughout the cod-
ing process. While the computational module is being developed, we will

4.2 Example: Fitting a Simple Finite Mixture 119

need a method for calling it—usually through a crude console program or
a DLL—to systematically test each part before going on to the next step.

4.2.9 Exercises

1. The EM algorithm presented in this section can be modified to per-
form a constrained maximization of the loglikelihood function. If we
fix π equal to some constant value π0 and do not update its estimate
at each cycle, then l will be maximized subject to the constraint
π = π0. The parameters λ1 and λ2 may be constrained in a similar
fashion. Add optional arguments to run_em_exponential that allow
a user to constrain any of the parameters to be equal to their starting
values.

2. When data are prone to outliers, inferences about location and scale
based on a normal population model may be inefficient or misleading,
and it makes sense to consider alternatives with heavier tails. Suppose
that yi = µ + σεi, i = 1, . . . , n, where the εi’s are drawn from a
Student’s t distribution with ν degrees of freedom. Little and Rubin
(1987) present the following EM algorithm for ML estimation of µ and
σ2 for a fixed ν. Given the current estimates µ(t) and σ2 (t), calculate
weights

wi =
ν + 1

ν +
(
yi − µ(t)

)2
/σ2 (t)

for i = 1, . . . , n, and update the estimates as

µ(t+1) =
∑

i wiyi∑
i wi

, σ2 (t+1) =
1
n

∑
i

wi

(
yi − µ(t+1)

)2

.

Following the practices used in this section, implement this algorithm
in a module procedure. If you are able to compute the log-gamma
function (see Exercise 4, Section 4.1.6), evaluate the loglikelihood at
each step of EM to make sure that it increases. The density function
for yi is

f(y) =
Γ
(

ν+1
2

)
Γ
(

ν
2

)√
πνσ2

(
1 +

(y − µ)2

νσ2

)−(ν+1
2)

.

The ML estimate for the degrees of freedom can be found by grid
search, examining the loglikelihood achieved for various values of ν.

120 4. Implementing Computational Routines

4.3 Efficient Routines at Lower Levels

4.3.1 What Is a Lower-Level Procedure?

The ML estimation procedure of the previous section is a fairly com-
plete analysis that would be applied only once to a given dataset. One
could imagine writing a program that would call run_em_exponential
repeatedly—for example, when performing a simulation study. Under ordi-
nary circumstances, however, a typical client application is likely to call it
just once. Routines of this type are called higher-level procedures. Lower-
level procedures, on the other hand, are those that are called from a typical
application hundreds, thousands, or millions of times. Examples of lower-
level procedures include generating random variates, multiplying or invert-
ing matrices, and computing quantiles or tail areas of common distributions
such as normal, t, F , and χ2.

In describing matrix computations, numerical analysts use more pre-
cise notions of level. Level-1 procedures operate on arrays of size n and
involve O(n) floating-point operations (e.g., computing an inner product
of two vectors), level-2 procedures involve arrays of size mn and do an
O(mn) amount of work, and so on. For our purposes, we will not need such
a detailed classification; we will simply categorize procedures as lower- or
higher-level according to whether they are likely to be called many times or
just once. The distinction between these classes is not always clear because
a higher-level procedure in one application may serve as a lower-level pro-
cedure in another. For example, weighted least-squares regression may be
applied once to a dataset, or it may be called repeatedly, as in a procedure
for fitting generalized linear models (McCullagh and Nelder, 1989).

Lower-level procedures are the building blocks of a statistical program.
A procedure written for one application could easily be used in another.
As your programming experience grows, you will want to collect these pro-
cedures and arrange them into modules that can be shared among applica-
tions. It has often been said that programs tend to follow a 90/10 rule: 90%
of the actual processing time is spent executing the instructions from 10%
of the source code. The origin of this saying is not clear, although a possible
early source is Knuth (1971). Some say that this mythical ratio is closer to
80/20. Either way, the important message is that in computationally inten-
sive programming, the crucial lines of source code are often found at the
lower levels. Therefore, increasing efficiency at the lower levels may be the
key to improving a program’s overall performance. Important strategies for
lower-level procedures include reducing the overhead cost associated with
each procedure call, taking advantage of special structure, loop reordering,
and optimization.

4.3 Efficient Routines at Lower Levels 121

4.3.2 Keeping Overhead Low

Overhead refers to a fixed amount of computation that is performed each
time a routine is invoked. When writing a lower-level procedure, it’s wise
to examine your code for time-consuming tasks that would be redundant
if performed each time the procedure is called. If you find any, consider
moving them up to procedures at a higher level.

One task that should be avoided in lower-level routines is dynamic alloca-
tion of temporary workspaces. If the procedure is called over and over, the
repeated allocation and deallocation of memory may seriously degrade per-
formance. Lower-level procedures do sometimes require workspace arrays
whose size is not known in advance. If your procedure needs one or more
workspaces, it’s preferable to pass the workspace as an argument rather
than making it a local variable.

For example, consider the problem of approximating a one-dimensional
integral by Gauss-Hermite quadrature,

∫ ∞

−∞
e−x2

f(x)dx ≈
n∑

j=1

wjf(xj), (4.3)

where the abscissas x1, . . . , xn and the weights w1, . . . , wn are generated
by the theory of orthogonal polynomials. A procedure for computing the
xi’s and wi’s for a given n is given by Press et al. (1992, Section 4.5). The
accuracy of the approximation may be improved by increasing the number
of quadrature points n. An implementation for an arbitrary f might begin
like this:

integer(our_int) function gauss_hermite(func, n, ans) &
result(answer)

! n-point Gauss-Hermite quadrature
implicit none
! arguments
real(our_dble) :: func ! the function f
integer(our_int), intent(in) :: n ! number of points
real(our_dble), intent(out) :: ans ! answer
! locals
real(kind=our_dble), allocatable :: x(:) ! abscissas
real(kind=our_dble), allocatable :: w(:) ! weights

The rest of the procedure would allocate x and w to be of size n, compute
the abscissas and the weights, compute the right-hand side of (4.3), and
deallocate x and w. If this procedure were called repeatedly with the same
value for n, the reallocation and recomputation of x and w would be redun-
dant. A better strategy would be to write a separate routine for computing
x and w so that these arrays could be created in advance.

122 4. Implementing Computational Routines

Be aware that memory may be allocated within a procedure even if there
are no allocate statements. In gauss_hermite, the two local arrays could
have been declared as

real(kind=our_dble) :: x(n), w(n)

because n appears as a dummy argument. In that case, Fortran would have
automatically allocated them at the start of the procedure and deallocated
them at the end (Section 2.3.5). Arrays of this type, called automatic arrays,
should be avoided in lower-level procedures.

There is another situation where an array may be allocated without
an explicit request from the programmer: when a dummy argument to a
procedure is a fixed-shape or adjustable array but the corresponding actual
argument is a pointer. This will be explained shortly, after we discuss issues
of array storage and stride.

4.3.3 Taking Advantage of Structure

The essence of computational programming is to convert mathematical
formulas into code. Often the formulas provide little or no guidance on
how to do this efficiently. In mathematical terms, A−1 is well-defined and
unique provided that A is nonsingular, yet there are many possible ways
to compute A−1. In general, we want to use methods that are tailored to
take advantage of any special characteristics of A. It would be wasteful, for
example, to apply a general method such as Crout-Doolittle to solve a tri-
angular or banded linear system or to invert a symmetric, positive-definite
matrix. Triangular matrices are more effectively inverted by a backsolving
operation, banded systems can be solved by a banded version of Gaus-
sian elimination, and the usual way to invert a symmetric, positive-definite
matrix is through a Cholesky factorization. Whether you are calling pro-
fessionally written routines from a package such as LAPACK or writing
the routines yourself, be sure to apply methods that take advantage of any
special structure that may exist.

Mathematical formulas are designed to be concise, but they often suggest
procedures that are grossly inefficient. For example, weighted least-squares
regression is conveniently written as β̂ = (XT WX)−1XT Wy, where W is
a matrix with weights w1, . . . , wn on the diagonal and zeroes elsewhere. In
practice, it would be extremely wasteful to actually form the n×n matrix W
and compute XT WX by matrix multiplication. Rather, we would compute
the (j, k)th element of XT WX directly as

∑n
i=1 wixijxik for j ≤ k and then

fill in the lower triangle of this symmetric matrix by copying from the upper
triangle. As you convert formulas into code, be aware that concise notation
and efficient programming are two entirely different matters and strive to
eliminate unnecessary or redundant computation at all levels.

4.3 Efficient Routines at Lower Levels 123

4.3.4 Loop Reordering, Stride and Saxpy

The order in which operations are carried out may have major consequences
for efficiency. Consider the problem of computing AB = C, where the
(m × r) matrix A and the (r × n) matrix B have no particular structure.
By definition, the (i, j)th element of C is the inner product of the ith row
of A and the jth column of B,

cij =
∑

k

aikbkj .

The obvious implementation of AB = C is

c(:,:) = 0.
do i = 1, m

do j = 1, n
do k = 1, r

c(i,j) = c(i,j) + a(i,k) * b(k,j)
end do

end do
end do

but this is not the only way. There are six different ways to arrange the
computations corresponding to the 3! permutations of the indices i, j, and
k. Each involves the same number of floating-point operations, but they do
not perform equally well. A better method puts j in the outer loop, k in
the middle, and i in the innermost loop:

c(:,:) = 0.
do j = 1, n

do k = 1, r
do i = 1, m

c(i,j) = c(i,j) + a(i,k) * b(k,j)
end do

end do
end do

Why is this second method better? The reasons have to do with the
way data are stored and accessed. In Fortran, the elements of an array
are stored in a contiguous section of the computer’s main memory. The
storage order is antilexicographical, in which the subscript corresponding to
the first dimension varies fastest, the subscript corresponding to the second
dimension varies next fastest, and so on. For example, the elements of A are
stored in a columnwise fashion, with a(1,1), a(2,1), . . . , a(n,1) followed
by a(1,2), a(2,2), . . . , a(n,2), etc. Before an array can be operated
upon, its contents must be copied from the computer’s main memory into
the cache, a small bank of high-speed memory locations positioned very
close to the processor. If the array is too large to fit in the cache, then it

124 4. Implementing Computational Routines

must be moved in one section at a time. This copying of data from one
area of memory to another can be more time-consuming than the actual
mathematical computations performed by the processor. For efficiency, it
helps to arrange the computations to operate on contiguous regions of
arrays (e.g., on columns of matrices rather than rows) to reduce the amount
of copying to and from the cache.

More generally, the speed of array computations can be greatly affected
by stride. Stride refers to the increment or spacing of memory locations
that are being operated upon in an iterative procedure. For the array

real(kind=our_dble) :: x(p, q, n)

an operation on x(i,:,:) has unit stride, an operation on x(:,j,:) has a
stride of p, and an operation on x(:,:,k) has a stride of p*q. Computations
on arrays, regardless of their size, tend to be most efficient when they are
arranged to have unit stride in their innermost loops.

Returning to the problem of computing AB = C, consider the innermost
loop of the first method:

do k = 1, r
c(i,j) = c(i,j) + a(i,k) * b(k,j)

end do

The portions of the arrays A, B and C active in this loop are shown below
with the symbol ‘×’,⎡

⎢⎢⎢⎢⎣
· · ·
× × ×
· · ·
· · ·
· · ·

⎤
⎥⎥⎥⎥⎦

⎡
⎣ · × · ·

· × · ·
· × · ·

⎤
⎦ =

⎡
⎢⎢⎢⎢⎣

· · · ·
· × · ·
· · · ·
· · · ·
· · · ·

⎤
⎥⎥⎥⎥⎦ .

This operation has a unit stride for B but not for A. In contrast, the
innermost loop of the second method,

do i = 1, m
c(i,j) = c(i,j) + a(i,k) * b(k,j)

end do

has unit stride for both A and C,⎡
⎢⎢⎢⎢⎣

· × ·
· × ·
· × ·
· × ·
· × ·

⎤
⎥⎥⎥⎥⎦

⎡
⎣ · · · ·

· · × ·
· · · ·

⎤
⎦ =

⎡
⎢⎢⎢⎢⎣

· · × ·
· · × ·
· · × ·
· · × ·
· · × ·

⎤
⎥⎥⎥⎥⎦ .

This latter operation, which can also be written as

c(:,j) = c(:,j) + a(:,k) * b(k,j)

4.3 Efficient Routines at Lower Levels 125

is sometimes called a saxpy. Saxpy, an abbreviation for “scalar-alpha x plus
y,” is an operation of the form z = αx + y, where x and y are vectors of
equal length and α is a scalar. Many of the matrix procedures commonly
used in statistics, including Gaussian elimination and Cholesky factoriza-
tion, can be arranged to make them rich in saxpys and other unit-stride
operations. This is one of the key ideas underlying the high-performance
matrix subroutines in BLAS and LAPACK. A guide to matrix computa-
tions that exploit the use of saxpys is given by Golub and van Loan (1996).

4.3.5 Optimization, Pipelining and Multiple Processors

When building your application, your compiler may allow you to request
varying degrees and types of optimization. Optimization refers to a variety
of measures automatically taken to improve overall performance. If your
source code contains the statement

p = exp(eta) / (1. + exp(eta))

most compilers will see the redundant partial expression and implement it
as if it had been written like this:

tmp = exp(eta)
p = tmp / (1. + tmp)

Many compilers are capable of analyzing nested loops and identifying where
they can be reordered to improve efficiency. Another commonly used trick
is loop unrolling, in which iteration cycles of an inner loop are replaced by
multiple copies of the code within the body of the loop.

A different set of issues governing efficiency pertains to the way that
tasks are scheduled for the computer’s processor. Before the processor can
perform a task, it must first receive all the details of the instruction, in-
cluding the basic operation to be performed (e.g., addition), the memory
locations of the operands, and where to store the result. The rate at which
instructions can be carried out depends not only on the processor’s clock
speed but on the particulars of its architecture. An old-fashioned processor
would wait for an instruction to be fully loaded, execute the instruction,
wait for the next one, and so on. Newer, more sophisticated processors
are designed for vector computations and pipelining. Pipelining is a tech-
nique that increases the overall volume of work performed by reducing the
amount of processor idle time, much like an assembly line in a factory. In a
pipeline, future instructions are loaded while current instructions are being
carried out. Pipelining tends to work best for highly repetitive tasks with
unit stride, such as saxpys on long vectors. For shorter vectors, the time
required to set up the pipeline may outweigh any resulting savings.

Recent years have also seen developments in parallel computing, in which
computational tasks are simultaneously scheduled across multiple proces-
sors. The best methods for exploiting parallel architecture typically depend

126 4. Implementing Computational Routines

on the details of the system, including the number of processors, the manner
in which they communicate with each other and the degree to which they
share memory. An extended discussion of how to write Fortran programs
to exploit parallel architecture is given by Press et al. (1996).

Most readers will be more interested in writing code that performs well
across a variety of systems than optimizing a program for any particular
system. Therefore, we suggest that you follow a few simple principles. First,
don’t automatically assume that the compiler will be smart enough to
automatically translate inefficient code into smart code. Take some time
to arrange your code to operate on contiguous sections of arrays with unit
stride, so that the processor has opportunities to set up efficient pipelines.
Be aware of operations on array elements that can be carried out in any
order, and implement them with expressions involving whole arrays, array
sections, and where and forall statements. Use intrinsic array functions
such as sum, dot_product, and matmul as you wish, but be aware that
in some cases these may be slower than writing your own loops (Section
2.2.4). Finally, take advantage of the optimization features of your compiler
when your program is ready for distribution and use.

4.3.6 A Simple Example

To illustrate savings that can be achieved from simple rearrangements, con-
sider two different ways of computing XT y, where X is an n×p matrix and
y is an n-vector. The first method operates on rows of X in the innermost
loop and has a stride of n:

xty(:) = 0.
do i = 1, n

do j = 1, p
xty(j) = xty(j) + x(i,j) * y(i)

end do
end do

The second method reverses the loop order and has unit stride:

xty(:) = 0.
do j = 1, p

do i = 1, n
xty(j) = xty(j) + x(i,j) * y(i)

end do
end do

Defining x, y, and xty as double-precision real arrays, we compiled the
two methods with Compaq Visual Fortran Version 6.6 using the default
compiler options with no optimization. The programs were run on a 1.59
GHz Pentium M system with 1.00 gigabyte of RAM. With n =100,000 and
p = 200, the second method ran in 40% less time than the first. When the

4.3 Efficient Routines at Lower Levels 127

two methods were recompiled using the highest level of optimization, their
performance became identical, presumably because the first pair of loops
was automatically reordered.

4.3.7 Hidden Allocation of Temporary Arrays

In old-fashioned Fortran, the dimensions of an array dummy argument
had to be fixed or had to be passed as arguments themselves. In this pro-
cedure,

subroutine schmubroutine(a, n, b)
integer :: n
real :: a(3), b(n,n)

a is called a fixed-shape array, whereas b is said to be an adjustable array.
Both types of arrays are still used extensively, and their contents are stored
in contiguous memory to help maintain computational efficiency. Similarly,
the contents of an allocatable array are stored in contiguous memory. The
target of an array pointer, however, is not necessarily contiguous, as you
can see from these examples.

p1 => a(0:10:2)
p2 => b(i,:)

What happens when you pass an array pointer as an actual argument
to a procedure whose corresponding dummy argument is a fixed-shape or
adjustable array? In most cases, the compiler will create a temporary array
in contiguous memory, copy the pointer’s target into it, and destroy the
temporary array when the procedure has finished. Many Fortran compilers
will set up these temporary arrays to maintain contiguity even if they are
not really needed (i.e., even if the pointer targets are already contiguous). If
the procedure is called in this fashion many times, the repeated allocation
and deallocation of temporary arrays can be very inefficient, particularly if
the arrays are large.

There are two ways to resolve this problem. First, we can declare the
dummy argument to be a pointer rather than a fixed-shape or adjustable
array. A disadvantage of that method is that the code within the procedure
becomes more difficult to optimize. Moreover, the procedure then becomes
less useful to other program units because we can no longer pass non-pointer
arrays to it; if a dummy argument is a pointer, the corresponding actual
argument must also be a pointer. A better way to resolve this problem is
to restructure the calling program so that the actual argument is no longer
a pointer but an adjustable or allocatable array. Such revisions are worth
considering if the function or subroutine in question is going to be invoked
many times; for a higher-level procedure that will be called a few times or
just once, it will tend to make little difference.

128 4. Implementing Computational Routines

4.3.8 Exercises

1. One of the most popular techniques for generating normal random
variatesnormal random variates is the polar method of Box and Muller
(1958). If (v1, v2) is uniformly distributed within the circle of unit ra-
dius centered at the origin,

v2
1 + v2

2 ≤ 1, (4.4)

then

z1 = v1

√
−2 log r2

r2
and z2 = v2

√
−2 log r2

r2

are independently distributed as N(0, 1), where r2 = v2
1 +v2

2 . An easy
way to simulate a point within the unit circle is to generate v1 and
v2 uniformly distributed from −1 to 1 and reject them if (4.4) is not
satisfied. Implement the polar method in a Fortran procedure that
returns a single random variate with each call. Make the procedure
as efficient as you can by eliminating unnecessary computation.

2. Section 4.3.6 presented two different ways to compute the matrix-
vector product XT y. Implement the first method, which does not have
unit stride, and apply it to a large problem using allocatable arrays
for x, y, and xty. Measure the speed using the intrinsic function
cpu_time (do not include the time required for array allocation),
and see how the performance varies as you compile the code with
increasing levels of optimization. Then repeat the experiment with x,
y, and xty declared as pointers and explain what you find.

3. In the procedure for in-place Cholesky factorization presented in Sec-
tion 3.6.4, the dummy argument for the matrix had assumed shape.
Apply this procedure to a large, positive-definite matrix passed as an
allocatable array and time the procedure call using cpu_time. Re-
peat the experiment, passing the same matrix as an array pointer.
Then modify the procedure by making the dummy argument into an
adjustable array and repeat the two calls. Discuss what you find. (To
create a positive-definite matrix, fill an n× p matrix X (n ≥ p) with
random numbers and compute XT X.)

4.4 More Computational Procedure Examples

4.4.1 An Improved Cholesky Factorization

We now demonstrate some of the principles described in this chapter by
writing a few lower-level matrix routines and a higher-level procedure that
calls them. These procedures are not of professional quality; when very

4.4 More Computational Procedure Examples 129

high speed and extreme precision are required, there is no substitute for
code written by experienced numerical analysts. Our goal here is to create
routines that are accurate and efficient enough for most applications while
keeping the source code clean and simple.

In Section 3.6.4, we presented a function that overwrites the lower tri-
angle of a symmetric, positive-definite matrix with its Cholesky factor.
Examining this procedure, we find that its innermost loop,

do k = 1, j-1
sum = sum + a(j,k)*a(i,k)

end do

runs through rows of the matrix and therefore does not have unit stride.
An alternative algorithm described by Golub and van Loan (1996, Algo-
rithm 4.2.1) arranges the computations to be rich in saxpy operations. An
implementation of that algorithm is shown below.

matrix.f90

!##

integer(kind=our_int) function cholesky_saxpy(a, err) result(answer)

!### Overwrites lower triangle of a symmetric, pos.-def.

!### matrix a with its Cholesky factor.

implicit none

! declare arguments

real(kind=our_dble), intent(inout) :: a(:,:)

type(error_type), intent(inout) :: err

! declare local variables and parameters

character(len=*), parameter :: subname = "cholesky_saxpy"

integer(kind=our_int) :: p, j, k

real(kind=our_dble) :: den

! begin

answer = RETURN_FAIL

p = size(a,1)

if(p /= size(a,2)) goto 700

do j = 1, p

do k = 1, j-1

a(j:p,j) = a(j:p,j) - a(j:p,k) * a(j,k)

end do

if(a(j,j) <= 0.D0) goto 710

den = sqrt(a(j,j))

a(j:p,j) = a(j:p,j) / den

end do

! normal exit

answer = RETURN_SUCCESS

return

! error traps

700 call err_handle(err, 300, &

called_from = subname//" in MOD "//modname)

return

710 call err_handle(err, 101, &

called_from = subname//" in MOD "//modname)

return

130 4. Implementing Computational Routines

end function cholesky_saxpy

!##

Style tip

Use assumed-shape rather than adjustable arrays as dummy arguments,
and don’t give them the pointer attribute unless it is necessary (e.g.,
if they need to be resized within the procedure). If the procedure will be
public, add safeguards to ensure that the actual arguments have the correct
dimensions.

Note that cholesky_saxpy uses the programming constants defined in
Section 4.2.2. We have placed it in a module called matrix_methods along
with the two functions shown next.

4.4.2 Inverting a Symmetric Positive-Definite Matrix

When solving a linear system Ax = b, it is best to compute x = A−1b
without explicitly finding A−1. In statistical computation, however, the
inverse of a matrix is often needed, especially if the matrix is symmetric
and positive definite (SPD). The standard way to invert SPD matrices is
by the Cholesky factorization: take A = CCT , then A−1 = BT B, where
B = C−1. A nice by-product of this method is that the determinant of A is
available from the diagonal elements of the Cholesky factor, |A | =

∏
i c2

ii.
The inverse of a lower-triangular matrix, which is also lower triangu-

lar, may be computed by a variant of forward substitution. A procedure
for overwriting a lower triangle with its inverse is shown below. In the in-
nermost loop, this procedure accesses the elements of the matrix by rows
and by columns. Without overwriting, a version of forward substitution is
available based entirely on columns (Golub and van Loan, 1996).

matrix.f90

!##

integer(kind=our_int) function invert_lower(a, err) result(answer)

!### Overwrites a lower-triangular matrix a with its inverse

!### by forward substitution. The upper triangle is untouched.

implicit none

! declare arguments

real(kind=our_dble), intent(inout) :: a(:,:)

type(error_type), intent(inout) :: err

! declare local variables and parameters

character(len=*), parameter :: subname = "invert_lower"

integer(kind=our_int) :: p, i, j, k

real(kind=our_dble) :: sum

! begin

answer = RETURN_FAIL

p = size(a,1)

4.4 More Computational Procedure Examples 131

if(p /= size(a,2)) goto 700

if(a(1,1) == 0.D0) goto 710

a(1,1) = 1.D0 / a(1,1)

do i = 2, p

if(a(i,i) == 0.D0) goto 710

a(i,i) = 1.D0 / a(i,i)

do j = 1, i-1

sum = 0.D0

do k = j, i-1

sum = sum + a(k,j) * a(i,k)

end do

a(i,j) = - sum * a(i,i)

end do

end do

! normal exit

answer = RETURN_SUCCESS

return

! error traps

700 call err_handle(err, 300, &

called_from = subname//" in MOD "//modname)

return

710 call err_handle(err, 100, &

called_from = subname//" in MOD "//modname)

return

end function invert_lower

!##

Style tip

If you do not want to overwrite the matrix supplied, do not use this func-
tion. Rather, overload it with a companion function that accepts two array
arguments, one that is intent(in) and another that is intent(out). Hav-
ing both procedures available helps to avoid unnecessary copying of data.

The final step of inversion is to premultiply a lower triangle by its trans-
pose. Here is a multiplication procedure that avoids unnecessary compu-
tation by skipping elements known to be zero and by capitalizing on the
symmetry of the result. The input array is accessed entirely by column.

matrix.f90

!##

integer(kind=our_int) function premult_lower_by_transpose(a, b, &

err) result(answer)

!### Premultiplies a lower-triangular matrix a by its upper-

!### triangular transpose to produce a symmetric matrix b.

implicit none

! declare arguments

real(kind=our_dble), intent(in) :: a(:,:)

real(kind=our_dble), intent(out) :: b(:,:)

type(error_type), intent(inout) :: err

132 4. Implementing Computational Routines

! declare local variables and parameters

character(len=*), parameter :: subname = &

"premult_lower_by_transpose"

integer(kind=our_int) :: p, i, j, k

! begin

answer = RETURN_FAIL

p = size(a,1)

if(p /= size(a,2)) goto 700

if((p /= size(b,1)) .or. (p /= size(b,2))) goto 710

do i = 1, p

do j = 1, i

b(i,j) = 0.D0

do k = max(i,j), p ! skip zero elements

b(i,j) = b(i,j) + a(k,i) * a(k,j)

end do

b(j,i) = b(i,j) ! copy upper triangle from lower

end do

end do

! normal exit

answer = RETURN_SUCCESS

return

! error traps

700 call err_handle(err, 300, &

called_from = subname//" in MOD "//modname)

return

710 call err_handle(err, 301, &

called_from = subname//" in MOD "//modname)

return

end function premult_lower_by_transpose

!##

4.4.3 Weighted Least Squares

To illustrate the use of these lower-level procedures, we now develop a com-
putational routine for weighted least-squares (WLS) regression of a vector
y = (y1, . . . , yn)T on a full-rank n × p matrix X. The solution to the ordi-
nary least-squares (OLS) problem, β̂ = (XT X)−1XT y, can be computed in
a variety of ways. A procedure recommended by numerical analysts for its
stability and efficiency involves transforming the columns of X by House-
holder rotations, which eliminates the need to compute and invert XT X;
a good discussion of that method is provided by Thisted (1988). When
weights w1, . . . , wn are present, the solution becomes

β̂ = (XT WX)−1XT Wy,

where W = Diag(w1, . . . , wn); this is equivalent to performing OLS on
the transformed variables y∗ = W 1/2y and X∗ = W 1/2X, where W 1/2 =
Diag(

√
w1, . . . ,

√
wn)T . Except in very extreme cases—e.g., when the re-

gressors are almost collinear or when the weights vary by many orders

4.4 More Computational Procedure Examples 133

of magnitude—a simpler method using the Cholesky-based inversion of
XT WX works well enough. Explicitly computing (XT WX)−1 may also be
necessary for statistical inferences because the unbiased estimate of V (β̂)
is σ̂2(XT WX)−1, with

σ̂2 =
1

n − p
(y − Xβ̂)T W (y − Xβ̂).

Here’s a procedure for WLS that returns β̂, (XT WX)−1, and σ̂2.
wls.f90

!##

integer(kind=our_int) function fit_wls(x, y, w, beta, &

cov_unscaled, scale, err) result(answer)

! Regresses y on x, using weights in w.

! beta = estimated coefficients

! cov_unscaled = inverse of (X^T W X) matrix

! scale = unbiased estimate of scale parameter sigma^2

implicit none

! declare arguments

real(kind=our_dble), intent(in) :: x(:,:), y(:), w(:)

real(kind=our_dble), intent(out) :: beta(:), &

cov_unscaled(:,:), scale

type(error_type), intent(inout) :: err

! declare local variables and parameters

character(len=*), parameter :: subname = "fit_wls"

real(kind=our_dble), allocatable :: xtwx(:,:), xtwy(:)

integer(kind=our_int) :: n, p, i, j, k, status

! check arguments

answer = RETURN_FAIL

n = size(x,1)

p = size(x,2)

if((size(y) /= n) .or. (size(beta) /= p) .or. &

(size(w) /= n) .or. (size(cov_unscaled,1) /= p) .or. &

(size(cov_unscaled,2) /= p)) goto 700

! form xtwy and lower triangle of xtwx

allocate(xtwx(p,p), xtwy(p), stat=status)

if(status /= 0) goto 710

do j = 1, p

xtwy(j) = sum(x(:,j) * w(:) * y(:))

do k = 1, j

xtwx(j,k) = sum(x(:,j) * w(:) * x(:,k))

end do

end do

! compute cov_unscaled and beta

if(cholesky_saxpy(xtwx, err) == RETURN_FAIL) goto 800

if(invert_lower(xtwx, err) == RETURN_FAIL) goto 800

if(premult_lower_by_transpose(xtwx, cov_unscaled, err) &

== RETURN_FAIL) goto 800

beta = matmul(cov_unscaled, xtwy)

! compute scale

scale = 0.D0

do i = 1, n

134 4. Implementing Computational Routines

scale = scale + w(i) * (y(i) - sum(x(i,:) * beta))**2

end do

scale = scale / real(n - p, kind=our_dble)

! deallocate workspaces

deallocate(xtwx, xtwy, stat=status)

if(status /= 0) goto 720

! normal exit

answer = RETURN_SUCCESS

return

! error traps

700 call err_handle(err, 301, &

called_from = subname//" in MOD "//modname)

return

710 call err_handle(err, 200, &

called_from = subname//" in MOD "//modname)

return

720 call err_handle(err, 201, &

called_from = subname//" in MOD "//modname)

return

800 call err_handle(err, 1000, &

called_from = subname//" in MOD "//modname)

deallocate(xtwx, xtwy)

return

end function fit_wls

!##

Notice the use of local allocatable arrays for holding XT WX and XT Wy.
If this procedure is called many times, the repeated allocation might become
costly, particularly if the number of regressors p is large. In that case, we
might want to pass the two workspaces as arguments and require the calling
program to allocate them.

4.4.4 Computational Routines in Object-Oriented
Programming

Our WLS procedure, with the exception of its error-handling features, does
not rely upon any special data structures; all of the inputs and outputs
are arrays and scalar variables. Principles of object-oriented programming,
however, suggest that we may want to bundle x, y, and w together as
a derived type, allowing us to pass all the input data through a single
argument. Similarly, we could collect beta, cov_unscaled, and scale into
another derived type, so that all the results are returned through a single
argument. Why have we chosen not to apply more derived types to this
problem and to the other computational routines in this chapter?

One reason why we avoided derived types as arguments in this chapter
is to enhance efficiency. Derived types usually contain pointers, and unnec-
essary use of pointers can make computational routines slow and difficult
to optimize.

4.4 More Computational Procedure Examples 135

Another reason we avoided derived types is that we like to keep all argu-
ments to computational routines as simple and general as possible, so that
they can be more easily shared among applications. Suppose that we had
begun our WLS procedure like this:

integer(kind=our_int) function fit_wls(wls_data, &
wls_results, err) result(answer)

implicit none
! declare arguments
type(wls_data_type), intent(in) :: wls_data
type(wls_results_type), intent(out) :: wls_results
type(error_type), intent(inout) :: err

Where would the definitions of wls_data_type and wls_results_type
reside? They would have to be placed either in this same module or in
another module used by this one. Either way, a program unit that invoked
fit_wls would have to supply and retrieve data through these types. That
could become very inconvenient if, at some future time, we tried to use this
function as a building block for a more complicated procedure (e.g., fitting
a logistic regression model by iteratively reweighted least squares).

Designing specialized data structures is an excellent idea, but we prefer
to keep them hidden from our computational routines. Modules that define
object classes and methods should use the computational routines rather
than the other way around. Suppose that we were designing an object class
for weighted linear regression analysis. We would begin by creating a mod-
ule that contains definitions for wls_data_type and wls_results_type.
We would write public methods for putting data into these types and for
getting results from them, as described in Chapter 3. Then we would write a
public method, say run_wls_regression, that would perform the compu-
tations by invoking fit_wls. The run_wls_regression procedure would
be essentially a wrapper for fit_wls, perhaps with some extra safeguards
to prevent misuse (e.g., trying to fit a model before the data are supplied).
At first, writing this additional code might seem like a waste of time. In
the long run, however, you will find that it saves time by promoting reuse
of the computational routines.

Style tip

Avoid using specialized data types as arguments to your computational
routines.

136 4. Implementing Computational Routines

4.5 Additional Exercises

1. The cholesky_saxpy and invert_lower procedures developed in
Section 4.4 overwrite the input matrix with the result. Overload these
with companion functions that do not alter the input but write the
result to another matrix.

2. Modify fit_wls to make the weight argument optional. If no weights
are supplied, it should assume wi = 1 for all i and perform ordinary
least squares.

3. Modify fit_wls to allow a user to optionally supply workspaces for
XT WX and XT Wy so that these arrays do not need to be allocated
within the procedure. Do this without using array pointers. (Hint:
Try overloading.)

4. The sweep operator is a useful device for stepwise regression and
linear model computations (Little and Rubin, 1987; Thisted, 1988).
SWP[k] operates on a symmetric p× p matrix G by replacing it with
another p×p symmetric matrix H,

H = SWP[k] G,

whose elements are

hkk = −1/gkk,

hjk = hkj = gjk/gkk for j �=k,

hjl = hlj = gjl − gjkgkl/gkk for j �=k and l �=k.

a. Write a Fortran procedure that overwrites the lower triangle of
G with SWP[k] G.

b. Successively sweeping the matrix G on positions 1, 2, . . . , p re-
places it with −G−1. The sweeps may be carried out in any
order, and G−1 exists if and only if none of the sweeps involve
attempted division by zero. Using sweep, write a procedure that
overwrites the lower triangle of a symmetric matrix with its in-
verse.

5. Suppose that y1, y2, . . . , yn are a random sample from a p-variate
normal distribution N(µ,Σ). Collect the entire sample into an n × p
data matrix Y whose rows are yT

i , i = 1, . . . , n.

a. Write a procedure for calculating the maximum-likelihood (ML)
estimates

µ̂ = ȳ = n−1
n∑

i=1

yi

4.5 Additional Exercises 137

and

Σ̂ = n−1Y T Y − ȳȳT

= n−1
n∑

i=1

(yi − ȳ)(yi − ȳ)T .

b. Write another Fortran procedure that evaluates the loglikelihood
function

l(µ,Σ) = −np

2
log(2π) − n

2
log |Σ|

− 1
2

n∑
i=1

(yi − µ)T Σ−1(yi − µ)

at any µ and Σ. For your procedure, allow the user to supply
either the raw data Y or the sufficient statistics T1 =

∑
i yi and

T2 = Y T Y . An identity that you may find useful is

n∑
i=1

(yi − µ)T Σ−1(yi − µ) = trΣ−1

[
n∑

i=1

(yi − µ)(yi − µ)T

]
.

c. Using a dataset of your choosing, verify that µ̂ and Σ̂ are indeed
the ML estimates by perturbing the elements of these parame-
ters one at a time to see if the loglikelihood drops.

6. Consider the usual regression problem yi = xT
i β + εi, i = 1, . . . , n,

where yi is a real-valued response, xi is a p × 1 vector of predictors,
and ε1, . . . , εn are independent and identically distributed with mean
zero. The OLS estimate for β is optimal if the errors are normally
distributed but can be inefficient if the data are prone to outliers. In
particular, if

εi ∼ σtν ,

where tν denotes a Student’s t random variable with ν degrees of
freedom, a better estimate of β can be found by an extension of
the EM algorithm outlined in Exercise 2 of Section 4.2.9. Given the
current estimates β(t) and σ2 (t), we compute the weights

wi =
ν + 1

ν + (yi − xT
i β(t))2/σ2 (t)

for i = 1, . . . , n, and then update our estimates of β and σ2 by
weighted least squares. (Because this is an ML procedure, the esti-
mate of σ2 should use a denominator of n rather than n− p.) Imple-
ment this EM algorithm as a Fortran procedure that calls fit_wls.
Use OLS estimates as starting values.

5
Developing a Console Application

Accurate and efficient numerical routines are the heart of a quality statis-
tical program. Many lines of code are needed, however, to turn a computa-
tional procedure into a useful tool for data analysis. The tasks performed
by this additional code—receiving instructions from the user, opening and
reading data files, printing results, and so on—are often considered mun-
dane. But if this infrastructure is shoddy, the application will not be very
useful, no matter how good the numerical procedures are.

This chapter is a step-by-step guide to writing statistical programs in
Fortran that are invoked from a command line. Command-line programs,
also known as console applications, may seem crude or outdated in today’s
computing environments. Nevertheless, they have many important advan-
tages. They are highly portable; with essentially no changes to the source
code, they can be compiled with any implementation of Fortran and pro-
duce equivalent results on Windows, Unix, Linux, or Macintosh systems.
Once compiled, the executable file can be used by anyone without the pur-
chase of additional software.

Using the example of logistic regression, we demonstrate how to write
a console program in a modular, pseudo object-oriented fashion, paying
careful attention to the overall architecture and interface. Statistical pro-
grammers who follow this template will find that their code is easy to
debug, maintain, and extend, and that many of the software components
can be reused in other applications with little or no modification. More-
over, a console program written in this style is more easily called from
another project, repackaged as a COM server, or connected to a graphical
user interface using the methods described in later chapters.

140 5. Developing a Console Application

5.1 A Program for Logistic Regression

5.1.1 The logistic regression model

Logistic regression is the most popular statistical model for binary data.
The response variable for the ith observational unit, yi, is a count of how
many “successes” occurred in ni “trials.” We assume that yi follows a
binomial distribution, yi ∼ Bin(ni, πi), i = 1, . . . , N , where ni is known
and the success rate πi depends on known covariates xi = (xi1, . . . , xip)T .
The assumed relationship between the success rate and the covariates is

logit(πi) = log
(

πi

1 − πi

)
= xT

i β, (5.1)

where β = (β1, . . . , βp) is a vector of unknown coefficients to be estimated.
In most cases, we define xi1 ≡ 1 so that the first element of β becomes an
intercept. The linear predictor xT

i β can be interpreted as the log-odds of
success, and exp(βj) is the amount by which the odds are multiplied when
xij increases by one unit.

Maximum-likelihood estimates of the unknown parameters β are typ-
ically computed by a Newton-Raphson or Fisher scoring procedure that
can be viewed as iteratively reweighted least-squares regression. For more
discussions of logistic regression and related models for dichotomous out-
comes, see McCullagh and Nelder (1989), Hosmer and Lemeshow (2000),
or Agresti (2002).

5.1.2 Motivation for the ELOGIT Console Program

Although software for fitting the logistic model is widely available, we have
developed a new console application for logistic regression called ELOGIT
to illustrate principles of statistical software design. Logistic regression pro-
vides an excellent example because it is familiar to most readers, the com-
putations are simple but not trivial, and many of the subtasks required—
reading in a rectangular dataset, specifying the model to be fit, obtaining
starting values for the parameters, iterating to a final solution, and summa-
rizing the results—are ubiquitous in the statistical world. The open-source
ELOGIT program provides a template for more complicated programming
tasks, and many of its components can be reused with little or no modifi-
cation in other programs. Readers are encouraged to download the source-
code components from our Web site to use, adapt, and extend them for
their own purposes.

5.1.3 Dependency Map for Source Components

The source for the main ELOGIT program has only a few dozen lines;
all other code resides in modules. A diagram of these modules showing

5.1 A Program for Logistic Regression 141

error_handler
program_constants
dynamic_allocation

matrix_methods

weighted_least_squares

elogit_types

main program

elogit_ctrlfile

FIGURE 5.1. Dependencies among major components in the ELOGIT console
program.

the dependencies among them is shown in Figure 5.1. In this diagram, an
arrow from one unit to another, as in A → B, indicates that unit A provides
services to B (i.e., is used by B). A double-headed arrow as in A ↔ B is
not possible because two Fortran modules cannot use each other.

The left-hand side of Figure 5.1 shows a group of three modules that
are used pervasively: error_handler (which was presented in Section 3.6),
program_constants, and dynamic_allocation. The largest and most im-
portant module is elogit_types; it defines an object class for storing the
data, model specification, parameters, and results, and it contains all of the
puts, gets, and other methods associated with this class. Computational
services are furnished by weighted_least_squares and matrix_methods,
which were developed in Section 4.4. The module elogit_ctrlfile han-
dles the reading of user-supplied instructions from a control file.

Many other designs could work well for this particular application. In
our experience, however, we have found that an arrangement such as this
produces a program that is easy to debug and extend, it allows components
to be readily reused and adapted for other programs, and it greatly sim-
plifies the process of converting the console application to a COM server,
as we will describe in Chapter 7. When converting to a COM server, only
one small module (elogit_ctrlfile) is discarded, and the functions of
the main program are taken over by an external client written in Excel,
SAS, S-PLUS, or some other system.

5.1.4 Developing Program Units Incrementally

Dependencies among program units require them to be compiled in a cer-
tain order. If module A provides services to B, it must be compiled before
B. This does not mean, however, that module A must be completely fin-

142 5. Developing a Console Application

ished before B is written. In practice, we do not know whether a public
module procedure works until another module actually uses it. If module
A is used by B, it helps to develop both modules simultaneously along
with the main program, introducing new features and testing them incre-
mentally at each step. The dependency map in Figure 5.1 says little about
where to begin and how to proceed. Therefore, we describe the development
of ELOGIT from the start, discussing options and providing the rationale
for each major decision along the way. In addition to the full source code,
we present on our Web site a few “snapshots” of the ELOGIT program in
various stages of development as major milestones are achieved.

5.2 Where to Begin

5.2.1 Before You Start

It is unwise to start coding before you articulate what the program will do.
ELOGIT, a simple console program for logistic regression, will:

• read in a data file supplied by the user;

• determine the model to be fit (i.e., which variable is the response,
which are the predictors, whether an intercept is to included);

• carry out the procedure for maximum-likelihood estimation; and

• write a nicely formatted summary of results—including the estimated
coefficients, standard errors, loglikelihood, and fit statistics—to a file.

This description omits many important details, but it’s good enough to
get us started. We will build up the program incrementally, developing and
testing the functionality of each task in the order listed above.

Before starting a larger, more elaborate project—particularly one that
will be developed by multiple programmers—it makes sense to prepare an
official statement of work (SOW) document that lists the program require-
ments. The SOW becomes an invaluable reference for the project team,
helping to ensure that components developed by different persons will ul-
timately work together.

One who is going to do a lot of programming, either individually or as
part of a team, should also seriously consider adopting a formal system
for source-code management. Tools for code management—also known as
version-control or revision-control systems—provide a degree of safety by
keeping the SOW, code files, documentation, and other materials in a cen-
tral repository where they can be regularly backed up. An Internet-based
management system gives multiple programmers immediate access to the
latest version of any file while ensuring that no two persons will be modi-
fying a file at the same time. A good system will also allow programmers

5.2 Where to Begin 143

to step backward, obtaining copies of project files as they appeared at any
date and time in the past.

Even if you intend to do all the programming by yourself, formal proce-
dures for code management are still important. Most applications that you
write will have some components that are specific to that application and
others that are shared among multiple applications. If multiple versions
of a shared source-code file exist on your computer, it’s not easy to keep
them all synchronized and up-to-date. Many free and commercial programs
for source-code management are available to help you keep track of your
various projects and files; acquiring one of these tools and learning how to
use it is well worth the effort.

5.2.2 Program Constants

As usual, this software project begins with a module of named constants.
These include kind parameters for integer and real variables and values
for RETURN_SUCCESS and RETURN_FAIL. To these we have added Fortran
I/O unit numbers for reading and writing to various types of external files.
Defining I/O unit numbers as named constants rather than literal integers
helps to avoid conflicts that may arise if multiple files are open simulta-
neously. We have also included character-string constants containing the
program’s name, authors, version number, build date, and so on. These
strings can be used within the program for generating messages and stamp-
ing output files. At this point, we don’t need to anticipate all the constants
that will be needed for the final program because more can be added at
any time. We created this constants module by making a few changes to
one from an earlier program.

constants.f90

!###

module program_constants

! Programming constants used throughout the ELOGIT program.

! Unlike most modules, everything here is public.

implicit none

public

! Define compiler-specific KIND numbers for integers,

! single and double-precision reals to help ensure consistency of

! performance across platforms:

integer, parameter :: our_int = selected_int_kind(9), &

our_sgle = selected_real_kind(6,37), &

our_dble = selected_real_kind(15,307)

! Define UNIT numbers for Fortran I/O:

integer, parameter :: ctrl_file_handle = 11

! Define maximum lengths for various types of character strings:

integer, parameter :: file_name_length = 256

! Define the maximum line widths for various types of files:

integer, parameter :: ctrl_line_width = 80

! Common integer values returned by all functions to indicate

! success or failure:

144 5. Developing a Console Application

integer(kind=our_int), parameter :: RETURN_SUCCESS = 0, &

RETURN_FAIL = -1

! Character strings describing this program:

character(len=*), parameter :: &

program_name = "ELOGIT", &

program_description = &

"A simple program for logistic regression analysis", &

program_version = "Version 1.0", &

program_version_and_date = "Version 1.0 - June, 2004", &

program_author = "Written by J.L. Schafer", &

program_institution_1 = &

"Department of Statistics and The Methodology Center", &

program_institution_2 = "The Pennsylvania State University"

end module program_constants

!###

5.2.3 The Control File Interface

Our next task is to devise a mechanism by which the user communicates
run-time options to the program. With simple programs (e.g., the uniform
generators in Chapter 2), these options can be input by the user at the
command line as responses to a running dialog. As the number of options
grows, however, it becomes easier for the user to enter all the responses
into a control file and then run the program by typing a single command.

A control file interface does not have to be crude; it can be made surpris-
ingly convenient and easy to use by including a few simple features. One
common problem with control files is that users may have difficulty keeping
track of line numbers, forgetting which options need to go on which lines.
To ameliorate this problem, we will divide the ELOGIT control file into
short sections, allowing each section to begin with an arbitrary number of
comment lines. We will also maintain a line counter; if the file contains a
mistake, we can then provide an error message, reporting to the user the
exact line in the control file where the problem occurred.

We now begin to write the elogit_ctrlfile module. This module has
two main parts: the definition of a derived type to organize all the responses
from the control file into a single object, and a function that opens the
control file and reads the responses. What should go into the derived type?
Recalling our mission statement, the first major task for ELOGIT is to read
a dataset from a file. We haven’t yet decided how the data file will look,
but we can make a few decisions now. First, we anticipate that the data
will look like a rectangular matrix, with rows corresponding to subjects
or cases and columns corresponding to variables. Next, we will allow (but
not require) the user to supply names for the variables via a separate file
distinct from the data file. Finally, we will also allow (but again not require)
the first field in each line of the data file to serve as a case identifier. We
can now begin to create the derived type to store control file responses.

5.2 Where to Begin 145

elogit ctrlfile.f90

!##

type :: elogit_ctrlfile_type

! unlike other types, the contents of this one are public

sequence

! data input section

integer(kind=our_int) :: ncase=0, nvar=0

logical :: case_id_present=.false., names_file_present=.false.

character(len=file_name_length) :: data_file_name="", &

names_file_name=""

!

! We’ll add more components to this type later

!

end type elogit_ctrlfile_type

!##

Whenever we create a new type, we write a procedure for returning all
components to their initialized states. If any of the components are pointers,
then this procedure should deallocate them.

elogit ctrlfile.f90

!##

integer(our_int) function nullify_elogit_ctrlfile(ctrlfile, err) &

result(answer)

! Returns an elogit_ctrlfile_type to its initialized (null)

! state

implicit none

! declare arguments

type(elogit_ctrlfile_type), intent(inout) :: ctrlfile

type(error_type), intent(inout) :: err

! begin

ctrlfile%ncase = 0

ctrlfile%nvar = 0

ctrlfile%case_id_present = .false.

ctrlfile%names_file_present = .false.

ctrlfile%data_file_name = ""

ctrlfile%names_file_name = ""

!

! Add more code later, as more components are added to the type

!

! normal exit

answer = RETURN_SUCCESS

end function nullify_elogit_ctrlfile

!##

Style tip

For each derived type, write a procedure that reinitializes its components.

Let’s also begin a document that specifies the format of the control file.
It’s easiest to create this document now while we develop the code.

146 5. Developing a Console Application

controlfilespec.txt

FORMAT OF THE ELOGIT CONTROL FILE

COMMENT LINES: An unlimited number of comment lines is allowed at the

beginning of the control file, and between each of the sections

below. Each comment line must begin with (i.e. the first nonblank

character on the line must be) an asterisk "*". These comment lines

are ignored.

**

* Data input section

* Optional comment lines, followed by:

LINE 1: ncase, nvar, case_id_present

ncase = number of cases or rows in the dataset

nvar = number of variables (excluding case id, if present)

case_id_present = T if the first field on each line of the

data file is to be interpreted as a case identifier

string rather than a variable

LINE 2: data_file_name

character string giving the name of ASCII data file

LINE 3: names_file_name

character string giving the name of the optional names file

If no names file is provided, leave this line blank.

**

* We’ll add more information to this file later

Style tip

Create important documentation files while you are writing the code.

Now let’s begin to write a function that reads the control file. Errors in
opening files may cause a program to crash, but these may be prevented
by specifiers in the open statement. If a file is to be opened for reading,
status=’OLD’ throws an error if the file is not found or cannot be opened
for any reason (e.g., if it is currently locked by another application). If an
error occurs, control can be diverted to a labeled statement through the err
specifier. The read statement also has useful specifiers; eof, eor, and err
will transfer control to a labeled statement if an end-of-file, end-of-record,
or error condition is encountered. The function below uses another function,
skip_comment_lines, which is not shown. To see how that function works,
open the file elogit_ctrlfile.f90 and examine it for yourself.

elogit ctrlfile.f90

!##

integer(kind=our_int) function read_elogit_ctrlfile(&

control_file_name, ctrlfile, err) result(answer)

! Reads information from an ELOGIT control file and stores

! it in an elogit_ctrlfile_type. If the read operation fails for

! any reason, the elogit_ctrlfile_type is nullified and the

5.2 Where to Begin 147

! returned value is RETURN_FAIL.

implicit none

! declare arguments

character(len=*), intent(in) :: control_file_name

type(elogit_ctrlfile_type), intent(out) :: ctrlfile

type(error_type), intent(inout) :: err

! declare local variables and parameters

integer(kind=our_int) :: current_line, ijunk

character(len=ctrl_line_width) :: line

character(len=*), parameter :: subname = "read_elogit_ctrlfile"

! open the control file

answer = RETURN_FAIL

if(control_file_name == "") goto 700

open(unit=ctrl_file_handle, file=control_file_name, &

status="old", err=800)

current_line = 0

!###############################

! Dataset input section

if(skip_comment_lines(ctrl_file_handle, current_line) &

== RETURN_FAIL) goto 900

! read ncase, nvar, case_id_present

current_line = current_line + 1

read(unit=ctrl_file_handle, fmt="(A)", err=900, end=900) line

read(line, *, err=900, end=900) &

ctrlfile%ncase, ctrlfile%nvar, ctrlfile%case_id_present

! read data_file_name and left-justify

current_line = current_line+1

read(unit=ctrl_file_handle, fmt="(A)", err=900, end=900) &

ctrlfile%data_file_name

ctrlfile%data_file_name = adjustl(ctrlfile%data_file_name)

! read names_file_name and set names_file_present

current_line = current_line+1

read(unit=ctrl_file_handle, fmt="(A)", err=900, end=900) &

ctrlfile%names_file_name

if(ctrlfile%names_file_name == "") then

ctrlfile%names_file_present = .false.

else

ctrlfile%names_file_present = .true.

ctrlfile%names_file_name = adjustl(ctrlfile%names_file_name)

end if

!###############################

! We’ll add more code here later

! normal exit

close(unit=ctrl_file_handle)

answer = RETURN_SUCCESS

return

! error traps

700 call err_handle(err, 1000, &

called_from = subname//" in MOD "//modname, &

custom_1 = "No control file name specified.")

goto 999

148 5. Developing a Console Application

800 call err_handle(err, 1, &

called_from = subname//" in MOD "//modname, &

file_name = control_file_name)

goto 999

900 call err_handle(err, 3, &

called_from = subname//" in MOD "//modname, &

file_name = control_file_name, line_no = current_line)

goto 999

! final cleanup in the event of an error

999 continue

close(unit=ctrl_file_handle)

ijunk = nullify_elogit_ctrlfile(ctrlfile, err)

end function read_elogit_ctrlfile

!##

Style tip

Use named constants rather than literal integers for file unit numbers. Use
specifiers such as err to manage errors in open and read statements.

Errors during execution of a read statement can also be handled through
the iostat specifier, which sets an integer variable to zero if the operation
was successful or to a positive value depending on the type of error that
occurred. We prefer not to use iostat, however, because the error codes
are not standardized and vary from one compiler to another.

Notice that the line containing ncase, nvar, and case_id_present is
not read directly from the control file into those three variables. Rather,
the entire line is first read into a character-string buffer, and the data items
are then read from that buffer. Why have we done this? Recall that in list-
directed or free-format input, multiple items may be separated by blank
spaces, tabs, commas, or even new lines. Suppose we had tried to read the
three items directly from the control file in a list-directed fashion and an
item was missing from the line, Fortran would look for the missing item in
the next line, making it difficult to detect exactly where the error occurred.

Style tip

When reading noncharacter data from a file in a list-directed fashion, try
reading each line into a character-string buffer first and then read from the
buffer, treating it as an internal file.

5.2.4 First Snapshot of ELOGIT

We are now ready to begin coding the main ELOGIT program. Here is our
first version.

5.2 Where to Begin 149

elogit.f90

!###

!### ELOGIT: A simple program for logistic regression analysis #####

!### written entirely in standard Fortran-95. #####

!### For non-PC platforms, the value of "platform" may be #####

!### changed to "UNIX" or "MAC", so that carriage returns are #####

!### handled correctly. #####

!###

program elogit

use error_handler

use program_constants

use elogit_ctrlfile

implicit none

! declare instances of various types

type(error_type) :: err

type(elogit_ctrlfile_type) :: ctrlfile

! additional variables and parameters for the console application

character(len=*), parameter :: platform = "PC"

character(len=256) :: msg_string

character(len=file_name_length) :: control_file_name

! Query the user for the name of the control file

print "(A)", "Enter name of control file:"

read(*,"(A)") control_file_name

print "(A)", ""

if(control_file_name == "") then

call err_handle(err, 1000, &

custom_1 = "No control file name specified.")

goto 800

end if

! read control file

if(read_elogit_ctrlfile(control_file_name, ctrlfile, err) &

== RETURN_FAIL) goto 800

! We’ll add more code here later

800 continue

! report "OK" or error message

if(err_msg_present(err)) then

call err_get_msgs(err, msg_string, platform)

print "(A)", trim(msg_string)

print "(A)", "Aborted"

else

print "(A)", "OK"

end if

end program elogit

!###

At this point, ELOGIT has four source-code files and one documentation
file. Copies of these files as they now appear are provided on our Web site
as “Snapshot 1.” Readers are encouraged to examine these files, compile

150 5. Developing a Console Application

them, and run the program on their own computers. An example control
file is shown below.

viral.ctl

**

* Example control file for the ELOGIT program

* Performs logistic regression on the viral assay experiment data

* from Davis et al.(1989)

**

* Data input section

* LINE 1: ncase, nvar, case_id_present

* LINE 2: data_file_name

* LINE 3: names_file_name (if no names file provided, leave blank)

5 3 F

viral.dat

viral.nam

Running the program on this file causes the computer to print OK to the
screen; try introducing errors into the file to see how the program reacts.

It’s natural to ask why we have taken several hundred lines of source
code to create a program that, at this point, merely reads a few items from
a text file. A novice programmer could accomplish the same task with less
than 20 lines. The benefits of a careful approach will become apparent
as the complexity of the program grows. If you adopt this style, you will
discover that your projects take shape more quickly, have fewer errors, are
much easier to maintain, and generally work better than if you cut corners
and make them shorter.

5.2.5 Exercises

1. Review the possible values of the status specifier for an open state-
ment. Give examples where each might be useful.

2. ELOGIT prompts the user to type the name of the control file on a
separate line. Some users may find it more convenient to provide the
name of the control file while invoking the program, like this:

elogit viral.ctl

Intrinsics for retrieving command-line arguments are not part of the
Fortran 95 standard, although they have been promised for 2003.
Nevertheless, most compilers do supply subroutines for this purpose.
Learn about your compiler’s capabilities for handling command-line
arguments, and modify ELOGIT to take advantage of them.

3. Write a function that counts the number of records or lines in an
existing text file. (Hint: Use read statements with the eof specifier.)
Add an option to ignore blank lines.

5.3 Starting the Main Types Module 151

4. Write a procedure that examines a character string of arbitrary length
and counts the number of words. Define a word as any amount of text
delimited by blank spaces, tabs, or commas but not new lines. Use this
procedure to enhance the error-reporting capabilities of the function
read_elogit_ctrlfile.

5. Many free tools are available on the Internet for managing source code
on Windows, Unix/Linux, and Macintosh computers. These are often
called “version control” or “revision control” systems. Download one
of these tools and learn how to use it.

5.3 Starting the Main Types Module

5.3.1 An Object-Oriented Design

Our next major task is to implement procedures for reading the data file.
Before writing this code, however, let’s pause to consider where we are
headed. The ELOGIT console program will run in the old-fashioned batch
mode. In the future, however, we may consider other styles of execution.
For example, we might want to call the program from an Excel spreadsheet.
We might want to embed it in a Web page or some other kind of document
(e.g., an electronic textbook) to use as a teaching device. Or we might
want to develop it into a Windows application with a menu-driven graph-
ical interface. In those environments, the program would have to respond
incrementally to mouse clicks and other events. It would be a shame if most
of the code we were writing for the console application could not be used for
these other purposes. Fortunately, by adopting an object-oriented strategy,
we can package most of ELOGIT’s source code as a single module whose
public procedures are useful for both interactive and batch processing.

To begin this module, which we call elogit_types, let’s start to concep-
tualize the object classes and methods. Suppose that we treat the entire
dataset—including the numeric data values, the variable names, and the
case identifiers, if present—as a single object. Creating a derived type to
hold the dataset is a simple matter. We can also create additional derived
types to hold the model specification, the results from the model-fitting
procedure, and so on. Going further, suppose that we collect all of these
derived types into a single object called an “ELOGIT session.” One in-
stance of the ELOGIT session will then store all the information about the
state of the program at any time.

Storing the ELOGIT session as a single object will help us to simplify
the code by keeping argument lists for procedures very short. Instead of
writing one grand procedure that does everything, we will write a set of
public methods to perform small, well-defined tasks, such as loading the

152 5. Developing a Console Application

data matrix, loading variable names, selecting the response variable, and
selecting the predictors. Keeping the tasks small makes it easier to enforce
rules to prevent misuse. For example, a user will not be allowed to specify
any aspect of the model until the data are loaded, a variable will not be
allowed as a predictor if it has already been declared as the response, and
so on. A console program will invoke the methods in a predetermined order,
and a violation of the rules will stop execution of the program and report
an error message. In a nonconsole application, an error will not terminate
the program but trigger another event (e.g., displaying a message window)
that gives the user immediate feedback to correct the mistake.

Here is the beginning of our elogit_session_type. It is the only public
type in the module. The dataset_type, which is private, will be defined
next.

elogit types.f90

!##

type :: elogit_session_type

sequence

private

logical :: is_null=.true.

type(dataset_type) :: dataset

! More components will be added later

end type elogit_session_type

!##

Notice that we included elogit in the name of the type; this will help
to prevent name conflicts in future applications that may use the module.

Style tip

When naming a public type, include a short prefix based on the name of
the module.

5.3.2 Storing the Dataset

The next issue is to determine the types of data that the ELOGIT program
will read and how the data file will be formatted. Data for logistic regression
may arrive in a variety of ways, as seen by the following examples.

Grouped Responses with Numeric Covariates

The data shown in Table 5.1, reported by Davis, et al. (1989), summarize a
dose-response experiment in which five groups of test animals were exposed
to viral particles at various dilution levels. In this table, ni represents the

5.3 Starting the Main Types Module 153

TABLE 5.1. Data from a viral assay experiment.

Concentration zi ni yi

1 × 10−5 −5 6 0
1 × 10−4 −4 6 1
1 × 10−3 −3 6 4
1 × 10−2 −2 6 6
1 × 10−1 −1 6 6

number of animals exposed in group i, and yi is the number that died.
It is of interest to determine how πi, the probability of death, varies as a
function of zi = log10(dilutioni). A reasonable model is logit(πi) = xT

i β,
where xi = (1, zi), so that exp(β2) is the multiplicative increase in the odds
of mortality associated with a tenfold increase in concentration.

For this example, we will suppose that the data will arrive as an ASCII
file with a separate line or record for each of the five concentration groups.
We will allow the user to include an arbitrary number of comment lines at
the beginning of the data file, like this:

viral.dat

**

* Example data file for the ELOGIT program

* Viral assay experiment data from Davis et al.(1973)

* Variables are:

* LOG_DOSE = log viral concentration

* N = number of animals exposed

* Y = number of deaths

**

-5 6 0

-4 6 1

-3 6 4

-2 6 6

-1 6 6

We will suppose that variable names, if provided, will be placed in a sepa-
rate file with one name per line.

viral.nam

**

* Example names file for the ELOGIT program

* Variable names associated with the file viral.dat

**

LOG_DOSE

N

Y

154 5. Developing a Console Application

TABLE 5.2. Results from an experiment on transient vasorestriction.

i Volume Rate yi i Volume Rate yi

1 3.70 0.825 1 21 0.40 2.000 0
2 3.50 1.090 1 22 0.95 1.360 0
3 1.25 2.500 1 23 1.35 1.350 0
4 0.75 1.500 1 24 1.50 1.360 0
5 0.80 3.200 1 25 1.60 1.780 1
6 0.70 3.500 1 26 0.60 1.500 0
7 0.60 0.750 0 27 1.80 1.500 1
8 1.10 1.700 0 28 0.95 1.900 0
9 0.90 0.750 0 29 1.90 0.950 1

10 0.90 0.450 0 30 1.60 0.400 0
11 0.80 0.570 0 31 2.70 0.750 1
12 0.55 2.750 0 32 2.35 0.030 0
13 0.60 3.000 0 33 1.10 1.830 0
14 1.40 2.330 1 34 1.10 2.200 1
15 0.75 3.750 1 35 1.20 2.000 1
16 2.30 1.640 1 36 0.80 3.330 1
17 3.20 1.600 1 37 0.95 1.900 0
18 0.85 1.415 1 38 0.75 1.900 0
19 1.70 1.060 0 39 1.30 1.625 1
20 1.80 1.800 1

Binary Responses with Numeric Covariates

The data shown in Table 5.2 were taken from Myers (1990, Chapter 7).
N = 39 individuals were subjected to varying rates and volumes of air.
The response is yi = 1 if subject i experienced a transient vasorestriction
and 0 otherwise. Because the response is binary, ni = 1, i = 1, . . . , 39 is
understood. One model worth fitting is

log
(

πi

1 − πi

)
= β1 + β2 volumei + β3 ratei,

but we also may wish to consider simpler models based on volume or rate
alone. For this example, the first few lines of the data file look like this:

vaso.dat

1 3.7 .825 1

2 3.5 1.090 1

3 1.25 2.5 1

Notice that the line lengths and field widths vary; this will not be a problem
if we read in the data using a list-directed format.

The first variable in this data file is merely a case identification number
and will not be used in the model. Identifiers, whether they are numeric

5.3 Starting the Main Types Module 155

TABLE 5.3. Graduate applicants to the University of California at Berkeley clas-
sified by sex, department, and admission status.

Men Women

Dept. rejected accepted rejected accepted

A 313 512 19 89
B 207 353 8 17
C 205 120 391 202
D 278 139 244 131
E 138 53 299 94
F 351 22 317 24

or character variables, are present in many datasets and can be beneficial
(e.g., when flagging influential cases or outliers). To keep our data-input
routines simple, we will require the case identifier, if present, to be (a) the
first variable on each line; (b) to be no longer than a certain number of
characters; and (c) to have no embedded blank spaces.

Grouped Responses with Nominal Covariates

Table 5.3, reported by Freedman, Pisani and Purves (1997), describes appli-
cants to six graduate programs at the University of California at Berkeley
for the fall of 1973. This dataset is a 6×2×2 contingency table with subjects
classified by department, sex, and admission status. If we define “success”
as being granted admission to Berkeley and regard sex and department as
potential covariates, it becomes natural to group the applicants by their
covariate values and rearrange the data with one covariate pattern per line,
as in the data file shown below.

admissions.dat

Dept_A Male 512 313

Dept_A Female 89 19

Dept_B Male 353 207

Dept_B Female 17 8

Dept_C Male 120 205

Dept_C Female 202 391

Dept_D Male 139 278

Dept_D Female 131 244

Dept_E Male 53 138

Dept_E Female 94 299

Dept_F Male 22 351

Dept_F Female 24 317

This data file differs from the previous ones in two important ways. First,
the responses are provided in terms of the number of successes yi and the
number of failures ni−yi rather than in the event/trial (yi and ni) or binary
(yi = 0 or 1 with ni = 1 assumed) format. Second, the two covariates in

156 5. Developing a Console Application

this data file are nominal rather than numeric. Nominal covariates would
require us to create dummy codes or contrasts, and the interpretation of the
coefficients β depends on the coding scheme. Procedures for automatically
generating these dummy codes and contrasts are not difficult to write but
would make our program substantially longer. To keep the project simple,
we will not implement the success/failure format or nominal covariates now;
these tasks are left to the interested reader as exercises.

The Dataset Type

Here is our definition for the type that will hold the dataset in the ELOGIT
session. At this point, we assume that all variables are numeric. Note that
arrays of unknown size must be declared as pointers (Section 3.5.1).

elogit types.f90

!##

type :: dataset_type

sequence

private

logical :: is_null=.true.

integer(kind=our_int) :: ncase=0, nvar=0

real(kind=our_dble), pointer :: data_matrix(:,:)=>null()

character(len=var_name_length), pointer :: var_names(:)=>null()

character(len=case_id_length), pointer :: case_id(:)=>null()

end type dataset_type

!##

This type definition relies upon two constants that have been added to the
program_constants module:

integer, parameter :: var_name_length = 8, &
case_id_length = 8

The next step is to create public methods for putting data in and getting
data out. Before presenting these methods, however, we briefly digress to
discuss the general problem of allocating array pointers.

5.3.3 A Module for Pointer Allocation

Allocating array pointers can be a dangerous operation. If the requested
size of the array is too large for the available memory, the program will
crash. Allocating a pointer that is currently associated will cause a memory
leak. These problems can be avoided by taking two simple measures. To
stop leaks, we should always check the association status of a pointer with
the associated function and deallocate it if necessary before allocating it.
Second, in every allocate statement, we should make use of the optional
argument stat; this sets an integer variable to zero if the allocation was
successful or to a positive value if it failed, so that errors can be trapped.

5.3 Starting the Main Types Module 157

If pointers are frequently allocated in a program, these checks can become
tedious. To avoid unnecessary duplication of code, we have written a mod-
ule called dynamic_allocation that implements these checks and reports
violations to the error handler. To see how the module works, consider the
following procedure for allocating a rank-two integer array.

dynalloc.f90

!##

integer(our_int) function int2_alloc(intArray, dim1, dim2, err) &

result(answer)

! Allocates an integer array of rank 2

implicit none

! declare required arguments

integer(kind=our_int), pointer :: intArray(:,:)

integer, intent(in) :: dim1, dim2

type(error_type), intent(inout) :: err

! declare local variables and parameters

integer :: status

character(len=*), parameter :: subname = "int2_alloc"

! begin

answer = RETURN_FAIL

if(associated(intArray)) deallocate(intArray, stat=status)

if(status /= 0) goto 800

allocate(intArray(dim1, dim2), stat=status)

if(status /= 0) goto 810

! normal exit

answer = RETURN_SUCCESS

return

! error traps

800 call err_handle(err, 201, &

called_from = subname//" in MOD "//modname)

return

810 call err_handle(err, 200, &

called_from = subname//" in MOD "//modname)

return

end function int2_alloc

!##

The module has similar functions for allocating integer arrays of other
ranks, along with arrays of real numbers and strings. To avoid having to
remember different names for each of these functions, we group them to-
gether under the generic name dyn_alloc and allow Fortran to select the
appropriate procedure to apply based on the type and number of argu-
ments. The module also has a parallel set of procedures for deallocating
arrays, grouped under the generic name dyn_dealloc.

Using all of this code to handle the occasional allocation error may seem
a bit extreme. However, you don’t need to rewrite this code for your own
programs. If you download dynalloc.f90 and include the statement

use dynamic_allocation

158 5. Developing a Console Application

in your program or module, you can manage pointer allocation exactly as
we do.

5.3.4 Putting and Getting Data

Returning now to the problem at hand, let us consider how to put a dataset
into the ELOGIT session. We are working toward a procedure that reads
data values from a file. But first, we should write put methods that accept
data not from external files but from arrays of real numbers and strings. The
reason is that we want to enable the elogit_types module to serve other
programs written in Fortran or perhaps in other languages. We do not want
file I/O to be the only method by which ELOGIT may communicate with
the outside world. Rather, we want the option of bypassing files entirely
to insert the contents of arrays or array sections directly into the ELOGIT
session.

Referring back to our definition of dataset_type, we see that the most
crucial component is data_matrix, a rank-two real array for storing the
numeric values for all the variables in the system. The integer components
ncase and nvar are merely the dimensions of data_matrix, the logical flag
is_null merely tells whether data_matrix is present, and the character
arrays var_names and case_id merely provide names for its rows and
columns. Therefore, we will write the put method for the data_matrix first.
As a side effect, this method will reset the values of is_null, ncase, and
nvar. It will also allocate var_names and case_id to the correct length and
fill them with sensible default strings. In this way, var_names and case_id
will exist whether or not a user chooses to supply them. Our put method
for the data matrix is shown below.

elogit puts.f90

!##

integer(our_int) function put_elogit_data_matrix(data_matrix, &

session, err) result(answer)

! Loads a data matrix into an ELOGIT session.

! When the data matrix is loaded, var_names and case_id are

! initialized to default values. If the loading fails for any

! reason, the entire ELOGIT session is nullified.

implicit none

! declare arguments

real(kind=our_dble), pointer :: data_matrix(:,:)

type(elogit_session_type), intent(inout) :: session

type(error_type), intent(inout) :: err

! declare local variables and parameters

integer(kind=our_int) :: ijunk

character(len=*), parameter :: subname = &

"put_elogit_data_matrix"

! check arguments

answer = RETURN_FAIL

if(.not.associated(data_matrix)) goto 700

! nullify the entire session

5.3 Starting the Main Types Module 159

if(nullify_elogit_session(session, err) == RETURN_FAIL) &

goto 800

! transfer dimensions to dataset, allocate pointers in dataset

session%dataset%is_null = .false.

session%dataset%ncase = size(data_matrix, 1)

session%dataset%nvar = size(data_matrix, 2)

if(dyn_alloc(session%dataset%data_matrix, &

session%dataset%ncase, session%dataset%nvar, err) &

== RETURN_FAIL) goto 800

if(dyn_alloc(session%dataset%var_names, &

session%dataset%nvar, err) == RETURN_FAIL) goto 800

if(dyn_alloc(session%dataset%case_id, &

session%dataset%ncase, err) == RETURN_FAIL) goto 800

! transfer contents from data_matrix to dataset%data_matrix

session%dataset%data_matrix = data_matrix

! initialize var_names and case_id

call assign_default_var_names(session%dataset)

call assign_default_case_id(session%dataset)

! normal exit

answer = RETURN_SUCCESS

return

! error traps

700 call err_handle(err, 1000, &

called_from = subname//" in MOD "//modname, &

custom_1 = "Input array is null.")

ijunk = nullify_elogit_session(session, err)

return

800 call err_handle(err, 1000, &

called_from = subname//" in MOD "//modname)

ijunk = nullify_elogit_session(session, err)

end function put_elogit_data_matrix

!##

This procedure relies on a private subroutine for initializing the variable
names, and a similar procedure (not shown) for initializing the case iden-
tifiers.

elogit puts.f90

!##

subroutine assign_default_var_names(dataset)

! assigns default values to dataset%var_names, assuming that

! the array has already been allocated

implicit none

! declare arguments

type(dataset_type), intent(inout) :: dataset

! declare local variables and parameters

character(len=12) :: sInt

integer(kind=our_int) :: var

! begin

do var = 1, dataset%nvar

write(sInt,"(I12)") var

sInt = adjustl(sInt)

dataset%var_names(var) = "VAR_" // trim(sInt)

160 5. Developing a Console Application

end do

end subroutine assign_default_var_names

!##

To keep the source-code file for the elogit_types module from getting
too large, we are placing this function and all other puts related to the
ELOGIT session into an auxiliary file called elogit_puts.f90. We have
then added the line

include "elogit_puts.f90"

to elogit_types.f90, which instructs the compiler to insert all the state-
ments from elogit_puts.f90 at that point. Similarly, we will be placing
the get methods into a file called elogit_gets.f90. If you try to compile
this project automatically with an IDE or make file, make sure that you
do not include these auxiliary files in the compilation list; otherwise the
compiler will try to process them twice.

Style tip

As a module grows in size, place groups of procedures into auxiliary files
and use include statements in the original file.

Now we write put methods for the other properties. There is no need for
public methods for putting ncase, nvar, or is_null, as these properties
should be read-only. Here is a public procedure for putting var_names; a
similar procedure for putting case_id is not shown.

elogit puts.f90

!##

integer(our_int) function put_elogit_var_names(var_names, &

session, err) result(answer)

! Loads an array of variable name strings into an ELOGIT

! session after a data matrix has already been loaded.

! Side effect: the rest of the ELOGIT session (everything after

! the model) will be nullified.

implicit none

! declare arguments

character(len=var_name_length), pointer :: var_names(:)

type(elogit_session_type), intent(inout) :: session

type(error_type), intent(inout) :: err

! declare local variables and parameters

integer :: ijunk

character(len=*), parameter :: subname = "put_elogit_var_names"

! check arguments

answer = RETURN_FAIL

if(session%dataset%is_null) goto 700

if(.not.associated(var_names)) goto 800

if(size(var_names) /= session%dataset%nvar) goto 810

! transfer contents from var_names to dataset%var_names

5.3 Starting the Main Types Module 161

session%dataset%var_names = var_names

! reset the other parts of the session

ijunk = nullify_elogit_session(session, err, &

save_dataset = .true.)

! normal exit

answer = RETURN_SUCCESS

return

! error traps

700 call err_handle(err, 1000, &

called_from = subname//" in MOD "//modname, &

custom_1 = "You cannot load var_name strings", &

custom_2 = "until a data matrix has been loaded.")

return

800 call err_handle(err, 1000, &

called_from = subname//" in MOD "//modname, &

custom_1 = "Input array is null.")

return

810 call err_handle(err, 1000, &

called_from = subname//" in MOD "//modname, &

custom_1 = "Size of input array does not conform", &

custom_2 = "to the current dataset.")

end function put_elogit_var_names

!##

A side effect of this method is that all aspects of the ELOGIT session
other than the dataset are nullified. At the moment, the session has no other
aspects. However, we will soon add components to hold the model specifi-
cation, the results from the model-fitting procedures, and so on. Some of
those session properties (e.g., the model specification) could become irrel-
evant if the variable names are changed. For that reason, we automatically
erase those components whenever the dataset is changed through a call to
nullify_elogit_session.

Now that the puts are finished, let’s implement the gets. Gets are not al-
ways necessary, and some of them may not be called in the ELOGIT console
program. They may be needed in the future, however, if the elogit_types
module is used by other projects. Shown below is the procedure for getting
variable names; the other gets follow the same pattern and can be easily
generated by making minor changes to this one.

elogit gets.f90

!##

integer(our_int) function get_elogit_var_names(var_names, &

session, err) result(answer)

! Gets the var_names currently stored in an ELOGIT session

implicit none

! declare arguments

character(len=var_name_length), pointer :: var_names(:)

type(elogit_session_type), intent(in) :: session

type(error_type), intent(inout) :: err

! declare local variables and parameters

162 5. Developing a Console Application

character(len=*), parameter :: subname = "get_elogit_var_names"

! begin

answer = RETURN_FAIL

if(session%dataset%is_null) goto 700

if(dyn_alloc(var_names, session%dataset%nvar, err) &

== RETURN_FAIL) goto 800

var_names = session%dataset%var_names

! normal exit

answer = RETURN_SUCCESS

return

! error traps

700 call err_handle(err, 1000, &

called_from = subname//" in MOD "//modname, &

custom_1 = "No dataset has been loaded yet.")

return

800 call err_handle(err, 1000, &

called_from = subname//" in MOD "//modname)

end function get_elogit_var_names

!##

You may have noticed that the array arguments in these puts and gets
have the pointer attribute. This will make it easier for other program units
to use the methods. If we had not done this, then a program that called
get_elogit_var_names would have to ascertain the size of var_names in
advance and allocate an array of that size before calling the method. Declar-
ing the array arguments as pointers allows us to perform all dimensioning
inside of the module procedures. Pointers will also facilitate the process of
turning your program into a COM server in the future. When writing puts
and gets for scalars, the pointer attribute is unnecessary.

Style tip

When writing a public method for putting or getting an array, declare the
array as a pointer. Do not use the pointer attribute for scalars.

Is it really necessary to write these puts and gets? If our only purpose is
to develop a single working console program, perhaps not. However, if we
intend to use this module in future projects, there are tremendous benefits
to having a self-contained, encapsulated object, complete with error han-
dling. We would simply need to put the line use elogit_types into our
code; immediately, all of the puts, gets, and computational methods are
available. In addition, we may wish to move beyond console applications to
the interactive, point-and-click world of Windows. Procedure calls will no
longer occur in a prespecified sequence, and the possibilities for erroneous
input to the module grow exponentially. In this setting, anticipating all the
ways that users can misapply the procedures and preventing them from
doing so becomes crucial. In Windows, it is the quality of the interface—

5.3 Starting the Main Types Module 163

i.e., the entire set of public procedures, including the puts and gets—that
primarily determines how robust and useful the elogit_types module will
be.

5.3.5 Reading Data from Files

We are finally ready to create a routine for reading data files. We have
written a public function called read_elogit_datafile that:

• allocates a temporary rank-two real array to hold the data matrix
and, if necessary, a temporary rank-one string array to hold case
identifiers;

• opens the data file and skips any comment lines at the beginning;

• reads in each line of data from the file, storing the case identifier (if
present) and the numeric data in the temporary arrays;

• puts the data matrix into dataset using put_elogit_data_matrix;
and

• puts the case identifiers, if present, into dataset using the procedure
put_elogit_case_id.

Any case identifier that exceeds the maximum number of characters is
truncated, and a warning is generated. The warning message is stored in a
second instance of the error_type.

elogit io.f90

!##

integer(kind=our_int) function read_elogit_datafile(&

data_file_name, nkase, nvar, case_id_present, session, err, &

warn) result(answer)

! Reads a data matrix from a data file and stores it in an

! ELOGIT session. If the operation fails for any reason, the

! session is nullified and the returned value is RETURN_FAIL.

! Generates an optional warning message if case_id strings had

! to be truncated.

implicit none

! declare required arguments

character(len=file_name_length), intent(in) :: data_file_name

integer(kind=our_int), intent(in) :: nkase, nvar

logical, intent(in) :: case_id_present

type(elogit_session_type), intent(inout) :: session

type(error_type), intent(inout) :: err

! declare optional arguments

type(error_type), intent(inout), optional :: warn

! declare local variables and parameters

real(kind=our_dble), pointer :: data_matrix(:,:)

character(len=case_id_length), pointer :: case_id(:)

character(len=data_line_width) :: line

164 5. Developing a Console Application

integer(kind=our_int) :: kase, var, posn, current_line, ijunk

logical :: truncate_warn

character(len=*), parameter :: subname = "read_elogit_datafile"

! check the arguments

answer = RETURN_FAIL

if(data_file_name == "") goto 700

if(nkase <= 0) goto 710

if(nvar <= 0) goto 720

! allocate data_matrix and case_id, if necessary

if(dyn_alloc(data_matrix, nkase, nvar, err) == RETURN_FAIL) &

goto 800

if(case_id_present) then

if(dyn_alloc(case_id, nkase, err) == RETURN_FAIL) goto 800

end if

! open the data file and ignore comment lines

open(unit=data_file_handle, file=data_file_name, &

status="old", err=810)

current_line = 0

if(skip_comment_lines(data_file_handle, current_line) &

== RETURN_FAIL) goto 900

! read data

truncate_warn = .false.

kase = 0

do

current_line = current_line + 1

read(unit=data_file_handle, fmt="(A)", err=900, end=900) line

if(line == "") goto 900 ! no blank lines allowed

kase = kase + 1

if(case_id_present) then

line = adjustl(line)

posn = index(line, " ") - 1 ! length of current case_id

if(posn > case_id_length) truncate_warn = .true.

case_id(kase) = line(1:posn)

line = line(posn + 1:) ! remove case_id from line

end if

read(line, *, err=900, end=900) &

(data_matrix(kase, var), var = 1, nvar)

if(kase == nkase) exit

end do

! load the data matrix

if(put_elogit_data_matrix(data_matrix, session, err) == &

RETURN_FAIL) goto 800

! load the case_id, if present

if(case_id_present) then

if(put_elogit_case_id(case_id, session, err) == &

RETURN_FAIL) goto 800

end if

! issue warnings, if warranted

if(present(warn)) then

if(truncate_warn) &

call err_handle(warn, 1000, &

called_from = subname//" in MOD "//modname, &

custom_1 = &

5.3 Starting the Main Types Module 165

"One or more case identifiers were truncated.")

end if

! normal exit

answer = RETURN_SUCCESS

goto 999

! error traps

700 call err_handle(err, 1000, &

called_from = subname//" in MOD "//modname, &

custom_1 = "No data file name specified.")

goto 999

710 call err_handle(err, 1000, &

called_from = subname//" in MOD "//modname, &

custom_1 = "Number of cases not positive.")

goto 999

720 call err_handle(err, 1000, &

called_from = subname//" in MOD "//modname, &

custom_1 = "Number of variables not positive.")

goto 999

800 call err_handle(err, 1000, &

called_from = subname//" in MOD "//modname)

goto 999

810 call err_handle(err, 1, &

called_from = subname//" in MOD "//modname, &

file_name = data_file_name)

goto 999

900 call err_handle(err, 3, &

called_from = subname//" in MOD "//modname, &

file_name = data_file_name, line_no = current_line)

goto 999

! final cleanup

999 continue

close(unit=data_file_handle)

if(answer == RETURN_FAIL) &

ijunk = nullify_elogit_session(session, err)

ijunk = dyn_dealloc(data_matrix, err)

ijunk = dyn_dealloc(case_id, err)

end function read_elogit_datafile

!##

Another function called read_elogit_namesfile, which is not shown,
performs a similar operation on the variable names file.

5.3.6 Second Snapshot of ELOGIT

Implementation of the data-reading procedures represents an important
milestone in the development of ELOGIT. This is an excellent time to stop
and test these new procedures thoroughly. To test them, we need to add a
few lines to the main program after the reading of the control file.

elogit.f90

! read the data file

if(read_elogit_datafile(ctrlfile%data_file_name, &

166 5. Developing a Console Application

ctrlfile%ncase, ctrlfile%nvar, ctrlfile%case_id_present, &

session, err, warn) == RETURN_FAIL) goto 800

! read the variable names file, if present

if(ctrlfile%names_file_present) then

if(read_elogit_namesfile(ctrlfile%names_file_name, &

ctrlfile%nvar, session, err, warn) == RETURN_FAIL) &

goto 800

end if

An image of ELOGIT as it now stands is provided on our Web site
as “Snapshot 2.” Download the snapshot and compile the source files.
Then try to run the program using the data file viral.dat and names
file viral.nam from Section 5.3.2.

As part of Snapshot 2, we have produced a short document for users of
ELOGIT that clearly states the requirements for the data and names file.
The document is not fancy, but it is complete and precise.

datafilespec.txt

FORMAT OF AN ELOGIT DATA FILE

A rectangular dataset for the ELOGIT program is provided through an

ASCII file. Case identifier strings are optional.

COMMENT LINES: An unlimited number of comment lines is allowed at the

beginning of the data file. Each comment line must begin with an

asterisk "*". These comment lines are ignored.

IF NO CASE IDENTIFIER STRINGS ARE PRESENT, then the lines after the

comments should look like this:

LINE 1: Var_1 Var_2 ... Var_nvar

LINE 2: Var_1 Var_2 ... Var_nvar

.

.

.

LINE ncase: Var_1 Var_2 ... Var_nvar

The variables on each line may be separated by any amount of blank

space. Each line must have all variables on it; blank lines between

cases are not allowed.

IF CASE IDENTIFIER STRINGS ARE PRESENT, then the lines after the

comments should look like this:

LINE 1: Case_id Var_1 Var_2 ... Var_nvar

LINE 2: Case_id Var_1 Var_2 ... Var_nvar

.

.

.

LINE ncase: Case_id Var_1 Var_2 ... Var_nvar

The case_id is a character string up to 8 characters long, with no

5.4 Specifying the Model 167

embedded spaces. A case_id string should not begin with an asterisk

"*", because then it might be mistaken for a comment. Blank spaces on

a line before the case_id string are ignored.

A similar document (not shown) explains the requirements for the op-
tional variable names file. It’s tempting to put off writing these documents
until later, after the entire program is working. If you wait, however, they
will take longer to write and may be less accurate.

Style tip

The best window of opportunity for documenting file requirements is while
you are writing the procedures for reading those files.

5.3.7 Exercises

1. Our data input routines for ELOGIT require the user to specify the
number of variables and number of cases in the data file. Revise them
to determine the number of variables and the number of cases auto-
matically. Note that this will also require revision of the control file.

2. In Section 3.1.5, we described an object class for performing the clas-
sical chi-square test for independence in a two-way contingency ta-
ble. Implement this object class as a derived type. Place the type in
a module, and write all the necessary put and get methods. (Don’t
implement the run_chisquare_test method yet.) Can you think of
any more properties that would be useful?

5.4 Specifying the Model

5.4.1 Storing the Model Specification

The ELOGIT session now accepts data, but it does not yet know any details
of the model to be fit. Here is a derived type that can hold those details.

elogit types.f90

!##

type :: model_type

sequence

private

logical :: is_null=.true.

integer(kind=our_int) :: y_col=0, n_col=0, npred=0

logical :: grouped=.false., intercept_present=.true.

integer(kind=our_int), pointer :: pred_col(:)=>null()

168 5. Developing a Console Application

end type model_type

!##

The component y_col is an integer that specifies which column of the
data matrix contains the response yi; n_col specifies which column, if any,
contains ni; grouped is .false. if the responses are binary (i.e., if all ni’s
are assumed to be one) and .true. if ni’s are explicitly provided; pred_col
is a rank-one array of integers specifying which columns of the data matrix
contain the covariates; npred is the number of covariates (i.e., the size of
pred_col); and intercept_present indicates whether an intercept is to be
included in the model. The is_null component, which is initially .true.,
will be set to .false. once a valid model has been specified.

Before proceeding, we make a distinction between the properties of the
model, which are conceptual entities, and the components of this derived
type, which are Fortran scalars and arrays. There is not a one-to-one corre-
spondence between them. The properties of the model are (a) what the
response is, (b) what the predictors are, and (c) whether an intercept
is to be included. The details of how these properties are stored in the
elogit_session_type are irrelevant to the user and to any program unit
outside of the elogit_types module.

5.4.2 Putting and Getting Model Properties

Our first put method, put_elogit_response_bycol, identifies the response
variable. The input argument col points to an array of integers. If the re-
sponse is binary, this array should contain a single integer indicating which
column of the dataset contains yi. If the response is binomial, then the ar-
ray should have two elements—one specifying the column for yi, the other
specifying the column for ni. Notice that the argument list includes an
elogit_dataset_type as well as an elogit_model_type, enabling us to
perform some intelligent consistency checks. First, we make sure that a
dataset has been loaded. Next, we make sure that the variables exist (i.e.,
that the column numbers for yi and ni lie between 1 and dataset%nvar).
Finally, we make sure that 0 ≤ yi ≤ ni for all cases. If no violations oc-
cur, then the model components y_col, n_col, and grouped are set to
the desired values. As a side effect, this method also sets the values of
npred, pred_col, and intercept_present to indicate a null model with
an intercept but no other predictors. Predictors will be introduced later by
additional put methods.

elogit puts.f90

!##

integer(our_int) function put_elogit_response_bycol(col, session, &

err) result(answer)

! Declares which column in the dataset contains the response or

! y variable, and which column (if any) contains the n.

5.4 Specifying the Model 169

!

! The input argument col is a pointer to an integer array.

! For ungrouped data, the array should have size 1; the only

! element should be the column number of the y-variable.

! For grouped data, the size should be 2, and the elements

! should be the column number for the y-variable, followed by

! the column number for the n-variable.

!

! Also checks the dataset to make sure that all the y and n

! values are valid: 0.<=y<=1. for grouped data and 0.<=y<=n

! for ungrouped data.

!

! Calling this procedure has the effect of resetting the

! predictors to a null (intercept-only) model.

!

! Another side effect is that everything in the ELOGIT

! session after the data and model is nullified.

!

! If this procedure fails for any reason, the model is

! nullified.

implicit none

! declare arguments

integer(kind=our_int), pointer :: col(:)

type(elogit_session_type), intent(inout) :: session

type(error_type), intent(inout) :: err

! declare local variables and parameters

character(len=*), parameter :: subname = &

"put_elogit_response_bycol"

integer(kind=our_int) :: y, n, kase, ijunk

real(kind=our_dble) :: ytmp, ntmp

character(len=12) :: sInt

! check arguments and set the y and n variables

answer = RETURN_FAIL

if(session%dataset%is_null) goto 700

if(.not.associated(col)) goto 710

if(size(col)==1) then

y = col(1)

if((y <= 0) .or. (y > session%dataset%nvar)) goto 740

session%model%y_col = y

session%model%grouped = .false.

else if(size(col)==2) then

y = col(1)

n = col(2)

if((n <= 0) .or. (n > session%dataset%nvar) .or. &

(n == y)) goto 750

session%model%y_col = y

session%model%n_col = n

session%model%grouped = .true.

else

goto 760

end if

! set the predictors to a null (intercept-only) model

session%model%intercept_present = .true.

170 5. Developing a Console Application

session%model%npred = 0

if(dyn_dealloc(session%model%pred_col, err) &

== RETURN_FAIL) goto 800

! check the data for y and n to make sure it looks okay

do kase = 1, session%dataset%ncase

write(sInt, "(I12)") kase

sInt = adjustl(sInt)

ytmp = session%dataset%data_matrix(kase, &

session%model%y_col)

if(session%model%grouped) then

ntmp = session%dataset%data_matrix(kase, &

session%model%n_col)

if(ntmp < 0.D0) goto 810

if((ytmp < 0.D0) .or. (ytmp > ntmp)) goto 820

else

if((ytmp < 0.D0) .or. (ytmp > 1.D0)) goto 820

end if

end do

session%model%is_null = .false.

! nullify everything in the session after the data and model

ijunk = nullify_elogit_session(session, err, &

save_dataset = .true., save_model = .true.)

! normal exit

answer = RETURN_SUCCESS

return

! error traps

700 call err_handle(err, 1000, &

called_from = subname//" in MOD "//modname, &

custom_1 = "You cannot specify a model", &

custom_2 = "until a dataset has been loaded.")

goto 999

710 call err_handle(err, 1000, &

called_from = subname//" in MOD "//modname, &

custom_1 = "Input array is null")

goto 999

740 call err_handle(err, 1000, &

called_from = subname//" in MOD "//modname, &

custom_1 = &

"Invalid column number given for the y-variable")

goto 999

750 call err_handle(err, 1000, &

called_from = subname//" in MOD "//modname, &

custom_1 = &

"Invalid column number given for the n-variable")

goto 999

760 call err_handle(err, 1000, &

called_from = subname//" in MOD "//modname, &

custom_1 = "Invalid size for input array")

goto 999

800 call err_handle(err, 1000, &

called_from = subname//" in MOD "//modname)

goto 999

810 call err_handle(err, 1000, &

5.4 Specifying the Model 171

called_from = subname//" in MOD "//modname, &

custom_1 = "Invalid data value for the n-variable", &

custom_2 = "Case number = " // trim(sInt), &

custom_3 = "Case id = " // &

trim(session%dataset%case_id(kase)))

goto 999

820 call err_handle(err, 1000, &

called_from = subname//" in MOD "//modname, &

custom_1 = "Invalid data value for the y-variable", &

custom_2 = "Case number = " // trim(sInt), &

custom_3 = "Case id = " // &

trim(session%dataset%case_id(kase)))

goto 999

! cleanup if an error occurs

999 continue

ijunk = nullify_elogit_session(session, err, &

save_dataset = .true.)

end function put_elogit_response_bycol

!##

From the user’s standpoint, it may be more convenient to identify the
yi and ni variables not by column number but by name. For this reason,
we wrote another procedure, called put_elogit_response_byname (not
shown), in which the input argument is a pointer to an array of character
strings containing the variable names for yi and, if applicable, ni. We also
added the following interface block, which allows both procedures to be
invoked by the same generic name.

elogit types.f90

interface put_elogit_response

module procedure put_elogit_response_bycol

module procedure put_elogit_response_byname

end interface

Corresponding to these puts, we also created a pair of gets that retrieve
the column numbers and names of the yi and ni variables. These two func-
tions are invoked by the generic name get_elogit_response.

Now we need puts and gets for the predictors. Predictors may be any
variables in the dataset other than yi and ni. Most users will want to
include a constant term for an intercept, but we should also allow them to
remove the constant if desired. Therefore, we have written:

• put_elogit_pred_bycol, to declare which columns of the dataset
contain the predictors,

• put_elogit_pred_byname, which declares predictors by name rather
than column number;

• put_elogit_intercept, which introduces or removes the intercept;
and

172 5. Developing a Console Application

• a get procedure corresponding to each of these puts.

Once again, put_elogit_pred_bycol and put_elogit_pred_byname are
grouped together by an interface block so that other program units can
refer to them by the generic public name put_elogit_pred. Source code
for all of these puts and gets can be found in elogit_model.f90.

5.4.3 Third Snapshot

Now that we have created an object class for the model and established
its properties, it’s time to add the model specification to our control file-
reading procedures. We do this in four steps. First, we design a new section
for the control file and describe it in our official document:

controlfilespec.txt

**

* Model specification section

* Optional comment lines, followed by:

LINE 1: by_name, grouped

by_name = T if the variables will be specified by name,

F if variables will be specified by number

grouped = T if an n-variable is present, F otherwise

LINE 2: yvar, nvar

yvar = name or number of the response variable

nvar = name or number of the n-variable, if any (if none,

leave this blank)

LINE 3: intercept_present

T if the model should contain an intercept, F otherwise

LINE 4: npred

number of predictors in the model (could be 0); predictors

do not include the intercept if present

LINE 5: name or number of the first predictor

LINE 6: name or number of the second predictor

and so on...

Second, we expand elogit_ctrlfile_type to hold the new information:
elogit ctrlfile.f90

!##

type :: elogit_ctrlfile_type

! unlike other types, the contents of this one are public

sequence

! data input section

integer(kind=our_int) :: ncase=0, nvar=0

logical :: case_id_present=.false., names_file_present=.false.

character(len=file_name_length) :: data_file_name="", &

names_file_name=""

! model specification section

logical :: by_name=.false., grouped=.false.

integer(kind=our_int), pointer :: resp_col(:)=>null()

character(len=var_name_length), pointer :: resp_name(:)=>null()

5.4 Specifying the Model 173

logical :: intercept_present=.false.

integer(kind=our_int) :: npred=0

integer(kind=our_int), pointer :: pred_col(:)=>null()

character(len=var_name_length), pointer :: &

pred_names(:)=>null()

! We’ll add more components to this type later

end type elogit_ctrlfile_type

!##

Third, we add a new section to the read_elogit_ctrlfile procedure:
elogit ctrlfile.f90

!###############################

! Model specification section

if(skip_comment_lines(ctrl_file_handle, current_line) &

== RETURN_FAIL) goto 900

! read by_name, grouped

current_line = current_line + 1

read(unit=ctrl_file_handle, fmt="(A)", err=900, end=900) line

read(line, *, err=900, end=900) ctrlfile%by_name, &

ctrlfile%grouped

! read yvar, nvar

current_line = current_line + 1

read(unit=ctrl_file_handle, fmt="(A)", err=900, end=900) line

if(ctrlfile%by_name) then

if(ctrlfile%grouped) then

if(dyn_alloc(ctrlfile%resp_name, 2, err) == &

RETURN_FAIL) goto 800

else

if(dyn_alloc(ctrlfile%resp_name, 1, err) == &

RETURN_FAIL) goto 800

end if

! set pred_name

if(line == "") goto 900

line = adjustl(line)

posn = index(line, " ")

ctrlfile%resp_name(1) = line(:posn-1)

line = line(posn:)

if(ctrlfile%grouped) then

if(line == "") goto 900

line = adjustl(line)

posn = index(line, " ")

ctrlfile%resp_name(2) = line(:posn-1)

end if

else

! set pred_col

if(ctrlfile%grouped) then

if(dyn_alloc(ctrlfile%resp_col, 2, err) == &

RETURN_FAIL) goto 800

read(line, *, err=900, end=900) ctrlfile%resp_col(1), &

ctrlfile%resp_col(2)

174 5. Developing a Console Application

else

if(dyn_alloc(ctrlfile%resp_col, 1, err) == &

RETURN_FAIL) goto 800

read(line, *, err=900, end=900) ctrlfile%resp_col(1)

end if

end if

! read intercept_present

current_line = current_line + 1

read(unit=ctrl_file_handle, fmt="(A)", err=900, end=900) line

read(line, *, err=900, end=900) ctrlfile%intercept_present

! read npred

current_line = current_line + 1

read(unit=ctrl_file_handle, fmt="(A)", err=900, end=900) line

read(line, *, err=900, end=900) ctrlfile%npred

! read predictor variables, if any

if(ctrlfile%npred > 0) then

if(ctrlfile%by_name) then

if(dyn_alloc(ctrlfile%pred_names, ctrlfile%npred, err) &

== RETURN_FAIL) goto 800

do i = 1, ctrlfile%npred

current_line = current_line + 1

read(unit=ctrl_file_handle, fmt="(A)", err=900, &

end=900) line

if(line == "") goto 900

line = adjustl(line)

if(line(1:1) == "*") goto 900

posn = index(line, " ")

ctrlfile%pred_names(i) = line(:posn-1)

end do

else

if(dyn_alloc(ctrlfile%pred_col, ctrlfile%npred, err) &

== RETURN_FAIL) goto 800

do i = 1, ctrlfile%npred

current_line = current_line + 1

read(unit=ctrl_file_handle, fmt="(A)", err=900, &

end=900) line

read(line, *, err=900, end=900) ctrlfile%pred_col(i)

end do

end if

end if

Finally, we add a few lines to the main program, which, after the control
file has been read, puts the model properties into the model object:

elogit.f90

! specify the model

if(ctrlfile%by_name) then

if(put_elogit_response(ctrlfile%resp_name, session, &

err) == RETURN_FAIL) goto 800

if(put_elogit_intercept(ctrlfile%intercept_present, session, &

err) == RETURN_FAIL) goto 800

if(put_elogit_predictors(ctrlfile%pred_names, session, &

err) == RETURN_FAIL) goto 800

5.4 Specifying the Model 175

else

if(put_elogit_response(ctrlfile%resp_col, session, &

err) == RETURN_FAIL) goto 800

if(put_elogit_intercept(ctrlfile%intercept_present, session, &

err) == RETURN_FAIL) goto 800

if(put_elogit_predictors(ctrlfile%pred_col, session, &

err) == RETURN_FAIL) goto 800

end if

The current state of the program is saved as “Snapshot 3.” You may
find it helpful to download this set of files, compile them, and test the new
model specification routines.

5.4.4 Exercises

1. Our development of the elogit_model_type supposes that a dataset
will be described by a single model. One can also imagine situations
where multiple models would be applied to the same dataset. Outline
a programming strategy for applying multiple models to one dataset.
(Hint: Consider a linked list.)

2. Write a public function called add_elogit_pred for adding one or
more predictor variables to an existing ELOGIT model. Overload
this function so that the additional predictors may be specified either
by column or by name. Write a companion function for removing
predictors from an existing model.

3. Popular statistical packages, including SAS and S-PLUS, allow the
user to specify a regression model through a character-string formula.
A logistic model for binary data might be written as

y ~ x1 + x2

where y is the binary response and x1 and x2 are predictors. For a
grouped response, it might look like

y / n ~ x1 + x2

where y is the number of successes and n is the number of trials.
Develop a method that allows you to specify an ELOGIT model as a
formula.

176 5. Developing a Console Application

5.5 Fitting the Model

5.5.1 The Computational Task

Now that the model specification routines are finished, we set up the
procedures for estimating the coefficients. Recall that the model is yi ∼
Bin(ni, πi), i = 1, . . . , N , where

logit(πi) = log
(

πi

1 − πi

)
= xT

i β.

Solving for πi gives

πi = expit(xT
i β) =

exT
i β

1 + exT
i
β
.

Taking the logarithm of the probability mass function

f(yi) =
ni!

yi!(ni − yi)!
πyi

i (1 − πi)ni−yi

and summing over the cases produces the loglikelihood function. Omitting
terms that do not involve parameters, the loglikelihood is

l(β) =
N∑

i=1

{yi log πi + (ni − yi) log(1 − πi)}

=
N∑

i=1

yi log
(

πi

1 − πi

)
−

N∑
i=1

ni log
(

1
1 − πi

)

=
N∑

i=1

(
xT

i β
)
yi −

N∑
i=1

ni log
(
1 + exT

i β
)

. (5.2)

Except in trivial cases, no closed-form expression exists for the maximizer
of l(β), so we must find it by an iterative method.

5.5.2 Newton-Raphson and Weighted Least Squares

The traditional way to compute the maximum-likelihood estimate for β =
(β1, . . . , βp)T in the logistic model is by the Newton-Raphson procedure.
Newton-Raphson updates the current estimate β(t) by

β(t+1) = β(t) +
[
−l′′(β(t))

]−1

l′(β(t)),

where l′(β) = (∂l/∂β1, . . . , ∂l/∂βp)T is the vector of first derivatives (also
known as the score vector) and l′′(β) is the p × p matrix whose (j, k)th

5.5 Fitting the Model 177

element is ∂2l/∂βj∂βk. The matrix −l′′(β) is also called the observed infor-
mation. In some problems, the Newton-Raphson procedure becomes com-
putationally simpler if the observed information is replaced by its expected
value; the resulting algorithm is called Fisher scoring. In logistic regression,
however, the expected and observed information are equal, so the Newton-
Raphson and Fisher scoring methods are equivalent. Upon convergence,
the inverse of this matrix evaluated at the mode β̂ provides an estimated
covariance matrix for the parameters,

V̂ (β̂) =
[
−l′′(β̂)

]−1

,

and inferences are based on the approximation (β̂ − β) ∼ N(0, V̂ (β̂)). For
more information, see Hosmer and Lemeshow (2000) or Agresti (2002).

Straightforward differentiation of (5.2) shows that

∂l

∂βj
=

N∑
i=1

xij(yi − µi),

∂2l

∂βj∂βk
= −

N∑
i=1

wixijxik,

where µi = niπi and wi = niπi(1 − πi). These can be succinctly written
in matrix notation as l′(β) = XT (y − µ) and −l′′(β) = XT WX, where
y = (y1, . . . , yN)T , µ = (µ1, . . . , µN)T ,

X =

⎡
⎢⎢⎢⎣

xT
1

xT
2
...

xT
N

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

x11 x12 · · · x1p

x21 x22 · · · x2p

...
...

. . .
...

xN1 xN2 · · · xNp

⎤
⎥⎥⎥⎦ ,

and W = Diag(niπi(1 − πi)). The iteration of Newton-Raphson is

β(t+1) = β(t) +
(
XT W (t)X

)−1

XT
(
y − µ(t)

)
, (5.3)

where W (t) and µ(t) are calculated by setting β = β(t). If we take zi =
xT

i β + (yi − µi)/wi and z = (z1, . . . , zN)T , then (5.3) can be rewritten as

β(t+1) =
(
XT W (t)X

)−1

XT W (t)z(t), (5.4)

showing that Newton-Raphson for the logistic model is equivalent to an
iterative application of weighted least squares (WLS). In the literature of
generalized linear models, zi is often called the adjusted dependent variate
or the working variate (McCullagh and Nelder, 1989).

178 5. Developing a Console Application

To implement this procedure, we need a starting value and a stopping
rule. It’s usually good enough to begin at β(0) = 0, so that the initial
weights become wi ∝ ni. We can stop iterating when the relative change
in the elements of β becomes small; namely when∣∣∣β(t)

j − β
(t−1)
j

∣∣∣ ≤ ε
∣∣∣β(t−1)

j

∣∣∣ (5.5)

holds for all j = 1, . . . , p, where ε is a small positive number. Convergence is
not guaranteed because the maximum-likelihood estimates for one or more
elements of β may be infinite. To cover that possibility, we will declare a
maximum number of iterations tmax and stop iterating when (5.5) occurs
or when t = tmax.

5.5.3 Parameters and Results

Before implementing the model-fitting procedure, let’s expand the ELOGIT
session to hold estimates of the model parameters. Here is a derived type
for that purpose.

elogit types.f90

!##

type :: param_type

sequence

private

logical :: is_null = .true.

integer(kind=our_int) :: p=0

real(kind=our_dble), pointer :: beta(:)=>null()

end type param_type

!##

Because we are starting the algorithm at β(0) = 0, we will not need
to input any starting values. We will, however, need access to the results.
Therefore, we have written a public method called get_elogit_beta that
obtains the current value of β. A second method, get_elogit_beta_names,
obtains character-string names for the elements of β that correspond to the
names of the predictor variables. These procedures follow a now familiar
pattern, so we do not show them here.

In addition to returning the final parameter estimate β̂, we want to report
how many iterations were carried out and whether the algorithm converged.
We also want to report a few statistics to help the user draw inferences
and assess the quality of fit. Standard errors for β̂ come from the diagonal
elements of V̂ = (XT WX)−1, so our model-fitting procedure should return
this matrix. We should also return the value of the loglikelihood function
(5.2) and measures that summarize the discrepancies between the observed
responses yi and their estimated means,

niπ̂i =
ni exT

i β̂

1 + exT
i
β̂

.

5.5 Fitting the Model 179

The Pearson goodness-of-fit statistic is X2 =
∑N

i=1 r2
i , where

ri =
yi − niπ̂√
niπ̂i(1 − π̂i)

. (5.6)

Another common measure is the deviance statistic G2 =
∑N

i=1 d 2
i , where

d 2
i = 2

{
yi log

(
yi

niπ̂i

)
+ (ni − yi) log

(
ni − yi

ni − niπ̂i

)}
. (5.7)

As written, (5.7) is undefined when yi = 0 or yi = ni; in those cases, one
should interpret 0 log 0 as zero. If the ni’s are sufficiently large, then both
X2 and G2 are approximately distributed as chi-square with N −p degrees
of freedom if the model holds; unusually large values of X2 or G2 relative to
χ2

N−p suggest model failure. For more discussion on the behavior of these
fit statistics, consult McCullagh and Nelder (1989) or Agresti (2002). Here
is our derived type for holding these results; public methods for getting the
various properties are not shown.

elogit types.f90

!##

type :: results_type

sequence

private

logical :: is_null=.true.

integer(kind=our_int) :: iter=0

logical :: converged=.false.

real(kind=our_dble), pointer :: cov_beta(:,:)=>null()

real(kind=our_dble) :: loglik=0.D0, X2=0.D0, G2=0.D0

integer(kind=our_int) :: df=0

end type results_type

!##

5.5.4 The Model-Fitting Procedure

Here is our procedure for fitting the logistic model. This procedure relies on
repeated calls to fit_wls, the function for weighted least-squares regression
developed in Section 4.4. By taking advantage of the new Fortran array
operations and intrinsics, we were able to reduce the computational parts to
just a few lines; most of the code is concerned with creating and destroying
array workspaces and reporting errors.

elogit modelfit.f90

!##

integer(our_int) function run_elogit_modelfit(session, err, &

warn, maxits, eps) result(answer)

! Fits the logistic regression model by iteratively reweighted

! least squares, storing the final parameter value in

! param and the results in results.

180 5. Developing a Console Application

! If it fails for any reason, param and results are nullified.

implicit none

! declare arguments

type(elogit_session_type), intent(inout) :: session

type(error_type), intent(inout) :: err

type(error_type), intent(inout), optional :: warn

integer(kind=our_int), intent(in), optional :: maxits

real(kind=our_dble), intent(in), optional :: eps

! declare local variables and parameters

character(len=*), parameter :: subname = "run_elogit_modelfit"

real(kind=our_dble), allocatable :: y(:), n(:), x(:,:), w(:), &

pi(:), z(:), beta(:), beta_old(:), log_odds(:), &

odds(:), cov_beta(:,:), dev(:)

integer(kind=our_int) :: ncase, p, ijunk, status, j, posn

integer(kind=our_int) :: maxits0

real(kind=our_dble) :: eps0

character(len=12) :: sInt

real(kind=our_dble), parameter :: log_huge = &

log(huge(real(0, kind=our_dble)))

real(kind=our_dble) :: scale

! check arguments

answer = RETURN_FAIL

if(session%dataset%is_null) goto 700

if(session%model%is_null) goto 710

! allocate local arrays

ncase = session%dataset%ncase

p = session%model%npred

if(session%model%intercept_present) p = p + 1

if(p == 0) goto 720

allocate(y(ncase), n(ncase), x(ncase,p), w(ncase), pi(ncase), &

z(ncase), beta(p), beta_old(p), log_odds(ncase), &

odds(ncase), cov_beta(p,p), dev(ncase), stat=status)

if(status /= 0) goto 780

! fill in y, n, x

y(:) = session%dataset%data_matrix(:, session%model%y_col)

if(session%model%grouped) then

n(:) = session%dataset%data_matrix(:, session%model%n_col)

else

n(:) = 1.D0

end if

posn = 0

if(session%model%intercept_present) then

posn = posn + 1

x(:,posn) = 1.D0

end if

do j = 1, session%model%npred

posn = posn + 1

x(:,posn) = session%dataset%data_matrix(: , &

session%model%pred_col(j))

end do

! set maximum number of iterations and convergence criterion

if(present(maxits)) then

if(maxits < 0) goto 750

5.5 Fitting the Model 181

maxits0 = maxits

else

maxits0 = 20

end if

if(present(eps)) then

if(eps <= 0.D0) goto 760

eps0 = eps

else

eps0 = 1D-08

end if

! set starting value for beta

beta(:) = 0.D0

! main iteration

session%results%iter = 0

session%results%converged = .false.

do

session%results%iter = session%results%iter + 1

write(sInt,"(I12)") session%results%iter

sInt = adjustl(sInt) ! for error reporting

beta_old = beta

log_odds = matmul(x, beta)

if(any(log_odds > log_huge)) goto 820 ! to prevent overflow

odds = exp(log_odds)

pi = odds / (1.D0 + odds)

w = n * pi * (1.D0 - pi)

z = log_odds + (y - n*pi) / w

if(fit_wls(x, z, w, beta, cov_beta, scale, err) &

== RETURN_FAIL) goto 840

if(all(abs(beta - beta_old) <= eps0*abs(beta_old))) &

session%results%converged = .true.

if(session%results%converged .or. &

(session%results%iter >= maxits0)) exit

end do

! store the resulting estimate in param

session%param%is_null = .false.

session%param%p = p

if(dyn_alloc(session%param%beta, session%param%p, err) &

== RETURN_FAIL) goto 800

session%param%beta = beta

! store the covariance matrix in results

if(dyn_alloc(session%results%cov_beta, p, p, err) &

== RETURN_FAIL) goto 800

session%results%cov_beta(:,:) = cov_beta(:,:)

! calculate the fit statistics

session%results%loglik = sum(y*log(pi) + (n-y)*log(1.D0-pi))

session%results%X2 = sum((y-n*pi)**2 / w)

where((y /= 0.D0) .and. (y /= n)) &

dev = y * log(y / (n*pi)) &

+ (n-y) * log((n-y) / (n-n*pi))

where(y == 0.D0) dev = n * log(n / (n-n*pi))

where(y == n) dev = n * log(n / (n*pi))

session%results%G2 = 2.D0 * sum(dev)

session%results%df = ncase - p

182 5. Developing a Console Application

session%results%is_null = .false.

! issue warnings, if warranted

if(present(warn)) then

if(.not.session%results%converged) &

call err_handle(warn, 1000, &

called_from = subname//" in MOD "//modname, &

custom_1 = &

"Did not converge by " // trim(sInt) // " iterations.")

end if

! normal exit

answer = RETURN_SUCCESS

goto 999

! error traps

700 call err_handle(err, 1000, &

called_from = subname//" in MOD "//modname, &

custom_1 = "No dataset has been loaded yet.")

goto 999

710 call err_handle(err, 1000, &

called_from = subname//" in MOD "//modname, &

custom_1 = "No model has been specified yet.")

goto 999

720 call err_handle(err, 1000, &

called_from = subname//" in MOD "//modname, &

custom_1 = "Model has no parameters.")

goto 999

750 call err_handle(err, 1000, &

called_from = subname//" in MOD "//modname, &

custom_1 = "Maximum no. of iterations cannot be negative.")

goto 999

760 call err_handle(err, 1000, &

called_from = subname//" in MOD "//modname, &

custom_1 = "Convergence criterion must be positive.")

goto 999

780 call err_handle(err, 200, &

called_from = subname//" in MOD "//modname)

goto 999

800 call err_handle(err, 1000, &

called_from = subname//" in MOD "//modname)

goto 999

820 call err_handle(err, 104, &

called_from = subname//" in MOD "//modname, &

custom_1 = "during iteration " // trim(sInt), &

custom_2 = "Model fit procedure aborted.")

goto 999

830 call err_handle(err, 102, &

called_from = subname//" in MOD "//modname, &

custom_1 = "during iteration " // trim(sInt), &

custom_2 = "Model fit procedure aborted.")

goto 999

840 call err_handle(err, 1000, &

called_from = subname//" in MOD "//modname, &

custom_1 = "during iteration " // trim(sInt), &

custom_2 = "Model fit procedure aborted.")

5.5 Fitting the Model 183

goto 999

! final cleanup

999 continue

if(allocated(y)) deallocate(y)

if(allocated(n)) deallocate(n)

if(allocated(x)) deallocate(x)

if(allocated(w)) deallocate(w)

if(allocated(pi)) deallocate(pi)

if(allocated(z)) deallocate(z)

if(allocated(beta)) deallocate(beta)

if(allocated(beta_old)) deallocate(beta_old)

if(allocated(log_odds)) deallocate(log_odds)

if(allocated(odds)) deallocate(odds)

if(allocated(cov_beta)) deallocate(cov_beta)

if(allocated(dev)) deallocate(dev)

if(answer == RETURN_FAIL) then

ijunk = nullify_elogit_session(session, err, &

save_dataset = .true., save_model = .true.)

end if

end function run_elogit_modelfit

!##

5.5.5 Reporting the Results

Our last procedure in this chapter takes the results from the model fit and
writes a nicely formatted summary to an output file. Here is an example
of the kind of output it produces.

viral.out

###

ELOGIT

A simple program for logistic regression analysis

Version 1.0 - June, 2004

Written by J.L. Schafer

Department of Statistics and The Methodology Center

The Pennsylvania State University

###

08 June, 2004

14:52:04

Data set information

Number of cases: 5

Number of variables: 3

Variables

1 LOG_DOSE

2 N

3 Y

Model specification

184 5. Developing a Console Application

Response (y): Y

Denominator (n): N

Predictors: INTRCPT

LOG_DOSE

Iteratively reweighted least-squares algorithm

Converged at iteration 8

estimate std.err. ratio

------------ ------------ ------------

INTRCPT 9.5868 3.7067 2.5864

LOG_DOSE 2.8792 1.1023 2.6121

Summary of model fit

Loglikelihood: -6.7898028

Deviance G^2: 0.53470113

Pearson’s X^2: 0.36098344

Degrees of freedom: 3

The procedure for creating output files, which is shown below, calls two
other procedures, which are not shown: write_program_info_to_outfile,
which stamps the file with basic information about the ELOGIT program,
and write_date_and_time_to_outfile, which reports the current date
and time.

elogit io.f90

!##

integer(kind=our_int) function write_elogit_results_to_outfile(&

output_file_name, session, err) result(answer)

! writes a formatted summary of results to the output file

implicit none

! declare arguments

character(len=file_name_length), intent(in) :: output_file_name

type(elogit_session_type), intent(in) :: session

type(error_type), intent(inout) :: err

! declare local variables and parameters

integer(kind=our_int) :: i, ncase, nvar, iter, df

logical :: converged

character(len=var_name_length), pointer :: var_names(:)=>null()

real(kind=our_dble), pointer :: beta(:)=>null(), &

cov_beta(:,:)=>null()

real(kind=our_dble) :: est, SE, ratio, loglik, X2, G2

character(len=12) :: sInt, sRealA, sRealB, sRealC

character(len=var_name_length), parameter :: var_blank=""

character(len=*), parameter :: subname = &

"write_elogit_results_to_outfile"

! check arguments

answer = RETURN_FAIL

if(output_file_name == "") goto 700

! open output file

5.5 Fitting the Model 185

open(unit=out_file_handle, file=output_file_name, &

status="REPLACE", action="WRITE", err=800)

! stamp output file with program information

if(write_program_info_to_outfile(out_file_handle, err) &

== RETURN_FAIL) goto 990

write(unit=out_file_handle, fmt="(A)", err=820) "" ! blank line

! stamp output file with time and date

if(write_date_and_time_to_outfile(out_file_handle, err) &

== RETURN_FAIL) goto 990

write(unit=out_file_handle, fmt="(A)", err=820) "" ! blank line

! Write information about data set

if(get_elogit_ncase(ncase, session, err) == RETURN_FAIL) &

goto 990

if(get_elogit_nvar(nvar, session, err) == RETURN_FAIL) &

goto 990

if(get_elogit_var_names(var_names, session, err) == &

RETURN_FAIL) goto 990

write(unit=out_file_handle, fmt="(A)", err=820) &

"Data set information"

write(sInt,"(I12)") ncase

sInt = adjustl(sInt)

write(unit=out_file_handle, fmt="(A)", err=820) &

" Number of cases: " // trim(sInt)

write(sInt,"(I12)") nvar

sInt = adjustl(sInt)

write(unit=out_file_handle, fmt="(A)", err=820) &

" Number of variables: " // trim(sInt)

write(unit=out_file_handle, fmt="(A)", err=820) "" ! blank line

! List the variables

write(unit=out_file_handle, fmt="(A)", err=820) &

" Variables"

write(unit=out_file_handle, fmt="(A)", err=820) &

" -------------"

do i = 1, nvar

write(unit=out_file_handle, fmt="(3X,I3,2X,A)", err=820) &

i, trim(var_names(i))

end do

write(unit=out_file_handle, fmt="(A)", err=820) "" ! blank line

! Report model specification

write(unit=out_file_handle, fmt="(A)", err=820) &

"Model specification"

if(get_elogit_response(var_names, session, err) &

== RETURN_FAIL) goto 990

write(unit=out_file_handle, fmt="(A)", err=820) &

" Response (y): " // trim(var_names(1))

if(size(var_names) > 1) then

write(unit=out_file_handle, fmt="(A)", err=820) &

" Denominator (n): " // trim(var_names(2))

end if

if(get_elogit_beta_names(var_names, session, err) &

== RETURN_FAIL) goto 990

if(associated(var_names)) then

write(unit=out_file_handle, fmt="(A)", err=820) &

186 5. Developing a Console Application

" Predictors: " // trim(var_names(1))

do i = 2, size(var_names)

write(unit=out_file_handle, fmt="(A)", err=820) &

" " // trim(var_names(i))

end do

end if

write(unit=out_file_handle, fmt="(A)", err=820) "" ! blank line

! report iteration details

if(get_elogit_iter(iter, session, err) == RETURN_FAIL) goto 990

if(get_elogit_converged(converged, session, err) &

== RETURN_FAIL) goto 990

write(unit=out_file_handle, fmt="(A)", err=820) &

"Iteratively reweighted least-squares algorithm"

write(sInt,"(I12)") iter

sInt = adjustl(sInt)

if(converged) then

write(unit=out_file_handle, fmt="(A)", err=820) &

" Converged at iteration " // trim(sInt)

else

write(unit=out_file_handle, fmt="(A)", err=820) &

" Failed to converge by iteration " // trim(sInt)

end if

write(unit=out_file_handle, fmt="(A)", err=820) "" ! blank line

! report coefficients and standard errors

if(get_elogit_beta(beta, session, err) &

== RETURN_FAIL) goto 990

if(get_elogit_cov_beta(cov_beta, session, err) &

== RETURN_FAIL) goto 990

write(unit=out_file_handle, fmt="(A)", err=820) &

" " // var_blank // " " // &

" estimate std.err. ratio"

write(unit=out_file_handle, fmt="(A)", err=820) &

" " // var_blank // " " // &

"------------ ------------ ------------"

do i = 1, size(beta)

est = beta(i)

SE = sqrt(cov_beta(i,i))

ratio = est/SE

write(sRealA,"(G12.5)") est

write(sRealB,"(G12.5)") SE

write(sRealC,"(G12.5)") ratio

write(unit=out_file_handle, fmt="(A)", err=820) &

" " // var_names(i) // " " // &

sRealA // " " // sRealB // " " // sRealC

end do

write(unit=out_file_handle, fmt="(A)", err=820) "" ! blank line

! report goodness-of-fit measures

if(get_elogit_loglik(loglik, session, err) &

== RETURN_FAIL) goto 990

if(get_elogit_X2(X2, session, err) == RETURN_FAIL) goto 990

if(get_elogit_G2(G2, session, err) == RETURN_FAIL) goto 990

if(get_elogit_df(df, session, err) == RETURN_FAIL) goto 990

write(unit=out_file_handle, fmt="(A)", err=820) &

5.5 Fitting the Model 187

"Summary of model fit"

write(unit=out_file_handle, fmt="(A)", err=820) "" ! blank line

write(unit=out_file_handle, fmt="(A20,G15.8)", err=820) &

" Loglikelihood: ", loglik

write(unit=out_file_handle, fmt="(A20,G15.8)", err=820) &

" Deviance G^2: ", G2

write(unit=out_file_handle, fmt="(A20,G15.8)", err=820) &

" Pearson’s X^2: ", X2

write(unit=out_file_handle, fmt="(A)", err=820) "" ! blank line

write(sInt,"(I12)") df

sInt = adjustl(sInt)

write(unit=out_file_handle, fmt="(A)", err=820) &

" Degrees of freedom: " // trim(sInt)

! normal exit

close(unit=out_file_handle)

answer = RETURN_SUCCESS

return

! error traps

700 call err_handle(err, 1000, &

called_from = subname//" in MOD "//modname, &

custom_1 = "No output file name specified.")

return

800 call err_handle(err, 2, &

called_from = subname//" in MOD "//modname, &

file_name = output_file_name)

return

820 call err_handle(err, 4, &

called_from = subname//" in MOD "//modname, &

file_name = output_file_name)

close(unit=out_file_handle)

return

990 call err_handle(err, 1000, &

called_from = subname//" in MOD "//modname)

close(unit=out_file_handle)

return

end function write_elogit_results_to_outfile

!##

In Fortran 77, the appearance of printed data was determined by
format statements at compilation time. Print formats can now be deter-
mined at run time through a fmt string in a write statement. The old
format statements still work, but use of the fmt string is preferred.

Style tip

Specify printing formats through fmt strings in your write statements.

The meaning of format strings has not changed since 1977. For example,
X still denotes a blank space, A10 denotes a field of alphanumeric (character)
data ten characters wide, I4 denotes an integer field four characters wide,

188 5. Developing a Console Application

and F12.5 indicates a floating-point number in a field of 12 characters,
with five digits after the decimal. An integer before any of these specifiers
indicates repetition: 5X denotes five blank spaces, 3I4 denotes three integers
of four characters each, and so on. The decimal format F may cause a crash
if the number to be printed is too large or too small. In lieu of F, we prefer
to use the new specifier G, which automatically switches between decimal
and exponential notation depending on the magnitude of the argument.

After completing the output file routines, two more details are needed
to get ELOGIT working. First, we need to add sections to the control file
that allow the user to specify the maximum number of iterations tmax, the
convergence criterion ε, and the name of the output file. Then we need to
call run_elogit_modelfit and write_elogit_results_to_outfile from
the main program. These additions have been incorporated into the final
version of ELOGIT, which is available from our Web site.

5.5.6 Looking Ahead

Throughout this chapter, we have emphasized that statistical programming
is more than producing good computational routines. A program should
be robust, able to handle all kinds of errors without crashing. It should be
intelligent, providing informative feedback to enable users to correct their
own mistakes. It should also be extensible, allowing the programmer to add
new features incrementally without rewriting existing code.

The source for the ELOGIT console program resides in 14 files and oc-
cupies approximately 3,700 lines. Only 10% of these lines, however, have
anything to do with printing to the screen or reading commands from
the keyboard and control file. Console-related features are confined to the
elogit_ctrlfile module and to the main program in elogit.f90. If we
simply remove these two files, the elogit_types module remains intact as
an intelligent, self-contained engine for logistic regression that could eas-
ily plug into other Fortran console programs. It could also interact with
a graphical interface or with many programs already installed on your
computer—provided that all the tricky details of interoperability can be
worked out. We will show how to do this in the chapters ahead.

5.6 Additional Exercises

1. Add get methods to the elogit_types module to obtain Pearson and
deviance residuals. The Pearson residuals are given by (5.6), and the
deviance residuals are

di = sign(yi − niπ̂i)
√

d 2
i ,

where d 2
i is defined in (5.7).

5.6 Additional Exercises 189

2. The Pearson goodness-of-fit statistic X2 and the deviance G2 are
often used to compare the fit of nested logistic models. Suppose that
model A is a special case of model B (e.g., the predictor variables
in A are a subset of those in B). If X2

A and X2
B denote the Pearson

statistics for the two models, and if the smaller model A is true, then
the difference

∆X2 = X2
A − X2

B

is approximately distributed as chi-square with degrees of freedom
equal to the number of free parameters in B minus the number of
free parameters in A. The distribution of the difference in deviance
statistics,

∆G2 = G2
A − G2

B ,

approaches the same distribution and is asymptotically equivalent to
∆X2. Modify ELOGIT to compute and print out the values of ∆X2

and ∆G2 for comparing the fit of the user-specified model to that of
an intercept-only model with no predictors.

3. An important feature of the binomial model is that the mean E(yi) =
µi = niπi and the variance V (yi) = niπi(1 − πi) are related by

V (yi) = µi(ni − µi)/ni. (5.8)

Because real data may violate this relationship, the model is often
expanded to

V (yi) = σ2µi(ni − µi)/ni,

where σ2 > 0 is a scale parameter (McCullagh and Nelder, 1989).
Introduction of a scale parameter does not affect the estimation of β,
but if σ2 is substantially different from 1.0, the estimated covariance
matrix for β̂ should be replaced by σ2(XT WX)−1, and the goodness-
of-fit statistics X2 and G2 should be replaced by X2/σ2 and G2/σ2.
The traditional way to estimate the scale parameter is by fitting a
“maximal model” (i.e., a model that contains all the covariates worth
considering) and taking σ̂2 = X2/(N − p) under this model. Modify
ELOGIT to allow three different options for the scale parameter: set
σ2 equal to 1.0 (the default); set σ2 equal to a user-supplied value;
or estimate σ2 from the current model, treating it as the maximal
model.

4. An alternative estimated covariance matrix for β̂ in the logistic model,
using the notation of (5.3), is

Ṽ (β̂) = (XT WX)−1(XT WAWX)(XT WX)−1,

where A = Diag((yi − µi)2). This estimator, called the information
sandwich, retains its consistency when the variance relationship (5.8)

190 5. Developing a Console Application

is violated (Huber, 1967; White, 1980). Modify ELOGIT to compute
and print standard errors based on Ṽ (β̂) upon request.

5. An EM algorithm for estimating the parameters from a mixture of
two exponential distributions was presented in Section 4.2. Turn this
computational procedure into an object-oriented Fortran module, and
use the module from a console application.

6. Write a complete console application for performing the chi-square
test for independence in a two-way contingency table following the
object-oriented strategies described in this chapter.

6
Creating and Using Dynamic-Link
Libraries

In Chapters 2–5, we have shown how to write procedures and programs in
pure Fortran 95. The focus of this book now shifts to interoperability—how
to create Fortran procedures that interact with other applications on your
computer.

In this chapter, we describe how to turn Fortran procedures into dynamic-
link libraries (DLLs) in Windows or shared objects in Unix or Linux. DLLs
and shared objects provide a convenient way to add powerful and fast com-
putational routines to statistical packages such as SAS, S-PLUS, and R.
Unfortunately, each package calls and uses them in a different way. If your
goal is to quickly implement a computational procedure for one of these
environments, then a DLL may be a sensible approach. If you want to cre-
ate one set of procedures that can be called by multiple applications, it
may be better to create a COM server, as we will discuss in Chapter 7. In
the latter case, we still recommend that you peruse this chapter, because
it will introduce you to many key issues of interoperability.

6.1 Extending the Functionality of Statistical
Packages with Fortran DLLs

6.1.1 Compiled Procedures Run Faster

Statistical packages such as SAS, S-PLUS, and R maintain large libraries
of built-in procedures for regression and other popular data analysis tech-

192 6. Creating and Using Dynamic-Link Libraries

niques. For nonstandard analyses, however, users must write their own
code. In SAS, this is usually done through a combination of data steps, the
SAS macro language, and PROC IML. Users of S-PLUS and R may write
their own functions in the S language. Nevertheless, the developers of these
environments have also recognized that users may occasionally want to call
computational procedures written in C or Fortran.

The main benefit of calling external procedures is speed. A routine that
has been compiled directly from C or Fortran may run much faster—in
some cases, orders of magnitude faster—than the same routine written in
SAS, S-PLUS, or R. The reason is that the latter languages are interpreted;
that is, the programmer’s code is converted into low-level instructions un-
derstood by the computer’s processor while the program is running. This
interpretation can be especially onerous for nested loops because the same
code is reinterpreted at each cycle. If the statistical package can invoke an
external procedure that has already been compiled, the same computations
can be done much more efficiently.

6.1.2 When to Use a DLL

One way to make a Fortran procedure available to one of these programs
is to package it as a conventional dynamic-link library (DLL). DLLs are a
fundamental tool of modern software development, the building blocks of
applications that run in Windows and of the Windows operating system
itself. In Unix and Linux systems, these components are called shared ob-
jects. With DLLs, multiple programs can share a common set of procedures
without any duplication of the compiled code.

In the remainder of this chapter, we show how procedures written in
Fortran can be encased in a conventional DLL and called from popular
statistical packages. Many of these packages—which themselves are built
upon DLLs—provide a way for users to interact with additional DLLs. Un-
fortunately, the devil is in the details; subtle differences in the way data
are handled by these programs make it difficult or impossible for one For-
tran DLL to serve them all. We show by example how to create DLLs and
invoke them from SAS, S-PLUS, and R. We focus on these three environ-
ments because of their popularity among statisticians and biostatisticians.
Recent versions of Stata and MATLAB can also call DLLs; consult those
programs’ documentation for details.

Because conventional DLLs are not object-oriented, the kinds of proce-
dures that can be called through them are somewhat limited. DLLs are
effective for manipulating data passed as arguments in a single procedure
call, but less effective for storing data that must persist from one call to
the next. Arrays of variable sizes may need to be passed in the Fortran
77 style, with the dimensions also passed as arguments. Array arguments
may not be redimensioned within a procedure, so the size of each output
must be known in advance. Derived types may be used as local variables

6.2 Understanding Libraries 193

within the procedure but may not appear in the argument list . In some
cases, you may encounter difficulties in passing character strings, and the
total number of arguments may be restricted.

When using DLLs, programming mistakes can be difficult to diagnose
and fix. A conventional DLL does not spawn a new process on your com-
puter; rather, it loads new procedures into the program that is already
running. If any problem arises—e.g. because the procedure is not called
properly or arguments are passed incorrectly, or because of a bug in the
procedure itself—then the whole application may crash, with little infor-
mation given as to why. Getting a DLL to work with a statistical package
will inevitably involve some trial and error.

Because of these limitations, we recommend conventional DLLs when you
want to quickly develop an external computational procedure for a single
statistical package. Conventional DLLs are a good choice for calling the
kind of non-object-oriented computational procedures discussed in Chapter
4, whose arguments are scalars and arrays. They are less appropriate for
object-oriented modules such as the elogit_types module developed in
Chapter 5. If your module is object-oriented, it will be much easier to turn
it into an in-process or out-of-process COM server, as we will discuss in the
chapters ahead.

Before you start to design and develop a DLL, we strongly recommend
that you thoroughly read the documentation on DLLs accompanying your
compiler. This chapter will provide general principles and a few simple
examples, but we cannot go into great detail on any specific compiler. It’s
a good idea to first create a very simple DLL for testing purposes to see
which options are necessary to make a DLL work with your statistical
package of interest. If you have not yet selected a compiler, you may wish
to contact other programmers who have developed similar applications and
get their recommendations about which ones work best.

6.2 Understanding Libraries

6.2.1 Source-Code Libraries

In the language of programming, a library is simply a collection of pro-
cedures. The procedures in a library are usually related in some way. For
example, LAPACK is a well-known library of high-performance algorithms
for linear algebra. LAPACK itself relies on another library called BLAS, a
collection of low-level vector and matrix routines.

The most basic kind of Fortran library is a single source-code file, or
a collection of source-code files, containing Fortran functions and subrou-
tines. One who develops and distributes a source-code library assumes that
the user is a programmer with access to a Fortran compiler. Distributing
source code has certain advantages; the user can view the inner workings

194 6. Creating and Using Dynamic-Link Libraries

of the routines and customize and perhaps improve them. In many cases,
however, authors prefer to distribute their libraries in a way that prevents
the procedures from being dissected or modified, or in some form that does
not require the end user to possess a compiler. That is, many developers
prefer to distribute libraries that have already been compiled. There are
different kinds of compiled libraries, as we now describe.

6.2.2 Static Libraries

One kind of compiled Fortran library is the static object file. Static object
files are pieces of binary code that have yet to be assembled—or to use the
correct term, linked—into an executable program. In Windows systems,
these files are usually named with the .obj suffix; in other platforms they
are called *.o. The process of linking object files into an executable program
is called static linking. After static linking, the object files are no longer
needed to run the program because all of the binary code within these files
has been embedded within the executable image.

Each Fortran source-code file that is compiled produces one static ob-
ject file. Sometimes object files are grouped together into collections called
static libraries. Static library files, which in Windows systems have the
.lib suffix, help developers to better manage their code. When you link to
procedures within a static library, only the binary code for those procedures
that are actually needed is embedded within the executable image, which
makes the executable program smaller. If a procedure is shared by several
programs, each executable file will contain its own copy of the binary code.
Object-code files and libraries created by different compilers are usually
incompatible and cannot be linked together. Even different versions of the
same compiler may produce incompatible object-code. For these reasons,
object code files and libraries are used mainly by individual programmers
or by members of a development group who are using the same compiler.

In most cases, compiling Fortran routines into object code is not the
best way to make them accessible to other programs on your computer.
This is well-illustrated by earlier versions of S-PLUS. Prior to Version 6, S-
PLUS for Windows was capable of linking to external Fortran subroutines
contained in object code (.obj) files, provided that (a) they were written
in Fortran 77, (b) had no file I/O or print statements, and (c) were
compiled using the Watcom compiler, which was commercially available at
that time. Watcom Fortran was discontinued in 1999, creating a dilemma
for programmers who were using this approach. Since then, the developers
of S-PLUS have abandoned that strategy in favor of DLLs.

6.2.3 Dynamic-Link Libraries

Unlike static libraries, DLLs are both compiled and linked to produce a
special kind of library file. In Windows systems, these files have the .dll

6.3 How Programs Use DLLs 195

suffix; on Unix and Linux systems, the extension is .so. A DLL does not run
on its own but must be called by other executable programs. As the name
suggests, the linking to these programs is performed dynamically by the
operating system while the program is running. That is, dynamic linking
occurs when the user runs programs that need one or more of the library’s
procedures. The binary code within the DLL is loaded into memory only
when it is needed—when a running program needs to call procedures in
the DLL.

DLLs promote reuse of code at the binary level. One DLL on your hard
disk may serve many different programs installed on the computer. Pro-
grams running at the same time may even share a single instance of the
code in memory. Because the DLL code is not embedded in the executable
file, the image of a complex program that relies on hundreds or thousands
of library procedures may remain quite small and able to be loaded into
memory and started up quickly.

The Windows operating system is built upon DLLs, and so are Win-
dows applications. The graphical routines that display windows, menus,
text boxes, push buttons, dialog boxes, directory trees, etc. all reside in
various DLLs, so that programs developed for the Windows environment
can share them and maintain a common look and feel. DLLs are also help-
ful for software maintenance and support; developers can fix bugs and pro-
vide enhancements by distributing new versions of specific DLLs instead
of requiring users to reinstall the entire application. Because DLLs do not
contain source code, they are not easily analyzed or modified, so develop-
ers of proprietary software are able to distribute them rather freely and yet
maintain control over their intellectual property.

The free-wheeling nature of DLLs also causes trouble if they are not
applied with care. A basic understanding of how DLLs work is essential to
help you avoid common pitfalls.

6.3 How Programs Use DLLs

6.3.1 Locating the DLL

When a program wants to invoke a routine in a DLL, it must first locate
the DLL file in which it resides. In order to be found, a DLL must sit in a
directory where the program will look for it. This may include

• the directory in which the program’s executable (.exe) file has been
installed;

• the current working directory from which the program has been in-
voked (e.g. when the program is started from a command prompt);

• the directory in which the operating system has been installed; or

196 6. Creating and Using Dynamic-Link Libraries

• any directory pointed to by the PATH environment variable.

If a program cannot locate a DLL that it needs, the operating system will
display an error message at the command line or in a dialog box.

DLLs are identified solely by filename. It is quite possible that unrelated
DLLs with different functionalities may be given the same name; in that
case, a failure to locate the correct DLL may cause a program to crash.

6.3.2 DLL Hell

The practice of placing DLLs in the operating system’s installation direc-
tory has led to many annoying problems. Suppose that a user installs a
new program on a computer, and during the installation process a library
named matrix.dll is copied into the Windows directory. Later, the user
installs another application with a library named matrix.dll, and that file
is copied into the Windows directory, overwriting the first one. The first
application will no longer work properly. This problem can be avoided by
placing DLLs used by a specific program into that program’s own installa-
tion directory.

More subtle problems may arise when a DLL is shared by multiple pro-
grams. Suppose, for example, that two applications share a common set of
numerical algorithms that have been packaged in a DLL. Moreover, sup-
pose that one of the applications is distributed with a more recent version
of the DLL bearing the same name as an older version. This new version
may not be backwardly compatible with the other application and may
cause it to crash. In that case, each application may need to have its own
version of the DLL, placed in a directory where the application that needs
it will find it first.

Problems such as these have become known as “DLL hell.” Newer de-
velopment paradigms based on COM solve this problem by automatically
labeling libraries with elaborate identifiers guaranteed to be unique.

6.3.3 Dynamic Loading and Linking

A running computer program is a set of binary instructions. These in-
structions must be loaded into the computer’s memory, and the processor
executes them sequentially as they are arranged in memory. When the pro-
cessor encounters a procedure call, the point of execution jumps to a new
location in memory determined by its memory address.

If a large number of programs are running at the same time, these bi-
nary instructions and the data they operate upon may exceed the available
physical memory on your RAM chips. In that case, the overflow is stored
in temporary paging files—also known as swap space—on your computer’s
hard drive. The physical memory on the chips and the swap space on the
hard drive are collectively known as the virtual memory space.

6.3 How Programs Use DLLs 197

When a program is first invoked, the binary instructions from the ex-
ecutable (.exe) file are loaded into memory and execution begins. When
the program calls a procedure in a DLL, binary code from the .dll file
is loaded into the same compartment of virtual memory as the running
program; this is called dynamic loading.

Not all of the procedures within a DLL may be invoked by a running
program. Some procedures are private in the sense that they may only be
called by other procedures in the DLL; others are publicly accessible to
programs and other DLLs. The latter procedures are said to be exported.
Once a DLL has been dynamically loaded, the running program may access
an exported procedure of a DLL. To do so, however, it must know the mem-
ory address that marks the starting point of that procedure. The memory
locations of the exported procedures are called entry points. The process
of obtaining addresses of the entry points at run time is called dynamic
linking.

6.3.4 Load-Time and Run-Time Linking

There are two types of dynamic linking. The first, which is called load-time
dynamic linking, is used mainly by software developers. To perform load-
time dynamic linking, you must have a complete, working, and compiled
version of the DLL on hand before you compile the program that will use
it. Along with the .dll file, you must also have an import library or .lib
file. (Although this has the same filename extension as a static library
file, its purpose is quite different.) Most compilers capable of producing
DLLs will generate the .lib file automatically or upon request. The import
library contains special code that will be embedded into the executable
program, allowing the program to link with the DLL’s exported procedures
the moment it is loaded into memory at run time. Because users of pre-
existing applications such as SAS and S-PLUS normally do not have access
to the program’s source code, load-time linking is usually not appropriate
for extending those applications. (Developers of the R package have made
their source code available; however, not many users compile and link their
own installations of R.)

The second approach, called run-time dynamic linking, does not require
an import library or access to the application’s source code. This is the
preferred way to call an external Fortran procedure from SAS, S-PLUS,
or R. Run-time dynamic linking works in the following manner. While the
main application is running, it issues a request to the operating system
to load the DLL into memory. Next, it issues another command to locate
the DLL’s entry points. These are gleaned from the DLL’s export table, a
section of binary code in the .dll file that contains a list of all the exported
procedures and the relative memory locations of their entry points. From
these relative locations, the main program is able to deduce the actual
locations of the entry points in the virtual memory space. When these

198 6. Creating and Using Dynamic-Link Libraries

actual locations are computed and stored by the main program, dynamic
linking is complete.

Fortunately for us, the messy details of run-time linking and determi-
nation of the entry points are handled by the operating system. From our
perspective, the issues that matter are: how to produce a DLL with the
correct procedures listed in its export table; how to dynamically link the
DLL with SAS, S-PLUS, or R; how to invoke an exported procedure from
the statistical package; and how to make sure that data are passed correctly
between the statistical package and the exported procedure.

6.4 Creating a Fortran DLL

6.4.1 The Basic Steps

Every major Fortran compiler for the Windows platform is capable of pro-
ducing DLLs. The procedure for doing this varies somewhat depending on
which compiler you are using and whether you compile at the command
line or use an Integrated Development Environment (IDE). In every case,
you must begin with one or more Fortran source-code files. Then you must
identify the functions and subroutines to be exported. This may be done,
for example, by including special comment lines read by that compiler.
Then you compile and link the code using specific options that indicate
the product should be a DLL rather than an ordinary object-code file or
executable program.

This process sounds simple enough. When doing this, however, we need
to pay special attention to how the exported procedures are designed, how
the exports are named, and how arguments are passed.

6.4.2 Passing Arguments

A DLL written in Fortran may be used by an application written in an-
other language. To ensure that arguments are passed correctly from one
language to another, we need to understand how the languages store data.
In particular, because most of the major statistical packages are written in
C, we need to understand some differences between Fortran and C.

Character Strings

A character string in the C language is a sequence of one-byte alphanumeric
characters, with the final character being a null or zero code. Fortran does
not use the null terminator. This discrepancy may cause problems because
character-string arguments are usually passed by reference rather than by
value. Passing by reference means that, rather than sending an actual copy
of the character string into a procedure, the computer passes only the

6.4 Creating a Fortran DLL 199

address in memory where the string begins. When a Fortran procedure
finishes running and returns control to a main program written in C, only
the address of the string argument is passed back to the main program. As
a result, the main program will locate the beginning of the string, but it
will not necessarily know where the string ends; it will be expecting a null
terminator that may not be there.

One way to solve this problem is to avoid character-string arguments
altogether. There are many situations where passing strings is beneficial,
however (e.g. when reporting error messages). Another strategy is to pass
the length of the string to the DLL export as an additional integer argu-
ment. Another possibility is to fix the length of the string in advance to
some constant value. The interface to Fortran provided by the R language
assumes that all string arguments have a length of 255 bytes. The best way
to handle character strings may vary from one platform to another; we will
return to this issue shortly.

Integer and Floating-Point Variables

By now you are well-aware that Fortran compilers provide different kinds of
integer and floating-point real variables. Windows operating systems have
different types as well. In Windows, an integer value may be short (16 bits)
or long (32 bits), and a floating-point value may have single precision (32
bits) or double precision (64 bits). When integer or real data are passed
from a main program to a DLL and back again, discrepancies in assumed
length can be disastrous. To help prevent problems, we recommend that
you standardize your Fortran code to use 32-bit integers and 64-bit reals.

Arrays

Passing arrays between a main program and a DLL may also be problem-
atic. Arrays, like character strings, usually need to be passed by reference;
that is, the program and the DLL communicate to each other the memory
address of where the array begins rather than the data values stored in the
array. In most cases, it will also be necessary to pass the dimensions of the
array as integer arguments.

6.4.3 Calling Conventions

When creating and using a DLL, you must also correctly specify the calling
conventions. Failure to do this may result in, at best, a DLL that simply
does not work and, at worst, one that crashes your computer.

One might wonder why DLL calls were never standardized to a single con-
vention. Calling conventions originated in the linking of static objects. The
authors of compilers devised a variety of rules by which routines were iden-
tified and invoked so that a linker could connect them at build time. Even

200 6. Creating and Using Dynamic-Link Libraries

though the compilers had different conventions, incompatibilities were ir-
relevant because each compiler had its own linker; a universal standard was
unnecessary. With the advent of dynamic linking, these differences became
an issue. Nevertheless, applications for the Windows platform typically ad-
here to a few widely accepted conventions, with only minor variations.

Passing Arguments by Reference or by Value

As we have already discussed, arguments are passed between a procedure
and the calling program either by reference or by value. By reference means
that a memory location is passed, and by value means that a copy of the
contents is passed. A calling program expects the DLL to adhere to one
method or the other, so it is important to make sure that the DLL conforms.
S-PLUS and R always pass arguments by reference, whereas SAS can do it
either way.

Symbolic Names

Symbolic names identify the procedures in the DLL’s export table. Some-
times a procedure’s symbolic name is the same as its name in the Fortran
source. But some calling conventions require that an underscore (_) be
appended to the end of the symbolic name. Symbolic names are also case-
sensitive, whereas the Fortran language is not; hence there is ambiguity as
to whether the characters in the symbolic name should be all lowercase,
all uppercase, or exactly as they appear in the source code. Some compil-
ers automatically append numerals to the symbolic name representing the
number of bytes occupied by the procedure arguments.

Compilers that produce DLLs may provide a way for you to change the
form of the symbolic names. They may also provide utilities that display
information in a DLL’s export table, so that you can see the symbolic
names of the exported procedures in the DLL that you create. For example,
Microsoft’s Visual Studio IDE comes with a utility called dumpbin. If you
have a DLL called matrix.dll, then typing

dumpbin /exports matrix.dll

at a command prompt will display a list of the exported symbols.
The symbolic names of your exports must match the names that the

calling program is expecting. Details of what the program expects are not
always well-documented and may require a bit of research. In S-PLUS and
R, calls to Fortran DLLs are made through a function called .Fortran().
Each of those environments expect an underscore to be appended to each
symbolic name. A lesser-known function, symbol.For(), will display the
expected symbolic name corresponding to any Fortran procedure name. In
R, the user is allowed to specify a custom naming convention.

6.4 Creating a Fortran DLL 201

Determining String Length

When a character-string argument is passed by reference to a DLL proce-
dure, some Fortran compilers will automatically append the length of each
character string to the string’s address in virtual memory. Some applica-
tions that work with Fortran DLLs may use this mechanism, but others do
not. You will need to consult your compiler’s documentation to find out
how to create a DLL that handles this issue properly.

6.4.4 Compiling and Linking the Source Code

When compiling your source code to create a DLL, you must indicate to the
compiler which procedures are to be exported. The mechanism for doing
this varies from one compiler to another.

With Intel Visual Fortran Version 8.0, an export is identified by a special
compiler directive contained in a Fortran comment line. The directive looks
like this.

subroutine mysub(arg1, arg2)
!DEC$ ATTRIBUTES DLLEXPORT :: mysub

! body of the procedure goes here

end subroutine mysub

A comment line beginning with !DEC$ ATTRIBUTES is a special directive
that will be read by the Intel compiler but ignored by other compilers. In
this case, the attribute DLLEXPORT is being applied to the subroutine mysub;
as a result, the compiler will export this procedure using its default settings.
By default, the symbolic name is the Fortran procedure name written in up-
percase, as in MYSUB. This symbolic name can be changed by optional key-
words when compiling at a command prompt; /names:lowercase makes
it lowercase, and /names:as_is makes it case-identical to the procedure
name in the Fortran source code. With additional keywords and directives,
you can change the calling conventions and the manner in which any or all
arguments are passed.

In Lahey/Fujitsu Fortran 7.0, exports are identified not by a comment
line but by an actual statement in the Fortran code.

subroutine mysub(arg1, arg2)
dll_export MYSUB

! body of the procedure goes here

end subroutine mysub

202 6. Creating and Using Dynamic-Link Libraries

The dll_export statement is recognized only by the Lahey/Fujitsu com-
piler. The argument MYSUB, which is case-sensitive, forms the basis of the
symbolic name in the export table.

6.4.5 Compiler Options

When compiling and linking your code, you will need to notify the compiler
that the intended product is not an object code (.obj) or executable (.exe)
file but a .dll file. You may also be able to change the properties of the
exported procedures while compiling and linking. If you are invoking Intel
Fortran from a command prompt, the command-line option /DLL instructs
the compiler to create a DLL with an export table based on the information
provided by !DEC$ ATTRIBUTES compiler directives in the source code. The
corresponding option in the Lahey/Fujitsu compiler is -dll. Lahey/Fujitsu
also provides an option -ml, which stands for “multiple language,” to make
the calling conventions of the exports compatible with a specific language.
The option -ml msvc produces a DLL that should work with any program
compiled with Microsoft Visual C++. Intel Fortran has a similar option,
/iface; the setting /iface:cref specifies that all exports will use the
C-language by-reference conventions.

If you are developing your DLL in the Microsoft Visual Studio IDE, you
can access these options through the menu sequence Project → project-
name Properties, which will open the project properties dialog box. We will
demonstrate this by an example shortly.

6.5 Example: a Fortran DLL for Fitting an
Exponential Mixture

In Section 4.2, we created a Fortran module for fitting a two-component
mixture model. We now show how to package this module, and the modules
used by it, as a DLL and call the model-fitting routine from SAS, S-PLUS,
and R. The procedure for creating the DLL is compiler-dependent. We will
demonstrate the process with Intel Visual Fortran Version 8, invoking the
compiler both through the command line and through the Microsoft Visual
Studio IDE. We will also briefly describe how to do it with Lahey/Fujitsu
Fortran Version 7 and Salford FTN95 Version 4.5.

6.5.1 Creating a Wrapper

The procedure run_em_exponential was designed to be called from a For-
tran program or procedure. It would not be appropriate, however, to ex-
port this procedure with a DLL and call it from a statistical package. One
reason why we should not call run_em_exponential directly is that it is

6.5 Example: a Fortran DLL for Fitting an Exponential Mixture 203

a public function contained within the module em_exponential_engine;
any program calling the function would need to use that module, but the
concept of using a Fortran module is not known to other languages. An-
other important reason why we should not call run_em_exponential is
that one of its arguments is an error_type, a custom object defined in
the error_handler module. Creating a compatible data structure in SAS,
S-PLUS, or R to match this argument would be difficult at best.

For these reasons, we will create a wrapper for the run_em_exponential
function and export the wrapper to the DLL. The wrapper is merely a pro-
cedure written in Fortran that “wraps around” the function, transferring
data between the calling program and the function through its arguments.
The wrapper will be an external procedure, not contained in any mod-
ule, although it will use the em_exponential_engine and error_handler
modules and create an instance of the error_type as a local variable. If an
error occurs when the wrapper calls run_em_exponential, the error mes-
sage will be written to a character string and passed to the calling program.
All of the wrapper’s arguments will be standard data types—long integers,
double-precision reals, and character strings.

Because the wrapper needs to interact with a statistical program, it
is important to consult that program’s dcoumentation to review its re-
quirements. According to the S-PLUS 6 for Windows Programmer’s Guide
(Insightful Corp., 2001), DLL procedures called from S-PLUS must be
subroutines, not functions. Individual character strings may be passed as
arguments, but arrays of strings are not allowed. Moreover, the Fortran
procedure should not contain any write or print statements because the
Fortran I/O unit numbers may conflict with unit numbers currently in use
by S-PLUS. (In our experience, opening files and writing to them usually
does work and is occasionally very useful.) The document Writing R Ex-
tensions (R Development Core Team, 2004) mentions similar restrictions
and adds one more: all character-string arguments should be 255 bytes long
(len=255). S-PLUS and R both expect arguments to be passed by refer-
ence. SAS, on the other hand, provides the user with more flexible calling
and argument-passing capabilities; these are described in SAS Companion
for the Microsoft Windows Environment, Version 8 (SAS Institute, 2000).
Using Intel Fortran Version 8 with Visual Studio, we are able to create one
wrapper that will work with all three of these environments.

To begin, we start Visual Studio .NET and use the menus to create a new
Fortran project. A New Project dialog window appears, as shown in Figure
6.1, and we select “Dynamic-Link Library” as the template. We name this
project em_exp, so that the resulting DLL file will be em_exp.dll. (SAS
requires the DLL file’s base name (i.e., without the .dll extension) to be
no more than eight characters long, so we have adhered to this constraint.)
After selecting “OK,” a second dialog box, known as the “Fortran DLL
Project Wizard” appears (Figure 6.2). In that dialog, we select “Empty
project” and click “Finish.”

204 6. Creating and Using Dynamic-Link Libraries

FIGURE 6.1. Intel Fortran New Project dialog.

FIGURE 6.2. Intel Fortran DLL Project Wizard.

6.5 Example: a Fortran DLL for Fitting an Exponential Mixture 205

FIGURE 6.3. New DLL project dialog for Lahey/Fujitsu Fortran.

Recent versions of Lahey/Fujitsu and Salford Fortran also work with
Visual Studio, and the procedure for those compilers is very similar. In
Lahey/Fujitsu Fortran, we would create a “Dynamic Library” project un-
der “Win32” (Figure 6.3); in Salford, we would select“FTN95 Application
Extension” (Figure 6.4).

The existing code for this project resides in three modules, so we need
to add the source code for these modules to our project. In the Solu-
tion Explorer, we simply add constants.f90, error_handler.f90, and
em_exponential_engine.f90 as “Source Files.” Next, we add a new For-
tran source-code file to the project, named em_exponential.f90, to hold
the wrapper subroutine. The source code for our wrapper is shown below.

em exponential.f90

!###

subroutine em_exponential(n, y, maxits, eps, pi, lambda_1, lambda_2, &

iter, converged, loglik, score, hessian, msg_len, msg)

!DEC$ ATTRIBUTES DLLEXPORT :: em_exponential

use error_handler

use program_constants

use em_exponential_engine

implicit none

! declare arguments

integer, intent(in) :: n

real(kind=our_dble), intent(in) :: y(n)

integer, intent(in) :: maxits

real(kind=our_dble), intent(in) :: eps

real(kind=our_dble), intent(inout) :: pi, lambda_1, lambda_2

206 6. Creating and Using Dynamic-Link Libraries

FIGURE 6.4. New DLL project dialog for Salford Fortran.

integer, intent(out) :: iter

logical, intent(out) :: converged

real(kind=our_dble), intent(out) :: loglik, score(3), hessian(3,3)

integer, intent(in) :: msg_len

character(len=msg_len) :: msg

! declare locals

integer(kind=our_int) :: ijunk

type(error_type) :: err

! begin

call err_reset(err)

ijunk = run_em_exponential(y, pi, lambda_1, lambda_2, &

iter, converged, loglik, score, hessian, err, maxits, eps)

if(err_msg_present(err)) call err_get_msgs(err, msg, "UNIX")

return

end subroutine em_exponential

!###

As you can see, the wrapper does very little; it merely calls the model-
fitting procedure and reports any messages. The most important aspect of
this wrapper is its argument list. All integers are long (32 bits), and the reals
are double precision (64 bits). Arrays of assumed length are not allowed in
an exported DLL procedure, so the dimensions of each array are either fixed
or passed as arguments. Character-string arguments of assumed length are
not allowed either, so the length of the string msg is also passed as an
argument. The intent attributes are allowed and are chosen appropriately.
The only unusual feature is the compiler directive in the comment line,

6.5 Example: a Fortran DLL for Fitting an Exponential Mixture 207

FIGURE 6.5. Intel Fortran Project Property settings.

which tells Intel Fortran to export this subroutine to the DLL. If we were
using Lahey/Fujitsu, we would need to add the following line below the
implicit none statement:

dll_export em_exponential

6.5.2 Building the DLL with Intel Visual Fortran and
Lahey/Fujitsu Fortran

When building the DLL, we need to set a few important properties. First,
we must give the exported procedure a proper symbolic name. S-PLUS
and R expect an appended underscore, whereas SAS is more flexible. To
conform to all three environments, let us choose em_exponential_ as the
symbolic name. To instruct the Intel compiler to use this convention, we
use the menu to open the project’s Property Pages dialog:

Project → em exp Properties. . .

A dialog box will appear as shown in Figure 6.5. In the Configuration
combo box at the upper-left corner, select “All Configurations.” In the
tree displayed on the left-hand side, select “External Procedure” under
“Fortran”; this category defines the calling conventions. Change the “Name
Case Interpretation” setting to “Lower Case” and the “Append Underscore
to External Names” setting to “Yes.” These settings have the same effect as
the /names:lowercase and /assume:underscore options when compiling
at a command prompt.

208 6. Creating and Using Dynamic-Link Libraries

FIGURE 6.6. Selecting the single-threaded runtime library.

A few more Intel project properties must also be changed in order for
the DLL to work. First, we need to change the default selection of a multi-
threaded runtime library to one that is single-threaded. To do this, select
“Libraries” in the tree on the left-hand side, and change the “Runtime
Library” setting to “Single-threaded” (Figure 6.6). Then we must make
sure that Fortran types with the sequence directive are handled properly
by the compiler. Select “Data,” and change the “SEQUENCE Types Obey
Alignment Rules” setting to “Yes” (Figure 6.7). This setting is equivalent
to compiling with the /align:sequence option at the command line.

With the Lahey/Fujitsu compiler, these changes are unnecessary; all
property settings may be left at their default values.

Now the DLL is ready to be built, using either the “Debug” or “Release”
configuration. After building it, you should check the contents of the DLL’s
export table to make sure the symbolic name is correct. In a command-
prompt window, change to the “Debug” or “Release” subdirectory within
the em_exp project directory, and type this command:

dumpbin /exports em_exp.dll

The output will look something like this.

File Type: DLL

Section contains the following exports for em_exp.dll

00000000 characteristics
40C91357 time date stamp Thu Jun 10 22:05:11 2004

0.00 version

6.5 Example: a Fortran DLL for Fitting an Exponential Mixture 209

FIGURE 6.7. Setting the alignment rule for sequence types.

1 ordinal base
1 number of functions
1 number of names

ordinal hint RVA name

1 0 000049D8 em_exponential_

Summary

1000 .data
4000 .data1
1000 .rdata
1000 .reloc
4000 .text
1000 .trace

The most important item here is the name, em_exponential_, which is as
we intended.

6.5.3 Building with Salford Fortran

When we applied the Salford FTN95 compiler to this example, we encoun-
tered a small problem. Salford does an excellent job of creating DLLs that
receive and pass numeric arguments to S-PLUS and R, but it cannot pass
character strings. The reason is that a Salford-compiled DLL requires an

210 6. Creating and Using Dynamic-Link Libraries

extra argument for each character-string argument defining its length. We
have already explicitly provided the length of the argument msg through
msg_len. With Salford, however, a hidden integer argument is also expected
at the end of the argument list, and it must be passed by value. Unfortu-
nately, this will not be possible because S-PLUS and R pass arguments to
Fortran DLLs only by reference.

One can survive without the ability to pass character strings. For exam-
ple, we could return an integer code rather than the error message text and
then use S-PLUS to create the text message. Unfortunately, that would re-
quire some changes to our error-handling system. In this example, we found
a way to report the error to S-PLUS and R through a back door. First, we
removed the msg and msg_len arguments and replaced them with a single
logical variable, error_occurred, which returns a TRUE value if an error
occurs. Then we wrote the error string to a text file at a specific location,
which S-PLUS or R can open and read if desired. This modified version of
the wrapper is shown below.

em exponential salford.f90

!###

subroutine em_exponential(n, y, maxits, eps, pi, lambda_1, lambda_2, &

iter, converged, loglik, score, hessian, error_occurred)

use error_handler

use program_constants

use em_exponential_engine

implicit none

! declare arguments

integer, intent(in) :: n

real(kind=our_dble), intent(in) :: y(n)

integer, intent(in) :: maxits

real(kind=our_dble), intent(in) :: eps

real(kind=our_dble), intent(inout) :: pi, lambda_1, lambda_2

integer, intent(out) :: iter

logical, intent(out) :: converged

real(kind=our_dble), intent(out) :: loglik, score(3), hessian(3,3)

logical, intent(out) :: error_occurred

! declare locals

integer(kind=our_int) :: ijunk

type(error_type) :: err

character(len=512) :: msg

! begin

call err_reset(err)

ijunk = run_em_exponential(y, pi, lambda_1, lambda_2, &

iter, converged, loglik, score, hessian, err, maxits, eps)

if(err_msg_present(err)) then

error_occurred = .true.

call err_get_msgs(err, msg, "UNIX")

open(9, file="c:\em_exp_error.txt")

write(9,*) msg

close(9)

else

error_occurred = .false.

6.5 Example: a Fortran DLL for Fitting an Exponential Mixture 211

end if

return

end subroutine em_exponential

!###

These code changes for Salford are not necessary if your DLL is to be called
by SAS or by another application that can pass extra arguments by value.

The only compilation option required for creating a compatible DLL in
Salford is -export:EM_EXPONENTIAL, which is given at the command line.
This name must be given in all capital letters or S-PLUS and R will not
be able to import the symbol. We could not find a way to make Salford
apply a trailing underscore to the symbolic name. In the Salford-compiled
DLL, the name is simply EM_EXPONENTIAL. To call a DLL procedure from
S-PLUS or R without the appended underscore in its symbolic name, we
were able to use the .C() function rather than .Fortran().

6.5.4 Calling the DLL Procedure from S-PLUS and R

Now we demonstrate how to use the DLL from S-PLUS and R. First, we
write a function that applies the model-fitting procedure to a sample of
data held in a numeric vector.

em exponential.ssc

em.exponential <- function(y, start, eps=.00001, maxits=10000){

client function for the em exponential dll server

if(missing(start)){

generate starting values by a random split

w <- sample(1:2, length(y), replace=T)

start <- list(

pi = mean(w==1),

lambda.1 = 1./mean(y[w==1]),

lambda.2 = 1./mean(y[w==2])) }

msg.len <- 255

msg <- ""

for(i in 1:msg.len) msg<-paste(msg," ",sep="")

tmp <- .Fortran("em_exponential",

n = length(y),

y = as.double(y),

maxits = as.integer(maxits),

eps = as.double(eps),

pi = as.double(start$pi),

lambda.1 = as.double(start$lambda.1),

lambda.2 = as.double(start$lambda.2),

iter = integer(1),

converged = logical(1),

loglik = numeric(1),

score = numeric(3),

hessian = matrix(0.,3,3),

msg.len = as.integer(msg.len),

msg = msg)

212 6. Creating and Using Dynamic-Link Libraries

est <- list(pi = tmp$pi, lambda.1 = tmp$lambda.1,

lambda.2 = tmp$lambda.2)

list(est = est, converged = tmp$converged)

msg <- tmp$msg

if(is.all.white(msg))

msg <- NULL

else{

trim off the white space from msg and print to screen

i <- msg.len

while((substring(msg, i, i) == " ") & (i >= 0)) i <- i-1

msg <- paste(substring(msg, 1, i), "\n", sep="")

cat(msg)}

result <- list(

est = est,

iter = tmp$iter,

converged = tmp$converged,

logliklihood = tmp$loglik,

score = tmp$score,

hessian = tmp$hessian,

msg = msg)

result}

###

The actual call to em.exponential is accomplished with .Fortran().
The first argument to .Fortran() is the symbolic name of the exported
procedure without the underscore. The remaining arguments are the ac-
tual arguments that will be passed to the wrapper. The returned result
tmp is an S-PLUS list whose components are the values of the arguments
after the Fortran procedure has run. Naming the arguments in the call to
.Fortran() will apply those names to the components of tmp. Notice the
use of as.integer and as.double, which ensure that numeric data are
passed in the form that the DLL is expecting.

The function shown above is also suitable for R, except for one line. The
command is.all.white does not exist in R, so the line

if(is.all.white(msg))

may be replaced with

if(all(strsplit(msg,"")[[1]]==" "))

Before using this function in the S-PLUS or R session, we need to load
and link the DLL. In S-PLUS, a DLL is loaded using dyn.open(); in R,
the corresponding function is dyn.load(). This step only needs to be done
once per session. Here is an example of loading and using the DLL on a
small dataset in S-PLUS:

dyn.open("em_exp.dll") # in R, use dyn.load() instead

y <- c(5.6, 0.7, 2.4, 2.2, 4.5, 0.6, 2.3, 3.1, 1.6, 2.2,

6.5 Example: a Fortran DLL for Fitting an Exponential Mixture 213

0.1, 4.9, 9.0, 7.4, 1.8, 9.7, 0.9, 1.0, 0.7, 3.4,
1.8, 0.5, 0.1, 0.7, 0.1, 6.6, 1.6, 8.6, 0.3, 0.1,
4.2, 0.8, 3.1, 0.2, 1.0, 2.0, 2.3, 0.8, 6.6, 1.2,
0.3, 2.7, 0.5, 0.7, 1.8, 1.5, 2.8, 18.3, 1.2, 0.6)

tmp <- em.exponential(y)

For dyn.load() and dyn.open() to succeed, the DLL file must reside
in a directory where S-PLUS or R can find it. In S-PLUS, you can place
it in the current working directory (i.e. the value of the environmental
variable S PROJ). S-PLUS can also locate the DLL in any directory listed
in the Windows PATH variable. R does not search along the Windows
path, so if you are using R, you need to either place the DLL in the current
working directory or specify a full path for the DLL file in the argument
to dyn.load().

Here we apply the procedure to our data and display the parameter
estimates, the score functions, and the inverse of the information matrix.

> y <- c(5.6, 0.7, 2.4, 2.2, 4.5, 0.6, 2.3, 3.1, 1.6, 2.2,
+ 0.1, 4.9, 9.0, 7.4, 1.8, 9.7, 0.9, 1.0, 0.7, 3.4,
+ 1.8, 0.5, 0.1, 0.7, 0.1, 6.6, 1.6, 8.6, 0.3, 0.1,
+ 4.2, 0.8, 3.1, 0.2, 1.0, 2.0, 2.3, 0.8, 6.6, 1.2,
+ 0.3, 2.7, 0.5, 0.7, 1.8, 1.5, 2.8, 18.3, 1.2, 0.6)
>
> tmp <- em.exponential(y)
> print(tmp$est)
$pi
[1] 0.5354197

$lambda.1
[1] 0.6780908

$lambda.2
[1] 0.2379533

> print(tmp$score)
[1] 0.0019629725 -0.0004596604 -0.0008722596
> print(solve(-tmp$hess))

[,1] [,2] [,3]
[1,] 0.19482037 -0.14959040 -0.04188542
[2,] -0.14959040 0.16424997 0.02885927
[3,] -0.04188542 0.02885927 0.01226698

214 6. Creating and Using Dynamic-Link Libraries

6.5.5 Calling the Function from SAS/IML

In SAS, it is easy to call an external DLL from PROC IML. IML invokes
DLL procedures through the routine modulei, as shown in this example:

em exponential.sas

proc iml;

/* IML module for exponential mixture model */

start em_exp(y, eps, maxits, pi, lambda_1, lambda_2,

score, hessian);

filename sascbtbl ’em_exp.cbt’;

/* initializations */

n = nrow(y);

converged = 0;

iter = 0;

loglik = 0.0;

/* Make enough room for 255 characters in msg */

msg = ’’;

do i=1 to 51;

msg = msg + ’ ’;

end;

blank_msg = msg;

if type(pi) = ’U’ then do; /* pi not defined */

/* generate starting values by a random split */

w = round(uniform(shape(0, 1, n))) + 1;

pi = sum(w=1)/n;

lambda_1 = sum(w=1)/((w=1) * y);

lambda_2 = sum(w=2)/((w=2) * y);

end;

/* Shape the score and Hessian arrays */

score = shape(0.0, 3, 1);

hessian = shape(0.0, 3, 3);

/* Run estimation */

call modulei(’em_exponential_’, n, y,

maxits, eps, pi, lambda_1, lambda_2,

iter, converged, loglik, score, hessian,

255, msg);

if msg ^= blank_msg then do;

print ’Error: ’, msg;

end;

finish; /* em_exp */

/* good sample */

y = { 5.6, 0.7, 2.4, 2.2, 4.5, 0.6, 2.3, 3.1, 1.6, 2.2,

0.1, 4.9, 9.0, 7.4, 1.8, 9.7, 0.9, 1.0, 0.7, 3.4,

1.8, 0.5, 0.1, 0.7, 0.1, 6.6, 1.6, 8.6, 0.3, 0.1,

4.2, 0.8, 3.1, 0.2, 1.0, 2.0, 2.3, 0.8, 6.6, 1.2,

6.5 Example: a Fortran DLL for Fitting an Exponential Mixture 215

0.3, 2.7, 0.5, 0.7, 1.8, 1.5, 2.8, 18.3, 1.2, 0.6 };

maxits = 10000;

eps = 1.0E-5;

run em_exp(y, eps, maxits, pi2, lambda_1, lambda_2,

score, hessian);

/* Display results */

print ’Final Estimates:’;

print (pi2), , (lambda_1), , (lambda_2);

print (score);

cov = inv(-hessian);

print (cov);

quit;

This code requires an accompanying text file, em_exp.cbt, which defines
the DLL calling conventions. The format of this file is described in the
SAS Companion for the Microsoft Windows Environment, Version 8 (SAS
Institute, 2000). Our version of the file looks like this:

em exp.cbt

routine em_exponential_

module=em_exp

transpose=yes;

arg 1 num input byaddr format=ib4.;

arg 2 num input byaddr format=rb8.;

arg 3 num input byaddr format=ib4.;

arg 4 num input byaddr format=rb8.;

arg 5 num update byaddr format=rb8.;

arg 6 num update byaddr format=rb8.;

arg 7 num update byaddr format=rb8.;

arg 8 num output byaddr format=ib4.;

arg 9 num output byaddr format=ib2.;

arg 10 num output byaddr format=rb8.;

arg 11 num update byaddr format=rb8.;

arg 12 num update byaddr format=rb8.;

arg 13 num input byaddr format=ib4.;

arg 14 char update byaddr format=$CHAR255.;

The first line of this file contains the export’s symbolic name including
the underscore, if present. The second line, module=em_exp, provides the
name of the DLL file without the .dll extension. The line transpose=yes
is necessary because normally SAS/IML would pass the arrays in row-
major order, whereas Fortran expects array arguments to be passed in
column-major order. The remaining lines give details for each of the pro-
cedure’s arguments—the type of data, the argument’s intent, the passing
method (byaddr means by reference), and the type of data contained in

216 6. Creating and Using Dynamic-Link Libraries

the argument. The .cbt file can be located anywhere, provided that the
SAS program gives the full file path in the filename sascbtbl statement.
Alternatively, you may place the file in the same folder as the *.sas file,
as we have done in this example.

Once again, it is important to place the DLL file in the proper location.
For SAS, you may place it in the sasexe subdirectory of the SAS instal-
lation directory. Alternatively, you may place it in the same directory as
the *.sas file, above, or in any location specified by the system’s PATH
environment variable.

The output from this SAS program will be similar to the following:
em exponential.lst

Final Estimates:

PI2

0.5363882

LAMBDA_1

0.6773083

LAMBDA_2

0.2377425

SCORE

-0.001932

0.0004536

0.000858

COV

0.195054 -0.149587 -0.041936

-0.149587 0.1638826 0.0288602

-0.041936 0.0288602 0.0122806

6.6 Shared Objects in Unix and Linux

Shared objects in Unix and Linux systems are analogous to DLLs in Win-
dows. Fortran compilers on Unix and Linux systems can produce shared
object files containing procedures that may be called from programs written
in other languages. As with DLLs, shared objects are compiled and linked

6.6 Shared Objects in Unix and Linux 217

from source code and are linked and loaded dynamically with another pro-
gram at run time. All of the technical issues regarding calling conventions
and argument passing that we have presented regarding Windows DLLs
also apply to shared objects.

Shared objects by convention have the file extension .so, and often it is
helpful to give the file a name beginning with “lib”. For example, you may
create a shared object called libMyStats.so. To create a shared object,
one generally must compile source-code files into object code (*.o) files and
then link them, specifying an option indicating that the product is a shared
object. For specific details about creating shared objects, we recommend
that the reader refer to the compiler’s documentation.

Distributing shared objects to other users may require special treatment
during compilation. Additional run-time libraries, which accompany the
particular Fortran compiler, may be required in order to run the code on
another user’s machine. Distribution of run-time libraries must be done in
accordance with the license agreement that accompanies the compiler. For
details about distributing compiled shared objects in Linux, we recommend
that you consult the compiler’s documentation.

6.6.1 An Example: Extending S-Plus and R via a Fortran
Shared Object in Linux

This example will use the Intel Fortran compiler for the Linux operating
system. First, we place the following files in a directory on a Linux system
with this compiler:

constants.f90
error_handler.f90
em_exponential_engine.f90
em_exponential.f90

These source files are unchanged from previous examples, with one ex-
ception. In the file em_exponential.f90, we must remove the line contain-
ing the !DEC$ ATTRIBUTES directive. With shared objects, all symbols are
exported by default.

Creating a shared-object library requires two steps. First, we compile
the source files into static-object files. The alignment of sequence types is
handled appropriately using the -align sequence option.

ifort -c -align sequence constants.f90
ifort -c -align sequence error_handler.f90
ifort -c -align sequence em_exponential_engine.f90
ifort -c -align sequence em_exponential.f90

218 6. Creating and Using Dynamic-Link Libraries

The next step is to link the static objects into a shared-object file. This
is accomplished with the -shared option. We specify that the output will
be named em_exponential.so.

ifort -shared *.o -oem_exponential.so

To test the shared object, we run the same R code as before except for
one minor change:

dyn.load("em_exponential.dll")

must be changed to

dyn.load("em_exponential.so").

When we execute this code using R in the Linux environment, it produces
the expected output.

7
Creating COM Servers

Thus far, we have discussed how to create Fortran modules that perform
computational tasks and shown how to use those modules in console appli-
cations and DLLs. Many of today’s computer users, however, are unaccus-
tomed to obtaining and using software in those forms. They have come to
expect the convenience of user-friendly graphical interfaces (GUIs) or easily
installable plug-ins for their favorite applications. Modern programs with
GUIs and plug-ins are built from software components. These components
are object-oriented and contain object classes, properties and methods.
Like the conventional DLLs discussed in Chapter 6, software components
are precompiled into binary code and can be shared by multiple applica-
tions. But they are more intelligent and versatile than conventional DLLs
and can be used more easily because their calling conventions have been
standardized.

This chapter focuses on the Component Object Model (COM), the pre-
dominant standard for Windows operating systems. We explain the es-
sential features of COM and demonstrate how to create components that
adhere to the COM standard. These components are called COM servers.
Along the way, we describe some new tools we have created for the Intel
Visual Fortran compiler to automatically wrap a Fortran module with the
code necessary to convert it to a COM server. If you have written a module
using the pseudo object-oriented style described in Chapters 3 and 5, this
chapter will show you how to turn it into a COM server.

220 7. Creating COM Servers

7.1 A Simple Example

7.1.1 The magic8 Fortran Module

As a first demonstration of a COM server, we have chosen a simple ap-
plication of a random number generator: the Magic 8-ball r©. This classic
American toy has been manufactured and sold for more than fifty years. It
is a hollow replica of a black 8-ball used in pool or billiards with a small win-
dow. Inside the ball, floating in a mysterious cloudy liquid, is an icosahedron
(a 20-sided die with triangular faces) inscribed with various messages. The
user asks the ball a question, shakes it, and waits for a message to appear
in the window. Ten of the possible responses are positive (“Yes”; “Signs
point to yes”; “Without a doubt”; “As I see it, yes”; “You may rely on
it”; “It is decidedly so”; “Most likely”; “Outlook good”; “Yes—definitely”;
“It is certain”); five are negative (“My sources say no”; “Outlook not so
good”; “My reply is no”; “Don’t count on it”; “Very doubtful”); and five
are vague (“Concentrate and ask again”; “Reply hazy, try again”; “Better
not tell you now”; “Cannot predict now”; “Ask again later”). The behavior
of the Magic 8-Ball can be easily simulated by generating a uniform ran-
dom number, mapping it to the integers from 1 through 20, and returning
a character string containing the corresponding message. Here is a Fortran
module that mimics the Magic 8-Ball.

magic8.f90

!###

module magic8

implicit none

private ! by default

public :: get_magic8_msg

character(len=*), parameter :: modname = "magic8"

contains

!##

integer function get_magic8_msg(msg) result(answer)

implicit none

! Generates a random message from the Magic 8-ball. The argument

! msg should be at least 26 characters long, otherwise the

! message may be truncated.

!

! Because this uses the Fortran intrinsic generator, you should

! set the seed (e.g. by calling random_seed) before using this

! function.

character(len=*), intent(out) :: msg

! locals

real :: u

integer :: i

! generate a random integer between 1 and 20

call random_number(u)

i = 20*u + 1

select case(i)

! positive responses

7.1 A Simple Example 221

case(1)

msg = "Yes."

case(2)

msg = "Signs point to yes."

case(3)

msg = "Without a doubt."

case(4)

msg = "As I see it, yes."

case(5)

msg = "You may rely on it."

case(6)

msg = "It is decidedly so."

case(7)

msg = "Most likely."

case(8)

msg = "Outlook good."

case(9)

msg = "Yes - definitely."

case(10)

msg = "It is certain."

! negative responses

case(11)

msg = "My sources say no."

case(12)

msg = "Outlook not so good."

case(13)

msg = "My reply is no."

case(14)

msg = "Don’t count on it."

case(15)

msg = "Very doubtful."

! vague responses

case(16)

msg = "Concentrate and ask again."

case(17)

msg = "Reply hazy, try again."

case(18)

msg = "Better not tell you now."

case(19)

msg = "Cannot predict now."

case default

msg = "Ask again later."

end select

! normal exit

answer = 0

return

end function get_magic8_msg

!##

end module magic8

!###

222 7. Creating COM Servers

This simple module follows the principles set forth in previous chapters
for pseudo object-oriented programming in Fortran. The public interface of
this module consists of the single function get_magic8_msg. The name of
this function indicates that it is a get method for the property msg. There
is no corresponding put method, so msg is a read-only property. A Fortran
program or routine that uses this module can invoke the public function
get_magic8_msg and retrieve a random message via its msg argument,
which has intent(out).

7.1.2 The Magic8 COM Server

Invoking the get method for msg from a Fortran program is a simple mat-
ter. It becomes equally straightforward to invoke this method from other
Windows applications when we package the module as a COM server. Skip-
ping over the details for now, we have already created a COM server called
Magic8 and placed it on our Web site.

The Magic8 COM server consists of a single file called magic8_com.exe.
The .exe suffix suggests that this is a program that can be run by typing
the filename at a command prompt or by double-clicking on the file’s icon
in a file-management program such as Windows Explorer. This is not an
ordinary program, however; it’s a precompiled software module that defines
an object class with a single property and method. You can download the
Magic8 COM server, install it on your computer, and use it in a variety of
ways, as we now describe.

7.1.3 Installing the Magic8 COM Server

Where should you put the file magic8_com.exe? If this were an ordinary
executable program invoked from a command prompt, it would need to
reside in the current working directory or somewhere along the Windows
search path (e.g., as specified by the PATH environment variable). Because
this is a COM server, however, you may place it almost anywhere on your
Windows file system. Other programs will be able to find it once it has
been registered with Windows.

To install the Magic8 COM server on your computer, download the
file magic8_com.exe to any convenient location on your computer’s hard
drive. (You may wish to create a directory called C:\servers and place
the file there.) Then register the COM server in the following way. First,
open a command-prompt window. Next, change the working directory to
the directory where magic8_com.exe is located (for example, by typing
cd C:\servers). Finally, type

magic8_com /regserver

at the command prompt to register the server. The file magic8_com.exe is
not an installer program; it is the COM server itself. When using a COM

7.1 A Simple Example 223

server, one would not normally run it from a command prompt. We are
doing so at this time merely to register it with Windows.

The Magic8 COM server is now installed, registered, and ready to speak.
Any application that uses a COM server is called a COM client. In the next
few subsections, we show how to create simple clients to make the 8-Ball
speak in Excel, S-PLUS, R, MATLAB, and SAS. Whether or not you use
all of these software packages, it will be instructive to look over these code
samples in order to understand how COM servers are used in different client
environments.

7.1.4 The 8-Ball Speaks in Excel

Microsoft Excel is widely used for organizing data and performing basic cal-
culations. Advanced users of Excel know how to automate tasks by writing
macros. An Excel macro is a script written in a language called Visual Ba-
sic for Applications (VBA). If you have Excel installed on your computer,
then you also have VBA. Only a few lines of VBA code are needed to invoke
the Magic 8-Ball and make it speak.

To enter the necessary VBA code, first launch the Excel program. Then
choose from the menu Tools → Macro → Visual Basic Editor, and the Mi-
crosoft Visual Basic editor window will then appear. In the editor, under
“Microsoft Excel Objects,” double-click on Sheet1. This will open a window
in which VBA code may be added behind the current spreadsheet.

If the Magic8 COM server has been registered with Windows, then the
VBA editor already knows about it, and you can add a reference to the
Magic8 COM server in this VBA application. To do this, go to the Microsoft
Visual Basic menu and choose Tools → References . . ., and a dialog box will
appear. In this dialog box, you should be able to scroll down and find
“Magic8Obj 1.0 Type Library.” Click the checkbox next to it, and then
click OK. Then add the following code in the editor window.

Sub speak()

’ VBA script that uses the Magic8Obj COM Server

’ declare object

dim objMagic8 as Magic8Obj

’ create object instance

objMagic8 = createObject("magic8_com.Magic8Obj")

’ invoke ’msg’ property and display in message box

call MsgBox(objMagic8.msg)

’ release object from memory

Set objMagic8 = Nothing

End Sub

224 7. Creating COM Servers

FIGURE 7.1. Excel Macro dialog box.

Let’s examine this VBA code in detail. It defines a single subroutine
called speak(). The lines that begin with a single quote (’) are comment
lines. The first executable line, which begins with dim, is a dimension-
ing statement; it declares the variable objMagic8 to be a pointer to a
Magic8Obj object. The next executable line creates an instance of the ob-
ject. (Later, we will discuss in detail what the object is. For now, just
consider createObject to be the command that gets the Magic8 COM
server up and running.) The string argument "magic8_com.Magic8Obj"
identifies the Magic8 COM server’s object. The portion of this string be-
fore the period ("magic8_com") is the name of the COM server, and the
portion after the period ("Magic8Obj") is the name of the object class. The
instance of the object is called objMagic8, named after the pointer that
has been assigned to it.

The next executable statement does two things. The expression within
parentheses (objMagic8.msg) invokes the get method for the msg property
and evaluates to a character string. The call MsgBox command then takes
that character-string message and displays it in a Windows message box
(i.e., a dialog box window).

Now that we understand what the VBA code does, let us return to the
main spreadsheet window of Excel to run the code. From the Excel menu,
choose Tools → Macro → Macros..., and a dialog box will appear, as shown
in Figure 7.1. Move your mouse cursor to this box and press Run. Another

7.1 A Simple Example 225

FIGURE 7.2. Dialog box generated by the Excel macro showing the Magic
8-Ball’s response.

dialog box will appear as shown in Figure 7.2, displaying a message from
the Magic 8-Ball.

7.1.5 The 8-Ball Speaks in S-PLUS and R

S-PLUS for Windows is also designed to interact with COM servers. In S-
PLUS, one can write either a COM client or a COM server. Here we show
how to write a client for the Magic8 server.

Open S-PLUS for Windows and choose from the menu File → New...; in
the resulting dialog box, choose Script File and press OK. This creates a
new script file. In the top portion of the script window, enter the following
S language commands.

S-Plus script that uses the Magic8Obj COM Server

create object instance

objMagic8 <- create.ole.object("magic8_com.Magic8Obj");

invoke ’msg’ property

msg <- get.ole.property(objMagic8,"msg");

release object from memory

release.ole.object(objMagic8);

print message

cat(paste("\n\n", msg, "\n"));

Before executing the script file, save it under the name magic8. Then
execute the script by choosing from the menu Script → Run or by simply
pressing the “run” button or the F10 keyboard key. After echoing the
script commands, the output window will show the 8-ball’s reply:

"Yes - definitely."

Interoperability with COM is not a standard part of the R programming
environment. However, a COM interface for R on the Windows platform

226 7. Creating COM Servers

(rcom by Thomas Baier) is available for download. A link to rcom can be
found on the Web site for this book. A Magic8 client for R is shown below.

R script that uses the Magic8Obj COM Server

Load rcom library

library(rcom);

create object instance

objMagic8 <- comCreateObject("magic8_com.Magic8Obj");

invoke ’msg’ property

msg <- comGetProperty(objMagic8,"msg");

release object from memory

rm(objMagic8);

print message

cat(paste("\n\n", msg, "\n"));

Notice that the code for R is almost identical to that from S-PLUS except
for a few differences in the command names. Another difference is that,
in order to release the object, we simply remove the pointer with the rm
command. (This is a feature of the “garbage collection” system that R
uses to manage its memory. When we remove the pointer, the instance of
the object is left in memory with no way of accessing it. Fortunately, R
will collect the garbage—that is, R automatically deallocates sections of
memory that have become inaccessible or unusable.)

7.1.6 The 8-Ball Speaks in MATLAB

MATLAB is popular among scientists and engineers for its ability to ma-
nipulate matrices. The Windows version of MATLAB supports COM and
can be used either as a server or a client. Our MATLAB Magic8 client is
quite similar to the clients for S-PLUS and R. To create this client, start
MATLAB and select from the menu File → New M − file. Then enter the
following code in the code editor.

% Matlab M file that uses the Magic8Obj COM Server

% create object instance

objMagic8 = actxserver(’magic8_com.Magic8Obj’);

% invoke ’msg’ property

msg = get(objMagic8,’msg’);

% release object from memory

release(objMagic8);

7.1 A Simple Example 227

% print message

fprintf(’\n\n %s\n’,msg);

Save this file under the name magic8.m. To run the client, go to the code
editor menu and select Debug → Run, or simply press the “run” button
or the F10 keyboard key. The 8-ball’s reply will appear in the MATLAB
command window:

Better not tell you now.

7.1.7 The 8-Ball Speaks in SAS

SAS was not designed to support COM. However, we have created a tool
called SASCOMIO (for “SAS/COM interoperability”) that allows COM
servers to be accessed from regular SAS programs. SASCOMIO, along with
its documentation and installation instructions, can be downloaded from
the Web site that accompanies this book. (The SASCOMIO tool is actually
a Fortran DLL. For those who are interested, the source code for this DLL
is also provided on our Web site.)

Below is a COM client for the Magic8 COM server that uses SASCOMIO.
Notice the extra step required to load our SAS/COM interoperability func-
tion definitions. This and other issues of using COM with SAS will be
discussed in Chapter 8.

proc iml;

/* SAS/IML program that uses the Magic8Obj COM Server */

/* initializations */

result = 0;

msg = "12345678901234567890123456"; /* 26 characters */

/* load SAS/COM interop function definitions */

filename sascbtbl ’e:\project\magic8_com\clients\sascomio.cbt’;

/* create object instance */

pMagic8 = modulein(’createobj’, ’magic8_com.Magic8Obj’);

/* invoke ’msg’ property */

result = modulein(’getpropchar’, pMagic8, ’msg’, 1, 1, msg, 0);

/* release object from memory */

call modulei(’releaseobj’, pMagic8);

/* print message */

print msg;

quit;

228 7. Creating COM Servers

The output from SAS after running this code looks like this:

MSG
My sources say no.

7.1.8 Exercises

1. Download the Magic8 COM server. Place the file in an appropriate
location and register it with the Windows operating system.

2. Create a PowerPoint presentation that uses the Magic8 COM server.
Create a slide with an action button that, when pressed, runs a VBA
macro and displays a dialog box that shows the Magic 8-Ball’s answer.

7.2 COM Server Basics

7.2.1 References on COM

The ability to call the same software component from such disparate en-
vironments as Excel, S-PLUS, R, MATLAB, and SAS makes COM seem
almost magical. The technology behind this magic is actually quite so-
phisticated. A detailed exposition of COM lies well beyond the scope of
this book. For advanced programmers who wish to learn about it, many
resources are available. The official COM specification is available from
Microsoft at this Web address:

http://www.microsoft.com/COM

We also recommend The Essence of COM by Platt (2000). Although that
book focuses on programming in C and C++, the concepts of COM are the
same regardless of what language is used. Other useful information pertain-
ing to COM and Fortran can be found in the documentation accompanying
the Intel Visual Fortran compiler. Look in the manual Intel(R) Fortran Li-
braries Reference, in the “COM and AUTO Routines” section, to learn
about the Intel Visual Fortran COM libraries IFCOM and IFAUTO.

Technicalities aside, COM can be viewed rather simply as an extension of
the object-oriented concepts introduced in Chapter 3. In particular, before
delving into the discussion below, make sure that you understand the basic
ideas that were covered in Section 3.1.

7.2.2 COM, Windows, and .NET

Just as integrated circuit chips are the building blocks of modern computer
hardware, software components are the building blocks of modern computer
software. Early programmers for Windows envisioned that applications

7.2 COM Server Basics 229

would eventually be assembled from specialized components. For example,
a text-editing component, a typesetting component, and graphical display
component, along with a spell-checker, dictionary, and thesaurus, could
be assembled to create a sophisticated word processor. Through object-
oriented component technologies such as COM, much of this vision has
become reality.

COM is now an integral part of 32-bit Microsoft Windows operating sys-
tems. Much of Windows is built on COM. Although the Windows platform
is continually evolving, component technologies are remaining as the dom-
inant feature of Windows architecture. Software components are finding
their way into other operating systems as well.

If you have taken a look at recent software development literature, you
may have seen little about COM but a lot about a newer technology called
.NET (pronounced “dot-net”). The .NET framework, like COM, promotes
the use of object-oriented software components. In fact, .NET was designed
to interact with COM, as we shall demonstrate in the next chapter. The
basic principles established by COM—including the interface, methods,
properties, servers, and clients—have been implemented and extended by
.NET. Countless books and articles are now available about .NET, and you
can learn much about the latest concepts of software component develop-
ment from those resources.

Two Fortran compilers, Salford and Lahey/Fujitsu, now allow program-
mers to develop components and applications for .NET. These tools show
great promise for developing components as they evolve along with the
.NET framework. This book, however, will focus specifically on COM servers.

7.2.3 COM Servers versus Conventional DLLs

After developing a COM server in a given programming language, the pro-
grammer must compile and link it. Afterward, the COM server may be used
in other projects written in any of a number of languages. In other words,
the language used to develop COM servers and the applications that use
them is unimportant.

Multilanguage programming is possible with conventional DLLs as de-
scribed in Chapter 6. However, the use of conventional DLLs is complicated
by the lack of standard calling conventions. As a result, DLLs must often be
customized for each application, and the types of data that may be passed
as arguments across languages can be quite limited. But COM servers (and
clients) have a standard mechanism for invoking routines and passing ar-
guments. This is because COM is a standard that defines the interface
between the server and the application that uses it (the client).

Another way in which COM servers differ from conventional DLLs is
that they are object-oriented. After all, “object” is COM’s middle name.
DLLs are simply a way of packaging computational procedures. But COM
is a more powerful paradigm that allows you to create instances of objects

230 7. Creating COM Servers

and put and get properties and to invoke methods. COM allows you to
initialize the data when an instance is created and to clean up afterward
when the instance is destroyed.

The COM standard also eliminates “DLL hell.” COM servers are in-
dependently installed and registered in the operating system, and each
provides its own internal documentation. By nature they are language-
independent. And they have unique identifications beyond their filenames.
That is, two COM servers may have identical filenames but still be uniquely
distinguished. COM even provides unique identifications for different ver-
sions of the same server.

Some of these advantages were already evident in our Magic 8-Ball ex-
ample. Our Magic8 COM server’s msg function was invoked from five client
environments without alteration, using only a few lines of code, and the
form of the client code was similar among the various applications. No con-
cern was paid to calling conventions; the inner workings of COM made sure
that data were passed between the client and server correctly.

On the other hand, COM servers do have a couple of disadvantages
relative to DLLs. First, it takes a fair amount of extra code to produce
a COM server from a Fortran module. The extra code is not standard
Fortran 95 but relies on vendor-specific libraries and the Microsoft Interface
Definition Language. But this code follows a fixed pattern and can be
generated automatically. If you are using Intel Visual Fortran and have
coded your Fortran module in the pseudo object-oriented style described
in Chapters 3 and 5, we provide a script that will automatically wrap your
module with all the extra code you need to turn it into a COM server.

A second disadvantage of COM servers is the brief delay that occurs
at the beginning of procedure calls. A conventional DLL is like any other
part of the running program: routines within the DLL communicate with
other parts of the program without delay. Communication between a client
and a COM server, however, must be mediated by the COM infrastructure
in the Windows operating system, which takes some time. Under most
circumstances, the time delay is minuscule. But if a COM server’s methods
or properties are invoked numerous times in rapid succession—if the client
uses a loop, for example—the cumulative effect can be noticeable. If speed
is critical and you expect your Fortran procedures to be called iteratively,
then you may want to package them in a conventional DLL. On the other
hand, you might also consider changing the project’s overall design so that
the loop is moved out of the client and placed inside the Fortran code.

7.2.4 The Object-Oriented Contract

The COM standard defines the rules of communication between a COM
server and its client. These rules are often called a contract. The server and
client are both expected to carefully adhere to these rules. Details of the

7.2 COM Server Basics 231

contract define protocols for invoking properties and methods and formats
for data transfer.

Upon request from a COM client, a COM server may create an instance
of an object. When a new object is created, the server gives the client a
pointer to the object. The pointer is simply a name or a handle by which
the client can subsequently refer to the object. Using this pointer, the client
can directly invoke any of the object’s properties and methods. The client
can also release the object from memory when its life cycle is over. This
standard object-oriented approach allows clients to use the server without
detailed knowledge of its internal workings.

To make these ideas more concrete, suppose that we have a COM server
for performing linear regression analysis. This server defines an object class
with properties and methods for putting the data (i.e., the response vari-
able and predictors), computing the ordinary least-squares solution, and
retrieving the estimated coefficients, residuals, and so on. A COM client
may create one instance of this object (instance A) into which it loads one
set of data. It may also create a second instance (instance B) into which it
loads an entirely different set of data. Suppose that the method for com-
puting the least-squares solution is called fit. When the client invokes
fit, how does the server know which dataset to use? The client applies the
method to a particular instance by invoking A.fit or B.fit.

An active COM server resides in sections of memory. One section holds a
single copy of the binary code that implements the object class definitions
along with their properties and methods and any common data. The class
definitions, properties, and methods are called the interface. Whenever a
new object is instantiated, another section of memory is added to hold the
data unique to that object. The latter is called per-instance data. The per-
instance data for an object may grow or shrink over time as the object’s
properties change. When a client is finished with the object and disposes
of it, its per-instance data are released and that portion of memory returns
to the heap. Finally, when all objects are destroyed, the binary code for
the COM server and any common data are removed.

A conceptual diagram that depicts an object, its interface, and per-
instance data is shown in Figure 7.3. The interface is the sole path through
which a client may interact with the object. Two-way arrows represent read-
write properties, and the one-way arrows represent read-only properties.
The per-instance data are encapsulated within the object. The interface is
distinct from the object, representing that contract of communication to
which both the client and the server are bound.

7.2.5 In-Process versus Out-of-Process Servers

COM servers come in two different flavors: in-process and out-of-process.
An in-process server is packaged as a DLL, whereas an out-of-process server
is packaged as an executable (.exe) file. When creating a COM server, one

232 7. Creating COM Servers

Client
application

Property 1

Property 2

Property 3
(read-only)

Method 1

Method 2

Method 3

Interface

Object

Per-instance
data

FIGURE 7.3. Conceptual diagram of an object and its interface.

must choose one kind or the other, so let us briefly consider the differences
between them.

When a client application (e.g., Microsoft Excel) is running, the client
program is loaded into a section of computer memory along with all of
its associated DLLs. These DLLs are dynamically loaded into the same
virtual memory space as the program itself (Section 6.3). Now suppose
that we want to use a COM server (e.g., Magic8) from the client. If it were
packaged as an in-process server, it would be treated like any other DLL
being used by the client. Its code would be dynamically linked and loaded
into the client’s virtual memory space. The COM server’s instructions and
data would act as if they were part of the client program.

If, on the other hand, we were using an out-of-process COM server, the
Windows operating system would launch the server as a stand-alone pro-
gram with its own memory space. The COM server would assume responsi-
bility for creating and managing the instances of objects it spawns. Because
the client and server are running as separate processes, the Windows oper-
ating system must negotiate communication between them.

Whether the COM server is running in the client’s process or in its own,
it will produce exactly the same results. Whether one decides to make an
in-process or an out-of-process server, the Fortran code inside is identical;
only the build procedure is different. The choice between an in-process or
out-of-process server is primarily a matter of personal taste. However, there
are two minor issues worth considering. The first issue pertains to what
happens in the event of a crash. If a COM server unexpectedly terminates
due to an arithmetic exception or some other error, and if the server is

7.3 Example: A COM Server for Logistic Regression 233

running in the same process as the client, then the client application will
probably terminate as well. If the server is running in its own process apart
from the client, however, unexpected termination of the server may cause
the client to issue an error message, but the client will keep running.

The second issue concerns the brief time delay that arises whenever a
COM server’s properties or methods are invoked. This delay reflects the
overhead cost of transferring instructions and data between client and
server through the COM interface. If the server lives in the same virtual
memory space as the client, the delay may be slightly shorter than if it is
running in a separate process.

The name of our Magic8 COM server file (magic8_com.exe) shows that it
is an out-of-process server. The remainder of this chapter will deal primarily
with out-of-process COM servers.

7.3 Example: A COM Server for Logistic
Regression

7.3.1 Producing COM Servers with Intel Visual Fortran

At the time this book is being published, Intel does not officially advertise
the building of COM servers as one of the features of its Fortran compiler.
Nevertheless, Intel Visual Fortran does provide libraries capable of doing
this. These libraries have been held over from the time when the product
was owned by Compaq. The Professional Edition of Compaq Fortran had
a tool called COM Server Wizard that guided users through the process
of building a COM server. Unfortunately, that tool did not survive the
transition to Intel Visual Fortran 8.0, and the old Compaq compiler is no
longer being sold. With the permission of Intel, however, we are providing
our readers with our own tool based on the COM Server Wizard that can
create a server from an existing Fortran module, provided that the module
is written in the pseudo object-oriented style illustrated in Chapters 3–5.

Our tool for creating COM servers works as follows. First, it scans your
Fortran module for properties, methods, and per-instance data types. Next,
it automatically generates code files that wrap around your Fortran module
and, together with them, can be compiled and linked by Intel Visual Fortran
and Microsoft’s Visual Studio into a COM server. We now lead you through
this process using the ELOGIT example program developed in Chapter 5.

7.3.2 Getting Ready

The ELOGIT program from Chapter 5 was written entirely in standard
Fortran 95. Although the program was invoked from a command line and
accepted input from a control file, only 10% of its source-code lines had

234 7. Creating COM Servers

anything to do with reading information from the control file or writing to
the screen. Stripping away those lines, the remaining 90%—in particular,
the main module elogit_types—stands as an object-oriented component
that we can readily turn into a COM server.

Before you can build the ELOGIT COM server, you must perform a few
preliminary tasks. First of all, you must download and install ActivePerlTM

(version 5.6.1 or later), which is available from the ActiveState Web site:

http://www.activestate.com

Our code-generating tools are written in the Perl language, so to run them
you will need a Perl interpreter. We recommend ActiveState’s free imple-
mentation called ActivePerl, but other versions of Perl may also work.

Next, you will need our COM Server Generator package, which is avail-
able for download from the Web site that accompanies this book. On our
home page, look for the “COM Server Generator” link. It will guide you to
installation instructions, updated documentation, and a link for download-
ing the installer. It will also provide links to any additional components
that may be required.

7.3.3 Naming the Server and the Class

Every COM server must have a name, and any object class defined by a
COM server must also have a name. For example, the Magic8 COM server
was named magic8_com, and the class was named magic8obj. For want of
better terms, we will call these the servername and classname, respectively.

The servername we have chosen for the ELOGIT example is ELogitSrvr.
This will be the project’s name in Visual Studio, as well as the name of the
server’s executable file.

The classname is equally important because COM uses both the server-
name and the classname when creating an object. In each of the Magic8
clients shown in Section 7.1, the object created by the COM server was iden-
tified as servername.classname. One important caveat is that you should
not choose the types module prefix (for example, elogit) as the classname.
The problem is that one of the modules that is automatically generated
by our Perl script is named classname_types. In this case, the resulting
classname would be elogit_types, which conflicts with the name of our
primary Fortran module. To avoid this potential conflict, we will apply the
classname ELogitObj.

Style tip

Use Srvr in a servername to distinguish the COM server from a console
application. Use Obj in a classname to avoid a naming conflict with the
Fortran module itself.

7.3 Example: A COM Server for Logistic Regression 235

7.3.4 Fortran Style Conventions

Our Perl script for generating COM server code assumes that your main
Fortran module has been written in the same style as the elogit_types
module in Chapter 5. Specifically, we require the following.

• Your module must use a program_constants module similar to ours.

• The module must use our error_handler and dynamic_allocation
modules.

• All data must be held within instances of a public derived type or
types defined in the module. These types may be nested (for example,
as in the elogit_session type).

• All properties and methods must be defined as public functions of
type integer(kind=our_int). Each of these functions must return
a value of RETURN_SUCCESS or RETURN_FAIL. These are Fortran pa-
rameters whose values are set in the module program_constants.

• A put property function must have a name that follows this form:

put_modulename_propertyname

The propertyname portion may contain embedded underscore (_)
characters. Similarly, a get property function must be named:

get_modulename_propertyname

Any other methods (e.g., computational procedures) must be func-
tions whose names are:

run_modulename_methodname

• The first dummy argument of any put or get function must be the
quantity being put or gotten. The next argument(s) must be the
public type(s) being passed, followed by the error type (which must
be named err), followed by any other arguments.

• The argument list for any other method (i.e., a function whose name
begins with run_) must begin with the public type or types being
passed, followed by the error_type err, followed by any other argu-
ments being passed to the method. You may also have an additional,
optional error type called warn for reporting nonfatal problems or
other text messages.

The best way to ensure your project conforms to these conventions is to
closely follow the programming style of the elogit_types module from
Chapter 5.

236 7. Creating COM Servers

7.3.5 Automatically Generating the COM Server Code

If your Fortran project conforms to these conventions, your source code
can be processed by our COM Server Generator to automatically generate
additional code files required by Intel Visual Fortran to produce a COM
server. To see how this is done, follow these steps with our ELOGIT code.

First, in a convenient location on your computer’s hard drive, create a
new directory called ELogitSrvr. Copy the following ELOGIT source-code
files into that directory:

constants.f90
elogit_types.f90
elogit_puts.f90
elogit_gets.f90
elogit_nullify.f90
elogit_modelfit.f90
elogit_io.f90
wls.f90
matrix.f90
error_handler.f90
dynalloc.f90

Next, open a command prompt window and change the current directory
to ELogitSrvr. For example:

cd c:\project\ELogitSrvr

Now run the Perl script to generate the COM server code. The script
can be executed from a command prompt window by issuing a command
with the following form:

perl comserver.pl <servername> <Fortran file>

In this command, servername is the name of the COM server you want
to create, and Fortran file is the name of the main pseudo object-oriented
types module in your project, the module that defines the public derived
types for holding data and contains all the public methods that operate
upon these types. In the case of ELOGIT, the command would be:

perl comserver.pl ELogitSrvr elogit_types.f90

Because this is a new project, the Perl script will prompt you for further
information. These prompts and the proper responses to them are shown
below.

Enter the server’s class name: ELogitObj

1. In-process (DLL)

2. Out-of-process (EXE)

Choose the type of server to create: 2

7.3 Example: A COM Server for Logistic Regression 237

Enter the server’s version number: 1.0

Enter a help string for the server’s object:

Performs logistic regression by weighted least squares

Creating "ELogitSrvrTemplates" directory...

Generating initial hierarchy file...

Scanning "elogit_types.f90" ...

Writing object hierarchy ...

Creating user instance and interface files:

UIElogitObj.f90

UElogitObjTY.f90

Generating files from templates:

server.idl

ELogitSrvrGlobal.f90

serverhelper.f90

exemain.f90

clsfactty.f90

clsfact.f90

ELogitObjTY.f90

IElogitObj.f90

Copying files:

variant_conv.f90

server.rc

Done.

(Note: If the in-process server (DLL) option is chosen, the file exemain.f90
will not be generated, but two other files, server.def and dllmain.f90,
will appear.)

The first time the Perl script is run on a new project, it creates a subdi-
rectory called servername Templates. This directory will be used for any
subsequent runs of comserver.pl. It contains the templates used to au-
tomatically generate files and a file called servername.hie (the hierarchy
file) that contains information about the COM server. From this moment
onward, whenever changes are made to public properties and methods in
the Fortran main types module, you must rerun the Perl script. For exam-
ple, if you add a new public property to elogit_types, you will need to
run the command

perl comserver.pl ELogitSrvr elogit_types.f90

again from the command prompt within the project directory. However,
you will not be prompted again for the initial information shown above.

7.3.6 Building the Project in Visual Studio

The next step is to compile the COM server in Visual Studio. Follow these
steps to create an out-of-process (.exe) COM server project.

238 7. Creating COM Servers

FIGURE 7.4. Selecting the project type in the Project Wizard.

1. Launch Visual Studio .NET 2003.

2. Press New Project.

3. In the resulting dialog, choose “Intel(R) Fortran Projects”, and select
“Console Application”. Assign the project name ELogitSrvr and set
the location to the previously defined project directory, ELogit (see
Figure 7.4). Then press OK.

4. Select “Application Settings” and choose “Empty project” (see Fig-
ure 7.5). Then press Finish.

5. Add your existing code files to the project, including all of the auto-
matically generated code.

a. First, create a directory for automatically generated code. To do
this, right-click on the project name in the Solution Explorer.
Choose Add → NewFolder and name the folder “Autogen Files.”

b. Add the project source files to the project. To do this, right-click
on the folder “Source Files,” choose Add → Add existing item ...
from the pop-up menu, and select the ELOGIT source files (you
can select multiple files in the dialog by holding down the Ctrl
key):

constants.f90

7.3 Example: A COM Server for Logistic Regression 239

FIGURE 7.5. Selecting an empty project.

dynalloc.f90
elogit_gets.f90
elogit_io.f90
elogit_modelfit.f90
elogit_nullify.f90
elogit_puts.f90
elogit_types.f90
error_handler.f90
matrix.f90
variant_conv.f90
wls.f90

(This group includes the file variant_conversion.f90, which
was automatically placed here when we ran the Perl script. The
purpose of this file will be discussed later in Section 7.5.5.) Then
press OK.

c. Remove the included source files from the compilation list. These
files are part of the elogit_types module and have been effec-
tively inserted into elogit_types.f90 by include statements
(Section 5.3.4); you need to remove them from the compilation
list so that they will not be processed twice. To do this, go to
the Solution Explorer and select the following files from the list:

elogit_gets.f90
elogit_io.f90

240 7. Creating COM Servers

FIGURE 7.6. Removing included source files from compilation list.

elogit_modelfit.f90
elogit_nullify.f90
elogit_puts.f90

With all of these files selected, right-click on one of them and
choose Properties from the popup menu. In the properties dialog,
change the “Exclude File From Build” setting from No to Yes
(Figure 7.6). Then press OK.

d. Add all of the automatically generated files to the project. To
do this, right-click on the folder “Autogen Files,” choose Add →
Add existing item ..., and choose the automatically generated files
(after selecting the “All files” filter in the dialog box):

clsfact.f90
clsfactty.f90
ELogitObjTY.f90
ELogitSrvrGlobal.f90
exemain.f90
IElogitObj.f90
server.idl
serverhelper.f90
UElogitObjTY.f90
UIElogitObj.f90

Then press OK.

7.3 Example: A COM Server for Logistic Regression 241

FIGURE 7.7. Solution Explorer showing COM server project files.

e. Add the resource file to the project. Right-click on the folder
“Resource Files,” choose Add → Add existing item ..., and choose
the file server.rc. Then press OK.

At this point, the Solution Explorer window should look like Figure
7.7. Notice that the files that we excluded from the compilation list
have a different icon from the others.

6. Modify the project properties. First, open the project properties dia-
log. From the main menu, select Project → ELogitSrvr Properties. We
want to change the properties for all configurations, so in the dia-
log change the Configuration: combo box to All Configurations. Then
change the following properties:

a. Set up the application to use the Windows subsystem. Under the
Linker item, select the System subitem. Change the SubSystem
setting from Console to Windows as shown in Figure 7.8.

242 7. Creating COM Servers

FIGURE 7.8. Setting linker properties.

FIGURE 7.9. Setting up a post-build event.

7.3 Example: A COM Server for Logistic Regression 243

FIGURE 7.10. Setting Fortran data properties.

b. Set up a post-build event that registers the COM server. Un-
der the Build Events item, choose the subitem Post-build Event.
Under Command Line enter

$(OUTDIR)\ELogitSrvr.exe /regserver

and under Description enter

Registering the COM Server...

as in Figure 7.9.
c. Set the compiler to align sequence types properly. Under the

Fortran item, select the Data subitem. In the category SEQUENCE
Types Obey Alignment Rules, change the setting from No to Yes
(Figure 7.10).

d. Set the resource compiler to look in the proper directory for the
type library file. Under the Resources item, select the General
subitem. In the category Additional Include Directories, add the
text $(IntDir) (Figure 7.11).

After changing these settings, press OK to close the properties dialog.
Finally, save the project settings by choosing from the menu File →
SaveAll.

7.3.7 Building and registering the server

Once these steps have been taken, the project is ready to be built. From
the menu, choose Build → Build ELogitSrvr. Output from the build should
look like this:

244 7. Creating COM Servers

FIGURE 7.11. Setting resources properties.

---- Build started: Project: ELogitSrvr, Configuration: Debug Win32 ----

Creating Type Library...
server.idl
Compiling resources...
server.rc
Compiling...
error_handler.f90
constants.f90
clsfactty.f90
matrix.f90
wls.f90
dynalloc.f90
ELogitSrvrGlobal.f90
variant_conv.f90
elogit_types.f90
UELogitObjTY.f90
ELogitObjTY.f90
IELogitObj.f90
serverhelper.f90
UIELogitObj.f90
exemain.f90
clsfact.f90
Linking...
Registering the COM server....

Build log written to C:\project\ELOGIT\ELogitSrvr\Debug\BuildLog.txt
ELogitSrvr build succeeded.

---------------------- Done ----------------------

Build: 1 succeeded, 0 failed, 0 skipped

7.3 Example: A COM Server for Logistic Regression 245

FIGURE 7.12. Adding a reference to the ELogit COM server in Excel VBA.

We do not need to manually register the new server because we added a
post-build step for that purpose.

Once the Visual Studio project has been set up, it is reusable. The main
Fortran module code and computational code can be edited. The auto-
matically generated code files can be regenerated as needed by using the
comserver.pl script. Then we simply need to rebuild the COM server by
issuing the Build command.

7.3.8 Creating a Simple Client

To quickly test our new COM server, let us create a simple client in Excel
that loads a small dataset from a file, specifies a model, fits the model,
and writes the results to an output file. More sophisticated clients will be
presented in the next chapter.

Open a new Excel spreadsheet and then open the Visual Basic editor
window as described in Section 7.1.4. Add a reference to the COM server,
which should be listed as “ELogitObj 1.0 Type Library” (Figure 7.12).
Then add the following VBA code to Sheet1:

Sub elogit()

’ Declarations

Dim objEL As ELogitObj

Dim resp(0 To 1) As Variant

On Error GoTo errhandle

’ Create object instance

Set objEL = CreateObject("ELogitSrvr.ELogitObj")

246 7. Creating COM Servers

’ Read data and names files

Call objEL.read_datafile("e:\project\ELogit\viral.dat", 5, 3, False)

Call objEL.read_namesfile("e:\project\ELogit\viral.nam", 3)

’ Load the model

resp(0) = "Y"

resp(1) = "N"

objEL.response_byname = resp

objEL.Intercept = True

objEL.pred_byname = "LOG_DOSE"

’ Run estimation

Call objEL.modelfit(20, 0.0000000001)

’ Write output

Call objEL.write_results_to_outfile("e:\project\ELogit\excel.out")

’ Exit the subroutine

Exit Sub

errhandle:

’ Handle errors

If objEL.errMessagePresent Then

MsgBox objEL.errMessage

Else

MsgBox Err.Description

End If

End Sub

Let’s examine this code in detail. The first dimensioning statement de-
clares objEL to be a pointer to a future instance of an ELOGIT object.
The second dimensioning statement declares resp to be a variant array of
length 2. A variant is a very general data structure and will be explained
in the next section. By convention, Visual Basic indexes elements of arrays
beginning from 0, so the elements of this array are accessed in VBA as
resp(0) and resp(1). The declaration

On Error GoTo errhandle

instructs VBA to jump to the bottom portion of the script in the event of
an error.

The first executable line creates an instance of the ELOGIT object and
points objEL to it. Once this object exists, we can invoke its properties and
methods. The read_datafile method is the COM server’s version of the
Fortran function read_elogit_datafile from Section 5.3.5; its arguments
are the data file’s name (given as a full path), the number of cases, the num-
ber of variables, and a logical value indicating whether case identifiers are
present. You may recall that the Fortran function read_elogit_datafile

7.3 Example: A COM Server for Logistic Regression 247

had an additional dummy argument err for reporting error messages. Now
that ELOGIT has become a COM server, the error messages are no longer
an argument but a property of the ELOGIT object; they can be retrieved
by invoking objEL.errMessage as shown near the bottom of this program.
The call to the COM method read_namesfile follows a similar pattern;
its arguments are the name of the variable names file (again as a full path)
and the number of variables.

The next section of the VBA script loads the model specification. Here
we see three examples of how properties are put into a COM object. Into
the response_byname property, we put the resp array whose elements are
"Y" and "N". Similarly, we put the logical value True into Intercept and
the string "LOG_DOSE" into pred_byname.

After the model has been specified, we run the model fitting procedure by
invoking modelfit. Because modelfit is a computational method rather
than a property, it is preceded by Call. The arguments to modelfit specify
the maximum number of iterations and the convergence criterion for the
Newton-Raphson algorithm, as discussed in Section 5.5.4. A call to the
write_results_to_outfile method reports the results to a file.

The errhandle section of this client swings into action if a call to any
of the COM object’s properties or methods produces an error. An error
condition would be triggered, for example, if we had tried to invoke the
modelfit method before the model was specified. In that case, the corre-
sponding ELOGIT Fortran function described in Chapter 5 would store a
message in the error handler and return a value of RETURN_FAIL rather than
RETURN_SUCCESS. If a Fortran-generated error message has been stored, it
will be retrieved by the VBA statement

MsgBox objEL.errMessage

and displayed in a message box. If no Fortran-generated message exists—
which could happen, for example, if ELOGIT crashed unexpectedly due to
an arithmetic exception—then the client will report whatever information
is generated by VBA as it interacts with COM.

Notice that this simple client does not use any of the data-management
capabilities of Excel. In fact, it doesn’t really have anything to do with
Excel. We are using Excel here merely as a vehicle for quickly writing and
executing a VBA script that does the same thing as the ELOGIT console
program; we could have done the same thing in SAS, MATLAB, S-PLUS, or
many other environments. A more elaborate Excel client that inputs data
from a spreadsheet and reports results to a spreadsheet will be developed
in Chapter 8.

248 7. Creating COM Servers

7.4 Exercises

1. What are the main differences between in-process and out-of-process
COM servers? How is an in-process COM server different from a
conventional DLL?

2. Describe the role of the interface in COM.

3. Define per-instance data and describe their role. What do you think
the per-instance data are in the ELOGIT COM server? (Hint: Ex-
amine the Fortran code for the ELOGIT main program developed in
Chapter 5, and try to identify which data structure or structures in
that program have become the per-instance data.)

4. Suppose you have a COM server that defines an object class called
Dog. An instance of this object in a VBA program could be referenced
by a variable named objDog.

a. If the Dog class has a method named bark, what VBA statement
would you use to invoke this method on objDog?

b. If there is a logical property called tailWagging, what VBA
statement would you use to make objDog stop wagging its tail?

c. If the Dog class has a method named rollover with an integer
argument ntimes defining the number of times to roll over, how
would you command objDog to roll over ten times?

5. Write an Excel macro that creates and uses two instances of the Magic
8-Ball object.

6. Microsoft Office has an animated Office Assistant that answers ques-
tions and provides suggestions. Depending on your settings, the Office
Assistant may look like a paperclip, a bouncing red dot, etc. Some
people find the Office Assistant annoying. Fortunately, you can hide
it using the Help menu or by right-clicking on it. The Office Assistant
is actually an object-oriented software component that can be con-
trolled through COM. In Microsoft Excel, open a Visual Basic editor
window. Open the Object Browser and look for the Assistant object,
noting its properties and methods. Create a macro that turns on the
assistant and causes it to perform various animations. (Hint: The As-
sistant is accessed through the application.assistant property.)

7. Experiment with the ELOGIT Excel client. See what happens when
you try to use the COM server improperly (e.g., by trying to specify
a model before data have been loaded).

8. Following the example of our simple Excel client, write another client
that does the same thing in S-PLUS, R, MATLAB, or any environ-
ment of your choosing.

7.5 How the Fortran COM Server Works 249

TABLE 7.1. Automatically generated code files.

Filename Description

clsfactty.f90 The “class factory” module for
creating object instances

clsfact.f90 Methods for clsfactty.f90

exemain.f90 (Out-of-process server only)
Main entry point for
the server’s executable program

dllmain.f90 (In-process server only)
Defines standard exported procedures
for the server’s DLL

server.def (In-process server only)
Declares exported procedures for
the server’s DLL

server.idl Definition of the server’s type library
written in the IDL language

serverhelper.f90 Utility functions for the COM server

servername Global.f90 Module containing global data and
related functions

classname TY.f90 Defines the per-instance data module

Iclassname..f90 Defines the interface module

Uclassname TY.f90 Module where the per-instance
data are defined

UIclassname.f90 Editable part of the interface
containing functions that
correspond to methods and properties

7.5 How the Fortran COM Server Works

7.5.1 Overview of the Automatically Generated Code

Using our Perl script, it is a simple matter to take a Fortran module written
in our style and turn it into a COM server. We will now provide some
insights into how the automatically generated code works. These insights
will be helpful for creating COM servers and for writing COM clients.

The purpose of each of the automatically generated code files is summa-
rized in Table 7.1. This table applies to ELOGIT and to any other project
with appropriate strings substituted for servername and classname.

250 7. Creating COM Servers

7.5.2 The Interface Definition Language File

Notice that some of the automatically generated files do not contain Fortran
code. In particular, server.idl is written in a language called Interface
Definition Language (IDL). IDL is crucial to COM because, as its name
implies, it is used to define the COM interface. If you open this file with a
text editor, you will see all of the puts, gets, and methods listed here along
with their arguments.

There are three places in server.idl where the statement uuid appears
followed by a long hexadecimal value in parentheses. They look like this:

uuid(42A7CC74-3E38-4BE4-AE15-EA5E92AE0BC1)

These are the universally unique identifiers (UUIDs) that allow a COM
client to access the correct COM server. There is one UUID for the server it-
self, one for the interface, and one for the object class. No two COM servers
will ever have the same UUIDs; it simply cannot happen. The UUIDs are
generated by our Perl script the first time it is run using a built-in function
from the Windows operating system. These same UUIDs remain associated
with the COM server if the script is run again.

During the build process, server.idl is compiled by Visual Studio using
the Microsoft IDL compiler into a binary version called a type library. The
type library is the internal documentation of a COM server. It allows a
client to find out exactly what the classes, properties, and methods are.
If a method has arguments, these are listed in the type library as well.
The type library indicates the nature of each property and argument (real,
integer, logical, etc.).

The type library must be embedded inside the .dll or .exe file of a
COM server. You may recall that when we built the ELOGIT COM server
in Visual Studio, we had to add the resource file server.rc to the project.
This file, which is placed in the project folder by our Perl script, directs
Visual Studio to embed the compiled version of the type library into the
COM server.

Extensive documentation about the IDL language, UUIDs, and type li-
braries is available online from the Microsoft Developer Network (MSDN)
Library.

7.5.3 The Instance Code

The last four files listed in Table 7.1 pertain to the classes defined in the
COM server. Like many COM servers, our ELOGIT server has only one
class (ELogitObj). If more classes were present, these four files would be
repeated for each additional class. Note the ‘U’ in the names of the last
two files. These names, which are held over from Compaq’s COM Server
Wizard, were intended to signify that these files should be edited by the
user (i.e., by you, the programmer) to customize the code within them.

7.5 How the Fortran COM Server Works 251

For our ELOGIT project, no editing of these files was required. In fact, if
you use our Perl script and follow the programming style we developed in
Chapter 5, you may never need to edit the U-files. The contents of these files
are helpful for understanding how Fortran interacts with COM, however,
so let’s open them and look inside.

The code inside UELogitObjTY.f90, which we call the instance code,
creates a Fortran module named ELogitObj_USE. The preamble of this
module has a number of use statements:

UELogitObjTY.f90

use program_constants

use error_handler

use elogit_types

use variant_conversion

If your COM server needs Fortran modules, this preamble is where they
will be listed. Access to elogit_types is necessary to declare per-instance
data and invoke the ELOGIT properties and methods that we wrote in
Fortran. The variant_conversion module contains procedures that we
have written to manage the passing of data arrays between COM and
Fortran. The variant_conversion module, which will be explained later,
is automatically added to every COM server project by the Perl script.

Below the use statements, the ELogitObj_USE module defines a single
Fortran derived type, which becomes the per-instance data for the COM
server. It also contains two Fortran procedures: a constructor, which deter-
mines the initial state of each new instance of the type, and a destructor,
which is invoked whenever an instance is destroyed.

What exactly are ELOGIT’s per-instance data? When we started to de-
sign the elogit_types module back in Section 5.3, we envisioned an object
called an “ELOGIT session” that would store the dataset, the model speci-
fication, the results from the fitting procedure, and so on. We implemented
this object in Fortran as a derived type called elogit_session_type with
other derived types nested within it. The per-instance data for ELOGIT
consist of one instance of the elogit_session_type and two instances
of error_type (one to hold error messages, and the other to hold warning
messages). The ELOGIT session, error messages, and warning messages are
glued together to become the per-instance data for the ELOGIT object.
This is how it looks inside UELogitObjTY.f90:

UELogitObjTY.f90

type ELogitObj_InstanceData

sequence

type(session_type) :: session

type(error_type) :: err

type(error_type) :: warn

end type

252 7. Creating COM Servers

Looking below the contains statement, we see two Fortran procedures.
The first, ELogitObj_CONSTRUCTOR, is a function that runs automatically
whenever an ELOGIT object is instantiated. It has a single dummy argu-
ment of type ELogitObj_InstanceData. The code inside this function,
which was automatically generated by the Perl script, resets the error
and warning messages and nullifies the ELOGIT session by a call to the
nullify_elogit_session function that we wrote in Chapter 5.

UELogitObjTY.f90

function ELogitObj_CONSTRUCTOR (ObjectData) result (hresult)

use ifwinty

implicit none

type(ELogitObj_InstanceData) ObjectData

!dec$ attributes reference :: ObjectData

integer(LONG) hresult

hresult = S_OK

! Add field initialization code - reset and nullify methods

call err_reset(ObjectData%error)

call err_reset(ObjectData%warn)

if(nullify_elogit_session(ObjectData%session,ObjectData%error) &

== RETURN_FAIL) then

hresult = E_FAIL

end if

end function

This function returns an integer value S_OK if it runs successfully or E_FAIL
if something goes wrong. S_OK and E_FAIL are integer parameters defined
in the Intel Visual Fortran module ifwinty and are also recognized by
COM; we’ll discuss these further in Section 7.5.6.

The Perl script has also written a destructor that runs whenever an
instance of the ELOGIT object is destroyed. This destructor first wipes
out any error or warning messages that may be present. It then calls the
function nullify_elogit_session, which we wrote in Chapter 5, to wipe
out any data stored in the session. Notice that this is a subroutine rather
than a function; COM does not expect a destructor to return a value.

UELogitObjTY.f90

subroutine ELogitObj_DESTRUCTOR(ObjectData)

implicit none

type(ELogitObj_InstanceData) ObjectData

!dec$ attributes reference :: ObjectData

! field cleanup code

integer(our_int) :: ret

call err_reset(ObjectData%error)

call err_reset(ObjectData%warn)

7.5 How the Fortran COM Server Works 253

ret=nullify_elogit_session(ObjectData%session,ObjectData%error)

end subroutine

7.5.4 The Interface Code

The other file whose name begins with U, UIELogitObj.f90, creates the
public interface for the ELOGIT object. (The I following the U stands
for “interface.”) This is where all of the puts, gets, and other methods
for the ELOGIT object are defined. When we wrote the elogit_types
module back in Chapter 5, we made it object-oriented and carefully imple-
mented all of the puts, gets, and methods as Fortran functions. This took
a bit of effort. Now this effort has really paid off because the functions in
UIELogitObj.f90 are nothing more than wrappers for the public functions
in elogit_types. The Perl script was able to generate all of this wrapper
code automatically.

Let’s look at one of the functions in UIELogitObj.f90 to see what is
happening.

UIELogitObj.f90

! IELogitObj_put_intercept interface function for put_elogit_intercept

! in module elogit_types

function IELogitObj_put_intercept(ObjectData, VALUE) result (hresult)

use ELogitObj_Types

implicit none

type(ELogitObj_InstanceData) ObjectData

!dec$ attributes reference :: Objectdata

LOGICAL(2) ,intent(in) :: VALUE

integer(LONG) hresult

! method implementation

logical :: bVal

bVal = VALUE

hresult=S_OK

! put data into server

if(put_elogit_intercept(bVal,ObjectData%session,ObjectData%error)&

== RETURN_FAIL) then

hresult=E_FAIL

end if

end function

This code simply takes a logical value supplied by a COM client and
passes it along to our own function put_elogit_intercept. A minor com-
plication is that the local variable bVal is needed to convert the value to the
default logical kind expected by put_elogit_intercept. Now let’s look at
the get method for this same property.

254 7. Creating COM Servers

UIELogitObj.f90

! IELogitObj_get_intercept interface function for get_elogit_intercept

! in module elogit_types

function IELogitObj_get_intercept(ObjectData, VALUE) result (hresult)

use ELogitObj_Types

implicit none

type(ELogitObj_InstanceData) ObjectData

!dec$ attributes reference :: Objectdata

LOGICAL(2) ,intent(out) :: VALUE

integer(LONG) hresult

! method implementation

logical :: bVal

hresult=S_OK

! retrieve data from server

if(get_elogit_intercept(bVal,ObjectData%session,ObjectData%error)&

== RETURN_FAIL) then

hresult=E_FAIL

VALUE = .false.

else

VALUE = bVal

end if

end function

This is the same idea, only in reverse. Notice how this function handles
errors. If everything works normally, the returned value is the integer pa-
rameter S_OK. If an error arises—for example, because the client tries to
get the intercept property before any data are loaded or before a response
variable has been specified—then the returned value is E_FAIL.

A common feature of all these puts and gets is that each function has two
dummy arguments. The first argument is the per-instance data, and the
second is of whatever type is needed for that property. These two arguments
are passed to Fortran whenever a COM client invokes a property using the
dot notation, as in objEL.Intercept.

Finally, let’s look at one of the computational methods.
UIELogitObj.f90

! IELogitObj_modelfit interface function for run_elogit_modelfit

! in module elogit_types

function IELogitObj_modelfit(ObjectData, maxits, eps) result (hresult)

use ELogitObj_Types

implicit none

type(ELogitObj_InstanceData) ObjectData

!dec$ attributes reference :: Objectdata

INTEGER(4), intent(in), optional :: maxits

REAL(8), intent(in), optional :: eps

integer(LONG) hresult

hresult=S_OK

7.5 How the Fortran COM Server Works 255

! method implementation

if(run_elogit_modelfit(ObjectData%session,ObjectData%error,&

ObjectData%warn, maxits=maxits, eps=eps)==RETURN_FAIL) then

hresult = E_FAIL

end if

end function

This method simply invokes the function run_elogit_modelfit, passing
to it the session, error, and warn components of the per-instance data.
Upon completion, this function returns an integer value of S_OK or E_FAIL.
Notice that the optional argument maxits is a long (32-bit) integer and eps
is a double-precision (64-bit) real. Those kinds of data are easily recognized
and handled by COM. Some of the properties and arguments in the file
UIELogitObj.f90 are arrays, however; those are passed as variants, as we
will describe momentarily.

The properties of the ELOGIT object are summarized in Table 7.2. All
of the other methods are listed in Table 7.3. Whenever you build a COM
server, we suggest that you generate tables like these. If the user of your
server knows about COM and has a basic understanding of what the server
does, he or she will need very little documentation beyond these tables to
figure out how to use it.

7.5.5 Passing Arrays as Variants

To help ensure that data arrays are passed properly between Fortran and
the COM client, we have decided to package them as variants. Variants
are a very general type of data structure whose format is part of the COM
standard. Variants are self-defined; they carry all the information neces-
sary to identify the types and dimensions of the data within. Variants are
not a part of the standard Fortran language, but the Intel Visual Fortran
COM library IFCOM has implemented them as a Fortran derived type called
VARIANT.

One of the components of Intel’s VARIANT type, VT, indicates what kind
of data are stored in the variant. The types most useful for our purposes are
shown in Table 7.4. If a variant myVariant is a scalar integer, for example,
then myVariant%VT will have the value 3. If the variant is an array, then the
VT_ARRAY must be added to another parameter to identify it. For example,
the value of VT for an array of double-precision reals is VT_ARRAY + VT_R8
= 8192 + 5 = 8197, or 2005 in hexadecimal format.

The other important component of the variant type is VU, which contains
the actual value of the variant. VU is a special type called a union, a single
variable that can represent multiple derived types or facets. One facet is

256 7. Creating COM Servers

TABLE 7.2. ELOGIT COM server properties.

Property Description Fortran type Access∗

data_matrix Rectangular dataset type(VARIANT) RW
caseid Case identifiers type(VARIANT) RW
var_names Variable names type(VARIANT) RW
response_bycol Response, column no. type(VARIANT) RW
response_byname Response, var. name type(VARIANT) RW
intercept True if intercept logical(2) RW
pred_bycol Predictors, column no. type(VARIANT) RW
pred_byname Predictors, var. name type(VARIANT) RW
beta Estimated coefficients type(VARIANT) RW
ncase No. cases in dataset integer(4) R
nvar No. variables integer(4) R
beta_names Names for coefficients type(VARIANT) R
iter No. iterations integer(4) R
converged True if converged logical(2) R
cov_beta Covariance matrix type(VARIANT) R
loglik Loglikelihood real(8) R
X2 Pearson statistic real(8) R
G2 Deviance statistic real(8) R
df Degrees of freedom real(8) R
errMessage Error message character(*) R
errMessagePresent True if message present logical(2) R
warnMessage Warning message character(*) R
warnMessagePresent True if message present logical(2) R

∗ RW = read/write; R = read-only.

for 32-bit integers, one facet is for double-precision reals, and so on. The
facets of VU are shown in Table 7.5.

To see how VT and VU work together, suppose that you want to store the
square root of 2 in double precision as a variant. This is how you would do
it in Intel Visual Fortran:

! use the IFCOM library
use IFCOM

! declare a variant
type(VARIANT) :: myVariant

! specify that an 8-bit real (double precision)
! number is to be stored in it
myVariant%VT = VT_R8

! store the number
myVariant%VU%DOUBLE_VAL = sqrt(2.D0)

7.5 How the Fortran COM Server Works 257

TABLE 7.3. ELOGIT COM server methods.

Method / Description Arguments Type

modelfit

Fits logistic regression maxits integer(4)

model by ML eps real(8)

reset

Nullifies per-instance data

read_datafile

Reads data matrix from data_file_name character(*)

external ASCII file nkase integer(4)

nvar integer(4)

case_id_present logical(2)

read_namesfile

Reads variable names from names_file_name character(*)

ASCII file nvar integer(4)

write_results_to_outfile

Writes summary of model fit output_file_name character(*)

to ASCII file

TABLE 7.4. Intel Visual Fortran’s variant types.

Parameter Actual value Description

VT_I4 3 long integer
VT_R4 4 real
VT_R8 5 double precision
VT_BSTR 8 character string
VT_BOOL 11 logical
VT_VARIANT 12 VARIANT
VT_ARRAY 8192 (hex: 2000) array

TABLE 7.5. Facets of a variant VU component.

Component Description

VU%LONG_VAL long integer value
VU%CHAR_VAL character value
VU%SHORT_VAL short integer value
VU%FLOAT_VAL real value
VU%DOUBLE_VAL double-precision value
VU%BOOL_VAL logical (boolean) value
VU%SCODE_VAL long integer value
VU%DATE_VAL numeric time and date value
VU%PTR_VAL pointer value

258 7. Creating COM Servers

Variant Arrays

There are many ways to package arrays as variants. In our experience,
applications that support COM tend to conform to the conventions of VBA
as implemented in Microsoft Excel because many software vendors want to
make their applications compatible with Excel. In fact, they often illustrate
their COM automation capabilities with examples involving Excel. When
an Excel spreadsheet passes data from a range of cells to a COM server, it
packages them as a variant containing a two-dimensional array of variants.
Therefore, we will also follow this convention. If a client has a different
method for packaging arrays as variants, it is often possible to coerce those
variants into the Excel form using a function called variantChangeType
provided by the COM infrastructure of Windows.

If this is starting to sound too complicated, don’t worry; we have written
a Fortran module called variant_conversion to deal with variant arrays.
The source code for this module is available from our Web site, and our Perl
script automatically adds this module to every COM server project. The
module has two public functions, and both are generic. The first function,
which extracts a Fortran array from a variant of the type used by Excel,
begins like this:

integer(our_int) function get_variant_array(varArray, &
pArr, err)

The other function converts a Fortran array into an Excel-compliant vari-
ant:

integer(our_int) function put_variant_array(varArray, &
pArr, err)

In each case, the first dummy argument, varArray, is an Intel Visual
Fortran VARIANT. The last argument, err, is an error_type from our
error-handling module. The other argument, pArr, is a pointer to a rank-
one or rank-two array of type integer(our_int), real(our_dble), or
character(len=*). The array may be indexed beginning from 0 or 1.

Converting Variants to Fortran Arrays

Now let’s look at some interface code that converts variants to arrays. The
put method for the data_matrix property is shown below.

UIELogitObj.f90

! IELogitObj_put_data_matrix interface function for

! put_elogit_data_matrix in module elogit_types

function IELogitObj_put_data_matrix(ObjectData, VALUE) result (hresult)

use ELogitObj_Types

implicit none

type(ELogitObj_InstanceData) ObjectData

!dec$ attributes reference :: Objectdata

type(VARIANT) ,intent(in) :: VALUE

7.5 How the Fortran COM Server Works 259

integer(LONG) hresult

real(our_dble), pointer :: pArr(:,:)

nullify(pArr)

hresult=S_OK

if(get_variant_array(VALUE, pArr, ObjectData%error) &

== RETURN_FAIL) then

hresult = E_FAIL

else if(put_elogit_data_matrix(pArr, ObjectData%dataset, &

ObjectData%error) == RETURN_FAIL) then

hresult=E_FAIL

end if

if (associated(pArr)) deallocate(pArr)

end function

This function accepts a data matrix that was sent by the COM client as
a variant, converts it to a Fortran array, and loads it into the per-instance
data using the put_elogit_data_matrix function. The corresponding get
function does the same thing in reverse, calling get_elogit_data_matrix
followed by put_variant_array.

7.5.6 How the COM Server Handles Errors

The COM standard dictates that any call to a property or method must
return a value called an hresult. An hresult is a 32-bit integer that
functions as an error code. Many of these codes have been declared as
named constants by COM and by Visual Fortran’s COM libraries. We will
use just two of these values: S_OK, which indicates a successful completion,
and E_FAIL, which indicates a fatal error.

The hresult returned by a property or method enables the COM client
to handle errors. You may not actually see the hresult in the COM client’s
code, but it’s there. For example, suppose that our Excel client for ELOGIT
had tried to invoke the modelfit method before the model had been spec-
ified. The COM interface would have then returned an hresult of E_FAIL.
Excel would have automatically detected the error and taken action be-
cause of our declaration

On Error GoTo errhandle

near the beginning of the macro.
The hresult tells the client if an error has occurred, but it provides no

further details. Fortunately, the Fortran module for handling errors that we
have used throughout this book is an excellent tool for sending a text mes-
sage back to the client. Our Perl script, which assumes that you have used
error_handler, automatically includes an error_type variable in the per-
instance data and creates two read-only properties: errMessagePresent

260 7. Creating COM Servers

and errMessage. Invoking errMessagePresent will obtain a logical value
indicating whether any messages have been stored, and errMessage ob-
tains a stored message as a text string. Here is the interface code that gets
errMessage:

UIELogitObj.f90

! IELogitObj_get_errMessage

function IELogitObj_get_errMessage (ObjectData, Value) result (hresult)

use ELogitObj_Types

implicit none

type(ELogitObj_InstanceData) ObjectData

!dec$ attributes reference :: Objectdata

CHARACTER(*), intent(out) :: VALUE

integer(LONG) hresult

call err_get_msgs(ObjectData%error, VALUE, "PC")

call err_reset(ObjectData%error)

hresult = S_OK

end function

This function calls the subroutine err_get_msgs in the error_handler
module to retrieve all the lines of text currently stored in the error handler
object. These lines are returned as a single character string with embedded
hard carriage returns so that the lines will be displayed properly in a Win-
dows environment. Notice that this function also resets the error handler,
wiping out the messages that have just been reported.

Our per-instance data for ELOGIT also contain a second instance of
the error_type to hold warning messages generated by nonfatal events.
When the read_namesfile method is invoked, for example, a warning
is generated if some variable names were too long and had to be trun-
cated. If you are creating a COM server and any of your public proce-
dures has as a dummy argument a second error_type called warn, the
Perl script will automatically create two additional read-only properties,
warnMessagePresent and warnMessage, so that a client can read the warn-
ings.

7.6 Distributing and Installing COM Servers

After creating, debugging, and testing a COM server, it is ready to be
distributed to interested users. When a COM server is to be installed on
another computer, there are several things to keep in mind.

First, the COM server should be built in “Release” mode. A COM server
(or any other executable or DLL) built in “Debug” mode requires special
libraries that ordinary users will not have. Those libraries cannot be freely
distributed. Executables built in “Release” mode also tend to be smaller
and run faster because the internal code has been optimized.

7.6 Distributing and Installing COM Servers 261

Second, care must be taken to handle registration. As we mentioned
previously, a COM server must be registered before it can be used on a
computer. This is done by invoking the server at the command line with
the /regserver option:

myserver /regserver

Before you remove a COM server from a computer, we strongly recommend
that you unregister it, like this:

myserver /unregserver

Registration places entries into the Windows registry, and unregistration
removes those entries. The entries include the UUIDs for the server, inter-
face, and class.

Failure to unregister a server may cause problems. Suppose that a reader
of this book downloads ELogitSrvr.exe from our Web site and registers
it on his or her computer. Later, that same user downloads the source
code for the ELogitSrvr project, runs the Perl script for a new project,
and builds the ELogit COM server. What happens? The Perl script gener-
ates a server with a completely different set of UUIDs. Now there are two
COM servers with the name ELogitSrvr.ELogitObj that are separately
registered. When the user runs one of the client programs, there is some
ambiguity as to which COM server is actually being used by the client. Let
us then suppose that the reader deletes the first server without unregister-
ing it. The registry still believes the server is there, but it is not. The client
may no longer work if it is attempting to access the nonexistent server. The
only way to fix such a problem is to manually edit the registry (which the
authors do not recommend) or to redownload the original COM server to
the same location as before, unregister it, and then delete it.

As an interesting but potentially important side note, two servers with
the same name can be registered if they are given a different version num-
ber. For example, the reader mentioned above could give the version num-
ber as “2.0” when prompted by the Perl script. This version of ELogit-
Srvr will have an identity unique from Version 1.0, the downloaded server.
Clients would then need to distinguish among these versions. For example,
the Excel client code could issue the command

Set objEL = CreateObject("ELogitSrvr.ELogitObj.2.0")

to access Version 2.0. In this case, the new version becomes the default, so
the .2.0 designation is optional. However, to access the older version, it is
now necessary to issue the command

Set objEL = CreateObject("ELogitSrvr.ELogitObj.1.0")

because it is no longer the default version. Client code for other applications
would also need to be changed accordingly.

262 7. Creating COM Servers

Another potential problem arises from renaming or moving the COM
server to a different file folder. Before doing so, it is very important to
unregister the COM server. Then, after renaming or moving the file, it must
be reregistered. To summarize, whenever a COM server is to be moved,
deleted, or renamed, it must first be unregistered.

Distributing COM servers can be greatly aided by the use of an instal-
lation tool, especially when it is accompanied by other programs, docu-
ments, and other items. One of the simplest and cheapest tools is the self-
extracting “zip” file. Installation tools can be configured to automatically
register COM servers on the target computer. The more sophisticated ones
also allow the user to uninstall your software, which will then automatically
unregister any COM servers that were distributed with it.

7.7 Additional Exercises

1. Explain why COM servers are typically designed for situations where
property and method calls are relatively infrequent. If you want to
create a library of fast computational procedures that may be called
many times in rapid succession, what should you do?

2. In the Magic8 COM server, create properties that enable a client to
cheat. For example, implement a read-write property valence that
takes integer values −1, 0, or 1 to indicate the client’s desire for an
answer that is negative, vague, or positive. Then implement a logical
read-write property cheat that, if set to True, instructs the server to
require future messages to have the desired valence.

3. What is the purpose of an IDL file? Open the IDL file from the
ELOGIT COM server, examine it, and try to figure out what it does.

4. In the ELOGIT interface code, the IELogitObj_get_errMessage
function has a dummy character-string argument of assumed length.
Our Excel VBA client that invokes the errMessage property does
not specify a length for the message string either. This suggests
that some additional code must exist between the VBA client and
IELogitObj_get_errMessage, which, among other things, determines
a maximum length for the message string. Locate this code in the au-
tomatically generated files and try to figure out what it does.

5. Create a COM server that performs simple linear regression on data
pairs (xi, yi). i = 1, . . . , n. Follow these steps.

a. Write a Fortran computational procedure that accepts as input
two arrays (x1, . . . , xn) and (y1, . . . , yn) and computes the esti-
mated intercept and slope.

7.7 Additional Exercises 263

TABLE 7.6. Data for testing the regression COM server.

x y

2.42 0.52
0.61 0.97
0.18 0.61
6.49 2.60
1.92 0.96
0.69 0.32
4.90 2.35
3.30 1.39
4.44 2.20
0.16 0.67
2.02 1.69
4.67 2.46
0.77 1.29
7.11 3.32
2.52 1.77
3.47 2.05

b. Create an object-oriented Fortran module for simple linear re-
gression that uses your procedure. Implement read-write prop-
erties x and y, a computational method lsfit, and read-only
properties intercept and slope.

c. Turn your module into an out-of-process COM server, using our
Perl script to generate the required code.

d. Create a test client in Excel that performs linear regression on
the n = 16 pairs shown in Table 7.6. Verify that the estimated
intercept and slope are 0.5418 and 0.3613, respectively.

6. In Exercise 6 from Section 5.6, you were asked to develop an object-
oriented console program for performing the chi-square test for in-
dependence on a two-way table. If you have done this, turn your
console program into a COM server. Test the server by creating a
simple client in Excel.

8
Creating COM Clients

As we have seen, creating a Fortran COM server takes a fair amount of
effort. You must organize your data into objects and properties and create
an interface with puts, gets, and methods. The build process for a COM
server is more complicated than for a console program or conventional DLL.
Once the COM server exists, however, you begin to reap the fruits of your
labor. COM clients are much easier to create than servers, and they can be
written in a surprisingly large number of environments.

In this chapter, we show by example how to create COM clients in Excel,
S-PLUS, R, SAS, SPSS, and MATLAB. With well-written clients, users of
those packages may call your statistical routines without needing to know
anything about COM. We conclude this chapter by showing how to create a
complete, stand-alone statistical application for Windows with a graphical
user interface (GUI) using Visual Basic .NET r©.

8.1 An Improved Client for Excel

8.1.1 Excel As a Graphical User Interface

In the last chapter, we created a bare-bones client in Excel for testing the
ELOGIT COM server. Our client’s interaction with Excel was minimal; it
read data from files and wrote results to a file. Most users of Excel would
prefer to enter their data and specify the modeling options directly on a
spreadsheet. After fitting the model, the results can be reported back to

266 8. Creating COM Clients

FIGURE 8.1. ELOGIT Excel client spreadsheet.

the spreadsheet where they can be easily examined and turned into graphs,
tables, and so on.

Most GUIs for Windows applications have been written in languages such
as Visual Basic and Visual C++. If you are not familiar with any of those
languages, writing your own GUI can be a daunting task. The material at
the end of this chapter will help you get started. But if you want to create
a simple GUI as quickly as possible, perhaps you should consider doing it
in Excel.

8.1.2 Starting to Write the Client

Let’s begin to write a more elaborate ELOGIT client that uses the graphical
features of Excel. As a first step, open Excel with a fresh, new workbook. In
the Sheet1 spreadsheet, enter the viral assay experiment data from Table
5.1 in the range of cells from B2 to D7. Enter names for the variables in
cells B1 to D1. Then fill in the rest of the information shown in Figure 8.1
(ignoring the buttons for now).

We are almost ready to add the VBA code behind this client application.
Before we start, however, let’s do something to make that code simpler and
easier to read: apply names to ranges of cells. In the spreadsheet, select
the cells that contain the data values (B2–D7) and type DataMatrix in the
Name Box as shown in Figure 8.2. This sets up a one-to-one correspondence

8.1 An Improved Client for Excel 267

FIGURE 8.2. Naming a range in Excel.

in Excel between the range name DataMatrix and the cell range B2 to D7.
(Another way of defining or redefining named ranges is to select a range of
cells and then choose the menu items Insert → Name → Define... .) In the
same way, apply descriptive names to the rest of the cell ranges listed in
Table 8.1.

Once the names have been defined, go to the Excel menu and choose
Tools → Macro... → Visual Basic Editor. In the Visual Basic editor window,
select Sheet1 to view the macro (VBA code) page associated with the work-
book sheet Sheet1. Then add a reference to the ELOGIT object as follows.
In the VBA editor, choose Tools → References... from the menu, check the
box next to “ELogitObj 1.0 Type Library” in the selection box, and press
OK. The VBA code will now have access to the ELOGIT COM server.

Returning to the VBA editor, enter the lines of code shown below.
elogit.vba

Sub runELogit()

’ Declare and instantiate an ELogit object

Dim objEL As ELogitObj

Set objEL = CreateObject("ELogitSrvr.ELogitObj")

’ Load the data matrix

objEL.data_matrix = Range("DataMatrix").Value

’ Load variable names

objEL.var_names = Range("VarNames").Value

’ Specify response variable

objEL.response_byname = Range("Resp").Value

268 8. Creating COM Clients

TABLE 8.1. Names for cell ranges.

Range Name

B2–D6 DataMatrix
B1–D1 VarNames
C8–D8 Resp
C9 Inter
C10 Pred
C11 Eps
C12 Maxits
C16 Loglik
C17 GSq
C18 ChiSq
C19 df
B21–B46 EstimLabels
C21–C46 Beta
D21–D46 StdErr
E21–E46 Ratio

’ Specify intercept

objEL.Intercept = Range("Inter").Value

’ Specify predictors

objEL.pred_byname = Range("Pred").Value

’ Fit model

Call objEL.modelfit(Range("Maxits").Value, _

Range("Eps").Value)

’ Display status

If objEL.converged Then

Call MsgBox("Algorithm converged in " & _

objEL.iter & " iterations.")

Else

Call MsgBox("Algorithm did not converge by " & _

objEL.iter & " iterations.")

End If

’ Clear the object

Set objEL = Nothing

End Sub

You will notice that whenever you type objEL., the editor automatically
displays the properties and methods of the ELogitObj object. You can ei-
ther select from the menu by pointing and clicking or you can start typing
a method property name after objEL. and the editor will select it for you.
Once the selection has been made, you can press space or Enter and the

8.1 An Improved Client for Excel 269

editor will complete the method or property name for you. So, for exam-
ple, instead of typing objEL.dataMatrix, you can simply type objEL.d
followed by space or Enter. This feature of the VBA editor is designed to
help you write code faster and with fewer errors.

We are now ready to run this VBA client for the first time. Place the
cursor on any line inside the subroutine and press the run button or the
F5 keyboard key. What happens? If no errors are encountered, a dialog box
appears to inform you that the model-fitting algorithm converged in eight
iterations. If your code contains errors, an error message box will appear
to help you correct the problem.

8.1.3 How Did It Work?

This is what happens when you tell Excel to run the VBA program. In
response to the first executable line,

Set objEL = CreateObject("ELogitSrvr.ELogitObj")

Excel asks the Windows operating system to launch the ELOGIT COM
server (ELogitSrvr.exe) and create an instance of the ELogitObj class.
When the new instance is created, the COM server immediately runs the
constructor function associated with the ELogitObj class. The COM server
then returns a pointer—in this case, an integer value indicating the COM
server’s memory address—and stores it in the VBA variable objEL.

The next few lines invoke properties of objEL. For example,

objEL.data_matrix = Range("DataMatrix").Value

puts data into data_matrix. The right-hand side of this statement invokes
the spreadsheet’s Range property, with the desired range’s name as its
argument. This property returns a Range object that has the property
Value. The whole expression on the right-hand side therefore evaluates to
the set of data values currently stored in cells B2–D6. When setting the
property data_matrix, the ELOGIT COM server expects to receive data
of type(VARIANT) as explained in Section 7.5.5. When Excel passes the
contents of B2–D6, the COM infrastructure is able to coerce these data
into the expected type, provided that the data in B2–D6 are numeric. If
any of the cells contains non-numeric data (e.g., text), Excel will return an
error.

The line below instructs the ELOGIT COM server to fit the model.

’ Fit model
Call objEL.modelfit(Range("Eps").Value, _

Range("Maxits").Value)

The underscore (_) is VBA’s continuation symbol. Notice again how we
have used Range and Value to specify arguments for the modelfit method.
In this case, the COM server is expecting a double-precision real number

270 8. Creating COM Clients

and a long integer, respectively. When Excel passes the contents of the
cell ranges Eps and Maxits, COM is smart enough to coerce the numeric
data in those cells into the proper types. As long as the data can be made
compatible with what ELOGIT is expecting, COM will make it work.

This next portion of code reports information on convergence.

’ Display status
If objEL.converged Then

Call MsgBox("Algorithm converged in " _
& objEL.iter & " iterations.")

Else
Call MsgBox("Algorithm did not converge by " _
& objEL.iter & " iterations.")

End If

Notice how the object-oriented nature of COM servers makes the code very
neat and readable. The converged property returns a boolean value (True
or False), and the iter property returns an integer.

The last executable statement releases the ELOGIT object.

Set objEL = Nothing

Setting an object to Nothing removes the reference to the object so that
the COM server can free its allocated memory. A COM server keeps track
of how many instances of its objects are active at any time; if that number
drops to zero, the server automatically shuts itself down.

8.1.4 Debugging the Client and Server

The Visual Basic editor in Excel also functions as a debugger. It provides
standard debugging features, including breakpoints, stepping, and variable
watching. These are invoked through the keyboard’s function keys. For
example, you can step through the client code one line at a time by pressing
F8.

When developing COM clients, it may be helpful to debug the client
and server simultaneously. While invoking properties and methods, you
can directly observe how the client passes data to the server. To see how
this works, leave your Excel and Visual Basic windows open, and open
the ELogitSrvr project (as created in Chapter 7) in Visual Studio .NET.
From the Visual Studio menu, choose Build → Configuration Manager... and,
in the dialog window, choose Debug from the list in the “Active Solution
Configuration” combo box. Next, set some breakpoints in the source code.
Open the file UIELogitObjTY.f90, place your cursor on the line

hresult = S_OK

in the constructor function, and press the F9 key. A red circle will appear
to the left of the code line (Figure 8.3). Place another breakpoint in the

8.1 An Improved Client for Excel 271

FIGURE 8.3. Setting a breakpoint in the constructor.

file UIElogit.f90 in the line

hresult = S_OK

within the function IELogit_put_data_matrix. Then launch the COM
server by pressing the F5 key or the Run button in Visual Studio. What
happens? The COM server is launched and loaded into memory, but no
instances of its class are yet created. The COM server sits in memory,
waiting for a client application to use it.

Now go back to the Excel VBA window. Press F5 to start the script.
Immediately, you notice that the Visual Studio window has paused at the
breakpoint you set in the ELogitObj_CONSTRUCTOR function. The COM
server invoked this function as the new instance of the ELogitObj class
was created.

In Visual Studio, press F5 again to continue. What has happened now?
The Excel macro (VBA code) has proceeded to invoke the data_matrix
property. In Visual Studio, the debugger is now paused at the breakpoint
you set in IELogit_put_data_matrix. Let’s execute the statements in this
function one at a time. Press F10, which instructs the debugger to proceed
to the next code line. That line, which calls the get_variant_array func-
tion from the module variant_conversion, converts the Excel-supplied
type(VARIANT) into a Fortran array. It takes pArr (an unallocated pointer
to a rank-two double-precision array) as an argument, allocates it to the
correct size, and loads the data values into it.

We can now see whether Excel is passing the data matrix correctly. Press
the F10 key again to complete execution of the current line. In the bottom
left pane of the Visual Studio window, select the Locals tab. Then expand

272 8. Creating COM Clients

FIGURE 8.4. Contents of the data array after variant conversion.

FIGURE 8.5. Inside the type(variant) containing the data matrix.

the PARR item to see that the contents of this Fortran array match the data
in the spreadsheet (Figure 8.4).

While we’re in the debugger, let’s also peek inside the variable VALUE,
the data of type(VARIANT) passed from Excel. It should appear as shown
in Figure 8.5. The first component of this variant is VALUE%VT. This is the
identifier that signals what the variant contains. In this case, the value of

8.1 An Improved Client for Excel 273

FIGURE 8.6. Contents of data matrix in the per-instance data.

VALUE%VT is 8204, which is the sum of the array constant (VT_ARRAY=8192)
and the variant constant (VT_VARIANT=12). The contents of the variant are
listed under VALUE%VU. Here we see the various possible incarnations of the
variant as a long integer, character, short integer, and so on. Because this is
an array, the one we are interested in is VALUE%VU%PTR_VAL. This variant is
actually a pointer containing the memory address of the array. Our Fortran
function get_var_array uses this address to obtain the contents of the
variant array. Different client applications package these arrays differently,
and get_var_array is designed to deal with all the various kinds. Excel, for
example, always passes the contents of a range of cells as a rank-two array,
even if the dimensions of the range are 1×5 or even 1×1. (If you are curious
to see how get_var_array works, you may step through its operation in
the debugger by pressing the F11 key instead of F10. This tells the debugger
to step into a called procedure’s code rather than skipping over it.)

If you press F10 again, the debugger proceeds to the line that calls the
function put_elogit_data_matrix in the ELogit_types module. Press
F10 once more to find out whether this function was successful in placing
the data matrix into the per-instance data. Look inside the derived type
component OBJECTDATA%SESSION%DATASET%DATA_MATRIX, and it should ap-
pear as shown in Figure 8.6. Finally, to complete execution of the rest of
the COM server code associated with the current line of VBA, press F5 in
Visual Studio.

274 8. Creating COM Clients

8.1.5 Finishing the Excel Client

Our Excel client does not yet display any results from the model fit. For
this, we need to get some array-valued properties from the COM server.
Retrieving an array from a COM server into Excel is a bit tricky because
we must declare variant arrays and do some looping. We can’t just tell
Excel, “Put an array of numbers into spreadsheet range X” because we
don’t necessarily know in advance how large the range must be. When
displaying array results to an Excel spreadsheet, it’s better to do it in a
cell-by-cell manner.

To implement the gets, first add these declarations near the top of the
client code:

’ Declarations
Dim i As Integer
Dim vBeta() As Variant
Dim vCovB() As Variant
Dim vBetaNames() As Variant

Before the code that releases the object, type the following lines. These
lines display fit statistics and parameter estimates and do some simple
calculations to display the standard errors and z-ratios.

’ Get results
Range("Loglik").Value = objEL.loglik
Range("ChiSq").Value = objEL.X2
Range("GSq").Value = objEL.G2
Range("df").Value = objEL.df

’ Load estimates into variant arrays
vBeta = objEL.beta
vCovB = objEL.cov_beta
vBetaNames = objEL.beta_names

’ Loop through parameters, calculating
’ standard errors and z-ratios
For i = 1 To UBound(vBeta, 1)

Range("Beta").Cells(i) = vBeta(i, 1)
Range("StdErr").Cells(i) = Sqr(vCovB(i, i))
Range("Ratio").Cells(i) = vBeta(i, 1) _
/ Sqr(vCovB(i, i))

Range("EstimLabel").Cells(i) = vBetaNames(i, 1)
Next i

We should round out this Excel client with some simple error handling.
Just after the declarations section, insert the following lines:

’ Set up error handling

8.1 An Improved Client for Excel 275

FIGURE 8.7. ELOGIT Excel client spreadsheet.

On Error GoTo ErrHandler

Then add these lines near the end of the script, after Exit Sub but before
End Sub.

ErrHandler:
’ Report error information from COM server
If objEL.errMsgPresent Then

Call MsgBox("Error: " & objEL.errMessage, vbCritical)
Else

Call MsgBox("Error: an unspecified error occurred." _
& vbCrLf & Err.Description, vbCritical)

End If

Try running the macro now. If all is well, you should see results appear in
the appropriate cell ranges on Sheet1, as shown in Figure 8.7.

To test the error handling, change the predictor from LOG DOSE to
Y, and run the macro again. What happens? The error message that has
been stored by calls to err_handle in the Fortran code should now emerge,
indicating that Y cannot be used as a predictor (Figure 8.8). Notice that
the error handler even reports the location in the Fortran source where the
error was detected, which can be very useful to the developer. If this kind
of error had not been trapped in the Fortran code, something undesirable
would have happened. The COM server might have crashed or, worse yet,

276 8. Creating COM Clients

FIGURE 8.8. Simple error message dialog.

it may have reported erroneous results. Careful error handling is a hallmark
of high-quality software.

As a final touch, let’s add two buttons to the spreadsheet: a “run”
button to fit the model, and a “clear” button to erase the results. To
add buttons, you must activate Excel’s Visual Basic toolbar by selecting
View → Toolbars → Visual Basic. Press the icon to activate the controls
toolbox. Select the Command Button tool and add a button to the spread-
sheet. Right-click on the button and choose Properties from the popup
menu. Change the name to cmdRun and the caption to Run. Then go to the
Visual Basic editor window and add the following code in the editor. This is
a new VBA subroutine and should be placed after the End Sub statement
of Sub runELogit:

Private Sub cmdRun_Click()
Call runELogit

End Sub

Add a similar button to clear the results. Name the button cmdClear,
caption it Clear, and insert another subroutine.

Private Sub cmdClear_Click()
Range("CaseID").ClearContents
Range("Beta").ClearContents
Range("StdErr").ClearContents
Range("Ratio").ClearContents
Range("EstimLabel").ClearContents
Range("Loglik").ClearContents
Range("ChiSq").ClearContents
Range("GSq").ClearContents
Range("df").ClearContents

End Sub

With these buttons, even a novice Excel user who knows nothing about
macros or VBA can perform logistic regression.

8.2 Clients for Other Environments 277

8.1.6 Exercises

1. In our Excel spreadsheet, the physical arrangement of data and results
works well for the viral assay dataset, but modifications will be needed
to accommodate more cases or more predictor variables. Rearrange
the spreadsheet so that it can handle larger datasets. Write a short
document to show an Excel user how to apply the ELOGIT client to
datasets of varying sizes.

2. Write a short document that explains to Excel users how to install
the COM server and client on their own computers. Package the doc-
ument together with the client and server so that the Excel user can
install it. Test the procedure on a computer that has Excel but not
Visual Studio.

3. Many diagnostics have been suggested for assessing the fit of a logis-
tic regression model—for example, a scatterplot of residuals versus
fitted values for the response (Hosmer and Lemeshow, 2000). Extend
the ELOGIT COM server to provide on request the fitted values and
Pearson residuals (see Equation 5.6). Then modify the client to dis-
play and plot the residuals versus the fitted values.

8.2 Clients for Other Environments

8.2.1 Keeping It Simple

In this section, we develop ELOGIT clients for a variety of computational
packages used by statisticians and data analysts. Code for these clients
differs in details and syntax, but the actions taken by each are essentially
the same. Source-code files for each of our example clients are available on
our Web site.

The main principle of client development is to keep it simple. All of the
hard work should be done by the COM server. If you find yourself writing
lots of client code, consider whether any of the actions being taken can be
moved over to the server side.

8.2.2 Clients for S-PLUS and R

The S-PLUS client is one of our most straightforward. It does, however,
use some undocumented features that allow us to pass arrays as properties.
Before attempting to write a COM client in S-PLUS, you should first read
the chapter on Automation in the online manual S-PLUS 6 for Windows
Programmer’s Guide. Specifically, you should familiarize yourself with these
functions:

278 8. Creating COM Clients

create.ole.object()
release.ole.object()
set.ole.property()
get.ole.property()
call.ole.method()

One nice feature of set.ole.property() and get.ole.property() is that
they can put and get multiple properties at once, which helps us to keep
the code short.

Many users of S-PLUS know little to nothing about the details of automa-
tion. For their benefit, we will handle those details by writing a function
elogit() that simply accepts input data as arguments, fits the model and
returns all the results as a list. A second function, elogit.print(), will
take that list and generate a nicely printed summary.

Here is the code for elogit(). The argument x is a vector or matrix of
predictors, and y is the vector of responses. The argument n should be a
vector of the same length as y and containing the binomial denominators
ni; if this argument is missing, ni = 1 is assumed.

elogit.ssc

elogit <- function(x, y, n, intercept=T, maxits=20, eps=1D-08){

Create an elogit object instance

pEL <- create.ole.object("ELogitSrvr.ELogitObj")

if(is.null(pEL)){

stop("Unable to start ELOGIT COM server.")}

Coerce x into a matrix, if necessary

if(is.vector(x)){

x <- matrix(x, ncol=1)}

Set up names for X-variables

x.names <- dimnames(x)[[2]]

if(is.null(x.names)){

x.names_paste("X", format(1:ncol(x)), sep="")}

Set up the data matrix, variable names and column numbers

if(missing(n)){

data.matrix <- cbind(x,y)

var.names <- c(x.names, "Y")

resp.col <- ncol(data.matrix)

}

else{

data.matrix <- cbind(x,y,n)

var.names <- c(x.names, "Y", "N")

resp.col <- c(ncol(data.matrix)-1, ncol(data.matrix))

}

pred.col <- 1:ncol(x)

Load the data matrix, variable names and model specification

result <- set.ole.property(pEL,

8.2 Clients for Other Environments 279

list("data_matrix"=data.matrix, "var_names"=var.names,

"response_bycol"=resp.col, "intercept"=intercept,

"pred_bycol"=pred.col))

if(!all(result)){

err <- get.ole.property(pEL, "errMessage")$errMessage

release.ole.object(pEL)

stop(err)}

Fit the model

result <- call.ole.method(pEL, "modelfit", maxits, eps)

if(get.ole.property(pEL, "errMessagePresent")$errMessagePresent){

err <- get.ole.property(pEL, "errMessage")$errMessage

release.ole.object(pEL)

stop(err)

}

Get results

result <- get.ole.property(pEL,

c("iter", "converged", "beta", "beta_names", "cov_beta",

"loglik", "X2", "G2", "df"))

if(!result$converged){

warning(paste("Algorithm failed to converge by",

format(result$iter), "iterations."))

}

change underscore to period in list names

names(result)[names(result)=="cov_beta"]_"cov.beta"

names(result)[names(result)=="beta_names"]_"beta.names"

convert covbeta from a list of vectors into a square matrix

result$cov.beta <- matrix(unlist(result$cov.beta),

nrow=length(result$cov.beta))

Unload the eLogit object

release.ole.object(pEL)

Return list of results

result}

We need to point out two minor details. First, some of our COM object’s
properties have names containing underscore characters. A name contain-
ing an underscore causes problems for the S language because the under-
score character is a deprecated form of the assignment (<-) operator. To
avoid difficulties, names with embedded underscores have been enclosed by
quotation marks. The second point is that when the COM server sends a
rank-two array to S-PLUS, the get.ole.property function returns it as a
list. To convert it into a matrix, you need to unlist and reshape it as shown
above for the estimated covariance matrix.

Our second function, elogit.print(), accepts as its sole argument the
list created by elogit.

280 8. Creating COM Clients

elogit.ssc

elogit.print_function(result){

print table of coefficients

coef <- result$beta

SE <- sqrt(diag(result$cov.beta))

z <- coef/SE

pval <- 2 * pnorm(-abs(z))

coef.table <- cbind(coef, SE, z, pval)

dimnames(coef.table) <- list(

result$beta.names, c("coef", "SE", "z", "pval"))

cat("Summary of estimated coefficients:\n")

print(coef.table)

print convergence summary

cat("\n")

if(result$converged){

cat(paste("Algorithm converged in",

format(result$iter), "iterations.", "\n"))

}

else{

cat(paste("Algorithm failed to converged by",

format(result$iter), "iterations.", "\n"))

}

print fit statistics

cat("\n")

cat("Summary of model fit:\n")

cat(paste(

c("Loglikelihood =", "Pearson X2 =", "Deviance G2 ="),

format(c(result$loglik, result$X2, result$G2))), sep="\n")

cat(paste(

"Degrees of freedom:", format(result$df), "\n"))

return a non-printing NULL value

invisible()

}

Here is an example S-PLUS command session that uses the client.

> # read the client code
> source("elogit.ssc")

> # enter viral assay data
> y <- c(0,1,4,6,6) # number dead per group
> n <- c(6,6,6,6,6) # group sizes
> x <- c(-5,-4,-3,-2,-1) # log dose

> tmp <- elogit(x, y, n)

8.2 Clients for Other Environments 281

> elogit.print(tmp)
Summary of estimated coefficients:

coef SE z pval
INTRCPT 9.586808 3.706673 2.586364 0.009699431

X1 2.879165 1.102251 2.612078 0.008999360

Algorithm converged in 8 iterations.

Summary of model fit:
Loglikelihood = -6.7898028
Pearson X2 = 0.3609834
Deviance G2 = 0.5347011
Degrees of freedom: 3

To create a COM client for R, you must install the rcom package as men-
tioned in Chapter 7. You will need to make minor adjustments to elogit()
in the parts that call the COM server; refer to the rcom documentation for
details.

8.2.3 A Client for SAS

Writing COM clients for SAS is a bit more challenging. The main difficulty
is that, in the current version (Version 8), SAS provides COM functionality
only through the SAS Component Language (SCL). Most users of SAS have
never heard of SCL and may prefer not to learn it.

To simplify the task of writing COM clients in SAS, we have created a
tool that allows you to invoke COM servers directly from an ordinary SAS
program through PROC IML. This tool, which we call SASCOMIO (for
“SAS/COM interoperability”), consists of a Windows DLL (sascomio.dll)
and another file (sascomio.cbt) that defines the DLL calling conventions.
Before proceeding with this current section, we suggest that you briefly
review the material in Section 6.5.5 concerning DLLs in SAS.

A list of the procedures available in SASCOMIO is shown in Table 8.2.
We use these procedures to invoke COM properties and methods in much
the same way as in our previous client examples. In order to use the SAS-
COMIO library, you must install sascomio.dll and the associated .cbt
file on your computer. The .dll file may be placed in any folder listed in
the Windows PATH variable, or in the folder where other SAS DLLs are
located (i.e., in the core\sasexe subfolder of the SAS installation). The
.cbt file can be placed anywhere, as long as you provide the full file path
in the filename sascbtbl directive near the beginning of the PROC IML
call. We typically place the .cbt file in the same folder as our SAS client
program.

282 8. Creating COM Clients

TABLE 8.2. Functions in the SASCOMIO library.

Function Description

CreateObj Creates an instance of the object described by
sProgID and returns a pointer to that object

ReleaseObj Releases the object pointed to by lDispPtr
(no return value)

PutPropNum Puts a property and returns an hresult
PutPropChar Arguments:

lDispPtr (pointer to the object instance)
sPropName (name of the property to put)
dim1 and dim2 (dimensions of the array)
Value (numeric/character value or array of values)
nArgs (number of arguments)
Arg1dim1 and Arg1dim2 (dimensions of the array)
Arg1Value (character value or array of values)
(Repeat if there are two arguments)

GetPropNum Gets a property and returns an hresult
GetPropChar Arguments:

lDispPtr (pointer to the object instance)
sPropName (name of the property to get)
dim1 and dim2 (dimensions of the array)
Value (numeric/character value or array of values)
nArgs (number of arguments)
Arg1dim1 and Arg1dim2 (dimensions of the array)
Arg1Value (character value or array of values)
(Repeat if there are two arguments)

RunMethod Runs a method and returns an hresult
Arguments:
lDispPtr (pointer to the object instance)
sMethName (name of the method to invoke)
nArgs (number of arguments)
sArg1Name (optional, name of first argument)
Arg1dim1 and Arg1dim2 (dimensions of the array)
Arg1Value (character value or array of values)
(Repeat for each argument, up to four arguments)

errorLookup Receives an hresult value and produces an error
message; returns the number of characters in the
message
Arguments:
lHresult (the hresult value to look up)
sMessage (the corresponding error message)

8.2 Clients for Other Environments 283

Here is a SAS program that defines an IML module that invokes the
COM server and passes data, model information, and results through the
module arguments. The module is stored for later use in a SAS catalog
called mylib.

elogit.sas

libname elogit ’.’;

proc iml;

/* IML Module for Logistic Regression */

start elogit(dataset, varnames, resp, inter, pred, eps, maxits,

converged, iter, loglik, X2, G2, df, beta, betanames, covBeta,

Err, errMessage);

/* load SAS/COM interop function defs */

filename sascbtbl ’sascomio.cbt’;

/* initializations */

nkase = nrow(dataset);

nvar = ncol(dataset);

converged = 0;

iter = 0.0;

loglik = 0.0;

G2 = 0.0;

X2 = 0.0;

df = 0.0;

Err = 0;

result = 0;

/* Make enough room for 160 characters in errMessage */

errMessage = ’’;

do i=1 to 16;

errMessage = errMessage + ’ ’;

end;

/* Determine the number of parameters */

nparam = ncol(pred);

if inter = ’True’ then nparam = nparam + 1;

/* Shape the beta, covBeta, and betanames arrays */

beta = shape(0.0, nparam, 1);

betanames = shape(’ ’, nparam, 1);

covBeta = shape(0.0, nparam, nparam);

/* Create ELogit object instance */

ProgID = ’ELogitSrvr.ELogitObj’;

pElogit = modulein(’createobj’, ProgID);

if pElogit = 0 then do;

/* Failed to create object -- return error */

Err = -1;

errMessage = "Error: Unable to load ELogit object.";

end;

else do;

284 8. Creating COM Clients

/* Load the data matrix and variable names */

result = modulein(’putpropnum’, pElogit, ’data_matrix’,

nkase, nvar, dataset, 0);

if result ^= 0 then goto err_hndl;

result = modulein(’putpropchar’, pElogit, ’var_names’,

1, nvar, varnames, 0);

if result ^= 0 then goto err_hndl;

/* Load the model specification */

result = modulein(’putpropchar’, pElogit, ’response_byname’,

1, 2, resp, 0);

if result ^= 0 then goto err_hndl;

result = modulein(’putpropchar’, pElogit, ’pred_byname’,

1, 1, pred, 0);

if result ^= 0 then goto err_hndl;

result = modulein(’putpropchar’, pElogit, ’intercept’,

1, 1, inter, 0);

if result ^= 0 then goto err_hndl;

/* Fit the model */

result = modulein(’runmethod’, pElogit, ’modelfit’, 2,

’maxits’, 1, 1, char(maxits), ’eps’, 1, 1, char(eps));

if result ^= 0 then goto err_hndl;

/* Get convergence info */

result = modulein(’getpropnum’, pElogit, ’converged’,

1, 1, converged, 0);

if result ^= 0 then goto err_hndl;

result = modulein(’getpropnum’, pElogit, ’iter’,

1, 1, iter, 0);

if result ^= 0 then goto err_hndl;

/* Get general statistics */

result = modulein(’getpropnum’, pElogit, ’loglik’,

1, 1, loglik, 0);

if result ^= 0 then goto err_hndl;

result = modulein(’getpropnum’, pElogit, ’G2’,

1, 1, G2, 0);

if result ^= 0 then goto err_hndl;

result = modulein(’getpropnum’, pElogit, ’X2’,

1, 1, X2, 0);

if result ^= 0 then goto err_hndl;

result = modulein(’getpropnum’, pElogit, ’df’,

1, 1, df, 0);

if result ^= 0 then goto err_hndl;

/* Get parameter estimates */

result = modulein(’getpropnum’, pElogit, ’beta’,

nparam, 1, beta, 0);

if result ^= 0 then goto err_hndl;

result = modulein(’getpropnum’, pElogit, ’cov_beta’,

nparam, nparam, covbeta, 0);

if result ^= 0 then goto err_hndl;

8.2 Clients for Other Environments 285

result = modulein(’getpropchar’, pElogit, ’beta_names’,

nparam, 1, betanames, 0);

if result ^= 0 then goto err_hndl;

/* Get errors, if any */

err_hndl:

if result ^= 0 then do;

ret = modulein(’getpropnum’, pElogit, ’errMessagePresent’,

1, 1, Err, 0);

if Err = -1 then do; /* -1 = true, 0 = false */

/* Get internal error from COM Server */

ret = modulein(’getpropchar’, pElogit, ’errMessage’,

1, 1, errMessage, 0);

end;

else do;

/* Get error from windows system */

Err = -1;

ret = modulein(’errorlookup’, result, errMessage);

end;

end;

/* Unload the ELogit object */

call modulei(’releaseobj’, pElogit);

end;

finish; /* elogit */

reset storage=elogit.mylib;

store module=elogit;

quit;

The advantage of setting up the client as an IML module is that the calls
to the procedures in SASCOMIO, which are not part of the standard SAS
language, are hidden inside the module; users won’t need to know anything
about SASCOMIO or even about COM.

A sample SAS program that applies the module to the viral assay data
is shown below. Notice how this program uses the catalog file mylib which
was created by running elogit.sas. Notice also that it is necessary to
load the file sascomio.cbt again in this program before using the elogit
module.

run elogit.sas

libname elogit ’.’;

proc iml;

/* Perform Logistic Regression on VIRAL dataset */

/* Parameters */

ver = 1.1;

author = ’A. Programmer’;

/* load SAS/COM interop function defs */

filename sascbtbl ’sascomio.cbt’;

286 8. Creating COM Clients

/* load elogit module */

reset storage=elogit.mylib;

load module=elogit;

/* load the dataset and variable names into arrays */

use elogit.viral;

read all into dataset [colname=varnames];

/* model info */

resp = { ’Y’ ’N’ };

pred = { ’LOG_DOSE’ };

inter = ’True’;

/* convergence info */

maxits = 20;

eps = 1.0E-10;

/* run logistic regression procedure */

run elogit(dataset, varnames, resp, inter, pred,

eps, maxits, converged, iter, loglik, X2, G2,

df, beta, betanames, covBeta, Err, errMessage);

if Err = 0 then do;

/* Compute standard error */

stdErr = sqrt(vecdiag(covBeta));

/* Likelihood ratio */

ratio = beta / stdErr;

/* Display results */

print ’elogit.sas’,’Logistic regression using the’,

’ELogit COM Server’, ’’, ’Version ’ (ver[1]),

(author[1]);

print ’Data set information’,

’Number of cases:’ (nrow(dataset)),

’Number of variables:’ (ncol(dataset));

print dataset[format=8.0];

print ’Model specification’,

({ ’Response (y):’, ’Denominator (n):’, ’Predictors:’ })

(resp‘ // betanames);

print ’Iteratively reweighted least-squares algorithm’;

if converged = -1 then do;

print ’Converged at iteration: ’ (iter[1]);

end;

else do;

print ’Failed to converge by iteration: ’ (iter[1]);

end;

headings = {’estimate’ ’std.err’ ’ratio’};

print (betanames[,1]) (beta || stdErr || ratio)

[format=8.4 colname={’estimate’ ’std.err’ ’ratio’}];

print ’Summary of model fit’,

({’Loglikelihood’,’G-squared’,’Chi Squared’,’Deg of freedom’})

8.2 Clients for Other Environments 287

(loglik // G2 // X2 // df);

end;

else do;

/* Print error message */

print errMessage;

end;

quit;

The output from our SAS program looks like this:

elogit.sas

Logistic regression using the

ELogit COM Server

Version 1.1

A. Programmer

Data set information

Number of cases: 5

Number of variables: 3

DATASET

LOG_DOSE N Y

-5 6 0

-4 6 1

-3 6 4

-2 6 6

-1 6 6

Model specification

Response (y): Y

Denominator (n): N

Predictors: INTRCPT

LOG_DOSE

Iteratively reweighted least-squares algorithm

Converged at iteration: 8

estimate std.err ratio

INTRCPT 9.5868 3.7067 2.5864

LOG_DOSE 2.8792 1.1023 2.6121

Summary of model fit

Loglikelihood -6.789803

288 8. Creating COM Clients

G-squared 0.5347011

Chi Squared 0.3609834

Deg of freedom 3

8.2.4 SPSS

An SPSS client can be implemented as an SPSS macro or script. These
macros are written in a language that closely resembles VBA. Our script is
set up as a function called from SPSS syntax code, which is more familiar
to SPSS users than the script language. The code for this client is longer
than the code for our VBA client in Excel. The extra length is needed to
extract data from the SPSS dataset (shown in Figure 8.10 and to set up
the model information passed as arguments to the script.

ELogit.sbs

Option Explicit

’#Uses "ELogitOutput.sbs"

Sub Main

’ Script that uses the ELogit COM Server to fit

’ a logistic regression model using the currently

’ active data set and the parameters specified.

’

’ Parameters:

’ 1) Number of response variables (if greater

’ than 1, it indicates that there is a

’ denominator to the response variable,

’ and 2 "response"

’ variables are given, the second being

’ the denominator variable of the intercept.

’ 2) Number of predictors

’ 3) Response variables

’ 4) Predictor variables

’ 5) Intercept (True or False)

’ 6) Convergence criterion

’ 7) Maximum iterations

’

’ Example: "2 1 y n log_dose True 1.0e-9 20"

’ Declare local variables

Dim sDataFile As String

Dim vTemp As Variant

Dim vData() As Variant

Dim nVars As Integer

Dim nKase As Integer

Dim i As Integer

Dim j As Integer

Dim sParam As String

8.2 Clients for Other Environments 289

Dim sParams() As String

Dim vResp() As Variant

Dim vPred() As Variant

Dim ListVars() As String

Dim nResp As Integer

Dim nPred As Integer

Dim bInter As Boolean

Dim eps As Double

Dim maxits As Integer

’ Declare data document object from SPSS object library

Dim objDataDoc As ISpssDataDoc

’ Declare ELogit COM Server object

Dim objEL As Object

’ Set up error handling

On Error GoTo ErrHandler

’ Instantiate the ELogit COM Server object

Set objEL = CreateObject("ELogitSrvr.ELogitObj")

’ Obtain object pointing to the currently open data document

Set objDataDoc = objSpssApp.Documents.GetDataDoc(0)

’ Get the parameter string

’ First, see if it is being passed by a syntax SCRIPT directive

’sParam = "2 1 y n log_dose True 1.0e-9 20" ’(for debugging)

sParam = objSpssApp.ScriptParameter(0)

If sParam = "" Then

’ Second, see if it is being called from another macro

sParam = Command$

If sParam = "" Then

Err.Raise -1,,"No arguments to script call." & vbCrLf & _

"Please check syntax file or script code.",,

Exit Sub

End If

End If

’ Extract parameters from string

i = 1

Do

’ Build an array of the space-delimited parameters

ReDim Preserve sParams(1 To i)

’ Look for first occurrence of space delimiter

j = InStr(1,sParam," ")

If j > 0 Then

’ Extract left side as a parameter

sParams(i) = Left(sParam, j-1)

’ Continue searching the right side

sParam = Right(sParam, Len(sParam)-j)

i = i + 1

Else

290 8. Creating COM Clients

’ Last parameter was found

sParams(i) = sParam

Exit Do

End If

Loop

’ Load parameters into appropriate variables

nResp = CInt(sParams(1))

nPred = CInt(sParams(2))

ReDim vResp(1 To nResp)

ReDim vPred(1 To nPred)

i = 3

For j = 1 To nResp

vResp(j) = sParams(i)

i = i + 1

Next j

For j = 1 To nPred

vPred(j) = sParams(i)

i = i + 1

Next j

If sParams(i) = "True" Then

bInter = True

Else

bInter = False

End If

i = i + 1

eps = CDbl(sParams(i))

i = i + 1

maxits = CInt(sParams(i))

’ Get the variable names, nVars, nKase,

’ and data file name from the SPSS data file

ListVars = objDataDoc.GetVariables(False)

nVars = objDataDoc.GetNumberOfVariables

nKase = objDataDoc.GetNumberOfCases

sDataFile = objDataDoc.GetDocumentPath

’ Get data matrix

vTemp = objDataDoc.GetTextData(ListVars(0),ListVars(nVars-1),1,nKase)

’ Release the data document object -- we’re done with it.

Set objDataDoc = Nothing

’ Dynamically allocate data matrix

’ In SPSS, arrays are indexed from zero

ReDim vData(0 To nKase-1, 0 To nVars-1)

’ Transpose data matrix (COM server needs row-major)

For i = 0 To nVars-1

For j = 0 To nKase-1

vData(j,i) = vTemp(i,j)

Next j

Next i

8.2 Clients for Other Environments 291

’ Load data matrix and variable names into COM server

objEL.data_matrix = vData

objEL.var_names = ListVars

’ Load the model info

objEL.response_byname = vResp

objEL.pred_byname = vPred

objEL.intercept = bInter

’ Fit model

Call objEL.modelfit(maxits, eps)

’ Generate an SPSS output document

Call ELogitOutput(nKase, nVars, _

sDataFile, vData, vResp, vPred, _

objEL.converged, objEL.iter, _

objEL.beta, objEL.cov_beta, objEL.beta_names, objEL.loglik, _

objEL.G2, objEL.X2, objEL.df, ListVars, bInter)

’ Release the ELogit COM Server object

Wait 1

Set objEL = Nothing

’ Wait a second for object to close (tends to crash if you don’t)

Wait 1

Exit Sub

ErrHandler:

’ Error handler. Display the error in a dialog box.

Call MsgBox(Err.Description & ": " & objEL.errMessage)

Set objEL = Nothing

Wait 1

End Sub

Another SPSS script file, which we do not show here, defines a function
ELogitOutput for printing results to an output file. Both of these files can
be downloaded from our Web site.

Here is an example SPSS program written in syntax code that runs the
ELogit script. Even SPSS users who are unaccustomed to syntax code will
quickly get the idea:

ELogitSyntax.sps

SCRIPT file="elogit.sbs"

("2 1 y n log_dose True 1.0e-10 20") .

For users who prefer to analyze their data through menu-driven dialogs,
we have written another SPSS script that provides a graphical dialog for
ELOGIT. The dialog window, shown in Figure 8.9, allows the user to in-
teractively specify the response and predictor variables before fitting the

292 8. Creating COM Clients

FIGURE 8.9. SPSS dialog interface for ELOGIT.

FIGURE 8.10. SPSS menu item for launching the ELOGIT dialog script.

model. The SPSS menu can be customized to include an item for this script,
as shown in Figure 8.10. Source code for the dialog script is available from
our Web site.

8.2 Clients for Other Environments 293

8.2.5 MATLAB

Invoking COM servers is very straightforward in MATLAB. Our ELOGIT
client for MATLAB, which has been set up as a MATLAB script or M-file,
is shown below.

elogit.m

function [loglik, x2, g2, df, Beta, betaNames, CovBeta, ...

converged, iter, err] ...

= elogit(data, varNames, resp, inter, pred, eps, maxits)

% Begin try/catch

err = ’’;

try

% Create an elogit object instance

h = actxserver(’ELogitSrvr.ELogitObj’);

% Load the data matrix and column labels

set(h, ’data_matrix’, data);

set(h, ’var_names’, varNames);

% Load the model specification

set(h, ’response_byname’, resp);

set(h, ’intercept’, inter);

set(h, ’pred_byname’, pred);

% Fit the model

invoke(h, ’modelfit’, maxits, eps);

% Get convergence info

converged = get(h, ’converged’);

iter = get(h, ’iter’);

% Get general statistics

loglik = get(h, ’loglik’);

g2 = get(h,’g2’);

x2 = get(h,’x2’);

df = double(get(h,’df’));

% Get parameter estimates

Beta = get(h, ’beta’);

CovBeta = get(h,’cov_Beta’);

betaNames = get(h,’beta_Names’);

catch %Error handler

if get(h, ’errMsgPresent’)

err = get(h,’errMessage’);

else

err = lasterr;

end

294 8. Creating COM Clients

end

% Release the COM Server object

release(h);

Notice how errors are handled through the try...catch construct. If
you are unfamiliar with try...catch, a brief introduction will be given in
the next section. Here is another script that applies ELOGIT to the viral
assay data and prints results:

run elogit.m

% Clear workspace

clear all;

% Parameters

ver = 1.1;

author = ’David R. Lemmon’;

% Create the data array (viral dataset)

nvar = 3;

nkase = 5;

data = zeros(nkase, nvar);

data(:,1) = (-5:-1)’;

data(:,2) = 6;

data(:,3) = [0; 1; 4; 6; 6];

% Create data labels cell array

varNames = cellstr([’LOG_DOSE’; ’N ’; ’Y ’])’;

% Create model

% Response

resp = cellstr([’Y’;’N’])’;

% Intercept

inter = logical(1);

% Predictors

pred = ’LOG_DOSE’;

% Fit model

eps = 1.e-10;

maxits = 20;

[loglik, x2, g2, df, Beta, betaNames, CovBeta, converged, iter, err] ...

= elogit(data, varNames, resp, inter, pred, eps, maxits);

% Check for errors

if err ~= ’’

fprintf(’Error: %s’, err);

else

% Get size of Beta

[szBeta,junk] = size(Beta);

% Compute standard error

stdErr = sqrt(cat(1,CovBeta{logical(eye(szBeta))}));

8.2 Clients for Other Environments 295

% Compute z-ratio

aBeta = cat(1,Beta{:});

ratio = aBeta ./ stdErr;

% Display results

fprintf(’\nELogit.m\nLogistic Regression using’);

fprintf(’the ELogit COM Server\n’);

fprintf(’Version %4.1f\n%s\n’,ver,author);

% Date and time

fprintf(’\n%s\n’,datestr(now));

% Dataset info

fprintf(’\nData set information\n’);

fprintf(’\tNumber of cases: %5d\n’,double(nkase));

fprintf(’\tNumber of variables: %5d\n’,double(nvar));

fprintf(’\n\tVariables\n\t----------------\n’);

for i=1:double(nvar)

fprintf(’%8d\t%s\n’,i,varNames{i});

end

% Model

fprintf(’\nModel specification\n’);

fprintf(’\tResponse (y): \t%s\n’,resp{1});

fprintf(’\tDenominator (n):\t%s\n’,resp{2});

for i=1:szBeta

if i==1

fprintf(’\t%s\t%s\n’,’Predictors: ’,betaNames{i});

else

fprintf(’\t%s\t%s\n’,’ ’,betaNames{i});

end

end

% Convergence info

fprintf(’\nIteratively reweighted least-squares algorithm\n’);

if converged

fprintf(’\tConverged at iteration %d\n’,double(iter));

else

fprintf(’\tFailed to converge by iteration %d\n’,double(iter));

end

% Estimates

fprintf(’\n estimate std.err. ratio’);

fprintf(’\n ----------- ---------- -----------\n’);

for i=1:szBeta

fprintf(’\t%s \t%7.4f\t\t%7.4f\t\t%7.4f\n’,betaNames{i},...

Beta{i},stdErr(i),ratio(i));

end

% Model fit

fprintf(’\nSummary of model fit\n’);

fprintf(’\n\tLoglikelihood:\t%11.8f\n’,loglik);

fprintf(’\tDeviance G^2:\t%11.8f\n’,g2);

fprintf(’\tPearson’’s X^2:\t%11.8f\n’,x2);

fprintf(’\tDeg. of freedom:\t%d\n’,df);

end

296 8. Creating COM Clients

8.3 Creating a Standalone GUI Application

8.3.1 Component-Based Design

If you are not a professional programmer, the idea of creating a statistical
application with its own graphical user interface may seem daunting. With
modern development tools and languages such as Visual Basic, it is actually
quite easy to arrange menus, buttons, checkboxes, and so on into a GUI
with a professional look and feel. Integrating graphical components with
the computational procedures may be tricky, however, especially if those
procedures and the GUI are written in different languages.

Fortunately, if you have implemented your computational procedures as
a COM server, connecting that server to a user-friendly GUI can be a
realizable goal, even if time and resources are limited. We will demonstrate
the entire process by creating a graphical, stand-alone version of ELOGIT,
which we call ELogit.NET.

When embarking on a project such as this, we strongly recommend that
you implement the computational procedures in a COM server first. It
is extremely difficult to create a GUI when the properties and methods of
your COM server do not yet exist. But if your server is up and running, the
GUI—which is just another type of COM client—can be tested continually
and thoroughly throughout the development process. In fact, the properties
and methods of the COM server will actually drive the GUI’s design. With a
working COM server in hand, you can also build up your GUI incrementally.
It can start as a bare-bones tool for getting data into the COM server and
shipping the results out. Over time, fancier elements can be added as the
whole interface takes shape.

8.3.2 Visual Basic .NET

In this example, we will create our GUI using Visual Basic .NET. This
language, which replaced Visual Basic in 2001, is relatively easy to learn
and is a standard industry tool for creating Windows-based applications.
A large number of reference books are available to help you learn about
Visual Basic .NET and about the .NET platform on which it is based. The
.NET platform is compatible with COM. In Visual Basic .NET, you can
create instances of COM objects and invoke their methods and properties
just as we did in our client for Excel. Using the tools provided by Microsoft
Visual Studio .NET, adding windows, buttons, and other visual elements
is simply a matter of dragging and dropping them into the project.

8.3.3 An XML Data Format

With ELogit.NET, a user will be able to interactively open a data file,
specify a model, run the model fit procedure, and view and save the results.

8.3 Creating a Standalone GUI Application 297

Therefore, we must first decide on a format for the data file. When we
wrote the ELOGIT console application back in Chapter 5, we developed
a system for reading a rectangular data matrix and variable names from
ordinary text or ASCII files. Methods for reading the data and names
files are already available in our COM server, and using those methods
would certainly be a reasonable approach. To illustrate a new trend in
programming, however, we will show you how to read a data matrix that
has been stored in a modern format called XML.

XML, an abbreviation for Extensible Markup Language, is a descendant
of Hypertext Markup Language (HTML). Whereas HTML was used pri-
marily for creating Web pages, XML is a more general format for storing
tabular data and all kinds of information in text files in a self-documenting
fashion. The contents of an XML file can be read directly into applications
such as Excel and programs written in new languages such as Visual Basic
.NET. To see what XML looks like, here is our viral assay dataset in XML.

viral.xml

<?xml version="1.0" encoding="windows-1252" ?>

<TABLE>

<VIRAL>

<LOG_DOSE> -5 </LOG_DOSE>

<N> 6 </N>

<Y> 0 </Y>

</VIRAL>

<VIRAL>

<LOG_DOSE> -4 </LOG_DOSE>

<N> 6 </N>

<Y> 1 </Y>

</VIRAL>

<VIRAL>

<LOG_DOSE> -3 </LOG_DOSE>

<N> 6 </N>

<Y> 4 </Y>

</VIRAL>

<VIRAL>

<LOG_DOSE> -2 </LOG_DOSE>

<N> 6 </N>

<Y> 6 </Y>

</VIRAL>

<VIRAL>

<LOG_DOSE> -1 </LOG_DOSE>

<N> 6 </N>

<Y> 6 </Y>

</VIRAL>

</TABLE>

Readers familiar with HTML will immediately notice many similarities.
XML has beginning and ending tags enclosed in angle braces, with a for-
ward slash to designate an ending. There are also attributes inside tags,
such as the version= designation. Unlike HTML tags, however, the tags in

298 8. Creating COM Clients

FIGURE 8.11. The New Project dialog.

XML do not specify how the file contents should be formatted in a browser
window. Therefore, if you open up this XML file in a browser, it may not
look any different from the way it is shown here.

How will users of ELogit.NET put their data into the XML format? We
generated viral.xml from a SAS dataset in this manner:

libname viral ’.’;
libname out xml ’viral.xml’;

proc copy in=viral out=out;
select viral;

run;

XML files can also be created by Excel and many other programs. The fact
that SAS can import and export XML files illustrates how XML is rapidly
becoming a new industry standard for storing, sharing, and transmitting
data.

8.3.4 Starting the Graphical Interface

To get started building the GUI, open up Microsoft Visual Studio .NET.
When the Start window appears, press the “New Project” button. From
among the types of Visual Basic projects shown in the New Project dialog
box, select Windows Application. Enter the project name, ELogit.NET, as
shown in Figure 8.11. We are now looking at a blank Windows form called
Form1.vb. This form has a graphical front end with source code underlying
it. Our job is to add graphical elements to the form and then fill in the

8.3 Creating a Standalone GUI Application 299

FIGURE 8.12. DataGrid and Button added to the form.

corresponding source code that tells the program what to do when various
events (mouse clicks, keystrokes, etc.) occur.

8.3.5 Reading the Data File

The first feature of ELogit.NET that we will implement is to open and
read the data file. ELogit.NET will read a dataset from an XML file and
display it in a spreadsheet-like grid. In the Windows Forms Toolbox on
the left, select DataGrid and draw the data grid on the form. Next, in the
Properties box on the right, find the Dock property and change its value
to Top by pressing the dropdown button and then pressing the topmost
button. Change the value of the Size property to 292,136. Then select
Button from the Toolbox and draw a button beneath the DataGrid. Change
the Name property to btOpen, the Text property to Open Dataset, and the
Size property to 96,24. Your form should then look like Figure 8.12.

Next, select the OpenFileDialog control from the Toolbox and add it by
clicking anywhere on the form. An icon will then appear in a space below
the form window. The purpose of this step will soon be apparent.

Now we must add event-handling code to make ELogit.NET do two
things. First, when a user presses the “Open Dataset” button, a standard
Windows file-selection dialog box will appear to allow the user to select
the XML file to be opened. Second, after the XML file has been selected,
the data from the file will be read into the program and displayed in the
DataGrid. To add this code, move your mouse cursor to the form and
double-click on the “Open Dataset” button. The form’s code window will
appear, and you will immediately see the skeleton of a subroutine named
btOpen_Click. This is the code that will run when the button is pressed.
Add the following code inside that subroutine.

300 8. Creating COM Clients

Dim filePath As String

Dim column As DataColumn

Dim dsData As DataSet

’ Show dialog to get path of xml data file

With OpenFileDialog1

.Filter = "XML files (*.xml)|*.xml|" & _

"Text files (*.txt)|*.txt|All files (*.*)|*.*"

.DefaultExt = "*.xml"

.ShowDialog()

filePath = .FileName

End With

If filePath <> "" Then

’ Read XML dataset

dsData = New DataSet()

With dsData

.Reset()

.ReadXml(filePath)

End With

’ View it in the data grid

With DataGrid1

.DataSource = dsData

.DataMember = dsData.Tables(0).TableName

.CaptionText = filePath

End With

End If

What does this code do? Consider the part just below the declarations,
which pertains to the Windows file-opening dialog. OpenFileDialog1 is a
single instance of the OpenFileDialog object class that you added to this
form. The With construct allows you to invoke its properties and methods
without having to repeatedly type its name. The Filter and DefaultExt
properties select the type of files to display when the window first appears.
The ShowDialog method displays the window. After the selection has been
made, the window is closed and the full path to the selected file is stored
in the string variable filePath.

The second half of this code pertains to reading, storing, and displaying
the data. In the .NET programming environment, tabular data may be
stored in a DataSet object. We’ve declared one instance of a DataSet object,
dsData, as a local variable in the button-click event procedure. The DataSet
object class has an extremely handy method called ReadXml that, as the
name implies, reads an entire XML file into the object. Once the XML data
have been read into dsData, we can tell our DataGrid to display the data
like this:

DataGrid1.DataSource = dsData

8.3 Creating a Standalone GUI Application 301

FIGURE 8.13. Data displayed in the DataGrid.

(Our code does exactly the same thing but within a With construct.) Be-
cause a DataSet object may contain more than one table, we must set the
DataGrid’s DataMember property to tell the grid which table to display. In
this case, we point it to dsData.Tables(0).TableName, which directs the
grid to display table zero; this is the only table stored in the XML file.

Now let’s test this code. Press the Visual Studio .NET run button or
the F5 keyboard key. The project will automatically be compiled and then
executed. When the form window appears, press the “Load Dataset” but-
ton; notice the effect of having specified .xml as the default file extension.
Browse for viral.xml and open it. The viral assay data will then appear
in the data grid, as shown in Figure 8.13. If you have another dataset avail-
able in XML format, try pressing the “Load Dataset” button again and
tell ELogit.NET to load the new dataset. If everything works properly, the
new dataset should replace the old one and appear in the DataGrid.

8.3.6 Specifying the Model

We must now provide a way for the user of ELogit.NET to select the
data file. Switch back to the “Form view” by selecting the window tab
Form1.vb [Design]. The first thing to do is to add more room. Change
the Size property of Form1 to 360,590. Then add each of the controls
listed in Table 8.3. Because the GroupBox control is a container for all of
the other controls, be careful to add the other controls within the confines
of the GroupBox. Set the GroupBox property Enabled to False so that it
will be disabled when the program first starts, along with the controls inside
it. If you have arranged everything properly, the controls should appear as
shown in Figure 8.14.

Whenever a new dataset is read from the XML file and displayed in
the DataGrid, we want the names of the variables to be automatically

302 8. Creating COM Clients

TABLE 8.3. Controls for model specification.

Object Name Label Location Size

GroupBox gbModel “Model Specification” 8,176 240,176
ListBox lbVariables — 8, 32 80,134
ListBox lbResp — 136, 32 96, 17
ListBox lbDenom — 136, 88 96, 17
ListBox lbPred — 136,128 96, 43
Label lblVariables “Variables” 8, 16 80, 16
Label lblResp “Response Variable” 128, 16 104, 16
Label lblPred “Predictors” 136,112 96, 16
Button btResp “>>” 96, 32 32, 16
Button btDenom “>>” 96, 88 32, 16
Button btAddPred “>>” 96,128 32, 16
Button btRemPred “<<” 96,152 32, 16
CheckBox cbInter “Intercept” 112, 56 112, 16
CheckBox cbDenom “Denominator” 112, 72 112, 16

FIGURE 8.14. Form with controls for model specification.

8.3 Creating a Standalone GUI Application 303

displayed in the Variables ListBox. At the same time, we want the other
model specification controls to be reset to sensible default values. To do
this, add the following code to the btOpen_Click subroutine, just before
the last End If statement:

’ Load variable names into list box

With lbVariables

.Items.Clear()

For Each column In dsData.Tables(0).Columns

.Items.Add(column.ColumnName)

Next

End With

’ Enable model group box

gbModel.Enabled = True

’ Clear the other items in the model group

lbResp.Items.Clear()

lbDenom.Items.Clear()

lbPred.Items.Clear()

cbInter.Checked = False

cbDenom.Checked = False

btDenom.Enabled = False

lbDenom.Enabled = False

In this code, notice that column is a local instance of the object class
DataColumn. It is capable of holding the data contained in one column of
a table in a DataSet object.

Now let’s add event handlers for some of the new controls by double-
clicking them and adding code. The code for the button is btResp,

’ Put selected item in the list box

lbResp.Items.Clear()

lbResp.Items.Add(lbVariables.SelectedItem)

for the button btDenom

’ Put selected item in the list box

lbDenom.Items.Clear()

lbDenom.Items.Add(lbVariables.SelectedItem)

for the button btAddPred

’ Add selected item to the list box

lbPred.Items.Add(lbVariables.SelectedItem)

for the button btRemPred

304 8. Creating COM Clients

TABLE 8.4. Controls for model fitting-procedure.

Type Name Label or Value Location Size

GroupBox gbEstim “Estimation” 256,176 88, 96
TextBox tbEps 1.0E-10 16, 32 64, 20
NumericUpDown updMaxits 20 16, 72 64, 20
Label lblEps “Epsilon” 16, 16 56, 16
Label lblMaxits “Max Iters” 16, 56 56, 16
Button btRun “Run Estimation” 256,280 88, 32
DataGrid DataGrid2 — 0,364 352,192

’ Remove selected item from the list box

lbPred.Items.Remove(lbPred.SelectedItem)

and for the CheckBox cbDenom:

’ Enable or disable denominator

If cbDenom.Checked Then

btDenom.Enabled = True

lbDenom.Enabled = True

Else ’ unchecked

btDenom.Enabled = False

lbDenom.Enabled = False

End If

Compile and run the program again. Open a dataset and see how the form
responds. Try adding and removing variables by selecting them from the
listbox and pressing the buttons labeled “>>” and “<<.”

8.3.7 Invoking the Model Fit Procedure

We are now ready to add a button that fits the specified model and add
controls for the maximum number of iterations and convergence criterion.
The results will be displayed in another DataGrid. Return to the form and
add the controls listed in Table 8.4. Set the DataGrid’s Dock property to
Bottom. The form should now look like Figure 8.15.

Before continuing, we need to add a reference to our ELOGIT COM
server. From the Visual Studio .NET menu, choose Project → AddReference.
In the dialog box, choose the COM tab and highlight ELogitObj 1.0 Type
Library. Press Select and then OK, as shown in Figure 8.16. When you do
this, Visual Studio .NET creates an interface library for the ELOGIT COM
server so that it can be easily accessed by Visual Basic .NET. If you look
in the obj subdirectory of the project folder, you will find this library in

8.3 Creating a Standalone GUI Application 305

FIGURE 8.15. Estimation-related controls added to the form.

FIGURE 8.16. Adding a reference to the ELOGIT COM server.

306 8. Creating COM Clients

a file called Interop.ElogitObjLib.dll. The library serves as the bridge
between COM and .NET.

Now let’s write the event-handling code that will execute when the “Run
Estimation” button is pressed. Go to the form and double-click the “Run
Estimation” button. The code window appears with the skeleton of the pro-
cedure called btRun_Click. This procedure will extract information from
the user interface and arrange it in the form that the COM server is expect-
ing. It will lead this information into the COM server’s properties, invoke
the method that fits the model, and extract results. Add the following code
to btRun_Click to extract information from the user interface:

Dim objEL As ELogitObjLib.ELogitObj

Dim dsData As DataSet

Dim column As DataColumn

Dim nkase As Integer

Dim nvars As Integer

Dim datamatrix As Double(,)

Dim varnames As String()

Dim pred As String()

Dim resp As String()

Dim inter As Boolean

Dim stdErr As Double()

Dim ratio As Double()

Dim i As Integer

Dim j As Integer

’ Form the data and varname arrays

dsData = DataGrid1.DataSource

With dsData.Tables(0)

nvars = .Columns.Count

nkase = .Rows.Count

ReDim varnames(nvars - 1)

ReDim datamatrix(nkase - 1, nvars - 1)

For Each column In .Columns

’ form the varname array

varnames(column.Ordinal) = column.ColumnName

Next

’ form the data array

For j = 0 To nvars - 1

For i = 0 To nkase - 1

datamatrix(i, j) = .Rows(i).Item(j)

Next i

Next j

End With

’ Get intercept option

inter = cbInter.Checked

’ Form response variable array

If inter Then

ReDim resp(1)

8.3 Creating a Standalone GUI Application 307

resp(0) = lbResp.Items(0)

resp(1) = lbDenom.Items(0)

Else

ReDim resp(0)

resp(0) = lbResp.Items(0)

End If

’ Form predictors array

ReDim pred(lbPred.Items.Count - 1)

For i = 0 To UBound(pred)

pred(i) = lbPred.Items(i)

Next

Let’s pause briefly to discuss this code. First, we create a local pointer
called dsData and point it to the dataset in DataGrid1. Then, working
with table zero (which, we presume, is the only table) in that dataset, we
get the ColumnName property of the Columns object and store it in the
local string array varnames. Next, we extract the data values from each
row of the table (the Items property of each Row object in the table’s
Rows collection) and store it in the corresponding row of the local array
datamatrix. Then we get the model information—the intercept option,
response variable, denominator (if any), and predictors—by invoking the
Items property of the ListBox objects and the Checked property of the
CheckBox.

The next section of code uses a try...catch block, which is Visual Basic
.NET’s new way of handling errors. It is similar to the old on error goto
statement but is more robust and aesthetically pleasing. This is how it
works. First, try attempts to execute all of the statements placed below
it. If any of those statements produces an exception, the point of execution
immediately jumps to the section below catch. In this construct, there
is also a section called finally that contains statements to be executed
regardless of whether an exception occurred. Here is the code that loads the
dataset and model into the ELOGIT COM server and invokes the model-
fitting procedure. This block of code should be placed immediately below
the previous block.

Try

’ Create object instance

objEL = New ELogitObjLib.ELogitObj

’ Load the data matrix and column labels

objEL.data_matrix = datamatrix

objEL.var_names = varnames

’ Load the model specification

objEL.response_byname = resp

objEL.intercept = inter

objEL.pred_byname = pred

’ Fit the model

308 8. Creating COM Clients

Call objEL.modelfit(updMaxits.Value, CDbl(tbEps.Text))

’ Check convergence

If objEL.converged Then

MsgBox("Algorithm converged in " & objEL.iter & _

" iterations.")

Else

MsgBox("Algorithm did not converge by " & _

objEL.iter & " iterations.")

End If

Catch ’ Error handling

If objEL.errMessagePresent Then

’Com server internal error

MsgBox("Error in COM server: " & vbCrLf & _

objEL.errMessage, MsgBoxStyle.Critical)

Else

’Other errors

MsgBox("Error " & Err.Number & ": " & _

Err.Description, MsgBoxStyle.Critical)

End If

Finally

’ Clear the ELogit object

objEL = Nothing

End Try

Compile and run the program again. Enter a proper model specification
as shown in Figure 8.17, and then press the “Run Estimation” button.
A dialog should appear to confirm that the algorithm converged in eight
iterations. Now try to misspecify the model by adding the variable Y to the
predictor variables. What happens? When you press “Run Estimation,”
the COM server provides a useful message: “Variable 3 (Y) has already
been specified as the response; it cannot be used as a predictor... .” This
demonstrates that our try...catch block is working.

8.3.8 Displaying the Results

Now let’s write some code to display the results. This code will also re-
side in the btRun_Click procedure, just before the Catch section. These
statements will compute standard errors and z-ratios.

’ compute standard error and z-ratio

ReDim stdErr(UBound(objEL.beta))

ReDim ratio(UBound(objEL.beta))

For i = 1 To UBound(objEL.beta)

stdErr(i) = Math.Sqrt((objEL.cov_beta(i, i)))

8.3 Creating a Standalone GUI Application 309

FIGURE 8.17. Running ELogit.NET with a proper model specification.

ratio(i) = objEL.beta(i, 1) / stdErr(i)

Next

Notice how we use the beta property from the ELOGIT COM server.
Although beta is one-dimensional, it must be treated as a two-dimensional
array in which the second dimension is one. The .NET framework always
retrieves a COM server’s variant array properties as two-dimensional ar-
rays.

Now we will create a dataset object containing tables for holding the
results and then display these results in DataGrid2. To do this, we need to
declare a few more variables at the top of the procedure.

Dim dsResults As DataSet

Dim table As DataTable

Dim row As DataRow

The DataSet object dsResults will contain three tables—estimates,
fit_stats, and covBeta—to hold the parameter estimates, fit statistics,
and covariance matrix, respectively. We need to write some code to set up

310 8. Creating COM Clients

and initialize these tables within dsResults. Our btOpen_Click procedure
is getting a bit long, so let’s create another procedure and call it from
btOpen_Click. Place the following code at the bottom of the form code
file, just before End Class.

Private Sub initResultsTables()

’ Initializes the results table

Dim table As DataTable

Dim dsResults As DataSet

dsResults = DataGrid2.DataSource

’ table of beta estimates

table = New DataTable()

With table

.TableName = "estimates"

.Columns.Add("parameter")

.Columns.Add("estimate")

.Columns.Add("std.err")

.Columns.Add("ratio")

End With

dsResults.Tables.Add(table)

’ table for fit statistics

table = New DataTable()

With table

.TableName = "fit_stats"

.Columns.Add("item")

.Columns.Add("value")

End With

dsResults.Tables.Add(table)

’ table for covariance matrix

table = New DataTable()

With table

.TableName = "covBeta"

.Columns.Add("row")

.Columns.Add("column")

.Columns.Add("value")

End With

dsResults.Tables.Add(table)

End Sub

Now go back to btOpen_Click and place this code just before the Catch
section.

’ Initialize the results table

dsResults = New DataSet()

DataGrid2.DataSource = dsResults

Call initResultsTables()

’ Extract results and load into tables

8.3 Creating a Standalone GUI Application 311

’ beta estimates

With dsResults.Tables("estimates")

For i = 1 To UBound(objEL.beta)

row = .NewRow

row.Item("parameter") = objEL.beta_names(i, 1)

row.Item("estimate") = objEL.beta(i, 1)

row.Item("std.err") = stdErr(i)

row.Item("ratio") = ratio(i)

.Rows.Add(row)

Next i

End With

’ fit statistics

With dsResults.Tables("fit_stats")

’ loglikelihood

row = .NewRow

row.Item("item") = "loglikelihood"

row.Item("value") = objEL.loglik

.Rows.Add(row)

’ G squared

row = .NewRow

row.Item("item") = "G2"

row.Item("value") = objEL.G2

.Rows.Add(row)

’ Chi squared

row = .NewRow

row.Item("item") = "X2"

row.Item("value") = objEL.X2

.Rows.Add(row)

’ Deg of freedom

row = .NewRow

row.Item("item") = "df"

row.Item("value") = objEL.df

.Rows.Add(row)

End With

’ covariance matrix

With dsResults.Tables("covBeta")

For i = 1 To UBound(objEL.beta)

For j = 1 To UBound(objEL.beta)

row = .NewRow

row.Item("row") = i

row.Item("column") = j

row.Item("value") = objEL.cov_beta(i, j)

.Rows.Add(row)

Next j

Next i

End With

312 8. Creating COM Clients

8.3.9 Finishing Up

Finally, let’s add some finishing touches to our project. First, change the
Text property of Form1 from Form1 to ELogit.NET 1.0.

Next, add a button that allows a user to save the results to an XML file.
Place a button named pbSaveResults and a SaveFileDialog object named
SaveFileDialog1 in the form. Add the following code to the button’s event
handler:

Dim filePath As String

Dim dsResults As DataSet

’ Show dialog to get path of xml file

With SaveFileDialog1

.Filter = "XML files (*.xml)|*.xml|" & _

"Text files (*.txt)|*.txt|All files (*.*)|*.*"

.DefaultExt = "*.xml"

.ShowDialog()

filePath = .FileName

End With

If filePath <> "" Then

’ Write the XML file

dsResults = DataGrid2.DataSource

With dsResults

.WriteXml(filePath)

End With

End If

Our ELogit.NET application is finished. Compile and run the program
again. After fitting a model, the results should now appear as shown in Fig-
ure 8.18. Try navigating through the tables of results in the DataGrid. No-
tice the tree containing hyperlinked names of the three tables (estimates,
fit_stats, and covBeta). When you click on one of these hyperlinks, the
corresponding table will appear. To return to the list of tables, click the
back arrow button in the upper-right corner of the DataGrid. Alternatively,
you could provide three buttons above the DataGrid to programmatically
choose the table to be displayed.

More features can be added to ELogit.NET to help ensure that it is used
properly. For example, we could disable the “Run Estimation” button until
the model is fully specified, and we could disable the “Save Results” button
until the model has been fit and the results have appeared.

8.3.10 Exercises

1. In the ELogit.NET project, add a “Save Dataset” button along with
the event-handling code behind it.

8.3 Creating a Standalone GUI Application 313

FIGURE 8.18. The finished ELogit.NET application with parameter estimates
displayed in a DataGrid.

2. Create a graphical user interface for the Magic8 COM server. If you
want to get fancy, incorporate a graphical representation of the ball
with the text of the answer appearing in it.

3. Create a graphical user interface for a COM server that performs the
ordinary chi-square test for independence in a two-way contingency
table. Load the data from an XML file and write the results to an
XML file.

4. ELogit.NET was designed to read data from an XML file and then
load it into the ELOGIT COM server. An alternative strategy is to
use the COM server’s read_datafile and read_namesfile methods
to first load the data into the COM server. After the data and variable
names are successfully loaded, they can then be extracted from the
COM server and displayed in a DataGrid. Implement this strategy
and discuss the relative merits of the two alternatives. (Hint: What
would happen if the user tried to edit the data in the DataGrid?)

References

Akin, E. (2003) Object-Oriented Programming via Fortran 90/95. New
York: Cambridge University Press.

Agresti, A. (2002) Categorical Data Analysis, Second edition. New York:
Wiley.

Box, G.E.P. and Muller, M.E. (1958) A note on the generation of random
normal deviates. Annals of Mathematical Statistics, 29, 610–611.

Chung, H., Loken, E., and Schafer, J.L. (2004) Difficulties in drawing infer-
ences with finite-mixture models: A simple example and a simple solution.
The American Statistician, 58, 152–158.

Davis, B.D., Dulbecco, R. , Eisen, H.N., Ginsberg, H.S. (1989) Microbiology,
Fourth edition. Philadelphia: Lippincott, Williams and Wilkins.

Decyk, V.K., Norton, C.D., and Szymanski, B.K. (1998) How to support
inheritance and run-time polymorphism in Fortran 90. Computer Physics
Communications, 115, 9–17.

Efron, B. and Tibshirani, R.J. (1994) An Introduction to the Bootstrap.
New York: Chapman and Hall.

Freedman, D., Pisani, R., Purves, R (1997) Statistics, Third edition. New
York: Norton.

Gentle, J.E. (2002) Elements of Computational Statistics. New York: Springer-
Verlag.

316 References

Golub, G. and van Loan, C. (1996) Matrix Computations, Third edition.
London: The Johns Hopkins University Press.

Griffiths, P. and Hill, I.D. (1985) Applied Statistics Algorithms. Chichester:
Ellis Horwood.

Hauser, J.R. (1996) Handling floating-point exceptions in numeric pro-
grams. ACM Transactions on Programming Languages and Systems, 18,
139–174.

Hosmer, D.W. and Lemeshow, S. (2000) Applied Logistic Regression, Sec-
ond edition. New York: Wiley.

Huber, P.J. (1967) The behavior of maximum likelihood estimates under
non-standard conditions. In Fifth Berkeley Symposium in Mathematical
Statistics and Probability, 221–233. Berkeley: University of California Press.

Insightful Corporation (2001) S-PLUS 6 for Windows Programmers Guide.
Seattle, WA: Insightful Corporation.

Kahaner, D., Moler, C.B., and Nash, S. (1988) Numerical Methods and
Software. Englewood Cliffs, NJ: Prentice-Hall.

Kennedy, W.J. and Gentle, J.E. (1980) Statistical Computing. New York:
Marcel Dekker.

Knuth, D.E. (1971) An empirical study of FORTRAN programs.
Software—Practice and Experience, 1, 105–133.

Knuth, D.E. (1981) The Art of Computer Programming, Volume 2: Seminu-
merical Algorithms, Second edition. Reading, MA: Addison-Wesley.

Lange, K. (1999) Numerical Analysis for Statisticians. New York: Springer-
Verlag.

Little, R.J.A., Rubin, D.B. (2002) Statistical Analysis with Missing Data,
Second Edition. New York: Wiley.

McCullagh, P., Nelder, J.A. (1989) Generalized Linear Models, Second Edi-
tion. London: Chapman and Hall.

McLachlan, G. and Peel, D. (2000) Finite Mixture Models. New York: Wi-
ley.

Metcalf, M. and Reid, J. (1999) Fortran 90/95 Explained, Second edition.
Oxford: Oxford University Press.

Myers, R.H., (1990) Classical and Modern Regression With Applications,
Second edition. Boston: PWS.

Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T. (1992)
Numerical Recipes in Fortran 77: The Art of Scientific Computing, Second
edition. Cambridge: Cambridge University Press.

References 317

Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T. (1996)
Numerical Recipes in Fortran 90: The Art of Parallel Scientific Computing.
Cambridge: Cambridge University Press.

R Development Core Team (2004) Writing R Extensions. R Development
Core Team.

SAS Institute Inc. (2000) SAS Companion for the Microsoft Windows En-
vironment, Version 8. Cary, NC: SAS Institute Inc.

Thisted, R.A. (1988) Elements of Statistical Computing: Numerical Com-
putation. London: Chapman and Hall.

Titterington, D.M., Smith, A.F.M., and Makov, U.E. (1985) Statistical
Analysis of Finite Mixture Distributions. New York: Wiley.

White, H. (1980) Maximum likelihood estimation of misspecified models.
Econometrica, 50, 1–25.

	cover-m
	cover
	Page_i
	Page_iii
	Page_iv
	Page_v
	Page_vi
	Page_vii
	Page_ix
	Page_x
	Page_xi
	Page_xii
	Page_xiii
	Page_xiv
	Page_xv

	page_00000001
	page_00000001
	page_00000002
	page_00000003
	page_00000004
	page_00000005
	page_00000006
	page_00000007
	page_00000008
	page_00000009
	page_00000010
	page_00000011
	page_00000012
	page_00000013
	page_00000014
	page_00000015
	page_00000016
	page_00000017
	page_00000018
	page_00000019
	page_00000020
	page_00000021
	page_00000022
	page_00000023
	page_00000024
	page_00000025
	page_00000026
	page_00000027
	page_00000028
	page_00000029
	page_00000030
	page_00000031
	page_00000032
	page_00000033
	page_00000034
	page_00000035
	page_00000036
	page_00000037
	page_00000038
	page_00000039
	page_00000040
	page_00000041
	page_00000042
	page_00000043
	page_00000044
	page_00000045
	page_00000046
	page_00000047
	page_00000048
	page_00000049
	page_00000050
	page_00000051
	page_00000052
	page_00000053
	page_00000055
	page_00000056
	page_00000057
	page_00000058
	page_00000059
	page_00000060
	page_00000061
	page_00000062
	page_00000063
	page_00000064
	page_00000065
	page_00000066
	page_00000067
	page_00000068
	page_00000069
	page_00000070
	page_00000071
	page_00000072
	page_00000073
	page_00000074
	page_00000075
	page_00000076
	page_00000077
	page_00000078
	page_00000079
	page_00000080
	page_00000081
	page_00000082
	page_00000083
	page_00000084
	page_00000085
	page_00000086
	page_00000087
	page_00000088
	page_00000089
	page_00000090
	page_00000091
	page_00000092
	page_00000093
	page_00000094
	page_00000095
	page_00000096
	page_00000097
	page_00000098
	page_00000099
	page_00000100
	page_00000101
	page_00000102
	page_00000103
	page_00000104
	page_00000105
	page_00000106
	page_00000107
	page_00000108
	page_00000109
	page_00000110
	page_00000111
	page_00000112
	page_00000113
	page_00000114
	page_00000115
	page_00000116
	page_00000117
	page_00000118
	page_00000119
	page_00000120
	page_00000121
	page_00000122
	page_00000123
	page_00000124
	page_00000125
	page_00000126
	page_00000127
	page_00000128
	page_00000129
	page_00000130
	page_00000131
	page_00000132
	page_00000133
	page_00000134
	page_00000135
	page_00000136
	page_00000137
	page_00000139
	page_00000140
	page_00000141
	page_00000142
	page_00000143
	page_00000144
	page_00000145
	page_00000146
	page_00000147
	page_00000148
	page_00000149
	page_00000150
	page_00000151
	page_00000152
	page_00000153
	page_00000154
	page_00000155
	page_00000156
	page_00000157
	page_00000158
	page_00000159
	page_00000160
	page_00000161
	page_00000162
	page_00000163
	page_00000164
	page_00000165
	page_00000166
	page_00000167
	page_00000168
	page_00000169
	page_00000170
	page_00000171
	page_00000172
	page_00000173
	page_00000174
	page_00000175
	page_00000176
	page_00000177
	page_00000178
	page_00000179
	page_00000180
	page_00000181
	page_00000182
	page_00000183
	page_00000184
	page_00000185
	page_00000186
	page_00000187
	page_00000188
	page_00000189
	page_00000190
	page_00000191
	page_00000192
	page_00000193
	page_00000194
	page_00000195
	page_00000196
	page_00000197
	page_00000198
	page_00000199
	page_00000200
	page_00000201
	page_00000202
	page_00000203
	page_00000204
	page_00000205
	page_00000206
	page_00000207
	page_00000208
	page_00000209
	page_00000210
	page_00000211
	page_00000212
	page_00000213
	page_00000214
	page_00000215
	page_00000216
	page_00000217
	page_00000218
	page_00000219
	page_00000220
	page_00000221
	page_00000222
	page_00000223
	page_00000224
	page_00000225
	page_00000226
	page_00000227
	page_00000228
	page_00000229
	page_00000230
	page_00000231
	page_00000232
	page_00000233
	page_00000234
	page_00000235
	page_00000236
	page_00000237
	page_00000238
	page_00000239
	page_00000240
	page_00000241
	page_00000242
	page_00000243
	page_00000244
	page_00000245
	page_00000246
	page_00000247
	page_00000248
	page_00000249
	page_00000250
	page_00000251
	page_00000252
	page_00000253
	page_00000254
	page_00000255
	page_00000256
	page_00000257
	page_00000258
	page_00000259
	page_00000260
	page_00000261
	page_00000262
	page_00000263
	page_00000265
	page_00000266
	page_00000267
	page_00000268
	page_00000269
	page_00000270
	page_00000271
	page_00000272
	page_00000273
	page_00000274
	page_00000275
	page_00000276
	page_00000277
	page_00000278
	page_00000279
	page_00000280
	page_00000281
	page_00000282
	page_00000283
	page_00000284
	page_00000285
	page_00000286
	page_00000287
	page_00000288
	page_00000289
	page_00000290
	page_00000291
	page_00000292
	page_00000293
	page_00000294
	page_00000295
	page_00000296
	page_00000297
	page_00000298
	page_00000299
	page_00000300
	page_00000301
	page_00000302
	page_00000303
	page_00000304
	page_00000305
	page_00000306
	page_00000307
	page_00000308
	page_00000309
	page_00000310
	page_00000311
	page_00000312
	page_00000313
	page_00000315
	page_00000316
	page_00000317

