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Summary

This report describes a database routine called DB90 which is intended for use with scientific and

engineering computer programs.  The software is written in the Fortran 90/95 programming language

standard with file input and output routines written in the C programming language.  These routines

should be completely portable to any computing platform and operating system that has Fortran 90/95 and

C compilers.  DB90 allows a program to supply relation names and up to 5 integer key values to uniquely

identify each record of each relation.  This permits the user to select specific records or retrieve data in

any desired order.

Introduction

Often when writing complex engineering computer programs, large amounts of data need to be organized

and stored in a relational format such that the data can be retrieved in a different order than it was created.

A database is often useful in this situation by allowing the user to specify relation names and identifying

keys associated with each record.  These names and keys are then used to retrieve data in any order

desired.

The DB90 database provides the user with the capability to define relations, which are named data

records of an explicit format.  Each relation has a unique name, and is defined as a list of variable names

with their associated types and lengths.  Up to 5 key names can be used with each relation, which are used

to group and identify the records written to the database.  Only integer key values are supported in DB90

to simplify the database structure and to avoid problems with testing and matching character strings due

to string length, and real numbers due to round off and precision considerations.

A Word About Fortran Data Storage

For a given relation, each row of data has exactly the same length and structure and must be defined in the

calling program as a contiguous region of memory.  This is accomplished in a Fortran program by

defining a row of data as either a structure or a common block.  As an example, assume a program wants

a relation which contains a real matrix and some integer values.

real :: rmat

integer :: irow, icol

common /data/ rmat(3,5), irow, icol

or

type matrixdef

  real :: rmat(3,5)

  integer :: irow

  integer :: icol

end type matrixdef

type (matrixdef) :: matrix

Both of these examples define a contiguous region of memory with the named variables.  Care must be

taken to define a row of data such that the longer data types are defined first.  The reason for this is that

most Fortran compilers pad common blocks and structures to ensure that each variable starts on a 4 or 8



byte boundary.  Hence, each relation should be defined with double precision real and complex variables
listed first, followed by single precision real and complex variables, integer variables and logical
variables.  Character strings should either be assigned to their own relations, be defined with lengths that
are a multiple of 4 or 8 bytes or placed at the end of a common block or structure.

In this example, the real matrix rmat has fixed dimensions of 3 by 5.  Both common blocks and structures
require all dimensions to be fixed at the time the program is compiled.  If a programmer wants to first
calculate the dimensions of arrays and matrices during program execution and then use those dimensions
to define a database relation, a type of integer pointer can be used in place of the array or matrix name.
The same examples above can be rewritten as:

integer, parameter :: LONG=kind(1d0)
real, allocatable :: rmat(:,:)

integer(LONG) :: rmatptr
integer :: irow, icol

common /data/ rmatptr, irow, icol

or

type matrixdef
  integer(LONG) :: rmatptr
  integer :: irow
  integer :: icol
end type matrixdef

type (matrixdef) :: matrix

The integer rmatptr replaces the actual matrix rmat in the common block or structure.  Before the
common block or structure is written to or read from the database, the memory address of the actual
matrix must be assigned to the rmatptr variable.  This is accomplished with the function DBADR.

allocate(rmat(3,5))

rmatptr = DBADR(rmat)

if the variable is in a common block or

matrix%rmatptr = DBADR(rmat)

if the variable is in a structure.

The routine DBADR must be used with long integer variables instead of using the Fortran 90/95
definition of pointers, because there is no standard internal representation of pointers.  Different compilers
and computers allocate memory for pointers in their own way, and the DB90 routines cannot know how
to interpret them.
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Several of the database subroutines must pass data between the user and the database.  Like with most

Fortran subroutines, entire arrays of data are passed by using the array’s name.  This is the equivalent of

passing the starting location of the contiguous region of memory that defines an array, or in this case a

data record.  Rows of a relation are passed to the database subroutines in a similar manner, but the exact

method depends on whether a common block or structure is used to define the relation.  If a common

block is used, then the first variable of the common block is passed to the subroutine that performs data

transfer.  If a structure defines the data record, then the structure name is passed to the database

subroutine.  The database routines use the memory location as the starting address of the entire data

record, not just the first variable of the data record.

Typical Usage

All coding examples presented in this paper use Fortran 90/95 syntax.  It should be possible to use Fortran

77 syntax for the user’s program and still access most features of the DB90 program, but this has not been

tested thoroughly, and, therefore, results cannot be guaranteed.  The DB90 routines are written in Fortran

90/95 and must be compiled with a Fortran 90/95 compiler.

The first step in defining and using a database is to create the database file.  The user must first call

DBCREATE to create a new file and initialize the database structure.  This creates a new, empty database

file in the current directory.

call DBCREATE (‘dbname’)

If the specified filename already exists, it will be deleted and the new empty database file will take its

place.

To define a relation in the database, the routine DCADDR is called.  This will add an empty relation

definition, which includes the relation name, key names, variable names, variable types and variable

lengths.  New relations may be added to the database at any time.  For the example described earlier:

character(len=8) :: kname(5)

character(len=12) :: vname(100)

integer :: vtype(100)

integer :: vlength(100)

integer :: nk

integer :: nv

kname(1) = ‘mat’

nk = 1

vname(1) = ‘rmatrix’

vname(2) = ‘row’

vname(3) = ‘column’

vtype(1) = 1

vtype(2) = 0

vtype(3) = 0

vlength(1) = 3 * 5

vlength(2) = 1



vlength(3) = 1

nv = 3

call DCADDR (‘table’, kname, vname, vtype, vlength, nk, nv)

This will add a definition for a relation named “table” to the database with a single key named “mat” and
3 variables named “rmatrix”, “row”, and “column”.  One item to note in this example is the type
parameter for the “rmatrix” variable.  In the above example, a value of 1 is used for vtype(1).  This
identifies rmatrix as a real data type.  If the pointer definition is used from the second example above,
then this type would be 11 instead.  See the definition of DCADDR in Appendix I for a more complete
explanation of each argument to this subroutine.  Each additional relation is defined in this same way, and
relations can be added at any time.

If the user needs to test to see if a relation has been previously defined, subroutine DBCHECK should be
called.

integer :: rows, rowlen

call DBCHECK (‘table’, rows, rowlen)

In this example, if the relation named “table” has already been defined in the database the variable
“rowlen” is returned with the number of bytes required for each data record and the variable “rows” is
returned with the number of data records already written to the database for this relation.  If the relation
has not been defined yet, the row length is returned as zero.

Now that the relation “table” has been defined, data rows (or records) can be written to the database.  To
add a new row of data, the user calls subroutine DBADD.

call DBADD (‘table’, ‘mat’, 42, ‘ ‘, 0, ‘ ‘, 0, ‘ ‘, 0, ‘ ‘, 0, rmat)

or

call DBADD (‘table’, ‘mat’, 42, ‘ ‘, 0, ‘ ‘, 0, ‘ ‘, 0, ‘ ‘, 0, rmatptr)

for the case of a relation defined using a common block, or

call DBADD (‘table’, ‘mat’, 42, ‘ ‘, 0, ‘ ‘, 0, ‘ ‘, 0, ‘ ‘, 0, matrix)

for the case of a relation defined using a structure named “matrix”.  In this example, the key named “mat”
was used with a value of 42.  Notice that information for all 5 possible keys must be present, even when
fewer or none are used.  Additional rows of data can be written by calling DBADD multiple times, and
different key values may be used to identify or group the rows for future reference.  For the remainder of
these examples, only the structure form of the relation data will be used.

Once relations have been defined and data rows have been written to the database, it would be desirable
to retrieve data in whatever order the user wishes.  Data is retrieved by first identifying the relation to get
data from, along with any keys and their values that are needed to specify a subset of all rows of data
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contained in the database for this relation.  Calling subroutine DBFIND selects the relation from which to

read data.

call DBFIND (‘table’, ‘ ‘, ‘  ‘, 0, ‘ ‘,‘ ‘, ‘  ‘, 0, ‘ ‘,‘ ‘, ‘  ‘, 0, ‘ ‘,‘ ‘, ‘  ‘, 0, ‘ ‘,‘ ‘, ‘  ‘, 0)

Since no key names and values were supplied with this call to DBFIND, all rows of data for this relation

are available for retrieval.  If DBFIND is called as such:

call DBFIND (‘table’, ‘mat‘, ‘eq‘, 42, ‘ ‘,‘ ‘, ‘  ‘, 0, ‘ ‘,‘ ‘, ‘  ‘, 0, ‘ ‘,‘ ‘, ‘  ‘, 0, ‘ ‘,‘ ‘, ‘  ‘, 0)

then only data rows having the key named “mat” with a value equal to 42 would be available for retrieval.

Once again, notice that information for all 5 possible keys must be present, even when fewer or none are

used.  Refer to the definition of DBFIND in Appendix I for a complete list of all possible key operations.

Now that a relation name and a subset of data rows has been identified using DBFIND, the actual data

rows can be retrieved.  The user should first establish how many data rows met the DBFIND search

criteria by calling DBINFO.

integer :: nrows, irow, jrow

call DBINFO (nrows, irow,jrow)

This routine returns in the variable “nrows” the number of rows available for retrieval.  If this number is

zero, then no rows matched the search criteria and no attempt should be made to read any data rows.  If

the number of data rows is greater than zero, calls to subroutine DBGET are made to actually read the

data.

call DBGET (matrix)

This call to DBGET retrieves the first row of data matching the criteria from the call to DBFIND and

stores it in the structure named matrix.  The next matching row of data is retrieved with another call to

DBGET.  A typical code fragment used to read all of the matching rows would be:

do i = 1,nrows

  call DBGET (matrix)

  .

  perform some operations on the data contained in the “matrix” structure

  .

end do

It may be necessary to change data within a data row after it was written to the database.  This can be

accomplished in one of two ways.  If you first read a row of data using DBGET, then subsequently calling

DBPUT will overwrite that row with the new data.

call DBGET (matrix)

  .

  perform some operations on the data contained in the “matrix” structure

  .

call DBPUT (matrix)



If it is desired to completely rewrite the “matrix” structure and use it to overwrite what is already in the
database without having to read the row first, then a call to subroutine DBREPL is performed as such:

call DBREPL (matrix)

Only the first row that met the search criteria from the most recent call to DBFIND is overwritten.  If
additional rows are to be overwritten in this manner, it will be necessary to call DBFIND again specifying
exactly which one row is to be overwritten with a subsequent call to DBREPL.  For this reason, it is best
to use the combination of DBGET and DBPUT to overwrite several rows of data within a relation, and
use DBREPL when only one row of data exists for a given relation.

Note that only one relation may be opened at a time.  Database subroutine calls that perform any read or
write operation do so only on the relation most recently opened by a call to DBFIND.  This is true even if
the calls to DBFIND and other database subroutine calls occur in different user supplied subroutines.  A
call to DBADD also changes the currently opened relation, so DBFIND must be called again before
attempting to read from the database.

Before the user’s program terminates, a call must be made to DBCLOSE to properly close the database
file and rewrite internal database pointers and variables.

call DBCLOSE

If this call is not made, or if the user’s program terminates with an error before calling DBCLOSE, the
database may become corrupted and some or all of the data will not be accessible.  In general, only data
that was written since the last call to DBCLOSE will be lost, but this is not guaranteed.

There are many other user callable utilities available in these database routines which are not mentioned
in this section.  Reference should be made to Appendix I for a complete description of each user callable
subroutine in the database system.

Appendix I – Subroutine Definitions
This appendix describes each user callable subroutine in the DB90 system.  It is up to the user to make
sure that the number and type of arguments passed between these routines and the calling program are
correct.  The only exception to this requirement is that the data array representing the row of data to be
read from or written to the database may be any argument type.  These routines are presented here in
alphabetical order, and not in the order in which they are typically called.

Subroutine DBADD
call DBADD (REL, K1, T1, K2, T2, K3, T3, K4, T4, K5, T5, DATA)
character(len=*), intent(in) :: REL
character(len=*), intent(in) :: K1, K2, K3, K4, K5
integer, intent(in) :: T1, T2, T3, T4, T5
integer, intent(in) :: DATA

This routine is called to add a new row of data to the database for this relation.  The key names must
correspond to those used to define this relation, but they can be in any order.  It is advisable to assign a
key value to every key name defined for this relation.  If you do not, searching for a key value when
retrieving rows of data may return unpredictable results.  Arguments for all 5 keys must be passed to this
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routine, with the unused keys typically being passed as a blank one character string for the key name and

a zero for the key value.

REL Relation name, 1 to 12 characters in length.

K1…K5 Key names, 1 to 8 characters in length.  These may be blank if not needed.

T1…T5 Key values.  These are typically set to zero if not used with a corresponding key name.

DATA Array containing the entire row of data for the relation.

Example:

call DBADD (‘relname’,              ‘A’,   12,       &

                                         ‘SPECIAL’, 100,      &

                                                        ‘ ‘,     0,      &

                                                        ‘ ‘,     0,      &

                                                        ‘ ‘,     0,      &

                        data)

Function DBADR

DBADR (DATA)

integer(LONG), intent(out) :: DBADR

integer(LONG), intent(in) :: DATA

This function is called to return the address of a Fortran variable as a long integer (8 bytes).  It is used to

assign array addresses to long integer variables to facilitate using allocatable arrays with the database.  It

will be necessary to declare this function as an external function to correctly define its type.

DATA Fortran array whose address is desired.

Example:

integer(LONG), external :: DBADR

integer(LONG) :: address

address = DBADR(data)

Subroutine DBCHECK

call DBCHECK (REL, ROWS, ROWLEN)

character(len=*), intent(in) :: REL

integer, intent(out) :: ROWS

integer, intent(out) :: ROWLEN

This routine is called to check on the status of a relation.  If the relation has been defined, the number of

rows already in the database, if any, and the length of each row, in bytes, is returned.  If the relation has

not been defined yet, the row length is set to zero.

REL Relation name.

ROWS The number of existing rows in this relation.

ROWLEN The row length, in bytes.
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Example:

call DBCHECK (‘relname’, rows, rowlen)

Subroutine DBCLOSE

call DBCLOSE

This routine is called to close the database.  It must be called before the user’s program terminates or the

database may become corrupted.

Example:

call DBCLOSE

Subroutine DBCREATE

call DBCREATE (NAME)

character(len=*), intent(in) :: NAME

This routine is called to create a new database file and initialize the database pointers and structures.  If a

file with the same name already exists, it will be destroyed and replaced with the new empty database.

NAME Filename for the new database.

Example:

call DBCREATE (‘filename’)

Subroutine DBDEL

call DBDEL

This routine is called to delete selected rows of a relation from the database.  The relation and the rows to

delete are selected by calling DBFIND.

Example:

call DBDEL

Subroutine DBFIND

call DBFIND (REL, K1, C1, T1, B12, K2, C2, T2, B23, K3, C3, T3, B34, K4, C4, T4, B45, K5, C5, T5)

character(len=*), intent(in) :: REL

character(len=*), intent(in) :: K1, K2, K3, K4, K5

character(len=2), intent(in) :: C1, C2, C3, C4, C5

integer, intent(in) :: T1, T2, T3, T4, T5

character(len=1, intent(in) :: B12, B23, B34, B45

This routine is called to select an existing relation in the database and to choose a subset of the rows of

that relation for subsequent reading and writing operations.  The Boolean operators provide a means of

selecting ranges of values for each key and for linking keys together.  Since only one relation may be

active at a time, calling this routine also closes the previously active relation.  Arguments for all 5 keys
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must be passed to this routine, with the unused key names and Boolean operators typically being passed

as blank one character strings and zeros being passed for the key values.

REL Relation name, 1 to 12 characters in length.

K1…K5 Key names, 1 to 8 characters in length.  These may be blank if not needed.  The special

key name ‘ROWS’ may also be used.

C1…C5 Key boolean operator, which may be one of: eq, ne, gt, lt, ge, le, mx, mn meaning

equal, not equal, greater than, less than, greater than or equal to, less than or equal to,

maximum, and minimum, respectively.

 T1…T5 Key values.  These are typically set to zero if not used with a corresponding key name.

B12 Boolean operator relating key 1 to key 2, which may be either ‘a’ for AND or ‘o’ for OR.

B23 Boolean operator relating key 2 to key 3, which may be either ‘a’ for AND or ‘o’ for OR.

B34 Boolean operator relating key 3 to key 4, which may be either ‘a’ for AND or ‘o’ for OR.

B45 Boolean operator relating key 4 to key 5, which may be either ‘a’ for AND or ‘o’ for OR.

Example:

call DBFIND (‘relname’, ‘SPECIAL’, ‘eq’,     4, ‘a’,       &

                                                ‘ITEM’, ‘ge’, 127, ‘ ‘,        &

                                                         ‘ ‘, ‘  ‘,       0, ‘ ‘,       &

                                                         ‘ ‘, ‘  ‘,       0, ‘ ‘,       &

                                                         ‘ ‘, ‘  ‘,       0)

In this example, DBFIND will set internal parameters to point to a subset of the rows of relation

‘relname’ that have the ‘SPECIAL’ key equal to 4 AND where the ITEM key is greater than or equal to

127.  A special key name, ‘ROWS’, may also be used to select a row or rows regardless of key values.

Subroutine DBGET

call DBGET (DATA)

integer, intent(out) :: DATA

This routine is called to retrieve the next available row of the current relation.  The relation and the subset

of rows to read from must first be selected using DBFIND.

DATA Array to receive the row of data.

Example:

call DBGET (data)

Subroutine DBGETK

call DBGETK (KEY, VAL)

character(len=*), intent(in) :: KEY

integer, intent(out) :: VAL

This routine is called to retrieve a key value matching the supplied key name from the most recently read

row of the current relation.  This routine lets you retrieve key values regardless of the criteria used to

select the row of data.  The row of data must have been previously read using DBGET.
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KEY Key name, 1 to 8 characters in length.

VAL Key value.

Example:

call DBGETK (‘SPECIAL’, value)

Subroutine DBGETV

call DBGETV (VAR, DATA, INDEX)

character(len=*), intent(in) :: VAR

integer, intent(out) :: DATA

integer, optional, intent(in) :: INDEX

This routine is called to retrieve a variable value matching the supplied variable name from the next

available row of the current relation.  If the variable is an array and the optional index argument is

present, only that one array value is retrieved.

VAR Variable name, 1 to 8 characters in length.

DATA Variable or array to store the variable data into.

INDEX Index into the array, if the variable is an array.  If index is present, it must be a valid array

index.

Example:

call DBGETV (‘XYZ’, data, index)

or

call DBGETV (‘XYZ’, data)

The first example retrieves only the one array element of the ‘XYZ’ array at the ‘index’, returning it into

the variable data(1).  The second example retrieves the entire ‘XYZ’ array into the array data.

Subroutine DBGKEYS

call DBGKEYS (KEY, VAL)

character(len=*), intent(in) :: KEY

integer, intent(out) :: VAL

This routine is called to retrieve all of the key values matching the supplied key name from the current

relation.  This routine lets you retrieve key values regardless of the criteria used to select the row of data.

The relation and the subset of rows to read from must first be selected using DBFIND.

KEY Key name, 1 to 8 characters in length.

VAL Array of key values.

Example:

call DBGKEYS (‘SPECIAL’, values)

Subroutine DBINFO

call DBINFO (NROW, IROW, JROW)
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integer, intent(out) :: NROW

integer, intent(out) :: IROW

integer, intent(out) :: JROW

This routine is called to return the number of rows of the current relation that exist in the database

matching the search criteria specified in the most recent call to DBFIND.  One should use this routine to

determine how many rows are available to read, and to check that there are in fact rows to read.  This will

avoid generating errors from attempting to read data that does not exist.

NROW Number of data rows matching the search criteria.

IROW Row counter.

JROW Actual row number corresponding to IROW.

Example:

call DBINFO (nrows, irow, jrow)

Subroutine DBOPEN

call DBOPEN (NAME)

character(len=*), intent(in) :: NAME

This routine is called to open an existing database.  If the database does not already exist, an error is

generated and the user’s program will terminate.  Databases must first be created using DBCREATE.

NAME Filename of an existing database.

Example:

call DBOPEN (‘filename’)

Subroutine DBPUT

call DBPUT (DATA)

integer, intent(in) :: DATA

This routine is called to replace the most recently read row of data from the current relation.  The row

must have been read first using DBGET.

DATA Array containing the row of data.

Example:

call DBPUT (data)

Subroutine DBPUTK

call DBPUTK (K1, T1, K2, T2, K3, T3, K4, T4, K5, T5)

character(len=*), intent(in) :: K1, K2, K3, K4, K5

integer, intent(in) :: T1, T2, T3, T4, T5
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This routine is called to replace the key values for the most recently read row from the current relation.

The row must have been read first using DBGET.  The main purpose of this routine is to change the

values of keys for a row of data that has been changed and replaced using DBPUT.  Arguments for all 5

keys must be passed to this routine, with the unused keys typically being passed as a blank one character

string for the key name and a zero for the key value.

K1…K5 Key names, 1 to 8 characters in length.  These may be blank if not needed.

T1…T5 Key values.  These are typically set to zero if not used with a corresponding key name.

Example:

call DBPUTK (              ‘A’,   12,       &

                          ‘SPECIAL’, 100,       &

                                         ‘ ‘,     0,       &

                                         ‘ ‘,     0,       &

                                         ‘ ‘,     0)

Subroutine DBPUTV

call DBPUTV (VAR, DATA, INDEX)

character(len=*), intent(in) :: VAR

integer, intent(in) :: DATA

integer, optional, intent(in) :: INDEX

This routine is called to store a variable value matching the supplied variable name to the most recently

accessed row of the current relation.  If the variable is an array and the optional index argument is present,

only that one array value is stored.  The row must have been previously retrieved by either DBGET or

DBGETV.

VAR Variable name, 1 to 8 characters in length.

DATA Variable or array to read the variable data from.

INDEX Index into the array, if the variable is an array.  If index is present, it must be a valid array

index.

Example:

call DBPUTV (‘XYZ’, data, index)

or

call DBPUTV (‘XYZ’, data)

The first example writes only the one array element of the ‘XYZ’ array at the ‘index’ to the database,

getting it from the variable data(1).  The second example writes the entire ‘XYZ’ array to the database.

Subroutine DBREPK

call DBREPK (K1, T1, K2, T2, K3, T3, K4, T4, K5, T5)

character(len=*), intent(in) :: K1, K2, K3, K4, K5

integer, intent(in) :: T1, T2, T3, T4, T5

This routine is called to replace the key values for the first row found from the most recent call to

DBFIND.  Use of this routine is similar to DBPUTK except the row of data does not need to be read first.
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Arguments for all 5 keys must be passed to this routine, with the unused keys typically being passed as a

blank one character string for the key name and a zero for the key value.

K1…K5 Key names, 1 to 8 characters in length.  These may be blank if not needed.

T1…T5 Key values.  These are typically set to zero if not used with a corresponding key name.

Example:

call DBREPK (              ‘A’,   12,       &

                          ‘SPECIAL’, 100,       &

                                         ‘ ‘,     0,       &

                                         ‘ ‘,     0,       &

                                         ‘ ‘,     0)

Subroutine DBREPL

call DBREPL (DATA)

integer, intent(in) :: DATA

This routine is called to replace the first row of data found from the most recent call to DBFIND.  Use of

this routine is similar to DBPUT except the row of data does not need to be read first.

DATA Array containing the row of data.

Example:

call DBREPL (data)

Subroutine DBTOC

call DBTOC (NUNIT)

integer, intent(in) :: NUNIT

This routine is called to write the table of contents of the currently open database to the specified Fortran

file unit.

NUNIT Fortran unit number (typically 6 for the standard Fortran output file) to write the table of

contents to.

Example:

call DBTOC (6)

Subroutine DBVINFO

call DBVINFO (VAR, VLENG, VTYPE)

character(len=*), intent(in) :: VAR

integer, intent(out) :: VLENG

integer, intent(out) :: VTYPE

This routine is called to retrieve the length and type of a variable for the currently opened relation.
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VAR Variable name, 1 to 8 characters in length.

VLENG Variable length in words, except when the variable is a character then the length is in

bytes.  Word length is machine dependent but is the length of a standard integer or single

precision real variable, usually 4 bytes.

VTYPE Variable type.

Example:

call DBVINFO (‘XYZ’, vlength, vtype)

Subroutine DCADDR

call DCADDR (RNAME, KNAME, VNAME, VTYPE, VLENG, NK, NV)

character(len=*), intent(in) :: RNAME

character(len=*), intent(in) :: KNAME

character(len=*), intent(in) :: VNAME

integer, intent(in) :: VTYPE

integer, intent(in) :: VLENG

integer, intent(in) :: NK

integer, intent(in) :: NV

This routine is called to define a new relation in the currently open database.  Routine DBCHECK may be

called first to determine if this relation has already been defined, if necessary.  New relations may be

added to the database at any time.

RNAME Relation name, 1 to 12 characters in length.

KNAME Array of key names, 1 to 8 characters in length.  There can be at most 5 keys.

VNAME Array of variable name, 1 to 8 characters in length.  There can be at most 100 variable

names in each relation.

VTYPE Array of variable type identifies corresponding to the array of variable names.  The

identifiers are:

0 – integer

1 – single precision real

2 – double precision real

4 – character

10 – integer pointer

11 – single precision real pointer

12 – double precision real pointer

VLENG Array of variable lengths corresponding to the array of variable names.  The lengths refer

to the number of words for integer and real variables, and to the number of characters for

character variables.

NK The number of key names, 0 to 5.

NV The number of variables.  There must be at least one variable in each relation.

Example:

kname(1) = ‘SPECIAL’

kname(2) = ‘ITEM’

nk = 2

vname(1) = ‘MATRIX1’
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vname(2) = ‘VECTOR1’

vname(3) = ‘NUM’

vname(4) = ITEM’

vtype(1) = 2

vtype(2) = 2

vtype(3) = 0

vtype(4) = 0

vleng(1) = 200 * 400

vleng(2) = 400

vleng(3) = 1

vleng(4) = 1

nv = 4

call DCADDR (‘relname’, kname, vname, vleng, nk, nv)
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