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PREFACE 
Fortran is the dominant language used on supercomputers today, and the 
vendors of these machines have expended much effort in providing optimiz­
ing compilers for Fortran programs. However, many constructs in existing 
programs prevent the compilers from generating optimized code. On a su­
percomputer, fully optimized code can run an order of magnitude faster than 
unoptimized, so it is imperative that a programmer understand how to write 
Fortran in a way that realizes the full potential of the target machine. 

This book, the first of its kind, explains in detail both the underlying 
architecture of today's supercomputers and the manner by which a compiler 
maps Fortran code onto that architecture. Most important, the constructs 
preventing full optimizations are outlined, and specific strategies for restruc­
turing a program are provided. 

This book is based on the authors' actual experience in restructuring 
existing programs for particular supercomputers and generally follows the 
format of a series of supercomputer seminars that they regularly present on a 
worldwide basis. All examples are explained with actual Fortran code; no 
mathematical abstractions such as dataflow graphs are used. Targeted for 
programmers directly involved in optimizing Fortran programs on today's 
high-performance scientific computers, the book also provides excellent 
preparation for anyone interested in the field. 

Chapter 1 is an introduction to the basic concepts of scalar, vector, and 
parallel processing. Chapter 2 provides an in-depth look at the architectural 
features of a variety of existing machines, with particular attention paid to 
the features common to many of them. Chapter 3 explains the optimization 
techniques used by compilers and how a programmer can take advantage of 
this knowledge both in restructuring existing programs and in the develop­
ment of new applications. Chapter 4 presents dozens of examples of loops 
from real-world programs, with a discussion of the inherent problems, and a 
restructured version that typically runs two to twenty times faster than the 
original. Performance of both the original and restructured code is graphed 
for each loop. A list of common abbreviations and glossary of important 
terms are provided in Appendix A. 

The authors acknowledge the many contributions of their students over 
the years. Special thanks go to our employer, Pacific-Sierra Research Corpo­
ration, for all of its support in this endeavor, to Mark Koenig, who prepared 
the many figures in the text, to Tracey Andersen, who transcribed several 
rough drafts, and to Gene Wagenbreth, who carefully read the original 
manuscript and made many fine suggestions. Any errors and omissions are 
solely the responsibility of the authors. 
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1 
INTRODUCTION 

This book is concerned with the effective use of the Fortran programming 
language on a loosely defined class of machines known as supercomputers. It 
is assumed that the reader has a working knowledge of Fortran. As for 
knowledge of supercomputers, it is assumed that the reader's principal pro­
gramming experience has been on the classical "von Neumann" machines: 
sequential, scalar processors. Why make such an assumption? Because the 
von Neumann machines number in the millions, but the supercomputers 
number in the hundreds; because until recently only a few universities have 
had access to supercomputers, and this access was often restricted to a small 
group of researchers; in short, because most of us grew up on conventional 
computers. 

1.1 
CONVENTIONAL COMPUTERS 

In describing his surgical skills, Charles Emerson Winchester of the television 
series M*A*S*H once claimed: "I do one thing at a time, I do it very well, and 
then I move on." This is the essence of the "von Neumann" architecture of a 
conventional computer, and it also well describes the approach taken by 
many programmers in the use of Fortran. Standard Fortran, in fact, demands 
such an approach. Even when operating on an entire array of numbers, we 
must specify what is to be done to a single array element, then loop through 
all the subscripts of all the dimensions of the array. Thus (until ANSI 8X 
becomes the Fortran standard) we are forced to transform the matrix algebra 

1 



2 INTRODUCTION 

Statement: 

A = B + C 

into 
DO 1000 J - 1, NDIM2 

DO 1000 1 = 1 , NDIM1 
A(I,J) = B(I,J) + C(I,J) 

1000 CONTINUE 

Most of us have learned to work within the constraints of Fortran over the 
years, and many know that it is more efficient on a conventional computer to 
write the matrix sum as we have done, rather than with the J and I loops 
reversed: 

DO 1010 1 = 1 , NDIM1 
DO 1010 J = 1, NDIM2 

A(I,J) = B(I,J) + C(I,J) 
1010 CONTINUE 

How much more efficient? Maybe 10%, 20%, 50%; certainly less than a 
factor of two. For many programmers, the payoff for writing efficient 
Fortran for conventional computers has not been high enough to warrant 
their attention. However, as we will soon learn — on a supercomputer, de­
pending on the dimensions of the arrays — loop 1000 may execute an order 
of magnitude faster than loop 1010. 

1.2 
WHAT'S A SUPERCOMPUTER ANYWAY? 
Time was invented to keep everything from happening all at 
once. 

—Anonymous 

Supercomputers are built in direct defiance of the preceding statement. A 
survey of the literature will reveal no rigorous definition of a supercomputer, 
nor do we intend to give one here. One popular working notion is that a 
supercomputer is the biggest, fastest computer available at the moment. This, 
of course, limits the class to one computer at a time, assuming we could get 
all interested parties to agree on which one — probably a hopeless task. 

Since this book is about Fortran, we will limit our discussion to the 
so-called "scientific" computers as opposed to those used primarily for busi­
ness data processing, although we acknowledge that there is often a signifi­
cant overlap. There are certainly some very big, fast scientific computers, 
some with physical memories exceeding two billion bytes (gigabytes), some 
with clock cycles close to four nanoseconds. (A nanosecond [nsec] is one 
billionth of a second.) 
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These computers can be programmed to perform in a conventional 
manner, and they will still be faster than other computers just because their 
clocks are so much faster. What distinguishes the supercomputers from 
others is their ability to perform many operations simultaneously. To para­
phrase Charles Emerson Winchester, supercomputers "do many things at 
once, do them very well, and then they move on." 

Some supercomputers accomplish many simultaneous operations by 
"vector" processing, that is, by using powerful instructions to feed arrays of 
operands through a "pipeline" or assembly line of operations. This pipeline 
concept is a streamlining of the conventional scalar processor, a recognition 
that the most intense use of a computer is almost always in a loop, doing the 
same operations to many different operands. The Cray Research, Inc. (CRI) 
Cray-IS, X-MP, Cray-2, the Control Data Corporation (CDC) CYBER 205 
and ETA 10, the IBM 3090 Vector Facility, the Fujitsu VP Series, the Nippon 
Electric (NEC) SX2 series, and the Hitachi S-810 and S-820 are all examples 
of pipelined vector processors. 

Other supercomputers accomplish many simultaneous operations by 
having many processors working in parallel on a program. The most famous 
is the ILLIAC IV, recently decommissioned by the NASA Ames Research 
Laboratory. Other parallel machines are INTEL'S iPSC; NCUBE's NCUBE/n 
series; Bolt, Beranek and Newman's BUTTERFLY; Floating Point System's 
T-Series; and Thinking Machines' Connection Machine. Of course some 
machines combine both parallel and vector architectures, even some of the 
computers already mentioned, such as the Cray X-MP. 

Finally, in recent years there have appeared some machines classified 
as "minisupercomputers." These machines incorporate many of the architec­
tural features of the supercomputers but use slower electronic components 
and generally smaller memories. Typical clock speeds are from 50 to 200 
nanoseconds, and physical memory sizes range up to hundreds of megabytes 
(millions of bytes). The Alliant FX/1 and FX/8, Convex C-l and C-MP, 
ELXSI 6400, and Scientific Computer Systems SCS-40 are all members of 
this class of machines. 

All of the supercomputers and minisupercomputers are characterized 
by their ability to perform much faster in "vector" or "parallel" mode than in 
"scalar" mode. The performance might be from two to one thousand times 
faster, but only if we know how to program them. That is what this book is 
about, the effective use of Fortran on supercomputers. 

1.3 
TERMINOLOGY 

We assume that the reader is familiar with many of the basic terms describing 
computers and computer languages. But certain common words have special 
meanings in the discussion of parallel and vector computers. We wish to 
introduce just a few of them here. 



4 INTRODUCTION 

1.3.1 Scalar 
A scalar value is a single value or entity. A scalar instruction operates on one 
or a pair of scalar values, as in the Fortran statement: 

SCA1 = SCA2 + SCA3 

At least four scalar instructions must be executed to complete this statement: 
two fetch instructions to get the values of SCA2 and SCA3 from memory, an 
add instruction, and a store instruction to place the answer into SCA1 in 
memory. Conventional computers execute DO loops in scalar mode. Con­
sider: 

DO 1020 1 = 1 , 100 
ARRAYl(I) = ARRAY2(I) + ARRAY3(I) 

1020 CONTINUE 

This loop requires the execution of at least 400 scalar instructions to perform 
the desired addition of ARRAY2 and ARRAY3. 

1.3.2 Vector and Stride 
Physicists, engineers, and linear algebra buffs: Suspend your long-held no­
tions of vectors. A vector is an ordered list of scalar values, and it is inher­
ently one-dimensional. A simple vector in a computer's memory is defined as 
having a starting address, a length (number of elements), and a stride (constant 
distance in memory between elements). All vector processors have machine 
instructions that allow the fetching and storing of vectors of values from 
memory. Consider again: 

DO 1020 1 = 1 , 100 
ARRAYl(I) = ARRAY2(I) + ARRAY3(I) 

1020 CONTINUE 

On a vector processor, ARRAY 1 can be regarded as a vector whose starting 
address is ARRAYl(l), whose length is 100, and whose stride is 1 (the 
increment of the DO loop index I). On the CYBER 205, execution of a single 
vector instruction can perform all of the operations of the entire DO 1020 
loop. So a vector instruction performs its operation on each of the elements 
of its vector operands. It is important to note that a vector instruction does 
not operate on all of the vector elements simultaneously. Rather, the pairs of 
operands are fed into the pipelined vector processor in a continuous stream, 
with the results flowing out and back to memory in a continuous stream, but 
still one at a time. Depending on the machine and the vector length of the 
operation, this streamlining produces results at a rate 2 to 100 times faster 
than if scalar instructions were used. When vector operations can be used to 
perform a computation, it is said to be "vectorized." (A full discussion of 
simple and more complicated vectors can be found in Chapter 3.) 
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1.3.3 Parallel and Concurrent 
These terms are synonymous when applied to computers, and they always 
mean the simultaneous execution of instructions within a given machine. 
There are, however, many nuances. Many scalar processors have some de­
gree of parallelism on a fine-grain level. If the central processing unit (CPU) 
possesses entirely independent add and multiply units, then it is possible in 
the execution of the statement 

PARTY = CHIPS * DIP + PEOPLE + SONG 

that the sum of PEOPLE + SONG can be computed in parallel with the 
product CHIPS * DIP. 

Most vector processors can also issue vector instructions in parallel, but 
the most interesting application of the idea of concurrency is on a multipro­
cessor system—that is, a computer with more than one CPU. Consider, one 
more time with feeling: 

DO 1020 1 = 1 , 100 
ARRAYl(I) = ARRAY2(I) + ARRAY3(I) 

1020 CONTINUE 

On a parallel computer with 100 processors, each iteration of this loop could 
be assigned to its own processor. That is, Processor 1 is assigned the task of 
computing 

A R R A Y 1 ( 1 ) = A R R A Y 2 ( 1 ) + A R R A Y 3 ( 1 ) 

Processor 2 computes 

A R R A Y 1 ( 2 ) = A R R A Y 2 ( 2 ) + A R R A Y 3 ( 2 ) 

and so forth. The beauty of this scheme is that the loop runs 100 times faster 
than if it were executed on a single processor. This statement ignores any cost 
of initializing parallel execution. This and other practical considerations will 
be discussed in later sections. 

1.4 
AMDAHL'S LAW 

Amdahl's law states that in any system having two or more processing 
modes of differing speeds, the performance of the system will be dominated 
by the slowest mode. This has immediate application to vector and parallel 
computers. 

1.4.1 Amdahl's Law for Vector Processors 
Here we are concerned with computer systems having scalar processing as 
well as vector processing. Since vector processing is inherently faster than 
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scalar, Amdahl's law tells us that the system will be dominated by scalar 
performance. The following is a derivation of computer performance as a 
function of the fraction of code vectorized. Let 

Ts = the time required to perform an operation in scalar mode 
Tv = the time required to perform an operation in vector mode 
Fs = the fraction of operations performed in scalar mode 
Fv = the fraction of operations performed in vector mode 

Then the time T to perform N operations is 

T = N · (Fs · Ts + Fv · TO) 

Given that Fs + Fv = 1, then 

T = N · [(1 - Fv) · Ts + Fv · Tv] 

Normalizing to Ts = 1 and defining vector speedup: 

vs-£ 
Tv 

then 

Fv 
T = N 

= N · 

U-ft-l + vs 

- f i ^ · * 
] 

] 
Now let performance be defined as the number of operations performed per 
unit time: 

T 

- ^ -
This provides performance as a function of the fraction of operations vector­
ized and allows us to determine for an existing program how much code 
must be vectorized to achieve performance goals. Figure 1.1 is a graph of this 
function of VS = 10 (typical of the Cray X-MP computers). 

Note how this graph shows that the performance of a vector processor 
is dominated by its scalar processing capability. One-hundred percent vec­
torized produces a factor of 10 performance improvement, but 55% vector­
ized is only a factor of 2! Not until 90% is vectorized does performance 
exceed one-half of the maximum. 

Note that the abscissa is labeled "Fraction of Utilized Code Vectorized." 
Fortunately, most programs follow an 80-20 rule, that is, 80% of the time is 
spent in 20% of the code. It might be 90-10 or 75-25, but most programs 
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a. 

0.1 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 1 

Fraction of Utilized Code Vectorized 

FIGURE 1.1. 
Amdahl's Law for Vector Processors 

have a few very CPU-intensive routines. It is conceivable that a program of 
50,000 statements would have a solution routine of 100 statements in which 
80% of the CPU time is spent. The point is that if the solution routine is 
vectorized, then 80% of the utilized code is vectorized, even though only 
0.2% of the statements have been vectorized. 

One of the important lessons to learn from this graph of Amdahl's law 
is that in benchmarking a typical mix of applications programs in which 
fraction of vectorization is about 0.5, the machine with the best scalar 
processing performance is probably going to win. To drive the point home, 
imagine a hypothetical computer that performs vector operations in zero time 
but whose scalar performance is one-half that graphed in Figure 1.1. Note 
that in the equation for performance, the term (VS —1)/VS goes to one as VS 
goes to infinity. Superimposing the hypothetical performance with the origi­
nal, we have Figure 1.2. 
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0.1 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 1 

FRACTION OF UTILIZED CODE VECTORIZED 
FIGURE 1.2. 

Amdahl's Law with Zero-Time Vector Processor 

Even though the hypothetical computer has an infinite vector perform­
ance, it does not outperform the original (real) computer until vectorization 
exceeds 90%—because of its lower scalar speed. 

1.4.2 Amdahl's Law for Parallel Processors 
Here we are concerned with machines that achieve their speedup over single 
processor scalar performance by spreading the computation over many pro­
cessors. If there were no cost to do this, then a linear speedup with number of 
processors could be achieved, so this is the theoretical maximum perform­
ance of such a system. In the derivation, we show the effects of the overhead 
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time necessary to properly initiate and synchronize parallel processing, as 
well as the cost of using only one processor in critical regions of the program 
where parallel processing is not possible. 

Ts = the time required to perform an operation on a single processor 
Fs = fraction of operations performed on a single processor 
Tp = the time required to perform an operation on M processors 

(Ts/M) 
OH = the overhead for synchronizing parallel processors 
Fp = fraction of code able to use M processors 
NT = number of disjoint parallel tasks 

Then the time to perform N operations is 

T = N -\Fs-Ts + ^(TPi* FPi + 0Hi) 

Normalizing to Ts = 1, then Tp,· = \/mif and 

where 
NT 

Fs + 2 FPi = 1 

and mi is the average number of processors used during the ith task. 
The relationship is much more complex for multiprocessing; but, sev­

eral important facts can be derived from the equation. 

1. If we ignore overhead time and synchronization time and assume 
that all processors can be used on all tasks, then the upper bound for 
performance on a parallel processor is essentially the same relation­
ship as for vector processing, that is 

P = -

where M is the number of parallel processors, and Fp is the fraction 
of code able to use M processors. (The amount of code that can use 
parallel processing generally will be larger than the amount of code 
that can be vectorized.) 

2. If the overhead time for initializing a task or synchronizing tasks is a 
significant fraction of the task time itself, then performance gain will 
be lost. Consider using 32 processors on a task of duration 1 sec. If 
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the overhead is on the order of 0.1 sec, the time for the task will be 

T = - ! - + . 1 = 0.13 sec 
32 

for an overall speedup factor of 8 rather than 32. 

The most important fact that can be derived from this relationship is 
that the time spent using one processor has a dramatic effect on the 
overall run time. For example, if we only spend 1% of the overall 
time using one processor, the maximum speedup we can get over the 
performance of that one processor is 100 — even if we have zero 
startup time and an infinite number of processors. 

50 

40 

30 

20 

10 

0 10 20 30 40 50 60 70 80 90 

Number of Processors 

FIGURE 1.3. 
Performance of N Processors for Various Utilizations. Utilization: 

a = 100%, b = 95%, c = 90%, d = 80%, e = 60% 

100 
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Figure 1.3 depicts performance of a parallel system for several tasks with 
differing utilization of all processors. It should be clear from this that other-
than-100% utilization leaves a significant number of processors idle for the 
duration of a task running on a many-processor system. For example, a task 
with 60% utilization cannot effectively use more than four processors. 

1.5 
SUMMARY 

These basic notions of vector and parallel processing are central to the 
discussion that follows. Pipelining of operations and simultaneous execution 
of instructions are the mainstay of supercomputers. Learning how to realize 
them within the constraints of standard Fortran is the main thrust of this text. 

Problems 
1. When different supercomputers are compared, both scalar and vector 

performance must be considered. Amdahl's law plays an important role in 
estimating the relative performance differences of the machines. Derive 
an equation for calculating the performance of machine A over machine B 
as a function of vector speed of A,VA, scalar speed of A,SA, vector speed of 
B,VB, and scalar speed of B,SB. Hint: Use the fact that 

Performance of A _ \TA/ 
Performance of B / 1 \ 

where 

and 

2. Using the Formula derived in Problem 1, consider the following two 
machines: 

Scalar Speed Vector Speed 

Machine X 1 Mflop 1 Mflop 
Machine Y 0.5 Mflop 20 Mflop 
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a. Plot the performance ratio of machine Y to machine X for fraction of 
vectorization ranging from 0.0 to 1.0. 

b. How much vectorization is necessary for machine Y to run faster 
than machine X? 

3. Amdahl's law can easily be extended to parallel machines. Derive the 
formula for performance ratio for parallel processors, analogous to that 
presented for vector processors in Problem 1. Consider also the following 
situations facing one who may want to upgrade from a uniprocessor to a 
massively parallel system: 

Relative 
Scalar Speed Number of Processors 

Machine X 1.0 1 
Machine Y 0.1 1024 

a. Plot the performance ratio of machine Y to machine X for fraction of 
parallelization ranging from 0.0 to 1.0. 

b. How much parallelization is necessary for machine Y to run faster 
than machine X? 

4. Using the formula from Problem 1, compare the following three ma­
chines. 

a. Which machine has the best performance for an application with no 
vectorization? 

b. Which machine is best for 100% vectorization? 
c. At what vectorization ratio do machines Y and Z have the same 

performance? 

Scalar Speed Vector 

Machine X I 1 
Machine Y 6 60 
MachineZ 3 120 

5. Things to try on your machine: Execute your code with full optimization 
and with no optimization. How much faster is the optimized than the 
unoptimized code? What fraction of your code has been vectorized or 
optimized automatically by the compiler? 



2 
SUPERCOMPUTER 
ARCHITECTURE 

To achieve optimal performance on a supercomputer, it is essential for a 
Fortran programmer to understand the underlying architecture and instruc­
tion set of the target machine and how this architecture is utilized by the 
Fortran compiler. Without this understanding, seemingly harmless constructs 
used within a DO loop can dramatically affect the execution time of the loop. 
Consider the following two DO loops: 

DO 2000 I = 1,N DO 2010 I = 1,N 
IF (A(I).GT.EPS) THEN IF (A(I).GT.EPS) THEN 
AB = A(I) * B(I) 
X(I) = AB / Z(I) X(I) = A(I) * B(I) / Z(I) 
Y(I) = Y(I) + AB Y(I) = Y(I) + A(I) * B(I) 
ENDIF ENDIF 

2000 CONTINUE 2010 CONTINUE 

Both of these loops store the same values into the X and Y arrays. However, 
the use of the scalar AB inside the IF-block of loop 2000 cannot be easily 
vectorized on some systems, because they are missing certain machine in­
structions found on others. (Use of scalars in DO loops is discussed fully in 
Chapter 3.) 

2.1 
BASIC FEATURES 

Many of the important capabilities of supercomputers are evolutionary ex­
tensions of the features found on scalar processors, so a review of the 
development of these features can be instructive. 

13 
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In the mid-1960s a start-up company named Control Data Corporation 
introduced a revolutionary new machine designated the 6600, partially de­
signed by one of CDCs founders, Seymour Cray. Like many of today's 
minicomputers, the 6600 had a 100-nsec clock, fast registers, a large banked 
memory, and segmented functional units. The 6600 was the first major 
scientific computer to combine all of these features in a well-balanced sys­
tem. In a sense it was the first supercomputer. We will examine each of these 
features as it relates to machine performance, and, where appropriate, trace 
its evolution through Seymour Cray's follow-on machines, the CDC 7600 
and the Cray Research Cray-1 and Cray-2. In later sections we will see that 
many of these features can be found on the majority of commercially suc­
cessful supercomputers and minisupercomputers. 

2.1.1 Clock Cycle and Performance Measures 
The clock cycle of a computer is the basic unit of time, and nothing (of 
interest to a Fortran programmer) happens in less than one clock cycle. If all 
other features of a computer system remain the same, then performance will 
vary inversely with the clock cycle. Recall from Chapter 1 that the clock cycle 
of a supercomputer is typically a small number of nanoseconds. 

A computer can usually issue instructions at the maximum theoretical 
rate of one instruction per clock cycle. For example, the CDC 6600 had a 
clock cycle of 100 nsec and its inverse 

1 0 0 x ! o - » s e c = 1 0 X 1 0 6 

is the maximum number of instructions per second (ips) that the machine can 
issue. Because of the magnitude of the numbers involved, this rate is usually 
quoted in millions of instructions per second or "Mips/ ' Thus the CDC 6600 
can be rated at 10 Mips. Sometimes the s is dropped, so that we speak of a 
10-Mip machine. 

Reducing the clock cycle time has always been a goal of machine 
designers: the CDC 7600 had a clock cycle of 27.5 nanoseconds (36 Mips), 
and the Cray-1 has a clock cycle of 12.5 nanoseconds (80 Mips). Future 
designs are aiming for the 1-nsec clock cycle, which would provide a com­
puter with a 1000-Mip rating. 

Note that the Mip rating is the maximum theoretical instruction issue 
rate. Because of many different resource conflicts in the execution of a 
program, the actual issue rate is generally about one-tenth to one-half the 
theoretical maximum. 

Because all supercomputers have features that generate many opera­
tions from the issuance of one instruction, the Mip rating of a supercomputer 
is of much less importance than it is for a conventional computer. As pro­
grammers, we are interested in how fast a computer can generate results in 
which we are interested. On conventional computers this is closely related to 
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the rate instructions can be issued, and the maximum theoretical result rate 
then is one per clock cycle. The actual delivered result rate on a conventional 
computer is often a small fraction of the maximum. On a supercomputer the 
result rate is often more than one per clock cycle, much faster than the 
instruction issue rate. Since most scientific and engineering computation 
involves floating-point arithmetic, the performance measure for supercom­
puters used in preference to Mips is millions of floating-point operations per 
second, called //megaflops,, or "Mflops." (When supercomputers are rated by 
their maximum theoretical result rate, this is known as "machoflops.") 

2.1.2 Registers 
Registers are a form of very high-speed memory used to hold the most 
heavily accessed information at any point in the execution of a program. 
They are necessarily expensive, and consequently there are not very many of 
them. There are generally three types of registers in a computer: 1) address 
registers that hold the locations of data within memory; 2) operand registers 
that hold the data items currently being manipulated by the program; and 3) 
an instruction stack, which is a set of registers holding the instructions in the 
part of the program currently being executed. On some computers a set of 
general-purpose registers is used to handle both address and operand com­
putation. 

Registers can generally provide their information to the CPU in one 
clock cycle, typically an order of magnitude faster than information can be 
fetched from memory to the CPU. It is up to the Fortran compiler to optimize 
its use of these registers, and in Chapter 3 we will learn how to help the 
compiler do just that. 

Address Registers 
The memory on a computer can be viewed as one large singly dimensioned 
array. All of our program variables and multidimensioned arrays are mapped 
into a piece of the computer's memory. At any point in our program, the 
compiler uses the address registers to compute the memory locations of the 
data items that currently need to be fetched and stored. Under certain 
circumstances the compiler might also use the address registers for some of 
our integer data arithmetic. 

The 6600 and 7600 each have eight address registers named A0, 
Al , . . . A7 and eight backup registers BO, Bl, . . . B7, which are used as a 
scratch pad for address calculations. The Cray-1 also has 8 A registers, but 
has 64 B registers. 

For example, on a Cray, during execution of the Fortran statement 

P ( N ) = 1 . 0 

the value of N must be fetched from memory, placed in an A register, then 
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added to the address of the array P decremented by one to compute the 
address of P(N). This is shown in Figure 2.1. 

Operand Registers 
As their name implies, these registers hold the current operands of the 
program during execution. In certain code segments there will be more 
operands than registers available to hold them. The compiler will optimize 
the use of the registers by retaining the most heavily used operands in the 
registers and assigning the least-used operands to temporary storage loca­
tions in memory. 

The 6600 and 7600 each have eight operand registers named X0, 
XI, . . . , Χ7, which hold all of the operands and results during execution of 
the arithmetic and logical instructions of our program. The Cray-1 has eight 
registers, named SO, SI, . . . S7, which hold operands and results of scalar 
arithmetic operations. The S registers are backed up by 64 T registers used to 
hold intermediate results for later reference. 

As a direct extension of the idea of scalar operand registers, the Cray-1 
has eight vector operand registers, named V0, VI, . . . , V7. Each of these 
registers can hold up to 64 operands. A vector instruction to add two vector 
registers together results in the addition of the pairs of corresponding oper­
ands in the registers. 

On the Cray-1, then, consider the execution of the following Fortran 
statements: 

R = S + T 
DO 2010 I = 1,64 

A(I) = B(I) + C(I) 
2010 CONTINUE 

The first statement causes the scalar values S and T to be fetched from 
memory to S registers where they are added together with the result going to 
another S register that is subsequently stored into the address of R. 

It is possible to execute loop 2010 with such scalar instructions as well, 
fetching and computing one pair of elements at a time. But with vector 
instructions, all of the elements of B can be fetched to a vector register, all of 

Value of N 

Address of P(0) 

Address of P(N) 

Register A4 

Register A5 

Register A6 

FIGURE 2.1 
Address Register Calculation 
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C to another vector register, a single vector add instruction can be used to 
compute all of the sums, and a vector store instruction returns the results to 
the array A (Figure 2.2). 

Instruction Stack 
An instruction stack is a set of high speed registers that hold a copy of a small 
number of program instructions prefetched from memory by the computer 
system, acting as a small window moving over the executable program code. 
Instructions typically can issue from the instruction stack to the CPU at the 
rate of one instruction per clock cycle. If the next instruction to be issued is 
not on the instruction stack, the system must fetch it from memory. This 
memory fetch takes tens of clock cycles to complete. If every instruction had 
to be fetched from memory, a program might run an order of magnitude 
more slowly. 

Each computer system has a different-sized instruction stack and dif­
ferent schemes for prefetching instructions to the stack. Occasionally, a 
critical feature of program optimization will be to make sure that a CPU-in­
tensive DO loop or subprogram is entirely contained on the instruction stack 
during its execution. 

2.1.3 Functional Units 
Originally, the CPU of a computer was monolithic, executing one instruction 
to completion before beginning the next. This is still the cheapest way to 
build a CPU, but it completely denies the overlapped execution of indepen­
dent instructions within a program. The CDC 6600 was one of the first 
computers to partition the CPU into its functional units, thus allowing ad­
dress calculations and program arithmetic to proceed simultaneously. Con-

V4 V5 V6 

B(l) 

B(2) 

C(l) 

C(2) 

A(l) 

A(2) 

B(64) C(64) A(64) 

î î I 
MEMORY 

FIGURE 2.2. 
Vector Addition 
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sider the following code excerpt: 

X = Y * Z / ( P + Q ) 

Assume that the values of Y and Z have been fetched to registers. Then when 
the multiply instruction has been issued, the fetch instructions for the values 
of P and Q can be issued. When the data arrives from memory, the add 
instruction can be issued as well. This is because each of the major functions 
of the CPU has been realized in a wholly independent unit of hardware. 
Compilers take advantage of multiple functional units by attempting to 
schedule as many independent operations as possible to achieve maximum 
overlap of instruction execution. 

Note that whereas a computer might have hundreds of instructions, it 
will typically have about ten functional units, each one of which executes a 
family of related instructions. For example, a floating-point add functional 
unit performs both addition and subtraction, rounded or unrounded, nor­
malized or unnormalized. 

The CDC 6600 and 7600 each provided functional units for address 
computation, integer and floating-point scalar arithmetic, and logical opera­
tions. The Cray-1 contains a set of functional units very similar to its prede­
cessors and a few additional units exclusively dedicated to vector processing. 

Segmented Functional Units 
A computer might be able to issue a new instruction in each clock cycle, but 
there are very few instructions that complete execution in just one clock 
cycle. For example, a floating-point add instruction might take four clock 
cycles to complete; a multiply or a divide might take even longer. For this 
reason, each functional unit is itself further partitioned into a number of 
independent segments, preferably one segment for each clock cycle of exe­
cution. By this means, a computer may issue several identical instructions in 
sequence as long as the operands are independent. Consider the execution of 
the following Fortran statements: 

Z1 = X1 + Y1 

Z2 = X2 + Y2 

Z3 = X3 + Y3 

Z4 = Χ4 + Y4 

Assuming that the operands have already been fetched to registers, then the 
steps through time shown in Figure 2.3 indicate the operation of the seg­
mented floating-point add unit. 

The adder depicted in Figure 2.3 performs as an assembly line with four 
stations. As programmers we do not know what happens at each station, 
only that a completed sum flows off the end of the line. The segmentation of 
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Segment 1 
Segment 2 
Segment 3 
Segment 4 

Clock Cycle 

1 1 
XI Yl 

A / Xl+Yl 

1 

R E G I S T E R S 

1 1 
X2 Y2 
\ / 
X2+Y2 
Xl+Yl 

2 

1 1 
X3 Y3 
\ / 

X3+Y3 
X2+Y2 
Xl+Yl 

3 

1 1 
X4 Y4 
\ / 
X4+Y4 
X3+Y3 

X2+Y2 
Xl+Yl 

4 

FIGURE 2.3. 
Segmented Functional-Unit Operation 

the adder generates one result per clock cycle instead of one result every four 
clock cycles achievable without segmentation (Figure 2.3). 

The performance of a segmented functional unit is characterized by two 
features: 

• Startup Time. This is the number of clock cycles prior to the genera­
tion of the first result. When segments are each one clock cycle long, 
the startup time is the number of segments. But this is not always the 
case — the divide unit on the CDC 7600 had two segments and a 
startup time of 27 clock cycles. 

• Result Rate. This is directly related to the longest segment in a func­
tional unit. In most units the segments are one clock cycle long, 
occasionally two, and in the 7600 divide unit, the first segment was 25 
clock cycles long. After the startup time, a functional unit can deliver 
one result each time the longest segment completes its task. 

Considering that most functional units can produce one result per clock 
cycle, and that several can run in parallel, a tremendous burden is placed on 
memory access to fetch operands and store results. One way to alleviate this 
burden is the use of memory banks. 

2.1.4 Memory Banks 
Each register of a computer is capable of delivering its contents to the CPU 
each clock cycle. But the registers are so expensive that it is not feasible to 
have more than a few hundred of them. The physical memory of a super­
computer is typically millions or even billions of bytes and is necessarily 
much less expensive than the registers. One way to reduce cost is to build a 
memory unit that holds many memory locations and can service a request 
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from the CPU to fetch from or store into any of those locations. For several 
reasons, all related to cost, such a unit will take several clock cycles to service 
a request and will queue all other requests in the interim. But the CPU can 
process data so fast that we must have a memory system that can deliver or 
receive data at a rate of at least one item per clock cycle. 

One answer to the problem is to build a memory system from many 
units or "banks" and to arrange memory locations so that consecutive loca­
tions are assigned to the banks in a round-robin manner. The rate at which a 
bank can service requests is called the "bank cycle time," and so an effective 
memory system must have at least as many banks as the number of clock 
cycles in the bank cycle time. Since, typically, the most memory-intensive 
parts of a program involve the referencing of contiguous arrays in DO loops, 
this mapping of memory locations onto banks guarantees that each subse­
quent memory reference will be serviced by a different bank. 

Bank cycle times on supercomputers are typically four or eight clock 
cycles, so a memory system of eight banks can be built with the following 
mapping of memory locations: 

Memory 
Location 

Bank 
Number 

0 
1 
2 
3 
4 
5 
6 
7 

8 
9 

10 
11 
12 
13 
14 
15 

16 
17 
18 
19 

etc. 

Another way of looking at this is to picture the banks with memory locations 
spread across them as shown in Figure 2.4. 

Given the Fortran declaration 

D I M E N S I O N A ( 5 1 2 ) 
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B A N K 

1 2 3 4 5 6 7 8 

Γο 
8 

16 

1 

9 

17 

2 

10 

18 

3 

11 

19 

4 

12 

etc. 

5 

13 

FIGURE 2.4. 
Memory-Bank Allocation 

6 

14 

7\ 

15 

then the elements of the array will be assigned to consecutive memory 
locations, which is to say, consecutive banks. Thus, when the array is refer­
enced in a DO loop such as: 

DO 2020 I = 1.É 
A ( I ) = A ( I ) 

2020 CONTINUE 
1.0 

then the fetch instructions for each successive element of the array A can be 
issued by the CPU and serviced by the memory system at the rate of one per 
clock cycle. Note that with eight memory banks, the successive requests for 
data in a given bank occur eight clock cycles apart (Figure 2.5). 

When the memory-bank concept is coupled with a segmented-memory 
functional unit (seven segments), then Table 2.1 represents the flow of the 
array elements from memory to the CPU. It should be clear that this is a very 
effective use of the memory system and provides a nice balance between 
delivery of data from memory and the ability of the CPU to process it. 

Bank 
Requests 

Bank 1 
Bank 2 
Bank 3 
Bank 4 
Bank 5 
Bank 6 
Bank 7 
Bank 8 

A( 1) A( 9) 
A(2) 

A(3) 
A(4) 

A(5) 
A(6) 

A(7) 
A(8) 

1 2 3 4 5 6 7 8 9 

Clock Cycle 

FIGURE 2.5. 
Timing of Contiguous Bank 

A(10) 
A(ll) 

A(12) 
A(13) 

A(14) 
A(15) 

A( 

10 11 12 13 14 15 16 

Requests 
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TABLE 2.1 Timing of a Memory-to-Register Request 

Segmented Memory Unit 
Clock 
Cycle 

1 

2 

3 

4 

5 

6 

7 

8 

9 
10 
11 
12 
13 
14 
15 

Instruction 

FETCH 
A(l) 

FETCH 
A(2) 

FETCH 
A(3) 

FETCH 
A(4) 

FETCH 
A(5) 

FETCH 
A(6) 

FETCH 
A(7) 

FETCH 
A(8) 
— 
— 
— 
— 
— 
— 
— 

1 

A(l) 

A(2) 

A(3) 

A(4) 

A(5) 

A(6) 

A(7) 

A(8) 
— 
— 
— 
— 
— 
— 
— 

2 

— 

A(l) 

A(2) 

A(3) 

A(4) 

A(5) 

A(6) 

A(7) 
A(8) 
— 
— 
— 
— 
— 
— 

3 

— 

— 

A(l) 

A(2) 

A(3) 

A(4) 

A(5) 

A(6) 
A(7) 
A(8) 
— 
— 
— 
— 
— 

4 

— 

— 

— 

A(l) 

A(2) 

A(3) 

A(4) 

A(5) 
A(6) 
A(7) 
A(8) 
— 
— 
— 
— 

5 

— 

— 

— 

— 

A(l) 

A(2) 

A(3) 

A(4) 
A(5) 
A(6) 
A(7) 
A(8) 
— 
— 
— 

6 

— 

— 

— 

— 

— 

A(l) 

A(2) 

A(3) 
A(4) 
A(5) 
A(6) 
A(7) 
A(8) 
— 
— 

7 

— 

— 

— 

— 

— 

— 

A(l) 

A(2) 
A(3) 
A(4) 
A(5) 
A(6) 
A(7) 
A(8) 
— 

In 
Registe 

— 

— 

— 

— 

— 

— 

— 

A(l) 
A(2) 
A(3) 
A(4) 
A(5) 
A(6) 
A(7) 
A(8) 

The following DO loop demonstrates a very ineffective use of the 
memory system. 

DO 2030 1 = 1 , 57, 8 
A(I) = A(I) + 1.0 

2030 CONTINUE 

Table 2.2 is the timing chart for these accesses. 
Notice that the memory functional unit can accept an operand each 

CPU clock cycle. But the one memory bank in which all the requested 
elements reside can only supply an operand from its locations each memory 
bank cycle time, which as shown is four clock cycles. Therefore the effective 
transfer rate from memory to the CPU is reduced by a factor of four. Striding 
through memory as we did in loop 2030 results in "memory-bank conflicts/, 

because the stride is such that the operands required are located in only one 
of the memory banks. Memory-bank conflicts will occur in references that 
have a stride through memory that is an integer multiple of 

number of memory banks 
bank cycle time (in clock cycles) 
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TABLE 2.2 Timing of a Strided Memory Request 

Clock 
Cycle 

Segmented Memory Unit 

Instruction 
In 

Register 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 

FETCH A(l) 
FETCH A(9) 
FETCHA(17) 
FETCH A(25) 
FETCH A(33) 
FETCH A(41) 
FETCH A(49) 
FETCH A(57) 

— 
— 
— 
— 
— 
— 

— 

— 
— 
— 
— 
— 
— 
— 
— 
— 
— 

A(l) -
- A(l) 

A(l) 

A(9) -
- A(9) 

A(l) - -
- A(l) -

- - - A(l) 
- A(9) - - - A(l) 

A(9) A(l) 
A(17) - - A(9) 

A(17) A(9) 

A(25) 

A(17) - -
- A(17) -
- - A(17) 

A(9) -
- A(9) 

- A(25) -
- - A(25) 

- A(17) -

A(25) 
A(17) -

- A(17) 

A(49) — — — A(41) — — — 
— A(49) — — — A(41) — — 
— — A(49) — — — A(41) — 
— — — A(49) — — — A(41) 

A(57) — — — A(49) — — — 
— A(57) — — — A(49) — — 
— — A(57) — — — A(49) — 
— — — A(57) — — — A(49) 
— - - - A(57) - - -
- - - - - A(57) - -
- - - - - - A(57) -
- - - - - - - A(57) 

In other words, bank conflicts will occur any time a stride causes successive 
references to a memory bank to occur in less than the bank cycle time. On a 
Cray-1 with eight memory banks, this can only happen if the stride is an 
integer multiple of 2 X 8/4 = 4. 

It should be noted that the preceding formula works only for computers 
whose number of banks and bank cycle time (in clock cycles) are both 
powers of two, characteristics shared by most current supercomputers that 
utilize memory banks. 

2.1.5 Memory Caches 
A memory cache is a small, fast, expensive memory placed between the very 
fast CPU registers and the large slow main memory of a machine. When the 
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CPU requests a data item from memory, the hardware checks to see if the 
item is resident in the cache, and, if so, it delivers it to the CPU, typically in 
two clock cycles. If the item is not in the cache, the hardware requests a 
packet of data from main memory to the cache that includes the item 
requested plus (usually) three more items as well, on the assumption that the 
data will be referenced contiguously. Assuming that the transfer from mem­
ory to cache takes 12 clock cycles, then the time to transfer one item from 
memory to CPU is: 

Transfer four items to cache 12 clock cycles 
Transfer one item to CPU 2 " " 
Total 14 clock cycles 

and if the other three items are subsequently referenced from the cache, then 
the total cost in time to transfer data to the CPU is: 

Transfer of second item to CPU 12 clock cycles 
Transfer of first item to CPU 2 " 
Transfer of second item to CPU 2 " " 
Transfer of third item to CPU 2 " 
Transfer of fourth item to CPU 2 " 
Total 20 clock cycles 

or 5 clock cycles per item transferred 

All subsequent references to the data items will be satisfied in two clock 
cycles, as long as they remain in the cache. (Since the cache is smaller than 
the main memory, requests for other data might overwrite previously re­
quested data.) 

Most cache systems also use the cache for instructions as well as data 
operands. 

2.1.6 Instruction Streams and Data Streams 
Computers may be categorized according to whether they have one or many 
instruction streams and one or many data streams.* Of four possible catego­
ries, one defines the simplest conventional computers, one is never imple­
mented, and the two remaining contain all supercomputers. 

Single Instruction Stream, Single Data Stream (SISD) 
The SISD category of course describes the relatively simple computers that 
perform each instruction of a program to completion before beginning the 
next instruction. There is no possibility of overlap within the machine, and 
therefore only one stream of data through the CPU. 

* Michael J. Flynn, "Very High-Speed Computing Systems", Proceedings of the IEEE 54 (1966). 
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Single Instruction Stream, Multiple Data Stream (SIMD) 
This category defines a computer system having a single instruction proces­
sor and multiple arithmetic and logical processors, thereby allowing simulta­
neous computation to be performed on different streams of data. There are 
two very important subcategories within SIMD: 1) the single CPU parti­
tioned into independent functional units, each performing different opera­
tions on specific data streams; and 2) multiple identical arithmetic logical 
units (ALUs), each being assigned the same instructions by the instruction 
processor but operating on different partitions of the program data. 

The Partitioned CPU. We have seen in the preceding basic features that a 
single CPU designed as a collection of independent functional units can 
sustain several arithmetic and logical operations simultaneously. It is impor­
tant to note that such a CPU contains only one instruction processor and so 
processes a single instruction stream, issuing the instructions one at a time. It 
is the functional units operating independently that allow new instructions to 
be issued before previous instructions have completed execution. 

Examples of machines in this category are the single-processor Cray 
computers; the CYBER 205; the Fujitsu, Hitachi, and NEC supercomputers; 
the Alliant FX/1; the Convex C-l; and the SCS-40. 

Multiple ALUs. Again, a single processor handles the stream of program 
instructions, and, in this subcategory, passes all instructions to a number of 
separate ALUs, each of which then operates on a different segment of the 
program data. Perhaps the example easiest to understand is the assignment 
of DO loop iterations to individual ALUs. Consider: 

DO 2040 I = 1, N 
A(I) = B(I) + C(I) 

2040 CONTINUE 

In this case the instruction processor will assign to each ALU the task of 
adding C(I) to B(I) and storing the result in A(I) but will pass a different value 
of I to each. If there are fewer ALUs than loop iterations, the instruction 
processor will continue to issue the instructions until all values of I have been 
processed. If there are more ALUs than loop iterations, the extra ALUs will 
be "turned off" during execution of the loop instructions. 

Turning off an ALU can mean different things on different systems. It 
might mean that the ALU receives instructions and ignores them or it might 
perform the computation but not store any results. In any case, it is possible 
on any system to render an ALU ineffective at any point in the computation. 

Now consider how the multiple-ALU SIMD machines handle condi-
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tional code: 

DO 2 0 5 0 I = 1 , N 
I F ( D ( I ) . G T . EPSLON) THEN 

A ( I ) = B ( I ) + C ( I ) 
ENDIF 

B(I) = D(I) * 2.0 
2050 CONTINUE 

Since all ALUs must receive the same instructions, the instruction processor 
issues the following commands to each: 

• For your value of I, compute D(I) .GT. EPSLON, and, if false, turn 
yourself off. 

• For your value of I, compute B(I) + C(I), and store into A(I). The "off" 
ALUs will receive this instruction but not act on it. 

• Turn yourself on. (Redundant and meaningless to the "on" ALUs but 
well-received by those previously turned "off.") 

• For your value of I, compute D(I) * 2.0, and store into B(I). 

Things become more complicated if the loop has an indefinite termination: 
DO 2 0 6 0 I = 1 , N 

I F ( A ( I ) . L T . 0 . ) GO TO 2 0 6 1 
A ( I ) = A ( I ) - B ( I ) 

2060 CONTINUE 

2061 CONTINUE 

Let "iend" be the first value of I such that A(iend).LT.O. Here no values are 
to be stored into the array A for I.GE.iend, but if the same mechanism were 
employed as we did with loop 2050, A(I) would be modified for any value of 
I for which A(I).GE.O., whether or not I.LT.iend. Some multiple-ALU SIMD 
machines have only cumbersome mechanisms for reporting the state of one 
ALU either to the instruction processor or to the other ALUs, so many 
systems resort to running such loops on a single ALU, one iteration at a time. 

Examples of machines in this category are the ILLIAC IV, Burroughs 
BSP, SAXPY Matrix-1, and Thinking Machines' Connection Machine. 

Multiple Instruction Stream, Single Data Stream (MISD) 
Now don't get misty over this, but there are no computers that issue multiple 
instructions against a single stream of data. 
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Multiple Instruction Stream, Multiple Data Stream 
(MIMD) 
As the name implies, these machines have multiple instruction processors as 
well as a means to overlap execution of instructions. Some are simply multi­
ple CPUs sharing a common memory, and their simplest (and most common) 
use is to assign entirely separate programs residing in disjoint parts of the 
memory to each CPU. This is just a minor step up from the multiprogram­
ming already common on single CPU systems, where several programs 
reside in the computer's memory and the CPU is assigned to each in turn. 

A more exciting and more complicated application of such systems is to 
assign several CPUs to execute the instructions of a single program. Here it is 
again necessary to cause each CPU to work on different segments of the 
program data, but unlike the multiple-ALU SIMD machines—which work 
in lock step, each either performing or ignoring the same instruction seen by 
the other ALUs — the MIMD CPUs each perform a unique version of the 
instruction stream independent of the others. At critical points in the pro­
gram, the CPUs must be forced to synchronize with one another, either to 
properly pass information among themselves or to correctly share a common 
memory location. Consider the following conditional dot-product calcula­
tion: 

DO 2070 I = 1,1000 
IF (B(I) .GT. EPSLON) THEN 

SDOT = SDOT + B(I) * C(I) 
ENDIF 

2070 CONTINUE 

Ignoring numerical considerations as to the order in which computation is 
performed, we could imagine that each of four processors could be assigned 
to compute the dot product in the index ranges 1-250, 251-500, 501-750, 
and 751-1000. But notice that each processor would be asynchronously 
updating the variable SDOT. Conceptually, two processors could fetch the 
same value of SDOT, add their terms to it, and store it back. The first value 
stored would be overwritten by the second, and some terms in the sum 
would be lost. 

Examples of machines in this category are the multiprocessor Cray 
X-MPs, Alliant Fx/8, the BBN Butterfly, and the various hypercubes. 

2.1.7 Summary 
In Chapter 1 we stated that the following loop required at least 400 scalar 
instructions to perform the desired addition: 

DO 1020 1 = 1 , 100 
ARRAY1(I) = ARRAY2(I) + ARRAY3(I) 

1020 CONTINUE 
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In fact, considering the incrementation of the index and the test and branch 
instruction necessary for the loop, a minimum of six instructions per iteration 
is needed to complete the computation. Now assume a scalar computer with 
enough resources (registers, paths into memory, etc.) such that the execution 
of each instruction can be overlapped with all others. Then, given that the 
computer can issue one instruction per clock cycle, we see that a peak 
performance of one result every six clock cycles can be achieved. 

Even though the floating-point add functional unit can receive new 
operands and deliver results at the rate of one per clock cycle, the instruction 
issue rate causes the add instructions to be issued only every six clock cycles. 
It should be clear, then, that as long as each operation requires the issue of a 
machine instruction, further parallelism in a single scalar CPU will have no 
payoff. It was this realization that led to the development in the 1970s of the 
"vector" processor. 

2.2 
THE VECTOR PROCESSOR 

Of all the supercomputer designs, the single-CPU vector processor is cer­
tainly the most successful to date, and the one that has received the most 
attention from Fortran compiler writers. We therefore will direct our atten­
tion to the details of several such designs. 

There are two major categories of vector processors; memory-to-mem­
ory machines and register-to-register machines. Each has its own advantages 
and disadvantages in the handling of typical Fortran code. 

2.2,1 Memory-to-Memory Vector Processors 
CDCs Star 100 was one of the first available vector processors, and it has 
since evolved through the CYBER 203 to the CYBER 205. Its general archi­
tecture is the heart of the newly announced ETA 10. In scalar mode, these 
computers utilize a set of 256 general-purpose registers to hold operands and 
results during computation. But in vector mode these CDC machines fetch 
vector operands directly from memory to the CPU and store vector results 
directly back into memory, with no intervening registers. Since almost all the 
computers in this class are CYBER 205s we will limit our discussion to this 
machine, with occasional reference to improvements announced in the de­
sign of the ETA 10. 

CYBER 205 Characteristics 
The CYBER 205 is a virtual memory system. It has a large physical memory 
of up to eight million 64-bit words, and a virtual address space of over two 
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trillion 64-bit words. The hardware is capable of addressing bits, bytes, 
half-words (32 bits), full words (64 bits), superwords (or "swords," which are 
eight contiguous full words), and double swords. Each one million words of 
memory is arranged in 16 "stacks" of eight banks each. Data items are stored 
in half-words across the stacks, so one sword of data is represented by 16 
half-words, one from each of the stacks. The memory bank cycle time is four 
clock cycles. The machine has a clock cycle of 20 nanoseconds and in vector 
mode can fetch two swords and store one sword simultaneously, at a com­
bined rate of three words per clock cycle. 

The arithmetic, logical, and memory operations of the CPU are carried 
out by two sets of segmented functional units, one exclusively for scalar 
instructions, the other for vector floating point. There are functional units for 
scalar integer arithmetic, logical operations, and scalar floating-point add/ 
subtract, multiply, divide, and square root. The vector functional units per­
form floating-point add/subtract, multiply, divide, and square root. 

Basic Vector Operations. CYBER 205 vector operations are performed in 
either one, two, or four pipelines, depending on the model of the machine. 
Each pipeline can perform one 64-bit or two 3 2-bit floating-point results 
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each clock cycle. So on a four-pipeline machine, as many as eight results per 
clock cycle can flow out of the pipeline and back to memory. Figure 2.6 
illustrates the flow of data from memory through one pipeline and back to 
memory again in a simple 64-bit floating-point vector instruction on the 
CYBER 205. 

The result rate of one per clock cycle matches the performance of 
computers that use high-speed registers for operands and results. This is 
achieved by a special memory interface that fetches and stores data in 
superwords (eight contiguous 64-bit words). After a startup time, a rate of 
two 64-bit words fetched and one 64-bit word stored per clock cycle per 
pipeline can be maintained. Keep in mind that if, for any reason, not all 
operands are used, or not all results are stored, the memory interface still 
must fetch and store the data in swords, and the effective data rate goes 
down accordingly. 

The input and output buffers aid in the resolution of memory bank 
conflicts among the input operands and the ouput results. 

As shown, the single pipeline is generating one 64-bit floating-point 
add result per clock cycle. In 32-bit floating-point mode, each pipeline is 
capable of generating two results per clock cycle. Focusing on just the add 
unit, this can be depicted as in Figure 2.7. Here, each 64-bit section of the 
arrays B and C is split upon arrival into two 3 2-bit input operands, the effect 
being a result rate of two per clock cycle — double that of 64-bit arithmetic. 
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Now consider that a fully configured CYBER 205 has four such pipelines, so 
the total result rate can be four 64-bit or eight 3 2-bit floating-point results per 
clock cycle. 

Linked Triad. Under many circumstances, the add and multiply pipelines 
can be linked together, one producing a result fed directly into the other— 
thus again doubling the result rate. A DO loop that could utilize this 
"linked-triad" capability is 

DO 2080 1 = 1 , 10000 
A(I) = SCA * B(I) + C(I) 

2080 CONTINUE 

Figure 2.8 is a diagram of the linked functional units in a single 64-bit 
pipeline. The linked-triad instruction performing 32-bit operations on a 
four-pipeline machine generates 16 floating point results per clock cycle or 
about 800 million floating-point operations per second. 
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Gather/Scatter Periodic. The vector pipeline instructions of the CYBER 
205 always operate on contiguous data; data references with a stride other 
than +1 require special treatment. An additional device, the "stream unit," 
performs many special-purpose data-motion operations, among which are 
the "gather-periodic" and "scatter-periodic" instructions, which specifically 
handle strided data. These instructions can be used to vectorize the following 
loop: 

DO 2090 1 = 1 , 10000, 10 
A(I) = B(I) + C(I) 

2090 CONTINUE 

Here the vector pipeline cannot directly fetch or store every tenth item of 
data. So the vector stream unit issues gather-periodic instructions to fetch the 
necessary data from the B and C arrays and stores the data into temporary 
contiguous arrays in memory. Then these temporary arrays are added in the 
vector pipeline with another temporary array created to hold contiguous 
results. Finally, the stream unit issues a scatter-periodic instruction to fetch 
the contiguous result array and place the answers into every tenth element of 
the array A. It is as if the following loops were executed: 

Comment: Periodically gather every tenth element of B 
K = 0 
DO 2091 1 = 1 , 10000, 10 

K = K + 1 
TEMPB(K) = B(I) 

2091 CONTINUE 

Comment: Periodically gather every tenth element of C 
K = 0 
DO 2092 1 = 1 , 10000, 10 

K = K + 1 
TEMPC(K) = C(I) 

2092 CONTINUE 

Comment: Perform vector addition of gathered arrays 
DO 2093 J = 1, K 

TEMPA(J) = TEMPB(J) + TEMPC(J) 
2093 CONTINUE 

Comment: Periodically scatter results into every tenth element of A 
K = 0 
DO 2094 1 = 1 , 10000, 10 

K = K + 1 
A(I) = TEMPA(K) 

2094 CONTINUE 

Gather/Scatter Random. With the related instructions "gather random" 
and "scatter random," the stream unit also handles indirect addressing. So in 
the following loop the stream unit "gathers" temporary contiguous vectors 
by applying the values in the array IB to the array B and the values of IC to C. 
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The add of the temporary vectors is then performed in the vector pipeline, 
with the results going to another temporary array. Finally, the stream unit 
then "scatters" the temporary array of results into the array A under control 
of the index array IA. 

DO 2100 1 = 1 , 10000 
A(IA(I)) = B(IB(I)) + C(IC(I)) 

2100 CONTINUE 

In handling the preceding loop, essentially the following operations are 
performed: 

Comment: Randomly gather the indirectly addressed elements of B 
DO 2101 1 = 1 , 10000 

TEMPB(I) - B(IB(I)) 
2101 CONTINUE 

Comment: Randomly gather the indirectly addressed elements of C 
DO 2102 1 = 1 , 10000 

TEMPC(I) = C(IC(I)) 
2102 CONTINUE 

Comment: Perform vector addition of gathered arrays 
DO 2103 1 = 1 , 10000 

TEMPA(I) = TEMPB(I) + TEMPC(I) 
2103 CONTINUE 

Comment: Randomly scatter results into every tenth element of A 
DO 2104 1 = 1 , 10000 

A(IA(I)) = TEMPA(I) 
2104 CONTINUE 

Bit Vectors. The stream unit also generates and manipulates bit vectors. A 
bit vector is a field in memory of up to 65,535 bits, each of which can be set 
or interrogated. One of the common uses of a bit vector is as a mask in a 
conditional operation. A bit vector could be used to control the operations in 
the following DO loop: 

DO 2110 1 = 1 , 10000 
IF ( B(I) .GT. EPSLON) THEN 

A(I) = B(I)**2 + C(I) / SCA 
D(I) = SQRT (A(I)) * C(I) 

ENDIF 
2110 CONTINUE 

A bit vector of length 10,000 can be generated by setting the Ith bit to one or 
zero, depending on whether the relational expression "B(I) .GT. EPSLON" is 
true or false, respectively. All computation within the IF-block can then be 
performed with special instructions that perform the desired operations over 
the entire range 1 to 10000, skipping the computation of any elements 
associated with a bit whose value is zero. 

An alternate way to perform loop 2110 on a CYBER 205 would be to 
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utilize the bit vector to perform compress/decompress operations. In this 
case, special vector pipeline instructions gather up the elements of interest 
[i.e., where the condition B(I) .GT. EPSLON is true] into temporary arrays in 
memory, the arithmetic is performed with simple vector operations on the 
temporary arrays, then the answers are decompressed back into the arrays A 
and D. In essence the following operations are performed: 

Comment: Compress elements of B and C into TEMPB and TEMPC 
K = 0 
DO 2111 1 = 1 , 10000 

IF ( B(I) .GT. EPSLON) THEN 
K = K + 1 
TEMPB(K) = B(I) 
TEMPC(K) = C(I) 

ENDIF 
2111 CONTINUE 

Comment: Perform vector arithmetic on compressed vectors 
DO 2112 I = 1,K 

TEMPA(I) = TEMPB(I)**2 + TEMPC(I) / SCA 
TEMPD(I) = SQRT (TEMPA(I)) * TEMPC(I) 

2112 CONTINUE 

Comment: Decompress results into arrays A and D 
K = 0 
DO 2113 1 = 1 , 10000 

IF ( B(I) .GT. EPSLON) THEN 
K = K + 1 
A(I) = TEMPA(K) 
D(I) = TEMPD(K) 

ENDIF 
2113 CONTINUE 

Finally, the stream unit performs many high-level vector instructions 
typically realized in hardware on other computer systems. These include dot 
product, sum of elements, product of elements, first difference, average, 
vector reverse, and many more. 

We have stated in this chapter that the important characteristics of 
functional units are their startup time and result rate. Table 2.3 lists the 
values for some common instructions used by Fortran programs. These are 
tabulated both for two-pipeline and four-pipeline CYBER 205s and for 32-bit 
and 64-bit arithmetic. 

Vector length of an instruction can be up to 65,535 on the CYBER 205, 
so from Table 2.3 it should be clear that for very long vectors the startup time 
is of little importance. For example, in 64-bit mode on a two-pipeline ma­
chine, the addition of two 10,000-element vectors requires 5051 clock cycles, 
or 0.51 cycles per element. Conversely, short vector processing is completely 
dominated by the startup time of each instruction. The sum of two ten-
element vectors on the same configuration takes 56 clock cycles, or 5.6 cycles 
per element. Multiple pipelines actually exacerbate this problem by further 
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TABLE 2.3 Selected Vector Operation Times, CYBER 205a 

Operation 

Add/Subtract 

Multiply 

Linked Vector Add and Mult 
Triad 

Divide 

Square Root 

Scatter Vector A Randomly 

Scatter Vector A Periodically 

Gather Vector A Randomly 

Gather Vector A Periodically 

Compress Vector A (Z # of 
element compressed) 

Expand Vector A (Z # of 
elements expanded) 

Time, 

2-Pipe 

51 + N / 2 

52 + N / 2 

103 + N / 2 

80 + N/.28 

79 + N/.28 

83 + N/ .8 

71 + N/ .8 

69 + N/ .8 

39 + N/ .8 

52 + Z/2 

58 + Z/2 

64 Bit 

4-Pipe 

51 + N / 4 

52 + N / 4 

103 + N / 4 

80 + N/.56 

79 + N/.56 

83 + N/ .8 

71 + N/ .8 

69 + N/ .8 

39 + N/ .8 

52 + Z/4 

58 + Z/4 

Time, 

2-Pipe 

51 + N / 4 

52 + N / 4 

103+■ N / 4 

68 + N/.5 

67 + N/.5 

83 + N/ .8 

71 + N/.8 

69 + N/ .8 

39 + N/ .8 

52 + Z/4 

58 + Z/4 

32 Bit 

4-Pipe 

51 + N /8 

52 + N /8 

103 + N / 8 

6 8 + N 

67 + N 

83 + N/.8 

71 + N/ .8 

69 + N/ .8 

39 4- N/ .8 

52 + Z/8 

58 + Z/8 

Sum of Elements 116+ N 116 + N 116-hN 116 + N 

Dot Product 116+ N 116 + N 116+ N 116+ N 

a Vector length = N. Format is startup time + result rate. Table derived from Clifford N. Arnold, 
"Vector Optimization on the CYBER 205," Control Data Corporation, Arden Hills, MN. 

shortening the vector seen by each pipeline, but the startup time remains 
constant. In other words on a four-pipeline machine adding two ten-element 
vectors requires 53.5 clock cycles, only a 4.5% improvement, rather than the 
50% improvement we see on very long vectors. The crossover point between 
scalar and vector performance on the CYBER 205 is on the order of length 50 
for most calculations. 

Note that, in Table 2.3, operations carried out by the stream unit are 
insensitive either to the number of pipelines or the precision of the data. 

2.2.2 ETA 10 
The ETA 10 is a computer system composed of from one to eight CPUs 
similar in architecture to the CYBER 205. Each CPU has four million 64-bit 
words of memory and two vector pipelines, sharing a common memory of 
256 million 64-bit words. The common memory acts as a page server to the 
CPUs. The system has been initially released with a 12.5-nsec clock cycle, 
eventually to be lowered to 7 nsec. More important, the vector startup times 
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have been lowered by about a factor of four to five, making short vector 
performance much better than on the original CYBER 205. 

2.2.3 Register-to-Register Vector Processors 
These machines move data from memory to vector registers and perform 
computations with vector-register operands, placing results again into vector 
registers. These results are either retained for further use or stored back into 
memory. The first register-to-register vector processor was the Cray-1, and 
the same architecture has been used in the follow-on machines, the Cray-IS, 
the Cray X-MP and the Cray-2. In fact, all other vector processors except the 
CYBER 205 and ETA 10 are register-to-register machines, remarkably similar 
to the Cray computers in basic features. So we will concentrate on these as a 
basis for this discussion, with occasional reference to other computers that 
have some important additional features. 

Basic Characteristics 
The major characteristics affecting performance of Fortran programs on this 
class of machines are 

• Clock cycle 

• Instruction issue rate 

• Size and number of vector registers 

• Memory size 

• Number of concurrent paths to memory 

• Ability to fetch/store vectors with a stride 

• Number of duplicate arithmetic functional units (multiple vector pipe­
lines) 

• Whether functional units can be "chained" together 

• Indirect addressing capability 

• Handling of conditional blocks of code 

Clock Cycle. Earlier in this chapter we stated that if all other features of a 
computer system remained the same, then performance would vary inversely 
with the clock cycle. But, across different computer systems, the clock speed 
is not always a good comparison. For example, the Alliant FX/8 has a clock 
cycle of 167 nsec, but the architecture of the system allows a fully optimized 
code to run as much as 32 times faster than pure scalar execution. And the 
FX/8 sometimes approaches (or even surpasses) the performance of a Cray-1 
with a 12.5-nsec clock. 
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Instruction Issue Rate. We have said that computers typically can issue 
one instruction per clock cycle, but the peak rate at which the Cray-2 can 
issue instructions is one every two clock cycles. So, although the Cray-2 has a 
4.1-nsec clock, its effective clock speed in scalar mode is 8.2 nsec. Viewed in 
the context of Amdahl's law, this can have a drastic effect on any program 
not highly vectorized. 

Vector Registers. All Cray computers have eight vector registers, each 
having 64 elements that are 64 bits wide. When a loop of arbitrary length is 
"vectorized," it is done in vector strips of length 64. Consider the loop: 

DO 2120 I = 1, N 
A(I) = B(I) + C(I) 

2120 CONTINUE 

In effect, this is performed on a Cray in the following way: 

NM0D64 = MOD (N, 64) 
DO 2121 1 = 1 , NM0D64 

A(I) = B(I) + C(I) 
2121 CONTINUE 

I = NM0D64 
DO 2122 J = NMOD64+1, N, 64 

DO 2122 KOUNT = 1, 64 
1 = 1 + 1 
A(I) = B(I) + C(I) 

2122 CONTINUE 

If N is not evenly divisible by 64, loop 2121 does the "remainder," or else it is 
not executed (NMOD64 = 0). Loop 2122 then performs a series of loops, 
each of exactly 64 in length to complete the computation. This technique is 
called "stripmining" a loop. 

Note that if N is less than 64, loop 2121 performs all of the computa­
tion, and loop 2122 is never executed. The reason for doing the remainder 
first rather than last is that typical loops will have a remainder, and some 
loops will be shorter than length 64. 

The number of elements in a vector register obviously determines the 
length of a "strip." Vector registers on the Alliant FX processors each have 32 
elements, the IBM 3090 Vector Facility has registers of 128 elements, the 
NEC SX2 has 256 elements per register, and on the Fujitsu VP Series they are 
dynamically configurable in lengths of 32, 64, 128, 256, 512, or 1024 ele­
ments. 

Perhaps a more subtle point regarding vector-register length is the 
startup time to fetch data from main memory to a vector register. (This 
startup time can also be thought of as the number of segments in a "memory 
functional unit.") On the Cray-1 and Cray-lS, startup is seven clock cycles. 
On the X-MP it is seventeen clock cycles, and the Cray-2 in its initial release 
has a startup time of 57 clock cycles. Never mind that the clock cycles get 
progressively shorter on these machines. The fact is that the average number 
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of cycles per data item transferred is 1.125 on the Cray-1 and rises to 1.89 on 
the Cray-2, a significant difference in overhead cost. 

Memory Size. The amount of main memory available on vector processors 
can affect wall-clock-time performance of Fortran programs, more so than 
the CPU time for executing any particular program. On a virtual memory 
system, if the current data does not reside within the working set of pages, 
then thrashing can reduce performance to the speed of the secondary 
storage — disks, usually. In the worst case, this can cause a program's per­
formance to be limited by the speed of sound (rate at which disks spin), 
rather than the speed of light. On a physical memory machine, a very large 
program will force the programmer to adopt I /O techniques to move data 
between main and secondary storage, with much the same possible perform­
ance degradation that occurs on virtual systems. 

It should be obvious, then, that the larger the main memory of a 
computer, the less often we will face these problems, regardless of any other 
limitations of a given machine. Currently, the largest available main memory 
is on the Cray-2, with 268,435,456 64-bit words — casually referred to as 256 
million words (which is exact if we assume that a million is 
2**20 = 1,048,576). This is at least eight times larger than main memory on 
other supercomputers, although newer, larger models of every machine are 
developed each year. The difference between the casual and actual memory 
sizes of the Cray-2 is larger than the total main memory available on most 
computers. 

Number of Memory Paths. The number of independent paths into mem­
ory can greatly affect the capability of a machine to overlap instructions, 
especially in relatively simple loops involving several different arrays (i.e., a 
loop in which almost every arithmetic operation is matched with a memory 
fetch or store of a vector). The Cray-1, Cray-IS, and Cray-2 each have one 
path into main memory, and it provides both fetching and storing of data but 
not both at the same time. The Cray X-MP has two fetch paths and one store 
path, all of which can operate concurrently. Thus in the simple loop: 

DO 2130 1 = 1 , 64 
A(I) = B(I) + C(I) 

2130 CONTINUE 

the Cray-1 performs the following steps: 

• Fetches the vector B(l:64) to a vector register 

• Fetches the vector C(l:64) to another vector register, adds it to the 
previously fetched B(l:64), and places the result in a third vector 
register 

• Stores the final result into A(l:64) 
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The Cray X-MP, with its extra memory paths: 

• Fetches the vector B(l:64) to a vector register, while simultaneously 
fetching C(l:64), and, as soon as B(l) and C(l) have arrived, begins 
adding the vectors together, placing the results in a third vector 
register while simultaneously storing the results into A(l:64). (What a 
mouthful!) 

Here we have used the ANSI 8X Fortran ''array section'' notation to indicate 
ranges of elements in the arrays. This will be fully discussed in Chapter 3. 

Figure 2.9 indicates the relative cost in clock cycles for the preceding 
loop on the Cray-1 and X-MP. Note that if the X-MP had only one memory 
path like the Cray-1, then the difference in performance would have only 
been the ratio of their respective clock cycles, 12.5/8.5 = 1.5. But, strictly 
because of additional memory paths, the performance ratio is 
2812/782 = 3.6! 

A fully configured Fujitsu vector processor has two memory paths that 
can either fetch or store vector operands. The Hitachi S820 has three memory 
paths devoted to fetching only, and one that can handle either fetching or 

DO 1010 I = 1, 64 
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1010 CONTINUE 
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FIGURE 2.9. 
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storing. The NEC SX2 has two fetch paths and two store paths. All three of 
these machines have wider memory paths than does a Cray X-MP processor. 
For example, the maximum throughput on one memory path of the Cray 
X-MP is one word per clock cycle. The Fujitsu VP 400 can deliver four words 
per clock cycle on each memory path, and the fully configured Hitachi and 
NEC machines also have this capability. 

These multiword memory paths split up the work of a single operation; 
they cannot be devoted independently to different operations. So, for exam­
ple, adding vectors B and C and storing the result in vector A on the SX2 will 
result in one memory path devoted to delivering four elements of B per clock 
cycle, another delivering four elements of C, and still another delivering four 
elements per clock cycle into A. 

Finally, even though we class these machines as register-to-register 
vector processors, some of them (not Cray) have instructions that can take 
one operand from a vector register and another directly from memory to the 
CPU. This added benefit allows such machines to utilize vector registers 
strictly for data that will be used more than once in the current loop being 
computed, a luxury that the Cray computers lack. 

Fetch and Store Vectors with a Stride. All of the register-to-register vector 
processors regard a simple vector in memory to be represented by a starting 
address, a length, and a stride. Each has memory instructions that can fetch 
and store such data structures. From the point of view of the instruction set, 
each of the following loops is equally easy to execute in vector mode: 

DO 2140 1 = 1 , 100 
A(I) = B(I) + C(I) 

2140 CONTINUE 

DO 2150 1 = 1 , 1281, 128 
A(I) = B(I) + C(I) 

2150 CONTINUE 

DO 2160 I = 100000, 0, -1000 
A(I) = B(I) + C(I) 

2160 CONTINUE 

However, the second loop, with its stride of 128, will certainly cause mem­
ory-bank conflicts on every supercomputer and consequently will run at least 
four or eight times more slowly than loop 2140 with its stride of one. The 
negative stride of loop 2160 will execute just as quickly as it would if the 
stride were positive. 

Beyond memory-bank conflicts, some of the machines — such as the 
IBM 3090 Vector Facility, Alliant FX/8, and the Convex C- l— use cache 
memory between the main memory and the vector registers. We discussed 
earlier that it is the nature of cache to fetch more words than just the one 
requested, so strided data will not utilize the full memory transfer rate as can 
be done on systems without cache. 
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Finally, on virtual memory systems, a large stride can cause a great 
many page faults within the system, with relatively little use of the data 
moved to and from slow auxiliary storage. 

Number of Vector Pipelines. On the Cray computers there is only one of 
each kind of functional unit in a CPU: one adder, one multiplier, and so 
forth. The Convex C-l and C-MP and the Japanese supercomputers made by 
Fujitsu, Hitachi, and NEC each has multiple copies of the vector functional 
units or multiple "pipelines." For these machines, the multiple pipelines act 
in a manner similar to those of the CYBER 205; that is, all duplicate func­
tional units work on the same vectors, each taking a separate segment of the 
data. In effect, it is as if the vector length were divided by the number of 
pipelines, with the time to complete a vector operation reduced by about the 
same factor. 

Chaining. On all of the register-to-register vector processors except the 
Cray-2, the vector functional units can be "chained" together, thus allowing 
overlap of related operations. This is similar to the "linked triad" on the 
CYBER 205 but generally more flexible in that any combination of 
operations — not just the multiply and add functions — can be chained. But 
in practice, multiply — add combinations are by far the most common in 
Fortran programming. Consider the following loop as it is executed on a Cray 
X-MP: 

DO 2170 I = 1,64 
A ( I ) = 3 . 0 * A ( I ) + ( 2 . 0 + B ( I ) ) * C ( I ) 

2170 CONTINUE 

The values 3.0 and 2.0 will be set into scalar registers before the loop begins. 
Then the following steps will take place: 

• Begin to fetch the vector of values A(l:64) to a vector register. 

• Begin to fetch the vector of values B(l:64) to another vector register 
(overlapped in time with the previous fetch). 

• As soon as B(l) arrives at its vector register, also pass it (and then all 
subsequent elements) to the adder, along with the scalar value 2.0. 
This "chains" the vector fetch to the add functional unit. 

• As soon as A(l) arrives at its vector register, also pass it (and then all 
subsequent elements) to the multiplier, along with the scalar value 3.0 
[this overlaps with the above computation 2.0 + B(l:64)]. 

• Issue the fetch instruction for C(l:64). This instruction will wait for a 
memory functional unit to complete one of the previous fetches, at 
which time the elements of C will begin to flow up from memory. 
[Note that this "wait" will also assure that the multiply functional 
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unit will have completed 3.0 * A(l:64) by the time it is needed in the 
next step.] 

• As soon as C(l) arrives at its vector register, also pass it (and then all 
subsequent elements) to the multiplier, along with the previously 
computed values of 2.0 + B(l:64). This chains the vector fetch to the 
multiply functional unit. 

• As soon as (2.0 + B(l:64)) * C(l:64) exits the multiplier and enters its 
vector register, chain it to the add functional unit along with the 
previously computed vector register of 3.0 * A(l:64). 

• As soon as the first result exits the add functional unit, chain it to the 
store functional unit to return the answers to memory. 

A timing diagram of these steps is shown in Figure 2.10. Here we have 
eliminated the clock-cycle count in the abscissa to highlight the two distinct 
portions of the computation in which operations have been overlapped and 
chained together. These "chained vector times" or "chimes" are the domi­
nant feature of the timing diagram. Ignoring the startup time of a vector 
instruction, a chime represents a number of clock cycles approximately equal 
to the vector length, in this case 64. It should be obvious that if a computer 
system can perform an operation in two chimes instead of four, there is a 
50% savings in time. 

A new chime must begin each time the system wants to reuse some 
resource, either a vector functional unit or an operand vector register. To 
illustrate this point, consider the chime diagrams for the Cray-1, which has 
only one memory functional unit, and the Cray-2 with one functional unit 
and overlapping but no chaining of vector instructions. 

A(1:64)-^VQ 

B(1:64)-»»V1 

2. + VI-»»V3 

3. * V0 - » V 4 

C(1:64)-»»V5 

V3 * V5-»»V6 

\ 4 + V6-»V7 

V7-»> A(l:64) 

Time ► 
Chime 1 Chime 2 

FIGURE 2.10. 
Cray X-MP Chime Diagram 
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A(l:64)-»»vo 

B(l:64)-»»vi 

2. + V I - » V 3 

3 ^ * V 0 - ^ V 4 

C(1:64)-»»V5 

V3 * V5-»V6 

V4 + V6-»»V7 
V7-»» A(l:64) 

Time-
Chime 1 Chime 2 Chime 3 Chime 4 

FIGURE 2.11. 
Cray-1 Chime Diagram 

The clock cycles of the Cray-1, Cray X-MP, and Cray-2 are 12.5, 8.5, 
and 4.1 nsec, respectively. But because of differences in architecture they 
require four, two, and six chimes to complete the computation in the loop, so 
the absolute performance of each machine does not always reflect the differ­
ences in their clock speed. Given that a chime for this loop is roughly 64 clock 
cycles, then the approximate time for each machine is: 

Cray-1: 4 chimes * 64 * 12.5 nsec = 3200 nsec 
Cray X-MP: 2 chimes * 64 * 8.5 nsec = 1088 nsec 
Cray-2: 6 chimes * 64 * 4.1 nsec = 1574 nsec 

A(l:64)-»»vo 

B(1:64)-»»V1 

3. * V0-»*V4 

C(l:64) -»»V5 

2. + VI -»»V3 

V3 * V5-»»V6 

V4 + V6-»»V7 
V7-** A(l:64) 

Time-
Chime 1 Chime 2 Chime 3 Chime 4 Chime 5 Chime 6 

FIGURE 2.12. 
Cray-2 Chime Diagram 
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Remember, this is an analysis of just this particular loop. We shall see in 
chapter three that compilers have many ways to enhance performance in 
more complicated (more typical) loops. 

The same kind of chime analysis can be done on all of the register-to-
register vector processors and can be applied to almost any vectorizable loop. 
It is very valuable in predicting and understanding the performance of a 
supercomputer on any loop. 

Indirect Addressing. Consider the following indirect address loop: 

DO 2180 1 = 1 , 64 
A(IA(I)) = B(IB(I)) + C(IC(I)) 

2180 CONTINUE 

All the register-to-register vector processors except the Cray-1, Cray-IS, and 
the initial releases of the Cray X-MP and the SCS-40 have vector machine 
instructions to handle indirect addressing. These instructions could be uti­
lized to perform loop 2180 in the following steps: 

• Fetch the vector of values IB(1:64) to a vector register (VO). 

• Fetch the vector of values IC(1:64) to another vector register (VI). 

• Apply the values in VO to the address of the array B, and fetch the 
values into another vector register (V2). 

• Apply the values in VI to the address of the array C, and fetch the 
values into another vector register (V3). 

• Perform V2 + V3 = V4. 

• Fetch the vector of values IA(1:64) to another vector register (V5). 

• Store the values in register V4 into the array A indexed by the values 
in V5. 

On machines with only one memory path, indirect addressing such as 
in loop 2180 will double the number of chimes required to perform the 
specified operations. Even on multiple memory-path machines, indirect ad­
dressing on one path will often disallow indirect addressing on another, 
thereby reducing overlapping and chaining of instructions. This is a hidden 
cost of indirect compared to direct addressing. 

On those older machines that do not possess indirect address vector 
instructions, scalar instructions fetch the data, which are then accumulated 
into a vector register so that vector arithmetic instructions can be used. If this 
technique is not used with care, it can actually run more slowly than if pure 
scalar code had been used. A good rule of thumb on such machines is to run 
a loop in scalar mode if the number of indirect memory references exceeds 
the number of arithmetic operations. 
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Now consider a loop that has only one indirect index used to subscript 
all of the loop arrays, a fairly common occurrence in sparse matrix calcula­
tions: 

DO 2190 1 = 1 , 64 
A(JJ(I)) = B(JJ(I)) + C(JJ(D) 

2190 CONTINUE 

Once the vector JJ(1:64) has been fetched to a vector register, it can be 
reused again and again to indirectly fetch and store the arrays of the compu­
tation; it need not be refetched for each of the other arrays as was the case 
with several different indirect indexes. 

Finally, note that the ability to fetch and store data indirectly allows the 
vectorization of any array reference that appears in a loop (except where 
other circumstances prevent vectorization). In the following loop, each of the 
array indexes can be viewed as a vector of indirect address values to be 
computed at execution time: 

DO 2200 I = 1,N 
J = I * I / (I + 1) 
K = MOD (J, 10) + 1 
L = ISQRT (IA(I) * IB(I)) 
M = 6 - M 
A(J) = (B(K) + C(L)) * D(M) 

2200 CONTINUE 

Conditional Code Blocks. All register-to-register vector processors have 
two means of handling conditional blocks of code; 1) the use of a vector-
mask operation; and 2) the use of "compressed-index" instructions.* Know­
ing when the Fortran compiler will choose one of these techniques, and how 
to force it to use one or the other, are important points to learn for effective 
programming. The following loop illustrates both mechanisms: 

DO 2210 I = 1, N 
IF ( X ( I ) . GE. 0 . 0 ) Y ( I ) = A ( I ) + B ( I ) 

2210 CONTINUE 

Each machine has a vector-mask register (VM) that has as many bits as 
there are elements in a vector register. For the Cray computers, the VM is 64 
bits wide. The bits can be set to one or zero, depending on whether a vector 
condition is true or false. Remembering that the preceding loop will be 
stripmined into lengths matching the vector-register length, then for each 
strip the following steps can be taken on a Cray: 

• Fetch the next 64 elements of X to a vector register (VO). 

• Set the bits of VM to one where a corresponding element of VO is 
positive, else set the bits to zero. 

* Actually, Fujitsu vector processors have a third method, in which the operands of interest are 
compressed from one vector register to another. 
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• Fetch the next 64 elements of A to a vector register (VI). 

• Fetch the next 64 elements of B to a vector register (V2). 

• Compute VI + V2 = V3 (for all elements). 

• Fetch the next 64 elements of Y to a vector register (V4). 

• Generate register V5 by choosing elements from V3 where the corre­
sponding bit of VM is 1 and by choosing elements from V4 where the 
bits are zero. 

• Store V5 into the 64 elements of the array Y. 

Or to state it more simply, perform all the computation in vector mode for all 
elements, then store only those elements for which the condition is true. 

These vector-mask operations are depicted in Figure 2.13 for X(I) .GE. 
0.0 true for all odd values of I. 

Although all computation of all elements is performed, vector-mask 
computation is so fast that it will outperform scalar mode any time that the 
condition is true a significant percentage of the time. Here, "significant 
percentage" depends highly on the number of operations being performed 
and could range from 5% to 100%. 

On most non-Cray vector processors, the vector mask can control any 
operation — not just the final choice of elements — and this is very conve­
nient in certain circumstances. In fact, for the simple operations of loop 2210, 
the add and store operations can be performed under control of the vector 
mask. This eliminates the need to fetch the vector Y or to build a vector 
register filled with old and new values for Y. 

All the computer systems have simple mechanisms to determine if the 
VM is all zeroes or all ones, in order to skip any unnecessary steps. 

There are two possible problems with using this vector-mask approach. 
First, if the condition is rarely true, the system must perform all the arithme­
tic for all elements, then store only a very few results. Even though vector 
mode is an order of magnitude faster than scalar mode, there is no payoff if 
the condition is true only 1% of the time. The more CPU intensive the 
computation is, the worse this problem becomes. Second, especially in the 
case of the Cray computers, the condition may be avoiding a singularity in 
the program. For example: 

DO 2220 I = 1, N 
IF ( X ( I ) . NE. 0 . 0 ) Y( I ) = A ( I ) / X( I ) 

2220 CONTINUE 

It should be clear that if all elements of A are divided by all elements of 
X unconditionally, then any element with zero value will cause the program 
to abort. If compilers want to use vector-mask operations on loop 2220, they 
must have some guard against these singularities. On most of the non-Cray 
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Fetch X(l:64) to register VO 

VO 

x( i) 
X ( 2 ) 

X ( 3 ) 
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1010101010...010 

X(64) 

Fetch A(l:64) to VI and B(l:64) to V2 
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A( 3) + B( 3) 
... + ... 

Y(64) 

Store V5 into Y 

FIGURE 2.13. 
Vector Mask Operations for Loop 2210 

systems the vector-mask register can be applied to the divide operation so 
that only where the bit is one is the divide result actually generated. (It 
should be noted that this approach does not save any time: The divides 
associated with zero VM bits take just as long—they just do not generate 
singularities or deliver any results.) 

In the "compressed-index" approach to the preceding DO loop, a vector 
register is generated containing those indexes where the condition is true. 
This register can then perform indirect address operations on the arrays 
involved. Computation is performed on only the elements that would be 
handled if the loop were executed in scalar mode. Here are the steps for loop 
2220, using compressed-index instructions: 

• Fetch the next 64 elements of X to a vector register (VO) 
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• Set the bits of VM to one, where a corresponding element of VO is 
positive. Or set the bits to zero, and for each positive value of VO set 
the next available element of register V7 to the corresponding index in 
the array X. 

• Apply the values in V7 to the address of the array A, and fetch the 
values into another vector register (VI). 

• Apply the values in V7 to the address of the array X, and fetch the 
values into another vector register (V2). 

• Compute VI / V2 = V3 (for all compressed elements). 

• Store V3 into the array Y indexed by the values in V7. 

To illustrate this compressed-index operation, assume that in loop 
2220, X(I) is not equal to zero only for every thirtieth element. Then, for the 
first 64 elements, the register operations in Figure 2.14 depict the steps 
already outlined. 

To summarize this section on conditional code, the following points 
should be kept in mind: 

• Vector-mask operations are extremely fast and efficient for code exe­
cuted under control of a condition that is usually true. 

vo 
x( i) 
X ( 2 ) 

X ( 3 ) 

X(64) 

/ 

100. 

/ 

X(I).NE 0. 

VM 
.100...1000 

V7 
1 

31 

61 

Fetch A and X indexed by V7 into VI and V2 

VI V2 V3 

A( 1) 

A(31) 

A(61) 
/ 

X( 1) 

X(31) 

X(61) 
= 

Y( i)| 
Y(31) 

Y(61)| 

Store V3 into Y indexed by V7 

FIGURE 2.14. 
Compressed-Index Register Operations 
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• Since vector-mask operations perform all operations for all elements, 
chaining can take place. 

• Vector-mask control performs calculations ultimately unused, so care 
is required to not introduce unacceptable overhead costs. 

• On some systems, vector mask only applies to the final choice of 
answer, so singularities might occur, causing program abort. 

• Compressed-index operations perform memory references with indi­
rect addressing, inherently slower than direct memory references, and 
sometimes reducing chaining and overlapping of memory references 
with other operations within the loop. 

• Compressed index will usually outperform vector mask for code exe­
cuted under control of a condition that is true less than one-half the 
time. 

• Compressed index operates on exactly the same elements as would be 
used in pure scalar mode, so no additional concern about singularities 
is introduced. 

• All systems' vector processors have vector-mask operations, but some 
do not have compressed-index instructions. So for such machines, 
compressed index (done in software with scalar indirect addressing) 
will rarely outperform vector mask. 

• In cases where conditional code is almost never executed, scalar mode 
might be faster than any vectorization technique. 

Problems 
1. Consider a memory-bank structure that has 256 banks, and the bank 

cycle time is 64 clock cycles. If the memory functional-unit time is 
25 + N, how long would it take, in clock cycles, to fetch 64 words from 
memory with strides of 1, 2, 4, 8, 16, 32, 64, 128, and 256? 

2. The major bottleneck on a SISD machine is that only a single instruction 
can be issued each clock cycle. Explain how the following machines 
overcome this bottleneck and what category (SIMD or MIMD) each are: 

a. Uniprocessor of a Cray X-MP in vector mode. 
b. Multiprocessor of a Cray X-MP each operating in scalar mode. 
c. Multiprocessor of a Cray X-MP each operating in vector mode. 
d. Illiac IV. 
e. Alliant FX/8 using one processor in vector mode. 
f. Alliant FX/8 using eight processors in scalar mode. 
g. Alliant FX/8 using eight processors in vector mode. 

3. On the CYBER 205, a vector operation under control of a bit vector is as 
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fast as the operation without bit vector control. Consider the following 
DO Loop: 

INTEGER S 

DO 10 I = 1, 10000, S 
A(I) = B(I) + C(I) 

10 CONTINUE 

The two methods of vectorizing this loop on the CYBER 205 are 1) 
periodically gather arrays B and C into temporary memory vectors TB 
and TC, add TB to TC, and store into temporary memory vector TA; then 
periodically scatter TA into A; or 2) add B to C over the entire index range 
1 to 10000, using a bit vector that will only store into every Sth element 
of A. 

Using the timings from Table 2.3, calculate the time needed for 
each method as a function of S. If S = 1, method 2 is faster; if S = 500, 
method 1 is faster. For what stride (S) does method 1 first become faster 
than method 2 for a 4-pipe CYBER 205 in 32-bit mode? For a 2-pipe 
CYBER 205 in 64-bit mode? 

4. Vectorization of IF constructs on the CYBER 205 can be performed using 
bit vectors to control storage into the arrays. For example, for loop 2110 
in the text, if we ignore the length of time taken to generate the bit vector 
for the condition B(I).GT.EPSLON, how often must the condition be true 
before the "controlled-store" approach runs faster than the compress/ 
expand approach? (Use timings from Table 2.1.) 

5. What is the minimum number of chimes required to perform each of the 
loops 41020 through 41039 in Appendix A on the Cray 1? On the Cray 
X-MP? On the Fujitsu VP200? What is the limiting resource within each 
CPU that results in this minimum number of chimes? 

6. The optimal length for a vector register depends on the startup time for 
the vector operations. On the Cray-1, the CPU-time for the execution of: 

DO 20 I = 1,N 
A(I) = B(I) + C(I) 

20 CONTINUE 

is approximately 

(INT((N-l)/64)+l) X (25 + 3N) X 12.5 X 10"9 sec 

a. What is the Mflop rate for N = 64? 
b. What is the Mflop rate for N = 128? 
c. What would the Mflop rate be for N = 64 if the vector registers 

were 128 elements long? 
d. What would the Mflop rate be for N = 128 if the vector registers 

were 128 elements long? 



2.2 THE VECTOR PROCESSOR 51 

e. Work problems a through d again for a time formula of: 

(INT((N-l)/64)+l) X (50 + 3N) X 12.5 X 10"9 sec 

7. On the Cray X-MP the second and third strip of 64 can overlap with the 
preceding strip. The Cray X-MP timing for loop 20 in the preceding 
exercise is approximately 

(45+N) X 8.5 X 10~9 sec 

for N<64, and for N>64 it is 

(45 + N mod 64 + (INT((N~65)/64)+l) 
X (13+64)) X 8.5 X 10~9 sec 

For the Cray X-MP, answer problems a through d of the preceding 
exercise. 

8. The text discusses two possible methods of vectorizing IF statements on a 
Cray X-MP. For loop 2210, assume that the conditional vector-merge 
approach runs in 3 chimes and the compressed-index approach runs in 5 
chimes. What fraction of the elements of X must be ^ 0.0 for the 
conditional vector-merge approach to run faster? 

9. Why do some compilers refuse to vectorize loop 2000? 

10. Things to try on your machine. Execute the following code on your 
machine. (You may have to reference a different timing function.) 

DO 100 K - 1, 128 
Tl = SECOND ( ) 
DO 50 I = K, K*64, K 
A(I) = (B(I)*C(I))+(D(I)*E(I)) 

50 CONTINUE 
T2 = SECOND ( ) 
PRINT *, K, T2-T1 

100 CONTINUE 

From the timing, can you determine how many memory banks your 
machine has? 
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FORTRAN 

Fortran is the oldest of the high-level languages and possibly the most 
maligned. It is certain that new ideas enter new languages much faster than 
they can enter the old, and so it is relatively easy to criticize Fortran in 
comparison to more modern languages. But there are still many reasons to 
use Fortran and, consequently, to learn to use it well. 

Corporations and universities have billions of dollars invested in exist­
ing and productive Fortran programs, and, as yet, no advocate of other 
languages has offered to translate from Fortran to their favorite at no cost. 
Even if free translation were available, the majority of scientists and engi­
neers are well grounded in Fortran, and there would be considerable inertia 
to overcome to provide the same level of expertise and comfort with a new 
language. Even Fortran 8X, with its many new features and ideas, will be a 
daunting challenge to those who are comfortable with ANSI 77 Fortran. 

Scientific computer vendors have made large investments in the devel­
opment of optimizing Fortran compilers, almost to the exclusion of other 
languages—until recently. So even though the systems management part of 
a program might be better written in another language, when it comes to 
actually solving the equations of our application, we would be hard pressed 
to do it more efficiently or economically than with Fortran. 

John Backus was once asked by an interviewer what would be the 
nature of the language running on supercomputers in the year 2000. He 
replied: "I can't tell you anything about its nature, but I know we will call it 
'Fortran.'" 

In short, Fortran has a long life ahead of it. And any program, new or 
old, can profit dramatically from applying the techniques outlined in this 
book. 

3.1 
STANDARD FORTRAN 

The X3J3 Committee of the American National Standards Institute (ANSI) 
develops specifications for a standard Fortran language and establishes the 

52 
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interpretation of any program written in the standard form. The latest re­
leased standard is known as Fortran 77, and the previous standard is called 
Fortran 66. The next standard, expected to be released in 1988, is currently 
named Fortran 8X. Essentially, all of the supercomputer manufacturers pro­
vide compilers that can be made to conform to the Fortran 77 standard. 
Actually, each of the compilers has extensions to Fortran 77 providing addi­
tional language features above and beyond the standard. But the user can 
always force the compiler to recognize and compile only standard Fortran 
constructs. 

Except for some seven-character symbolic names, the examples in this 
book adhere to the Fortran 77 standard. 

3.1.1 Array Layout in Memory 
Much of our concern in this book is the optimal handling of array references 
to and from memory. The ANSI Fortran standard specifies the order in which 
a compiler must place array elements in memory, and this can have a large 
effect on machine performance in certain loops. 

The dimensions of an array in order from left to right can be thought of 
as designating row number, column number, plane number, and so forth. An 
array must be stored in memory in just this order. All of the row elements of 
column 1 of plane 1 are stored, followed by all of the elements of the second 
column, and so forth. Remembering that physical memory is treated as one 
large, single-dimension array, and given the declaration: 

DIMENSION MATRIX (4, 3) 

then it will be assigned to memory by the compiler as shown in Figure 3.1. A 
three-dimensional array such as: 

DIMENSION BOX (4, 3, 3) 

has the same layout as depicted for MATRIX for each of its three planes. 
Now consider the effect of this layout on the following three DO loops: 

DO 3000 J = 1, 3 
DO 3000 1 = 1 , 4 

MATRIX(I,J) = MATRIX(I,J) + 1.0 
3000 CONTINUE 

DO 3010 1 = 1 , 4 
DO 3010 J = 1, 3 

MATRIX(I,J) = MATRIX(I.J) +1.0 
3010 CONTINUE 

DO 3020 1 = 1 , 4 
MATRIX(I,I) = MATRIX(I,I) +1.0 

3020 CONTINUE 

In terms of vectors, if only the inner loops are considered—which is 
true of many compilers — then loop 3000 operates on three vectors, each of 
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\ memory 
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FIGURE 3.1. 
Layout of a 2D Array in Memory 

length four, and loop 3010 operates on four vectors, each of length three. But 
the stride in loop 3000 is one (the distance in memory between row ele­
ments), and the stride in loop 3010 is four (the distance in memory between 
column elements). Since contiguous vectors are always handled more effi­
ciently than noncontiguous vectors, it is good practice to vary the left-most 
subscript in inner loops where possible. It is also important (if possible) to 
have the longest dimension of an array as the left-most to achieve long-vec­
tor processing in inner-loop references. 

Finally, note the diagonal processing, shown in loop 3020, has a stride 
of five, which is the length of a column plus one. We shall see in a later 
section that when nonunit strides are unavoidable, as in diagonal processing, 
it is sometimes important to adjust the dimension of the arrays to avoid 
memory-bank conflicts. 

In general, given the declaration: 

DIMENSION ARRAY (L1:U1, L2:U2 . . . , L7:U7) 

having dimension sizes Di = Ui — Li + 1, then array element ARRAY (II, 
12, . . . , 17) is located in memory at 

address of ARRAY (L1, L2 . . . , L7) 

+ ( I 7 - L 7 ) x D1 x D2 x D3 x D4 x D5 x D6 

\ 
Column 1 

/ 

\ Column 2 

/ 

\ Column 3 
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+ (I6-L6) x D1 x D2 x D3 x D4 x D5 

+ (I5-L5) x D1 x D2 x D3 x D4 

+ (I4-L4) x D1 x D2 x D3 

+ (I3-L3) x D1 x D2 

+ ( I2-L2) x D1 

+ (11-L1) 

So, in a loop where, say, 15 is varying with an increment of one, and all other 
subscripts are invariant within the context of the loop, then the stride of the 
referenced vector is the product of all the lower dimensions, that is, 
Dl X D2 X D3 X D4. For an array dimensioned: 

DIMENSION HYPER (70, 50, 10, 10, 30) 

and a loop: 

DO 3030 M = 1, N 
HYPER(I , J .K.L .M) = Q * HYPER(I , J ,K,L ,M) 

3030 CONTINUE 

then the vector being referenced has a starting address of HYPER (I,J,K,L,1), 
a length of N, and a stride through memory of 7 0 X 5 0 X 1 0 X 1 0 = 
350,000. 

3.2 
COMPILERS 

A compiler is a computer program that reads our program source code as 
data and translates it into machine code that can be read and interpreted as 
instructions and data understandable at the computer's hardware level. The 
simplest of compilers provides no optimization and performs the steps of our 
program in exactly the order we have written them. It is valuable to have 
such compilation available for debugging, since diagnostic messages can then 
point to the source statement and possibly even the instruction within it that 
caused a problem. 

Once a program is fully debugged and ready for production, it is 
important to achieve the highest level of optimization possible, since optimi­
zation can often provide an order of magnitude in performance improvement 
over simple compilation. Many machine-independent optimization tech­
niques are employed by all compilers, and these include moving invariant 
code out of DO loops, evaluating constant expressions, and so forth. Com­
pilers also perform machine-dependent optimizations such as replacing 
integer exponentiation with multiplication for small powers, instruction 
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shuffling, register scheduling, and — for our purposes the most important — 
issuance of vector and parallel instructions. It should be obvious that it is to 
our advantage to learn the optimization details of our target compiler and to 
use them to our best advantage. 

Currently (early 1988), Alliant FX/Fortran is the only compiler with 
automatic recognition of parallel constructs within Fortran source code. All 
other parallel machines require other languages or constructs oriented to the 
expression of communication among the processor nodes, and this is beyond 
the scope of this text. At best, the burden of parallel analysis is placed 
entirely on the programmer, with precompilers, compiler directives, and use 
of machine-specific library routines communicating the parallel constructs to 
the computer system. Consequently, the bulk of this text is directed at scalar 
and vector optimization techniques as can be utilized with existing Fortran 
compilers. 

3.2.1 Machine-Independent Optimizations 
All compilers search source code for certain constructs that can be optimized 
by simplifying them, replacing them, or moving them. Writing code that aids 
the compiler in recognizing such constructs will reduce the number of opera­
tions to be performed by our program. We base our examples in a loop 
context, but many of the techniques can be used to an advantage in serial 
code as well. 

Please note that some of these techniques involve rearranging the order 
of execution of the operations in our expressions. Our discussion considers 
only algebraic correctness and does not touch on numeric problems. So 
before reordering operations, especially if they were written by another 
programmer, we may have to decide whether the original order is critical to 
the accuracy of the results due to the precision of representation of floating­
point numbers on the target machine. 

Invariant-Code Relocation 
Compilers search loops for operations involving constants and simple vari­
ables not set within the loop (invariants), and move the computation outside 
of the loop. Note the invariant expressions in the loop 3040: 

DO 3040 1 = 1 , 100 
A(I) = 6.0 + S + X(I) 
B(I) = Y(I) * P / Q 

3040 CONTINUE 

During optimization, all compilers will perform the invariant code 
before the loop and reference the results from registers inside the loop as 
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follows: 

register i = 6.0 + S 
register j = P / Q 

DO 3041 1 = 1 , 100 
A(I) = (register i) + X(I) 
B(I) = Y(I) * (register j) 

3041 CONTINUE 

Note that although the original loop specifies 400 floating-point operations, 
the optimized code executes only 202. 

There was a time when compilers did not perform such optimizations, 
and smart programmers of the time might have coded: 

TEMPI = 6.0 + S 
TEMP2 = P / Q 
DO 3042 1 = 1 , 100 

A(I) = TEMPI + X(I) 
B(I) = Y(I) * TEMP2 

3042 CONTINUE 

This is actually slightly less efficient, since it specifies storing and fetching 
TEMPI and TEMP2; and not all compilers will optimize this as well as the 
original. So, believe it or not, it is good practice to put invariant expressions 
inside the loop, then trust the compiler to optimize them back out. 

Sometimes we must help the compiler see invariant code. To this end, 
we recommend that invariants not be separated by variables. We cannot be 
sure that a compiler will recognize the invariant code in the loop 3050: 

DO 3050 1 = 1 , 100 
A(I) = 6.0 + X(I) + S 
B(I) = P * Y(I) / Q 

3050 CONTINUE 

If we want to be doubly certain that the compiler sees invariant code, we put 
it in parentheses (a compiler must perform operations inside parentheses 
before performing those outside the parentheses) as shown in loop 3060: 

DO 3060 1 = 1 , 100 
A(I) = (6.0 + S) + X(I) 
B(I) = Y(I) * (P / Q) 

3060 CONTINUE 

A note for the older programmers: Do not be afraid to use unnecessary 
parentheses to clarify code or to force compilation of instructions in a certain 
order. About 20 years ago, some compilers generated incorrect code because 
a programmer used mathematically unnecessary parentheses; parsing has 
come a long way since then, and we should feel free and safe to use them as 
we wish. 



58 FORTRAN 

Constant-Expression Evaluation 
When a compiler discovers an invariant expression only involving constants, 
it evaluates the expression and saves the result in a memory location to be 
fetched when the program is run — thus eliminating the computation at 
execution time. This is not only optimal, it can be used to enhance the 
readability of the program when well-known constants are involved. Thus, 
loop 3070 is optimized as shown in loop 3071. 

DO 3070 I = 1, N 
A ( I ) = B ( I ) * 3 . 1 4 1 5 9 * 3 . 0 / 2 . 0 

3070 CONTINUE 

( memloc = 3.14159 * 3.0 / 2.0 at compile time ) 
DO 3071 I = 1, N 

A(I) = B(I) * memloc 
3071 CONTINUE 

And, although loop 3072 is just as efficient, it is not as readable, and the 
manual computation of the constant is prone to error. 

DO 3072 I = 1, N 
A ( I ) = B ( I ) * 4 . 7 1 2 3 9 

3072 CONTINUE 

Common Subexpression Elimination 
Compilers also search for repeated expressions that can be safely computed 
once with subsequent occurrences satisfied from a register. Thus, in loop 
3080, a compiler will recognize both T(I) * S(I) and X(I) / Y(I) as common 
subexpressions and optimize them as shown in loop 3081: 

DO 3080 I = 1, N 
A ( I ) = C ( I ) + T ( I ) * S ( I ) 
B ( I ) = P * X( I ) / Y ( I ) 
C ( I ) - Q * X( I ) / Y ( I ) 
D ( I ) = T ( I ) * S ( I ) + B ( I ) / C ( I ) 

3080 CONTINUE 

Optimized: 
DO 3081 I = 1, N 

register i = T(I) * S(I) 
register j = X(I) / Y(I) 
A(I) = C(I) + (register i) 
B(I) = P * (register j) 
C(I) = Q * (register j) 
D(I) - (register i) + B(I) / C(I) 

3081 CONTINUE 

Again, while this optimization technique is now universal, there was a time 
in the dark ages of computing when this was not done, and the best pro-
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grammers would write 
DO 3082 I = 1, N 

TMULTS = T(I) * S(I) 
XOVERY = X(I) / Y(I) 
A(I) = C(I) + TMULTS 
B(I) = P * XOVERY 
C(I) = Q * XOVERY 
D(I) = TMULTS + B(I) / C(I) 

3082 CONTINUE 

As we might guess, this is now less than optimal, since some compilers might 
be forced to store the values into the variables TMULTS and XOVERY — 
something that does not occur in the original. 

To aid a compiler in recognizing common subexpressions, use the same 
techniques regarding code arrangement and parentheses as outlined in the 
section on invariant code. Thus, a compiler might miss the common subex­
pressions in loop 3090: 

DO 3090 I = 1 , N 
A ( I ) = C ( I ) * T ( I ) * S ( I ) 
B ( I ) = X ( I ) * P / Y ( I ) 
C ( I ) = X( I ) * Q / Y ( I ) 
D ( I ) = T ( I ) * S ( I ) * B ( I ) / C ( I ) 

3090 CONTINUE 

but would not miss them in loop 3091: 

DO 3091 I = 1 , N 
A ( I ) = C ( I ) * ( T ( I ) * S ( I ) ) 
B ( I ) = P * ( X( I ) / Y ( I ) ) 
C ( I ) = Q * ( X ( I ) / Y d ) ) 
D ( I ) = ( T ( I ) * S ( I ) ) * B ( I ) / C ( I ) 

3091 CONTINUE 

Unneeded Store Elimination 
If the same variable or array element appears on the left side of the equals 
sign more than once within a loop, the compiler will optimize by storing only 
the final setting. Consider for example loop 3100: 

DO 3100 I = 1 , N 
TEMP(I) = X( I ) + Y ( I ) 

W(I) = Z ( I ) ** 2 + TEMP(I) 
R ( I ) = W(I) / TEMP(I) 

3100 CONTINUE 

Assuming that TEMP is a scratch array whose values are unneeded, then the 
following will be more efficiently handled by a compiler: 

DO 3101 I = 1 , N 
R ( I ) = X( I ) + Y ( I ) 
W(I) = Z ( I ) ** 2 + R ( I ) 
R ( I ) = W(I) / R ( I ) 

3101 CONTINUE 
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which will be optimized as: 

DO 3102 I = 1, N 
register j = X(I) + Y(I) 

W(I) = Z(I) ** 2 + register j 
R(I) = W(I) / register j 

3102 CONTINUE 

thereby eliminating N memory references. 

3.2.2 Machine-Dependent Optimizations 
These techniques are concerned with the optimal use of the underlying 
machine resources: registers, functional units, and the like. 

Instruction Scheduling 
A compiler typically views a routine as a series of "optimization blocks" of 
source code statements within which it trys to issue instructions in an order 
that attains the greatest overlap of execution while assuring correct results. 
Fetches from memory are often the most expensive operations (in time). So 
they are scheduled to occur well in advance of the operations in which the 
data is involved, in order that the fetch time can be overlapped with unre­
lated computation. 

Most computers can perform only one occurrence of an arithmetic 
operation at a time, so, for example, if two multiplies occur in a row, as in 

X ( I ) = Y ( I ) * Z ( I ) * W ( I ) / ( A ( I ) + B ( I ) ) 

then, if possible, the compiler will schedule the instruction to perform Y(I) * 
Z(I), then issue A(I) + B(I), then return to issue the multiply by W(I). This 
technique can be applied across statements so that operations are done as 
soon as possible with maximal concurrency. 

A programmer can choose an order of operations that enhances the 
compiler's ability to perform this kind of optimization, as in Homer's rule for 
polynomial evaluation. Consider the following conventionally coded polyno­
mial: 

P = A0 + A1 * X + A2 * X * * 2 + A3 * X * * 3 + A4 * X * * 4 

Now a smart compiler can fetch X to a register, compute X**2 to another 
register, use that to compute X**3, and so forth. This reduces the number of 
operations to produce the powers of X, but it still requires two multiplies in a 
row for all terms beyond A1*X. Homer's rule suggests that polynomials be 
entirely factored in X: 

P = A0 + (X * ( A 1 + X * ( A 2 + X * ( A 3 + X * A4))) 

Not only does Homer's rule further reduce the number of multiplies, but it 
naturally schedules an overlap of adds, multiplies, and fetches (of the Ai), 
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which almost guarantees that the compiler will generate optimal code. A very 
smart compiler might be programmed to recognize polynomials and then 
invoke Homer's rule. But it should be easy to imagine that, in general, a 
compiler's ability to perform such transformations must be limited if only to 
keep compilation time itself at an acceptable level. Therefore, a programmer 
should write expressions and even groups of statements in a manner that 
alternates independent operations as much as possible. 

Operator Strength Reduction 
Wherever results will be exactly the same, compilers will usually replace 
costly operations with equivalent, less-expensive ones. Thus, integer divide 
by a power of 2, as in 

IOVER4 = 1 / 4 

will be replaced with an operation that shifts off the two right-most bits of I, 
instead of using the divide functional unit. This might take two clock cycles 
instead of 20 or more. We hinted in the previous section that exponentiation 
to an integer power will be treated as successive multiplication up to the 
point that multiplies become more expensive than invoking an exponentia­
tion routine on a given machine. This is usually in the range of powers five to 
ten. This is typically not done for floating-point exponentiation, so we should 
always write 

X**2 

instead of: 

X**2.0 

The first will probably run ten times faster than the second. 
Furthermore, when variables are used for powers, most compilers will 

call exponentiation routines, since they cannot know the values at compile 
time. Consider, for example, loop 3110: 

DO 3110 J = 1, NDIM 
DO 3110 I = 1, N 

A(I) = A(I) + X(I)**(J-1) * Y(I)**(J-1) 
3110 CONTINUE 

If we know that NDIM is always three, and always will be, then we can 
realize a significant speedup by expressing this directly: 

DO 3111 I = 1 , N 
A ( I ) = A ( I ) + 1.0 + X( I ) * Y d ) * ( 1 . 0 + X( I ) * Y ( D ) 

3111 CONTINUE 

The original loop demanded 3*N calls to an exponentiation routine, but 
the rewritten loop has no explicit exponentiation. Furthermore, the original 
specified fetching the elements of A, X, and Y three times, but the restruc-
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FIGURE 3.2. 
Chime Diagram of Loop 3111 

tured loop fetches them only once. Finally, recognition of the common 
subexpression X(I) * Y(I) by the compiler will eliminate one of the multiply 
instructions, so that alternating adds and multiplies will overlap. The tech­
nique used to eliminate the outer loop on J is called "unrolling" and has 
many applications we will explore in later sections. 

A chime diagram of loop 3111 on the Cray X-MP is shown in Figure 
3.2. 

Register Assignment 
Registers are recognized by a compiler as a precious resource, and every 
attempt is made to use this very fast memory efficiently. To this end, heavily 
used local variables might be assigned permanently to registers. And we have 
shown earlier that registers are used to hold common subexpression evalua­
tions to avoid redundant computation. 

A local variable is a scalar variable that is neither a dummy argument 
nor is used as an actual argument nor does it appear in a common block. In 
other words, its entire use is local to the subprogram in which it appears. 
Such a variable may be assigned to a register where it can be manipulated 
very quickly; it need never be stored into or fetched from memory. Some 
programmers create a common block containing a number of such "scratch" 
variables, so that the memory space can be shared by all subprograms; this 
inhibits a compiler from using the register assignment. If the memory savings 
are not needed, such variables should be restored to true local status to allow 
more effective use of the registers. 

Note that the previous discussion applies to local variables, not to local 
arrays, which are always memory-based. 

(Fortran Operations) 

X*Y 
(1. + X*Y) 

A+ 1. 
X*Y * (1. + X*Y) 

A + 1. + X*Y * (1. + X*Y) 
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A programmer can use knowledge of the number of registers available 
to estimate the performance of a DO loop or even a compiler's ability to 
optimize it at all. Very short loops give a compiler very little to optimize-
overly long loops can overwhelm the register capacity, forcing the compiler 
to use temporary memory space as pseudoregisters; extremely long loops 
might inhibit optimization entirely. 

Short Loops 
Several short loops of the same length, especially if they share variables and 
expressions, should be combined to provide the compiler with more opportu­
nity to use the machine's registers effectively. For example: 

DO 3121 I = 1, N 
3121 X(I) = A(I) + B(I) / ( D(I) + S * C(I) ) 

DO 3122 I = 1, N 
3122 Y(I) = X(I) + A(I) * B(I) 

DO 3123 I = 1, N 
3123 X(I) = X(D / ( D(I) + S * C(I) ) 

is much better written as: 

DO 3124 I = 1 , N 
X ( I ) = A ( I ) + B ( I ) / ( D ( I ) + S * C ( I ) ) 
Y ( I ) = X ( I ) + A ( I ) * B ( I ) 
X ( I ) = X ( I ) / ( D ( I ) + S * C ( I ) ) 

3124 CONTINUE 

In this form, the compiler can fetch the values of A, B, C, and D only once, 
then reuse them from registers; the common subexpression D(I) 4- S * C(I) 
can be calculated and reused, the first setting of X(I) need not be stored, and 
the value of X(I) can be reused from a register in the last two equations. 

Long Loops 
Let us now estimate, for a Cray computer with eight vector registers, how 
many registers are needed for the duration of loop 3124. 

In the execution of the first line, vector registers are needed to fetch A, 
B, C, and D, and each dyadic operation requires two registers as operands 
and one for results. But, some of the registers may be reused. For example, 
the registers holding the values of D and C are no longer needed once the 
common subexpression D(I) 4- S * C(I) is computed. So upon completion of 
the first equation, four active vector registers hold the values of X, A, B, and 
the common subexpression — all of which are needed for further computa­
tion. Upon completing the second equation, the registers holding A and B are 
no longer needed. Only the registers containing X and the common subex­
pression are needed for the final equation. 
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In other words, a compiler can probably perform all of the loop's 
computation using only four or five vector registers, so an even longer loop 
with more computation can be optimized easily. Consider loop 3130: 

DO 3130 I = 1 , N 
X( I ) = A ( I ) + B ( I ) / ( D ( I ) + S * C ( I ) ) 
Y ( I ) = X( I ) + A ( I ) * B ( I ) 
W(I) = A ( I ) * B ( I ) + C ( I ) * Y ( I ) + D ( I ) 
X( I ) = X( I ) / ( D ( I ) + S * C ( I ) ) 

3130 CONTINUE 

Here, the added equation (W(I) = . . .) has a subexpression A(I) * B(I) that has 
been already calculated in the second equation, and the same equation also 
requires B, C, D, and Y for further computation. A compiler trying to opti­
mize register usage would find that at the end of the second equation it 
would like to hold onto the registers containing A, B, C, D, X, Y, A(I) * B(I) 
and D(I) + S * C(I) — eight registers in all. At this point we could imagine that 
the compiler would abandon one of the registers in favor of refetching or 
recomputing its value later in the loop. This is hardly the way compilers 
actually "think" about register allocation, but it is a good exercise for a 
programmer trying to understand how to form loops that utilize most of the 
computer's resources without overtaxing them. Later in this chapter we will 
discuss how to choose points in very long loops at which to split them into 
several moderate-sized loops. 

3.3 
VECTORIZATION 

Vectorization causes a computer to compute with vector rather than scalar 
instructions. When applied to a compiler, vectorization means that the com­
piler is capable of generating vector machine code; when attributed to a 
programmer, it means that he or she has written constructs recognizable by 
the compiler as vectorizable. 

Any given compiler provides explicit and implicit vectorization. Within 
the context of ANSI 77 Fortran all vectorization is implicit, and any explicit 
vectorization is necessarily an extension to the language. The next standard 
version of Fortran, presently known as Fortran 8X, contains many explicit 
array operations that can be easily interpreted as vector instructions. 

3.3.1 Explicit Vectorization 
Compilers on supercomputers provide programmers with certain constructs 
that have only vector interpretations. The use of these constructs is known as 
explicit vectorization. We also include in this classification the use of ma­
chine-specific vector library routines when called from a Fortran program. 
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Compiler Directives 
All of the compilers provide a set of special comment cards ignored by any 
other compiler but interpreted for user information by the target compiler. A 
subset of these directives is explicitly concerned with vectorization of DO 
loops. They were first introduced in Cray's CFT compilers, and there have 
the form: 

CDIR$ directive [»directive. . .] 

"Directive" might be simple, like VECTOR, indicating that the compiler is to 
begin to vectorize loops, or might be something more complicated, such as 
IVDEP, meaning "ignore vector dependencies." The use of directives will be 
introduced in examples after we have developed the terminology of vectori­
zation. 

Fortran 8X 
Although not yet released as a standard, several compilers have incorporated 
some of the features of Fortran 8X, as proposed by ANSI's X3J3 committee. 
Control Data Corporation's Fortran 200, Cray's CFT77, and Alliant's FX/ 
Fortran have all provided "array section syntax" as an extension to their 
Fortran 77 implementation. Assignment statements involving array section 
syntax are immediately interprétable as a series of vector operations by these 
compilers. 

An "array section" is derived from an array by specifying "subscript 
triplets" in some of the subscript positions of the array. A subscript triplet has 
the form: 

i : j : k 

where i is the initial subscript value, j is the bound of the final subscript 
value, and k is the subscript stride or increment. 

The initial and final bound values must be within the dimension of the 
array; the stride may be any nonzero value. It is simplest to think of a 
subscript triplet as DO control values. For example the array assignment 
statement 

A ( 1 : 2 0 : 2) = B ( 1 : 2 0 : 2 ) 

may be interpreted as 

DO 3140 1 = 1 , 2 0 , 2 
A ( I ) = B ( I ) 

3140 CONTINUE 

Any or all of the subscript values may be omitted from a subscript triplet: 
i:j means from i to j with a stride of one 
:j means from the lower-dimension bound to j 

i: means from i to the upper-dimension bound 
means from lower to upper bound 
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Finally, note that an array name appearing with no subscript expressions 
whatsoever implies the entire array. 
Given: 

DIMENSION A(100) 

then 
A( 1 : 100 : 1 ) 

A( 1 : 100 ) 

A( : 100 ) 

A( 1: ) 

A( : ) 

A 

all have the same interpretation — that is, the entire array. 
Next, note that a subscript triplet can appear in any subscript position 

of a multidimensioned array, thus specifying a section of the whole array, 
often with a different shape and size than the original. Thus, given: 

D I M E N S I O N X ( 1 0 0 , 5 0 , 2 5 ) 

then 

X ( 1 : 5 0 , 1 7 , 1 1 : 2 5 : 2 ) 

specifies a subarray of two dimensions whose shape is [50,8]. 
Whenever array sections are involved in an assignment statement then 

they must conform in shape and size. This means that for each array refer­
ence containing subscript triplets, there must be the same number of triplets; 
and in order from left to right, corresponding triplets must be the same size. 
Scalar variables, constants, and array references not containing triplets 
always conform in shape to any array section — that is, they are treated as an 
array of the appropriate shape with the same value at every element. 

Here are some clarifying examples: 

DIMENSION A(100), B(-1:98), X(100, 50, 25) 

DIMENSION Y(100, 100, 10, 70) 

Comment: M, N, P, Q, R are scalar variables. 

A( : ) = 1 . 0 

C sets all elements of A to 1.0. 

B( : 1 0 ) = P + Q 

C sets elements B(—1:10) to the invariant P + Q 

X ( : , N , 1 ) = A ( : ) + B ( : ) 
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C sets the Nth column in the first plane of X 
CtoA(l:100) + B(-l:98). 

X ( M : N , 1 : 1 0 , 1 : 2 0 ) = Y ( 1 , M : N , 1 : 1 0 , 4 1 : 6 0 ) 

C sets a 3-D subsection of X to a 3-D subsection of Y. 

Multidimensioned array sections such as in the last example can be 
interpreted as a DO loop nest with the left-most triplet as the inner loop and 
the rightmost triplet as the outermost loop. Loop interpretations of all the 
preceding examples follow: 

DO 3150 1 = 1 , 100 
A(I) = 1.0 

3150 CONTINUE 

DO 3160 I = -1, 10 
B(I) = P + Q 

3160 CONTINUE 

DO 3170 1 = 1 , 100 
X(I, N, 1) = A(I) + B(I-2) 

3170 CONTINUE 

DO 3180 K = 1, 20 
DO 3180 J = 1, 10 

DO 3180 I = M, N 
X(I, J, K) = Y(l, I, J, K+40) 

3180 CONTINUE 

In the general form of an array-section assignment 

array section = expression 

it is important to note that "expression" is fully evaluated for all elements 
before any assignment is made to the left side array section. Because of this, 
there can be no feedback of data from the left to the right as in certain DO 
loops such as: 

DO 3190 I = 2, N 
A(I) = A(I-l) + A(I+1) 

3190 CONTINUE 

The following is not equivalent to loop 3190: 

A ( 2 : N ) = A ( 1 : N - 1 ) + A ( 3 : N + 1 ) 

A loop interpretation of the preceding array assignment statement is 

DO 3200 I = 2 , N 
TEMP(I) = A ( I - l ) + A( I+1) 

3200 CONTINUE 

DO 3201 I = 2,N 
A(I) = TEMP(I) 

3201 CONTINUE 
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To repeat, the feedback of values inherent in loop 3190 cannot be 
written in an array-section assignment statement. The right side of the 
expression is always fully evaluated for all elements using old values before 
any new values are stored on the left. Feedback is fully discussed in a later 
section on recursion in loops. 

Vector-mask operations are also directly specifiable in array syntax 
using the WHERE statement and WHERE blocks. These constructs derive 
directly from the IF statements and IF blocks of Fortran 77 and have the 
following forms: 

WHERE ( mask expression) array = expression 

WHERE ( mask expression) 

array = expression 

ENDWHERE 

WHERE ( mask expression) 

array = expression 

ELSEWHERE 

array = expression 

ENDWHERE 

Examples of each of the three forms and an accompanying loop interpreta­
tion follow: 

WHERE ( A ( 1 : N ) . G T . B ( 1 : N ) ) A ( 1 : N ) = X 

is the same as 

DO 3210 I = 1 , N 
IF (A( I ) .GT. B ( I ) ) A ( I ) = X 

3210 CONTINUE 

WHERE ( A ( 1 : N ) . G T . EPSLON) 

A ( 1 : N ) = A ( 1 : N ) / 2 . 0 

ENDWHERE 

is the same as 
DO 3220 I = 1 , N 

IF (A(I) .GT. EPSLON) THEN 
A(I) = A(I) / 2.0 

ENDIF 
3220 CONTINUE 
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WHERE ( A ( 1 : N ) . G T . B ( 1 : N ) ) 

A ( 1 : N ) = X 

ELSEWHERE 

A( 1 : N ) = B ( 1 : N ) 

ENDWHERE 

is the same as 

DO 3230 I = 
IF ( A ( I ) 

A ( I ) 
ELSE 

A(I) 
ENDIF 

3230 CONTINUE 

All of the preceding WHERE constructs can be vectorized immediately and 
unambiguously. 

Finally, note that all of the Fortran 77 intrinsic functions have been 
extended to accept array arguments, so the following can be written: 

A ( 1 : N ) = EXP ( SQRT ( A ( 1 : N ) ) ) 

which is the same as 

DO 3240 I = 1, N 
A(I) = EXP ( SQRT (A(I))) 

3240 CONTINUE 

The most important attribute of Fortran 8X array assignment statements 
is that they can be explicitly interpreted as vector operations. 

CYBER 205 Explicit Vector Syntax 
More than fifteen years ago CDC defined a vector syntax for the STAR-100, 
and it is still available on the CYBER 205 and ETA 10. It is a unique syntax 
for assignment statements, vector functions, and in-line assembly language, 
by which every machine instruction may be invoked directly from a Fortran 
routine. Assignment statements specify vectors rather than the array sections 
of Fortran 8X. An explicit vector has a starting array element, a length, and a 
fixed stride of one. It has the form: 

array ( starting subscript ; length) 

Given 
DIMENSION A(100), B(100, 50), C(100, 50, 25) 

Then a vector assignment statement could be 

A ( 1 ; 1 0 0 ) = B ( 1 , 1 ; 1 0 0 ) + C ( 1 , 1 0 , 1 7 ; 1 0 0 ) 

1 , N 
.GT. B ( I ) ) THEN 

= X 

: B ( I ) 
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A form of the WHERE statement already described is also available to 
perform vector mask operations with these vector assignment statements. All 
of the standard intrinsic functions have special vector versions, as in: 

A ( 1 ; 1 0 0 ) = VSQRT ( A ( 1 ; 1 0 0 ) ; 1 0 0 ) 

and many machine instructions such as vector average, vector merge, and 
vector polynomial are provided as vector functions as well. 

As with Fortran 8X array syntax, the most important feature of CYBER 
205 vector syntax is that it is a direct specification of vector instructions. 
Unlike DO loops — which may or may not vectorize, depending on a great 
many factors — vector syntax guarantees vector instructions. 

Machine-Specific Library Routines 
Each of the supercomputer vendors provides a number of Fortran-callable 
library routines, highly optimized and vectorized, and often written in as­
sembly language. We highly recommend that programmers investigate the 
use of such routines in important CPU-intensive regions of their programs. 
But, keep in mind that such use reduces the transportability of the source 
code to other vendors' systems. 

3.3.2 Implicit Vectorization 
Compiling DO loops into vector instructions is by far the most common form 
of vectorization. It is implicit because by definition a DO loop is a specifica­
tion of an iterative series of scalar operations. It is fortuitous if a compiler can 
recognize that the same computation can be performed with vector instruc­
tions. We shall see that a programmer cannot always be sure whether a 
complicated loop will vectorize; often, a compilation listing must be scanned 
to determine how the loop was handled. To further discuss implicit vectori­
zation, we must first establish some terminology. 

Vectorization Terminology 
In this section we develop a working vocabulary of terms to analyze and 
discuss the constructs that can appear as standard Fortran DO loops and how 
these constructs affect a compiler's ability to vectorize the loops. 

Constant-Increment Variable. A constant-increment variable (CIV) is a 
scalar variable whose value is incremented or decremented by a fixed 
amount on every iteration of a DO loop. All of the scalar variables in loop 
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3250 are CIVs. 

DO 3250 1 = 1 , 100 
J = I - 5 
K = K + 1 
L = 6 - K 
M = 3 * I + 4 
P = P + 2 . 0 
A ( I ) = B( J ) * C(K) + D(L) * E(M) / P + F(N) 
N = N + 1 

3250 CONTINUE 

Assuming that each of the variables has an initial value of zero, then the 
sequence of values attained within the loop is 

Sequence Increment 

1 = 
J = -

K = 
L = 

M = 
N = 
P = 

1, 2, . . 
- 4 , - 3 , . . 

1, 2, . . 
5, 4, . . 

7, 10, . . 
1, 2, . . 

2., 4., . . 

, 100 
, 95 
, 100 
, - 9 4 
, 304 
, 100 
, 200. 

The use of integer variables in this manner is so important to vectorization 
that they are separately designated "constant-increment integers" or CIIs. 
Their use as array subscripts often results in a "vector array reference." 

Given that "Π" is any integer variable and "IP" is any previously 
defined CII, then any of the following are valid for defining CIIs in a DO 
loop: 

II = II ± invariant expression 
II = invariant expression + II 
II = [ ± invariant expression *] IP [± invariant expression] 
II = [ ± invariant expression ] [± invariant expression *] IP 

By definition, the DO loop index variable is always a CII. 
Constant-increment variables such as P in loop 3250 can be treated as 

vectors of values at execution time, with the last value attained saved in the 
variable at loop termination. This use of scalar variables will be developed 
further in later sections. 

Vector Array Reference. In a DO loop, an array reference having one 
subscript expression as a linear function of a single CII. All other subscript 
expressions, being invariant, can be treated as a vector. A linear CII subscript 
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expression is defined as: 

[ ± invariant expression *] Cil [± invariant expression] 

As a simple example, all of the array references in loop 3250 can be handled 
as vector array references. Other examples follow: 

DIMENSION W(100) , X(100 , 5 0 ) , Y(50 , 1500 , 2 ) , Z(1000) 

DO 3260 I = 1, N 
J = 3 * I + 3 - N 
K = L * J - 5 
X ( I , N) = Y(M, 5*J , L) + Z(K-4) / W(I) 

3260 CONTINUE 

Remember that a vector has a starting address, a length, and a constant 
stride through memory. A compiler is able to derive that information at 
execution time for the array references X, Y, and Z in loop 3260. Given that 
the integer variables L, M, and N are all defined before the loop is executed, 
then the vectors are defined as follows: 

Array 

W 
X 
Y 
Z 

Starting Address 

W(l) 
X(l, N) 
Y(M, 30 -
Z((6 - N) 

-5*N) 
* L - 9 ) 

Length 

N 
N 
N 
N 

Stride 

1 
1 
750 
3*L 

The stride of 750 in Y is derived from the facts that the subscript expression 
itself, 5*J, has a stride of 5*3 = 15, and the stride through memory is in the 
second dimension of Y; so it specifies striding across columns of length 50, 
and 15*50 = 750. 

Compilers vary in their ability to detect linear subscript expressions. If 
there is ever any doubt, the compiler will resort to indirect address vectors 
described in the next section. 

Indirect-Address Vectors. An indirect-address vector is a list of values in 
an array in memory that is not explicitly characterized by a constant stride 
but whose subscript expressions themselves are vectorizable. Loops 2180 and 
2200 from Chapter 2 are examples of indirect-address vectors: 

DO 2180 1 = 1 , 64 
A(IA(I)) = B(IB(I)) + C(IC(I)) 

2180 CONTINUE 

DO 2200 I = 1,N 
J = I * I / (I + 1) 
K = MOD (J, 10) + 1 
L = ISQRT (IA(I) * IB(I)) 
M = 6 - M 
A(J) = (B(K) + C(L)) * D(M) 

2200 CONTINUE 
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In loop 2180, the indirect-address indexes are explicit and should be obvious; 
in loop 2200, the compiler must cause the vectors of indexes to be computed 
at execution time. This same technique is used by compilers anytime that 
they cannot determine whether a subscript expression has a constant stride. 

Indirect-address fetching of data from memory is called a "gather" 
operation. Indirect storing is called a "scatter" operation. 

Scalar Temporaries or Pseudovectors. Whenever a scalar variable is set 
equal to a vectorizable expression, the entire expression can be performed in 
a vector register or a temporary vector in memory. At loop termination, the 
last value computed can be stored into the scalar variable. Example: 

DO 3270 I = 1, N 
SCA = A(I) * B(I) + SQRT (X(I)**2 + Y(I)**2) 
R(I) = SCA * Y(I) 
Z(I) = (D(I) + E(I)) / SCA 

3270 CONTINUE 

Here, the scalar temporary SCA is transparently promoted to a vector 
by the compiler. That is, the instructions generated are the same as if SCA 
were an array, except only the value computed in the Nth iteration is stored 
into memory, rather than all of the values computed. Some compilers are 
smart enough to determine whether it is even necessary to save the last 
value. For instance, if SCA is not in COMMON, not a dummy argument, and 
not referenced outside the loop, then there is no need to save it. Many 
compilers provide directives that allow the programmer to choose or prevent 
"last-value-saving." 

The judicious use of scalar temporaries, or "pseudovectors," can reduce 
the number of memory references needed within a loop. Some problems 
with their use will be discussed in the following section on recursion. 

Note that invariant array elements within a loop have the same charac­
teristics as scalars, so a compiler can apply the same optimization techniques. 
So, for example, in loop 3280, J is invariant in the inner loop on I. A vector 
register holds the values of X(JJ) * T(I); at the end of each execution of the 
inner loop, the last value X(J,J) * T(N) is saved in A(J). 

DO 3280 J = 1,M 
DO 3280 I = 1,N 

A(J) = X(J,J) * T(I) 
Y(I,J) = X(I,J) / A(J) 

3280 CONTINUE 

We will often refer to such invariant array elements as "array con­
stants." It is not their value but their subscript expressions that are constant 
or invariant for the duration of an inner loop. 

Recursion. "Data dependency" among Fortran statements is a term indi­
cating that a variable stored into in one statement is subsequently used by 
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another statement. Thus, in the following, the second statement depends on 
the first, and they must be executed in the order in which they are written: 

S = T + U 

X = S * Y 

In the vectorization of DO loops we concern ourselves with recursive data 
dependencies, in which a statement in the loop is data dependent on itself or 
on a statement that succeeds it in the loop. One of the simplest examples is: 

DO 3290 I = 2, N 
A(I) = A(I-l) + B(I) 

3290 CONTINUE 

Let A' indicate newly set values of the array A, and write out several 
iterations of the loop: 

A' ( 2 ) = A ( 1 ) + B( 1 ) 

A· ( 3 ) = A ' ( 2 ) + B ( 2 ) 

A' ( N ) = A ' ( N - 1 ) + B ( N ) 

Note that the output from the first iteration, A'(2), is input to the second 
iteration — that is, its address "recurs" in the second iteration. Naturally, this 
is called a recurrence or recursion. It is sometimes also referred to as data 
feedback, again for obvious reasons. This condition is of extreme importance, 
because it makes vectorization of the loop impossible. Remember that to 
vectorize a loop such as: 

DO 3300 I = 1, N 
A(I) = B(I) + C(I) 

3300 CONTINUE 

we want to fetch all of the elements of the vector B and all of the elements of 
C, then add them together and store them into A. The recurrence in loop 
3290 prevents the fetching of A, because its elements contain all old values. 
The new values can be derived only by executing the loop iterations one at a 
time in scalar mode. Some compilers can recognize such single-dimension 
recursion and optimize the scalar instructions. But the execution rate is 
typically a factor of three or four less than the vector execution of loop 3300. 

Single-dimension recursion is the only condition that absolutely pre­
vents vectorization of arithmetic operations in a DO loop. It is important to 
understand the nature of recursion, and that it is a necessary and unavoid­
able part of some algorithms. In later sections we will demonstrate that when 
recursion occurs in a multidimension problem, often there are techniques 
allowing us to vectorize the important loops. 
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Further Recursion Involving Arrays. To restate the definition of recur­
sion: Any address set in one iteration of a DO loop and subsequently refer­
enced in another iteration is a recurrence. Recursion in any one dimension of 
an array prevents vectorization of the settings and references within that 
dimension. Sometimes the recursion is not directly determinable by a com­
piler. But if potential for recursion exists, the compiler must either avoid 
vectorization or must add extra instructions to resolve any ambiguities at 
execution time. Loop 3310 contains such ambiguities. 

DO 3310 I = 1, N 
A(I) = C(I) * B(IB(I)) 
B(I) = X(I) * Y(I) 
D(I) = E(I) / A(I+L) 

3310 CONTINUE 

The arrays A and B are each being indexed in a manner that makes it 
difficult to determine whether recursion will take place. Array A(I) is being 
set in the first statement, and A(I+L) is being referenced in the third. If 
0 < L < N, then at least one and as many as N-l addresses set in the first 
statement will be referenced in the third on subsequent iterations. For L not 
in that range, no feedback occurs. The ability of the compiler to determine 
the value of L either at compile time or execution time will decide whether 
the use of A in the loop can ever be vectorized. If the value or sign of L 
remains ambiguous, then the loop must be executed in scalar mode. 

Any time that an array is both set and referenced in the same loop and 
the subscript expressions differ by an indeterminate value—that is, ambigu­
ous subscripting—then the potential for recursion exists. Compilers can 
sometimes resolve the ambiguities; programmers can almost always resolve 
them with compiler directives. Examples of this appear in a later section. 

The indirect addressing of B in loop 3310 is even more of a challenge. 
From a compiler's viewpoint, the values of the indexes IB(I) might actually 
repeat earlier values of the loop index I, so the use of B in the loop must be 
handled with scalar instructions. A compiler can rarely resolve such ambigu­
ity, but a programmer often can resolve it with a compiler directive, leading 
to vectorization where appropriate. 

In general, whenever an array is both set and referenced in the same 
loop and any of the subscript expressions involve indirect addressing, the 
compiler will generate scalar instructions unless the programmer informs it 
that there is no recursion. Note that even when the indexes are the same, as 
in loop 3320, there is still potential for recursion. 

DO 3320 1 = 1 , 3 
A(IA(I)) = A(IA(I)) + B(I) 

3320 CONTINUE 
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Consider: 

I 

1 
2 
3 

IA(I) 

1 
2 
1 

Unrolling the loop in scalar mode and designating "new" values as A': 

A ' ( 1 ) = A( 1 ) + B( 1 ) 

A ' ( 2 ) = A ( 2 ) + B ( 2 ) 

A ' ( 1 ) = A ' ( 1 ) + B ( 3 ) 

It should be clear that the value set in iteration 1 recursively feeds back 
into iteration 3. Attempting to vectorize the loop would result in: 

A 1 ( 1 ) = A ( 1 ) + B ( 1 ) 

A ' ( 2 ) = A ( 2 ) + B ( 2 ) 

A ' ( 1 ) = A ( 1 ) + B ( 3 ) 

There is no feedback, because all of the values of A are fetched on the right 
side before any are stored on the left. Compilers are aware of this potential 
problem, so they force such usage to be performed in scalar mode unless 
otherwise directed by the programmer. 

Further Recursion Involving Scalars. Any time a scalar variable or array 
constant is referenced before it is set within a loop, it results in recursion. We 
refer to such variables as "wrap-around scalars," and their usage is termed 
"scalar recursion." Loops 3330 through 3332 contain examples of scalar 
recursion. 

XSUM = 0. 
DO 3330 I = 1, N 

XSUM = XSUM + X(I) 
3 330 CONTINUE 

DO 3331 J = 1 , N 
DO 3331 I = 1 , N 

A(I,J) = 0. 
DO 3331 K - 1, N 

A(I,J) = A(I,J) + B(I,K) * C(K,J) 
3331 CONTINUE 

XMAX = X(l) 
YMAX = Y(l) 
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DO 3332 I = 2,N 
XMAX = AMAX1 ( XMAX, X(I)) 
IF (YMAX .GT. Y(I) ) YMAX = Y(I) 

3332 CONTINUE 

Loops 3330, 3331, and 3332 each contain an example of a "reduction-func­
tion scalar/' A reduction function processes a vector of values and reduces it 
to a single scalar value as a result. Loop 3330 computes the sum of the 
elements of the array X, placing the answer in XSUM. Loop 3331 is the classic 
way to write the matrix multiply in Fortran, with the inner loop expressing a 
dot product of a row of B and a column of C, the answer going to a single 
element of A. Loop 3332 contains two ways of finding the value of the 
maximum in an array. 

Most compilers can recognize and optimize the computation involved 
in the following reduction functions as they appear in DO loops 

scalar = scalar + vectorizable expression 
scalar = scalar — vectorizable expression 
scalar = scalar * vectorizable expression 
scalar = scalar / vectorizable expression 
scalar = MAX ( scalar, vectorizable expression) 
scalar = MIN ( scalar, vectorizable expression) 
IF (scalar .relop. vectorizable expression) 

scalar = vectorizable expression 

where 

ΜΑΧ/ΜΙΝ represent the whole family of related Fortran-intrinsic functions 
.relop. is one of .GT., .GE., .LT., .LE. 

The vectorizable expressions can always be computed with vector instruc­
tions. The actual reduction of the expression to the final value usually 
involves some scalar code. So even on machines that have specific machine 
instructions for such operations as dot product, the result rate for reduction 
functions is somewhat lower than for pure vector operations. The most 
important thing to know about reduction function scalars is that although the 
compilers can optimize the generation of the final result, they cannot gener­
ate any of the intermediate results except by executing the computation in 
pure scalar mode. This means that the reduction-function scalar may not 
appear in any other statement of the loop if optimization is desired. For 
example, consider loop 3340: 

XSUM = 0. 
DO 3340 I = 1, N 

XSUM = XSUM + X(I) 
Y(I) = XSUM * Z(I) 

3340 CONTINUE 

In loop 3340 Y(I) is a function of the partial sums of X. There is no efficient 
way to compute this using vector instructions on any machine, so the loop 
will be executed in scalar mode. 
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Loop 3350 represents a different kind of wrap-around scalar. 

TOP = 0. 
DO 3350 I = 1, N 

BOTTOM = TOP 
TOP = X(I) * Y(I) 
Z(I) = (TOP - BOTTOM) * P(I) + TOP**2 

3350 CONTINUE 

Here, the scalar BOTTOM is being used to hold the value of TOP from the 
previous iteration of the loop. Together, BOTTOM and TOP act as a moving 
interval or window within the expression X(I) * Y(I). Neither scalar is accu­
mulating information from all iterations, as with the preceding reduction 
functions. In a later section we will show that all such cases of "holding 
scalars" can be eliminated by substitution of their defining expressions or by 
promotion to a newly defined array of their values — thus allowing the loop 
to fully vectorize. 

Finally, wrap-around scalar recursion can result from the scalar being 
defined conditionally, as in loop 3360. 

SCA = 0. 
DO 3360 I = 1, N 

IF (A(I) .GT. 0.) THEN 
SCA = X(I) * Y(I) 

ENDIF 
Z(I) = SCA + B(I) 

3360 CONTINUE 

On any iteration when the condition A(I) .GT. 0. is false, SCA is not set, and 
the value used to define Z(I) wraps around from the previous iteration. In 
general, we cannot predict for which indexes a condition will be true or false. 
So it is almost impossible to create the list of values assumed by SCA except 
by using scalar instructions. We shall see later than in some cases there will 
be a payoff for computing all the values in a separate scalar loop and saving 
them in a newly defined array for reference in subsequent loops. 

Problems 
1. Knowing that a particular machine has 64 banks and a memory-bank 

cycle time of four clock cycles, which of the following array references will 
incur memory bank conflicts? 

DIMENSION A(1024,1024), B(8,1024,64), C(1025,1024) 

a. A(:,6) 
b. A(6,:) 
c. A(l:1024:16,6) 
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e. B(7,:,64) 
f. B(7,l:1024:4,5) 
g. C(6,:) 
h. C(l:1025:32,:) 

(Note: it is interesting that g will probably run much faster than b.) 

Conversion of Fortran 8X to efficient vector code can be difficult. On a 
register-to-register machine, the most effective means of execution is to 
stripmine across a large number of related operations, as are often found 
in a substantive DO loop. Consider the following examples: 

DIMENSION A(200), B(200), C(200) 

a) Fortran 8X Fortran 77 

A = B + 2. 
C = A*B - 3* 

10 

DO 10 1=1,200 
A(I)=B(I)+2. 
C(I)=A(I)*B(I)-3*B(I) 
CONTINUE 

b) Fortran 8X Fortran 77 

A(l:199)=B(l:199)+2 
C(2:200)=A(2:200) 
* *B(2:200) 
* -3.*B(2:200) 20 

DO 20 1=2,200 
A(I-l)=B(I-l)+2. 
C(I)=A(I)*B(I)-3*B(I) 
CONTINUE 

Are the Fortran 8X and Fortran 77 versions of each example equivalent? 
Many compilers may have to stripmine across each statement of the 
Fortran 8X code if they lack the necessary analysis to determine if state­
ments can be combined in the looping structure. 

3. Given that IA(:) = 1, will a compiler treat the reference A(IA(I)) as a vector 
or as an array constant if it appears in a DO loop? 

4. In the following DO loops, what values of SCA will be saved in memory 
at the termination of each loop. 

a) DO 10 I = 1, N 
SCA = A(I) + B(I) 
C(I) = SCA + D(I)**2 

CONTINUE 

b) SCA =0.0 
DO 20 I = 1, 
C(I) = SCA H 
SCA = A(I) 

CONTINUE 

D(I)*" 
+■ B(I) 
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C) DO 30 I = 1, N 
IF (A(I) .GT. EPS) THEN 
SCA = A(I) + B(I) 
C(I) = SCA + D(I)**2 
ENDIF 

30 CONTINUE 

5. On a Cray computer with a vector register length of 64, is the following 
DO loop recursive if: 

DO 10 1=1,N 
A(I+L) = A ( I ) * X( I ) + SCA 

10 CONTINUE 
a ) L = 1? b ) L = " 1 ? c ) L = 6 4 ? 

On the NEC SX2 with register lengths of 256, is the loop recursive for the 
cases mentioned? 

6. Try compiling the examples in Chapter 4 with your compiler to see how it 
compares with the Cray compilers used in Chapter 4. 



4 
VECTORIZATION OF 

FORTRAN PROGRAMS 

In this chapter we will discuss areas where compilers fall short in optimizing 
Fortran programs and how programmers can restructure their code to assist 
the compiler in getting the most out of the target "vector" processor. Al­
though we will primarily be using the Cray X-MP with compilers CFT 77 
version 1.2 and CFT 1.15BF2, most of the examples used in this chapter are 
unoptimizable by any of the current compilers. In fact, some of the examples 
show that the more sophisticated compilers actually generate code that runs 
more slowly than it would if the code had not been optimized. We hope that 
these examples will illustrate why the programmer must be involved in 
optimizing the Fortran program. 

4.1 
OBTAINING TIMING STATISTICS 

In the "real world," a Fortran programmer is faced with the complicated 
problem of optimizing a very large Fortran application. If the approach to 
optimization is well organized, the programmer can reduce this complicated 
task into a number of smaller, manageable pieces of code. Only in the rarest 
of cases would we need to totally rewrite the Fortran code to optimize it. 

Since we will be dividing the task into smaller disjoint steps, it is 
important to identify the most time-consuming portions of code and then 
concentrate the optimization on these. A common fault of programmers 
optimizing a Fortran application is assuming that they know which portions 
of code use most of the central-processing time and beginning optimization 
without ever obtaining accurate run-time statistics. This often results from 
the belief that the distribution of time on a "scalar" computer will carry over 
to a vector processor. This assumption is usually very inaccurate. Since some 
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of the code will probably vectorize, those code sections will take a lesser 
percentage of time than they took in scalar execution. 

All of the supercomputer manufacturers understand the importance of 
locating the "hot spots" (the most time-consuming portions of the code). 
They have supplied tools for assisting their users in instrumenting the code to 
obtain the information necessary to determine the parts of their programs to 
optimize first. 

4.1.1 Flow Trace 
The first such tool, which is extremely easy to use, is FLOW TRACE from 
Cray Research. A simple switch on the compiler generates run-time statistics, 
which are then tabulated in a summary after the execution of the program. 
Figure 4.1 is an example of FLOW TRACE statistics on the LINPACK bench­
mark from the Argonne National Laboratory.* 

Figure 4.1(a) presents the names of the subroutines in alphabetical 
order. The second column in the figure indicates the amount of time spent in 

F L O W T R A C E Alphabet ized summary 

(a) 

(b) 

Routine 
10 EPSLON 
4 ISAMAX 
2 MATGEN 
6 SAXPY 

©00002727a 
3 SGEFA 
7 SGESL 
1 SLINP 
9 SMXPY 
5 SSCAL 
* * * TOTAL 

F L 0 W T R A C E 

1 SLINP 
2 
3 
4 
5 
6 
7 
8 
9 
10 

MATGEN 
SGEFA 

Time executing Called Average T 
» > ( 0.00%) 

0.065 ( 3.56%) 
0.554 ( 30.45%) 
0.851 ( 46.77%) 

0.316 ( 17.37%) 
0.013 ( 0.71%) 
0.003 ( 0.16%) 

> ( 0.01%) 
0.018 ( 0.97%) 
1.820 . 139104 

— Calling tree 

00000370a 
00002552a 
00003642a 

ISAMAX 00000242a 
SSCAL 
SAXPY 

SGESL 
SAXPY 

SMXPY 
EPSLON 

00004766a 
00002727a 

00004046a 
00002727a 

00004324a 
00000201a 

1 
2574 
27 0 

133874 

26 0 
26 
1 0 
1 

2574 
Total calls 

>» 
> 

021 
> 

012 
> 

003 
> 
> 

©00000201a 
©00000242a 
©00002552a 
Called by 

©00003642a 
©00004046a 
©00000370a 
©00004324a 
©00004766a 

Called by 
Called by 
Called by 
SGEFA 
128700 

Called by 
Called by 
Called by 
Called by 
Called by 

SLINP 
SGEFA 
SLINP 

SGESL 
5174 
SLINP 
SLINP 

SLINP 
SGEFA 

FIGURE 4.1 
FLOW TRACE from LINPACK. (a) Alphabetized summary. 

b) Calling tree. 

* J. J. Dongarra et al., LINPACK User's Guide (Philadelphia: Society of Industrial and Applied 
Mathematics, 1979). 
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each routine, with percentage of total time shown in parentheses. The third 
column is the number of times each routine is called, and the fourth column 
is the average time per call. A single right-angle bracket (>) indicates that the 
time per call is small, and a pair ( » ) indicates that the time is extremely 
small. In the final column, the callers of each routine are listed. If more than 
one subroutine calls the routine then the number of calls for each caller is 
given. 

Figure 4.1(b) provides the calling tree for executing the program; in­
dentation indicates the branch level within the tree. Given this information, 
we can now concentrate our optimization within the important routines. A 
shortcoming of FLOW TRACE is that it only provides timings on subroutine 
boundaries. Very often, if the subroutine that uses most of the time is very 
large, we will have difficulty identifying which portions of the large sub­
routine should be optimized. 

On some UNIX systems, a profiler of central processing time can ana­
lyze the time used within a subroutine on a line-by-line basis. Another 
package, called SPY, is available on a number of computers. SPY gives 
timings internal to each subprogram based on statistical sampling of the 
program address register of the CPU. Unfortunately, interpreting the results 
from these other packages is more difficult than those of FLOW TRACE. 

4.1.2 FORGE Timing Facility 
In our work we have found the need to develop our own timing facility that 
gives timing statistics on DO loop boundaries, since these are typically where 
vectorization begins. In addition, information such as DO loop-iteration 
count (length) and the amount of time spent in a subroutine as a result of 
each call to that subroutine are tabulated in a summary table after executing 
the program. Appendix B, Section 1 presents statistics from our timing 
facility for the LINPACK benchmark. 

These statistics contain significantly more information than those in 
FLOW TRACE. In the first table, information similar to that of FLOW TRACE 
is given; inclusive and exclusive times and percentages are presented. Inclu­
sive time includes the time spent in all the subroutines and functions called 
from the routine. Exclusive time excludes the time of called routines if they 
have also been instrumented. As with FLOW TRACE, if a subroutine or 
function is not compiled with the timing instrumentation, its time is added to 
that of its caller. 

After this initial table, statistics within each of the subroutines and 
functions are presented. In these tables, each subroutine and function call as 
well as every DO loop has an entry. For each DO loop the indentation 
indicates the nesting of the loop. The next few columns show the time spent 
in each subprogram or DO loop as a percentage of the total job time or total 
routine time. Next, the number of times the subprogram or DO statement 
was executed is given and finally the average and maximum number of 
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iterations for each of the DO loops. At the end of the statistics, the complete 
calling chain of the program is presented; indentation shows the nesting both 
of subprograms and DO loops. In this table, the average number of DO loop 
iterations is shown in brackets ([ ]). 

4.1.3 How to Use the Timing Statistics 
Obtaining these statistics will result in longer execution, since the calls to the 
instrumentation routines will take up some time. This additional computer 
time is well worth the expenditure when this information directs the person 
hours invested in optimizing the program. 

When obtaining timing statistics by execution of the instrumented pro­
gram, it is important to assure that they represent a typical productive run of 
the program. Never run a small test case to obtain statistics to be used to 
direct the optimization of a large test case. In numerical models that march 
across time in discrete steps, we must time enough (say, four to five) steps to 
accumulate good averaged statistics; one time step will not suffice. 

To completely optimize all important routines in the program, we may 
have to time several different test cases that exercise all the important pieces 
of the program. In obtaining the run-time statistics, a good investment in 
time and analysis will save a lot of misdirected restructuring work later. 

Comparing Scalar and Vector Execution of a Program 
A good first approach in gathering run-time statistics is to determine how 
much optimization is already being performed by the compiler. This can be 
done by making a normal run of the program, allowing the compiler to 
optimize whatever code sections that it can, and then also obtaining the same 
statistics from a "scalar" execution of the program. This can be accomplished 
by turning off vectorization or parallelization. All of the compilers provide a 
simple mechanism on the control statement to accomplish this. For example, 
on a Cray with the COS operating system, compile with CFT specifying the 
keyword OFF = V. 

The first advantage of obtaining these results is that we can get a quick 
idea of the performance to be gained from optimizing this program. If the 
"normal" execution is the same speed as the "scalar," then no optimization 
has been performed by the compiler and much stands to be gained. But if the 
"normal" execution runs from 5 to 6 times faster than the "scalar," then the 
code is probably already optimized significantly and little can be gained from 
any more optimization. Most actual results are between these two extremes. 
After we obtain this global overview of the performance, we need to look at 
the program subroutine by subroutine. In analyzing the individual sub­
routines and DO loops, we should concentrate first on those that are most 
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time consuming. Three possibilities exist when we compare vector and scalar 
times on the subroutine or DO loop level: 

1. The vector and scalar executions have identical times. In this case, 
the compiler has not been able to optimize anything, and we can 
expect a large performance improvement if restructuring the sub­
routine or DO loop is possible. 

2. The vector time of the routine or DO loop is significantly (a factor of 
five to ten) less than the scalar. In this case there may not be much 
that can be done. Section 4.9.6 deals with further optimizing code 
already optimized by the compiler to some degree. 

3. The vector execution of the routine or DO loop is slower than the 
scalar. Do not be shocked by this possibility. Sometimes the compiler 
may try to optimize a very complicated section of code and actually 
generate code that runs more slowly. A simple example of this 
occurs in the compilation of a doubly nested DO loop with variables 
specifying the iteration counts (vector lengths). Sometimes the com­
piler blindly chooses the shorter of the two to optimize, and the 
vector length turns out to be only one or two at execution time. In 
these cases we should be able to assist the compiler in doing the right 
thing by restructuring the code appropriately. Examples such as this 
will be discussed in section 4.9.7. 

Characteristics of Major Routines 
Once we identify the routines that use much of the central processing time 
and have good potential for optimization, we then need to examine the 
characteristics of the routine and DO loop structure. 

1. The most common case occurs when the routine that uses most of 
the CPU time does not vectorize and contains DO loops of a good 
size. "Good size" is very machine dependent; but all machines tend 
to do better on DO loops of 50 or more iterations. When a program­
mer is faced with such a routine, then the optimization strategy is 
simply to restructure the DO loops so that they will vectorize. Sec­
tions 4.9.1 through 4.9.8 deal with such examples. 

2. A more difficult situation occurs when a CPU-intensive subprogram 
has no DO loops or has DO loops of a very small iteration count 
(< 10). Since vectorization of loops of such a small size has little 
payoff, the strategy must be to examine the routines that call this 
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subprogram to determine if the call is from within a loop with a large 
iteration count. We can then attempt to vectorize the calling loop. 
The example shown in Appendix B, Section 2 illustrates such a 
situation. Subprogram CINVA uses most of the time (in this case 
46%), but its DO loops are only of vector length 3. An analysis of the 
routines that call CINVA shows that RHS, STEP, and FILTRX each 
call CINVA from DO loops of length 60, an excellent size for vector-
ization. Section 4.9.9 deals with techniques either to expand sub­
routines in line or pull DO loops into the routine for subsequent 
optimization. 

3. Sometimes a CPU-intensive routine contains loop nests whose outer 
loops have much greater iteration counts than do the inner loops. 
Such loop nests can be restructured to pull the longer loops inside 
the smaller inner loops. Or, as an alternative, the smaller DO loops 
can be unrolled inside the larger DO loops. These techniques are 
discussed in section 4.9.7. Referring to subroutine RHS in Appendix 
B.2, we see that DO loop 15 within RHS uses most of the time within 
RHS; but inner loops of length 3 are contained within loop 15. 

4.2 
DISCUSSION OF AMDAHL'S LAW 

The discussion of Amdahl's Law in Chapter 1 addressed the comparison 
of strictly "scalar" code to "vectorized" code. It is important to understand 
to what extent the code is already optimized to estimate how much effort 
is needed to achieve the desired improvement gain. We can apply a cost 
analysis that compares the amount of effort required with the amount 
of savings in computer time. If little optimization has been performed to 
date, then the cost analysis should be favorable for proceeding with an 
optimization plan. Conversely, if the comparison of the scalar and vector 
execution times indicates that program has already been significantly opti­
mized, then expending additional effort to achieve more improvement may 
be unjustifiable. The "law of diminishing returns" applies to program opti­
mization. 

An assumption made in deriving Amdahl's law was that vectorization 
would achieve a factor of ten over scalar code for a Cray X-MP. In fact, 
sometimes the performance improvement may be greater than or less than 
ten. The bulk of this chapter is devoted to a great many examples that 
illustrate the variations in performance. Furthermore, performance gains are 
a function of vector length. Given the characteristics of a Fortran program 
and the vector lengths (number of DO loop iterations) involved, the reader 
can estimate an achievable performance gain for the subroutine to be opti­
mized. 
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4.3 
MODULARITY AND OPTIMIZATION 

When developing a sizable program, an excellent approach is to modularize 
the program and develop the individual modules in such a way that they can 
be tested independently. Some Fortran programmers have taken modularity 
to an extreme, and this destroys any possibility of optimization by the 
compiler. 

If a Fortran DO loop references any nonintrinsic subprograms, it cannot 
be automatically vectorized by a compiler. Often a program with such char­
acteristics has been written so that each subroutine updates single values of 
its arguments and therefore is a "scalar" subroutine. A far superior approach 
is to write a subroutine to update arrays of values. In this case the DO loops 
are contained within the routines and are more likely to be optimized by the 
compiler. 

4.3.1 Scalar-Valued Routines versus Array-
Valued Routines 

Consider a routine that calculates some complicated physical quantity for a 
particle. In loop 40000, subroutine COMPL is called on each iteration to use 
the scalar variables X, Y, and Z. 

DO 40000 I = 1, N 
CALL C0MPL(X,Y,Z) 

40000 CONTINUE 

SUBROUTINE COMPL(Χ,Υ,Ζ) 

X = . . . 
(Complicated 
= ... Y . . 
= ... X 

RETURN 
END 

A far superior approach places the loop inside COMPL, which then receives 
and returns arrays of values from and to its calling routine, performing the 
computation within a potentially vectorizable DO loop. 

CALL COMPL(N,X,Y,Z) 

SUBROUTINE COMPL(N,X,Y,Z) 
DIMENSION X(*),Y(*),Z(*) 
DO 40001 I = 1,N 

X(D = . . . 

calculations using scalar quantities) 

Z . . . 
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(Complicated calculations using array quantities) 
= ... Y(I) ... 
= . . . X(I) . . . Z(I) . . . 

40001 CONTINUE 
RETURN 
END 

Note that COMPL could be called (albeit inefficiently) with N = 1 to perform 
the same calculations as the original version of COMPL. 

The guideline to use when restructuring code or developing code from 
scratch is to make array operations visible to the compiler. If the DO loops 
are in the calling routines and the CPU-intensive calculations are contained 
within the subroutines or functions called from the DO loop, the compiler is 
blind to the fact that there are good calculations that could be vectorized on 
the DO loop. 

4.4 
A SYSTEMATIC APPROACH TO 

RESTRUCTURING 
Once the most time-consuming portions of the program are identified, the 
programmer should optimize systematically. We should not try to optimize 
the entire program prior to testing intermediate restructurings for accuracy 
and performance gains. By setting up a test case that executes relatively 
quickly, we can submit a test after a major DO loop or small routine has been 
optimized. Both correctness of results and the performance gain should be 
examined. Sometimes a restructuring may not achieve the desired goal, and 
an alternative approach may be warranted. If two subroutines are being 
optimized, one using 70% of the time and the other 20%, and only a 
factor-of-two performance gain is obtained on the first routine, it is still using 
more time than the second routine and should be examined for additional 
improvements. 

The best approach for vectorizing a large Fortran program is to restruc­
ture a small amount of code (perhaps three or four hours of work), test it for 
accuracy and performance, then go on to a second piece of code. 

4.4.1 Possible Inaccuracies Caused by 
Vectorization 

When restructuring a program for vectorization, it is most important to 
continue to obtain correct results. Some optimization techniques can cause 
slight differences in the answers. The best example of this is the vectorization 
of a summation. When a summation is vectorized, the result is often com-
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puted in a different order than that performed in scalar mode. For instance, 
consider the example in loop 40010. 

SUM =0.0 
DO 40010 1 = 1 , 1001 
SUM = SUM + A(I) 

40010 CONTINUE 

The reason for the difference in the order of calculations in vector mode 
is that the compiler generates code that will calculate partial sums in vector 
registers, then adds the partial sums together. In scalar mode, SUM is gener­
ated by adding the elements of A in order. Consider the following values for 
the elements of A: 

A(1 : 1000 ) = 1 . E - 1 5 

A( 1001 ) = 1 . 

If we accumulate these values in scalar mode on a machine that has 15 
decimal digits of accuracy, we will obtain the result 1.00000000000100. But if 
the values are added in reverse order (this is not the way it is done in vector 
mode), the result will be 1.0 because of roundoff on each add operation; that 
is, on a machine with 15 digits of accuracy, 1.0 4- l.E—15 = 1.0. 

Differences in the summation resulting from vector versus scalar are 
typically very small and are encountered rarely. For arithmetic operations 
that are not accumulative, the results will be identical whether obtained by 
vector or scalar execution. 

4.5 
WHY THE PROGRAMMER IS NEEDED 

The techniques discussed in this chapter for optimizing code are not very 
complicated. As a matter of fact, most vectorizing compilers today perform 
all of the techniques outlined here. But, compilers are very often inhibited 
from performing these techniques because their analysis is blocked by the 
structure of the Fortran code, and they cannot determine if the techniques 
can be safely applied. 

A programmer can write Fortran code that defies analysis by any 
compiler. For example, sophisticated equivalencing among variables and 
arrays will hinder compilers from doing good data-dependency analysis. 
Tricks that some programmers use to take some short-cuts in writing the code 
may result in poorly executing scalar code and will often prevent vectoriza-
tion. 

The intent of this chapter is to discuss the optimization techniques that 
many compilers perform and conditions in which the compilers cannot 
employ these techniques. In many of these cases a programmer can use the 
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methods described in this chapter to restructure the code so that the compiler 
will optimize the new version. 

4.5.1 Difficulties of Optimizing "Dusty-Deck" 
Fortran 

In analyzing Fortran programs, a compiler will often encounter ''inhibitors/ ' 
which are constructs within a ΌΟ loop that degrade or prevent vectorization. 
Ambiguous conditions also cause the compiler to make an arbitrary choice of 
how to vectorize the code. Frequently, compilers use other characteristics of 
the loop — such as the order of subscripts in multidimensioned arrays — to 
try to determine how to optimize the code; sometimes inefficient code results 
from a bad choice. We will examine both of these situations in the subsec­
tions that follow. 

4.6 
CANDIDATES FOR VECTORIZATION 

In Chapter 3 we established a vocabulary for discussing the important con­
structs of a DO loop. Now we can begin to define what will and will not 
implicitly vectorize. All of the compilers on supercomputers investigate inner 
DO loops to determine if they contain either or both of the following: 

• A store into at least one array with a loop variant subscript expression 
(a vector array) 

• At least one recognized reduction function 

An inner loop that contains one of the preceding is a candidate for vectoriza­
tion. But before any vector instructions can be generated, the loop must be 
examined for vectorization inhibitors, as we will outline next. 

4.7 
VECTORIZATION INHIBITORS 

If a loop contains any of the following constructs, part or all of the loop may 
not vectorize: 

1. Recursion in any of its forms: fetching and storing of the same array 
with subscript expressions that will or might cause data feedback 
from one iteration of the loop to a subsequent iteration; fetching a 
scalar or array constant prior to setting it in the loop 
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2. Subroutine CALLs 

3. References to external functions for which the compiler knows of no 
vector version. Most Fortran 77 intrinsic functions such as SQRT, 
SIN, EXP, and so forth are vectorized; user-defined functions are 
not. 

4. Any I /O statements 

5. Assigned GO TO statements 

6. Certain nested IF blocks. The payoff for vectorization decreases as 
the level of nesting increases. 

7. GO TO statements that exit the loop. Some compilers have a limited 
ability to vectorize this in simple loops, but in general such loops are 
run in scalar mode. 

8. Backward transfers within a loop 

All of the compilers will tell us which loops have been vectorized. Most 
of them will tell us what vectorization inhibitors appear in a loop and what 
parts of the loop will be run in scalar mode. If a compiler does not tell us why 
a loop does not vectorize, close examination of the loop will almost certainly 
reveal one of the preceding inhibitors. If no inhibitors can be found, the loop 
is probably too long for effective optimization/vectorization, a condition that 
can be remedied by splitting the loop using techniques outlined in subse­
quent sections. 

For completeness, it must be noted that some of the compilers will 
examine all of the loops in a nest in an attempt to determine on which to 
vectorize. If an outer loop is chosen, the loop nest will be transparently 
inverted to make the target loop the inner loop. Such "loop switching" is the 
subject of a later section. Some of the compilers will also "collapse" loop 
nests when the subscripts of the referenced arrays range over all possible 
array elements, as in loop 40020. 

DIMENSION A(90,50), B(90,50) 

DO 40020 J = 1, 50 
DO 40020 I = 1,90 

A(I,J) = B(I,J) * 2.0 
40020 CONTINUE 

Later we will examine each problem area in detail, specifying tech­
niques that will allow as much code as possible to be vectorized. In most 
cases we will keep the example loops and their restructuring as simple as 
possible. Real-world code can be expected to realize even better performance 
gains than illustrated here. 
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4.7.1 Compiler Optimization with Incomplete 
Information 

Some of today's compilers appear to be less sophisticated than others. This is 
because some compiler writers have taken the approach that if they really do 
not know the best way to optimize a particular loop, they will not optimize it 
at all, because it may produce slower code. Others have chosen to take a 
"best guess7' to optimize complicated loops. Following are some typical 
conditions in which a compiler lacks enough information about the code to 
optimize effectively: 

1. Multinested DO loops. The Cray compilers currently are vectorizing 
only the innermost DO loop. This may not be a bad approach, since 
the results from compilers that attempt to switch loop nests indicate 
that the heuristics determining which is the best loop to vectorize 
improve performance only about 50% of the time. 

2. Complex decision processes. All compilers have a limit on the level 
of nesting of IF conditions that they will attempt to vectorize. The 
nesting of the IFs is some indication of the sparsity of the truth of the 
compounded conditions (and therefore the effective vector length). 
But it certainly is not always the best means of determining whether 
the condition should be vectorized or not. 

3. Ambiguous array subscripts. When the relation among differing 
subscripts in references to the same array within a loop cannot be 
determined, a compiler must be concerned about the potential data 
dependency of the calculations. Some compilers handle such ambi­
guities by generating two versions of the DO loop: a vector version 
to be used if a run-time test indicates that the subscripts do not lead 
to recursion and a scalar version to be used otherwise. But, only a 
few such ambiguities in a loop can be handled effectively in this 
manner. 

Often, compilers are inhibited from doing the best optimization be­
cause they do not know enough about the code. The solution is to involve the 
programmer in the analysis. Even a programmer does not know all of the 
answers needed for optimization; but, if assisted by run-time statistics, he or 
she can usually provide the necessary information. 

The authors believe that it will be a significant time before a compiler 
can automatically optimize the dusty-deck Fortran program well. So, for 
today, the right approach is for the programmer to become involved in the 
analysis, aided by run-time statistics. 
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4.8 
EFFECTS OF ARRAY ACCESS ON 

PERFORMANCE 
Before examining restructuring techniques on actual loops, we wish to estab­
lish the effect on performance, depending on the order in which the elements 
of arrays are fetched and stored, and furthermore, on the ratio of operations 
to vector operands within a loop. 

To this end, we have prepared three groups of loops. The first accesses 
arrays indirectly with random indexes. The second accesses the same arrays 
directly with unitary stride; and the third accesses the arrays directly with 
stride 128. Each group contains 13 different loops. And, from group to group, 
corresponding loops perform the same number of operations on the same 
number of vectors. Each vector fetched or stored within a loop is counted as 
an operand, and within a group the ratio of operations to operands ranges 
from as small as one-third (one operation, three operands) to as large as nine 
and one-half (nineteen operations, two operands). 

We expect that unitary stride will produce the best performance among 
the three groups. Indirect addressing adds one or more chimes to the execu­
tion. This occurs because of the extra time needed to fetch the index and also 
because of general memory performance degradation resulting from interfer­
ence among the indexes and the requirement that the indexed array elements 
be delivered in the proper order. Finally, stride 128 forces memory-bank 
conflicts on each successive reference and slows the performance by a factor 
equal to the memory-bank cycle time. (Since there are 39 loops involved in 
this comparison, we have listed them in Appendix C.) 

We have run all the loops on the Cray X-MP (with G/S, CFT 77), the 
CYBER 205 (with FTN 200) and the NEC SX2 and computed the perform­
ance in megaflops for each. The results, comparing the three modes of 
memory accessing, are graphed versus the ratio of operations to operands in 
Figure 4.2. 

As the ratio of operations to operands increases, the performance of the 
target machines approaches the maximum possible. For example, on the 
Cray X-MP the examples with larger ratios are generating an add and multi­
ply each clock cycle most of the time, and the Mflop rate will exceed 200 for 
very long vector lengths. 

The results obtained from these figures are consistent with our as­
sumptions. The contiguous addressing is in fact the fastest of the three 
methods for all ratios of operations to operands; indirect addressing is sec­
ond, and a stride of 128 is the slowest. On the Cray X-MP the differences 
between contiguous and indirect addressing vary from a factor of 2 for low 
ratios to 1.2 for very high ratios. The higher the ratio, the less time spent in 
fetching and storing operands and results. The stride 128 results range from a 
factor of three to less than a factor of two. 
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FIGURE 4.2 
Performance versus Ratio of Operations to Operands, (a) Cray 

X-MP. (b) CYBER 205. (c) NEC SX2. Loops: contiguous, 
top line; indirect, middle line; stride = 128, bottom line. 

On the CYBER 205 the differences are significantly larger. The differ­
ence between indirect and contiguous addressing ranges from factors of 5 to 
6 down to a factor of 1.5. 

C ONE OPERATION - THREE OPERANDS 
DO 41000 I = 1, N 
A(IA(I)) = B(IA(I)) + C(IA(I)) 

41000 CONTINUE 

RATIO = 1/3 

C ONE OPERATION - THREE OPERANDS RATIO = 1/3 
DO 41020 I = 1, N 
A(I) = B(I) + C(I) 

41020 CONTINUE 

Let us examine the performance of the Cyber 205 in more detail. 
Considering DO loop 41000 and DO loop 41020, the operations needed to 
perform loop 41000 are as follows: 

• Gather B(IA(I)) into a temporary memory vector TEMPI. 
• Gather C(IA(I)) into a temporary memory vector TEMP2. 
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• Add TEMPI to TEMP2 storing results into temporary memory vector 
TEMP3. 

• Scatter TEMP3 into A(IA(I)). 

In loop 41020 none of the temporary vectors are needed. If all these 
operations took the same amount of time, we would expect loop 41020 to run 
four times faster than loop 41000. In fact the gather/scatter operations take 
more time than the add operation. Therefore, the results differ by more than 
a factor of four. 

The memory architecture of the CYBER 205 and ETA 10 causes fetch­
ing and storing of arrays with nonunitary strides to be treated almost identi­
cal to indirect addressing. This is because the arrays must be fetched into 
temporary vectors with gather-periodic instructions and the result stored into 
an array with a scatter-periodic instruction. These periodic operations take 
about the same time as the indirect address gather/scatter and result in 
approximately the same timings. The results in this example for nonunitary 
stride have the added difficulty of encountering memory-bank conflicts. 

The results on the NEC SX2 vector processor are very interesting. We 
know less about the actual fetching and storing of arrays on this machine, 
but our example gives us some insight on its relative performance. The first 
point is that the SX2 is a very fast machine, capable of reaching almost 800 
Mflops on the highest ratio with unitary stride fetching and storing. The 
second point is that indirect fetching and storing is significantly slower than 
unitary strides. The contiguous accessing is three to four times faster than the 
Cray X-MP, but its indirect addressing is about the same speed as the Cray 
X-MP for small ratios and only a factor of two for larger ratios. The SX2 does 
have hardware gather/scatter, but its result rate is only about one-fourth to 
one-third of its contiguous performance. Finally, note that stride 128 per­
formance is about one-eighth that of contiguous vectors, indicating that the 
bank cycle time is eight clock cycles. 

4.9 
EXAMPLES OF RESTRUCTURING 

FORTRAN LOOPS 
4.9.1 Introduction to Examples 

For the remainder of this chapter we will examine a set of typical Fortran 
loops, highlighting constructs within each loop that can degrade or prevent 
compiler optimization. A restructuring of each loop is presented, and the 
performance of the original and the restructured loops are compared graphi­
cally. 

Most of the loops are drawn from real-world programs or well-known 
benchmarks. A few have been fabricated to present a particular problem 
with a short example. We have attempted to represent all of the commonly 
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encountered problem areas and to present effective restructuring techniques 
that will work well on any vector processor. 

All of the loop comparisons have been made on a Cray X-MP/48 (at 
the Pittsburgh Supercomputing Center), using either CFT 77 ver. 1.2 or CFT 
1.15BF2. Some examples are shown for the CDC CYBER 205 at the Minne­
sota Supercomputer Center. 

4.9.2 Accessing Arrays 
The following example simply illustrates the effect of memory-bank conflicts 
on the Cray X-MP. In loop 41080 we are accessing the arrays on the second 
subscript of the A array. Since the first dimension is 128, this is the stride 
through memory, which we know causes memory-bank conflicts. When this 
situation arises, a common restructuring technique is to change the offending 
dimension to a value that will not cause a memory-bank conflict. In loop 
41081 we have changed the dimension to 129, and the resultant odd stride 
does not encounter memory-bank conflicts. We can see in Figure 4.3 that the 
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FIGURE 4.3 
Performance Comparison of Loops 41080 and 41081, Cray 

X-MP. a, original; b, restructured. 
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restructured code (dotted line) runs up to three times faster than the original 
code (solid line). 

DIMENSION A(128,N) 

DO 41080 I = 1,N 
A( 1 ,1) = C 1 * A ( 1 3 , I ) + C2* A ( 1 2 , I ) + C 3 * A ( 1 1 , I ) + 

* C 4 * A ( 1 0 , I ) + C5* A( 9 , 1 ) + C6*A( 8 ,1 ) + 
* C7*A( 7 , 1 ) + C0*(A( 5 , 1 ) + A( 6 , 1 ) ) + A( 3 , 1 ) 

41080 CONTINUE 

DIMENSION A(129,N) 

DO 41081 I = 1,N 
A( 1 ,1) = C 1 * A ( 1 3 , I ) + C2* A ( 1 2 , I ) + C 3 * A ( 1 1 , I ) + 

* C 4 * A ( 1 0 , I ) + C5* A( 9 , 1 ) + C6*A( 8 ,1 ) + 
* C7*A( 7 , 1 ) + C0*(A( 5 , 1 ) + A( 6 , 1 ) ) + A( 3 , 1 ) 

41081 CONTINUE 

Q. O 

30 

25 

15 

10 

11 61 111 161 211 261 311 361 411 461 
Loop length 

FIGURE 4.4 
Performance Comparison of Loops 41080 and 41081, CYBER 

205. a, original; b, restructured. 
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120 * 1 

11 61 111 161 211 261 311 361 411 461 

Loop length 

FIGURE 4.5 
Performance Comparison of Loops 41090 and 41091, Cray 

X-MP. a, original; b, restructured. 

On the Cyber 205 the results are better in the restructured code shown 
in Figure 4.4. But the most effective restructuring would be somehow to 
switch dimensions of the array. In that way the I index would be the 
innermost, and the accessing of arrays would be contiguous. That restructur­
ing was not performed here because of the impact it would have on the 
remaining code in the program. In fact, in other portions of the program the 
array may be accessed on the first subscript. If the subscripts were reversed, 
then the accessing would again be noncontiguous and again run more 
slowly. 

The next example shows such a restructuring that will undoubtedly 
help the Cyber 205 significantly. In loop 41090 the innermost loop on I is 
accessing the arrays on the third subscript. The stride is therefore the product 
of the first two dimensions of the arrays, or 64. Our restructuring in loop 
41091 is to rearrange the order and meaning of the dimensions and sub­
scripts to have the inner loop access the left-most subscript and largest vector 
length. The results are depicted in Figure 4.5. 
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THE ORIGINAL 
DIMENSION A(8,8,500,8), B(8,8,500,8) 

DO 41090 K = KA, KE, -1 
DO 41090 J = JA, JE 

DO 41090 I = IA, IE 
A(K,L,I,J) = A(K,L 

* - B(J,2, I,K)*A(K+1,L 
* - B(J,4,I,K)*A(K+1,L 

41090 CONTINUE 
C THE RESTRUCTURED 

DIMENSION A(500,8,8,8), 

, i , J ) 
, 1 , 2 ) 
, 1 , 4 ) 

B(500, 

-
-

" 

8 

B(J 
B(J 
B(J 

8 ,8 ) 

1 
3 
5 

I 
I 
I 

K) 
K) 
K) 

*A(K+1 
*A(K+1 
*A(K+1 

L 
L 
L 

I 
I 
I 

1) 
3) 
5) 

DO 41091 K = KA, KE, -1 
DO 41091 J = JA, JE 

DO 41091 I = IA, IE 
A(I,K,L,J) = A(I,K, 

* - B ( I , J , 2 , K ) * A ( I , K + 1 , 
* - B ( I , J , 4 , K ) * A ( I , K + 1 , 

41091 CONTINUE 

L, J ) 
L ,2 ) 
L ,4 ) 

- B ( I , J , 1 , K ) * A ( I , K + 1 , L , 1 ) 
- B ( I , J , 3 , K ) * A ( I , K + 1 , L , 3 ) 
- B ( I , J , 5 , K ) * A ( I , K + 1 , L , 5 ) 

Q. 
O 

80 

70 
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50 

40 

30 

20 

10 

61 111 161 211 261 311 361 
Loop length 

411 461 

FIGURE 4.6 
Performance Comparison of Loops 41090 and 41091, CYBER 

205. Original, solid line; restructured, dotted line. 
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If we assume that the dimensions of the arrays can be switched as shown so 
that accessing can be contiguous, the results on all the machines are 
favorable—but most favorable on the Cyber 205. These results are depicted 
in Figure 4.6. 

4.9.3 Scalar Temporaries (Simple) 
Recall that a scalar temporary is a scalar variable set equal to a vectorizable 
expression within a loop. Often, we will encounter a program in which scalar 
temporaries have been used to such an extent that the ability of the compiler 
to optimize the loop is compromised. Loop 42010 represents such a case. 
Notice that 12 scalar temporaries are assigned before the compiler can use 
any of them. Unless the compiler is very smart and can reorganize the 
statements, it will run out of registers (there are only eight vector registers on 
the Crays). 

Loop 42011 generates the same results with no scalar temporaries. 
Notice the grouping, in parentheses, of the common subexpressions. Both the 
original and the restructured loops vectorize; but for vector lengths over 100, 
loop 42011 outperforms 42010 by a factor of 1.8 (Figure 4.7). 

Later sections will explore the restructuring of more complicated use of 
scalars in a loop. 

C THE ORIGINAL 
DO 42010 KK 
T000 
T001 
T010 
T011 
T100 
T101 
T110 
Till 
Bl 
B2 
B3 
B4 
Rl 
SI 
RS 
SS 
RU 
SU 
B(KK, 
B(KK, 
B(KK, 
B(KK, 

K000) 
K001) 
K010) 
K011) 

42010 CONTINUE 

= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 

1, N 
A(KK.KOOO) 
A(KK,K001) 
A(KK.KOIO) 
Α(ΚΚ,ΚΟΙΙ) 
Α(ΚΚ,ΚΙΟΟ) 
Α(ΚΚ,ΚΙΟΙ) 
Α(ΚΚ,ΚΙΙΟ) 
A(KK.Klll) 
Β(ΚΚ,ΚΟΟΟ) 
Β(ΚΚ,ΚΟΟΙ) 
Β(ΚΚ,ΚΟΙΟ) 
Β(ΚΚ,ΚΟΙΙ) 
T100 * Cl + T110 * C2 
T101 * Cl - Till * C2 
T000 + Rl 
TOOl + SI 
T010 - Rl 
T011 - SI 
Bl + RS 
B2 + RU 
B3 + SS 
B4 - SU 

THE RESTRUCTURED 
DO 42011 KK = 1,N 

B(KK,K000) = B(KK,K000) + A(KK.KOOO) 
* + (A(KK.KIOO) * Cl + A(KK.KllO) * C2) 
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Β(ΚΚ,ΚΟΟΙ) = Β(ΚΚ,ΚΟΟΙ) + A(KK.KOIO) 
* - (A(KK.KIOO) * Cl + A(KK.KllO) * C2) 

Β(ΚΚ,ΚΟΙΟ) = Β(ΚΚ,ΚΟΙΟ) + Α(ΚΚ,ΚΟΟΙ) 
* + (Α(ΚΚ,ΚΙΟΙ) * Cl - Α(ΚΚ,ΚΙΙ Ι ) * C2) 

Β(ΚΚ,ΚΟΙΙ) = Β(ΚΚ,ΚΟΙΙ) - Α(ΚΚ,ΚΟΙΙ) 
* + (Α(ΚΚ,ΚΙΟΙ) * Cl - Α(ΚΚ,ΚΙΙ Ι ) * C2) 

42011 CONTINUE 

When used moderately in a loop, scalar temporaries are very useful for 
helping a compiler to recognize common subexpressions. Loop 42030 is loop 
10 of the Livermore kernels, and it is vectorized by all compilers.* We might 
think that additional optimization could be obtained by eliminating some of 
the scalar temporaries. This turns out to be incorrect, since — after applying 

11 61 111 161 211 261 311 361 411 461 
Loop length 

FIGURE 4.7 
Performance Comparison of Loops 42010 and 42011, Cray 

X-MP. a, original; b, restructured. 

* Frank H. McMahon, "The Livermore Fortran Kernels: A Computer Test of the Numerical 
Performance Range," Lawrence Livermore National Laboratory, University of California — 
Berkeley, December 1986. 



4.9 EXAMPLES OF RESTRUCTURING FORTRAN LOOPS 103 

the same technique used to optimize loop 42011—the restructured loop 
42031 actually runs more slowly than the original (Figure 4.8). 

The restructuring does illustrate more clearly what is going on in this 
loop. The calculation of A(14,I) uses old values of A(5,I) through A(13,I). 
This was done in the original with the use of the scalar temporaries. In 
eliminating the scalar temporaries, the assignments into the array elements 
had to be done in reverse order to preserve the correct algorithm. This is an 
example where the scalar temporaries in the original were useful in minimiz­
ing the work the compiler generated. 

C THE ORIGINAL 
DO 42030 
AR 
BR 
A(5,I) 
CR 
A(6,I) 
AR 
A(7,I) 
BR 
A(8,I) 
CR 
A(9,I) 
AR 
Α(ΙΟ,Ι) 
BR 
A(11,I) 
CR 
A(12,I) 
A(14,I) 
A(13,I) 

42030 CONTINUE 

1 = 1 
= 
= AR -
= AR 
= BR -
= BR 
= CR -
= CR 
= AR -
= AR 
= BR -
= BR 
= CR -
= CR 
= AR -
= AR 
= BR -
= BR 
= CR -
= CR 

, N 
B(5,I) 
A(5,I) 

A(6,I) 

A(7,I) 

A(8,I) 

A(9,I) 

A(IO.I) 

A(11,I) 

A(12,I) 

A(13,I) 

THE RESTRUCTURED 
DO 42031 
A(14, I) 

A(13, I) 

A(12,I) 

A(11,I) 

A(IO.I) 

A(9,I) 
A(8,I) 
A(7,I) 
A(6,I) 
A(5,I) 

I 
= 
-
= 
-
= 
-

= 

= 

= 
= 
= 
= 
= 

= 1, N 
B(5,I) 
A(9,I) 
B(5,I) 
A(9,I) 
B(5,I) 
A(9,I) 
B(5,I) 
A(9,I) 
B(5,I) 
A(9,I) 
B(5,I) 
B(5,I) 
B(5,I) 
B(5,I) 
B(5,I) 

- A( 5,1) 
- A(IO.I) 
- A( 5,1) 
- A(10,I) 
- A( 5,1) 
- A(10,I) 
- A( 5,1) 
- A(10,I) 
- A( 5,1) 

- A( 5,1) 
- A( 5,1) 
- A( 5,1) 
- A( 5,1) 

- A( 6, 
- A(ll, 
- A( 6, 
- A(ll, 
- A( 6, 
- A(ll, 
- A( 

- A( 

- A( 
- A( 
- A( 

6, 

6, 

6; 
6, 
6. 

,1) 
,D 
,D 
,D 
,1) 
,D 
,D 

,D 

,D 
,D 
,D 

- A( 7, 
- A(12, 
- A( 7, 
- A(12; 
- A( 

- A( 

- A( 

- A( 
- A( 

7, 

7, 

7, 

Ί 
7 

,D 
,D 
,D 
,D 
,1) 

,D 

,D 

,D 
,D 

- A( 8, 
- A(13, 
- A( 8, 

- A( 8, 

- A( 8: 

- A( 8, 

- A( 8 

,D 
,D 
,D 

,D 

,D 

,D 

,D 

42031 CONTINUE 
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FIGURE 4.8 
Performance Comparison of Loops 42030 and 42031, Cray 

X-MP. a, original; b, restructured. 

4.9.4 Recursion Involving Arrays 
In this section we investigate various constructs that often degrade or prevent 
optimization because of actual or potential recursion in array references. The 
first example, loop 43010, is not recursive. We present it here to compare the 
performance of a fully vectorized loop with the recursive loop 43011 that 
follows. 

C NON-RECURSIVE DO LOOP FOR TIMING COMPARISON 
DO 43010 I = 2, N 
A(I) = A(I+1) * B(I) + C(I) 

43010 CONTINUE 

C THE ORIGINAL RECURSIVE DO LOOP 
DO 43011 I = 2, N 
A(I) = A(I-l) * B(I) + C(I) 

43011 CONTINUE 
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Although no vector instructions can be issued in computing loop 
43011, the Cray compiler (as well as most others) recognizes the loop as a 
special case for which it has a highly optimized scalar solution. The solution 
is embodied in a library routine FOLR (first order linear recurrence) that the 
compiler invokes to provide the desired answers. The technique involves the 
simultaneous computation of several of the loop iterations, thus utilizing all 
of the machine's scalar registers and scalar memory bandwidth. A close 
approximation of this technique is shown in standard Fortran in loops 43012 
and 43013. 

C THE RECURSIVE LOOP UNROLLED TO DEPTH FOUR 
DO 43012 1 = 2 , N-3, 4 
A(I) = A(I-l) * B(I) + C(I) 
A(I+1) = A(I) * B(I+1) + C(I+1) 
A(I+2) = A(I+1) * B(I+2) + C(I+2) 
A(I+3) = A(I+2) * B(I+3) + C(I+3) 

43012 CONTINUE 

C CLEANUP LOOP FOR DEPTH FOUR UNROLLING 
DO 43013 J = I,N 
A(J) = A(J-l) * B(J) + C(J) 

43013 CONTINUE 

This technique of loop unrolling is introduced here in this example 
where it is relatively easy to follow. It provides no performance improvement 
over the optimization of the original loop (Figure 4.9). But it will be shown to 
be a valuable technique in later examples. 

The point of loop unrolling is to give the compiler more work to 
perform on each iteration of the loop. In this case we write out (unroll) four 
sequential iterations of the original loop and cause the original loop index to 
increment by four. The number of iterations to unroll is very machine and 
loop dependent and must usually be determined experimentally. Four is a 
good number with which to start. Then try three and five, compare perform­
ances, and if four is not maximal, try some other depths of unrolling. 

Note that for the general case of variable loop length LL and unrolling 
depth UD, the unrolled loop is complete only if LL mod UD = 0. For an 
unrolling depth of four, there can be 0, 1, 2, or 3 iterations left to do after the 
main loop is complete. This is the function of the cleanup loop 43013. Here 
we take advantage of the ANSI 77 Fortran requirement that upon normal 
loop termination the DO loop index will have a value equal to its value on 
the last iteration plus the loop increment. This means that when loop 43012 
terminates, I will have one of the values N—2, N—1, N, or N + l . This allows 
loop 43013 to perform 3, 2, 1, or 0 iterations, as required. 

In the next few examples we will examine cases where the compiler 
may not know if a loop is recursive. Loop nest 42030 is a traditionally coded 
Gaussian elimination scheme. Most compilers will try to vectorize the inner 
loop where row subtraction is taking place. Note that A(J,K) is a function of 
A(J,I). Although both J and I are fixed values within that inner loop, a 
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11 61 111 161 211 261 311 361 411 461 
Loop length 

FIGURE 4.9 
Performance Comparison of Loops 43010, 43011, 43012, Cray 

X-MP. a, 43010; b, FOLR; c, unrolled. 

compiler must attempt to determine whether K ever assumes the value of I 
(on other than the last iteration), since this would be recursive and must not 
be vectorized. 

There are two approaches for the compiler in optimizing this case. The 
first approach is to be smart enough to recognize that there is no possibility 
for recursion, since the initial (and lowest) value of K is 1+1. The other 
approach is to generate one code sequence for executing the loop in scalar 
mode and another sequence to execute it in vector mode, then test at run time 
whether K will assume the value of I in the inner loop. This second approach 
is called conditional compilation and is used quite extensively by CFT 1.15. 

To assure that the compiler does fully vectorize the restructured loop 
42031 we have inserted directives (for Alliant, Cray, and NEC in this case) 
that inform the compiler to ignore potential recursion within the loop. Figure 
4.10 illustrates that performance improves by 50-100% for longer vector 
lengths. The performance gain results from the elimination of the execution 
time test by the compiler. 

Q. 
O 
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C THE ORIGINAL 
C GAUSS ELIMINATION 

DO 43020 1 = 1 , MATDIM 
A(I,I) = 1. / A(I,I) 
DO 43020 J = 1+1, MATDIM 
A(J,I) = A(J,I) * A(I,I) 
DO 43020 K = 1+1, MATDIM 
A(J,K) = A(J,K) - A(J,I) * A(I,K) 

43020 CONTINUE 

C THE RESTRUCTURED 
C GAUSS ELIMINATION 

DO 43021 1 = 1 , MATDIM 
A(I,I) = 1. / A(I,I) 
DO 43021 J = 1+1, MATDIM 
A(J,I) = A(J,I) * A(I,I) 

CVD$ NODEPCHK 
CDIR$ IVDEP 
*VDIR NODEP 

DO 43021 K = 1+1, MATDIM 
A(J,K) = A(J,K) - A(J,I) * A(I,K) 

43021 CONTINUE 

11 61 111 161 211 261 311 361 411 461 
Loop length 

FIGURE 4.10 
Performance Comparison of Loops 43020 and 43021, Cray 

X-MP. a, original; b, restructured. 
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A similar problem exists in loop 43030 where the compiler must be 
concerned about the potential recursion between A(I) and A(I-K). Figure 
4.11 illustrates that, although the compiler vectorized the original, the direc­
tives improved performance by about 30%. 

C THE ORIGINAL 
DO 43030 I = 2, N 
DO 43030 K = 1, 1-1 
A(I)= A(I) + B(I,K) * A(I-K) 

43030 CONTINUE 

C THE RESTRUCTURED 
DO 43031 I = 2, N 

CVD$ NODEPCHK 
CDIR$ IVDEP 
*VDIR NODEP 

DO 43031 K = 1, 1-1 
A(I) = A(I) + B(I,K) * A(I-K) 

43031 CONTINUE 

80 
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FIGURE 4.11 
Performance Comparison of Loops 43030 and 43031, Cray 

X-MP. a, original; b, restructured. 
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Any time the same array is indirectly addressed on both sides of an 
assignment statement, as in loop 43070, a compiler must assume that values 
will repeat in the index vector, causing the loop to be recursive. In many 
sparse matrix procedures, the values in the index vector never repeat. If we 
know that, then we can inform the compiler with a directive — as we have 
done just before loop 43071. The performance improvement for long vectors 
approaches a factor of ten over the original (Figure 4.12). 

C THE ORIGINAL 
DO 43070 I = 1, N 
A(IA(I)) = A(IA(I)) + CO 

43070 CONTINUE 
B(I) 

C THE RESTRUCTURED 
CDIR$ IVDEP 
CVD$ NODEPCHK 
*VDIR NODEP 

DO 43071 I = 1, N 
A(IA(I)) = A(IA(I)) + CO 

43071 CONTINUE 
B(I) 

50 

40 

£ 30 

20 

10 

T 1 i-

111 161 211 261 311 
Loop length 

361 411 

FIGURE 4.12 
Performance Comparison of Loops 43070 and 43071, Cray 

X-MP. a, original; b, restructured. 
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Next, we have loop 43080 (Livermore kernel 13*), which spends most 
of its time computing the indirect address indexes 12 and J2 to be used as 
subscripts in the array A in the last line of the loop. Again, the compiler must 
guard against the possibility of repeated subscripts and so generates scalar 
rather than vector instructions. With the MOD2N function involved in the 
computation, recursion is highly likely; so this is a wise choice. 

Whenever we have a partially recursive loop, we should split out the 
nonrecursive (vectorizable) calculations from the recursive (nonvectorizable) 
calculations. 

Careful inspection of the rest of the loop reveals that all other opera­
tions could be vectorized, so we split the loop into two loops, 43081 and 
43082, the first of which now vectorizes. To effect this split we must propa­
gate the values of 12 and J2 from the first loop to the second. This is 
accomplished by introducing the arrays I2V and J2V. 

12 

10 

Q. O 

o + 
11 61 111 161 211 261 311 361 411 461 

Loop length 

FIGURE 4.13 
Performance Comparison of Loops 43080 and 43081, Cray 

X-MP. a, original; b, restructured. 

* Ibid. 
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Figure 4.13 demonstrates a 100% performance improvement of the re­
structured over the original loop. Incidentally, the low Mflop numbers illus­
trate a shortcoming of characterizing loop efficiency in terms of megaflops. 
In this case the purpose of the loop involves much necessary data motion and 
relatively few arithmetic operations. 

c c 

43080 

C 

43081 

43082 

THE ORIG] [NAL 
Statement function 

MOD2N (I,J) = AND (I 
DO 43080 

11 
Jl 
11 
Jl 

D(3,I) 
D(4,I) 
D(1,I) 
D(2,I) 

12 
J2 
12 
J2 

D(1,I) 
D(2,I) 

12 
J2 

A(I2,J2) 
CONTINUE 

I = 1, N 
= D(1,I) 
= D(2,I) 

1 
1 

= D(3,I) 
= D(4,I) 
= D(1,I) 
= D(2,I) 
= D(1,I) 
= D(2,I) 
= 
= 
= D(1,I) 
= D(2,I) 
= 12 
= J2 
= A(I2,J2) 

THE RESTRUCTURED 
DO 43081 

11 
Jl 
11 
Jl 

D(3,I) 
D(4,I) 
D(1,I) 
D(2,I) 

12 
J2 
12 
J2 

D(1,I) 
D(2,I) 
I2V(I) 
J2V(I) 

CONTINUE 

DO 43082 
12 
J2 
A(I2, 

CONTINUE 

I = 1, N 
= D(1,I) 
= D(2,I) 

1 + 
1 + 

= D(3,I) + 
= D(4,I) + 
= D(1,I) + 
= D(2,I) + 
= D(1,I) 
= D(2,I) 
= 
= 
= D(1,I) + 
= D(2,I) + 
= 12 + 
= J2 + 

I = 1, N 

MOD2N 
,J-D 

+ M0D2N(I1,64) 
+ M0D2N(J1,64) 
+ B(I1,J1) 
+ C(I1,J1) 
+ D(3,I) 
+ D(4,I) 

MOD2N(I2,64) 
M0D2N(J2,64) 

+ G(J2+32) 
+ H(J2+32) 
+ E(I2+32) 
+ F(J2+32) 
+ 1.0 

M0D2N(I1,64) 
M0D2N(J1,64) 
B(I1,Jl) 
C(I1,Jl) 
D(3,I) 
D(4,I) 

MOD2N(I2,64) 
M0D2N(J2,64) 
G(J2+32) 
H(J2+32) 
E(I2+32) 
F(J2+32) 

= I2V(I) 
= J2V(I) 

J2) = A(I2 ,J2) + 1.0 
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In loop 43090 the last two lines are recursive, because A(I—1) is used in 
the computation of B(I), which is then used to compute A(I). All previous 
lines in the loop can be vectorized. Splitting the loop as shown by loops 
43091 and 43092 requires propagating the values of scalars RLDI and RLD1. 
Since the second is a simple function of the first, the array VRLDI is intro­
duced to carry values between the loops, and RLDI is recomputed in the 
second loop. Figure 4.14 shows an improvement of about 50% for the 
restructuring. 

THE ORIGINAL 
DO 43090 1 = 2 , 
RLD 
RLDI 
RLDI 
D(I,1) : 
D(I,2) : 
D(I,3) : 
B(I) 
A(I) 

43090 CONTINUE 

= C(I) 
= 1. / 
= RLDI 
= (D(I 
= (D(I,2) 
= (D(I,3) 
= (D(I,4) 
= E(I) * 

N 
- B(I) 
RLD 
+ 1.0 
1) - RLDI 

- RLDI 
- RLDI 
- RLDI 
RLDI 

D(I,4)) 
D(I,4)) 
D(I,4)) 
A(I-l)) 

B(I) 

RLDI 
RLDI 
RLDI 
RLDI 

THE RESTRUCTURED 
DO 43091 I = 2, N 
RLD 
VRLDI(I) 
RLDI 
D(I,1) 
D(I,2) 
D(I,3) 

43091 CONTINUE 

C(I) - B(I) 
1. / RLD 
VRLDI(I) +1.0 
(D(I,1) - RLDI 
(D(I,2) - RLDI 
(D(I,3) - RLDI 

D(I,4)) 
D(I,4)) 
D(I,4)) 

VRLDI(I) 
VRLDI(I) 
VRLDI(I) 

DO 43092 I = 2, N 
RLDI = VRLDI(I) +1.0 
B(I) = (D(I,4) - RLDI * 
A(I) = E(I) * VRLDI(I) 

43092 CONTINUE 

A(I-l)) " 
* B(I) 

VRLDI(I) 

We stated several times in earlier sections that simple one-dimensional 
recursion cannot be vectorized, as in loop 43099. 

DO 43099 I = 2, N 
A(I) = 2.0 * A(I-l) 

43099 CONTINUE 
+ B(I) 

But as soon as a second dimension is involved, there are ways to restructure 
the loops to force the recursion into an outer loop, allowing the inner loop to 
vectorize. For example, loop 43100 is recursive in I but not in J. So reversing 
the order of the loops as shown in 43101-43102 allows the compiler to issue 
vector instructions for the inner loop. 

The only problem to be resolved is how to compute all the values 
assumed by AH in the original outer loop and retain them for use when the 
loop nest is inverted. Again this is resolved by promoting the scalar AH to a 
vector VAH and precomputing all of the needed values in loop 43101. Note 
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FIGURE 4.14 
Performance Comparison of Loops 43090 and 43091, Cray 

X-MP. a, original; b, restructured. 

that as a side effect of loop switching the code originally contained in the 
outer loop is also now vectorized. 

C THE ORIGINAL 
DO 43100 J = 1, N 
AH = B(J) - B(J-l) 
DO 43100 I = 2, N 
A(I,J) = AH * A(I-l.J) + C(I,J) 

43100 CONTINUE 

C THE RESTRUCTURED 
DO 43101 J = 1, N 
VAH(J) = B(J) - B(J-l) 

43101 CONTINUE 

DO 43102 I = 2, N 
DO 43102 J = 1, N 
A(I,J) = VAH(J) * A(I-l.J) + C(I,J) 

43102 CONTINUE 
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A(I-1,J) 

Ψ 
A(I ,J) I 
A(I+1J) 

FIGURE 4.15 
Loop 43100: Recursive Inner Loop on Columns of A 

Figure 4.15 illustrates that the inner loop 43100 is processing a single 
column of the array A, and that each element calculated feeds directly into 
the next loop iteration. With the loops switched, as in 43102, the inner loop 
on J is generating the Ith row of the array A from the (I—l)st row, as shown in 
Figure 4.16. The recurrence has been pushed into the outer loop, allowing 
the inner loop to fully vectorize. Graphing the megaflop rates for loops 
43100 and 43102, Figure 4.17 depicts a performance improvement for the 
restructured code approaching a factor of seven for long vectors. 

When a single array reference appears to be recursive in all dimensions, 
as in loop 43139, it is in fact not recursive within the vectorizable inner loop. 

DO 43139 J = 1,M 
DO 43139 1 = 1 , 

A ( I , J ) = 2 . 0 
4313 9 CONTINUE 

A ( I - 1 , J - l ) Y ( I , J ) 

A(I-1,J-1) A(I-1,J ) A(I-1,J+1) 

T T T 
A(I ,J-1) A(I ,J ) A(I ,J+1) 

FIGURE 4.16 
Loop 43102: Nonrecursive Inner Loop on Rows of A 
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FIGURE 4.17 
Performance Comparison of Loops 43100 and 43101-43102, 

Cray X-MP. a, original; b, restructured. 

In loop 43139 the inner loop on I is computing the Jth column of A from the 
entirely separate vector in the (J—l)st column. This is depicted in Figure 4.18. 

A more difficult problem appears when the inner loop contains one 
recursive term for each of the dimensions of the problem. This arises often in 
implicit solution techniques where the update of the current point in the grid 
involves the previously computed neighbor points. Loop 43140 is an exam­
ple of this in two dimensions. The left and top boundary values in A remain 
fixed, and the loop computes the interior points. This is typically embedded 
in an iterative loop that supplies an initial guess for the interior point values 
and checks for convergence from one iteration to the next. 

C THE ORIGINAL 
DIMENSION A(N,N,3), B(N,N), C(N,N) 

DO 43140 J = 2, N 
DO 43140 I = 2, N 
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\ 

A(I-1,J-1), 

A(I ,J-1) A(I ,J ) 

\ 
A(I+1,J-1) A ( I + 1 J ) 

A(I+2,J ) 

FIGURE 4.18 
Loop 43139: Nonrecursive Inner Loop on Columns of A 

A ( I , J , 1 ) = A ( I , J , 1 ) - B ( I , J ) * A ( I - 1 , J , 1 ) 
C ( I , J ) * 

A( I 

A( I 

, J , 2 ) 

, J , 3 ) 

= A ( I , J , 2 ) 

= A ( I , J , 3 ) 

, J ) 
, J ) 

- B ( I , 
- C ( I , 
- B ( I , J ) 
- C ( I , J ) 

A ( I , J - l , 
A ( I - 1 , J , 
A ( I , J - l , 
A ( I - 1 , J , 3 ) 
A ( I , J - 1 , 3 ) 

43140 CONTINUE 

As written, loop 43140 will not vectorize, because A(I,J,1) depends on 
A(I—1,J,1). [The same statement is true for the other assignments into A(I,J,2) 
and A(I,},3).] Nor will it vectorize if the loops are switched, because A(I,J,1) 
depends also on A(I,J—1,1). This is depicted in Figure 4.19. 

There is a way out of this apparently hopeless situation. If we view the 

A(I-1,J ) 

I 
A(I J - l ) —** A(I ,J ) 

FIGURE 4.19 
Loop 43140: Fully Recursive in Both Dimensions of A 
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algorithm in terms of diagonals on the grid, instead of rows or columns, then 
the following dependencies exist: 

• The new value at the point A(2,2,l) depends on the values of the 
boundary points A(2,l,l) and A(l,2,l): 

A ( 1 , 2 , 1 ) 

A ( 2 , 1 , 1 ) - - A ( 2 , 2 , 1 ) - -

The next diagonal (A(2,3,l), A(3,2,l)) can be computed from the 
newly generated value for A(2,2,l) and the other points on the diago­
nal A(3,l,l), A(2,2,l), A(l,3,l): 

A ( 1 , 3 , 1 ) 

A ( 2 , 2 , 1 ) - - A ( 2 , 3 , 1 ) - -

A ( 3 , 1 , 1 ) - - A ( 3 , 2 , 1 ) - -

In general, the values on any one diagonal depend on the newly 
computed values on the diagonal to the left. Most important of all, none of 
the diagonal points depend on any of the other points on the same diagonal. 
So if we can find a way to express this in a nested Fortran DO loop, we will 
have a vectorizable inner loop, with the recursion (on diagonals) existing 
totally in the outer loop. Loop 43141 is one way of writing this. It retains the 
assignment statement for A from loop 43140 but indexes both I and J in the 
inner loop. 

THE RESTRUCTURED 
DIMENSION A(N,N,3), 

NDIAGS = 2 * N - 3 
ISTART = 1 
JSTART = 2 
LDIAG = 0 
DO 43141 IDIAGS = 1, 
IF(IDIAGS .LE. N-1 

ISTART = ISTART 
LDIAG = LDIAG 

ELSE 
JSTART = JSTART 
LDIAG = LDIAG 

B(N,N), C(N,N) 

, NDIAGS 
) THEN 
+ 1 
+ 1 

+ 1 
- 1 
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ENDIF 
I = ISTART + 1 
J = JSTART - 1 

CDIR$ IVDEP 
CVD$ NODEPCHK 
*VDIR NODEP 

DO 43142 IPOINT LDIAG 
I = 
J = 
A(I, 

A(I, 

A(I. 

- 1 
+ 1 
1) = A(I,J,1) -

2) = A(I,J, 

J,3) 

,2) 

A(I,J,3) 

B(I, 
C(I, 
B(I, 
C(I, 
B(I, 
C(I, 

* A(I-1,J,1) 
A(I,J-l, 
A(I-1,J, 
A(I,J-l, 
A(I-1,J, 
A(I,J-l, 

43142 CONTINUE 
43141 CONTINUE 

Figure 4.20 illustrates the diagonals being calculated. Loop 43141 cal­
culates the indexes of the left-most point at which a diagonal begins and calls 
these indexes 1ST ART and JSTART. The number of points on each diagonal 
is then computed and assigned to LDIAG. Index J is incremented, and I 
decrements within the inner loop. 

This representation has potential for recursion when viewed by a com­
piler, so we include directives immediately before the inner loop to indicate 
that it is safe to vectorize it. The directives indicate to a compiler that no 
recursive dependencies occur within the loop, and they appear as comments 
to any other compiler. 

Figure 4.21 demonstrates a performance improvement approaching a 

VV//////// 
* / / / / / / / / / / vy//////// vvvvvvvvvv* vvvvvvvvvv* vvvvvvvvvv* vvvvvvvvvv* vvvvvvvvvv* 

FIGURE 4.20 
Diagonals Being Accessed by Loops 43141 and 43142 
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FIGURE 4.21 
Performance Comparison of Loops 43140 and 43141-43142, 

Cray X-MP. Original, solid line; restructured, dotted line. 

factor of ten for long vector lengths, when vectorizing on diagonals. Note 
that for this particular example we used the CFT1.15 compiler, because CFT 
77 would not vectorize the restructured loop even with the IVDEP directive. 

It should be obvious that this approach has added initialization over­
head that must somehow be amortized to achieve a performance improve­
ment over the original. We are trying to realize the improvement by the 
inherent speed advantage of vector-versus-scalar instructions. Thus, we 
should be able to estimate the improvement based on our knowledge of 
vector length and the crossover point between vector and scalar performance 
on any machine. 

Note that the vector length of the diagonals in loop 43142 varies from 
one to N — 1. We compute the average vector length of the diagonals as: 
Let: 

NP = number of computed points 
= ( N - 1 ) 2 
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ND = number of diagonals 
= 2 N - 1 

Then 

( N - l ) 2 

"* ( 2 N - 1 ) 

It is left as an exercise for the reader to derive the average vector length 
on a general rectangular grid. The important thing to note in the equation is 
that the average vector length is always less than the dimension of the 
problem. So to be effective, this technique must have good performance for 
vectors in this range. For example, a 50 X 50 grid has an average vector 
length of 49 X 49/99 = 24.3. So on a machine that has good vector/scalar 
performance ratio for vector length 24, there is a payoff for vectorizing on 
the diagonals. We like to use a minimum factor of two performance improve­
ment as a rule of thumb for applying this scheme. 

It is natural to ask whether this technique applies to problems of 
greater-than-two dimensions, and in fact it does. Imagine a three-dimen­
sional model in which we start at one corner and take planar slices at 45° 
angles to all axes (Figure 4.22). Immediately, we should notice that these 
slices do not result in the simple vectors of the two-dimensional scheme — 
that is, the slices do not have a constant stride between successive points. In 
general the planar slices are triangular. But the points on the planes are not 
recursive among themselves, and very quickly the number of points on a 
plane grows very large. In fact, for a 50 X 50 X 50 grid, the average number 
of points on a slice exceeds 800. There can be a tremendous payoff for 
vectorizing this computation if run on a machine with vector-indirect address 

FIGURE 4.22 
Planar Slices Through a Three-Dimensional Model 
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instructions — that is, a machine with gather/scatter hardware. Any number 
of dimensions can be treated in this manner, with the number of points on a 
slice (i.e., the vector length) growing exponentially with the number of 
dimensions. 

4.9.5 Scalar Recursion 
In loop 43149, the scalar variable SIA fits our definition of recursion. That is, 
the value of SIA computed in one iteration feeds into the subsequent itera­
tion. 

SIA = 0 . 
DO 43149 I = 1, N 

SIA = SIA + 2 . 0 
A ( I ) = SIA * B ( I ) 

43149 CONTINUE 

But if we note that SIA is a constant-increment variable as defined in Section 
3.3.2 and is assuming the sequence of values 2.0, 4.0, . . . , N * 2.0, then it 
should be clear that a compiler can treat SIA as a vector by generating the 
sequence either in memory or in a vector register, then setting SIA to N * 2.0 
after the loop terminates. If we have such a construct in a loop and the 
compiler refuses to vectorize it, you should ask the vendor to correct this. 

Suppose that SIA is a true reduction function (not a CIV) — such as the 
sum of the elements of a vectorizable expression — and that SIA is used in 
another expression as well, as in loop 43150. 

C THE ORIGINAL 
SIA = 0.0 
J = 1 
DO 43150 I = 1, N, 2 
SIA = SIA + A(I.MM) * B(I) + A(I+1,MM) * B(I+1) 
C(J) = SIA * D(J,MM) 
J = J + 1 

43150 CONTINUE 

A compiler can generate the final answer for SIA in a vectorized/optimized 
manner but cannot simultaneously generate the intermediate sums needed in 
the other expression, so the loop will be executed in scalar mode. But we can 
split the loop into three parts, one that computes the elements of the vectori­
zable expression, a second that computes the partial sums, and a third that 
can vectorize the computation of C. This is shown in loops 43151, 43152, 
and 43153. 

C THE RESTRUCTURED 
J = 1 
DO 43151 1 = 1 , N+l 
SIAT(I) = A(I,MM) * B(I) 

43151 CONTINUE 
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PSIAV(l ) = S I A T ( l ) 
DO 43152 1 = 2 , N+l 

PSIAV(I) = P S I A V ( I - l ) + S IAT( I ) 
43152 CONTINUE 

DO 43153 I = 1, N, 2 
C(J) = PSIAV(I+1) * D(J,MM) 
J = J + 1 

43153 CONTINUE 

Here, the recursion has been isolated down to its minimal operation in loop 
43152 — a loop that cannot be vectorized but can be highly optimized by 
many compilers. All of the other operations are now fully vectorized in loops 
43151 and 43153. 

The two important techniques we used to restructure loop 43150 are 
called "loop splitting' ' and ''scalar promotion." The scalar variable SI A was 
promoted to a vector PSIAV, and the loop was split to isolate the recursion. 
Figure 4.23 depicts a performance improvement approaching a factor of four 
for this restructuring. 

Q. O 
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10 
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FIGURE 4.23 
Performance Comparison of Loops 43150 and 43151-43153, 

Cray X-MP. a, original; b, restructured. 
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SIA in the preceding example is a zero-dimensional variable promoted 
to a one-dimensional array. In general it is often advantageous to promote an 
n-dimensional entity to an (n + l)-dimensional array if this removes recur­
sion from the inner loop of the code. The restructuring of loop 43200 
demonstrates this. 

RECUR(l) = 0. 
DO 43200 J = 1, M 
DO 43200 I = 2, N 
A(I,J) = SQRT (Y(I,J)**2 + Z(I,J)**2) 
RECUR(I) = A(I,J) + RECUR(1-1) * B(I,J) 
C(I,J) = RECUR(I) + EXP (D(I,J) 

43200 CONTINUE 

The single-dimension recursion of RECUR appears intractable at first 
glance. Note however that for each iteration on J, RECUR receives a new 
sequence of values. No data carries from one iteration of J to the next, 
because RECUR(l) = 0. and it is never changed. If we promote RECUR to a 
two-dimensional array, then we can switch the nesting of the loops and push 
the recursion into the outer loop, as shown in loop 43202. 

DIMENSION VRECUR (ndimlA,ndim2a) 

DO 43201 J = 1, M 
VRECUR(l.J) = 0. 

43201 CONTINUE 

DO 43202 I = 2, N 
DO 43202 J = 1,M 
A(I,J) = SQRT (Y(I,J)**2 + Z(I,J)**2) 
VRECUR(I.J) = A(I,J) + VRECUR(I-l.J) * B(I,J) 
C(I,J) = VRECUR(I,J) + EXP (D(I,J) 

43202 CONTINUE 

In the original loop, RECUR assumed M different sequences, one at a 
time. In the new loop, all M sequences are being developed together, one 
term at a time in the inner loop. The fact that each sequence must begin with 
a zero term necessitates loop 43201 to initialize each of the M sequences. The 
values "ndimlA" and "ndim2A" are so named to indicate that the dimen­
sions of the array A will be sufficient for VRECUR. 

It is extremely unlikely that the values of RECUR would be used after 
such a loop. But for completeness, loops 43203 and 43204 demonstrate 
saving the last values for subsequent use. 

DIMENSION VRECUR (ndimlA,ndim2a) 

DO 43201 J = 1, M 
VRECUR(l.J) = 0. 

43201 CONTINUE 
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DO 43204 I - 2, N 
DO 43203 J = 1,M 
A(I,J) = SQRT (Y(I,J)**2 + Z(I,J)**2) 
VRECUR(I.J) = A(I,J) + VRECUR(I-1,J) * B(I,J) 
C(I,J) = VRECUR(I.J) + EXP (D(I,J) 

43203 CONTINUE 
RECUR(I) = VRECUR(I.M) 

43204 CONTINUE 

Loop switching sometimes introduces memory-bank conflicts, since the 
stride is now across rather than down the columns. So as a final restructur­
ing, eliminate such conflicts if necessary. 

Wrap-Around Scalars 
Many wrap-around scalars are simply holding a value from the last iteration 
to act as one side of a moving interval within the loop, as in 43210. 

TOP - 0. 
DO 43210 I = 1, N 
BOT = TOP 
TOP - X(I) * B(I) 
Y(I) = Y(I) + Z(I) / (TOP - BOT) 

43210 CONTINUE 

If a compiler balks at vectorizing this, consider rewriting as shown in loop 
43211, where the first iteration has been written out in scalar mode (to 
handle the initial value of zero for BOT), and the defining expression for 
TOP has been substituted in the loop for both TOP and BOT. 

Y(l) = (Y(l) + Z(l)) / ( X(l) * B(l)) 
DO 43211 I = 2,N 
Y(I) - Y(I) + Z(I) / (X(I) * B(I) - X(I-l) * B(I-l)) 

43 211 CONTINUE 

As a second alternative, TOP can be promoted to a vector, and BOT can be 
eliminated, as shown in loop 43212. 

DIMENSION VTOP (0:ndimX) 

VT0P(0) = 0. 
DO 43212 I = 1, N 
VTOP(I) = X(I) * B(I) 
Y(I) = Y(I) + Z(I) / (VTOP(I) - VTOP(I-l)) 

43 212 CONTINUE 

Although both of the preceding restructurings will vectorize, each has its 
advantages and disadvantages, depending on the target computer system. 
Loop 43211 provides vectorization at the cost of adding a multiply operation 
as well as fetching the vectors X and B twice. Loop 43212 adds no arithmetic 
operations, but requires storing and fetching the vector VTOP. As we try 
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these techniques on a particular machine, we will develop a feel for which 
works better for our programs. 

Sometimes the elimination of a wrap-around scalar leads to even fur­
ther optimization of a loop. As long as we are rewriting the loop we may as 
well analyze the algorithm to see if it is as efficient as it can be. Consider loop 
44020: 

BR = 0. 
DO 44020 I = 1, N 
BL = BR 
BR = (1-1) * DELB 
A(I) = (BR - BL) * C(I) + (BR**2 - BL**2) * C(I)**2 

44020 CONTINUE 

If we were to apply the same techniques as in loop 43212, we would promote 
BR to a vector and eliminate BL. Closer inspection reveals that the expression 
(BR — BL) is equal to DELB for all but the first iteration, so computing the 
difference is a wasted operation in the loop. With that term removed, then 
note that only the squared terms remain. In fact, BL**2 is recomputing the 
values of BR**2 from the previous iteration. Finally, note that the computa­
tion is a polynomial evaluation, for which factoring will reduce operations 
and enhance chaining. Therefore a better restructuring is outlined in loop 
44022. 

C THE RESTRUCTURED 
B = 0.0 
BSQ(l) = 0.0 
A(l) = 0.0 
DO 44022 I = 2, N 
B = B + DELB 
BSQ(I) = B**2 
A(I) = C(I) * ( DELB + C(I) * (BSQ(I) - BSQ(I-l))) 

44022 CONTINUE 

This restructuring vectorizes and reduces the number of arithmetic 
operations from ten to six. Note that a compiler will recognize B as a CIV and 
not treat it as a wrap-around scalar or as a reduction-function scalar. This 
allows its use in the line following its definition. Figure 4.24 indicates a 
performance improvement that exceeds a factor of 15 for this restructuring. 

Our restructuring assumes that the final values of BL and BR are not 
needed elsewhere in the program. If such last-value saving were necessary, it 
could be accomplished by inserting the following lines after loop 44022: 

BL = ( N - 2 ) * DELB 

BR = ( N - 1 ) * DELB 

When scalars are defined conditionally, they also have the potential to 
wrap around from one iteration to the next. In loop 44025, whenever the 
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FIGURE 4.24 
Performance Comparison of Loops 44020 and 44022, Cray 

X-MP. Original, solid line; restructured, dotted line. 

condition A(I) .GT. 0. is false, the value used for SCA in the assignments to 
B(I) and E(I) is from the previous iteration. 

SCA = 0. 
DO 44025 I = 1, N 
IF (A(I) .GT. 0.) THEN 
SCA = X(I) * Y(I) 

END IF 
B(I) = SCA * C(I) + D(I) 
E(I) = (SCA + 1.0) * Z(I) 

44025 CONTINUE 

Suppose that every third value of A is greater than zero, then SCA 
assumes the sequence of values: 

X( 1 ) * Y ( 1 ) , X( 1 ) * Y ( 1 ) , X( 1 ) * Y ( 1 ) , X ( 4 ) * Y ( 4 ) , X ( 4 ) * Y ( 4 ) , . . . 

Since the compiler cannot know when the condition will be true, it is almost 
impossible to generate the sequence of values in vector mode. In fact, if SCA 
were promoted to a vector of values and its setting were isolated in a separate 
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loop, then the recursion should become obvious, as in loops 44026 and 
44027. 

VSCA(l) = 0. 
DO 44026 I = 1, N 
IF (A(I) .GT. 0.) THEN 
VSCA(I) = X(I) * Y(I) 
ELSE 
VSCA(I) = VSCA(I-l) 
ENDIF 

44026 CONTINUE 

DO 44027 1 = 1 , N 
B(I) = VSCA(I) * C(I) + D(I) 
E(I) = (VSCA(I) + 1.0) * Z(I) 

44027 CONTINUE 
Whether or not there is a payoff for this restructuring depends on how 

many times SCA is used in the loop, so we must experiment with each loop 
for which this technique applies. 

Loop 44030 provides an additional twist to the problem of the wrap­
around scalar. Not only is PF referenced before it is set, but once set, it is 
sometimes reset within an iteration under control of the IF statement. Pro­
moting PF to a vector and eliminating PB once again removes the recursion, 
as shown in loop 44031. Here, the speedup is about a factor of five over the 
original code, as depicted in Figure 4.25. 

C THE ORIGINAL 
PF = 0.0 
DO 44030 I = 2, N 
AV = B(I) * RV 
PB = PF 
PF = C(I) 
IF ((D(I) + D(I+1)) .LT. 0.) PF = -C(I+1) 
AA = E(I) - E(I-l) + F(I) - F(I-l) 

1 + G(I) + G(I-l) - H(I) - H(I-l) 
BB = R(I) + S(I-l) + T(I) + T(I-l) 

1 - U(I) - U(I-l) + V(I) + V(I-l) 
2 - W(I) + W(I-l) - X(I) + X(I-l) 
A(I) = AV * (AA + BB + PF - PB + Y(I) - Z(I)) + A(I) 

44030 CONTINUE 

C THE RESTRUCTURED 
VPF(l) =0.0 
DO 44031 I = 2, N 
AV = B(I) * RV 
VPF(I) = C(I) 
IF ((D(I) + D(I+1)) .LT. 0.) VPF(I) = -C(I+1) 
AA = E(I) - E(I-l) + F(I) - F(I-l) 

1 + G(I) + G(I-l) - H(I) - H(I-l) 
BB = R(I) + S(I-l) + T(I) + T(I-l) 

1 - U(I) - U(I-l) + V(I) + V(I-l) 
2 - W(I) + W(I-l) - X(I) + X(I-l) 
A(I) = AV * (AA + BB + VPF(I) - VPF(I-l) + Y(I) - Z(I)) + A(I) 

44031 CONTINUE 
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FIGURE 4.25 
Performance Comparison of Loops 44030 and 44031, Cray 

X-MP. Original, solid line; restructured, dotted line. 

In loop 44040 there are two problems with scalars. First, SIGMAX is a 
wrap-around scalar in that it is referenced in the IF statement, then subse­
quently set. If a compiler tried to vectorize this as written it would have the 
additional problem of not knowing whether SIGMAX is set in any particular 
iteration. A smart enough compiler might recognize that SIGMAX is actually 
a reduction function, and it could generate optimized code that produces the 
final answer for SIGMAX. 

Unfortunately, only a few compilers will handle the second problem, 
which is the setting of IMAX to the index of the maximum value. Conse­
quently, those compilers unable to optimize finding the value of IMAX will 
leave the entire loop unoptimized. Our restructuring in loop 44041 splits out 
the vectorizable code from the top of the loop and promotes SIGABC to a 
vector VSIGABC to propagate the values to loop 44042 where the maximum 
and its index are computed. Most vendors provide a system library routine 
that can further optimize loop 44042. 

Figure 4.26 shows that the restructured loops outperform the original 
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by about a factor of six. So, if the bulk of our CPU time is spent in such loops, 
this restructuring will reduce an hour down to ten minutes. 

C THE ORIGINAL 
DO 44040 I = 2, N 
RR = 1. / A(I,1) 
U = A(I,2) * RR 
V = A(I,3) * RR 
W = A(I,4) * RR 
SNDSP = SQRT (GD * (A(I,5) * RR + .5* (U*U + V*V + W*W))) 
SIGA = ABS (XT + U*B(I) + V*C(I) + W*D(I)) 

* + SNDSP * SQRT (B(I)**2 + C(I)**2 + D(I)**2) 
SIGB = ABS (YT + U*E(I) + V*F(I) + W*G(I)) 

* + SNDSP * SQRT (E(I)**2 + F(I)**2 + G(I)**2) 
SIGC = ABS (ZT + U*H(I) + V*R(I) + W*S(I)) 

* + SNDSP * SQRT (H(I)**2 + R(I)**2 + S(I)**2) 
SIGABC = AMAX1 (SIGA, SIGB, SIGC) 
IF (SIGABC .GT. SIGMAX) THEN 
IMAX = I 
SIGMAX = SIGABC 
ENDIF 

44040 CONTINUE 

C THE RESTRUCTURED 
DO 44041 I = 2, N 
RR = 1. / A(I,1) 
U = A(I,2) * RR 
V = A(I,3) * RR 
W = A(I,4) * RR 
SNDSP = SQRT (GD * (A(I,5) * RR + .5* (U*U + V*V + W*W))) 
SIGA = ABS (XT + U*B(I) + V*C(I) + W*D(I)) 

* + SNDSP * SQRT (B(I)**2 + C(I)**2 + D(I)**2) 
SIGB = ABS (YT + U*E(I) + V*F(I) + W*G(I)) 

* + SNDSP * SQRT (E(I)**2 + F(I)**2 + G(I)**2) 
SIGC = ABS (ZT + U*H(I) + V*R(I) + W*S(I)) 

* + SNDSP * SQRT (H(I)**2 + R(I)**2 + S(I)**2) 
VSIGABC(I) = AMAX1 (SIGA, SIGB, SIGC) 

44041 CONTINUE 

DO 44042 I = 2, N 
IF (VSIGABC(I) .GT. SIGMAX) THEN 
IMAX = I 
SIGMAX = VSIGABC(I) 
ENDIF 

44042 CONTINUE 

Loop 44050 is the classically coded matrix multiply, just as we all 
learned it in linear algebra. That is, the inner loop is a dot product between a 
row of matrix B and a column of matrix C. Note that during execution of the 
inner loop the indexes I and J do not vary, so that A(I,J) acts just like a scalar. 
Most compilers recognize this dot product and use their optimized code to 
generate each result in A. All machines can perform the multiplication of a 
row of B with a column of C in vector mode, but the add operation must 
often be completed in scalar mode. 



130 VECTORIZATION OF FORTRAN PROGRAMS 

80 

50 

Q. 
_2 40 

30 

20 

161 211 261 

Loop length 
311 411 461 

FIGURE 4.26 
Performance Comparison of Loops 44040 and 44041-44042, 

Cray X-MP. a, original; b, restructured. 
C THE ORIGINAL 

DO 44050 I = 1, N 
DO 44050 J = 1, N 
A(I,J) = 0.0 
DO 44050 K = 1, N 
A(I,J) = A(I,J) + B(I,K) * C(K,J) 

44050 CONTINUE 

Our restructuring in loops 44051 and 44052 splits out the array initiali­
zation into a separate vectorizable loop, then switches the order of the loop 
nest to make I the inner loop index, with K relegated to the outer loop. This 
causes the inner loop to be vector = vector + vector X scalar, or: 

A ( I , J ) A ( I , J ) B ( I , J ) * C ( K , J ) 

which happens to be the best combination of operations for most supercom­
puters. This forces the recursion of the dot product into the outer loop. 

Note that although the original loop fetched and stored each element of 
the array A only once, the restructuring fetches and stores each element of A 
"N" times. This is somewhat offset by a reduction of the number of fetches 
of each element of C from N down to one. Most machines have sufficient 
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memory paths that the restructuring outperforms the original. But machines 
that have only one memory path might show no improvement. Our timing 
on the Cray X-MP (Figure 4.27) represents a factor-of-two improvement. 

C THE RESTRUCTURED 
DO 44051 J = 1, N 
DO 44051 I = 1, N 
A(I,J) = 0.0 

44051 CONTINUE 

DO 44052 K = 1, N 
DO 44052 J = 1, N 
DO 44052 I = 1, N 
A(I, J) = A(I,J) + B(I,K) * C(K,J) 

44052 CONTINUE 

Our final example in this section (loop 44060) appears to be even 
simpler than the preceding matrix multiply, but an extra twist has been 
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FIGURE 4.27 
Performance Comparison of Loops 44050 and 44051-44052, 

Cray X-MP. a, original; b, restructured. 
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added. This "convolution kernel" is computing N dot products, each consist­
ing of a row from the lower triangular matrix B dotted with a column from 
the upper triangular matrix C. The upper triangle of B and the lower triangle 
of C occupy memory but never enter the calculation. 

C THE ORIGINAL 
DO 44060 I = 1, N 
A(I) = 0.0 
DO 44060 J = 1, I 
A(I) = A(I) + B(I,J) * C(J,I) 

44060 CONTINUE 

The outer loop generates results as follows: 

A ( 1 ) = B( 1 , 1 ) * C( 1 , 1 ) 

A ( 2 ) = B ( 2 , 1 ) * C ( 1 , 2 ) + B ( 2 , 2 ) * C ( 2 , 2 ) 

A ( 3 ) = B ( 3 , 1 ) * C ( 1 , 3 ) + B ( 3 , 2 ) * C ( 2 , 3 ) + B ( 3 , 3 ) * C ( 3 , 3 ) 

A ( N ) = B ( N , 1 ) * C ( 1 , N ) + . . . + B ( N , N ) * C ( N , N ) 

Again, the dot product is usually only partially vectorized, so we would like 
to switch the loop nesting to cause the inner loop to run on I — thus allowing 
full vectorization. But the length of the inner loop depends on the index of 
the outer loop, so directly switching them as done in the matrix multiply 
would produce nonsensical code: 

DO . . . J = 1, I 
DO . . . I = 1, N 

This restructuring requires a careful study of the interplay between the 
two DO statements to determine how to switch them. Begin by noting that 
the final outer iteration of the original loop is 

DO 44060 I = . . . N 
DO 44060 J = 1,N 

From this we know that to switch the loops we must have an outer loop J that 
runs from 1 to N. Working backward, now we can state that the only value of 
I for which J = N is I = N. Again, J = N — 1 for two values of I: I = N — 1 
and I = N. Working all the way back to J = 1, we see that this is true for all 
values of I from one to N. Finally, we can see the pattern that, as shown in 
loop nest 44062, as J ranges from 1 to N, I ranges from J to N. Once again the 
dot product has been pushed into the outer loop, and the inner loop fully 
vectorizes. 

In Figure 4.28, the performance improvement of about a factor of two 
for moderate vector lengths diminishes to just above one for longer lengths. 
This is because much of the addition in the original dot-product implemen­
tation can be performed in vector mode for longer vector lengths; only the 
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FIGURE 4.28 
Performance Comparison of Loops 44060 and 44061-44062, 

Cray X-MP. Original, solid line; restructured, dotted line. 

final 64 or fewer elements in the last register computed must to be added in 
scalar mode. 

C THE RESTRUCTURED 
DO 44061 I = 1, N 
A(I) = 0.0 

44061 CONTINUE 

DO 44062 J = 1, N 
DO 44062 I = J, N 
A(I) = A(I) + B(I,J) * C(J,I) 

44062 CONTINUE 

4.9.6 More Loop Switching 
The inner loops of the nest 45011, 45010 will be vectorized by essentially all 
compilers, but performance will greatly depend on the vector length (un­
known to the compiler). The major computational loop, 45010, is summing 
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the elements of vectorizable expressions. We saw in the previous section that 
this has a good payoff only for long vector lengths. If we know that the outer 
loop on I has a vector length greater than or equal to the vector length of the 
inner loop on K, we must consider switching the nesting to achieve the best 
vector performance. 

THE ORIGINAL 
DO 45011 1 = 1 , 
SUM1 =0.0 
SUM2 =0.0 
SUM4 =0.0 
SUM5 =0.0 

IM 

DO 45010 K = 2, KM 
KK = KM - K + 1 
SUM1 = SUM1 +4.0 ( A(J+1,K ,1,1) 

A(J+1,KK,1,1) 
A(J+2,K ,1,1) 
A(J+2,KK,I,1) 

A(J+1,K ,1,6) 
A(J+1,KK,I,6) ) 
A(J+2,K ,1,6) 
A(J+2,KK,1,6) 

SUM2 = SUM2 + 4.0 * ( A(J+1,K, 1,2) * A(J+1,K, 1,6) 
A(J+1,KK,I,2) * A(J+1,KK,I,6) ) 
A(J+2,K, 1,2) * A(J+2,K, 1,6) 
A(J+2,KK,1,2) * A(J+2,KK,I,6) 

SUM4 = SUM4 +4.0 
+ 

( A(J+1,K, 1,4) * A(J+1,K, 1,6) 
A(J+1,KK,I,4) * A(J+1,KK,I,6) ) 
A(J+2,K, 1,4) * A(J+2,K, 1,6) 
A(J+2,KK,I,4) * A(J+2,KK,1,6) 

SUM5 = SUM5 + 4.0 * 

CONTINUE 

( A(J+1,K, 1,5) * A(J+1,K, 1,6) 
A(J+1,KK,1,5) * A(J+1,KK,I,6) ) 
A(J+2,K, 1,5) * A(J+2,K, 1,6) 
A(J+2,KK,1,5) * A(J+2,KK,1,6) 

DO 45011 K KM 
A(J,K,I,1) = SUM1 / (6.0 * (KM-2) * A(J,K,I,6)) 
A(J,K,1,2) = SUM2 / (6.0 
A(J,K,1,3) =0.0 
A(J,K,1,4) = SUM4 / (6.0 
A(J,K,1,5) = SUM5 / (6.0 

45011 CONTINUE 

* (KM-2) * A(J,K,1,6)) 

* (KM-2) * A(J,K,I,6)) 
* (KM-2) * A(J,K,1,6)) 

Notice that each iteration of the outer loop produces new values for 
SUM1, SUM2, SUM4, and SUM5, and these are used subsequently in the 
inner loop 45011. To bring the I loop inside the loops on K, we must promote 
the four SUMs to vectors. Furthermore, we must assure ourselves that the 
values in the A array computed in loop 45011 in one iteration do not feed 
back into loop 45010 on a subsequent outer iteration. Note that although we 
do not know the value of J, we can see that the columns of A referenced in 
loop 45010 (J+l, J+2) are completely independent of the column J referenced 
in loop 45011. 

With all this in mind, we present the restructured version, loops 45012, 
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45013, and 45014, all of which fully vectorize. Figure 4.29 represents the 
restructured performance versus two different executions of the original, one 
with KM = 5 and the other with KM = 75. In this figure the X-axis represents 
various values of IM. 

The results are quite interesting. Where KM = 5, the restructuring is 
always faster. Where KM = 75, the restructured is faster when IM is greater 
than 30. Notice that one advantage of switching the loops is to remove the 
reduction-function scalars SUMl, SUM2, SUM4, SUM5 on the K loop. When 
we switch the loop and bring I on the inside, we have removed all reduction 
functions. 

Note in Figure 4.29 that in this particular example we used CFT 1.15 
because CFT 77 did not vectorize the original loop 45010. And we wished to 
compare vectorization of the reduction function scalars in the original with 
full vectorization after loop switching in the restructured. 

C THE RESTRUCTURED 
DO 45012 1 = 1 , IM 
VSUM1(I) 
VSUM2(I) 
VSUM4(I) 
VSUM5(I) 

45012 CONTINUE 

DO 45013 
KK 
DO 45013 
VSUM1(I) 

* 
* 

= 0.0 
= 0.0 
= 0.0 
= 0.0 

K = 2, KM 
= KM - K + 1 

1 = 1 , IM 
= VSUMl(I) + 4.0 * 

+ 
-

( A(J+1,K 
A(J+1,KI 
A(J+2,K 

1,1) * A ( J + 1 , K , 1 , 6 ) 
A ( J + 1 , K K , I , 1 ) * A ( J + 1 , K K , I , 6 ) ) 

1 ,1) * A( J+2 ,K , 1 , 6 ) 
* - A ( J + 2 , K K , I , 1 ) * A ( J + 2 , K K , I , 6 ) 

VSUM2(I) = VSUM2(I) + 4 . 0 * ( A( J+1 ,K , 1 ,2) * A(J+1 ,K , 1 ,6) 
* + A ( J + 1 , K K , I , 2 ) * A ( J + 1 , K K , I , 6 ) ) 
* - A(J+2 ,K , 1 ,2) * A(J+2 ,K , 1 ,6) 
* - A ( J + 2 , K K , I , 2 ) * A ( J + 2 , K K , 1 , 6 ) 

VSUM4(I) = VSUM4(I) + 4 . 0 * ( A(J+1 ,K , 1 ,4) * A(J+1 ,K , 1 ,6) 
* + A ( J + 1 , K K , I , 4 ) * A ( J + 1 , K K , 1 , 6 ) ) 
* - A( J+2 ,K , 1 ,4) * A ( J + 2 , K , 1 ,6) 
* - A ( J + 2 , K K , I , 4 ) * A ( J + 2 , K K , I , 6 ) 

VSUM5(I) = VSUM5(I) + 4 . 0 * ( A( J+1 ,K , 1 ,5) * A(J+1 ,K , 1 ,6) 
* + A ( J + 1 , K K , I , 5 ) * A ( J + 1 , K K , I , 6 ) ) 
* - A(J+2 ,K , 1 ,5) * A(J+2 ,K , 1 ,6) 
* - A ( J + 2 , K K , I , 5 ) * A ( J + 2 , K K , I , 6 ) 

45013 CONTINUE 

DO 45014 K = 2, KM 
DO 45014 1 = 1 , IM 
A(J,K,I,1) = VSUMl(I) / (6.0 * (KM-2) * A(J,K,I,6)) 
A(J,K,I,2) = VSUM2(I) / (6.0 * (KM-2) * A(J,K,I,6)) 
A(J,K,I,3) =0.0 
A(J,K,I,4) = VSUM4(I) / (6.0 * (KM-2) * A(J,K,I,6)) 
A(J,K,I,5) = VSUM5(I) / (6.0 * (KM-2) * A(J,K,I,6)) 

45014 CONTINUE 
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FIGURE 4.29 
Performance Comparison of Loops 45011 and 45012-45014. 

a, original (KM = 5); b, original (KM = 75); c, restructured. 

Our last example of loop switching illustrates the value of vectorizing 
not only on the longest vector length, but of achieving vectorization of outer 
loop code as well. As before, most compilers will vectorize the inner loop on 
K, but its length is only five. It is important to always remember that just 
because a compiler informs us that it has vectorized an important loop in our 
program, there may be much improvement that can be attained. If we know, 
for example, that N is significantly larger than five, there is probably a payoff 
for inverting the loop nest to always have I be the inner-loop index. 

C THE ORIGINAL 
DO 45020 I = 1, N 
F(I) = A(I) + .5 
DO 45020 J = 1, 10 
D(I,J) = B(J) * F(I) 
DO 45020 K = 1, 5 
C(K,I,J) = D(I,J) * E(K) 

45020 CONTINUE 
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FIGURE 4.30 
Performance Comparison of Loops 45020 and 45021-45023, 

Cray X-MP. a, original; b, restructured. 

To begin, we note that neither J nor K depend on I, and so the loops 
may be easily switched. Next, we extract all code between one DO statement 
and the next and place it into its own loop, always with I as the inner-loop 
index. Finally, we can invert the nesting of the original inner-loop code, with 
the result that all of the code in the original outer loop is now being executed 
in vectorizable inner loops with long vector lengths, as shown in loops 
45021, 45022, and 45023. Figure 4.30 shows that this restructuring outper­
forms the original by more than a factor of ten for long vector lengths. 

C THE RESTRUCTURED 
DO 45021 I = 1,N 
F(I) = A(I) + .5 

45021 CONTINUE 

DO 45022 J = 1, 10 
DO 45022 I = 1, N 
D(I,J) = B(J) * F(I) 
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45022 CONTINUE 

DO 45023 K = 1, 5 
DO 45023 J = 1, 10 
DO 45023 I = 1, N 
C(K,I,J) = D(I,J) * E(K) 

45023 CONTINUE 

4.9.7 Loop Unrolling 
Short loops often generate more overhead instructions than computational 
instructions. Because of this, many compilers will automatically unroll loops 
of small literal constant length. Our knowledge of algorithms can often be 
used to manually carry this idea to even better optimizations, especially 
when, as in loops 46010 and 46020, the inner loop contains few operations. 
As written, it is difficult for a compiler to make use of all the machine's 
registers and data paths. 

C THE ORIGINAL 
DO 46011 J = 1, 4 
DO 46010 I = 1, N 
C(J,I)=0.0 

46010 CONTINUE 

DO 46011 K = 1, 4 
DO 46011 I = 1, N 
C(J,I) = C(J,I) + A(J,K) * B(K,I) 

46011 CONTINUE 

In this example the inner DO loop does vectorize on a nice, long vector 
length; but, there is room for additional improvement. Whenever small and 
explicit outer loops exist, as in loop 46011, they should be unrolled inside the 
larger vectorized loop. Note that the outer loop on J simply defines four 
equations in the C array: 

C ( 1 , 1 ) = 

C ( 2 , I ) = 

C ( 3 , I ) = 

C ( 4 , I ) = 

Likewise, the outer loop on K simply generates four terms to be added 
into C for each value of J. In fact, when the loop on K is unrolled, there is no 
longer any need to initialize C to zero, and it no longer appears on the right 
side in the restructured loop 46012. 

C THE RESTRUCTURED 
DO 46012 I = 1, N 
C(1,I) = A(l,l) * B(1,I) + A(l,2) * B(2,I) 

* + A(l,3) * B(3,I) + A(l,4) * B(4,I) 
C(2,I) = A(2,l) * B(1,I) + A(2,2) * B(2,I) 
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C ( 3 , I ) 
* 

C ( 4 , I ) 

46012 CONTINUE 

+ A ( 2 , 3 ) 
= A ( 3 . 1 ) 
+ A ( 3 , 3 ) 
= A ( 4 , l ) 
+ A ( 4 , 3 ) 

B ( 3 , I ) + A ( 2 , 4 ) 
B ( 1 , I ) + A ( 3 , 2 ) 
B ( 3 , I ) + A ( 3 , 4 ) 
B ( 1 , I ) + A ( 4 , 2 ) 
B ( 3 , I ) + A ( 4 , 4 ) 

B ( 4 , I ) 
B ( 2 , I ) 
B ( 4 , I ) 
B ( 2 , I ) 
B ( 4 , I ) 

This restructuring gives the compiler more calculations to optimize, thus 
obtaining more overlapping of functional units in the CPU. It also reduces 
memory traffic, because each time one of the vectors in B is fetched, it is 
reused four times. 

This unrolling, shown in Figure 4.31, outperforms the original by about 
a factor of three. In loop 46020 the compiler will vectorize on the innermost 
loop, which contains a reduction function of length four. If vectorization of 
this loop is prevented with a compiler directive, it will actually run faster in 
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FIGURE 4.31 
Performance Comparison of Loops 46011 and 46012, Cray 

X-MP. Original, solid line; restructured, dotted line. 
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scalar mode than in vector mode. The best approach is to restructure as 
shown in loop 46021. 

C THE ORIGINAL 
DO 46020 I = 1,N 
DO 46020 J = 1,4 
A(I,J) = 0. 
DO 46020 K = 1,4 
A(I,J) = A(I,J) + B(I,K) * C(K,J) 

46020 CONTINUE 

C THE RESTRUCTURED 
DO 46021 I = 1 , N 

A ( I , 1 ) = B ( I , 1 ) * C ( l , l ) + B ( I , 2 ) * C ( 2 , l ) 
* + B ( I , 3 ) * C ( 3 , l ) + B ( I , 4 ) * C ( 4 , l ) 

A ( I , 2 ) = B ( I , 1 ) * C ( l , 2 ) + B ( I , 2 ) * C ( 2 , 2 ) 
* + B ( I , 3 ) * C ( 3 , 2 ) + B ( I , 4 ) * C ( 4 , 2 ) 

A ( I , 3 ) = B ( I , 1 ) * C ( l , 3 ) + B ( I , 2 ) * C ( 2 , 3 ) 
* + B ( I , 3 ) * C ( 3 , 3 ) + B ( I , 4 ) * C ( 4 , 3 ) 

A ( I , 4 ) = B ( I , 1 ) * C ( l , 4 ) + B ( I , 2 ) * C ( 2 , 4 ) 
* + B ( I , 3 ) * C ( 3 , 4 ) + B ( I , 4 ) * C ( 4 , 4 ) 

46021 CONTINUE 

In the restructuring, loop 46021 shows the loops on J and K completely 
unrolled in the I loop. That is, the only effect of the original J loop was to 
choose four different columns of the A and C arrays to be computed as the 
sum of four terms indexed by the K loop. In the unrolling, all four equations 
and all four terms are explicitly written out, thus eliminating the need to 
initialize the elements of A to zero and allowing all of the code to fully 
vectorize. 

Figure 4.32 shows an improvement of more than a factor of 30 for this 
restructuring. 

In loops 44050, 44051, and 44052 we examined a restructuring of the 
traditionally coded matrix multiply into fully vectorized loops. Here, we 
reproduce the code of 44051 and 44052 as 46030 and 46031 to demonstrate 
the value of unrolling in such a set of nested loops. 

C THE ORIGINAL 
DO 46030 J = 1, N 
DO 46030 I = 1, N 
A(I,J) = 0. 

46030 CONTINUE 

DO 46031 K = 1, N 
DO 46031 J = 1, N 
DO 46031 I = 1, N 
A(I,J) - A(I,J) + B(I,K) * C(K,J) 

46031 CONTINUE 

Partially unrolling the outer loop inside the inner loop, as shown in 
loop 46033, has two valuable effects: 1) the vector A(1:N,J) is fetched and 
stored one-sixth as often as in loop 46031; and 2) giving the compiler more to 
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FIGURE 4.32 
Performance Comparison of Loops 46020 and 46021, Cray 

X-MP. Original, solid line; restructured, dotted line. 

do in the inner loop allows overlapped use of more resources. Loop 46034 is 
of course a "cleanup" loop that handles N mod 6 remaining iterations. 

Another improvement of 50-100% is achieved with this technique 
(Figure 4.33). The actual performance of > 150 megaflops is approaching the 
kind of performance usually only achieved with hand-coded assembly lan­
guage routines. 

THE RESTRUCTURED 
DO 46032 J = 1, N 
DO 46032 I = 1, N 
A(I , J)=0. 

46032 CONTINUE 

DO 46033 K = 1, N-5, 6 
DO 46033 J = 1, N 
DO 46033 I = 1, N 
A(I,J) = A(I,J) + B(I,K ) 

* + B(I,K+1) 
* + B(I,K+2) 

C(K ,J) 
C(K+1,J) 
C(K+2,J) 
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+ B(I,K+3) * C(K+3,J) 
+ B(I,K+4) * C(K+4,J) 
+ B(I,K+5) * C(K+5,J) 

46033 CONTINUE 

DO 46034 KK = K, N 
DO 46034 J = 1, N 
DO 46034 I = 1, N 
A(I,J) = A(I,J) + B(I,KK) * C(KK ,J) 

46034 CONTINUE 

4.9.8 IF Statements 
In DO loops, IF statements can play havoc with optimization. They represent 
a break in the flow of computation in each iteration, checking to see if 
something special needs to be done this time through. Testing on the loop 
index is most offensive, because the answer is already known. A simple 
restructuring will completely remove the test from the loop. 

160 

140 

c/> 100 
Q. 
O 

80 

60 

20 

111 161 211 261 

Loop length 

411 461 

FIGURE 4.33 
Performance Comparison of Loops 46031 and 46033-46034, 

Cray X-MP. Original, solid line; restructured, dotted line. 
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Loops 47010, 47011, and 47012 contain tests on the value of the outer 
loop index, inside the inner loop. The tests are simply causing certain ele­
ments of the B and C arrays to be set or not set on every iteration of the inner 
loop. This is more effectively accomplished by several different loops tailored 
to each of the special conditions, as shown by loops 47013-47017. 

C THE ORIGINAL 
DO 47012 K = 2, N 
DO 47011 J = 2, 3 
DO 47010 I = 2, N 
A(I,J) = (1. - PX - PY - PZ) * B(I,J,K) 

1 + .5 * PX * ( B(I+1,J,K) + B(I-1,J,K) ) 
2 + .5 * PY * ( B(I,J+1,K) + B(I,J-1,K) ) 
3 + .5 * PZ * ( B(I,J,K+1) + B(I,J,K-1) ) 

IF (K .LT. 3) GO TO 11 
IF (K .LT. N) GO TO 10 
B(I,J,K ) = A(I,J) 

10 B(I,J,K-1) = C(I,J) 
11 C(I,J) = A(I,J) 

47010 CONTINUE 
47011 CONTINUE 
47012 CONTINUE 

Note that in the original loop nest, the elements of the array A are 
computed unconditionally. Conditionally computed elements of B feedback 
to A in the K loop, but never in the I or J loops. This allows us to split out this 
part of the calculation into the loop nest 47013. Next, we have loop nests 
47014 and 47015 computing the values of B and C, depending on the current 
value of K. And, finally, nest 47017 computes the values for the special case 
K = N. Performance of the restructured over the original is better than a 
factor of ten (Figure 4.34). 

C THE RESTRUCTURED 
DO 47016 K = 2, N - 1 
DO 47013 J = 2, 3 
DO 47013 I = 2, N 
A(I,J) = (1. - PX - PY - PZ) * B(I,J,K) 

1 + .5 * PX * ( B(I+1,J,K) + B(I-1,J,K) ) 
2 + .5 * PY * ( B(I,J+1,K) + B(I,J-1,K) ) 
3 + .5 * PZ * ( B(I,J,K+1) + B(I,J,K-1) ) 

47013 CONTINUE 

IF (K .EQ. 2) THEN 
DO 47014 J =2, 3 
DO 47014 I =2, N 
C(I,J) = A(I,J) 

47014 CONTINUE 
ELSE 
DO 47015 J = 2, 3 
DO 47015 I = 2, N 
B(I,J,K-1) = C(I,J) 
C(I,J) = A(I,J) 

47015 CONTINUE 
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ENDIF 

47016 CONTINUE 

K = N 
DO 47017 J = 
DO 47017 I = 
A(I.J) = (1 

1 + .5 
2 + .5 
3 + .5 

B(I,J,K) 
B(I,J,K-l) 
C(I,J) 

47017 CONTINUE 

2, 3 
2, N 

- PX -
* PX * ( 
* PY * ( 
* PZ * ( 
= A(I.J) 
= C(I,J) 
= A(I,J) 

PY - PZ) * 
B(I+1,J,K) 
B(I,J+l.K) 
B(I,J.K+1) 

B(I, J 
+ B(I-
+ B(I 
+ B(I 

K) 
-l.J.K) ) 
J-l.K) ) 
J.K-1) ) 

Loop nest 47020 contains compound tests on each of the loop indexes, 
and again, none of these tests need to be in the inner loop. The restructuring 

Q. O 

100 

90 

80 

70 

60 

30 

20 

10 

11 61 111 161 211 261 311 361 411 461 
Loop length 

FIGURE 4.34 
Performance Comparison of Loops 47012 and 47013-47017, 

Cray X-MP. Original, solid line; restructured, dotted line. 
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in loops 47021-47029 transforms each of the tests into a series of block IFs 
within the J loop, thereby allowing simple vectorization of the I loop. 

THE ORIGINAL 
DO 47020 
DO 47020 
DO 47020 
JP 
JR 
KP 
KR 
IP 
IR 

J 
K 
I 

= 1, 
= 1, 
= 1, 
= J 
= J 
= K 
= K 
= I 
= I 

JMAX 
KMAX 
I MAX 
+ 1 
- 1 
+ 1 
- 1 
+ 1 
- 1 

IF (J .EQ. 1) GO TO 50 
IF( J .EQ. JMAX) GO TO 51 
XJ = ( A(I,JP,K) - A(I,JR,K) ) * DA2 
YJ = ( B(I,JP,K) - B(I,JR,K) ) * DA2 
ZJ = ( C(I,JP,K) - C(I,JR,K) ) * DA2 
GO TO 70 

50 Jl = J + 1 
J2 = J + 2 
XJ = (-3. * A(I,J,K) + 4 . * A(I,J1,K) - A(I,J2,K) ) * DAi 
YJ = (-3. * B(I,J,K) + 4. * B(I,J1,K) - B(I,J2,K) ) * DA2 
ZJ = (-3. * C(I,J,K) + 4. * C(I,J1,K) - C(I,J2,K) ) * DAS 
GO TO 70 

51 Jl = J - 1 
J2 = J - 2 
XJ = ( 3. * A(I,J,K) - 4. * A(I,J1,K) + A(I,J2,K) ) * DA2 
YJ = ( 3. * B(I,J,K) - 4. * B(I,J1,K) + B(I,J2,K) ) * DA2 
ZJ = ( 3. * C(I,J,K) - 4. * C(I,J1,K) + C(I,J2,K) ) * DA2 

70 CONTINUE 

IF (K .EQ. 1) GO TO 52 
IF (K .EQ. KMAX) GO TO 53 
XK = ( A(I,J.KP) - A(I,J,KR) ) * DB2 
Y K = ( B(I,J,KP) -B(I,J,KR) ) * DB2 
Z K = ( C(I,J.KP) -C(I,J,KR) ) * DB2 
GO TO 71 

52 
K2 = K + 2 

* A(I,J,K1) - A(I,J,K2) ) * DB2 
* B(I,J,K1) - B(I,J,K2) ) * DB2 
* C(I,J,K1) - C(I,J,K2) ) * DB2 

53 

Kl = K + 
K2 = K + 
XK = (-3. 
YK = (-3. 
ZK = (-3. 
GO TO 71 

Kl = K -
K2 = K -
XK = ( 3. 
YK = ( 3. 
ZK = ( 3. 
CONTINUE 

1 
2 

1 
2 

* 
* 
* 

* 
* 
* 

A(I,J,K) 
B(I,J,K) 
C(I,J,K) 

A(I, J,K) 
B(I,J,K) 
C(I,J,K) 

+ 4. 
+ 4. 
+ 4. 

- 4. 
- 4. 
- 4. 

* A(I,J,K1) + A(I,J,K2) ) * DB2 
* B(I,J,K1) + B(I,J,K2) ) * DB2 
* C ( I , J , Kl ) + C ( I , J , K2 ) ) * DB2 
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IF (I .EQ. 1) GO TO 54 
IF (I .EQ. IMAX) GO TO 55 
XI = ( A(IP,J,K) - A(IR,J,K) ) * DC2 
YI = ( B(IP,J,K) - B(IR,J,K) ) * DC2 
ZI = ( C(IP,J,K) - C(IR,J,K) ) * DC2 
GO TO 60 

54 

55 

60 

* 
7020 

11 = I + 
12 = I + 
XI = (-3. 
YI = (-3. 
ZI = (-3. 
GO TO 60 

11 = I -
12 = I -
XI = ( 3. 
YI = ( 3. 
ZI = ( 3. 
CONTINUE 

DINV 

D(I,J,K) 
CONTINUE 

1 
2 

1 
2 

= 
-
= 

* 
* 
* 

* 
* 
* 

A(I,J,K) 
B(I,J,K) 
C(I,J,K) 

A(I,J,K) 
B(I,J,K) 
C(I,J,K) 

xj * YK * : 
XJ * ZK * ' 
1. 

+ 4. 
+ 4. 
+ 4. 

- 4. 
- 4. 
- 4. 

ZI + 
YI -

/ (DINV + 1. 

* A(I1,J,K) -
* B(I1,J,K) -
* C(I1,J,K) -

* A(I1,J,K) + 
* B(I1,J,K) + 
* C(I1,J,K) + 

YJ * ZK * XI 
YJ * XK * ZI 
E-51) 

A(I2,J,K) ) 
B(I2,J,K) ) 
C(I2,J,K) ) 

A(I2,J,K) ) 
B(I2,J,K) ) 
C(I2,J,K) ) 

+ ZJ * XK 
- ZJ * YK 

* DC2 
* DC2 
* DC2 

* DC2 
* DC2 
* DC2 

* YI 
* XI 

The original loop nest made heavy use of scalar temporaries such as XI, 
XJ, and XK to carry the conditionally computed values from the top to the 
bottom of the loop. Since our restructuring splits the original into many 
loops, we promote the scalars to arrays — such as VAI, VAJ, and VAK — to 
carry all of the computed values between loops. The transformation may 
seem drastic, but the flow of control is clearer, the answers are the same, and, 
as Figure 4.35 illustrates, the performance improvement is astounding; more 
than a factor of 20 for long vector lengths. Execution time for this loop is 
dropped from hours to minutes by this technique. 

THE RESTRUCTURED 
DO 47029 J = 1, JMAX 
DO 47029 K = 1, KMAX 

47021 

IF(J.EQ.1)THEN 
Jl = 2 
J2 = 3 
DO 47021 1 = 1 , 
VAJ(I) = (-3. 
VBJ(I) = (-3. 
VCJ(I) = (-3. 

CONTINUE 

I MAX 
* A(I,J 
* B(I,J 
* C(I,J. 

ELSE IF(J.NE.JMAX) THEN 
JP = J+l 
JR = J-! 
DO 47022 1 = 1 , 
VAJ(I) = ( A(I 

1 
I MAX 
,JP.K) -

,K) + 4 . 
,K) + 4 . 
,K) + 4 . 

A(I,JR, 

* A(I,J1, 
* B(I,Jl, 
* C(I,J1, 

K) ) * DA2 

,K) 
,K) 
,K) 

- A(I. 
- B(I 
- C(I. 

, J2 
, J2 
, J2 

,κ) : 
,κ) : 
,κ) ; 

) * DA2 
) * DA2 
) * DA2 
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47022 

47023 

VBJ(I) = 1 
VCJ(I) = l 

CONTINUE 

ELSE 
Jl 
J2 
DO 47023 I 
VAJ(I) = 
VBJ(I) = 
VCJ(I) = 
CONTINUE 
ENDIF 

( B(I,JP,K) - B(I,JR,K) ) * DA2 
[ C(I,JP,K) - C(I,JR,K) ) * DA2 

= JMAX-1 
= JMAX-2 
= 1, IMAX 
( 3. * A(I,J,K) - 4. * A(I,J1, 
( 3. * B(I,J,K) - 4. * B(I,J1, 
( 3 . * C(I,J,K) - 4. * C(I,Jl 

,K) 
,K) 
,K) 

+ A(I, 
+ B(I 
+ C(I 

, J2, 
, J2. 
, J2 

,κ) ; 
,K) : 
,κ) : 

1 * DA2 
) * DA2 
) * DA2 

47024 

IF(K.EQ.l) THEN 
Kl = 2 
K2 = 3 
DO 47024 1 = 1 , 
VAK(I) = (-3. 
VBK(I) = (-3. 
VCK(I) = (-3. 

CONTINUE 

IMAX 
* A(I,J,K) + 4. 
* B(I,J,K) + 4. 
* C(I,J,K) + 4. 

* A(I,J,K1) 
* B ( I , J , Kl ) 
* C(I,J,K1) 

- A(I,J,K2) ; 
- B ( I , J , K 2 ) : 
- C ( I , J , Κ2 ) ; 

) * DB2 
) * DB2 
) * DB2 

47025 

ELSE IF (K.NE.KMAX) THEN 
KP = K + 1 
KR = K - 1 
DO 47025 I 
VAK(I) = 
VBK(I) = 
VCK(I) = 

CONTINUE 

ELSE 
Kl 
K2 
DO 47026 I 
VAK(I) = I 
VBK(I) = l 
VCK(I) = I 

= 1, IMAX 
( A(I,J,KP) - A(I,J,KR) 
( B(I,J,KP) - B(I,J,KR) 
( C(I,J,KP) - C(I,J,KR) 

= KMAX - 1 
= KMAX - 2 
= 1, IMAX 
: 3. * A(I,J,K) - 4. * 
; 3 . * B ( I , J , K ) - 4 . * 
: 3. * C(I,J,K) - 4. * 

) * DB2 
) * DB2 
) * DB2 

A(I,J.K1) 
B ( I , J , Kl ) 
C ( I , J , Kl ) 

+ A(I,J, 
+ B(I,J, 
+ C(I,J, 

,K2) ; 
, K 2 ) : 
, K 2 ) : 

) * DB2 
I * DB2 
I * DB2 

47026 CONTINUE 

1 = 1 
II 
12 
VAI(I) 
VBI(I) 
VCI(I) 

= 2 
= 3 

(-3. 
(-3. 
(-3. 

A(I; 
B(I, 

J,K) 
J,K) 

* C(I,J,K) + 

4. 
4. 
4. 

A(I1, 
B(I1, 
C(I1, 

A(I2, 
B(I2, 
C(I2, 

DC2 
DC 2 
DC 2 

47027 

DO 47027 1 = 2 , IMAX-1 
IP = 1 + 1 
IR = 1 - 1 
VAI(I) = ( A(IP,J,K) - A(IR, 
VBI(I) = ( B(IP,J,K) -B(IR, 
VCI(I) = ( C(IP,J,K) - C(IR, 

CONTINUE 

DC 2 
DC2 
DC2 
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I = IMAX 
II 
12 
VAI(I) = 
VBI(I) = 
VCI(I) = 

IMAX - 1 
IMAX - 2 

* A(I,J,K) 
* B(I,J,K) 
* C(I,J,K) 

- 4. 
- 4. 
- 4. 

A(I1, 
B(I1, 
C(I1, 

+ A(I2,J,K) 
+ B(I2,J,K) 
+ C(I2,J,K) 

DC 2 
DC2 
DC2 

DO 47028 1 = 1 , 
DINV = VAJ(I) 

1 + VCJ(I) 
2 - VBJ(I) 

D(I,J,K) = 1. 
47028 CONTINUE 

ENDIF 
47029 CONTINUE 

IMAX 
* V B K ( I ) 
* V A K ( I ) 
* V A K ( I ) 

V C I ( I ) + V B J ( I ) * V C K ( I ) 
V B I ( I ) 
V C I ( I ) 

V A J ( I ) * V C K ( I ) * 
V C J ( I ) * V B K ( I ) * 

/ (DINV + l . E - 5 1 ) 

V A I ( I ) 
V B I ( I ) 
V A I ( I ) 

Loop 47030 contains three IF tests, only the first of which is actually 
loop dependent; that is, the value of the logical expression A(I).LT.0.0 can 
change on each loop iteration, whereas the other two logical expressions are 
loop independent. 
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Loop length 

FIGURE 4.35 
Performance Comparison of Loops 47020 and 47021-47029, 

Cray X-MP. Original, solid line; restructured, dotted line. 
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A closer examination of the first IF statement reveals that it is just 
computing the absolute value of the elements of A. The next IF statement 
(XL.LT.O.) is simply setting certain elements (all, none, even, or odd) of A 
negative, depending on the value of GAMMA. 

C THE ORIGINAL 
DO 47030 I = 1, N 
A(I) = PROD * B(1,I) * A(I ) 
IF (A(I) .LT. 0.0) A(I) = -A(I) 
IF (XL .LT. 0.0) A(I) = -A(I) 
IF (GAMMA) 47030, 47030, 100 

100 XL = -XL 
47030 CONTINUE 

Our restructuring in loops 47031-47034 simply reflects the analysis in the 
previous paragraph. Loop 47031 computes the absolute values of the ele­
ments of the array A. Then an IF block on the value of GAMMA chooses 
which (if any) of the elements of A to set negative in the following three 
loops. 

C THE RESTRUCTURED 
DO 47031 I = 1, N 
A(I) = PROD * B(1,I) * A(I) 
A(I) = ABS (A(D) 

47031 CONTINUE 

IF (GAMMA .LE. 0.) THEN 

IF (XL .LT. 0.0) THEN 
DO 47032 I = 1, N 
A(I) = -A(I) 

47032 CONTINUE 
ENDIF 

ELSE 

IF (XL .LT. 0.0) THEN 
DO 47033 I = 1, N, 2 
A(I) = -A(I) 

47033 CONTINUE 
ENDIF 

IF (XL .GT. 0.0) THEN 
DO 47034 I = 2, N, 2 
A(I) = -A(I) 

47034 CONTINUE 
ENDIF 

As usual, we ignore setting the final value of the scalar XL. If it were 
needed, the following statement placed after the final ENDIF would properly 
set it: 

I F ( G A M M A . G T . 0 . 0 . A N D . M O D ( N , 2 ) . E Q . 1 ) XL = - XL 
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180 

Q. O 

120 

80 

60 

20 

111 161 211 261 311 361 
Loop length 

FIGURE 4.36 
Performance Comparison of Loops 47030 and 47031-47034, 

Cray X-MP. Original, solid line; restructured, dotted line. 

461 

Figure 4.36 indicates that the restructured loops run 15 to 20 times faster 
than the original. 

Loop 47050 illustrates the cost of using a computed GO TO to choose 
among a small number of cases. Loop 47051 is a simple restructuring using a 
vectorizable IF block to achieve the same results in less than one-tenth of the 
time, as shown in Figure 4.37. 

C THE ORIGINAL 
DO 47050 I = 1, N 
IIA = IA(I) 
GO TO (110, 120) IIA 

110 D(I) = B(I) 
A(I) = D(I) + 1.7 
GO TO 47050 

120 D(I) = C(I) 
A(I) = D(I) +1.1 

47050 CONTINUE 
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THE RESTRUCTURED 
DO 47051 I = 1, N 
IF(IA(I) .NE. 2) THEN 

+ 1.7 

47051 

D(I) = 
A(I) = 

ELSE 
D(I) = 
A(I) = 

ENDIF 
CONTINUE 

B(I) 
D(I) 

C(I) 
D(I) + 1.1 

Any time IF blocks are nested within a loop, the probability of execut­
ing the inner blocks decreases with each new condition encountered. As the 
probability or "truth density" decreases, so does the potential vector length 
within the conditionally executed code blocks. For this reason, all compilers 
stop trying to vectorize after a certain number of nested IF blocks are en-

40 

35 

61 111 161 211 261 

Loop length 

311 361 461 

FIGURE 4.37 
Performance Comparison of Loops 47050 and 47051, Cray 

X-MP. Original, solid line; restructured, dotted line. 
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countered within a loop. This can be circumvented by reducing all nested 
blocks to single-level blocks as shown between 47078 and 47079. 

47078 

47079 

DO 47078 I = 
IF (condl) 
blockl 
IF (cond2; 
block2 

ELSE 
block3 

ENDIF 
block4 

ENDIF 
CONTINUE 

DO 47079 I = 
IF (condl) 
blockl 

ENDIF 

IF (condl 
block2 

ENDIF 
IF (condl 
block3 

ENDIF 

IF (condl) 
block4 

ENDIF 
CONTINUE 

= 1, N 
THEN 

) THEN 

= 1, N 
THEN 

.AND. 

.AND. 

THEN 

cond2) 

.NOT. 

THEN 

cond2) THEN 

The preceding restructuring can (with care) be extended to any number 
of IF blocks, ELSEIFs, and the like. It can be a valuable tool to clarify our 
thinking about the control flow through the loop, and it may allow us to split 
out some particularly CPU-intensive block of code. In general, however, the 
restructuring itself will usually not have any big payoff in performance, even 
if the restructured loop vectorizes. Loop 47080 is an example of the problems 
associated with trying to optimize many compounded conditions. No com­
piler will attempt to vectorize this loop, because of the low probability of 
executing any of the arithmetic statements following statement 500. 

C THE ORIGINAL 
SUM =0.0 
DO 47080 J = 1, JMAX 
DO 47080 I = 2, N 
IF (I .EQ. N) GO TO 47080 
IF (A(1,J) .LT. B(1,I)) GO TO 47080 
IF (A(l,l) .GT. B(1,I)) GO TO 47080 
IF (A(1,J) .GE. B(1,I+1) .AND. I .NE. N) GO TO 500 
IF (J.EQ.1) GO TO 47080 
IF (A(1,J-1) .LT. B(l.I-l) .AND. I*J .NE. 1) GO TO 500 
IF (A(1,J-1) .LT. B(1,I)) GO TO 47080 
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500 CONTINUE 
PI 
P2 
DD 
P3 
P4 
SUMND 

SUM 
47080 CONTINUE 

= C(l.I-l) 
= D(I-l) 
= B(1,I) - B(l,1-1) 
= (3.0 * E(I) - 2.0 * P2 - D(I)) / DD 
= ( P2 + D(I) - 2.0 * E(I) ) / DD**2 
= DD * (PI + DD * (P2 / 2. 
+ DD * (P3 / 3. + DD * P4 / 4.) ) ) 
= SUM + SUMND 

Our restructuring in loop 47081 precomputes all of the conditions into 
one controlling logical variable, LOG7. Note that the very first IF test in the 
original does nothing but skip the final iteration of the inner loop. This is 
reflected in the loop limit itself in the restructured code. 

All of the arithmetic is done in a simple vectorizable block IF. Figure 
4.38 illustrates only a modest performance improvement for this restructur­
ing, because of the very low truth density in the loop; that is, the logical 
variable LOG 7 in the restructured code is true less than 2% of the time, 
resulting in extremely short vector lengths. 

THE RESTRUCTURED 
SUM =0.0 
DO 47081 J = 1, JMAX 
DO 47081 1 = 2 , N-l 

47081 

LOG1 = 
L0G2 = 
L0G3 = 
LOG4 = 
L0G5 = 
L0G6 = 
L0G7 = 

PI 
P2 
DD 
IF ( 
P3 
P4 
SUMND 

A(1,J) .GE. 
A(l,l) .LE. 
A(1,J) .GE. 
J .NE. 1 

B(1,I) 
B(1,I) 
B(1,I+1) 

A(l.J-l) .LT. B(l.I-l) 
A(l.J-l) .GE. B(1,I) 
L0G1 .AND. 
L0G1 .AND. 
L0G1 .AND. 

= C(1,I-1) 
= D(I-l) 
= B(i,i) - : 
.NOT. LOG7) 

L0G2 .AND. 
L0G2 .AND. 
LOG2 .AND. 

Β(Ι,Ι-Ι) 
DD = 1.0 

= (3.0 * E(I) - 2.0 * 
= ( P 2 + D ( I ) - 2 . 0 * 
= 0.0 

IF (L0G7) SUMND = 

SUM 
+ 

DD * (PI 
DD * (P3 / 

= SUM + SUMND 
CONTINUE 

L0G3 .OR. 
L0G4 .AND. L0G5 
L0G4 .AND. L0G6 

P2 - D(I)) / DD 
E(I) ) / DD**2 

+ DD * (P2 / 2. 
3. + DD * P4 / 4 

,0R. 

) ) ) 

Loop 47090 is a renumbered version of kernel 15 of the Livermore 
Fortran kernels. At this time (February 1988) only a few compilers have 
demonstrated an ability to vectorize this loop. It is a jumble of arithmetic IF 
tests and unconditional GO TOs. Yet if the conditional blocks are sorted out 
and more clearly expressed as block IFs, almost any compiler can vectorize it. 
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FIGURE 4.38 
Performance Comparison of Loops 47080 and 47081, Cray 

X-MP. Original, solid line; restructured, dotted line. 

Loops 47091-47093 are such a restructuring, and Figure 4.39 depicts about a 
factor of eight performance improvement over the original. 

C THE ORIGINAL 
15 DO 47090 J = 2, NR 

DO 47090 K = 2, NZ 
IF (J - NR) 31, 30, 30 

30 VY(K.J) = 0.0 
GO TO 47090 

31 IF( VH(K,J+1) - VH(K,J)) 33, 33, 32 
32 T = AR 

GO TO 34 
33 T = BR 
34 IF (VF(K.J) -VF(K-l.J)) 35, 36, 36 
35 R = AMAX1 (VH(K-l.J), VH(K-1,J+1)) 

S = VF(K-l.J) 
GO TO 37 

36 R = AMAX1 (VH(K,J), VH(K,J+1)) 
S = VF(K.J) 

37 VY(K,J) = SQRT (VG(K,J)**2 + R*R) * T / S 
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38 IF (K - NZ) 40, 39, 39 
39 VS(K.J) = 0. 

GO TO 47090 
40 IF (VF(K,J) - VF(K.J-l)) 41, 42, 42 
41 R = AMAX1 (VG(K.J-l), VG(K+1,J-1)) 

S = VF(K.J-l) 
T = BR 

GO TO 43 
42 R = AMAX1 (VG(K,J), VG(K+1,J)) 

S = VF(K.J) 
T = AR 

43 VS(K.J) = SQRT (VH(K,J)**2 + R*R) * T / S 
47090 CONTINUE 
C THE RESTRUCTURED 

DO 47091 J = 2, NR-1 
DO 47091 K = 2, NZ-1 

IF (VH(K,J+1) .GT. VH(K.J)) THEN 
T = AR 

ELSE 
T = BR 

ENDIF 

IF (VF(K.J) .LT. VF(K-l.J)) THEN 
R = AMAX1 (VH(K-l.J), VH(K-1,J+1)) 
S = VF(K-l.J) 

ELSE 
R = AMAX1 (VH(K,J), VH(K,J+1)) 
S = VF(K.J) 

ENDIF 

VY(K,J) = SQRT (VG(K,J)**2 + R*R) * T / S 

IF (VF(K.J) .LT. VF(K.J-l)) THEN 
R = AMAX1 (VG(K.J-l), VG(K+1,J-1)) 
S = VF(K.J-l) 
T = BR 

ELSE 
R = AMAX1 (VG(K,J), VG(K+1,J)) 
S = VF(K,J) 
T = AR 

ENDIF 

VS(K.J) = SQRT (VH(K,J)**2 + R*R) * T / S 
47091 CONTINUE 

DO 47092 J = 2, NR-1 
VS(NZ,J) = 0. 

47092 CONTINUE 

DO 47093 K = 2, NZ 
VY(K,NR) = 0.0 

47093 CONTINUE 
Loops 47100 and 47101 represent a conventionally coded table lookup 

and interpolation scheme. In this example we do N table searches, interpo-
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FIGURE 4.39 
Performance Comparison of Loops 47090 and 47091-47093, 

Cray X-MP. Original, solid line; restructured, dotted line. 

lating for each of the input values X2(I). The inner loop (47100) is very 
difficult to vectorize because of the jump out of loop (GO TO 21) and also 
because the index IL must be carried on to the interpolation for Y2(I). 

C THE ORIGINAL 
DO 47101 I = 1 , N 

Ul = X 2 ( I ) 

DO 47100 LT = 1, NTAB 
IF (Ul .GT. XI(LT)) GO TO 47100 
IL = LT 
GO TO 121 

47100 CONTINUE 

IL = NTAB - 1 
121 Y2(I) = Yl(IL) + ( Y1(IL+1) - Yl(IL) ) / 

* ( X1(IL+1) - Xl(IL) ) * 
* ( X2(I) - Xl(IL) ) 

47101 CONTINUE 



4.9 EXAMPLES OF RESTRUCTURING FORTRAN LOOPS 157 

40 

35 

30 

25 

Q. 
ê 20 

10 

10 20 30 40 50 60 

Table size 

70 80 90 100 

FIGURE 4.40 
Performance Comparison of Loops 47101 and 47102-47104, 

Cray X-MP. Original, solid line; restructured, dotted line. 

Our approach to restructuring this loop is to split the table lookup and 
interpolation into separate loops, thereby allowing the important interpola­
tion arithmetic to vectorize. We promote IL to the array IV and compute all of 
the interpolation indexes in loop 47103, which can then vectorize even with 
tr 3 jump out of loop. These indexes are then used in loop 47104 to provide 
indirect address vectorization of the interpolation. Figure 4.40 presents the 
performance graphed against various table lengths for given N = 461. As 
before, the sharp dip in performance between 60 and 70 results from the 
Cray vector-register length of 64. 

C THE RESTRUCTURED 
DO 47103 1 = 1 , N 
Ul = X2(I) 
DO 47102 LT = 1, NTAB 
IF (Ul .GT. XI(LT)) GO TO 47102 
IV(I) = LT 
GO TO 47103 

47102 CONTINUE 
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I V ( I ) = NTAB - 1 
47103 CONTINUE 

DO 47104 I = 1 , N 
Y 2 ( I ) = Y 1 ( I V ( I ) ) + ( Y 1 ( I V ( I ) + 1 ) - Y 1 ( I V ( I ) ) ) / 

* ( X 1 ( I V ( I ) + 1 ) - X 1 ( I V ( I ) ) ) * 
* ( X2( I ) - X 1 ( I V ( I ) ) ) 

47104 CONTINUE 

Loop 47102 is simple enough to allow some compilers to vectorize it 
using special library functions. As a general rule, however, a loop that 
contains a jump out of loop, such as 47110, cannot be easily vectorized, since 
loop termination (vector length) cannot be determined. 

DO 47110 I = 1, N 
A(I) = B(I) * SQRT (D(I)) - C(I) 
IF (A(I) .LT. 0.) GO TO 47111 

vectorizable code block 
(running in scalar because of jump out of loop) 

47110 CONTINUE 

47111 CONTINUE 

Given that ITERM is the value of I when the loop exit is taken, then a 
restructuring technique that usually has a payoff for large ITERM is strip-
mining. This involves performing the loop in "strips," typically an integer 
multiple of the size of the vector registers on the target machine. Such a 
restructuring for a Cray machine is shown in loop 47112. 

DIMENSION TEMPA(64) 

47113 

47114 
47115 

DO 47112 II = 1, N, 64 
LENGTH = MIN (64, N-I+l) 

I = II - 1 
DO 47113 J = 1, LENGTH 
1 = 1 + 1 
TEMPA(J) = B(I) * SQRT (D(I)) 

CONTINUE 

I = II - 1 
DO 47114 JJ = 1, LENGTH 
1 = 1 + 1 
A(I) = TEMPA(JJ) 
IF (A(I) .LT. 0.) GO TO 47115 

CONTINUE 
CONTINUE 

C(I) 

JJ = JJ - 1 
DO 47116 I = II, II+JJ-1 
vectorizable code block 

47116 CONTINUE 
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IF (JJ .LT. LENGTH) GO TO 47117 
47112 CONTINUE 
47117 CONTINUE 

It should be obvious that such a technique must be applied with care. It 
is a significant transformation of the original loop but can have a sizable 
payoff for a large, CPU-intensive loop. Let us step through the transforma­
tion. First, vectorize the computation of the elements of the array A (47113) 
and isolate the vectorizable code block into a loop by itself (47116). This is 
achieved by computing the elements 64 at a time in a temporary array 
(47113). Then set the next 64 array elements and check for loop termination 
within that group (47114). Compute the vectorizable code block for just 
those iterations in which A(I) .GE. 0. (47116); and, finally, exit the loop when 
the termination condition has been satisfied. 

Note that here we have used our knowledge that if loop 47114 termi­
nates normally, then JJ = LENGTH+1; for exit via the GO TO statement, JJ 
will be less than or equal to LENGTH. Our next example, loop 47120 is a 
simple IF loop, which harks back to the earliest days of Fortran, Before DO 
Loops (BDL). A few compilers recognize such loops, but most do not. Our 
restructuring in loop 47121 is a simple transformation, and performance 
increases by more than a factor of ten (Figure 4.41). 

C THE ORIGINAL 
1 = 0 

47120 CONTINUE 
1 = 1 + 1 
A(I) = B(I)**2 + .5 * C(I) * D(I) / E(I) 
IF (I .LT. N) GO TO 47120 

C THE RESTRUCTURED 
DO 47121 I = 1, N 
A(I) = B(I)**2 + .5 * C(I) * D(I) / E(I) 

47121 CONTINUE 

Loop 47130 is not a simple IF loop, but a loop with an indeterminate 
termination based on the criterion (A(I).GT.O), which, if the algorithm is ill 
conditioned, has the potential to never be false—resulting in an infinite 
loop. Such loops are common on systems that do not have a "DO WHILE" 
extension to the language. Even with the extension such a loop is difficult for 
a compiler to vectorize, since the final value to be computed remains indeter­
minate. 

C THE ORIGINAL 
1 = 0 

47130 CONTINUE 
1 = 1 + 1 
A(I) = B(I)**2 + .5 * C(I) * D(I) / E(I) 
IF (A(I) .GT. 0.) GO TO 47130 

Our approach here is to stripmine the loop the same as we did in our 
previous example of a jump out of a loop. We compute the next 128 values 
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FIGURE 4.41 
Performance Comparison of Loops 47120 and 47121, Cray 

X-MP. Original, solid line; restructured, dotted line. 

into a temporary array VA with full vectorization in loop 47131, then test for 
convergence in loop 47132. Performance depends on the point at which 
convergence occurs; as more and more elements of A are computed, the 
performance of the restructured code improves, whereas performance of the 
original is relatively flat, and, for early convergence, actually outperforms the 
restructured (Figure 4.42). 

Using this technique always requires experimentation to determine 
whether the nature of our algorithm lends itself to stripmining. 

C THE RESTRUCTURED 
DO 47133 II = 1, N, 128 
LENGTH = MINO (128, N-II+1) 
DO 47131 1 = 1 , LENGTH 
VA(I) = B(I+II-1)**2 + .5 * C(I+II-1) 

47131 CONTINUE 
D(I+II-1) / E(I+II-1) 

DO 47132 1 = 1 , LENGTH 
A(I+II-1) = VA(I) 
IF (A(I+II-1) .LE. 0.0) GO TO 47134 
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FIGURE 4.42 
Performance Comparison of Loops 47130 and 47131-47133, 

Cray X-MP. Original, solid line; restructured, dotted line. 

47132 CONTINUE 
47133 CONTINUE 
47134 CONTINUE 
Our final example is another of the Livermore kernels, Number 17. Our 

restructuring performs no differently than the original, because of the recur­
sive nature of several of the scalar variables, such as XNM and E6. We 
present the restructuring simply to illustrate that a side benefit of the effort to 
vectorize is often a loop that more clearly states the algorithm. We believe 
that loop 47143 is much easier to follow and more easily maintained than the 
original loops 47140 and 47141. Figure 4.43 presents the performance of the 
original and the restructured loops. 

THE ORIGINAL 
I 
J 

INK 
SCALE 
XNM 
E6 

= 
= 
= 
= 
= 
= 

N 
1 
-1 
5. 
1. 
1. 

/3. 
/3. 
03/3 

GO TO 
.07 
47141 
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c 
47140 

47141 

C 

C 

47142 

C 

47143 

E6 = 
VXNE(I) : 

XNM = 
VE3(I) = 

I = 
IF 
E3 = 

XNEI ■-
VXND(I) : 

XNC = 

IF 
IF 

VE3(I) = 
E6 = 

VXNE(I) = 
XNM : 

I : 
IF 

CONTINUE 

STEP MODEL 
= XNM * VSP(I) + VSTP(I) 
= E6 
= E6 
= E6 
= I + INK 
(I .EQ. J) GO TO 47142 
= XNM * VLR(I) + VLIN(I) 
= VXNE(I) 
= E6 
= SCALE * E3 

SELECT MODEL 
( XNM .GT. XNC) GO TO 47140 
( XNEI .GT. XNC) GO TO 47140 

LINEAR MODEL 
= E3 
= E3 + E3 - XNM 
= E3 + E3 - XNEI 
= E6 
= I + INK 
(I .NE. J) GO TO 47141 

THE RESTRUCTURED 
XNM = 1 
E6 = 1 

DO 47143 I = N 
E3 = XNM 

./3. 

.03/3.07 
, 2 , - 1 
* VLR(I) + VLIN(I) 

XNEI = VXNE(I) 
VXND(I) = E6 
XNC = SCALE * E3 
IF (XNM .LE. : 
VE3(I) = E3 
E6 = E3 
VXNE(I) = E3 
XNM = E6 

ELSE 

KNC .AND. XNEI .LE. XNC) THEN 

+ E3 - XNM 
+ E3 - XNEI 

E6 = XNM * VSP(I) + VSTP(I) 
VXNE(I) = E6 
XNM = E6 
VE3(I) = E6 

ENDIF 
CONTINUE 

4.9.9 Subprogram References 
Subroutine calls and external (user) function references in a DO loop play 
havoc with optimization and prevent vectorization of the loop. Compilers 
handle only one subprogram at a time and so can know nothing about the 
use of program variables in an external routine. So when a subprogram 
reference is encountered in a loop, the compiler must save in memory all 
needed registers as well as the current values of any variables. It does so on 
the assumption that not only will the subprogram destroy all register con-
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FIGURE 4.43 
Performance Comparison of Loops 47140-47141 and 47143, 

Cray X-MP. Original, solid line; restructured, dotted line. 

tents, but might also contain recursive references to program variables. The 
only exceptions to this are references to some Fortran-intrinsic functions and 
certain machine-specific library functions known to the compiler. 

We will explore optimizing such loops with the following techniques: 

1. Splitting the loop to isolate the external reference into a loop of its 
own 

2. Replacing an external function definition with a statement function 

3. Pulling the code of the external routine into the referencing loop 

4. Pushing the loop into the subprogram 

5. Restructuring a scalar function into a vector subroutine 

Subprograms that can be safely split out of a calling loop satisfy the 
following conditions. 
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1. The subprogram has no side effects on the calling loop; that is, it 
makes no assignments to variables or arrays being referenced in the 
loop. 

2. The subprogram contains no STOP statements or alternate 
RETURNS. 

3. The subprogram dummy arguments corresponding to actual argu­
ments that are array elements are specified as variable names, not 
arrays. 

4. If the subprogram references other nonintrinsic subprograms, then 
these subprograms satisfy the preceding three conditions, as well as 
this one. 

Our first example in loop 48010 will not vectorize, because a compiler 
does not know whether FRED has any side effects within the loop. We have 
included a listing of FRED so that the reader may verify that FRED neither 
references or sets any external variables. It simply returns a value computed 
as a function of its input argument. As a result, we may split the reference to 
FRED into a separate loop, thereby allowing all the rest of the arithmetic to 
vectorize. This is shown in loops 48011-48013. 

C THE ORIGINAL 
DO 48010 I = 1, N 
A(I) = B(I) * C(I) 
D(I) = FRED (A(I)**2 
E(I) = D(I) / B(I) + 

48010 CONTINUE 

FUNCTION FRED (X) 
DATA CO, Cl, C2, C3, C4, C5, C6, C7, C8, C9 
* / .1, .2, .3, .4, .5, .6, .7, .8, .9, 1. / 

FRED = CO + X * (Cl + X * (C2 + X * (C3 
* + X * (C4 + X * (C5 + X * (C6 
* + X * (C7 + X * (C8 + X * (C9 + X) ) ) ) ) ) ) ) ) 

RETURN 
END 

Note that the original argument to FRED was the vectorizable expres­
sion A(I)**2 + 2.0. To vectorize the expression, we use the array D to carry 
the values from loop 48011 to 48012. Since the value of FRED is uncondi­
tionally stored into D(I) in loop 48012, there is no problem with using D in 
this manner. 

C THE RESTRUCTURED 
DO 48011 I = 1,N 
A(I) = B(I) * C(I) 
D(I) = A(I)**2 + 2.0 

48011 CONTINUE 

+ 2.0) 
A(I) 
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DO 48012 I = 1,N 
D ( I ) = FRED ( D ( I ) ) 

48012 CONTINUE 

DO 48013 I = 1,N 
E ( I ) = D ( I ) / B ( I ) + A ( I ) 

48013 CONTINUE 

Figure 4.44 indicates about a 25% performance improvement for this 
restructuring. If FRED were less CPU intensive and the 48010 loop more 
complicated, the improvement could be as much as a factor of ten. 

Loop 48020 contains another function reference, FUNC, and again, it is 
stopping vectorization of the loop. Remember, this could be embedded in a 
much longer loop, and a compiler would not be able to vectorize any of the 
code for fear of side effects from FUNC. Once more we have listed the 
contents of FUNC, and in reality the system probably spends more time 
calling the routine than it does executing the code. 

10 

Q. 
O 

61 161 211 261 

Loop length 

311 361 411 461 

FIGURE 4.44 
Performance Comparison of Loops 48010 and 48011-48013, 

Cray X-MP. Original, solid line; restructured, dotted line. 
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c 

48020 

THE ORIGINAL 
DO 48020 I = 1, N 
A(I) = B(I) * FUNC (D(I)) 

CONTINUE 

FUNCTION FUNC (X) 
FUNC = X**2 + 2.0 / X 

RETURN 
END 

+ C ( I ) 

Our restructuring simply brings the function definition into the routine 
with a statement function. A compiler will expand this definition in line and 
vectorize the resultant code. Even on this little loop, it should be clear that 
calling the external function is quite costly, since Figure 4.45 indicates a 
performance improvement of more than a factor of 20 for long vectors: An 
hour of CPU time is reduced to less than three minutes. 

C THE RESTRUCTURED 
FUNCX (X) = X**2 + 2.0 / X 

DO 48021 I = 1, N 
A(I) = B(I) * FUNCX (D(I)) + C(I) 

48021 CONTINUE 

Since our goal is to vectorize as much code as possible, pulling the 
external code into the loop is a good place to start. Consider loop 48030 and 
the code of external routine SSUB. 

DO 48030 I = 1, N 
X(I) = SQRT (Y(I)**2 + Z(I)**2) 
ZT = PI * X(I) + COS(A(I)) 
CALL SSUB ( X(I), ZT, TY(I), TZ(I) ) 
TX(I) = ABS (TZ(I))**0.5 

48030 CONTINUE 

SUBROUTINE SSUB (Yl, Y2, Y3, Υ4) 
Y4 = γΐ**2 + ALOG (ABS (Yl + Y2)) 

* * EXP (Y2 * ABS (Yl - Y2)) 
Y3 = Yl + Y2 
RETURN 
END 

To begin, we will substitute the code from SSUB into loop 48030, creating 
loop 48031. 

DO 48031 I = 1, N 
X(I) = SQRT (Y(I)**2 + Z(I)**2) 
ZT = PI * X(I) + C0S(A(I)) 
TZ(I) = X(I)**2 + ALOG (ABS (X(I) + ZT)) 

* * EXP (ZT * ABS ( X(I) - ZT)) 
TY(I) = X(I) + ZT 
TX(I) = ABS (TZ(I))**0.5 

4 8031 CONTINUE 
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FIGURE 4.45 
Performance Comparison of Loops 48020 and 48021, Cray 

X-MP. Original, solid line; restructured, dotted line. 

Inspection of this loop reveals no recursion. Therefore, it will vectorize 
as written, assuming that each of the intrinsic functions has a vector version. 
Not only do vector instructions replace unoptimized scalar instructions, but 
N subroutine calls have been eliminated, another performance boost. But 
eliminating subroutine calls is often a maintenance headache. In how many 
other places is SSUB called? Should they each be changed in this manner? 
What if changes are made to SSUB in the future; will the programmer 
remember to make corresponding changes in loop 48031? The answers to 
these questions usually argue against this approach. 

As an alternative, can we split the subroutine call out of the loop and 
achieve the same level of performance improvement? In other words, will 
loops 48032, 48033, and 48034 produce the same answers as did 48030 and 
with the same degree of efficiency as 48031? 

DO 48032 I = 1, N 
X(I) = SQRT (Y(I)**2 + Z(I)**2) 
ZT = PI * X(I) + C0S(A(I)) 

48032 CONTINUE 
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DO 48033 I = 1, N 
CALL SSUB ( X(I), ZT, TY(I), TZ(I) ) 

48033 CONTINUE 

DO 48034 I = 1, N 
TX(I) = ABS (TZ(I))**0.5 

48034 CONTINUE 

The answer to both questions is " n o / ' In the original loop, ZT assumed 
a sequence of values, each of which was passed to SSUB. Now only the last 
value of ZT is passed in each CALL. Furthermore, the code inside SSUB is 
very CPU intensive, and it is still being computed in scalar mode. 

The first problem is easy to address by promoting ZT to an array, as 
shown in loops 48042, 48043, and 48044. 

DO 48042 I = 1, N 
X(I) = SQRT (Y(I)**2 + Z(I)**2) 
VZT(I) = PI * X(I) + COS(A(I)) 

48042 CONTINUE 

DO 48043 I = 1, N 
CALL SSUB ( X(I), VZT(I), TY(I), TZ(I) ) 

48043 CONTINUE 

DO 48044 I = 1, N 
TX(I) = ABS (TZ(I))**0.5 

48044 CONTINUE 

Next, we can create a new version of SSUB, named VSSUB, by pushing the 
loop into SSUB and passing whole arrays as arguments, as shown in loops 
48052, 48053, and 48054. 

DO 48052 I = 1, N 
X(I) = SQRT (Y(I)**2 + Z(I)**2) 
VZT(I) = PI * X(I) + C0S(A(I)) 

4 8052 CONTINUE 

ZT = VZT(N) 
CALL VSSUB (N, X, VZT, TY, TZ ) 

DO 48054 I = 1, N 
TX(I) = ABS (TZ(I))**0.5 

48054 CONTINUE 

SUBROUTINE VSSUB (N, Yl, Y2, Y3, Υ4) 
DIMENSION Yl(*), Y2(*), Y3(*), Υ4(*) 

Comment: Changes made to this routine necessitate changes to SSUB. 
DO 48053 I = 1, N 
Y4(I) = Y1(I)**2 + ALOG (ABS (Y1(I) + Y2(I))) 

* * EXP (Y2(I) * ABS (Y1(I) - Y2(I))) 
Y3(I) = Y K D + Y2(I) 

4 805 3 CONTINUE 
RETURN 
END 
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This restructuring allows all of the original code to vectorize and re­
duces the number of subroutine calls from N down to one. The overall 
performance is very close to that of 48031, and maintenance is manageable 
with comments in both SSUB and VSSUB (shown). Such a transformation is 
relatively easy to perform with an editor. For this example, all that was 
needed was to 

• Add the DO loop length N to both the actual and dummy argument 
lists. Replace the actual array element arguments with the array 
names. 

• Dimension the dummy arguments. 

• Place a DO loop around the original scalar code. 

• Add the subscript expression (I) to each reference to a dummy argu­
ment. 

• Save the last value of VZT(N) into the original scalar ZT. 

Loop 48060 contains yet another function call, and here we introduce a 
few more twists. A careful reading of UFUN will reveal that its reference can 
be split out into a loop of its own, just as we did with FRED in loop 48010. 
But this loop also contains the scalar temporary AOLD that carries a value 
from the first line of the loop into each of the other statements. So to split the 
loop we must promote AOLD to be an array of values VAOLD. 

Now to go one step further than we did with FRED: We push the loop 
into the function. To do this, we transform the scalar function UFUN into a 
vector subroutine VUFUN. This is accomplished by: 1) adding the DO loop 
length N to the argument list; 2) changing the loop-dependent scalar argu­
ment AOLD to the array of arguments VAOLD; 3) changing the array 
element argument B(I) to the array argument B; 4) adding the actual argu­
ment A to the call and the corresponding dummy argument UFUN to the 
subroutine statement; 5) naming the new routine VUFUN; 6) dimensioning 
the promoted arrays X, Y, and UFUN; and 7) noting that the statement IF 
(SCA.GT.1.0) is loop independent, we add vectorizable DO loops 10 and 20 
to compute all of the values of UFUN before returning to the calling routine. 

In Figure 4.46, this restructuring—which is easy to carry out with an 
editor—results in a performance improvement of better than a factor of 
twenty. 

C THE ORIGINAL 
DO 48060 I = 1, N 
AOLD = A(I) 
A(I) = UFUN (AOLD, B(I), SCA) 
C(I) = (A(I) + AOLD) * .5 

4 8060 CONTINUE 
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FIGURE 4.46 
Performance Comparison of Loops 48060 and 48061-48062, 

Cray X-MP. Original, solid line; restructured, dotted line. 

10 
5 

FUNCTION UFUN (X, Y, SCA) 
IF (SCA .GT. 1.0) GO TO 10 
UFUN = SQRT (X**2 + Y**2) 
GO TO 5 

UFUN =0.0 
CONTINUE 
RETURN 
END 

C THE RESTRUCTURED 
DO 48061 I = 1, N 
VAOLD(I) = A(I) 

48061 CONTINUE 

CALL VUFUN (N, VAOLD, B, SCA, A) 

DO 48062 I = 1, N 
C(I) = (A(I) + VAOLD(I)) * .5 

48062 CONTINUE 
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SUBROUTINE VUFUN (N, X, Y, SCA, UFUN) 
DIMENSION X(*), Y(*), UFUN(*) 
IF (SCA .GT. 1.0) GO TO 15 
DO 10 I = 1, N 
UFUN(I) = SQRT (X(I)**2 + Y(I)**2) 

10 CONTINUE 
RETURN 

15 CONTINUE 
DO 20 I = 1, N 
UFUN(I) =0.0 

20 CONTINUE 
RETURN 
END 

In loop 48070, vectorization is of course prevented by the call to SSUB. 
As in the preceding examples, SSUB has no side effects on the loop. Rather 
than pushing the loop into the subroutine, however, we expand the code into 
the loop by substituting the actual arguments in line in loop 48071. This 
eliminates N subroutine calls and allows all of the operations to be per­
formed with vector instructions. 

The performance improvement of about a factor of 20 shown in Figure 
4.47 is similar to that of "loop pushing" in the previous example. We tend to 
prefer the loop-pushing technique because it retains code modularity. If 
in-loop expansion is carried to an extreme, a program can become mono­
lithic. 

C THE ORIGINAL 
DO 48070 I = 1, N 
A(I) = (B(I)**2 + C(I)**2) 
CT = PI * A(I) + (A(I))**2 
CALL SSUB (A(I), CT, D(I), E(I)) 
F(I) = (ABS (E(I))) 

48070 CONTINUE 

SUBROUTINE SSUB (Yl, Y2, Y3, Υ4) 
Y4 = γΐ**2 + (ABS (Yl + Y2)) * (Y2 * ABS (Yl - Y2)) 
Y3 = Yl + Y2 
RETURN 
END 

C THE RESTRUCTURED 
DO 48071 I = 1, N 
A(I) = (B(I)**2 + C(I)**2) 
CT = PI * A(I) + (A(I))**2 
E(I) = A(I)**2 + (ABS (A(I) + CT)) * (CT * ABS (A(I) - CT)) 
D(I) = A(I) + CT 
F(I) = (ABS (E(I))) 

48071 CONTINUE 

Now let us add some complications to the original loop (48030) and 
examine how they affect our ability to restructure for vectorization. The 
additions involve the scalars SCA1 and SCA2, the array TX, and the loop 
index I. We offset them in loop 48078 and in SSUB1 to highlight them. 
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FIGURE 4.47 
Performance Comparison of Loops 48070 and 48071, Cray 

X-MP. Original, solid line; restructured, dotted line. 

COMMON /SCALAR/ SCA1, I 
COMMON /VECTOR/ TX(IOO) 

DO 48078 I = 1, N 
X(I) = SQRT (Y(I)**2 + Z(I)**2) 
ZT = PI * X(I) + COS(A(I)) 
CALL SSUB1 ( X(I), ZT, TY(I), TZ(I), 
TX(I) = ABS (TZ(I))**0.5 

SCA2 = TX(I) * ZT 
4 807 8 CONTINUE 

SUBROUTINE SSUB1 (Yl, Y2, Y3, Υ4, 
COMMON /SCALAR/ SCA1, I 
COMMON /VECTOR/ TX(IOO) 

Y4 = γΐ**2 + ALOG (ABS (Yl + Y2)) 
* * EXP (Y2 * ABS (Yl - Y2)) 
Y3 = Yl + Y2 * TX (1-1) 

SCA1 = Yl * Y2 + Y5 
RETURN 
END 

+ SCA1 

SCA2 ) 

Y5) 
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It is usually straightforward to pull subroutine code into a DO loop, so 
we begin by doing that to examine the loop for recursive data dependencies. 
This is shown in loop 48079. 

COMMON /SCALAR/ SCA1, I 
COMMON /VECTOR/ TX(IOO) 

DO 48079 I = 1, N 
X(I) = SQRT (Y(I)**2 + Z(I)**2) + SCA1 
ZT = PI * X(I) + COS(A(I)) 
TZ(I) = X(I)**2 + ALOG (ABS (X(I) + ZT)) 

* * EXP (ZT * ABS ( X(I) - ZT)) 
TY(I) = X(I) + ZT * TX(I-l) 

SCA1 = X(I) * ZT + SCA2 
TX(I) = ABS (TZ(I))**0.5 

SCA2 = TX(I) * ZT 
48079 CONTINUE 

Three recursive relationships have been uncovered here in the intro­
duced code: SCA1 and SCA2 are both wrap-around scalars. That is, they are 
each referenced before being set; and TX(I—1) is referenced before TX(I) is 
set. It should be clear that the loop cannot vectorize as written. In the interest 
of retaining program modularity we would prefer to split out the original 
subroutine call and push the loop into it. But can we do that? In general, 
loops cannot be split if recursion crosses the proposed loop boundaries and, 
in this case, if recursion crosses the subroutine boundary. The recursiveness 
revealed in loop 48079 tells us that splitting the CALL out of the original loop 
would generate wrong answers. 

By pulling the subroutine code into the calling loop we have revealed 
three different ways recursion can arise across subprogram boundaries: 1) 
through scalars passed in COMMON (SCA1); 2) through scalars passed on 
the argument list (SCA2); and 3) through array references with different 
indexes (TX(I), and TX(I—1)). In general these conditions introduce severe 
difficulties in optimizing the code. Loop 48080 is fabricated to show the 
handling of problems associated with scalar variables being shared among a 
calling routine and two subroutines called from within a loop. We admit that 
this code is mostly nonsensical in its shortness, but it represents interactions 
that happen in real-world code. 

The scalar SCA is passed to SUBI where it is set, then returned. It is 
sent again to SUB2 where it is set once more, then returned to take part in the 
calculation of D(I). SUBI and SUB2 also share the variable SCALR through a 
common block. 

C THE ORIGINAL 
DO 48080 I = 1, N 
A(I) = SQRT (B(I)**2 + C(I)**2) 
CALL SUBI (A(I), B(I), SCA) 
CALL SUB2 (SCA) 
D(I) = SQRT (ABS (A(I) + SCA) ) 

48080 CONTINUE 
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SUBROUTINE SUBI (X, Y, SCA) 
COMMON /SCALAR/ SCALR 
SCA = X**2 + Y**2 
SCALR = SCA * 2 
RETURN 
END 

SUBROUTINE SUB2 (SCA) 
COMMON /SCALAR/ SCALR 
SCA = SCA + SCALR 
RETURN 
END 

Our restructuring promotes both SCA and SCALR to arrays, splits the 
subroutine calls out of the loop, and pushes the loop into each, renaming 
them VSUBl and VSUB2. The vector VSCA now carries all of the values of 
the original SCA among the loops 48081 and 48082 and both routines. The 
common variable SCALR is properly set at the end of the new routine 
VSUBl. As in previous examples we do not bother to save the last value of 
the local scalar SCA, although if it were necessary it would be easy to do. 

As with other examples in this section, Figure 4.48 shows about a factor 
of 20 improvement from the original loop to the restructured. 

C THE RESTRUCTURED 
DO 48081 I = 1, N 
A(I) = SQRT (B(I)**2 + C(I)**2) 

48081 CONTINUE 

CALL VSUBl (N, A, B, VSCA, VSCALR) 

CALL VSUB2 (N, VSCA, VSCALR) 

DO 48082 I = 1, N 
D(I) = SQRT (ABS (A(I) + VSCA(I) ) ) 

48082 CONTINUE 

SUBROUTINE VSUBl (N, X, Y, SCA, VSCALR) 
DIMENSION X(*), Y(*), SCA(*), VSCALR(*) 
COMMON /SCALAR/ SCALR 
DO 10 I = 1, N 
SCA(I) = X(I)**2 +Y(I)**2 
VSCALR(I) = SCA(I) * 2 

10 CONTINUE 
SCALR = VSCALR(N) 
RETURN 
END 

SUBROUTINE VSUB2 (N, SCA, VSCALR) 
DIMENSION SCA(*)f VSCALR(*) 
COMMON /SCALAR/ SCALR 
DO 10 I = 1, N 
SCA(I) = SCA(I) + VSCALR(I) 

10 CONTINUE 
RETURN 
END 
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FIGURE 4.48 
Performance Comparison of Loops 48080 and 48081, Cray 

X-MP. Original, solid line; restructured, dotted line. 

Our final example in loop 48090 combines the problem of a wrap­
around scalar ET with a call to the routine SSSUB. The setting of ET is 
actually hidden from the compiler, since it is within SSSUB. Expanding the 
code in line exposes the problem, and we solve it by promoting ET to the 
array VET as shown in loop 48091. The performance improvement depicted 
in Figure 4.49 exceeds a factor of 15. 

C THE ORIGINAL 
ET = 0.0 
DO 48090 I = 1, N 
B(I) = SQRT (F(I)**2 + E(I)**2) + ET 
CALL SSSUB (B(I), ET, C(I), D(I), PI) 
A(I) = SQRT (ABS (D(I) ) ) 

48090 CONTINUE 
SUBROUTINE SSSUB (Yl, Y2 , Y3, Υ4, PI) 
Y4 = Yl**2 + Y3**2 * SQRT (ABS (Yl + Y3) ) 
Y2 = PI * Y3 + Y3 
Y4 = Y2 + Y4 
RETURN 
END 
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C THE RESTRUCTURED 
VET(1)=0.0 
DO 48091 I = 1, N 
VET(I+1) = PI * C(I) + C(I) 
B(I) = SQRT (F(I)**2 + E(I)**2) + VET(I) 
D(I) = B(I)**2 + C(I)**2 * SQRT (ABS (B(I) + C(I) 
D(I) = VET(I+1) + D(I) 
A(I) = SQRT (ABS (D(I) ) ) 

48091 CONTINUE 

) ) 

4.9.10 I/O Statements 
The appearance of I /O statements in a loop must be treated as the appear­
ance of a subprogram reference. That is, an I /O statement will prevent 
optimization of the rest of the code in a loop. It may be split out into a 
separate loop if it is not referencing variables and arrays referenced else­
where in the loop (including other subprograms called from within the loop). 
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FIGURE 4.49 
Performance Comparison of Loops 48090 and 48091, Cray 

X-MP. Original, solid line; restructured, dotted line. 
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4.9.11 Assigned GO TO Statements 
An assigned GO TO contains hidden information that cannot be known at 
compile time, and therefore the associated code cannot be optimized. In 
general, and unlike a computed GO TO, it is impossible to know to which 
labels an assigned GO TO can jump. To optimize a loop such as 48100 
requires a rewrite of the subprogram to eliminate the use of assigned GO 
TOs. 

ASSIGN 10 TO LABEL 

IF (condition) ASSIGN 100 TO LABEL 

DO 48100 I = 1, N 

GO TO LABEL 

48100 CONTINUE 

4.9.12 Backward GO TOs 
Backward GO TOs in a DO loop can frequently be rewritten as forward 
transfers. An exception occurs when the backward transfer is being used to 
loop on convergence to a desired value. If this occurs, the code can be 
rewritten as a DO loop with a jump out of the loop when convergence is 
obtained. Then techniques discussed in Section 4.9.8 can be used to restruc­
ture the new loop. 

4.10 
SUMMARY 

This chapter has covered a large number of techniques that can be used to 
optimize Fortran programs for supercomputers. Some of the techniques will 
even help scalar computers to run faster. The "real world" contains applica­
tion codes much more complex then these examples. But these complicated 
codes can usually be optimized with a judicious application of a sequence of 
these techniques. At times, loops may be pulled into a routine, switched with 
shorter inner loops, and IF statements simplified so that a compiler can 
effectively optimize the code. 

Problems 
1. How would you expect the following two loops to compare in execution 

time for large N? 
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DO 10 I = 1, N 
A(I) = EXP (B(I)) 

10 CONTINUE 

DO 20 1=1, N 
A(IA(I)) = EXP (B(IB(I)) 

20 CONTINUE 

2. How would you restructure the following loop for optimal vector per­
formance? 

DO 101 J = 2 ,N 
AH = B( J ) - B ( J - l ) 
DO 100 I = 2 , N 

A ( I , J ) = AH * A ( I - l . J ) + C ( I , J ) 
100 CONTINUE 

BH = D(J) - D(J-l) 
DO 102 I = N, 2, -1 
A(I,J) = BH * A(H-l.J) + C(I,J) 

102 CONTINUE 
101 CONTINUE 

3. Compute average vector length for diagonals in an M X N rectangular 
grid. Derive the equation for the average number of points on a planar 
slice through an N-dimensional grid. 

4. In restructuring the loops in Section 4.9.4, some have an order-of-mag­
nitude performance improvement, and others improve by as little as 
20-50%. Match up the reasons for the improvement (second column) 
obtained for the following original loops (first column): 

1. 43020 a. Original vectorized and the restructured is a little 
more efficient. 

2. 43030 b. Large amount of overhead that the original does not 
have. 

3. 43070 c. Vectorize only a portion of the total calculations in 

the loop. 
4. 43080 d. Restructuring obtains good increase (factor 7-10). 

5. 43090 e. Additional memory required. (Although this does 
not effect performance, it is important to realize.) 

6. 43100 

7. 43140 

Note: Some may have multiple answers. 

5. If a compiler will not vectorize loop 44022, how would you restructure to 
obtain vectorization? 
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6. Most machines have optimized library packages that include the "Basic 
Linear Algebra Subroutines" (BLAS).* Which BLAS routine could be 
used to replace loop 44042? 

7. In the restructuring of loops 44055 and 44060, notice that the difference 
in timings grows smaller for longer number of iterations. In fact, in loop 
44060, they even cross. What does this tell you about the dot-product 
routine? 

8. In loop nest 45011 we see that the outer loop is the preferred loop for 
vectorization, even if it has the same number of loop iterations as the 
inner loop. Several reasons exist for such a situation. Can you name 
three? 

9. Suppose that in loops 46011 and 46020, the short-loop iteration count is 
specified by a variable (e.g., NN), rather than the literal constant 4. 
Suppose further that you know that NN is always in the range 1 to 8. 
How would you write an optimized version of these loops? (Hint: The 
restructuring may generate more lines of code; but it will run much 
quicker.) 

10. In the restructuring for loop 42020, how many temporary arrays are 
needed for the restructuring? How might we organize temporary array 
usage to minimize the overall amount of storage required by the job? 

11. In loop 47133 why do we use a maximum length of 128 rather than 64? 
Would 256 be better? 

12. By using a simple operation count, what percentage of the calculations 
are vectorized in the restructuring of loop 48010? (Count the divide 
operation as 4.) What improvement would you expect from the amount 
of vectorization? What other factors may reduce the overall improve­
ment? 

13. Which of the restructured loops in Chapter 4 would execute faster than 
the original on a scalar machine? 

14. On a Cray system, use the MXM routine for matrix multiply and compare 
the timing to the Fortran version of loop 46032. 

* C. Lawson, R. Hanson, D. Kincaid, and F. Krogh, "Basic Linear Algebra Subprograms for 
Fortran Usage," ACM Transactions on Mathematical Software 5 (1979), pp. 308-323. 



Appendix A 

ABBREVIATIONS 
AND GLOSSARY 

A.l Common Abbreviations 
ALU: arithmetic and logical unit 
ANSI: American National Standards Institute 
CDC: Control Data Corporation 
CII: constant increment integer 
CIV: constant increment variable 
CPU: central processing unit 
CRI: Cray Research Incorporated 
FOLR: first order linear recurrence 
IBM: International Business Machines 
IPS: instructions per second 
Mflops: millions of floating-point operations per second 
MIMD: multiple instruction stream, multiple data stream 
MISD: multiple instruction stream, single data stream 
MIPS: millions of instructions per second 
NEC: Nippon Electric Corporation 
SIMD: single instruction stream, multiple data stream 
SISD: single instruction stream, single data stream 

A.2 Glossary of Terms 
array constant Within a DO loop, an array reference all of whose sub­
scripts are invariant. 

DO 10 I = 1 , N 
A ( I ) = X(J) * B ( I ) + Z ( 8 , J , K , 3 ) 

10 CONTINUE 

In the preceding loop, X(J) and Z(8,J,K,3) are array constants. 

bank cycle time The time, measured in clock cycles, taken by a memory 
bank between the honoring of one request to fetch or store a data item and 
accepting another such request. On most supercomputers this value is either 
four or eight clock cycles. 

180 
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cache A small, fast memory placed between the main memory of a com­
puter and its very fast CPU registers. It is intended to keep moderately large 
blocks of often-used data close to the CPU. 

chime "Chained vector time/' Approximately equal to the vector length in 
a DO loop. The number of chimes required for a loop dominates the time 
required for execution. A new chime begins in a loop each time a resource 
(functional unit, vector register, or memory path) must be reused. 

clock cycle The time duration of the square wave pulse sent throughout a 
computer to synchronize operations. For example, the clock cycle of a Cray-2 
is 4.1 nsec. 

common subexpression A combination of operations and operands that is 
repeated, especially in a loop 

DO 20 I = 1, N 
A(I) = 2.0 + B(I) * C(I) + X(I) / T(I) 
Y(I) = P(I) / (2.0 + B(I) * C(I)) 
D(I) = X(I) / T(I) + U(I) 

20 CONTINUE 

The following are common subexpressions in the preceding loop: 

2 . 0 + B ( I ) * C ( I ) 

X ( I ) / T ( I ) 

A good compiler will not recompute the common subexpressions but will 
save them in a register for reuse. 

compiler directives Special keywords specified on a comment card, but 
recognizable by a particular compiler as providing additional user informa­
tion for use in optimization. For example, 

C D I R $ IVDEP 

specifies to a Cray compiler that no recursive relationships occur among the 
array references in the loop following the directive. 

concurrent processing Simultaneous execution of instructions by two or 
more processors within a computer. 

data dependency A relationship between Fortran statements such that one 
of the statements depends on the results of the other. For example: 

5 1 = A + B 

5 2 = S 1 * X + Y 
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The second statement is data dependent on the first—that is, they must be 
executed in the order shown. A recursive data dependency involves state­
ments in a DO loop such that a statement in one iteration depends on the 
results of a statement from a previous iteration. For example: 

DO 30 I = 1, N 
A(I) = B(I) * A(I-l) + C(I) 

30 CONTINUE 

The assignment statement in loop 30 is self-referent; that is, the value A(I) 
computed in one iteration is the value A(I— 1) needed in the next. 

functional units Functionally independent parts of the ALU of a computer, 
such that many operations may proceed in parallel; for example, address 
calculation, floating-point add, floating-point multiply, and so forth. 

instruction scheduling A strategy of a compiler. The intent is to analyze 
the outcome of the operations specified in a program and to issue instructions 
in an optimal manner. That is, the instructions are not necessarily issued in 
the order specified by the programmer, but in an order that optimally uses 
the registers, functional units, and memory paths of the computer—at the 
same time guaranteeing correct results for the computation. 

instruction set The capabilities of a particular computer, as specified in a 
machine code (and often in assembler mnemonics). 

invariant A variable, especially in a DO loop, that appears only on the 
right side of equals signs. That is, it is never assigned a new value. 

invariant expression An expression all of whose operands are invariants 
or constants. 

memory-bank conflict A condition that occurs when a memory unit re­
ceives a request to fetch or store a data item prior to completion of its bank 
cycle time since its last such request. 

minisupercomputer A computer designed to have many of the architec­
tural features of a supercomputer, but having a clock cycle and price more 
comparable to a minicomputer. 

multiple instruction stream, multiple data stream (MIMD) A computer 
design that involves two or more functionally independent processors capa­
ble of operating on different data streams in parallel. 

multiple instruction stream, single data stream (MISD) A name for a 
computer design that has perhaps never been realized, but implies that two 
or more processors would operate on a single stream of data. 
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nanosecond (nsec) A billionth of a second: 1.0 X 10 9 seconds. 

optimization A process whereby a compiler tries to make optimal use of 
the target computer's hardware to perform the operations specified by a 
programmer. Or, the process whereby a programmer tries to make optimal 
use of his or her target language to cause the compiler to produce optimal 
code. 

optimization block A block of code (rarely a whole subprogram, often a 
single DO loop) in which a compiler optimizes the generated code. A few 
compilers attempt to optimize across such blocks; many work on each block 
independently. 

parallel processing The simultaneous processing of instructions by two or 
more processors within a single computer. SIMD and MIMD are two differ­
ent kinds of parallel processing. 

parsing The process whereby a compiler analyzes the syntax of a program 
to establish the relationships among operators, operands, and other tokens of 
a program. Parsing does not involve any semantic analysis. 

physical memory The actual memory of a computer directly available for 
fetching or storing of data (contrast with virtual memory). 

pipeline A term denoting a mechanism inside all supercomputers that 
allows new operands to begin processing in each clock cycle and moves 
partially completed operations along an assembly line inside the CPU, gener­
ally producing one result per clock cycle at the end of each pipeline. 

pseudovector A scalar temporary. 

recursion See data dependency (recursive). 

reduction function An algorithm that receives a vector of values as input 
and generates a single scalar value result. The variable containing the result is 
referred to as a "reduction-function scalar." As typically coded in Fortran, 
most compilers recognize such reduction functions as sum (product) of the 
elements of a vectorizable expression, for example, dot product, the mini­
mum (maximum) of the elements of a vectorizable expression, and several 
variants on these themes. 

scalar processing The processing of a code using instructions that can 
operate on a single pair of operands at a time (contrast with vector processing). 

scalar temporary A scalar variable set equal to a vectorizable expression on 
each iteration of a DO loop. 
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single instruction stream, multiple data stream (SIMD) A computer de­
sign that provides for processing of instructions from a single stream, but 
providing simultaneous computation of results from multiple data streams. 
Two principal designs are often described as SIMD: 1) a single CPU with its 
ALU realized as a set of functional units; and 2) a separate instruction 
processor sending identical instruction streams to two or more ALUs. 

single instruction stream, single data stream (SISD) A conventional, typi­
cally inexpensive computer. Each instruction from a single instruction stream 
is performed to completion before the next instruction is begun. 

strength reduction A process whereby a compiler attempts to replace in­
structions specified by the programmer with less costly instructions that 
produce identical results, for example, X**2 becomes X*X. 

stripmining A process used by a compiler on a register-to-register vector 
processor whereby a DO loop of long or variable iteration count is performed 
in "strips" of operands. The length of each strip is equal to the length of a 
vector register, except for a "remainder" strip whose length is generally less. 
So, for example, on a Cray computer, a loop of iteration count 150 is 
performed in one strip of length 22 (the remainder) then two strips of length 
64. This technique can also be used by a programmer to vectorize a loop of 
indeterminate length, that is, a loop containing a GO TO that jumps out of 
the loop. 

supercomputer A casual term describing members of a class of the larger, 
faster scientific computers, usually having vector or parallel architecture. 

superword A term used on the CYBER 205 and the ETA 10 to describe a 
conglomerate of eight 64 bit words, or, alternately, sixteen 32-bit "half-
words." The memory units on these machines generally fetch and store data 
in superwords (also called "swords"), regardless of the size of the data item 
referenced by the user program. 

thrashing A phenomenon of virtual memory systems that occurs when the 
program itself, by the manner in which it is referencing its data and instruc­
tions, regularly causes the next memory locations to be referenced to have 
been overwritten by recent or current instructions. The result is that refer­
enced items are rarely in the machine's physical memory and almost always 
must be fetched from secondary storage, usually a disk. When this occurs, 
the elapsed time of the program generally follows the disk speed rather than 
the speed of electronic memory. 

unneeded store When two or more stores into the same memory location 
occur within an optimization block, especially within a DO loop, only the last 
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store need actually be performed; the rest are unneeded, and will not be 
performed by the compiler. A programmer may take advantage of this by 
assigning temporary results to an array that is also set later in a loop, as in 
loop 40: 

DO 40 I = 1 , N 
A ( I ) = B ( I ) * C ( I ) / ( E ( I ) + F ( I ) ) 
X ( I ) = Y ( I ) * A ( I ) 
Z ( I ) = R ( I ) + Q ( I ) * A ( I ) 
A ( I ) = X ( I ) + Y ( I ) * Z ( I ) 

40 CONTINUE 

vector An ordered list of items in a computer's memory, contained within a 
Fortran array. A simple vector is denned as having a starting address, a 
length, and a stride. An indirect address vector is defined as having a relative 
base address and a vector of values to be applied as indexes to the base. 
Consider: 

DO 50 I = 1 , N 
J = J * J / I 
K = K + 2 
A ( I ) = B ( I B ( I ) ) * C(K) + D(J ) 

50 CONTINUE 

All of the vectors above have length N; A and C are simple vectors with 
strides of one and two, respectively; B is an indirect address vector with the 
simple vector IB holding the indexes; and the vector of indirect address 
indexes of D can be computed at execution time from the initial value of J. 

vector processing The processing of a code using instructions that operate 
on all of the elements of an ordered list of operands, usually in a pipelined 
manner (contrast with scalar processing). 

vectorize The process whereby a compiler generates vector instructions for 
a loop. Also the process whereby a programmer restructures a program to 
cause the compiler to vectorize the important loops. 

virtual memory An address-mapping scheme that provides a programmer 
with a significantly larger memory than that physically available on a given 
computer. As data items are referenced within a program, the system assigns 
them to actual physical memory locations. Infrequently referenced items are 
transparently migrated to and from secondary storage — often, disks. The 
collection of physical memory locations assigned to a program is its "working 
set/ ' 

von Neumann machine A scalar processor in which one instruction at a 
time is decoded and performed to completion before the next instruction is 
decoded. A SISD machine. 



186 APPENDIX A 

working set See virtual memory. 

wrap-around scalar A scalar variable whose value set in one iteration of a 
DO loop is referenced in a subsequent iteration and is consequently recur­
sive; easily recognized within most loops, because it is referenced before it is 
set. All common reduction-function scalars are wrap-around scalars and 
usually do not prevent vectorization. All other wrap-around scalars usually 
do prevent vectorization of the loop in which they appear. All scalars in the 
following loop are wrap around except S. 

DO 60 I = 1, N 
S = T 
T = A(I) * B(I) 
SUM = SUM + T/S 
IF (T.GT.O) THEN 
Q = X(I) + Y(I) / Z(I) 
ENDIF 
R(I) = Q + P(I) 

60 CONTINUE 

The scalar Q is wrap around because on any iteration for which (T.GT.O) is 
not true, the value used to compute R(I) wraps around from the previous 
iteration. 
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Appendix C 
LOOPS FOR MEMORY-
ACCESS COMPARISON 

The following groups of loops are used to compare performance of three 
memory-access techniques in section 4.8: Group 1) indirect access with 
random indexing; Group 2) direct access with unitary stride; and Group 3) 
direct access with a stride of 128. 

We are concerned here with the performance based on the ratio of 
operations to vector operands, and these ratios are listed in a comment 
preceding each loop. In other words, when the ratio is low, the loop spends 
more time accessing memory than in performing arithmetic, so the megaflop 
rating is correspondingly low. Conversely, those loops with many operations 
and just two vector operands achieve the highest performance numbers. 

We expect that unitary stride will produce the best performance among 
the three groups. Indirect addressing adds one or more chimes to the compu­
tation because of the extra time needed to fetch the index, and causes general 
memory performance degradation due to both interference among the in­
dexes and the requirement that the indexed array elements be delivered in 
the proper order. Finally, stride 128 forces memory-bank conflicts on each 
successive reference and slows the performance by a factor equal to the 
memory-bank cycle time. Performance comparisons for several machines are 
shown in section 4.8. 

C.l Group 1: Indirect Access with Random Index 
C ONE OPERATION - THREE OPERANDS RATIO = 1/3 

DO 41000 I = 1, N 
A(IA(I)) = B(IA(I)) + C(IA(I)) 

41000 CONTINUE 

C ONE OPERATION - TWO OPERANDS RATIO = 1/2 
DO 41001 1 = 1 , N 
A(IA(I)) = CO * B(IA(I)) 

41001 CONTINUE 

C TWO OPERATIONS - FOUR OPERANDS RATIO = 1/2 
DO 41002 I = 1, N 
A(IA(I)) = B(IA(I)) * C(IA(I)) + D(IA(I)) 

41002 CONTINUE 

201 
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C THREE OPERATIONS - FIVE OPERANDS RATIO = 3/5 
DO 41003 I = 1, N 
A(IA(I)) = B(IA(I)) * C(IA(I)) + D(IA(I)) * E(IA(I)) 

41003 CONTINUE 

C TWO OPERATIONS - THREE OPERANDS RATIO = 2/3 
DO 41004 I = 1, N 
A(IA(I)) = CO * B(IA(I)) + C(IA(I)) 

41004 CONTINUE 

C TWO OPERATIONS - TWO OPERANDS RATIO = 1 
DO 41010 I = 1, N 
Y(IY(I)) = CO + X(IX(I)) * Cl 

41010 CONTINUE 

C THREE OPERATIONS - TWO OPERANDS RATIO = 3/2 
DO 41011 I = 1, N 
Y(IY(I)) = CO + X(IX(I)) * (Cl + X(IX(I)) ) 

41011 CONTINUE 

C FIVE OPERATIONS - TWO OPERANDS RATIO = 5/2 
DO 41012 I = 1, N 
Y(IY(I)) = CO + X(IX(I)) * (Cl + X(IX(I)) 

* * (C2 + X(IX(I)) )) 
41012 CONTINUE 

C SEVEN OPERATIONS - TWO OPERANDS RATIO = 7/2 
DO 41013 I = 1, N 
Y(IY(I)) = CO + X(IX(I)) * (Cl + X(IX(I)) 

* * (C2 + X(IX(I)) * (C3 + X(IX(I)) ))) 
41013 CONTINUE 

C NINE OPERATIONS - TWO OPERANDS RATIO = 9/2 
DO 41014 I = 1, N 
Y(IY(I)) = CO + X(IX(I)) * (Cl + X(IX(I)) 

* * (C2 + X(IX(I)) * (C3 + X(IX(I)) 
* * (C4 + X(IX(I)) )))) 

41014 CONTINUE 

C ELEVEN OPERATIONS - TWO OPERANDS RATIO = 11/2 
DO 41015 I = 1,N 
Y(IY(I)) = CO + X(IX(I)) * (Cl + X(IX(I)) 

* * (C2 + X(IX(I)) * (C3 + X(IX(I)) 
* * (C4 + X(IX(I)) * (C5 + X(IX(I)) ))))) 

41015 CONTINUE 

C THIRTEEN OPERATIONS - TWO OPERANDS RATIO = 13/2 
DO 41016 I = 1, N 
Y(IY(I)) = CO + X(IX(I)) * (Cl + X(IX(I)) 

* * (C2 + X(IX(I)) * (C3 + X(IX(I)) 
* * (C4 + X(IX(I)) * (C5 + X(IX(I)) 
* * (C6 + X(IX(I)) )))))) 

41016 CONTINUE 
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FIFTEEN OPERATIONS - TWO OPERANDS RATIO = 15/2 
DO 41017 I = 1, N 
Y(IY(I)) = CO + X(IX(I)) * (Cl + X(IX(I)) 

* * (C2 + X(IX(I)) * (C3 + X(IX(I)) 
* * (C4 + X(IX(I)) * (C5 + X(IX(I)) 
* * (C6 + X(IX(I)) * (C7 + X(IX(I)) ))))))) 

41017 CONTINUE 

SEVENTEEN OPERATIONS - TWO OPERANDS RATIO =17/2 
DO 41018 I = 1,N 
Y(IY(I)) = CO + X(IX(I)) * (Cl + X(IX(I)) 

* * (C2 + X(IX(I)) * (C3 + X(IX(I)) 
* * (C4 + X(IX(I)) * (C5 + X(IX(I)) 
* * (C6 + X(IX(I)) * (C7 + X(IX(I)) 
* * (C8 + X(IX(I)) )))))))) 

41018 CONTINUE 

NINETEEN OPERATIONS - TWO OPERANDS RATIO = 19/2 
DO 41019 I = 1,N 
Y(IY(I)) = CO + X(IX(I)) * (Cl + X(IX(I)) 

* * (C2 + X(IX(I)) * (C3 + X(IX(I)) 
* * (C4 + X(IX(I)) * (C5 + X(IX(I)) 
* * (C6 + X(IX(I)) * (C7 + X(IX(I)) 
* * (C8 + X(IX(I)) * (C9 + X(IX(I)) ))))))))) 

41019 CONTINUE 

C.2 Group 2: Unitary Stride 
C ONE OPERATION - THREE OPERANDS RATIO = 1/3 

DO 41020 I = 1, N 
A(I) = B(I) + C(I) 

41020 CONTINUE 

C ONE OPERATION - TWO OPERANDS RATIO = 1/2 
DO 41021 I = 1, N 
A(I) = CO * B(I) 

41021 CONTINUE 

C TWO OPERATIONS - FOUR OPERANDS RATIO = 1/2 
DO 41022 I = 1,N 
A(I) = B(I)*C(I)+D(I) 

41022 CONTINUE 

C THREE OPERATIONS - FIVE OPERANDS RATIO = 3/5 
DO 41023 1=1, N 
A(I) = B(I) * C(I) + D(I) * E(I) 

41023 CONTINUE 

C TWO OPERATIONS - THREE OPERANDS RATIO = 2/3 
DO 41024 1=1, N 
A(I) = CO * B(I) + C(I) 

41024 CONTINUE 
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C TWO OPERATIONS - TWO OPERANDS RATIO = 1 
DO 41030 I = 1, N 
Y(I) = CO + X(I) * Cl 

41030 CONTINUE 

C THREE OPERATIONS - TWO OPERANDS RATIO = 3/2 
DO 41031 I = 1, N 
Y(I) = CO + X(I) * (Cl + X(I) ) 

41031 CONTINUE 

C FIVE OPERATIONS - TWO OPERANDS RATIO = 5/2 
DO 41032 I = 1, N 
Y(I) = CO + X(I) * (Cl + X(I) * (C2 + X(I) )) 

41032 CONTINUE 

C SEVEN OPERATIONS - TWO OPERANDS RATIO = 7/2 
DO 41033 I = 1, N 
Y(I) = CO + X(I) * (Cl + X(I) * (C2 + X(I) 

* * (C3 + X(I) ))) 
41033 CONTINUE 

C NINE OPERATIONS - TWO OPERANDS RATIO = 9/2 
DO 41034 I = 1, N 
Y(I) = CO + X(I) * (Cl + X(I) * (C2 + X(I) 

* * (C3 + X(I) * (C4 + X(I) )))) 
41034 CONTINUE 

C ELEVEN OPERATIONS - TWO OPERANDS RATIO = 11/2 
DO 41035 I = 1, N 
Y(I) = CO + X(I) * (Cl + X(I) * (C2 + X(I) 

* * (C3 + X(I) * (C4 + X(I) 
* * (C5 + X(I) ))))) 

41035 CONTINUE 

C THIRTEEN OPERATIONS - TWO OPERANDS RATIO = 13/2 
DO 41036 I = 1,N 
Y(I) = CO + X(I) * (Cl + X(I) * (C2 + X(I) 

* * (C3 + X(I) * (C4 + X(I) 
* * (C5 + X(I) * (C6 + X(I) )))))) 

41036 CONTINUE 

C FIFTEEN OPERATIONS - TWO OPERANDS RATIO = 15/2 
DO 41037 I = 1, N 
Y(I) = CO + X(I) * (Cl + X(I) * (C2 + X(I) 

* * (C3 + X(I) * (C4 + X(I) 
* * (C5 + X(I) * (C6 + X(I) 
* * (C7 + X(I) ))))))) 

41037 CONTINUE 

C SEVENTEEN OPERATIONS - TWO OPERANDS RATIO = 17/2 
DO 41038 I = 1, N 
Y(I) = CO + X(I) * (Cl + X(I) * (C2 + X(I) 

* * (C3 + X(I) * (C4 + X(I) 
* * (C5 + X(I) * (C6 + X(I) 
* * (C7 + X(I) * (C8 + X(D )))))))) 

41038 CONTINUE 
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C NINETEEN OPERATIONS - TWO OPERANDS RATIO =19/2 
DO 41039 I = 1, N 
Y(I) = CO + X(I) * (Cl + X(I) * (C2 + X(I) 

* * (C3 + X(I) * (C4 + X(I) 
* * (C5 + X(I) * (C6 + X(I) 
* * (C7 + X(I) * (C8 + X(I) 
* * (C9 + X(I) ))))))))) 

41039 CONTINUE 

C.3 Group 3: Direct Access with Stride 128 
ISTRIDE = 128 

C ONE OPERATION - THREE OPERANDS RATIO = 1/3 
II = 1 
DO 41060 I = 1, N 
A(II) = B(II) + C(II) 
II = II + ISTRIDE ■ 

41060 CONTINUE 

C ONE OPERATION - TWO OPERANDS RATIO = 1/2 
II =1 
DO 41061 I = 1, N 
A(II) = CO * B(II) 
II = II + ISTRIDE 

41061 CONTINUE 

C TWO OPERATIONS - FOUR OPERANDS RATIO = 1/2 
II = 1 
DO 41062 I = 1, N 
A(II) = B(II) * C(II) + D(II) 
II = II + ISTRIDE 

41062 CONTINUE 

C THREE OPERATIONS - FIVE OPERANDS RATIO = 3/5 
II = 1 
DO 41063 I = 1, N 
A(II) = B(II> * C(II) + D(II) * E(II) 
II = II + ISTRIDE 

41063 CONTINUE 

C TWO OPERATIONS - THREE OPERANDS RATIO =2/3 
II = 1 
DO 41064 I = 1, N 
A(II) = CO * B(II) + C(II) 
II = II + ISTRIDE 

41064 CONTINUE 

C TWO OPERATIONS - TWO OPERANDS RATIO = 1 
11=1 
DO 41070 I = 1, N 
Y(II) = CO + X(II) * Cl 
II = II + ISTRIDE 

41070 CONTINUE 
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C THREE OPERATIONS - TWO OPERANDS RATIO = 3/2 
11=1 
DO 41071 I = 1, N 
Y(II) = CO + X(II) * (Cl + X(II) ) 
II = II + ISTRIDE 

41071 CONTINUE 

C FIVE OPERATIONS - TWO OPERANDS RATIO = 5/2 
11=1 
DO 41072 I = 1, N 
Y(II) = CO + X(II) * (Cl + X(II) * (C2 + X(II) )) 
II = II + ISTRIDE 

41072 CONTINUE 

C SEVEN OPERATIONS - TWO OPERANDS RATIO = 7/2 
11=1 
DO 41073 I = 1, N 
Y(II) = CO + X(II) * (Cl + X(II) * (C2 + X(II) 

* * (C3 + X(II) ))) 
II = II + ISTRIDE 

41073 CONTINUE 

C NINE OPERATIONS - TWO OPERANDS RATIO =9/2 
11=1 
DO 41074 I = 1, N 
Y(II) = CO + X(II) * (Cl + X(II) * (C2 + X(II) 

* * (C3 + X(II) * (C4 + X(II) )))) 
II = II + ISTRIDE 

41074 CONTINUE 

C ELEVEN OPERATIONS - TWO OPERANDS RATIO = 11/2 
11=1 
DO 41075 I = 1, N 
Y(II) = CO + X(II) * (Cl + X(II) * (C2 + X(II) 

* * (C3 + X(II) * (C4 + X(II) 
* * (C5 + X(II) ))))) 

II = II + ISTRIDE 
41075 CONTINUE 

C THIRTEEN OPERATIONS - TWO OPERANDS RATIO = 13/2 
11=1 
DO 41076 I = 1, N 
Y(II) = CO + X(II) * (Cl -I- X(II) * (C2 + X(II) 

* * (C3 + X(II) * (C4 + X(II) 
* * (C5 + X(II) * (C6 + X(II) )))))) 
II = II + ISTRIDE 

41076 CONTINUE 

C FIFTEEN OPERATIONS - TWO OPERANDS RATIO = 15/2 
11 = 1 
DO 41077 I = 1, N 
Y(II) = CO + X(II) * (Cl + X(II) * (C2 + X(H) 

* * (C3 + X(II) * (C4 + X(II) 
* * (C5 + X(II) * (C6 + X(II) 

* (C7 + X(II) ))))))) 
II = II + ISTRIDE 

41077 CONTINUE 
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C SEVENTEEN OPERATIONS - TWO OPERANDS RATIO = 17/2 
11 = 1 
DO 41078 I = 1, N 
Y(II) = CO + X(II) * (Cl + X(II) * (C2 + X(II) 

* * (C3 + X(H) * (C4 + X(II) 
* * (C5 + X(II) * (C6 + X(II) 
* * (C7 + X(II) * (C8 + X(II) )))))))) 

II = II + ISTRIDE 
'41078 CONTINUE 

C NINETEEN OPERATIONS - TWO OPERANDS RATIO = 19/2 
11=1 
DO 41079 I = 1, N 
Y(II) = CO + X(II) * (Cl + X(II) * (C2 + X(II) 

* * (C3 + X(II) * (C4 + X(II) 
* * (C5 + X(II) * (C6 + X(II) 
* * (C7 + X(II) * (C8 + X(II) 

* (C9 + X(II) ))))))))) 
II = II + ISTRIDE 

41079 CONTINUE 
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SOLUTIONS TO PROBLEMS 
D.l Chapter 1 

1 R A T I O " ( l - F v ) / S . + F v / ^ 

20 
2. a. RATIO = ———— 

40 - 39FV 

b. The point at which RATIO = 1 or Fv = 0.51 

3 RATIO - ( 1 " F p ) 1 / S g + F p [ 1 / ( S f l ' M ) ] 

( 1 - F p ) l / S A + Fp[l/(SA-M)] 

1024 - 1023FP a. RATIO = 102.4 

b. The point at which RATIO = 1 or Fp = 0.90 
4. a. Machine Y 

b. Machine Z 
c. Define: 

Perf(X/Y) 

Perf(X/Z) = 

( l - F v ) / 6 + F v /60 
1 

( l - F v ) / 3 + Fv/120 

Set the performances equal and solve for Fv to obtain: 

Fv = 0.95 

D.2 Chapter 2 

1. Stride Fetch Time (clock cycles) 

1 25 + 64 = 8 9 
2 25 + 64 = 8 9 
4 25 + 64 = 8 9 
8 26 + 63 * 2 = 152 

(continued) 
208 
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Stride 

16 
32 
64 

128 
256 

Fetch Time (clock cycles) 

26 -h 63 * 4 = 278 
26 + 6 3 * 8 = 530 
26 + 63 * 1 6 = 1 0 3 4 
26 + 63 * 32 = 2042 
26 + 63 * 64 = 4058 

2. a. A powerful instruction (vector instruction) that can generate up to 64 
results; SIMD 

b. Up to four processors working independently on a single job, so four 
instructions can be issued each clock cycle; MIMD 

c. Up to four processors using powerful instructions on a single job; 
MIMD 

d. Each of up to 64 processors executing a single instruction from the 
CPU; SIMD 

e. A powerful instruction (vector instruction) which can generate up to 32 
results; SIMD 

f. Up to 8 processors working independently on a single job; MIMD 
g. Up to 8 processors using vector instructions on a single job; MIMD 

3. Time for controlled store under control of a bit vector for a 4-pipe 205 is 

(51 X 10000/8) 20 X 10"9 sec 
Time for 2-gather periodic, scatter periodic, add is 

69 + 1.25X(10000/S) 
69 + 1.25X(10000/S) 
51 + .125 X (10000/S) 
71 + 1.25X(10000/S) 
(260 + 38750/S) X 20 X 10"9 sec 

Set the times equal and solve for S: 

5 1 + 1250 = 260 + 3 8 7 5 0 / S 
S = (38750)/1041 = 37.22 
or any stride ^ 3 8 

for a 4-pipe CYBER 205 in 32-bit mode. 

For a 2-pipe CYBER 205 in 64-bit mode: 

51 + 5000 = 260 + 42500/S 
S = (42500)/4791 = 8.87 
or any stride ^ 9 

4. Time for controlled store: 

B( i ) **2 (52 + 10000/4) X 20 X 10~9 sec 

B(i)**2 + C ( D » ( 1 / S C A ) (103 + 10000/4) X 20 X 10~9 sec 
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SQRT ( A ( I ) ) 

SQRT ( A( I ) ) * C( I ) 

(79 + 10000/.28) X 20 X 10"9 sec 

(52 + 10000/4) X 20 X 10"9 sec 
= (286 + 42214) X 20 X 10"9 sec 

Time for compress/expand approach: 

COMPRESS B -> TB 

COMPRESS C-> TC 

TB(I)**2 + TC(I) * (1/SCA) -> TA(I] 

EXPAND TA(I) -> A 

SQRT (TA(I)) 

SQRT (TA( I ) ) * TC( I ) -> TD(I ) 

EXPAND TD(I) -> D 

(52 + Z / 4 ) X 2 0 X 1 0 " 9 s e c 

(52 + Z/4) X 20 X 10"9 sec 

(103 4- Z/4) X 20 X 10~9 sec 

(58 + Z/4) X 20 X 10"9 sec 

(79 + Z/.28) X 20 X 10"9 sec 

(52 + Z/4) X 20 X 10"9 sec 

(58 + Z/4) X 20 X 10"9 sec 

= (506 + 5.32Z) X 20 X 10"9 sec 

( Z = 10000 X DENSITY, 

where DENSITY is the fraction of elements of B(I).GT.EPSLON) 

Set the time equal, and solve for DENSITY: 

(286 + 42214) = 506 + 5.32 x (10000 * DENSITY) 

42500 = 506 + 53200 x DENSITY 

DENSITY = 41994/53200 = 79% 

5. Loop Cray 1 Cray X - MP Fujitsu VP200 

41020 
41021 
41022 
41023 
41024 
41030 
41031 
41032 
41033 
41034 
41035 
41036 
41037 
41038 
41039 

3 memory 
2 memory 
4 memory 
5 memory 
3 memory 
2 memory 
2 memory,+ 
3 + 
4 + 
5 + 
6 + 
7 + 
8 + 
9 + 

10 + 

1 memory,+ 
1 * 
2 memory 
2 memory,* 
1 memory,-!-,* 
1+,* 
2 + 
3 + 
4 + 
5 + 
6 + 
7 + 
8 + 
9 + 

10 + 

2 memory 
1 memory,* 
2 memory 
3 memory 
2 memory 
1 memory,+,* 
2 + 
3 + 
4 + 
5 + 
6 + 
7 + 
8 + 
9 + 

10 + 



6. Cray-1 performance rates are 

= 64 
a* ° P S (25 X 3 X 64) X 12.5 X 10"9 sec 

64 
flops = — - X 8 0 X 1 0 6 

Mflops = -^- X 80 = 23.59 

b. Mflops = ^ X 80 = 23.59 
r 434 

c. Mflops = - ^ X 80 = 23.59 

d. Mflops = ^ X 80 = 25.04 
v 409 

an improvement factor of 1.06 

e. For startup time fifty, the performance rates are 

64 
a. flops = 

(50 + 3 X 64) X 12.5 X 10"9 sec 

flops = -^X 80 X10 6 
r 242 

Mflops = ^ - X 80 = 21.16 r 242 
128 

b. Mflops = —— X 80 = 21.16 K 484 

c. Mflops = ^ - X 80 = 21.16 
r 242 

d. Mflops = ^ X 80 = 23.59 
r 434 

an improvement factor of 1.11 

64 7. a. flops = 
(45 + 64) X (8.5 X 10~9 sec) 

flops = ^ X 117,647,059 

Mflops = 69 Mflops 

APPENDIX D 209 
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b M f l 0 P S = ( 4 5 + 64+813 + 6 4 ) X 1 1 7 6 

128 
= X 117.6 = 80.93 

186 

c. Mflops = ^ X 117.6 = 69 

d M f l ° P S = ( 4 5 f T 2 i j X 1 1 7 · 6 

128 
= X 117.6 = 87.01 

173 

an improvement factor of 1.08 

8. Time with conditional vector merge is on the order of 3 X N clock cycles. 
Time with compressed index is on the order of 5 X N X (density of truth) 
clock cycles. 

Set times equal, and solve for density: 

3N = 5N X density 
3/5 = density 

So for density above 60%, conditional vector merge will outperform. 
9. Because some compilers cannot vectorize saving the last value of the 

conditionally defined scalar AB. 

D.3 Chapter 3 
1. a. No; b. yes; c. no (Just barely, since 4 * 16 = 64); d. yes; e. no; f. yes 

(Remember, a stride on the second dimension is multiplied by the first 
dimension 4 * 8 = 32.); g. no; h. yes. 

2. Loop 20 is not the same as the corresponding array section syntax. 
3. Compilers can never detect that the indirect address indexes in IA are 

unchanging, so they will never treat the reference as an array constant. If 
A(IA(I)) is only on the left side or only on the right side of the equals sign, 
it is treated as an array of values. If it is on both sides in the same 
statement, for example, A(IA(I)) = A(IA(I)) + . . . , then it is treated as a 
scalar reference to avoid potential recursion. 

4. a. A(N) + B(N); b. A(N) + B(N); c. It is difficult to determine the last value 
of I for which (A(I) .GT. EPS). 

5. a. Yes; b. no; c. no. For NEC SX2: a. yes; b. no; c. yes. 

D.4 Chapter 4 
1. For large values of N, the indirect address will not make much differ­

ence, and the times for both loops should be approximately the same. 
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2 . DO 101 J = 2 , N 
VAH(J) = B ( J ) - B ( J - l ) 

101 CONTINUE 

DO 100 I = 2, N 
DO 100 J = 2, N 
A(I,J) = VAH(J) * A(I-l.J) + C(I,J) 

100 CONTINUE 

DO 102 J = 2, N 
VBH(J) = D(J) - D(J-l) 

102 CONTINUE 

DO 110 I = N, 2, -1 
DO 110 J = 2, N 
A(I,J) = VBH(J) * A(I-l.J) + C(I,J) 

110 CONTINUE 

3. The average diagonal vector length on an MXN grid is (N X M ) / 
(N + M— 1). Given an N-dimensional grid whose dimensions are D l 7 
D2, . . , DN, then the average number of points on the diagonal planar 
slices through the grid is: 

VLm = 

N 

D Π ^ 
a v 8 N 

i - l 

4. la; 2a; 3d; 4b,c; 5b, c; 6d, e; 7d. 
5 . DO 44022 I = 2 , N 

B = DELB * ( I - l ) 
BSC(I) = C ( I ) * (DELB+C(I) * BSQ(I) - B S Q ( I - l ) ) ) 

44022 CONTINUE 

6 . IMAX = ISMAX ( N - 1 , VSIGABC ( 2 ) , 1 ) 

SIGMAX = V S I G A B C ( I M A X ) 

7. The dot-product routine performs much better for larger N. 
8. a. Recursion on inner loop; b. Reduction function on inner loop; c. Inner 

loop has a nonunitary stride, and outer loop is contiguous. 

9. GO TO (100,200,300,400,500,600,700,800)NSIZE 

100 CONTINUE 

(coding for NSIZE = 1 ) 

GO TO 10 00 

200 CONTINUE 

(coding for NSIZE = 2 ) 
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800 CONTINUE 

(coding for NSIZE = 8) 

1000 CONTINUE 

10. a. Nine; b. Place temporaries in a special common block to be reused in 
other routines 

11. On the Cray X-MP, performance is better for 128 than 64; but we do not 
want to get too large, since more unnecessary calculations would be done 
on the strip where A(I).LE.0.0. 

12. Vectorized: 8 operations; non vectorized: 19 operations 8/(8 + 
19) = 30% 

From Amdahl's law: 

P=1/(1-(VS-1)/VSFV) 
P = 1 / ( 1 - 9 / 1 0 X 8 / 2 7 ) 

P= 1/(1 - 7 2 / 2 7 0 ) 

P = (270)/198 = 1.36 

Additional overhead of extra DO loops will degrade performance a little. 

13. Loop(s) Explanation 

42011 
44022 
45013 

45021, 45022, 45023 
46012 
46021 
46032, 46033, 46034 
47016 
47029 
47031, 47032, 47033, 47034 
47051 
47091 
48021 
48061, 48062 
48021 
48031 
48052, 48054 
48081, 48082 
48091 

Minimized memory stores 
Reduces number of calculations 
If IM is larger than KM scalar performance improves, un­

less on a machine with a cache. 
Fewer DO loop setups 
More calculations overlap 
More calculations overlap 
More calculations overlap 
Fewer IFs to test 
Fewer IFs to test 
Fewer IFs to test 
Cleaner code 
More regular flow 
No function overhead 
Less overhead in calling subroutine once 
No overhead in calling subroutine 
No overhead in calling subroutine 
Less overhead in calling subroutine 
Less overhead in calling subroutine twice instead of 2 * N 
No overhead in calling subroutine 
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Abbreviations used, 180 
Alliant 

FX/Fortran, 56, 65 
FX/1, 3, 25, 37 
FX/8, 3, 36, 37 

Amdahl's Law, 37, 86 
American National Standards Institute, 52 

X3J3 Committee, 52, 65 
ANSI, see American National Standards 

Institute 
Array elements, invariant, see array constant 
Array 

accessing, 92-99, 201-207 
assignment statement, 65, 66, 67 
constant, 73, 180 
memory layout, 53-55 
promotion, 123, 124 
section, 65-68 
section conformability, 66 

Bank cycle time, see memory banks 
Bit vector, 33, 34 
Bolt, Beranek and Newman, BUTTERFLY, 3 
Burroughs BSP, 26 

CDC 
6600, 14-18 
7600,14-19 
CYBER 203, 28 
CYBER 205, 3, 4, 25, 28-36, 41, 69 70, 93, 

95-97 
ETA 10, 3, 28, 35, 36, 69, 96 
Fortran 200, 65 

explicit vector syntax, 69 
STAR 100, 28 

CFT77, 65, 81, 97 
Chained vector time, see chime 
Chaining, 41-44 
Chime, 42, 43, 62, 181 
CII, see constant increment integer 
CIV, see constant increment variable 
Clock cycle, 2, 14, 17, 18, 29, 36, 181 

Common subexpression, 58, 63, 64, 181 
elimination in loops, 58 

Compilation, conditional, 106 
Compiler, directives, 65, 106, 181 
Compilers, 55 
Compressed index, 47 
Computer 

conventional, 2, 4 
von Neumann, 1, 185 

Concurrent processing, 5, 181 
Conditional code 

compressed-index operations, 45 
vector mask operations, 45 

Connection Machine, 26 
Constant expression, evaluation at compile 

time, 58 
Constant increment integer, 71 

vector array reference, 71-72 
Constant increment variable, 70, 121 
Convolution, vectorized, 132 
Convex 

C-l, 3, 25 
C-MP, 3, 41 

CPU, partitioned, 25 
Cray, 25, 41 

Seymour, 14 
X-MP, 3, 36-43, 81, 93, 95-97 
-1, 14-16, 18 ,36-40 ,42 
-IS, 3, 36-40 
- 2 , 3 , 3 6 - 3 8 , 4 1 - 4 3 

Data dependency, 73-74, 181 
recursive, see recursion 

DO WHILE, 159 

ELSEWHERE, statement, 68-69 
ELXSI 6400, 3 

Feedback, see recursion 
Floating Point Systems T-Series, 3 
FLOW TRACE, 82, 83 
FORGE, Timing Faculty, 83, 187-200 

215 
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Fortran 
comparison to other languages, 52 
dusty deck, 90, 92 
standard, 52 

Fortran 66, 53 
Fortran 77, 52, 53, 65 
Fortran 8X, 1, 52, 53, 65, 70 
Fujitsu, 25, 41 

VP, 3, 37, 39 
Functional unit 17-19, 182 

memory, 21, 22, 37 
result rate, 19 
segmented, 14, 18, 19, 29 
startup time, 19, 30, 35 

Gather 
periodic, 32 
random, 32 

Glossary of Terms, 180 
GO TO, computed, 150 

Hitachi, 25, 41, 
S-810, 3 
S-820, 3, 39 

Houston Area Research Center, 97 

IBM 3090, vector facility, 3, 37 
ILLIAC IV, 3, 26 
Indirect addressing, 32, 44, 45, 75-76, 93, 

120,201-203 
and potential recursion, 109-112 

Instruction 
scheduling, 60, 182 
set, 182 
stack, 15, 17 

Instructions 
parallel, 4 
scalar, 4 
vector, 4, 16 

Instrumentation of code, 81-86 
INTEL Corporation, iPSC, 3 
Invariant code relocation, 56, 57 

Last-value-saving, 73, 123, 149 
Linked triad, 31, 41 
LINPACK, 82, 83, 187 
Livermore kernels 

number 13, 110 
number 15, 153 
number 17, 161, 162 

Loop, IF, 159-160 
Loops 

collapsing, 91 
for memory-access comparison, 201-207 
long, 63 
short, 63 
side effects of subprograms, 162-164, 171, 

173-176 
splitting, 110, 112, 121, 157 
switching, 91, 92, 123, 130-137 
unrolling, 62, 105, 137-142 

Matrix multiply, 130, 131, 140, 141 
unrolled, 140, 141 
vectorized, 131 

Megaflops, see Mflops 
Memory 

bank conflicts, 22, 40, 97, 182, 201 
bank cycle time, 20, 29, 180 
banks, 14, 19-23,29 
cache, 23, 40, 181 
paths, 38 
physical, 38, 183 
size, 38 
stacks, 29 
virtual, 38, 41 

Mflops, 15 
Minisupercomputer, 3, 182 
Minnesota Supercomputing Center, 97 
Mips, 14 
Modularity 

program, 87 
Multiple Instruction Stream, Multiple Data 

Stream (MIMD), 27, 182 
Multiple Instruction Stream, Single Data 

Stream (MISD), 26, 182 

NASA Ames Research Laboratory, 3 
NCUBE, 3 
NEC, 25, 41 

SX1, 3 
SX2, 3, 39, 93, 96 

Optimization, 55, 183 
block, 60, 183 
machine-dependent, 55, 60 
machine-independent, 55, 56 
with incomplete information, 91, 92 

Parallel processing, 5, 8 -11 , 183 
Parallel processor, 3 
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Performance measure, 14 
Pipeline, 3, 183 
Pittsburgh Supercomputing Center, 97 
Polynomial evaluation, Homer's Rule, 60 
Problems 

Chapter 1, 11 
Chapter 2, 49 
Chapter 3, 78 
Chapter 4, 177 

Pseudovector, see scalar temporary 

Recursion, 73, 74, 121, 173, 183 
array, 74-76, 104-121, 123 
multi-dimension, 112-120 
potential, see subscripts, ambiguous 
scalar, 76-78, 121-133, 161 
single dimension, 74, 104-107, 112 

Reduction function, 77, 183 
Registers, 14, 15, 62 

address, 15, 15 
and long loops, 63, 64 
and short loops, 63 
instruction, see instruction stack 
operand, 15, 16 
vector, 16, 37 

Restructuring, 88 
loops, 96 
programmer involvement, 89 

Result rate, 30 

SAXPY Matrix-1, 26 
Scalar, 4 

conditionally defined, 125-127 
promotion, 73, 78, 122-130, 134-135, 

169, 174-176 
reduction function, 77, 121, 128, 130 

use in a loop, 121 
temporary, 73, 101-103, 183 
wrap-around, 76-78, 123-133, 175, 186 

Scalar Processor, 1 
Scatter 

periodic, 32 
random, 32 

SCS-40, 3, 25 
Single Instruction Stream, Multiple Data 

Stream (SIMD), 25, 184 
Single Instruction Stream, Single Data Stream 

(SISD), 24, 184 
Solutions to Problems 

Chapter 1, 208 
Chapter 2, 208 

Chapter 3, 212 
Chapter 4, 212 

Store, elimination of unneeded, 59 
Strength reduction, 61, 184 

exponentiation, 61 
Stripmining, 37, 45, 158-160, 184 
Subscript triplet, 65 - 69 

interpretation as DO loop, 65, 67 
Subscript, linear expression, 72 
Subscripts 

ambiguous, 75, 92, 105-111 
location in memory, 54 

Supercomputer, 1, 2, 3, 184 
architecture, 13 
instruction set, 13 

Superword, 29, 30, 184 
Sword, see superword 

Thinking Machines, Connection Machine, 3 
Timing statistics, 81-86 

Vector, 4, 185 
array reference, 71 
gather/scatter, 73 
indirect address, 72 
intrinsic functions, 69 - 70 
length, 4 
length, average on diagonals, 120 
mask operations, 45-47, 68, 69 

and low truth density, 46 
and singularities, 46 

mask register, 45-46 
operation timing, CYBER 205, 35 
pipeline, 29-35 ,41 
processing, 2, 18, 29, 185 
processor, 4, 28 

memory-to-memory, 28 
register-to-register, 36 

stream unit, 32-35 
stride, 4, 32, 40, 93, 203, 205 

Vectorization, 64, 81, 185 
and I/O statements, 176 
and assigned GO TOs, 177 
by expanding subprograms, 163, 166, 167, 

173, 175 
candidates, 90 
compiler, 64 
explicit, 64-70 
implicit, 64, 70-78 
inaccuracies due to, 88 
inhibitors, 90, 91 
of IF statements, 142-162 
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of jump out of loop, 156-159 
of loop-dependent IFs, 148-162 
of loop-independent IFs, 143-149 
of nested IF blocks, 151-155 
of subprogram references, 162-176 
of table lookup, 155-159 
on diagonals, 116-120 
on slices, 120 
programmer, 64 

pushing loops into subprograms, 163, 
168-171 

terminology, 70 
with statement functions, 163, 166 

Virtual memory, 29, 185 

WHERE, 
block, 68, 69 
statement, 68 


