
A GUIDEBOOK TO
FORTRAN ON

SUPERCOMPUTERS

John M. Levesque
Pacific-Sierra Research Corporation, Placerville, California

Joel W. Williamson
Pacific-Sierra Research Corporation, Placerville, California

Academic Press, Inc.

Harcourt Brace Jovanovich, Publishers
San Diego New York Berkeley Boston

London Sydney Tokyo Toronto

We dedica te this Book
To Char les Babbage w h o t h o u g h t u p the computer ,
To Augus ta Ada Byron w h o t augh t u s all h o w to p rogram,
To H e r m a n Holler i th w i t h o u t w h o m w e wouldn ' t have (been) coun ted ,
To John von N e u m a n n w h o t augh t u s h o w to do one th ing at a t ime,
To Seymour Cray w h o s h o w e d us h o w to do every th ing at once .

C O P Y R I G H T © 1989 BY A C A D E M I C P R E S S , I N C .
ALL RIGHTS RESERVED.
NO PART OF THIS PUBLICATION MAY BE REPRODUCED OR
TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC
OR MECHANICAL, INCLUDING PHOTOCOPY, RECORDING, OR
ANY INFORMATION STORAGE AND RETRIEVAL SYSTEM, WITHOUT
PERMISSION IN WRITING FROM THE PUBLISHER.

ACADEMIC PRESS, INC.
San Diego, California 92101

United Kingdom Edition published by
ACADEMIC PRESS, INC. (LONDON) LTD.
24-28 Oval Road, London NW1 7DX

Library of Congress Cataloging-in-Publication Data

Levesque, John M.
A guidebook to Fortran on supercomputers / John M. Levesque, Joel

W. Williamson
p. cm.

Includes index.
ISBN 0-12-444760-0 (alk. paper)
1. FORTRAN (Computer program language) 2. Supercomputers-

-Programming. I. Williamson, Joel W II. Title.
QA76.73.F25L475 1988
005 .2 ' l -dc l9 88-14129

CIP

PRINTED IN THE UNITED STATES OF AMERICA
88 89 90 91 9 8 7 6 5 4 3 2 1

We dedica te this Book
To Char les Babbage w h o t h o u g h t u p the computer ,
To Augus ta Ada Byron w h o t augh t u s all h o w to p rogram,
To H e r m a n Holler i th w i t h o u t w h o m w e wouldn ' t have (been) coun ted ,
To John von N e u m a n n w h o t augh t u s h o w to do one th ing at a t ime,
To Seymour Cray w h o s h o w e d us h o w to do every th ing at once .

C O P Y R I G H T © 1989 BY A C A D E M I C P R E S S , I N C .
ALL RIGHTS RESERVED.
NO PART OF THIS PUBLICATION MAY BE REPRODUCED OR
TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC
OR MECHANICAL, INCLUDING PHOTOCOPY, RECORDING, OR
ANY INFORMATION STORAGE AND RETRIEVAL SYSTEM, WITHOUT
PERMISSION IN WRITING FROM THE PUBLISHER.

ACADEMIC PRESS, INC.
San Diego, California 92101

United Kingdom Edition published by
ACADEMIC PRESS, INC. (LONDON) LTD.
24-28 Oval Road, London NW1 7DX

Library of Congress Cataloging-in-Publication Data

Levesque, John M.
A guidebook to Fortran on supercomputers / John M. Levesque, Joel

W. Williamson
p. cm.

Includes index.
ISBN 0-12-444760-0 (alk. paper)
1. FORTRAN (Computer program language) 2. Supercomputers-

-Programming. I. Williamson, Joel W II. Title.
QA76.73.F25L475 1988
005 .2 ' l -dc l9 88-14129

CIP

PRINTED IN THE UNITED STATES OF AMERICA
88 89 90 91 9 8 7 6 5 4 3 2 1

PREFACE
Fortran is the dominant language used on supercomputers today, and the
vendors of these machines have expended much effort in providing optimiz­
ing compilers for Fortran programs. However, many constructs in existing
programs prevent the compilers from generating optimized code. On a su­
percomputer, fully optimized code can run an order of magnitude faster than
unoptimized, so it is imperative that a programmer understand how to write
Fortran in a way that realizes the full potential of the target machine.

This book, the first of its kind, explains in detail both the underlying
architecture of today's supercomputers and the manner by which a compiler
maps Fortran code onto that architecture. Most important, the constructs
preventing full optimizations are outlined, and specific strategies for restruc­
turing a program are provided.

This book is based on the authors' actual experience in restructuring
existing programs for particular supercomputers and generally follows the
format of a series of supercomputer seminars that they regularly present on a
worldwide basis. All examples are explained with actual Fortran code; no
mathematical abstractions such as dataflow graphs are used. Targeted for
programmers directly involved in optimizing Fortran programs on today's
high-performance scientific computers, the book also provides excellent
preparation for anyone interested in the field.

Chapter 1 is an introduction to the basic concepts of scalar, vector, and
parallel processing. Chapter 2 provides an in-depth look at the architectural
features of a variety of existing machines, with particular attention paid to
the features common to many of them. Chapter 3 explains the optimization
techniques used by compilers and how a programmer can take advantage of
this knowledge both in restructuring existing programs and in the develop­
ment of new applications. Chapter 4 presents dozens of examples of loops
from real-world programs, with a discussion of the inherent problems, and a
restructured version that typically runs two to twenty times faster than the
original. Performance of both the original and restructured code is graphed
for each loop. A list of common abbreviations and glossary of important
terms are provided in Appendix A.

The authors acknowledge the many contributions of their students over
the years. Special thanks go to our employer, Pacific-Sierra Research Corpo­
ration, for all of its support in this endeavor, to Mark Koenig, who prepared
the many figures in the text, to Tracey Andersen, who transcribed several
rough drafts, and to Gene Wagenbreth, who carefully read the original
manuscript and made many fine suggestions. Any errors and omissions are
solely the responsibility of the authors.

vii

Following is a list of trademarks used in the book:
Alliant, Concentrix, FX/1, FX/8 and FX/Fortran are trademarks of Alliant
Computer Corporation.
BUTTERFLY is a trademark of Bolt Beranek and Newman Inc.
CDC, CYBER 203, CYBER 205, ETA 10, STAR 100 are trademarks of Control
Data Corporation.
C-l and C-MP are trademarks of Convex Computer Corporation.
CRAY and CRAY-1 are registered trademarks of Cray Research Incorpo­
rated.
CFT, CFT77, CRAY-2 and CRAY X-MP are trademarks of Cray Research
Incorporated.
ELXSI 6400 is a trademark of ELXSI.
FORGE is a registered trademark of Pacific-Sierra Research Corporation.
IBM 3090 Vector Facility is a trademark of International Business Machines.
SCS-40 is a trademark of Scientific Computer Systems.

1
INTRODUCTION

This book is concerned with the effective use of the Fortran programming
language on a loosely defined class of machines known as supercomputers. It
is assumed that the reader has a working knowledge of Fortran. As for
knowledge of supercomputers, it is assumed that the reader's principal pro­
gramming experience has been on the classical "von Neumann" machines:
sequential, scalar processors. Why make such an assumption? Because the
von Neumann machines number in the millions, but the supercomputers
number in the hundreds; because until recently only a few universities have
had access to supercomputers, and this access was often restricted to a small
group of researchers; in short, because most of us grew up on conventional
computers.

1.1
CONVENTIONAL COMPUTERS

In describing his surgical skills, Charles Emerson Winchester of the television
series M*A*S*H once claimed: "I do one thing at a time, I do it very well, and
then I move on." This is the essence of the "von Neumann" architecture of a
conventional computer, and it also well describes the approach taken by
many programmers in the use of Fortran. Standard Fortran, in fact, demands
such an approach. Even when operating on an entire array of numbers, we
must specify what is to be done to a single array element, then loop through
all the subscripts of all the dimensions of the array. Thus (until ANSI 8X
becomes the Fortran standard) we are forced to transform the matrix algebra

1

2 INTRODUCTION

Statement:

A = B + C

into
DO 1000 J - 1, NDIM2

DO 1000 1 = 1 , NDIM1
A(I,J) = B(I,J) + C(I,J)

1000 CONTINUE

Most of us have learned to work within the constraints of Fortran over the
years, and many know that it is more efficient on a conventional computer to
write the matrix sum as we have done, rather than with the J and I loops
reversed:

DO 1010 1 = 1 , NDIM1
DO 1010 J = 1, NDIM2

A(I,J) = B(I,J) + C(I,J)
1010 CONTINUE

How much more efficient? Maybe 10%, 20%, 50%; certainly less than a
factor of two. For many programmers, the payoff for writing efficient
Fortran for conventional computers has not been high enough to warrant
their attention. However, as we will soon learn — on a supercomputer, de­
pending on the dimensions of the arrays — loop 1000 may execute an order
of magnitude faster than loop 1010.

1.2
WHAT'S A SUPERCOMPUTER ANYWAY?
Time was invented to keep everything from happening all at
once.

—Anonymous

Supercomputers are built in direct defiance of the preceding statement. A
survey of the literature will reveal no rigorous definition of a supercomputer,
nor do we intend to give one here. One popular working notion is that a
supercomputer is the biggest, fastest computer available at the moment. This,
of course, limits the class to one computer at a time, assuming we could get
all interested parties to agree on which one — probably a hopeless task.

Since this book is about Fortran, we will limit our discussion to the
so-called "scientific" computers as opposed to those used primarily for busi­
ness data processing, although we acknowledge that there is often a signifi­
cant overlap. There are certainly some very big, fast scientific computers,
some with physical memories exceeding two billion bytes (gigabytes), some
with clock cycles close to four nanoseconds. (A nanosecond [nsec] is one
billionth of a second.)

1.3 TERMINOLOGY 3

These computers can be programmed to perform in a conventional
manner, and they will still be faster than other computers just because their
clocks are so much faster. What distinguishes the supercomputers from
others is their ability to perform many operations simultaneously. To para­
phrase Charles Emerson Winchester, supercomputers "do many things at
once, do them very well, and then they move on."

Some supercomputers accomplish many simultaneous operations by
"vector" processing, that is, by using powerful instructions to feed arrays of
operands through a "pipeline" or assembly line of operations. This pipeline
concept is a streamlining of the conventional scalar processor, a recognition
that the most intense use of a computer is almost always in a loop, doing the
same operations to many different operands. The Cray Research, Inc. (CRI)
Cray-IS, X-MP, Cray-2, the Control Data Corporation (CDC) CYBER 205
and ETA 10, the IBM 3090 Vector Facility, the Fujitsu VP Series, the Nippon
Electric (NEC) SX2 series, and the Hitachi S-810 and S-820 are all examples
of pipelined vector processors.

Other supercomputers accomplish many simultaneous operations by
having many processors working in parallel on a program. The most famous
is the ILLIAC IV, recently decommissioned by the NASA Ames Research
Laboratory. Other parallel machines are INTEL'S iPSC; NCUBE's NCUBE/n
series; Bolt, Beranek and Newman's BUTTERFLY; Floating Point System's
T-Series; and Thinking Machines' Connection Machine. Of course some
machines combine both parallel and vector architectures, even some of the
computers already mentioned, such as the Cray X-MP.

Finally, in recent years there have appeared some machines classified
as "minisupercomputers." These machines incorporate many of the architec­
tural features of the supercomputers but use slower electronic components
and generally smaller memories. Typical clock speeds are from 50 to 200
nanoseconds, and physical memory sizes range up to hundreds of megabytes
(millions of bytes). The Alliant FX/1 and FX/8, Convex C-l and C-MP,
ELXSI 6400, and Scientific Computer Systems SCS-40 are all members of
this class of machines.

All of the supercomputers and minisupercomputers are characterized
by their ability to perform much faster in "vector" or "parallel" mode than in
"scalar" mode. The performance might be from two to one thousand times
faster, but only if we know how to program them. That is what this book is
about, the effective use of Fortran on supercomputers.

1.3
TERMINOLOGY

We assume that the reader is familiar with many of the basic terms describing
computers and computer languages. But certain common words have special
meanings in the discussion of parallel and vector computers. We wish to
introduce just a few of them here.

4 INTRODUCTION

1.3.1 Scalar
A scalar value is a single value or entity. A scalar instruction operates on one
or a pair of scalar values, as in the Fortran statement:

SCA1 = SCA2 + SCA3

At least four scalar instructions must be executed to complete this statement:
two fetch instructions to get the values of SCA2 and SCA3 from memory, an
add instruction, and a store instruction to place the answer into SCA1 in
memory. Conventional computers execute DO loops in scalar mode. Con­
sider:

DO 1020 1 = 1 , 100
ARRAYl(I) = ARRAY2(I) + ARRAY3(I)

1020 CONTINUE

This loop requires the execution of at least 400 scalar instructions to perform
the desired addition of ARRAY2 and ARRAY3.

1.3.2 Vector and Stride
Physicists, engineers, and linear algebra buffs: Suspend your long-held no­
tions of vectors. A vector is an ordered list of scalar values, and it is inher­
ently one-dimensional. A simple vector in a computer's memory is defined as
having a starting address, a length (number of elements), and a stride (constant
distance in memory between elements). All vector processors have machine
instructions that allow the fetching and storing of vectors of values from
memory. Consider again:

DO 1020 1 = 1 , 100
ARRAYl(I) = ARRAY2(I) + ARRAY3(I)

1020 CONTINUE

On a vector processor, ARRAY 1 can be regarded as a vector whose starting
address is ARRAYl(l), whose length is 100, and whose stride is 1 (the
increment of the DO loop index I). On the CYBER 205, execution of a single
vector instruction can perform all of the operations of the entire DO 1020
loop. So a vector instruction performs its operation on each of the elements
of its vector operands. It is important to note that a vector instruction does
not operate on all of the vector elements simultaneously. Rather, the pairs of
operands are fed into the pipelined vector processor in a continuous stream,
with the results flowing out and back to memory in a continuous stream, but
still one at a time. Depending on the machine and the vector length of the
operation, this streamlining produces results at a rate 2 to 100 times faster
than if scalar instructions were used. When vector operations can be used to
perform a computation, it is said to be "vectorized." (A full discussion of
simple and more complicated vectors can be found in Chapter 3.)

1.4 AMDAHL'S LAW 5

1.3.3 Parallel and Concurrent
These terms are synonymous when applied to computers, and they always
mean the simultaneous execution of instructions within a given machine.
There are, however, many nuances. Many scalar processors have some de­
gree of parallelism on a fine-grain level. If the central processing unit (CPU)
possesses entirely independent add and multiply units, then it is possible in
the execution of the statement

PARTY = CHIPS * DIP + PEOPLE + SONG

that the sum of PEOPLE + SONG can be computed in parallel with the
product CHIPS * DIP.

Most vector processors can also issue vector instructions in parallel, but
the most interesting application of the idea of concurrency is on a multipro­
cessor system—that is, a computer with more than one CPU. Consider, one
more time with feeling:

DO 1020 1 = 1 , 100
ARRAYl(I) = ARRAY2(I) + ARRAY3(I)

1020 CONTINUE

On a parallel computer with 100 processors, each iteration of this loop could
be assigned to its own processor. That is, Processor 1 is assigned the task of
computing

A R R A Y 1 (1) = A R R A Y 2 (1) + A R R A Y 3 (1)

Processor 2 computes

A R R A Y 1 (2) = A R R A Y 2 (2) + A R R A Y 3 (2)

and so forth. The beauty of this scheme is that the loop runs 100 times faster
than if it were executed on a single processor. This statement ignores any cost
of initializing parallel execution. This and other practical considerations will
be discussed in later sections.

1.4
AMDAHL'S LAW

Amdahl's law states that in any system having two or more processing
modes of differing speeds, the performance of the system will be dominated
by the slowest mode. This has immediate application to vector and parallel
computers.

1.4.1 Amdahl's Law for Vector Processors
Here we are concerned with computer systems having scalar processing as
well as vector processing. Since vector processing is inherently faster than

6 INTRODUCTION

scalar, Amdahl's law tells us that the system will be dominated by scalar
performance. The following is a derivation of computer performance as a
function of the fraction of code vectorized. Let

Ts = the time required to perform an operation in scalar mode
Tv = the time required to perform an operation in vector mode
Fs = the fraction of operations performed in scalar mode
Fv = the fraction of operations performed in vector mode

Then the time T to perform N operations is

T = N · (Fs · Ts + Fv · TO)

Given that Fs + Fv = 1, then

T = N · [(1 - Fv) · Ts + Fv · Tv]

Normalizing to Ts = 1 and defining vector speedup:

vs-£
Tv

then

Fv
T = N

= N ·

U-ft-l + vs

- f i ^ · *
]

]
Now let performance be defined as the number of operations performed per
unit time:

T

- ^ -
This provides performance as a function of the fraction of operations vector­
ized and allows us to determine for an existing program how much code
must be vectorized to achieve performance goals. Figure 1.1 is a graph of this
function of VS = 10 (typical of the Cray X-MP computers).

Note how this graph shows that the performance of a vector processor
is dominated by its scalar processing capability. One-hundred percent vec­
torized produces a factor of 10 performance improvement, but 55% vector­
ized is only a factor of 2! Not until 90% is vectorized does performance
exceed one-half of the maximum.

Note that the abscissa is labeled "Fraction of Utilized Code Vectorized."
Fortunately, most programs follow an 80-20 rule, that is, 80% of the time is
spent in 20% of the code. It might be 90-10 or 75-25, but most programs

1.4 AMDAHL'S LAW 7

10

a.

0.1 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 1

Fraction of Utilized Code Vectorized

FIGURE 1.1.
Amdahl's Law for Vector Processors

have a few very CPU-intensive routines. It is conceivable that a program of
50,000 statements would have a solution routine of 100 statements in which
80% of the CPU time is spent. The point is that if the solution routine is
vectorized, then 80% of the utilized code is vectorized, even though only
0.2% of the statements have been vectorized.

One of the important lessons to learn from this graph of Amdahl's law
is that in benchmarking a typical mix of applications programs in which
fraction of vectorization is about 0.5, the machine with the best scalar
processing performance is probably going to win. To drive the point home,
imagine a hypothetical computer that performs vector operations in zero time
but whose scalar performance is one-half that graphed in Figure 1.1. Note
that in the equation for performance, the term (VS —1)/VS goes to one as VS
goes to infinity. Superimposing the hypothetical performance with the origi­
nal, we have Figure 1.2.

8 INTRODUCTION

0.1 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 1

FRACTION OF UTILIZED CODE VECTORIZED
FIGURE 1.2.

Amdahl's Law with Zero-Time Vector Processor

Even though the hypothetical computer has an infinite vector perform­
ance, it does not outperform the original (real) computer until vectorization
exceeds 90%—because of its lower scalar speed.

1.4.2 Amdahl's Law for Parallel Processors
Here we are concerned with machines that achieve their speedup over single
processor scalar performance by spreading the computation over many pro­
cessors. If there were no cost to do this, then a linear speedup with number of
processors could be achieved, so this is the theoretical maximum perform­
ance of such a system. In the derivation, we show the effects of the overhead

1.4 AMDAHL'S LAW 9

time necessary to properly initiate and synchronize parallel processing, as
well as the cost of using only one processor in critical regions of the program
where parallel processing is not possible.

Ts = the time required to perform an operation on a single processor
Fs = fraction of operations performed on a single processor
Tp = the time required to perform an operation on M processors

(Ts/M)
OH = the overhead for synchronizing parallel processors
Fp = fraction of code able to use M processors
NT = number of disjoint parallel tasks

Then the time to perform N operations is

T = N -\Fs-Ts + ^(TPi* FPi + 0Hi)

Normalizing to Ts = 1, then Tp,· = \/mif and

where
NT

Fs + 2 FPi = 1

and mi is the average number of processors used during the ith task.
The relationship is much more complex for multiprocessing; but, sev­

eral important facts can be derived from the equation.

1. If we ignore overhead time and synchronization time and assume
that all processors can be used on all tasks, then the upper bound for
performance on a parallel processor is essentially the same relation­
ship as for vector processing, that is

P = -

where M is the number of parallel processors, and Fp is the fraction
of code able to use M processors. (The amount of code that can use
parallel processing generally will be larger than the amount of code
that can be vectorized.)

2. If the overhead time for initializing a task or synchronizing tasks is a
significant fraction of the task time itself, then performance gain will
be lost. Consider using 32 processors on a task of duration 1 sec. If

INTRODUCTION

the overhead is on the order of 0.1 sec, the time for the task will be

T = - ! - + . 1 = 0.13 sec
32

for an overall speedup factor of 8 rather than 32.

The most important fact that can be derived from this relationship is
that the time spent using one processor has a dramatic effect on the
overall run time. For example, if we only spend 1% of the overall
time using one processor, the maximum speedup we can get over the
performance of that one processor is 100 — even if we have zero
startup time and an infinite number of processors.

50

40

30

20

10

0 10 20 30 40 50 60 70 80 90

Number of Processors

FIGURE 1.3.
Performance of N Processors for Various Utilizations. Utilization:

a = 100%, b = 95%, c = 90%, d = 80%, e = 60%

100

1.5 SUMMARY 11

Figure 1.3 depicts performance of a parallel system for several tasks with
differing utilization of all processors. It should be clear from this that other-
than-100% utilization leaves a significant number of processors idle for the
duration of a task running on a many-processor system. For example, a task
with 60% utilization cannot effectively use more than four processors.

1.5
SUMMARY

These basic notions of vector and parallel processing are central to the
discussion that follows. Pipelining of operations and simultaneous execution
of instructions are the mainstay of supercomputers. Learning how to realize
them within the constraints of standard Fortran is the main thrust of this text.

Problems
1. When different supercomputers are compared, both scalar and vector

performance must be considered. Amdahl's law plays an important role in
estimating the relative performance differences of the machines. Derive
an equation for calculating the performance of machine A over machine B
as a function of vector speed of A,VA, scalar speed of A,SA, vector speed of
B,VB, and scalar speed of B,SB. Hint: Use the fact that

Performance of A _ \TA/
Performance of B / 1 \

where

and

2. Using the Formula derived in Problem 1, consider the following two
machines:

Scalar Speed Vector Speed

Machine X 1 Mflop 1 Mflop
Machine Y 0.5 Mflop 20 Mflop

12 INTRODUCTION

a. Plot the performance ratio of machine Y to machine X for fraction of
vectorization ranging from 0.0 to 1.0.

b. How much vectorization is necessary for machine Y to run faster
than machine X?

3. Amdahl's law can easily be extended to parallel machines. Derive the
formula for performance ratio for parallel processors, analogous to that
presented for vector processors in Problem 1. Consider also the following
situations facing one who may want to upgrade from a uniprocessor to a
massively parallel system:

Relative
Scalar Speed Number of Processors

Machine X 1.0 1
Machine Y 0.1 1024

a. Plot the performance ratio of machine Y to machine X for fraction of
parallelization ranging from 0.0 to 1.0.

b. How much parallelization is necessary for machine Y to run faster
than machine X?

4. Using the formula from Problem 1, compare the following three ma­
chines.

a. Which machine has the best performance for an application with no
vectorization?

b. Which machine is best for 100% vectorization?
c. At what vectorization ratio do machines Y and Z have the same

performance?

Scalar Speed Vector

Machine X I 1
Machine Y 6 60
MachineZ 3 120

5. Things to try on your machine: Execute your code with full optimization
and with no optimization. How much faster is the optimized than the
unoptimized code? What fraction of your code has been vectorized or
optimized automatically by the compiler?

2
SUPERCOMPUTER
ARCHITECTURE

To achieve optimal performance on a supercomputer, it is essential for a
Fortran programmer to understand the underlying architecture and instruc­
tion set of the target machine and how this architecture is utilized by the
Fortran compiler. Without this understanding, seemingly harmless constructs
used within a DO loop can dramatically affect the execution time of the loop.
Consider the following two DO loops:

DO 2000 I = 1,N DO 2010 I = 1,N
IF (A(I).GT.EPS) THEN IF (A(I).GT.EPS) THEN
AB = A(I) * B(I)
X(I) = AB / Z(I) X(I) = A(I) * B(I) / Z(I)
Y(I) = Y(I) + AB Y(I) = Y(I) + A(I) * B(I)
ENDIF ENDIF

2000 CONTINUE 2010 CONTINUE

Both of these loops store the same values into the X and Y arrays. However,
the use of the scalar AB inside the IF-block of loop 2000 cannot be easily
vectorized on some systems, because they are missing certain machine in­
structions found on others. (Use of scalars in DO loops is discussed fully in
Chapter 3.)

2.1
BASIC FEATURES

Many of the important capabilities of supercomputers are evolutionary ex­
tensions of the features found on scalar processors, so a review of the
development of these features can be instructive.

13

14 SUPERCOMPUTER ARCHITECTURE

In the mid-1960s a start-up company named Control Data Corporation
introduced a revolutionary new machine designated the 6600, partially de­
signed by one of CDCs founders, Seymour Cray. Like many of today's
minicomputers, the 6600 had a 100-nsec clock, fast registers, a large banked
memory, and segmented functional units. The 6600 was the first major
scientific computer to combine all of these features in a well-balanced sys­
tem. In a sense it was the first supercomputer. We will examine each of these
features as it relates to machine performance, and, where appropriate, trace
its evolution through Seymour Cray's follow-on machines, the CDC 7600
and the Cray Research Cray-1 and Cray-2. In later sections we will see that
many of these features can be found on the majority of commercially suc­
cessful supercomputers and minisupercomputers.

2.1.1 Clock Cycle and Performance Measures
The clock cycle of a computer is the basic unit of time, and nothing (of
interest to a Fortran programmer) happens in less than one clock cycle. If all
other features of a computer system remain the same, then performance will
vary inversely with the clock cycle. Recall from Chapter 1 that the clock cycle
of a supercomputer is typically a small number of nanoseconds.

A computer can usually issue instructions at the maximum theoretical
rate of one instruction per clock cycle. For example, the CDC 6600 had a
clock cycle of 100 nsec and its inverse

1 0 0 x ! o - » s e c = 1 0 X 1 0 6

is the maximum number of instructions per second (ips) that the machine can
issue. Because of the magnitude of the numbers involved, this rate is usually
quoted in millions of instructions per second or "Mips/ ' Thus the CDC 6600
can be rated at 10 Mips. Sometimes the s is dropped, so that we speak of a
10-Mip machine.

Reducing the clock cycle time has always been a goal of machine
designers: the CDC 7600 had a clock cycle of 27.5 nanoseconds (36 Mips),
and the Cray-1 has a clock cycle of 12.5 nanoseconds (80 Mips). Future
designs are aiming for the 1-nsec clock cycle, which would provide a com­
puter with a 1000-Mip rating.

Note that the Mip rating is the maximum theoretical instruction issue
rate. Because of many different resource conflicts in the execution of a
program, the actual issue rate is generally about one-tenth to one-half the
theoretical maximum.

Because all supercomputers have features that generate many opera­
tions from the issuance of one instruction, the Mip rating of a supercomputer
is of much less importance than it is for a conventional computer. As pro­
grammers, we are interested in how fast a computer can generate results in
which we are interested. On conventional computers this is closely related to

2.1 BASIC FEATURES 15

the rate instructions can be issued, and the maximum theoretical result rate
then is one per clock cycle. The actual delivered result rate on a conventional
computer is often a small fraction of the maximum. On a supercomputer the
result rate is often more than one per clock cycle, much faster than the
instruction issue rate. Since most scientific and engineering computation
involves floating-point arithmetic, the performance measure for supercom­
puters used in preference to Mips is millions of floating-point operations per
second, called //megaflops,, or "Mflops." (When supercomputers are rated by
their maximum theoretical result rate, this is known as "machoflops.")

2.1.2 Registers
Registers are a form of very high-speed memory used to hold the most
heavily accessed information at any point in the execution of a program.
They are necessarily expensive, and consequently there are not very many of
them. There are generally three types of registers in a computer: 1) address
registers that hold the locations of data within memory; 2) operand registers
that hold the data items currently being manipulated by the program; and 3)
an instruction stack, which is a set of registers holding the instructions in the
part of the program currently being executed. On some computers a set of
general-purpose registers is used to handle both address and operand com­
putation.

Registers can generally provide their information to the CPU in one
clock cycle, typically an order of magnitude faster than information can be
fetched from memory to the CPU. It is up to the Fortran compiler to optimize
its use of these registers, and in Chapter 3 we will learn how to help the
compiler do just that.

Address Registers
The memory on a computer can be viewed as one large singly dimensioned
array. All of our program variables and multidimensioned arrays are mapped
into a piece of the computer's memory. At any point in our program, the
compiler uses the address registers to compute the memory locations of the
data items that currently need to be fetched and stored. Under certain
circumstances the compiler might also use the address registers for some of
our integer data arithmetic.

The 6600 and 7600 each have eight address registers named A0,
Al , . . . A7 and eight backup registers BO, Bl, . . . B7, which are used as a
scratch pad for address calculations. The Cray-1 also has 8 A registers, but
has 64 B registers.

For example, on a Cray, during execution of the Fortran statement

P (N) = 1 . 0

the value of N must be fetched from memory, placed in an A register, then

16 SUPERCOMPUTER ARCHITECTURE

added to the address of the array P decremented by one to compute the
address of P(N). This is shown in Figure 2.1.

Operand Registers
As their name implies, these registers hold the current operands of the
program during execution. In certain code segments there will be more
operands than registers available to hold them. The compiler will optimize
the use of the registers by retaining the most heavily used operands in the
registers and assigning the least-used operands to temporary storage loca­
tions in memory.

The 6600 and 7600 each have eight operand registers named X0,
XI, . . . , Χ7, which hold all of the operands and results during execution of
the arithmetic and logical instructions of our program. The Cray-1 has eight
registers, named SO, SI, . . . S7, which hold operands and results of scalar
arithmetic operations. The S registers are backed up by 64 T registers used to
hold intermediate results for later reference.

As a direct extension of the idea of scalar operand registers, the Cray-1
has eight vector operand registers, named V0, VI, . . . , V7. Each of these
registers can hold up to 64 operands. A vector instruction to add two vector
registers together results in the addition of the pairs of corresponding oper­
ands in the registers.

On the Cray-1, then, consider the execution of the following Fortran
statements:

R = S + T
DO 2010 I = 1,64

A(I) = B(I) + C(I)
2010 CONTINUE

The first statement causes the scalar values S and T to be fetched from
memory to S registers where they are added together with the result going to
another S register that is subsequently stored into the address of R.

It is possible to execute loop 2010 with such scalar instructions as well,
fetching and computing one pair of elements at a time. But with vector
instructions, all of the elements of B can be fetched to a vector register, all of

Value of N

Address of P(0)

Address of P(N)

Register A4

Register A5

Register A6

FIGURE 2.1
Address Register Calculation

2.1 BASIC FEATURES 17

C to another vector register, a single vector add instruction can be used to
compute all of the sums, and a vector store instruction returns the results to
the array A (Figure 2.2).

Instruction Stack
An instruction stack is a set of high speed registers that hold a copy of a small
number of program instructions prefetched from memory by the computer
system, acting as a small window moving over the executable program code.
Instructions typically can issue from the instruction stack to the CPU at the
rate of one instruction per clock cycle. If the next instruction to be issued is
not on the instruction stack, the system must fetch it from memory. This
memory fetch takes tens of clock cycles to complete. If every instruction had
to be fetched from memory, a program might run an order of magnitude
more slowly.

Each computer system has a different-sized instruction stack and dif­
ferent schemes for prefetching instructions to the stack. Occasionally, a
critical feature of program optimization will be to make sure that a CPU-in­
tensive DO loop or subprogram is entirely contained on the instruction stack
during its execution.

2.1.3 Functional Units
Originally, the CPU of a computer was monolithic, executing one instruction
to completion before beginning the next. This is still the cheapest way to
build a CPU, but it completely denies the overlapped execution of indepen­
dent instructions within a program. The CDC 6600 was one of the first
computers to partition the CPU into its functional units, thus allowing ad­
dress calculations and program arithmetic to proceed simultaneously. Con-

V4 V5 V6

B(l)

B(2)

C(l)

C(2)

A(l)

A(2)

B(64) C(64) A(64)

î î I
MEMORY

FIGURE 2.2.
Vector Addition

18 SUPERCOMPUTER ARCHITECTURE

sider the following code excerpt:

X = Y * Z / (P + Q)

Assume that the values of Y and Z have been fetched to registers. Then when
the multiply instruction has been issued, the fetch instructions for the values
of P and Q can be issued. When the data arrives from memory, the add
instruction can be issued as well. This is because each of the major functions
of the CPU has been realized in a wholly independent unit of hardware.
Compilers take advantage of multiple functional units by attempting to
schedule as many independent operations as possible to achieve maximum
overlap of instruction execution.

Note that whereas a computer might have hundreds of instructions, it
will typically have about ten functional units, each one of which executes a
family of related instructions. For example, a floating-point add functional
unit performs both addition and subtraction, rounded or unrounded, nor­
malized or unnormalized.

The CDC 6600 and 7600 each provided functional units for address
computation, integer and floating-point scalar arithmetic, and logical opera­
tions. The Cray-1 contains a set of functional units very similar to its prede­
cessors and a few additional units exclusively dedicated to vector processing.

Segmented Functional Units
A computer might be able to issue a new instruction in each clock cycle, but
there are very few instructions that complete execution in just one clock
cycle. For example, a floating-point add instruction might take four clock
cycles to complete; a multiply or a divide might take even longer. For this
reason, each functional unit is itself further partitioned into a number of
independent segments, preferably one segment for each clock cycle of exe­
cution. By this means, a computer may issue several identical instructions in
sequence as long as the operands are independent. Consider the execution of
the following Fortran statements:

Z1 = X1 + Y1

Z2 = X2 + Y2

Z3 = X3 + Y3

Z4 = Χ4 + Y4

Assuming that the operands have already been fetched to registers, then the
steps through time shown in Figure 2.3 indicate the operation of the seg­
mented floating-point add unit.

The adder depicted in Figure 2.3 performs as an assembly line with four
stations. As programmers we do not know what happens at each station,
only that a completed sum flows off the end of the line. The segmentation of

2.1 BASIC FEATURES 19

Segment 1
Segment 2
Segment 3
Segment 4

Clock Cycle

1 1
XI Yl

A / Xl+Yl

1

R E G I S T E R S

1 1
X2 Y2
\ /
X2+Y2
Xl+Yl

2

1 1
X3 Y3
\ /

X3+Y3
X2+Y2
Xl+Yl

3

1 1
X4 Y4
\ /
X4+Y4
X3+Y3

X2+Y2
Xl+Yl

4

FIGURE 2.3.
Segmented Functional-Unit Operation

the adder generates one result per clock cycle instead of one result every four
clock cycles achievable without segmentation (Figure 2.3).

The performance of a segmented functional unit is characterized by two
features:

• Startup Time. This is the number of clock cycles prior to the genera­
tion of the first result. When segments are each one clock cycle long,
the startup time is the number of segments. But this is not always the
case — the divide unit on the CDC 7600 had two segments and a
startup time of 27 clock cycles.

• Result Rate. This is directly related to the longest segment in a func­
tional unit. In most units the segments are one clock cycle long,
occasionally two, and in the 7600 divide unit, the first segment was 25
clock cycles long. After the startup time, a functional unit can deliver
one result each time the longest segment completes its task.

Considering that most functional units can produce one result per clock
cycle, and that several can run in parallel, a tremendous burden is placed on
memory access to fetch operands and store results. One way to alleviate this
burden is the use of memory banks.

2.1.4 Memory Banks
Each register of a computer is capable of delivering its contents to the CPU
each clock cycle. But the registers are so expensive that it is not feasible to
have more than a few hundred of them. The physical memory of a super­
computer is typically millions or even billions of bytes and is necessarily
much less expensive than the registers. One way to reduce cost is to build a
memory unit that holds many memory locations and can service a request

20 SUPERCOMPUTER ARCHITECTURE

from the CPU to fetch from or store into any of those locations. For several
reasons, all related to cost, such a unit will take several clock cycles to service
a request and will queue all other requests in the interim. But the CPU can
process data so fast that we must have a memory system that can deliver or
receive data at a rate of at least one item per clock cycle.

One answer to the problem is to build a memory system from many
units or "banks" and to arrange memory locations so that consecutive loca­
tions are assigned to the banks in a round-robin manner. The rate at which a
bank can service requests is called the "bank cycle time," and so an effective
memory system must have at least as many banks as the number of clock
cycles in the bank cycle time. Since, typically, the most memory-intensive
parts of a program involve the referencing of contiguous arrays in DO loops,
this mapping of memory locations onto banks guarantees that each subse­
quent memory reference will be serviced by a different bank.

Bank cycle times on supercomputers are typically four or eight clock
cycles, so a memory system of eight banks can be built with the following
mapping of memory locations:

Memory
Location

Bank
Number

0
1
2
3
4
5
6
7

8
9

10
11
12
13
14
15

16
17
18
19

etc.

Another way of looking at this is to picture the banks with memory locations
spread across them as shown in Figure 2.4.

Given the Fortran declaration

D I M E N S I O N A (5 1 2)

2.1 BASIC FEATURES 21

B A N K

1 2 3 4 5 6 7 8

Γο
8

16

1

9

17

2

10

18

3

11

19

4

12

etc.

5

13

FIGURE 2.4.
Memory-Bank Allocation

6

14

7\

15

then the elements of the array will be assigned to consecutive memory
locations, which is to say, consecutive banks. Thus, when the array is refer­
enced in a DO loop such as:

DO 2020 I = 1.É
A (I) = A (I)

2020 CONTINUE
1.0

then the fetch instructions for each successive element of the array A can be
issued by the CPU and serviced by the memory system at the rate of one per
clock cycle. Note that with eight memory banks, the successive requests for
data in a given bank occur eight clock cycles apart (Figure 2.5).

When the memory-bank concept is coupled with a segmented-memory
functional unit (seven segments), then Table 2.1 represents the flow of the
array elements from memory to the CPU. It should be clear that this is a very
effective use of the memory system and provides a nice balance between
delivery of data from memory and the ability of the CPU to process it.

Bank
Requests

Bank 1
Bank 2
Bank 3
Bank 4
Bank 5
Bank 6
Bank 7
Bank 8

A(1) A(9)
A(2)

A(3)
A(4)

A(5)
A(6)

A(7)
A(8)

1 2 3 4 5 6 7 8 9

Clock Cycle

FIGURE 2.5.
Timing of Contiguous Bank

A(10)
A(ll)

A(12)
A(13)

A(14)
A(15)

A(

10 11 12 13 14 15 16

Requests

22 SUPERCOMPUTER ARCHITECTURE

TABLE 2.1 Timing of a Memory-to-Register Request

Segmented Memory Unit
Clock
Cycle

1

2

3

4

5

6

7

8

9
10
11
12
13
14
15

Instruction

FETCH
A(l)

FETCH
A(2)

FETCH
A(3)

FETCH
A(4)

FETCH
A(5)

FETCH
A(6)

FETCH
A(7)

FETCH
A(8)
—
—
—
—
—
—
—

1

A(l)

A(2)

A(3)

A(4)

A(5)

A(6)

A(7)

A(8)
—
—
—
—
—
—
—

2

—

A(l)

A(2)

A(3)

A(4)

A(5)

A(6)

A(7)
A(8)
—
—
—
—
—
—

3

—

—

A(l)

A(2)

A(3)

A(4)

A(5)

A(6)
A(7)
A(8)
—
—
—
—
—

4

—

—

—

A(l)

A(2)

A(3)

A(4)

A(5)
A(6)
A(7)
A(8)
—
—
—
—

5

—

—

—

—

A(l)

A(2)

A(3)

A(4)
A(5)
A(6)
A(7)
A(8)
—
—
—

6

—

—

—

—

—

A(l)

A(2)

A(3)
A(4)
A(5)
A(6)
A(7)
A(8)
—
—

7

—

—

—

—

—

—

A(l)

A(2)
A(3)
A(4)
A(5)
A(6)
A(7)
A(8)
—

In
Registe

—

—

—

—

—

—

—

A(l)
A(2)
A(3)
A(4)
A(5)
A(6)
A(7)
A(8)

The following DO loop demonstrates a very ineffective use of the
memory system.

DO 2030 1 = 1 , 57, 8
A(I) = A(I) + 1.0

2030 CONTINUE

Table 2.2 is the timing chart for these accesses.
Notice that the memory functional unit can accept an operand each

CPU clock cycle. But the one memory bank in which all the requested
elements reside can only supply an operand from its locations each memory
bank cycle time, which as shown is four clock cycles. Therefore the effective
transfer rate from memory to the CPU is reduced by a factor of four. Striding
through memory as we did in loop 2030 results in "memory-bank conflicts/,

because the stride is such that the operands required are located in only one
of the memory banks. Memory-bank conflicts will occur in references that
have a stride through memory that is an integer multiple of

number of memory banks
bank cycle time (in clock cycles)

2.1 BASIC FEATURES 23

TABLE 2.2 Timing of a Strided Memory Request

Clock
Cycle

Segmented Memory Unit

Instruction
In

Register

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

25
26
27
28
29
30
31
32
33
34
35
36

FETCH A(l)
FETCH A(9)
FETCHA(17)
FETCH A(25)
FETCH A(33)
FETCH A(41)
FETCH A(49)
FETCH A(57)

—
—
—
—
—
—

—

—
—
—
—
—
—
—
—
—
—

A(l) -
- A(l)

A(l)

A(9) -
- A(9)

A(l) - -
- A(l) -

- - - A(l)
- A(9) - - - A(l)

A(9) A(l)
A(17) - - A(9)

A(17) A(9)

A(25)

A(17) - -
- A(17) -
- - A(17)

A(9) -
- A(9)

- A(25) -
- - A(25)

- A(17) -

A(25)
A(17) -

- A(17)

A(49) — — — A(41) — — —
— A(49) — — — A(41) — —
— — A(49) — — — A(41) —
— — — A(49) — — — A(41)

A(57) — — — A(49) — — —
— A(57) — — — A(49) — —
— — A(57) — — — A(49) —
— — — A(57) — — — A(49)
— - - - A(57) - - -
- - - - - A(57) - -
- - - - - - A(57) -
- - - - - - - A(57)

In other words, bank conflicts will occur any time a stride causes successive
references to a memory bank to occur in less than the bank cycle time. On a
Cray-1 with eight memory banks, this can only happen if the stride is an
integer multiple of 2 X 8/4 = 4.

It should be noted that the preceding formula works only for computers
whose number of banks and bank cycle time (in clock cycles) are both
powers of two, characteristics shared by most current supercomputers that
utilize memory banks.

2.1.5 Memory Caches
A memory cache is a small, fast, expensive memory placed between the very
fast CPU registers and the large slow main memory of a machine. When the

24 SUPERCOMPUTER ARCHITECTURE

CPU requests a data item from memory, the hardware checks to see if the
item is resident in the cache, and, if so, it delivers it to the CPU, typically in
two clock cycles. If the item is not in the cache, the hardware requests a
packet of data from main memory to the cache that includes the item
requested plus (usually) three more items as well, on the assumption that the
data will be referenced contiguously. Assuming that the transfer from mem­
ory to cache takes 12 clock cycles, then the time to transfer one item from
memory to CPU is:

Transfer four items to cache 12 clock cycles
Transfer one item to CPU 2 " "
Total 14 clock cycles

and if the other three items are subsequently referenced from the cache, then
the total cost in time to transfer data to the CPU is:

Transfer of second item to CPU 12 clock cycles
Transfer of first item to CPU 2 "
Transfer of second item to CPU 2 " "
Transfer of third item to CPU 2 "
Transfer of fourth item to CPU 2 "
Total 20 clock cycles

or 5 clock cycles per item transferred

All subsequent references to the data items will be satisfied in two clock
cycles, as long as they remain in the cache. (Since the cache is smaller than
the main memory, requests for other data might overwrite previously re­
quested data.)

Most cache systems also use the cache for instructions as well as data
operands.

2.1.6 Instruction Streams and Data Streams
Computers may be categorized according to whether they have one or many
instruction streams and one or many data streams.* Of four possible catego­
ries, one defines the simplest conventional computers, one is never imple­
mented, and the two remaining contain all supercomputers.

Single Instruction Stream, Single Data Stream (SISD)
The SISD category of course describes the relatively simple computers that
perform each instruction of a program to completion before beginning the
next instruction. There is no possibility of overlap within the machine, and
therefore only one stream of data through the CPU.

* Michael J. Flynn, "Very High-Speed Computing Systems", Proceedings of the IEEE 54 (1966).

2.1 BASIC FEATURES 25

Single Instruction Stream, Multiple Data Stream (SIMD)
This category defines a computer system having a single instruction proces­
sor and multiple arithmetic and logical processors, thereby allowing simulta­
neous computation to be performed on different streams of data. There are
two very important subcategories within SIMD: 1) the single CPU parti­
tioned into independent functional units, each performing different opera­
tions on specific data streams; and 2) multiple identical arithmetic logical
units (ALUs), each being assigned the same instructions by the instruction
processor but operating on different partitions of the program data.

The Partitioned CPU. We have seen in the preceding basic features that a
single CPU designed as a collection of independent functional units can
sustain several arithmetic and logical operations simultaneously. It is impor­
tant to note that such a CPU contains only one instruction processor and so
processes a single instruction stream, issuing the instructions one at a time. It
is the functional units operating independently that allow new instructions to
be issued before previous instructions have completed execution.

Examples of machines in this category are the single-processor Cray
computers; the CYBER 205; the Fujitsu, Hitachi, and NEC supercomputers;
the Alliant FX/1; the Convex C-l; and the SCS-40.

Multiple ALUs. Again, a single processor handles the stream of program
instructions, and, in this subcategory, passes all instructions to a number of
separate ALUs, each of which then operates on a different segment of the
program data. Perhaps the example easiest to understand is the assignment
of DO loop iterations to individual ALUs. Consider:

DO 2040 I = 1, N
A(I) = B(I) + C(I)

2040 CONTINUE

In this case the instruction processor will assign to each ALU the task of
adding C(I) to B(I) and storing the result in A(I) but will pass a different value
of I to each. If there are fewer ALUs than loop iterations, the instruction
processor will continue to issue the instructions until all values of I have been
processed. If there are more ALUs than loop iterations, the extra ALUs will
be "turned off" during execution of the loop instructions.

Turning off an ALU can mean different things on different systems. It
might mean that the ALU receives instructions and ignores them or it might
perform the computation but not store any results. In any case, it is possible
on any system to render an ALU ineffective at any point in the computation.

Now consider how the multiple-ALU SIMD machines handle condi-

26 SUPERCOMPUTER ARCHITECTURE

tional code:

DO 2 0 5 0 I = 1 , N
I F (D (I) . G T . EPSLON) THEN

A (I) = B (I) + C (I)
ENDIF

B(I) = D(I) * 2.0
2050 CONTINUE

Since all ALUs must receive the same instructions, the instruction processor
issues the following commands to each:

• For your value of I, compute D(I) .GT. EPSLON, and, if false, turn
yourself off.

• For your value of I, compute B(I) + C(I), and store into A(I). The "off"
ALUs will receive this instruction but not act on it.

• Turn yourself on. (Redundant and meaningless to the "on" ALUs but
well-received by those previously turned "off.")

• For your value of I, compute D(I) * 2.0, and store into B(I).

Things become more complicated if the loop has an indefinite termination:
DO 2 0 6 0 I = 1 , N

I F (A (I) . L T . 0 .) GO TO 2 0 6 1
A (I) = A (I) - B (I)

2060 CONTINUE

2061 CONTINUE

Let "iend" be the first value of I such that A(iend).LT.O. Here no values are
to be stored into the array A for I.GE.iend, but if the same mechanism were
employed as we did with loop 2050, A(I) would be modified for any value of
I for which A(I).GE.O., whether or not I.LT.iend. Some multiple-ALU SIMD
machines have only cumbersome mechanisms for reporting the state of one
ALU either to the instruction processor or to the other ALUs, so many
systems resort to running such loops on a single ALU, one iteration at a time.

Examples of machines in this category are the ILLIAC IV, Burroughs
BSP, SAXPY Matrix-1, and Thinking Machines' Connection Machine.

Multiple Instruction Stream, Single Data Stream (MISD)
Now don't get misty over this, but there are no computers that issue multiple
instructions against a single stream of data.

2.1 BASIC FEATURES 27

Multiple Instruction Stream, Multiple Data Stream
(MIMD)
As the name implies, these machines have multiple instruction processors as
well as a means to overlap execution of instructions. Some are simply multi­
ple CPUs sharing a common memory, and their simplest (and most common)
use is to assign entirely separate programs residing in disjoint parts of the
memory to each CPU. This is just a minor step up from the multiprogram­
ming already common on single CPU systems, where several programs
reside in the computer's memory and the CPU is assigned to each in turn.

A more exciting and more complicated application of such systems is to
assign several CPUs to execute the instructions of a single program. Here it is
again necessary to cause each CPU to work on different segments of the
program data, but unlike the multiple-ALU SIMD machines—which work
in lock step, each either performing or ignoring the same instruction seen by
the other ALUs — the MIMD CPUs each perform a unique version of the
instruction stream independent of the others. At critical points in the pro­
gram, the CPUs must be forced to synchronize with one another, either to
properly pass information among themselves or to correctly share a common
memory location. Consider the following conditional dot-product calcula­
tion:

DO 2070 I = 1,1000
IF (B(I) .GT. EPSLON) THEN

SDOT = SDOT + B(I) * C(I)
ENDIF

2070 CONTINUE

Ignoring numerical considerations as to the order in which computation is
performed, we could imagine that each of four processors could be assigned
to compute the dot product in the index ranges 1-250, 251-500, 501-750,
and 751-1000. But notice that each processor would be asynchronously
updating the variable SDOT. Conceptually, two processors could fetch the
same value of SDOT, add their terms to it, and store it back. The first value
stored would be overwritten by the second, and some terms in the sum
would be lost.

Examples of machines in this category are the multiprocessor Cray
X-MPs, Alliant Fx/8, the BBN Butterfly, and the various hypercubes.

2.1.7 Summary
In Chapter 1 we stated that the following loop required at least 400 scalar
instructions to perform the desired addition:

DO 1020 1 = 1 , 100
ARRAY1(I) = ARRAY2(I) + ARRAY3(I)

1020 CONTINUE

28 SUPERCOMPUTER ARCHITECTURE

In fact, considering the incrementation of the index and the test and branch
instruction necessary for the loop, a minimum of six instructions per iteration
is needed to complete the computation. Now assume a scalar computer with
enough resources (registers, paths into memory, etc.) such that the execution
of each instruction can be overlapped with all others. Then, given that the
computer can issue one instruction per clock cycle, we see that a peak
performance of one result every six clock cycles can be achieved.

Even though the floating-point add functional unit can receive new
operands and deliver results at the rate of one per clock cycle, the instruction
issue rate causes the add instructions to be issued only every six clock cycles.
It should be clear, then, that as long as each operation requires the issue of a
machine instruction, further parallelism in a single scalar CPU will have no
payoff. It was this realization that led to the development in the 1970s of the
"vector" processor.

2.2
THE VECTOR PROCESSOR

Of all the supercomputer designs, the single-CPU vector processor is cer­
tainly the most successful to date, and the one that has received the most
attention from Fortran compiler writers. We therefore will direct our atten­
tion to the details of several such designs.

There are two major categories of vector processors; memory-to-mem­
ory machines and register-to-register machines. Each has its own advantages
and disadvantages in the handling of typical Fortran code.

2.2,1 Memory-to-Memory Vector Processors
CDCs Star 100 was one of the first available vector processors, and it has
since evolved through the CYBER 203 to the CYBER 205. Its general archi­
tecture is the heart of the newly announced ETA 10. In scalar mode, these
computers utilize a set of 256 general-purpose registers to hold operands and
results during computation. But in vector mode these CDC machines fetch
vector operands directly from memory to the CPU and store vector results
directly back into memory, with no intervening registers. Since almost all the
computers in this class are CYBER 205s we will limit our discussion to this
machine, with occasional reference to improvements announced in the de­
sign of the ETA 10.

CYBER 205 Characteristics
The CYBER 205 is a virtual memory system. It has a large physical memory
of up to eight million 64-bit words, and a virtual address space of over two

2.2 THE VECTOR PROCESSOR 29

trillion 64-bit words. The hardware is capable of addressing bits, bytes,
half-words (32 bits), full words (64 bits), superwords (or "swords," which are
eight contiguous full words), and double swords. Each one million words of
memory is arranged in 16 "stacks" of eight banks each. Data items are stored
in half-words across the stacks, so one sword of data is represented by 16
half-words, one from each of the stacks. The memory bank cycle time is four
clock cycles. The machine has a clock cycle of 20 nanoseconds and in vector
mode can fetch two swords and store one sword simultaneously, at a com­
bined rate of three words per clock cycle.

The arithmetic, logical, and memory operations of the CPU are carried
out by two sets of segmented functional units, one exclusively for scalar
instructions, the other for vector floating point. There are functional units for
scalar integer arithmetic, logical operations, and scalar floating-point add/
subtract, multiply, divide, and square root. The vector functional units per­
form floating-point add/subtract, multiply, divide, and square root.

Basic Vector Operations. CYBER 205 vector operations are performed in
either one, two, or four pipelines, depending on the model of the machine.
Each pipeline can perform one 64-bit or two 3 2-bit floating-point results

B(14) B(13) B(12) B(ll)

C(14) C(13) C(12) C(ll)

B(l)

B(2)

f
B(500)

H cd)
C(2)

FOUR-STAGE
INPUT BUFFERS

Fortran Loop:

C(10) + B(10)

C(9) + B(9)

C(8) + B(8)

C(7) + B(7)

Π
C(500)

A(l)

A(2)

DO 10 I = 1, 500
10 A(I) = B(I) + C(I)

A(l) A(2) A(3) A(4)

Adder
A(6)

A(5)'

^

_ ?
FOUR-STAGE

OUTPUT BUFFER

A(500)
MEMORY

FIGURE 2.6.
CYBER 205 Memory-to-Memory Vector Pipeline.

30 SUPERCOMPUTER ARCHITECTURE

each clock cycle. So on a four-pipeline machine, as many as eight results per
clock cycle can flow out of the pipeline and back to memory. Figure 2.6
illustrates the flow of data from memory through one pipeline and back to
memory again in a simple 64-bit floating-point vector instruction on the
CYBER 205.

The result rate of one per clock cycle matches the performance of
computers that use high-speed registers for operands and results. This is
achieved by a special memory interface that fetches and stores data in
superwords (eight contiguous 64-bit words). After a startup time, a rate of
two 64-bit words fetched and one 64-bit word stored per clock cycle per
pipeline can be maintained. Keep in mind that if, for any reason, not all
operands are used, or not all results are stored, the memory interface still
must fetch and store the data in swords, and the effective data rate goes
down accordingly.

The input and output buffers aid in the resolution of memory bank
conflicts among the input operands and the ouput results.

As shown, the single pipeline is generating one 64-bit floating-point
add result per clock cycle. In 32-bit floating-point mode, each pipeline is
capable of generating two results per clock cycle. Focusing on just the add
unit, this can be depicted as in Figure 2.7. Here, each 64-bit section of the
arrays B and C is split upon arrival into two 3 2-bit input operands, the effect
being a result rate of two per clock cycle — double that of 64-bit arithmetic.

CYBER 205 Adder in 32-bit Mode

64 bits 64 bits

32 bits 32 bits 32 bits 32 bits

1 i
C(13) + B(13)

C(l l) + B(ll)

C(9) + B(9)

C(7) + B(7)

1 1
C(14) + B(14)

C(12) + B(12)

C(10) + B(10)

C(8) + B(8)

Adder

A(5)

A(3)

A(6)

A(4) r T
FIGURE 2.7.

CYBER 205 Vector Add Functional Unit in 32-Bit Mode

2.2 THE VECTOR PROCESSOR 31

Now consider that a fully configured CYBER 205 has four such pipelines, so
the total result rate can be four 64-bit or eight 3 2-bit floating-point results per
clock cycle.

Linked Triad. Under many circumstances, the add and multiply pipelines
can be linked together, one producing a result fed directly into the other—
thus again doubling the result rate. A DO loop that could utilize this
"linked-triad" capability is

DO 2080 1 = 1 , 10000
A(I) = SCA * B(I) + C(I)

2080 CONTINUE

Figure 2.8 is a diagram of the linked functional units in a single 64-bit
pipeline. The linked-triad instruction performing 32-bit operations on a
four-pipeline machine generates 16 floating point results per clock cycle or
about 800 million floating-point operations per second.

SCA

\
SCA*

SCA *

1 SCA *

1 SCA *

1 ,
B(16)

B(15)

B(14)

B(13)
NMultipl

t(12)

t(H)

t(10) + C(10)

t(9) + C(9)

t(8) + C(8)

t(7) + C(7)

Adder

A(6)

A(5)

FIGURE 2.8.
CYBER 205 Linked-Triad Operation, "t" represents the

intermediate results flowing from the multiplier to the adder.

32 SUPERCOMPUTER ARCHITECTURE

Gather/Scatter Periodic. The vector pipeline instructions of the CYBER
205 always operate on contiguous data; data references with a stride other
than +1 require special treatment. An additional device, the "stream unit,"
performs many special-purpose data-motion operations, among which are
the "gather-periodic" and "scatter-periodic" instructions, which specifically
handle strided data. These instructions can be used to vectorize the following
loop:

DO 2090 1 = 1 , 10000, 10
A(I) = B(I) + C(I)

2090 CONTINUE

Here the vector pipeline cannot directly fetch or store every tenth item of
data. So the vector stream unit issues gather-periodic instructions to fetch the
necessary data from the B and C arrays and stores the data into temporary
contiguous arrays in memory. Then these temporary arrays are added in the
vector pipeline with another temporary array created to hold contiguous
results. Finally, the stream unit issues a scatter-periodic instruction to fetch
the contiguous result array and place the answers into every tenth element of
the array A. It is as if the following loops were executed:

Comment: Periodically gather every tenth element of B
K = 0
DO 2091 1 = 1 , 10000, 10

K = K + 1
TEMPB(K) = B(I)

2091 CONTINUE

Comment: Periodically gather every tenth element of C
K = 0
DO 2092 1 = 1 , 10000, 10

K = K + 1
TEMPC(K) = C(I)

2092 CONTINUE

Comment: Perform vector addition of gathered arrays
DO 2093 J = 1, K

TEMPA(J) = TEMPB(J) + TEMPC(J)
2093 CONTINUE

Comment: Periodically scatter results into every tenth element of A
K = 0
DO 2094 1 = 1 , 10000, 10

K = K + 1
A(I) = TEMPA(K)

2094 CONTINUE

Gather/Scatter Random. With the related instructions "gather random"
and "scatter random," the stream unit also handles indirect addressing. So in
the following loop the stream unit "gathers" temporary contiguous vectors
by applying the values in the array IB to the array B and the values of IC to C.

2.2 THE VECTOR PROCESSOR 33

The add of the temporary vectors is then performed in the vector pipeline,
with the results going to another temporary array. Finally, the stream unit
then "scatters" the temporary array of results into the array A under control
of the index array IA.

DO 2100 1 = 1 , 10000
A(IA(I)) = B(IB(I)) + C(IC(I))

2100 CONTINUE

In handling the preceding loop, essentially the following operations are
performed:

Comment: Randomly gather the indirectly addressed elements of B
DO 2101 1 = 1 , 10000

TEMPB(I) - B(IB(I))
2101 CONTINUE

Comment: Randomly gather the indirectly addressed elements of C
DO 2102 1 = 1 , 10000

TEMPC(I) = C(IC(I))
2102 CONTINUE

Comment: Perform vector addition of gathered arrays
DO 2103 1 = 1 , 10000

TEMPA(I) = TEMPB(I) + TEMPC(I)
2103 CONTINUE

Comment: Randomly scatter results into every tenth element of A
DO 2104 1 = 1 , 10000

A(IA(I)) = TEMPA(I)
2104 CONTINUE

Bit Vectors. The stream unit also generates and manipulates bit vectors. A
bit vector is a field in memory of up to 65,535 bits, each of which can be set
or interrogated. One of the common uses of a bit vector is as a mask in a
conditional operation. A bit vector could be used to control the operations in
the following DO loop:

DO 2110 1 = 1 , 10000
IF (B(I) .GT. EPSLON) THEN

A(I) = B(I)**2 + C(I) / SCA
D(I) = SQRT (A(I)) * C(I)

ENDIF
2110 CONTINUE

A bit vector of length 10,000 can be generated by setting the Ith bit to one or
zero, depending on whether the relational expression "B(I) .GT. EPSLON" is
true or false, respectively. All computation within the IF-block can then be
performed with special instructions that perform the desired operations over
the entire range 1 to 10000, skipping the computation of any elements
associated with a bit whose value is zero.

An alternate way to perform loop 2110 on a CYBER 205 would be to

34 SUPERCOMPUTER ARCHITECTURE

utilize the bit vector to perform compress/decompress operations. In this
case, special vector pipeline instructions gather up the elements of interest
[i.e., where the condition B(I) .GT. EPSLON is true] into temporary arrays in
memory, the arithmetic is performed with simple vector operations on the
temporary arrays, then the answers are decompressed back into the arrays A
and D. In essence the following operations are performed:

Comment: Compress elements of B and C into TEMPB and TEMPC
K = 0
DO 2111 1 = 1 , 10000

IF (B(I) .GT. EPSLON) THEN
K = K + 1
TEMPB(K) = B(I)
TEMPC(K) = C(I)

ENDIF
2111 CONTINUE

Comment: Perform vector arithmetic on compressed vectors
DO 2112 I = 1,K

TEMPA(I) = TEMPB(I)**2 + TEMPC(I) / SCA
TEMPD(I) = SQRT (TEMPA(I)) * TEMPC(I)

2112 CONTINUE

Comment: Decompress results into arrays A and D
K = 0
DO 2113 1 = 1 , 10000

IF (B(I) .GT. EPSLON) THEN
K = K + 1
A(I) = TEMPA(K)
D(I) = TEMPD(K)

ENDIF
2113 CONTINUE

Finally, the stream unit performs many high-level vector instructions
typically realized in hardware on other computer systems. These include dot
product, sum of elements, product of elements, first difference, average,
vector reverse, and many more.

We have stated in this chapter that the important characteristics of
functional units are their startup time and result rate. Table 2.3 lists the
values for some common instructions used by Fortran programs. These are
tabulated both for two-pipeline and four-pipeline CYBER 205s and for 32-bit
and 64-bit arithmetic.

Vector length of an instruction can be up to 65,535 on the CYBER 205,
so from Table 2.3 it should be clear that for very long vectors the startup time
is of little importance. For example, in 64-bit mode on a two-pipeline ma­
chine, the addition of two 10,000-element vectors requires 5051 clock cycles,
or 0.51 cycles per element. Conversely, short vector processing is completely
dominated by the startup time of each instruction. The sum of two ten-
element vectors on the same configuration takes 56 clock cycles, or 5.6 cycles
per element. Multiple pipelines actually exacerbate this problem by further

2.2 THE VECTOR PROCESSOR 35

TABLE 2.3 Selected Vector Operation Times, CYBER 205a

Operation

Add/Subtract

Multiply

Linked Vector Add and Mult
Triad

Divide

Square Root

Scatter Vector A Randomly

Scatter Vector A Periodically

Gather Vector A Randomly

Gather Vector A Periodically

Compress Vector A (Z # of
element compressed)

Expand Vector A (Z # of
elements expanded)

Time,

2-Pipe

51 + N / 2

52 + N / 2

103 + N / 2

80 + N/.28

79 + N/.28

83 + N/ .8

71 + N/ .8

69 + N/ .8

39 + N/ .8

52 + Z/2

58 + Z/2

64 Bit

4-Pipe

51 + N / 4

52 + N / 4

103 + N / 4

80 + N/.56

79 + N/.56

83 + N/ .8

71 + N/ .8

69 + N/ .8

39 + N/ .8

52 + Z/4

58 + Z/4

Time,

2-Pipe

51 + N / 4

52 + N / 4

103+■ N / 4

68 + N/.5

67 + N/.5

83 + N/ .8

71 + N/.8

69 + N/ .8

39 + N/ .8

52 + Z/4

58 + Z/4

32 Bit

4-Pipe

51 + N /8

52 + N /8

103 + N / 8

6 8 + N

67 + N

83 + N/.8

71 + N/ .8

69 + N/ .8

39 4- N/ .8

52 + Z/8

58 + Z/8

Sum of Elements 116+ N 116 + N 116-hN 116 + N

Dot Product 116+ N 116 + N 116+ N 116+ N

a Vector length = N. Format is startup time + result rate. Table derived from Clifford N. Arnold,
"Vector Optimization on the CYBER 205," Control Data Corporation, Arden Hills, MN.

shortening the vector seen by each pipeline, but the startup time remains
constant. In other words on a four-pipeline machine adding two ten-element
vectors requires 53.5 clock cycles, only a 4.5% improvement, rather than the
50% improvement we see on very long vectors. The crossover point between
scalar and vector performance on the CYBER 205 is on the order of length 50
for most calculations.

Note that, in Table 2.3, operations carried out by the stream unit are
insensitive either to the number of pipelines or the precision of the data.

2.2.2 ETA 10
The ETA 10 is a computer system composed of from one to eight CPUs
similar in architecture to the CYBER 205. Each CPU has four million 64-bit
words of memory and two vector pipelines, sharing a common memory of
256 million 64-bit words. The common memory acts as a page server to the
CPUs. The system has been initially released with a 12.5-nsec clock cycle,
eventually to be lowered to 7 nsec. More important, the vector startup times

36 SUPERCOMPUTER ARCHITECTURE

have been lowered by about a factor of four to five, making short vector
performance much better than on the original CYBER 205.

2.2.3 Register-to-Register Vector Processors
These machines move data from memory to vector registers and perform
computations with vector-register operands, placing results again into vector
registers. These results are either retained for further use or stored back into
memory. The first register-to-register vector processor was the Cray-1, and
the same architecture has been used in the follow-on machines, the Cray-IS,
the Cray X-MP and the Cray-2. In fact, all other vector processors except the
CYBER 205 and ETA 10 are register-to-register machines, remarkably similar
to the Cray computers in basic features. So we will concentrate on these as a
basis for this discussion, with occasional reference to other computers that
have some important additional features.

Basic Characteristics
The major characteristics affecting performance of Fortran programs on this
class of machines are

• Clock cycle

• Instruction issue rate

• Size and number of vector registers

• Memory size

• Number of concurrent paths to memory

• Ability to fetch/store vectors with a stride

• Number of duplicate arithmetic functional units (multiple vector pipe­
lines)

• Whether functional units can be "chained" together

• Indirect addressing capability

• Handling of conditional blocks of code

Clock Cycle. Earlier in this chapter we stated that if all other features of a
computer system remained the same, then performance would vary inversely
with the clock cycle. But, across different computer systems, the clock speed
is not always a good comparison. For example, the Alliant FX/8 has a clock
cycle of 167 nsec, but the architecture of the system allows a fully optimized
code to run as much as 32 times faster than pure scalar execution. And the
FX/8 sometimes approaches (or even surpasses) the performance of a Cray-1
with a 12.5-nsec clock.

2.2 THE VECTOR PROCESSOR 37

Instruction Issue Rate. We have said that computers typically can issue
one instruction per clock cycle, but the peak rate at which the Cray-2 can
issue instructions is one every two clock cycles. So, although the Cray-2 has a
4.1-nsec clock, its effective clock speed in scalar mode is 8.2 nsec. Viewed in
the context of Amdahl's law, this can have a drastic effect on any program
not highly vectorized.

Vector Registers. All Cray computers have eight vector registers, each
having 64 elements that are 64 bits wide. When a loop of arbitrary length is
"vectorized," it is done in vector strips of length 64. Consider the loop:

DO 2120 I = 1, N
A(I) = B(I) + C(I)

2120 CONTINUE

In effect, this is performed on a Cray in the following way:

NM0D64 = MOD (N, 64)
DO 2121 1 = 1 , NM0D64

A(I) = B(I) + C(I)
2121 CONTINUE

I = NM0D64
DO 2122 J = NMOD64+1, N, 64

DO 2122 KOUNT = 1, 64
1 = 1 + 1
A(I) = B(I) + C(I)

2122 CONTINUE

If N is not evenly divisible by 64, loop 2121 does the "remainder," or else it is
not executed (NMOD64 = 0). Loop 2122 then performs a series of loops,
each of exactly 64 in length to complete the computation. This technique is
called "stripmining" a loop.

Note that if N is less than 64, loop 2121 performs all of the computa­
tion, and loop 2122 is never executed. The reason for doing the remainder
first rather than last is that typical loops will have a remainder, and some
loops will be shorter than length 64.

The number of elements in a vector register obviously determines the
length of a "strip." Vector registers on the Alliant FX processors each have 32
elements, the IBM 3090 Vector Facility has registers of 128 elements, the
NEC SX2 has 256 elements per register, and on the Fujitsu VP Series they are
dynamically configurable in lengths of 32, 64, 128, 256, 512, or 1024 ele­
ments.

Perhaps a more subtle point regarding vector-register length is the
startup time to fetch data from main memory to a vector register. (This
startup time can also be thought of as the number of segments in a "memory
functional unit.") On the Cray-1 and Cray-lS, startup is seven clock cycles.
On the X-MP it is seventeen clock cycles, and the Cray-2 in its initial release
has a startup time of 57 clock cycles. Never mind that the clock cycles get
progressively shorter on these machines. The fact is that the average number

38 SUPERCOMPUTER ARCHITECTURE

of cycles per data item transferred is 1.125 on the Cray-1 and rises to 1.89 on
the Cray-2, a significant difference in overhead cost.

Memory Size. The amount of main memory available on vector processors
can affect wall-clock-time performance of Fortran programs, more so than
the CPU time for executing any particular program. On a virtual memory
system, if the current data does not reside within the working set of pages,
then thrashing can reduce performance to the speed of the secondary
storage — disks, usually. In the worst case, this can cause a program's per­
formance to be limited by the speed of sound (rate at which disks spin),
rather than the speed of light. On a physical memory machine, a very large
program will force the programmer to adopt I /O techniques to move data
between main and secondary storage, with much the same possible perform­
ance degradation that occurs on virtual systems.

It should be obvious, then, that the larger the main memory of a
computer, the less often we will face these problems, regardless of any other
limitations of a given machine. Currently, the largest available main memory
is on the Cray-2, with 268,435,456 64-bit words — casually referred to as 256
million words (which is exact if we assume that a million is
2**20 = 1,048,576). This is at least eight times larger than main memory on
other supercomputers, although newer, larger models of every machine are
developed each year. The difference between the casual and actual memory
sizes of the Cray-2 is larger than the total main memory available on most
computers.

Number of Memory Paths. The number of independent paths into mem­
ory can greatly affect the capability of a machine to overlap instructions,
especially in relatively simple loops involving several different arrays (i.e., a
loop in which almost every arithmetic operation is matched with a memory
fetch or store of a vector). The Cray-1, Cray-IS, and Cray-2 each have one
path into main memory, and it provides both fetching and storing of data but
not both at the same time. The Cray X-MP has two fetch paths and one store
path, all of which can operate concurrently. Thus in the simple loop:

DO 2130 1 = 1 , 64
A(I) = B(I) + C(I)

2130 CONTINUE

the Cray-1 performs the following steps:

• Fetches the vector B(l:64) to a vector register

• Fetches the vector C(l:64) to another vector register, adds it to the
previously fetched B(l:64), and places the result in a third vector
register

• Stores the final result into A(l:64)

2.2 THE VECTOR PROCESSOR 39

The Cray X-MP, with its extra memory paths:

• Fetches the vector B(l:64) to a vector register, while simultaneously
fetching C(l:64), and, as soon as B(l) and C(l) have arrived, begins
adding the vectors together, placing the results in a third vector
register while simultaneously storing the results into A(l:64). (What a
mouthful!)

Here we have used the ANSI 8X Fortran ''array section'' notation to indicate
ranges of elements in the arrays. This will be fully discussed in Chapter 3.

Figure 2.9 indicates the relative cost in clock cycles for the preceding
loop on the Cray-1 and X-MP. Note that if the X-MP had only one memory
path like the Cray-1, then the difference in performance would have only
been the ratio of their respective clock cycles, 12.5/8.5 = 1.5. But, strictly
because of additional memory paths, the performance ratio is
2812/782 = 3.6!

A fully configured Fujitsu vector processor has two memory paths that
can either fetch or store vector operands. The Hitachi S820 has three memory
paths devoted to fetching only, and one that can handle either fetching or

DO 1010 I = 1, 64
A(I) = B(I) + C(I)

1010 CONTINUE

FETCH B(l:64)

FETCH C(l:64)

B(l:64) + C(l:64)

STORE A(l:64)

0 50 100 150 200 250

FETCH B(l:64)

FETCH C(l:64)

B(l:64) + C(l:64)

STORE A(l:64)

0 50 100 150 200 250

FIGURE 2.9.
Timing Diagram for Vector Addition, (a) Cray IS, clock

cycle = 12.5 nsec; 225 CC, 2812 nsec, 23 Mflops. (b) Cray X-MP,
clock cycle = 8.5 nsec; 92 CC, 782 nsec, 84 Mflops.

(a)

Clock Cycles

(b)

Clock Cycles

40 SUPERCOMPUTER ARCHITECTURE

storing. The NEC SX2 has two fetch paths and two store paths. All three of
these machines have wider memory paths than does a Cray X-MP processor.
For example, the maximum throughput on one memory path of the Cray
X-MP is one word per clock cycle. The Fujitsu VP 400 can deliver four words
per clock cycle on each memory path, and the fully configured Hitachi and
NEC machines also have this capability.

These multiword memory paths split up the work of a single operation;
they cannot be devoted independently to different operations. So, for exam­
ple, adding vectors B and C and storing the result in vector A on the SX2 will
result in one memory path devoted to delivering four elements of B per clock
cycle, another delivering four elements of C, and still another delivering four
elements per clock cycle into A.

Finally, even though we class these machines as register-to-register
vector processors, some of them (not Cray) have instructions that can take
one operand from a vector register and another directly from memory to the
CPU. This added benefit allows such machines to utilize vector registers
strictly for data that will be used more than once in the current loop being
computed, a luxury that the Cray computers lack.

Fetch and Store Vectors with a Stride. All of the register-to-register vector
processors regard a simple vector in memory to be represented by a starting
address, a length, and a stride. Each has memory instructions that can fetch
and store such data structures. From the point of view of the instruction set,
each of the following loops is equally easy to execute in vector mode:

DO 2140 1 = 1 , 100
A(I) = B(I) + C(I)

2140 CONTINUE

DO 2150 1 = 1 , 1281, 128
A(I) = B(I) + C(I)

2150 CONTINUE

DO 2160 I = 100000, 0, -1000
A(I) = B(I) + C(I)

2160 CONTINUE

However, the second loop, with its stride of 128, will certainly cause mem­
ory-bank conflicts on every supercomputer and consequently will run at least
four or eight times more slowly than loop 2140 with its stride of one. The
negative stride of loop 2160 will execute just as quickly as it would if the
stride were positive.

Beyond memory-bank conflicts, some of the machines — such as the
IBM 3090 Vector Facility, Alliant FX/8, and the Convex C- l— use cache
memory between the main memory and the vector registers. We discussed
earlier that it is the nature of cache to fetch more words than just the one
requested, so strided data will not utilize the full memory transfer rate as can
be done on systems without cache.

2.2 THE VECTOR PROCESSOR 41

Finally, on virtual memory systems, a large stride can cause a great
many page faults within the system, with relatively little use of the data
moved to and from slow auxiliary storage.

Number of Vector Pipelines. On the Cray computers there is only one of
each kind of functional unit in a CPU: one adder, one multiplier, and so
forth. The Convex C-l and C-MP and the Japanese supercomputers made by
Fujitsu, Hitachi, and NEC each has multiple copies of the vector functional
units or multiple "pipelines." For these machines, the multiple pipelines act
in a manner similar to those of the CYBER 205; that is, all duplicate func­
tional units work on the same vectors, each taking a separate segment of the
data. In effect, it is as if the vector length were divided by the number of
pipelines, with the time to complete a vector operation reduced by about the
same factor.

Chaining. On all of the register-to-register vector processors except the
Cray-2, the vector functional units can be "chained" together, thus allowing
overlap of related operations. This is similar to the "linked triad" on the
CYBER 205 but generally more flexible in that any combination of
operations — not just the multiply and add functions — can be chained. But
in practice, multiply — add combinations are by far the most common in
Fortran programming. Consider the following loop as it is executed on a Cray
X-MP:

DO 2170 I = 1,64
A (I) = 3 . 0 * A (I) + (2 . 0 + B (I)) * C (I)

2170 CONTINUE

The values 3.0 and 2.0 will be set into scalar registers before the loop begins.
Then the following steps will take place:

• Begin to fetch the vector of values A(l:64) to a vector register.

• Begin to fetch the vector of values B(l:64) to another vector register
(overlapped in time with the previous fetch).

• As soon as B(l) arrives at its vector register, also pass it (and then all
subsequent elements) to the adder, along with the scalar value 2.0.
This "chains" the vector fetch to the add functional unit.

• As soon as A(l) arrives at its vector register, also pass it (and then all
subsequent elements) to the multiplier, along with the scalar value 3.0
[this overlaps with the above computation 2.0 + B(l:64)].

• Issue the fetch instruction for C(l:64). This instruction will wait for a
memory functional unit to complete one of the previous fetches, at
which time the elements of C will begin to flow up from memory.
[Note that this "wait" will also assure that the multiply functional

42 SUPERCOMPUTER ARCHITECTURE

unit will have completed 3.0 * A(l:64) by the time it is needed in the
next step.]

• As soon as C(l) arrives at its vector register, also pass it (and then all
subsequent elements) to the multiplier, along with the previously
computed values of 2.0 + B(l:64). This chains the vector fetch to the
multiply functional unit.

• As soon as (2.0 + B(l:64)) * C(l:64) exits the multiplier and enters its
vector register, chain it to the add functional unit along with the
previously computed vector register of 3.0 * A(l:64).

• As soon as the first result exits the add functional unit, chain it to the
store functional unit to return the answers to memory.

A timing diagram of these steps is shown in Figure 2.10. Here we have
eliminated the clock-cycle count in the abscissa to highlight the two distinct
portions of the computation in which operations have been overlapped and
chained together. These "chained vector times" or "chimes" are the domi­
nant feature of the timing diagram. Ignoring the startup time of a vector
instruction, a chime represents a number of clock cycles approximately equal
to the vector length, in this case 64. It should be obvious that if a computer
system can perform an operation in two chimes instead of four, there is a
50% savings in time.

A new chime must begin each time the system wants to reuse some
resource, either a vector functional unit or an operand vector register. To
illustrate this point, consider the chime diagrams for the Cray-1, which has
only one memory functional unit, and the Cray-2 with one functional unit
and overlapping but no chaining of vector instructions.

A(1:64)-^VQ

B(1:64)-»»V1

2. + VI-»»V3

3. * V0 - » V 4

C(1:64)-»»V5

V3 * V5-»»V6

\ 4 + V6-»V7

V7-»> A(l:64)

Time ►
Chime 1 Chime 2

FIGURE 2.10.
Cray X-MP Chime Diagram

2.2 THE VECTOR PROCESSOR 43

A(l:64)-»»vo

B(l:64)-»»vi

2. + V I - » V 3

3 ^ * V 0 - ^ V 4

C(1:64)-»»V5

V3 * V5-»V6

V4 + V6-»»V7
V7-»» A(l:64)

Time-
Chime 1 Chime 2 Chime 3 Chime 4

FIGURE 2.11.
Cray-1 Chime Diagram

The clock cycles of the Cray-1, Cray X-MP, and Cray-2 are 12.5, 8.5,
and 4.1 nsec, respectively. But because of differences in architecture they
require four, two, and six chimes to complete the computation in the loop, so
the absolute performance of each machine does not always reflect the differ­
ences in their clock speed. Given that a chime for this loop is roughly 64 clock
cycles, then the approximate time for each machine is:

Cray-1: 4 chimes * 64 * 12.5 nsec = 3200 nsec
Cray X-MP: 2 chimes * 64 * 8.5 nsec = 1088 nsec
Cray-2: 6 chimes * 64 * 4.1 nsec = 1574 nsec

A(l:64)-»»vo

B(1:64)-»»V1

3. * V0-»*V4

C(l:64) -»»V5

2. + VI -»»V3

V3 * V5-»»V6

V4 + V6-»»V7
V7-** A(l:64)

Time-
Chime 1 Chime 2 Chime 3 Chime 4 Chime 5 Chime 6

FIGURE 2.12.
Cray-2 Chime Diagram

44 SUPERCOMPUTER ARCHITECTURE

Remember, this is an analysis of just this particular loop. We shall see in
chapter three that compilers have many ways to enhance performance in
more complicated (more typical) loops.

The same kind of chime analysis can be done on all of the register-to-
register vector processors and can be applied to almost any vectorizable loop.
It is very valuable in predicting and understanding the performance of a
supercomputer on any loop.

Indirect Addressing. Consider the following indirect address loop:

DO 2180 1 = 1 , 64
A(IA(I)) = B(IB(I)) + C(IC(I))

2180 CONTINUE

All the register-to-register vector processors except the Cray-1, Cray-IS, and
the initial releases of the Cray X-MP and the SCS-40 have vector machine
instructions to handle indirect addressing. These instructions could be uti­
lized to perform loop 2180 in the following steps:

• Fetch the vector of values IB(1:64) to a vector register (VO).

• Fetch the vector of values IC(1:64) to another vector register (VI).

• Apply the values in VO to the address of the array B, and fetch the
values into another vector register (V2).

• Apply the values in VI to the address of the array C, and fetch the
values into another vector register (V3).

• Perform V2 + V3 = V4.

• Fetch the vector of values IA(1:64) to another vector register (V5).

• Store the values in register V4 into the array A indexed by the values
in V5.

On machines with only one memory path, indirect addressing such as
in loop 2180 will double the number of chimes required to perform the
specified operations. Even on multiple memory-path machines, indirect ad­
dressing on one path will often disallow indirect addressing on another,
thereby reducing overlapping and chaining of instructions. This is a hidden
cost of indirect compared to direct addressing.

On those older machines that do not possess indirect address vector
instructions, scalar instructions fetch the data, which are then accumulated
into a vector register so that vector arithmetic instructions can be used. If this
technique is not used with care, it can actually run more slowly than if pure
scalar code had been used. A good rule of thumb on such machines is to run
a loop in scalar mode if the number of indirect memory references exceeds
the number of arithmetic operations.

2.2 THE VECTOR PROCESSOR 45

Now consider a loop that has only one indirect index used to subscript
all of the loop arrays, a fairly common occurrence in sparse matrix calcula­
tions:

DO 2190 1 = 1 , 64
A(JJ(I)) = B(JJ(I)) + C(JJ(D)

2190 CONTINUE

Once the vector JJ(1:64) has been fetched to a vector register, it can be
reused again and again to indirectly fetch and store the arrays of the compu­
tation; it need not be refetched for each of the other arrays as was the case
with several different indirect indexes.

Finally, note that the ability to fetch and store data indirectly allows the
vectorization of any array reference that appears in a loop (except where
other circumstances prevent vectorization). In the following loop, each of the
array indexes can be viewed as a vector of indirect address values to be
computed at execution time:

DO 2200 I = 1,N
J = I * I / (I + 1)
K = MOD (J, 10) + 1
L = ISQRT (IA(I) * IB(I))
M = 6 - M
A(J) = (B(K) + C(L)) * D(M)

2200 CONTINUE

Conditional Code Blocks. All register-to-register vector processors have
two means of handling conditional blocks of code; 1) the use of a vector-
mask operation; and 2) the use of "compressed-index" instructions.* Know­
ing when the Fortran compiler will choose one of these techniques, and how
to force it to use one or the other, are important points to learn for effective
programming. The following loop illustrates both mechanisms:

DO 2210 I = 1, N
IF (X (I) . GE. 0 . 0) Y (I) = A (I) + B (I)

2210 CONTINUE

Each machine has a vector-mask register (VM) that has as many bits as
there are elements in a vector register. For the Cray computers, the VM is 64
bits wide. The bits can be set to one or zero, depending on whether a vector
condition is true or false. Remembering that the preceding loop will be
stripmined into lengths matching the vector-register length, then for each
strip the following steps can be taken on a Cray:

• Fetch the next 64 elements of X to a vector register (VO).

• Set the bits of VM to one where a corresponding element of VO is
positive, else set the bits to zero.

* Actually, Fujitsu vector processors have a third method, in which the operands of interest are
compressed from one vector register to another.

46 SUPERCOMPUTER ARCHITECTURE

• Fetch the next 64 elements of A to a vector register (VI).

• Fetch the next 64 elements of B to a vector register (V2).

• Compute VI + V2 = V3 (for all elements).

• Fetch the next 64 elements of Y to a vector register (V4).

• Generate register V5 by choosing elements from V3 where the corre­
sponding bit of VM is 1 and by choosing elements from V4 where the
bits are zero.

• Store V5 into the 64 elements of the array Y.

Or to state it more simply, perform all the computation in vector mode for all
elements, then store only those elements for which the condition is true.

These vector-mask operations are depicted in Figure 2.13 for X(I) .GE.
0.0 true for all odd values of I.

Although all computation of all elements is performed, vector-mask
computation is so fast that it will outperform scalar mode any time that the
condition is true a significant percentage of the time. Here, "significant
percentage" depends highly on the number of operations being performed
and could range from 5% to 100%.

On most non-Cray vector processors, the vector mask can control any
operation — not just the final choice of elements — and this is very conve­
nient in certain circumstances. In fact, for the simple operations of loop 2210,
the add and store operations can be performed under control of the vector
mask. This eliminates the need to fetch the vector Y or to build a vector
register filled with old and new values for Y.

All the computer systems have simple mechanisms to determine if the
VM is all zeroes or all ones, in order to skip any unnecessary steps.

There are two possible problems with using this vector-mask approach.
First, if the condition is rarely true, the system must perform all the arithme­
tic for all elements, then store only a very few results. Even though vector
mode is an order of magnitude faster than scalar mode, there is no payoff if
the condition is true only 1% of the time. The more CPU intensive the
computation is, the worse this problem becomes. Second, especially in the
case of the Cray computers, the condition may be avoiding a singularity in
the program. For example:

DO 2220 I = 1, N
IF (X (I) . NE. 0 . 0) Y(I) = A (I) / X(I)

2220 CONTINUE

It should be clear that if all elements of A are divided by all elements of
X unconditionally, then any element with zero value will cause the program
to abort. If compilers want to use vector-mask operations on loop 2220, they
must have some guard against these singularities. On most of the non-Cray

2.2 THE VECTOR PROCESSOR 47

Fetch X(l:64) to register VO

VO

x(i)
X (2)

X (3)
VM

X(I).GE.O.
1010101010...010

X(64)

Fetch A(l:64) to VI and B(l:64) to V2
VI

A(1)

A(2)

A(3)

A(64)

Fetch Y(l:64) to V4

VM V4

Y(1)

Y(2)

Y(3) OR

Ξ Y(64)

V2

| B (l)

B(2)

| B (3)

...
|B (64)

V

=

3

A(1) + B(1)

A(2) + B(2)

A(3) + B(3)
... + ...

A(64) + B(64)

i ̂ 3

A(1) + B(1)

A(2) + B(2)

A(3) + B(3)
... + ...

A(64) + B(64)

=

V5

A(1) + B(1) 1

Y(2)

A(3) + B(3)
... + ...

Y(64)

Store V5 into Y

FIGURE 2.13.
Vector Mask Operations for Loop 2210

systems the vector-mask register can be applied to the divide operation so
that only where the bit is one is the divide result actually generated. (It
should be noted that this approach does not save any time: The divides
associated with zero VM bits take just as long—they just do not generate
singularities or deliver any results.)

In the "compressed-index" approach to the preceding DO loop, a vector
register is generated containing those indexes where the condition is true.
This register can then perform indirect address operations on the arrays
involved. Computation is performed on only the elements that would be
handled if the loop were executed in scalar mode. Here are the steps for loop
2220, using compressed-index instructions:

• Fetch the next 64 elements of X to a vector register (VO)

48 SUPERCOMPUTER ARCHITECTURE

• Set the bits of VM to one, where a corresponding element of VO is
positive. Or set the bits to zero, and for each positive value of VO set
the next available element of register V7 to the corresponding index in
the array X.

• Apply the values in V7 to the address of the array A, and fetch the
values into another vector register (VI).

• Apply the values in V7 to the address of the array X, and fetch the
values into another vector register (V2).

• Compute VI / V2 = V3 (for all compressed elements).

• Store V3 into the array Y indexed by the values in V7.

To illustrate this compressed-index operation, assume that in loop
2220, X(I) is not equal to zero only for every thirtieth element. Then, for the
first 64 elements, the register operations in Figure 2.14 depict the steps
already outlined.

To summarize this section on conditional code, the following points
should be kept in mind:

• Vector-mask operations are extremely fast and efficient for code exe­
cuted under control of a condition that is usually true.

vo
x(i)
X (2)

X (3)

X(64)

/

100.

/

X(I).NE 0.

VM
.100...1000

V7
1

31

61

Fetch A and X indexed by V7 into VI and V2

VI V2 V3

A(1)

A(31)

A(61)
/

X(1)

X(31)

X(61)
=

Y(i)|
Y(31)

Y(61)|

Store V3 into Y indexed by V7

FIGURE 2.14.
Compressed-Index Register Operations

2.2 THE VECTOR PROCESSOR 49

• Since vector-mask operations perform all operations for all elements,
chaining can take place.

• Vector-mask control performs calculations ultimately unused, so care
is required to not introduce unacceptable overhead costs.

• On some systems, vector mask only applies to the final choice of
answer, so singularities might occur, causing program abort.

• Compressed-index operations perform memory references with indi­
rect addressing, inherently slower than direct memory references, and
sometimes reducing chaining and overlapping of memory references
with other operations within the loop.

• Compressed index will usually outperform vector mask for code exe­
cuted under control of a condition that is true less than one-half the
time.

• Compressed index operates on exactly the same elements as would be
used in pure scalar mode, so no additional concern about singularities
is introduced.

• All systems' vector processors have vector-mask operations, but some
do not have compressed-index instructions. So for such machines,
compressed index (done in software with scalar indirect addressing)
will rarely outperform vector mask.

• In cases where conditional code is almost never executed, scalar mode
might be faster than any vectorization technique.

Problems
1. Consider a memory-bank structure that has 256 banks, and the bank

cycle time is 64 clock cycles. If the memory functional-unit time is
25 + N, how long would it take, in clock cycles, to fetch 64 words from
memory with strides of 1, 2, 4, 8, 16, 32, 64, 128, and 256?

2. The major bottleneck on a SISD machine is that only a single instruction
can be issued each clock cycle. Explain how the following machines
overcome this bottleneck and what category (SIMD or MIMD) each are:

a. Uniprocessor of a Cray X-MP in vector mode.
b. Multiprocessor of a Cray X-MP each operating in scalar mode.
c. Multiprocessor of a Cray X-MP each operating in vector mode.
d. Illiac IV.
e. Alliant FX/8 using one processor in vector mode.
f. Alliant FX/8 using eight processors in scalar mode.
g. Alliant FX/8 using eight processors in vector mode.

3. On the CYBER 205, a vector operation under control of a bit vector is as

50 SUPERCOMPUTER ARCHITECTURE

fast as the operation without bit vector control. Consider the following
DO Loop:

INTEGER S

DO 10 I = 1, 10000, S
A(I) = B(I) + C(I)

10 CONTINUE

The two methods of vectorizing this loop on the CYBER 205 are 1)
periodically gather arrays B and C into temporary memory vectors TB
and TC, add TB to TC, and store into temporary memory vector TA; then
periodically scatter TA into A; or 2) add B to C over the entire index range
1 to 10000, using a bit vector that will only store into every Sth element
of A.

Using the timings from Table 2.3, calculate the time needed for
each method as a function of S. If S = 1, method 2 is faster; if S = 500,
method 1 is faster. For what stride (S) does method 1 first become faster
than method 2 for a 4-pipe CYBER 205 in 32-bit mode? For a 2-pipe
CYBER 205 in 64-bit mode?

4. Vectorization of IF constructs on the CYBER 205 can be performed using
bit vectors to control storage into the arrays. For example, for loop 2110
in the text, if we ignore the length of time taken to generate the bit vector
for the condition B(I).GT.EPSLON, how often must the condition be true
before the "controlled-store" approach runs faster than the compress/
expand approach? (Use timings from Table 2.1.)

5. What is the minimum number of chimes required to perform each of the
loops 41020 through 41039 in Appendix A on the Cray 1? On the Cray
X-MP? On the Fujitsu VP200? What is the limiting resource within each
CPU that results in this minimum number of chimes?

6. The optimal length for a vector register depends on the startup time for
the vector operations. On the Cray-1, the CPU-time for the execution of:

DO 20 I = 1,N
A(I) = B(I) + C(I)

20 CONTINUE

is approximately

(INT((N-l)/64)+l) X (25 + 3N) X 12.5 X 10"9 sec

a. What is the Mflop rate for N = 64?
b. What is the Mflop rate for N = 128?
c. What would the Mflop rate be for N = 64 if the vector registers

were 128 elements long?
d. What would the Mflop rate be for N = 128 if the vector registers

were 128 elements long?

2.2 THE VECTOR PROCESSOR 51

e. Work problems a through d again for a time formula of:

(INT((N-l)/64)+l) X (50 + 3N) X 12.5 X 10"9 sec

7. On the Cray X-MP the second and third strip of 64 can overlap with the
preceding strip. The Cray X-MP timing for loop 20 in the preceding
exercise is approximately

(45+N) X 8.5 X 10~9 sec

for N<64, and for N>64 it is

(45 + N mod 64 + (INT((N~65)/64)+l)
X (13+64)) X 8.5 X 10~9 sec

For the Cray X-MP, answer problems a through d of the preceding
exercise.

8. The text discusses two possible methods of vectorizing IF statements on a
Cray X-MP. For loop 2210, assume that the conditional vector-merge
approach runs in 3 chimes and the compressed-index approach runs in 5
chimes. What fraction of the elements of X must be ^ 0.0 for the
conditional vector-merge approach to run faster?

9. Why do some compilers refuse to vectorize loop 2000?

10. Things to try on your machine. Execute the following code on your
machine. (You may have to reference a different timing function.)

DO 100 K - 1, 128
Tl = SECOND ()
DO 50 I = K, K*64, K
A(I) = (B(I)*C(I))+(D(I)*E(I))

50 CONTINUE
T2 = SECOND ()
PRINT *, K, T2-T1

100 CONTINUE

From the timing, can you determine how many memory banks your
machine has?

3
FORTRAN

Fortran is the oldest of the high-level languages and possibly the most
maligned. It is certain that new ideas enter new languages much faster than
they can enter the old, and so it is relatively easy to criticize Fortran in
comparison to more modern languages. But there are still many reasons to
use Fortran and, consequently, to learn to use it well.

Corporations and universities have billions of dollars invested in exist­
ing and productive Fortran programs, and, as yet, no advocate of other
languages has offered to translate from Fortran to their favorite at no cost.
Even if free translation were available, the majority of scientists and engi­
neers are well grounded in Fortran, and there would be considerable inertia
to overcome to provide the same level of expertise and comfort with a new
language. Even Fortran 8X, with its many new features and ideas, will be a
daunting challenge to those who are comfortable with ANSI 77 Fortran.

Scientific computer vendors have made large investments in the devel­
opment of optimizing Fortran compilers, almost to the exclusion of other
languages—until recently. So even though the systems management part of
a program might be better written in another language, when it comes to
actually solving the equations of our application, we would be hard pressed
to do it more efficiently or economically than with Fortran.

John Backus was once asked by an interviewer what would be the
nature of the language running on supercomputers in the year 2000. He
replied: "I can't tell you anything about its nature, but I know we will call it
'Fortran.'"

In short, Fortran has a long life ahead of it. And any program, new or
old, can profit dramatically from applying the techniques outlined in this
book.

3.1
STANDARD FORTRAN

The X3J3 Committee of the American National Standards Institute (ANSI)
develops specifications for a standard Fortran language and establishes the

52

3.1 STANDARD FORTRAN 53

interpretation of any program written in the standard form. The latest re­
leased standard is known as Fortran 77, and the previous standard is called
Fortran 66. The next standard, expected to be released in 1988, is currently
named Fortran 8X. Essentially, all of the supercomputer manufacturers pro­
vide compilers that can be made to conform to the Fortran 77 standard.
Actually, each of the compilers has extensions to Fortran 77 providing addi­
tional language features above and beyond the standard. But the user can
always force the compiler to recognize and compile only standard Fortran
constructs.

Except for some seven-character symbolic names, the examples in this
book adhere to the Fortran 77 standard.

3.1.1 Array Layout in Memory
Much of our concern in this book is the optimal handling of array references
to and from memory. The ANSI Fortran standard specifies the order in which
a compiler must place array elements in memory, and this can have a large
effect on machine performance in certain loops.

The dimensions of an array in order from left to right can be thought of
as designating row number, column number, plane number, and so forth. An
array must be stored in memory in just this order. All of the row elements of
column 1 of plane 1 are stored, followed by all of the elements of the second
column, and so forth. Remembering that physical memory is treated as one
large, single-dimension array, and given the declaration:

DIMENSION MATRIX (4, 3)

then it will be assigned to memory by the compiler as shown in Figure 3.1. A
three-dimensional array such as:

DIMENSION BOX (4, 3, 3)

has the same layout as depicted for MATRIX for each of its three planes.
Now consider the effect of this layout on the following three DO loops:

DO 3000 J = 1, 3
DO 3000 1 = 1 , 4

MATRIX(I,J) = MATRIX(I,J) + 1.0
3000 CONTINUE

DO 3010 1 = 1 , 4
DO 3010 J = 1, 3

MATRIX(I,J) = MATRIX(I.J) +1.0
3010 CONTINUE

DO 3020 1 = 1 , 4
MATRIX(I,I) = MATRIX(I,I) +1.0

3020 CONTINUE

In terms of vectors, if only the inner loops are considered—which is
true of many compilers — then loop 3000 operates on three vectors, each of

54 FORTRAN

\ memory

I MATRIX (1,1)

I MATRIX (2,1)

I MATRIX (3,1)

I MATRIX (4,1)

I MATRIX (1,2)

I MATRIX (2,2)

I MATRIX (3,2)

I MATRIX (4,2)

I MATRIX (1,3)

I MATRIX (2,3)

I MATRIX (3,3)

I MATRIX (4,3)

»A memory

FIGURE 3.1.
Layout of a 2D Array in Memory

length four, and loop 3010 operates on four vectors, each of length three. But
the stride in loop 3000 is one (the distance in memory between row ele­
ments), and the stride in loop 3010 is four (the distance in memory between
column elements). Since contiguous vectors are always handled more effi­
ciently than noncontiguous vectors, it is good practice to vary the left-most
subscript in inner loops where possible. It is also important (if possible) to
have the longest dimension of an array as the left-most to achieve long-vec­
tor processing in inner-loop references.

Finally, note the diagonal processing, shown in loop 3020, has a stride
of five, which is the length of a column plus one. We shall see in a later
section that when nonunit strides are unavoidable, as in diagonal processing,
it is sometimes important to adjust the dimension of the arrays to avoid
memory-bank conflicts.

In general, given the declaration:

DIMENSION ARRAY (L1:U1, L2:U2 . . . , L7:U7)

having dimension sizes Di = Ui — Li + 1, then array element ARRAY (II,
12, . . . , 17) is located in memory at

address of ARRAY (L1, L2 . . . , L7)

+ (I 7 - L 7) x D1 x D2 x D3 x D4 x D5 x D6

\
Column 1

/

\ Column 2

/

\ Column 3

3.2 COMPILERS 55

+ (I6-L6) x D1 x D2 x D3 x D4 x D5

+ (I5-L5) x D1 x D2 x D3 x D4

+ (I4-L4) x D1 x D2 x D3

+ (I3-L3) x D1 x D2

+ (I2-L2) x D1

+ (11-L1)

So, in a loop where, say, 15 is varying with an increment of one, and all other
subscripts are invariant within the context of the loop, then the stride of the
referenced vector is the product of all the lower dimensions, that is,
Dl X D2 X D3 X D4. For an array dimensioned:

DIMENSION HYPER (70, 50, 10, 10, 30)

and a loop:

DO 3030 M = 1, N
HYPER(I , J .K.L .M) = Q * HYPER(I , J ,K,L ,M)

3030 CONTINUE

then the vector being referenced has a starting address of HYPER (I,J,K,L,1),
a length of N, and a stride through memory of 7 0 X 5 0 X 1 0 X 1 0 =
350,000.

3.2
COMPILERS

A compiler is a computer program that reads our program source code as
data and translates it into machine code that can be read and interpreted as
instructions and data understandable at the computer's hardware level. The
simplest of compilers provides no optimization and performs the steps of our
program in exactly the order we have written them. It is valuable to have
such compilation available for debugging, since diagnostic messages can then
point to the source statement and possibly even the instruction within it that
caused a problem.

Once a program is fully debugged and ready for production, it is
important to achieve the highest level of optimization possible, since optimi­
zation can often provide an order of magnitude in performance improvement
over simple compilation. Many machine-independent optimization tech­
niques are employed by all compilers, and these include moving invariant
code out of DO loops, evaluating constant expressions, and so forth. Com­
pilers also perform machine-dependent optimizations such as replacing
integer exponentiation with multiplication for small powers, instruction

56 FORTRAN

shuffling, register scheduling, and — for our purposes the most important —
issuance of vector and parallel instructions. It should be obvious that it is to
our advantage to learn the optimization details of our target compiler and to
use them to our best advantage.

Currently (early 1988), Alliant FX/Fortran is the only compiler with
automatic recognition of parallel constructs within Fortran source code. All
other parallel machines require other languages or constructs oriented to the
expression of communication among the processor nodes, and this is beyond
the scope of this text. At best, the burden of parallel analysis is placed
entirely on the programmer, with precompilers, compiler directives, and use
of machine-specific library routines communicating the parallel constructs to
the computer system. Consequently, the bulk of this text is directed at scalar
and vector optimization techniques as can be utilized with existing Fortran
compilers.

3.2.1 Machine-Independent Optimizations
All compilers search source code for certain constructs that can be optimized
by simplifying them, replacing them, or moving them. Writing code that aids
the compiler in recognizing such constructs will reduce the number of opera­
tions to be performed by our program. We base our examples in a loop
context, but many of the techniques can be used to an advantage in serial
code as well.

Please note that some of these techniques involve rearranging the order
of execution of the operations in our expressions. Our discussion considers
only algebraic correctness and does not touch on numeric problems. So
before reordering operations, especially if they were written by another
programmer, we may have to decide whether the original order is critical to
the accuracy of the results due to the precision of representation of floating­
point numbers on the target machine.

Invariant-Code Relocation
Compilers search loops for operations involving constants and simple vari­
ables not set within the loop (invariants), and move the computation outside
of the loop. Note the invariant expressions in the loop 3040:

DO 3040 1 = 1 , 100
A(I) = 6.0 + S + X(I)
B(I) = Y(I) * P / Q

3040 CONTINUE

During optimization, all compilers will perform the invariant code
before the loop and reference the results from registers inside the loop as

3.2 COMPILERS 57

follows:

register i = 6.0 + S
register j = P / Q

DO 3041 1 = 1 , 100
A(I) = (register i) + X(I)
B(I) = Y(I) * (register j)

3041 CONTINUE

Note that although the original loop specifies 400 floating-point operations,
the optimized code executes only 202.

There was a time when compilers did not perform such optimizations,
and smart programmers of the time might have coded:

TEMPI = 6.0 + S
TEMP2 = P / Q
DO 3042 1 = 1 , 100

A(I) = TEMPI + X(I)
B(I) = Y(I) * TEMP2

3042 CONTINUE

This is actually slightly less efficient, since it specifies storing and fetching
TEMPI and TEMP2; and not all compilers will optimize this as well as the
original. So, believe it or not, it is good practice to put invariant expressions
inside the loop, then trust the compiler to optimize them back out.

Sometimes we must help the compiler see invariant code. To this end,
we recommend that invariants not be separated by variables. We cannot be
sure that a compiler will recognize the invariant code in the loop 3050:

DO 3050 1 = 1 , 100
A(I) = 6.0 + X(I) + S
B(I) = P * Y(I) / Q

3050 CONTINUE

If we want to be doubly certain that the compiler sees invariant code, we put
it in parentheses (a compiler must perform operations inside parentheses
before performing those outside the parentheses) as shown in loop 3060:

DO 3060 1 = 1 , 100
A(I) = (6.0 + S) + X(I)
B(I) = Y(I) * (P / Q)

3060 CONTINUE

A note for the older programmers: Do not be afraid to use unnecessary
parentheses to clarify code or to force compilation of instructions in a certain
order. About 20 years ago, some compilers generated incorrect code because
a programmer used mathematically unnecessary parentheses; parsing has
come a long way since then, and we should feel free and safe to use them as
we wish.

58 FORTRAN

Constant-Expression Evaluation
When a compiler discovers an invariant expression only involving constants,
it evaluates the expression and saves the result in a memory location to be
fetched when the program is run — thus eliminating the computation at
execution time. This is not only optimal, it can be used to enhance the
readability of the program when well-known constants are involved. Thus,
loop 3070 is optimized as shown in loop 3071.

DO 3070 I = 1, N
A (I) = B (I) * 3 . 1 4 1 5 9 * 3 . 0 / 2 . 0

3070 CONTINUE

(memloc = 3.14159 * 3.0 / 2.0 at compile time)
DO 3071 I = 1, N

A(I) = B(I) * memloc
3071 CONTINUE

And, although loop 3072 is just as efficient, it is not as readable, and the
manual computation of the constant is prone to error.

DO 3072 I = 1, N
A (I) = B (I) * 4 . 7 1 2 3 9

3072 CONTINUE

Common Subexpression Elimination
Compilers also search for repeated expressions that can be safely computed
once with subsequent occurrences satisfied from a register. Thus, in loop
3080, a compiler will recognize both T(I) * S(I) and X(I) / Y(I) as common
subexpressions and optimize them as shown in loop 3081:

DO 3080 I = 1, N
A (I) = C (I) + T (I) * S (I)
B (I) = P * X(I) / Y (I)
C (I) - Q * X(I) / Y (I)
D (I) = T (I) * S (I) + B (I) / C (I)

3080 CONTINUE

Optimized:
DO 3081 I = 1, N

register i = T(I) * S(I)
register j = X(I) / Y(I)
A(I) = C(I) + (register i)
B(I) = P * (register j)
C(I) = Q * (register j)
D(I) - (register i) + B(I) / C(I)

3081 CONTINUE

Again, while this optimization technique is now universal, there was a time
in the dark ages of computing when this was not done, and the best pro-

3.2 COMPILERS 59

grammers would write
DO 3082 I = 1, N

TMULTS = T(I) * S(I)
XOVERY = X(I) / Y(I)
A(I) = C(I) + TMULTS
B(I) = P * XOVERY
C(I) = Q * XOVERY
D(I) = TMULTS + B(I) / C(I)

3082 CONTINUE

As we might guess, this is now less than optimal, since some compilers might
be forced to store the values into the variables TMULTS and XOVERY —
something that does not occur in the original.

To aid a compiler in recognizing common subexpressions, use the same
techniques regarding code arrangement and parentheses as outlined in the
section on invariant code. Thus, a compiler might miss the common subex­
pressions in loop 3090:

DO 3090 I = 1 , N
A (I) = C (I) * T (I) * S (I)
B (I) = X (I) * P / Y (I)
C (I) = X(I) * Q / Y (I)
D (I) = T (I) * S (I) * B (I) / C (I)

3090 CONTINUE

but would not miss them in loop 3091:

DO 3091 I = 1 , N
A (I) = C (I) * (T (I) * S (I))
B (I) = P * (X(I) / Y (I))
C (I) = Q * (X (I) / Y d))
D (I) = (T (I) * S (I)) * B (I) / C (I)

3091 CONTINUE

Unneeded Store Elimination
If the same variable or array element appears on the left side of the equals
sign more than once within a loop, the compiler will optimize by storing only
the final setting. Consider for example loop 3100:

DO 3100 I = 1 , N
TEMP(I) = X(I) + Y (I)

W(I) = Z (I) ** 2 + TEMP(I)
R (I) = W(I) / TEMP(I)

3100 CONTINUE

Assuming that TEMP is a scratch array whose values are unneeded, then the
following will be more efficiently handled by a compiler:

DO 3101 I = 1 , N
R (I) = X(I) + Y (I)
W(I) = Z (I) ** 2 + R (I)
R (I) = W(I) / R (I)

3101 CONTINUE

60 FORTRAN

which will be optimized as:

DO 3102 I = 1, N
register j = X(I) + Y(I)

W(I) = Z(I) ** 2 + register j
R(I) = W(I) / register j

3102 CONTINUE

thereby eliminating N memory references.

3.2.2 Machine-Dependent Optimizations
These techniques are concerned with the optimal use of the underlying
machine resources: registers, functional units, and the like.

Instruction Scheduling
A compiler typically views a routine as a series of "optimization blocks" of
source code statements within which it trys to issue instructions in an order
that attains the greatest overlap of execution while assuring correct results.
Fetches from memory are often the most expensive operations (in time). So
they are scheduled to occur well in advance of the operations in which the
data is involved, in order that the fetch time can be overlapped with unre­
lated computation.

Most computers can perform only one occurrence of an arithmetic
operation at a time, so, for example, if two multiplies occur in a row, as in

X (I) = Y (I) * Z (I) * W (I) / (A (I) + B (I))

then, if possible, the compiler will schedule the instruction to perform Y(I) *
Z(I), then issue A(I) + B(I), then return to issue the multiply by W(I). This
technique can be applied across statements so that operations are done as
soon as possible with maximal concurrency.

A programmer can choose an order of operations that enhances the
compiler's ability to perform this kind of optimization, as in Homer's rule for
polynomial evaluation. Consider the following conventionally coded polyno­
mial:

P = A0 + A1 * X + A2 * X * * 2 + A3 * X * * 3 + A4 * X * * 4

Now a smart compiler can fetch X to a register, compute X**2 to another
register, use that to compute X**3, and so forth. This reduces the number of
operations to produce the powers of X, but it still requires two multiplies in a
row for all terms beyond A1*X. Homer's rule suggests that polynomials be
entirely factored in X:

P = A0 + (X * (A 1 + X * (A 2 + X * (A 3 + X * A4)))

Not only does Homer's rule further reduce the number of multiplies, but it
naturally schedules an overlap of adds, multiplies, and fetches (of the Ai),

3.2 COMPILERS 61

which almost guarantees that the compiler will generate optimal code. A very
smart compiler might be programmed to recognize polynomials and then
invoke Homer's rule. But it should be easy to imagine that, in general, a
compiler's ability to perform such transformations must be limited if only to
keep compilation time itself at an acceptable level. Therefore, a programmer
should write expressions and even groups of statements in a manner that
alternates independent operations as much as possible.

Operator Strength Reduction
Wherever results will be exactly the same, compilers will usually replace
costly operations with equivalent, less-expensive ones. Thus, integer divide
by a power of 2, as in

IOVER4 = 1 / 4

will be replaced with an operation that shifts off the two right-most bits of I,
instead of using the divide functional unit. This might take two clock cycles
instead of 20 or more. We hinted in the previous section that exponentiation
to an integer power will be treated as successive multiplication up to the
point that multiplies become more expensive than invoking an exponentia­
tion routine on a given machine. This is usually in the range of powers five to
ten. This is typically not done for floating-point exponentiation, so we should
always write

X**2

instead of:

X**2.0

The first will probably run ten times faster than the second.
Furthermore, when variables are used for powers, most compilers will

call exponentiation routines, since they cannot know the values at compile
time. Consider, for example, loop 3110:

DO 3110 J = 1, NDIM
DO 3110 I = 1, N

A(I) = A(I) + X(I)**(J-1) * Y(I)**(J-1)
3110 CONTINUE

If we know that NDIM is always three, and always will be, then we can
realize a significant speedup by expressing this directly:

DO 3111 I = 1 , N
A (I) = A (I) + 1.0 + X(I) * Y d) * (1 . 0 + X(I) * Y (D)

3111 CONTINUE

The original loop demanded 3*N calls to an exponentiation routine, but
the rewritten loop has no explicit exponentiation. Furthermore, the original
specified fetching the elements of A, X, and Y three times, but the restruc-

FORTRAN

Fetch X-»»V0
Fetch Y-»»VI
VO * VI-»*V2
1. + V2-»»V3

Fetch A-»»V0
VO + 1.->V1

V2 * V3-► V4
V4 + VI-»» V5

Store V5-»> A

Time »"
Chime l Chime 2 Chime 3

FIGURE 3.2.
Chime Diagram of Loop 3111

tured loop fetches them only once. Finally, recognition of the common
subexpression X(I) * Y(I) by the compiler will eliminate one of the multiply
instructions, so that alternating adds and multiplies will overlap. The tech­
nique used to eliminate the outer loop on J is called "unrolling" and has
many applications we will explore in later sections.

A chime diagram of loop 3111 on the Cray X-MP is shown in Figure
3.2.

Register Assignment
Registers are recognized by a compiler as a precious resource, and every
attempt is made to use this very fast memory efficiently. To this end, heavily
used local variables might be assigned permanently to registers. And we have
shown earlier that registers are used to hold common subexpression evalua­
tions to avoid redundant computation.

A local variable is a scalar variable that is neither a dummy argument
nor is used as an actual argument nor does it appear in a common block. In
other words, its entire use is local to the subprogram in which it appears.
Such a variable may be assigned to a register where it can be manipulated
very quickly; it need never be stored into or fetched from memory. Some
programmers create a common block containing a number of such "scratch"
variables, so that the memory space can be shared by all subprograms; this
inhibits a compiler from using the register assignment. If the memory savings
are not needed, such variables should be restored to true local status to allow
more effective use of the registers.

Note that the previous discussion applies to local variables, not to local
arrays, which are always memory-based.

(Fortran Operations)

X*Y
(1. + X*Y)

A+ 1.
X*Y * (1. + X*Y)

A + 1. + X*Y * (1. + X*Y)

3.2 COMPILERS 63

A programmer can use knowledge of the number of registers available
to estimate the performance of a DO loop or even a compiler's ability to
optimize it at all. Very short loops give a compiler very little to optimize-
overly long loops can overwhelm the register capacity, forcing the compiler
to use temporary memory space as pseudoregisters; extremely long loops
might inhibit optimization entirely.

Short Loops
Several short loops of the same length, especially if they share variables and
expressions, should be combined to provide the compiler with more opportu­
nity to use the machine's registers effectively. For example:

DO 3121 I = 1, N
3121 X(I) = A(I) + B(I) / (D(I) + S * C(I))

DO 3122 I = 1, N
3122 Y(I) = X(I) + A(I) * B(I)

DO 3123 I = 1, N
3123 X(I) = X(D / (D(I) + S * C(I))

is much better written as:

DO 3124 I = 1 , N
X (I) = A (I) + B (I) / (D (I) + S * C (I))
Y (I) = X (I) + A (I) * B (I)
X (I) = X (I) / (D (I) + S * C (I))

3124 CONTINUE

In this form, the compiler can fetch the values of A, B, C, and D only once,
then reuse them from registers; the common subexpression D(I) 4- S * C(I)
can be calculated and reused, the first setting of X(I) need not be stored, and
the value of X(I) can be reused from a register in the last two equations.

Long Loops
Let us now estimate, for a Cray computer with eight vector registers, how
many registers are needed for the duration of loop 3124.

In the execution of the first line, vector registers are needed to fetch A,
B, C, and D, and each dyadic operation requires two registers as operands
and one for results. But, some of the registers may be reused. For example,
the registers holding the values of D and C are no longer needed once the
common subexpression D(I) 4- S * C(I) is computed. So upon completion of
the first equation, four active vector registers hold the values of X, A, B, and
the common subexpression — all of which are needed for further computa­
tion. Upon completing the second equation, the registers holding A and B are
no longer needed. Only the registers containing X and the common subex­
pression are needed for the final equation.

64 FORTRAN

In other words, a compiler can probably perform all of the loop's
computation using only four or five vector registers, so an even longer loop
with more computation can be optimized easily. Consider loop 3130:

DO 3130 I = 1 , N
X(I) = A (I) + B (I) / (D (I) + S * C (I))
Y (I) = X(I) + A (I) * B (I)
W(I) = A (I) * B (I) + C (I) * Y (I) + D (I)
X(I) = X(I) / (D (I) + S * C (I))

3130 CONTINUE

Here, the added equation (W(I) = . . .) has a subexpression A(I) * B(I) that has
been already calculated in the second equation, and the same equation also
requires B, C, D, and Y for further computation. A compiler trying to opti­
mize register usage would find that at the end of the second equation it
would like to hold onto the registers containing A, B, C, D, X, Y, A(I) * B(I)
and D(I) + S * C(I) — eight registers in all. At this point we could imagine that
the compiler would abandon one of the registers in favor of refetching or
recomputing its value later in the loop. This is hardly the way compilers
actually "think" about register allocation, but it is a good exercise for a
programmer trying to understand how to form loops that utilize most of the
computer's resources without overtaxing them. Later in this chapter we will
discuss how to choose points in very long loops at which to split them into
several moderate-sized loops.

3.3
VECTORIZATION

Vectorization causes a computer to compute with vector rather than scalar
instructions. When applied to a compiler, vectorization means that the com­
piler is capable of generating vector machine code; when attributed to a
programmer, it means that he or she has written constructs recognizable by
the compiler as vectorizable.

Any given compiler provides explicit and implicit vectorization. Within
the context of ANSI 77 Fortran all vectorization is implicit, and any explicit
vectorization is necessarily an extension to the language. The next standard
version of Fortran, presently known as Fortran 8X, contains many explicit
array operations that can be easily interpreted as vector instructions.

3.3.1 Explicit Vectorization
Compilers on supercomputers provide programmers with certain constructs
that have only vector interpretations. The use of these constructs is known as
explicit vectorization. We also include in this classification the use of ma­
chine-specific vector library routines when called from a Fortran program.

3.3 VECTORIZATION 65

Compiler Directives
All of the compilers provide a set of special comment cards ignored by any
other compiler but interpreted for user information by the target compiler. A
subset of these directives is explicitly concerned with vectorization of DO
loops. They were first introduced in Cray's CFT compilers, and there have
the form:

CDIR$ directive [»directive. . .]

"Directive" might be simple, like VECTOR, indicating that the compiler is to
begin to vectorize loops, or might be something more complicated, such as
IVDEP, meaning "ignore vector dependencies." The use of directives will be
introduced in examples after we have developed the terminology of vectori­
zation.

Fortran 8X
Although not yet released as a standard, several compilers have incorporated
some of the features of Fortran 8X, as proposed by ANSI's X3J3 committee.
Control Data Corporation's Fortran 200, Cray's CFT77, and Alliant's FX/
Fortran have all provided "array section syntax" as an extension to their
Fortran 77 implementation. Assignment statements involving array section
syntax are immediately interprétable as a series of vector operations by these
compilers.

An "array section" is derived from an array by specifying "subscript
triplets" in some of the subscript positions of the array. A subscript triplet has
the form:

i : j : k

where i is the initial subscript value, j is the bound of the final subscript
value, and k is the subscript stride or increment.

The initial and final bound values must be within the dimension of the
array; the stride may be any nonzero value. It is simplest to think of a
subscript triplet as DO control values. For example the array assignment
statement

A (1 : 2 0 : 2) = B (1 : 2 0 : 2)

may be interpreted as

DO 3140 1 = 1 , 2 0 , 2
A (I) = B (I)

3140 CONTINUE

Any or all of the subscript values may be omitted from a subscript triplet:
i:j means from i to j with a stride of one
:j means from the lower-dimension bound to j

i: means from i to the upper-dimension bound
means from lower to upper bound

66 FORTRAN

Finally, note that an array name appearing with no subscript expressions
whatsoever implies the entire array.
Given:

DIMENSION A(100)

then
A(1 : 100 : 1)

A(1 : 100)

A(: 100)

A(1:)

A(:)

A

all have the same interpretation — that is, the entire array.
Next, note that a subscript triplet can appear in any subscript position

of a multidimensioned array, thus specifying a section of the whole array,
often with a different shape and size than the original. Thus, given:

D I M E N S I O N X (1 0 0 , 5 0 , 2 5)

then

X (1 : 5 0 , 1 7 , 1 1 : 2 5 : 2)

specifies a subarray of two dimensions whose shape is [50,8].
Whenever array sections are involved in an assignment statement then

they must conform in shape and size. This means that for each array refer­
ence containing subscript triplets, there must be the same number of triplets;
and in order from left to right, corresponding triplets must be the same size.
Scalar variables, constants, and array references not containing triplets
always conform in shape to any array section — that is, they are treated as an
array of the appropriate shape with the same value at every element.

Here are some clarifying examples:

DIMENSION A(100), B(-1:98), X(100, 50, 25)

DIMENSION Y(100, 100, 10, 70)

Comment: M, N, P, Q, R are scalar variables.

A(:) = 1 . 0

C sets all elements of A to 1.0.

B(: 1 0) = P + Q

C sets elements B(—1:10) to the invariant P + Q

X (: , N , 1) = A (:) + B (:)

3.3 VECTORIZATION 67

C sets the Nth column in the first plane of X
CtoA(l:100) + B(-l:98).

X (M : N , 1 : 1 0 , 1 : 2 0) = Y (1 , M : N , 1 : 1 0 , 4 1 : 6 0)

C sets a 3-D subsection of X to a 3-D subsection of Y.

Multidimensioned array sections such as in the last example can be
interpreted as a DO loop nest with the left-most triplet as the inner loop and
the rightmost triplet as the outermost loop. Loop interpretations of all the
preceding examples follow:

DO 3150 1 = 1 , 100
A(I) = 1.0

3150 CONTINUE

DO 3160 I = -1, 10
B(I) = P + Q

3160 CONTINUE

DO 3170 1 = 1 , 100
X(I, N, 1) = A(I) + B(I-2)

3170 CONTINUE

DO 3180 K = 1, 20
DO 3180 J = 1, 10

DO 3180 I = M, N
X(I, J, K) = Y(l, I, J, K+40)

3180 CONTINUE

In the general form of an array-section assignment

array section = expression

it is important to note that "expression" is fully evaluated for all elements
before any assignment is made to the left side array section. Because of this,
there can be no feedback of data from the left to the right as in certain DO
loops such as:

DO 3190 I = 2, N
A(I) = A(I-l) + A(I+1)

3190 CONTINUE

The following is not equivalent to loop 3190:

A (2 : N) = A (1 : N - 1) + A (3 : N + 1)

A loop interpretation of the preceding array assignment statement is

DO 3200 I = 2 , N
TEMP(I) = A (I - l) + A(I+1)

3200 CONTINUE

DO 3201 I = 2,N
A(I) = TEMP(I)

3201 CONTINUE

68 FORTRAN

To repeat, the feedback of values inherent in loop 3190 cannot be
written in an array-section assignment statement. The right side of the
expression is always fully evaluated for all elements using old values before
any new values are stored on the left. Feedback is fully discussed in a later
section on recursion in loops.

Vector-mask operations are also directly specifiable in array syntax
using the WHERE statement and WHERE blocks. These constructs derive
directly from the IF statements and IF blocks of Fortran 77 and have the
following forms:

WHERE (mask expression) array = expression

WHERE (mask expression)

array = expression

ENDWHERE

WHERE (mask expression)

array = expression

ELSEWHERE

array = expression

ENDWHERE

Examples of each of the three forms and an accompanying loop interpreta­
tion follow:

WHERE (A (1 : N) . G T . B (1 : N)) A (1 : N) = X

is the same as

DO 3210 I = 1 , N
IF (A(I) .GT. B (I)) A (I) = X

3210 CONTINUE

WHERE (A (1 : N) . G T . EPSLON)

A (1 : N) = A (1 : N) / 2 . 0

ENDWHERE

is the same as
DO 3220 I = 1 , N

IF (A(I) .GT. EPSLON) THEN
A(I) = A(I) / 2.0

ENDIF
3220 CONTINUE

3.3 VECTORIZATION 69

WHERE (A (1 : N) . G T . B (1 : N))

A (1 : N) = X

ELSEWHERE

A(1 : N) = B (1 : N)

ENDWHERE

is the same as

DO 3230 I =
IF (A (I)

A (I)
ELSE

A(I)
ENDIF

3230 CONTINUE

All of the preceding WHERE constructs can be vectorized immediately and
unambiguously.

Finally, note that all of the Fortran 77 intrinsic functions have been
extended to accept array arguments, so the following can be written:

A (1 : N) = EXP (SQRT (A (1 : N)))

which is the same as

DO 3240 I = 1, N
A(I) = EXP (SQRT (A(I)))

3240 CONTINUE

The most important attribute of Fortran 8X array assignment statements
is that they can be explicitly interpreted as vector operations.

CYBER 205 Explicit Vector Syntax
More than fifteen years ago CDC defined a vector syntax for the STAR-100,
and it is still available on the CYBER 205 and ETA 10. It is a unique syntax
for assignment statements, vector functions, and in-line assembly language,
by which every machine instruction may be invoked directly from a Fortran
routine. Assignment statements specify vectors rather than the array sections
of Fortran 8X. An explicit vector has a starting array element, a length, and a
fixed stride of one. It has the form:

array (starting subscript ; length)

Given
DIMENSION A(100), B(100, 50), C(100, 50, 25)

Then a vector assignment statement could be

A (1 ; 1 0 0) = B (1 , 1 ; 1 0 0) + C (1 , 1 0 , 1 7 ; 1 0 0)

1 , N
.GT. B (I)) THEN

= X

: B (I)

70 FORTRAN

A form of the WHERE statement already described is also available to
perform vector mask operations with these vector assignment statements. All
of the standard intrinsic functions have special vector versions, as in:

A (1 ; 1 0 0) = VSQRT (A (1 ; 1 0 0) ; 1 0 0)

and many machine instructions such as vector average, vector merge, and
vector polynomial are provided as vector functions as well.

As with Fortran 8X array syntax, the most important feature of CYBER
205 vector syntax is that it is a direct specification of vector instructions.
Unlike DO loops — which may or may not vectorize, depending on a great
many factors — vector syntax guarantees vector instructions.

Machine-Specific Library Routines
Each of the supercomputer vendors provides a number of Fortran-callable
library routines, highly optimized and vectorized, and often written in as­
sembly language. We highly recommend that programmers investigate the
use of such routines in important CPU-intensive regions of their programs.
But, keep in mind that such use reduces the transportability of the source
code to other vendors' systems.

3.3.2 Implicit Vectorization
Compiling DO loops into vector instructions is by far the most common form
of vectorization. It is implicit because by definition a DO loop is a specifica­
tion of an iterative series of scalar operations. It is fortuitous if a compiler can
recognize that the same computation can be performed with vector instruc­
tions. We shall see that a programmer cannot always be sure whether a
complicated loop will vectorize; often, a compilation listing must be scanned
to determine how the loop was handled. To further discuss implicit vectori­
zation, we must first establish some terminology.

Vectorization Terminology
In this section we develop a working vocabulary of terms to analyze and
discuss the constructs that can appear as standard Fortran DO loops and how
these constructs affect a compiler's ability to vectorize the loops.

Constant-Increment Variable. A constant-increment variable (CIV) is a
scalar variable whose value is incremented or decremented by a fixed
amount on every iteration of a DO loop. All of the scalar variables in loop

3.3 VECTORIZATION 71

3250 are CIVs.

DO 3250 1 = 1 , 100
J = I - 5
K = K + 1
L = 6 - K
M = 3 * I + 4
P = P + 2 . 0
A (I) = B(J) * C(K) + D(L) * E(M) / P + F(N)
N = N + 1

3250 CONTINUE

Assuming that each of the variables has an initial value of zero, then the
sequence of values attained within the loop is

Sequence Increment

1 =
J = -

K =
L =

M =
N =
P =

1, 2, . .
- 4 , - 3 , . .

1, 2, . .
5, 4, . .

7, 10, . .
1, 2, . .

2., 4., . .

, 100
, 95
, 100
, - 9 4
, 304
, 100
, 200.

The use of integer variables in this manner is so important to vectorization
that they are separately designated "constant-increment integers" or CIIs.
Their use as array subscripts often results in a "vector array reference."

Given that "Π" is any integer variable and "IP" is any previously
defined CII, then any of the following are valid for defining CIIs in a DO
loop:

II = II ± invariant expression
II = invariant expression + II
II = [± invariant expression *] IP [± invariant expression]
II = [± invariant expression] [± invariant expression *] IP

By definition, the DO loop index variable is always a CII.
Constant-increment variables such as P in loop 3250 can be treated as

vectors of values at execution time, with the last value attained saved in the
variable at loop termination. This use of scalar variables will be developed
further in later sections.

Vector Array Reference. In a DO loop, an array reference having one
subscript expression as a linear function of a single CII. All other subscript
expressions, being invariant, can be treated as a vector. A linear CII subscript

72 FORTRAN

expression is defined as:

[± invariant expression *] Cil [± invariant expression]

As a simple example, all of the array references in loop 3250 can be handled
as vector array references. Other examples follow:

DIMENSION W(100) , X(100 , 5 0) , Y(50 , 1500 , 2) , Z(1000)

DO 3260 I = 1, N
J = 3 * I + 3 - N
K = L * J - 5
X (I , N) = Y(M, 5*J , L) + Z(K-4) / W(I)

3260 CONTINUE

Remember that a vector has a starting address, a length, and a constant
stride through memory. A compiler is able to derive that information at
execution time for the array references X, Y, and Z in loop 3260. Given that
the integer variables L, M, and N are all defined before the loop is executed,
then the vectors are defined as follows:

Array

W
X
Y
Z

Starting Address

W(l)
X(l, N)
Y(M, 30 -
Z((6 - N)

-5*N)
* L - 9)

Length

N
N
N
N

Stride

1
1
750
3*L

The stride of 750 in Y is derived from the facts that the subscript expression
itself, 5*J, has a stride of 5*3 = 15, and the stride through memory is in the
second dimension of Y; so it specifies striding across columns of length 50,
and 15*50 = 750.

Compilers vary in their ability to detect linear subscript expressions. If
there is ever any doubt, the compiler will resort to indirect address vectors
described in the next section.

Indirect-Address Vectors. An indirect-address vector is a list of values in
an array in memory that is not explicitly characterized by a constant stride
but whose subscript expressions themselves are vectorizable. Loops 2180 and
2200 from Chapter 2 are examples of indirect-address vectors:

DO 2180 1 = 1 , 64
A(IA(I)) = B(IB(I)) + C(IC(I))

2180 CONTINUE

DO 2200 I = 1,N
J = I * I / (I + 1)
K = MOD (J, 10) + 1
L = ISQRT (IA(I) * IB(I))
M = 6 - M
A(J) = (B(K) + C(L)) * D(M)

2200 CONTINUE

3.3 VECTORIZATION 73

In loop 2180, the indirect-address indexes are explicit and should be obvious;
in loop 2200, the compiler must cause the vectors of indexes to be computed
at execution time. This same technique is used by compilers anytime that
they cannot determine whether a subscript expression has a constant stride.

Indirect-address fetching of data from memory is called a "gather"
operation. Indirect storing is called a "scatter" operation.

Scalar Temporaries or Pseudovectors. Whenever a scalar variable is set
equal to a vectorizable expression, the entire expression can be performed in
a vector register or a temporary vector in memory. At loop termination, the
last value computed can be stored into the scalar variable. Example:

DO 3270 I = 1, N
SCA = A(I) * B(I) + SQRT (X(I)**2 + Y(I)**2)
R(I) = SCA * Y(I)
Z(I) = (D(I) + E(I)) / SCA

3270 CONTINUE

Here, the scalar temporary SCA is transparently promoted to a vector
by the compiler. That is, the instructions generated are the same as if SCA
were an array, except only the value computed in the Nth iteration is stored
into memory, rather than all of the values computed. Some compilers are
smart enough to determine whether it is even necessary to save the last
value. For instance, if SCA is not in COMMON, not a dummy argument, and
not referenced outside the loop, then there is no need to save it. Many
compilers provide directives that allow the programmer to choose or prevent
"last-value-saving."

The judicious use of scalar temporaries, or "pseudovectors," can reduce
the number of memory references needed within a loop. Some problems
with their use will be discussed in the following section on recursion.

Note that invariant array elements within a loop have the same charac­
teristics as scalars, so a compiler can apply the same optimization techniques.
So, for example, in loop 3280, J is invariant in the inner loop on I. A vector
register holds the values of X(JJ) * T(I); at the end of each execution of the
inner loop, the last value X(J,J) * T(N) is saved in A(J).

DO 3280 J = 1,M
DO 3280 I = 1,N

A(J) = X(J,J) * T(I)
Y(I,J) = X(I,J) / A(J)

3280 CONTINUE

We will often refer to such invariant array elements as "array con­
stants." It is not their value but their subscript expressions that are constant
or invariant for the duration of an inner loop.

Recursion. "Data dependency" among Fortran statements is a term indi­
cating that a variable stored into in one statement is subsequently used by

74 FORTRAN

another statement. Thus, in the following, the second statement depends on
the first, and they must be executed in the order in which they are written:

S = T + U

X = S * Y

In the vectorization of DO loops we concern ourselves with recursive data
dependencies, in which a statement in the loop is data dependent on itself or
on a statement that succeeds it in the loop. One of the simplest examples is:

DO 3290 I = 2, N
A(I) = A(I-l) + B(I)

3290 CONTINUE

Let A' indicate newly set values of the array A, and write out several
iterations of the loop:

A' (2) = A (1) + B(1)

A· (3) = A ' (2) + B (2)

A' (N) = A ' (N - 1) + B (N)

Note that the output from the first iteration, A'(2), is input to the second
iteration — that is, its address "recurs" in the second iteration. Naturally, this
is called a recurrence or recursion. It is sometimes also referred to as data
feedback, again for obvious reasons. This condition is of extreme importance,
because it makes vectorization of the loop impossible. Remember that to
vectorize a loop such as:

DO 3300 I = 1, N
A(I) = B(I) + C(I)

3300 CONTINUE

we want to fetch all of the elements of the vector B and all of the elements of
C, then add them together and store them into A. The recurrence in loop
3290 prevents the fetching of A, because its elements contain all old values.
The new values can be derived only by executing the loop iterations one at a
time in scalar mode. Some compilers can recognize such single-dimension
recursion and optimize the scalar instructions. But the execution rate is
typically a factor of three or four less than the vector execution of loop 3300.

Single-dimension recursion is the only condition that absolutely pre­
vents vectorization of arithmetic operations in a DO loop. It is important to
understand the nature of recursion, and that it is a necessary and unavoid­
able part of some algorithms. In later sections we will demonstrate that when
recursion occurs in a multidimension problem, often there are techniques
allowing us to vectorize the important loops.

3.3 VECTORIZATION 75

Further Recursion Involving Arrays. To restate the definition of recur­
sion: Any address set in one iteration of a DO loop and subsequently refer­
enced in another iteration is a recurrence. Recursion in any one dimension of
an array prevents vectorization of the settings and references within that
dimension. Sometimes the recursion is not directly determinable by a com­
piler. But if potential for recursion exists, the compiler must either avoid
vectorization or must add extra instructions to resolve any ambiguities at
execution time. Loop 3310 contains such ambiguities.

DO 3310 I = 1, N
A(I) = C(I) * B(IB(I))
B(I) = X(I) * Y(I)
D(I) = E(I) / A(I+L)

3310 CONTINUE

The arrays A and B are each being indexed in a manner that makes it
difficult to determine whether recursion will take place. Array A(I) is being
set in the first statement, and A(I+L) is being referenced in the third. If
0 < L < N, then at least one and as many as N-l addresses set in the first
statement will be referenced in the third on subsequent iterations. For L not
in that range, no feedback occurs. The ability of the compiler to determine
the value of L either at compile time or execution time will decide whether
the use of A in the loop can ever be vectorized. If the value or sign of L
remains ambiguous, then the loop must be executed in scalar mode.

Any time that an array is both set and referenced in the same loop and
the subscript expressions differ by an indeterminate value—that is, ambigu­
ous subscripting—then the potential for recursion exists. Compilers can
sometimes resolve the ambiguities; programmers can almost always resolve
them with compiler directives. Examples of this appear in a later section.

The indirect addressing of B in loop 3310 is even more of a challenge.
From a compiler's viewpoint, the values of the indexes IB(I) might actually
repeat earlier values of the loop index I, so the use of B in the loop must be
handled with scalar instructions. A compiler can rarely resolve such ambigu­
ity, but a programmer often can resolve it with a compiler directive, leading
to vectorization where appropriate.

In general, whenever an array is both set and referenced in the same
loop and any of the subscript expressions involve indirect addressing, the
compiler will generate scalar instructions unless the programmer informs it
that there is no recursion. Note that even when the indexes are the same, as
in loop 3320, there is still potential for recursion.

DO 3320 1 = 1 , 3
A(IA(I)) = A(IA(I)) + B(I)

3320 CONTINUE

76 FORTRAN

Consider:

I

1
2
3

IA(I)

1
2
1

Unrolling the loop in scalar mode and designating "new" values as A':

A ' (1) = A(1) + B(1)

A ' (2) = A (2) + B (2)

A ' (1) = A ' (1) + B (3)

It should be clear that the value set in iteration 1 recursively feeds back
into iteration 3. Attempting to vectorize the loop would result in:

A 1 (1) = A (1) + B (1)

A ' (2) = A (2) + B (2)

A ' (1) = A (1) + B (3)

There is no feedback, because all of the values of A are fetched on the right
side before any are stored on the left. Compilers are aware of this potential
problem, so they force such usage to be performed in scalar mode unless
otherwise directed by the programmer.

Further Recursion Involving Scalars. Any time a scalar variable or array
constant is referenced before it is set within a loop, it results in recursion. We
refer to such variables as "wrap-around scalars," and their usage is termed
"scalar recursion." Loops 3330 through 3332 contain examples of scalar
recursion.

XSUM = 0.
DO 3330 I = 1, N

XSUM = XSUM + X(I)
3 330 CONTINUE

DO 3331 J = 1 , N
DO 3331 I = 1 , N

A(I,J) = 0.
DO 3331 K - 1, N

A(I,J) = A(I,J) + B(I,K) * C(K,J)
3331 CONTINUE

XMAX = X(l)
YMAX = Y(l)

3.3 VECTORIZATION 77

DO 3332 I = 2,N
XMAX = AMAX1 (XMAX, X(I))
IF (YMAX .GT. Y(I)) YMAX = Y(I)

3332 CONTINUE

Loops 3330, 3331, and 3332 each contain an example of a "reduction-func­
tion scalar/' A reduction function processes a vector of values and reduces it
to a single scalar value as a result. Loop 3330 computes the sum of the
elements of the array X, placing the answer in XSUM. Loop 3331 is the classic
way to write the matrix multiply in Fortran, with the inner loop expressing a
dot product of a row of B and a column of C, the answer going to a single
element of A. Loop 3332 contains two ways of finding the value of the
maximum in an array.

Most compilers can recognize and optimize the computation involved
in the following reduction functions as they appear in DO loops

scalar = scalar + vectorizable expression
scalar = scalar — vectorizable expression
scalar = scalar * vectorizable expression
scalar = scalar / vectorizable expression
scalar = MAX (scalar, vectorizable expression)
scalar = MIN (scalar, vectorizable expression)
IF (scalar .relop. vectorizable expression)

scalar = vectorizable expression

where

ΜΑΧ/ΜΙΝ represent the whole family of related Fortran-intrinsic functions
.relop. is one of .GT., .GE., .LT., .LE.

The vectorizable expressions can always be computed with vector instruc­
tions. The actual reduction of the expression to the final value usually
involves some scalar code. So even on machines that have specific machine
instructions for such operations as dot product, the result rate for reduction
functions is somewhat lower than for pure vector operations. The most
important thing to know about reduction function scalars is that although the
compilers can optimize the generation of the final result, they cannot gener­
ate any of the intermediate results except by executing the computation in
pure scalar mode. This means that the reduction-function scalar may not
appear in any other statement of the loop if optimization is desired. For
example, consider loop 3340:

XSUM = 0.
DO 3340 I = 1, N

XSUM = XSUM + X(I)
Y(I) = XSUM * Z(I)

3340 CONTINUE

In loop 3340 Y(I) is a function of the partial sums of X. There is no efficient
way to compute this using vector instructions on any machine, so the loop
will be executed in scalar mode.

78 FORTRAN

Loop 3350 represents a different kind of wrap-around scalar.

TOP = 0.
DO 3350 I = 1, N

BOTTOM = TOP
TOP = X(I) * Y(I)
Z(I) = (TOP - BOTTOM) * P(I) + TOP**2

3350 CONTINUE

Here, the scalar BOTTOM is being used to hold the value of TOP from the
previous iteration of the loop. Together, BOTTOM and TOP act as a moving
interval or window within the expression X(I) * Y(I). Neither scalar is accu­
mulating information from all iterations, as with the preceding reduction
functions. In a later section we will show that all such cases of "holding
scalars" can be eliminated by substitution of their defining expressions or by
promotion to a newly defined array of their values — thus allowing the loop
to fully vectorize.

Finally, wrap-around scalar recursion can result from the scalar being
defined conditionally, as in loop 3360.

SCA = 0.
DO 3360 I = 1, N

IF (A(I) .GT. 0.) THEN
SCA = X(I) * Y(I)

ENDIF
Z(I) = SCA + B(I)

3360 CONTINUE

On any iteration when the condition A(I) .GT. 0. is false, SCA is not set, and
the value used to define Z(I) wraps around from the previous iteration. In
general, we cannot predict for which indexes a condition will be true or false.
So it is almost impossible to create the list of values assumed by SCA except
by using scalar instructions. We shall see later than in some cases there will
be a payoff for computing all the values in a separate scalar loop and saving
them in a newly defined array for reference in subsequent loops.

Problems
1. Knowing that a particular machine has 64 banks and a memory-bank

cycle time of four clock cycles, which of the following array references will
incur memory bank conflicts?

DIMENSION A(1024,1024), B(8,1024,64), C(1025,1024)

a. A(:,6)
b. A(6,:)
c. A(l:1024:16,6)

3.3 VECTORIZATION 79

e. B(7,:,64)
f. B(7,l:1024:4,5)
g. C(6,:)
h. C(l:1025:32,:)

(Note: it is interesting that g will probably run much faster than b.)

Conversion of Fortran 8X to efficient vector code can be difficult. On a
register-to-register machine, the most effective means of execution is to
stripmine across a large number of related operations, as are often found
in a substantive DO loop. Consider the following examples:

DIMENSION A(200), B(200), C(200)

a) Fortran 8X Fortran 77

A = B + 2.
C = A*B - 3*

10

DO 10 1=1,200
A(I)=B(I)+2.
C(I)=A(I)*B(I)-3*B(I)
CONTINUE

b) Fortran 8X Fortran 77

A(l:199)=B(l:199)+2
C(2:200)=A(2:200)
* *B(2:200)
* -3.*B(2:200) 20

DO 20 1=2,200
A(I-l)=B(I-l)+2.
C(I)=A(I)*B(I)-3*B(I)
CONTINUE

Are the Fortran 8X and Fortran 77 versions of each example equivalent?
Many compilers may have to stripmine across each statement of the
Fortran 8X code if they lack the necessary analysis to determine if state­
ments can be combined in the looping structure.

3. Given that IA(:) = 1, will a compiler treat the reference A(IA(I)) as a vector
or as an array constant if it appears in a DO loop?

4. In the following DO loops, what values of SCA will be saved in memory
at the termination of each loop.

a) DO 10 I = 1, N
SCA = A(I) + B(I)
C(I) = SCA + D(I)**2

CONTINUE

b) SCA =0.0
DO 20 I = 1,
C(I) = SCA H
SCA = A(I)

CONTINUE

D(I)*"
+■ B(I)

80 FORTRAN

C) DO 30 I = 1, N
IF (A(I) .GT. EPS) THEN
SCA = A(I) + B(I)
C(I) = SCA + D(I)**2
ENDIF

30 CONTINUE

5. On a Cray computer with a vector register length of 64, is the following
DO loop recursive if:

DO 10 1=1,N
A(I+L) = A (I) * X(I) + SCA

10 CONTINUE
a) L = 1? b) L = " 1 ? c) L = 6 4 ?

On the NEC SX2 with register lengths of 256, is the loop recursive for the
cases mentioned?

6. Try compiling the examples in Chapter 4 with your compiler to see how it
compares with the Cray compilers used in Chapter 4.

4
VECTORIZATION OF

FORTRAN PROGRAMS

In this chapter we will discuss areas where compilers fall short in optimizing
Fortran programs and how programmers can restructure their code to assist
the compiler in getting the most out of the target "vector" processor. Al­
though we will primarily be using the Cray X-MP with compilers CFT 77
version 1.2 and CFT 1.15BF2, most of the examples used in this chapter are
unoptimizable by any of the current compilers. In fact, some of the examples
show that the more sophisticated compilers actually generate code that runs
more slowly than it would if the code had not been optimized. We hope that
these examples will illustrate why the programmer must be involved in
optimizing the Fortran program.

4.1
OBTAINING TIMING STATISTICS

In the "real world," a Fortran programmer is faced with the complicated
problem of optimizing a very large Fortran application. If the approach to
optimization is well organized, the programmer can reduce this complicated
task into a number of smaller, manageable pieces of code. Only in the rarest
of cases would we need to totally rewrite the Fortran code to optimize it.

Since we will be dividing the task into smaller disjoint steps, it is
important to identify the most time-consuming portions of code and then
concentrate the optimization on these. A common fault of programmers
optimizing a Fortran application is assuming that they know which portions
of code use most of the central-processing time and beginning optimization
without ever obtaining accurate run-time statistics. This often results from
the belief that the distribution of time on a "scalar" computer will carry over
to a vector processor. This assumption is usually very inaccurate. Since some

81

82 VECTORIZATION OF FORTRAN PROGRAMS

of the code will probably vectorize, those code sections will take a lesser
percentage of time than they took in scalar execution.

All of the supercomputer manufacturers understand the importance of
locating the "hot spots" (the most time-consuming portions of the code).
They have supplied tools for assisting their users in instrumenting the code to
obtain the information necessary to determine the parts of their programs to
optimize first.

4.1.1 Flow Trace
The first such tool, which is extremely easy to use, is FLOW TRACE from
Cray Research. A simple switch on the compiler generates run-time statistics,
which are then tabulated in a summary after the execution of the program.
Figure 4.1 is an example of FLOW TRACE statistics on the LINPACK bench­
mark from the Argonne National Laboratory.*

Figure 4.1(a) presents the names of the subroutines in alphabetical
order. The second column in the figure indicates the amount of time spent in

F L O W T R A C E Alphabet ized summary

(a)

(b)

Routine
10 EPSLON
4 ISAMAX
2 MATGEN
6 SAXPY

©00002727a
3 SGEFA
7 SGESL
1 SLINP
9 SMXPY
5 SSCAL
* * * TOTAL

F L 0 W T R A C E

1 SLINP
2
3
4
5
6
7
8
9
10

MATGEN
SGEFA

Time executing Called Average T
» > (0.00%)

0.065 (3.56%)
0.554 (30.45%)
0.851 (46.77%)

0.316 (17.37%)
0.013 (0.71%)
0.003 (0.16%)

> (0.01%)
0.018 (0.97%)
1.820 . 139104

— Calling tree

00000370a
00002552a
00003642a

ISAMAX 00000242a
SSCAL
SAXPY

SGESL
SAXPY

SMXPY
EPSLON

00004766a
00002727a

00004046a
00002727a

00004324a
00000201a

1
2574
27 0

133874

26 0
26
1 0
1

2574
Total calls

>»
>

021
>

012
>

003
>
>

©00000201a
©00000242a
©00002552a
Called by

©00003642a
©00004046a
©00000370a
©00004324a
©00004766a

Called by
Called by
Called by
SGEFA
128700

Called by
Called by
Called by
Called by
Called by

SLINP
SGEFA
SLINP

SGESL
5174
SLINP
SLINP

SLINP
SGEFA

FIGURE 4.1
FLOW TRACE from LINPACK. (a) Alphabetized summary.

b) Calling tree.

* J. J. Dongarra et al., LINPACK User's Guide (Philadelphia: Society of Industrial and Applied
Mathematics, 1979).

4.1 OBTAINING TIMING STATISTICS 83

each routine, with percentage of total time shown in parentheses. The third
column is the number of times each routine is called, and the fourth column
is the average time per call. A single right-angle bracket (>) indicates that the
time per call is small, and a pair (») indicates that the time is extremely
small. In the final column, the callers of each routine are listed. If more than
one subroutine calls the routine then the number of calls for each caller is
given.

Figure 4.1(b) provides the calling tree for executing the program; in­
dentation indicates the branch level within the tree. Given this information,
we can now concentrate our optimization within the important routines. A
shortcoming of FLOW TRACE is that it only provides timings on subroutine
boundaries. Very often, if the subroutine that uses most of the time is very
large, we will have difficulty identifying which portions of the large sub­
routine should be optimized.

On some UNIX systems, a profiler of central processing time can ana­
lyze the time used within a subroutine on a line-by-line basis. Another
package, called SPY, is available on a number of computers. SPY gives
timings internal to each subprogram based on statistical sampling of the
program address register of the CPU. Unfortunately, interpreting the results
from these other packages is more difficult than those of FLOW TRACE.

4.1.2 FORGE Timing Facility
In our work we have found the need to develop our own timing facility that
gives timing statistics on DO loop boundaries, since these are typically where
vectorization begins. In addition, information such as DO loop-iteration
count (length) and the amount of time spent in a subroutine as a result of
each call to that subroutine are tabulated in a summary table after executing
the program. Appendix B, Section 1 presents statistics from our timing
facility for the LINPACK benchmark.

These statistics contain significantly more information than those in
FLOW TRACE. In the first table, information similar to that of FLOW TRACE
is given; inclusive and exclusive times and percentages are presented. Inclu­
sive time includes the time spent in all the subroutines and functions called
from the routine. Exclusive time excludes the time of called routines if they
have also been instrumented. As with FLOW TRACE, if a subroutine or
function is not compiled with the timing instrumentation, its time is added to
that of its caller.

After this initial table, statistics within each of the subroutines and
functions are presented. In these tables, each subroutine and function call as
well as every DO loop has an entry. For each DO loop the indentation
indicates the nesting of the loop. The next few columns show the time spent
in each subprogram or DO loop as a percentage of the total job time or total
routine time. Next, the number of times the subprogram or DO statement
was executed is given and finally the average and maximum number of

84 VECTORIZATION OF FORTRAN PROGRAMS

iterations for each of the DO loops. At the end of the statistics, the complete
calling chain of the program is presented; indentation shows the nesting both
of subprograms and DO loops. In this table, the average number of DO loop
iterations is shown in brackets ([]).

4.1.3 How to Use the Timing Statistics
Obtaining these statistics will result in longer execution, since the calls to the
instrumentation routines will take up some time. This additional computer
time is well worth the expenditure when this information directs the person
hours invested in optimizing the program.

When obtaining timing statistics by execution of the instrumented pro­
gram, it is important to assure that they represent a typical productive run of
the program. Never run a small test case to obtain statistics to be used to
direct the optimization of a large test case. In numerical models that march
across time in discrete steps, we must time enough (say, four to five) steps to
accumulate good averaged statistics; one time step will not suffice.

To completely optimize all important routines in the program, we may
have to time several different test cases that exercise all the important pieces
of the program. In obtaining the run-time statistics, a good investment in
time and analysis will save a lot of misdirected restructuring work later.

Comparing Scalar and Vector Execution of a Program
A good first approach in gathering run-time statistics is to determine how
much optimization is already being performed by the compiler. This can be
done by making a normal run of the program, allowing the compiler to
optimize whatever code sections that it can, and then also obtaining the same
statistics from a "scalar" execution of the program. This can be accomplished
by turning off vectorization or parallelization. All of the compilers provide a
simple mechanism on the control statement to accomplish this. For example,
on a Cray with the COS operating system, compile with CFT specifying the
keyword OFF = V.

The first advantage of obtaining these results is that we can get a quick
idea of the performance to be gained from optimizing this program. If the
"normal" execution is the same speed as the "scalar," then no optimization
has been performed by the compiler and much stands to be gained. But if the
"normal" execution runs from 5 to 6 times faster than the "scalar," then the
code is probably already optimized significantly and little can be gained from
any more optimization. Most actual results are between these two extremes.
After we obtain this global overview of the performance, we need to look at
the program subroutine by subroutine. In analyzing the individual sub­
routines and DO loops, we should concentrate first on those that are most

4.1 OBTAINING TIMING STATISTICS 85

time consuming. Three possibilities exist when we compare vector and scalar
times on the subroutine or DO loop level:

1. The vector and scalar executions have identical times. In this case,
the compiler has not been able to optimize anything, and we can
expect a large performance improvement if restructuring the sub­
routine or DO loop is possible.

2. The vector time of the routine or DO loop is significantly (a factor of
five to ten) less than the scalar. In this case there may not be much
that can be done. Section 4.9.6 deals with further optimizing code
already optimized by the compiler to some degree.

3. The vector execution of the routine or DO loop is slower than the
scalar. Do not be shocked by this possibility. Sometimes the compiler
may try to optimize a very complicated section of code and actually
generate code that runs more slowly. A simple example of this
occurs in the compilation of a doubly nested DO loop with variables
specifying the iteration counts (vector lengths). Sometimes the com­
piler blindly chooses the shorter of the two to optimize, and the
vector length turns out to be only one or two at execution time. In
these cases we should be able to assist the compiler in doing the right
thing by restructuring the code appropriately. Examples such as this
will be discussed in section 4.9.7.

Characteristics of Major Routines
Once we identify the routines that use much of the central processing time
and have good potential for optimization, we then need to examine the
characteristics of the routine and DO loop structure.

1. The most common case occurs when the routine that uses most of
the CPU time does not vectorize and contains DO loops of a good
size. "Good size" is very machine dependent; but all machines tend
to do better on DO loops of 50 or more iterations. When a program­
mer is faced with such a routine, then the optimization strategy is
simply to restructure the DO loops so that they will vectorize. Sec­
tions 4.9.1 through 4.9.8 deal with such examples.

2. A more difficult situation occurs when a CPU-intensive subprogram
has no DO loops or has DO loops of a very small iteration count
(< 10). Since vectorization of loops of such a small size has little
payoff, the strategy must be to examine the routines that call this

86 VECTORIZATION OF FORTRAN PROGRAMS

subprogram to determine if the call is from within a loop with a large
iteration count. We can then attempt to vectorize the calling loop.
The example shown in Appendix B, Section 2 illustrates such a
situation. Subprogram CINVA uses most of the time (in this case
46%), but its DO loops are only of vector length 3. An analysis of the
routines that call CINVA shows that RHS, STEP, and FILTRX each
call CINVA from DO loops of length 60, an excellent size for vector-
ization. Section 4.9.9 deals with techniques either to expand sub­
routines in line or pull DO loops into the routine for subsequent
optimization.

3. Sometimes a CPU-intensive routine contains loop nests whose outer
loops have much greater iteration counts than do the inner loops.
Such loop nests can be restructured to pull the longer loops inside
the smaller inner loops. Or, as an alternative, the smaller DO loops
can be unrolled inside the larger DO loops. These techniques are
discussed in section 4.9.7. Referring to subroutine RHS in Appendix
B.2, we see that DO loop 15 within RHS uses most of the time within
RHS; but inner loops of length 3 are contained within loop 15.

4.2
DISCUSSION OF AMDAHL'S LAW

The discussion of Amdahl's Law in Chapter 1 addressed the comparison
of strictly "scalar" code to "vectorized" code. It is important to understand
to what extent the code is already optimized to estimate how much effort
is needed to achieve the desired improvement gain. We can apply a cost
analysis that compares the amount of effort required with the amount
of savings in computer time. If little optimization has been performed to
date, then the cost analysis should be favorable for proceeding with an
optimization plan. Conversely, if the comparison of the scalar and vector
execution times indicates that program has already been significantly opti­
mized, then expending additional effort to achieve more improvement may
be unjustifiable. The "law of diminishing returns" applies to program opti­
mization.

An assumption made in deriving Amdahl's law was that vectorization
would achieve a factor of ten over scalar code for a Cray X-MP. In fact,
sometimes the performance improvement may be greater than or less than
ten. The bulk of this chapter is devoted to a great many examples that
illustrate the variations in performance. Furthermore, performance gains are
a function of vector length. Given the characteristics of a Fortran program
and the vector lengths (number of DO loop iterations) involved, the reader
can estimate an achievable performance gain for the subroutine to be opti­
mized.

4.3 MODULARITY AND OPTIMIZATION 87

4.3
MODULARITY AND OPTIMIZATION

When developing a sizable program, an excellent approach is to modularize
the program and develop the individual modules in such a way that they can
be tested independently. Some Fortran programmers have taken modularity
to an extreme, and this destroys any possibility of optimization by the
compiler.

If a Fortran DO loop references any nonintrinsic subprograms, it cannot
be automatically vectorized by a compiler. Often a program with such char­
acteristics has been written so that each subroutine updates single values of
its arguments and therefore is a "scalar" subroutine. A far superior approach
is to write a subroutine to update arrays of values. In this case the DO loops
are contained within the routines and are more likely to be optimized by the
compiler.

4.3.1 Scalar-Valued Routines versus Array-
Valued Routines

Consider a routine that calculates some complicated physical quantity for a
particle. In loop 40000, subroutine COMPL is called on each iteration to use
the scalar variables X, Y, and Z.

DO 40000 I = 1, N
CALL C0MPL(X,Y,Z)

40000 CONTINUE

SUBROUTINE COMPL(Χ,Υ,Ζ)

X = . . .
(Complicated
= ... Y . .
= ... X

RETURN
END

A far superior approach places the loop inside COMPL, which then receives
and returns arrays of values from and to its calling routine, performing the
computation within a potentially vectorizable DO loop.

CALL COMPL(N,X,Y,Z)

SUBROUTINE COMPL(N,X,Y,Z)
DIMENSION X(*),Y(*),Z(*)
DO 40001 I = 1,N

X(D = . . .

calculations using scalar quantities)

Z . . .

88 VECTORIZATION OF FORTRAN PROGRAMS

(Complicated calculations using array quantities)
= ... Y(I) ...
= . . . X(I) . . . Z(I) . . .

40001 CONTINUE
RETURN
END

Note that COMPL could be called (albeit inefficiently) with N = 1 to perform
the same calculations as the original version of COMPL.

The guideline to use when restructuring code or developing code from
scratch is to make array operations visible to the compiler. If the DO loops
are in the calling routines and the CPU-intensive calculations are contained
within the subroutines or functions called from the DO loop, the compiler is
blind to the fact that there are good calculations that could be vectorized on
the DO loop.

4.4
A SYSTEMATIC APPROACH TO

RESTRUCTURING
Once the most time-consuming portions of the program are identified, the
programmer should optimize systematically. We should not try to optimize
the entire program prior to testing intermediate restructurings for accuracy
and performance gains. By setting up a test case that executes relatively
quickly, we can submit a test after a major DO loop or small routine has been
optimized. Both correctness of results and the performance gain should be
examined. Sometimes a restructuring may not achieve the desired goal, and
an alternative approach may be warranted. If two subroutines are being
optimized, one using 70% of the time and the other 20%, and only a
factor-of-two performance gain is obtained on the first routine, it is still using
more time than the second routine and should be examined for additional
improvements.

The best approach for vectorizing a large Fortran program is to restruc­
ture a small amount of code (perhaps three or four hours of work), test it for
accuracy and performance, then go on to a second piece of code.

4.4.1 Possible Inaccuracies Caused by
Vectorization

When restructuring a program for vectorization, it is most important to
continue to obtain correct results. Some optimization techniques can cause
slight differences in the answers. The best example of this is the vectorization
of a summation. When a summation is vectorized, the result is often com-

4.5 WHY THE PROGRAMMER IS NEEDED 89

puted in a different order than that performed in scalar mode. For instance,
consider the example in loop 40010.

SUM =0.0
DO 40010 1 = 1 , 1001
SUM = SUM + A(I)

40010 CONTINUE

The reason for the difference in the order of calculations in vector mode
is that the compiler generates code that will calculate partial sums in vector
registers, then adds the partial sums together. In scalar mode, SUM is gener­
ated by adding the elements of A in order. Consider the following values for
the elements of A:

A(1 : 1000) = 1 . E - 1 5

A(1001) = 1 .

If we accumulate these values in scalar mode on a machine that has 15
decimal digits of accuracy, we will obtain the result 1.00000000000100. But if
the values are added in reverse order (this is not the way it is done in vector
mode), the result will be 1.0 because of roundoff on each add operation; that
is, on a machine with 15 digits of accuracy, 1.0 4- l.E—15 = 1.0.

Differences in the summation resulting from vector versus scalar are
typically very small and are encountered rarely. For arithmetic operations
that are not accumulative, the results will be identical whether obtained by
vector or scalar execution.

4.5
WHY THE PROGRAMMER IS NEEDED

The techniques discussed in this chapter for optimizing code are not very
complicated. As a matter of fact, most vectorizing compilers today perform
all of the techniques outlined here. But, compilers are very often inhibited
from performing these techniques because their analysis is blocked by the
structure of the Fortran code, and they cannot determine if the techniques
can be safely applied.

A programmer can write Fortran code that defies analysis by any
compiler. For example, sophisticated equivalencing among variables and
arrays will hinder compilers from doing good data-dependency analysis.
Tricks that some programmers use to take some short-cuts in writing the code
may result in poorly executing scalar code and will often prevent vectoriza-
tion.

The intent of this chapter is to discuss the optimization techniques that
many compilers perform and conditions in which the compilers cannot
employ these techniques. In many of these cases a programmer can use the

90 VECTORIZATION OF FORTRAN PROGRAMS

methods described in this chapter to restructure the code so that the compiler
will optimize the new version.

4.5.1 Difficulties of Optimizing "Dusty-Deck"
Fortran

In analyzing Fortran programs, a compiler will often encounter ''inhibitors/ '
which are constructs within a ΌΟ loop that degrade or prevent vectorization.
Ambiguous conditions also cause the compiler to make an arbitrary choice of
how to vectorize the code. Frequently, compilers use other characteristics of
the loop — such as the order of subscripts in multidimensioned arrays — to
try to determine how to optimize the code; sometimes inefficient code results
from a bad choice. We will examine both of these situations in the subsec­
tions that follow.

4.6
CANDIDATES FOR VECTORIZATION

In Chapter 3 we established a vocabulary for discussing the important con­
structs of a DO loop. Now we can begin to define what will and will not
implicitly vectorize. All of the compilers on supercomputers investigate inner
DO loops to determine if they contain either or both of the following:

• A store into at least one array with a loop variant subscript expression
(a vector array)

• At least one recognized reduction function

An inner loop that contains one of the preceding is a candidate for vectoriza­
tion. But before any vector instructions can be generated, the loop must be
examined for vectorization inhibitors, as we will outline next.

4.7
VECTORIZATION INHIBITORS

If a loop contains any of the following constructs, part or all of the loop may
not vectorize:

1. Recursion in any of its forms: fetching and storing of the same array
with subscript expressions that will or might cause data feedback
from one iteration of the loop to a subsequent iteration; fetching a
scalar or array constant prior to setting it in the loop

4.7 VECTORIZATION INHIBITORS 91

2. Subroutine CALLs

3. References to external functions for which the compiler knows of no
vector version. Most Fortran 77 intrinsic functions such as SQRT,
SIN, EXP, and so forth are vectorized; user-defined functions are
not.

4. Any I /O statements

5. Assigned GO TO statements

6. Certain nested IF blocks. The payoff for vectorization decreases as
the level of nesting increases.

7. GO TO statements that exit the loop. Some compilers have a limited
ability to vectorize this in simple loops, but in general such loops are
run in scalar mode.

8. Backward transfers within a loop

All of the compilers will tell us which loops have been vectorized. Most
of them will tell us what vectorization inhibitors appear in a loop and what
parts of the loop will be run in scalar mode. If a compiler does not tell us why
a loop does not vectorize, close examination of the loop will almost certainly
reveal one of the preceding inhibitors. If no inhibitors can be found, the loop
is probably too long for effective optimization/vectorization, a condition that
can be remedied by splitting the loop using techniques outlined in subse­
quent sections.

For completeness, it must be noted that some of the compilers will
examine all of the loops in a nest in an attempt to determine on which to
vectorize. If an outer loop is chosen, the loop nest will be transparently
inverted to make the target loop the inner loop. Such "loop switching" is the
subject of a later section. Some of the compilers will also "collapse" loop
nests when the subscripts of the referenced arrays range over all possible
array elements, as in loop 40020.

DIMENSION A(90,50), B(90,50)

DO 40020 J = 1, 50
DO 40020 I = 1,90

A(I,J) = B(I,J) * 2.0
40020 CONTINUE

Later we will examine each problem area in detail, specifying tech­
niques that will allow as much code as possible to be vectorized. In most
cases we will keep the example loops and their restructuring as simple as
possible. Real-world code can be expected to realize even better performance
gains than illustrated here.

92 VECTORIZATION OF FORTRAN PROGRAMS

4.7.1 Compiler Optimization with Incomplete
Information

Some of today's compilers appear to be less sophisticated than others. This is
because some compiler writers have taken the approach that if they really do
not know the best way to optimize a particular loop, they will not optimize it
at all, because it may produce slower code. Others have chosen to take a
"best guess7' to optimize complicated loops. Following are some typical
conditions in which a compiler lacks enough information about the code to
optimize effectively:

1. Multinested DO loops. The Cray compilers currently are vectorizing
only the innermost DO loop. This may not be a bad approach, since
the results from compilers that attempt to switch loop nests indicate
that the heuristics determining which is the best loop to vectorize
improve performance only about 50% of the time.

2. Complex decision processes. All compilers have a limit on the level
of nesting of IF conditions that they will attempt to vectorize. The
nesting of the IFs is some indication of the sparsity of the truth of the
compounded conditions (and therefore the effective vector length).
But it certainly is not always the best means of determining whether
the condition should be vectorized or not.

3. Ambiguous array subscripts. When the relation among differing
subscripts in references to the same array within a loop cannot be
determined, a compiler must be concerned about the potential data
dependency of the calculations. Some compilers handle such ambi­
guities by generating two versions of the DO loop: a vector version
to be used if a run-time test indicates that the subscripts do not lead
to recursion and a scalar version to be used otherwise. But, only a
few such ambiguities in a loop can be handled effectively in this
manner.

Often, compilers are inhibited from doing the best optimization be­
cause they do not know enough about the code. The solution is to involve the
programmer in the analysis. Even a programmer does not know all of the
answers needed for optimization; but, if assisted by run-time statistics, he or
she can usually provide the necessary information.

The authors believe that it will be a significant time before a compiler
can automatically optimize the dusty-deck Fortran program well. So, for
today, the right approach is for the programmer to become involved in the
analysis, aided by run-time statistics.

4.8 EFFECTS OF ARRAY ACCESS ON PERFORMANCE 93

4.8
EFFECTS OF ARRAY ACCESS ON

PERFORMANCE
Before examining restructuring techniques on actual loops, we wish to estab­
lish the effect on performance, depending on the order in which the elements
of arrays are fetched and stored, and furthermore, on the ratio of operations
to vector operands within a loop.

To this end, we have prepared three groups of loops. The first accesses
arrays indirectly with random indexes. The second accesses the same arrays
directly with unitary stride; and the third accesses the arrays directly with
stride 128. Each group contains 13 different loops. And, from group to group,
corresponding loops perform the same number of operations on the same
number of vectors. Each vector fetched or stored within a loop is counted as
an operand, and within a group the ratio of operations to operands ranges
from as small as one-third (one operation, three operands) to as large as nine
and one-half (nineteen operations, two operands).

We expect that unitary stride will produce the best performance among
the three groups. Indirect addressing adds one or more chimes to the execu­
tion. This occurs because of the extra time needed to fetch the index and also
because of general memory performance degradation resulting from interfer­
ence among the indexes and the requirement that the indexed array elements
be delivered in the proper order. Finally, stride 128 forces memory-bank
conflicts on each successive reference and slows the performance by a factor
equal to the memory-bank cycle time. (Since there are 39 loops involved in
this comparison, we have listed them in Appendix C.)

We have run all the loops on the Cray X-MP (with G/S, CFT 77), the
CYBER 205 (with FTN 200) and the NEC SX2 and computed the perform­
ance in megaflops for each. The results, comparing the three modes of
memory accessing, are graphed versus the ratio of operations to operands in
Figure 4.2.

As the ratio of operations to operands increases, the performance of the
target machines approaches the maximum possible. For example, on the
Cray X-MP the examples with larger ratios are generating an add and multi­
ply each clock cycle most of the time, and the Mflop rate will exceed 200 for
very long vector lengths.

The results obtained from these figures are consistent with our as­
sumptions. The contiguous addressing is in fact the fastest of the three
methods for all ratios of operations to operands; indirect addressing is sec­
ond, and a stride of 128 is the slowest. On the Cray X-MP the differences
between contiguous and indirect addressing vary from a factor of 2 for low
ratios to 1.2 for very high ratios. The higher the ratio, the less time spent in
fetching and storing operands and results. The stride 128 results range from a
factor of three to less than a factor of two.

(a) 180

160

140

120

80

60

40

20

4 6
Ratio

10

(b)

Q.
o

140

120

80

60

20

10
Ratio

4.8 EFFECTS OF ARRAY ACCESS ON PERFORMANCE 95

(c)

Q.
O

800

720

640

560

400

320

160

80

0 2 4 6 8 10
Ratio

FIGURE 4.2
Performance versus Ratio of Operations to Operands, (a) Cray

X-MP. (b) CYBER 205. (c) NEC SX2. Loops: contiguous,
top line; indirect, middle line; stride = 128, bottom line.

On the CYBER 205 the differences are significantly larger. The differ­
ence between indirect and contiguous addressing ranges from factors of 5 to
6 down to a factor of 1.5.

C ONE OPERATION - THREE OPERANDS
DO 41000 I = 1, N
A(IA(I)) = B(IA(I)) + C(IA(I))

41000 CONTINUE

RATIO = 1/3

C ONE OPERATION - THREE OPERANDS RATIO = 1/3
DO 41020 I = 1, N
A(I) = B(I) + C(I)

41020 CONTINUE

Let us examine the performance of the Cyber 205 in more detail.
Considering DO loop 41000 and DO loop 41020, the operations needed to
perform loop 41000 are as follows:

• Gather B(IA(I)) into a temporary memory vector TEMPI.
• Gather C(IA(I)) into a temporary memory vector TEMP2.

96 VECTORIZATION OF FORTRAN PROGRAMS

• Add TEMPI to TEMP2 storing results into temporary memory vector
TEMP3.

• Scatter TEMP3 into A(IA(I)).

In loop 41020 none of the temporary vectors are needed. If all these
operations took the same amount of time, we would expect loop 41020 to run
four times faster than loop 41000. In fact the gather/scatter operations take
more time than the add operation. Therefore, the results differ by more than
a factor of four.

The memory architecture of the CYBER 205 and ETA 10 causes fetch­
ing and storing of arrays with nonunitary strides to be treated almost identi­
cal to indirect addressing. This is because the arrays must be fetched into
temporary vectors with gather-periodic instructions and the result stored into
an array with a scatter-periodic instruction. These periodic operations take
about the same time as the indirect address gather/scatter and result in
approximately the same timings. The results in this example for nonunitary
stride have the added difficulty of encountering memory-bank conflicts.

The results on the NEC SX2 vector processor are very interesting. We
know less about the actual fetching and storing of arrays on this machine,
but our example gives us some insight on its relative performance. The first
point is that the SX2 is a very fast machine, capable of reaching almost 800
Mflops on the highest ratio with unitary stride fetching and storing. The
second point is that indirect fetching and storing is significantly slower than
unitary strides. The contiguous accessing is three to four times faster than the
Cray X-MP, but its indirect addressing is about the same speed as the Cray
X-MP for small ratios and only a factor of two for larger ratios. The SX2 does
have hardware gather/scatter, but its result rate is only about one-fourth to
one-third of its contiguous performance. Finally, note that stride 128 per­
formance is about one-eighth that of contiguous vectors, indicating that the
bank cycle time is eight clock cycles.

4.9
EXAMPLES OF RESTRUCTURING

FORTRAN LOOPS
4.9.1 Introduction to Examples

For the remainder of this chapter we will examine a set of typical Fortran
loops, highlighting constructs within each loop that can degrade or prevent
compiler optimization. A restructuring of each loop is presented, and the
performance of the original and the restructured loops are compared graphi­
cally.

Most of the loops are drawn from real-world programs or well-known
benchmarks. A few have been fabricated to present a particular problem
with a short example. We have attempted to represent all of the commonly

4.9 EXAMPLES OF RESTRUCTURING FORTRAN LOOPS 97

encountered problem areas and to present effective restructuring techniques
that will work well on any vector processor.

All of the loop comparisons have been made on a Cray X-MP/48 (at
the Pittsburgh Supercomputing Center), using either CFT 77 ver. 1.2 or CFT
1.15BF2. Some examples are shown for the CDC CYBER 205 at the Minne­
sota Supercomputer Center.

4.9.2 Accessing Arrays
The following example simply illustrates the effect of memory-bank conflicts
on the Cray X-MP. In loop 41080 we are accessing the arrays on the second
subscript of the A array. Since the first dimension is 128, this is the stride
through memory, which we know causes memory-bank conflicts. When this
situation arises, a common restructuring technique is to change the offending
dimension to a value that will not cause a memory-bank conflict. In loop
41081 we have changed the dimension to 129, and the resultant odd stride
does not encounter memory-bank conflicts. We can see in Figure 4.3 that the

160

140

120

100

80

60

40

20

11 61 111 161 211 261 311 361 411 461
Loop length

FIGURE 4.3
Performance Comparison of Loops 41080 and 41081, Cray

X-MP. a, original; b, restructured.

98 VECTORIZATION OF FORTRAN PROGRAMS

restructured code (dotted line) runs up to three times faster than the original
code (solid line).

DIMENSION A(128,N)

DO 41080 I = 1,N
A(1 ,1) = C 1 * A (1 3 , I) + C2* A (1 2 , I) + C 3 * A (1 1 , I) +

* C 4 * A (1 0 , I) + C5* A(9 , 1) + C6*A(8 ,1) +
* C7*A(7 , 1) + C0*(A(5 , 1) + A(6 , 1)) + A(3 , 1)

41080 CONTINUE

DIMENSION A(129,N)

DO 41081 I = 1,N
A(1 ,1) = C 1 * A (1 3 , I) + C2* A (1 2 , I) + C 3 * A (1 1 , I) +

* C 4 * A (1 0 , I) + C5* A(9 , 1) + C6*A(8 ,1) +
* C7*A(7 , 1) + C0*(A(5 , 1) + A(6 , 1)) + A(3 , 1)

41081 CONTINUE

Q. O

30

25

15

10

11 61 111 161 211 261 311 361 411 461
Loop length

FIGURE 4.4
Performance Comparison of Loops 41080 and 41081, CYBER

205. a, original; b, restructured.

4.9 EXAMPLES OF RESTRUCTURING FORTRAN LOOPS 99

120 * 1

11 61 111 161 211 261 311 361 411 461

Loop length

FIGURE 4.5
Performance Comparison of Loops 41090 and 41091, Cray

X-MP. a, original; b, restructured.

On the Cyber 205 the results are better in the restructured code shown
in Figure 4.4. But the most effective restructuring would be somehow to
switch dimensions of the array. In that way the I index would be the
innermost, and the accessing of arrays would be contiguous. That restructur­
ing was not performed here because of the impact it would have on the
remaining code in the program. In fact, in other portions of the program the
array may be accessed on the first subscript. If the subscripts were reversed,
then the accessing would again be noncontiguous and again run more
slowly.

The next example shows such a restructuring that will undoubtedly
help the Cyber 205 significantly. In loop 41090 the innermost loop on I is
accessing the arrays on the third subscript. The stride is therefore the product
of the first two dimensions of the arrays, or 64. Our restructuring in loop
41091 is to rearrange the order and meaning of the dimensions and sub­
scripts to have the inner loop access the left-most subscript and largest vector
length. The results are depicted in Figure 4.5.

100 VECTORIZATION OF FORTRAN PROGRAMS

THE ORIGINAL
DIMENSION A(8,8,500,8), B(8,8,500,8)

DO 41090 K = KA, KE, -1
DO 41090 J = JA, JE

DO 41090 I = IA, IE
A(K,L,I,J) = A(K,L

* - B(J,2, I,K)*A(K+1,L
* - B(J,4,I,K)*A(K+1,L

41090 CONTINUE
C THE RESTRUCTURED

DIMENSION A(500,8,8,8),

, i , J)
, 1 , 2)
, 1 , 4)

B(500,

-
-

"

8

B(J
B(J
B(J

8 ,8)

1
3
5

I
I
I

K)
K)
K)

*A(K+1
*A(K+1
*A(K+1

L
L
L

I
I
I

1)
3)
5)

DO 41091 K = KA, KE, -1
DO 41091 J = JA, JE

DO 41091 I = IA, IE
A(I,K,L,J) = A(I,K,

* - B (I , J , 2 , K) * A (I , K + 1 ,
* - B (I , J , 4 , K) * A (I , K + 1 ,

41091 CONTINUE

L, J)
L ,2)
L ,4)

- B (I , J , 1 , K) * A (I , K + 1 , L , 1)
- B (I , J , 3 , K) * A (I , K + 1 , L , 3)
- B (I , J , 5 , K) * A (I , K + 1 , L , 5)

Q.
O

80

70

60

50

40

30

20

10

61 111 161 211 261 311 361
Loop length

411 461

FIGURE 4.6
Performance Comparison of Loops 41090 and 41091, CYBER

205. Original, solid line; restructured, dotted line.

4.9 EXAMPLES OF RESTRUCTURING FORTRAN LOOPS 101

If we assume that the dimensions of the arrays can be switched as shown so
that accessing can be contiguous, the results on all the machines are
favorable—but most favorable on the Cyber 205. These results are depicted
in Figure 4.6.

4.9.3 Scalar Temporaries (Simple)
Recall that a scalar temporary is a scalar variable set equal to a vectorizable
expression within a loop. Often, we will encounter a program in which scalar
temporaries have been used to such an extent that the ability of the compiler
to optimize the loop is compromised. Loop 42010 represents such a case.
Notice that 12 scalar temporaries are assigned before the compiler can use
any of them. Unless the compiler is very smart and can reorganize the
statements, it will run out of registers (there are only eight vector registers on
the Crays).

Loop 42011 generates the same results with no scalar temporaries.
Notice the grouping, in parentheses, of the common subexpressions. Both the
original and the restructured loops vectorize; but for vector lengths over 100,
loop 42011 outperforms 42010 by a factor of 1.8 (Figure 4.7).

Later sections will explore the restructuring of more complicated use of
scalars in a loop.

C THE ORIGINAL
DO 42010 KK
T000
T001
T010
T011
T100
T101
T110
Till
Bl
B2
B3
B4
Rl
SI
RS
SS
RU
SU
B(KK,
B(KK,
B(KK,
B(KK,

K000)
K001)
K010)
K011)

42010 CONTINUE

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

1, N
A(KK.KOOO)
A(KK,K001)
A(KK.KOIO)
Α(ΚΚ,ΚΟΙΙ)
Α(ΚΚ,ΚΙΟΟ)
Α(ΚΚ,ΚΙΟΙ)
Α(ΚΚ,ΚΙΙΟ)
A(KK.Klll)
Β(ΚΚ,ΚΟΟΟ)
Β(ΚΚ,ΚΟΟΙ)
Β(ΚΚ,ΚΟΙΟ)
Β(ΚΚ,ΚΟΙΙ)
T100 * Cl + T110 * C2
T101 * Cl - Till * C2
T000 + Rl
TOOl + SI
T010 - Rl
T011 - SI
Bl + RS
B2 + RU
B3 + SS
B4 - SU

THE RESTRUCTURED
DO 42011 KK = 1,N

B(KK,K000) = B(KK,K000) + A(KK.KOOO)
* + (A(KK.KIOO) * Cl + A(KK.KllO) * C2)

102 VECTORIZATION OF FORTRAN PROGRAMS

Β(ΚΚ,ΚΟΟΙ) = Β(ΚΚ,ΚΟΟΙ) + A(KK.KOIO)
* - (A(KK.KIOO) * Cl + A(KK.KllO) * C2)

Β(ΚΚ,ΚΟΙΟ) = Β(ΚΚ,ΚΟΙΟ) + Α(ΚΚ,ΚΟΟΙ)
* + (Α(ΚΚ,ΚΙΟΙ) * Cl - Α(ΚΚ,ΚΙΙ Ι) * C2)

Β(ΚΚ,ΚΟΙΙ) = Β(ΚΚ,ΚΟΙΙ) - Α(ΚΚ,ΚΟΙΙ)
* + (Α(ΚΚ,ΚΙΟΙ) * Cl - Α(ΚΚ,ΚΙΙ Ι) * C2)

42011 CONTINUE

When used moderately in a loop, scalar temporaries are very useful for
helping a compiler to recognize common subexpressions. Loop 42030 is loop
10 of the Livermore kernels, and it is vectorized by all compilers.* We might
think that additional optimization could be obtained by eliminating some of
the scalar temporaries. This turns out to be incorrect, since — after applying

11 61 111 161 211 261 311 361 411 461
Loop length

FIGURE 4.7
Performance Comparison of Loops 42010 and 42011, Cray

X-MP. a, original; b, restructured.

* Frank H. McMahon, "The Livermore Fortran Kernels: A Computer Test of the Numerical
Performance Range," Lawrence Livermore National Laboratory, University of California —
Berkeley, December 1986.

4.9 EXAMPLES OF RESTRUCTURING FORTRAN LOOPS 103

the same technique used to optimize loop 42011—the restructured loop
42031 actually runs more slowly than the original (Figure 4.8).

The restructuring does illustrate more clearly what is going on in this
loop. The calculation of A(14,I) uses old values of A(5,I) through A(13,I).
This was done in the original with the use of the scalar temporaries. In
eliminating the scalar temporaries, the assignments into the array elements
had to be done in reverse order to preserve the correct algorithm. This is an
example where the scalar temporaries in the original were useful in minimiz­
ing the work the compiler generated.

C THE ORIGINAL
DO 42030
AR
BR
A(5,I)
CR
A(6,I)
AR
A(7,I)
BR
A(8,I)
CR
A(9,I)
AR
Α(ΙΟ,Ι)
BR
A(11,I)
CR
A(12,I)
A(14,I)
A(13,I)

42030 CONTINUE

1 = 1
=
= AR -
= AR
= BR -
= BR
= CR -
= CR
= AR -
= AR
= BR -
= BR
= CR -
= CR
= AR -
= AR
= BR -
= BR
= CR -
= CR

, N
B(5,I)
A(5,I)

A(6,I)

A(7,I)

A(8,I)

A(9,I)

A(IO.I)

A(11,I)

A(12,I)

A(13,I)

THE RESTRUCTURED
DO 42031
A(14, I)

A(13, I)

A(12,I)

A(11,I)

A(IO.I)

A(9,I)
A(8,I)
A(7,I)
A(6,I)
A(5,I)

I
=
-
=
-
=
-

=

=

=
=
=
=
=

= 1, N
B(5,I)
A(9,I)
B(5,I)
A(9,I)
B(5,I)
A(9,I)
B(5,I)
A(9,I)
B(5,I)
A(9,I)
B(5,I)
B(5,I)
B(5,I)
B(5,I)
B(5,I)

- A(5,1)
- A(IO.I)
- A(5,1)
- A(10,I)
- A(5,1)
- A(10,I)
- A(5,1)
- A(10,I)
- A(5,1)

- A(5,1)
- A(5,1)
- A(5,1)
- A(5,1)

- A(6,
- A(ll,
- A(6,
- A(ll,
- A(6,
- A(ll,
- A(

- A(

- A(
- A(
- A(

6,

6,

6;
6,
6.

,1)
,D
,D
,D
,1)
,D
,D

,D

,D
,D
,D

- A(7,
- A(12,
- A(7,
- A(12;
- A(

- A(

- A(

- A(
- A(

7,

7,

7,

Ί
7

,D
,D
,D
,D
,1)

,D

,D

,D
,D

- A(8,
- A(13,
- A(8,

- A(8,

- A(8:

- A(8,

- A(8

,D
,D
,D

,D

,D

,D

,D

42031 CONTINUE

104 VECTORIZATION OF FORTRAN PROGRAMS

Q. O

70

60

50

30

20

10

11 61 111 161 211 261 311 361 411 461
Loop length

FIGURE 4.8
Performance Comparison of Loops 42030 and 42031, Cray

X-MP. a, original; b, restructured.

4.9.4 Recursion Involving Arrays
In this section we investigate various constructs that often degrade or prevent
optimization because of actual or potential recursion in array references. The
first example, loop 43010, is not recursive. We present it here to compare the
performance of a fully vectorized loop with the recursive loop 43011 that
follows.

C NON-RECURSIVE DO LOOP FOR TIMING COMPARISON
DO 43010 I = 2, N
A(I) = A(I+1) * B(I) + C(I)

43010 CONTINUE

C THE ORIGINAL RECURSIVE DO LOOP
DO 43011 I = 2, N
A(I) = A(I-l) * B(I) + C(I)

43011 CONTINUE

4.9 EXAMPLES OF RESTRUCTURING FORTRAN LOOPS 105

Although no vector instructions can be issued in computing loop
43011, the Cray compiler (as well as most others) recognizes the loop as a
special case for which it has a highly optimized scalar solution. The solution
is embodied in a library routine FOLR (first order linear recurrence) that the
compiler invokes to provide the desired answers. The technique involves the
simultaneous computation of several of the loop iterations, thus utilizing all
of the machine's scalar registers and scalar memory bandwidth. A close
approximation of this technique is shown in standard Fortran in loops 43012
and 43013.

C THE RECURSIVE LOOP UNROLLED TO DEPTH FOUR
DO 43012 1 = 2 , N-3, 4
A(I) = A(I-l) * B(I) + C(I)
A(I+1) = A(I) * B(I+1) + C(I+1)
A(I+2) = A(I+1) * B(I+2) + C(I+2)
A(I+3) = A(I+2) * B(I+3) + C(I+3)

43012 CONTINUE

C CLEANUP LOOP FOR DEPTH FOUR UNROLLING
DO 43013 J = I,N
A(J) = A(J-l) * B(J) + C(J)

43013 CONTINUE

This technique of loop unrolling is introduced here in this example
where it is relatively easy to follow. It provides no performance improvement
over the optimization of the original loop (Figure 4.9). But it will be shown to
be a valuable technique in later examples.

The point of loop unrolling is to give the compiler more work to
perform on each iteration of the loop. In this case we write out (unroll) four
sequential iterations of the original loop and cause the original loop index to
increment by four. The number of iterations to unroll is very machine and
loop dependent and must usually be determined experimentally. Four is a
good number with which to start. Then try three and five, compare perform­
ances, and if four is not maximal, try some other depths of unrolling.

Note that for the general case of variable loop length LL and unrolling
depth UD, the unrolled loop is complete only if LL mod UD = 0. For an
unrolling depth of four, there can be 0, 1, 2, or 3 iterations left to do after the
main loop is complete. This is the function of the cleanup loop 43013. Here
we take advantage of the ANSI 77 Fortran requirement that upon normal
loop termination the DO loop index will have a value equal to its value on
the last iteration plus the loop increment. This means that when loop 43012
terminates, I will have one of the values N—2, N—1, N, or N + l . This allows
loop 43013 to perform 3, 2, 1, or 0 iterations, as required.

In the next few examples we will examine cases where the compiler
may not know if a loop is recursive. Loop nest 42030 is a traditionally coded
Gaussian elimination scheme. Most compilers will try to vectorize the inner
loop where row subtraction is taking place. Note that A(J,K) is a function of
A(J,I). Although both J and I are fixed values within that inner loop, a

106 VECTORIZATION OF FORTRAN PROGRAMS

11 61 111 161 211 261 311 361 411 461
Loop length

FIGURE 4.9
Performance Comparison of Loops 43010, 43011, 43012, Cray

X-MP. a, 43010; b, FOLR; c, unrolled.

compiler must attempt to determine whether K ever assumes the value of I
(on other than the last iteration), since this would be recursive and must not
be vectorized.

There are two approaches for the compiler in optimizing this case. The
first approach is to be smart enough to recognize that there is no possibility
for recursion, since the initial (and lowest) value of K is 1+1. The other
approach is to generate one code sequence for executing the loop in scalar
mode and another sequence to execute it in vector mode, then test at run time
whether K will assume the value of I in the inner loop. This second approach
is called conditional compilation and is used quite extensively by CFT 1.15.

To assure that the compiler does fully vectorize the restructured loop
42031 we have inserted directives (for Alliant, Cray, and NEC in this case)
that inform the compiler to ignore potential recursion within the loop. Figure
4.10 illustrates that performance improves by 50-100% for longer vector
lengths. The performance gain results from the elimination of the execution
time test by the compiler.

Q.
O

4.9 EXAMPLES OF RESTRUCTURING FORTRAN LOOPS 107

C THE ORIGINAL
C GAUSS ELIMINATION

DO 43020 1 = 1 , MATDIM
A(I,I) = 1. / A(I,I)
DO 43020 J = 1+1, MATDIM
A(J,I) = A(J,I) * A(I,I)
DO 43020 K = 1+1, MATDIM
A(J,K) = A(J,K) - A(J,I) * A(I,K)

43020 CONTINUE

C THE RESTRUCTURED
C GAUSS ELIMINATION

DO 43021 1 = 1 , MATDIM
A(I,I) = 1. / A(I,I)
DO 43021 J = 1+1, MATDIM
A(J,I) = A(J,I) * A(I,I)

CVD$ NODEPCHK
CDIR$ IVDEP
*VDIR NODEP

DO 43021 K = 1+1, MATDIM
A(J,K) = A(J,K) - A(J,I) * A(I,K)

43021 CONTINUE

11 61 111 161 211 261 311 361 411 461
Loop length

FIGURE 4.10
Performance Comparison of Loops 43020 and 43021, Cray

X-MP. a, original; b, restructured.

108 VECTORIZATION OF FORTRAN PROGRAMS

A similar problem exists in loop 43030 where the compiler must be
concerned about the potential recursion between A(I) and A(I-K). Figure
4.11 illustrates that, although the compiler vectorized the original, the direc­
tives improved performance by about 30%.

C THE ORIGINAL
DO 43030 I = 2, N
DO 43030 K = 1, 1-1
A(I)= A(I) + B(I,K) * A(I-K)

43030 CONTINUE

C THE RESTRUCTURED
DO 43031 I = 2, N

CVD$ NODEPCHK
CDIR$ IVDEP
*VDIR NODEP

DO 43031 K = 1, 1-1
A(I) = A(I) + B(I,K) * A(I-K)

43031 CONTINUE

80

Q. O

60

50

30

20

10

11 61 111 161 211 261 311 361 411 461
Loop length

FIGURE 4.11
Performance Comparison of Loops 43030 and 43031, Cray

X-MP. a, original; b, restructured.

4.9 EXAMPLES OF RESTRUCTURING FORTRAN LOOPS 109

Any time the same array is indirectly addressed on both sides of an
assignment statement, as in loop 43070, a compiler must assume that values
will repeat in the index vector, causing the loop to be recursive. In many
sparse matrix procedures, the values in the index vector never repeat. If we
know that, then we can inform the compiler with a directive — as we have
done just before loop 43071. The performance improvement for long vectors
approaches a factor of ten over the original (Figure 4.12).

C THE ORIGINAL
DO 43070 I = 1, N
A(IA(I)) = A(IA(I)) + CO

43070 CONTINUE
B(I)

C THE RESTRUCTURED
CDIR$ IVDEP
CVD$ NODEPCHK
*VDIR NODEP

DO 43071 I = 1, N
A(IA(I)) = A(IA(I)) + CO

43071 CONTINUE
B(I)

50

40

£ 30

20

10

T 1 i-

111 161 211 261 311
Loop length

361 411

FIGURE 4.12
Performance Comparison of Loops 43070 and 43071, Cray

X-MP. a, original; b, restructured.

110 VECTORIZATION OF FORTRAN PROGRAMS

Next, we have loop 43080 (Livermore kernel 13*), which spends most
of its time computing the indirect address indexes 12 and J2 to be used as
subscripts in the array A in the last line of the loop. Again, the compiler must
guard against the possibility of repeated subscripts and so generates scalar
rather than vector instructions. With the MOD2N function involved in the
computation, recursion is highly likely; so this is a wise choice.

Whenever we have a partially recursive loop, we should split out the
nonrecursive (vectorizable) calculations from the recursive (nonvectorizable)
calculations.

Careful inspection of the rest of the loop reveals that all other opera­
tions could be vectorized, so we split the loop into two loops, 43081 and
43082, the first of which now vectorizes. To effect this split we must propa­
gate the values of 12 and J2 from the first loop to the second. This is
accomplished by introducing the arrays I2V and J2V.

12

10

Q. O

o +
11 61 111 161 211 261 311 361 411 461

Loop length

FIGURE 4.13
Performance Comparison of Loops 43080 and 43081, Cray

X-MP. a, original; b, restructured.

* Ibid.

4.9 EXAMPLES OF RESTRUCTURING FORTRAN LOOPS 111

Figure 4.13 demonstrates a 100% performance improvement of the re­
structured over the original loop. Incidentally, the low Mflop numbers illus­
trate a shortcoming of characterizing loop efficiency in terms of megaflops.
In this case the purpose of the loop involves much necessary data motion and
relatively few arithmetic operations.

c c

43080

C

43081

43082

THE ORIG] [NAL
Statement function

MOD2N (I,J) = AND (I
DO 43080

11
Jl
11
Jl

D(3,I)
D(4,I)
D(1,I)
D(2,I)

12
J2
12
J2

D(1,I)
D(2,I)

12
J2

A(I2,J2)
CONTINUE

I = 1, N
= D(1,I)
= D(2,I)

1
1

= D(3,I)
= D(4,I)
= D(1,I)
= D(2,I)
= D(1,I)
= D(2,I)
=
=
= D(1,I)
= D(2,I)
= 12
= J2
= A(I2,J2)

THE RESTRUCTURED
DO 43081

11
Jl
11
Jl

D(3,I)
D(4,I)
D(1,I)
D(2,I)

12
J2
12
J2

D(1,I)
D(2,I)
I2V(I)
J2V(I)

CONTINUE

DO 43082
12
J2
A(I2,

CONTINUE

I = 1, N
= D(1,I)
= D(2,I)

1 +
1 +

= D(3,I) +
= D(4,I) +
= D(1,I) +
= D(2,I) +
= D(1,I)
= D(2,I)
=
=
= D(1,I) +
= D(2,I) +
= 12 +
= J2 +

I = 1, N

MOD2N
,J-D

+ M0D2N(I1,64)
+ M0D2N(J1,64)
+ B(I1,J1)
+ C(I1,J1)
+ D(3,I)
+ D(4,I)

MOD2N(I2,64)
M0D2N(J2,64)

+ G(J2+32)
+ H(J2+32)
+ E(I2+32)
+ F(J2+32)
+ 1.0

M0D2N(I1,64)
M0D2N(J1,64)
B(I1,Jl)
C(I1,Jl)
D(3,I)
D(4,I)

MOD2N(I2,64)
M0D2N(J2,64)
G(J2+32)
H(J2+32)
E(I2+32)
F(J2+32)

= I2V(I)
= J2V(I)

J2) = A(I2 ,J2) + 1.0

112 VECTORIZATION OF FORTRAN PROGRAMS

In loop 43090 the last two lines are recursive, because A(I—1) is used in
the computation of B(I), which is then used to compute A(I). All previous
lines in the loop can be vectorized. Splitting the loop as shown by loops
43091 and 43092 requires propagating the values of scalars RLDI and RLD1.
Since the second is a simple function of the first, the array VRLDI is intro­
duced to carry values between the loops, and RLDI is recomputed in the
second loop. Figure 4.14 shows an improvement of about 50% for the
restructuring.

THE ORIGINAL
DO 43090 1 = 2 ,
RLD
RLDI
RLDI
D(I,1) :
D(I,2) :
D(I,3) :
B(I)
A(I)

43090 CONTINUE

= C(I)
= 1. /
= RLDI
= (D(I
= (D(I,2)
= (D(I,3)
= (D(I,4)
= E(I) *

N
- B(I)
RLD
+ 1.0
1) - RLDI

- RLDI
- RLDI
- RLDI
RLDI

D(I,4))
D(I,4))
D(I,4))
A(I-l))

B(I)

RLDI
RLDI
RLDI
RLDI

THE RESTRUCTURED
DO 43091 I = 2, N
RLD
VRLDI(I)
RLDI
D(I,1)
D(I,2)
D(I,3)

43091 CONTINUE

C(I) - B(I)
1. / RLD
VRLDI(I) +1.0
(D(I,1) - RLDI
(D(I,2) - RLDI
(D(I,3) - RLDI

D(I,4))
D(I,4))
D(I,4))

VRLDI(I)
VRLDI(I)
VRLDI(I)

DO 43092 I = 2, N
RLDI = VRLDI(I) +1.0
B(I) = (D(I,4) - RLDI *
A(I) = E(I) * VRLDI(I)

43092 CONTINUE

A(I-l)) "
* B(I)

VRLDI(I)

We stated several times in earlier sections that simple one-dimensional
recursion cannot be vectorized, as in loop 43099.

DO 43099 I = 2, N
A(I) = 2.0 * A(I-l)

43099 CONTINUE
+ B(I)

But as soon as a second dimension is involved, there are ways to restructure
the loops to force the recursion into an outer loop, allowing the inner loop to
vectorize. For example, loop 43100 is recursive in I but not in J. So reversing
the order of the loops as shown in 43101-43102 allows the compiler to issue
vector instructions for the inner loop.

The only problem to be resolved is how to compute all the values
assumed by AH in the original outer loop and retain them for use when the
loop nest is inverted. Again this is resolved by promoting the scalar AH to a
vector VAH and precomputing all of the needed values in loop 43101. Note

4.9 EXAMPLES OF RESTRUCTURING FORTRAN LOOPS 113

40

35

30

25
in Q. O
^ 20

15

10

5

0

11 61 111 161 211 261 311 361 411 461
Loop length

FIGURE 4.14
Performance Comparison of Loops 43090 and 43091, Cray

X-MP. a, original; b, restructured.

that as a side effect of loop switching the code originally contained in the
outer loop is also now vectorized.

C THE ORIGINAL
DO 43100 J = 1, N
AH = B(J) - B(J-l)
DO 43100 I = 2, N
A(I,J) = AH * A(I-l.J) + C(I,J)

43100 CONTINUE

C THE RESTRUCTURED
DO 43101 J = 1, N
VAH(J) = B(J) - B(J-l)

43101 CONTINUE

DO 43102 I = 2, N
DO 43102 J = 1, N
A(I,J) = VAH(J) * A(I-l.J) + C(I,J)

43102 CONTINUE

114 VECTORIZATION OF FORTRAN PROGRAMS

A(I-1,J)

Ψ
A(I ,J) I
A(I+1J)

FIGURE 4.15
Loop 43100: Recursive Inner Loop on Columns of A

Figure 4.15 illustrates that the inner loop 43100 is processing a single
column of the array A, and that each element calculated feeds directly into
the next loop iteration. With the loops switched, as in 43102, the inner loop
on J is generating the Ith row of the array A from the (I—l)st row, as shown in
Figure 4.16. The recurrence has been pushed into the outer loop, allowing
the inner loop to fully vectorize. Graphing the megaflop rates for loops
43100 and 43102, Figure 4.17 depicts a performance improvement for the
restructured code approaching a factor of seven for long vectors.

When a single array reference appears to be recursive in all dimensions,
as in loop 43139, it is in fact not recursive within the vectorizable inner loop.

DO 43139 J = 1,M
DO 43139 1 = 1 ,

A (I , J) = 2 . 0
4313 9 CONTINUE

A (I - 1 , J - l) Y (I , J)

A(I-1,J-1) A(I-1,J) A(I-1,J+1)

T T T
A(I ,J-1) A(I ,J) A(I ,J+1)

FIGURE 4.16
Loop 43102: Nonrecursive Inner Loop on Rows of A

4.9 EXAMPLES OF RESTRUCTURING FORTRAN LOOPS 115

80

70

60

50

CO Q. O ^ 40

30

20

10

0

11 61 111 161 211 261 311 361 411 461

Loop length

FIGURE 4.17
Performance Comparison of Loops 43100 and 43101-43102,

Cray X-MP. a, original; b, restructured.

In loop 43139 the inner loop on I is computing the Jth column of A from the
entirely separate vector in the (J—l)st column. This is depicted in Figure 4.18.

A more difficult problem appears when the inner loop contains one
recursive term for each of the dimensions of the problem. This arises often in
implicit solution techniques where the update of the current point in the grid
involves the previously computed neighbor points. Loop 43140 is an exam­
ple of this in two dimensions. The left and top boundary values in A remain
fixed, and the loop computes the interior points. This is typically embedded
in an iterative loop that supplies an initial guess for the interior point values
and checks for convergence from one iteration to the next.

C THE ORIGINAL
DIMENSION A(N,N,3), B(N,N), C(N,N)

DO 43140 J = 2, N
DO 43140 I = 2, N

116 VECTORIZATION OF FORTRAN PROGRAMS

\

A(I-1,J-1),

A(I ,J-1) A(I ,J)

\
A(I+1,J-1) A (I + 1 J)

A(I+2,J)

FIGURE 4.18
Loop 43139: Nonrecursive Inner Loop on Columns of A

A (I , J , 1) = A (I , J , 1) - B (I , J) * A (I - 1 , J , 1)
C (I , J) *

A(I

A(I

, J , 2)

, J , 3)

= A (I , J , 2)

= A (I , J , 3)

, J)
, J)

- B (I ,
- C (I ,
- B (I , J)
- C (I , J)

A (I , J - l ,
A (I - 1 , J ,
A (I , J - l ,
A (I - 1 , J , 3)
A (I , J - 1 , 3)

43140 CONTINUE

As written, loop 43140 will not vectorize, because A(I,J,1) depends on
A(I—1,J,1). [The same statement is true for the other assignments into A(I,J,2)
and A(I,},3).] Nor will it vectorize if the loops are switched, because A(I,J,1)
depends also on A(I,J—1,1). This is depicted in Figure 4.19.

There is a way out of this apparently hopeless situation. If we view the

A(I-1,J)

I
A(I J - l) —** A(I ,J)

FIGURE 4.19
Loop 43140: Fully Recursive in Both Dimensions of A

4.9 EXAMPLES OF RESTRUCTURING FORTRAN LOOPS 117

algorithm in terms of diagonals on the grid, instead of rows or columns, then
the following dependencies exist:

• The new value at the point A(2,2,l) depends on the values of the
boundary points A(2,l,l) and A(l,2,l):

A (1 , 2 , 1)

A (2 , 1 , 1) - - A (2 , 2 , 1) - -

The next diagonal (A(2,3,l), A(3,2,l)) can be computed from the
newly generated value for A(2,2,l) and the other points on the diago­
nal A(3,l,l), A(2,2,l), A(l,3,l):

A (1 , 3 , 1)

A (2 , 2 , 1) - - A (2 , 3 , 1) - -

A (3 , 1 , 1) - - A (3 , 2 , 1) - -

In general, the values on any one diagonal depend on the newly
computed values on the diagonal to the left. Most important of all, none of
the diagonal points depend on any of the other points on the same diagonal.
So if we can find a way to express this in a nested Fortran DO loop, we will
have a vectorizable inner loop, with the recursion (on diagonals) existing
totally in the outer loop. Loop 43141 is one way of writing this. It retains the
assignment statement for A from loop 43140 but indexes both I and J in the
inner loop.

THE RESTRUCTURED
DIMENSION A(N,N,3),

NDIAGS = 2 * N - 3
ISTART = 1
JSTART = 2
LDIAG = 0
DO 43141 IDIAGS = 1,
IF(IDIAGS .LE. N-1

ISTART = ISTART
LDIAG = LDIAG

ELSE
JSTART = JSTART
LDIAG = LDIAG

B(N,N), C(N,N)

, NDIAGS
) THEN
+ 1
+ 1

+ 1
- 1

118 VECTORIZATION OF FORTRAN PROGRAMS

ENDIF
I = ISTART + 1
J = JSTART - 1

CDIR$ IVDEP
CVD$ NODEPCHK
*VDIR NODEP

DO 43142 IPOINT LDIAG
I =
J =
A(I,

A(I,

A(I.

- 1
+ 1
1) = A(I,J,1) -

2) = A(I,J,

J,3)

,2)

A(I,J,3)

B(I,
C(I,
B(I,
C(I,
B(I,
C(I,

* A(I-1,J,1)
A(I,J-l,
A(I-1,J,
A(I,J-l,
A(I-1,J,
A(I,J-l,

43142 CONTINUE
43141 CONTINUE

Figure 4.20 illustrates the diagonals being calculated. Loop 43141 cal­
culates the indexes of the left-most point at which a diagonal begins and calls
these indexes 1ST ART and JSTART. The number of points on each diagonal
is then computed and assigned to LDIAG. Index J is incremented, and I
decrements within the inner loop.

This representation has potential for recursion when viewed by a com­
piler, so we include directives immediately before the inner loop to indicate
that it is safe to vectorize it. The directives indicate to a compiler that no
recursive dependencies occur within the loop, and they appear as comments
to any other compiler.

Figure 4.21 demonstrates a performance improvement approaching a

VV////////
* / / / / / / / / / / vy//////// vvvvvvvvvv* vvvvvvvvvv* vvvvvvvvvv* vvvvvvvvvv* vvvvvvvvvv*

FIGURE 4.20
Diagonals Being Accessed by Loops 43141 and 43142

4.9 EXAMPLES OF RESTRUCTURING FORTRAN LOOPS 119

100

90

80

70

60
CO Q. O
5= 50
Έ

40

30

20

10

0 -1 ■ 1 ■ ■ 1 1 . . 1 ■ ■ 1 ■ ■ ■ 1 ■ J

11 61 111 161 211 261 311 361 411 461
Loop length

FIGURE 4.21
Performance Comparison of Loops 43140 and 43141-43142,

Cray X-MP. Original, solid line; restructured, dotted line.

factor of ten for long vector lengths, when vectorizing on diagonals. Note
that for this particular example we used the CFT1.15 compiler, because CFT
77 would not vectorize the restructured loop even with the IVDEP directive.

It should be obvious that this approach has added initialization over­
head that must somehow be amortized to achieve a performance improve­
ment over the original. We are trying to realize the improvement by the
inherent speed advantage of vector-versus-scalar instructions. Thus, we
should be able to estimate the improvement based on our knowledge of
vector length and the crossover point between vector and scalar performance
on any machine.

Note that the vector length of the diagonals in loop 43142 varies from
one to N — 1. We compute the average vector length of the diagonals as:
Let:

NP = number of computed points
= (N - 1) 2

120 VECTORIZATION OF FORTRAN PROGRAMS

ND = number of diagonals
= 2 N - 1

Then

(N - l) 2

"* (2 N - 1)

It is left as an exercise for the reader to derive the average vector length
on a general rectangular grid. The important thing to note in the equation is
that the average vector length is always less than the dimension of the
problem. So to be effective, this technique must have good performance for
vectors in this range. For example, a 50 X 50 grid has an average vector
length of 49 X 49/99 = 24.3. So on a machine that has good vector/scalar
performance ratio for vector length 24, there is a payoff for vectorizing on
the diagonals. We like to use a minimum factor of two performance improve­
ment as a rule of thumb for applying this scheme.

It is natural to ask whether this technique applies to problems of
greater-than-two dimensions, and in fact it does. Imagine a three-dimen­
sional model in which we start at one corner and take planar slices at 45°
angles to all axes (Figure 4.22). Immediately, we should notice that these
slices do not result in the simple vectors of the two-dimensional scheme —
that is, the slices do not have a constant stride between successive points. In
general the planar slices are triangular. But the points on the planes are not
recursive among themselves, and very quickly the number of points on a
plane grows very large. In fact, for a 50 X 50 X 50 grid, the average number
of points on a slice exceeds 800. There can be a tremendous payoff for
vectorizing this computation if run on a machine with vector-indirect address

FIGURE 4.22
Planar Slices Through a Three-Dimensional Model

4.9 EXAMPLES OF RESTRUCTURING FORTRAN LOOPS 121

instructions — that is, a machine with gather/scatter hardware. Any number
of dimensions can be treated in this manner, with the number of points on a
slice (i.e., the vector length) growing exponentially with the number of
dimensions.

4.9.5 Scalar Recursion
In loop 43149, the scalar variable SIA fits our definition of recursion. That is,
the value of SIA computed in one iteration feeds into the subsequent itera­
tion.

SIA = 0 .
DO 43149 I = 1, N

SIA = SIA + 2 . 0
A (I) = SIA * B (I)

43149 CONTINUE

But if we note that SIA is a constant-increment variable as defined in Section
3.3.2 and is assuming the sequence of values 2.0, 4.0, . . . , N * 2.0, then it
should be clear that a compiler can treat SIA as a vector by generating the
sequence either in memory or in a vector register, then setting SIA to N * 2.0
after the loop terminates. If we have such a construct in a loop and the
compiler refuses to vectorize it, you should ask the vendor to correct this.

Suppose that SIA is a true reduction function (not a CIV) — such as the
sum of the elements of a vectorizable expression — and that SIA is used in
another expression as well, as in loop 43150.

C THE ORIGINAL
SIA = 0.0
J = 1
DO 43150 I = 1, N, 2
SIA = SIA + A(I.MM) * B(I) + A(I+1,MM) * B(I+1)
C(J) = SIA * D(J,MM)
J = J + 1

43150 CONTINUE

A compiler can generate the final answer for SIA in a vectorized/optimized
manner but cannot simultaneously generate the intermediate sums needed in
the other expression, so the loop will be executed in scalar mode. But we can
split the loop into three parts, one that computes the elements of the vectori­
zable expression, a second that computes the partial sums, and a third that
can vectorize the computation of C. This is shown in loops 43151, 43152,
and 43153.

C THE RESTRUCTURED
J = 1
DO 43151 1 = 1 , N+l
SIAT(I) = A(I,MM) * B(I)

43151 CONTINUE

122 VECTORIZATION OF FORTRAN PROGRAMS

PSIAV(l) = S I A T (l)
DO 43152 1 = 2 , N+l

PSIAV(I) = P S I A V (I - l) + S IAT(I)
43152 CONTINUE

DO 43153 I = 1, N, 2
C(J) = PSIAV(I+1) * D(J,MM)
J = J + 1

43153 CONTINUE

Here, the recursion has been isolated down to its minimal operation in loop
43152 — a loop that cannot be vectorized but can be highly optimized by
many compilers. All of the other operations are now fully vectorized in loops
43151 and 43153.

The two important techniques we used to restructure loop 43150 are
called "loop splitting' ' and ''scalar promotion." The scalar variable SI A was
promoted to a vector PSIAV, and the loop was split to isolate the recursion.
Figure 4.23 depicts a performance improvement approaching a factor of four
for this restructuring.

Q. O

40

30

20

10

11 61 111 161 211 261 311 361 411
Loop length

FIGURE 4.23
Performance Comparison of Loops 43150 and 43151-43153,

Cray X-MP. a, original; b, restructured.

4.9 EXAMPLES OF RESTRUCTURING FORTRAN LOOPS 123

SIA in the preceding example is a zero-dimensional variable promoted
to a one-dimensional array. In general it is often advantageous to promote an
n-dimensional entity to an (n + l)-dimensional array if this removes recur­
sion from the inner loop of the code. The restructuring of loop 43200
demonstrates this.

RECUR(l) = 0.
DO 43200 J = 1, M
DO 43200 I = 2, N
A(I,J) = SQRT (Y(I,J)**2 + Z(I,J)**2)
RECUR(I) = A(I,J) + RECUR(1-1) * B(I,J)
C(I,J) = RECUR(I) + EXP (D(I,J)

43200 CONTINUE

The single-dimension recursion of RECUR appears intractable at first
glance. Note however that for each iteration on J, RECUR receives a new
sequence of values. No data carries from one iteration of J to the next,
because RECUR(l) = 0. and it is never changed. If we promote RECUR to a
two-dimensional array, then we can switch the nesting of the loops and push
the recursion into the outer loop, as shown in loop 43202.

DIMENSION VRECUR (ndimlA,ndim2a)

DO 43201 J = 1, M
VRECUR(l.J) = 0.

43201 CONTINUE

DO 43202 I = 2, N
DO 43202 J = 1,M
A(I,J) = SQRT (Y(I,J)**2 + Z(I,J)**2)
VRECUR(I.J) = A(I,J) + VRECUR(I-l.J) * B(I,J)
C(I,J) = VRECUR(I,J) + EXP (D(I,J)

43202 CONTINUE

In the original loop, RECUR assumed M different sequences, one at a
time. In the new loop, all M sequences are being developed together, one
term at a time in the inner loop. The fact that each sequence must begin with
a zero term necessitates loop 43201 to initialize each of the M sequences. The
values "ndimlA" and "ndim2A" are so named to indicate that the dimen­
sions of the array A will be sufficient for VRECUR.

It is extremely unlikely that the values of RECUR would be used after
such a loop. But for completeness, loops 43203 and 43204 demonstrate
saving the last values for subsequent use.

DIMENSION VRECUR (ndimlA,ndim2a)

DO 43201 J = 1, M
VRECUR(l.J) = 0.

43201 CONTINUE

124 VECTORIZATION OF FORTRAN PROGRAMS

DO 43204 I - 2, N
DO 43203 J = 1,M
A(I,J) = SQRT (Y(I,J)**2 + Z(I,J)**2)
VRECUR(I.J) = A(I,J) + VRECUR(I-1,J) * B(I,J)
C(I,J) = VRECUR(I.J) + EXP (D(I,J)

43203 CONTINUE
RECUR(I) = VRECUR(I.M)

43204 CONTINUE

Loop switching sometimes introduces memory-bank conflicts, since the
stride is now across rather than down the columns. So as a final restructur­
ing, eliminate such conflicts if necessary.

Wrap-Around Scalars
Many wrap-around scalars are simply holding a value from the last iteration
to act as one side of a moving interval within the loop, as in 43210.

TOP - 0.
DO 43210 I = 1, N
BOT = TOP
TOP - X(I) * B(I)
Y(I) = Y(I) + Z(I) / (TOP - BOT)

43210 CONTINUE

If a compiler balks at vectorizing this, consider rewriting as shown in loop
43211, where the first iteration has been written out in scalar mode (to
handle the initial value of zero for BOT), and the defining expression for
TOP has been substituted in the loop for both TOP and BOT.

Y(l) = (Y(l) + Z(l)) / (X(l) * B(l))
DO 43211 I = 2,N
Y(I) - Y(I) + Z(I) / (X(I) * B(I) - X(I-l) * B(I-l))

43 211 CONTINUE

As a second alternative, TOP can be promoted to a vector, and BOT can be
eliminated, as shown in loop 43212.

DIMENSION VTOP (0:ndimX)

VT0P(0) = 0.
DO 43212 I = 1, N
VTOP(I) = X(I) * B(I)
Y(I) = Y(I) + Z(I) / (VTOP(I) - VTOP(I-l))

43 212 CONTINUE

Although both of the preceding restructurings will vectorize, each has its
advantages and disadvantages, depending on the target computer system.
Loop 43211 provides vectorization at the cost of adding a multiply operation
as well as fetching the vectors X and B twice. Loop 43212 adds no arithmetic
operations, but requires storing and fetching the vector VTOP. As we try

4.9 EXAMPLES OF RESTRUCTURING FORTRAN LOOPS 125

these techniques on a particular machine, we will develop a feel for which
works better for our programs.

Sometimes the elimination of a wrap-around scalar leads to even fur­
ther optimization of a loop. As long as we are rewriting the loop we may as
well analyze the algorithm to see if it is as efficient as it can be. Consider loop
44020:

BR = 0.
DO 44020 I = 1, N
BL = BR
BR = (1-1) * DELB
A(I) = (BR - BL) * C(I) + (BR**2 - BL**2) * C(I)**2

44020 CONTINUE

If we were to apply the same techniques as in loop 43212, we would promote
BR to a vector and eliminate BL. Closer inspection reveals that the expression
(BR — BL) is equal to DELB for all but the first iteration, so computing the
difference is a wasted operation in the loop. With that term removed, then
note that only the squared terms remain. In fact, BL**2 is recomputing the
values of BR**2 from the previous iteration. Finally, note that the computa­
tion is a polynomial evaluation, for which factoring will reduce operations
and enhance chaining. Therefore a better restructuring is outlined in loop
44022.

C THE RESTRUCTURED
B = 0.0
BSQ(l) = 0.0
A(l) = 0.0
DO 44022 I = 2, N
B = B + DELB
BSQ(I) = B**2
A(I) = C(I) * (DELB + C(I) * (BSQ(I) - BSQ(I-l)))

44022 CONTINUE

This restructuring vectorizes and reduces the number of arithmetic
operations from ten to six. Note that a compiler will recognize B as a CIV and
not treat it as a wrap-around scalar or as a reduction-function scalar. This
allows its use in the line following its definition. Figure 4.24 indicates a
performance improvement that exceeds a factor of 15 for this restructuring.

Our restructuring assumes that the final values of BL and BR are not
needed elsewhere in the program. If such last-value saving were necessary, it
could be accomplished by inserting the following lines after loop 44022:

BL = (N - 2) * DELB

BR = (N - 1) * DELB

When scalars are defined conditionally, they also have the potential to
wrap around from one iteration to the next. In loop 44025, whenever the

126 VECTORIZATION OF FORTRAN PROGRAMS

CL
O

120

100

80

60

20

61 111 161 211 261

Loop length

311 361 411 461

FIGURE 4.24
Performance Comparison of Loops 44020 and 44022, Cray

X-MP. Original, solid line; restructured, dotted line.

condition A(I) .GT. 0. is false, the value used for SCA in the assignments to
B(I) and E(I) is from the previous iteration.

SCA = 0.
DO 44025 I = 1, N
IF (A(I) .GT. 0.) THEN
SCA = X(I) * Y(I)

END IF
B(I) = SCA * C(I) + D(I)
E(I) = (SCA + 1.0) * Z(I)

44025 CONTINUE

Suppose that every third value of A is greater than zero, then SCA
assumes the sequence of values:

X(1) * Y (1) , X(1) * Y (1) , X(1) * Y (1) , X (4) * Y (4) , X (4) * Y (4) , . . .

Since the compiler cannot know when the condition will be true, it is almost
impossible to generate the sequence of values in vector mode. In fact, if SCA
were promoted to a vector of values and its setting were isolated in a separate

4.9 EXAMPLES OF RESTRUCTURING FORTRAN LOOPS 127

loop, then the recursion should become obvious, as in loops 44026 and
44027.

VSCA(l) = 0.
DO 44026 I = 1, N
IF (A(I) .GT. 0.) THEN
VSCA(I) = X(I) * Y(I)
ELSE
VSCA(I) = VSCA(I-l)
ENDIF

44026 CONTINUE

DO 44027 1 = 1 , N
B(I) = VSCA(I) * C(I) + D(I)
E(I) = (VSCA(I) + 1.0) * Z(I)

44027 CONTINUE
Whether or not there is a payoff for this restructuring depends on how

many times SCA is used in the loop, so we must experiment with each loop
for which this technique applies.

Loop 44030 provides an additional twist to the problem of the wrap­
around scalar. Not only is PF referenced before it is set, but once set, it is
sometimes reset within an iteration under control of the IF statement. Pro­
moting PF to a vector and eliminating PB once again removes the recursion,
as shown in loop 44031. Here, the speedup is about a factor of five over the
original code, as depicted in Figure 4.25.

C THE ORIGINAL
PF = 0.0
DO 44030 I = 2, N
AV = B(I) * RV
PB = PF
PF = C(I)
IF ((D(I) + D(I+1)) .LT. 0.) PF = -C(I+1)
AA = E(I) - E(I-l) + F(I) - F(I-l)

1 + G(I) + G(I-l) - H(I) - H(I-l)
BB = R(I) + S(I-l) + T(I) + T(I-l)

1 - U(I) - U(I-l) + V(I) + V(I-l)
2 - W(I) + W(I-l) - X(I) + X(I-l)
A(I) = AV * (AA + BB + PF - PB + Y(I) - Z(I)) + A(I)

44030 CONTINUE

C THE RESTRUCTURED
VPF(l) =0.0
DO 44031 I = 2, N
AV = B(I) * RV
VPF(I) = C(I)
IF ((D(I) + D(I+1)) .LT. 0.) VPF(I) = -C(I+1)
AA = E(I) - E(I-l) + F(I) - F(I-l)

1 + G(I) + G(I-l) - H(I) - H(I-l)
BB = R(I) + S(I-l) + T(I) + T(I-l)

1 - U(I) - U(I-l) + V(I) + V(I-l)
2 - W(I) + W(I-l) - X(I) + X(I-l)
A(I) = AV * (AA + BB + VPF(I) - VPF(I-l) + Y(I) - Z(I)) + A(I)

44031 CONTINUE

128 VECTORIZATION OF FORTRAN PROGRAMS

Q.
O

120

100

80

60

40

20

161 211 261

Loop length

311 361

FIGURE 4.25
Performance Comparison of Loops 44030 and 44031, Cray

X-MP. Original, solid line; restructured, dotted line.

In loop 44040 there are two problems with scalars. First, SIGMAX is a
wrap-around scalar in that it is referenced in the IF statement, then subse­
quently set. If a compiler tried to vectorize this as written it would have the
additional problem of not knowing whether SIGMAX is set in any particular
iteration. A smart enough compiler might recognize that SIGMAX is actually
a reduction function, and it could generate optimized code that produces the
final answer for SIGMAX.

Unfortunately, only a few compilers will handle the second problem,
which is the setting of IMAX to the index of the maximum value. Conse­
quently, those compilers unable to optimize finding the value of IMAX will
leave the entire loop unoptimized. Our restructuring in loop 44041 splits out
the vectorizable code from the top of the loop and promotes SIGABC to a
vector VSIGABC to propagate the values to loop 44042 where the maximum
and its index are computed. Most vendors provide a system library routine
that can further optimize loop 44042.

Figure 4.26 shows that the restructured loops outperform the original

4.9 EXAMPLES OF RESTRUCTURING FORTRAN LOOPS 129

by about a factor of six. So, if the bulk of our CPU time is spent in such loops,
this restructuring will reduce an hour down to ten minutes.

C THE ORIGINAL
DO 44040 I = 2, N
RR = 1. / A(I,1)
U = A(I,2) * RR
V = A(I,3) * RR
W = A(I,4) * RR
SNDSP = SQRT (GD * (A(I,5) * RR + .5* (U*U + V*V + W*W)))
SIGA = ABS (XT + U*B(I) + V*C(I) + W*D(I))

* + SNDSP * SQRT (B(I)**2 + C(I)**2 + D(I)**2)
SIGB = ABS (YT + U*E(I) + V*F(I) + W*G(I))

* + SNDSP * SQRT (E(I)**2 + F(I)**2 + G(I)**2)
SIGC = ABS (ZT + U*H(I) + V*R(I) + W*S(I))

* + SNDSP * SQRT (H(I)**2 + R(I)**2 + S(I)**2)
SIGABC = AMAX1 (SIGA, SIGB, SIGC)
IF (SIGABC .GT. SIGMAX) THEN
IMAX = I
SIGMAX = SIGABC
ENDIF

44040 CONTINUE

C THE RESTRUCTURED
DO 44041 I = 2, N
RR = 1. / A(I,1)
U = A(I,2) * RR
V = A(I,3) * RR
W = A(I,4) * RR
SNDSP = SQRT (GD * (A(I,5) * RR + .5* (U*U + V*V + W*W)))
SIGA = ABS (XT + U*B(I) + V*C(I) + W*D(I))

* + SNDSP * SQRT (B(I)**2 + C(I)**2 + D(I)**2)
SIGB = ABS (YT + U*E(I) + V*F(I) + W*G(I))

* + SNDSP * SQRT (E(I)**2 + F(I)**2 + G(I)**2)
SIGC = ABS (ZT + U*H(I) + V*R(I) + W*S(I))

* + SNDSP * SQRT (H(I)**2 + R(I)**2 + S(I)**2)
VSIGABC(I) = AMAX1 (SIGA, SIGB, SIGC)

44041 CONTINUE

DO 44042 I = 2, N
IF (VSIGABC(I) .GT. SIGMAX) THEN
IMAX = I
SIGMAX = VSIGABC(I)
ENDIF

44042 CONTINUE

Loop 44050 is the classically coded matrix multiply, just as we all
learned it in linear algebra. That is, the inner loop is a dot product between a
row of matrix B and a column of matrix C. Note that during execution of the
inner loop the indexes I and J do not vary, so that A(I,J) acts just like a scalar.
Most compilers recognize this dot product and use their optimized code to
generate each result in A. All machines can perform the multiplication of a
row of B with a column of C in vector mode, but the add operation must
often be completed in scalar mode.

130 VECTORIZATION OF FORTRAN PROGRAMS

80

50

Q.
_2 40

30

20

161 211 261

Loop length
311 411 461

FIGURE 4.26
Performance Comparison of Loops 44040 and 44041-44042,

Cray X-MP. a, original; b, restructured.
C THE ORIGINAL

DO 44050 I = 1, N
DO 44050 J = 1, N
A(I,J) = 0.0
DO 44050 K = 1, N
A(I,J) = A(I,J) + B(I,K) * C(K,J)

44050 CONTINUE

Our restructuring in loops 44051 and 44052 splits out the array initiali­
zation into a separate vectorizable loop, then switches the order of the loop
nest to make I the inner loop index, with K relegated to the outer loop. This
causes the inner loop to be vector = vector + vector X scalar, or:

A (I , J) A (I , J) B (I , J) * C (K , J)

which happens to be the best combination of operations for most supercom­
puters. This forces the recursion of the dot product into the outer loop.

Note that although the original loop fetched and stored each element of
the array A only once, the restructuring fetches and stores each element of A
"N" times. This is somewhat offset by a reduction of the number of fetches
of each element of C from N down to one. Most machines have sufficient

4.9 EXAMPLES OF RESTRUCTURING FORTRAN LOOPS 131

memory paths that the restructuring outperforms the original. But machines
that have only one memory path might show no improvement. Our timing
on the Cray X-MP (Figure 4.27) represents a factor-of-two improvement.

C THE RESTRUCTURED
DO 44051 J = 1, N
DO 44051 I = 1, N
A(I,J) = 0.0

44051 CONTINUE

DO 44052 K = 1, N
DO 44052 J = 1, N
DO 44052 I = 1, N
A(I, J) = A(I,J) + B(I,K) * C(K,J)

44052 CONTINUE

Our final example in this section (loop 44060) appears to be even
simpler than the preceding matrix multiply, but an extra twist has been

Q. O

140

120

100

80

60

40

20

111 161 211 261 311 361
Loop length

411

FIGURE 4.27
Performance Comparison of Loops 44050 and 44051-44052,

Cray X-MP. a, original; b, restructured.

132 VECTORIZATION OF FORTRAN PROGRAMS

added. This "convolution kernel" is computing N dot products, each consist­
ing of a row from the lower triangular matrix B dotted with a column from
the upper triangular matrix C. The upper triangle of B and the lower triangle
of C occupy memory but never enter the calculation.

C THE ORIGINAL
DO 44060 I = 1, N
A(I) = 0.0
DO 44060 J = 1, I
A(I) = A(I) + B(I,J) * C(J,I)

44060 CONTINUE

The outer loop generates results as follows:

A (1) = B(1 , 1) * C(1 , 1)

A (2) = B (2 , 1) * C (1 , 2) + B (2 , 2) * C (2 , 2)

A (3) = B (3 , 1) * C (1 , 3) + B (3 , 2) * C (2 , 3) + B (3 , 3) * C (3 , 3)

A (N) = B (N , 1) * C (1 , N) + . . . + B (N , N) * C (N , N)

Again, the dot product is usually only partially vectorized, so we would like
to switch the loop nesting to cause the inner loop to run on I — thus allowing
full vectorization. But the length of the inner loop depends on the index of
the outer loop, so directly switching them as done in the matrix multiply
would produce nonsensical code:

DO . . . J = 1, I
DO . . . I = 1, N

This restructuring requires a careful study of the interplay between the
two DO statements to determine how to switch them. Begin by noting that
the final outer iteration of the original loop is

DO 44060 I = . . . N
DO 44060 J = 1,N

From this we know that to switch the loops we must have an outer loop J that
runs from 1 to N. Working backward, now we can state that the only value of
I for which J = N is I = N. Again, J = N — 1 for two values of I: I = N — 1
and I = N. Working all the way back to J = 1, we see that this is true for all
values of I from one to N. Finally, we can see the pattern that, as shown in
loop nest 44062, as J ranges from 1 to N, I ranges from J to N. Once again the
dot product has been pushed into the outer loop, and the inner loop fully
vectorizes.

In Figure 4.28, the performance improvement of about a factor of two
for moderate vector lengths diminishes to just above one for longer lengths.
This is because much of the addition in the original dot-product implemen­
tation can be performed in vector mode for longer vector lengths; only the

4.9 EXAMPLES OF RESTRUCTURING FORTRAN LOOPS 133

Q.
O

80

70

60

50

40

30

20

10

61 111 161 211 261

Loop length

311 361 461

FIGURE 4.28
Performance Comparison of Loops 44060 and 44061-44062,

Cray X-MP. Original, solid line; restructured, dotted line.

final 64 or fewer elements in the last register computed must to be added in
scalar mode.

C THE RESTRUCTURED
DO 44061 I = 1, N
A(I) = 0.0

44061 CONTINUE

DO 44062 J = 1, N
DO 44062 I = J, N
A(I) = A(I) + B(I,J) * C(J,I)

44062 CONTINUE

4.9.6 More Loop Switching
The inner loops of the nest 45011, 45010 will be vectorized by essentially all
compilers, but performance will greatly depend on the vector length (un­
known to the compiler). The major computational loop, 45010, is summing

134 VECTORIZATION OF FORTRAN PROGRAMS

the elements of vectorizable expressions. We saw in the previous section that
this has a good payoff only for long vector lengths. If we know that the outer
loop on I has a vector length greater than or equal to the vector length of the
inner loop on K, we must consider switching the nesting to achieve the best
vector performance.

THE ORIGINAL
DO 45011 1 = 1 ,
SUM1 =0.0
SUM2 =0.0
SUM4 =0.0
SUM5 =0.0

IM

DO 45010 K = 2, KM
KK = KM - K + 1
SUM1 = SUM1 +4.0 (A(J+1,K ,1,1)

A(J+1,KK,1,1)
A(J+2,K ,1,1)
A(J+2,KK,I,1)

A(J+1,K ,1,6)
A(J+1,KK,I,6))
A(J+2,K ,1,6)
A(J+2,KK,1,6)

SUM2 = SUM2 + 4.0 * (A(J+1,K, 1,2) * A(J+1,K, 1,6)
A(J+1,KK,I,2) * A(J+1,KK,I,6))
A(J+2,K, 1,2) * A(J+2,K, 1,6)
A(J+2,KK,1,2) * A(J+2,KK,I,6)

SUM4 = SUM4 +4.0
+

(A(J+1,K, 1,4) * A(J+1,K, 1,6)
A(J+1,KK,I,4) * A(J+1,KK,I,6))
A(J+2,K, 1,4) * A(J+2,K, 1,6)
A(J+2,KK,I,4) * A(J+2,KK,1,6)

SUM5 = SUM5 + 4.0 *

CONTINUE

(A(J+1,K, 1,5) * A(J+1,K, 1,6)
A(J+1,KK,1,5) * A(J+1,KK,I,6))
A(J+2,K, 1,5) * A(J+2,K, 1,6)
A(J+2,KK,1,5) * A(J+2,KK,1,6)

DO 45011 K KM
A(J,K,I,1) = SUM1 / (6.0 * (KM-2) * A(J,K,I,6))
A(J,K,1,2) = SUM2 / (6.0
A(J,K,1,3) =0.0
A(J,K,1,4) = SUM4 / (6.0
A(J,K,1,5) = SUM5 / (6.0

45011 CONTINUE

* (KM-2) * A(J,K,1,6))

* (KM-2) * A(J,K,I,6))
* (KM-2) * A(J,K,1,6))

Notice that each iteration of the outer loop produces new values for
SUM1, SUM2, SUM4, and SUM5, and these are used subsequently in the
inner loop 45011. To bring the I loop inside the loops on K, we must promote
the four SUMs to vectors. Furthermore, we must assure ourselves that the
values in the A array computed in loop 45011 in one iteration do not feed
back into loop 45010 on a subsequent outer iteration. Note that although we
do not know the value of J, we can see that the columns of A referenced in
loop 45010 (J+l, J+2) are completely independent of the column J referenced
in loop 45011.

With all this in mind, we present the restructured version, loops 45012,

4.9 EXAMPLES OF RESTRUCTURING FORTRAN LOOPS 135

45013, and 45014, all of which fully vectorize. Figure 4.29 represents the
restructured performance versus two different executions of the original, one
with KM = 5 and the other with KM = 75. In this figure the X-axis represents
various values of IM.

The results are quite interesting. Where KM = 5, the restructuring is
always faster. Where KM = 75, the restructured is faster when IM is greater
than 30. Notice that one advantage of switching the loops is to remove the
reduction-function scalars SUMl, SUM2, SUM4, SUM5 on the K loop. When
we switch the loop and bring I on the inside, we have removed all reduction
functions.

Note in Figure 4.29 that in this particular example we used CFT 1.15
because CFT 77 did not vectorize the original loop 45010. And we wished to
compare vectorization of the reduction function scalars in the original with
full vectorization after loop switching in the restructured.

C THE RESTRUCTURED
DO 45012 1 = 1 , IM
VSUM1(I)
VSUM2(I)
VSUM4(I)
VSUM5(I)

45012 CONTINUE

DO 45013
KK
DO 45013
VSUM1(I)

*
*

= 0.0
= 0.0
= 0.0
= 0.0

K = 2, KM
= KM - K + 1

1 = 1 , IM
= VSUMl(I) + 4.0 *

+
-

(A(J+1,K
A(J+1,KI
A(J+2,K

1,1) * A (J + 1 , K , 1 , 6)
A (J + 1 , K K , I , 1) * A (J + 1 , K K , I , 6))

1 ,1) * A(J+2 ,K , 1 , 6)
* - A (J + 2 , K K , I , 1) * A (J + 2 , K K , I , 6)

VSUM2(I) = VSUM2(I) + 4 . 0 * (A(J+1 ,K , 1 ,2) * A(J+1 ,K , 1 ,6)
* + A (J + 1 , K K , I , 2) * A (J + 1 , K K , I , 6))
* - A(J+2 ,K , 1 ,2) * A(J+2 ,K , 1 ,6)
* - A (J + 2 , K K , I , 2) * A (J + 2 , K K , 1 , 6)

VSUM4(I) = VSUM4(I) + 4 . 0 * (A(J+1 ,K , 1 ,4) * A(J+1 ,K , 1 ,6)
* + A (J + 1 , K K , I , 4) * A (J + 1 , K K , 1 , 6))
* - A(J+2 ,K , 1 ,4) * A (J + 2 , K , 1 ,6)
* - A (J + 2 , K K , I , 4) * A (J + 2 , K K , I , 6)

VSUM5(I) = VSUM5(I) + 4 . 0 * (A(J+1 ,K , 1 ,5) * A(J+1 ,K , 1 ,6)
* + A (J + 1 , K K , I , 5) * A (J + 1 , K K , I , 6))
* - A(J+2 ,K , 1 ,5) * A(J+2 ,K , 1 ,6)
* - A (J + 2 , K K , I , 5) * A (J + 2 , K K , I , 6)

45013 CONTINUE

DO 45014 K = 2, KM
DO 45014 1 = 1 , IM
A(J,K,I,1) = VSUMl(I) / (6.0 * (KM-2) * A(J,K,I,6))
A(J,K,I,2) = VSUM2(I) / (6.0 * (KM-2) * A(J,K,I,6))
A(J,K,I,3) =0.0
A(J,K,I,4) = VSUM4(I) / (6.0 * (KM-2) * A(J,K,I,6))
A(J,K,I,5) = VSUM5(I) / (6.0 * (KM-2) * A(J,K,I,6))

45014 CONTINUE

136 VECTORIZATION OF FORTRAN PROGRAMS

CL
o

120

100

80

60

20

15 25 35 45 55

IM

FIGURE 4.29
Performance Comparison of Loops 45011 and 45012-45014.

a, original (KM = 5); b, original (KM = 75); c, restructured.

Our last example of loop switching illustrates the value of vectorizing
not only on the longest vector length, but of achieving vectorization of outer
loop code as well. As before, most compilers will vectorize the inner loop on
K, but its length is only five. It is important to always remember that just
because a compiler informs us that it has vectorized an important loop in our
program, there may be much improvement that can be attained. If we know,
for example, that N is significantly larger than five, there is probably a payoff
for inverting the loop nest to always have I be the inner-loop index.

C THE ORIGINAL
DO 45020 I = 1, N
F(I) = A(I) + .5
DO 45020 J = 1, 10
D(I,J) = B(J) * F(I)
DO 45020 K = 1, 5
C(K,I,J) = D(I,J) * E(K)

45020 CONTINUE

4.9 EXAMPLES OF RESTRUCTURING FORTRAN LOOPS 137

Q. O

80

70

60

50

40

30

20

10

11 61 111 161 211 261 311 361 411 461
Loop length

FIGURE 4.30
Performance Comparison of Loops 45020 and 45021-45023,

Cray X-MP. a, original; b, restructured.

To begin, we note that neither J nor K depend on I, and so the loops
may be easily switched. Next, we extract all code between one DO statement
and the next and place it into its own loop, always with I as the inner-loop
index. Finally, we can invert the nesting of the original inner-loop code, with
the result that all of the code in the original outer loop is now being executed
in vectorizable inner loops with long vector lengths, as shown in loops
45021, 45022, and 45023. Figure 4.30 shows that this restructuring outper­
forms the original by more than a factor of ten for long vector lengths.

C THE RESTRUCTURED
DO 45021 I = 1,N
F(I) = A(I) + .5

45021 CONTINUE

DO 45022 J = 1, 10
DO 45022 I = 1, N
D(I,J) = B(J) * F(I)

138 VECTORIZATION OF FORTRAN PROGRAMS

45022 CONTINUE

DO 45023 K = 1, 5
DO 45023 J = 1, 10
DO 45023 I = 1, N
C(K,I,J) = D(I,J) * E(K)

45023 CONTINUE

4.9.7 Loop Unrolling
Short loops often generate more overhead instructions than computational
instructions. Because of this, many compilers will automatically unroll loops
of small literal constant length. Our knowledge of algorithms can often be
used to manually carry this idea to even better optimizations, especially
when, as in loops 46010 and 46020, the inner loop contains few operations.
As written, it is difficult for a compiler to make use of all the machine's
registers and data paths.

C THE ORIGINAL
DO 46011 J = 1, 4
DO 46010 I = 1, N
C(J,I)=0.0

46010 CONTINUE

DO 46011 K = 1, 4
DO 46011 I = 1, N
C(J,I) = C(J,I) + A(J,K) * B(K,I)

46011 CONTINUE

In this example the inner DO loop does vectorize on a nice, long vector
length; but, there is room for additional improvement. Whenever small and
explicit outer loops exist, as in loop 46011, they should be unrolled inside the
larger vectorized loop. Note that the outer loop on J simply defines four
equations in the C array:

C (1 , 1) =

C (2 , I) =

C (3 , I) =

C (4 , I) =

Likewise, the outer loop on K simply generates four terms to be added
into C for each value of J. In fact, when the loop on K is unrolled, there is no
longer any need to initialize C to zero, and it no longer appears on the right
side in the restructured loop 46012.

C THE RESTRUCTURED
DO 46012 I = 1, N
C(1,I) = A(l,l) * B(1,I) + A(l,2) * B(2,I)

* + A(l,3) * B(3,I) + A(l,4) * B(4,I)
C(2,I) = A(2,l) * B(1,I) + A(2,2) * B(2,I)

4.9 EXAMPLES OF RESTRUCTURING FORTRAN LOOPS 139

C (3 , I)
*

C (4 , I)

46012 CONTINUE

+ A (2 , 3)
= A (3 . 1)
+ A (3 , 3)
= A (4 , l)
+ A (4 , 3)

B (3 , I) + A (2 , 4)
B (1 , I) + A (3 , 2)
B (3 , I) + A (3 , 4)
B (1 , I) + A (4 , 2)
B (3 , I) + A (4 , 4)

B (4 , I)
B (2 , I)
B (4 , I)
B (2 , I)
B (4 , I)

This restructuring gives the compiler more calculations to optimize, thus
obtaining more overlapping of functional units in the CPU. It also reduces
memory traffic, because each time one of the vectors in B is fetched, it is
reused four times.

This unrolling, shown in Figure 4.31, outperforms the original by about
a factor of three. In loop 46020 the compiler will vectorize on the innermost
loop, which contains a reduction function of length four. If vectorization of
this loop is prevented with a compiler directive, it will actually run faster in

140

120

100

Q.
O

21 31 41

Loop length
51

FIGURE 4.31
Performance Comparison of Loops 46011 and 46012, Cray

X-MP. Original, solid line; restructured, dotted line.

140 VECTORIZATION OF FORTRAN PROGRAMS

scalar mode than in vector mode. The best approach is to restructure as
shown in loop 46021.

C THE ORIGINAL
DO 46020 I = 1,N
DO 46020 J = 1,4
A(I,J) = 0.
DO 46020 K = 1,4
A(I,J) = A(I,J) + B(I,K) * C(K,J)

46020 CONTINUE

C THE RESTRUCTURED
DO 46021 I = 1 , N

A (I , 1) = B (I , 1) * C (l , l) + B (I , 2) * C (2 , l)
* + B (I , 3) * C (3 , l) + B (I , 4) * C (4 , l)

A (I , 2) = B (I , 1) * C (l , 2) + B (I , 2) * C (2 , 2)
* + B (I , 3) * C (3 , 2) + B (I , 4) * C (4 , 2)

A (I , 3) = B (I , 1) * C (l , 3) + B (I , 2) * C (2 , 3)
* + B (I , 3) * C (3 , 3) + B (I , 4) * C (4 , 3)

A (I , 4) = B (I , 1) * C (l , 4) + B (I , 2) * C (2 , 4)
* + B (I , 3) * C (3 , 4) + B (I , 4) * C (4 , 4)

46021 CONTINUE

In the restructuring, loop 46021 shows the loops on J and K completely
unrolled in the I loop. That is, the only effect of the original J loop was to
choose four different columns of the A and C arrays to be computed as the
sum of four terms indexed by the K loop. In the unrolling, all four equations
and all four terms are explicitly written out, thus eliminating the need to
initialize the elements of A to zero and allowing all of the code to fully
vectorize.

Figure 4.32 shows an improvement of more than a factor of 30 for this
restructuring.

In loops 44050, 44051, and 44052 we examined a restructuring of the
traditionally coded matrix multiply into fully vectorized loops. Here, we
reproduce the code of 44051 and 44052 as 46030 and 46031 to demonstrate
the value of unrolling in such a set of nested loops.

C THE ORIGINAL
DO 46030 J = 1, N
DO 46030 I = 1, N
A(I,J) = 0.

46030 CONTINUE

DO 46031 K = 1, N
DO 46031 J = 1, N
DO 46031 I = 1, N
A(I,J) - A(I,J) + B(I,K) * C(K,J)

46031 CONTINUE

Partially unrolling the outer loop inside the inner loop, as shown in
loop 46033, has two valuable effects: 1) the vector A(1:N,J) is fetched and
stored one-sixth as often as in loop 46031; and 2) giving the compiler more to

4.9 EXAMPLES OF RESTRUCTURING FORTRAN LOOPS 141

Q.
O

180

160

140

120

80

60

40

61 111 161 211 261

Loop length

311 361 461

FIGURE 4.32
Performance Comparison of Loops 46020 and 46021, Cray

X-MP. Original, solid line; restructured, dotted line.

do in the inner loop allows overlapped use of more resources. Loop 46034 is
of course a "cleanup" loop that handles N mod 6 remaining iterations.

Another improvement of 50-100% is achieved with this technique
(Figure 4.33). The actual performance of > 150 megaflops is approaching the
kind of performance usually only achieved with hand-coded assembly lan­
guage routines.

THE RESTRUCTURED
DO 46032 J = 1, N
DO 46032 I = 1, N
A(I , J)=0.

46032 CONTINUE

DO 46033 K = 1, N-5, 6
DO 46033 J = 1, N
DO 46033 I = 1, N
A(I,J) = A(I,J) + B(I,K)

* + B(I,K+1)
* + B(I,K+2)

C(K ,J)
C(K+1,J)
C(K+2,J)

142 VECTORIZATION OF FORTRAN PROGRAMS

+ B(I,K+3) * C(K+3,J)
+ B(I,K+4) * C(K+4,J)
+ B(I,K+5) * C(K+5,J)

46033 CONTINUE

DO 46034 KK = K, N
DO 46034 J = 1, N
DO 46034 I = 1, N
A(I,J) = A(I,J) + B(I,KK) * C(KK ,J)

46034 CONTINUE

4.9.8 IF Statements
In DO loops, IF statements can play havoc with optimization. They represent
a break in the flow of computation in each iteration, checking to see if
something special needs to be done this time through. Testing on the loop
index is most offensive, because the answer is already known. A simple
restructuring will completely remove the test from the loop.

160

140

c/> 100
Q.
O

80

60

20

111 161 211 261

Loop length

411 461

FIGURE 4.33
Performance Comparison of Loops 46031 and 46033-46034,

Cray X-MP. Original, solid line; restructured, dotted line.

4.9 EXAMPLES OF RESTRUCTURING FORTRAN LOOPS 143

Loops 47010, 47011, and 47012 contain tests on the value of the outer
loop index, inside the inner loop. The tests are simply causing certain ele­
ments of the B and C arrays to be set or not set on every iteration of the inner
loop. This is more effectively accomplished by several different loops tailored
to each of the special conditions, as shown by loops 47013-47017.

C THE ORIGINAL
DO 47012 K = 2, N
DO 47011 J = 2, 3
DO 47010 I = 2, N
A(I,J) = (1. - PX - PY - PZ) * B(I,J,K)

1 + .5 * PX * (B(I+1,J,K) + B(I-1,J,K))
2 + .5 * PY * (B(I,J+1,K) + B(I,J-1,K))
3 + .5 * PZ * (B(I,J,K+1) + B(I,J,K-1))

IF (K .LT. 3) GO TO 11
IF (K .LT. N) GO TO 10
B(I,J,K) = A(I,J)

10 B(I,J,K-1) = C(I,J)
11 C(I,J) = A(I,J)

47010 CONTINUE
47011 CONTINUE
47012 CONTINUE

Note that in the original loop nest, the elements of the array A are
computed unconditionally. Conditionally computed elements of B feedback
to A in the K loop, but never in the I or J loops. This allows us to split out this
part of the calculation into the loop nest 47013. Next, we have loop nests
47014 and 47015 computing the values of B and C, depending on the current
value of K. And, finally, nest 47017 computes the values for the special case
K = N. Performance of the restructured over the original is better than a
factor of ten (Figure 4.34).

C THE RESTRUCTURED
DO 47016 K = 2, N - 1
DO 47013 J = 2, 3
DO 47013 I = 2, N
A(I,J) = (1. - PX - PY - PZ) * B(I,J,K)

1 + .5 * PX * (B(I+1,J,K) + B(I-1,J,K))
2 + .5 * PY * (B(I,J+1,K) + B(I,J-1,K))
3 + .5 * PZ * (B(I,J,K+1) + B(I,J,K-1))

47013 CONTINUE

IF (K .EQ. 2) THEN
DO 47014 J =2, 3
DO 47014 I =2, N
C(I,J) = A(I,J)

47014 CONTINUE
ELSE
DO 47015 J = 2, 3
DO 47015 I = 2, N
B(I,J,K-1) = C(I,J)
C(I,J) = A(I,J)

47015 CONTINUE

144 VECTORIZATION OF FORTRAN PROGRAMS

ENDIF

47016 CONTINUE

K = N
DO 47017 J =
DO 47017 I =
A(I.J) = (1

1 + .5
2 + .5
3 + .5

B(I,J,K)
B(I,J,K-l)
C(I,J)

47017 CONTINUE

2, 3
2, N

- PX -
* PX * (
* PY * (
* PZ * (
= A(I.J)
= C(I,J)
= A(I,J)

PY - PZ) *
B(I+1,J,K)
B(I,J+l.K)
B(I,J.K+1)

B(I, J
+ B(I-
+ B(I
+ B(I

K)
-l.J.K))
J-l.K))
J.K-1))

Loop nest 47020 contains compound tests on each of the loop indexes,
and again, none of these tests need to be in the inner loop. The restructuring

Q. O

100

90

80

70

60

30

20

10

11 61 111 161 211 261 311 361 411 461
Loop length

FIGURE 4.34
Performance Comparison of Loops 47012 and 47013-47017,

Cray X-MP. Original, solid line; restructured, dotted line.

4.9 EXAMPLES OF RESTRUCTURING FORTRAN LOOPS 145

in loops 47021-47029 transforms each of the tests into a series of block IFs
within the J loop, thereby allowing simple vectorization of the I loop.

THE ORIGINAL
DO 47020
DO 47020
DO 47020
JP
JR
KP
KR
IP
IR

J
K
I

= 1,
= 1,
= 1,
= J
= J
= K
= K
= I
= I

JMAX
KMAX
I MAX
+ 1
- 1
+ 1
- 1
+ 1
- 1

IF (J .EQ. 1) GO TO 50
IF(J .EQ. JMAX) GO TO 51
XJ = (A(I,JP,K) - A(I,JR,K)) * DA2
YJ = (B(I,JP,K) - B(I,JR,K)) * DA2
ZJ = (C(I,JP,K) - C(I,JR,K)) * DA2
GO TO 70

50 Jl = J + 1
J2 = J + 2
XJ = (-3. * A(I,J,K) + 4 . * A(I,J1,K) - A(I,J2,K)) * DAi
YJ = (-3. * B(I,J,K) + 4. * B(I,J1,K) - B(I,J2,K)) * DA2
ZJ = (-3. * C(I,J,K) + 4. * C(I,J1,K) - C(I,J2,K)) * DAS
GO TO 70

51 Jl = J - 1
J2 = J - 2
XJ = (3. * A(I,J,K) - 4. * A(I,J1,K) + A(I,J2,K)) * DA2
YJ = (3. * B(I,J,K) - 4. * B(I,J1,K) + B(I,J2,K)) * DA2
ZJ = (3. * C(I,J,K) - 4. * C(I,J1,K) + C(I,J2,K)) * DA2

70 CONTINUE

IF (K .EQ. 1) GO TO 52
IF (K .EQ. KMAX) GO TO 53
XK = (A(I,J.KP) - A(I,J,KR)) * DB2
Y K = (B(I,J,KP) -B(I,J,KR)) * DB2
Z K = (C(I,J.KP) -C(I,J,KR)) * DB2
GO TO 71

52
K2 = K + 2

* A(I,J,K1) - A(I,J,K2)) * DB2
* B(I,J,K1) - B(I,J,K2)) * DB2
* C(I,J,K1) - C(I,J,K2)) * DB2

53

Kl = K +
K2 = K +
XK = (-3.
YK = (-3.
ZK = (-3.
GO TO 71

Kl = K -
K2 = K -
XK = (3.
YK = (3.
ZK = (3.
CONTINUE

1
2

1
2

*
*
*

*
*
*

A(I,J,K)
B(I,J,K)
C(I,J,K)

A(I, J,K)
B(I,J,K)
C(I,J,K)

+ 4.
+ 4.
+ 4.

- 4.
- 4.
- 4.

* A(I,J,K1) + A(I,J,K2)) * DB2
* B(I,J,K1) + B(I,J,K2)) * DB2
* C (I , J , Kl) + C (I , J , K2)) * DB2

146 VECTORIZATION OF FORTRAN PROGRAMS

IF (I .EQ. 1) GO TO 54
IF (I .EQ. IMAX) GO TO 55
XI = (A(IP,J,K) - A(IR,J,K)) * DC2
YI = (B(IP,J,K) - B(IR,J,K)) * DC2
ZI = (C(IP,J,K) - C(IR,J,K)) * DC2
GO TO 60

54

55

60

*
7020

11 = I +
12 = I +
XI = (-3.
YI = (-3.
ZI = (-3.
GO TO 60

11 = I -
12 = I -
XI = (3.
YI = (3.
ZI = (3.
CONTINUE

DINV

D(I,J,K)
CONTINUE

1
2

1
2

=
-
=

*
*
*

*
*
*

A(I,J,K)
B(I,J,K)
C(I,J,K)

A(I,J,K)
B(I,J,K)
C(I,J,K)

xj * YK * :
XJ * ZK * '
1.

+ 4.
+ 4.
+ 4.

- 4.
- 4.
- 4.

ZI +
YI -

/ (DINV + 1.

* A(I1,J,K) -
* B(I1,J,K) -
* C(I1,J,K) -

* A(I1,J,K) +
* B(I1,J,K) +
* C(I1,J,K) +

YJ * ZK * XI
YJ * XK * ZI
E-51)

A(I2,J,K))
B(I2,J,K))
C(I2,J,K))

A(I2,J,K))
B(I2,J,K))
C(I2,J,K))

+ ZJ * XK
- ZJ * YK

* DC2
* DC2
* DC2

* DC2
* DC2
* DC2

* YI
* XI

The original loop nest made heavy use of scalar temporaries such as XI,
XJ, and XK to carry the conditionally computed values from the top to the
bottom of the loop. Since our restructuring splits the original into many
loops, we promote the scalars to arrays — such as VAI, VAJ, and VAK — to
carry all of the computed values between loops. The transformation may
seem drastic, but the flow of control is clearer, the answers are the same, and,
as Figure 4.35 illustrates, the performance improvement is astounding; more
than a factor of 20 for long vector lengths. Execution time for this loop is
dropped from hours to minutes by this technique.

THE RESTRUCTURED
DO 47029 J = 1, JMAX
DO 47029 K = 1, KMAX

47021

IF(J.EQ.1)THEN
Jl = 2
J2 = 3
DO 47021 1 = 1 ,
VAJ(I) = (-3.
VBJ(I) = (-3.
VCJ(I) = (-3.

CONTINUE

I MAX
* A(I,J
* B(I,J
* C(I,J.

ELSE IF(J.NE.JMAX) THEN
JP = J+l
JR = J-!
DO 47022 1 = 1 ,
VAJ(I) = (A(I

1
I MAX
,JP.K) -

,K) + 4 .
,K) + 4 .
,K) + 4 .

A(I,JR,

* A(I,J1,
* B(I,Jl,
* C(I,J1,

K)) * DA2

,K)
,K)
,K)

- A(I.
- B(I
- C(I.

, J2
, J2
, J2

,κ) :
,κ) :
,κ) ;

) * DA2
) * DA2
) * DA2

4.9 EXAMPLES OF RESTRUCTURING FORTRAN LOOPS 147

47022

47023

VBJ(I) = 1
VCJ(I) = l

CONTINUE

ELSE
Jl
J2
DO 47023 I
VAJ(I) =
VBJ(I) =
VCJ(I) =
CONTINUE
ENDIF

(B(I,JP,K) - B(I,JR,K)) * DA2
[C(I,JP,K) - C(I,JR,K)) * DA2

= JMAX-1
= JMAX-2
= 1, IMAX
(3. * A(I,J,K) - 4. * A(I,J1,
(3. * B(I,J,K) - 4. * B(I,J1,
(3 . * C(I,J,K) - 4. * C(I,Jl

,K)
,K)
,K)

+ A(I,
+ B(I
+ C(I

, J2,
, J2.
, J2

,κ) ;
,K) :
,κ) :

1 * DA2
) * DA2
) * DA2

47024

IF(K.EQ.l) THEN
Kl = 2
K2 = 3
DO 47024 1 = 1 ,
VAK(I) = (-3.
VBK(I) = (-3.
VCK(I) = (-3.

CONTINUE

IMAX
* A(I,J,K) + 4.
* B(I,J,K) + 4.
* C(I,J,K) + 4.

* A(I,J,K1)
* B (I , J , Kl)
* C(I,J,K1)

- A(I,J,K2) ;
- B (I , J , K 2) :
- C (I , J , Κ2) ;

) * DB2
) * DB2
) * DB2

47025

ELSE IF (K.NE.KMAX) THEN
KP = K + 1
KR = K - 1
DO 47025 I
VAK(I) =
VBK(I) =
VCK(I) =

CONTINUE

ELSE
Kl
K2
DO 47026 I
VAK(I) = I
VBK(I) = l
VCK(I) = I

= 1, IMAX
(A(I,J,KP) - A(I,J,KR)
(B(I,J,KP) - B(I,J,KR)
(C(I,J,KP) - C(I,J,KR)

= KMAX - 1
= KMAX - 2
= 1, IMAX
: 3. * A(I,J,K) - 4. *
; 3 . * B (I , J , K) - 4 . *
: 3. * C(I,J,K) - 4. *

) * DB2
) * DB2
) * DB2

A(I,J.K1)
B (I , J , Kl)
C (I , J , Kl)

+ A(I,J,
+ B(I,J,
+ C(I,J,

,K2) ;
, K 2) :
, K 2) :

) * DB2
I * DB2
I * DB2

47026 CONTINUE

1 = 1
II
12
VAI(I)
VBI(I)
VCI(I)

= 2
= 3

(-3.
(-3.
(-3.

A(I;
B(I,

J,K)
J,K)

* C(I,J,K) +

4.
4.
4.

A(I1,
B(I1,
C(I1,

A(I2,
B(I2,
C(I2,

DC2
DC 2
DC 2

47027

DO 47027 1 = 2 , IMAX-1
IP = 1 + 1
IR = 1 - 1
VAI(I) = (A(IP,J,K) - A(IR,
VBI(I) = (B(IP,J,K) -B(IR,
VCI(I) = (C(IP,J,K) - C(IR,

CONTINUE

DC 2
DC2
DC2

148 VECTORIZATION OF FORTRAN PROGRAMS

I = IMAX
II
12
VAI(I) =
VBI(I) =
VCI(I) =

IMAX - 1
IMAX - 2

* A(I,J,K)
* B(I,J,K)
* C(I,J,K)

- 4.
- 4.
- 4.

A(I1,
B(I1,
C(I1,

+ A(I2,J,K)
+ B(I2,J,K)
+ C(I2,J,K)

DC 2
DC2
DC2

DO 47028 1 = 1 ,
DINV = VAJ(I)

1 + VCJ(I)
2 - VBJ(I)

D(I,J,K) = 1.
47028 CONTINUE

ENDIF
47029 CONTINUE

IMAX
* V B K (I)
* V A K (I)
* V A K (I)

V C I (I) + V B J (I) * V C K (I)
V B I (I)
V C I (I)

V A J (I) * V C K (I) *
V C J (I) * V B K (I) *

/ (DINV + l . E - 5 1)

V A I (I)
V B I (I)
V A I (I)

Loop 47030 contains three IF tests, only the first of which is actually
loop dependent; that is, the value of the logical expression A(I).LT.0.0 can
change on each loop iteration, whereas the other two logical expressions are
loop independent.

Q. O

210

180

150

90

60

30

11 31 51 71 91 111 131 151 171 191
Loop length

FIGURE 4.35
Performance Comparison of Loops 47020 and 47021-47029,

Cray X-MP. Original, solid line; restructured, dotted line.

4.9 EXAMPLES OF RESTRUCTURING FORTRAN LOOPS 149

A closer examination of the first IF statement reveals that it is just
computing the absolute value of the elements of A. The next IF statement
(XL.LT.O.) is simply setting certain elements (all, none, even, or odd) of A
negative, depending on the value of GAMMA.

C THE ORIGINAL
DO 47030 I = 1, N
A(I) = PROD * B(1,I) * A(I)
IF (A(I) .LT. 0.0) A(I) = -A(I)
IF (XL .LT. 0.0) A(I) = -A(I)
IF (GAMMA) 47030, 47030, 100

100 XL = -XL
47030 CONTINUE

Our restructuring in loops 47031-47034 simply reflects the analysis in the
previous paragraph. Loop 47031 computes the absolute values of the ele­
ments of the array A. Then an IF block on the value of GAMMA chooses
which (if any) of the elements of A to set negative in the following three
loops.

C THE RESTRUCTURED
DO 47031 I = 1, N
A(I) = PROD * B(1,I) * A(I)
A(I) = ABS (A(D)

47031 CONTINUE

IF (GAMMA .LE. 0.) THEN

IF (XL .LT. 0.0) THEN
DO 47032 I = 1, N
A(I) = -A(I)

47032 CONTINUE
ENDIF

ELSE

IF (XL .LT. 0.0) THEN
DO 47033 I = 1, N, 2
A(I) = -A(I)

47033 CONTINUE
ENDIF

IF (XL .GT. 0.0) THEN
DO 47034 I = 2, N, 2
A(I) = -A(I)

47034 CONTINUE
ENDIF

As usual, we ignore setting the final value of the scalar XL. If it were
needed, the following statement placed after the final ENDIF would properly
set it:

I F (G A M M A . G T . 0 . 0 . A N D . M O D (N , 2) . E Q . 1) XL = - XL

150 VECTORIZATION OF FORTRAN PROGRAMS

180

Q. O

120

80

60

20

111 161 211 261 311 361
Loop length

FIGURE 4.36
Performance Comparison of Loops 47030 and 47031-47034,

Cray X-MP. Original, solid line; restructured, dotted line.

461

Figure 4.36 indicates that the restructured loops run 15 to 20 times faster
than the original.

Loop 47050 illustrates the cost of using a computed GO TO to choose
among a small number of cases. Loop 47051 is a simple restructuring using a
vectorizable IF block to achieve the same results in less than one-tenth of the
time, as shown in Figure 4.37.

C THE ORIGINAL
DO 47050 I = 1, N
IIA = IA(I)
GO TO (110, 120) IIA

110 D(I) = B(I)
A(I) = D(I) + 1.7
GO TO 47050

120 D(I) = C(I)
A(I) = D(I) +1.1

47050 CONTINUE

4.9 EXAMPLES OF RESTRUCTURING FORTRAN LOOPS 151

THE RESTRUCTURED
DO 47051 I = 1, N
IF(IA(I) .NE. 2) THEN

+ 1.7

47051

D(I) =
A(I) =

ELSE
D(I) =
A(I) =

ENDIF
CONTINUE

B(I)
D(I)

C(I)
D(I) + 1.1

Any time IF blocks are nested within a loop, the probability of execut­
ing the inner blocks decreases with each new condition encountered. As the
probability or "truth density" decreases, so does the potential vector length
within the conditionally executed code blocks. For this reason, all compilers
stop trying to vectorize after a certain number of nested IF blocks are en-

40

35

61 111 161 211 261

Loop length

311 361 461

FIGURE 4.37
Performance Comparison of Loops 47050 and 47051, Cray

X-MP. Original, solid line; restructured, dotted line.

152 VECTORIZATION OF FORTRAN PROGRAMS

countered within a loop. This can be circumvented by reducing all nested
blocks to single-level blocks as shown between 47078 and 47079.

47078

47079

DO 47078 I =
IF (condl)
blockl
IF (cond2;
block2

ELSE
block3

ENDIF
block4

ENDIF
CONTINUE

DO 47079 I =
IF (condl)
blockl

ENDIF

IF (condl
block2

ENDIF
IF (condl
block3

ENDIF

IF (condl)
block4

ENDIF
CONTINUE

= 1, N
THEN

) THEN

= 1, N
THEN

.AND.

.AND.

THEN

cond2)

.NOT.

THEN

cond2) THEN

The preceding restructuring can (with care) be extended to any number
of IF blocks, ELSEIFs, and the like. It can be a valuable tool to clarify our
thinking about the control flow through the loop, and it may allow us to split
out some particularly CPU-intensive block of code. In general, however, the
restructuring itself will usually not have any big payoff in performance, even
if the restructured loop vectorizes. Loop 47080 is an example of the problems
associated with trying to optimize many compounded conditions. No com­
piler will attempt to vectorize this loop, because of the low probability of
executing any of the arithmetic statements following statement 500.

C THE ORIGINAL
SUM =0.0
DO 47080 J = 1, JMAX
DO 47080 I = 2, N
IF (I .EQ. N) GO TO 47080
IF (A(1,J) .LT. B(1,I)) GO TO 47080
IF (A(l,l) .GT. B(1,I)) GO TO 47080
IF (A(1,J) .GE. B(1,I+1) .AND. I .NE. N) GO TO 500
IF (J.EQ.1) GO TO 47080
IF (A(1,J-1) .LT. B(l.I-l) .AND. I*J .NE. 1) GO TO 500
IF (A(1,J-1) .LT. B(1,I)) GO TO 47080

4.9 EXAMPLES OF RESTRUCTURING FORTRAN LOOPS 153

500 CONTINUE
PI
P2
DD
P3
P4
SUMND

SUM
47080 CONTINUE

= C(l.I-l)
= D(I-l)
= B(1,I) - B(l,1-1)
= (3.0 * E(I) - 2.0 * P2 - D(I)) / DD
= (P2 + D(I) - 2.0 * E(I)) / DD**2
= DD * (PI + DD * (P2 / 2.
+ DD * (P3 / 3. + DD * P4 / 4.)))
= SUM + SUMND

Our restructuring in loop 47081 precomputes all of the conditions into
one controlling logical variable, LOG7. Note that the very first IF test in the
original does nothing but skip the final iteration of the inner loop. This is
reflected in the loop limit itself in the restructured code.

All of the arithmetic is done in a simple vectorizable block IF. Figure
4.38 illustrates only a modest performance improvement for this restructur­
ing, because of the very low truth density in the loop; that is, the logical
variable LOG 7 in the restructured code is true less than 2% of the time,
resulting in extremely short vector lengths.

THE RESTRUCTURED
SUM =0.0
DO 47081 J = 1, JMAX
DO 47081 1 = 2 , N-l

47081

LOG1 =
L0G2 =
L0G3 =
LOG4 =
L0G5 =
L0G6 =
L0G7 =

PI
P2
DD
IF (
P3
P4
SUMND

A(1,J) .GE.
A(l,l) .LE.
A(1,J) .GE.
J .NE. 1

B(1,I)
B(1,I)
B(1,I+1)

A(l.J-l) .LT. B(l.I-l)
A(l.J-l) .GE. B(1,I)
L0G1 .AND.
L0G1 .AND.
L0G1 .AND.

= C(1,I-1)
= D(I-l)
= B(i,i) - :
.NOT. LOG7)

L0G2 .AND.
L0G2 .AND.
LOG2 .AND.

Β(Ι,Ι-Ι)
DD = 1.0

= (3.0 * E(I) - 2.0 *
= (P 2 + D (I) - 2 . 0 *
= 0.0

IF (L0G7) SUMND =

SUM
+

DD * (PI
DD * (P3 /

= SUM + SUMND
CONTINUE

L0G3 .OR.
L0G4 .AND. L0G5
L0G4 .AND. L0G6

P2 - D(I)) / DD
E(I)) / DD**2

+ DD * (P2 / 2.
3. + DD * P4 / 4

,0R.

)))

Loop 47090 is a renumbered version of kernel 15 of the Livermore
Fortran kernels. At this time (February 1988) only a few compilers have
demonstrated an ability to vectorize this loop. It is a jumble of arithmetic IF
tests and unconditional GO TOs. Yet if the conditional blocks are sorted out
and more clearly expressed as block IFs, almost any compiler can vectorize it.

154 VECTORIZATION OF FORTRAN PROGRAMS

CO
Q.

11 61 111 161 211 261 311 361 411 461
Loop length

FIGURE 4.38
Performance Comparison of Loops 47080 and 47081, Cray

X-MP. Original, solid line; restructured, dotted line.

Loops 47091-47093 are such a restructuring, and Figure 4.39 depicts about a
factor of eight performance improvement over the original.

C THE ORIGINAL
15 DO 47090 J = 2, NR

DO 47090 K = 2, NZ
IF (J - NR) 31, 30, 30

30 VY(K.J) = 0.0
GO TO 47090

31 IF(VH(K,J+1) - VH(K,J)) 33, 33, 32
32 T = AR

GO TO 34
33 T = BR
34 IF (VF(K.J) -VF(K-l.J)) 35, 36, 36
35 R = AMAX1 (VH(K-l.J), VH(K-1,J+1))

S = VF(K-l.J)
GO TO 37

36 R = AMAX1 (VH(K,J), VH(K,J+1))
S = VF(K.J)

37 VY(K,J) = SQRT (VG(K,J)**2 + R*R) * T / S

4.9 EXAMPLES OF RESTRUCTURING FORTRAN LOOPS 155

38 IF (K - NZ) 40, 39, 39
39 VS(K.J) = 0.

GO TO 47090
40 IF (VF(K,J) - VF(K.J-l)) 41, 42, 42
41 R = AMAX1 (VG(K.J-l), VG(K+1,J-1))

S = VF(K.J-l)
T = BR

GO TO 43
42 R = AMAX1 (VG(K,J), VG(K+1,J))

S = VF(K.J)
T = AR

43 VS(K.J) = SQRT (VH(K,J)**2 + R*R) * T / S
47090 CONTINUE
C THE RESTRUCTURED

DO 47091 J = 2, NR-1
DO 47091 K = 2, NZ-1

IF (VH(K,J+1) .GT. VH(K.J)) THEN
T = AR

ELSE
T = BR

ENDIF

IF (VF(K.J) .LT. VF(K-l.J)) THEN
R = AMAX1 (VH(K-l.J), VH(K-1,J+1))
S = VF(K-l.J)

ELSE
R = AMAX1 (VH(K,J), VH(K,J+1))
S = VF(K.J)

ENDIF

VY(K,J) = SQRT (VG(K,J)**2 + R*R) * T / S

IF (VF(K.J) .LT. VF(K.J-l)) THEN
R = AMAX1 (VG(K.J-l), VG(K+1,J-1))
S = VF(K.J-l)
T = BR

ELSE
R = AMAX1 (VG(K,J), VG(K+1,J))
S = VF(K,J)
T = AR

ENDIF

VS(K.J) = SQRT (VH(K,J)**2 + R*R) * T / S
47091 CONTINUE

DO 47092 J = 2, NR-1
VS(NZ,J) = 0.

47092 CONTINUE

DO 47093 K = 2, NZ
VY(K,NR) = 0.0

47093 CONTINUE
Loops 47100 and 47101 represent a conventionally coded table lookup

and interpolation scheme. In this example we do N table searches, interpo-

156 VECTORIZATION OF FORTRAN PROGRAMS

Q. O

60

50

40

30

20

10

61 111 161 211 261
Loop length

311 361 411 461

FIGURE 4.39
Performance Comparison of Loops 47090 and 47091-47093,

Cray X-MP. Original, solid line; restructured, dotted line.

lating for each of the input values X2(I). The inner loop (47100) is very
difficult to vectorize because of the jump out of loop (GO TO 21) and also
because the index IL must be carried on to the interpolation for Y2(I).

C THE ORIGINAL
DO 47101 I = 1 , N

Ul = X 2 (I)

DO 47100 LT = 1, NTAB
IF (Ul .GT. XI(LT)) GO TO 47100
IL = LT
GO TO 121

47100 CONTINUE

IL = NTAB - 1
121 Y2(I) = Yl(IL) + (Y1(IL+1) - Yl(IL)) /

* (X1(IL+1) - Xl(IL)) *
* (X2(I) - Xl(IL))

47101 CONTINUE

4.9 EXAMPLES OF RESTRUCTURING FORTRAN LOOPS 157

40

35

30

25

Q.
ê 20

10

10 20 30 40 50 60

Table size

70 80 90 100

FIGURE 4.40
Performance Comparison of Loops 47101 and 47102-47104,

Cray X-MP. Original, solid line; restructured, dotted line.

Our approach to restructuring this loop is to split the table lookup and
interpolation into separate loops, thereby allowing the important interpola­
tion arithmetic to vectorize. We promote IL to the array IV and compute all of
the interpolation indexes in loop 47103, which can then vectorize even with
tr 3 jump out of loop. These indexes are then used in loop 47104 to provide
indirect address vectorization of the interpolation. Figure 4.40 presents the
performance graphed against various table lengths for given N = 461. As
before, the sharp dip in performance between 60 and 70 results from the
Cray vector-register length of 64.

C THE RESTRUCTURED
DO 47103 1 = 1 , N
Ul = X2(I)
DO 47102 LT = 1, NTAB
IF (Ul .GT. XI(LT)) GO TO 47102
IV(I) = LT
GO TO 47103

47102 CONTINUE

158 VECTORIZATION OF FORTRAN PROGRAMS

I V (I) = NTAB - 1
47103 CONTINUE

DO 47104 I = 1 , N
Y 2 (I) = Y 1 (I V (I)) + (Y 1 (I V (I) + 1) - Y 1 (I V (I))) /

* (X 1 (I V (I) + 1) - X 1 (I V (I))) *
* (X2(I) - X 1 (I V (I)))

47104 CONTINUE

Loop 47102 is simple enough to allow some compilers to vectorize it
using special library functions. As a general rule, however, a loop that
contains a jump out of loop, such as 47110, cannot be easily vectorized, since
loop termination (vector length) cannot be determined.

DO 47110 I = 1, N
A(I) = B(I) * SQRT (D(I)) - C(I)
IF (A(I) .LT. 0.) GO TO 47111

vectorizable code block
(running in scalar because of jump out of loop)

47110 CONTINUE

47111 CONTINUE

Given that ITERM is the value of I when the loop exit is taken, then a
restructuring technique that usually has a payoff for large ITERM is strip-
mining. This involves performing the loop in "strips," typically an integer
multiple of the size of the vector registers on the target machine. Such a
restructuring for a Cray machine is shown in loop 47112.

DIMENSION TEMPA(64)

47113

47114
47115

DO 47112 II = 1, N, 64
LENGTH = MIN (64, N-I+l)

I = II - 1
DO 47113 J = 1, LENGTH
1 = 1 + 1
TEMPA(J) = B(I) * SQRT (D(I))

CONTINUE

I = II - 1
DO 47114 JJ = 1, LENGTH
1 = 1 + 1
A(I) = TEMPA(JJ)
IF (A(I) .LT. 0.) GO TO 47115

CONTINUE
CONTINUE

C(I)

JJ = JJ - 1
DO 47116 I = II, II+JJ-1
vectorizable code block

47116 CONTINUE

4.9 EXAMPLES OF RESTRUCTURING FORTRAN LOOPS 159

IF (JJ .LT. LENGTH) GO TO 47117
47112 CONTINUE
47117 CONTINUE

It should be obvious that such a technique must be applied with care. It
is a significant transformation of the original loop but can have a sizable
payoff for a large, CPU-intensive loop. Let us step through the transforma­
tion. First, vectorize the computation of the elements of the array A (47113)
and isolate the vectorizable code block into a loop by itself (47116). This is
achieved by computing the elements 64 at a time in a temporary array
(47113). Then set the next 64 array elements and check for loop termination
within that group (47114). Compute the vectorizable code block for just
those iterations in which A(I) .GE. 0. (47116); and, finally, exit the loop when
the termination condition has been satisfied.

Note that here we have used our knowledge that if loop 47114 termi­
nates normally, then JJ = LENGTH+1; for exit via the GO TO statement, JJ
will be less than or equal to LENGTH. Our next example, loop 47120 is a
simple IF loop, which harks back to the earliest days of Fortran, Before DO
Loops (BDL). A few compilers recognize such loops, but most do not. Our
restructuring in loop 47121 is a simple transformation, and performance
increases by more than a factor of ten (Figure 4.41).

C THE ORIGINAL
1 = 0

47120 CONTINUE
1 = 1 + 1
A(I) = B(I)**2 + .5 * C(I) * D(I) / E(I)
IF (I .LT. N) GO TO 47120

C THE RESTRUCTURED
DO 47121 I = 1, N
A(I) = B(I)**2 + .5 * C(I) * D(I) / E(I)

47121 CONTINUE

Loop 47130 is not a simple IF loop, but a loop with an indeterminate
termination based on the criterion (A(I).GT.O), which, if the algorithm is ill
conditioned, has the potential to never be false—resulting in an infinite
loop. Such loops are common on systems that do not have a "DO WHILE"
extension to the language. Even with the extension such a loop is difficult for
a compiler to vectorize, since the final value to be computed remains indeter­
minate.

C THE ORIGINAL
1 = 0

47130 CONTINUE
1 = 1 + 1
A(I) = B(I)**2 + .5 * C(I) * D(I) / E(I)
IF (A(I) .GT. 0.) GO TO 47130

Our approach here is to stripmine the loop the same as we did in our
previous example of a jump out of a loop. We compute the next 128 values

160 VECTORIZATION OF FORTRAN PROGRAMS

100

Q.
o

40

20

111 161 211 261

Loop length

311 411 461

FIGURE 4.41
Performance Comparison of Loops 47120 and 47121, Cray

X-MP. Original, solid line; restructured, dotted line.

into a temporary array VA with full vectorization in loop 47131, then test for
convergence in loop 47132. Performance depends on the point at which
convergence occurs; as more and more elements of A are computed, the
performance of the restructured code improves, whereas performance of the
original is relatively flat, and, for early convergence, actually outperforms the
restructured (Figure 4.42).

Using this technique always requires experimentation to determine
whether the nature of our algorithm lends itself to stripmining.

C THE RESTRUCTURED
DO 47133 II = 1, N, 128
LENGTH = MINO (128, N-II+1)
DO 47131 1 = 1 , LENGTH
VA(I) = B(I+II-1)**2 + .5 * C(I+II-1)

47131 CONTINUE
D(I+II-1) / E(I+II-1)

DO 47132 1 = 1 , LENGTH
A(I+II-1) = VA(I)
IF (A(I+II-1) .LE. 0.0) GO TO 47134

4.9 EXAMPLES OF RESTRUCTURING FORTRAN LOOPS 161

80

70

60

50

Q.
° 40

30

10

10 20 30 40 50 60
Percentage

70 80 90 100

FIGURE 4.42
Performance Comparison of Loops 47130 and 47131-47133,

Cray X-MP. Original, solid line; restructured, dotted line.

47132 CONTINUE
47133 CONTINUE
47134 CONTINUE
Our final example is another of the Livermore kernels, Number 17. Our

restructuring performs no differently than the original, because of the recur­
sive nature of several of the scalar variables, such as XNM and E6. We
present the restructuring simply to illustrate that a side benefit of the effort to
vectorize is often a loop that more clearly states the algorithm. We believe
that loop 47143 is much easier to follow and more easily maintained than the
original loops 47140 and 47141. Figure 4.43 presents the performance of the
original and the restructured loops.

THE ORIGINAL
I
J

INK
SCALE
XNM
E6

=
=
=
=
=
=

N
1
-1
5.
1.
1.

/3.
/3.
03/3

GO TO
.07
47141

162 VECTORIZATION OF FORTRAN PROGRAMS

c
47140

47141

C

C

47142

C

47143

E6 =
VXNE(I) :

XNM =
VE3(I) =

I =
IF
E3 =

XNEI ■-
VXND(I) :

XNC =

IF
IF

VE3(I) =
E6 =

VXNE(I) =
XNM :

I :
IF

CONTINUE

STEP MODEL
= XNM * VSP(I) + VSTP(I)
= E6
= E6
= E6
= I + INK
(I .EQ. J) GO TO 47142
= XNM * VLR(I) + VLIN(I)
= VXNE(I)
= E6
= SCALE * E3

SELECT MODEL
(XNM .GT. XNC) GO TO 47140
(XNEI .GT. XNC) GO TO 47140

LINEAR MODEL
= E3
= E3 + E3 - XNM
= E3 + E3 - XNEI
= E6
= I + INK
(I .NE. J) GO TO 47141

THE RESTRUCTURED
XNM = 1
E6 = 1

DO 47143 I = N
E3 = XNM

./3.

.03/3.07
, 2 , - 1
* VLR(I) + VLIN(I)

XNEI = VXNE(I)
VXND(I) = E6
XNC = SCALE * E3
IF (XNM .LE. :
VE3(I) = E3
E6 = E3
VXNE(I) = E3
XNM = E6

ELSE

KNC .AND. XNEI .LE. XNC) THEN

+ E3 - XNM
+ E3 - XNEI

E6 = XNM * VSP(I) + VSTP(I)
VXNE(I) = E6
XNM = E6
VE3(I) = E6

ENDIF
CONTINUE

4.9.9 Subprogram References
Subroutine calls and external (user) function references in a DO loop play
havoc with optimization and prevent vectorization of the loop. Compilers
handle only one subprogram at a time and so can know nothing about the
use of program variables in an external routine. So when a subprogram
reference is encountered in a loop, the compiler must save in memory all
needed registers as well as the current values of any variables. It does so on
the assumption that not only will the subprogram destroy all register con-

4.9 EXAMPLES OF RESTRUCTURING FORTRAN LOOPS 163

Q.
O

\L·

10

11 61 161 211 261

Loop length

311 361 411 461

FIGURE 4.43
Performance Comparison of Loops 47140-47141 and 47143,

Cray X-MP. Original, solid line; restructured, dotted line.

tents, but might also contain recursive references to program variables. The
only exceptions to this are references to some Fortran-intrinsic functions and
certain machine-specific library functions known to the compiler.

We will explore optimizing such loops with the following techniques:

1. Splitting the loop to isolate the external reference into a loop of its
own

2. Replacing an external function definition with a statement function

3. Pulling the code of the external routine into the referencing loop

4. Pushing the loop into the subprogram

5. Restructuring a scalar function into a vector subroutine

Subprograms that can be safely split out of a calling loop satisfy the
following conditions.

164 VECTORIZATION OF FORTRAN PROGRAMS

1. The subprogram has no side effects on the calling loop; that is, it
makes no assignments to variables or arrays being referenced in the
loop.

2. The subprogram contains no STOP statements or alternate
RETURNS.

3. The subprogram dummy arguments corresponding to actual argu­
ments that are array elements are specified as variable names, not
arrays.

4. If the subprogram references other nonintrinsic subprograms, then
these subprograms satisfy the preceding three conditions, as well as
this one.

Our first example in loop 48010 will not vectorize, because a compiler
does not know whether FRED has any side effects within the loop. We have
included a listing of FRED so that the reader may verify that FRED neither
references or sets any external variables. It simply returns a value computed
as a function of its input argument. As a result, we may split the reference to
FRED into a separate loop, thereby allowing all the rest of the arithmetic to
vectorize. This is shown in loops 48011-48013.

C THE ORIGINAL
DO 48010 I = 1, N
A(I) = B(I) * C(I)
D(I) = FRED (A(I)**2
E(I) = D(I) / B(I) +

48010 CONTINUE

FUNCTION FRED (X)
DATA CO, Cl, C2, C3, C4, C5, C6, C7, C8, C9
* / .1, .2, .3, .4, .5, .6, .7, .8, .9, 1. /

FRED = CO + X * (Cl + X * (C2 + X * (C3
* + X * (C4 + X * (C5 + X * (C6
* + X * (C7 + X * (C8 + X * (C9 + X)))))))))

RETURN
END

Note that the original argument to FRED was the vectorizable expres­
sion A(I)**2 + 2.0. To vectorize the expression, we use the array D to carry
the values from loop 48011 to 48012. Since the value of FRED is uncondi­
tionally stored into D(I) in loop 48012, there is no problem with using D in
this manner.

C THE RESTRUCTURED
DO 48011 I = 1,N
A(I) = B(I) * C(I)
D(I) = A(I)**2 + 2.0

48011 CONTINUE

+ 2.0)
A(I)

4.9 EXAMPLES OF RESTRUCTURING FORTRAN LOOPS 165

DO 48012 I = 1,N
D (I) = FRED (D (I))

48012 CONTINUE

DO 48013 I = 1,N
E (I) = D (I) / B (I) + A (I)

48013 CONTINUE

Figure 4.44 indicates about a 25% performance improvement for this
restructuring. If FRED were less CPU intensive and the 48010 loop more
complicated, the improvement could be as much as a factor of ten.

Loop 48020 contains another function reference, FUNC, and again, it is
stopping vectorization of the loop. Remember, this could be embedded in a
much longer loop, and a compiler would not be able to vectorize any of the
code for fear of side effects from FUNC. Once more we have listed the
contents of FUNC, and in reality the system probably spends more time
calling the routine than it does executing the code.

10

Q.
O

61 161 211 261

Loop length

311 361 411 461

FIGURE 4.44
Performance Comparison of Loops 48010 and 48011-48013,

Cray X-MP. Original, solid line; restructured, dotted line.

166 VECTORIZATION OF FORTRAN PROGRAMS

c

48020

THE ORIGINAL
DO 48020 I = 1, N
A(I) = B(I) * FUNC (D(I))

CONTINUE

FUNCTION FUNC (X)
FUNC = X**2 + 2.0 / X

RETURN
END

+ C (I)

Our restructuring simply brings the function definition into the routine
with a statement function. A compiler will expand this definition in line and
vectorize the resultant code. Even on this little loop, it should be clear that
calling the external function is quite costly, since Figure 4.45 indicates a
performance improvement of more than a factor of 20 for long vectors: An
hour of CPU time is reduced to less than three minutes.

C THE RESTRUCTURED
FUNCX (X) = X**2 + 2.0 / X

DO 48021 I = 1, N
A(I) = B(I) * FUNCX (D(I)) + C(I)

48021 CONTINUE

Since our goal is to vectorize as much code as possible, pulling the
external code into the loop is a good place to start. Consider loop 48030 and
the code of external routine SSUB.

DO 48030 I = 1, N
X(I) = SQRT (Y(I)**2 + Z(I)**2)
ZT = PI * X(I) + COS(A(I))
CALL SSUB (X(I), ZT, TY(I), TZ(I))
TX(I) = ABS (TZ(I))**0.5

48030 CONTINUE

SUBROUTINE SSUB (Yl, Y2, Y3, Υ4)
Y4 = γΐ**2 + ALOG (ABS (Yl + Y2))

* * EXP (Y2 * ABS (Yl - Y2))
Y3 = Yl + Y2
RETURN
END

To begin, we will substitute the code from SSUB into loop 48030, creating
loop 48031.

DO 48031 I = 1, N
X(I) = SQRT (Y(I)**2 + Z(I)**2)
ZT = PI * X(I) + C0S(A(I))
TZ(I) = X(I)**2 + ALOG (ABS (X(I) + ZT))

* * EXP (ZT * ABS (X(I) - ZT))
TY(I) = X(I) + ZT
TX(I) = ABS (TZ(I))**0.5

4 8031 CONTINUE

4.9 EXAMPLES OF RESTRUCTURING FORTRAN LOOPS 167

Q. O

100

80

60

20

T 1 1 !" I ■ I

11 61 111 161 211 261 311 361 411 461
Loop length

FIGURE 4.45
Performance Comparison of Loops 48020 and 48021, Cray

X-MP. Original, solid line; restructured, dotted line.

Inspection of this loop reveals no recursion. Therefore, it will vectorize
as written, assuming that each of the intrinsic functions has a vector version.
Not only do vector instructions replace unoptimized scalar instructions, but
N subroutine calls have been eliminated, another performance boost. But
eliminating subroutine calls is often a maintenance headache. In how many
other places is SSUB called? Should they each be changed in this manner?
What if changes are made to SSUB in the future; will the programmer
remember to make corresponding changes in loop 48031? The answers to
these questions usually argue against this approach.

As an alternative, can we split the subroutine call out of the loop and
achieve the same level of performance improvement? In other words, will
loops 48032, 48033, and 48034 produce the same answers as did 48030 and
with the same degree of efficiency as 48031?

DO 48032 I = 1, N
X(I) = SQRT (Y(I)**2 + Z(I)**2)
ZT = PI * X(I) + C0S(A(I))

48032 CONTINUE

168 VECTORIZATION OF FORTRAN PROGRAMS

DO 48033 I = 1, N
CALL SSUB (X(I), ZT, TY(I), TZ(I))

48033 CONTINUE

DO 48034 I = 1, N
TX(I) = ABS (TZ(I))**0.5

48034 CONTINUE

The answer to both questions is " n o / ' In the original loop, ZT assumed
a sequence of values, each of which was passed to SSUB. Now only the last
value of ZT is passed in each CALL. Furthermore, the code inside SSUB is
very CPU intensive, and it is still being computed in scalar mode.

The first problem is easy to address by promoting ZT to an array, as
shown in loops 48042, 48043, and 48044.

DO 48042 I = 1, N
X(I) = SQRT (Y(I)**2 + Z(I)**2)
VZT(I) = PI * X(I) + COS(A(I))

48042 CONTINUE

DO 48043 I = 1, N
CALL SSUB (X(I), VZT(I), TY(I), TZ(I))

48043 CONTINUE

DO 48044 I = 1, N
TX(I) = ABS (TZ(I))**0.5

48044 CONTINUE

Next, we can create a new version of SSUB, named VSSUB, by pushing the
loop into SSUB and passing whole arrays as arguments, as shown in loops
48052, 48053, and 48054.

DO 48052 I = 1, N
X(I) = SQRT (Y(I)**2 + Z(I)**2)
VZT(I) = PI * X(I) + C0S(A(I))

4 8052 CONTINUE

ZT = VZT(N)
CALL VSSUB (N, X, VZT, TY, TZ)

DO 48054 I = 1, N
TX(I) = ABS (TZ(I))**0.5

48054 CONTINUE

SUBROUTINE VSSUB (N, Yl, Y2, Y3, Υ4)
DIMENSION Yl(*), Y2(*), Y3(*), Υ4(*)

Comment: Changes made to this routine necessitate changes to SSUB.
DO 48053 I = 1, N
Y4(I) = Y1(I)**2 + ALOG (ABS (Y1(I) + Y2(I)))

* * EXP (Y2(I) * ABS (Y1(I) - Y2(I)))
Y3(I) = Y K D + Y2(I)

4 805 3 CONTINUE
RETURN
END

4.9 EXAMPLES OF RESTRUCTURING FORTRAN LOOPS 169

This restructuring allows all of the original code to vectorize and re­
duces the number of subroutine calls from N down to one. The overall
performance is very close to that of 48031, and maintenance is manageable
with comments in both SSUB and VSSUB (shown). Such a transformation is
relatively easy to perform with an editor. For this example, all that was
needed was to

• Add the DO loop length N to both the actual and dummy argument
lists. Replace the actual array element arguments with the array
names.

• Dimension the dummy arguments.

• Place a DO loop around the original scalar code.

• Add the subscript expression (I) to each reference to a dummy argu­
ment.

• Save the last value of VZT(N) into the original scalar ZT.

Loop 48060 contains yet another function call, and here we introduce a
few more twists. A careful reading of UFUN will reveal that its reference can
be split out into a loop of its own, just as we did with FRED in loop 48010.
But this loop also contains the scalar temporary AOLD that carries a value
from the first line of the loop into each of the other statements. So to split the
loop we must promote AOLD to be an array of values VAOLD.

Now to go one step further than we did with FRED: We push the loop
into the function. To do this, we transform the scalar function UFUN into a
vector subroutine VUFUN. This is accomplished by: 1) adding the DO loop
length N to the argument list; 2) changing the loop-dependent scalar argu­
ment AOLD to the array of arguments VAOLD; 3) changing the array
element argument B(I) to the array argument B; 4) adding the actual argu­
ment A to the call and the corresponding dummy argument UFUN to the
subroutine statement; 5) naming the new routine VUFUN; 6) dimensioning
the promoted arrays X, Y, and UFUN; and 7) noting that the statement IF
(SCA.GT.1.0) is loop independent, we add vectorizable DO loops 10 and 20
to compute all of the values of UFUN before returning to the calling routine.

In Figure 4.46, this restructuring—which is easy to carry out with an
editor—results in a performance improvement of better than a factor of
twenty.

C THE ORIGINAL
DO 48060 I = 1, N
AOLD = A(I)
A(I) = UFUN (AOLD, B(I), SCA)
C(I) = (A(I) + AOLD) * .5

4 8060 CONTINUE

170 VECTORIZATION OF FORTRAN PROGRAMS

80

Q. O

60

50

40

30

20

T 1 1 1 ■ -■ 1 1 1 1 1

11 61 111 161 211 261 311 361 411 461
Loop length

FIGURE 4.46
Performance Comparison of Loops 48060 and 48061-48062,

Cray X-MP. Original, solid line; restructured, dotted line.

10
5

FUNCTION UFUN (X, Y, SCA)
IF (SCA .GT. 1.0) GO TO 10
UFUN = SQRT (X**2 + Y**2)
GO TO 5

UFUN =0.0
CONTINUE
RETURN
END

C THE RESTRUCTURED
DO 48061 I = 1, N
VAOLD(I) = A(I)

48061 CONTINUE

CALL VUFUN (N, VAOLD, B, SCA, A)

DO 48062 I = 1, N
C(I) = (A(I) + VAOLD(I)) * .5

48062 CONTINUE

4.9 EXAMPLES OF RESTRUCTURING FORTRAN LOOPS 171

SUBROUTINE VUFUN (N, X, Y, SCA, UFUN)
DIMENSION X(*), Y(*), UFUN(*)
IF (SCA .GT. 1.0) GO TO 15
DO 10 I = 1, N
UFUN(I) = SQRT (X(I)**2 + Y(I)**2)

10 CONTINUE
RETURN

15 CONTINUE
DO 20 I = 1, N
UFUN(I) =0.0

20 CONTINUE
RETURN
END

In loop 48070, vectorization is of course prevented by the call to SSUB.
As in the preceding examples, SSUB has no side effects on the loop. Rather
than pushing the loop into the subroutine, however, we expand the code into
the loop by substituting the actual arguments in line in loop 48071. This
eliminates N subroutine calls and allows all of the operations to be per­
formed with vector instructions.

The performance improvement of about a factor of 20 shown in Figure
4.47 is similar to that of "loop pushing" in the previous example. We tend to
prefer the loop-pushing technique because it retains code modularity. If
in-loop expansion is carried to an extreme, a program can become mono­
lithic.

C THE ORIGINAL
DO 48070 I = 1, N
A(I) = (B(I)**2 + C(I)**2)
CT = PI * A(I) + (A(I))**2
CALL SSUB (A(I), CT, D(I), E(I))
F(I) = (ABS (E(I)))

48070 CONTINUE

SUBROUTINE SSUB (Yl, Y2, Y3, Υ4)
Y4 = γΐ**2 + (ABS (Yl + Y2)) * (Y2 * ABS (Yl - Y2))
Y3 = Yl + Y2
RETURN
END

C THE RESTRUCTURED
DO 48071 I = 1, N
A(I) = (B(I)**2 + C(I)**2)
CT = PI * A(I) + (A(I))**2
E(I) = A(I)**2 + (ABS (A(I) + CT)) * (CT * ABS (A(I) - CT))
D(I) = A(I) + CT
F(I) = (ABS (E(I)))

48071 CONTINUE

Now let us add some complications to the original loop (48030) and
examine how they affect our ability to restructure for vectorization. The
additions involve the scalars SCA1 and SCA2, the array TX, and the loop
index I. We offset them in loop 48078 and in SSUB1 to highlight them.

172 VECTORIZATION OF FORTRAN PROGRAMS

Q.
O

140

120

100

60

20

Loop length

FIGURE 4.47
Performance Comparison of Loops 48070 and 48071, Cray

X-MP. Original, solid line; restructured, dotted line.

COMMON /SCALAR/ SCA1, I
COMMON /VECTOR/ TX(IOO)

DO 48078 I = 1, N
X(I) = SQRT (Y(I)**2 + Z(I)**2)
ZT = PI * X(I) + COS(A(I))
CALL SSUB1 (X(I), ZT, TY(I), TZ(I),
TX(I) = ABS (TZ(I))**0.5

SCA2 = TX(I) * ZT
4 807 8 CONTINUE

SUBROUTINE SSUB1 (Yl, Y2, Y3, Υ4,
COMMON /SCALAR/ SCA1, I
COMMON /VECTOR/ TX(IOO)

Y4 = γΐ**2 + ALOG (ABS (Yl + Y2))
* * EXP (Y2 * ABS (Yl - Y2))
Y3 = Yl + Y2 * TX (1-1)

SCA1 = Yl * Y2 + Y5
RETURN
END

+ SCA1

SCA2)

Y5)

4.9 EXAMPLES OF RESTRUCTURING FORTRAN LOOPS 173

It is usually straightforward to pull subroutine code into a DO loop, so
we begin by doing that to examine the loop for recursive data dependencies.
This is shown in loop 48079.

COMMON /SCALAR/ SCA1, I
COMMON /VECTOR/ TX(IOO)

DO 48079 I = 1, N
X(I) = SQRT (Y(I)**2 + Z(I)**2) + SCA1
ZT = PI * X(I) + COS(A(I))
TZ(I) = X(I)**2 + ALOG (ABS (X(I) + ZT))

* * EXP (ZT * ABS (X(I) - ZT))
TY(I) = X(I) + ZT * TX(I-l)

SCA1 = X(I) * ZT + SCA2
TX(I) = ABS (TZ(I))**0.5

SCA2 = TX(I) * ZT
48079 CONTINUE

Three recursive relationships have been uncovered here in the intro­
duced code: SCA1 and SCA2 are both wrap-around scalars. That is, they are
each referenced before being set; and TX(I—1) is referenced before TX(I) is
set. It should be clear that the loop cannot vectorize as written. In the interest
of retaining program modularity we would prefer to split out the original
subroutine call and push the loop into it. But can we do that? In general,
loops cannot be split if recursion crosses the proposed loop boundaries and,
in this case, if recursion crosses the subroutine boundary. The recursiveness
revealed in loop 48079 tells us that splitting the CALL out of the original loop
would generate wrong answers.

By pulling the subroutine code into the calling loop we have revealed
three different ways recursion can arise across subprogram boundaries: 1)
through scalars passed in COMMON (SCA1); 2) through scalars passed on
the argument list (SCA2); and 3) through array references with different
indexes (TX(I), and TX(I—1)). In general these conditions introduce severe
difficulties in optimizing the code. Loop 48080 is fabricated to show the
handling of problems associated with scalar variables being shared among a
calling routine and two subroutines called from within a loop. We admit that
this code is mostly nonsensical in its shortness, but it represents interactions
that happen in real-world code.

The scalar SCA is passed to SUBI where it is set, then returned. It is
sent again to SUB2 where it is set once more, then returned to take part in the
calculation of D(I). SUBI and SUB2 also share the variable SCALR through a
common block.

C THE ORIGINAL
DO 48080 I = 1, N
A(I) = SQRT (B(I)**2 + C(I)**2)
CALL SUBI (A(I), B(I), SCA)
CALL SUB2 (SCA)
D(I) = SQRT (ABS (A(I) + SCA))

48080 CONTINUE

174 VECTORIZATION OF FORTRAN PROGRAMS

SUBROUTINE SUBI (X, Y, SCA)
COMMON /SCALAR/ SCALR
SCA = X**2 + Y**2
SCALR = SCA * 2
RETURN
END

SUBROUTINE SUB2 (SCA)
COMMON /SCALAR/ SCALR
SCA = SCA + SCALR
RETURN
END

Our restructuring promotes both SCA and SCALR to arrays, splits the
subroutine calls out of the loop, and pushes the loop into each, renaming
them VSUBl and VSUB2. The vector VSCA now carries all of the values of
the original SCA among the loops 48081 and 48082 and both routines. The
common variable SCALR is properly set at the end of the new routine
VSUBl. As in previous examples we do not bother to save the last value of
the local scalar SCA, although if it were necessary it would be easy to do.

As with other examples in this section, Figure 4.48 shows about a factor
of 20 improvement from the original loop to the restructured.

C THE RESTRUCTURED
DO 48081 I = 1, N
A(I) = SQRT (B(I)**2 + C(I)**2)

48081 CONTINUE

CALL VSUBl (N, A, B, VSCA, VSCALR)

CALL VSUB2 (N, VSCA, VSCALR)

DO 48082 I = 1, N
D(I) = SQRT (ABS (A(I) + VSCA(I)))

48082 CONTINUE

SUBROUTINE VSUBl (N, X, Y, SCA, VSCALR)
DIMENSION X(*), Y(*), SCA(*), VSCALR(*)
COMMON /SCALAR/ SCALR
DO 10 I = 1, N
SCA(I) = X(I)**2 +Y(I)**2
VSCALR(I) = SCA(I) * 2

10 CONTINUE
SCALR = VSCALR(N)
RETURN
END

SUBROUTINE VSUB2 (N, SCA, VSCALR)
DIMENSION SCA(*)f VSCALR(*)
COMMON /SCALAR/ SCALR
DO 10 I = 1, N
SCA(I) = SCA(I) + VSCALR(I)

10 CONTINUE
RETURN
END

4.9 EXAMPLES OF RESTRUCTURING FORTRAN LOOPS 175

Q.
O

80

70

50

40

30

20

10

61 111 161 211 261

Loop length

311 361 461

FIGURE 4.48
Performance Comparison of Loops 48080 and 48081, Cray

X-MP. Original, solid line; restructured, dotted line.

Our final example in loop 48090 combines the problem of a wrap­
around scalar ET with a call to the routine SSSUB. The setting of ET is
actually hidden from the compiler, since it is within SSSUB. Expanding the
code in line exposes the problem, and we solve it by promoting ET to the
array VET as shown in loop 48091. The performance improvement depicted
in Figure 4.49 exceeds a factor of 15.

C THE ORIGINAL
ET = 0.0
DO 48090 I = 1, N
B(I) = SQRT (F(I)**2 + E(I)**2) + ET
CALL SSSUB (B(I), ET, C(I), D(I), PI)
A(I) = SQRT (ABS (D(I)))

48090 CONTINUE
SUBROUTINE SSSUB (Yl, Y2 , Y3, Υ4, PI)
Y4 = Yl**2 + Y3**2 * SQRT (ABS (Yl + Y3))
Y2 = PI * Y3 + Y3
Y4 = Y2 + Y4
RETURN
END

176 VECTORIZATION OF FORTRAN PROGRAMS

C THE RESTRUCTURED
VET(1)=0.0
DO 48091 I = 1, N
VET(I+1) = PI * C(I) + C(I)
B(I) = SQRT (F(I)**2 + E(I)**2) + VET(I)
D(I) = B(I)**2 + C(I)**2 * SQRT (ABS (B(I) + C(I)
D(I) = VET(I+1) + D(I)
A(I) = SQRT (ABS (D(I)))

48091 CONTINUE

))

4.9.10 I/O Statements
The appearance of I /O statements in a loop must be treated as the appear­
ance of a subprogram reference. That is, an I /O statement will prevent
optimization of the rest of the code in a loop. It may be split out into a
separate loop if it is not referencing variables and arrays referenced else­
where in the loop (including other subprograms called from within the loop).

80

70

60

50

Q. O

30

20

11 61 111 161 211 261 311 361 411 461
Loop length

FIGURE 4.49
Performance Comparison of Loops 48090 and 48091, Cray

X-MP. Original, solid line; restructured, dotted line.

4.10 SUMMARY 177

4.9.11 Assigned GO TO Statements
An assigned GO TO contains hidden information that cannot be known at
compile time, and therefore the associated code cannot be optimized. In
general, and unlike a computed GO TO, it is impossible to know to which
labels an assigned GO TO can jump. To optimize a loop such as 48100
requires a rewrite of the subprogram to eliminate the use of assigned GO
TOs.

ASSIGN 10 TO LABEL

IF (condition) ASSIGN 100 TO LABEL

DO 48100 I = 1, N

GO TO LABEL

48100 CONTINUE

4.9.12 Backward GO TOs
Backward GO TOs in a DO loop can frequently be rewritten as forward
transfers. An exception occurs when the backward transfer is being used to
loop on convergence to a desired value. If this occurs, the code can be
rewritten as a DO loop with a jump out of the loop when convergence is
obtained. Then techniques discussed in Section 4.9.8 can be used to restruc­
ture the new loop.

4.10
SUMMARY

This chapter has covered a large number of techniques that can be used to
optimize Fortran programs for supercomputers. Some of the techniques will
even help scalar computers to run faster. The "real world" contains applica­
tion codes much more complex then these examples. But these complicated
codes can usually be optimized with a judicious application of a sequence of
these techniques. At times, loops may be pulled into a routine, switched with
shorter inner loops, and IF statements simplified so that a compiler can
effectively optimize the code.

Problems
1. How would you expect the following two loops to compare in execution

time for large N?

178 VECTORIZATION OF FORTRAN PROGRAMS

DO 10 I = 1, N
A(I) = EXP (B(I))

10 CONTINUE

DO 20 1=1, N
A(IA(I)) = EXP (B(IB(I))

20 CONTINUE

2. How would you restructure the following loop for optimal vector per­
formance?

DO 101 J = 2 ,N
AH = B(J) - B (J - l)
DO 100 I = 2 , N

A (I , J) = AH * A (I - l . J) + C (I , J)
100 CONTINUE

BH = D(J) - D(J-l)
DO 102 I = N, 2, -1
A(I,J) = BH * A(H-l.J) + C(I,J)

102 CONTINUE
101 CONTINUE

3. Compute average vector length for diagonals in an M X N rectangular
grid. Derive the equation for the average number of points on a planar
slice through an N-dimensional grid.

4. In restructuring the loops in Section 4.9.4, some have an order-of-mag­
nitude performance improvement, and others improve by as little as
20-50%. Match up the reasons for the improvement (second column)
obtained for the following original loops (first column):

1. 43020 a. Original vectorized and the restructured is a little
more efficient.

2. 43030 b. Large amount of overhead that the original does not
have.

3. 43070 c. Vectorize only a portion of the total calculations in

the loop.
4. 43080 d. Restructuring obtains good increase (factor 7-10).

5. 43090 e. Additional memory required. (Although this does
not effect performance, it is important to realize.)

6. 43100

7. 43140

Note: Some may have multiple answers.

5. If a compiler will not vectorize loop 44022, how would you restructure to
obtain vectorization?

4.10 SUMMARY 179

6. Most machines have optimized library packages that include the "Basic
Linear Algebra Subroutines" (BLAS).* Which BLAS routine could be
used to replace loop 44042?

7. In the restructuring of loops 44055 and 44060, notice that the difference
in timings grows smaller for longer number of iterations. In fact, in loop
44060, they even cross. What does this tell you about the dot-product
routine?

8. In loop nest 45011 we see that the outer loop is the preferred loop for
vectorization, even if it has the same number of loop iterations as the
inner loop. Several reasons exist for such a situation. Can you name
three?

9. Suppose that in loops 46011 and 46020, the short-loop iteration count is
specified by a variable (e.g., NN), rather than the literal constant 4.
Suppose further that you know that NN is always in the range 1 to 8.
How would you write an optimized version of these loops? (Hint: The
restructuring may generate more lines of code; but it will run much
quicker.)

10. In the restructuring for loop 42020, how many temporary arrays are
needed for the restructuring? How might we organize temporary array
usage to minimize the overall amount of storage required by the job?

11. In loop 47133 why do we use a maximum length of 128 rather than 64?
Would 256 be better?

12. By using a simple operation count, what percentage of the calculations
are vectorized in the restructuring of loop 48010? (Count the divide
operation as 4.) What improvement would you expect from the amount
of vectorization? What other factors may reduce the overall improve­
ment?

13. Which of the restructured loops in Chapter 4 would execute faster than
the original on a scalar machine?

14. On a Cray system, use the MXM routine for matrix multiply and compare
the timing to the Fortran version of loop 46032.

* C. Lawson, R. Hanson, D. Kincaid, and F. Krogh, "Basic Linear Algebra Subprograms for
Fortran Usage," ACM Transactions on Mathematical Software 5 (1979), pp. 308-323.

Appendix A

ABBREVIATIONS
AND GLOSSARY

A.l Common Abbreviations
ALU: arithmetic and logical unit
ANSI: American National Standards Institute
CDC: Control Data Corporation
CII: constant increment integer
CIV: constant increment variable
CPU: central processing unit
CRI: Cray Research Incorporated
FOLR: first order linear recurrence
IBM: International Business Machines
IPS: instructions per second
Mflops: millions of floating-point operations per second
MIMD: multiple instruction stream, multiple data stream
MISD: multiple instruction stream, single data stream
MIPS: millions of instructions per second
NEC: Nippon Electric Corporation
SIMD: single instruction stream, multiple data stream
SISD: single instruction stream, single data stream

A.2 Glossary of Terms
array constant Within a DO loop, an array reference all of whose sub­
scripts are invariant.

DO 10 I = 1 , N
A (I) = X(J) * B (I) + Z (8 , J , K , 3)

10 CONTINUE

In the preceding loop, X(J) and Z(8,J,K,3) are array constants.

bank cycle time The time, measured in clock cycles, taken by a memory
bank between the honoring of one request to fetch or store a data item and
accepting another such request. On most supercomputers this value is either
four or eight clock cycles.

180

APPENDIX A 181

cache A small, fast memory placed between the main memory of a com­
puter and its very fast CPU registers. It is intended to keep moderately large
blocks of often-used data close to the CPU.

chime "Chained vector time/' Approximately equal to the vector length in
a DO loop. The number of chimes required for a loop dominates the time
required for execution. A new chime begins in a loop each time a resource
(functional unit, vector register, or memory path) must be reused.

clock cycle The time duration of the square wave pulse sent throughout a
computer to synchronize operations. For example, the clock cycle of a Cray-2
is 4.1 nsec.

common subexpression A combination of operations and operands that is
repeated, especially in a loop

DO 20 I = 1, N
A(I) = 2.0 + B(I) * C(I) + X(I) / T(I)
Y(I) = P(I) / (2.0 + B(I) * C(I))
D(I) = X(I) / T(I) + U(I)

20 CONTINUE

The following are common subexpressions in the preceding loop:

2 . 0 + B (I) * C (I)

X (I) / T (I)

A good compiler will not recompute the common subexpressions but will
save them in a register for reuse.

compiler directives Special keywords specified on a comment card, but
recognizable by a particular compiler as providing additional user informa­
tion for use in optimization. For example,

C D I R $ IVDEP

specifies to a Cray compiler that no recursive relationships occur among the
array references in the loop following the directive.

concurrent processing Simultaneous execution of instructions by two or
more processors within a computer.

data dependency A relationship between Fortran statements such that one
of the statements depends on the results of the other. For example:

5 1 = A + B

5 2 = S 1 * X + Y

182 APPENDIX A

The second statement is data dependent on the first—that is, they must be
executed in the order shown. A recursive data dependency involves state­
ments in a DO loop such that a statement in one iteration depends on the
results of a statement from a previous iteration. For example:

DO 30 I = 1, N
A(I) = B(I) * A(I-l) + C(I)

30 CONTINUE

The assignment statement in loop 30 is self-referent; that is, the value A(I)
computed in one iteration is the value A(I— 1) needed in the next.

functional units Functionally independent parts of the ALU of a computer,
such that many operations may proceed in parallel; for example, address
calculation, floating-point add, floating-point multiply, and so forth.

instruction scheduling A strategy of a compiler. The intent is to analyze
the outcome of the operations specified in a program and to issue instructions
in an optimal manner. That is, the instructions are not necessarily issued in
the order specified by the programmer, but in an order that optimally uses
the registers, functional units, and memory paths of the computer—at the
same time guaranteeing correct results for the computation.

instruction set The capabilities of a particular computer, as specified in a
machine code (and often in assembler mnemonics).

invariant A variable, especially in a DO loop, that appears only on the
right side of equals signs. That is, it is never assigned a new value.

invariant expression An expression all of whose operands are invariants
or constants.

memory-bank conflict A condition that occurs when a memory unit re­
ceives a request to fetch or store a data item prior to completion of its bank
cycle time since its last such request.

minisupercomputer A computer designed to have many of the architec­
tural features of a supercomputer, but having a clock cycle and price more
comparable to a minicomputer.

multiple instruction stream, multiple data stream (MIMD) A computer
design that involves two or more functionally independent processors capa­
ble of operating on different data streams in parallel.

multiple instruction stream, single data stream (MISD) A name for a
computer design that has perhaps never been realized, but implies that two
or more processors would operate on a single stream of data.

APPENDIX A 183

nanosecond (nsec) A billionth of a second: 1.0 X 10 9 seconds.

optimization A process whereby a compiler tries to make optimal use of
the target computer's hardware to perform the operations specified by a
programmer. Or, the process whereby a programmer tries to make optimal
use of his or her target language to cause the compiler to produce optimal
code.

optimization block A block of code (rarely a whole subprogram, often a
single DO loop) in which a compiler optimizes the generated code. A few
compilers attempt to optimize across such blocks; many work on each block
independently.

parallel processing The simultaneous processing of instructions by two or
more processors within a single computer. SIMD and MIMD are two differ­
ent kinds of parallel processing.

parsing The process whereby a compiler analyzes the syntax of a program
to establish the relationships among operators, operands, and other tokens of
a program. Parsing does not involve any semantic analysis.

physical memory The actual memory of a computer directly available for
fetching or storing of data (contrast with virtual memory).

pipeline A term denoting a mechanism inside all supercomputers that
allows new operands to begin processing in each clock cycle and moves
partially completed operations along an assembly line inside the CPU, gener­
ally producing one result per clock cycle at the end of each pipeline.

pseudovector A scalar temporary.

recursion See data dependency (recursive).

reduction function An algorithm that receives a vector of values as input
and generates a single scalar value result. The variable containing the result is
referred to as a "reduction-function scalar." As typically coded in Fortran,
most compilers recognize such reduction functions as sum (product) of the
elements of a vectorizable expression, for example, dot product, the mini­
mum (maximum) of the elements of a vectorizable expression, and several
variants on these themes.

scalar processing The processing of a code using instructions that can
operate on a single pair of operands at a time (contrast with vector processing).

scalar temporary A scalar variable set equal to a vectorizable expression on
each iteration of a DO loop.

184 APPENDIX A

single instruction stream, multiple data stream (SIMD) A computer de­
sign that provides for processing of instructions from a single stream, but
providing simultaneous computation of results from multiple data streams.
Two principal designs are often described as SIMD: 1) a single CPU with its
ALU realized as a set of functional units; and 2) a separate instruction
processor sending identical instruction streams to two or more ALUs.

single instruction stream, single data stream (SISD) A conventional, typi­
cally inexpensive computer. Each instruction from a single instruction stream
is performed to completion before the next instruction is begun.

strength reduction A process whereby a compiler attempts to replace in­
structions specified by the programmer with less costly instructions that
produce identical results, for example, X**2 becomes X*X.

stripmining A process used by a compiler on a register-to-register vector
processor whereby a DO loop of long or variable iteration count is performed
in "strips" of operands. The length of each strip is equal to the length of a
vector register, except for a "remainder" strip whose length is generally less.
So, for example, on a Cray computer, a loop of iteration count 150 is
performed in one strip of length 22 (the remainder) then two strips of length
64. This technique can also be used by a programmer to vectorize a loop of
indeterminate length, that is, a loop containing a GO TO that jumps out of
the loop.

supercomputer A casual term describing members of a class of the larger,
faster scientific computers, usually having vector or parallel architecture.

superword A term used on the CYBER 205 and the ETA 10 to describe a
conglomerate of eight 64 bit words, or, alternately, sixteen 32-bit "half-
words." The memory units on these machines generally fetch and store data
in superwords (also called "swords"), regardless of the size of the data item
referenced by the user program.

thrashing A phenomenon of virtual memory systems that occurs when the
program itself, by the manner in which it is referencing its data and instruc­
tions, regularly causes the next memory locations to be referenced to have
been overwritten by recent or current instructions. The result is that refer­
enced items are rarely in the machine's physical memory and almost always
must be fetched from secondary storage, usually a disk. When this occurs,
the elapsed time of the program generally follows the disk speed rather than
the speed of electronic memory.

unneeded store When two or more stores into the same memory location
occur within an optimization block, especially within a DO loop, only the last

APPENDIX A 185

store need actually be performed; the rest are unneeded, and will not be
performed by the compiler. A programmer may take advantage of this by
assigning temporary results to an array that is also set later in a loop, as in
loop 40:

DO 40 I = 1 , N
A (I) = B (I) * C (I) / (E (I) + F (I))
X (I) = Y (I) * A (I)
Z (I) = R (I) + Q (I) * A (I)
A (I) = X (I) + Y (I) * Z (I)

40 CONTINUE

vector An ordered list of items in a computer's memory, contained within a
Fortran array. A simple vector is denned as having a starting address, a
length, and a stride. An indirect address vector is defined as having a relative
base address and a vector of values to be applied as indexes to the base.
Consider:

DO 50 I = 1 , N
J = J * J / I
K = K + 2
A (I) = B (I B (I)) * C(K) + D(J)

50 CONTINUE

All of the vectors above have length N; A and C are simple vectors with
strides of one and two, respectively; B is an indirect address vector with the
simple vector IB holding the indexes; and the vector of indirect address
indexes of D can be computed at execution time from the initial value of J.

vector processing The processing of a code using instructions that operate
on all of the elements of an ordered list of operands, usually in a pipelined
manner (contrast with scalar processing).

vectorize The process whereby a compiler generates vector instructions for
a loop. Also the process whereby a programmer restructures a program to
cause the compiler to vectorize the important loops.

virtual memory An address-mapping scheme that provides a programmer
with a significantly larger memory than that physically available on a given
computer. As data items are referenced within a program, the system assigns
them to actual physical memory locations. Infrequently referenced items are
transparently migrated to and from secondary storage — often, disks. The
collection of physical memory locations assigned to a program is its "working
set/ '

von Neumann machine A scalar processor in which one instruction at a
time is decoded and performed to completion before the next instruction is
decoded. A SISD machine.

186 APPENDIX A

working set See virtual memory.

wrap-around scalar A scalar variable whose value set in one iteration of a
DO loop is referenced in a subsequent iteration and is consequently recur­
sive; easily recognized within most loops, because it is referenced before it is
set. All common reduction-function scalars are wrap-around scalars and
usually do not prevent vectorization. All other wrap-around scalars usually
do prevent vectorization of the loop in which they appear. All scalars in the
following loop are wrap around except S.

DO 60 I = 1, N
S = T
T = A(I) * B(I)
SUM = SUM + T/S
IF (T.GT.O) THEN
Q = X(I) + Y(I) / Z(I)
ENDIF
R(I) = Q + P(I)

60 CONTINUE

The scalar Q is wrap around because on any iteration for which (T.GT.O) is
not true, the value used to compute R(I) wraps around from the previous
iteration.

Appendix B
EXAMPLES OF THE FORGE

TIMING FACILITY

187

B.
l

Ti
m

in
g

R
es

ul
ts

 fr
om

 L
IN

PA
CK

 B
en

ch
m

ar
k

TI
MI
NG
 S
UM
MA
RY
 B
Y
SU
BP
RO
GR
AM

QO

Qo

SU
BP
RO
GR
AM

SL
IN
P

MA
TG
EN

SG
EF
A

IS
AM
AX

SS
CA
L

6
SA
XP
Y

7
SG
ES
L

8
SM
XP
Y

9
EP
SL
ON

IN
CL
.
TI
ME

2.
21
06
06
88
0

0.
55
50
42
01
3

1.
59
27
75
17
8

0.
06
63
17
15
4

0.
01
38
56
94
7

0.
68
34
76
28
5

0.
05
94
71
37
8

0.
00
01
38
62
4

0.
00
00
01
89
1

TO
TA
LS
 =
>

EX
CL
.
TI
ME

0.
00
31
77
79
7

0.
55
50
42
01
3

0.
85
53
13
81
3

0.
06
63
17
15
4

0.
01
38
56
94
7

0.
68
34
76
28
5

0.
03
32
82
35
7

0.
00
01
38
62
4

0.
00
00
01
89
1

2.
21
06
06
88
0

CA
LL
S 1 27

26

25
74

25
74

13
38
74

26
 1 1

13
91
04

AV
G/
CA
LL

0.
00
31
77
79
7

0.
02
05
57
11
2

0.
03
28
96
68
5

0.
00
00
25
76
4

0.
00
00
05
38
3

0.
00
00
05
10
5

0.
00
12
80
09
1

0.
00
01
38
62
4

0.
00
00
01
89
1

IN
CL
%

10
0.
0

25
.1

72
.1

3.
0

0.
6

30
.9

2.
7

0.
0

0.
0

EX
CL
%

0.
1

25
.1

38
.7

3.
0

0.
6

30
.9

1.
5

0.
0

0.
0

10
0.
0

Av
er
ag
e
ti
me
 p
er
 c
al
l

is
 c
om
pu
te
d

fr
om
 t
he

ex
cl
us
iv
e
ex
ec
ut
io
n
ti
me
s.

Th
e
pe
rc
en
ta
ge
s
ar
e
ov
er
 t
he
 t
ot
al
 e
xe
cu
ti
on
 t
im
e
fo
r
th
at
 p
or
ti
on
 o
f

th
e
pr
og
ra
m

cl
oc
ke
d
by
 F
OR
GE
.

>=

CA
LL
ED
 F
RO
M

♦P
RO
GR
AM
*

TO
TA
L
->

CA
LL
S 1

AV
G
TI
ME
/C
AL
L

2.
21
06
07

2.
21
06
07

>
NE
ST
IN
G

PR
OC
ED
UR
E
OR
 D
O-
LO
OP
 I
DE
NT
IF
IE
R

00

1 1 1 1 1 1 1 1 1 2 2 1 2 1 2 2 1 2

SL
IN
P

MA
TG
EN

SG
EF
A

SG
ES
L

DO
 1
0
i
=l
,n

DO
 2
0
i
=l
,n

SM
XP
Y

DO
 3
0
i
=l
,n

EP
SL
ON

DO
 9
0
i
=l
,n
ti
me
s

MA
TG
EN

SG
EF
A

DO
 1
00
 i
 =
l,
nt
im
es

SG
ES
L

DO
 1
20
 i
 =
l,
nt
im
es

MA
TG
EN

SG
EF
A

DO
 1
30
 i
 =
l,
nt
im
es

SG
ES
L

SL
IN
P

IN
CL
.
TI
ME

%
JO
B
XE
Q
TI
ME
 I
N
RO
UT
IN
E
SL
IN
P

2.
21
06
07

10
0.
0
WH
EN
 C
AL
LE
D
FR
OM
 «
PR
OG
RA
M*

2.
21
06
07

10
0.
0

%
 TO

TA
L
JO
B
XE
Q
TI
ME
 S
PE
NT
 I
N
RO
UT
IN
E
SL
IN
P

EX
CL
US
IV
E

DO
-L
OO
P-
LE
NG
TH

%J
OB
:%
RO
UT
NE

CO
UN
T

AV
ER
AG
E
MA
XI
MU
M

IN
CL
US
IV
E

%J
OB
:%
RO
UT
NE

10
0.
0:

6.
5:

16
.6
:

0.
6:

0.
0:

0.
0:

0.
0:

0.
0:

0.
0:

37
.0
:

9.
3:

27
.7
:

1.
0:

1.
0:

37
.0
:

9.
3:

27
.7
:

1.
0:

1.
0:
 10
0.
0

6.
5

16
.6

0.
6

0.
0

0.
0

0.
0

0.
0

0.
0

37
.0

9.
3

27
.7

1.
0

1.
0

37
.0

9.
3

27
.7

1.
0

1.
0

0.
1:

6.
5:

9.
0:

0.
4:

0.
0:

0.
0:

0.
0:

0.
0:

0.
0:

0.
0:

9.
3:

15
.0
:

0.
0:

0.
6:

0.
0:

9.
3:

14
.7
:

0.
0:

0.
6:

0.
1

6.
5

9.
0

0.
4

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

9.
3

15
.0

0.
0

0.
6

0.
0

9.
3

14
.7

0.
0

0.
6

1 7 6 6 1 1 1 1 1 1 10

10
 1 10
 1 10

10
 1 10

10
0

10
0

10
0 10

10

10

10

10
0

10
0

10
0 10

10

10

10

v6

O

>=

CA
LL

ED
 F

RO
M

CA
LL

S
AV

G
TI

ME
/C

AL
L

SL
IN

P

TO
TA

L
->

>
NE

ST
IN

G

1 2 1 1 2

27

0.
02

05
57

27

0.
02

05
57

PR
OC

ED
UR

E
OR

 D
O-

LO
OP

ID

EN
TI

FI
ER

MA
TG

EN

DO
 3

0
3

=l
.n

DO
 2

0
i

=l
,n

DO
 3

5
i

=l
,n

DO
 5

0
j

=l
,n

DO
 4

0
i

=l
,n

MA
TG

EN

IN
CL

.
TI

ME

%
JO

B
XE

Q

0.
55

50
42

2i

0.
55

50
42

2i

TI
ME
 I
N

RO
UT

IN
E

MA
TG

EN

5.
1

WH
EN

 C
AL

LE
D

FR
OM

SL

IN
P

3.
1
%

TO
TA

L
JO

B
XE

Q
TI

ME
 S

PE
NT
 I
N

IN
CL

US
IV

E
%J

OB
:%

RO
UT

NE

25
.1

24

.8

24
.6

0.
0

0.
2

0.
0

10
0.

0
99

.0

98
.1

0.
0

1.
0

0.
1

EX
CL

US
IV

E
%J

OB

0.
0

0.
2

24
.6

0.
0

0.
2

0.
0

%R
OU

TN
E

0.
0

0.
9

98
.1

0.
0

0.
9

0.
1

CO
UN

T

27

27

27
00

27

27

27
00

RO
UT

IN
E

MA
TG

EN

DO
-L

OO
P-

LE
NG

TH

AV
ER

AG
E

MA
XI

MU
M

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

CA
LL
ED
 F
RO
M

SL
IN
P

TO
TA
L
->

CA
LL
S 26

26

AV
G
TI
ME
/C
AL
L

0.
06
12
61

0.
06
12
61

>
NE
ST
IN
G

PR
OC
ED
UR
E
OR
 D
O-
LO
OP
 I
DE
NT
IF
IE
R

1 2 2 2 3

SG
EF

A
DO
 6

0
k

=l
,n

ml

IS
AM

AX

SS
CA

L
DO
 3

0
j

=k
pl

,n

SA
XP

Y

IN
CL
.
TI
ME

%
JO
B
XE
Q
TI
ME
 I
N
RO
UT
IN
E
SG
EF
A

1.
59
27
75

72
.1
 W
HE
N
CA
LL
ED
 F
RO
M
SL
IN
P

1.
59
27
75

72
.1
 %
 T
OT
AL
 J
OB
 X
EQ
 T
IM
E
SP
EN
T
IN
 R
OU
TI
NE
 S
GE
FA

DO
-L
OO
P-
LE
NG
TH

IN
CL

US
IV

E
%J

0B
:%

RO
UT

NE

72
.1

:1
00

.0

72
.0

:1
00

.0

3.
0:

4.
2

0.
6:

0.
9

67
.2

:
93

.3

29
.7

:
41

.3

EX
CL

US
IV

E
%J

OB
:

0.
0:

1.

2:

3.
0

0.
6

37
.5

29

.7
 %R

OU
TN

E

0.
0

1.
7

4.
2

0.
9

52
.0

41

.3

CO
U 26

•2
6

25
74

25

74

25
74

12

87
00

50

99

CA
LL

ED
 F

RO
M

SG
EF

A

TO
TA

L
->

CA
LL

S

25
74

25
74

AV
G

TI
ME

/C
AL

L

0.
00

00
26

0.
00

00
26

>
NE

ST
IN

G
PR

OC
ED

UR
E

OR
 D

O-
LO

OP

ID

EN
TI

FI
ER

IS
AM

AX

1
DO

 3
0

i
=2

,n

IN
CL

.
TI

ME

%
JO

B
XE

Q
TI

ME
 I

N
RO

UT
IN

E
IS

AM
AX

0.
06

63
17

3.
0

WH
EN

 C
AL

LE
D

FR
OM

 S
GE

FA

0.
06

63
17

3.

0%
 T

OT
AL

 J
OB

 X
EQ

 T
IM

E
SP

EN
T

IN
 R

OU
TI

NE
 I

SA
MA

X

IN
CL

US
IV

E
%J

OB
:%

RO
UT

NE

3.
0:

10
0.

0
2.

6:
 8

5.
4

EX
CL

US
IV

E
DO

-L
OO

P-
LE

NG
TH

%J

OB
:%

RO
UT

NE

CO
UN

T
AV

ER
AG

E
MA

XI
MU

M

0.
4:

 1
4.

6
25

74

2.
6:

 8
5.

4
25

74

CA
LL

ED
 F

RO
M

SG
EF

A

TO
TA

L
->

CA
LL

S

25
74

25
74

AV
G

TI
ME

/C
AL

L

0.
00

00
05

0.
00

00
05

>
NE

ST
IN

G
PR

OC
ED

UR
E

OR
 D

O-
LO

OP

ID

EN
TI

FI
ER

SS
CA

L
DO

 3
0

i
=l

,m

DO
 5

0
i

=m
pl

,n
,5

IN
CL

.
TI

ME

%
JO

B
XE

Q
TI

ME
 I

N
RO

UT
IN

E
SS

CA
L

0.
01

38
57

0.
6

WH
EN

 C
AL

LE
D

FR
OM

 S
GE

FA

0.
01

38
57

0.
6

%
TO

TA
L

JO
B

XE
Q

TI
ME

 S
PE

NT
 I

N
RO

UT
IN

E
SS

CA
L

IN
CL

US
IV

E
%J

OB
:%

RO
UT

NE

0.
6:

10
0.

0
0.

1:

23

.4

0.
1:

 1
6.

0

EX
CL

US
IV

E
%J

OB
:%

RO
UT

NE

0.
4:

 6
0.

6
0.

1:

23

.4

0.
1:

 1
6.

0

CO
UN

T

25
74

20

80

24
70

DO
-L

OO
P-

L
AV

ER
AG

E
U

2 10

.E
NG
'

[A
XI
I 4 19

>=

CA
LL

ED
 F

RO
M

CA
LL

S
AV

G
TI

ME
/C

AL
L

SG
EF

A
SG

ES
L

TO
TA

L
->

>
NE

ST
IN

G

1 1

12
87

00

0.
00

00
05

51

74

0.
00

00
05

13
38

74

0.
00

00
05

PR
OC

ED
UR

E
OR

 D
O-

LO
OP

ID

EN
TI

FI
ER

SA
XP

Y
DO

 3
0

i
=l

,m

DO
 5

0
i

=m
pl

,n
,4

SA
XP

Y

IN
CL

.
TI

ME

%
JO

B
XE

Q
TI

ME
 I

N
RO

UT
IN

E
SA

XP
Y

0.
65

72
87

29

.7
 W

HE
N

CA
LL

ED
 F

RO
M

SG
EF

A
0.

02
61

89

1.
2

WH
EN

 C
AL

LE
D

FR
OM

SG

ES
L

0.
68

34
76

30
.9
 %

 T
OT

AL
 J

OB
 X

EQ
 T

IM
E

SP
EN

T
IN

IN
CL

US
IV

E
EX

CL
US

IV
E

%J
OB

:%
RO

UT
NE

%J

OB
:%

RO
UT

NE

CO
UN

T

30
.9

:1
00

.0

22
.6

:
73

.1

13
38

74

6.
2:
 2

0.
0

6.
2:

20

.0

10
14

00

2.
1:

6.
9

2.
1:

6.
9

13
35

36

RO
UT

IN
E

SA
XP

Y

DO
-L

OO
P-

LE
NG

TH

AV
ER

AG
E

MA
XI

MU
M

2
3

16

24

CA
LL

ED
 F

RO
M

SL
IN

P

TO
TA

L
->

CA
LL
f.

26

26
.

AV
G

TI
ME

/C
AL

L

0.
00

22
87

0.
00

22
87

>
NE

ST
IN

G
PR

OC
ED

UR
E

OR
 D

O-
LO

OP

ID

EN
TI

FI
ER

1 2 1 2

SG
ES

L
DO

 2
0

k
=l

,n
ml

SA

XP
Y

DO
 4

0
kb

 =
l,

n
SA

XP
Y

IN
CL

.
TI

ME

%
 J
OB

 X
EQ

 T
IM

E
IN
 R

OU
TI

NE
 S

GE
SL

0.
05

94
71

2.
7

WH
EN

 C
AL

LE
D

FR
OM

SL

IN
P

0.
05

94
71

2.
7

%
TO

TA
L

JO
B

XE
Q

TI
ME

 S
PE

NT
 I

N
RO

UT
IN

E
SG

ES
L

IN
CL

US
IV

E
%J

OB
:%

RO
UT

NE

2.
7:

10
0.

0
1.
3:
 5

0.
1

0.
6:

22

.0

1.
3:
 4

9.
6

0.
6:

22

.1

EX
CL

US
IV

E
DO

-L
OO

P-
LE

NG
TH

%J

OB
:%

RO
UT

NE

CO
UN

T
AV

ER
AG

E
MA

XI
MU

M

0.
0

0.
8

0.
6

0.
7

0.
6

0.
3

28
.1

22

.0

27
.5

22

.1

26

26

25
74

26

26
00

99

10
0

>=

CA
LL
ED
 F
RO
M

CA
LL
S

AV
G
TI
ME
/C
AL
L

SL
IN
P

TO
TA
L
->

>
NE
ST
IN
G

1 1 2

1
0.
00
01
39

1
0.
00
01
39

PR
OC
ED
UR
E
OR
 D
O-
LO
OP
 I
DE
NT
IF
IE
R

SM
XP
Y

DO
 3
0
i
=l
,n
l

DO
 6
0
j
=j
mi
n,
n2
,1
6

DO
 5
0
i
=l
,n
l

SM
XP
Y

IN
CL
.
TI
ME

%
JO
B
XE
Q
TI
ME
 I
N
RO
UT
IN
E

0.
00
01
39

0.
0
WH
EN
 C
AI

0.
00
01
39

0.
0
%
TO
TA
L

IN
CL
US
IV
E

%J
OB
:%
RO
UT
NE

0.
0:
10
0.
0

0.
0:

3.
7

0.
0:
 9
2.
9

0.
0:
 8
3.
2

SM
XP
Y

.L
ED
 F
RO
M
SL
IN
P

JO
B
XE
Q
TI
ME
 S
PE
NT
 I
N

EX
CL
US
IV
E

%J
OB
:%
RO
UT
NE

0.
0

0.
0

0.
0

0.
0

3.
4

3.
7

9.
7

83
.2

CO
UN
T

1 1 1 6

RO
UT
IN
E
SM
XP
Y

DO
-L
OO
P-
LE
NG
TH

AV
ER
AG
E
MA
XI
MU
M

10
0

10
0

6
6

10
0

10
0

EP
SL
ON

CA
LL
ED
 F
RO
M

SL
IN
P

TO
TA
L
->

CA
LL
S 1

AV
G
TI
ME
/C
AL
L

0.
00
00
02

0.
00
00
02

>
NE
ST
IN
G

PR
OC
ED
UR
E
OR
 D
O-
LO
OP
 I
DE
NT
IF
IE
R

EP
SL
ON

IN
CL
.
TI
ME

%
JO
B
XE
Q
TI
ME
 I
N
RO
UT
IN
E
EP
SL
ON

0.
00
00
02

0.
0
WH
EN
 C
AL
LE
D
FR
OM
 S
LI
NP

0.
00
00
02

0.
0
%
TO
TA
L
JO
B
XE
Q
TI
ME
 S
PE
NT
 I
N
RO
UT
IN
E
EP
SL
ON

IN
CL
US
IV
E

%J
OB
:%
RO
UT
NE

EX
CL
US
IV
E

DO
-L
OO
P-
LE
NG
TH

%J
OB
:%
RO
UT
NE

CO
UN
T

AV
ER
AG
E
MA
XI
MU
M

CA
LL
 C

HA
IN
 M

AP

Ea
ch
 D

O
lo
op
 a

nd
 s

ub
pr
og
ra
m

ca
ll
 m

ad
e

in
 t
he
 t

im
ed
 p

or
ti
on
 o

f
th
e

pr
og
ra
m

is
 l

is
te
d

be
lo
w

wi
th
 t

he

ne
st
in
g

le
ve
l

in
di
ca
te
d

by
 i

nd
en
ti
ng
.

Th
e

co
un
ts
 g

iv
e

th
e

nu
mb
er
 o

f
ti
me
s

a
su
bp
ro
gr
am
 o

r
lo
op
 w

as
 e

nt
er
ed
.

[n
n]
 s

ho
ws
 t

he
 a

ve
ra
ge
 l

en
gt
h

of
 a

 D
O

lo
op
.

Th
e

pe
rc
en
ta
ge
s

sh
ow
 t

he
 i

nc
lu
si
ve
 a

nd
 e

xc
lu
si
ve
 t

im
e

fo
r

th
at
 D

O
lo
op
 o

r
su
bp
ro
gr
am
 c

al
l

ov
er
 t

ha
t

po
rt
io
n

of
 j

ob
 e

xe
cu
ti
on
 t

im
ed
.

NE
ST
IN
G

CO
UN
T

IN
CL

%
EX

CL
%

CA
LL
 C

HA
IN
-

0
1

10
0.
0

0.
1

SL
IN
P

1
7

6.
5

0.
0

-M
AT
GE
N

2
7

6.
4

0.
1

—M
AT

GE
N/

DO
 3

0
j

=l
,n
 [

10
0]

3
70
0

6.
4

6.
4

—M
AT

GE
N/

DO

20
 i

 =
l,
n

[1
00
]

2
7

0.
0

0.
0

—M
AT

GE
N/

DO
 3

5
i
=l
,n
 [

10
0]

2
7

0.
1

0.
1

—M
AT

GE
N/

DO
 5

0
j

=l
,n
 [

10
0]

3
70
0

0.
0

0.
0

MA
TG
EN
/D
O

40
 i

 =
l,
n

[1
00
]

1
6

16
.6

0.
0

-S
GE
FA

2
6

16
.6

0.
3

—S
GE

FA
/D

O
60
 k
 =

l,
nm
l

[9
9]

3
59
4

0.
7

0.
1

IS
AM
AX

4
59
4

0.
6

0.
6

IS
AM
AX
/D
O

30
 i

 =
2,
n

[5
0]

*±

3
59
4

0.
1

0.
1

SS
CA
L

£*

4
48
0

0.
0

0.
0

SS
CA
L/
DO
 3

0
i
=l
,m
 [

2]

4
57
0

0.
0

0.
0

SS
CA
L/
DO
 5

0
i
=m
pl
,n
,5

[1
0]

3
59
4

15
.5

8.
7

SG
EF
A/
DO
 3

0
j

4
29
70
0

6.
8

5.
0

SA
XP
Y

5
22
50
0

1.
4

1.
4

SA
XP
Y/
DO
 3

0
5

29
66
4

0.
5

0.
5

SA
XP
Y/
DO
 5

0
i
=m
pl
,n
,4
 [

16
]

1
6

0.
6

0.
0

-S
GE
SL

2
6

0.
3

0.
2

—S
GE

SL
/D

O
20
 k
 =
1,

3

59
4

0.
1

0.
1

—S
AX

PY

4
45
0

0.
0

0.
0

SA
XP
Y/
DO
 3

0
4

57
6

0.
0

0.
0

SA
XP
Y/
DO
 5

0
i
=m
pl
,n
,4
 [

12
]

2
6

0.
3

0.
2

—S
GE

SL
/D

O
40
 k
b

=l
,n
 [

10
0]

3
60
0

0.
1

0.
1

—S
AX

PY

4
45
0

0.
0

0.
0

SA
XP
Y/
DO
 3

0
i
=l
,m
 [

2]

4
57
6

0.
0

0.
0

SA
XP
Y/
DO
 5

0
i
=m
pl
,n
,4
 [

12
]

1
1

0.
0

0.
0

-S
LI
NP
/D
O

10
 i

 =
l,
n

[1
00
]

1
1

0.
0

0.
0

-S
LI
NP
/D
O

20
 i

 =
l,
n

[1
00
]

1
1

0.
0

0.
0

-S
MX
PY

2
1

0.
0

0.
0

—S
MX

PY
/D

O
30
 i

 =
l,
nl

[1
00
]

2
1

0.
0

0.
0

—S
MX

PY
/D

O
60
 j

 =
jm
in
,n
2,
16

[6
]

3
6

0.
0

0.
0

—S
MX

PY
/D

O
50
 i

 =
l,
nl

[1
00
]

1
1

0.
0

0.
0

-S
LI
NP
/D
O

30
 i

 =
l,
n

[1
00
]

=
kp

l,
n

i
=l

,m

i
=m

pl

:l
,n

m
l

.
=

l,
m

[5
0

[2
]

,n
,4

[9
9]

[2
]

VA

1 1 2 3 4 3 3 4 2 3 4 5 4 5 5 4 5 6 6 1 2 3 4 5 5 3 4 5 5 1 2 3 4 3 3 4 2 3 4 5 4 5 5 4

1 1 10

10

10
00

10

10

10
00

10

10

99
0

99
0

99
0

80
0

95
0

99
0

49
50
0

37
50
0

49
44
0 1 10

10

99
0

75
0

96
0 10

10
00

75
0

96
0 1 10

10

10
00

10

10

10
00

10

10

99
0

99
0

99
0

80
0

95
0

99
0

0.
0

37
.0

9.
3

9.
2

9.
1

0.
0

0.
1

0.
0

27
.7

27
.7

1.
2

1.
0

0.
2

0.
1

0.
0

25
.8

11
.3

2.
2

0.
8

1.
0

1.
0

0.
5

0.
2

0.
0

0.
0

0.
5

0.
2

0.
0

0.
0

37
.0

9.
3

9.
2

9.
1

0.
0

0.
1

0.
0

27
.7

27
.7

1.
2

1.
0

0.
2

0.
1

0.
0

25
.9

0.
0

-E
PS
LO
N

0.
0

-S
LI
NP
/D
O

90
 i

 =
l,
nt
im
es
 [

10
]

0.
0

--
MA
TG
EN

0.
1

—M
AT

GE
N/

DO

30
 j
 =
l,
n

[1
00
]

9.
1

MA
TG
EN
/D
O

20
 i

 =
l,
n

[1
00
]

0.
0

—M
AT

GE
N/

DO

35
 i

 =
l,
n

[1
00
]

0.
1

—M
AT

GE
N/

DO
 5

0
j
=l
,n
 [

10
0]

0.
0

MA
TG
EN
/D
O

40
 i

 =
l,
n

[1
00
]

0.
0

--
SG
EF
A

0.
5

—S
GE

FA
/D

O
60
 k
 =

l,
nm
l

[9
9]

0.
2

IS
AM
AX

1.
0

IS
AM
AX
/D
O

30
 i

 =
2,
n

[5
0]

0.
1

SS
CA
L

0.
1

SS
CA
L/
DO
 3

0
i
=l
,m
 [

2]

0.
0

SS
CA
L/
DO
 5

0
i
=m
pl
,n
,5
 [

10
]

14
.5

SG
EF
A/
DO
 3

0
j
=k
pl
,n
 [

50
]

8.
3

SA
XP
Y

2.
2

SA
XP
Y/
DO
 3

0
i
=l
,m
 [

2]

0.
8

SA
XP
Y/
DO
 5

0
i
=m
pl
,n
,4
 [

16
]

0.
0

-S
LI
NP
/D
O

10
0

i
=l
,n
ti
me
s

[1
0]

0.
0

--
SG
ES
L

0.
3

—S
GE

SL
/D

O
20
 k
 =

l,
nm
l

[9
9]

ςπ

4
99
0

0.
2

0.
2

SA
XP
Y

0.
0

SA
XP
Y/
DO
 3

0
i
=l
,m
 [

2]

0.
0

SA
XP
Y/
DO
 5

0
i
=m
pl
,n
,4
 [

12
]

0.
3

—S
GE

SL
/D

O
40
 k
b

=l
,n
 [

10
0]

0.
2

SA
XP
Y

0.
0

SA
XP
Y/
DO
 3

0
i
=l
,m
 [

2]

0.
0

SA
XP
Y/
DO
 5

0
i
=m
pl
,n
,4
 [

12
]

0.
0

-S
LI
NP
/D
O

12
0

i
=l
,n
ti
me
s

[1
0]

0.
0

—M
AT

GE
N

0.
1

—M
AT

GE
N/

DO

30
 j

 =
l,
n

[1
00
]

9.
1

MA
TG
EN
/D
O

20
 i

 =
l,
n

[1
00
]

0.
0

—M
AT

GE
N/

DO

35
 i

 =
l,
n

[1
00
]

0.
1

MA
TG
EN
/D
O

50
 j
 =

 l,
n

[1
00
]

0.
0

MA
TG
EN
/D
O

40
 i

 =
l,
n

[1
00
]

0.
0

—S
GE

FA

0.
5

—S
GE

FA
/D

O
60
 k
 =

l,
nm
l

[9
9]

0.
2

IS
AM
AX

1.
0

IS
AM
AX
/D
O

30
 i

 =
2,
n

[5
0]

0.
1

SS
CA
L

0.
1

SS
CA
L/
DO
 3

0
i
=l
,m
 [

2]

0.
0

SS
CA
L/
DO
 5

0
i
=m
pl
,n
,5
 [

10
]

14
.3

SG
EF
A/
DO
 3

0
j

=k
pl
,n
 [

50
]

5 6 6 1 2 3 4 5 5 3 4 5 5

49
50
0

37
50
0

49
44
0 1 10

10

99
0

75
0

96
0 10

10
00

75
0

96
0

11
.6

2.
3

0.
8

1.
0

1.
0

0.
5

0.
2

0.
0

0.
0

0.
5

0.
2

0.
0

0.
0

8 2 0 0 0 0 0 0 0 0 0 0 0

4
SA
XP
Y

3
SA
XP
Y/
DO
 3

0
i
=l
,m
 [

2
8

SA
XP
Y/
DO
 5

0
i
=m

pl
,n

,
0

-S
LI
NP
/D
O

13
0

i
=l
,n
ti
me
s

[
0

--
SG
ES
L

3
—S

GE
SL

/D
O

20
 k
 =
l,
nm
l

[9
9

2
SA
XP
Y

0
SA
XP
Y/
DO
 3

0
i
=l
,m
 [

2]

0
SA
XP
Y/
DO
 5

0
i
=m
pl
,n
,4

3
SG
ES
L/
DO
 4

0
kb
 =

l,
n

[1
00

2
SA
XP
Y

0
SA
XP
Y/
DO
 3

0
i
=l
,m
 [

2]

0
SA
XP
Y/
DO
 5

0
i

=m
pl
,n
,4
 4

[1
6]

10
] [1
2]

[1
2]

B.
2

Ti
m

in
g

R
es

ul
ts

 F
ro

m
 H

Y
G

R
II

ID
 P

ro
gr

am

P
A

C
I

F
I

C
-

S
I

E
R

R
A

R

E
S

E
A

R
C

H

F
O
R
G
E

(T
M)

DY
NA
MI
C

PR
OG
RA
M

TI
MI
NG
 A

NA
LY
SI
S

US
IN
G

PS
R

FO
RG
E

TI
MI
NG
 F

AC
IL
IT
Y

>P
SR
TI
M<

VE
RS
IO
N

11
 [

Oc
t

87
]

NO
TE
:

Ti
me
 s

pe
nt
 i

n
su
bp
ro
gr
am
s

an
d

DO
-l
oo
ps
 i

s
ta
bu
la
te
d

be
lo
w.

Bo
th
 I

NC
LU
SI
VE
 a

nd
 E

XC
LU
SI
VE
 t

im
es
 a

re
 g

iv
en

IN
CL
US
IV
E

ti
me
s

in
cl
ud
e

th
e

ti
me
 s

pe
nt
 i

n
a

su
bp
ro
gr
am
 o

r
lo
op
 a

nd
 a

ll
 t

he
 s

ub
pr
og
ra
ms
 a

nd
 l

oo
ps
 e

nt
er
ed
 f

ro
m

Th
e

EX
CL
US
IV
E

ti
me
 s

pe
nt
 i

n
a

su
bp
ro
gr
am
 e

xc
lu
de
s

th
e

ti
me
 s

pe
nt
 i

n
an
y

su
bp
ro
gr
am
s

en
te
re
d

fr
om
 i

t.

Th
e

EX
CL
US
IV
E

ti
me
 s

pe
nt
 i

n
a
DO
-l
oo
p

ex
cl
ud
es
 a

ny
 l

oo
ps
 o

r
su
bp
ro
gr
am
s

en
te
re
d

fr
om
 i

t.

Re
su
lt
s

ar
e

on
ly
 f

or
 t
ha
t

po
rt
io
n

of
 t

he
 p

ro
gr
am
 i

ns
tr
um
en
te
d

by
 t

he
 F

OR
GE
 c

lo
ck
in
g

fa
ci
li
ty
.

Al
l

ti
mi
ng
s

ar
e

sh
ow
n

in
 s

ec
on
ds
 o

r
pe
rc
en
ta
ge
s

of
 j

ob
 e

xe
cu
ti
on
 t

im
e.

TI
MI
NG
 S

UM
MA
RY
 B

Y
SU
BP
RO
GR
AM

SU
BP
RO
GR
AM

1 2 3 4 5 6 7 8 9 10

11

12

13

14

15

16

17

18

19

20

21

HY
GR
II
ID

IN
IT
IA

BO
DY

SA
RE
A

ME
TR
IC

DY
DX
2

Y2
XA
ND
Z

DY
DZ
2

EP
SI
L

CO
NV
OL

OU
TP
T

ST
EP

RH
S

CI
 NV

A
AM
AT
RX

BM
AT
RX

BT
RI
P

LU
DE
C

FI
LT
RX

BT
RI

AN
GL
ES

IN
CL
.

TI
ME

4.
94
45
06
37
6

0.
12
49
68
73
8

0.
08
84
49
77
1

0.
01
55
52
58
7

0.
04
78
80
99
7

0.
01
09
94
38
0

0.
00
21
47
92
8

0.
01
16
78
30
9

0.
00
05
94
87
7

0.
00
22
08
71
9

0.
09
47
17
30
6

4.
72
15
90
50
8

1.
58
84
74
84
0

2.
31
66
40
23
6

0.
06
00
40
44
5

0.
07
24
06
69
3

0.
84
35
89
82
1

0.
05
34
73
79
1

0.
82
06
71
41
2

0.
37
26
95
69
5

0.
14
83
57
53
2

TO
TA
LS
 =

>

EX
CL
.

TI
ME

0.
00
32
29
82
4

0.
01
97
50
59
4

0.
08
84
49
77
1

0.
00
28
07
28
2

0.
04
00
50
14
1

0.
00
99
67
10
4

0.
00
21
47
92
8

0.
01
06
20
38
2

0.
00
05
94
87
7

0.
00
22
08
71
9

0.
09
47
17
30
6

0.
29
78
27
95
6

0.
33
47
57
80
9

2.
30
17
98
40
4

0.
06
00
40
44
5

0.
07
24
06
69
3

0.
81
65
23
49
5

0.
05
34
73
79
1

0.
23
84
88
09
1

0.
34
62
88
23
0

0.
14
83
57
53
2

4.
94
45
06
37
6

CA
LL
S 1 1 1 2 8

13
80

57
00

13
80
 1 4 4 3 3

53
10
0

21
24
0

21
24
0

17
7

21
42
0

18
0

18
0

10
62
0

13
66
45

AV
G/

CA
LL

0.
00
32
29
82
4

0.
01
97
50
59
4

0.
08
84
49
77
1

0.
00
14
03
64
1

0.
00
50
06
26
8

0.
00
00
07
22
3

0.
00
00
00
37
7

0.
00
00
07
69
6

0.
00
05
94
87
7

0.
00
05
52
18
0

0.
02
36
79
32
7

0.
09
92
75
98
5

0.
11
15
85
93
6

0.
00
00
43
34
8

0.
00
00
02
82
7

0.
00
00
03
40
9

0.
00
46
13
12
7

0.
00
00
02
49
6

0.
00
13
24
93
4

0.
00
19
23
82
4

0.
00
00
13
97
0

IN
CL

%

10
0.
0

2.
5

1.
8

0.
3

1.
0

0.
2

0.
0

0.
2

0.
0

0.
0

1.
9

95
.5

32
.1

46
.9

1.
2

1.
5

17
.1

1.
1

16
.6

7.
5

3.
0

EX
CL

%

0.
1

0.
4

1.
8

0.
1

0.
8

0.
2

0.
0

0.
2

0.
0

0.
0

1.
9

6.
0

6.
8

46
.6

1.
2

1.
5

16
.5

1.
1

4.
8

7.
0

3.
0

10
0.
0

Av
er
ag
e

ti
me
 p

er
 c

al
l

is
 c

om
pu
te
d

fr
om
 t

he

ex
cl
us
iv
e

ex
ec
ut
io
n

ti
me

s.

Th
e

pe
rc
en
ta
ge
s

ar
e

ov
er
 t

he
 t

ot
al
 e

xe
cu
ti
on
 t

im
e

fo
r

th
at
 p

or
ti
on
 o

f
th
e

pr
og
ra
m

cl
oc
ke
d

by
 F
OR
GE
.

CA
LL

ED
 F

RO
M

HY
GR

II
ID

TO
TA

L
->

CA
LL

S 3

AV
G

TI
ME

/C
AL

L

1.
57

38
64

1.
57

38
64

>
NE

ST
IN

G
PR

OC
ED

UR
E

OR
 D

O-
LO

OP

ID

EN
TI

FI
ER

ST
EP

DO

 7
20

 k
 =

l,
km

ax

ME
TR

IC

DO
 9

4
k

=l
,k

ma
x

DO
 9

7
k

=l
,k

ma
x

DO
 4

5
it
 =

l,
it

ma
x

ME
TR

IC

RH
S

DO
 2

0
j

=j
ae

nd
,j

be
nd

BM

AT
RX

CI
NV
A

BT
RI

P
DO

 2
1

k
=k

a,
kb

DO

 2
2

n
=1

,3

DO
 3

0
k

=k
a,

kb

FI
LT

RX

BT
RI

DO
 3

6
j

=l
,j

ma
x

AN
GL

ES

DO
 4

4
k

=l
,k

ma
x

DO
 4

5
k

=l
,k

ma
x

Y2
XA

ND
Z

ST
EP

IN
CL

.
TI

ME

%
 J
OB

 X
EQ

 T
IM

E
IN
 R

OU
TI

NE
 S

TE
P

4.
72

15
91

95

.5
 W

HE
N

CA
LL

ED
 F

RO
M

HY
GR

II
ID

4.
72

15
91

95

.5
 %

 T
OT

AL
 J

OB
 X

EQ
 T

IM
E

SP
EN

T
IN
 R

OU
TI

NE
 S

TE
P

IN
CL

US
IV

E
%J

OB
:%

RO
UT

NE

95
.5

:
0.

0:

0.
3:

0.

0:

0.
0:

95

.1
:

0.
4:

32

.1
:

33
.2

:
0.

7:

11
.7

:
17

.1
:

0.
5:

0.

2:

29
.3

:
16

.6
:

7.
5:

5.
1:

3.

0:

0.
0:

0.

0:

0.
0:

 10
0.

0
0.
0

0.
4

0.
0

0.
0

99
.6

0.
4

33
.6

34

.7

0.
8

12
.2

17

.9

0.
5

0.
2

30
.7

17

.4

7.
9

5.
3

3.
1

0.
0

0.
0

0.
0

EX
CL

US
IV

E
%J

OB
:

0.
0:

0.

0:

0.
3:

0.

0:

0.
0:

0.

1:

0.
3:

6.
8:

3.
2:

0.

7:

11
.6

:
16

.5
:

0.
2:

0.

2:

0.
0:

4.

8:

7.
0:

2.

1:

3.
0:

0.

0:

0.
0:

0.

0:
 %R

OU
TN

E

0.
0

0.
0

0.
3

0.
0

0.
0

0.
2

0.
3

7.
1

3.
4

0.
8

12
.2

17

.3

0.
3

0.
2

0.
0

5.
1

7.
3

2.
2

3.
1

0.
0

0.
0

0.
0

CO
UN

T

3 3 3 3 3 3 3 3 3
10

62
0

10
62

0
17
7

17
7

10
62

0 3
18
0

18
0

18
0

10
62

0 3 3
18
0

DO
-L
OO
P-

AV
ER

AG
E

60

60

60
 1 59

60
 3 60

60

60

60

-L
EN
GT
H

MA
XI

MU
M

60

60

60
 1 59

60
 3 60

60

60

60

CA
LL
ED
 F
RO
M

ST
EP

TO
TA
L
->

CA
LL
S 3

AV
G
TI
ME
/C
AL
L

0.
52
94
92

0.
52
94
92

>
NE
ST
IN
G

PR
OC
ED
UR
E
OR
 D
O-
LO
OP
 I
DE
NT
IF
IE
R

SO

GO

1 1 2 3 3 1 2 2 1 2 3 3 3 3 4 3 1 2 1 2 1

RH
S CO
NV

OL

DO
 1

0
j

=j
a,

jb

DO
 1

0
k

=k
a,

kb

CI
 NV

A
DO

 1
2

i
=1

,3

DO
 1

07
 k

 =
ka

,k
b

CI
NV

A
DO

 1
12

 i
 =

1,
3

DO
 1

5
j

=j
ae

nd
,j

be
nd

DO

 1
5

k
=k

a,
kb

AM

AT
RX

BM

AT
RX

CI

NV
A

DO
 1

6
n

=1
,3

DO

 1
6

m
=1

,3

DO
 1

8
n

=1
,3

DO

 2
0

j
=j

ae
nd

,j
be

nd

DO
 2

0
k

=k
a,

kb

DO
 3

0
k

=k
a,

kb

DO
 3

0
j

=j
aa

,j
bb

DO

 3
1

k
=k

a,
kb

RH
S IN
CL
.
TI
ME

%
JO
B
XE
Q
TI
ME
 I
N
RO
UT
IN
E
RH
S

1.
58
84
75

32
.1
 W
HE
N
CA
LL
ED
 F
RO
M
ST
EP

1.
58
84
75

32
.1
 %
 T
OT
AL
 J
OB
 X
EQ
 T
IM
E
SP
EN
T
IN
 R
OU
TI
NE
 R
HS

IN
CL
US
IV
E

EX
CL
US
IV
E

DO
-L
OO
P-
LE
NG
TH

%J
OB
:%
RO
UT
NE

%J
OB
:%
RO
UT
NE

CO
UN
T

AV
ER
AG
E
MA
XI
MU
M

32
.1

:
0.

0:

2.
7:

2.

7:

1.
5:

0.
3:

0.

1:

0.
1:

0.

0:

28
.9

:
28

.9
:

0.
6:

0.
7:

22

.4
:

1.
6:

0.
7:

0.

4:

0.
2:

0.

2:

0.
1:

0.

1:

0.
0:

 10
0.

0
0.
1

8.
4

8.
4

4.
5

0.
8

0.
4

0.
4

0.
0

90
.0

89
.9

1.
9

2.
2

69
.8

5.
1

2.
3

1.
2

0.
7

0.
7

0.
4

0.
4

0.
0

0.
0:

0.

0:

0.
0:

1.
0:

1.
5:

0.
3:

0.

0:

0.
1:

0.

0:

0.
0:

3.

1:

0.
6:

0.
7:

22

.3
:

0.
9:

0.
7:

0.

4:

0.
0:

0.

2:

0.
0:

0.

1:

0.
0:

0.
0

0.
1

0.
0

3.
0

4.
5

0.
8

0.
1

0.
2

0.
0

0.
0

9.
7

1.
9

2.
2

69
.4

2.
8

2.
3

1.
2

0.
0

0.
7

0.
0

0.
4

0.
0

3 3 3
17

4
10

44
0

10
44

0 3
18

0
18

0 3
17
7

10
62

0
10

62
0

21
24

0
10

62
0

31
86

0
10

62
0 3

17
7 3

18
0 3

58

60
 3 60
 3 59

60
 3 3 3 59

60

60

56

60

58

60
 3 60
 3 59

60
 3 3 3 59

60

60

56

60

CA
LL

ED
 F

RO
M

RH
S

ST
EP

FI

LT
RX

TO
TA

L
->

CA
LL

S

31
86

0
10

62
0

10
62

0

53
10

0

AV
G
TI
ME
/C
AL
L

0.
00
00
37

0.
00
00
54

0.
00
00
52

VA

>
NE
ST
IN
G

PR
OC
ED
UR
E
OR
 D
O-
LO
OP
 I
DE
NT
IF
IE
R

1 1 1 2 3 1 2 1 1

CI
 NV

A
DY

DX
2

DY
DZ

2
DO

 1
2

n
=1

,3

DO
 1

2
m

=1
,3

DO

 1
3

1
=1

,3

DO
 1

4
n

=1
,3

DO

 1
4

m
=1

,3

DY
DX

2
DY

DZ
2

CI
NV
A

IN
CL
.
TI
ME

%
JO
B
XE
Q
TI
ME
 I
N
RO
UT
IN
E
CI
NV
A

1.
18
63
98

24
.0
 W
HE
N
CA
LL
ED
 F
RO
M
RH
S

0.
57
80
07

11
.7
 W
HE
N
CA
LL
ED
 F
RO
M
ST
EP

0.
55
22
36

11
.2
 W
HE
N
CA
LL
ED
 F
RO
M
FI
LT
RX

2.
31
66
40

46
.9
 %
 T
OT
AL
 J
OB
 X
EQ
 T
IM
E
SP
EN
T
IN
 R
OU
TI
NE
 C
IN
VA

EX
CL
US
IV
E

DO
-L
OO
P-
LE
NG
TH

%J
OB
:%
RO
UT
NE

CO
UN
T

AV
ER
AG
E
MA
XI
MU
M

3
3

3
3

3
3

3
3

3
3

IN
CL

US
IV

E
%J

OB
:%

RO
UT

NE

46
.9

:
0.

1:

0.
1:

31

.3
:

27
.6

:
10

.6
:

6.
3:

1.
7:

0.
1:

0.

1:
 10

0.
0

0.
1

0.
1

66
.8

58

.9

22
.6

13

.5

3.
6

0.
2

0.
2

8.
9:

0.
1:

0.

1:

3.
7:

17

.0
:

10
.6

:
4.
6:

1.
7:

0.

1:

0.
1:

19
.0

0.
1

0.
1

8.
0

36
.2

22

.6

9.
9

3.
6

0.
2

0.
2

53
10

0
36

0
36

0
42

48
0

12
74

40

38
23

20

42
48

0
12

74
40

54

0
54

0

CA
LL
ED
 F
RO
M

ST
EP

TO
TA
L
->

CA
LL
S

18
0

18
0

AV
G
TI
ME
/C
AL
L

0.
00
45
59

0.
00
45
59

>
NE
ST
IN
G

PR
OC
ED
UR
E
OR
 D
O-
LO
OP
 I
DE
NT
IF
IE
R

o o
1 2 2 2 3 1 2 1 1 1 1 2

FI
LT

RX

DO
 1

0
j

=j
a,

jb

AM
AT

RX

CI
NV

A
DO

 1
2

n
=1

,3

DO
 1

3
m

=1
,3

DO

 4
0

n
=1

,3

DO
 4

0
m

=1
,3

DO

 4
1

n
=1

,3

AM
AT

RX

CI
NV

A
DO

 1
72

 n
 =

1,
3

DO
 1

73
 m

 =
1,

3

FI
LT
RX

IN
CL
.
TI
ME

%
JO
B
XE
Q
TI
ME
 I
N
RO
UT
IN
E
FI
LT
RX

0.
82
06
71

16
.6
 W
HE
N
CA
LL
ED
 F
RO
M
ST
EP

0.
82
06
71

16
.6
 %
 T
OT
AL
 J
OB
 X
EQ
 T
IM
E
SP
EN
T
IN
 R
OU
TI
NE
 F
IL
TR
X

IN
CL
US
IV
E

EX
CL
US
IV
E

DO
-L
OO
P-
LE
NG
TH

%J
OB
:%
RO
UT
NE

%J
0B
:%
R0
UT
NE

CO
UN
T

AV
ER
AG
E
MA
XI
MU
M

0.
1

1.
7

0.
6

10
.9

1.
8

1.
2

0.
0

0.
0

0.
0

0.
0

0.
2

0.
0

0.
0

0.
3

10
.0

3.
5

65
.7

10

.9

7.
3

0.
1

0.
1

0.
0

0.
1

1.
3

0.
1

0.
1

18
0

18
0

10
44

0
10

44
0

10
44

0
31

32
0

18
0

54
0

18
0

18
0

18
0

18
0

54
0

58
 3 3 3 3 3 3 3

58
 3 3 3 3 3 3 3

16
.6

16

.2

0.
6

10
.9

3.
0

1.
2

0.
0

0.
0

0.
0

0.
0

0.
3

0.
0

0.
0

10
0.

0
97

.4

3.
5

65
.7

18
.3

7.
3

0.
2

0.
1

0.
0

0.
1

1.
6

0.
2

0.
1

Appendix C
LOOPS FOR MEMORY-
ACCESS COMPARISON

The following groups of loops are used to compare performance of three
memory-access techniques in section 4.8: Group 1) indirect access with
random indexing; Group 2) direct access with unitary stride; and Group 3)
direct access with a stride of 128.

We are concerned here with the performance based on the ratio of
operations to vector operands, and these ratios are listed in a comment
preceding each loop. In other words, when the ratio is low, the loop spends
more time accessing memory than in performing arithmetic, so the megaflop
rating is correspondingly low. Conversely, those loops with many operations
and just two vector operands achieve the highest performance numbers.

We expect that unitary stride will produce the best performance among
the three groups. Indirect addressing adds one or more chimes to the compu­
tation because of the extra time needed to fetch the index, and causes general
memory performance degradation due to both interference among the in­
dexes and the requirement that the indexed array elements be delivered in
the proper order. Finally, stride 128 forces memory-bank conflicts on each
successive reference and slows the performance by a factor equal to the
memory-bank cycle time. Performance comparisons for several machines are
shown in section 4.8.

C.l Group 1: Indirect Access with Random Index
C ONE OPERATION - THREE OPERANDS RATIO = 1/3

DO 41000 I = 1, N
A(IA(I)) = B(IA(I)) + C(IA(I))

41000 CONTINUE

C ONE OPERATION - TWO OPERANDS RATIO = 1/2
DO 41001 1 = 1 , N
A(IA(I)) = CO * B(IA(I))

41001 CONTINUE

C TWO OPERATIONS - FOUR OPERANDS RATIO = 1/2
DO 41002 I = 1, N
A(IA(I)) = B(IA(I)) * C(IA(I)) + D(IA(I))

41002 CONTINUE

201

202 APPENDIX C

C THREE OPERATIONS - FIVE OPERANDS RATIO = 3/5
DO 41003 I = 1, N
A(IA(I)) = B(IA(I)) * C(IA(I)) + D(IA(I)) * E(IA(I))

41003 CONTINUE

C TWO OPERATIONS - THREE OPERANDS RATIO = 2/3
DO 41004 I = 1, N
A(IA(I)) = CO * B(IA(I)) + C(IA(I))

41004 CONTINUE

C TWO OPERATIONS - TWO OPERANDS RATIO = 1
DO 41010 I = 1, N
Y(IY(I)) = CO + X(IX(I)) * Cl

41010 CONTINUE

C THREE OPERATIONS - TWO OPERANDS RATIO = 3/2
DO 41011 I = 1, N
Y(IY(I)) = CO + X(IX(I)) * (Cl + X(IX(I)))

41011 CONTINUE

C FIVE OPERATIONS - TWO OPERANDS RATIO = 5/2
DO 41012 I = 1, N
Y(IY(I)) = CO + X(IX(I)) * (Cl + X(IX(I))

* * (C2 + X(IX(I))))
41012 CONTINUE

C SEVEN OPERATIONS - TWO OPERANDS RATIO = 7/2
DO 41013 I = 1, N
Y(IY(I)) = CO + X(IX(I)) * (Cl + X(IX(I))

* * (C2 + X(IX(I)) * (C3 + X(IX(I)))))
41013 CONTINUE

C NINE OPERATIONS - TWO OPERANDS RATIO = 9/2
DO 41014 I = 1, N
Y(IY(I)) = CO + X(IX(I)) * (Cl + X(IX(I))

* * (C2 + X(IX(I)) * (C3 + X(IX(I))
* * (C4 + X(IX(I))))))

41014 CONTINUE

C ELEVEN OPERATIONS - TWO OPERANDS RATIO = 11/2
DO 41015 I = 1,N
Y(IY(I)) = CO + X(IX(I)) * (Cl + X(IX(I))

* * (C2 + X(IX(I)) * (C3 + X(IX(I))
* * (C4 + X(IX(I)) * (C5 + X(IX(I)))))))

41015 CONTINUE

C THIRTEEN OPERATIONS - TWO OPERANDS RATIO = 13/2
DO 41016 I = 1, N
Y(IY(I)) = CO + X(IX(I)) * (Cl + X(IX(I))

* * (C2 + X(IX(I)) * (C3 + X(IX(I))
* * (C4 + X(IX(I)) * (C5 + X(IX(I))
* * (C6 + X(IX(I))))))))

41016 CONTINUE

APPENDIX C

FIFTEEN OPERATIONS - TWO OPERANDS RATIO = 15/2
DO 41017 I = 1, N
Y(IY(I)) = CO + X(IX(I)) * (Cl + X(IX(I))

* * (C2 + X(IX(I)) * (C3 + X(IX(I))
* * (C4 + X(IX(I)) * (C5 + X(IX(I))
* * (C6 + X(IX(I)) * (C7 + X(IX(I)))))))))

41017 CONTINUE

SEVENTEEN OPERATIONS - TWO OPERANDS RATIO =17/2
DO 41018 I = 1,N
Y(IY(I)) = CO + X(IX(I)) * (Cl + X(IX(I))

* * (C2 + X(IX(I)) * (C3 + X(IX(I))
* * (C4 + X(IX(I)) * (C5 + X(IX(I))
* * (C6 + X(IX(I)) * (C7 + X(IX(I))
* * (C8 + X(IX(I))))))))))

41018 CONTINUE

NINETEEN OPERATIONS - TWO OPERANDS RATIO = 19/2
DO 41019 I = 1,N
Y(IY(I)) = CO + X(IX(I)) * (Cl + X(IX(I))

* * (C2 + X(IX(I)) * (C3 + X(IX(I))
* * (C4 + X(IX(I)) * (C5 + X(IX(I))
* * (C6 + X(IX(I)) * (C7 + X(IX(I))
* * (C8 + X(IX(I)) * (C9 + X(IX(I)))))))))))

41019 CONTINUE

C.2 Group 2: Unitary Stride
C ONE OPERATION - THREE OPERANDS RATIO = 1/3

DO 41020 I = 1, N
A(I) = B(I) + C(I)

41020 CONTINUE

C ONE OPERATION - TWO OPERANDS RATIO = 1/2
DO 41021 I = 1, N
A(I) = CO * B(I)

41021 CONTINUE

C TWO OPERATIONS - FOUR OPERANDS RATIO = 1/2
DO 41022 I = 1,N
A(I) = B(I)*C(I)+D(I)

41022 CONTINUE

C THREE OPERATIONS - FIVE OPERANDS RATIO = 3/5
DO 41023 1=1, N
A(I) = B(I) * C(I) + D(I) * E(I)

41023 CONTINUE

C TWO OPERATIONS - THREE OPERANDS RATIO = 2/3
DO 41024 1=1, N
A(I) = CO * B(I) + C(I)

41024 CONTINUE

204 APPENDIX C

C TWO OPERATIONS - TWO OPERANDS RATIO = 1
DO 41030 I = 1, N
Y(I) = CO + X(I) * Cl

41030 CONTINUE

C THREE OPERATIONS - TWO OPERANDS RATIO = 3/2
DO 41031 I = 1, N
Y(I) = CO + X(I) * (Cl + X(I))

41031 CONTINUE

C FIVE OPERATIONS - TWO OPERANDS RATIO = 5/2
DO 41032 I = 1, N
Y(I) = CO + X(I) * (Cl + X(I) * (C2 + X(I)))

41032 CONTINUE

C SEVEN OPERATIONS - TWO OPERANDS RATIO = 7/2
DO 41033 I = 1, N
Y(I) = CO + X(I) * (Cl + X(I) * (C2 + X(I)

* * (C3 + X(I))))
41033 CONTINUE

C NINE OPERATIONS - TWO OPERANDS RATIO = 9/2
DO 41034 I = 1, N
Y(I) = CO + X(I) * (Cl + X(I) * (C2 + X(I)

* * (C3 + X(I) * (C4 + X(I)))))
41034 CONTINUE

C ELEVEN OPERATIONS - TWO OPERANDS RATIO = 11/2
DO 41035 I = 1, N
Y(I) = CO + X(I) * (Cl + X(I) * (C2 + X(I)

* * (C3 + X(I) * (C4 + X(I)
* * (C5 + X(I))))))

41035 CONTINUE

C THIRTEEN OPERATIONS - TWO OPERANDS RATIO = 13/2
DO 41036 I = 1,N
Y(I) = CO + X(I) * (Cl + X(I) * (C2 + X(I)

* * (C3 + X(I) * (C4 + X(I)
* * (C5 + X(I) * (C6 + X(I)))))))

41036 CONTINUE

C FIFTEEN OPERATIONS - TWO OPERANDS RATIO = 15/2
DO 41037 I = 1, N
Y(I) = CO + X(I) * (Cl + X(I) * (C2 + X(I)

* * (C3 + X(I) * (C4 + X(I)
* * (C5 + X(I) * (C6 + X(I)
* * (C7 + X(I))))))))

41037 CONTINUE

C SEVENTEEN OPERATIONS - TWO OPERANDS RATIO = 17/2
DO 41038 I = 1, N
Y(I) = CO + X(I) * (Cl + X(I) * (C2 + X(I)

* * (C3 + X(I) * (C4 + X(I)
* * (C5 + X(I) * (C6 + X(I)
* * (C7 + X(I) * (C8 + X(D))))))))

41038 CONTINUE

APPENDIX C 205

C NINETEEN OPERATIONS - TWO OPERANDS RATIO =19/2
DO 41039 I = 1, N
Y(I) = CO + X(I) * (Cl + X(I) * (C2 + X(I)

* * (C3 + X(I) * (C4 + X(I)
* * (C5 + X(I) * (C6 + X(I)
* * (C7 + X(I) * (C8 + X(I)
* * (C9 + X(I))))))))))

41039 CONTINUE

C.3 Group 3: Direct Access with Stride 128
ISTRIDE = 128

C ONE OPERATION - THREE OPERANDS RATIO = 1/3
II = 1
DO 41060 I = 1, N
A(II) = B(II) + C(II)
II = II + ISTRIDE ■

41060 CONTINUE

C ONE OPERATION - TWO OPERANDS RATIO = 1/2
II =1
DO 41061 I = 1, N
A(II) = CO * B(II)
II = II + ISTRIDE

41061 CONTINUE

C TWO OPERATIONS - FOUR OPERANDS RATIO = 1/2
II = 1
DO 41062 I = 1, N
A(II) = B(II) * C(II) + D(II)
II = II + ISTRIDE

41062 CONTINUE

C THREE OPERATIONS - FIVE OPERANDS RATIO = 3/5
II = 1
DO 41063 I = 1, N
A(II) = B(II> * C(II) + D(II) * E(II)
II = II + ISTRIDE

41063 CONTINUE

C TWO OPERATIONS - THREE OPERANDS RATIO =2/3
II = 1
DO 41064 I = 1, N
A(II) = CO * B(II) + C(II)
II = II + ISTRIDE

41064 CONTINUE

C TWO OPERATIONS - TWO OPERANDS RATIO = 1
11=1
DO 41070 I = 1, N
Y(II) = CO + X(II) * Cl
II = II + ISTRIDE

41070 CONTINUE

206 APPENDIX C

C THREE OPERATIONS - TWO OPERANDS RATIO = 3/2
11=1
DO 41071 I = 1, N
Y(II) = CO + X(II) * (Cl + X(II))
II = II + ISTRIDE

41071 CONTINUE

C FIVE OPERATIONS - TWO OPERANDS RATIO = 5/2
11=1
DO 41072 I = 1, N
Y(II) = CO + X(II) * (Cl + X(II) * (C2 + X(II)))
II = II + ISTRIDE

41072 CONTINUE

C SEVEN OPERATIONS - TWO OPERANDS RATIO = 7/2
11=1
DO 41073 I = 1, N
Y(II) = CO + X(II) * (Cl + X(II) * (C2 + X(II)

* * (C3 + X(II))))
II = II + ISTRIDE

41073 CONTINUE

C NINE OPERATIONS - TWO OPERANDS RATIO =9/2
11=1
DO 41074 I = 1, N
Y(II) = CO + X(II) * (Cl + X(II) * (C2 + X(II)

* * (C3 + X(II) * (C4 + X(II)))))
II = II + ISTRIDE

41074 CONTINUE

C ELEVEN OPERATIONS - TWO OPERANDS RATIO = 11/2
11=1
DO 41075 I = 1, N
Y(II) = CO + X(II) * (Cl + X(II) * (C2 + X(II)

* * (C3 + X(II) * (C4 + X(II)
* * (C5 + X(II))))))

II = II + ISTRIDE
41075 CONTINUE

C THIRTEEN OPERATIONS - TWO OPERANDS RATIO = 13/2
11=1
DO 41076 I = 1, N
Y(II) = CO + X(II) * (Cl -I- X(II) * (C2 + X(II)

* * (C3 + X(II) * (C4 + X(II)
* * (C5 + X(II) * (C6 + X(II)))))))
II = II + ISTRIDE

41076 CONTINUE

C FIFTEEN OPERATIONS - TWO OPERANDS RATIO = 15/2
11 = 1
DO 41077 I = 1, N
Y(II) = CO + X(II) * (Cl + X(II) * (C2 + X(H)

* * (C3 + X(II) * (C4 + X(II)
* * (C5 + X(II) * (C6 + X(II)

* (C7 + X(II))))))))
II = II + ISTRIDE

41077 CONTINUE

APPENDIX C 207

C SEVENTEEN OPERATIONS - TWO OPERANDS RATIO = 17/2
11 = 1
DO 41078 I = 1, N
Y(II) = CO + X(II) * (Cl + X(II) * (C2 + X(II)

* * (C3 + X(H) * (C4 + X(II)
* * (C5 + X(II) * (C6 + X(II)
* * (C7 + X(II) * (C8 + X(II)))))))))

II = II + ISTRIDE
'41078 CONTINUE

C NINETEEN OPERATIONS - TWO OPERANDS RATIO = 19/2
11=1
DO 41079 I = 1, N
Y(II) = CO + X(II) * (Cl + X(II) * (C2 + X(II)

* * (C3 + X(II) * (C4 + X(II)
* * (C5 + X(II) * (C6 + X(II)
* * (C7 + X(II) * (C8 + X(II)

* (C9 + X(II))))))))))
II = II + ISTRIDE

41079 CONTINUE

Appendix D

SOLUTIONS TO PROBLEMS
D.l Chapter 1

1 R A T I O " (l - F v) / S . + F v / ^

20
2. a. RATIO = ————

40 - 39FV

b. The point at which RATIO = 1 or Fv = 0.51

3 RATIO - (1 " F p) 1 / S g + F p [1 / (S f l ' M)]

(1 - F p) l / S A + Fp[l/(SA-M)]

1024 - 1023FP a. RATIO = 102.4

b. The point at which RATIO = 1 or Fp = 0.90
4. a. Machine Y

b. Machine Z
c. Define:

Perf(X/Y)

Perf(X/Z) =

(l - F v) / 6 + F v /60
1

(l - F v) / 3 + Fv/120

Set the performances equal and solve for Fv to obtain:

Fv = 0.95

D.2 Chapter 2

1. Stride Fetch Time (clock cycles)

1 25 + 64 = 8 9
2 25 + 64 = 8 9
4 25 + 64 = 8 9
8 26 + 63 * 2 = 152

(continued)
208

APPENDIX D 209

Stride

16
32
64

128
256

Fetch Time (clock cycles)

26 -h 63 * 4 = 278
26 + 6 3 * 8 = 530
26 + 63 * 1 6 = 1 0 3 4
26 + 63 * 32 = 2042
26 + 63 * 64 = 4058

2. a. A powerful instruction (vector instruction) that can generate up to 64
results; SIMD

b. Up to four processors working independently on a single job, so four
instructions can be issued each clock cycle; MIMD

c. Up to four processors using powerful instructions on a single job;
MIMD

d. Each of up to 64 processors executing a single instruction from the
CPU; SIMD

e. A powerful instruction (vector instruction) which can generate up to 32
results; SIMD

f. Up to 8 processors working independently on a single job; MIMD
g. Up to 8 processors using vector instructions on a single job; MIMD

3. Time for controlled store under control of a bit vector for a 4-pipe 205 is

(51 X 10000/8) 20 X 10"9 sec
Time for 2-gather periodic, scatter periodic, add is

69 + 1.25X(10000/S)
69 + 1.25X(10000/S)
51 + .125 X (10000/S)
71 + 1.25X(10000/S)
(260 + 38750/S) X 20 X 10"9 sec

Set the times equal and solve for S:

5 1 + 1250 = 260 + 3 8 7 5 0 / S
S = (38750)/1041 = 37.22
or any stride ^ 3 8

for a 4-pipe CYBER 205 in 32-bit mode.

For a 2-pipe CYBER 205 in 64-bit mode:

51 + 5000 = 260 + 42500/S
S = (42500)/4791 = 8.87
or any stride ^ 9

4. Time for controlled store:

B(i) **2 (52 + 10000/4) X 20 X 10~9 sec

B(i)**2 + C (D » (1 / S C A) (103 + 10000/4) X 20 X 10~9 sec

210 APPENDIX D

SQRT (A (I))

SQRT (A(I)) * C(I)

(79 + 10000/.28) X 20 X 10"9 sec

(52 + 10000/4) X 20 X 10"9 sec
= (286 + 42214) X 20 X 10"9 sec

Time for compress/expand approach:

COMPRESS B -> TB

COMPRESS C-> TC

TB(I)**2 + TC(I) * (1/SCA) -> TA(I]

EXPAND TA(I) -> A

SQRT (TA(I))

SQRT (TA(I)) * TC(I) -> TD(I)

EXPAND TD(I) -> D

(52 + Z / 4) X 2 0 X 1 0 " 9 s e c

(52 + Z/4) X 20 X 10"9 sec

(103 4- Z/4) X 20 X 10~9 sec

(58 + Z/4) X 20 X 10"9 sec

(79 + Z/.28) X 20 X 10"9 sec

(52 + Z/4) X 20 X 10"9 sec

(58 + Z/4) X 20 X 10"9 sec

= (506 + 5.32Z) X 20 X 10"9 sec

(Z = 10000 X DENSITY,

where DENSITY is the fraction of elements of B(I).GT.EPSLON)

Set the time equal, and solve for DENSITY:

(286 + 42214) = 506 + 5.32 x (10000 * DENSITY)

42500 = 506 + 53200 x DENSITY

DENSITY = 41994/53200 = 79%

5. Loop Cray 1 Cray X - MP Fujitsu VP200

41020
41021
41022
41023
41024
41030
41031
41032
41033
41034
41035
41036
41037
41038
41039

3 memory
2 memory
4 memory
5 memory
3 memory
2 memory
2 memory,+
3 +
4 +
5 +
6 +
7 +
8 +
9 +

10 +

1 memory,+
1 *
2 memory
2 memory,*
1 memory,-!-,*
1+,*
2 +
3 +
4 +
5 +
6 +
7 +
8 +
9 +

10 +

2 memory
1 memory,*
2 memory
3 memory
2 memory
1 memory,+,*
2 +
3 +
4 +
5 +
6 +
7 +
8 +
9 +

10 +

6. Cray-1 performance rates are

= 64
a* ° P S (25 X 3 X 64) X 12.5 X 10"9 sec

64
flops = — - X 8 0 X 1 0 6

Mflops = -^- X 80 = 23.59

b. Mflops = ^ X 80 = 23.59
r 434

c. Mflops = - ^ X 80 = 23.59

d. Mflops = ^ X 80 = 25.04
v 409

an improvement factor of 1.06

e. For startup time fifty, the performance rates are

64
a. flops =

(50 + 3 X 64) X 12.5 X 10"9 sec

flops = -^X 80 X10 6
r 242

Mflops = ^ - X 80 = 21.16 r 242
128

b. Mflops = —— X 80 = 21.16 K 484

c. Mflops = ^ - X 80 = 21.16
r 242

d. Mflops = ^ X 80 = 23.59
r 434

an improvement factor of 1.11

64 7. a. flops =
(45 + 64) X (8.5 X 10~9 sec)

flops = ^ X 117,647,059

Mflops = 69 Mflops

APPENDIX D 209

212 APPENDIX D

b M f l 0 P S = (4 5 + 64+813 + 6 4) X 1 1 7 6

128
= X 117.6 = 80.93

186

c. Mflops = ^ X 117.6 = 69

d M f l ° P S = (4 5 f T 2 i j X 1 1 7 · 6

128
= X 117.6 = 87.01

173

an improvement factor of 1.08

8. Time with conditional vector merge is on the order of 3 X N clock cycles.
Time with compressed index is on the order of 5 X N X (density of truth)
clock cycles.

Set times equal, and solve for density:

3N = 5N X density
3/5 = density

So for density above 60%, conditional vector merge will outperform.
9. Because some compilers cannot vectorize saving the last value of the

conditionally defined scalar AB.

D.3 Chapter 3
1. a. No; b. yes; c. no (Just barely, since 4 * 16 = 64); d. yes; e. no; f. yes

(Remember, a stride on the second dimension is multiplied by the first
dimension 4 * 8 = 32.); g. no; h. yes.

2. Loop 20 is not the same as the corresponding array section syntax.
3. Compilers can never detect that the indirect address indexes in IA are

unchanging, so they will never treat the reference as an array constant. If
A(IA(I)) is only on the left side or only on the right side of the equals sign,
it is treated as an array of values. If it is on both sides in the same
statement, for example, A(IA(I)) = A(IA(I)) + . . . , then it is treated as a
scalar reference to avoid potential recursion.

4. a. A(N) + B(N); b. A(N) + B(N); c. It is difficult to determine the last value
of I for which (A(I) .GT. EPS).

5. a. Yes; b. no; c. no. For NEC SX2: a. yes; b. no; c. yes.

D.4 Chapter 4
1. For large values of N, the indirect address will not make much differ­

ence, and the times for both loops should be approximately the same.

APPENDIX D 213

2 . DO 101 J = 2 , N
VAH(J) = B (J) - B (J - l)

101 CONTINUE

DO 100 I = 2, N
DO 100 J = 2, N
A(I,J) = VAH(J) * A(I-l.J) + C(I,J)

100 CONTINUE

DO 102 J = 2, N
VBH(J) = D(J) - D(J-l)

102 CONTINUE

DO 110 I = N, 2, -1
DO 110 J = 2, N
A(I,J) = VBH(J) * A(I-l.J) + C(I,J)

110 CONTINUE

3. The average diagonal vector length on an MXN grid is (N X M) /
(N + M— 1). Given an N-dimensional grid whose dimensions are D l 7
D2, . . , DN, then the average number of points on the diagonal planar
slices through the grid is:

VLm =

N

D Π ^
a v 8 N

i - l

4. la; 2a; 3d; 4b,c; 5b, c; 6d, e; 7d.
5 . DO 44022 I = 2 , N

B = DELB * (I - l)
BSC(I) = C (I) * (DELB+C(I) * BSQ(I) - B S Q (I - l)))

44022 CONTINUE

6 . IMAX = ISMAX (N - 1 , VSIGABC (2) , 1)

SIGMAX = V S I G A B C (I M A X)

7. The dot-product routine performs much better for larger N.
8. a. Recursion on inner loop; b. Reduction function on inner loop; c. Inner

loop has a nonunitary stride, and outer loop is contiguous.

9. GO TO (100,200,300,400,500,600,700,800)NSIZE

100 CONTINUE

(coding for NSIZE = 1)

GO TO 10 00

200 CONTINUE

(coding for NSIZE = 2)

214 APPENDIX D

800 CONTINUE

(coding for NSIZE = 8)

1000 CONTINUE

10. a. Nine; b. Place temporaries in a special common block to be reused in
other routines

11. On the Cray X-MP, performance is better for 128 than 64; but we do not
want to get too large, since more unnecessary calculations would be done
on the strip where A(I).LE.0.0.

12. Vectorized: 8 operations; non vectorized: 19 operations 8/(8 +
19) = 30%

From Amdahl's law:

P=1/(1-(VS-1)/VSFV)
P = 1 / (1 - 9 / 1 0 X 8 / 2 7)

P= 1/(1 - 7 2 / 2 7 0)

P = (270)/198 = 1.36

Additional overhead of extra DO loops will degrade performance a little.

13. Loop(s) Explanation

42011
44022
45013

45021, 45022, 45023
46012
46021
46032, 46033, 46034
47016
47029
47031, 47032, 47033, 47034
47051
47091
48021
48061, 48062
48021
48031
48052, 48054
48081, 48082
48091

Minimized memory stores
Reduces number of calculations
If IM is larger than KM scalar performance improves, un­

less on a machine with a cache.
Fewer DO loop setups
More calculations overlap
More calculations overlap
More calculations overlap
Fewer IFs to test
Fewer IFs to test
Fewer IFs to test
Cleaner code
More regular flow
No function overhead
Less overhead in calling subroutine once
No overhead in calling subroutine
No overhead in calling subroutine
Less overhead in calling subroutine
Less overhead in calling subroutine twice instead of 2 * N
No overhead in calling subroutine

INDEX

Abbreviations used, 180
Alliant

FX/Fortran, 56, 65
FX/1, 3, 25, 37
FX/8, 3, 36, 37

Amdahl's Law, 37, 86
American National Standards Institute, 52

X3J3 Committee, 52, 65
ANSI, see American National Standards

Institute
Array elements, invariant, see array constant
Array

accessing, 92-99, 201-207
assignment statement, 65, 66, 67
constant, 73, 180
memory layout, 53-55
promotion, 123, 124
section, 65-68
section conformability, 66

Bank cycle time, see memory banks
Bit vector, 33, 34
Bolt, Beranek and Newman, BUTTERFLY, 3
Burroughs BSP, 26

CDC
6600, 14-18
7600,14-19
CYBER 203, 28
CYBER 205, 3, 4, 25, 28-36, 41, 69 70, 93,

95-97
ETA 10, 3, 28, 35, 36, 69, 96
Fortran 200, 65

explicit vector syntax, 69
STAR 100, 28

CFT77, 65, 81, 97
Chained vector time, see chime
Chaining, 41-44
Chime, 42, 43, 62, 181
CII, see constant increment integer
CIV, see constant increment variable
Clock cycle, 2, 14, 17, 18, 29, 36, 181

Common subexpression, 58, 63, 64, 181
elimination in loops, 58

Compilation, conditional, 106
Compiler, directives, 65, 106, 181
Compilers, 55
Compressed index, 47
Computer

conventional, 2, 4
von Neumann, 1, 185

Concurrent processing, 5, 181
Conditional code

compressed-index operations, 45
vector mask operations, 45

Connection Machine, 26
Constant expression, evaluation at compile

time, 58
Constant increment integer, 71

vector array reference, 71-72
Constant increment variable, 70, 121
Convolution, vectorized, 132
Convex

C-l, 3, 25
C-MP, 3, 41

CPU, partitioned, 25
Cray, 25, 41

Seymour, 14
X-MP, 3, 36-43, 81, 93, 95-97
-1, 14-16, 18 ,36-40 ,42
-IS, 3, 36-40
- 2 , 3 , 3 6 - 3 8 , 4 1 - 4 3

Data dependency, 73-74, 181
recursive, see recursion

DO WHILE, 159

ELSEWHERE, statement, 68-69
ELXSI 6400, 3

Feedback, see recursion
Floating Point Systems T-Series, 3
FLOW TRACE, 82, 83
FORGE, Timing Faculty, 83, 187-200

215

216 INDEX

Fortran
comparison to other languages, 52
dusty deck, 90, 92
standard, 52

Fortran 66, 53
Fortran 77, 52, 53, 65
Fortran 8X, 1, 52, 53, 65, 70
Fujitsu, 25, 41

VP, 3, 37, 39
Functional unit 17-19, 182

memory, 21, 22, 37
result rate, 19
segmented, 14, 18, 19, 29
startup time, 19, 30, 35

Gather
periodic, 32
random, 32

Glossary of Terms, 180
GO TO, computed, 150

Hitachi, 25, 41,
S-810, 3
S-820, 3, 39

Houston Area Research Center, 97

IBM 3090, vector facility, 3, 37
ILLIAC IV, 3, 26
Indirect addressing, 32, 44, 45, 75-76, 93,

120,201-203
and potential recursion, 109-112

Instruction
scheduling, 60, 182
set, 182
stack, 15, 17

Instructions
parallel, 4
scalar, 4
vector, 4, 16

Instrumentation of code, 81-86
INTEL Corporation, iPSC, 3
Invariant code relocation, 56, 57

Last-value-saving, 73, 123, 149
Linked triad, 31, 41
LINPACK, 82, 83, 187
Livermore kernels

number 13, 110
number 15, 153
number 17, 161, 162

Loop, IF, 159-160
Loops

collapsing, 91
for memory-access comparison, 201-207
long, 63
short, 63
side effects of subprograms, 162-164, 171,

173-176
splitting, 110, 112, 121, 157
switching, 91, 92, 123, 130-137
unrolling, 62, 105, 137-142

Matrix multiply, 130, 131, 140, 141
unrolled, 140, 141
vectorized, 131

Megaflops, see Mflops
Memory

bank conflicts, 22, 40, 97, 182, 201
bank cycle time, 20, 29, 180
banks, 14, 19-23,29
cache, 23, 40, 181
paths, 38
physical, 38, 183
size, 38
stacks, 29
virtual, 38, 41

Mflops, 15
Minisupercomputer, 3, 182
Minnesota Supercomputing Center, 97
Mips, 14
Modularity

program, 87
Multiple Instruction Stream, Multiple Data

Stream (MIMD), 27, 182
Multiple Instruction Stream, Single Data

Stream (MISD), 26, 182

NASA Ames Research Laboratory, 3
NCUBE, 3
NEC, 25, 41

SX1, 3
SX2, 3, 39, 93, 96

Optimization, 55, 183
block, 60, 183
machine-dependent, 55, 60
machine-independent, 55, 56
with incomplete information, 91, 92

Parallel processing, 5, 8 -11 , 183
Parallel processor, 3

INDEX 217

Performance measure, 14
Pipeline, 3, 183
Pittsburgh Supercomputing Center, 97
Polynomial evaluation, Homer's Rule, 60
Problems

Chapter 1, 11
Chapter 2, 49
Chapter 3, 78
Chapter 4, 177

Pseudovector, see scalar temporary

Recursion, 73, 74, 121, 173, 183
array, 74-76, 104-121, 123
multi-dimension, 112-120
potential, see subscripts, ambiguous
scalar, 76-78, 121-133, 161
single dimension, 74, 104-107, 112

Reduction function, 77, 183
Registers, 14, 15, 62

address, 15, 15
and long loops, 63, 64
and short loops, 63
instruction, see instruction stack
operand, 15, 16
vector, 16, 37

Restructuring, 88
loops, 96
programmer involvement, 89

Result rate, 30

SAXPY Matrix-1, 26
Scalar, 4

conditionally defined, 125-127
promotion, 73, 78, 122-130, 134-135,

169, 174-176
reduction function, 77, 121, 128, 130

use in a loop, 121
temporary, 73, 101-103, 183
wrap-around, 76-78, 123-133, 175, 186

Scalar Processor, 1
Scatter

periodic, 32
random, 32

SCS-40, 3, 25
Single Instruction Stream, Multiple Data

Stream (SIMD), 25, 184
Single Instruction Stream, Single Data Stream

(SISD), 24, 184
Solutions to Problems

Chapter 1, 208
Chapter 2, 208

Chapter 3, 212
Chapter 4, 212

Store, elimination of unneeded, 59
Strength reduction, 61, 184

exponentiation, 61
Stripmining, 37, 45, 158-160, 184
Subscript triplet, 65 - 69

interpretation as DO loop, 65, 67
Subscript, linear expression, 72
Subscripts

ambiguous, 75, 92, 105-111
location in memory, 54

Supercomputer, 1, 2, 3, 184
architecture, 13
instruction set, 13

Superword, 29, 30, 184
Sword, see superword

Thinking Machines, Connection Machine, 3
Timing statistics, 81-86

Vector, 4, 185
array reference, 71
gather/scatter, 73
indirect address, 72
intrinsic functions, 69 - 70
length, 4
length, average on diagonals, 120
mask operations, 45-47, 68, 69

and low truth density, 46
and singularities, 46

mask register, 45-46
operation timing, CYBER 205, 35
pipeline, 29-35 ,41
processing, 2, 18, 29, 185
processor, 4, 28

memory-to-memory, 28
register-to-register, 36

stream unit, 32-35
stride, 4, 32, 40, 93, 203, 205

Vectorization, 64, 81, 185
and I/O statements, 176
and assigned GO TOs, 177
by expanding subprograms, 163, 166, 167,

173, 175
candidates, 90
compiler, 64
explicit, 64-70
implicit, 64, 70-78
inaccuracies due to, 88
inhibitors, 90, 91
of IF statements, 142-162

218 INDEX

of jump out of loop, 156-159
of loop-dependent IFs, 148-162
of loop-independent IFs, 143-149
of nested IF blocks, 151-155
of subprogram references, 162-176
of table lookup, 155-159
on diagonals, 116-120
on slices, 120
programmer, 64

pushing loops into subprograms, 163,
168-171

terminology, 70
with statement functions, 163, 166

Virtual memory, 29, 185

WHERE,
block, 68, 69
statement, 68

