

Virtual Machines

lain D. Craig

Virtual Machines

With 43 Figures

~ Springer

lain D. Craig, MA, PhD, MBCS, CITP
idc@idc.uk.linux.net

British Library Cataloguing in Publication Data
Craig, I.

Virtual machines
1. Virtual computer systems 2. Parallel processing
I. Title
006.8
ISBN-10: 1852339691

Library of Congress Control Number: 2005923254

ISBN-10: 1-85233-969-1
ISBN-13: 978-1-85233-969-2

Printed on acid-free paper

© Springer -Verlag London Limited 2006

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publi cation may only be repro
duced, stored or transmitted, in any form or by any means, with the prior permission in writing of
the publishers, or in the case of reprographic reproduction in accordance with the terms of licences
issued by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms
should be sent to the publishers.

The use of registered names, trademarks, etc., in this publication does not imply, even in the absence
of a specific statement, that such names are exempt from the relevant laws and regulations and
therefore free for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the infor
mation contained in th is book and cannot accept any legal responsibility or liability for any errors
or omissions that may be made.

Printed in the United States of America (EB)

9 8 7 6 5 4 321

Springer Science+Business Media
springeronline.com

To Dr P. W. Dale

(Uncle Paul)

Preface

I love virt ual machines (VMs) and I have done for a long time. If that makes
me "sad" or an "anorak", so be it . I love them because they are so much fun, as
well as being so useful. They have an element of original sin (writ ing assembly
programs and being in control of an entire machine), while st ill being able
to claim that one is being a respectable member of the community (being
structured, modular , high-level, object-oriented, and so on) . They also allow
one to design machines of one's own, unencumbered by the rest rict ions of a
part icular processor (at least , until one starts opt imising it for some physical
processor or other) .

I have been building virt ual machines, on and off, since 1980 or there
abouts. It has always been something of a hobby for me; it has also turned
out to be a technique of great power and applicability. I hope to cont inue
working on them, perhaps on some of the ideas out lined in the last chapter
(I certainly want to do some more work with register-based VMs and concur
rency).

I originally wanted to write the book from a purely semantic viewpoint .
I wanted to start with a formal semantics of some language, then show how
a virt ual machine sat isfied the semantics; finally, I would have liked to have
shown how to derive an implementation. Unfort unately, there was insufficient
time to do all of this (although some parts- the semant ics of ALEX and a
part proof of correctness- were done but omitted) . There wasn't enough time
to do all the necessary work and, in addit ion, SHirk et al. had published their
book on Java [47] which does everything I had want ed to do (they do it with
Java; I had wanted to define ad hoc languages).

I hope to have made it clear that I believe there to be a considerable
amount of work left to be done with virtual machines. The entire last chapter
is about this. As I have tried to make clear, some of the ideas included in that
chapte r are intended to make readers think, even if they consider the ideas
stupid!

A word or two is in order concerning the instruction sets of the various
virt ual machines that appear from Chapter Four onwards . The instructions

viii Preface

for the stack machines in Chapter Four seem relatively uncontroversial. The
instructions in the chapter on register machines (Chapter Seven) might seem
to be open to a little more questioning.

First, why not restrict the instruction set to those instructions required to
implement ALEX? This is because I wanted to show (if such a demonstration
were really required) that it is possible to define a larger instruction set so
that more than one language can be supported.

Next , most of the jump and arithmetic instructions seem sensible enough
but there are some strange cases, the jump branching to the address on the top
of the stack is one case in point ; all these stack indexing operations constitute
another case. I decided to add these "exotic" instructions partly because,
strange as they might appear to some, they are useful. Somewhere or other,
I encountered a virtual machine that employed a jump instruction similar to
the one just mentioned (I also tried one out in one of the Harrison Machine's
implementations-it was quite useful), so I included it. Similarly, a lot of time
is spent in accessing variables on the stack, so I added instructions that would
make such accesses quite easy to compile; I was also aware that things like
process control blocks and closures might be on stacks. I decided to add these
instructions to build up a good repertoire, a repertoire that is not restricted
to the instructions required to implement ALEX or one of the extensions
described in Chapter Five.

I do admit, though, that the mnemonics for many of the operations could
have been chosen with more care. (I was actually thinking that an assembler
could macro these names out .) One reason for this is that I defined the register
machine in about a day (the first ALEX machine was designed in about forty
five minutes!). Another (clearly) is that I am not terribly good at creating
mnemonics . I thought I'd better point these matters out before someone else
does.

I have made every effort to ensure that this text is free of errors . Undoubt
edly, they still lurk waiting to be revealed in their full horror and to show that
my proof-reading is not perfect . Should errors be found, I apologise for them
in advance.

Preface ix

Acknowledgements

Beverley Ford first thought of this book when looking through some notes 1
had made on abstract machines. 1 would like to thank her and her staff at
Springer, especially Catherine Drury, for making the process of writing this
book as smooth as possible.

My brother Adam should be thanked for creating the line drawings that
appear as some of the figures (I actually managed to do the rest myself). 1
would also like to thank all those other people who helped in various ways
while 1 was writing th is book (they know who they are).

l ain Craig
Market Square

Atherstone
14 Ju ne, 2005

Contents

1 Introduction . 1
1.1 Introduction 1
1.2 Interpreters. 3
1.3 Landin's SECD Machine 3
1.4 The Organisation of this Book 5
1.5 Omissions 7

2 VMs for Portability: BCPL . 11
2.1 Int roduction 11
2.2 BCPL the Language 12
2.3 VM Operations 15
2.4 The OCODE Machine 17
2.5 OCODE Instructions and their Implementation 18

2.5.1 Expression Instructions . 18
2.5.2 Load and Store Instructions 20
2.5.3 Instructions Relatin g to Routines 20
2.5.4 Control Instructions . 22
2.5.5 Directives 23

2.6 The Intcode/ Cintcode Machine 24

3 The Java Virtual Machine 27
3.1 Introduction 27
3.2 JVM Organisation: An Overview 28

3.2.1 The stack 29
3.2.2 Method areas 30
3.2.3 The PC register 31
3.2.4 Other st ructures 32

3.3 Class Files . 32
3.4 Object Representat ion at Runtime .. 40
3.5 Initialisation. 42
3.6 Object Deletion . 44

xii Contents

3.7 JVM Termination 45
3.8 Exception Handling 45
3.9 Instructions 46

3.9.1 Data-manipulation instructions 48
3.9.2 Control instructions 51
3.9.3 Stack-manipulat ing inst ructions . 54
3.9.4 Support for object orientation . 56
3.9.5 Synchronisat ion 59

3.10 Concluding Remarks 59

4 DIY VMs 61
4.1 Introduction 61
4.2 ALEX 62

4.2.1 Language Overview 62
4.2.2 What the Virtual Machine Must Support 65
4.2.3 Virtual Machine- Storage Structures 66
4.2.4 Virtu al Machine-Registers 68
4.2.5 Virt ual Machine-Instruction Set . 70
4.2.6 An Example .. 79
4.2.7 Implementat ion 81
4.2.8 Extensions 85
4.2.9 Alternatives 88
4.2.10 Specification 93

4.3 Issues 96
4.3.1 Indirect and Relative Jumps . 97
4.3.2 More Data Types 98
4.3.3 Higher-Order Routines 106
4.3.4 Pri mitive Rout ines 106

4.4 Concluding Remarks 107

5 More Stack-lBased VMs 109
5.1 Introduction 109
5.2 A Simple Object-Oriented Language 110

5.2.1 Language Overview 110
5.2.2 Virtual Machine-Storage Structures 111
5.2.3 Virtual Machine-Registers 113
5.2.4 Virtual Machine-Instruction Set 113
5.2.5 Extensions 116
5.2.6 Alternatives 116

5.3 A Parallel Language 117
5.3.1 Language Overview 117
5.3.2 Virtual Machine-Storage Structures 119
5.3.3 Virt ual Machine-Registers 121
5.3.4 Virtual Machine-Instruction Set 122
5.3.5 Implementation 124

Contents xiii

5.3.6 Extensions 126
5.3.7 Alternatives 128
5.3.8 Issues 129

5.4 Concluding Remarks 129
5.4.1 Some Optimisations 129
5.4.2 Combining the Languages 130

6 Case Study: An Event-Driven Language 131
6.1 Introduction 131
6.2 The Structure of Rules 133
6.3 Events 136
6.4 Execution Cycle 136
6.5 Interpretation Rules 138
6.6 VM Specification 141

6.6.1 States and Notational Conventions 142
6.6.2 Infra-Rule Transitions 145
6.6.3 Extra-Rule Transitions 148
6.6.4 VM-Only Trans itions 150
6.6.5 Introspective Operations 151

6.7 Rule Equivalences 153
6.8 Concluding Remarks 154

7 Flegister-13ased 11achines 157
7.1 Introduct ion 157
7.2 The Register-Transfer Model 158
7.3 Register Machine Organisation 161
7.4 Parrot-General Organisation 165
7.5 Parrot Instruction Set 168

7.5.1 Control instructions 169
7.5.2 Data management instructions 169
7.5.3 Register and stack operations 170

7.6 DIY Register-Based Virtual Machine 171
7.6.1 Informal Design 172
7.6.2 Extensions 176
7.6.3 Transition Rules 177

7.7 Translating ALEXVM into RTM 183
7.8 Example Code 186
7.9 Correctness of the Trans lation 186
7.10 More Natural Compilation 196
7.11 Extensions 200

xiv Contents

8 Implementation Techniques " 201
8.1 Stack-Based 11achines 202

8.1.1 Direct Implement ation 202
8.1.2 Translation 203
8.1.3 Threaded Code 207

8.2 Register Machines 209
8.2.1 Register sets 210
8.2.2 Addressing 210
8.2.3 Translation to Anot her V11 212

8.3 Using Transitions 212
8.4 Concluding Remarks 213

9 Open Issues 215
9.1 Security · 215
9.2 New Languages 216
9.3 Typed Inst ruct ion Sets and Intermediate Codes 216
9.4 High-Level Inst ruct ions 218
9.5 Additivity and Replacement 218
9.6 Compiler Correctness 218
9.7 Dynamic Code Insertion 219
9.8 Instrumentation 220
9.9 Including more Information about Source Code 221
9.10 Integration with Databases 222
9.11 Increased Inter-Op erability 222
9.12 Code Mobili ty 223
9.13 Small Platforms 224
9.14 Real-Time V11s 226
9.15 Code Morphing 227
9.16 Great er Optimisation 227
9.17 Operating System Const ructs 228
9.18 Virtual Machines for more General Portabili ty 229
9.19 Distribut ed V11s 229
9.20 Obj ects and V11s 229
9.21 Virtual V11s 230
9.22 By Way of a Conclusion 231

A Compiling ALEX 233
A.1 Introduction 233
A.2 Notational Conventions 233
A.3 Compilation Rules 235

B Harrison Machine Compilation Rules 241
B.1 Introduction 241
B.2 Compilatio n Rules 241

Contents xv

C Harrison Machine Instruction Set 257

References 261

Index 265

1

Introduction

1.1 Introduction

There are, basically, two ways to implement a programming language: compile
it or interpret it . Compilers are usually written for a single target machine;
the GNU C compiler is a partial counter-example, containing, as it does, code
generators for a number of target architectures (actually, the compiler has
to be compiled for a specific target and it is only the full distribution that
contains the complete set of code generators). Int erpreters are thought to be
slow but easy to port.

An interpreter can operate on the source structure of a program (as many
LISP interpreters do) or can execut e an internal form (for example, polish na
tation) , while virt ual machines combine both compilation and interpretation.
Virtual machines consist of a compiler and a target architecture implemented
in software. It contains a core that deals with the execution of code that has
been compiled into the instruction set for the virtual machine's software archi
tecture. The core executes these instructions by implementing the operations
defined by the instruction set (which can be seen as a form of emulat ion or
interpretation). Much of the traditional runtime package funct ionality asso
ciated with compiled code is implemented as part of a virtual machine; this
clearly serves as an invitation to expand available funct ionality to provide rich
execution environments for programs. It also opens up the possibility that tra
ditional linkage methods (as exemplified by the linkage editor or by dynamic
linkage of modules) can be eliminated in favour of more flexible methods.

Virtual machines are used as a method for ensuring portability, as well
as for the execut ion of languages that do not conform well (or at all) to the
architecture of the target architecture. As noted in the last paragraph , they
afford oppor tunities to enrich the execution environment as well as greate r
flexibility.

It is the case that code in compiled form executes considerab ly faster
than interpreted code, with interpreted code running at one or two orders of
magnitude slower than the correspondin g compiled form. For many, opt imising

2 1 Introduction

compilers are the sine qua non, even though the out put code can bear lit tle
resemblance to the source, thus causing verification problems (there is, and
never can be, a viable alternative to the selection of good or, yet better,
optimal algorithms) but optimising compilers are highly platform specific. The
virtu al machine is also a method for increasing the general speed of execut ion
of programs by providing a single site that can be tuned or improved by
additional techniques (a combinat ion of native code execut ion with virtual
machine code).

In a real sense, virt ual machines const itute an execut ion method that
combines the opport unities for compiler opt imisat ion with the advantages of
interpretation.

Although virt ual machines in the form of "abstract machines" have been
around for a long t ime (since the mid-1960s), the advent of Java has made
them a common (and even fashionable) technique for implementing new lan
guages, particularly those intended for use in heterogeneous environments. As
noted above, many languages (Prolog, Curry and Oz, to cite but th ree) have
relied upon virtual machines for a long time.

It is clear that the sense in which the term "virtual machine" is const rued
when considering execut ion environments for programs in particular program
ming languages relates to the other senses of the term. To const ruct a virt ual
machine for some programming language or other amounts, basically, to the
definition of mechanisms that correspond to the act ions of some computational
machine (processor) or other.1

In the sense of the term adopted in this book, existing hardware imposes no
constraints upon .the designer other than the semant ics of the programming
language to be executed on the virt ual machine. Thi s view now seems to
underpin ideas on the production of more general "virtual machines" that
are able to execute the code of more than one programming language and to
provide support to execut ing programs in other ways.

Virtual machines const itute an active research area . This book is intended
as an invitation to engage in and contribute to it . This is manifested in a
number of ways:

• The use of transitions as a way of specifying virtu al machine instructions.
(This leads to the idea of completely formal specifications, although this
is not followed up in this book-for a formal description of the JVM, [47]
is recommended.)

• The use of register-based virtu al machines. Most virtual machines are
based on stacks. In the register-based approach, it seems possible to widen
the scope of virt ual machines by providing more general instruction sets
that can be tailored or augmented to suit particular languages.

1 This latter sense is the one adopted by the designers of IBM's VM operating
system; it implemented the underlying hardware as a software layer.

1.3 Landin's SEeD Machine 3

• The idea of translat ing ("morphing") code from one virt ual machine for
execut ion on another. This ra ises correctness issues that are partially ad
dressed in this book.

1.2 Interpreters

Since the 1950s, it has been possible to execute programs in compiled form
or in interpreted form. LISP was originally implemented in interpreted form,
as was BASIC. The LISP interpreter was only a first stage of the project
(since then, ext remely high-quality LISP compilers have been built) but
BASIC was intended from the outset to be an interpreted language. Since
then, interpreters have been implemented for a great many languages.

Gries, in his [23], devotes a single chapter to interpreters. He gives the
example of the interpretation of the Polish form of a program and describes
the organisation of an interpreter, as well as runtime storage allocat ion. The
techniques involved in interpretation are a subset of those in compilation to
native code.

1.3 Landin's SEeD Machine

In [30], Landin introduced the SEeD machine. This was originally intended
as a device for describing the operational semantics of the A-calculus. Landin
showed how the machine could be used to implement a functional program
ming language called ISWIM ("If you See What I Mean"2). Since its intro
duction, the SECD machine has been adapted in various ways and used to
describe the operational semantics of a great many languages, some func
tional , some not. The machine has shown itself easy to adapt so that features
like lazy evaluation, persiste nce and assignment can easily be accommodated
within it .

Since the SECD machine is arguab ly the first virt ual machine (or "abstract
machine" as they used to be called), 3 , it is useful to sketch its major points.
A brief sketch of the machine occupies the remainder of this section.

The SECD machine gets its name from its main components or registers
(often erroneously called "stacks"):

S: The state stack.
E : The environment stack.
C: The contro l list .
D: The dump stack.

2 Many have observed that it should be "Do you See What I Mean"- DYSWIM
just doesn't have the ring, though.

3 I.e., the first thing to be called an "abstract machine" in technical usage and
almost certainly the first to be so called in the literature.

4 1 Introduction

Each of these components will be described in turn.
The S, state, register is a stack that is used for the evaluation of expres

sions. It is usually just called the stack. To evaluate an expression such as
5+3, the values are pushed onto the S register (in reverse order) and then the
operator + is applied to them. Just prior to the applicat ion of the addition
operation, the stack would be:

5 ·3 · . . .

After application of +, the S register becomes:

8· . ..

(The S register is assumed to grow to the left . The raised dot , ., just separates
the values.")

The E register is the environment register (usually just called the envi
ronment) . The environment contains variable bindings . That is, it conta ins
mappings from variables to their values. When a function is called, actual pa
rameters are supplied. The environment for a function will record the mapping
from formal to actual parameters, thus allowing the value of each parameter
to be looked up when it is required.

For example, consider the unary function f (x). When this function is ap
plied to an argument , say f (4), the binding of 4 to x is recorded somewhere
in the E register. Inside f , when the value of x is needed, it is looked up in
the environment and the value 4 is obtained. The environment is also used
to store the values of local variables. The code to access the environment,
both to bind and to lookup variable bindings is stored in the C register and
is produced by a compiler generating SECD machine code.

The C register contains a sequence of SECD machine instructions . It is
not really a stack but a simple list or vector . A pointer runs down the C
register, pointing to each instruction in turn; in other machines, this pointer
would be called the instruction point er or the program counter ; in most SECD
implementations , the topmost element in the C register is shown.

The instructions used by an implementation of the SECD machine define
what is to be done with the S, E and D registers (it is not impossible for
them to define changes to the C register but it is rather rare). For example,
the addition instruction states that the top two elements are to be popped
from S, added and the result pushed onto S.

The final register is the D register, or the dump. The dump is used when
the state of the machine must be stored for some reason. For example, when
a routine is called, the caller's local variables and stack must be saved so
that the called routine can perform its computat ions. In the SECD machine,
the registers are saved together in the dump when a routine is called. When
a routine exits, the dump 's topmost element is popped and the machine's
registers are restored.

4 It will be given a more precise interpretat ion later in this book.

1.4 The Organisation of this Book 5

To make this a little clearer , consider an SECD machine. It is described
by a 4-tuple 5 , E ,C, D . When a call is made within one routine to another
routine, the current instruction in the C register could cause the following
state transition:

s,e, e, d becomes 0, e', e', (s, e, e, d) . d'

That is, an empty stack is put into the 5 and a new environment established
in the E register; the code for the called routine is put into the C register.
Meanwhile, the dump contains a 4-tuple consisting of the state of the calling
routine. That state is suspended until the called routine exits .

On exit, the called routine executes an SECD machine instruction that
effects the following tr ansition:

s' ,e' ,e', (s,e,e, d) · d' becomes s, e, e,d'

I.e., everything is put back where it belongs! (Transitions, more completely
formalised, will be used later in this book.)

In addition, the SECD machine requires some storage management , typi
cally a heap with a garbage collector. In most implementations, the 5, E, C
and D registers are implemented as lists. This implies th at some form of heap
storage is required to manage them. The Lispkit implementation described in
[24] implements the three registers in this way and includes the (pseudo-code)
specification of a mark and sweep garbage collector.

There are many, different publications containing descriptions of the SECD
machine. The book by Field and Harrison [18], as well as Henderson's famous
book on Lispkit [24] are two, now somewhat old, texts containing excellent
descriptions of the SECD machine.

1.4 The Organisation of this Book

The chapter that immediately follows thi s (Chapter Two) is concerned with
the BCPL OCODE and Cintcode/Intcode machines (in older versions, the
bootstrap code was called Inteode, while in the newer, C-based, ones it is
called Cinteode). BCPL is a relatively old language, although one that still has
devotees, 5 that was always known for its portability. Portability is achieved
through the definition of a virtual machine, the OCODE machine, that ex
ecutes BCPL programs. The OCODE machine can be implemented from
scratch or bootstrapped using Cintcode Intcode, a process that involves the
construction of a simple virtual machine on each new processor that is used to
implement the full OCODE machine. The OCODE machine and its instruc
t ion set are described in that chapter.

Chapter Three contains a relatively short description of the Java Virtual
Machine (JVM) , possibly the most famous and widely used virtual machine

5 Such as t he aut hor.

6 1 Introduct ion

at the time of writing. The JVM's main st ruct ures are described, as is its
instruction set.

Doing it yourself" is the subject of Chapt er Four. First , a simple procedu
ral language, called ALEX, is introduced and informally defined. The main
semantic aspects of the language are identified. A simple stack-based virtual
machine for ALEX is then described in informal terms; this description is then
converted into an Algol-like notation. Some extensions to the virtual machine
(driven by extensions to the language) are then considered. An alternat ive or
ganisatio n for the virt ual machine is then proposed: it employs two stacks (one
for cont rol and one for data) rather than one, thus requiring alterations to the
definition of the instruction set. This machine is then specified using transi
tion rules. A compiler for a large subset of ALEX is specified in Appendix A;
the compiler translates source code to the single-stack virt ual machine.

The DIY theme cont inues in Chapte r Five. This chapter contains the de
scriptions of two virtual machines: one for a simple object-oriented language,
the other for a language for pseudo parallelism. The base language in both
cases is assumed to be the simple dialect of ALEX with which Chapter Four
started. In each case, extensions are considered and discussed (there appears
to be more to say about the pseudo-parallel language).

The idea of introducing the DIY virt ual machines is that they can be
intr oduced in a simple form and then subjected to extensions that suit the
various needs of different programming languages. Thus, the ALEX virt ual
machine starts with a call-by-value evaluat ion scheme which is later extended
by the addit ion of call by reference; ALEX first has only vectors but records
are added at a later stage . In addi tion, the DIY approach allows the extension
and optimisat ion of the instruction set to be discussed without reference to
an existing (and, hence, fixed) language and associated virtual machine.

By way of relief, an event-based language is considered in Chapter Six.
This language is somewhat different and has a semantics th at is not ent irely
procedural (although it contains procedural elements) and is not a st raight
pseudo-parallel language (although it can be related to one) ; the system was
designed (and implemented) as part of the aut hor's work on computational
reflect ion. The virtual machine is a mixture of fairly convent ional instructions,
instructions for handling events and event queues and, finally, instructions
to support (part of) the reflective behaviour that was desired. In order to
make the virtual machine's definition clearer, a more mathematical approach
has been adopted; tr ansitions specify the instructions executed by the virtual
machine. A compiler for the language executed by this virtual machine is
specified in Appendix B.

6 For readers not familiar wit h the term, "DIY" stands for "Do It Yourself" . It
usually refers to home "improvements" , often in kitchens and bathrooms. T he
resu lt is often remini scent of the detonation of a medium-ca libre artillery shell
(or so it seems from TV programmes on t he subject) . The author explicit ly and
publicly denies all and any knowledge of home improvements.

1.5 Omissions 7

An alternative to the stack-based virtual machine organisation is consid
ered in Chapter Seven. This alternative is based on the register-transfer model
of computer processors. An argument in favour of this model is first given;
this is followed by a short description of the Parrot virtual machine for Perl6
and Python (and, it is to be hoped, many other languages). After this, a DIY
register machine is described, first informally and then using transitions. After
considering possible extensions , a translation from the two-stack virtual ma
chine code to the register-based virtual machine is presented (it is intended as
a motivating example for code translation between virtual machines , an issue,
referred to as "code morphing" and discussed in Chapter 9). The correctness
of this translation is considered in a semi-formal way. Finally, a more natu
ral translation from ALEX to register-based code is considered before more
extensions are discussed.

Register-based virtual machines are discussed because they appear to be
an effective alternative to the more usual method of using stack (or zero
address) machines. The author experimented with such a virtual machine as
part of the work on the Harrison Machine, the system described in Chapter
Six (although not discussed there). The discovery that the Parrot group was
using a similar approach for Perl6 appeared a strong basis for the inclusion of
the topic in this book.

The implementation of virtual machines is considered in Chapter Eight.
Implementation is important for virtual machines: they can either be consid
ered theoretical devices for implementing new constructs and languages or
practical ways to implement languages on many and many platforms.

In Chapter Eight , a number of implementation techniques are considered,
both for stack- and register-based virtual machines. They include the direct
translation to a language such as C and to other virtual machines. The use of
different underlying organisations, such as threaded code, is also discussed.

The last chapter, Chapter Nine is concerned with what are considered to
be open issues for those interested in pushing forward the virtual machine ap
proach. This chapter is, basically, a somewhat loosely organised list-a brain
storming session-of ideas, some definitely worth investigating, some possibly
dead ends, that are intended to stimulate interest in further work.

1.5 Omissions

Virtual machines are extremely popular for the implementation of languages
of all kinds. It is impossible in a book of this length to discuss them all; it is
also impossible, realistically, to discuss a representative sample .

Prolog is a good example of a language that has been closely associated
with a virtual (or abstract) machine for a long time . The standard virtual
machine is that of Warren [52] (the Warren Abstract Machine or WAM). A
description of the WAM was considered and then rejected, mostly because of
the excellent book by Ait-Kaci [3] on the WAM. Readers interested in logic

8 1 Introduction

programming languages would be well advised to read and complete ly digest
[3]; readers just interested in virtual machines will also find it a pleasure to
read.

The Scheme language (a greatly tidied-up LISP dialect with static scope)
[28] has been associated with compilers since its inception. However , there is a
virtual machine for it ; it is described in [1] (the chapter on register machines).
T he implementat ion there can be used as the basis for a working implementa
tion (indeed, many years ago, the aut hor used it as a stage in the development
of a compiled system for experiment ing with reflect ion). Although intended
for und ergraduates, [1] is highly informative about Scheme (and is also a good
read).

Pascal was distributed from ETH , Zurich, in the form of an abstract ma
chine (VM) that could be port ed with relative ease. The UCSD Pascal system
was also based on an abstract machine. The notion of using a virtual machine
to enhance portability is covered below in the chapter on BCPL (Chapter 2).
BCPL is simpler in some ways than Pascal: it only has one primi tive type (th e
machine word) and a few derived types (tables and vectors) . BCP L's machine
is a lit tle earlier than that of Pascal, so it was decided to describe it . (BCPL
will also be less familiar to many readers" and was a major influence on the
design of C.)

Smalltalk [21] also has a virtual machine, which is defined in [21] in
Smalltalk. The Smalltalk VM inspired the pseudo-parallel virt ual machine
descr ibed in Chapte r 5; it was also influential in the design of the Harr ison
Machine (Chapter 6). A full descript ion of the Smalltalk VM would have taken
a considerable amount of space, so it was decided to omit it.

The Poplog system [42] , a syst em for AI programming that supports Com
monLISP, Prolog, Popll and Standard ML, uses a common virtual machine.
Popll is used for all systems programming, so the virt ual machine is tailored
to that language. However, the Lisp, Prolog and ML compilers are written in
Popll and generate virtual machine code. The Prolog compiler is based on
a conti nuation-pass ing model, not on the Warren Abstract Machine, so the
Poplog inst ruction set can be utilised directly. The Popll language is, in the
aut hor's opinion, worth studying in its own right ; the virt ual machine and the
compilation mechanisms are also worth st udy. The Poplog system distribution
contains on-line documentati on about itself.

There are many ot her virtual machines that could not be included in thi s
book. They include VMs for:

• Functional languages (e.g., the G-machine [25] and derivatives [39]; the
FPM [7]);

• Functional-logic programmi ng languages;
• Constraint languages (the Oz language is an interesting example).

7 The author hopes it brings a smile to the lips of British readers, as well as fond
and not-so fond memories.

1.5 Omissions 9

Some readers will also ask why no attention has been paid to Just-In Time
(JIT) compilers , particularly for Java. One reason is that this is a technique
for optimising code rather than a pure-virtual machine method. Secondly, JIT
compilers are a method for integrating nat ive code (compiled on the fly) with
a virtual machine. As such, it requires an interface to the virtual machine
on which other code runs. In the treatment of the Java virtual machine , the
nati ve code mechanism is outlined; this is one method by which native code
methods can be integrated.

Given the plethora of virtual machines, the reader might ask why it was
decided to describe only three mainstream ones (BCPL , Java and Parrot)
and to rely on (probably not very good) home-grown ones. The reasons are
as follows:

• If the book had been composed only of descript ions of exist ing virtual
machines, it would be open to the accusation that it omits the X virtual
machine for language L . This was to be avoided.

• Home-grown ones could be developed from scratch, thus making clear the
principles that underpin the development of a virtual machine.

• In the mainstream, only the Java virtual machine combines both objects
and concurrency. It was decided to present new, independent virtual ma
chines so that differences in language could be introduced in various ways.
The home-grown approach allows language and virtual machine features
to be included (or excluded) ad libitum (even so, an attempt has been
made to be as comprehensive as possible within the confines of a book of
this length-hence the various sections and subsections on extensions and
alternatives).

• At the time of writing, the Parrot virtual machine app ears to be the only
generally available one based on th e register-transfer model. The author
independently came to conclusions similar to those of the designers of
Parro t as to the merits of register-based machines (and on treating vir
tual machines as dat a structures) and want ed to argue for this alternat ive
model. As a consequence, the mapping between stack- and register-based
models was of importance (as are some of the suggest ions for further work
in the Chapter 9).

• The derivation of t ransit ions specifying many virtual machines would not
have been possible in the time available for the writ ing of this book. Fur
thermore, an exist ing virtual machine is an ent ity, so the introduction of
new instructions (e.g., branches or absolute jumps) would have been less
convincing; the ad hoc virtual machines described below can be augmented
as much as one wishes. 8

8 Interested readers are actively encouraged to implement the virtual machines in
this bookand augment them as theyseefi t , as well as introducing newinstructions
by defining new transitions.

10 1 Introduction

• Finally, the definition of a virtual machine can be a testing, rewarding and
enjoyable exercise. An aim of the current book is to encourage people to
do it for themselves and to use their imagination in defining them.

2

VMs for Portability: BCPL

2.1 Introduction

BCPL is a high-level language for systems programming that is intended to be
as portable as possible. It is now a relatively old language but it contains most
syntact ic const ructs found in contemporary languages. Indeed, C was designed
as a BCPL derivative (C can be considered as a mixture of BCPL and Algol68
plus some sui generis features). BCPL is not conventionally typed. It has one
basic data type, th e machine word. It is possible to ext ract bytes from words
but this is a derived operation. All ent ities in BCPL are considered either to
be machine words or to require a machine word or a number of machine words.
BCPL supports addresses and assumes that th ey can fit into a single word.
Similarly, it supports vectors (one-dimensional arrays) which are sequences
of words (multi-dimensional arrays must be explicit ly programmed in terms
of vectors of point ers to vectors). Routines (procedures and functions) can
be defined in BCPL and are represented as pointers to their ent ry point s.
Equally, labels are addresses of sequences of instructions.

BCPL stands for "Basic CPL" , a subset of the CPL language. CPL was
an ambit ious lexically scoped, imperative procedural programming language
designed by Str achey and others in the mid-1960s as a joint effort involving
Cambridge and London Universit ies. CPL cont ained all of the most advanced
language const ructs of the day, including polymorphism. There is a story th at
the compiler was too large to run on even th e biggest machines available in
th e University of London! Even though it strictly prefigures th e structured
programming movement , BCPL contains st ructured control const ructs (com
mands) including two-branch conditionals, switch commands, st ructured loops
with st ructured exits . It also supports statement forrnulee similar to those in
FORTRAN and the original BASIC. Recursive routines can be defined. BCPL
does support a goto command. Separate compilat ion is support ed in part by
the provision of a "global vector", a vector of words that contains point
ers to externally defined routines. BCPL is lexically scoped. It implements
call-by-value semantics for routine parameters. It also permits higher-order

12 2 VMs for Portability: BCPL

programming by permitting routine names to be assigned to variables (and,
hence, passed into and out of routines) .

BCPL was intended to be portable. Portability is achieved by bootstrap
ping the runtime system a number of times so that it eventually implements
the compiler 's output language. This language is called OCODE. OCODE is
similar to a high-level assembly language but is tailored exactly to the in
termediate representation of BCPL constructs. OCODE was also defined in
such a way that it could be translated into the machine language of most
processors. Associated with OCODE is an OCODE machine that , once im
plemented, executes OCODE, hence compiled BCPL . The implementation of
an abstract machine for OCODE is relatively straigthforward.

In the book on BCPL [45], Richards and Whitby-Strevens define a second
low-level intermediate language called Intcode. Intcode is an extremely simple
language that can be used to bootstrap OCODE. More recently, Richards has
defined a new low-level bootstrap code called Cintcode. The idea is that a
fundamental system is first written for IntcodejCintcode. This is then used
to bootstrap the OCODE evaluator. The definition of the Intcode and Cint
code machines is given in the BCPL documentation. The BCPL system was
distributed in OCODE form (more recent versions distribute executables for
standard architectures like the PC under Linux) . At the time the book was
published, an Intcode version of the system was required to bootstrap a new
implementation.

The virtual machines described below are intended, therefore, as an aid to
portability. The definitions of the machines used to implement OCODE and
IntcodejCintcode instructions include definitions of the storage structures and
layout required by the virtual machine , as well as the instruction formats and
state transitions.

The organisation of this chapter is as follows. We will focus first on BCPL
and its intermediate languages OCODE and IntcodejCintcode (Cintcode is
part of the current BCPL release and access to the documentation is rela
tively easy) . We will begin with a description of the OCODE machine . This
description will start with a description of the machine's organisation and then
we move on to a description of the instruction set. The relationship between
OCODE instructions and BCPL's semantics will also be considered . Then,
we will examine Cintcode and its abstract machine. Finally, we explain how
BCPL can be ported to a completely new architecture.

2.2 BCPL the Language

In this section, the BCPL language is briefly described.
BCPL is what we would now see as a relatively straightforward procedural

language . As such, it is based around the concept of the procedure. BCPL
provides three types of procedural abstraction:

• Routines that update the state and return no value;

2.2 BCPL the Language 13

• Rout ines that can update the state and retu rn a single value;
• Rout ines that just compute a value.

The first category refers to procedures proper, while the second corresponds
to the usual concept of function in procedural languages. The third category
corresponds to the single-line functions in FORTRAN and in many BASIC
dialects. Each category permits the programmer to pass parameters, which
are called by value.

BCPL also supports a variety of function that is akin to the so-called "for
mula functio n" of FORTRAN and BASIC. This can be considered a variety
of macro or open procedure because it declares no local variables.

BCP L supports a variety of state-modifying constructs. As an imperative
language, it should be obvious that it contains an assignment statement . As
signment in BCPL can be simple or mult iple, so the following are bot h legal:

x : = 0 ;
x , y ; = 1, 2;

It is worth not ing that terminating semicolons are optional. They are
mandatory if more than one command is to appear on the same line as in:

x := 0 ; y ;= 2

Newline, in BCPL, can also be used to terminate a statement . Th is is
a nice feature , one found in only a few othe r languages (Eiffel and Imp, a
language used in the 1970s at Edinb urgh University) .

Aside from this syntactic feature , the multiple assignment gives a clue that
the underlying semantics of BCPL are based on a stack.

In add it ion, it contains a number of branching const ructs:

• IF . . . DO.l This is a simple test . If the test is true, the code following the
DO is executed. If the test is false, the entire statement is a no-operat ion.

• UNLESS . . . DO. This is synt actic sugar for IF NOT . . . DO. That is, the
code following the DO is executed if the test fails.

• TEST . . . THEN . . . ELSE. This corresponds to the usual if then else in
most programming languages.

• SWITCHON. This is direct ly ana logous to the case statement in Pascal and
its descendants and to the switch statement in C and its derivatives . Cases
are marked using the CASE keyword. Cases run into each other unless
explicitly broken. There is also a an opt ional default case denoted by a
keyword . Each case is implicitly a block.

In general, t he syntax word do can be interchanged with then. In the above
list , we have followed the convent ions of BCPL style.

BCPL contains a number of iterative statements. The iterative statements
are accompan ied by structured ways to exit loops.

1 Keywords must be in uppercase, so the convention is followed here.

14 2 VMs for Portability: BCPL

BCPL has a goto, as befits its age.
BCPL statements can be made to return values. This is done using the

pair of commands VALOF and RESULTIS. The VALOF command introduces a
block from which a value is returned using the RESULTIS command; there can
be more than one RESULTIS command in a VALOF block. The combinat ion of
VALOF and RESULTIS is used to retu rn values from functions. The following
is a BCPL procedure:

LET Add.Global (x) BE
$(

globl := globl + x;
$)

The following is a BCPL funct ional routine:

LET Global .Added.Val (x) =
$(

VALOF $(

RESULTIS(x+globl) ;
$)

$)

From this small example, it can be seen th at the body of a procedure
is marked by the BE keyword , while functional rout ines are signalled by the
equals sign and the use of VALOF and RESULTIS (BCPL is case-sensitive).

BCPL is not convent ionally typed. It has only one dat a type, the machine
word , whose size can change from machine to machine. The language also
contai ns operato rs that access the bytes within a machine word. Storage is
allocated by the BCPL compiler in units of one machine word. The language
contai ns an operator that returns the address of a word and an operator that,
given an address, ret urns the contents of the word at th at address (derefer
eneing).

BCPL supports st ruct ured types to a limited extent . It permits the defi
nition of vectors (single-dimension arrays of words). It also has a table type.
Tables are vectors of words that are indexed by symbolic constants , not by
numerical values. In addit ion, it is possible to take the address of a routine
(procedure or function) ; such addresses are the entry points of the routines
(as in C). The passing of routine addresses is the method by which BCPL
supports higher-order routines (much as C does).

It also permits the definition of symbolic constants. Each constant is one
machine word in length.

BCPL introduces ent it ies using the LET syntax derived from ISWIM. For
example, the following introduces a new variable that is init ialised to zero:

LET x := 0 IN

The following introduces a constant :

2.3 VM Operations 15

LET x = 0 IN

Multiple definitions are separated by the AND keyword (logical conjunc
tion is represented by the "&" symbol) as in:

LET x := 0
AND Y = 0
IN

Routines are also introduced by the LET construct .
Variables and constants can be introduced at the head of any block.
In order to support separate compilat ion and to ease th e handling of the

runtime library, a global vector is supported. This is a globally accessible vector
of words, in which the first few dozen ent ries are init ialised by the runtime
system (they are initialised to library routine ent ry points and to globally
useful values). The programmer can also assign to the global vector at higher
locations (care must be taken not to assign to locations used by the system).
These are the primary semant ic const ructs'of BCPL . Given this summary, we
can now make some observations about the support required by the virtual
machine (the OCODE machine).

2.3 VM Operations

The summary of BCPL above was intended to expose the major constructs.
The identification of major const ructs is important for the design of a virtual
machine which must respect the semant ics of the language as well as providing
the storage st ructures required to support the language.

At this stage, it should be clear that a BCPL machine should provide sup
port for the primit ive operations needed for the manipulation of dat a of all
primitive types. The virtual machine support for them will be in the form of
instructions that the machine will directly implement . In BCPL , this implies
that the virtual machine must support operations on the word type: arithmetic
operations, comparisons and addressing. Byte-based operations can either be
provided by runtime library operations or by instructions in the virtual ma
chine; BCPL employs the latter for the reason that it is faster and reduces
the size of the library. In addition, BCPL supports vectors on the stack; they
must also be addressed when designing an appropriate virt ual machine.

The values manipulated by these operations must be stored somewhere: a
storage area, particularly for temporary and non-global values must be pro
vided. Operations are required for manipulating thi s storage area. Operations
are also required to load values from other locations and to store them as
results. More than one load operation might be required (in a more richly
typ ed language, this might be a necessity) and more th an one store operat ion
might be required. It is necessary to look at the cases to determine what is
required.

16 2 VMs for Portability: BCPL

BCPL employs static scoping. The compiler can be relied upon to ver
ify that variables , etc ., are not required. Static scoping requires a stack-like
mechanism for the storage of variables. The virtual machine is, therefore, built
around a stack. Operations are required to allocate and free regions of stack
at routine entry and exit ; the return of results can also be implemented by
means of stack allocation and addressing. The compiler generates instructions
that allocate and free the right amount of stack space; it also generates in
structions to handle returned values and the adjustment of the stack when
routines return. Evaluation of expressions can be performed on the stack, so
we now are in a position to define the instructions for data manipulation.

With expressions out of the way, the following families of construct must
be handled by the compiler and OCODE instructions generated to implement
them:

• Control constructs, in particular, conditionals, iteration, jumps;
• .Assignment;
• Routine call and return;
• Parameter passing and value return from routines and valof.

Note that we assume that sequencing is handled implicitly by the compiler.
Control structure is handled, basically, by means of labels and jumps.

There are clear translations between most of the control structures and label
jump combinations. The problem cases are FOR and SWITCHON. The former
is problematic because it requires counters to be maintained and updated in
the right order ; the latter because the best implementation requires a jump
table.

Assignment is a relatively straightforward matter (essentially, push a value
onto the stack and pop it off to some address or other) . Multiple assignment is
also easy with a stack machine. The values are pushed onto the stack in some
order (say left to right) and popped in the reverse order . Thus, the command:

p,q := 1, 2

has the intention of assigning 1 to p and 2 to q. This can be done by pushing
1, then 2 onto the stack and assigning them in reverse order. An interesting
example of multiple assignment is:

p,q := q, p

Swap! It can be handled in exactly the manner just described.
Finally, we have routine calls and VALOF. There are many ways to im

plement routine calls. For software virtual machines, relatively high-level in
structions can be used (although low-level instructions can also be employed).
The OCODE machine provides special instructions for handling routine entry
and exit , as will be seen.

BCPL is a call-by-value language , so the runtime stack can be directly
employed to hold parameter values that are to be passed into the routine.

2.4 The OeODE Machine 17

The VALOF ... RESU LTIScombination can be handled in a variety of ways.
One is to perform a source-to-source transformation. Another is to use the
stack at runtime by introducing a new scope level. Variables local to the
VALOF can be allocated on the runtime stack with the stack then being used
for local values until the RESULTIS is encountered. An implementation for
RESULTIS would be to collapse the stack to the point where the VALOF was
encountered and then push the value to be returned onto the stack.

2.4 The OeODE Machine

In this section, the organisation of the OCODE machine is presented. BCPL
is a procedural programming language that supports recursion . It requires a
globally accessible vector of words to support separate compilation. It also re
quires a pool of space to represent global variables . The language also permits
the use of (one-dimensional) vectors and tables (essentially vectors of words
whose elements are indexed by symbolic ident ifiers, much like tables in assem
bly language). As a consequence, the OCODE machine must reserve space for
a stack to support lexical scope and for recursion . The OCODE machine also
needs space to hold the global vector and also needs a space to hold program
instructions.

P ! (5 - 2)

..- globals ----- sta

""G p

P ! (5 - 1)
ck ~ I

I
I

I
I

Next free
stack cell

Fig. 2.1. The OeODE machine organisation.

The OCODE machine has three memory regions:

• The Global vector ;
• The Stack (this is a framed stack) ;
• Storage for program code and static data.

18 2 VMs for Portability : BCPL

The organisation of the OCODE machine is shown in Figure 2.1.
The global vector is used to store all variables declared global in the pro

gram. The global vector is a vector of words containing global variables; it
also contains the entry points of routines declared in one module that are to
be made visible in another. It is pointed to by the G register. The current
stack frame is pointed to by the P register. The size of the current stack frame
is always known at compilat ion time, so it need not be represented in code by
a register.

There is also a special A register which is used to hold values returned by
functions (see below).

Stat ic variables, tables and string constants are stored in the program area .
They are referenced by labels which are usually represented by the letter L
followed by one or more digits.

The stack holds all dynamic (local) variables.
All variables are of the same size. That is, all variables are allocated the

same amount of space in the store. For most modern machines they are 32
or 64-bits in length.

2.5 OeODE Instructions and their Implementation

In OCODE, instructions are represented as integers. Here, we will use only
the mnemonic names in the interests of readabi lity. It is important to note
that the mnemonic form for inst ruct ions and labels must be converted into
more fundamental representations when code is emitted by the compiler.

The size of the current stack frame is always known at compile time. When
specifying instructions, a variable, 8, is used to denote an offset from the start
of the current stack frame. This is done only to show how much space is left
in the current stack frame by the individual instructions.

When defining abst ract machine instructions, an arr ay notation will be
employed. Thus, P is considered as a one-dimensional vector. 8 will still be a
constant denoting the size of th e current stack frame. Similarly, Gwill also be
considered as an array.

The notation P[8-1] denotes the first free element on the stack.

2.5.1 Expression Instructions

The OCODE instructions that implement expressions do not alter th e stack
frame size. In the case of unary instructions, the operand is replaced on the top
of the stack by the result of the instruction. In the case of binary operations ,
the stack element immediately beneath the top one is replaced by the result .

The instructions are mostly quit e clear . Rather than enter into unnecessary
detail, t hese instructions are summarised in Table 2.1 The table's middle
column is a short English equivalent for the opcode.

2.5 OCODE Instruct ions and their Implementation 19

Only the first inst ruct ion deserves any real comment . It is an inst ruct ion
that considers the current top-of-stack element as a pointer into memory. It
replaces the top-of-stack element by the object that it poin ts to. This is the
opera t ion of dereferencing a pointer to yield an r-value.

Table 2.1. OeOD E expression ins tructions .

Opcode Description Definition
RV r-value P [8-1] := cts([8-1])

AB8 absolute value P [8- 1] := abs(P [8-1])

NEG unary minus P [8-1] : = -P[8-1]

NOT logical negation P [8-1] : = --,(P [8- 1])

GETBYTE extract byte P [8-2] := P[8-2] gtb P[8-1]

MULT multiply P [8-2] : = P [8-2] * P [8-1]
DIV divide P [8-2] : = P[8- 2] / P [8-1]

REM remainder P [8-2] := P[8-2] rem P[8-1]

PLU8 add P [8-2] : = P[8-2] + P[8-1]

MINU8 subtract P [8-2] : = P[8-2] - P [8-1]
EQ equal P [8-2] := P[8-2] = P [8-1]

NE not equal P [8-2] : = P[8-2] :/= P[8-1]
L8 less than P [8- 2] : = P[8-2] < P [8- 1]

GR greater than P [8-2] : = P [8-2] > P [8-1]

LE < P [8-2] := P [8-2] <= P [8-1]

GE > P [8-2] : = P [8-2] >= P [8-1]

L8HIFT left shift P [8-2] : = P[8-2] « P [8-1]

R8HIFT right shift P [8-2] : = P[8-2] » P [8-1]

LOGAND logical and P [8-2] : = P[8-2] and P[8-1]

LOGOR logical or P [8-2] : = P[8-2] or P [8-1]
EQV bitwise equal P [8-2] : = P[8-2] leq P [8-1]
NEQV xor P [8-2] := P[8-2] xor P[8-1]

Table 2.1 employs a notational convent ion t hat needs explanation:

• cts is the conte nts operation (dereferences its argument).
• abs is the absolute value of its argument.
• gt b is the getbyte operator.
• rem is integer remainder after division .
• and is logical and (conjunct ion) .
• or is logical or (disjunction).
• leq is bitwise equivalence.
• xor is bitw ise exclusive or (logical not-equivalence).
• e l << e2 is left shift e1 by e2 bit s.
• e l >> e 2 is right shift el by e2 bits.

Other than this, the "descript ion" of each inst ruct ion is just an operat ion
on the OeODE st ack. In this and the following cases, the code equivalent is

20 2 VMs for Portability: BCPL

included in the table; when defining virtual machines later in this book, this
method will be used to indicate both "descript ions" and implementations of
virt ual machine instructions.

2.5.2 Load and Store Instructions

The load and store instruct ions, like those for expressions, should be fairly
clear. The code equivalents are included in the right-hand column of Table
2.2. Each inst ruction is described (middle column of the table).

Table 2.2. OCODE load and store instru cti ons.

Opcode Descript ion Definition
LPn load from P P[8] := P[n] ; 8 := 8+1
LG n load global P[8] := G[n] ; 8 := 8+1
LL Ln load label P[8] := Ln ; 8 := 8+1
LL Pn load address P[8] := P[n]; 8 := 8+1
LL Gn load global addr P[8] ;= G[n]; 8 := 8+1
LLL Ln load label addr P[8] := Ln ; 8 := 8+1
8Pn store off P P[n] := P[8] ; 8 := 8-1
8Gn store global G[n] := P[8] ; 8 ;= 8-1
8L Ln store at label Ln := P[8] ; 8 := 8-1
LF Ln load function P[8] := ent ry point Ln ;

8 := 8+1
LNn load constant P[8] := n ; 8 := 8+1
TRUE true P[8] := true; 8 := 8+1
FAL8E false P[8] := false; 8 := 8+1
L8TR n 0 1 . . . On load string P[8] .= "Ol . . . On"; 8 := 8+1
8TIND store index cts (P[8-1]) := P[8-2] ; 8 := 8-2
PUTBYTE put byte setbyte(P[8-2] ,P[8-1]) .=

P[8-3] ; 8 := 8-3

There is an instruction not included in Table 2.2 that appears in the
OeODE machine specification in [44]. It is the QUERY instruction. It is de
fined as:

pes] := ?; S := S+1

Unfort unately, [44] does not contain a description of it . The remaining in
structions have an interpretat ion that is fairly clear and is included in the
table. It is hoped that the relatively brief description is adequate.

2.5.3 Instructions Relating to Routines

This class of instruction deals with rout ine entry (call) and return. When it
compiles a routine, the OeODE compiler generates code of the following form:

2.5 OeODE Instructions and their Implementat ion 21

ENTRY Li n Cl .. . Cn
SAVE s
<body of r outine>
ENDPROC

Here, Li is the label of the routine's entry point. For debugging purposes,
the length of the routine's identifier is recorded in the code (this is n in the
code fragment); the characters comprising the name are the elements denoted
Cl to Cn. The instructions in this category are shown in Table 2.3.

The SAVE instruction specifies the initial setting of the S register. The
value of this is the save space size (3) plus the number of formal parameters.
The save space is used to hold the previous value of P, the return address and
the routine entry address. The first argument to a routine is always at the
location denoted by 3 relative to the point er P (some versions of BCPL have
a different save space size, so the standard account is followed above).

The end of each routine is denoted by ENDPROC. Th is is a no-op which
allows the code generator to keep tr ack of nested procedure definitions.

The BCPL standard requires that arguments are allocated in consecutive
locations on the stack. There is no a priori limit to the number of arguments
that can be supplied. A typical call of the form:

E(El , . . . , En)

is compiled as follows (see Table 2.3). First , S is incremented to allocate space
for the save space in the new stack frame. The arguments El to En are com
piled and then the code for E. Finally, either FNAP k or RTAP k instruction is
generat ed, the actu al one depending upon whether a function or routine call
is being compiled. The value k is the distance between the old and new stack
frames (i.e., the number of words or bytes between the start of the newly
compiled stack frame and the start of the previous one on the stack).

Ta b le 2 .3 . OeODE instructions for routines.

Opcode Meanin g
ENTRY ente r rout ine
SAVE save locals
ENDPROC end rout ine
FNAPk apply function
RNAPk apply procedure
RTRN return from procedure
FNRN return from function

Return from a rout ine is performed by the RTRN instruction. This restores
the previous value of P and resumes execution from the return address. If
the return is from a function , the FNRN instruction is planted just after the

22 2 VMs for Portability: BCPL

result has been evaluated (this is always placed on the top of the stack) . The
FNRN inst ruct ion is ident ical to RTRN after it has stored the result in the A
register ready for the FNAP instruct ion to store it at the required locat ion in
the previous stack frame.

2.5 .4 Control Instructions

Control instruct ions are to be found in most virtual machines . Their functio n is
centred around the t ransfer of control from one point to anot her in the code.
Included in this set are instruct ions to create labels in code. The OCODE
control instructions are shown in Figure 2.4.

Table 2.4. OeODE control instructions.

Opcode Meaning
LAB Ln declare label
JUMP Ln unconditionally jump to label
JT Ln jump if top of stack is true
JF Ln jump if top of stack is false
GOTO E computed goto (see below)
RES Ln return
RSTACK k return
SWITCHON n Ld K 1 L 1 • •• L n jump table for a SWITCHON.
FINISH terminate execution

The JUMP Ln instruction transfers control uncondit ionally to the label L.

The instructions JT and JF transfer control to t heir labels if the top of the
stack (implemented as P ! (S-1)) is true or false, respectively. Instructions like
this are often found in the instruction sets of virtual machines. The conditional
jumps are used , inter alia, in the implementation of selection and iteration
commands.

Although they are particular to OCODE, the other instructions also rep
resent typical operations in a virtual machine . The LAB instruction (really a
pseudo-operation) declares its operand as a label (thus associating the add ress
at which it occurs with the label). .

The GOTO instruction is used to generate code for SWITCHON commands.
It takes the form GOTO E, where E is an express ion. In the generated code,
the code for E is compiled and immediately followed by the GOTO instruction.
At runtime, the expression is evaluated, leaving an address on the top of the
stack. The GOTOinst ruction then transfers control to t hat address.

The RES and RSTACK instructions are used to compile RESULTIS com
mands. If the argument to a RESULTIS is immediately returned as the result
of a funct ion, the FNRN instructio n is selected . In all other contexts, RESULTIS
e compiles to the code for e followed by the RES Ln instruction. The execu
tion of this instruction places the result in the A register and then jumps to

2.5 OeODE Instructions and their Implementation 23

the label Ln. The label addresses an RSTACK k instruction, which takes the
result and stores it at location P! k and sets S to k+1.

The OCODE SWITCHON instr uct ion performs a jump based on the value on
the top of the stack. It is used to implement switches (SWITCHONcommands,
otherwise known as case statements). It has the form shown in Table 2.4, where
n is the number of cases to which to switch and Ld is the label of the default
case. The K, are the case constants and the L, are the corresponding code
labels.

Finally, the FINISH instr uct ion implements the BCPL FINISH command.
It compiles to s t op (O) in code and causes execut ion to ter minate.

2.5.5 Directives

It is intended that BCPL programs be compiled to OCODE (or native code)
and then executed in their entirety. The BCPL system is not intended to
be incremental or interactive. It is necessary, therefore, for the compiler to
provide information to the runt ime system that relates to the image file that
it is to execute. This is the role of the directives.

The BCPL OCODE machine manages a globals area, a stack and a code
segment . The runtime system must be told how much space to allocate to
each. It must also be told where globals are to be located and where literal
pools start and end, so that modules can be linked. The system also needs
to know which symbols are exported from a module and where modules start
and end.

The BCPL global vector is a case in point . There is no a priori limit on
the size of the global vector. In addit ion, two modules can assign different
values to a particular cell in the global vector (with all the ordering problems
that are so familiar).

The OeODE generato r also needs to be handed information in the form
of direct ives. The directives in the version of BCPL that is current at the time
of writing (Summer, 2004) are as shown in Table 2.5. The direct ives are used
in different parts of the system, so are briefly explained in the following few
paragraphs.

Table 2.5. OeODE direciioes.

Directive
STACK s
STORE
ITEMN n
DATALAB Ln
SECTION
NEEDS
GLOBAL n K IL l . . . K nLn

24 2 VMs for Portability: BCPL

The STACK directive informs the code generator of the current size of the
stack. This is required because the size of the current stack frame can be
affected by some control structures, for example those that leave a block in
which local variables have been declared .

The STORE directive informs the code generator that the point separating
the declarations and code in a block has been reached . Any values left on the
stack are to be treated as variable initialisations and should be stored in the
appropriate places.

Static variables and tables are allocated in the program code area using
the ITEMN directive . The parameter to this directive is the initial value of the
cell that is reserved by this directive. For a table, the elements are allocated
by consecutive ITEMN directives . The DATALAB directive is used to associate a
label with a data area reserved by one or more ITEMN directives.

The SECTION and NEEDS directives are direct translations of the SECTION
and NEEDS source directives. The latter are used to indicate the start of a
BCPL module and the modules upon which the current one depends.

An OCODE module is terminated with the GLOBAL directive. The argu
ments denote the number of items in the global initialisation list and each of
the K, are offsets into the global vector and Ln is the label of the correspond
ing offset (i.e., KiLi denotes an offset and the label to be associated with that
offset).

Directives are an important class of virtual machine instruction, although
little more will be said about them. One reason for this is that, once one
becomes aware of their need, there is little else to be said . A second reason
is that, although every system is different , there are things that are common
to all-i-in this case, the general nature of directives. It is considered that
the directives required by any virtual machine will become clear during its
specification.

2.6 The IntcodejCintcode Machine

The Intcode/Cintcode machine is used to bootstrap an OCODE machine on
a new processor; it can also serve as a target for the BCPL compiler's code
generator. The code is designed to be as compact as possible. The Cintcode
machine was originally designed as a byte-stream interpretive code to run
on small 16-bit machines such as the Z80 and 6502 running under CP1M.
More recently, it has been extended to run on 32-bit machines, most notably
machines running Linux.

The best descriptions of the Intcode and Cintcode machines are [45] and
[44], respectively. Compared with OCODE, (Ci/I)ntcode is an extremely com
pact representation but is somewhat more complex. The complexity arises be
cause of the desire to make the instruction set as compact as possible; this is
reflected in the organisation which is based on bit fields. The organisation of
the machine is, on the other hand , easily described. The following description

2.6 T he Intcodej Cintcode Machine 25

is of the original Intcode machine and follows that in [45] (the account in [44]
is far more detailed but is essentially the same in intent).

The Intcode machine is composed of the following components . A mem
ory consisting of equal-sized locations that can be addressed by consecutive
integers (a vector of words, for example). It has a number of central registers:

A ,B: the accumulator and auxiliary accumulator;
C : the control register. This is the inst ruction pointer; it points to the next

instruction to be executed;
D: the address register, used to store the effective address of an instruction ;
P : a pointer that is used to address the current stack fram e;
G: a pointer used to access the global vector.

Note that the Intco de machine has a framed stack and a global vector (both
necessary to implement OeODE) .

Instruct ions come in two lengths: single and double length. The compiler
dete rmines when a double-length inst ruct ion should be used.

The operations provided by the Intcode machine are shown in Table 2.6
(the idea is taken from [45], p. 134; the specification has been re-written
using mostly e conventions). As in the OeODE instructions, each operation
is specified by a code fragment .

Table 2.6. The Intcode machine fun ctions.

Operation Mnemonic Specification
Load L B := A: A := D
Sto re S *D := A
Add A A := A + D
J ump J C := D
J ump if true T IF A THEN C := D
J ump if false F IF NOT A THEN C := D
Ca ll routine K D := P + D

*D := P; *(D+l) := C
P := D; C := A

Execute operation X Various operations, mostly arithmetic of
logical operations operating on A
and B.

Each Intcode instruction is composed of six fields. They are as follows:

• Function Part : This is a three-bit field. It specifies one of the eight possible
machine operations described in Table 2.6.

• Address Field: This field holds a posit ive integer . It represents the init ial
value of the D register.

• D bit : This is a single bit . When set, it specifies that the initial value of
the D register is to be taken from the following word.

26 2 VMs for Portability: BCPL

• P bit: This is single bit . It specifies whether the P register is to be added
to the D register at the second stage of an address calculation.

• G bit: This is another single bit field. It specifies whether the G register
is to be added to the D register at the end of the third stage of address
calculation.

• I bit : This is the indirection bit . If it is set , it specifies that the D register
is to be relaced by the contents of the location addressed by the D register
at the last stage of address calculation.

The effective address is evaluated in the same way for every instruction and
is not dependent upon the way in which the machine function is specified.

Intcode is intended to be a compact representation of a program. It is also
intended to be easy to implement, thus promoting BCPL's portability (the
BCPL assembler and interpreter for Intcode occupies just under eight and a
half pages of BCPL code in [45]).

The Intcode machine also uses indirection (as evidenced by the three
stage address calculation involving addresses in registers), thus making code
compact.

This has, of necessity, been only a taster for the Intcode and Cintcode
machines . The interested reader is recommended to consult [44] and [45] for
more information. The full BCPL distribution contains the source code of the
OCODE and Cintcode machines; time spent reading them will be rewarding .

3

The Java Virtual Machine

3.1 Introduction

It is arguable that Java and its "compile once, run anywhere" slogan started
the current interest in virtual machines; indeed, it would appear to have pop
ularised the term "virtual machine" .

This chapt er is organised as follows. First , the Java language is briefly in
t roduced. Next , the gross organisat ion of the Java Virt ual Machine-the JVM
for short-will be described. In that sect ion, the storage organisat ion used by
the JVM and the organisat ion of the stack is presented and major concepts
such as t he Runt ime Constant Pool and its contents, including the method
areas and class file representation are int roduced. T he inst ruct ion pointer (or
program counter- pc in JVM terms) is also briefly discussed . T his is followed
by a relatively short description of the "class file" , a run tim e representation
of each class; this descript ion is followed by a brief out line of so-called "class
resolut ion," the process of locat ing and loading classes at run time.

Section 4 is concerned wit h the J VM's instruction set. The inst ruction set
can be described in a number of ways. A subset of the instruction set is clearly
typed, while another is not . Some inst ruct ions are at a relatively high level
(e.g., those dealing with locks and except ion), while others (e.g., jumps and
arithmetic) are not. Finally, there are special-purpose instruct ions direct ly
tailored to Java 's needs: t hose dealing with locks, monitors, and method and
dat a location, for example.

The final sect ion acts as a summary of the main points. It also discusses
the relationship between the main components of the JVM and the source
struct ure of Java programs.

It is not possible, given the space available here, to describe the JVM
exhaust ively. Instead , all that can be done is to give the reader a genera l
impression t hat is detailed in some places and superficial in others. Readers
interested in the exact details should consult [33]. For information about Java
itself, the language definit ion [22] should be consulted. It is, of course, not
possible to underst and t he details of the JVM in complete detail unless the

28 3 The Java Virtual Machine

language is completely understood. It is st rongly recommended that interested
readers should consult both of these texts .

3.2 JVM Organisation: An Overview

This section contains an overview of the JVM 's organisation. This description
is based upon the published specification [33] .

The JVM is a stack-based virtual machine. It contains these basic struc
tures:

• The heap store (main store) ;
• The stack;
• The method area;
• Runtime Constant Pools;
• The PC register;

The stack and the "class file" objects are stored in the heap , as are the Con
stant Pools and the method area. In addition, there should be structures to
support threads and monitors- they will be considered only (Section 3.9).

The JVM specification is silent on issues pertaining to the heap 's man
agement . A JVM can use a mark and scan, stop-and-copy or a generational
garbage collector , therefore. A pure reference-counting storage management
regime cannot be used, however, unless it is supported by some other mech
anism. The reason for this is that circular links can exist between ent it ies
stored in the heap (Java has an imperat ive semant ics and, therefore, supports
assignment).

There are, in fact , two stacks in the JVM specification: the "nat ive code"
stack (or "C stack") and the "Java stack". The first can be disposed of fairly
readily. It is the stack used to implement the JVM itself; it is also the stack
used for intermediate storage by all the primitive rout ines in a JVM and by
all the code implementing JVM inst ruct ions. Additional primitives, as well
as native methods, are implemented using the "native code" stack. In most
implementations, this stack will be the one used by the C runtime system.
This stack will not be of further interest because it is beyond the control of
the JVM specification.

The other stack is the JVM stack proper. It is a framed stack. A stack
frame is allocated when cont rol enters a method. It is deallocated when control
returns from the method that caused its allocation. There are two cases of
return from a method:

• Normal return. This is performed by the execut ion of a return instruction.
• Abnormal return. This is performed when an exception of some kind is

caught by a handler th at is not inside the method invocat ion associated
with the stack frame.

3.2 JVM Organisation: An Overview 29

The JVM specification uses the term completion to refer to return from a
method; it also uses the term abrup t completion for what is te rmed "abnormal
return" in the above list . A method can return zero or more values; the value
can be of a simple (scalar) type, an array type or a class type (i.e., a reference
to an instance of a class).

3.2.1 The stack

The frames of the stack are allocated in the heap . Each stack frame consists
of:

• A purely local stack called the operand stack ;
• A set of local variables;
• A reference to the code associated with the method being executed. This

is in the Runtime Constant Pool of the class with which the method is
associat ed;

• A slot for the PC register.

The operand stack is for the storage of temporary and intermediate results
in the usual fashion . It is used, in ter alia, for the evaluation of expressions
and parameters.

The set of local variables is used to store:

• The variables local to the method whose activation (invocat ion) caused
the stack frame to be allocated. This is called the local vari able array in
[33].

• Parameters passed from the invoking context .
• The this pseudo variable that always points to the instance upon which

the method operates.

Each local variable is 32 bits in length ; this corresponds to the internal JVM
integer length . It generally also corresponds to the length of a pointer on
the host machine. When an entity is longer than 32 bits, two consecutive
locals are allocated. The index of the entity in such a case is considered to be
the lowest of the indices required to represent it . For float ing point numbers
(which are implemented according to most of the IEEE 444 standard) or long
integer values, which occuply 64 bits on a 32-bit machine, two consecutive local
variables are allocated. The standard defines a big-endian representation for
all values.

Because of these considerations, there will, in general, be more local vari
ables in a stack frame's local variable array than there are local variables in
the corresponding method 's source code. In addit ion, the JVM specificat ion
permit s implementations of the Java compiler to allocate more local variables
when they are needed to opt imise method code.

The JVM contains instructions to access and upd ate local variables in the
current stack frame's variable array. There are also instructions to manipulate
the local stack.

30 3 The Java Virtual Machine

When a method is invoked, a stack frame is created for it. The parameters
to be passed to it are evaluated and the results stored in the new stack frame.
The code of the method is then executed using the newly created stack frame
as its context.

If the method is a class method (i.e., a method declared as stat ic in the
associated class definition) , the parameters passed to it begin at the first
element of the local variable array. If the method is an instance method, the
first element of the local variable array is reserved for the self (or this) pointer ;
the parameters are then allocated to the second and subsequent elements. The
allocat ion of parameters is, in both cases, cont iguous.

In order to retu rn control to itscaller in a normal fashion (i.e., a non-error
return or normal completion as the JVM specification terms it), the method
executes one of the return instructions. These instructions are used to return
zero or more values.

When normal completion of a method occurs and the result is passed to
the calling method, the called method 's stack frame is removed from the stack
and is garbage collected. The PC in the exiting stack frame is stored in the
JVM 's PC register as a return point .

If a method makes an abnormal ret urn (or abnormal completion) by throw
ing an except ion that is not handled within its body, a search is performed
along the call chain. The stack frame for each method between the point at
which the exception is thrown and that at which it is handled is removed from
the stack and left to be garbage collected (in other words, the stack is col
lapsed). The exception is then handled in the context of the method defining
the handler for exception. It must be noted th at the handler is always the
nearest one along the dynamic (call) chain, not along the static chain.

If an exception is thrown by a method called inside a thread and is handled
by a handler that is outs ide that thread, the stack associated with the thread
is terminated. Thread termi nation causes the store allocated for its stack to be
reclaimed; other st ructures associated with the thread also become garbage.

In most implementations of the JVM, there is always at least one thread
running at any t ime. In the case in which there is just one active thread, should
an except ion be thrown and not handled by that thread, an exception must
be raised by the JVM itself; the thread's data structures are also consigned
to the garbage collector .

There are other cases in which the JVM has to handle except ions. They
will not be documented here. The interested reader should consult [33] for
details.

3.2.2 Method areas

Method code is stored in method areas at runtime. The act ual location of each
method area is within the class file object representing the class to which the
method directly belongs (the one in which it was defined in the source code).
Method areas contain byte codes and symbolic references.

3.2 JVM Organisation: An Overview 31

The method area also contains the Runtime Constant Pool for each class
or interface loaded in the JVM . The Runtime Constant Pool is the runtime
representation of the consta nLpool table in the class file associated with the
class or interace. Each Runtime Constant Pool contains a number of different
types of constants. The constants it contains range from numeric literals to
method and field references; the former are determined at compile time, while
the lat ter are determined (or "resolved") at runtime.

Class files are used to derived a runtime representation of classes. They
contain the code for methods (in the method area) , as well as the variables
associated with the class and other information (init ialisat ion values, for ex
ample). Methods and variables can refer to ent ities within the same class or to
entit ies within other classes. These references are represented in the class file
as symbolic references that have to be converted at runtime into addresses in
the JVM 's store. The stack frame of the currently execut ing method contains
a reference to the (runtime representation of the) class associated with that
method. This reference permits the dynamic linkage of methods.

A class file object is allocated when a class is loaded. When the class is
no longer of use (there are no more references to it either on a stack or in
the heap), the storage it occupies become garbage (and is reclaimed by the
garbage collector).

When a class (or interfac this is discussed in a lit tle more detail below
in Section 3.3) is loaded, the data in the class file is processed in various
ways. Some of it is used for verification purposes; the rest is stored in a newly
allocated space in the method area . Class files will be discussed in more detail
below (Section 3.3).

Runtime Constant Pools act in a way that is reminiscent of symbol tables
in other languages.

3.2.3 T h e P C r e g is t e r

This is the program counter or instruction pointer register. It points to the
instruction current ly being executed by the JVM , provided that that instruc
tion is a Java bytecode (otherwise, the native code stack-the C stack- and
the host machine's registers hold the context and code and the PC register's
value is undefined) . When the .JVM is executing more than one thread, each
thread has its own stack and its own PC register. At any point during the
execut ion of the .JVM, one thread is being execut ed.

As noted above, the current method's stack frame contains a slot for the
PC register. This is used in the normal way to store the return point at which
execut ion continues after the method returns. In order to cope with native
code routines calling .JVM coded methods, the PC register (and associated
slot in stack frames) must be large enough to hold a native code address.

32 3 The Java Virtual Machine

3.2.4 Other structures

The stack structure is permitted by the JVM specification [33] to contain data
other than that described above. Additional data can be used for debugging,
for example.

A JVM implementation has also to support threads. The actual implemen
tation is relatively free. There are two basic forms of thread implementation:
so-called "green" threads and operatin g system specific ones. The latter is
introduced so th at the thread mechanisms of the host operating system can
be used to implement Java threads (e.g., Linux threads) . The former is an
independent thread mechanism that is implemented by the JVM itself.

If the JVM implements the thread mechanism directly, storage st ructures
must be provided to support it. For example, monitors and queues must be
implemented, as well as a way to store state information for threads and
thread groups. These st ructures will, probably, reside in the JVM 's heap.

If the native thread mechanism is used, the structures to implement it are
provided by the native operating system and fall outside of the JVM (using
the C stack escape mechanism mentioned above).

In addition, structures required to interface to such things as the host 's
graphics system (say, X Windows), sockets and remote procedure calls are
also required. This interface might require the use of the JVM heap to hold
the necessary state information . The C stack escape is also used as part of
this interface.

3.3 Class Files

The class fil e st ructure is fundamental. It contains the compiled code for
classes in a standard format. The JVM specification states that the output of
a Java compiler need not be in class-file format ; however, the runtime system
depends upon the information contained in class files. Indeed, the first step
taken by the JVM in loading a class file is to verify that the ent ity being loaded
is in class file format . The JVM specificat ion defines what a class file should
contain and the represent ation to be used; it defines the order in which class
file components appear at runtime. It also defines the verification processes
that should take place before a class can be considered to have been loaded
into the JVM .

Th ere is one class file for each class current ly loaded in the JVM . Class
files can be directly input by a Java compiler , loaded from file or from a
local database. They can also be loaded from remote sources such as remote
files, remote databases, code servers or just from a socket. The class loading
mechanism is relatively stra ightforward but complicated by the fact that it
can be replaced by an application-specific mechanism; it is associated with the
class resolution mechanism. The loading mechanism is also the place where
most of the security mechanisms of a JVM is located (bytecode verification,

3.3 Class Files 33

among other things). The details of the class loader are omitted from this
description for reasons of its complexity. Instead, the class-resolution process
will be described because it is this, at runt ime, that resolves references stored
in class files to its own methods (the methods defined inside that class), to its
own variables (the variables declared inside that class) and to other classes.

It should be observed that there is also one class file for each interface cur
rent ly loaded in the JVM. This is reasonable, for interfaces define enti t ies in
their own right . It makes even more sense for Java 2 because it has augmented
interfaces so that they are, in effect, abst ract classes support ing mult iple in
heritance rather than simply a device for providing multiple inheritance in a
single-inheritance language. For this reason, a class file can define a class or
an interface.

The organisat ion of a class file is rather complex. The J VM specificat ion
is highly detailed and includes specifications of data formats . Here, the organ
isation will only be summarised. As usual, t he interested reader is directed to
the relevant sections of [33] for the details.

The top-level st ructure of the class file are indicative of the information it
contai ns. The JVM specification ([33], p. 94) defines the struct ure as contain
ing:

magic The magic number identi fying this as a class file. The value should be
OxCAFEBABE.

minor version This, together with the next field, define the version number
of the class file. The version number is used by the JVM to determine
whether it can execute the class in a class file.

major version
constant pool count This denotes the number of entries in the constant pool

field. The actual number of entries is one less than the value of this field.
constant pool The constant pool. This is a vector of bytes at the top level.

The bytes are, however, structured interna lly as a table.
access flags This is a bit mask whose bits represent flags. The flags denote

access permissions to and properties of this class (or interface). The flags
defined in [33] are as follows (their values are omitted):
public If this flag is set , the class was declared public and can be accessed

from outside the package in which it was defined.
abstract If t his flag is set, t he class has been declared abstract. This means

that the class cannot be instantiated and any attempts to instantiate
it must cause an error.

final If this flag is set, the class was declared as begin final. This means
that it is not permitted to define subclasses of this class.

super If this flag is set , superclass methods should be t reated specially
when invoked by the invokespecial instruction.

interface If t his flag is set , the entity defined by this class file is an inter
face, not a class.

34 3 The Java Virtual Machine

this class Th is is an index into the constant pool table. The entry in the con
stant pool at the offset in this field must be a st ruct ure of type CON
STANT. Class.info that represents the class or interface defined by this
class file. Thi s must be a valid index.

super class If thi s class file defines a class, the value of this field must either
be zero or a valid index into the constant pool. If t he value is non-zero, the
ent ry at the offset it specifies must be a CONSTANT.Class.info st ructure
that represents the direct superclass of the class defined by this class file.
It is not permit ted that any of the superclasses of this class be declared
as final.

interfaces count This is the number of direct super interfaces of the class or
interface defined by the contents of this class file. It must be a valid index.

interfaces This is an array of offsets into the constant pool table. Each ent ry
indexed by this array must be a CONSTANT. Class.info st ruct ure that rep
resents an interface that is a direct super interface of the class or interface
defined by the contents of this class file.

fields count This is anothe r numeric field whose value represents the number
of elements in the fields table.

fields Each element of this table is a field.info st ruct ure representing a com
plete description of a field in this class or interface. The table only includes
those fields that are declared by this class or interface (so excludes inher
ited ones). A field can be a class or an instance variable.

methods count This numeric field contains the number of methods declared
in this class or interface. It is used as the size of the methods table that
immediately follows.

methods Each element of this table must be a method-info st ruct ure giving a
complete description of a metho d that this class or interface defines. The
method can be native or abstract (in which case, no JVM instructions are
included). If the method is neither native nor abstract, the JVM inst ruc
t ions that implement the meth od are included in the structure. The table
includes all methods declared (defined) by the class or interface defined
by this class file; therefore, it includes static (class) methods and any class
or interface initialisation methods that are inherited from superclasses or
superinstances.

attributes count This is another numeric field. It contains the size of the at
tributes table that ends the class file.

attributes This is a table of attributes for the class. In [33] (p. 98), it is stated
that the only attributes causing the JVM to take any action are the Source
File and Deprecated attributes ; all other values are ignored by the JVM.

In the JVM definit ion, when field names in the above list are composed of
more than one word, connecting underscores ("_") are used to create a valid
C (Java) identifier. The underscores have been omitted above in order to
render them more legible. It should be noted that, below, what should be
spelled as "constant- pool" will always be spelled without t he underscore.

3.3 Class Files 35

The class file description refers to the fact that constant pool entries are
st ruc t ured. In additi on, it refers to st ruct ures of type CONSTANT. Class.info,
field-info and method -info. These will be described in the next few par agraphs.
The descrip tion is necessarily limited , so the interested reader is referred to
[33], Chapter 4 (the relevant sections and page numbers are included below).

T he const ant pool ent ries ([33], Section 4.4, p. 103 et seq.) are st ructures
cont aining a tag and some inform at ion. T he tag is of fixed size and indicates
the type of the const ant . T he possible tags and their int erpretations are :

Class A reference to a class or interface. The inform ation associated with this
tag must be a valid constant pool index. The ent ry at t hat index must be a
Utf8 st ructur e (essent ially a st ring") that represents a fully qualified class
or interface name in the internal form (this is a form containing slashes
inst ead of periods separ at ing the path name of the package containing the
named class).

Fieldref, Methodref, InterfaceMethodref A reference to a field, method or inter
face method, as appropriate. The information associated with these three
tags have t he same format (this justifies t heir common t reatment here):
class. index This field must cont ain a valid constant pool index. The corre-

sponding ent ry must be a CONSTANT. Class. info st ructure that rep
resents t he class or interface ty pe containing the field or method dec
larat ion.

name.and.type.index T his should be anot her valid constant pool index. Its
ent ry must be a CONSTANT_NameAndType-info st ructure indicating
the name and descriptor of the field or method as appropriate . If this
is a Methodref and the ent ry is of t he appropriate ty pe, the ent ry can
begin with the charac te r <, the na me must be the special < init > name
(t hus represent ing an instan ce init ialisation method- these met hods
should return no value, note).

St ring This represents a constant st ring. The informat ion associated with it
is an index into the constant pool. The element at that index must be a
st ring (encoded as a Utf8 object) .

Integer This repr esents a constant integer . The associated informat ion repre
sents t he value of that int eger const ant . The bytes are stored in big-endian
format (high-order byte first) .

Float T his represents a floatin g point numeric constant in IEEE 754 float ing
point single form at . The bytes are sto red in big-endian form at (high-order
byte first).

Long This represents a long integer constant . The associated informat ion rep
resents t he value of the long in the form four highest-order bytes followed
by four lowest-order bytes.

1 The JVM structure type Utf8 will just be regarded as a string. Its name will
always be written in this font for ease of reading. It is actually defined as a length
and a sequence of suitably encoded bytes representing the characters of the string.

36 3 The Java Virtual Machine

Double This represents a double constant in IEEE 754 double format . The
high-order four bytes appear first and are followed by the four low-order
bytes.

NameAndType This is used to represent a field or method. It does not indicate
the class or int erface to which it belongs . Its associat ed information is in
the form :
name. index This must be a valid constan t-pool index. The ent ry at that

ind ex must be a Utf8 structure (st ring) representing the name of the
field or method ; it must be a valid identifi er as defined by the Java
lan guage specification [22]; it can be the spec ial identifier < init>, de
noting an initi aliser (see below, Section 3.5).

descriptor.index The contents of this field must again be a valid constant
pool index. The ent ry corresponding to this value must be a Utf8
structure representing a valid field or method descriptor.

Utf8 An object of this typ e is, basically, a text st ring . It cont ains a field
containing the lengt h of the string and another containing the sequence
of cha rac te rs.

(T he actual tag name has the string CONSTANT_ as a prefix.) It should be
rem emb ered that the values stored in these entries are constants.

Tab le 3. 1. Flags describing me thod access and properties.

Nam e Meaning
PUBLIC can be accessed outside its package
PRIVATE accessible only with in its defining class
PROT ECTED accessible within subclasses
STATIC static (class method)
FINAL cannot be overr idden
SYNCHRONIZED must be wrapped in a monitor lock
NATIVE not implemented in J ava
ABSTRACT no implementation provided (permitted

in defining class)
STRICT FP-stri ct floating point mode

The structure type method -info ([33], Section 4.6, p. 114 et seq) has five
fields as follows:

access. flags These are defined in Table 3.1. A class method can only spec
ify one of PUBLIC, PRIVATE or PROTECT ED. If such a method has AB
STRACT set , it may not have FINAL, NATIVE, PRIVATE, NATIVE, STR ICT
or SYNCHRONIZED also set . All interface methods must have PUBLICand
ABSTRACT set . A named initialisa tion method can have at most one of
PRIVATE, PROTECTED and PUBLIC and, possibly, STR ICT but no other
flags set. Only the value of the STRICT flag is used by the JVM if the

3.3 Class Files 37

method is a class or init ialisat ion method; the other values are ignored.
(The act ual flags are all spelled with an ACe prefix; it has been omitted
in order to improve legibility.)

name-index This must be a valid constant pool index. The corresponding ent ry
must be a Utf8 string that represents one of the special method names,
< init> for instances or < c1 init> for classes, or a valid method identifier
as defined by the Java language definit ion [22]. The special initialisation
methods are described in Section 3.5 below.

descriptor.index This is another constant pool index; it must be valid. The cor
responding ent ry is a Utf8 st ring represent ing a valid method descriptor.

attributes.count The number of attributes appearing in the following field of
th is st ructure type.

attributes The only attributes of interest are the code and exception at tributes.
All others are silent ly ignored by the JVM.

A method descriptor is a (Ut f8) string that is specified as:

(ParameterDescriptor*) ReturnDescriptor

where (and) represent open and close parenthesis; these parentheses appear
literally in th e method descriptor. The ParameterDescriptor part allows for
zero or more parameters, each of which is a field descriptor. The ReturnDe
scriptor has the form:

ReturnDescriptor: FieldType I V

where V denotes the void type and where FieldDescriptor has the following
syntax:

FieldDescriptor: FieldType
ComponentType: FieldType
FieldType: BaseType IObjeetType I ArrayType

The BaseType denotes the specification of one of Java's primit ive types,
while ObjectType and ArrayType specify object or array types. In a descriptor,
a standard encoding for types is employed (it is defined in [33], p. 101). Typi
cally, the encoding is a single character for primitive types and more complex
strings for object and array types. The basic encoding is shown in Table 3.2.

The codes shown in Table 3.2 are sufficient to describe any valid Java type.
For example, the array type:

double d[J[]

is encoded as:

[[[D

while an ordinary integer is denoted by I (just that: the let ter "I" on its own) .
Finally, the type Object is denoted by the descriptor Ljava/Iangj'Object .

As noted above, there are two attributes of particular importance to meth
ods: the code and exception attributes. They are considered in turn .

38 3 The Java Virtual Machine

Table 3.2. JVM basic descriptor type codes.

Encoding Designated Type Meaning
B byte signed byte
C char unicode character
D double double-precision floating point
F float single-precision floating point
I int integer
J long long integer
L<classname>; reference instance of class classname
S short signed short
Z boolean boolean value
[reference one array dimension

The code at t ribute is another variable-length attribute. As will be seen ,
this at t ribute contains the JVM instructions implementing the method, as
well as other informat ion, as will now be outlined.

attribute.name.index This must be a valid index into the constant pool whose
corresponding ent ry is a Utf8 structure representing the string "Code" .

attribute.length This numeric field denotes the length of the ent ire attribute
m inus the first six byt es (i.e., the first two fields of this structure) .

max-stack This num eric field denotes the maximum size to which the operand
stack can grow during execut ion of the method represented by this at
tribute.

rnax.locals This numeric field denotes t he size of the local vari ables arr ay in
the stack frame for each invocation of this method. The value includes
the number of element s required for passing parameters into the method
represented by this structure.

code.length This field contains the length of t he code field (which follows).
The length is expressed in bytes.

code This is a vector containing the actual JVM instructions that implement
the method represented by this st ruct ure .

exception.table.length This field contains the number of ent ries in the excep
tion .table attribute (which follows).

exception.table This is a table whose ent ries are st ructures of the form :
start.pc, end.pc These two values indicate the range in the code vector

in which the exception handler is act ive. The value of start.pc must
be a valid index of the opcode of an instruction in the code vector.
The value of end.pc must either be a valid index of the opcode of an
instruction in the code vector or must be equa l to code.length. The
value of start.pc must be less than that of end.pc. The value of start.pc
is inclusive and that of end.pc is exclusive.

3.3 Class Files 39

handler.pc The value of this field ind icates the start of the exception han
dler . This must be a valid index into the code vecto r and must be t he
index of an instruct ion 's opco de.

catch .type If this has a non-zero value, it must be a valid constant pool
index whose corresponding entry must be a CONSTANT.Class. info
st ructure that represents an except ion class (class Throwable or one
of its subclasses) that this handler is intended to handle. The handler
will be called only if the throw n exception is an instance of the st ated
class or of one of its subclasses. If the value is zero, t his handler is
called for all exceptions; this is used to implement finally clau ses.

attributes .count This field contains the number of ent ries in the last attribute .
attributes The at tribu tes for the method . There are many such attributes.

They are ignored here.

When the code in a code attribute is read into st ore on a byte-addressable
machine, if t he first byt e of the vector is aligned on a 4-byte boundary, the
32-bit offsets in t he tableswitch and lookupswitch instructi ons will be corr ect ly
aligned (on 4-byt e boundaries).

The except ion attribute is anot her vari ab le-length st ructure. It record s the
exception ty pes that a method can throw. It contains four fields as follows:

attribute.name. index T his must be a valid constant pool index which points to
a Utf8 st ructure containing the st ring "Except ion".

at t ribute .length This num erical field records the length of the exception at
t ribute st ructure minus the first six bytes (t his attribute and the previous
one) .

number.of.exceptions T his numerical field records the number of ent ries in the
following field .

exception. index.tab le Each element of t his vecto r must be a valid constant pool
index which refers to a Utf8 st ructure represent ing a class ty pe that the
method is declared to throw .

A method can throw an exception if at least one of the following condit ions
is met at runtime:

• The except ion is an instance of class RuntimeException or one of its sub
classes.

• The except ion is an instance of Error or one of its subclasses.
• The except ion is an instan ce of one of the except ion classes (or one of its

subclasses) specified in t he exception .index.table describ ed in the last list.

Finally, the structure type field-info ([33], Sect ion 4.5, p. 112 et seq) has
five fields as follows:

accessJlags The permi t ted values are as shown in Table 3.3. (Note that the
act ual flags have the prefix ACe which is omitted in the table.) On ly one
of the flags PUBLIC, PRIVATE and PROTECTED can be set for any field.
On ly one of FINAL and VOLATI LE can be set for any field . All interface

40 3 The Java Virtual Machine

fields must be PUBLIC, STATIC and FINAL; no other flags may be set in
this case.

name.index This is a constant pool index; it must be valid. The entry specified
by thi s field must be a Utf8 string represent ing a field name that is a valid
identifier according to the Java language standard [22] and the syntax is
as shown above.

descripto r. index This is another constant pool index; it must be valid. It must
be another Utf8 string representing a valid field descriptor. The coding
scheme for the field descriptor is as shown in Table 3.2.

attributes.count This is the number of attributes in the following descriptor
field.

attributes The valid attribute values are Synthetic, Deprecated and Constant
Value. The last is the only one that a JVM is mandated to acknowledge.

Table 3.3. Flags defining field access and properties.

Flag Meaning
PUBLIC can be accessed from

outside the package
PRIVATE can only be accessed inside

the defining class
PROTECTED can be accessed inside subclasses
STATIC static (class variable, etc.)
FINAL no assignment after initialisation permitted
VOLATILE cannot be cached (thread annotation)
TRANSIENT not to be written or read by

a persistent object manager

The JVM specification [33] also defines formats for such thi ngs as inner
classes. As stated above, there is insufficient space to cover all details of the
class file format in this chapter and the interested reader is directed to the
JVM specification where all details can be found.

3.4 Object Representation at Runtime

The JVM specification does not impose any special structure on the repre
sentation of objects at runtime. JVM implementations are, therefore, free to
adopt a representat ion that is the most convenient for their use.

Some Sun implementations, for examp le, implement a reference to a class
instance as a pointer to a furt her pair of pointers . One of these pointers is to
a table and a pointer to the class object represent ing the type of the instance.
The other pointer is a reference to a data area in heap that is used to store the

3.4 Object Representat ion at Runt ime 41

instance's local variab les. The table contains t he object's methods (or pointers
to them) .

The information stored in the constant pool for each class or interface is
defined by the specificat ion. When a class or interface is loaded into t he JVM,
a Runtime Constant Pool is allocated in the method area of the heap for it .
The JVM uses t he constant pool table in the class file to construct a binary
representat ion when t he class or interface is created. T he constant pool t able
in the class file contains symbolic references, as was seen in the last sect ion.
The runt ime symbolic references in the runtime constant pool are derived
from structures in t he binary representat ion of the class or inte rface in the
following ways:

• A symbolic reference to a class or interface is derived from a CON
STANT. Class. info structure. A reference of this type provides th e name of
the class or interface in t he form that is ret urned by the J ava C1ass.getName
met hod .

• A symbolic reference to a field of a class or interface is derived from a
CONSTANT.Fieldref.info st ructure in t he binary class representat ion. This
st ructure provides t he name of the field as well as a descrip tor of its con
tents; in addit ion it provides a symbolic reference to the class or interface
in which it is located .

• A symbolic reference to a met hod of a class is derived from a CON
STANT_MethodreLinfo st ructure. This provides t he name and descriptor
for the method . It also provides a symbolic reference to the method 's class.

• A symbolic reference to an interface is derived from a CONSTANT.l nterface
MethodreLinfo st ruct ure. This provides the name and descriptor pertain ing
to the interface method; a symbolic reference to the interface to which the
meth od belongs is also derived from the st ructure.

Non-reference types are also derived from t he information held in a class
file. In par ticular , the following are performed:

• Run time constants are derived from the constant pool st ructures: CON
STANT. lnteger. info, CONSTANT.Float.info , CONSTANT. Long.info, as well
as CONSTANT.Double.info.

• Runtime const ants whose values are litera l strings are derived from CON
STANT.St ring.i nfo st ruct ures tha t specify their component Unicode char
acte rs; the result is an inst ance of type Str ing. There are some complica
t ions, however , to st ring derivation ; they are:
- T he Java language definition [22] specifies that st rings composed of

the same sequence of characters should be implemented as references
to a single instance of St ring. This single instance act ually contains the
characters . If the String.intern method is called on any st ring, t he result
is a reference to the same instance of Str ing that would be returned if
the string appeared as a source-code literal.

- In order to derive a st ring literal , the JVM examines the characters that
are provided by the CONSTANT.St ring.info structure. If St ring.intern

42 3 The Java Virtual Machine

has previously been called on an instance of String containing an identi
cal sequence of Unicode characters, the result is a reference to that very
instance of String. If, on the hand , a new instance of String is created to
contain these characters, that instance is the result of string derivation.
The String. intern method is then called upon this newly created string.

The final types that can be obtained from the constant pool are CON
STANT_NameAndType-info and CONSTANT_Utf8_info (the class file represen
tation of names, in this case). These structures are used only in an indirect
fashion to derive symbolic references to classes, interfaces, methods and fields,
as well as during string literal derivation.

It should be remembered that these symbolic references are eventually
resolved into act ual addresses in the heap . Thus , references become com
putationally more tractable than the manipulat ion of indices and complex
string-based st ructures.

Althou gh the process of derivat ion is specified in [33] , the organisation of
the method area and the runtime constant pool are not . The precise organ
isation of the area and the structures that reside in it are implementation
dependent details not specified by the specificat ion.

3.5 Initialisation

The creation of a class or interface is performed by creat ing an implementation
specific internal representation of that class or interface in the method area in
the JVM 's heap. The process is initiat ed by some other class or interface ref
erencing the class using its runtime constant pool (which, necessarily, contains
a reference to the new class or interface, as the case may be). The invocation
of methods can also cause classes and interfaces to be created.

The details of class and inter face creat ion are somewhat complex. They
are documented in Chapter 5 of [33] (p. 155 et seq). Suffice it to say that the
loading of a class or interface can cause a cascade of class and/or interface
loads (those of its supers) , if those ent it ies are not already loaded. In addit ion
to the derivation of heap structures, a number of verification procedures can
be undertaken, and linkage is performed. Linkage can involve runtime searches
up super chains and can fail for a variety of reasons documented in Chapter
5 of [33].

The creation and finalisation (destruction) of class instances is a somewhat
simpler process. It is outlined in the remainder of this section .

Th ere are two ways in which an instance of a class might be created: an
explicit and an implicit way.

The explicit way relies upon one of the following to occur . Either the eval
uat ion of a class instance creat ion expression creates a new instance of the
class referenced by name in that expression or the invocation of the newln
stance method of the Classclass creates a new instance of the class represented
by the Class object for which that method was invoked.

3.5 Initialisation 43

The implici t way also consists of two cases :

1. The loading of a class or interface containing a literal of type String can
create a new String instance to represent that literal (t his has been already
encountered ab ove in the last section).

2. T he execution of a string concatenat ion operation not part of a constant
expression creates a new Str ing instance to represent the result of the con
catenation. Temporary wrapper objects can also be created for primiti ve
type values during string concatenation.

When a new class instance is created, the J VM allocates sufficient heap
store to contain all the instance var iables that are declar ed in the correspond
ing class ty pe, as well as for all t he inst anc e var iab les declared by the super
classes of the instance's class ty pe (t his includes all of those inst ance variables
that might not be visible). Should there be insufficient space available, t he
JVM raises an exception (OutOfMemoryError); otherwise, the inst an ce vari
abl es t hus crea ted are init ialised to their defaul t values (generally, zero, null
or false, dep ending upon type) .

Once the allocation and init ialisat ion have been performed and just pr ior
to returning a reference to the newly created inst ance, the const ruc tor that
is indicated by the creation operation is invoked to perform specific init ialisa
tions . T here are five main steps to be perform ed:

1. T he actua l par ameters of the call to the const ructor are bound to the
form al par ameters.

2. If this constructor begins wit h an explicit call to another constructor in
the same class (using th is to denote its location), the arguments are eval
uated and these five st eps are recursively applied. Should this nested con
st ructor te rminate ab normally ("abruptly" in t he terminology of [33]), the
ent ire constructor-application process also te rm inates ab normally. Other
wise, t he next step is applied .

3. If this const ructor does not beg in wit h a call to another constructor in
the same class and t he class of this instan ce is ot her than Object, this
constructor executes eit her an impli cit or explicit call to its superclass'
const ructor (using super). This is another recur sive app lication of these
five ste ps. Otherwise, t he next step is applied.

4. The initialisers for the inst ance var iab les of the class of this instan ce are
executed in the lef t- ta-right order in which they occur in the source text
of t he class. Should any of these initi alisers raise an exception, no fur
ther init ialisers are executed and this pro cedure te rm inates abnormally.
Otherwise, the next step is applied.

5. Finally, the rest of the const ructor 's body is executed. If this execut ion
terminates abnormally, the ent ire creation pro cess terminates abnormally
(t he inst ance beco mes garbage) . Otherwise, the procedure terminates nor
mally and a referenc e to the newly created , initialised instance is returned
to the caller .

44 3 The Java Virtual Machine

If, during the execut ion of a const ructor, methods are invoked that are over
ridden in the instance that is being initialised, the overriding methods are
called, even if this requires their invocation before the new instance is com
pletely created.

3.6 Object Deletion

Unlike C+ +, Java does not provide mechanisms for the explicit cleanup and
delet ion of objects. However, class Object provides a protected method called
fi nalize-this method can be overridden by other classes (all classes are sub
classes of Object). The definition of the finalize method in any particular class
is called the jinalizer of that class's instances.

Before the storage for an object is reclaimed by the garbage collector,
the JVM executes the finalizer on that object so that resources are freed
that cannot othe rwise be released (e.g., file descriptors and other host system
structures that do not reside in the JVM heap) . If there were no finalizer,
there would be no guarantee that such resources would be released.

The Java language makes no prescriptions as to the time at which a fi
nalizer should be run ; it merely states that it will occur before the storage
for the object is re-used. The language does not specify the thread in which
any finalizer will execute . However, if an uncaught except ion is thrown during
finalization, the except ion is ignored and the object 's finalization terminates.

The actual finalizer defined in Object is of lit tle use: it takes no act ion. The
existence of a finalizer in Object does guarantee that the finalizer method for
any class is always able to invoke the finalize method in its superclass. This is
usually desirable. The invocation of the fi nalizer in the superclass must , how
ever, be performed explicitly via a super call; the JVM does not automat ically
invoke the finalizers along the superchain (const ructors, however, are always
invoked along the superchain).

It should be noted th at the finalize method can be explicit ly called. In thi s
respect , it is just like any other method. Such a call, however, has no effect
whatsoever on the object 's eventual automatic finalization.

Finally, the JVM imposes no order on the execution of finalizer methods.
They can be invoked in any order or even concurrently.

Classes and interfaces can be unloaded if and only if its class loader is
unreachable. A class loader can be defined and loaded for any class or collec
tion of classes (it is a class) to alter the way in which or the location from
which classes are loaded. (The JVM specification [33] contains a detail ed de
script ion of class loaders and the associated classes.) There is always a default
class loader class present in the JVM, so system classes can never be unloaded;
most classes use the default class loader and will never be unloaded.

3.8 Exception Handling 45

3.7 JVM Termination

The JVM terminates when one of two events occur:

1. All non-deemon threads terminate.
2. A particular thread invokes the exit method of the class Runtime or the

class System. This is permitted only when the security manager permits
it to occur.

(Deemon threads are threads that are created for internal reasons by the
JVM.)

In older versions of the JVM , it was possible to specify that finalizers
should be called just prior to system exit . The operation, the runFinalizersOn
Exit in class System, is deprecated from Java 2 platform 1.2.

3.8 Exception Handling

This is an interesting feature of the JVM, one whose implementation can be
puzzling.

In the JVM , each catch or finally clause of a method is represented by
a range of offsets into the code implementing that method. Each except ion
handler specifies the range of offsets for which it is act ive, as well as the type
of exception it handles. It also specifies the location of the code that handles
that except ion. A thrown except ion matches an except ion handler if the offset
of the instruction that caused the exception is in the except ion handler 's range
of offsets and the type of exception is the same or a subclass of that handled
by the handler.

When an except ion is thrown, the JVM searches for a matching handler in
the current method. If a mat ch is found, the code for that handler is executed.
If there is no match , the JVM begins a search. First , the current method
invocation terminates abruptly (abnormally), causing the current stack frame
to be discarded. The except ion is then rethrown in the caller 's context. This
continues until either the exception is handled or there are no more contexts
in which to search. In the latter case, the thread in which the exception was
thrown is terminat ed.

The order in which exception handlers are searched matters. In the class
file, the except ion handlers for each method are stored in a table (see Section
3.3). At runtime, the JVM searches through the except ion handlers in the same
order as that in the class file. Java's try commands are structured, so a Java
compiler can always order the the exception handler table's ent ries in such a
way that , for any thrown except ion and any value of the pc (instruction pointer
or program counter) in the method in which the exception is thrown, the first
except ion handler matching the thrown exception will always correspond to
the innermost mat ching catch or finally clause.

46 3 The Java Virtual Machine

3.9 Instructions

Instructions are represented by bytecodes. A bytecode consists of an operation
field and zero or more operands. The bytecode field is eight bits in length
(hence the name) ; the operands, if present , can be any even multipl e of eight
bits. A maximum of eight bytes is usually imposed, the maximum represents
the number of bit s required to hold a floating point number. However, some
architectures might require sixty-four bits for an address, as well.

The instruction set can be divided into familiar groups:

• Control instructions;
• Data-manipulation instructions;
• Stack-manipulation instructions .

Control instructions perform transfers of control within a program. They
include jump, call and return instructions . Java contains an exception mecha
nism (the throw and try/finally const ructs) and operations to throw and han
dle exceptions are included within this group (there is a code convention that
applies to exceptions to make the location of handlers easier). In the dat a
manipulation group are included instructions that perform arithmetic and
logical operations, bit manipulation and so on. The stack-manipulat ion in
structions access and store variables in the local variable array, as well as
operating on the stack (swap and dup operations , for example).

The data and stack manipulatin g instructions must operate on values
whose size ranges from eight to sixty-four bits. The runtime storage require
ments for each primitive (source-language) type is as shown in Table 3.4.

It can be seen that types requiring fewer than the standard 32 bits are
stored in a full 32-bit word at runtime. This is reasonable when it is considered
that the local stack elements and the elements of the local variable array are all
32 bits wide. The only types longer than 32 bits are, as noted above (Section
3.2.1), are long (integer) and floating point (double). The float type is only 32
bits wide.

Table 3.4. Sizes of Java primitive types.

Type Size
(in 32-bit units)

byte 1
character 1
short integer 1
integer 1
long integer 2
float 1
return address 1
double 2

3.9 Instructions 47

The instruction set also contains instructions related to object-oriented
programming languages. These instructions perform such operations as:

• Creation of class instances;
• Invocation of meth ods;
• Access and upd ate of instance and class variables.

The second and third of these groups include instructions whose semant ics
includes search along the superclass chain to locate the methods and variables
addressed by the instructions.

Finally, the instruction set has instructions that support threads and mon
itors. Under this heading are monit or ent ry and exit operations, as well as
operations for handling thread groups.

The JVM specification [33] does not define how thread scheduling should
be performed. It does, however , specify the behaviour of the locking operat ions
required to ensure correct access to shared data inside monitors.

When describing instruction sets, th ere is always the risk that the result
will just be a long list , something that is to be avoided. Therefore, rather
than describe all of the JVM 's inst ruct ions, a few interest ing ones will be
described in detail, while the remainder are summarised and the interesting
points addressed.

Before moving on, it is impor tant to observe that a great many JVM in
st ruct ions encode type information. T hus, what would be a single data move
ment and arithmet ic instruction on another virtu al machine is implemented
as a set of type-specific inst ructions in the JVM. For example, the addition
instruction comes in the following forms:

i add - integer addition;
ladd - long addit ion;
fadd - (single-precision) float ing-point addit ion;
dadd - (double-precision) floating-point addition.

Th ere is similar replication for other operations. Types are often encoded in
an instruction by a single let ter:

i for integer;
l for long;
s for short;
b for byte;
c for character;
f for (single-precision) floatin g-point (float);
d for (double-precision) floating-point (double);
a for reference.

Note that the JV M supports a reference type, written reference, below. This
type represents references to objects (including arrays). T he JVM also sup
ports an address type for code, written retu rnAddress.

48 3 The Java Virtual Machine

In the following summaries, where an inst ruct ion has many typed forms,
its general name will have the letter 'T' as a prefix. For example, the addition
instruction would be written 'Tadd' .

3.9.1 Data-manipulation instructions

The ari thmetic instruct ions are: addition (Tadd), subtract ion (Tsub} , multi
plication (Tmul.] , division (Tdiv) , remainder (Trem) and negation (change of
sign- Tneg). Each of these instructions expects its arguments to be on the
top of the local operand stack. They pop them, perform the operation and
push the result back onto the stack.

Th e following are rest ricted to integer and long operands:

ishl Ish Left shift;
ishr lshr Arithmetic Right shift ;
iushr lushr Logical Right shift .

These instructions expect the stack to be:

.. . valuel , value2

where valuel is the mask to be shifted and value2 is the amount to shift .
For integer shifts, both operands should be integers. For long shifts, the shift
should be an integer and the mask should be long

The logical operations are the following:

iand land Logical "and";
ior lor Logical "or";
ixor lxor Logical "xor" (exclusive or).

They all expect their operands to be on the top of the operand stack. The
result is pushed back onto the stack.

The logical operations provide an opportunity for explaining how the JVM
represents values that require fewer th an 32 bits (byte, characters, short in
tegers and logical values). It must be noted that there is a bit st ring class in
the Java library, so arbitrary bit strings can be handled in ways other than
"twiddling bits" .

Quite simply, the JVM represents all smaller types as 32-bit quan tities, so
the operands to the logical operations just listed should be integers.

In some cases, this requires a proper conversion, while, in others, it just
requires a truncation. Some conversions lose information . Sometimes, the sign
of the result (Java integers are always signed-there is no unsigned int at
present) might not have the same sign as the input.

Since there are type-specific operat ions for manipul ating dat a, it is clearly
necessary to have type-changing instructions . The instructions are listed. Only
some of the conversions are explained. The reason for this is that conversions
between floating point (both single- and double-length) are somewhat com
plex.

The type-conversion instructions are as follows:

3.9 Instructions 49

Integer to T : The instruction expects a single operand to be on the top of the
stack. The operand should be an integer. The result is pushed onto the
stack.
i2b: Integer to byte. The operand is truncated, then sign-extended to

integer . (The result might not have the same sign as the operand.
Information can be lost.)

i2c: Integer to character. The operand is truncated, then zero-extended
to integer. (The result might not have the same sign as the operand.
Information can be lost.)

i2s: Integer to short. The operand is truncated, then sign-extended to an
integer. Information might be lost. The sign of the result is not always
the same as the operand.

i21: Int eger to long. The operand is sign-extended to a long. This is an
exact operation.

i2f: Integer to (single-length) floating point . There might be a loss of
precision becaue single-length floats only occupy 24 bits.

i2d: Int eger to (double-length) floatin g point. No information is lost .
Long to T : The instruction expects a single operand to be on the top of the

stack. The operand should be a long. The result is pushed onto the stack.
12i: Long to integer.
12f: Long to (single-length) floating point .
12d: Long to (double-length) floating point .

(Single) Float to T : The instruction expects a single operand to be on the
top of the stack. The operand should be a (single-length) float (float).
The result is pushed onto the stack .
f2i : Float to integer.
f21: Float to long.
f2d: Float to double.

Double to T: The instruction expects a single operand to be on the top of the
stack. The operand should be a (double-length) float (double). The result
is pushed onto the stack.
d2i: Double to integer.
d21: Double to long.
d2f: Double to (single-length) floatin g point.

Lcmp Compare long. Both operands should be Iong. It expects the stack to
be:

. .. valuel, value2

The two values are compared. The result is pushed onto the stack. The
result is computed as follows:

valuel > value2 Result I

valuel = value2 Result 0

valuel < value2 Result 1

50 3 The Java Virtual Machine

Tcmpl (T can be f or d.) Compare operands. Both operands are expected on
the stack and should be of the same type.

Tempg (T can be f or d.) Compare operands. Both operands are expected on
the stack and should be of the same type.

The Tcmpl, and Tempg instructions differ only in the way in which they handle
the NaN value defined by the IEEE 754 float ing point standard. The way in
which these instructions, often referred to as femp<op> , work is as follows.
First , the stack should be of the form:

. . . valuel , value2

A floating point compar ison is performed after they have been popped from
the stack. A value-set conversion is performed immediately prior to the com
parison. The results of the value-set conversion are denoted v~ and v~. The
result (an integer) is computed as follows:

• v~ > v~ , t he result is int 1;
• v~ = v~, t he result is int 0;
• v~ < v~, t he result is int -1 ;
• If at least one of v~ and v~ is NaN, the result depends upon which instruction

is being executed:
Tempg The result is int 1;
Tcmpl, The result is int -1.

The instructions consider +0 = - 0.

iin c opcode
index
canst

Fig. 3.1. The JVM iinc instruction format.

Finally, it is ext remely useful to be able to increment (and sometimes
decrement) a register or memory location in one instruction. The JVM has
exactly one instruction for this: iine. The instruction has the format shown in
Figure 3.1. The format is similar to that employed in other cases: first , there
is the symbolic opcode, followed by the operands. In this case, the opcode is
iinc , th e first operand is index and the second operand is canst. The ind ex
is an unsigned byte ; this must be a valid index into the local variable array
in the current stack frame; that local variable must contain an integer value.
The canst is a signed byte, which is first sign-extended and then added to the
local variable at index.

3.9 Instructions 51

3.9.2 Control instructions

The following instructions implement nconditional transfer of cont rol:

goto This is a transfer of control whose operand is a 16-bit offset which is
added to the address of the goto instruction's opcode to prod uce the
desti nation address in the current method's code. Contro l is transferred
to the destination address .

gOtO _TN This inst ructi on has an opcode, followed by four bytes. The four bytes
are shifted and or'ed to produce an offset into the current method 's code.
The dest ination address of the jump is computed by adding the offset to
the address of the instruction 's opcode. There is an a priori limit to the
size of a method's code of 65535 bytes (this is for "historical reasons").

j sr This instruction is the subrout ine call instruction. It consists of an opt
code and two bytes, the latter comprising a signed 16-bit offset formed by
shifting and or-ing the two bytes. The address is pushed onto the stack
as a value of typ e returnAddress. Cont rol is transferred to that address
from the address of (the opcode of) the j sr instruct ion. The target of the
transfer must be the opcode of an instruction.

j sr_TN This is a second subrout ine call instruction . It has a four-byte offset.
The destination is constructed by shifting and or-ing to form a 32-bit
signed offset . The offset must respect the maximum method code length.
The j sr_TN and ret instructions are used to implement finally clauses.

ret This instruction has a single (unsigned) byte as its operand. The operand
is used to index the local variable array in the current stack frame. The
element of the local variable arr ay thus referenced must contain a value
of typ e returnAddress. This value is copied to the JVM 's pc register to
perform a transfer of control.

return The return instruction is used when the current method's return
type is void . It has no operands. When executed, the instruction returns
contro l to the method that called the one in whose code this instruction
occurs. It reinstates the caller's stack frame, discarding the current one. If
the method in whose code this instruction occurs is declared synchronized ,
monitor locks must be released. Exceptions can be thrown, causing failure
of this instruction.

Treturn Returns a value of typ e T from the current method (T can be i ,

1, f , d or a- recall that typ es requiring fewer than 32-bit s are converted
to a 32-bit represent ation). The value to be returned must be on top
of the local operand stack; it should be of the appropriate type. If the
current method is declared synchronized , monito r locks are released. The
instruction pushes the value to be returned onto the local stack of the
method that called the current one. Control is returned to the caller by
the JVM ; the caller's stack frame is reinstated. Except ions can be thrown,
causing failure of this instruction.

The JVM supports a set of conditional branch instructions. They have the
general name if <cond> and a common format . The form that each of these

52 3 The Java Virtual Machine

if<cond>
branchbytel
branchbyte2

Fig. 3.2. General if<c ond> format.

instructions takes is shown in Figure 3.2. The first element is the one-byte
opcode. There follow the two bytes that const itute the destinat ion offset .

The instruction pops the top element from the local stack and performs
a test on it . If the test succeeds, the destination offset is constructed in the
usual way and added to the address of the if instruction 's opcode to form a
new offset into the current method's code.

If the value popped from the stack is written as v, the forms for if can be
summarised as:

ifeq - if v = 0, control transfers to the destination (v must be an integer);
iflt - if v < 0, control transfers to the destination (v must be an integer) ;
ifle - if v ::; 0, control transfers to the destination (v must be an integer) ;
ifne - if v =1= 0, control transfers to the destination (v must be an integer) ;
ifgt - if v> 0, control transfers to the destination (v must be an integer) ;
ifge - if v 2 0, control transfers to th e destination (v must be an integer) ;
ifnull -if v is equal to null , contr ol tr ansfers to the destinat ion (v must be

of type reference) ;
ifnonnull - if v is not equal to null , cont rol transfers to the destination (v

must be of type reference) .

If the test fails, the instruct ion immediately following the if<cond> is exe
cuted.

The following generic instructions have a three-byte format : opcode fol
lowed by two address bytes. If the test succeeds, the two bytes are used to
construct a signed 16-bit offset into the current method 's code. In both cases,
the stack should have the form:

These values are popp ed from the stack. For iLicmpop, these two values
should be integers, while iLacmpop expects them both to be of typ e reference.

iLicmpop Branch if an int comparison succeeds. The values taken by oP are:
eq If Vl = V2 , the branch is executed.
ne If Vl =1= V2 , the branch is executed.
it If Vl < V2 , the branch is executed.
Ie If Vl ::; V2, the branch is executed.
gt If v i > V2 , the branch is executed.
ge If Vl 2 V2, the branch is executed.

3.9 Instructions 53

iLacmpOP Branch if a reference comparison succeeds. The values taken by OP
are:
eq If VI = V2 , the branch is executed.
ne If VI =!= V2, the branch is executed.

tableswitch (opcode)
0-3 byte padding

defaultbyte1
defaultbyte2
defaultbyte3
defaultbyte4

lowbyt el
lowbyt e2
lowbyte3
lowbyt e4
highbyt el
highbyt e2
highbyte3
highbyt e4

jump offsets .. .

Fig. 3.3. Th e tableswitch instruction format .

lookupswitch (opcode)
0-3 byte padding

defaultbyte1
defaultbyte2
defaultbyte3
defaultbyte4

npairsl
npairs2
npairs3
npairs4

match-offset pairs . . .

Fig. 3.4. The lookupsw it ch instruction format .

The next pair of instructions are used to implement switch commands
in Java source. Both instructions are of variable length. In both cases, the
instruction is padded by up to three bytes; these bytes should be filled with
zero. The padding is required to ensure that 4-byte alignments are maintained .
The defaultbytes are used to construct a signed 32-bit value.

54 3 The Java Virtual Machine

tableswitch The format of this instruction is shown in Figure 3.3. The low
bytes and highbytes are used to form two 32-bit values, referred to as low
and high, respect ively. The bytes indicated by jump offs ets in Figure 3.3
represent 32-bit values representing high -low+ 1 offsets , t he offsets into
the jump table. Note that low :S high.
The inst ruction expects an integer value to be on top of th e stack. This
value is popped; it is the index into the table. If the index is less than
low or greater than high, a destin ation address is computed by adding the
default to the address of the opcode of this instruction . Otherwise, the
destination is computed by subt ract ing low from index and , using this as
the offset of a jump offset. This second offset is added to the address of
the tableswitch instruction to produce the address to which to jump,
thus causing transfer to one of the non-default cases.

Iookupswitch The format of thi s instruction is shown in Figure 3.4. Th e
match-offset pairs must be sorted in increasing numerical order by match.
A value, called key , is expected to be on top of th e local stack; it must be
of type integer. The value of key is compared with the match values and,
if equal to one of them, a destination address is computed by adding the
corresponding offse t to the address of the opcode of thi s inst ructi on. If
there is no mat ch, the destination is computed by adding the default to
the address of the opcode of th is instruction . Execution cont inues at the
address thus computed.

athrow Th is instruct ion expects its operand to be on top of the local stack.
The operand must be of type reference and, therefore, should refer to an
object . This object should be of type Throwable (or a subclass thereof).
The object reference is then thrown. This is done by searching in the local
code for a matching except ion handler. If a handler is found , its code is
executed; otherwise, a search for a suitable handler is begun.

3.9.3 Stack-manipulating instructions

The JVM requires instructions to represent constant values. The interpreta
tion of these instructions is that they have a literal operand which is pushed
onto the operand stack. There are constant instructions for integer (i const),
long (Lconat} , float (f const) , double (dconst) and reference (aconst).

In addit ion, there are the following constant operat ions:

bipush Push the operand (a byte) onto the stack.
sipush Push the operand (a short formed by or-ing the two operands) onto

the stack.
Ide This instruction consists of the opcode followed by an operand, index.

This is an unsigned byte represent ing an offset into the runtime constant
pool of the current class. The ent ity at that locat ion in the constant pool
must be of type int, float or a symbolic reference to a string literal. If
the value is an int or a float, the value is pushed onto the local stack.

3.9 Instructions 55

Otherwise, the constant pool ent ry must be a reference to an instance of
String; that reference is pushed onto the local stack.

Ldc.v This is the same as Ide but has a 16-bit index (represented by operand
bytes following the opcode in store).

Ide2_\< Thi s is similar to Ide but loads long or double onto the stack.
aeonst...null Push null onto the stack.
ieonst-<i> This is a family of instructions: ieonst_-l to rconst.B. They

push the (integer) value indicated after the underscore onto the stack.
Lconst c-cL> Similar to ieonst but pushes a long.
feonst-<f> Similar to ieonst but pushes a float.
deonst-<d> Similar to iconst but pushes a double.

Tload A family of instructions, each composed of a single byte opcode fol
lowed by a single byte that must be a valid index into the local variable
array. The value located at that index is pushed onto the stack. The type
of the value pushed is indicated by T.

Tl.cad.x.n> A family of instructions, each composed only of an opcode. The
operand is encoded in the inst ruction; it is used as an index into the local
variable array. The value stored at th at index is pushed onto the stack.
The type of the value pushed is indicated by T.

Tstore This is a family of two-byte inst ruct ions: the first byte is the opcode,
the second an index into the local variable array. The stack is popped to
yield a value that is stored in the local variable array at the indicated
index. The type of the value popped is indicated by T.

Tstore.x.n> A family of instructions that encode their operand in the op
code. The operand is an offset into the local variable array. The value
on the stack is popped and stored into the local variable array at the
indicated index. The type of the value popped is indicated by T.

The wide inst ruction is a complicated instruction, so the reader should
consult the description in [33], pp. 360-1. This instruction modifies the be
haviour of other instructions. It takes one of two formats, the act ual one
depending upon the particular inst ruction being modified. Its first format is
used for: Tload, Tstore and ret . Its second format is used for iine only.
The instruction constructs a 16-bit signed offset into the local variable array.
The effect of this instruction is to widen the index of its target opcode when
the first format is employed. The second format widens the range of the iinc
instruction it targets . The instruction that is thus modified must not be the
target of a cont rol transfer.

The following instructions support direct manipulation of the stack.

pop Pop the local stack.
pop2 Pop the top two values from the local stack.
dup Push a copy of the top stack element onto the stack. This instruction is

used only when the top element is 32 bits wide.

56 3 The Java Virtual Machine

dup2 Push a copy of the top stack element onto the stack. This instruct ion is
used only when the top element is 64 bits wide.

dup.x t Transform the stack as follows. Given:

change it to:

This instruction operates when the Vi are 32-bit quantities.
dup.xz Transform the stack as follows. Given:

change it to :

if all the Vi are 32 bit s wide. If VI is 32 bits wide but V2 is 64 bits, then
the stack should be tr ansformed into:

swap This swaps the top two stack elements.

The dupz.x l and dup2J:2 instructions are variat ions on dupx l and dup.x z
(see [33], pp. 222-4, for details).

3.9.4 Support for object orient at ion

The new instruction creates a reference to a new object on the stack . The
inst ruction is three bytes in length, the second and third forming an index
into the constant pool for the current class. The entry thus indexed should
be a symbolic reference to a class, interface or array type. The new instance
is created in the heap and the r eference to it returned to the instruction to
be pushed onto the local stack.

newarray Create a new array. The length of the array is expected to be on
the top of the local operand stack; it must be an integer (it is popped by
the instruction). The one-byte operand following this instruction's opcode
denotes the type of the array to be created. A reference to the newly
created array is pushed onto the local stack.

anewarray Create a new array of reference (i.e., whose elements are of type
reference). See [33], p. 181, for details.

multianewarray This inst ruction creates a multi-dimensional array. (See [33] ,
pp. 339-340 for details.)

The four field access instructions have a common format , shown in Figure
3.5. The opcode is followed by two bytes that , together, form an index into
the constant pool of the current class. The element at that index should be a
symbolic reference to a field. This reference yields the name and type of the
field, as well as a symbolic reference to the class in which it is located.

3.9 Instructions 57

opcode
indexbyte l
indexbyt2

Fig. 3.5. Format of the four JVM field instructions.

getfield Thi s operation obtains the value stored in an object's field and
pushes it onto the stack. It expects a reference to an object to be on top of
the local stack. It pops that reference and uses the index bytes to access
the field.

getstatic This operation is similar to getfield but requires the field it
accesses to be a static field of the object. The stack only holds the value
to be obtained from the static field (there is no object reference).

putfield This operation expects the stack to have, as its top element , the
value to be stored. Immediately beneat h, it expects to find a reference to
the object in which the value is to be stored. The index is used to resolve
the field; checks are made to ensure that the assignment is legal (access
and type checks are made).

putstatic This is similar to putfield but operates on static fields. The stack
is expected only to hold the value to be stored. Checks are again made to
ensure that the assignment is permit ted and of the correct type.

There is a collection of instructions dedicated to arrays, the most general
of which are (again, using the convent ion described above).

Taload (T can be b, s, i, I, f, d, c or a). These instructions expect a valid array
index to be on top of the local stack ; immediate ly beneath th is should be
a reference to an array. These operands are popped from the stack. The
array is indexed using the popped value and the element at that index is
pushed onto the stack.

Tastore (T can be b, s, i, I, f, d, c or a). This stores a value in an arr ay.
The inst ruction expects three operands to be on the stack: the value to
be stored, an index into the array and a reference to the array. All three
values are popp ed from the stack.

arraylength Returns the length of an array.

There are some general object-oriented instructions:

i nst anceof This instruction determines whet her an object is of a given typ e.
It expects the object to be referenced by the top element of the local stack
(which it pops). The two bytes following the opcode form an index into
the constant pool for the current class, where it should index a symbolic
reference to a class, array or interface type.

checkcast Another complex instruction ([33], pp. 193- 4). It verifies that the
object referenced by the top stack element is of the given type. The two
bytes following the opcode are a constant pool index that should refer to

58 3 The Java Virtual Machine

a symbolic reference to a class, array or interface type. The instruction
pops the object reference from the stack .

opcode
indexbytel
indexbyt2

Fig. 3.6. Format of the JVM invoke instructions (except invokeinterface).

invokeinterface
indexbytel
indexbyte2

count
o

Fig. 3.7. Format of the invokeinterface instruction.

The following instructions invoke methods in various places. They are all
complex operations , so the reader is strongly urged to read the descriptions
in [33] ; what follows is just an indicative account.

Th e first three have a common format th at is depicted in Figure 3.6. The
last of the group has the format shown in Figure 3.7. The indexbytes are used
to construct an index into the runtime constant pool of the current class.
The entity thus addressed must be a symbolic reference to a method of the
appropriate kind.

invokespecial Call an instance method on an instance; special handling for
superclass, private and instance initialisation method calls. The operation
expects the arguments to the method to be on the local operand stack as
well as a reference to the object to which the method belongs.

invokevirtual Invoke a method using dynamic dispatch. That is, invoke an
instance method. The actual method being dispatched depends upon the
class referred to under the arguments on the stack.

invokestatic Similar to invokevirtual but the method must be declared
static.

invokeinterface Similar to invokestatic but the method belongs to an
interface.

3.10 Concluding Remark s 59

3.9.5 Synchronisation

There are two synchronisation instructions:

• moni torenter Ent er a monitor;
• moni torexit Leave a monitor.

The functioning of these instructions is complex and the inter ested reader
should consult all the relevant sections of [33] .

3.10 Concluding Remarks

In this chapter, the Java Virtual Machine (JVM) has been reviewed. The
JVM 's overall structure consists of:

• A heap region;
• A stack.

The heap region contains the code to be executed by the JVM , as well as a
special Constant Pool dat a structure. The constant pool holds, at runtime,
information about the classes that have been loaded into the JVM . The stack
is of the framed variety and is also allocated in the heap .

One important aspect of the heap is its storage of class file structures in
the constant pools. It is the class file that contains information about each
class that has been loaded. The overall organisation of this structure and some
of its uses have been described in this chpate r.

The JVM executes instructions in the usual way. The instructions in the
JVM are aligned on byte boundaries. Instructions, called bytecodes, are stored
in the method code vectors located in class files. The instructions executed by
the JVM can be divided into two main classes:

1. Simple instructions . In this class are instructions such as jumps (the JVM
supports conditional as well .as unconditional jumps) and arithmetic in
structions. The arithmet ic instructions are typed: there are arithmetic in
structions for the main numeric types.

2. Complex (or High-Level) instructions. In this class are instructions such as
those for the allocation of class instances and arr ays, accessing arrays , ac
cessing and updating class and instance variables, throwing and execut ing
except ions, and instructions for invoking methods of all kinds.

In addition to this Java functionality, the JVM also supports so-called
"C" stacks. These stacks allow methods implemented in native code (code that
executes directly on the host machine) to be integrated with code implemented
as JVM bytecodes.

4

DIY VMs

4.1 Introduction

Having seen example virtual machines , this chapter will concentrate on how
to construct a virtual machine for a programming language. To do this , it
is necessary to understand the semantics of the language and to understand
what is required by any implementation of the language in terms of storage
structures.

The chapter first contains an overview of the example language . This lan
guage is, by necessity, extremely small. Immediately thereafter, the virtual
machine is presented. The virtual machine is designed by providing storage
structures and instructions to support every semantically important construct
in the language. The approach taken here is fairly conventional in the sense
that the language is defined in English and the virtual machine is first de
scribed in English and then its instructions are described, using an Algol-like
notation, as pieces of a program. An alternative approach to the construction
of the virtual machine is then presented (the first virtual machine employs a
single stack while the second employs two stacks, one for control and one for
data). Rather than give programming-notat ion-like code to define this second
virtual machine, its instructions will be described using transitions so that
a more formal model of the virtual machine is obtained (this model will be
used in other places in this book) . The design of the virtual machine raises a
number of issues that lead to extensions; the issues are considered in detail.

The reader should note that neither the abstract nor the concrete syntaxes
of the languages or extensions described below is given. The reason for this
is that they are of no significance to the virtual machines that are really the
centre of interest. Occasionally, though, some example code will be given,
written in an ad hoc concrete syntax.

62 4 DIY VMs

4.2 ALEX

ALEX l is an impera tive programming language of the simplest kind. It sup
ports only integer and boolean values but only integer variables can be de
clared. To make up for this, integer vectors (one-dimensional arrays) with
compile-time bounds are also supported. Boolean values can be manipulated
by expressions but they cannot be stored (there are no boolean variables). In
a similar fashion, st rings are permit ted but cannot be declared. The main use
for strings is to serve as filenames.

4.2.1 Language Overview

ALEX supports expressions over integers. In particular, it provides:

• Addition;
• Subtraction;
• Multiplication;
• Division;
• Modulo.

These operations all have type Int x Int -t Int. In addit ion, there is also unary
minus of type Int -t Int.

It also provides comparisons:

• <
• >
• <
• >
•
These operations all have type Int x Int -t Bool.

The usual boolean operations are also provided:

• and;
• or;
• not.

The first two of these operations have type Bool x Bool -t Bool , while the last
(negat ion) has the type Bool -t Bool.

Expressions consist of:

• An integer constant;
• An identifier denoting a variab le or a function;

1 ALEX denotes something -Iike "Algorithmic Language EXample"-there is no
rea l name for this thing. There are many texts containing the definit ions of toy
languages called T INY or SA L. T he aut hor does not want to call what amounts
to a fragment SA L when there is the magnificent example of [34] .

4.2 ALEX 63

• A unary operator (unary minus and logical negation) applied to an ex
pression;

• A binary operator applied to two expressions;
• A function invocation.

This is a fairly stand ard recursive definition of expression. Note that it includes
integer variables but not booleans.

ALEX provides commands. The set of commands (or statements) is the
following:

• Assignment ;
• Selection (conditional);
• Repetition (iteration) ;
• Pro cedure call.

These commands are very much as would be expected. Assignment has its
usual interpretation, here restricted to integer-valued expressions and integer
variables.

Selection (conditional) commands can come in a number of flavours:

• One-branch (if then, unless . . . do);
• Two-branch (if then . . . else).

As an extension, case commands will be considered.
The repet itive commands defined in ALEX are:

• loop (an infinite loop);
• while;
• until;
• for.

In connect ion with loops, ALEX defines two structured exit commands: exit
and redo. Execution of the exit command immediately terminates the loop
enclosing it. The redo command transfers cont rol to the start of the immedi
ate ly enclosing repetitive command. (exit and redo are analogous to break and
continue in the C family of languages.)

Finally, how (and where) variables and routines (procedures and funct ions)
can be declared in ALEX is considered.

ALEX dist inguishes between procedures and functions. Collectively, they
can be referred to as routines. For the purposes of ALEX, a procedure is a
routine that may not directly return a value. A function is a routine that
directly returns a value. Functions in ALEX can ret urn values of type int,
array(int) or booI (for use in conditionals). Values are returned explicit ly in
ALEX, as in the C family, using the return(< Exp» command.

In our initial account of ALEX, the parameter-passing regime for routines
will be restric ted to call by value. Later, it will be extended to include call by
reference. This restr iction makes procedures somewhat useless because they
are unable to return values via their reference parameters; when the restrict ion

64 4 DIY VMs

is removed, procedures will have their full power. Retu rn of cont rol to the caller
of a procedure is effected by the return command.

In ALEX, routines may only be defined at top level. That is, nested routine
definitions are not permit ted.

Th e definit ion of rout ines can be combined with the declara tion of top
level constants and variables. Top-level constants and variables are in scope
from the point of their declarat ion up to and including the end of the program
text .

Variables and constants (whet her top-level or otherwise) can only be of
type int or Array(int) .

ALEX permits recursive and mutually recursive rout ine definit ions. In
order to support this, there is a forward declara tion form that int roduces the
identifier of the routine to be defined.

The syntact ic form of a declara tion is:

let var v ;= 0
and canst c = 22
and fun faa (x) =
and proc pp (x,y) be
and forward fun bar

This declares a variable, v, a constant , c, and two routines; a function, foo, and
a procedure pp. Note that , at present , it is necessary only to list the parameters
to routines. When a distinction between reference and value parameters is
introduced, it will be necessary to find some way to differentiate between
them syntact ically. The last declaration in the list is a forward reference to a
funct ion called bar.

The above declaration is legal at top level only. Routines are permitted to
declare local variables. ALEX is not block st ructured in the sense of Algol60
in which blocks can occur wherever a command sequence is permit ted, as in:

if x < y
begin
integer

zz ;=

x ;=

end

then

zz;
• • • J

Instead, ALEX routines have a body comprised of an optional declarat ion
part and a command (this is like Pascal). The following is a legal procedure
definit ion in ALEX:

proc pp (x,y) be
let var zz .= 0
in
zz ;= x + y

end

4.2 ALEX 65

The variables declared inside a rout ine are local to it .
ALEX is a statically scoped language.
The top-level declarations and definit ions have the form indicated above:

let decli
and ...
in Command

where Command is the top- level program.
Finally, it is necessary to say a word or two about strings. They are in

cluded only so that operations on such things as files can be defined. These
operations are not specified here but it is possible say a few things about how
strings are to be handled. First , they must have some concrete syntactic form.
Second, they are always constants so can be stored in a literal pool if space is
an issue; otherwise, they can be hand led by pushing bytes onto the evaluation
stack.

4.2.2 What the Virtual Machine Must Support

The ALEX language is representative of most purely procedural languages.
The virt ual machine must support this language. It does so by providing
instructions and storage structures that implement the following classes of
construct :

• Storage for and access and update operations on variables. Variables can
be local or global;

• Expression evaluat ion;
• Selective commands (condit ionals);
• Iterative commands (looping constructs);
• Routine call (both procedures and functions);
• Ret urn from rout ines; th is involves the ret urn of values from functions.

These const ructs are viewed as being the central ones of th is language.
It should be noted that the initialisat ion and terminat ion of programs is

not explicitly considered in the treatment that follows. Th is is an issue that
can be handled best by a compiler. (The reader might , though, consider what
has to be done and how it could be added to the main rout ine by a compiler;
it is a simple exercise.)

Other language classes will have other cent ral constructs. For example,
virt ual machines for functional languages have const ructs for variable bind
ing, function application and selection. A class-based object-oriented language
must support the manipul at ion of class and instance variables (as well as vari
ables local to each method) , method and variable location and method call
(a very simple class-based language based on the procedural core provided by
ALEX is considered in the next chapter) .

66 4 DIY VMs

4.2.3 Virtual Machine-Storage Structures

The simple language, ALEX, has now been defined. In order to commence
the virtual machine design, it is necessary to identi fy the storage structures
required to support it .

The easiest item to consider is the storage of code. Code is typically given
as integer values, so the code for a routine will, most naturally, be a vector (1
dimensional array) of integers. If a storage-management package is available,
the code can be stored in a heap ; otherwise, a maximum size will have to be
chosen (usually on a fairly arbitrary basis). One big decision that must be
made is whether the code for each rout ine is stored separately or together in a
large cont iguous area . The former requires more management than the latter;
the lat ter is simpler to handle but does not permit dynamic replacement of
code. The former is a scheme that can be used in interactive environments ;
the latter in production environments. Here, for simplicity, it will be assumed
th at the code for all routines in a program are stored in a cont iguous vector
of integers.

ALEX supports recursive routine definitions . Thi s implies that the vir
t ual machine will employ a runtime stack. This is quite correct . Expression
evaluation can also be performed on a stack.

It is necessary to make some decisions about the stack organisation. The
following are immediate:

• Is a framed stack used? If so, what is its organisation?
• If not , two stacks are required, one for the storage of control information

and the other for the storage of dat a.

The framed-stack approach combines contro l and data in one stack. When
a rout ine is entered, a frame is pushed onto the stack; it is popped when the
rout ine is left. The frame contains areas for parameters, local variables and
control information. The control information includes the return address and
the dynamic chain (a pointer to the immediately previous stack frame in the
call chain). If ALEX permitted routine definit ions to be nested, it would need
a pointer to the stack frame of the routine in which the current ly executing
one so that locals in the defining environment could be accessed.

The framed-stack approach, also referred to below as the "single-stack"
approach, is shown in Figure 4.1. The heap is shown as a dashed box. The
other storage structures (the stack and code vector, in particular) might be
allocated in the heap , so, in a sense, the heap is an all-pervasive module.

The two-stack approach uses a data stack to hold the current values of
local variables; the top of the stack is used as a workspace. The approach also
uses a control stack to hold cont rol information required to invoke routines
and return from them. Both dat a and control stack are structured. The dat a
stack holds parameters and local variables and the top of the stack is used as
a scratch area . When a routine is entered, the stack top has to be marked so

EJ
heap

r-::l
L::J

main
loop

4.2 ALEX 67

Fig. 4.1. Virtual machine storage organisation.

that the new environment can be popped correct ly. The control stack holds
the return address and other pointers.

In the framed stack approach, the run time environment is represented by
the local variables and the parameters in each frame; frames also hold working
sto rage for expression evaluat ion. When two stacks are used, the data stack
represents the run time environment as well as working store. In the two-stac k
approach, the basic idea is t hat the area above the current environment can
be used as a workspace without affecting the contents of the elements of the
environment.

Each solut ion has its advantages and disadvant ages. Framed stacks have
a more complex organisation than do the stacks in the two-stack approach.
However , the framed stack alternative st ill uses the same space. T he two-stack
approach requires two stacks to be monitored (and kept in synchronisat ion)
instead just one.

Next , it is necessary to decide how to handl e global data. T here is no prob
lem with routines because they are compiled to code and the entry point of the
command that const itut es the top-level program is always known. The issue
relates, more par t icularly, to the constants and variables declared at top-level
in a program. If const ants can be rest ricted so that their initialising expres
sion does not refer to any variables or constants whose values are unknown at
compile t ime, the compiler can remove constants from the program. However,
to make constants more genera lly useful, they must refer to entit ies whose
value rema ins unkn own until run tim e. T his implies that both const ants and
variables must be implemented as storage cells (of the appropriat e size) at
run tim e. The distinction will, of course, be t hat a cell representin g a variable
will have a write capability, while constant-represent ing cells will not .

It is possible to arra nge for global data to reside on the stack at the bottom
most level. This would be sensible because the oute rmost declarations in a

68 4 DIY VMs

program are local to the top-level program. Alternatively, the globals could
be stored in a separate global pool, one variable or constant per cell.

A global pool has some advant ages. If the bottom of the stack has to be
referenced by following a chain of pointers, the pool implementation is clearly
better . If the bottom of the stack can be accessed via a statically declared
point er, there is not much in the choice. Just to make matters a little more
interest ing, a globals pool will be employed (at least for this exercise).

Next , there must be some way to halt the virtual machine's operation.
This can be done with a simple flag that cont rols the virtual machine's main
loop. In addit ion, it would be quit e useful if errors could be reported to the
user. There are (at least) two ways to do this :

1. If the language in which the language is to be implemented has an excep
tion mechanism (as do Ada, Java, C+ + , ML and Ocaml, for example), it
can be used.

2. If the implementation language does not have an exception mechanism,
it is possible to use a (numeric) variabl e to hold error codes. When an
error occurs, the variable is set to the corresponding code and the virtual
machine halted. The value of the error variable is made available to the
user in some way.

Finally, st rings are an issue. Are they to be allocated as globals of some
kind or on the runtime stack? The optimal answer depends upon the frequency
with which any given string occurs in the source code. If a string has many
references, it is better to store it in a literal pool in which all literal data is
stored. If a string has few references, it can be allocated on the stack. Strings
will only be used to name files in ALEX but we will still employ a literal pool.
As for globals, this is for expository purposes.

To summarise (in no particular order) , the following dat a structures are
required by the ALEX VM:

• The code buffer, which holds the virtual machine instructions into which
programs are compiled;

• The stack or stacks used for expression evaluation and for routine call and
return;

• The globals area, which holds all global constants and variables.
• The literal pool, which holds all literal constants encountered during the

compilation of the program. Frequently encountered integer values (or
booleans , for that matter) should not be stored here; its use will be re
stricted to st rings.

4.2.4 Virtual Machine-Registers

The virtual machine is intended to be implemented in some high-level lan
guage. Although the term "register" is associat ed with assembly language
programming, in a virtual machine the term refers to a variable (or object of
some kind) that holds the state information required by the virtual machine.

4.2 ALEX 69

The actual set of registers needed by the virtual machine will be larger
than those that can be affected by the instruction set . This is because it is
necessary to store pointers to stacks, environments , code buffers and so on.
Unless the virtu al machine is const ructed on top of an ext remely advanced
storage management package, it will usually be necessary to include registers
to store the sizes or limit addresses for all the main data st ructures.

Initially, it can be seen that the following registers are required:

Code A pointer to the start of the code buffer. It can be assumed that the
compiler generates correct references into the code buffer, so there will be
no check on them.

Sta ck A pointer to the start of the stack and either a pointer to the end
of the storage block allocated for it or a location in which the size of
the stack 's block is stored. It is necessary to check that the stack has
not overflowed. The stack should be wide enough to hold a host-machine
point er (whichever is larger). Thi s is because some inst ructions will deal
with pointers; the major ity will operate on integers.

Globals A pointer to the start of the block. It can be assumed th at the com
piler generates correct references to the elements of the globals table.

Lit eral Pool A point er to the start of the block. It can be assumed that the
compiler generates correct references to the elements of the literal pool.

The size of the code, globals and literal pool are determined by the compiler.
The act ual values are passed to the virt ual machine as parameters. The size
of the stack is typically just a parameter to the virtu al machine.

The second pointer or the size value is used, in each case, to determine
whet her a reference is within limits. If a reference exceeds the limits, an error
should be signalled.

The names to be given to each of these registers (assuming a two-stack
implementation) are:

CB: Base pointer to code buffer;
SB : Base pointer to the buffer in which the stack is allocated;
SL : The size of the stack's buffer (stack limit);
GB: Base pointer to the globals area;
LB : Base pointer to the literal pool.

These registers are used in the implementation of the virtual machine.
They are not directly programmable by the virtual machine's instructions.
They are recorded here as a reminder that these data st ruct ures must be
allocated somewhere within the software.

To handle each stack, it is necessary to record the current top of stack.
For the data stack, it will be called TD and, for the control stack, TE.

It is also necessary to point to the currently execut ing inst ruction. This is
the program counter or instruction point er. The lat ter term will be used here,
so the register will be called the IP .

70 4 DIY VMs

Termination of the virtual machine is cont rolled by the HLT register. It
holds a boolean value (or some encoding thereof) . The error register will be
called VME.

4.2 .5 Virtual Machine-Instruction Set

The virtual machine for ALEX requires instructions to implement the follow
ing operations:

1. Evaluate expressions;
2. Jump (conditionally or unconditionally) to another locat ion. This is used

to support selections and repeti tions;
3. Perform assignment ;
4. Call routines;
5. Return from routines;
6. Access and update global variables;
7. Access and update local variables;
8. Access literals.

Table 4.1. Expression-related instructions .

Opcode No. operands
add 2
sub 2
mIt 2
di v 2
mod 2
minus 1
and 2
or 2
not 1
It 2
gt 2
eq 2
I eq 2
geq 2
neq 2

The instruction set design can start with the instructions required for
the evaluation of expressions. These are quite obvious and their behaviour is
stereotyped. For a unary operation, the operand is the current top location on
the stack. The operator is applied to that value and the top is replaced by the
result . For a binary operator, the operands occupy the top two locations on
the stack. The two operands are popped from the stack, the operator applied
to them and the result is pushed onto the stack.

4.2 ALEX 71

Expression operators each leave a single integer on top of the stack. Com
parison operators each leave a single boolean value on top of the stack.

The expression-related instructions are summarised in Table 4.1. In the
table, the mnemonics are shown on the left. They were chosen so that they
would be relatively easy to comprehend. The operation named minus imple
ments the unary minus (sign changing) operation. It should be noted that
the neq (not equal) operat ion is introduced as a simple optimisation; th is is
justified by the frequency with which it is encountered in real programs. The
number of operands expected by each instruction is shown in the right-hand
column of the table . All operands are located on the stack. Each instruction
pops its operand(s) off the stack and replaces it (them) by the result .

For expression evaluat ion to function properly, it is necessary to load con
stant values onto the stack; this can involve the loading of values stored in the
literal pool. It is also necessary to load the contents of global variables and to
store them again.

At the moment , call by value is the only evaluat ion method employed.
This implies that expression evaluat ion need only handle values. When call
by reference is added, it will be necessary to handle addresses in some form.
Meanwhile, the stack-manipulating instructions can be defined.

Constant integers must be loaded onto the stack. For example, the eval
uation of the expression 1 + 2 requires the values 1 and 2 be pushed onto
the stack (in either order, for + is commutat ive) before the expression can be
evaluated. To perform this, there is the pushc (push constant) instruction. It
takes the form:

pushc <int eger constant>

Occasionally, it will be necessary explicitly to pop a value from the stack. This
can be performed by the pop instruction.

If the pushc instruction is executed on a full stack, the virtual machine
should raise an error. Symmetri cally, should the pop instruction encounter an
empty stack, an error should also be raised.

Table 4 .2 . ALEX VM stack instructions.

Opcode Meaning
pushc n push constant n onto stack
pop pop stack
swap swap top two stack elements
dup duplicate top stack element

At thi s point, two additional instructions are introduced. They are th e
swap and dup instructions (they are assumed to be familiar and are not ,
therefore, explained). These two instructions will be justified below.

72 4 DIY VMs

The ALEX virtual machine's stack instructions are summarised in Table
4.2.

The treatment of global variables and constants can be described in terms
of stack operations. It must be noted that constants are represented by loca
tions to which only one assignment can be made . Verifying that this condition
is satisfied is a matter for the compiler , not for the virtual machine, so it is un
necessary to bother with ensuring that the single-assignment condition holds.

It is necessary to access and set global variables or constants. Global vari
able access is a matter of locating the variable or constant, retrieving the value
stored in it and pushing that value onto the stack. Setting a global variable
(but not a constant) consists of popping a value from the stack and storing it
in the globals table at the appropriate point. The two instructions are:

getglob n n is the global's index in the globals table.
setglob n n is the global's index in the globals table.

The literal pool only holds manifest constants, so there is no setter instruc
tion required. It is only necessary to refer to the nth element of the literal
pool (it will be arranged so that the code that uses literal pool elements will
access the data). The single instruction in this group is:

getlit n n is the literal's index in the literal pool.

It is the responsibility of the user of literal pool data to ensure that data
lengths are respected. The compiler can generate the appropriate code and/or
set the appropriate' parameters.

Table 4.3. ALEX VM global and literal pool instructions.

Opcode Meaning
getglob n Push the nth global onto the stack
setglob n Pop the stack into the nth global
getlit n Push the nth literal onto the stack

The ALEX virtual machine instructions for handling globals and literals
are summarised in Table 4.3.

The ALEX language supports integer-valued vectors . All vectors have
static bounds which are declared at compile time. It is necessary to have
some way of allocating vectors , as well as accessing their elements . There are
three instructions for handling arrays:

mkvec Create a vector;
vref Access an element of a vector ;
vset Update an element of a vector.

The first instruction, mkvec, allocates a new vector. The upper bound of
the array is the current top of stack . The instruction pops the bound from

4.2 ALEX 73

the stack, allocates the vector in store and pushes a reference to the newly
allocated vector on to the st ack. The vector can be allocated directly on the
stack or in a heap-the specification is neutral with respect to the place where
the allocation is made.

The second instruction , vref, accesses elements of vectors. It expects the
current top of stack to hold an index and the element immediat ely beneath
to point to a vector. The instruction pops these values from the stack and
checks that the index is within bounds (if not, an error is signalled) . Then,
it extracts the element from the vector and pushes it onto the stack. In a
high-level language, this operation can be represented by:

. . . := a(i)

The third instruction, vset , assigns values to vector elements. It corre
sponds to an assignment in which the left-hand side (i-value) is a vector
element reference:

a(i) := ...

The instruction expects the stack to contain, from the top downwards:

1. The value to be assigned to the vector element ;
2. The index of the vector element ;
3. A reference to the vector.

If the index is out of bounds, an error is signalled .
More st ack-manipulating instructions will be introduced when considering

routines, below.
Selection and repeti t ive commands in ALEX introduce jumps. For each of

these commands, a schema can be written to define how it is to be translated
into the target instruction set . The schemata are independent of any particular
instruction set, as will be seen. In the following schemata, the virtual machine
instructions for a const ruct are denoted by the name of t he construct enclosed
within carets ("angle brackets"). Thus, <condition> denotes a condit ion part
of, for example, a while command.

The schemata are quite simple and standard, so th ey are presented with
little explanat ion. For a single-branch select ion, the schemata are as follows.

For if:

<condition>
if-false : goto $end
<thenpart>

$end:

For unless:

<condition>
if-true: goto $end
<dopart>

$end :

74 4 DIY VMs

For a two-branch selection, the schema is:

<condition>
if-false : goto $else
<then-part>
goto $end

$else : <else-part>
$end

For loop (an infinite loop, that is), the schema is:

$loop : <body>
goto $loop

For while, the schema is:

$start: <condition>
i f-f al se : goto $end
<body>
goto $start

$end:

For unless, the schema is:

$start : <body>
<condi tion>
i f- f alse : goto $s tart

$end :

Th e schema for the for command is deferred unti l later . It int roduces some
addit ional complexit ies.

In the repeti tive commands, two labels are shown: one at the start and one
at the end of the command. The reason for t his is that it makes the definition
of the low-level code for exit and redo clear. The scheme for exit is:

$start:

goto $end

$end :

while that for redo is:

$start :

goto $start

$end:

4.2 ALEX 75

A decision has to be made whether to use absolute or relative jumps (i.e.,
jumps or branches). A branch is usually a jump whose range is restricted to
a small region around the current value of the instruction pointer (128 or 256
bytes on many processors). In this virt ual machine, only jumps will be used,
even though they require an address opera nd that must be at least as large
as the max imum size of the code buffer; it is, though, often easier to make
the operand as wide as an implementation-language pointer or integer. For
this virtual machine, relat ive jumps (branches) will not be used; in any case,
they make code harder to read and test and require addit ional work of the
compiler. (A genuine branch inst ruction is considered lat er , in Sect ion 4.3.1.)

From the above compilat ion schemata, it can be seen tha t there are, at
least , t hree kinds of ju mp needed for their implementation:

• Uncondit ional jump (a simple goto);
• A condit ional jump when the result of t he test is t rue;
• A condit ional jump when th e result of the test is false.

The second instruction will perform the jump if and only if the value on th e
top of the stack is true. For the third , the jump is performed if and only if
the value on the top of t he stack is false.

In the current virt ual machine, the instructions will be named as follows:

jmp Uncondit ional jump;
j eq Condit ional jump-perform jump if t rue;
jne Condit ional jump- perform if false.

The names for the second and third inst ructions are derived from an as
sumption about the representation of boolean values. In the current virtual
machine, the value true will be represented by the integer value 1 (one), while
false will be represented by 0 (zero). The jeq inst ruct ion performs a jump
when there is a 1 on top of the stack (the top of stack is equal to 1). The jne
instruction performs a jump when value on the top of stack is not equal to 1.

Th ese are not t he only jump inst ructions possible (one very powerful in
st ruction jumps to the location th at is current ly on the top of the stack). They
are, with a couple of except ions, the only ones required to implement ALEX.

As noted above, when the virt ual machine encounters a jeq or jne as the
next instruction, it pops the stack. The jump is performed depending upon
the value that is popped.

At this point , it is wort h adding the instruction to halt execution of the
entire virt ual machine. It is called hlt . When th e virt ual machine encounters
t his instruction, it sets the halt register to true (or 1).

It is now necessary to consider rout ine call and return. This naturally
requires that the stack's organisat ion be defined. Stack frames are created on
the stack when a routine is ente red. T here are two cases to consider: one for
procedures and one for funct ions. The differences between these two cases are
slight but important. The difference is that the stac k frame for a function

76 4 DIY VMs

Return Address
Dynamic Chain
No. Parameters
No. Local Vars

Space for Parameters
...

Space for Locals
...

Workspace
. . .

Fig. 4.2. Procedure stack fram e organisation.

must reserve space to hold the ret urned value. Ignoring thi s difference, stack
frames must contain the following:

1. Th e address of t he instruction to be executed when t he rout ine returns;
2. A pointer to the stack frame that appears immediately und erneath the

new one (t he dynamic chain pointe r or dynamic chain) ;
3. T he number of parameters;
4. T he number of local variab les;
5. Space for the values passed as parameters;
6. Space for the local values;
7. Workspace (scratch storage).

The stack frame organisation for procedures is shown in Figure 4.2.
Now, the reader might think that the stack frame organ isat ion for functions

would be different from that for procedures . In fact , they are the same. The
ret urn sequence for functions is defined in such a way t hat there is no need to
arrange for an independent slot in the stack frame. So, a single stack frame
arrangement can be used for both funct ions and procedures. T his is useful
because it reduces the number of instructions needed for the virtual machine;
it also simplifies the job t he compiler must do.

First, local variable access and updat e is considered. Then parameter ac
cess is done. In all cases, the top location of the stack refers to a stack element
in the area marked Workspace in Figure 4.2. Where t he specificat ions of t he
expression-evaluating instructions refer to the top of the stack, it should be
und erstood in the same way.

There are two instructions dealing with local variables. They are:

getlocal n Push t he value stored in the local at index locals + n - 1) local
in the current stack frame onto the stack.

setlocal n Pop the value on the top of the stack and store it the local at
index locals + n - 1) local in the current stack frame.

4.2 ALEX 77

Table 4.4. ALEX VM ins tructions for parameters and locals.

Opcode Meaning
getlocal n push the nt h local onto the stack;
setlocal n pop the stack and store in the nt h local;
getparam n push the nt h parameter onto the stack.

In either case, if n is out of range, an error should be signalled.
Since ALEX does not permit nested routine definitions, there is no need

for instructions to get and set non-local variables (variables stored in stack
frames below the current one on the stack). However, the introduction of
reference parameters will require an add ition that is not unlike thi s. Non
local operations are left until lat er .

At present , there is only one instruct ion hand ling parameters. This is an
instruction that reads the value of the specified parameter and loads it onto
the stack:

getparam n Access the value stored in the parameter at index params+n - l)
in the current stack frame and push it onto the stack.

In either case, if n is out of range, an error should be signalled.
It is now possible to define instructions to call routines and to return

control from them. This is divided into two tasks:

1. Set up the stack frame of the routine to be called;
2. Transfer contro l to the called rout ine.

The stack is set up by the save and frame instructions, in that order.
The call instruction is used immdiate ly after the f r ame instruction to effect
a transfer of cont rol. If there are l local variables in the called routine and p
parameters to be passed to the called rout ine, and if the called rout ine's entry
point is e, then the following calls the routine:

save 1 P
<evaluate parameter-i>

<evaluate parameter-p>
fr ame 1 p
call $e

The save instruction allocates stack space for the control information and
local variables. Specifically, it pushes a spare slot for the return address , then
sets the number of parameters, the number of locals and the pointer to the
current stack frame, the f p register.

The f p register has not yet been mentioned. It is a VM register that points
to the current stack frame. It is used to facilitat e access to stack frame control
information and the local variables and parameters stored there.

78 4 DIY VMs

The operands to the save instruction are the number of local variables in
the called rout ine and the number of parameters that are to be passed to it.

These operands are the same as for the frame instruction . This instruction
sets the f p register to its new value.

Finally transfer is effected by the call instruction:

call a Transfers cont rol to the instruction at address a in the code buffer.
It plants the Return Address into the newly created stack frame.

(It should be noted that, by defining call in a slight ly different fashion,
the fr ame instruction can be omitted. The instruction is retained for the time
being in order to make calling sequences a lit tle clearer to those unfamiliar
with them.)

Stack frame setup requires the evaluat ion of parameters. For call by value,
this amounts to the evaluation of expressions. It can be assumed that the
compiler will check that the correct number of expressions is evaluated.

The ret instruction has only to restore the stack pointer , the frame (f p)
pointer and the instruction pointer. It performs the first two operations so
that the previous context is restored; the last is the act ual transfer of control
back to the caller.

There are three instructions that return values from functions. They are:

r eti Return an integer from a function.
retb Return a boolean from a function.
ret v Return a vector from a function.

In fact, these three instructions will be implemented in terms of a single one,
which will be called ret val. The reason for th is is that they all return a value
that is one word wide. There is a little checking that can be performed by
each instruction . However, the main function performed by these instructions
is identical. The translat ion of the two type-specific instructions to the act ual
one can be done by a compiler or by an appropriate assembler.

At the moment a return instruction is executed, the value to be returned
is sitting on the top of the stack in the Workspace area. It is necessary to
make that value available to the caller, preferably on the top of the caller's
stack; that is, the value must be moved to be returned to the top of the caller's
Workspace.

When the stack frame is considered, it becomes clear that only the Return
Addr ess and Dynamic Chain slots are of any use on return. The other slots in
the lower part 'of the stack frame can be considered scratch information. The
return instruction therefore copies the value to be returned to the Number of
Parameters slot , sets the fp register, ret urns the context and returns cont rol
to the caller.

The instructions for handling routine call and ret urn are summar ised in
Table 4.5.

Note that the above scheme works only if vectors are stored in the heap .
In thi s case, the top of the stack will be a pointer to the vector. If vectors

4.2 ALEX 79

Table 4.5. ALEX VM call-related ins truc tions

Opcode Meanin g
save I p set up stack frame
frame I p set frame pointer in new stack frame
call I call rout ine
ret i return integer
retb return boolean
ret v return value (word)
r et return from procedure

are allocated sequentially on the stack, a copy operation will have to be per
formed. For this to work, the return address and dynamic chain must be saved
temporarily and the array copied elementwise to the top of the stack of the
previous stack frame. The caller can then handle the vector as required . Th is
is a bit messy, so the scheme adopted above was preferred. The allocation of
vector elements on the stack can also lead to complex virtual machine code.
This is a case in which the abstract nature of virtu al machines serves us well.

4.2.6 An Example

Here, an example of a piece of ALEX code, together with the corresponding
virtual machine instructions is presented.

let fun add2 (x,y)

l et var z := 0
in

z := x + y;
return (z)

end

Fig. 4 .3. A (very) simple ALEX fun ction.

Figure 4.3 shows a very simple ALEX function that takes two integer
parameters and adds th em. The result is assigned to a local var iable. The
local variable is then returned as the result .

The virtual machine code for this function , called add2, is shown in Figure
4.4. In this and all other code examples, it will be assumed that comments
start with the percent (%) character and extend to the right , terminating at
the end of the line.

The virt ual machine code for add2 begins at the entry point with label
$add2 (it is assumed that labels always start with a dollar sign). The first
operation is to push zero onto the stack and to assign it to z. Local variable
z is the first local variable; indices into local variables start at zero (for the

80 4 DIY VMs

$add2 : pushc 0
setlocal 0 %z := 0
getparam 1 %get y
getparam 0 %get x
add
setlocal 0 %z := x + y
getlocal 0
reti

Fig. 4.4. Code for the (very) simple ALEX function .

reason that they are offsets). Next, the two parameters are retrieved in reverse
order using getparam. Addition is a commutative operation, so the order in
which its arguments are pushed on the stack is irrelevant but subtraction
and division, for example, are not commutative, so their operands must be
pushed in the reverse order to which they appear in the program text. Next,
the addition is performed (using add) . The result of the addition is stored
in the local variable corresponding to z. Next, the value is pushed back onto
the stack (using getlocal) and returned as the result of the function (using
reti) .

The code sequence in Figure 4.4 shows an inefficiency in the compiler.
The setlocal pops the result of the addition off the stack; the getlocal
instruction that immediately follows pushes that same value back onto the
stack. Any real compiler worth its salt (other than a simple demonstration
one) would optimise this sequence to:

getparam 1
getparam 0
add
reti

Finally, in Figure 4.5, a call to add2 is shown. The source code is just
add2(1,2).

%add2(1,2)
size 1 2
pushc 2
pushc 1
frame 1 2 %frame L P
call $add2

$L:

Fig. 4.5. Code to call the ALEX add2 function.

Figure 4.5 starts with preparation of the stack frame for the call. Function
add2 has one local variable and two parameters, so the frame instruction

4.2 ALEX 81

takes these as values of its Land P operands. A stack frame with space for
two parameters and one local variable is created with the size instruction.
Next, the parameters are pushed onto the stack. In the present case, the
actual parameters are constants, so the pushc instruction is used. The frame
instruction is executed next to store the frame pointer in the new stack frame.
Finally, the call instruction is executed to set the return address in the new
stack frame.

Immediately after the call instruction, there is the label $L. This label is
included only to make clear the point to which control returns after execution
of add2.

The code for add2 for the two-stack version of the virtual machine will be
given after that alternative model has been described.

4.2.7 Implementation

In this subsection, an outline implementation is presented in an ad hoc Algol
like language that should be easily comprehended . It is assumed that unsigned
as well as signed variables can be declared (this is not necessary but merely
helps us avoid a number of errors and, hence, the need to check for them).
It will also be assumed that a word type can be defined; this type should
coincide exactly with the word type of the underlying hardware.

The implementation's commands will be printed in this font . In the
text, registers will be printed in bold face roman, as above. The names of
instructions are printed in this sans font. .

First, the registers must be defined:

unsigned word fp 0;
signed word sp = -1;
unsigned word ip = 0;

Note that the stack is initialised to -1: we are adopting a stack regime that
requires an increment of the stack pointer at the start of a push and a decre
ment at the end of a pop. This initialisation is the reason sp was declared as
signed.

The stack will be denoted by s . In a real implementation, this will be
derived from the value of SB.

The other registers will be ignored: they are initialised when the VM allo
cates storage and reads the current program.

In the code, the following will be used as follows:

H The size of the header (control information) , here = 4.
L The number of local variables in the called routine.
P The number of parameters supplied to the called routine.

For the time being, the method by which operands are obtained is ignored
as a complication . (They can be extracted from instructions by incrementing
the ip appropriately.) Equally, no instruction (except jump instructions) will

82 4 DIY VMs

adjust the ip to point to the next instruct ion in the code buffer; again, this is
a minor detail that can be added during implementation.

save L P:

if (H + L + P + sp) >= SL then error fi
sp := sp + H
s lspl := L
s Esp - 1] : = P
s [sp - 2] : = fp
sp := sp + L

frame L P:

fp := sp - (L + H + P + 1)

call ep:

size(call ep) + ip
:= ep

s Irpl :=

ip

Here, size is a pseudo-function that represents the size of the inst ruct ion in
appropriate units. The entry point of the called routine, ep, will have been
converted to a number by the compiler.

getlocal n:

sp : = sp + 1
s[sp] := s[fp + H + 0]

setlocal n:

s [f'p + H + n]

sp := sp - 1
s lspl

getparam n:
What is required is:

sp := sp + 1
s[sp] := s[fp + H + L + n]

Since L is not a constant (it varies with the called rout ine), it is necessary
to modify the above slight ly:

sp :=

temp1 :=
s Esp] :=

sp + 1
s [fp + 3]
s[fp + H + temp1 + n]

Here, the magic number 3 denotes the offset into the stack frame of the
Number of Locals slot .

4.2 ALEX 83

ret:

sp := fp
fp := s Esp + 1]
ip : = s[fp]

retval:

s[fp + 2] := s Esp] %overwrite num params
sp := fp
fp := s[sp + 1]

swap
i p : = s Isp + 1]

Note that t his instruction performs a swap operation on the stack; the code
denoted swap could be a call to a macro or a procedure (it could be directly
implement ed but a macro is to be preferr ed).

jmp I:

ip : = 1

The label, 1, will have been converted to a number by the compiler.

jeq I:

if s[sp] = 1 then
ip := 1

else
ip : = ip + size(jeq 1)

fi
sp := sp - 1

Here and in the next instruct ion , size is a pseudo-funct ion t hat represents
the size of the instruction in appropr iate units. The label, 1, will have been
converted to a numb er by the compiler.

jne I:

if s[sp] /= 1 then
ip : = 1

else
ip .= ip + size(jne 1)

fi
sp := sp - 1

getfglob n:

sp := sp + 1
s lspl := GB En]

84 4 DIY VMs

setglob n:

GB Inl := s lspl
sp := sp - 1

getlit n:

sp := sp + 1
s [spJ := &:LB lnl

The getlit instruction returns a pointer to the literal st ring, not the st ring
itself. This avoids copying the string. It also requires that the primitives that
take the literal as a parameter must dereference the pointer themselves.

pushc n:

sp := sp + 1
s[spJ : = n

pop:

sp := sp - 1

dup:

if sp
if sp
sp
s lspl

swap:

< 0 then error fi
= SL then error fi
:= sp + 1
:= s[sp - 1]

if sp < 1 then error fi
temp1 := s[spJ
t emp2 := s[sp - 1J
s[sp - 1J := temp1
s[spJ := t emp2

unop:

s [sp] : = unop (s lspl)

binop:

s[sp - 1J := binop(s[spJ ,s[sp-1J)
sp := sp - 1

halt:

HLT := true

4.2 ALEX 85

At this point, it should be clear that th e vref and vset operations have not
been specified. Ifvectors are allocated in a heap , the details of these operations
will depend on their representation. Assuming that vectors are defined as
something such as a size and a pointer to the actual vector of integers, and
assuming an unsigned index and zero-based indexing in the heap object , the
operations can be defined in outlin e form:

vref:

index := s[sp]
sp ;= sp - 1
vecptr := s[sp]
i f index >= vecptr.size then error fi
s[sp] := vecptr ,elements[index]

vset:

val : = s lspl
sp ; = sp - 1
index : = s[sp]
sp := sp - 1
vecptr := s[sp]
if index >= vecptr .size then error fi
vecptr .elements[index] := val

The allocation routine , mkvec, is a little harder to specify. To do this, it
is essent ial to assume that there is a routine, allocvec (n) , that allocates n
units of storage in the heap and uses it to create a vector (there might be
addit ional information added to the str ucture that is not defined here). With
this , it is possible to define:

mkvec:

temp1 := s Esp]
s[sp] := allocvec(temp1)

The size of the vector is initially on the stack. Note that the stack pointer
is not altered. The vector is allocated in the heap and a pointer to it is left
on the top of the stack. (Note th at errors are not considered.)

4.2.8 Extensions

The extensions considered in thi s subsect ion are:

• Reference parameters;
• Case (switch) commands;
• Library rout ines.

86 4 DIY VMs

Reference parameters

It t urns out that reference parameters are remarkably easy to implement .
What is needed is the address of the variable. This leads to two cases:

1. Variables declared on the stack;
2. Global variables.

Variables declared on the stack are local to some routine. The address of
such a routi ne can be represented by the index into the stack vector.

Global variables are a lit tle more interestin g. First of all, global variables
are always in scope, so they can be accessed and updated using instructions
already defined. Second , global variables are stored in a separate vector . If
global variables are to be permit ted as reference parameters, it is necessary
to take their (machine) address, so pointers would be needed to implement
reference parameters uniformly.

First, assume th at global variables are not permit ted as reference param
eters. There are two operations, getrefp and setrefp, required. Assuming
th at all that is required is to pick up a reference to the stack, they can be
defined as:

getrefp n:

sp
tempi
s lspl

:= sp + i
: = s [fp + 3]
:= s[s[fp + H + tempi + n]]

Here, the magic number 3 denotes the offset into the stack frame of the Num
ber of Locals slot .

setrefp n:

tempi s[fp + 3]
s[s[fp + H + tempi + n]] := s[sp]
sp := sp - i

Here, the magic number 3 denotes the offset into the stack frame of the Num
ber of Locals slot .

Now, assume that reference parameters are implemented as pointers. This
gives two simple implementations:

getrefp n:

sp
tempi
s [sp]

: = sp + i
: = s Irp + 3]
.= *(s[fp + H + tempi + n])

4.2 ALEX 87

setrefp n:

temp1 : = s[fp + 3]
*(s[fp + H + temp1 + n]) := s[sp]
sp := sp - 1

Using machine pointers requires that the compiler be able to generate
runtime addresses of globals and stacked objects.

Case (Switch) commands

In general , a switch or case command has the general form:

switch Exp into
when c1 C1

when cn Cn

default: Cd
endswitch

The Ci are sequences of commands that are not permitted to declare local
variables (are not proper blocks). The ci are constant symbols or numerals
that need not appear in any particular order (the compiler can perform any
ordering and/or scaling) .

It is intended that a switch (case) such as the above should be compiled
into something like the following:

Code for Exp.
Code to perform switch.
$11: Code for C1.

$ln: Code for Cn.

$ld: Code for default .

At the end of each of the Ci , there has to be a jump to the end of the construct.
Note that the code for each of the Ci is prefixed by a label.

The proposed solution is (a jump table):

Code for Exp -- result is on stack top
switch
jmp 11
jmp 12

jmp Id
$11: Code for C1

jmp $end

88 4 DIY VMs

$12: -- Code for C2
jmp $end

$ld: Code for default

$end:

The idea is that the switch instruction pops the value from the top of the
stack and adds it to the instruction pointer so that one of the jump instructions
is executed. Execution of one of the jumps causes control to pass to the code
for one of the cases. After each case has executed, the jmp $end is executed
to transfer control to the end of the construct. If the default is applied, its
code is executed and control simply falls out of the construct.

Given this description, the definition of switch is quite simple:

temp! := pop
ip := ip + temp! + !

(the addition of one is required because the ip points to the start of the
switch instruction as this code is executed).

The reader should be clear that it is expected that the compiler will arrange
matters so that the expression yields a value appropriate for indexing the
cases.

Library routines

In most languages, the number of routines provided to the programmer via
the runtime library is quite small; indeed, C provides many routines, not by
the standard runtime library provided by the compiler but by a large number
of independent library modules.

In principle, if the virtual machine's instructions are adequate, all library
routines could be written in that language (e.g., mathematical libraries could
be written using virtual machine instructions) but they might execute quite
slowly. More generally, performance and speed can only be addressed by the
provision of virtual machine instructions that perform the relevant opera
tions . This extension to the instruction set implies that more opcodes will be
required .

A more powerful mechanism is to provide an interface to native code so
that routines coded in some other language can be called directly as if they
were written in virtual machine instructions. This is done in the JVM, as was
seen in Chapter 3.

4.2.9 Alternatives

The most significant alternative is the use of data and control stacks in place of
the single stack employed above. In this subsection, the dual-stack approach

4.2 ALEX 89

Locals

Params

Fig. 4.6. Organisation of the d stack.

Return Address
Old C
Old D

P
L

Fig. 4.7. Organisation of the c stack.

will be described . It should be noted that , for the time being, vectors are
ignored.

There are two stacks, the d stack to hold dat a and the c stack to hold
control information. The virtual machine needs to be modified so that it has
a base pointer and length (limit) register for each stack. The organisation of
the two stacks needs to be determined. Figure 4.6 shows the organisation of
the d stack, while Figure 4.7 shows that of the c stack. In both figures, the
stack is assumed to grow downwards.

Additional registers are required to address the two stacks. The dsp reg
ister points to the top of the d stack and the csp register points to the top
of the c stack. As before, these two pointers are initialised to -1 (so the incre
ment before the push , decrement after the pop protocol is being used) . The
D register will be introduced; it always points to the start of the current local
variables area on the d stack. The C register is introduced to point into the c
stack; it points to the Return Address slot in the top few slots on the c stack.

New instructions are required to :

• Push constants. These are similar to the pushe instruct ion above. They
are called: pushde and pushee for the d- and c-stack pushes.

• Pop stack. These are similar to the pop instruction above. They are called
popd and pope , respectively.

• An instruction is required to push the contents of a register on the c stack.
This will be called pushre.

90 4 DIY VMs

• Instru ctions are needed to pop the c stack and assign the value to a regist er.
T his will be called popcr.

In this case , the save operation is no longer necessary; much of the work
that it did can be done by t he frame and call operations .

The frame operation is now:

csp := csp + 1
c [csp] := o %save for return address
csp := csp + 1
c[csp] := C
csp := csp + 1
c [csp] := D
csp csp + 1
c [csp] := P
csp csp + 1
c [csp] := L

T he call operation is now:

dsp := dsp + c[csp]
C := csp - 4
c lcl : = 'size(call $p)'+ ip
D := dsp

On the first line, the top element of the stack is accessed. This element just
happens to be the number of local variables (L) that was passed to the frame
instru ction. Next, the new C regist er is set to point to t he first word of t he
new cont rol frame on the c stack. Control frames are four words long and the
first word of a cont rol frame is always the return address. T he third line sets
the return address in the cont rol frame. This is done by ad ding the size of the
call instruction to the cur rent value of the instruction point er. The size of the
control instruct ion is a compile-time constant (and for this reason , it appears
quoted above) .

T he return operation becomes:

ip := c[C]
dsp := D
C := etc-n
D : = c[C+2]
csp := csp - 4

The return value operation is now:

tempi := d [dsp]
ip : = c[e]
dsp 0= D
C .= c[C+i]

4.2 ALEX 91

D := c[C+2]

dsp := dsp + 1
csp := csp - 4
d[dsp] := tempi

Note that the value to be retu rned will always be on the top of the d stack.
It is, t herefore, copied into the temporary variable tempi (it is provided by
the virt ual machine's implementation). The next four instructions are exact ly
the same as for ret ; the final one pushes the return value (in tempi) onto the
stack top. The top of the stack is now the same as it was before the routi ne
was called.

For the next few instruct ions, it is necessary to make the following obser
vat ions. First, the number of local variables (the L parameter to the frame
inst ruction) is at location c [csp] . The number of parameters to the rout ine
(the P parameter to frame) is at location c Icsp - 1] .

For the next three instructions, the parameter n is a compile-t ime constant.

getlocal n:

dsp : = dsp + 1
d[dsp] : = d[D + c[csp] + n - 1]

setlocal n:

d[D + c[csp] + n - 1] := d[dsp]
dsp := dsp - 1

The value to be assigned to the local variable is located on the top of the
d stack. The inst ruct ion ends by decrementing the d stack top pointer, th us
actually popping the value from it.

getparam n:

dsp := dsp + 1
d[dsp] : = d[D + c[csp - 1] + n - 1]

Unary operators:

d[dsp] : = ' unop ' (d [dsp])

Binary operators:

dsp .= dsp - 1
d[dsp] := ' bi nop ' (d [dsp] ,d [dsp+1])

or:

tempi
dsp
d[dsp]

: = djdsp]
: = dsp - 1
.= ' binop ' (d [dsp] ,temp1)

92 4 DIY VMs

let fun add2 (x, y)
let var z := 0
in

z := x + y;
return(z)

end

Fig. 4 .8 . The (very) simple ALEX function (again).

$add2 : pushcc 0
setlocal 0 %z := 0
getparam 1
getparam 0
add %x + y
setlocal 0 %z := x + y
getlocal 0 %get z for return
ret i

Fig. 4.9. ALEX code [or the two-stack VM.

%add2(1 ,2)
frame 1 2 %frame L P
pushcc 2
pushcc 1
call $add2

$L:

Fig. 4 .10. Calling add2(1,2) on the two-stack VM.

The translatio n of t he add2 function (see Figure 4.8) into this virt ua l
machine code is shown in Figure 4.9. The code to per form t he call add2(1, 2)
for t his version of the virtual machine is shown in Figure 4.10.

To see a call in context , consider the following fragment:

a := 1; b := 2; zz := 0 ;
zz := add2(a ,b)

This compiles into the following stack code:

%assume a = local 0, b = local 1, zz
pushc 1
setlocal 0
pushc 2
setlocal 1
pushc 0
setlocal 2
%Set up for calling add2
frame 1 2

local 2

4.2 ALEX 93

getlocal 1
getlocal 0
%call add2
call $add2
%returned value on stack top
setlocal 2

The second alternative concerns the introduction of two virtual machine
instructions: getnth and setnth. These are both stack instructions. The first

has the form getnth n and returns the nth element from the current top of

the stack. The second instruction sets the nth element from the current top
of the stack to some value-in this case, the value that is currently on the top
of the stack.

4.2.10 Specification

Locals

Params

Fig. 4.11. d-sta ck organisation.

Return Address
Old C
Old D

P
L

Fig. 4.12. c-siack organisation.

The two-stack virtual machine for ALEX is adopted for this model. The
organisation of the stacks are repeated in Figures 4.11 and 4.12 for ease of
reference (the stacks grow towards the bottom of the page).

94 4 DIY VMs

The state of the machine will be represented by the tuple:

(g,d, e, p,(Je,os, i p, instr)

where: 9 is the sequence (vector) of globals, d is the start of the current frame
on the d stack , e is the pointer to the start of the current stack frame on
the e stack, p is the pointer to the start of the parameter area in the current
stack frame, (Je is the control (or e) stack, (Jd is the data (or d) stack, i p is
the instruction pointer and instr is the current instruction . More generally,
instr is taken to be the value of K,(ip) , where K, is the code vector.

It is assumed that vector indices start at one.
The length of the sequence s is writ ten as lsi and sequence concatenat ion

is writ ten S(j:S2, where S l and S2 are sequences. The concatenation of a single
element, v, onto the sequence s, is written as v · s (v · s = (v) . s, where (x)
is a sequence containing the single element x). Some sequences will also be
expressed using the dot notation. Update of a sequence element is denot ed
[v r-+ i]s, where s is a sequence, v a value and i an index; this yields a sequence
s' that is identical to s except that s'(i) = v. Formally, if s is a sequence, v is
a suitable value and i and n are numbers, then [v r-+ n]s = s' is defined by:

Vn E 1. . . lsl· s'(n) = v =} (Vi E 1. .. lsl· i in =} s(i) = s'(i))

Transitions have a two-part structure separated by -t . The left-hand side
denotes the state before the application of the operation, while the right-hand
side denotes the state afterwards.

It will be assumed that each instruction has a length of one. This is just a
simplification to make notation easier when dealing with the next instruction
to execute and with return addresses.

frame A 71":

x t imes
~

where: Sd = o·0, Se = A . 71" • d . 0

call ip:

(g,d,c.p, n(Je,(Je, i, call <p)
-t (g, l(Jdl- (A+ 71") , l(Jel- 5, l(Jdl - 71" , f' 't(Je,(Jd , .p,K,(<p))

where: 1 = A . 71" . d . e . 0 and I' = A . 71" • d . e . i + 1

ret :

(g,d,c,p,1+J"'t(Je,as , i , ret) -t (g,d' ,e', p',1"'t(Je, (J~ , a , K, (a))

where: 1 = A ' 71" ' d' . c' . a, I" = A1 . 71"1 • d" . e" . a', (Jd = S+(J~ and I(J~I = d'
and p' = d' + A1 .

4.2 ALEX 95

retval:

(g, d, c.p, ft.f"tac, v · ad, i, r et val) -+ (g, d', c', p', ac, v · a~ , a , ",(a))

where: f = A' 1f . d' . c' . a , f " = Al . 1fl . d" . c" . a', ad = sta~ and la~1 = d'
and p' = d' + Al

getparam n:

(g, c, d,p,ac,ac, i , getparam n) -+ (g, d, c, p, ac,v . ad, i + 1,",(i + 1))

where: v = ad(p + n).

getlocal n:

(g, d,c.p, ac,ad, i, getlocal n) -+ (g,d,c. p, ac,v· ad, i + 1, ",(i + 1))

where: ad(d+n).

setlocal n:

(g,d,c.p,ac,v · ad, i , setlocal n) -+ (g,d,c,p, ac,a~ , i + 1, ",(i + 1))

where: a~ = [v H (d+ n)]ad'

jump t.

jeq e:

jeq e:

(g, d,c, p, ac,false · ad, i, jeq e) -+ (g, d, c, p, ac,ad, i + 1, ",(i + 1))

jne e:

(g, d, c, p, ac, ad, i, jne e) -+ (g,d,c, p, ac,false . ad,e,",(e))

jne e:

getglob n:

96 4 DIY VMs

setglob n:

(g, d,c, p, (Jc ,V . (Jd , i, setglob n) -+ ([v M n]g,d,c,P, (Jc, (Jd , i +1, I\;(i +1))

unop:

(g, d, c, p, (Jc ,V . (Jd, i, unop) -+ (g, d, c.p , (Jc, unop(v) . (Jd , i + 1,I\;(i + 1))

binop:
ts.d, c, p, (Jc ,V2 . VI . (Jd , i , binop)

-+ (g, d,c,p, (Jc, binop(vl ,V2) . (Jd , i + 1, I\;(i + 1))

swap :
(g,d,C,P,(Jc,VI 'V2 . (Jd,i,swap)

-+ (g,d, c.p, (Jc ,V2 . VI . (Jd , i + 1,I\;(i + 1))

dup :

(g, d, c,p , (Jc,v · (Jd , i, dup) -+ (g,d, c,p, a. ,u -v · (Jd , i + 1, I\;(i + 1))

This completes the specification of the two-stack virtual machine using
transition rules. It must be noted that the error cases have not been given;
the reason for this is that it would complicate the specification somewhat. In
any case, the reader can write them as an exercise (they are not particularly
difficult to identify) .

Just in case the reader objects to the assumption that all instructions have
a length of one, the following is offered. For each instruction, assume there is a
function, size, which maps each instruction to its length (in some appropriate
units, say bytes) . This function can be used in transitions that change the
value of the instruction pointer.

The point of this approach is that it gives a declarative specification of
the virtual machine's instructions that is totally independent of any code or
coding convention. Furthermore, it completely specifies the behaviour of the
virtual machine without requiring any mental simulation of its operations.

4.3 Issues

In this subsection, some issues raised by the above virtual machine will be
considered . In particular, the following will be addressed:

1. Indirect and relative jumps;
2. More data types;
3. Higher-order routines;
4. Primitive routines.

4.3 Issues 97

4.3.1 Indirect and Relative Jumps

In an indirect jump instruction, the operand is an address somewhere in the
store. At the location specified by the operand, there is anot her address: that
address is t he destination of the jump. This is an extremely powerful way to
transfer cont rol. Since the address in t he operand is a location , t he contents
of that location can be altered dynamically.

There is a problem with indirect jumps: the simplest algorithms require
two passes over the code.

Relative jumps, sometim es called branches, are introduced as a method
for compact ing code. The BCPL Intcode and Cint code machines make heavy
use of relative jumps, it will be recalled. In a norm al jump, the operand is a
full address, typically occupying an entire machine word . In a relative jump,
the operand can be a byte or 16-bit quantity, depending on t he processor ar
chit ecture. The operand is usually a signed quantity, the sign determining the
direction of the jump. The actual address of the destination is usually com
puted relative to the current instruction pointer value by adding the operand
to the instruction pointer to yield an absolute address. When the actual ad
dress has been calculat ed, the jump is performed.

Very often, the address taken as the base (to which the branch inst ruction's
operand , or offset , is added) is the instruction after the branch instruction . It
must , therefore, be remembered to include the size of the branch instruction
in the calculat ion of the offset . A compiler will have this encoded in its address
computat ion module (if the programmer remembers to include it!)

A second problem with branches is that the insertion of new instructions
into the region of program covered by the branch affects the destination.e
This must be taken into account when patching or otherwise modifying code
with branches (anot her problem t hat compilers can avoid). A problem for a
compiler is that it must keep track of the locations at which branches occur
so that t he correct offset can be computed; this is a complicat ion for the code
generat or. A further problem is that the compiler has to make a decision as to
whether to generate an absolute or a relative jump (there is ample literature
on instruction selection and any modern compiler book will cover this topic)
thi s complicates the structure of the compiler a lit tle.

Branches can be condit ional or unconditional. As usual , an unconditional
branch is executed without condit ion. A condit ional branch performs the jump
depending on the value of a flag in a register or, in a st ack-based virtual
machine, on the value on the top of the stack.

For interest , here are the transitions defining three branch inst ructions for
the two-stack virtual machine. The instructions are:

br Unconditionally branch.

2 Personally, I find branches a bit of a pain! So, when doing assembly programm ing,
I include th em only when I know the code is in its final form; then I comment
t hem profusely to warn anyone who might modify the code.

98 4 DIY VMs

beq Branch only if the top of the d stack is the value representing true.
bne Branch only if the top of the d stack is the value representing false.

In the transitions, 0 denotes a small signed integer (say, in the range
-128 . . . + 127). Again , it will be assumed that all inst ruct ions have a length
of 1.

So, for br:

(g, d,C, p, (Je , (Jd , i, br 0) --+ (g, d, c,p, (Je, (Jd,£, k(£))

wher e £ = i + 0 + 1, and -128 ::; 0 ::; 127. Note that 1 is added to the current
instruction pointer so the jump destination is computed on the basis of the
instruction following the branch.

The two transitions defining beq are:

(g, d,c, p,(Je, true -(Jd, i, beq 0) --+ (g,d,c, p,(Je,as ,£,k(£))

where £ = i + 0 + 1 and -128 ::; 0 ::; 127, and for the false case:

(g, d, c.p, (Je,false . (Jd , i, beq 0) --+ (g, d,c,p, (Je, (Jd ,£,k(£))

where £ = i + 1 and -128 ::; 0 ::; 127.
Finally, the two transitions defining bne are:

(g, d,c, p, (Je,false . (Jd, i, bne 0) --+ (g,d,c, p,(Je, (Jd , E, k(£))

where £ = i + 0 + 1 and -128 ::; 0 ::; 127, and:

where £ = i + 1 and -128 ::; 0 ::; 127.

4.3.2 More Data Types

The addition of data types usually involves changes to the virtual machine:
new operations have to be made available to the execut ion/evaluat ion process.
In addi tion, it might be advisable to introduce new registers .

Using the same transition notation employed above, vectors will be intro
duced into t he two-st ack virtual machine.

Two new registers, the a and s registers are introduced. Their introduction
is symptomatic of a general methodological point: if a function can be assisted
by the addition of one or two registers , t hey should be considered . As will be
seen, these registers are generally useful; for now, only their use in supporting
vectors will be considered .

The operations are as follows. The error conditions are not recorded below;
as usual , they are relatively straightforward to define. Vectors will be written
as V i , where i is the length.

4.3 Issues 99

The newvec operation creates a new vector of length n in the heap. A
pointer to the vector is pushed onto the d stack.

(a, s ,g,c, d,ac , ad, i, newvec n) -+ (a, s ,g,c, d,ac , V n . ad, i + 1, K,(i + 1))

where v« is a (pointer to a) vector of length n , allocated in the heap.
The vset operat ion sets an element of the vector currently in the S register.

The index of that element is expected to be in the A register.

where v' = [v r-+ n]v.
The vref operation indexes the vector in the S register . The index of the

element to be returned is expected to be in the A register. The element is
returned by pushing it onto the d stack.

where v = v i (n).
The clra operation clears the A register (sets it to zero).

(a, s ,g, c, d,ac , ad, i , clra) -+ (0, s ,g, c, d,ac , ad, i + 1, K, (i + 1))

The popa operation pops the value currently on the top of the d stack and
loads it into (assigns it to) the A register.

(a, s , g, c, d,ac , v . ad, i , popa) -+ (v , s, g, c, d, ac , ad, i + 1, K,(i + 1))

The pusha operat ion pushes the contents of the A register onto the d stack.

(v , s , g, c, d,ac , ad, i , pusha) -+ (a, s ,g, c, d,ac , v . ad, i + 1, ,.,, (i + 1))

The inca operation increments the contents of the A register by one.

(n, s, g, c, d,ac , ad, i , inca) -+ (n + 1, S , g, c, d,ac , ad, i + 1, K,(i + 1))

The deca operation decrements the contents of the A register by one.

(n, s ,g, c,d,ac , ad, i , deca) -+ (n - 1, s ,g,c, d,ac , ad, i + 1, K,(i + 1))

The pops operation pops the d stack. The value popped is loaded into the
S register.

(a, s , g, c, d, ac , v . ad, i , pops) -+ (a, v ,g, c,d,ac , ad, i + 1, K,(i + 1))

The pushs operat ion pushes the contents of the S register onto the d stack.

(a, v, g ,c,d,ac , ad, i , pushs) -+ (a, v , g, c,d,ac , v . ad, i + 1, K,(i + 1))

100 4 DIY VMs

A question arises: should the A register be signed or not? There is no a
priori answer to this . Sometimes, an unsigned value will be useful, while,
at others, a signed one will be better. A signed representation can cause
an overflow error when incremented or decremented too far. On the other
hand , fewer positive signed values can be represented than with an unsigned
value; however, vectors of ext reme length (say 224 words) might cause a few
problems for the memory manager. Some languages allow negative bounds
in arrays; they are, however, normalised to positive values by the compiler,
so only positive indices are used at runtime; this indicates that an unsigned
representation will be adequate . The wrap-around of unsigned values needs
to be checked by the virtual machine, while overflow of a signed value is (as
far as the virtual machine is concerned) automatic.

The addit ion of the a and s registers are not confined to vectorial opera
t ions. In particular , the a register can be used when compiling for loops. For
example, the following source:

f or i = 1 to 10 do x := x + 1 od

could be translated into the following two-stack code, assuming that x is the
nth local variable:

clra %r eg a := 0
$L: get l ocal n

pushc 1
add
setlocal n %x := x + 1
pushc 10
pusha
sub
pushc 0
eq %r eg a 10?
jne $L

$cont:

As an example of the combined use of the A and S registers, the following
is offered.

Consider the following fragment:

v := newvec (10);
x := 0 ;
f or i = 0 to 10 do

x := x + v(i)
od

If v is the nth and x is the mth local variable, then:

newvec 10
setlocal n

4.3 Issues 101

pushc 0
setlocal m
clra
getlocal n
pops

$L: vref
getlocal m
add
setlocal m
inca
pusha
pushc 10
sub
pushc 0
eq
jne $L

$cont:

These instruction sequen ces could be somewhat improved by the addition
of an instruction that tests the value of the A regist er. The value to be test ed
is assumed to be on top of the d stack. This new instruction is called equa
and is specified by:

(n, s, g, c, d, (fe , m- (fd , i, equa) -7 (n, s,g, c, d, (fe , true- oe, i +1,",(i +1))

if m = n, and

(n, s,g, c, d, (fe , m· (fd , i , equa) -7 (a, s, g, c, d, (fe , fals e · (fd, i +1,",(i +1))

otherwise.
The last source fragment can now be written:

newvec 10
setlocal n %v .= vec(10)
pushc 0
setlocal m %x := 0
clra % r eg a : = 0
getlocal n
pops % reg s : = vee

$L: vref
getlocal m
add
setlocal m
inca
pushc 10
equa
jne $L

$cont :

102 4 DIY VMs

The argument for the inclusion of the A and S registers appears convinc
ing. Th is is because the pure stack code to perform the above summat ion
is considerably longer and extremely messy (readers who are unsure of this
could profitably write out the stack-only version of the array sum operation) .
Nested loops require swapping the A and S registers on and off the stack and
into/out of temporary variables but th is is st ill considerably simpler than the
pure-stack version.

Although the inclusion of the A and S registers improves the loop some
what, there are st ill problems with the code, in particular the need to fetch
the value of x and store it again. If this could be avoided, the code would run
faster. There are two basic ways to do this:

1. Allocate a fixed position on the stack for the running total;
2. Intr oduce another register.

The first solut ion leads to code like the following:

$L:

newvec 10
pops
clra
pushc 0
vref
add
inca
pushc 10
equa
jne $L

$cont: pushs
setlocal n
pusha
setlocal m

% s ;= vec CfO)
%a := 0
%tos = accumulator

%add to tos
%a := a + 1

This code is not bad . The question arises as to whether it could be improved
by the addition of more registers. Perhaps, in this case, the answer is no but
if this example were of a nested loop, matters might be different .

Vectors can easily be introduced into the language. Structures (records)
can easily be introduced as well. There are different ways to do this, depending
upon how structures are represented: if a compact representation is required,
there will be one set of methods; if a less compact representation is required,
a simple approach based upon vectors can be adopted. This, more wasteful,
approach will be considered here.

In this approach, a st ructure is implemented as a vector. This approach re
quires at least one word for each structure component, so it is not particularly
efficient in storage. The field selectors are either compiler-generated functions
or offsets represented by constant values. For example:

let sl = struct(x := 0, y ;= 0, Z ;= 0)

4.3 Issues 103

would be represented by a three-element vector and three offsets into it : 0 H X,

1 H Y and 2 H z. The st ructure:

l et s2 = struct(x : = 0 , y := vec (10) , Z := t rue)

would, again , be represented by a three element vector with the same offsets;
the vector is implemented as a pointer that is stored in the second element
of the vector and the third component would also be stored in a full word. In
this case, however, the init ialisation of the structure would be different .

The initialisation code for the first case might be:

newvec 3
pops
clra

$L: pushc 0
vset
inca
pushc 3
equa
jne $L

$cont:

while that for the second might look like:

newvec 3
pops
clra
pushc 0
vset
i nca
newvec 10
vset
inca
pushc 0
vset

$cont :

An opt imising compiler might produce the following, however:

newvec 3
pops
cl r a
pushc 0
dup
vset
inca
newvec 10
vset
i nca

104 4 DIY VMs

vset
$cont:

Code to access the second element of either s1 or s2 might be compiled
into two-stack code as follows, assuming that the structure is stored in the
nth iocal variable:

seta 1
getlocal n
pops %s points to structure's vector
vref
%top of d contains the value.

Here , there is another new instruction: seta. It is defined by:

(a,s, g, c, d, (Je, (Jd , i , seta n) -+ (n,s, g,c, d, (Je, (Jd , i + 1, K(i + 1))

This new instruction allows the A register to be set without needing to push
the initialisation value onto the stack. This is expected to produce another
reasonable optimisation.

The implementation of lists is relatively straightforward, requiring the
primitive operations cons (construct a list cell), hd (return the head-the
first element-of the list) , tl (return the list minus its head) and null (a pred
icate returning true if its argument is the empty list) , as well as a constant
value, nil (sometimes called null , [j or 0 in C) to represent the empty list.

Let ebe a list and v a value, the empty list is written as 0; the list whose
head is v and tail e is written as v :: e. The operations for the two-stack
machine are defined by t he following transitions:

(a, s ,g,c, da.; (Jd , i , pushni L) -+ (a, s, g, c, da.; 0 . (Je, i + 1, K(i + 1))

(a, s ,g, c, d, (Je,V . e.as , i, cons)
-+ (a, s ,g, c, d, (Je,v :: e·(Jd , i + 1,K(i + 1))

(a, s, g, c, d, a. ,V :: e· (Jd , i , hd)
-+ (a, s,g, c, d, (Je,v · (Jd , i + 1,K(i + 1))

(a, s , g,c, d, (Je,V :: e.(Jd , i , tl)
-+ (a, s ,g, c, d, (Je,e·(Jd , i + 1,K(i + 1))

(a, s ,g,c, d, (Jd,V :: e· (Jd , i , null)
-+ (a, s, g, c, d,(Jd,Jalse . (Jd, i + 1, K(i + 1))

And finally :

(a, s ,g, c, d, (Jd , 0 . (Jd , i , null)
-+ (a, s , g, c, d, (Jd , true - (Jd , i + 1, K(i + 1))

4.3 Issues 105

With these primit ives, as is well known, the other list operations can be de
fined. Note that the A and S registers can be used to define iterative operations
over lists.

An example of list construction is in order . Consider the problem of rep
resenting the list (VI , V2 , V3, V4) . This can be done as follows (note that the
elements are pushed onto the stack in reverse order):

pushc nil
pushc v4
cons
pushc v3
cons
pushc v2
cons
pushc vi
cons

(Note that it is assumed that nil is defined in some way-a zero pointer is one
approach.) The list will be on the top of the stack at the end of this sequence.

As an aside, it will be recalled that the OCODE machine has a special
register (called the A register-not to be confused with the A register above)
to hold the value returned by a function . This can be adopted in the two-stack
virt ual machine current ly under discussion. This approach can be intr oduced
by the addition of a register , which will be called the R (for "return") register.
Another virtual machine operation, called rval , must be intr oduced: this
inst ructio n pushes the contents of the R register onto the d stack. The retval
instruction must now be re-defined, as must the return sequence for funct ions.

The new version of retval can be defined as:

(r, a, s , g, e, d, ItI"tO"c,v . O"d ,i , r etval) --+ (v , a, s, g, e' , d', !"to"c,O"~, a , K(a))

where I = A ' 7r ' d' . e' . a, I" = Al . 7r1 . d" . e" . a', O"d = 40"d and 100di = d',
p' = Al + d' .

The rval instruction is easily defined:

(v,a,s , g, e, d, o"c, O"d ,i , rval.) --+ (v,a,s , g, e, d, o"c, v · O"d, i + 1, K(i+ 1))

The calling sequence for a funct ion needs to be modified:

frame I p
%Code for parameters goes here .
call $f %perform the call

$cont : rval %push t he returned value onto the d stack .

In general, it would app ear reasonable to introduce new registers to aug
ment the stack. The introduction of a register avoids the overhead of stack
operations, so increases speed at a modest increase in complexity. This is

106 4 DIY VMs

only one issue, though: the addit ion of special-purpose registers can consid
erably ease the generation of code by the compiler. This makes the modest
introduction of registers a useful technique when extending the range of data
typ es supported by a virtual machine. It must be pointed out , however, that
unconstrained introduction of registers might turn out to be self-defeating,
making code generation more complex and making the virtual machine overly
complex. As in all matters, good judgement is required.

4.3.3 Higher-Order Routines

The usual way to represent higher-order functions is as closures . Closures
are code-environment pairs. One way to implement them is as two-element
vectors: one element of the vector points to the ent ry point of its code and
the other points to an environment . If the stack is implemented as a chain
of frames, this can easily be accommodated; if not , an alternative must be
sought . This scheme poses no problems as far as creation and manipul ation
is concerned, as long as an address can be loaded onto the stack. Loading of
arbitra ry frames onto the stack as well as calling closure code require some
care but can be implemented with relative ease.

There are problems associated with closures, however. One such problem
is that a closure can be allocated on th e stack or in the heap. The compiler
has to determine which allocat ion strategy is best . Further details on the
implementation of closures can be found in many modern books on compilers.
Appel 's books [4] and [5] are suggested.

As far as the current virtual machine and language are concerned, th e in
t roduction of closures requires a major change: the addition of a static chain
to each stack frame. The reason for this is as follows. The current language
permits routines to be defined only in the global environment; nested routine
definitions are not permitted. Thus , there is no real need for a static chain;
instead , stack frames are linked by what would otherwise be called the dy
namic chain. The static chain is used to point to the environment in which a
routine is defined; the dynamic chain is used to point to the environment in
which it is called.

Closures represent a form of routine nesting. Non-local (free) variables in a
closure refer to the environment in which it is created. This has the implication
th at closures must have access to th at environment. Thus , closures require a
stati c chain. In the current context (the two-stack machine for ALEX), the
stati c chain is implemented by the g register in the virtual machine. Thus, a
major addition to the runtime representations would be required. Since this
chapter is already long enough, the necessary modificat ions are left to the
reader as an exercise.

4.3.4 Primitive Routines

Some languages, Pascal is an example, have a relatively limited set of runtime
primitives (e.g., i/o operations, new and dispose). Virtual machines for these

4.4 Concluding Remarks 107

languages can easily implement primitives as instructions in the main case
statement. Common Lisp [48], on the other hand , defines something like 400
rout ines. Clearly, this number of routines cannot be represented in an 8-bit
operation (byte) code. Sometimes, primit ive funct ions can be implemented as
inline code; some primitives, though, require either extension of the virt ual
machine's instruction set or some mechanism to call other code.

Frequently used primit ives (e.g., some i/ o operations) can be implemented
as virt ual machine instructions. Ones that are used less frequent ly might be
treated in some other way. If primitives are implemented as virtual machine
instructions, there is the risk that the case statement in its core will become
too big to fit in the cache on some processor architectures and can, therefore,
reduce performance.

The Harri son Machine (see Chapte r 6) is an examp le of a system that is
rich in primi tives. Most of the primi tives were not implemented in terms of
virtual machine instructions for reasons of speed (many could have been, how
ever) . The decision was made to implement th em in the language that was
used to implement the virtu al machine (Java , Scheme or C++, depending
upon the implementation). Each primitive was implemented as appropriate.
A table of pointers was defined, each element point ing to the code implement
ing the primit ive (or the class containing the method implement ing the pri mi
t ive). On virt ual-machine startup, the table was initialised as appropriate. The
virt ual machine was then exte nded by one inst ruction , called th e extension
instruction (denoted by the primeaU opcode). This instruction took a single
word operan d that denoted th e index of the primitive in the primitives table.
When th e instruct ion was executed, the virt ual machine called the routine
in the table at that locat ion and passed a number of arguments to it (stack,
environment, etc).

T he approach adopted by the Harrison Machine is rather flexible. It does
mean a branch out of the main loop's code. It might be preferred to extend the
opcode size to 16 bits, t hus accommodating primitives as operations. There
are, without doubt , many other possible solut ions to the implementation of
primitives.

4.4 Concluding Remarks

In this chapter, a simple stack-based virt ual machine for a very simple lan
guage was described and an implementation for it out lined. T his machine was
then re-defined in terms of a virt ual machine with two stacks, one for control
information and the other for data. The two-stack machine was then exte nded
to cater for vectors , st ructures (records) and lists. An alternative mechanism
for returning values from funct ions was considered . The implementations of
closures and primit ives were also examined.

The chapter has , it is to be hoped, shown how a virtual machine can
be defined for a programming language. In order to do th is, a very simple

108 4 DIY VMs

language (a toy language, really-it's not much use) was defined and its virtual
machine was then specified.

For the virtual machine, the design principles were:

• Identify the semantically meaningful operations that can be used to im
plement expression evaluation and command execution.

• Identify primitive operations that can be used to implement the operations
defined.

• Identify the runtime storage requirements of the language. This requires
the identification of such structures as heaps and stacks.

• Identify the operations on these storage structures that implement the
storage and retrieval of the data objects required by the programming
language. This is closely related to data declarations and definitions.

5

More Stack-Based VMs

5.1 Introduction

The purpose of this chapter is to introduce example virtual machines for a very
small and simple object-oriented language and the core of a pseudo-parallel
language. Each virtual machine is described in some detail; it is to be hoped
that:

• They are sufficient ly clear to permit the relationship between the compo
nents of each virtual machine to be related to the language concepts it
implements. (The languages are described but the detailed mapping is left
to the reader to identify.)

• They are sufficiently clear to be used as the basis of a real implementation
without too much additional work.

Both of the languages are extens ions of the ALEX language presented in
Chapter 4. This is done so that the details of the extens ions can be the focus of
attent ion. Furthermore, it allows a would-be implementer to extend an ALEX
virtual machine to one that handles either or both of the extensions presented
in this chapter.

The object-oriented language of Section 5.2 is of an ext remely simple kind.
The language is a simple class-based one; it is based upon single inherit ance,
thus avoiding any of the problems associated with multiple inheritance (for
a detailed discussion, see [15]). The language, though, does support dynamic
method dispatch; this causes a lit tle problem, for it must always be ensured
th at the right method is executed when a request is made of an instance.
Dynamic dispatch is handled in a fairly standard way by means of indirection
tables associated with instances (actually, with classes). This ensures that the
methods associated with the actual (not the declared) type of an instance are
invoked when a request is made.

The pseudo-parallel language is a simple extension to ALEX; message pass
ing is grafted on, as are some primitives for creating, suspending and killing
processes (the term "process" is used rather than "task" or "thread"). The

110 5 More Stack-Based VMs

virt ual machine's definition includes primitives for process management , mes
sage passing, queue handling and so on. As with the object-oriented language,
the primit ives are described in some detail. The storage structures required
by the language are also described. It should be noted that, as presented,
the language does not support shared memory (this is a proposed extension).
Nevert heless, the storage organisat ion required by the language must be con
sidered when designing a virtual machine for it .

The discussion of the concurre nt language ends with a number of sugges
t ions for variations and/ or extensions. These suggestions are mostly about
more or alternative inter-process communicat ions primitives.

Th e chapter is arranged so that the object-oriented language is discussed
first. Th is is followed by the presentation of the pseudo-parallel language. A
summary section ends the chapter.

5.2 A Simple Object-Oriented Language

This section is about a simple object-oriented programming language, called
SOLI and its virt ual machine. The object-oriented language is quite real
istic and in keeping with the most current languages. Readers unfamiliar
with object-oriented programming language concepts should consult a suit able
text, for example [15] .

The language is class-based, so a distinction is made between classes and
inst ances. As is usual , classes define the structure of instances. In thi s lan
guage, a distinct ion is made between class and instance variables. Methods
are associated with classes. Classes are related by single inheritance. Method
dispatch is dynamic. Since the virt ual machine is the only thing of interest,
variance is not relevant (although it would be if a compiler were defined) .

The procedural component of this language can be assumed to be defined
(alternatively, it can be considered as the relevant subset of ALEX if that
makes mat ters more concrete).

The SOL language is a pure object -oriented language, like Java. This
means that the only ent ities th at can be defined are objects. The language
does not permit the programmer to define routines, variables and constants
out side of a class. A main class has to be defined for each program.

5.2.1 Language Overview

The programmer defines classes. A class in SOL has a name given by the
programmer. It has a single superclass. It has a collection of variables and a
collect ion of methods. The variables define the dat a elements of the class and
can be mutable (can be updated as well as read) or immuta ble (can only be

1 This stands for "Simple Obj ect-oriented Language" .

5.2 A Simple Object-Oriented Language 111

read) . Class variables can only be of integer type. Boolean values are supported
(in exactly the same way as in ALEX) but arrays are not .

Each class defines its set of instance variables: these are variables that
define the instances of the class. A class can, opt ionally, define a set of class
variables: these are variables that are shared by all of its instances.

Methods are defined together with the class to which they belong. The
methods defined for a class can be invoked by all of the class' instances.
Methods can read and update the slots of its class, as appropriate . Methods
can be recursive. Int ernally, a method const itutes a scope.

Each class has a single superclass. It inherits all the variables and methods
of its superclass. There is a single root class. This is called Object. Every class
is a subclass of Object.

Instances of classes are created by the new funct ion. It ret urns a reference
to the newly created instance. Instance creation consists of two stages:

1. Allocat ion of the storage for the instance.
2. Initi alisation of th e new instance's variables.

It is often useful for the methods of a class to refer to the instance on
which they were invoked. This can be achieved using a pseudo-variabl e called
self. The reasons for its being a pseudo-variable will become clear below.

A pseudo-funct ion called super is used directly to invoke methods in a
superclass.

5.2 .2 Virtual Machine-Storage Structures

Methods are compiled to virt ual machine inst ructions. A code vector is re
quired to store method code. There are two approaches to code in an object
oriented language. Some languages, Smalltalk being one example, compile
method code into separate vectors; these vectors are associated with the class
to which they belong at runtime. Other languages, mostly compiled languages
like C++, compile all of their method code into a single code vector (C++
does this because it is compiled to native machine code and most operat
ing systems make distinctions between data and code segments for machine
code). The approach adopted by Smalltalk is excellent ly suited to interac
t ive environments in which methods are redefined quite frequently, while the
single-vector approach of C++ and others is best suited to production envi
ronments . For simplicity, it will be assumed that SOL compiles to a single
vector. Each method will have an entry point , just like a rout ine in ALEX.
The ent ry point denotes the method in the code vector.

Method access is somewhat more complicated, however. This is because
methods are accessed with classes. It is necessary, therefore, for each class to
have a table contai ning references to the methods it defines. Dynamic dispatch
requires that the methods (and class variables) that can be accessed are those
that are defined for the instance's class. This implies that each instance should
have some way of indicat ing its class.

112 5 More Stack-Based VMs

Instances inherit methods and variables. One compilation scheme collects
all inherited instance variables and adds them to the instance variables of the
class that is being instantiated. The same cannot be done for class variables,
since they are shared by all instances of a class. Method references, however,
can be collected . It might appear that a slight complicat ion would be that
some methods and instance variables might be overridden. This is a matter
for the compiler, however, not for the virtual machine.

~ class class
variables

method
table---t- inst.

instance...
variables

Fig. 5.1. Class organisation in the heap.

For the purp oses of this chapter, method references will be associated
with classes. Instance variables will be collected together. Class variables will
be associated with classes. This scheme requires a runtime search for class
variables and for methods.

The organisation of a class and one of its instances is shown in Figure 5.1.
The figure shows that each instance refers to its class and to a storage area in
which its instance variables are allocated. Each class refers to a method table
and an area holding class variables. The figure does not show the superclass
link.

A heap management system is used by SOL. All classes and instances are
allocated in the heap.

A runtime stack is required. Its role is identical to that in a procedural
language such as ALEX. It contains intermediate results. In the case of SOL,
routine references become method references and all variable accesses are rel
ative to a class or instance. A dual-stack scheme could be used for SOL, but a
single, framed, stack will be employed here, just as for ALEX. The dual-stack
approach will not be discussed in connection with SOL.

A number of procedures and functions are used by the implementation
to access and updat e the heap structures implement ing classes, methods and
instances. These routines are:

5.2 A Simple Object-Ori ented Language 113

instvget i n Return the contents of the instance variable n of the instance
pointed to by i.

instvset i n v Assign value v to instance variable n of the instance pointed
to by i.

instclass i Return a pointer to the class of the instance pointed to by i.
supsuper s Return a pointer to the superclass of the class pointed to by s.
clsvget c n Retu rn the contents of the class variable n of the class object

pointed to by c.
clsvset c n v Assign value v to the class variable n in the class object

pointed to by c.
mthepget en Return a pointer to method n in class object c. Thi s pointer

should be the ent ry point of the method.

A function alloci n is assumed. This allocates an instance st ructure in
the heap with n instance variables. A corresponding allocc n m can be
assumed: this allocates a class structure in the heap with n class variables
and m methods. The allocc function will not be used until the extensions
are discussed.

Finally, it will be necessary to search along the chain of superclasses of
an instance. It is assumed that the compiler can determine how far up the
chain to search for a method or variab le. The number of steps up the chain
is used to locate the desired class object. The following convention is used.
If the desired ent ity is in the class of the instance, the distance is zero (0).
If it is in the superclass of the instance's class, the distance is one (1). Each
superclass up the chain adds one to the distance.

5.2.3 Virtual Machine-Registers

It might come as a surprise to know that no registers are required in addit ion
to those supplied by the ALEX virt ual machine. It is possible to opt imise per
formance by the addition of registers. This will be considered as an extension.

5.2.4 Virtual Machine-Instruction Set

The majority of ALEX instructions can be assumed. In order to support an
object-oriented language like SOL, the routine calling instructions of ALEX
must be replaced by new ones that access the heap-allocated data structures
representin g classes, method tables and instances.

Instructions are needed to perform the following operations:

• Create a new instance of a class. (Instance deletion can be performed by
the heap management system, as in Java.)

• Get and set instance variables.
• Get and set class variab les.
• Refer to self.
• Call a method.

114 5 More Stack-Based VMs

• Return from a method.
• Perform super call.

Th e instruct ions will be called:

allocinst: Allocate the storage for a new instance.
initinst: Initi alise a new instance.
get iv: Get an instance variable's contents .
setiv: Set a new value into an instance variable.
getev: Get a class variable's contents.
setev: Set a new value into a class variable.
save: Set up a stack frame for a method call.
frame: Init ialise the frame pointer for a method call.
meall: Call a method.
retpm: Return from a procedural method.
retval: Return a value from a functional method. Note that this might return

a reference to an instance.
scall Perform a super call.

The details will depend upon the storage st ructures employed by the virtual
machine.

The reader will note that no mention has been made to self. The reason
for thi s will be made clear below.

Operations not directly related to methods will be defined first. Note that
they naturally require the routines described above.

allocinst: Assume that the size is on the top of the stack. A pointer to the
newly allocated instance object will replace it when the inst ruction terminates.

s[spJ := alloci s[spJ

initinst i: Assume that a pointer to an uniniti alised instance structure is
on the top of the stack. The operand i is the number of instance variables in
the instance. There should be i expressions (result s).on the stack immediately
below the instance pointer. So:

tempi : = s[spJ %get the instance pointer
sp := sp - 1
for i : = 0 to i - 1 do

instvset(tempi,s[spJ , i)
sp := sp - 1

done

Note th at the initialising values must be in reverse on the stack (this is natural
for stack-based implementations but worth noting).

getivar n: Assume that a pointer to the instance is current ly on the top of
the stack:

s[spJ : = instvget(s[spJ ,n-i)

5.2 A Simple Object-Oriented Language 115

setivar n : Assume th at the value is on the top of the stack and the point er
to the instance is immediately below:

instvset(s[sp - 1J ,s[spJ)
sp := sp - 1

getclass: Stri ctly speaking, this is a macro, not an instruction proper. It is
used only within inst ructions in this implementation. So:

s[spJ := instclass(s[spJ)

getcvar s n : Assume that the instance pointer is on the top of the stack. The
operand s is the offset along the superchain of the class in which the variable
(whose offset into the class variables) is n.

getclass
if s > 0 then

for i : = 1 to s do
s[spJ : = supsuper(s[spJ)

done
fi
s[spJ : = clsvget(s[spJ ,n)

setcvar s n : Assume that the value is on the top of the stack and a pointer to
the instance is immediately below. The operand s is the offset along the super
chain of the class in which the variable (whose offset into the class variables)
is n. So:

getclass
if s > 0 then

for i := 1 to s do
s[spJ := supsuper(s[spJ)

done
fi
clsvset(s[spJ , n, s[sp - 1J)
sp := sp - 2

The instructions for methods and method calls are the next to be de
scribed. In this connection, the pseudo-variable, self, needs to be implemented.
The best way to implement self is as an extra parameter to each method, usu
ally the first . To access the value of self, the first parameter in the current
stack frame is accessed (this is at offset zero into the parameter area). An
instruction can be defined as:

self:

getparam 0

The compiler must always insert this extra parameter. It must also arrange
method calls so that the instance from which the method call is issued is
insert ed into the actual parameters of a call.

116 5 More Stack-Based VMs

Calling methods is somewhat more complex than calling ordinary routines.
This is because the method must be located in the chain of superclasses start
ing at an instance's class. A pointer to the method is returned by the search.
Other than this (and the inclusion of a point er to the instance to be bound
to self), the calling sequence for methods is similar to that for routines in the
single-stack implementation described above. The call instruct ion must be
augmented so th at the search is included.

An important assumption is made about the search for methods. The
method has already been determined to exist by the compiler. A similar as
sumption is made in connection with class variable access and update.

callmethod s n : Assume that a pointer to instance is on the top of the stack.

%ep of method on top of stack .:= methepget(s[sp] ,n)
:= s [sp]
:= sp - 1

getsuper
if s > 0 then %find the super

for i := 1 to s do
s[sp] . - supsuper(s[sp])

done
fi
s lspl
ip
sp

5.2.5 Extensions

There are many possible extensions. For example, it is possible to:

• Provide more runtime descriptors so that introspection is facilitated;
• Provide dynamic loading and unloading of classes (as in JVM) .

A comparison between this example and the JVM (either as outlined in Chap
ter 3 or [33]) or the Smallt alk virtual machine [21] will soon reveal areas in
which extensions are possible. The language for which the current virtual ma
chine was defined is ext remely simple and only intended to show th e main
points-some extensions to the language will have a profound influence on
the organisation of the virtual machine.

5.2.6 Alternatives

The main alternative to the class-based approach to object orientation is
prototypes. This is an extremely interesting area but there is no space to
introduce it here. Interested readers should consult [15] for an introduction to
prototypes; for the more knowledgeable, either [10] or [36] are recommended.

5.3 A Parallel Language 117

5.3 A Parallel Language

This section is concerned with a simple parallel processing language, which
will be called LASSIE.2 This is, in essence, a procedural language ext ended to
support parallel processing. The virt ual machine is designed to execute on a
uni-processor system, so implements a form of pseudo-parallelism. The basic
procedural language will be assumed to be ALEX.

There are differences between the current system and ALEX. ALEX has
global variables and literals. In LASSIE, global variables must be understood
as having two flavours:

1. Variab les that are global to all routines in a process but which are not vis
ible in other processes. These variables must be allocated on the process'
stack.

2. Variables that are accessible to all processes in a program (in the system) .
Variables of this kind must be protected by semaphores or some other
mechanism to ensure mutual exclusion. For the time being, this kind of
variable will be omitted.

Literals are read-only, so can be handled in exactly the same way as in ALEX.
However, if processes can be introduced dynamically, there will be the need
to protect the literal pool so that mutual exclusion is ensured.

5.3.1 Language Ove rview

The language is organised around the concept of a process. A process resembles
a lit tle program. It contains a set of global variable and constant definitions
and a collect ion of routines. It has a main program. When a process is first
executed, control is passed to its main program which, typically, is an infinite
loop (hence our inclusion of the loop construct in ALEX).

The language contains all the constructs of ALEX. As noted above, there
are issues relating to global variables and literal pools. In order to make mat
ters as simple and modular as possible, global variabl es will be stored in the
lowest stack frame on a process' runtime stack . Thi s makes them accessible
to all of the rout ines defined within a process. This could increase the cost
of global access. However, the virtual machine will be augmented with a G
register which always points to the globals area at th e bottom of the stack.
The easiest way to implement the globals areas is to interpret the outermost
let of a process as a set of definitions and declarations that are local to the
process. This has the pleasant implication that what were global variables will
now be stored in the local variables part of the bottom stack frame. The G
register points to the start of the locals section of the bottom stack frame.

This interpretation of an ALEX program has another pleasant conse
quence: it is now possible to pass parameters to a process when it is created.

2 For suitably obscure reasons that are not revealed.

118 5 More Stack-Based VMs

They are stored in the param eters area of the bottom stack frame. Sometimes,
the parameters passed to a process are of impor tance to routines within its
body. In particular , the process' identifier is of considerable use. To handle
these cases, a set of additional global variables will be added to each pro
cess by the compiler; code to assign parameter values to these globals will be
generated by the compiler and inserted into the process' initialisation code.

The initialisation code added by the compiler is executed when the process
is run for the first t ime. One particular operation is to set the process' identifier
as a global variable.

It is necessary for processes to create other processes. This is done using
a create operation which returns the identifier of the newly created process,
so that the creator can send messages to the new process. In some process
models, in particul ar the Unix/Posix model, process creation involves storage
sharing and separation . In the model employed here, when a process is created,
the virtual machine allocates new storage that is totally disjoint from the
creat or's. When a child process has been creat ed, the parent continues. The
Unix/ Posix fork model allows the creator to wait until all of its children have
been terminated. This is not directly implemented in the current example.

In addit ion, the language contains syntactic const ructs for sending mes
sages. A message, for the virt ual machine, is just a header containing routing
informat ion and a pointer to a payload. The payload is a vector of bytes (or
words) that is supplied by the process' code. As far as the virt ual machine
is concerned, the contents of a message are of no consequence. For the pro
gramming language, they might be described as a record or structure or by a
vector.

The message-exchange protocol is init ially designed to be asynchronous.
One reason for this choice is that it is easier to implement. A second reason is
that synchrnonous mechanisms can be implemented on top of asynchronous
ones. In an asynchronous scheme, one process sends a message to another and
cont inues processing. At some stage , the receiving process receives the mes
sage. The receiving process does not have to wait for a message to arrive if it
does not so choose. In a synchronous scheme, both processes must synchronise
before th ey exchange the message(s). One way of implementing synchronous
communications on top of asynchronous is for the first process to send a ~es

sage stat ing that it wants to communicate. The receiver replies with a message
saying that it is ready to receive the message. The message is then exchanged
and both processes continue independently. Clearly, to make this work, both
processes must recognise that a message has been sent by the other. The
receiver must be able to wait until the exchange has been made. When the
exchange is made, the receiver might , opt ionally, then send an acknowledge
ment message. An implementation of synchronous message exchange will be
considered as an exte nsion.

When concurrency in any form is an issue, the question of fairness arises.
Fairness is the property that every process is given the processor event ually.
The main queue in the virt ual machine implements a round robin priority sys-

5.3 A Parallel Language 119

tern . Processes are added to the end of the queue and removed from the front.
Eventually a process will reach the head of the queue and will be executed.
It is not permitted to insert a process into the middle of the ready queue,
so overtaking is not possible. Equally, there are currently no priorities, so
overtaking cannot occur by altering process priorities or by repeatedly intro
ducing a higher priority process. The fairness of the current virtual machine
is minimal.

5.3.2 Virtual Machine-Storage Structures

The storage structures for a parallel language are somewhat more interesting
than for other languages. Most of the usual storage structures are present but
they are often replicated, one for each process. For example , there is a stack
for each process so that computations within a process cannot affect those in
another.

PCB

-+----... 1 stack I

regs I msg queue I

Fig. 5.2. General organisation of a process table (PCB).

• A process descriptor. This contains information describing a process. It
contains :
- The instruction pointer for the process. Each process has its own in-

struction pointer.
- The process' stack. Each process has its own stack.
- A status field. This records the state of the process.
- A pointer to the process' code vector. Note that two or more processes

can share the same code.
- A message queue.
- A termination flag. This is set when the process terminates.
- A set of processor registers . These are copies of the virtual machine 's

registers that are made when a context switch removes the process
from the (virtual) processor.

• A process table. This holds all the process descriptors of processes that
are current ly executing or have just been created. The process table is

120 5 More Stack-Based VMs

indexed by a process identifier, or pid. This allows information in a process
descriptor to be accessed rapidly by the virtu al machine (and other things).
Figure 5.2 shows the general organisat ion of the process table (also called
a Process Control Block, hence PCB in the figure).

• A process queue called the ready queue. This holds the process descriptors
of all processes that are ready to execute.

• A stack for each process.
• A code vector for each process.
• A message queue for each process. This holds the messages that the process

has yet to process.
• A message header. This is a standard header that consists of:

- The pid of the sender.
- The pid of the receiver.
- A pointer to the message's contents (or payload).

It will be assumed that the following are defined for process descriptors:

allocpd: Allocate a new process descriptor in the process table. If there are
no free slots, an error is signalled.

ini tpd ss c: Init ialise a process descriptor. The parameters are:
ss: The size of the stack for the new process.
c: Th e code vector for the new process.

deletepd p : Delete the process descriptor p.
procesa.Ld p: Return the pid of the process descriptor p.
process.st.ack p: Return the stack in the process descriptor p.
process.stack.set p s: Set a stack s in process descriptor p.
process...lIlsgs m: Return the message queue in process descriptor p.
processmsga.aet; p m: Set a message queue in process descriptor p.
process_status p: Return the status of the process descriptor p.
process_stat us . s e t p s : Set the status s of the process descriptor p.
process. I p p: Return the instruct ion pointer of process p.
procesa.Ip.set p ip: Set the instruction pointer ip in process descriptor p.
prccess.code p : Return the code vector in process descriptor p.

For queues, the following are required:

create.queue: Create a FIFO queue.
next q: Return the next object enqueued on queue q.
enqueue q 0 : Enqueue object 0 onto queue q using the FIFO discipline.
emptyq q: Return true if the queue q is empty, false otherwise.
clearq q: Empty the queue of its current contents. This is a rarely used

operation.

Stacks also need some operations defined over them:

stack_create n : Create a stack of size n in the heap.
stack_size: Return the size of the stack.
stack_bottom: Retu rn a pointer to the bot tom of the stack.

5.3 A Parallel Language 121

st.ack.top: Return the top of the stack.
st.ack.top.set : Set the new top of the stack.

There are operat ions associated with messages:

msg.craate src dest cants: Creat e a message wrapp er with three slots set to
src, dest and cants.

msg_src: Return the pid of the sender of the message.
msg.des't : Return the pid of the intended receiver of the message.
msg.conts: Return the contents (payload) of the message.

For the time being, the code vector will be ignored. There are different
ways to implement it . The organisation of the code vector is of lit t le interest
if processes cannot be added dynamically to the virtual machine.

5.3.3 Virtual Machine-Registers

The virtual machine inherits a number of registers from the sequent ial lan
guage. In addit ion, it defines a set of registers of its own.

HLT The halt flag to terminate the virtual machine.
SB A pointer to the stack of the process that is currently execut ing.
SL The length of the current stack (for checking-this is ignored below).
st k A pointer to the start of the current process' stack.
sp The top of the current process' stack.
G The globals start pointer. This is set when a process is made current .
cp A pointer to the current process' descriptor .
ip The instruct ion pointer.
mq The message queue of the current process.
cpid The pid of the current ly execut ing process.
cpcd A pointer to the current process' code vector (or its ent ry point if code

is compiled into a single vector or segment) .
ptab The process table.
rdy The ready queue.

(Again, some of these registers are not programmable by virt ual machine
instructions. They are, as noted in Chapter 4, essent ial for the operation of
the system.) It is necessary to change the names of registers in ALEX code
in order to convert it to run on the current virtual machine. This is a simple
but tedious matter.

Stacks, queues and messages will be allocated in a heap .
Figure 3.3 shows the general organisation of the storage st ructures used

by this virtual machine. The figure shows the currently running process as
a pointer to a contro l block (or process descriptor) that refers to a set of
registers, a stack and a message queue. (The "regs" box in the figure refers to
a locat ion in which the process saves its registers bet ween act ivations). Figure
3.3 also shows a number of wait ing queues. In genera l, a virtual machine will
have a number of waitin g queues, one for each shared resource.

122 5 More Stack-Based VMs

regs

current
process

ready Jf--------l~ I
queue _

L--..T-----I
wait

queue

wait
queue

running
stack

running
regs

~
~

Fig. 5.3. General organisation of support struc tures.

5.3.4 Virtual Machine-Instruction Set

The basic operations determine the inst ruct ions.
It is necessary to create and delete pro cesses. The former requ ires t he

creation and initi alisation of a process descriptor. A stack must be created for
t he new process an d the code vector must be set in the pro cess descriptor ;
the inst ruction pointer must be initi alised and an empty message queue must
be assigned to it . The status is set to ready. As far as the source code is
concerned, the process_create function returns the identifi er of t he newly
created process.

P rocess delet ion can involve t he delet ion of the pro cess' descripto r. In
most operating systems, there is a limit to the number of process descriptors
that can be present at any time. This leads to an implement ation of the
process table as a vector of process descriptors . When a process terminates, it s
descrip tor is marked as free (eit her by setting a flag or, more usually, by adding
it to a free chain-the free chain is used in allocating pro cess descriptors, as
well). The deletion operation will be denoted by da l.ete.pd, here, and no more
det ails will be given . Similarly, the a llocation of a new process descrip tor is
handled by the al.Loc .pd abst raction.

When a pro cess descriptor has been created, it is placed in the ready queue.
At some t ime, it will come to the top of the queue and will be run.

5.3 A Parallel Language 123

The process-creation instruction is:
pcreate ss c. The operands are the same as for initpd. The instruction
allocates a new process descriptor in the table and allocates and initialises a
stack which is then stored in the new process descriptor. An empty message
queue is creat ed and stored in the process descriptor. The code vector is set in
the descriptor and the instruction point er is set to the first instruction. The
process status is set to ready and the descriptor (process) is enqueued on the
ready queue.

The instruction that deletes a process is:
pdelete pid. The pid operand is the process identifier of the process to be
deleted. The operation deletes the stack and message queue of the process
and clears the slots in the process descriptor. The process descriptor is then
marked as free so that it can be re-used.

Sometimes, a process needs to ter minate itself voluntarily. Thi s is achieved
using the pdelete instruction. However, cleanup operat ions might be neces
sary. For th e current version, there are no cleanup operations. It must be noted
that the sudden suicide of a process can lead to deadlocks. In the present case,
if there are processes waiting on messages from a process that has just killed
itself, they will wait forever for replies.

In the case of a suicide, the compiler must generate code to access the
process' identifier. If the identifier is stored as offset mypid in the global
variables area of the process, the suicide instruction can be implemented as:

getglob mypid
pdelete stk[sp]

An operation that voluntarily suspends the caller will be useful. This is
called the suspend operation. It is executed when the process is running. The
effect of execut ing a suspend operation is to remove the caller from the pro
cessor. A context switch stores its state informat ion in its process descriptor
and the descriptor is enqueued on the back of the ready queue.

The suspend instruction is:
psuspend. There are no operands.

The virt ual machine executes a cycle. On each cycle, a process is selected
from the ready queue. The process that is selected is usually the first in the
queue. This is operationalised by selecting a process descriptor (the first)
from th e ready queue. A context switch is performed to remove the currently
runni ng process (storing its state information in its process descriptor) and
sett ing the virtual machine's registers from the newly selected descriptor. The
inst ruction pointer is set in the virt ual machine and the newly selected process
runs.

In the initi al version, only asynchronous message passing will be supported.
To support this, a trio of operations is required:
asendmsg d m: This sends the message, m, to the destination d. The desti
nation is a valid pid. The operation creates a message header and sets m as
its payload. The result is enqueued on the message queue of the process with

124 5 More Stack-Based VMs

pid equal to d. The caller is not suspended after or during execut ion of this
operation.

anextmsg : This returns a pointer to the next message in the caller's message
queue (if the re is one); it returns nil if t he message queue is empty.

agotmsgs: Thi s is a function that returns true if the re are messages current ly
in the caller's message queue and false otherwise.

Note that the message-handling operations require us to extend the de
notable values of the sequent ial language with pointers and the value nil. A
suitable representation for them must be selected. For a virtual machine, a
pointer can be an underlying machine address and nil can be zero (as it is in
C).

Since context switches will occur repeatedly, an operation will be defined
to handle it . This operation will be used more as a macro than an independent
operat ion. Nevertherless, it is a virtual machine operation, so must be included
in a complete specificat ion.

The context-switching operation has the form:
swi tchctxt outpid, where outpid is that of the process to be switched out.
It saves the state of outpid in its descriptor. It obtains the next process from
the ready queue and makes it runnable.

When one process decides that the virt ual machine should halt , it executes
a halt instruction to set the HLT flag. Th is is achieved in the obvious way
(which is identical to the way it was done for ALEX).

5.3.5 Implementation

So, the instruction set must be implemented. Luckily, most inst ructions are
the same as in one of the ALEX variants , so a lot of work has already been
done. However, it is st ill necessary to provide implementations (some of which
are not trivial) for the following instructions:

1. pcreate.
2. pdelete.
3. psuspend.
4. asendmsg .
5. anextmsg.
6. agotmsgs .

In addition, the swi tchctxt macro will be required.
pcreate stksz code: returns pid of new process.

code .= stk[sp]
sp := sp - 1
stksz : = stk[sp]
sp := sp - 1
pid := allocpd

enqueue
proc
proc .mq
proc.sp
proc.ip
proc.stk
proc.SL
proc.SB
nxtproc
proc
mq
sp
ip
stk
SL
SB

5.3 A Parallel Language 125

initpd stksz code
enqueue rdy pid

pdelete pid: Assuming th at the process is not on any queues.

deletepd stk[sp]
sp := sp - 1

suicide:

deletepd cpid

switchctxt outpid:

proc := ptab[outpid]
proc.mq := mq
proc .sp sp
proc .ip := ip
proc.stk := stk
proc.SL SL
proc.SB := SB
enqueue rdy outpid
proc .= dequeue rdy
mq .= proc .mq
sp : = proc.sp
ip : = proc.ip
stk := proc.stk
SL := proc.SL
SB := proc .SB

psuspend:

rdy cpid
:= ptab [cpf.d]

:= mq
:= sp
.= ip
:= stk
;= SL
.= SB
:= dequeue rdy

ptab [nxtproc]
: = proc.mq
:= proc.sp
;= proc.ip
:= proc.stk
:= proc .SL
:= proc.SB

126 5 More Stack-Based VMs

asendmsg destpid msg:

msg
sp
destpid
s'tk Isp]
destp
enqueue
sp

stk[sp]
sp - 1
stk lspl

:= msg_create cpid destpid msg
:= ptab[destpid]
destp .mq stk[sp]
:= sp - 1

anextmsg: Returns a message or nil:

sp : = sp + 1
stk[sp] : = dequeue proc .mq

msgconts msg: Assume msg is stack top.

stk[sp] := msg_conts stk[sp]

msgsrc msg: Assume msg is stack top.

stk[sp] : = msg_src stk[sp]

msgdest msg: Assume msg is stack top.

stk[sp] := msg_dest stk[sp]

agotmsgs : Returns t rue or false, depending upon state of local message queue.

sp := sp + 1
stk[sp] := emptyq mq

5.3.6 Extensions

There are a great many possible extensions to LASSIE, some of which are :

• Synchronous message exchange;
• Shared variables and, more generally, critical sect ions;
• Condit ional critical sect ions;
• Monit ors;
• Await construct s;
• Priorit ies and bet ter scheduling;
• Dynamic process introduction;
• Storage management .

5.3 A Parallel Language 127

Synchronous messages

As outlined above, it is possible to build upon asynchronous communication
to provide a synchronous version. In this subsection, an alternative approach
will be adopted: bounded buffers protected by semaphores . Each process is
associated with a unique buffer. This buffer is accessed using two semaphores:
one for mutual exclusion and one to signal full/ empty. The buffer is of a finite
size: a size of 1 would be ideal. The actual buffer holds a single pointer to a
message of the same structure as that described above.

The operations on the buffer are:

ssend pid msg: This is a procedure. The shared buffer associated with the
process pid is accessed. If no other process is active in the buffer and the
buffer is not full, the caller adds the message to the buffer. In either of
the other cases, the caller is suspended on the semaphore's queue.

sread: This is a function . It is called by the owner of a shared buffer. It
accesses the shared buffer. If no oth er process is act ive in the buffer and if
the buffer is full, the caller copies the pointer and signals that the buffer
is empty. Otherwise, the caller is suspended on the semaphore's queue.

Initially, the buffer is nil.
Binary semaphores are quite adequate for this application. The addition

of semaphores adds a little complexity because they introduce the possibility
that a process can be either on the ready queue or on some semaphore queue.

A semaphore implementation requires three operations:

initsema s n: Initialise the semaphore s and set the counter to n.
wait s: Wait on the semaphore (the P operation).
signal s: Signal on the semaphore (the V operation) .

Shared variables

The conventional way to implement shared variables is to use semaphores .
The synchronous message exchange out lined above is an example of a shared
variabl e.

Events

The Unix operating system supports an event-based inter-process communi
cation mechanism (called "signals") . It is relatively easy to implement events
in virtual machines like the one described above. More generally, it is possible
to include programmable interrupts, as well as introducing those supported
by the operating system on which the virtual machine executes. If the virtual
machine is implemented in Ada, most of the work of interfacing to operating
system interrupts is already done in its library.

128 5 More Stack-Based VMs

Monitors

Monitors , as is well known, are a high-level construct similar to a class. Ba
sically, a monitor is a set of data, an initialisation routine and a collection
of entry routines. In addition, there is a monitor queue of processes that are
waiting to enter the monitor and perform an operation.

Await

This construct was introduced by Brinch Hansen [12]. It is a high-level con
struction of the form:

await condition

where condition is an expression that returns a boolean value.
The caller is suspended until the expression returns true. This is the source

of the problems associat ed with the construct. The obvious way to execute the
expression is within a busy wait but this , at least on a uni-processor, is not an
option. What is required is for the expression to be periodically evaluated and
the result used to determine whether to resume the process which originally
called the await function.

There is a simple solution to the problems associated with the construct :
generat e thunks. The construct calls a thunk to evaluate the conditional ex
pression.

5.3.7 Alternatives

In the implementation sketched above, a context switch involved saving the
virtual machine registers in the outgoing process and obtaining a new set of
registers from the process to which control is switched. This clearly requires
space in the process descriptor. One simple alternative is to store the ent ire
context (VM registers) on the top of a process' stack when it is switched out .
This is a common approach adopted in operating system kernel const ruct ion.

A large question hangs over the approach adopted here. It was decided
to design a virtual machine that looks very much like a conventional oper
at ing system kernel. If continuations are available to the implementer (see,
for example [20] for a series of Scheme interpreters based on continuat ions),
a cleaner approach might be available. This is the way that Concurrent ML
was const ructed [43] .

Using continuations, it is possible to employ the operations of a sequen
tial VM without all the extra structure and operations described above. All
the approach requires is that the basic VM provides a way to manipulate
continuations. One reply is that continuations are an extremely good way to
implement pseudo-concurrency but they are not so good for: ,

• Implementing VMs for concurrent languages that might execute on a
multi-processor;

• Providing such features as tracing and profiling.

5.4 Concluding Remarks 129

5.3.8 Issues

One severe criticism of Java is that its thread operations are at a very low
level. The operat ions defined above are at an even lower level! The defence
given by t he designers of Java is that it is possible, given their pr imitives, to
implement any other kind of thread operat ion. Thi s is a defence that will also
be offered here. It was a design decision, here, to define a virtual machine as
an example. T he primitives chosen for thi s virtu al machine are intended to
show how they can be implemented and represented in t he instruction set.
It is quite possible to wrap the primit ives defined above in a richer set of
const ructs, many of which can be implemented by the compiler.

5.4 Concluding Remarks

This chapter contains descriptions of two relatively simple virtual machines:

• One for a simple object-oriented programming language based upon the
sequent ial virtual machine;

• One for a simple parallel language t hat uses the sequential language as it
core.

Again , the purpose of presenting these VMs was to show how, in an in
formal way, t hey can be designed . The examples show how more "modern"
extensions to a simple algorithmic core can be implemented in a virtual ma
chine.

5.4.1 Some Optimisations

The descrip tions of the three virtual machines presented in this chapter and
the previous one are not opti mal, even though a direct implementat ion will
have reasonable performance. In t his subsect ion, a few opt imisat ions will be
considered.

An optimisation that is definitely worth discussing is the replacement of
constant references in instructions by pointe rs. For example, the entry points
of routines can be replaced by pointers instead of indices into code vectors.
Similarly, jumps of both kinds can be opt imised by convert ing labels into
point ers to instructions. If entry point s and labels are represented in VM
code by words, thi s usually requires no addit ional space, assuming that the
underlying hardware representations of words and pointers is t he same. In
code segments that are heavily used, the subst itut ion of pointers for indices is
definitely worthwhile because it considerably reduces the number of storage
accesses (and cache loading on most processors). This optimisat ion requires a
pre-processing phase before loading into the virt ual machine.

In an object-oriented language, access to the super classes of an instance
can also be optimised by the replacement of indices by pointers. It was as
sumed above that the compiler can determine in which superclass a method

130 5 More Stack-Based VMs

is to be found . This led to a pointer-chasing exercise. This can be removed if
a direct pointer to the method can be obtained; by hypothesis, it can.

Readers interested in a parallel language and virtual machine based on
the rr-calculus (see, for example, [35]) will find the description of PICT in [40]
interesting.

5.4.2 Combining the Languages

One reason for presenting virt ual machines for an object-oriented and for a
pseudo-parallel language was that they both represent interestin g and useful
extensions to the basic virt ual machine concept . The combinat ion of the two
leads to an object-oriented parallel programming language, a so-called "active
object" language. Active objects are, at the time of writing, a research area.

6

Case Study: An Event-Driven Language

6.1 Introduction

In this chapter, a virtual machine of a less conventional nature is presented.
This is done to demonstrate to readers that t he semantics implemented by a
virtual machine need not match that of the von Neumann model or that of a
convent ional stack model in all details; indeed, any semantics, conventional or
otherwise, can be implemented using a virt ual machine. Funct ional languages
wit h lazy evaluat ion, stream-based languages and funct ional-logic languages
(which require that evaluat ions be suspended until input unification variables
are bound) do not conform to the conventional von Neumann model but can
be implemented with relative ease using virt ual machines.

The present case is of an event-driven syst em. In this system, called the
Harrison Machine! [13, 14], st ructured objects, called events, are used totrig
ger t he execut ion of pieces of code. The code is organised as small modules.
Code execution is guarded by operators resembling those in a temporal logic;
t he code that is guarded by an operat or is called a ru le. In t his system, rules
can be nested, providing a st ructured language for building event-based soft
ware.

Rules use the cause operation to cause events . This is implemented as the
creat ion and initialisation of event objects which are stored in a global event
queue. The main loop of the virtual machine removes the next event from
t he queue (using the FIFO discipline by default) and run s the pattern code
of all the ru les in the system (this execut es nested pat terns, as well as top
level ones). T hose ru les whose pattern is sat isfied by the event are stored in
a list ; those whose pat tern is not satisfied are left until the next cycle. Rules
whose pat terns have been satisfied are then execut ed in some order (in all the
implementat ions to date, this has been sequent ially by iterat ing down the list ,
executing each rule in turn). The execution of ru les causes new events that

1 Named after John Harrison, the designer and constructor of the first reliable
ship's chronometer.

132 6 Case Study: An Event-Driven Language

are added to the global FIFO. When all rules have been executed, they are
returned to the set of all rules and the cycle continues until there are no more
events to b e processed or until a rule decides that the machine is to stop.

The last paragraph describes the basic or default mode of operation for the
system. The Harrison Machine was designed in order to explore the following
issues:

• Using event-based processing as a looser form of routine call. Rules (ac
tually ent ire modules) can be added and removed from the system at
runtime; new rules can be subst ituted for old ones as the system executes.

• Computational reflection using events . Computational reflection is the
ability of a process to inspect and modify itself as it executes .

The second of these issues imposes some interestin g requirements on the Har
rison Machine's virtual machine. First , since the system is concerned with
event-driven execution, it was necessary for the entire virtual machine to be
represented as rules to be executed by the system itself. This permits a col
lection of rules running on the virtual machine to implement the functions of
that machine and , thereby, act as another virtual machine upon which to run
rules. In particular , it permits the execut ion of virtual machines in a hierarchy
or in pseudo parallel, some (or all) of which can implement different instruc
t ions and execution cycles (thus, providing a set of different virt ual machines
all execut ing within the same image). Communicat ion between such nested
virt ual machines is effected using the global event queue.

The fact that the event queue is global is both a blessing and a nuisance. It
provides a means of communication between all of the rules in the system. It
also acts as something of a bottleneck. However, its role as a focus for control
decisions turns out to be of some utility. The library of functions included
with the virt ual machine includes operations for handling queues (in fact , all
queues, including the global event queue, are implemented as DEQueues) and
for replacing the global one with a local one. In the rule language, queues are
first-class entit ies (as are rules), so the language provides primitives for setting
and accessing the global event queue as an object. This enables rules to replace
the global event queue with queues of their own. These queues are intended
to hold events that have been genera ted by virtual machines implemented as
rules. There are also library routines implementing the DEqueue protocol, as
well as those that search the queues. This enables rules to implement FIFO,
LIFO and other control regimes within a virtual machine (when implementing
virtual machines as rules, these operations can be performed on queues stored
in variables local to a rule).

To implement this properly, events must be treated as first-class entit ies,
also. This has the implication that the virtual machine must be able to create
and operate upon the ent ities representing events.

The virt ual machine also contai ns primitives for setting and accessing the
rule that is to be executed next , thus permittin g rules to decide what to run

6.2 The Structure of Rules 133

next . There is also a suspend primitive that a rule can execute to remove itself
from the processor and cause the next rule to be run .

The fact that rules are first-class ent it ies has less impact upon the virtual
machine . The rule-language compiler is also a routine in the runtime library,
so rules can be compiled from source text or abstract syntax tr ees (there are
also primitives for their const ruction) and then either stored on an external
medium or immediately loaded into the system. There are also primitives for
loading rules from external media such as files or a database. Rules can also
be stored, singly or in sets, in variables local to rules; they, like queues and
events, can be stored in components of events , thus permitting the exchange
of state and operation between rules at runtime.

This collection of primitives allows rules to control the execut ion of other
rules, as well as maint aining a collection of event queues. It also allows rules
to control the contents of the rule store at any point in the execution of the
virtual machine.

The Harrison Machine has been implemented a number of times, each one
experimenting with different compilation strategies and collections of primi
tives. The virtual machine is, in fact , quite simple to implement in its basic
form (indeed, one version was written and tested in Scheme in a single day!)
This chapter , then, describes the virtu al machine and the language that exe
cutes upon it . The issue of reflection is not particularly relevant to this book,
so detailed considerat ion is omitted.

The aim of this chapter is to show how a virtual machine for a language
that has fairly unconventional semantics can be constructed . In order to do
this , the virtual machine is described and then formalised using transition
rules. A compilation scheme for the language that executes on this virtual
machine is also provided (however, it should be noted that only th e core
schemes are given).

The schemes also include a simple scheme for compiling patterns to virt ual
machine code. As will be seen, pattern compilation involves nothing unusual;
it does not require unification primitives or special variable-binding methods.

Appendix B contains a set of rules that describe the compilat ion of Harri
son Machine rules. The target of this compiler is the virtual machine described
in this chapter.

Section 6.7 is not strictly germane to the central theme of this book. It is
concerned with the optimisation of rule compilation by means of source-to
source translation of derived rule forms to primitive ones.

6.2 The Structure of Rules

Here, the forms taken by the system's rules are described III an informal
fashion.

The following rule classes are supported by the system:

• always.

134 6 Case Study: An Event-Driven Language

• when.
• unless.
• since.
• until.
• next.
• alt.

The classes are interpreted informally as follows. The init ial keyword de
notes the temporal operator (or simply "operator") for the rule. The operator
has a scope that extends to the end of the rule.

In all cases except the first and last , the parameter p occurring immedi
ate ly after the operator is an expression representing an event predicate. The
predicate is implemented as a simple pattern, so rule classes with this param
eter are referred to as pattern rules. When the class of rule is not at issue, the
term "rule" is used to refer to rules of any of the above classes.

In all cases except the last (alt) , the Body denotes a sequential program.
Th is program can contain occurrences of rules. In such cases, the term "nested
rule" is employed to denote those rules inside the scope of an operator.

always do(Body). The body of the rule is executed on every cycle of the Virtual
Machine unless a command in the body causes the rule to terminate.

when(p) do(Body): When an event occurs that satisfies the pattern p, the body
is executed.

unless(p) do(Body): If an event occurs that does not satis fy the pattern , the
body is executed. (An unless rule can be interpreted as when(not p) do(Body).)

since(p) do(Body): If an event occurs that satisfies p, repeatedly execute body.
A since rule can be interpreted as the nested rule when(p) do(always do(Body)):
(In some ways, the name "since" is a lit tle misleading, for its intended inter
pretation is "henceforth" ; that this is the correct interpretation will become
clear below. The name "since" was chosen simply because it reads as better
English .)

until(p) do(Body): Repeatedly execute body unt il an event occurs that sat isfies
p. An until rule can be interpreted as the nested rule always do(Body; when(p)
do(Abort)), where Abort is a system operation that ter minates the rule and
causes it to be deleted from the system .

The next operator, if included, will have the form:

next do(Body): This operator cannot occur first in a rule. It is executed in
response to the event that caused the immediately preceding rule to execute.
The interpretation of a next rule is equivalent to when(true) do(Body). When
proceded by since or until, next operators are executed on the event immedi
ate ly following the termination of these iterative constructs, if they termi nate.

As an example of the complex behaviours that can be obtained by nesting
rules, the following is offered. If one wanted to represent the proposit ion that

6.2 The Structure of Rules 135

always do e
when ($day = TUESDAY)do(

when ($time = 2pm)do(
teach (CS330) ;

) -- end i nnermost when
-- end when

-- end always

Fig. 6.1. A rule for "I always teach C8330 on Tuesdays at 2pm ".

"I always teach CS330 on TUesdays at 2pm" , a ru le like that shown in Figure
6.1 might be written (the ru le in the figure is written in pseudocode).

A furt her form could be defined that consist s of a since rule with an until
rule nested within it . Such a rule would be triggered by one event and would
continue until an event caused it to terminate. This form would be associated
with the during operator. This form was not employed in the syst ems described
here. Its implementat ion is a simple source-to-source tr ansformation.

alt(R1,R2 , . . .,Rn) , where R , 1 :::; i :::; n is a pattern rule (always, next, since
and until rules are not permitted). Rules of this form are interpreted as follows.
The pattern of each rule is evaluated in turn. The first ru le whose pattern to
be sat isfied is executed . In other words, a ru le

is equivalent to:
R1 V . .. V s;

where the R are, in thi s, case rules of any kind except next. Given thi s equiva
lence, rules of thi s form are not st rictly necessary because they can be written
as a set of separate ru les; they turn out, however, to be useful when writing
ru le programs.

The Body of a ru le is either one or more nested rules (ru les can be nest ed
to an arbit rary depth) or a simple imperat ive program t hat can also contain
rules. In addition to rules, bodies contain the following principal commands:

• Assignment (of t he usual form) ;
• Procedure call;
• The Cause operation to cause events;
• The McCarthyj Dijkst ra condit ional (if);
• Dijkstra's do command;
• let bindings to introduce local variables.

At present , it is not possible to define routines using the internal language
for rules. Thi s might be considered in a later version of the system.

136 6 Case Study : An Event-Driven Language

6.3 Events

The Harrison Machine is based on events. Events are used to trigger the
execution of rules and are caused by rules; events cause rules to perform their
actions. Rules containing the when operator wait for events to occur. Other
operators are concerned with repetitive performance of actions either after an
event has occurred or until an event occurs . The execution of a rule's action
can cause one or more events. Usually, these events are stored in the global
Event Queue. Some rules have actions that do not cause further events.

The events in the Harrison Machine act in ways that are similar to con
tinuations in more conventional programming languages. In denotational se
mantics, a distinction is made between "pure" and "impure" continuations.
The former merely represent the rest of the program, specifically the next
statement or command to be executed. The latter have this purpose but they
also convey additional information.

This distinction is carried over to the events in the Harrison Machine. It is
possible to have "pure" events that just indicate that something has happened
(for example, the $start event that conventionally initiates execution ofrules) .
It is also possible to have "impure" events. These are events that also convey
data to the rules that trigger on them. Impure events are similar to structures
in LISP or C and can contain data of any legal type. When a rule triggers on
an impure event, it can extract some or all of the data the event 's structure
contains and use it in the performance of their actions . It must be remembered
that impure events also denote that something has happened. Events of both
kinds are usually caused by a primitive command that is executed by rule
actions .

Events of both kinds are associated with a type . All events of the same type
have identical structure. Pure events have only a typ e (they are implemented
as a type field and an empty structure) . Impure events have a type and a data
containing structure. The structure holds the values that are communicated
by impure events .

The triggering process is based upon matching the rule 's pattern against
the current event. The matching operation is divided into two phases . First,
the type of the event is tested. If it is the desired type , the second phase is
invoked; otherwise, the match fails and the rule cannot trigger. The second
phase consists of either the extraction or testing of component values from the
event structure. Value extraction always succeeds. Rule patterns are conven
tionally interpreted as conjunctions. A rule whose pattern matches the current
event is said to be triggered and its action can then be executed.

6.4 Execution Cycle

The Virtual Machine's execution cycle operates on the following objects:

• A queue of events awaiting processing;

6.4 Execution Cycle 137

• The event that is currently being processed by rules (the Current Event);
• A set of rules that have executed and are waiting for another event (the

Waiting Set);
• A set of rules th at are ready to execute their bodies (the Ready Set);
• A library of routines that operate on the VM state.

The execut ion cycle is driven by the successive events generated by its
rules. These events are stored in a globally accessible queue. When rules can
produce no more events and the queue is empty, the system must halt ; usually,
however, a special event type, called HALT, is used to halt execut ion of the
system. The cent ral event queue is a DEQueue so that events can be added
to the front and to back. Thi s will be justified below; for now, it should be
noted that the event queue usually operates in the standard FIFO regime, so
events are handled in time order with the oldest being handled first.

On each cycle, the first event in the event queue is removed. It is made the
Current Event. The pat terns in rules are matched against the current event
to determine whether the rule should be executed in the current cycle. The
except ion to this is the always rule class, whose members execute on every
VM cycle. .

When a new cycle begins, the first event is usually removed from the
event queue to become the Current Event (except ions to this will be dis
cussed below). The rules in the Waiting Set are executed. Execut ion causes
the event predicates in each rule to be executed, performing a matching op
eration against the current event. If a predicate is not satisfied by the current
event , its rule executes a suspend instruction and is returned to the Waitin g
Set . Otherwise, the rule is added to the Ready Set.

Once the event predicates of all the rules in the VM have been executed,
the Ready Set is either empty or it contains a set of rules to be run. If the
Ready Set is not empty, the body of each rule is executed in turn. Execut ion
of a rule body usually produces events that are added to the Event Queue in
FIFO order. When execut ing the Ready Set , each rule is first removed from
it , so that , at the end of this part of the cycle, the Ready Set is empty. If the
Ready Set is empty at the start of this sub-cycle, the next event is removed
from the Event Queue and the operations of the cycle are repeated.

On initialisation, compiled rules are loaded into the Waiting Set and at
least one event is added to the Event Queue. The first event is usually the
special event called START and one of the rules in the Waiti ng Set has an
outermost event predicat e that matches START.

The Virtual Machine's operating cycle can be summarised as follows. Let
Eq be the Event Queue and c be the Current Event ; the empty queue is
denoted by () and th e operation of removing the first element of a queue is
denoted by the funct ion hd(Eq) . Let Sw be the Waiting Set and S; be the
Ready Set. Let Te be the rule to be executed (current rule) and let p(Te , c)
denote the execut ion of the current rule's event predicate with the Current
Event and let b(Te) be the body of the current rule. The assignment operation

138 6 Case Stud y: An Event-Driven Language

is denoted by +--- . Before the cycle starts, S; should be empty. The operation
of the cycle is then:

1. If Eq = () , go to 8.
2. c +--- hd(Eq) .

3. s.; +--- s.; s.; +--- 0.
4. For each r E Sw, set re +--- r making Sm +--- Sm\ {re}. Execute p(re,c).

a) If p(re,c) is satisfied, S; +--- Sr U {re}.
b) Otherwise s; +--- s; U {r. }.

5. If S; = {} , go to 1. Otherwise, cont inue at the next step.
6. For each r E STl set r; +--- r making S; +--- Sr\{re}. Execute b(re).

a) If re executes a suspend instruction , Sw +--- SwU [r.}.
b) If re executes a term instruction, it is deleted completely.

7. Go to 1.
8. Set VM termination flag.
9. Stop.

There are some observat ions that must be made about the cycle.

• On the very first cycle, all always rules are executed and are added to Sr.
This is because their code always places them in the Ready Queue when
they are first executed.

• The functions p(r,e) and b(r) denote the current event predicate and cur
rent body of the current rule, r e - If t he rule being executed contains nested
rules, the current event predicate and current body functions denote the
predicate and body of the nested rule that is to be executed . In machine
terms, the values of these functions depend upon the rule's inst ruction
pointer.

• The cycle can also be halted if a rule executes the haltvm instruction . This
immediately terminates execut ion of the VM.

The cycle is initialised as follows. Let R be a set of rules in compiled form,
let e, be the START event .

1. s; +- R.
2. e, +--- ().
3. c +--- es .

4. s. +--- {} .

6.5 Interpretation Rules

In thi s sect ion, it is shown how Harri son Machine rules can be used to imple
ment the basic operations of the system. These rules must be able to execute
rules whose patterns have been satisfied by the current event. This entails
that they must have access to the current event , the Event Queue and the
Wait ing Set. This causes a slight prob lem because the underlying architect ure
must use these st ructures in order to run the interpretat ive rules.

6.5 Interpretation Rules 139

One solution is to search the Waiting Set so that the interpretative rules
are retri eved. This is a non-solution because it requires a fundamental mod
ification to the architecture to support the search. Furthermore , there would
have to be some way to communicate the means by which the interpretative
rules are to be identified with the architecture' s search operation . The final
problem for this appro ach is that , in the context of a reflect ive tower model,
it would be necessary to have an unrestricted number of interpretative rules
divided into levels and each level would have to communicate with the search
operation so that the right rules can be selected.

In this architecture, there is no distinction between fundament al and other
rules. First , an unrestri cted number of levels in the reflect ive organisation is
permitted; this is a property that we see as valuable because it preserves
referent ial relations in a relatively clean fashion (references are either strict ly
"up" or stri ctly "down"). If the special rules model were adopted, this would
mean communicat ing with the architecture so that it was aware of which
rules to tr eat as special and which to tr eat as ordinary. Secondly, the right is
reserved to alter the interpretative rules at runt ime, thereby allowing different
behaviours. For example, the FIFO Event Queue discipline might be replaced
by a LIFO (or stack-like) discipline for a short period of time in response to
something that has been detect ed in the environment . Thirdly, it is desirable
to be able to add and remove rules at runtime without regard to their status.
Addition and removal are important operations in the dynamic configuration
of systems.

As a result of these condit ions, it was decided not to introduce special
mechanisms for the manipulation of interpretative rules. All rules are, there
fore, tr eated as equals in this system while allowing some to be more equal
than others.

The solut ion to the problem was to permit rules to operate on the funda
mental structures of the architecture. Rules can access and update the Event
Queue and the Current Event ; they can also access and update the Wait ing
Set and the Ready Set . The cause operation that rules normally use to add
events to the Event Queue const ructs an event object , so it was an easy step to
add operations to treat events as first-class entit ies; events can be const ructed
and inspected as if they were record st ructures and they can be assigned just
like any other dat a object . The queue and rule set types were also made first
class so that interpreter state could be maintained by rules.

This is done by providing procedures and functions in the runtime library
that can be called from rules. Any rule can access these routines so, potentially,
any rule can participate in reflective processing.

It is possible to define the archit ecture 's basic operation in a single rule.
For ease of presentation, and to better illustr ate the process, a three-rule
interpr eter is described in some detail below. This is the original model for
the system. Indeed, before any design was undertaken, the architecture was
described in terms ofrules, specifically the rules that are presented below. The
rules are shown in a tidied-up form for ease of presentation. In each case, the

140 6 Case Study: An Event-Driven Language

rules are when rules, t riggered by the occurrence of an event which is specified
as a tuple appearing after the temporal operator. The type of the event is
always the first element of the tuple and has the prefix "$" .

The rules that are shown in thi s section run on the basic architect ure and
employ the data structures (Event Queue, Current Event , Waiting Set and
Ready Set) provided by it . The rules provide the queues, current events and
rule sets required to execute the rules at the next level above in the reflective
tower.

when ($start , r ul es) do(
if empty-set (r ules) - > cause ($stop) ;
I I true - > cause($next -cycle, rules, emptyqueue) ;
) - - end rule

F ig . 6.2. The application-specific start rule.

The rule to start the system is shown in Figure 6.2. It should be noted
that , in order to make rules easier to read , a lit tle syntac t ic sugar has been
employed. The rule is tri ggered when a special start event is removed from the
Event Queue. This event is usually the only event in the queue at the start of
execut ion.

In addition, there is a standard rule for halting the system (shown in
Figure 6.5). This rule is provided so that an application can perform clean-up
operations before instructing the system to stop. The event that causes thi s
rule to execute is used in the interpretive rules shown in figures 6.2, 6.3 and 6.4.
For the purposes of exposit ion, the clean-up code and display of informative
messages has been removed from the examples.

The rules shown in Figures 6.3 to 6.5 could be conflated into a single rule
of the form shown in Figure 6.6.

These rules show that the system is capable of controlling the execut ion of
its own rules. The rules shown in the figures are able to control the execut ion
of themselves at any level of the reflective tower. For expository purposes,
the rules in th is section were written in a way that completely implements
the architecture in rules; this requires a set of additional primitive operations
that duplicate the operations of the architecture. It is also possible to manip
ulate the architecture' s st ructures directly and this is the way in which the
actual implementations have operated (although they also contain the dupli
cate primitives to allow flexibility) . The "direct access" method requires the
swapp ing of the current event, the event queue and the rule sets between rules
and the architecture. Figure 6.7 shows, for example, how the body-executing
rule can be implemented using the "direct access" method:

The operation execute-rule locally saves the Current Rule, its associ
ated stack, environment and instruction pointer and replaces them by the
corresponding elements of the parameter rule. The virtual machine then ex-

6.6 VM Specification 141

when($next-cycle, waiting-rules, event-queue) doe
let local-current-event = next-front(event-queue) ;

local-ready-rules = emptyset]
in

if empty-queue (event-queue) -> cause($s top) ;
I I empty-set
fi;
foreach rule in wait ing-rules do

executeO(rule ,
local-current-event,
wait ing-rules,
local-ready-rules);

od;
if not(empty-set (local-ready-rules)) - >

cause($runnable-rules ,
local-ready-rules,
waiting-rules,
event-queue);

I I true -> cause ($next-cycle ,
waiting-rules,
event-queue) ;

fi
endlet ;

) -- end rule

Fig. 6.3. The triggering rule.

ecutes the rule until either it terminates completely, suspends (thus returning
to the Waiting Set) or aborts. In the first and third cases, the rule is garbage
collected. Note that the operations performed by execute-rule can be per
formed by any rule in the system provided that it executes the appropriate
primitives from the runtime library. The execute-rule library operation is
provided for safety.

The other rules can be written in a similar fashion.

6.6 VM Specification

In this section, the Harrison Machine's virtual machine is specified as a collec
tion of state transit ions. The specification is complicated slightly by the fact
that some transit ions involve the internal state of the rules executed by the
virt ual machine in the sense that some instructions executed by individual
rules, for example rule termination and matching, affect the operation of the
virt ual machine as a whole.

There is somewhat more descript ion in this section for the reason that the
operation of the Harrison Machine is somewhat unusual.

142 6 Case Study: An Event-Driven Language

yhen $runnable-rules , ready-rules ,
Yaiting-rules, event-queue)

doe
let [locally-executed = emptyset
in

foreach rule in ready-rules do
executel(rule,

locally-executed ,
event-queue) ;

od ;
if empty-set(locally-executed) -> syserror(. . .) ;
I I true ->

Yait ing-rules :=

setunion (Yaiting-rules, locally-executed);
cause($next-cycle, Yaiting-rules , event-queue);

fi ;
endlet;

) - - end rule

Fig. 6 .4. The body execution rule.

yhen ($stop) doe
syshaltO;

) -- end rule

Fig. 6.5. The stop rule.

yhen ($start, Yaiting-rules) do (
until ($stop) do (

yhen ($next-cycle, . .. do
) -- end rule 1

yhen ($runnable-rules, .. .) do
) -- end rule 2

-- end unt i l rule
yhen ($stop) do (

- - perform applicat ion-specific cleanup
syshaltO;

- - end stop rule
-- end outer rule

Fig. 6.6. The form of a single rule int erpreter.

6.6.1 States and Notational Conventions

T he state of the ent ire virtual machine is described by tuples:

8M = (m, w,a,r , e, q, h, hr)

where:

6.6 VM Specification 143

when ($runnable-rules, rules-to-run ,
wait ing-queue , event -queue)

do (
let saved-event

saved-events
saved- waiting =
saved-ready
eventq
wait ers

get -currentevent () ;
get -eventqueue () ;
get-wait ing-rules () ;
get-ready-rules () ;
empt yqueue ;
emptyset ;

i n
set-eventqueue (event-queue) ;
set-wait ing(wai t i ng- queue);
set-ready(rules-to-run);
clear-executed-rules () ;
next-event 0 ;
foreach rule i n waiting-rules() do

execute-rule (rule) ;
od ;
if empty-executed-rules() -) syserror(. ..);
I I true -) make-e xecuted-waiting()
fi ;
eventq := ge t -eventqueue () ;
waiters := ge t - wai t ingrules () ;
set-currentevent(saved-event) ;
set-eventqueue (saved-events) ;
set-waitingrules (saved-waiting) ;
set-readyrules (saved-ready) ;
cause($nex t - cycle, waiters, eventq) ;

endlet;
) - - end r ule

F ig. 6 .7 . Direct access version of the body rule.

• m is a set of ru les. It is used only during matching. Usually it is empty.
• w is the set of ru les that are not to be executed on t his event (t he Waiting

Set) .
• a is the set of rules to be executed on this event (the Ready Set) .
• r is the current ly execut ing rule.
• e is the current event .
• q is the event queue.
• h is a flag. When true, it indicates that the ent ire VM should halt
• h; is a flag. When set, it indicates that the current ru le is to be suspended

(ret urned to t he Wait ing Set).

Individual ru les will be denoted by the let ter r (with or with out decora
t ion) . Th e null rule is written r .L (it is used as a placeholder in some transi
t ions). The symbol R is used to denote t he set of rules, E the set of events ,

144 6 Case Study: An Event-Driven Language

with E.l. denoting the empty event; Q denotes the set of queues and lffi truth
values (B = iff, it}). Unless stated otherwise , N is the naturals plus zero and
Z denotes the integers .

It is assumed that there is a set D of denatable values (i.e., values that
can be represented by a valid Harrison Machine program). There is a special
element, written as, that denotes the undefined element of D (it serves as a
"don't care" or "don't know" element). For reasons that will become clearer
towards the end of this section , it will be required that D will include in D such
entities as Z, truth values (B), event type names (T) , event type structures
(defined as Es = T x D* , where D* is the set of all sequences over D) and
rules.

It should be noted that, for the purposes of the specification of the VM's
transitions and the compilation schemes, only event structures to consist of
sequences of elements of D prefixed by an element of ET will be permitted.
In a real implementation, event structures can have a richer structure: an
element of ET followed by a (possibly empty) sequence of values or trees of
elements of D.

The value-binding environment, or environment, is defined as p : N -+
N -+ D , i.e., as a sequence of sequences of D. The environment is organised
as a stack of binding frames, each frame being a sequence of elements of D
(frames are denoted p also). The nth element of the environment p is written
p(n). The notation [v H n]p again denotes the replacement of p(n) by v.
Environments figure in the definition of rule states.

Rule states are described by tuples of the form:

SR = (c,IJ,t,i ,n,p)

where:

• c E C is the code for the rule, where C is the set of Harrison Machine
instructions.

• IJ E E is the rule 's stack , where E is the set of stacks (E is a sequence of
denotable values, D) .

• t E lffi is the termination flag for the rule. When set, it indicates that the
rule has terminated and should be returned to the Waiting Set.

• i E C is the currently executing instruction.
• n E No is the instruction pointer, an index into the rule's code. (Note that

n = 0 is considered valid.)
• pEP is the rule's environment .

The following notational conventions for the remainder of this section are
adopted. The empty sequence is written (). The addition of an element, v,
to the end of a sequence, s, is written as s:j: (v). A sequence, s, whose first
element is v is written v.s. If VI , .. . ,Vn are the first n elements of a sequence,
s is written VI .··· .vn.s. The length of sequence eis written as lei (this will
be used to represent the number of instructions in e E C) . The [v H i]s

6.6 VM Specification 145

notation will be used for update (substitution) with the interpretation that
[v t--+ i]s = s' where s' is a sequence that is identical to s except at the ith
element (s'(i) = v) (these are the same conventions as in Section 4.2.10).

The event queue, q is a sequence of elements e E E.
Rule stacks are denoted by (J E E; the elements of E are sequences of

elements of D .
The number of instructions in the code segment for a rule is writ ten [c],
A set of event type names must be defined Te and its elements are denoted

by T. There are two distinguished values in Te : Ts and Th denoting the start
and halt events , respectively. The former is used to start the VM and the
lat ter to halt it . The Th event is used only to cause normal termination of the
VM. Error terminations are handled by transitions.

For the time being, it will be assumed that D = Z U {d-L} , with d-L repre
sent ing an undefined value. It will also be assumed that events are composed
of a type tag and a vector of elements of D. These assumpt ions permit the sim
plification of the presentation without losing too much in the way of accuracy
or generality.

The reader should note that side condit ions will often be written above
trans itions with a horizontal line separating the two. This makes the rules
resemble those of Kahn's Natural Semantics [27] and Plotkin's Simple Oper
ational Semantics [41] .

6.6.2 Infra-Rule Transitions

This subsection contains the tr ansitions that deal only with rule states .
First , there are the jump instructions. The Harrison Machine VM supports

three kinds of jump: one unconditional (jmp), the other two conditio nal (jeq
and jne). The condit ional jumps first examine the top element of the stack.
For jeq, the jump is taken if the top element is 1, while jne performs the
jump if the top element is O. In both cases, the top stack element is popped
before the jump is taken .

The transit ions for each of these jumps is as follows. In each case, the code
component (C) is unaffected. The instruction pointer (n) is updated by the
jump to another value (n'). In each case, the destination address of the jump
is tested to determine whether it is in the code segment (n' S lei). Finally, the
instruction at offset n' in the code segment is referred to as o. The transition
for the unconditional jump is given first .

I!' S lei, 0 = e(I!')
(e, (J, ff , jmp I!',I!, p) --t (e, (J , ff ,0 , I!', p)

For the condit ional jumps, the transit ions for the case in which the jump
is taken and for the case in which it is not are given:

d = tt,I!' S [c] ,« = e(l!)
(e, d · (J , ff, j eq I!', I!, p) --t (e, (J , f f, 0, I!', p)

146 6 Case Study: An Event-Driven Language

d = ff ,£+ 1::; [c] ,o= e(£+ 1)
(c, d ·a,ff,jeq f' ,£,p) -+ (e,a, f f ,o,£+ l, p)

d = ff ,£' ::; [c],» = e(£')
(e, d- a, ff, jne f', £, p) -+ (e,a, ff , 0 , f' , p)

d = ff ,£' ::; lei, 0= e(£)
(c, d' a, f f , j nef',£, p) -+ (e, a, f f ,o,£ + l, p)

Th e case in which n > lei is not represented as a transition. The reason
for this is that it is a condition that should be detected by the compiler or
the assembler.

The conditions £' ::; lei and °= c(£) are so common that they are hence
forth omitted.

The following tr ansitions define the stack operations that can be performed
by a valid Harrison Machine program. In each case, the instruction pointer is
incremented by one and the next instruction (0) is fetched; it is assumed that
°= e(n + 1) and that the new instruction pointer value is valid.

The pushO instruction pushes zero onto the stack:

(e, a, ff ,pushO, n , p) -+ (e,O. a, ff , 0 , n + 1, p)

The push1 instruction pushes one onto the stack.

(e,a, f f ,push1 , n, p) -+ (e, l . a, it, 0, n + 1, p)

These two tr ansitions describe instructions th at are used in a number of
contexts . First, 0 and 1 are common values in programs, so the provision
of instructions to handle them is a simple opt imisat ion that affects program
size. Secondly, 0 represents false and 1 represents true by convention, so these
instructions are used when pushing boolean values onto the stack.

The genera l push inst ruction is given by the following transition. The
instruction has one operand, the value to be pushed; this value is denoted by
d.

(c, a, ff ,push d,n , p) -+ (c, d . a, ff ,0, n + 1, p)

Next , there is the pop operat ion. The error tr ansition for the case in which
a = () (i.e., the empty stack) is omitted.

(e, d . a, ff ,pop, n , p) -+ (e, a, ff ,0, n + 1, p)

The dup and swap operations are the usual ones.

(c, d- a,ff ,dup, n, p) -+ (c, d· d . a, f f, 0, n + 1, p)

and:
(c, d1 • d2 . a, ff , swap, n , p) -+ (c, d2 . d1 . a, ff ,0, n + 1, p)

6.6 VM Specification 147

The last stack operation is clear, which empties the stack:

(c, (J , ff ,clear, n,p) -t (c, (),ff,0 , n + 1, p)

When a rule starts, it first constructs an empty environment as an initial
isat ion operation. The arid instruction does this:

(c, (), ff ,arid, n, P.l) -t (c, 0,ff,0 , n + 1,0)

The symbol P.l is used to denote the undefined environment. It can be seen
that the stack is already initialised to empty. It would be possible to define
an instruction, say mkstk, that creates an empty stack. This was not done
because, in some versions of the VM, the stack is used to hold data that was
passed to the rule before it started.?

In source programs, the let construct opens a new lexical scope. It declares
and init ialises variables that are local to the new scope which is pushed onto
the environment . The scope of the variab les declared in a let is the body of
the let construct. When the body terminates, the scope declared by the let is
popp ed from the environment. The instruction that constructs a new frame
and pushes it onto the environment is newenv and the one that pops the
topmost frame at the end of a scope is drop.

A new scope is created by pushing a new environment frame onto the
environment . The compiler can easily determine the size of the new frame (it
conta ins only the variables declared in the let): this is the (natural) value k
that appears as the operand to the newenv instruct ion. The transition is:

k times
~

p' = (d.l' . .. , d.l) . P

(c, (J, ff,newenvk, n,p) -t (c, (J, ff ,0 , n + 1, p')
Th is transit ion creates a new frame of k elements and pushes it onto the
environment .

The drop instruction is defined by the following transit ion:

(c, (J , ff ,drop, n,PI . p) -t (c, (J , ff ,0 , n + 1, p)

The drop instruction just removes the topmost frame from the environment .
The error transition for the case in which p = 0 (i.e., an empty environment)
is omitted.

The next two transitions define the getvar and setvar instructions . The
getvar instruct ion extracts the current value of a variable from the environ
ment , while setvar assigns a new value to it. Both instructions have two
operands: the first is the offset of the frame in which the variable occurs and
the second is the offset of the variable within that frame.

In these transitions, some runtime tests are represented, in particular i E P
and j E p(i). The first is to det ermine whether the environment stack contains

2 It is a case of "historical reasons" .

148 6 Case Study: An Event-Driven Language

the ant icipated number of frames; the second determi nes whether the frame
at p(i) is of the correct length. The error transit ions are omitted (again, they
are simple to define but only serve to clutter this descrip tion).

(c,a, ff ,getvar(i , j),n, Po Pi . Pr) ---+ (c,d . a,ff ,0 , n + 1, Po' Pi . Pr)

where d = Pi(j) .

(c, d · a,ff ,setvar(i , j) , n, Po Pi- I' Pi . Pr)
---+ (c,a, ff,0 , n + 1, Po Pi- l . P~ . Pr)

where: P~ = [v H j]Pi.
In this descrip tion , the t ransit ions for arit hmetic and logical instructions

are mostly omitted for t he reason that they are all very much alike. First ,
there is logical negation , lnot. It expects its operand to be on th e top of the
value stack, a. Its two transitions are:

(c, tt . a, ff ,lnot , n , p) ---+ (c,ff .a, ff ,0 , n + 1, p)

and:
(c,ff .a,ff ,lnot , n, p) ---+ (c, tt . a,ff ,0 , n + 1, p)

The transit ion for iminus (unary minus) is defined by:

(c, d· a, ff ,iminus, n , p) ---+ (c, (-d) . a, ff,0 , n + 1, p)

The addition instruction, iadd, is defined by:

d = d1 + d2

(c, d1 . d2 . a, ff , iadd, n , p) ---+ (c, d· a, ff ,0 , n + 1, p)

Other binary operators are defined similarly.
Integer equality is similarly defined by the following t ransition:

d1 = d2

(c, d1 . d2 . a, ff, ieq, n, p) ---+ (c, ti: a, ff ,0, n + 1, p)

and:

(c, d1 • d2 . a, ff ,ieq, n, p) ---+ (c, ff· a, ff,0 , n + 1, p)

6.6.3 Extra-Rule Transitions

These transit ions define rule operations that affect the ent ire VM state.
Although, st rict ly speaking, the mkevent instruction is purely local to the

rule t hat executes it , it is included in this subsect ion because it is frequently
followed by the cause instruct ion (the cause standard procedure compiles into
the sequence . . . mkev cause).

6.6 VM Specification 149

(c, T' d1 , .. . ,dn . (J , ff ,mkevent , n, p) -+ (c,e . (J , ff ,0 , n + 1, p)

This instruction expects an event type, T , to be on the top of the stack,
followed by zero or more values (event operands). The mkevent inst ruct ion
const ructs an event st ructure and pushes it onto the stack. The transitions
dealing with invalid event types and incorrect numbers of operands to the
event are omitted.

Next, we have the cause primit ive:

(0, w, a, (c, ec · (J , ff ,cause, n,p),e, q,ff ,ff) -+
(0, w,a, (c, (J, ff ,0, n + 1, p,),e, q:j: (ec) , ff,ff)

This operation is a lit tle more int erest ing. First , not e tha t th e current rule's
state appears as part of th e transition. Second , not e that the ent ire VM state
is represented in the transition, as it is in all of the transitions that follow. It
should be noted t hat the first component of t he VM state is usually 0. This is
because the first component is used only during the mat ching of rule patterns.
The effect of the transition for cause is to pop th e top of the stack (an event
st ruc ture) and to append it to the event queue, q.

Rule term ination and suspension are described by the following t ransit ions.
Rules terminate in one of two ways: eit her they executed th e t erm instruction
(into which the abort command compiles):

(0,w,a, (c, (J , ff ,t erm, n, p),e, q,ff ,ff) -+ (0,w,a,r1. , e, q,ff ,tt)

or they set their termination flag:

(0, w, a, (c, (J , tt, 0 , n ,p),e, q,ff ,ff) -+
(0 ,w U {(c, (J , tt,01, n + 1, p)},a, r1. , e, q,ff,tt)

The second transition does not correspond to any instruction. It is, however ,
required by many of the error transit ions that have been omitted from this
descrip tion.

When a rule such as a when, unless, next, since or until reaches the end
of its body, it executes a suspend instruction. It is defined by the following
trans ition:

(0,w, a, (c, (J, ff ,suspend, n, p),e, q,ff,ff) -+
(0, w U {(c, (J , ff ,01, n + 1, p)} ,a, r1. , e, q,ff ,ff)

The effect of execut ing a suspend is to t ransfer th e current ly execut ing rule
to the Waiting Set . The curre nt rule is then set to the null rule. (The null rule
is strictly not necessary, as far as an implementation is concerned; it makes
the formal specification of th e VM somewhat easier, however.)

Wh en all rules in the Ready Set have been executed and all have either
suspended or terminated, the VM implicitly executes an operation that starts

150 6 Case Study: An Event-Driven Language

the process of matching rule patterns. It is described by the following t ransi
t ion:

(0, w,0,r.1, e, q, ff ,ff) -+ (w,0,0,r.1 ,e, q,ff ,ff)

(i.e., m = w).
When a rule executes its pattern code, it must obtain the current event. It

does this by execut ing the getev instruction. The instruction merely pushes
the current event onto the rule's local stack.

(m,w, a, (c,0", ff ,getev, n,p),e, q,ff,ff) -+
(m, w,a, (c,e · 0", ff, 0 , n,p),e, q,ff ,ff)

When a rule's pat tern code succeeds, it executes a mkrdy instruction. This
instruction adds the calling rule to the ready set and sets the current rule to
the null rule:

(m ,w , a, (c, 0", tt,mkrdy, n, p),e, q, ff ,ff) -+ (m, w, a U {rr} ,r.1, e, q, ff,ff)

where r; = (c, 0", tt,0 , n + 1, p)
Conversely, when a rule's pat tern fails to match the current event , the rule

is suspended until t he next match cycle.

(m,w , a, (c, 0", ff ,notrdy, n,p),e, q,ff ,ff) -+
(m,w U {(c, 0", ff ,0 , n + 1, p)},a,r.1 ,e, q,ff ,ff)

Next rule to mat ch:

(m U {rm } , w, 0,r.1, e, q, li, ff) -+ (m ,w, 0, rm , e, q, ff ,ff)

Matching ends when:

(0, w, a,r.1 ,e , q, ff ,ff)

6.6.4 VM-Only Transitions

Each time rules are to be matched, the next event must be removed from the
event queue. Thi s operation is described by the transit ion:

(0 ,w, 0,r.1 ,e, en · q, ff ,ff) -+ (0, w, 0, r.1 , en , q, ff,ff)

The case in which q = 0 is handled by the next transt ion. It is an error
condition that causes the VM to halt:

(0, w ,a, re , e, 0,ff,ff) -+ (0,w,a, re , en, 0,tt,ff)

The VM transition that describes the situat ion in which the next rule is
made current is the following:

6.6 VM Specification 151

(0,w,aU {Tn} ,T1- , e,q,ff, f f) --+ (0,w, a,Tn ,e ,q, f f, f f)

A rule is removed from the Ready Set and made the current rule.
The configuration:

(0 ,w,0,T1- , e, 0, tt,b)

for b = tt or b = .IJ, denotes the state in which there is nothing more to do.
Finally, the system term inates normally when the halt event is current :

(0,w,a,T,eh, q, ff , f f) --+ (0,w,a,T,eh,q, tt,b)

for b = tt or b = .IJ (it does not matter what the termination status of the
current rule is).

Equally, the start ing state for the system is described by:

(0,w,0,T1-, e1- , (es) , tt, f f) --+ (0,w,0,T1- , es , 0, f f , f f)

Initially, the VM terminat ion flag is set and the event queue contains (mini
mally) the start event , e. , The system is started by altering the state of the
VM termination flag and making the start event the current one.

The clone instruction must be defined. Thi s instruction creates a complete
copy of the current rule. It leaves the stack and environment intact (they can
be cleared using arid and clear):

(0,w, a, (c,a, ff , clone, n, p),e, q, ff , f f) --+
(0,w,a U {(c,a, ff ,0 , n + 1, p)} , (c,a, ff ,0 , n + 1, p),e, q, ff , ff)

Cloning is useful when writing alt rules. Generally, though, it is dangerous
because there is no way at present to name rules, thus there is no way to
distinguish between instances of a rule at runtime. For alt , this appears not
to be as important an issue, however.

Finally, the clear instruction is useful when creating new instances of
alt rules. It can be used with the reset instruction to reset the entire rule's
instruction pointer:

(0,w, a, (c, a, ff ,reset , n, p),e, q, ff , f f) --+
(0 ,w, a U {(c,a, ff, c(O), 0, p)},e, q, ff, f f)

The reset and clone instructions can be used in intr ospective routines
to copy rules ent irely and to clone them on demand.

6.6.5 Introspective Operations

In this subsection, a few operations that support the introspective behaviour
of Harrison Machine rules are defined. The transit ions defined here are not
implemented as VM instructions; instead, they define rout ines that can be
used as part of the runtime library. The fact that the subj ect , here, is routines
and not VM instructions is emphasised by the use of a sans font.

152 6 Case Study: An Event-Driven Language

The reader should note that the operations specified below are not the
only ones that can be defined, given the architecture . They are included only
as a sam ple of what can be done.

The first opera tion employs the getev instruction t hat has already been
encounte red. It pushes th e current event onto the local stack to make it avail
able for manipulation by other operations within a rule:

(0,w, a, (c, (J , ff ,next-event , n, p),e, q,ff ,ff) -+
(0 ,w, a, (c, e · (J , ff ,0 , n + 1, p),e, q,ff,ff)

Conversely, the setev routine takes an event structure from the current
rule's stack and sets the current event to that event:

(0 ,w,a, (c, el . (J, ff,set-currentevent, n, p),e,q,ff,ff) -+
(0, w, a, (c, el . (J , ff ,setev, n, p),el , q,ff ,ff)

The manipulation of the event queue as a first-clas s ent ity is often of use
to introspective Harrison Machine programs. This confers upon programs the
ability to change the events that t rigger rules. The routines specified below
are: evqueue, which returns the entire current event queue, and setevqueue,
which sets the current event queue to anot her queue of events.

(0 ,w,a, (c, (J, ff ,get-eventqueue, n, p),e, q,ff,ff) -+
(0,w,a, (c,q . (J, ff,0 , n + 1, p),e, q, ff,ff)

(0, w, a, (c, ql . (J, ff ,set-eventqueue, n, p), e, q,ff,ff) -+
(0, w, a, (c, (J, ff ,0, n + 1, p),e, qi , ff ,ff)

The queue of events that is to be made current is first loaded onto the stack.
The operation t ransfers the stacked event queue to the one in the VM.

It is also easy to define operations for manipulat ing the event queue from
rules. The following have been implemented: addevent-back (add an event
to the back of the event queue) , addevent-front (add an event to the front
of the event queue-th e event queue is a DEqueue) and the corresponding
dequeueing operations, popevent-front and popevent-back.

(0, w, a, (c, el . (J , ff,addevent-back, n,p),e,q,ff ,ff) -+
(0, w,a, (c, (J , ff ,0 , n + 1, p),e, q t. (el) , ff,ff)

(0 ,w, a, (c, el . (J, ff,addevent-front, n, p),e, q,ff ,ff) -+
(0,w ,a, (c, (J, ff,0 , n + 1, p),e, (el) t. q,ff ,ff)

(0 ,w, a, (c, (J , ff ,popevent-front, n,p),e, el . q,ff ,ff) -+
(0 ,w, a, (c, (J , ff ,0 , n + 1, p),e,q,ff ,ff)

(0, w, a, (c, (J, ff ,popevent-back, n, p),e, q t. (el) , ff ,ff) -+
(0,w, a, (c, (J, ff ,0 , n + 1, p), e, q, ff ,ff)

6.7 Rule Equivalences 153

In neither of the two last t ransit ions are errors considered. An empty
event queue, clearly, should cause an error. However, a routi ne to test the
event queue can be defined:

(0,w, a, (c, (J, is-empty-evqueue, n,p),e, (), ff,ff) -t

(0,w, a, (c, it · (J , 0 , n + 1, p),e, () , ff,ff)

and, for q i ():

(0 ,w,a, (c, (J , is-empty-evqueue, n, p),e, q,ff ,ff) -t

(0, w,a, (c, ff · (J, 0 , n + 1, p),e, q,ff ,ff)

It is possible to load and unload rules dynamically (unloading is not al
ways a good idea!) This is made possible by the representation of rules as
independent stateful ent ities. The following t ransit ion defines one possible
addrule operation. In order to make proper sense of it , rules must be included
in D , the set of denotab le values.

(0,w,a, (c,r · (J , ff ,addrule, n, p),e, q, ff ,ff) -t

(0,W U {r},a, (c, (J , ff ,0 , n + 1, p),e, q,ff ,ff)

The new rule first occurs on t he top of the st ack. It is then added to t he
Waiti ng Set . The rule might be read from disk or dynam ically constructed
and t hen compiled (many versions of the Harrison Machine have included
abst ract synt ax const ructors and the rule compiler as library rout ines).

These routines can be implemented as runtime library routines. They are
called as pre-defined routines by rules.

6.7 Rule Equivalences

T he attent ive reader will, at this st age, be asking why all of t he above schemes
have been presented when there are some simplificat ions that can be made.

The clearest simplificat ions concern since and until ru les. Given the in
tended interpretat ions, t hey can be rewritten in te rms of rules wit h simpler
semantics, as follows.

Rules of th e form since (t, p) do s can be written as:

when (t, p) do (always do s)

Rules of the form unt il (t, p) do s can be written as:

always do(s; when(t . p) do (term))

These transformations can also be employed when since and until rules are
wrapped inside declarat ions.

Unfort unately, because negation in pat tern expressions is not permitted,
it is impossible to express unless in te rms of when. Similarly, given the current
apparatus, it is impossible to re-write alt in a simpler form .

154 6 Case Study: An Event-Driven Language

6.8 Concluding Remarks

Th e Harrison Machine is an example of an architecture that extends the stack
based machine architecture in a number of ways:

• The main control structure is represented by a queue of objects.
• There are multiple stacks, one for each active rule. This is similar to the

pseudo-concurrent stack-machine architecture described in Chapter 5.
• Each rule, like a process, has its own code pointer and its own instruction

pointer. Code is distributed in the implementation: each rule points to its
own code block; code blocks can be shared between rules with identical
behaviours . Rules sharing code will, typically, have different instruction
pointer values at any par ticular time.

• The main execut ion loop for the Harri son Machine is somewhat more com
plex th an that in the other machines so far examined: it must manipul ate
the various queues, not just test the instruction pointer for validity and
test the halt flag to detect termination.

In the Smalltalk VM [21]' the code for each method is stored in a separate
vector. The code vector is stored in the method table associated with the class
in which the method is defined. In a similar fashion, the Harrison Machine
allocates the code for a rule in a byte vector that is pointed to by the rule;
any other rule with an identical set of behaviours can share the code.

Despite these differences, the Harri son Machine is convent ional in a num
ber of ways:

• A stack is used as the primary evaluat ion mechanism.
• A set of registers is used as well as the stack. In particular , the full Harrison

Machine contains two registers, t he A and S registers. These two registers
are used to opt imize vector and string accesss. The A register is an ac
cumulator, used to index vectors and st rings, while the S register holds
pointers to vectors and st rings.

The Harr ison Machine has been implemented a number of times, each
with subt ly different semantics. The overall architect ure has been found to
be quite rugged, even if it is a little difficult to control. Various implementa
t ion techniques have been employed, including an object-oriented one and a
register-transfer machine has been designed for it (see Chapter 7). The object
oriented version suggested that the virt ual machine could be represented as a
data st ructure to be manipulated by the runtime primitives of the system
this is an extremely interesting possibility (see Chapte r 9).

One version of the Harri son Machine was writ ten in Ocaml. The interme
diate language was implemented as an algebraic type. As such, it contained
type information that would be lost in the final instruction set (which was as
implemented above plus the string and vector operations th at were omitted
there) . It was clear that the intermediate code could be executed directly if
an appropriate virtual machine were constructed. A switch was added to the

6.8 Concluding Remarks 155

directives in the output of the compiler to indicate whether the intermedi
ate code or the instruction set was to be executed . The virtual machine was
also modified to execute the intermediat e code using a separate module. The
result ran somewhat slower than fully compiled code but was useful as a de
bugging aid. However, not much use was made of the type information that
was associated with the intermediat e code.

7

Register-Based Machines

7.1 Introduction

The virt ual machines described so far have all had the same property: they use
at least one stack and a collection of special-purpose registers. This has been
taken as the way to const ruct virtu al machines. It is certainly a relatively quick
and easy way to do it and it is a target machine for which it is particularly
easy to generate code. There are, however, alternatives, the primary being
that based on the Register- Transfer Model (RTM) . This is the model upon
which most hardware processors are based.

There have been many machine simulato rs over the years and there are
programming environments , particularly for real-time and embedded systems,
that allow programs for one processor to be executed using a simulated pro
cessor. However, the use of the RTM for virt ual machines is relat ively new;
the largest implementation to date (2004) is the Parrot virtual machine for
Perl6.

This chapter is concerned with this alternative organisation for virt ual
machines. Section 7.2 is concerned with the arguments surrounding register
based machines, both pro and con. Section 7.3 contains a description of one
way to organise a register-based virt ual machine. Since the only really public
register-based virtual machine of any st rength is that for Parrot , Section 7.4
is a description of Parrot 's general organisation , while Section 7.5 contains
a description of Parrot 's instruction set (the description is only partial be
cause the published documentation is, as yet , incomplete- the best way to
understand t he Parrot VM is to read its code). In Section 7.6, a DIY register
machine is presented. In Section 7.7, it is shown how the two-stack code for
the simple ALEX programming language can be converted (macro processed,
in essence) into code for the DIY register-t ransfer machine. The following
section contains examples of such translat ions using a simple funct ion. The
correctness of the translat ion from two-stack to register-machine code is the
subject of Section 7.9 In Section 7.10 a more natural compilation of ALEX

158 7 Register-Based Machines

to register-machine code is presented. In the last section, Section 7.11 some
extensions to the register machine are considered.

7.2 The Register-Transfer Model

Almost all work on abstract machines has concentrated on stack-based ar
chitectures. The SECD machine is the classic of this form, of course. The
Pascal-S , Pascal P4, UCSD Pascal, Smalltalk and Java abstract machines are
also stack-based. One good reason for constructing stack-based machines is
that expressions can be directly evaluated on the stack . Stacks are also used
to represent scope, thus making procedures and block structures easy to im
plement. Stacks are required to implement recursion , a feature of ISWIM,
Algol60 and most modern programming languages . Stack-based architectures
are good for compiler writers, therefore.

It is interesting to note that in the 1960s, the Burroughs Corporation
developed two series of mainframe computers, the B6600 and B7700 series,
both of which used Algol60 as their systems programming language. These
machines introduced a hardware stack and a specialised instruction set to
support the execution of an Extended Algo160 that was designed for these
machines. In the middle of the 1960s, The English Electric Company (which
merged with other British manufacturers to form ICL) introduced the KDF9
computer, another Algol-based machine . It was one of the supercomputers of
that age. A feature of the earliest microprocessors, such as the Intel 8080, Intel
8086 and the Motorola 6800, was a hardware stack. Most modern processors
still have hardware stacks. A more recent example is the ICL 2900 range of
the late-1970sjearly 1980s.

Stack-based architectures are also called zero-address architectures. The
reason for this is that the location of the result of the last expression to be
evaluated need not be directly addressed. It is always at the top of the stack
and is pointed to by the stack pointer, not by a general address . More gener
ally, expression evaluation does not require any addresses because operands
are always located on the stack.

The primary competitor to the zero-addressed architecture is the Register
Transfer Machine. In this architecture, there are many high-speed registers
in the processor . Operands are loaded into registers . Instructions specify the
registers upon which they operate. Operands can also reside in memory and
are fetched and stored by explicit instructions and by means of addressing
modes of greater or lesser complexity. Many processors have been constructed
using this model: the IBM mainframe series following the S360, the Digital
PDP-11 and VAX-11 machines, are examples.

Hybrid architectures are also possible. The most popular example at
present is the Intel X86 range . This processor range has a hardware stack
and a relatively few registers . It has a large set of instructions. Pipelines are
used to increase the throughput of these processors.

7.2 The Register-Transfer Model 159

A more recent idea has been to const ruct processors using the Register
Transfer model but to reduce the complexity of the instruction set and the
addressing modes that they employ. Thi s is the RISC or Reduced Instruction
Set Computer architecture. It is characterised by a large number of general
purpose registers, relatively large instruction set and a relat ively few address
ing modes. The instructions are designed to execute rapidly, typically requir
ing one CPU cycle to complete. In addit ion, RISC machines typically have
explicit load and store inst ructions to load data into registers and store it
in main memory. The MIPS and SPARC processors are examples of RISC
machines.

Software abstract machines have not often been constructed using a
register-transfer model. The Scheme abst ract machine (for example, the one
described in [1]) has registers but they are dedicated to special purposes. The
Java and Smallt alk VMs, like those for ALEX, OCODE, the Harri son Machine
and many others, do have registers but, again , they are reserved for special
purposes.

One advantage register-transfer architect ures have is that the transfer of
data between processor registers is much fast er than tr ansfers to and from a
hardware stack. The reason for this is that the stack is too large to store in the
processor , so it usually resides in main memory. This means that two mem
ory fetches are required to load the top two elements of the stack in central
processor registers when performing an inst ructi on that implements a binary
operat ion. The stack must be adjusted when pushing or popping operands,
operat ions that also take t ime to perform. In pure zero-addressed architec
tures, the processor registers are not visible to user programs and are purely
internal to the processor, so only microcode, if used, can access them. Nor
mal instructions operate on the stack (and possibly the instruction counter)
as far as the assembly programmer is concerned. However, instructions must
load the stack's dat a into invisible processor registers when an operat ion is
performed.

Using a register-transfer model, when performing a binary operation, it is
necessary to load two (often adjacent) registers with dat a and then execute the
instruction . Th is requires two external memory fetches but requires no stack
adjustment . The value yielded remains in a register and can be employed
directly without the need for a further memory fetch. Of course, opt imal use
of registers requires that operands be in registers when they are required; it
also requires that operands are not moved between registers. The latter might
be required when an operation is followed by another operation that is not
commutat ive and the result of the previous operat ion is in the wrong register;
often multiplication and division require register pairs to be allocat ed for
their results. Compilers can perform register allocat ion very well but optimal
performance in all cases cannot be guaranteed for the reason that the problem
is an instance of the Knapsack or the Bin-Packing Problem. Nevertheless,
there are very high-performance algorithms in the literature.

160 7 Register-Based Machines

In software abst ract machines, the stack is also a bottleneck as far as
performance is concerned. This is for reasons similar to those given above:
when an operation is performed, the stack must be adjusted either up or
down (which can involve range check performance). When an operation is
performed, the operands must be loaded into temporary locations allocated
by the implementation language's compiler- this is directly analogous to the
use of registers internal to the hardware processor. If a register-transfer ma
chine is simulated, operands are loaded into software-specified registers (vari
ables). Transfers between variables is somewhat faster than assignment to
array elements or indirect assignment via pointers. In software, of course, it is
possible to have as many registers as one desires, thus maximising the number
of register register tr ansfers and minimising register-store transfers. The store
is often implemented as an array of some kind , so fetching and storing data
in an abstract machine requires array indexing (which might involve bounds
checking in some programming languages). The use of discrete variables as
simulated registers can be optimised if the target hardware is known for it
might be possible to arrange that the compiler allocates the variables as ma
chine registers; the number of registers also can be opt imised if the size of the
hard ware cache is known. More generally, software registers can be arranged
to have fixed addresses (they can be made global variables in most program
ming languages) so access to them can be optimised by a good compiler (as
can their allocat ion) .

All of this amounts to fairly st rong arguments for the const ruction of
abstract machines using the register-transfer architecture. Arguments similar
to those given above have been used in support of the new runtime system
for the Perl6 language.

The counterarguments to use of a Register-Transfer architecture are rela
tively simple and clear . First , register-transfer architectures imply that compil
ers that generate code for them must have more complex code generators than
those generating stack machine code. More particularly, such code generators
must perform register allocat ion and management , while a compiler for a stack
machine can rely ent irely upon the stack. Register-Transfer machines allow
some or all routine parameters to be passed in registers ("register spilling") ,
thus making routine calls much faster; similarly, the result s returned by rou
tines can be passed in registers, again making the process faster. However, th e
compiler must be able to spot this and allocate registers appropriately. Sec
ond, it can be argued th at , if an abstract machine based on register-tr ansfer
is implemented on a processor with relatively few hardware registers, the im
provement in performance is considerably reduced. Third, Register-Transfer
machines are harder to implement and are larger than stack-based ones. Thus,
the runtime code size (the footprint) of a register machine can be greate r than
the correspo nding stack machine. Fourth, register-based machines make rou
tine call and return more const rained by requiring actual parameters and
returned values to be passed in registers, unless a stack is also used.

7.3 Register Machine Organisation 161

It would appear that the first argument is one for compiler writers. The sec
ond argument must be admitted, at least for pure stack machines . However,
most common processor architectures have sufficient hardware registers to
make a register-based virtual machine a reasonable proposition. What would
appear more important is the mapping from implementation code to the hard
ware cache found on almost all easily available processors. Finally, in our expe
rience, register-based machines are not significantly harder to implement. To
us, it appears that the arguments in favour of register-based abstact machines
appear superior to those against them. The arguments against register-based
abstract machine also ignore the fact that a register-based machine will prob
ably employ a stack as a temporary storage area and as a mechanism that
supports context saves and restores when calling and returning from routines.
When there are insufficient registers available at a call or return, the stack
can always be employed to store them. By requiring register transfer, one is
not rejecting the stack entirely; what is being proposed is that, as a goal,
compilers producing code for register-based abstract machines should , as far
as possible, generate code preferring register transfers and direct loads and
stores in favour of stack-based operations.

Henceforth , the terms "Register-Transfer Model" and "Register-Transfer
Machine" will be abbreviated as RTM; since the two are near cognates, it
does not seem to make much difference to the meaning of the result .

7.3 Register Machine Organisation

What are the main components of a virtual machine based on the RTM? This
section is intended to be a partial answer to this question.

It is important to stress this point: the answer can only be partial. If the
stack-based model is re-considered, it specifies that a virtual machine contains
at least one stack and that stack is used to evaluate the arguments of functions .
It has already been seen that there are variations on this theme: in an earlier
section , it was shown how to execute code using two stacks (a VM can use as
many stacks as are required) . In addition to the stack , a stack-based VM also
has a few registers and can have additional storage structures: a code vector
is typically required but a heap is also advantageous. With the RTM, the
position is the same. There will be a basic organisation and many variations
on that theme.

A basic organisation of a RTM is the following:

• At least one set of registers ;
• At least one stack ;
• At least one (flat) main storage area;
• At least one code vector.

The registers of a machine might be divided by type . As will be seen in the
next section , the Parrot machine has register sets for integer, floating point ,

162 7 Register-Based Machines

string and abstract types . Parrot also has a stack for each register set plus an
extra one or two, one of which is for control.

There is the requirement that there be additional storage. This might be a
managed heap or an unmanged flat area of store . Given current developments
in programming languages, it is most likely that the additional storage will be
a managed heap . Some machines will require a single area of this kind, while
others might require multiple areas.

Finally, there must be a storage area that holds the code to be executed by
the RTM. There might be just one storage area that holds code; there might
be more than one area. The code storage area might, indeed, turn out to be
part of the main storage area (the Pop-ll virtual machine [8], stores its code
in the heap) .

The above appears to be the minimal RTM organisation. An actual im
plementation might augment the above with the addition of such things as:

• Exception handlers (Parrot does this);
• Explicit I/O operations and structures (again, Parrot does this);
• Events (e.g., interrupts).

Given this general organisation, questions naturally arise:

• What are the instructions supported by the RTM?
• Are there special control registers or are they taken from one (or more) of

the register sets?
• Is evaluation performed only on registers or is a stack involved?
• What are the addressing modes available?
• What are the data types that can be supported?
• What is the pressure on instruction representation?

The first question cannot be answered in general. This is clear: a virtual
machine is usually constructed for a particular purpose (although Parrot is
general). However, some families of operation will (almost always) be sup
ported:

• Instructions to load registers ;
• Instructions to store register contents;
• Instructions to implement control. Jumps of various kinds can be expected.

The constraints that are often imposed by hardware machines on some in
structions can be relaxed in virtual machines based on the RTM. For exam
ple, the constraint is often imposed that multiplication and division can only
be performed on adjacent registers. The reasons for this have to do with the
size of the result and with data movement. The result of a multiplication
can be larger than a single register can contain; a division might result in a
quantity that requires a format other than that employed for integers (e.g., the
division 1-;-.30). Data movement within the processor can also cause such con
straints. These constraints can be removed in a virtual machine constructed
from software. Thus, instructions performing, say arithmetic, might take three

7.3 Register Machine Organisation 163

operand s, not two. A traditional addit ion instruct ion (in register mode) might
have the form add r1 , r2 , while that in a virtual RTM can take the form:
add r1 , r 2, dest , where dest is the name of the register into which the
result will be placed (the destination can be one of the two source registers,
of course).

The second question cannot, in general, be answered. It would appear,
given that the specifier of the RTM is free to include as many regist ers as
they wish , a separate set of registers devoted to cont rol can be provided.
The use of general-purpose registers for cont rol leads either to a reduction
in the numb er of registers availab le for expression evaluat ion and command
execut ion or to a great many register movements (loads, stores and movement
of data between registers).

One reason for moving to the RTM is that evaluation can be performed in
registers, thus reducing the numb er of storage accesses with in t he VM. This
suggests that evaluat ions will be performed on registers, with the concomitant
requirement that compilers include register allocati on and tracking code. It
can be objected t hat the RTM only appears to reduce storage access because a
register operat ion really performs a sto rage access. However, as argued above,
registers can be sto red in fixed locations within the virt ual machine's code;
this allows pointers to be used to opt imise access. With a stack-based imple
mentation , such an opt imisat ion is rarely an opt ion for intermediate results.

Many hardware processors, par t icularly e lse machines, have many ad
dressing modes. Th ese modes can include:

• Immediat e mode to load and sto re constant data (often a byte or word).
• Absolut e mode. The actual address of a datum or label is used.
• Register mode. The dat a upon which t he instruction operates are located

in regist ers.
• Indirect mode. A pointer is used to access data (rarely code).
• Indexed mode. Th is is a composit e mode in which a pointer is set to some

location in store and an offset is used to access the ent ity to be loaded or
stored. Relative jumps (or branches) are an example of indexed mode in
which the instruction pointer (program counte r) provides the base address.

• Indexed Indirect mode. This is a combinat ion of the ot her modes.

Many processors permit combinations of these modes. This requires careful
encoding of instructions.

RISe machines, on the other hand , tend to have simpler addressing modes
and rely, instead , on the manipulation of registers to implement complex ad
dressing modes. It would appear sensible for a RT M virt ual machine to follow
the RISe example.

Many virtu al machines have only a limited repertoire of run time types.
There appears to be a real need to restri ct the repertoire of types available in
hardware but not software. Very often, as in the case of Java, a restri cted set
of basic types is represent ed directly with other types being translated into

164 7 Register-Based Machines

them. One reason to restrict the number of basic types is that it puts pressure
on the instruction set .

There are three basic sources of pressure on the inst ruction set :

1. Minimisation of the storage required for an instruction ; the smaller the
instruction , the smaller the overall code size;

2. The number of addressing modes supported by the virtual machine;
3. The number of types supported by the virtual machine.

In stack-based virt ual machines, there is often the desire to represent in
st ructions as bytecodes. That is, each instruction is encoded as a byte. This
implies that there can be at most 256 inst ructio ns, assuming an 8-bit byte.
Thi s is not a necessary const raint even though it is quite common. With mod
ern storage systems, it seems fairly reasonable to allow opcodes to occupy 16
bits if necessary.

If a virtual machine supports a set of basic types, it is to be expected that
there will be a sufficient number of instructions to support them. A typ ed in
st ruction set also puts pressure on the representation (the JVM is an example
of a stack-based VM whose inst ruction set was designed to encode as much
type information as possible). Sometimes, inst ructions can be overloaded; for
example, the add instruction might be used to add integers and floating-point
numbers. Some types do not naturally fit within a overloading scheme: array
and st ructure operations are cases in point . Clearly, the more types supported,
the greater the number of instruct ions required to support them.

Parrot , as will be seen in the next section, employs a class-based approach
together with overloading to extend its set of basic types. Thi s requires addi
t ional sophist icat ion from the runtime system. It also requires that additional
code be writ ten to support the addit ional types; this can be done when the
compiler is const ructed.

The Parrot approach is, in a sense, a generalisat ion of the approach em
ployed by Python and Forth which use dictionaries to store code segments.
In both languages, native code can be stored in dictionary entries.' The dic
t ionary approach makes a language extensible but does so at the cost of ex
ecut ion speed- a dictionary lookup is required when code for an operation
is called. This can, however, be opt imised by caching code once it has been
accessed. The dictionary approach permits the dynamic loading of new types
in a fashion similar to the JVM 's class loader.

With dictionaries, the main issue is how can completely new types can be
introduced into the virt ual machine without the intr oduction of new instruc
t ions. In Parrot , opcodes are represented as 32-bit integers, thus providing
lots of space into which new opcodes can be loaded. Indeed, Parrot permits
instruction sets to be loaded dynamically.

1 Smalltalk alsoemploys dictionaries for its code but it would appear from [21] that
native code is not directly stored.

7.4 Parrot-General Organisation 165

7.4 Parrot-General Organisation

The complete Parrot system is comprised of:

• A parser ;
• A compiler;
• An optimiser (currently on the website, there is little information on the

Parro t optimiser);
• An interpreter.

The parser and compiler support the Parrot Assembly Language. The parser
transforms the input into an Abstract Syntax Tree (AST). The compiler walks
the AST generating bytecodes as it goes. The compiler does not perform any
opt imisat ions. The purp ose of the optimiser is to produce better code but
might not be able to do everything that a special-purpose opt imiser could. For
example, when the complete source of a program is presented, an opti miser
can produce much better code than is the case when the source is presented
one routine or object at a time. Thus , optimisation for Java is expected to be
of a local nature.

The parser and compiler can be overridden by special-purpose code th at
performs the same functions, as can the optimiser.

For the purposes of this chapter, the input syntax and semant ics, as well
as the interpreter and its support ing structures will be presented.

The interpreter is the ultimate destin ation of all bytecodes. Bytecodes
are loaded into the interpreter in order to cause somet hing to happen; the
interpreter is considered a behaviour generator. For Parrot , however, the in
terpreter need not actually execute the bytecodes that it inputs. It might , for
example:

• Save data on disk;
• Transform the inpu t bytecod es to an alternative representation (e.g., JVM

or .NET code).

The second case indicates a general point about Parrot : it is intended to be a
general-purpose platform that can be integrated with other language systems.
Below, it will be seen that the Parrot system has instructions that load new
interpreters into the system and execute them.

It is a design goal for the Parrot system to behave as if it were any of:

• Java (JVM);
• .NET;
• Z machine;
• Python;
• Perl5;
• Ruby.

166 7 Register-Based Machines

Nothing in the system prevents it from behaving like any other system (the
Pascal and OCODE machines appear to be easy to implement, while Smalltalk
looks somewhat more difficult).

The interpreter contains a sophisticated memory management system and
a Just-In Time (lIT) compiler. They will be described below.

The interpreter typically executes bytecodes . In Parrot, the term "byte
code" is a slight misnomer because they are represented as 32-bit integers.
These bytecodes are generally directly executed by the interpreter. As usual ,
bytecodes are the output of a compiler. It is expected that bytecodes will be
loaded into the interpreter from disk but loading from other places is also
possible (thus allowing Parrot to operate in a fashion similar to the JVM).

Bytecodes are structured as opcodes and operands, as is standard in most
bytecode systems and native instruction sets.

The implementation of bytecodes is designed to be extremely flexible. Op
code tables can be loaded on demand and some opcodes can be overridden,
thus allowing different operations to be implemented by the same opcode. Dy
namic opcodes also allow rarely used functions to be loaded only when they
are required, as well as allowing a piecemeal upgrade.

Opcodes can, and often do, throw exceptions to signal abnormal condi
tions. The bytecode loader can also be overridden so that code can be input
from sources other than disks (and can be read in formats other than the
default) . All opcodes operate On registers .

The interpreter is organised as follows. It has the following register sets:

• 32 integer-valued (IV) registers, named 11 to 132 by the Parrot assembler;
• 32 floating-point (NV) registers , named Nl to N32 by the Parrot assembler;
• 32 string-valued registers, named 81 to 832 by the Parrot assembler;
• 32 registers to hold Perl Magic Cookies (PMCs), named PI to P32 by the

Parrot assembler .

Opcodes support type conversion between registers. Thus, it is possible to
assign the contents of an integer register to a floating-point register (and vice
versa). The interpreter automatically converts from one type to another. It
is also possible to convert between string and integer register contents. This
is necessary for the execution of Perl5 programs because integers and strings
can be freely interchanged (readers who are interested in this should consult
a good text on Perl, for example [51]) .

In addition, there are storage locations for global and local variables . These
locations are designed to permit fast access to the data stored in them.

Parrot's interpreter also contains the following stacks:

• A call stack ;
• An integer stack;
• A string stack;
• A floating-point stack ;
• A PMC stack

7.4 Parrot- General Organisation 167

• A generic stack.

Th e call stack is used for subrout ine call and return. The next four stacks
are intended to support the four register sets (acting as temporary storage) .
The integer stack also contains integer values stored there during subroutine
call and ret urn , as well as intermediate results. The string stack is a stack
that holds only strings. It is provided as a support for languages like Perl that
perform extensive st ring operations. The floating-point stack is provided to
support floatin g-point operations.

All stacks are segmented, so there is no limit to the size of each one.
Segmented stacks are also used in the JVM and, in a different way, in the
Smalltalk Virtu al Machine. Implementing stacks in terms of segments requires
support from a memory manager.

A lot of Parrot 's functionality is delegated to PMCs). PMCs are im
plemented as st ructures that are opaque to the interpreter. Thi s abstract ion
permit s the Parrot interpreter to be more powerful and modular than it would
otherwise be. In particular , th e engine does not have to distinguish between
scalar , hash and arr ay variables at this level.

PMCs look similar to a form of object orientation. They make available
new data types by providing struct ures containing data st ructures and oper
at ions on those structures. Both data structures and operations are encapsu
lated within a single entity, which can be interpreted very much as a class is
in class-based object-oriented languages. The values of the new type bear a
relat ion to these structures that is quite similar to that between instances and
classes.

The PMC concept is implemented using a structure called a vtable. A
vtable is a table of pointers to funct ions. This allows each variab le (or
instance-called a "variable" in Perl par lance) to have its own set of spe
cialised functions, or methods, thus allowing highly customised behaviour to
be supported with lit t le overhead . One nice opt imisation performed by vta
bles is the removal of jumps. On most current processors, jumps are expensive
because they require the pipeline (and possibly the cache) to be flushed and re
filled. Jump removal is an optimisat ion that can lead to considerable increases
in execution speed, therefore. Vtables, in essence, allow a typ e-dependent op
eration dispatch that is not unlike dynamic method dispatch in class-based
object-oriented programming languages. Vtables support standard (as well as
non-standard) operations on values, for example:

• Name;
• Type;
• Clone (shallow copy);
• Getter function;
• Setter function;
• Addition, subtraction, mult iplicat ion and division;
• Call a method;
• Special methods for garbage collection.

168 7 Register-Based Machines

PMCs also allow aggregates (arrays and hash tables, for instance) to be han
dled in a transparent fashion. Th ey do not require Parro t-compiled instruc
tions to index and update them.

The Parro t engine also supports except ions. Unlike Java exception han
dlers, exception handlers in Parrot capture closures, thus enabling them to
store their state . Like Java exceptions, handlers can target specific classes of
except ion. Exception hand lers are not expected to resume; they halt compu
tation, which is probably a bet ter (and is certainly an easier) opt ion th an
trying to resume computation from the point at which an except ion is raised.
An except ion handler can be put in place at any time .

Exceptions can be thrown by an opcode that returns a value of zero. They
can also be thrown by the throw opcode.

7.5 Parrot Instruction Set

At the t ime of writing, the Parr ot documentation was incomplete, so a more
complete descript ion of this project cannot be included (this extends to the
inst ruction set whose documentation is similarly incomplete) . The interested
reader is directed to the Parrot website at [37] . In this section, a few inst ruc
t ions are described so that the general descript ion can be made a lit tle more
concrete .

The inst ruction set contains operat ions for control, data management ,
t ranscendental operations, register and stack operations, names (identifiers),
pads and globals, except ions, objects, modules, I/ O, threading operations, in
terpreter operations, garbage collection, key operations and symbolic support
for high-level languages.

Keys include array and record operations. They use keys to access com
ponents of a st ructured object.

The instructions performing contro l, data management , stack and register
operations are described below. Before describing them, it is necessary, first , to
state the notational convent ions employed by descript ions (these convent ions
are identical to those in the Parrot documentation).

All registers can have a type prefix of P, S, I or N. These prefixes stand
for PMC , st ring, integer or floating-point number, respectively.

The opcode format is:

code destination[desLkey]. source1[sourceLkey]. . .. , sourcekjsourcek.key]

Here, the brackets denote optional arguments and are brackets in the concrete ,
not meta, syntax (brackets are represented as brackets) . If an operand takes
a key, the assembler auto matically substitutes the null key for any missing
keys.

Condit ional branches have the form:

code booleanjboolean.keyl] , true .dest

7.5 Parrot Instruction Set 169

Again , the key par ameters are opt ional but when present they can be integer
or st ring-valued. If there are key parameters, they are associated with the
parameter to their left and are assumed to be either an array or list index
or a hash key. If t he source or dest ination is a PMC, there can be a key.
Destinations for conditional branches represent an integer offs et from the
current value of the PC.

7.5.1 Control instructions

if tx, X Test register tx (i.e., Px, Sx, Ix or Nx). If its contents represent the
value true , branch by the amount specified by X.

jump tx Unconditionally jump to the address stored in register x (Px, Sx or
Ix). The destination is an absolute address.

branch tx Branch (forward or backward) by the amount specified by register
x (Ix, Nx or Px). The branch offset can also be an integer constant .

jsr tx Jump unconditionally to the location specified by register x. Push the
current location onto the call stack for later return. Thi s is a jump to a
subrout ine instruction.

bsr tx Branch to the location specified by x (which can be a register or a
label). Push the current location onto the call stack for later return. This
is an unconditional branch to a subrout ine. Presumably (it is not specified
in the documentation), the location is relative to the current one.

ret Pop a location from the top of the call stack and and jump uncondit ionally
to that location.

Note that Parrot supports branches or jumps relat ive to the current in
st ruction pointer. It also supports the basic call and return mechanisms for
routine invocat ion.

7.5.2 Data management instructions

new Px, Iy Create a new PMC of class y stored in the PMC register x.
set tx, ty Copy the value in register ty into register tx and make any appro

priate conversions.
set Px, Py Copy the PMC pointer in Py into Px. After execut ion, both regis

ters refer to the sam e PMC.
clone Px, Py Perform a "deeper" copy of Py into Px using the vtable appro

priate to the class of Py.
tostring Sx, ty, Iz Take the value in register y and convert it to a string of type

z. Store the result in string register Sx.
add tx, ty, tz* Add the contents of registers y and z, storing the result in

register x. The registers must all be of the same type (PMC , integer or
floating point).

sub tx, ty, tz* Subtract register z from register y and store the result in register
x. The registers must all be of the same type (PMC, integer or floating
point).

170 7 Register-Based Machines

mul tx, ty, tz* As above but multiplying the values .
div tx, ty, tz* As above but dividing the values.
inc tx, nn* Increment th e contents of register x by the amount nn. The value

of nn can be an integer constant . If nn is omitted , register x is increment ed
by one.

dec tx, nn* As for inc but decrementing the value in regist er x.
length lx, Sy Put t he length of st ring y into register x.
concat Sx, Sy Concatenate st ring Sy onto string Sx.
repeat Sx, Sy, Iz Copy st ring Sy z times into st ring Sx.

In addit ion to t he usual inst ructions (set t ing registers, ar ithmetic and reg
ister increment and decrement), t here are instructions that return the length
of st rings, concate nate them, copy st rings, convert arguments to strings, as
well as cloning and copying operands.

This is an interesting set of instructions. It appears to stee r a course be
tween represent ing st rings and represent ing general objects.

7.5.3 Register and st ack operations

push.p Push the cur rent frame of PMC registers onto their stack and start a
new frame. The new registers are not init ialised . The frame is the cur rent
PMC register set .

push .p ,c Push the current frame of P MC registers onto their stack and star t
a new frame. The new regist ers are copies of the previous frame.

pop.p Pop the cur rent frame of PMC registers from the st ack.
push.i The same as push.p but for integer registers.
push.i,c The same as push.p .c but for integer registers.
pop.i The same as pop.p but for integer registers.
push,s The same as push.p but for st ring registers.
push.s,c The same as push.p ,c but for st ring registers.
pop-s The same as pop.p but for st ring registers.
push,n T he same as push.p but for float ing-point registers.
push.n ,c The same as push.p.c but for float ing-point regist ers.
pop.n The same as pop.p but for float ing-point registers.
save.i Ix P ush integer register x ont o the generic stack.
save-s Sx P ush string register x onto the generic stack.
save.p Px Push PM C register x onto t he generic stack.
save.n Nx Push float ing-point register x onto th e generic stack.
resto re. i Ix Restore integer register x from the generic stack.
resto re-s Sx Restore string register x from the generic stack.
restore .p Px Restore P MC register x from the generic stack.
restore,n Nx Restore floating-point register x from the gener ic stack.
entrytype lx, iy P ut the type of stack ent ry y into register x.
seLwarp st ring Sets a named marker on the stacks for later use.

7.6 DIY Register-Based Virt ual Machine 171

warp[string] Reset the current register stacks to the state they were in when
the warp was set. It resets only the frame pointers. It does not guarantee
the contents of the registers. Users should be careful when modifying
the frame pointers by, for example, pushing register frames. If a name is
passed, warp back to the named point .

unwarp Reset the current register stacks to the state they were in before the
last warp.

These instructions are very much as one would expect . However, the stor
age of registers in marked areas of the stack is explicitly provided.

Int erpreter operations

newinterp Px, flags Create a new interpreter for x using the flags passed in
flags.

runinterp Px, iy Jump to the interpreter x and execute the code start ing at
offset y from the current locat ion.

callout Pw, sy, pz Call routine y in interpreter x, passing it the list of param
eters in z. w is a synchronisat ion object that is returned by the operation.
It can be waited on like the synchronisat ion objects returned by asyn
chronous I/ O operations.

This is a completely new set of instructions that allow mult iple interpreters
to be present in a system at anyone time. Th is capability implies that , to
some extent , at least , an interpreter is a data st ructure as far as the Parrot
system is concerned.

7.6 DIY Register-Based Virtual Machine

In this sect ion, a design for another VM will be presented, this time one based
on the RTM. It is clear that a VM on the scale of Parrot is an extremely
ambitious proj ect , so the one designed here will, necessarily, be on a smaller
scale.

The present exercise will be executed as follows. First , the runtime struc
tures and instruct ion set will be defined informally. Then, a formal specifica
t ion in terms of transitions will be presented. The rat ionale for this approach
is that the goal is to produce a correct implementat ion of the final product .

Here, there comes a problem: should a general-purpose VM be designed or
should it be rest ricted to a single language. A lot of languages have common
properties, so should a VM hard-wire these in, to leave the rest to extension
or should it be completely general? This, is a problem with an exercise such
as th is; no answer is given here.

The reason why this is a prob lem is that it relates to correctness: in relation
to what is the final product correct? For a language VM, it should be the
semant ics of the language; for a general one, the criteria are less clear-some

172 7 Register-Based Machines

vague idea of what it should do? It is not possible to construct a VM that
will be adequate for every programming language: that would amount to the
software simulation of a conventional CPU , something best done in hardware.
In any case, consider the variations: Prolog and Functional languages at one
end, Java , C++, C#, Python and Ruby in the middle and Perl or BCPL at
the other.

These considerations lead also to design issues. Should the RTM VM be at
a relatively low level; should it, on the other hand, be a high-level construct
that abstracts away from conventional processors? The first route leads to
generality (albeit at the cost of being accused of reinventing the wheel), while
the second leads the way to intermediate code and its direct interpretation.
The intermediate code approach will be specialised and semantically fixed;
the general one will be just that.

One final thing , before continuing , is the following. The reader should be
aware that the design that follows is in no way intended to be optimal ; indeed,
it is not really designed in the proper sense of the word but just put together in
a few hours using a knowledge of the operations that are typically required by
compilers (e.g., access to stack-allocated parameters and local variables). The
"design" that follows is, after all, just an example to be used in conveying the
fundamental ideas. With more care, and with more time, a better instruction
set could be derived (although experience teaches that it can be very easy of
over-design such an artefact).

With these thoughts in mind, the design continues.

main
loops

stacks ~
I-re-g-is-te-r-s-I

I :::: I

-------.
I

: heap
I

Fig. 7.1. General organisation of a register-based virtual machine.

7.6.1 Informal Design

The RTM needs a space in which to store code. It has a heap. Code can be
stored in the heap . It will also have two stacks: one for control and one for

7.6 DIY Register-Based Virtual Machine 173

data. Init ially, the data stack will be limited to integers and booleans. Two
register sets are provided: one for cont rol and one for data.

Figure 7.1 shows the general organisat ion of this kind of virt ual machine.
The heap is shown as a dashed box because the other structures (stacks,
register sets , code areas and even main loops) might be allocated as heap
st ructures.

There are 32 data registers. Each register is sufficient ly wide to hold a
pointer or an integer. The data registers are named rO to r31. Routines rarely
have this number of actual parameters, so the opport unity arises of passing
parameters in registers.

There are 32 control registers plus:

hit The halt register (when set, halts the VM);
ip The inst ruction pointer;
err The error register which is set to a numeric code when each instruction

completes;
esb A pointer to the base of the control stack;
dsb A pointer to the base of the data stack;
cdr A pointer to the current ly executing code vector;
et op A pointer to the top of the c (control) stack;
itop A pointer to the top of the i (integer) stack.

The remaining control registers are named cO to c31. (Once again, it is nec
essary to note that not all of these registers, in particular esb and dsb are
not directly programmable by the machine's instructions. As was the case in
Chapter 4, they are included here in order to remind the reader that they are
an essent ial component of the virt ual machine.)

It should be noted that , should other stacks be added to the machine, it
will be necessary to introduce new base and top pointers. A mechanism is
also required for determining when the top of a stack has been reached; the
behaviour of the machine in such a circumstance is also left (for reasons of
space and avoidance of tedium) undefined in this description.

The usual arithmetic and comparison instructions are included. They are:

add Addit ion;
sub Subtraction ;
ml t Multiplication;
div Division;
mod Modulus;
1t Less than;
gt Greater than;
leq ::;;
geq 2: ;
eq Equality (also used for pointers);
neq Not equal (also used for pointers) .

The usual logical operations are provided:

174 7 Register-Based Machines

lnot Logical "not" ;
land Logical "and";
lor Logical "or";
lxor Logical "exclusive or" .

Unary arithmetic and logical instructions have the form:

< unop > srcr destr

where srcr is the source register and destr is the destination register. Source
and destination can be the same register.

Binary ar ithmetic and logical instructions have the form:

< binop > srcrl srcr2 destr

where srcrl is the first source register, srcr2 is the second source register
and destr is the destination register. Source and destination can be the same
register.

For the stack operations, the xx prefix denotes the stack upon which the
opera tion is being performed. This prefix will, initially, have the values c or d
for contro l and data stack, respectively. Similarly, the notation xr is used to
denote registers, current ly cont rol or data registers.

The stack operations are:

xxclear Reset the stack to empty.
xxtopidx xr Store the in dex of the top element in register XL

xxtaddr n Push the address of the nt h element from the top of the stack on
the same stack.

xxbaddr n Return the address of the nth element from the bottom of the
stack.

xxpushc c Push the constant c onto the stack.
xxpush xr Push the contents of register xr onto the stack.
xxpop xr Pop the top element of the stack into register xr.
xxdrop Pop the top element of the stack and do not store it .
xxpushn n Push n empty slots onto the stack.
xxdropn n Pop n objects from the stack. Do not store.
xxdup Duplicate the top element.
xxswap Swap the top two elements.
xxtgetnth n Push the nth element from the top onto the stack.
xxtsetnth n Set the nth element from the top of the stack to the value

current ly on the top of the stack (pops the stack).
xxbgetnth n Push the nth element from the start onto the top of the stack.
xxtsetnthr ro Register ro contains an offset from the top of the stack. The

value currently on the top of the same stack is stored in that location.
Th e stack is popped.

xxtgetnthr ro Register ro contains an offset from the top of the stack. The
value stored at that location is pushed onto the same stack.

7.6 DIY Register-Based Virtual Machine 175

xxtsetnthrr ro rs Register ro contains an offset from the top of the stack.
The value currently in register r s is stored at that location.

xxtgetnthrr ro rd Register ro contains an offset from the top of the stack.
The value stored at that locat ion is stored in register rd.

xxbset nt h n Set the nth element from the start of the stack to the value
currently on the top of the same stack. Pop the stack.

xxbsetnth n Set the nth element from the start of the stack to the value
currently on the top of the stack (pops the stack) .

xxbgetnthr ro Register r o contains an offset from the start of the stack.
The value at that locat ion is pushed onto the same stack.

xxbsetnthr ro Register ro contains an offset from the start of the stack. The
value currently on the top of the same stack is stored in that location. The
stack is popped.

xxbget nt hr r ro rd Register ro contains an offset from the start of the stack.
The value at that locat ion is stored in register rd.

xxbsetnthrr ro rs Register ro contains an offset from the start of the stack.
The value currently in register rs is stored in that locat ion.

xf er ss sd Transfer the top element of the source stack (ss) to the top of
the destination stack (sd].

xfern n ss sd Transfer the n top elements of the source stack (s s) to the
top of the destination stack (sd).

Inst ruct ions xxtgetnth and xxtsetnth are intended to make access and
update of local variables and parameters easier. Instructions xxtaddr and
xxbaddr are intended to make reference parameters and global accesses easier
and faster.

The general register operations are:

1de xr e Load constant e into register xr .
1da xr ra Load register xr from the store at location ra where ra is a reg

ister.
1dm xr a Load register xr from the store at the location specified by the

constant a .
stoa xr a Store register xr at location a in the store .
stor xsr xdr Store the contents of register xsr at the location in the store

whose address is in register xdr.
pushr xr xx Push register xr on to stack xx.
popr xx xr Pop stack xx to register xr.
setr xsr xdr Set the contents of register xdr to the contents of register xs r.
i ner xr Increment the contents of register xr by one.
deer xr Decrement the contents of register xr by one.

The control instructions are:

stop Halt execution of the VM.
goto 1 Transfer control to address 1.
rgo to xr Transfer control to the address in register xr ("Register goto") .

176 7 Register-Based Machines

sgoto xx Pop the stack xx into register ip ("Stack goto") .
iLtrue xr 1 If the value ofregister xr is true, transfer control to address l.
iLfalse xr 1 If the value of register xr is false (not true-see below), trans-

fer control to address l.
go_on xr n (11 ... In) If register xr has a value in the range 1 .. . n, trans

fer control to the corresponding label. The operand n is the number of
labels to which control can be transferred.

call 1 Push the current value of the next instruction onto the control stack
and transfer control to label l.

calls xx Push the address of the next instruction onto the control stack
and transfer control to the address on the top of stack xx. (The stack is
popped.)

callr xr Push the address of the next instruction onto the control stack and
transfer control to the address in register xr.

ret Pop the control stack to register ip.
error n Set the error register, err, to the literal value n. Continue with the

next instruction.
errorr re Move the value in register re into the error register err. Continue

with the next instruction.

Instructions goto, iLtrue and iLfalse are the usual unconditional and
conditional jumps. Instruction go_on is intended to make case or switch com
mands easier to implement in simple cases. Instructions call and ret are the
usual routine call and return instructions; they do very little because they do
not make assumptions about stack frame existence and organisation. The re
maining instructions (calls and callr) are used to ease the implementation
of such things as exception handlers and method lookup.

The instructions listed above are intended to be the start. However, one,
so far unstated, aim in the design of the above was to provide instructions
that could be of utility in the design of other instructions. For example, if it
was desired to add Interrupt Service Routines, it would be useful to store the
address of the routine somewhere and the stack is a useful place to do this .

7.6.2 Extensions

The register-based machine can be extended in a variety of ways. Some im
mediately obvious extensions are the following:

• More data types could be added . For example, floating point numbers and
strings could easily be added. This would require the addition of a set
of registers and a stack for each new type; some new instructions would
have to be added . A decision as to whether integer and floating point
instructions are to be overloaded needs to made; if the decision is in the
negative, the integer and other instructions must be differentiated.

• Data types could be added by means of an object protocol similar to that
used by Parrot; a special set of registers and a special stack, like that

7.6 DIY Register-Based Virtual Machine 177

found in Parro t , would be useful for dealing with these ent it ies. In such
a scheme, a standard format is used to define the basic operations that
can be performed on these entit ies (the basic operations would provide a
minimum functionality-an extension mechanism would be useful, too).

• The addit ion of instructions to allocate storage would be of use. For exam
ple, an instruction to allocate a block of storage of size n could be added, as
well, perhaps, as one to deallocat e it . Storage allocat ion and deallocation
operations could usefully be associated with new types.

• Additions to implement pseudo-parallel execution of code. This would re
quire the addition of structures similar to those discussed in Section 5.3.

• The addit ion of an escape mechanism to handle library rout ines. If the
Parrot-like object-based extension is employed, library routines can be re
lat ed in a natural fashion to the types manipulated by the virt ual machine.

Some of the ideas presented in the final chapter of this book can also be
applied to register-based virtual machines.

7.6.3 Tra nsition Rules

In this section, the transit ion rules describing the above instruction set and
architecture are presented. The same notation is used as in other transitions.

The two sets of registers will be considered sequences, denoted Re and R1,
respectively. The contents of integer register i will be written as R1 (i), while
an update of the contents of integer register i to v will be written [v f-t i]R1'

The transit ions will take the form:

where Re and R1 are the register files, as discussed above, and Sc and S1 are
the control and integer stacks respectively; i is the inst ructio n pointer, while
instr is the current instruction . Code store will be denote d, in this case, by
K. (this is to avoid confusion with any cs that appear in transit ions), so for
any label, l , K.(l) is an instruction (specifically, the instruction at the address
denot ed by l). In order to implement some of the instructions listed above, a
flat memory for data is also required: thi s is denoted by M (and is assumed
to be a sequence of cells all of which are of the same size).

(M ,Re ,R1,i,Se,S1,unop 5 d)
-+ (M ,Re , [unop(R1 (s)) f-t d]R1, i + 1,Sc ,S1, K. (i + 1))

(M, Re, R1, i ,Se, S1,bi nop 5152 d)
-+ (M, Re , [binop(R1(sd ,R1(S2)) f-t d]R1, i + 1, Se ,S1,K.(i + 1))

(M, Re ,R1, i , Sc,S1 , i clear) -+ (M, Re ,R1, i + 1, Se , 0,K.(i + 1))

178 7 Register-Based Machines

(M, Re ,Rl , i , Se,51, cclear) -+ (M, Re , Ri, i + 1, (), 51,K(i + 1))

(M ,Re, Rl ' i , Se,51, itopidx r)
-+ (M, Re , [1511 H r]Rl, i+l ,Se,SI ,K(i+l))

(The index of the top element of a sequence denoting a stack is assumed
always 2 1; it corresponds to the length of the sequence.)

(M, Re , Rl ' i, Se ,51, ibaddr n) -+ (M ,Re ,Rl , i , Se, a· 51,K(i + 1))

where a = addr(SI(n +1)) . Note that this instruction locates the nth element
from the bottom of the stack. The stack sequence indices are one-based, while
the instruction expects a zero-based offset. If n + 1 ~ 1511, the operation
succeeds ; otherwise, it raises an except ion.

The instruction to return the address of a stack element indexed relative
to the top of the stack (itaddr) is given by:

(M, Re , Ri , i, Se ,51, itaddr n) -+ (M ,Re, Ri , i , Se,a - 51,K(i + 1))

where a = addr(SI(ISll - n)) . The offset n is, again, zero based. If n < 0 or
n > 1511 , an error is signalled.

The following transition defines the instruction to push the contents of
register R l (r) onto the stack 51:

(M, Re ,Rl ' i, Se , 51, ipushc v) -+ (M, Re ,Rl , i + 1, Sc ,v · 51,K(i + 1))

(M ,Re , Ri , i, Se, 51, ipush r)
-+ (M ,Re ,Rl ' i + 1, Se ,Rl(r) . 51, K(i + 1))

(M, Re ,Rl ' i , Se ,v · 51, ipop r)
-+ (M, Re , [v H r]Rl' i +1,Se,51, K(i + 1))

(M, Re , Rl ' i, Se,v · 51, idrop) -+ (M, Re ,n; i + 1, Se , 51,K(i + 1))

The pushn instruction pushes n slots onto the stack, each slot containing
zero. There are two versions of this instruction: cpushn and ipushn operating,
respectively, on the c and i stacks. The version for the c stack is specified by:

(M,Re, Rl ' i , Se , 51, ipushn n)
n times
~

-+ (M, Re ,Rl , i + 1, Se , O· . . . · 0 ·S/, K(i + 1))

The inverse operation (again for the i stack) is defined by:

7.6 DIY Register-Based Virt ual Machine 179

n t imes

(M , Re , R[, i , Se ,~ ·S[, idropn n)
-+ (M , Re , R[, i + 1, Sc,Sf , /'i. (i + 1))

(M , Re , R[, i , sc ,V · Sf , idup)
-+ (M, Re , R[, i + 1,Se ,v · v · Sf , /'i.(i + 1))

(M, Re , R[, i, Sc ,VI . V2 . S[, rsvap)
-+ (M , Re , R[, i + 1,Se , V2 . VI' Sf , /'i. (i + 1))

(M , Re ,R[, i , Se , VI ' Vn- I . Vn . Sf , itgetnth m)
-+ (M , Re , R[, i + 1,Se ,Vn . VI Vn- I . Vn . S[, /'i.(i + 1))

where m = n - 1.

(M , Re , R[, i , Se , VI' Vn- I . Vn . Sf , itgetnthr r)
-+ (M ,Re , R[,i + 1, Se ,vn · VI ' Vn- I ' Vn ' S[,/'i.(i + 1))

where R[(r) = n - 1.

(M, Re , R[, i , Se ,V . VI Vn - I . Vn . S[, i tsetnth m)
-+ (M , Re , R[, i + 1,Se, VI Vn- I . v · Sf , /'i.(i + 1))

where m = n - 1.

(M,Re , R[, i , Se , u - VI ' Vn-I . Vn . Sf , itsetnthr r)
-+ (M, Re ,R[, i + 1,Se ,V · VI' Vn- I . V · Sf , /'i. (i + 1))

where R[(r) = n - 1.

(M, Re , R[, i, Se ,V . S[, ibsetnth m)
-+ (M, Re , R[, i + 1,Se , S~ , /'i.(i + 1))

where m = n-1 , S[= Vm ' . .. 'Vn' . .. ' VI and S~ = Vm ' . . . ·Vn+1 'V'Vn-I 'V I '

(M, Re , R[, i, sc ,S[, ibgetnth m)
-+ (M , Re , R[, i + 1,Se, Vn . Sf , /'i.(i + 1))

where m = n - 1 and S[= Vm Vn VI'

(M , Re , R[, i , Sc,S[, ibgetnthr r)
-+ (M, Re , R[, i + 1, Sc ,Vn ' Sf , /'i.(i + 1))

where r E R[, R[(r) = n - 1 and Sf = Vm ' Vn VI (if IS[I < n
or n < 0, an err or is signalled). Note there are the following variants of this
instruction depending on which register is specified :

180 7 Register-Based Machines

• r is in RI ;
• r is in Re.

There is also a cbgetnthr r that operates on stack Se.

(M, Re ,RI , i, Sc,v · SI , ibsetnthr r)
-+ (M ,Re,RI , i + 1, Se,S~ , I\;(i + 1))

where r E RI , RI(t) = n - 1, SI = Vm Vn VI and S~ = Vm

Vn+ 1 . V . Vn - I . •. . . VI = [V 1--7 n]SI . The same comments apply with respect
to register specification and to contents.

(M, Re,RI , i , Se ,SI , i bget nt hr r ro rd) -+ (M, Re ,R~ , i+ l, So,SI , I\;(i+ l))

(M, Re ,RI , i , Sc ,SI , ibsetnthrr ro rs) -+ (M, Re ,RI , i+l , Se,SL I\;(i+l))

where the operands are as for ibgetnthrr and RI(ro) = n - l , SI = v-« :

vn · ... and S~ = Vm Vn+l . RI(rs) . Vn - I

(M, Re ,RI , i, Se, SI , itgetnthrr ro rd) -+ (M ,Re ,RI , i+ l, Se ,SI , I\; (i+ l))

(M, Re, RI , i , Se ,SI , itsetnthrr ro rs) -+ (M, Re,RI , i+ l, Se ,SI , I\;(i + l))

where RI(r o) = n-l , SI = VI' . .. ' Vn ' . . . and S~ = VI' . . . 'Vn - I ·RI(r s) ·

(M, Re, RI,i, Se,SI, pushr r s i)
-+ (M, Re ,RI , i + 1, Se,RI (r) . SI, I\;(i + 1))

(M ,Re, RI ,i,Se,SI , l dc r c)
-+ (M ,Re, [c 1--7 r]RI, i + 1, Se,SI , I\;(i + 1))

(M, Re ,RI,i ,Se,SI, l da r a)
-+ (M, Re , [M(RI(a)) 1--7 r]RI, i + 1,Sc,SI , I\;(i + 1))

(M, Re ,RI ,i,Se, SI, st o r a)
-+ ([RI(r) 1--7 a]M,Re ,RI , i + 1, Se,SI , I\; (i + 1))

7.6 DIY Register-Based Virtual Machine 181

(M,Re,Rr , i ,Se ,Sr , st or r a)
--t ([Rr(r) t-+ Rr(a)]M ,Re ,Rr , i + 1,Sc ,Sr , K,(i + 1))

where r and a denote registers (here assumed to be in Rr).

(M ,Re, Rr , i , Sr ,Se , iner r)
--t (M ,Re , [Rr(r) + 1 t-+ r]Rr , i , Sr,Se ,K,(i + 1))

for r E Rr, here (r can also be in Re).

(M,Re,Rr , i ,Sr ,Se ,deer r)
--t (M, Re, [Rr(r) - 1 t-+ r]Rr , i, Sr,So,K,(i + 1))

(M ,Re ,Ri , i, Se ,Sr,setr s d)
--t (M, Re, [Rr (s) t-+ d]Rr, i +1,Se ,Sr, K, (i +1))

(M, Re, Rr,i, Se,Sr, r got o r)
--t (M, Re,Rr ,Rc(r),Se ,Sr, K, (Rc(r)))

(M ,Re ,Rr , i , sc ,Sr, iLtrue r E)
--t (M ,Re,n; E,Se,Sr , K, (£))

if Rr (r) (or Rc(r)) contains t he value represent ing true.

(M ,Re,Rr , i , s.; s.,iLtrue r E)
--t (M ,Re ,Rr , i + 1, Se,Sr ,K,(i + 1))

if Rr (r) (or Rc(r)) does not contain t he value representing true.

(M ,Re, Rr , i ,Se, Sr , i L f al se r E)
--t (M, Re ,Rr , i + 1, sc ,Sr,K,(i + 1))

if Rr (r) (or Rc(r)) contains th e value representin g true.

(M ,Re, Rr, i, Se, Sr, i L f al se r E)
--t (M ,Re,Rr ,E,Se,Sr ,K,(E))

if Rr (r) (or Rc(r)) does not contain the value representing true.

(M ,Re,Rr , i , Se ,S,go_on r n (E1, . . . , Ek))

-+ (M,Re ,Rj ,Er ,Se ,Sj ,K,(Er))

182 7 Register-Based Machines

if r E Re, Rc(r) E {£1 , .. . , £n} and Rc(r) = £r. If n # k, an error is
signalled; the value of n is also be used to calculate the storage required for
the instruction.

Otherwise:

(M, Ro ,RI , i, Se,S,go_on r n (£1 ' ...,en))
--t (M ,Re ,RI ,i + 1, Se,SI , ,..(i + 1))

For the call instructions, the convention is adopted th at the return address
is computed by adding 1 to the current instruction pointer (i.e., it is assumed
that call instructions have a length of 1). In an actual implementat ion, the
instruction pointer will be incremented by some other value depending upon
the length of the call instruction and the units in which this length is ex
pressed (bytes, words, half words, etc.) .

and:

(here the operand to calls is the name of the stack on which the destination
address is to be found) .

(M, Re, RI,i ,Se, SI , callr r)--+
(M, Re ,RI ,Rc(r) , (Rc(r) + 1) . Se,SI , ,..(Rc(r)))

for r ERe.
In th e following, hl.t and err denote control register names (indices) that

are pre-defined. It is expected that these registers are not used for general
computation.

(M, Re ,RI , i , so , SI , stop)
--t (M, [true H Rc(hlt)]Re ,RI , i + 1,Se,SI , ,..(i + 1))

(M ,Re, RI,i, Se, SI ,er r or n)
--+ (M, [nH Rc(err)]Re ,RI , i + 1,Se, SI , ,..(i + 1))

(M ,Re, RI, i, Se,SI ,er r or r)
--t (M, [RI(r) H Rc(err)]Re ,RI , i + 1, Se,SI , ,..(i + 1))

7.7 Translating ALEXVM into RTM 183

7.7 Translating ALEXVM into RTM

In this section, the translation between the ALEX two-stack virtual machine
instructions and the instructions of the register machine are presented.

It is initially necessary to introduce some register conventions:

rg is a control register that always points to the start of the globals area. This
register is initialised when program execution starts and should never be
altered.

rp is a control register that points to the parameter area of the current rou-
tine .

rl is a control register that points to the local variables of the current routine.

The rp and rl registers must be saved before a routine call and restored
immediately upon return.

It is assumed that the control stack can be used as scratch storage when
calling a routine. The values to be assigned to the rp and rl in the called
routines are stored there by the translation of the frame instruction.

Next, it is essential to observe that the ALEX VM operates entirely on its
stacks while the RTM operates principally on registers . This causes problems
because a register-allocation algorithm is required. For the purposes of the
translation exercise, it implies that the translation must choose the registers
into which the results of execution (mostly expression evaluation) are dumped.
For the time being, it will be assumed that the translation scheme, denoted
'J, does this. Register allocation is not a trivial topic (indeed, the problem of
finding an optimal allocation is NP-complete).

First, there are some relatively simple instructions. ALEX VM instructions
will appear in this font, while RTM instructions will appear in this font. The
symbols rSi and rd will be used to denote the source and destination registers
for expressions.

It is necessary to make two observations about the translation:

1. All parameters are passed on the stack. .
2. Registers are considered to hold nothing of importance during routine

calls.

Old rp
Old rl

Return address

Fig. 7.2. The c stack organisation.

184 7 Register-Based Machines

Parameters

Locals

Fig. 7.3. The i stack organisation.

The organisation of the c stack is shown in Figure 7.2, while that of the
i stack is shown in Figure 7.3. If other stacks were required , the parameters
and locals would be distributed among them. The scheme depicted in the two
figures can be applied to multiple control and data stacks, however. In both
figures, the stacks grow downwards.

[e unop]:
'J(e) -t r ,
(unop) r , Td

[e2 el binop]:
'J(e2) -t T S2

'J (e2) -t T S 1

(b i nop) T S 1 T S 2 Td

[jrnp II:
goto l

[jeq I]:
'J (e) -t T s

iLtrue T s l

[jne I]:
'J (e) -t Ts

iLfalse r, l

In the following instructions, the operand to the dual-stack instruction
is specified by an upper- case letter "N". In addition, the destin ation register
(typically, rv) is specified as an ext ra (parenthesised) operand. This is intended
to make the register-machine code clearer.

[getlocal N (rv)]:
add rl N rO
ibgetnthrr rO rv

[setlocal N (rv)]:
add rl N rO
ibsetnthrr rO rv

7.7 Translat ing ALEXVM into RTM 185

[getparam N (rv)] :
add rp N rO
ibgetnthrr rO rv

[getglob N (rv)] :
add rg N ra
Ida rv ra

[setglob N (rv)] :
add rg N ra
stor ra rv

[frame L P]:
cpush rp
cpush rl
cpushc L
cpushc P

[call $P]:
cpop rO % rO = P
sub i top rO rp
cpop rO % rO L
add rp rO rl
call $p

[ret] :
cpop rO % rO .- return address
cpop rl
cpop rp
setr rp i top %return the data frame pointer
cpush rO %replace return address on c stack
ret

[retvaIJ :
ipop rl % rl .- return va lue
cpop rO % rO .- return address
cpop rl
cpop rp
setr rp i top % return the data frame pointer
cpush rO % replace return address on c stack
ipush rl % replace return value on i stack
ret

The switch inst ruction in the ALEX instruction set is easily translated. It
does, though, involve a little transformat ion of the ALEX code. Consider the
ALEX stack machine code:

186 7 Register-Based Machines

-- Code for Exp
switch
jmp $Ll

jmp $Ln
$Ll: -- Code for case 1

)mp $end
$Ln: -- Code for case n

jmp $end
$end: ...

For the register-based virtual machine, this must be translat ed into:

-- Code for exp, leaving result in register rv
go_on rv n ($Ll, . . . , $Ln)

$Ll: -- Code for case 1
jmp $end

$Ln: -- Code for case n
$end:

7.8 Example Code

In this section, t he ALEX add2 virtual machine code is again presented, as
is the code for a call to add2(l ,2). The virt ual machine code presented below
is t hat obtained by translating the instruction sequence shown in Figure 4.9
in Section 4.2.9 (where the two-stack virt ual machine for ALEX was first
defined).

The result of the translat ion is shown in Figure 7.4. In the figure, the
corresponding st ack-based instructions (using the two-stack virtual machine
for ALEX) are shown as comments. The following register assignments are
assumed: rc is cO, rp is cl and rl is c2.

T he code for calling add2 is shown in Figure 7.5.
As can be seen from t he figures, a reasonable translati on between the stack

and register machines is obtained. For compariso n, the same pieces of code
have been re-written using what is hoped to be a more idiomatic translation for
the register machine; these alternative pieces of code are shown and discussed
in the next sect ion.

7.9 Correctness of the Translation

The translat ion given in Section 7.7 seems to give the right answers. It is
necessary to be a lit tle more careful and justify the translation of each two
stack instruction into register machine instruct ions. The justification will be
as rigorous as possible and will amount to an informal proof.

7.9 Correctness of the Translation 187

% replace return address on c stack
% replace return value on i stack

return value
return address

%r1 .=
%rO .=

%$add2 :
Ide r15 0
% setlocal 0 % z := 0
add rl 0 rO
ibsetnthrr rO r15
% getparam 1
add rp 1 rO
ibgetnthrr rO r16
% getparam 0
add rp 0 rO
ibgetnthrr rO r17
% add -- x + y
add r17 r16 r18
% setlocal 0 % z := x + y
add rl 0 rO
ibsetnthrr rO r18
% getlocal 0 % get z for return
add rl 0 rO
ibgetnthrr rO r15
ipush r15
% reti
ipop r15
cpop r16
cpop c2
cpop c1
setr c1 itop % return the data frame pointer
cpop cO
cpush r 16
ipush r15
ret

Fig. 7.4. Stack VM code f or add2 translated to R T M code.

The correctness criterion is relatively weak. It is required only that :

the state before the execution of a two-stack instruction corresponds
to the register machine state before the execution of the ins tructions
comprising the translation; the state of the two-stack machine after
the execution of the ins truc tion corresponds to the state of the register

. machine after the execution of the translation.

Because this condit ion is relatively weak, it is clear that is permits redun
dant instructions to appear within the t ranslat ion of a two-stack instruction.
Such code would not be optimal, even though it might be correct according to
the condit ion stated above. Trans lations consisting of too many instructions
such as th e following should be avoided:

Ide rO 1
setr rO rl

188 7 Register-Based Machines

%frame 1 2
cpush cO
cpush cl
cpush c2
cpushc 1 %L
cpushc 2 %P
%pushc 2
ipushc 2
%pushc 1
i pushc 1
%call $add2
setr itop reO
cpop rO %rO = P
sub itop rO cl
cpop rO %rO = L
add c1 rO c2
call $add2

Fig. 7.5. St ack VM code for calling add2 translated to RTM code.

iner rl
add rO rl r2
Ide rl 1
iner rl
setr rl rO
add r2 rO rO

Here, the first three inst ructions implement t he same result as would Ide rl
2, while the inst ructions between the two add inst ructions could be replaced
by:

Ide rO 2

Equ ally, t ranslat ions consist ing of sequences of inst ructions adding up to
a no-op should also be avoided, for example:

Ide rO 0
setr rO rO
setr rO rO
setr rO rO
setr rO rO

It is desirable for the translation not to contain redundant sequences such
as these.

In order to avoid redundant inst ructions, it is necessary to strengthen the
condit ion to include the injuct ion that :

The translation of each two-stack instruction should consist of the least
number of register machine ins tructions .

7.9 Correctness of the Translation 189

It would be highly desirable to include a clause to the effect that the
translation consists of an optimal selection of register-machine instructions.
For a variety of reasons (including that the register machine has not been
implemented so there is no information on the performance of its instructions
and that there are different organisations for the translation, so the one given
here might be sub-optimal) optimality cannot be imposed here. Nevertheless,
the strengthened condition can be used to justify the translation.

The translation is, in essence, a mapping from the two-stack to the register
machine; the register machine simulates, or emulates, the two-stack machine .
To do this, some conventions were imposed that comprise part of the mapping.

It is necessary to make all the conventions explicit before moving one. To
do this , the state of the two-stack machine can be compared with that of
the register machine. The two-stack state is described (adding subscripts as
necessary to identify components) by:

The state of the register machine is described (adding subscripts as necessary
to identify components) by:

Immediately, the following can be noted :

9 H M The two-stack machine globals are implemented by the register
machine's general (non-stack or flat) store .

(Jc H Se The control stack of the two-stack machine is implemented by the
control stack in the register machine .

a, H Sf The data stack of the two-stack machine is implemented by the in
teger stack of the register machine (ALEX only supports integer variables
and vectors of integers, remember). If ALEX supported more types, the
mapping would be between a; and a collection of register-machine data
stacks.

There are additional correspondences. These are between two-stack machine
components and register-machine registers . In particular:

d H rl The data frame pointer of the two-stack machine corresponds to the
rl register (one of the register machine 's control registers) .

p H rp The parameter start pointer of the two-stack machine corresponds to
the rp register (one of the register machine's control registers) .

The following observations are required:

• The instruction pointers correspond in only an inexact sense. Clearly, the
register machine translation consists of more instructions than the two
stack code. What is required is only that the value of i 2 be equivalent to
the value of i; when the translation of each instruction starts. At the end

190 7 Register-Based Machines

of the instruction sequence translating a two-stack instruction, the value
of iz points to the next instruction; at the same point in the translation,
i; must point to the instruction immediately after the last instruction of
the translation.

• The instructions denoted by liZ and lir are similar.
• The c register in the two-stack machine points to the current control frame.

The translation does not require such a register. (Actually, the c register's
use could be reduced if the two-stack instructions were defined in a slightly
different fashion.)

Finally, it is necessary to relate the two-stack machine's data stack and
the i-registers of the register machine. In general, the top few locations of ad

will be represented by i registers . The details will be explained below.
With these conventions in mind, it is now possible to move on to the

justification of each translation. The two-stack instructions will be considered
in the same order in which they were presented (in Section 7.7). Naturally,
the same notational conventions will be employed. The translation of each
two-stack instruction is repeated so that the reader does not have to flip back
and forth between this section and Section 7.7. It should be remembered that
'J(x) is the translation of an expression into register-machine code.

The translation of literal constants needs to be defined so that the trans
lation can be completed.

[pushc nI (rv):
Ide Tvn

It is assumed that there is a convention for representing boolean values. Below,
the values of this type will be represented, as usual, by false and true.

First, the translation of instructions evaluating expressions is considered.
There are two cases: unary and binary operations (function calls are consid
ered below).

For these two cases, it is necessary to consider the register-allocation op
eration implemented by the compiler. This is required because it is essential
to keep track of the value computed by the register-machine instructions (the
two-stack machine's instructions always place the result on the top of the
stack). This forms part of the mapping between the top few stack elements
and the register machine 's registers .

For present purposes, the registers used to hold operands and results will
be restricted to the I registers TO, Tl and TZ.

[e unop]:
'J(e) --+ Ts

(unop) r, Td

here, the symbol unop denotes the unary operation to be performed .
In the two-stack machine, the top element of the stack is removed, operated

upon and replaced. In the register machine, the value in register T s is operated

7.9 Correctness of the Translation 191

upon , the result being stored in register r d. For the register machine, it is not
necessary that r s = r d·

[e2 e1 binop] :
'J(e2) -+ r S 2

'J(e1) -+ r S 1

(binop) rS 1 rS 2 v«

In the two-stack machine, the top two elements of the stack are popp ed
and an operation is performed upon them; the result is pushed onto the stack.
In the register machine, the first operand is placed in register rS1 ' t he second
in r S2 ; the result is stored in register r d. It is not necessary th at either r S1 = r d

or rS 2 = rs -

[jmp I]:
goto l

The translation is immediate given the definition of th e two instructions.

[jeq I] :
'J(e) -+ rs

iLtrue r , l

The two-stack instruction expects the value determining whether the jump
is performed to be on the dat a stack, ad . The register machine instruction
expects the value to be in a register.

Assuming register R] (rs) in the register machine holds the value true, the
jump will be taken; otherwise, the instruction pointer is incremented. This
corresponds directly to the two-stack machine's instruction: if the top value
on the stack is true, the jump is performed, otherwise not .

[jne I] :
'J(e) -+ rs

iLfalse rs l

The justification for this translat ion is similar to that for jeq. The value
being tested is, in this case, false: that is the only difference.

[getlocal n (rv)] :
add rl n rO
ibgetnthrr rO rv

The offset to the local variable is n. The code works by adding the offset to
the point er to the local variabl es on the i stack. The stack is indexed and the
result stored in register rv (this register should not contain useful data when
the sequence starts).

The two-stack transition is:

(g,d,c. p, a c , ad , i ,getlocal n) -+ (g,d,c, p, ac , v · ad , i + 1, K(i + 1))

where ad(d+ n).

192 7 Register-Based Machines

The impor tant register-machine transition is:

(M,Re ,R1,i,Se,S1, i bget nt hr r ro rd) -+ (M, Re , R~ ,i+ I ,Se,S1 ,/'i,(i+ I))

where To and Td E R1, n = R1 (To) + 1, [Sc(n)) f-7 Td]R1 = R~. The instruc
t ion indexes stack S1 and stores the datum in register Td . (Remember that
indexing, for the instruction, is zero-based.)

In the two-stack machine, v = ad(d + n). The two-stack register d
corresponds to the register-machine register ri, so d = ri. The value of
Td = S1 (Tj + n) = ad(d + n) .

[setlocal n (rv)]:
add rl n rO
ibsetnthrr rO rv

The two-stack transit ion is:

(g,d,C, P,ac , v . ad, i , setlocal n) -+ (g,d,c,P,ac , a~ , i + 1, /'i,(i + 1))

where a~ = [v f-7 (d + n)]ad'
The more important register-machine transition is:

(M ,Re ,R1 , i , So,S1 , ibsetnthrr ro rs) -+ (M,Re ,R1, i+ I, Se ,S~ , /'i,(i+ I))

where the operands are as for ibgetnthrr and R1 (To) = n - l , S1 = V rn '

vn · . . . and S~ = Vrn ' Vn +! . R1(Ts) ' Vn-l (Recall that indexing, for
the instruct ion, is zero-based.)

Again, T l = d, so the locat ion at which the value is to be stored is r i +n =
To. The result is a~ (d + n) = SHTj + n) = v.

[getparam n (rv)]:
add rp n rO
ibgetnthrr rO rv

The two-stack tr ansit ion is:

where v = ad(p+ n) .
Again, the important register machine transition is:

(M, Re, R1, i, Se, S1, i bset nt hr r ro rs) -+ (M, Re, R1,i+ I, Se ,S~,/'i, (i + I))

where the operands are as for ibgetnthrr and R1(To) = n - 1, S1 = Vrn .

. . . . vn · . . . and S1= Vrn Vn+ l . R1(Ts) . Vn - l (Again, indexing is
zero-based.)

The offset of the start of the parameter area on SI is stored in Tp ' Therefore,
the offset of the required parameter is given by Tp +n. Register Tp corresponds

7.9 Correctness of the Translat ion 193

to the two-stack machine's p register, so r p + n = p + nand ad(p + n) =

S/(r p + n).
The next pair of translat ions deal with global variables. In the two-stack

machine, there is a register, g, that contains the storage area for globals; in the
register machine, it is the M register. As noted above, the two are identified.

[getglob n (rv)]:
add rg ra
lda rv ra

The two-stack transit ion is:

(g,d,c,p,ac,ad, i, getglob n) -+ (g,d,c,p,ac,g(n) . ad, i + 1, K.(i + 1))

The important register-machine tr ansition is that for lda.

(M, Re, R/,i, Se,S/, l da r a)
-+ (M, Re , [M(~/ (a)) H r]R/ , i + 1, Se ,Sf ,K.(i + 1))

In the two-stack machine, v = g(n), while it is M (r a) in the register
machine code. Since 9 = M , g(n) = M (ra) = v. Assuming the top of the
stack is represented by register rv , then v . ad corresponds to ru -

[setglob N (rv)]
add rg Nra
star ra rv

The two-stack transit ion is:

(g,d,c,p,ac,v · ad, i , setglob n) -+ ([v H n]g,d,c,p,ac,ad,i + 1, K.(i + 1))

The significant register-machine t ransition is that for stor.

(M, Re ,RI , i , Se ,SI ,stor r a)
-+ ([RI(r) H RI (a)]M ,Re ,RI , i + 1,Se ,SI , K. (i + 1))

where r and a denote registers (here assumed to be in RI)'
The effect of this instruction is g'(n) = v = [v H n]g in the two-stack

machine. In the register machine, it is M ' = [RI (r r) H RI(ra)]M. Since
9 = M and RI (ra) = n, [v H nlg = [R/ (r r) H R/ (ra)]M.

The following instructions deal with routine call and return. Here, mat ters
become somewhat more complex (as is to be expected). For these inst ructions,
it is bet ter to rely upon diagrams since the register-machine's calling conven
tion involves a permutation of the elements stored in the base of the new stack
frame.

[frame L P]:
cpush rp
cpush rl
cpushc L
cpushc P

194 7 Register-Based Machines

The effect of the frame instruction is just to alter the (Jc stack in the two
stack machine. In the register machine, it alters the state of the stack Se . In
the two-stack machine, the effect of execut ing frame is:

Free slot (zero)
Old c
Old d
p

L

("Old" denotes values for the caller- this is the convention adopted in
thi s book.) The register machine's call instruct ion pushes the return address
onto the Se stack when executed. There is no need to allocate a slot for it on
the stack when executing the t ranslated frame code. The register machine's
cont rol stack is therefore:

rp
rl
L
p

Now, r l = d. There is no need, as noted above to store the equivalent of the
c register. However, the pointer to the parameter area in the caller's context
must be saved.

[call $P]:
cpop rO % rO = P
sub i top rO rp
cpop rO % rO L
add rp rO rl
call $p

After execut ing its call instruction, the two-stack machine's control stack
is now:

a

Old c
Old d
p

L

7.9 Correctness of the Translation 195

Here, a denotes the ret urn address.
When the register machine's call instruction terminates, its control stack

has the following form:

rp
rl

Here, ar is the register machine's return add ress. Note that a and ar

denote the ret urn address for the two-stack rout ine and its translation into
register-machine code, respectively.

Apart from the different stack organisation, the register machine's call
instruct ion differs by setting the rl and "» registers: r p = itop - L and rl =
rp+L.

[retl:
cpop rO % r O r et urn address
cpop rl
cpop r p
setr rp itop % return the data frame pointer
cpush rO % replace return address on c stack
ret

Th is instruction sequence just re-arranges the contro l stack by popping off
the information placed there by the translations of the two-stack machine's
frame and call instructions. As long as the data is popped in the reverse order
to that in which it was pushed, and as long as the correct registers are reset ,
all is well.

The data frame pointer (previous top of stack S[) is reset to point to
the old start-of-parameter pointer. The return address must be pushed back
onto the control stack so that the register machine's ret inst ructio n will work
properly.

[retval]:
ipop r l % r l .- return value
cpop rO % rO return address
cpop rl
cpop rp
setr rp i top % return the data frame pointer
cpush r O % r epl ace return address on c stack
ipush rl % r epl ace return va lue on i stack
ret

When th is instruction is executed, the value to be ret urned is on the top
of the S1 (data) stack. The code follows the ret instruction just presented.
The sole difference is that the value to be ret urned is popped from the stack

196 7 Register-Based Machines

Sf and must be stored in a register temporarily until the data frame of the
routine that is returning has been removed from the Sf stack; then the value
to be returned is pushed onto the Sf stack.

[switch]:

-- Code for Exp
switch
jmp $L1

jmp $Ln
$L1: -- Code for case 1

jmp $end
$Ln: -- Code for case n

jmp $end
$end: . ..

For the register-based virtual machine, this must be tr anslated into:

-- Code for exp, leaving result in register rv
go_on rv n ($L1, 0 00 ' $Ln)

$L1: -- Code for case 1
jmp $end

$Ln: -- Code for case n

The correspondence between these two code fragments is so close that no
comment is deemed necessary.

7.10 More Natural Compilation

Given the code produced by a direct translat ion of the ALEX stack-based
virt ual machine instructions, it is interesting to ask what code produced by a
compiler that directly generated for the RTM would look like. In this section,
this is addressed.

The production of a compiler for the RTM would have taken too much
time. Instead , the code is produced in a way that seems natural.

First , it is necessary to define the conventions for the code. It was decided
to pass arguments in the integer stack. Local variables would be assigned to
registers rO to r15. If a routine required more than sixteen local variables (a
relatively uncommon case), the least used locals would be stored on the i
stack and loaded into registers when needed, perhaps causing more heavily
used locals to be spilled onto the stack. A compiler performing a reasonable
level of optimisation could implement this strategy.

Registers r15 to r31 are to be used as working registers.
The decision to pass par ameters on the stack has the implication that

the number of parameters to a routine is potentially unlimited. Also, given

7.10 More Natural Compilation 197

that ALEX uses a call-by-value evaluation regime, updates to parameters are
not possible. Furthermore, value parameters tend to be accessed rather less
frequently than local variables .

Parameters

Local Variables

Fig. 7.6. Integer stack organisation.

Inside a called routine, the integer stack is organised as follows. First, the
parameters are stored. Then come those local variables that must be stored on
the stack. A pointer to the start of the parameters is maintained in a register,
as is a pointer to the start of the local variables . The parameter pointer is,
by convention, stored in control register cO; the pointer to the locals is stored
in control register cl. This scheme is shown in Figure 7.6 (as is usual in this
book, the stack grows downwards).

Old cO
Old cl

Return Address

Fig. 7.7. Control stack organisation.

The control stack organisation exploits the properties of the call instruc
tion : it pushes the return address onto the control stack. The values of the
parameter pointer (cO) and the locals pointer (c1) are stored in the control
stack below the return address . This is shown in Figure 7.7.

It might be better if the return address were under the other two val
ues. This could be arranged if routines adjusted the stack when called. This
protocol is not adopted here because, to some, it is a little counter-intuitive.

Local variables are allocated to integer registers , as noted above. They are
allocated in registers rO to r15. In the add2 routine, there is only one local,

%r16 : = y

'I. return to caller

:= return address
: = old locals ptr
:= old params ptr

198 7 Register-Based Machines

Z, so it is stored in register rf), A decent compiler could exploit this and use
registers r1 to r31 as workspace. Here, a fairly simple complier is assumed, so
the workspace is confined to registers r16 to r31.

%rO = z, fp + 0 = y, fp + 1 = x
%Set the number of locals.
$add2 : ldc c1 0
'I. z := 0
ldc rO 0
i bget nt hr cO
ipop r16
setr cO c2
incr c2
ibgetnthr c2
ipop r17 %r17 := x
add r17 r16 rO 'I. z := x + y
'I. now set the return-value register
setr rO c31
'I. return sequence
cpop c16 'I. c16
cpop cl %cl
cpop cO 'I. cO
setr cO itop
ret

Fig. 7.8. RTM code for add2's body

ALEX only allows one value to be returned from a function. Th is value
could be returned on the integer stack. However, this compiler ret urns it in
a register. This is, in general, a good way to return a value because returned
values are very often immediately assigned to variables. Even when they are
immediately used in an expression, moving the ret urned value from one regis
ter to another is, in general, faster than operating on the stack. Register c31
is allocated to the returned value. With the except ion of registers cOand c2,
the other control registers are free for use.

The code for the body of add2 is shown in Figure 7.8. Comments follow
the convent ion adopted in this book.

The code to perform the call add2(1,2) is shown in Figure 7.9.
It is interesting to see what a more realistic piece of code would look like.

The source code is:

a := 1;
b : = 2;

zz : = 0;
zz := add2(a,b);

%a = rO, b = rl, zz r2

7.10 More Nat ural Compilation 199

%Code for add2(1,2)
cpush cO
cpush cl
%push arguments
i pushc 1
ipushc 2
call $add2

Fig. 7.9 . RTM code for the call add2(1,2).

%setup
ldc rO 1 %a := 1
ldc r1 2 %b := 2
ldc r2 0 %zz : = 0
%Save local variables
setr lp c15
ipush rO %save rO
i bset nt hr ciS
ipush r1 %save b
incr c1S
ibsetnthr c1S
ipush r2 %save zz
i ncr c1S
i bset nthr c1S
%save state
cpush cO
cpush c1
%call add2
call $add2
%on return, c31 addr2 's z
%restore locals
setr lp ciS
ibgetnthr c1S
ipop r2
incr c1S
i bget nt hr ers
ipop r1
incr c1S
ibgetnthr c1S
ipop rO
%locals restored
setr c31 r2
%returned value overwrites z

200 7 Register-Based Machines

This code is, again, sub-optimal. Note how the variable zz in the outer
context is set, saved and restored, only to be the target of an assignment . This
sequence could be optimised out .

The above code fragments employ a single calling convention for all func
tions. This is not what a decent compiler would do. The fragments are the way
they are just to show how a simple compilation scheme would produce code
for the register machine. As any assembly programmer knows, each routine's
calling sequence should be handled on its own merits-optimising compilers
can do this, as well.

The point of the code sequences is to provide an alternative view of what
register code can look like. The amount of stack consumed by this code is
less than that consumed by a simple translation from the stack machine's
instructions.

7.11 Extensions

The example register machine can be extended in any way one wants. In
particular, it can be extended to support objects and (pseudo-)concurrent
processing in ways analogous to those presented in Chapter 5. As Parrot
shows, it is also possible to introduce instructions to invoke complete virtual
machines.

8

Implementation Techniques

The rationale for virtual machines is th at they are processors supporting one
or more programming languages in a hardware-independent fashion. What
makes virtual machines different is that they are software processors. The
implementation of such processors is an important topic in its own right . Al
though virt ual machines can be used as the context within which to discuss
important theoretical issues such as the mapping between language semantics
and implementation, the adequacy of instruction sets and compiler correct
ness, to mention but three, it should not be forgotten th at they are, after
all, a mechanism for implementing a programming language (or an applica
t ion or an operating system) on a target platform. This section is concerned
with a discussion of some of the more common approaches to implementation.
Each of the implementation techniques discussed below requires a translater
or compiler that does more or less work (indeed, some, such as compilers for
register machines, do a considerab le amount of work). What will be of concern
here is only the runtime system that is used to execute the virt ual machine
instructions generated by the translater or compiler.

The implementation techinques discussed here have, with one except ion,
no generally accepted names. The names given to them below are, therefore,
purely for the purposes of this book. The approaches are:

• Direct implementation;
• Translation;
• Threaded code.

As will be seen, there are many variations on these themes. In particular , the
translation approach can take many different forms.

This chapter is divided into two main sections. The first deals with stack
based machines while the second is concerned with virt ual machines based
on the register-t ransfer model. The stack-based approach is considered first
because there has been more work on it . As a consequence, many of the tech
niques have already been tried for stack machines and remain to be attempted
in the other model.

202 8 Implementation Techniques

8.1 Stack-Based Machines

while not halt loop
instr := eode[ip);
oped := opeode(instr);
ease oped of

when ADD: .. .

when LAND:

when HALT: halt := true;

default: ...

halt := true;

endease;
endloop ;

Fig. 8 .1. A typical virtual machine main loop.

8.1.1 Direct Implementation

The virtu al instructions for ALEX were specified as small pieces of Algol-like
code associated with an opcode. In a direct implementation, these code pieces
are collected into a switch or case statement. The opcode is used as the label
into the case statement . The case statement as a whole is executed inside a
loop. This loop usually terminates when a flag is set by the code that is being
executed (often this is implemented as a term or stop instruction).

Figure 8.1 is a schematic example of this approach. The loop shown in
this figure has a structure that is very often found in virtual machine main
loops. In the code in th e figure, the instruction is first fetched from the code
vector. Then, the opcode is ext racted using the function (macro) opcode . The
opcode is expected to be a small integral value that is used by the following
case command, which has one branch per opcode. The figure shows three cases:
that for addit ion (ADD), that for logical "and" (LAND) and the instruction that
halts the virt ual machine (HALT). The act ions taken in the first two cases are
not shown-generally, they would pop the operands from the stack, perform
the operation, push the result back on the stack and increment the inst ruct ion
pointer by the appropriate amount . The default case is outlined, as well; t his
is the case that would be selected if an unknown opcode is encountered- as
shown in the figure, the loop enclosing the code is made to halt (in addit ion,
other actions, for examp le, dumping the stack) might occur .

8.1 Stack-Based Machines 203

For direct implementat ion, the compiler or translator converts source code
into a sequence of instructio ns whose opcodes are numerical values that cause
the case statement to branch to the piece of code that implements that in
st ruction.

The direct implementation approach is employed by BCPL , Pascal and
non-JIT Java systems. It is also the approach at the kernel of the Smalltalk
80 system. It is a general approach and involves the implementation of the
ent ire virt ual machine as a separate program. In many ways, it is the standard
approach.

The advantages of this approach are its simplicity and the fact that the
ent ire virt ual machine (usually a relat ively simple program) are under the
implementor's direct control. On cached architect ures, care must be taken
to avoid cache reloads if the control loop is very large. This approach does,
however, lead to relatively low levels of runtime performance, as witnessed by
the attempts to optimise Java programs.

8.1.2 Translation

By translat ion is meant the translat ion of the code generated by the virtual
machine to some other format. This is really a family of approaches, as will
be seen.

Translation to another language

The simplest translation mechanism is as follows. The source language is
translated not into bytecodes or virt ual machine instructions but into another
programming language (the target language), for example C. The virt ual ma
chine's primitives are implemented as either macros or procedure calls and
the target language's control st ructures are used to implement the contro l
structures of the source language.

Th is approach requires first the translation of the source language to the
target language, thus expanding macros or generating calls to the procedures
implementin g the virtu al machine's inst ruct ions. It then requires the compila
tion of the target language program that is thus generated. Finally, it requires
linking the generated program with runtime librari es as appropriate . The run
time libraries, in essence, implement a simulat ion of those parts of the virtual
machine other than the inst ruction set . The resultin g program can also be
somewhat large and it can be very hard to ensure that a simple translation
performs well on cached and pipelined architectures.

The translat ion of the source for the add2 funct ion (repleated in Figure
8.2) is shown in Figure 8.3. The source language is ALEX and the target is
C. In the example, the inst ruct ions of the original ALEX virtual machine are
implemented as C macros and expanded when the C program is compiled.
The original inst ructions are shown as comments in the C code. The example
also shows how C's control structures are used to implement those in ALEX.

204 8 Implementation Techniques

let fun add2 (x,y)

let var z = 0
in

z := x + y;
return(z)

end

Fig. 8.2. The (very) simple ALEX function (again).

/ * $add2: */
/* pushc 0 */
sp := sp + 1;
s [sp] := 0;
/* setlocal 0 %z := 0 */
s[fp + H + 0] : = s[sp] ;
sp := sp - 1;
/* getparam 1 %get y */
sp .= sp + 1;
temp1 := s[fp + 3];
s[sp] := s[fp + H + temp1 + 1];
/ * getparam 0 %get x */
sp .= sp + 1;
temp1 := s[fp + 3] ;
s[sp] := s[fp + H + temp1 + 0] ;

/* add */
s Isp - 1] : = s Isp l + s Isp - Ll :
sp : = sp - 1;
1* setlocal 0 % z := x + y *1
s [fp + H + 0] .= s [sp] ;
sp : = sp - 1;
1* getlocal 0 *1
sp : = sp + 1;
s[sp] : = s[fp + H + 0] ;
1* ret i = ret */
s[fp + 2] := s [sp]; %overwrite num params
sp := fp ;
fp : = s[sp + 1];
swap; /* call swap as a routine or macro */
ip := s[sp + 1];

Fig. 8.3. ALEX stack VM code for add2 translat ed into C.

8.1 Stack-Based Machines 205

Luckily, ALEX and C have contro l st ruct ures that are quite close, so there is
no problem with the translat ion in this case.

/* s ize 1 2 */
if (H + 1 + 2 + sp) >= 8L then error fi
sp : = sp + H
s lspl : = 1
s [s p - 1] := 2
s [sp - 2] : = fp
sp := sp + 1
/ * pushc 2 */
sp := sp + 1
s lspl := 2
/* pushc 1 */
sp .= sp + 1
s lspl := 1

/ * frame 1 2 */
f p : = sp - (1 + H + 2 + 1)
/* call $add2 */
s[fp] := ' size (call ep) ' + ip
ip := ep
/* retur n point : */

Fig. 8.4. C code calling add2{1,2) .

The code that would be generated for a call to add2 is shown in Figure
8.4 where the return address calculat ion contains a quoted subexpression. In
an implementation, this would be replaced by a literal that the compiler looks
up in an internal table.

Assembly language can be used as the source language for the instruction
set . This was the approach adopted for the FPM functio nal programming sys
tem [7]. The instructions of the virt ual machine were implemented as macros
in VAX assembly language, expanded and assembled, then linked with a li
brary to form an executable.

An advantage of this approach is that it can exploit any opt imisat ions
performed by the target language tr anslator , in particular non-local opt imisa
t ions. It also has the advantage that a language can be implemented reason
ably quickly. One major disadvantage is that the approach requires a separate
compilat ion and linkage process that does not relate in any way to the source
language. Thus, it is possible for target language and linker error messages to
be generated by an incorrect source-to-target translation or mistakes at the
linkage step. Errors not relatin g directly to the source language can be most
annoying, requiring the programmer to have knowledge of the target as well
as the source language.

206 8 Implementation Techniques

A second disadvantage of this approach is that it is not well suited to
source languages whose semantics are distant from the target. In such cases,
a greater amount of support from the libraries is required. However, it can be
seen that there will be cases in which simple translation becomes extremely
difficult or even impossible, for example when a highly concurrent language
is mapped onto a sequential one (implementing context switching is a case
in point) ; there might also be severe difficulties when using the approach to
implement hybrid logic languages (which require suspension offunctions when
not all arguments have been evaluated) .

A third disadvantage comes from the fact that the intermediate represen
tation (the target-language code) is seldom an optimised representation. Thus,
the target-language program can contain unwanted data movements and un
wanted transfers of control. This can happen, for example, at the boundaries
between the macros that implement virtual machine instructions.

Translation to another VM

This is an approach that has been suggested for the Parrot virtual machine
for Perl. It is a generalisation of the concept of translating one intermediate
representation to another within a compiler.

The virtual machine that actually executes is one whose instructions are
simple and fast or are, in other ways, more powerful. The source program is
first translated into its own virtual machine code. The output of this stage is
then translated to the form required by the target VM. The translation process
is the same as code generation in a conventional system. A translation from
JVM bytecodes to Parrot instructions is an example of this process. As can
be seen from a comparison of the JVM instruction set and the corresponding
Perl instructions, operations such as register allocation must be performed ;
also data movement instructions are inserted to do things like register spilling.
An example of such a translation is given in outline for the ALEX and RTM
virtual machines (see Section 7.7).

The translation approach has the disadvantage that the compilation pro
cess is often more complicated. The counter-argument is that it can be sep
arated into independent stages that run only when required. It also has the
advantage that more global optimisations can be performed on the interme
diate representation (JVM code in the case of JVM to Parrot translation).
This approach also affords opportunities for dynamic compilation and other
JIT techniques . The combination of a direct translation interpreter and a
lower-level one is also possible and one that can be somewhat appealing in
some cases (e.g., those in which performance and high-levels of portability
are both required-native code compilation being a technique that opposes
portability) .

Using a JIT implementation

This is a hybrid solution employed by many of the more recent Java systems.

8.1 Stack-Based Machines 207

The usual way to implement a Just In Time (lIT) implementation' is to
compile a program unit when it is first referenced or called; the compilation
process translates the program unit into native code. The input code (either
source code or, better, virtual machine instructions) is compiled into a buffer
that is allocated in the heap. When the unit is later referenced, the native-code
representation in the buffer is executed.

Although JIT code is an improvement over many other approaches, it
still suffers from a number of problems. One problem is that it involves the
compilation of program components of a standard kind: for example , in Java
the unit of JIT compilation can be a method or an entire class, while in a
procedural language the natural unit is an entire routine. The approach also
imposes the overhead of compiling all program units when they are referenced;
it does not distinguish between units that are frequently referenced and those
that are seldom referenced. Thus, the overhead imposed by the compilation
mechanism is always incurred when code is referenced. The overhead imposed
by compiling virtual machine instructions to native code is certainly less than
that imposed by a full compilation from source, it is still a significant factor
at runtime.

The JIT approach also suffers from the fact that it does not perform
global optimisations. It operates only locally in a manner reminiscent of the
translation process employed by the FPM system and suffers from the same
faults.

A more sophisticated approach to JIT is based on obtaining usage statis
tics for each construct in a program, then translating only the most heavily
used parts (which could be individual commands such as loops or selections) ,
leaving the rest as virtual machine instructions. This approach is sometimes
called dynamic compilation. The problem is that the usage statistics must be
derived from somewhere. In a stand-alone approach, code is loaded first as
virtual machine instructions and the native-code translator is applied only af
ter these instructions have been executed. This has the implication that code
has the same performance as the other methods discussed here for the first
few times it is used. During these first few uses, statistics are gathered to
determine which sections of code are to be translated to native code. There
is the problem that the time during which the virtual machine instructions
are first executed constitute the only time that that particular piece of code
is executed.

An alternative approach is to gather usage data during testing or off-line
use of the code. This second approach seems less satisfactory in general for
reasons that should be clear.

8.1.3 Threaded Code

This is, again , a family of approaches. There are many variations and opti
misations on this theme and it is possible to conbine a form of direct im
plementation with threaded code. Threaded code was introduced by Bell [9]

208 8 Implementation Techniques

(originally for an implementation of FORTRAN); the approach was adopted
for the implementation of FORTH and has become widely known in that role.

Optimising a direct translation

In this approach, the case statement structure of the direct translation method
is retained in the sense that each virtual machine instruction is implemented as
a piece of implementation language code. This code is placed inside a control
loop, just as in the direct translation case. The difference is that , instead
of using a small numerical value to represent a case label (i.e., the use of a
bytecode operation code), a pointer to the entry point of the implementing
code is used. This requires the translator to have access to the addresses of
the entry points or for the code generated by the compiler to be pre-processed
when it is loaded into the virtual machine.

This approach has the advantage that it obviates the need for a jump
table in the virtual machine's compiled code. Virtual machine instructions
are interpreted by jumping to the corresponding piece of code. This is clearly
quicker because it removes the indirection in compiled code. There can be
problems, however, when optimising this approach for cached and pipelined
architectures.

This appears to be an approach best suited to assembly language imple
mentations. The GNU C compiler, however, permits a fairly direct implemen
tation of this approach: with the appropriate switches set, labels are treated
as first-class values.

This approach is a simple way of threading code.

Fully threaded code

In the original paper on threaded code [9], Bell describes a computer that uses
the following steps to execute code:

1. S, the value of the pcth word of memory, is fetched.
2. a) The routine starting at location S of memory is executed.

b) The value of pc is incremented by one.
3. Goto 1.

A machine operating in this way, he calls a "threaded-code computer" .
To construct a machine like this in software, the following is required .

First, the implementing machine's pc is ignored and replaced by a general
register, R.

The algorithm above can be replaced by the following:

1. 'Transfer control to the routine beginning at the location whose address is
the value of the Rth word of memory.

2. Increment R by one.

In PDP-ll assembly language, this is implemented as:

8.2 Register Machines 209

JMP \@(R)+

on the MIPS, it is:

lw $2, 0($4) # assume $4 is the instr. ptr
addu $4, $4,4 # increment the instruction ptr by one word
j $2 # execute next instruction
#nop # branch delay slot

Step 1 of the VM algorit hm corresponds to steps 1 and 2(a) of Bell's algo
rithm, while step 2 corresponds to Bell's remaining steps. If a compute r has an
instruction that can increment a register and can load the pc t hrough two lev
els of indirection, it is possible to have an ext remely compact implementation
of the above algorit hm.

The above code (and two-step algorithm) is the next routi ne that always
appears at the end of each operation in a FORTH program.

There is, however, a choice: primitives can end with the next routine or can
share a copy and jump to it . On modern processors, though, the shared next
routine not only costs a jump but also dramatically increases the misprediction
rate of the indirect jump. Shared next is not a good idea on most current
hardware.

The idea is that all primit ive (virt ual machine inst ructions) are imple
mented as threaded code. The code that is output by the compiler consists of
references to the ent ry points of the instructions. Each instruction ends with
the next routine to transfer cont rol to the next inst ruct ion in code memory.

It should be noted (as, indeed, Bell does in [9]) that arguments to threaded
code rout ines can be passed on stacks or by any other possible discipline.

This is the approach historically taken by many FORTH systems. It can
be adapted with relative ease to any language; indeed, the original implemen
tation of code threading was used in a FORTRAN system.

8.2 Register Machines

The techniques available for implementing virtual machines based on the
register-transfer model are roughly the same as those for stack-based ma
chines. A stack-based implementati on must handle the stack and a very few
registers as well as what might be called "instruction decoding" . Above, the
focus was on the instruction decoding part of the tas k because there are usu
ally so few registers. An implementation of a register-based virt ual machine,
on the other hand , requires implementations of the register sets and of the
instruction decoding mechanism. Init ially, this section will concent rate on the
representation of (possibly multiple) register sets and the n will move onto a
discussion of instruction decoding.

210 8 Implementation Techniques

8.2.1 Register sets

One problem that is immediate when considering register machines is that
they can require multiple register sets , each of which contains more registers
than are provided by the target hardware. A direct implementation method
for a stack-based machine can try to arrange for all virt ual machine registers
to be allocated to machine registers . This can be done in C and some of its
derivatives and in Ada, for example; in other languages, it cannot (even so,
if the hard ware processor has only a few registers-like the X86-the C or
Ada compiler might not be able to ensure that all machine registers can be
maintained in hardware registers at all t imes).

The natural way to implement a register set is as a vector of single registers.
For example, an integer register set can be implemented as an integer vector.
Accessing such a vector requires indirection , as does a stack. There is, in
the linear vector case, no overhead incurred by increment, decrement and
test of th e top point er, so there is already a performance gain. Single vectors
also have th e property that they can all be operated on together (e.g., when
saving to a stack-an operation reminiscent of the IBM360 "store multiple"
instruction). It is clearly advisable to arrange for all register sets to be stored
in the fast est possible memory. Furthermore, the issue of locality can arise.
The transfer of values between different register sets (whether of the same or
of different types) should not require excessive re-Ioading of fast memory. In
many languages, this merely means that all register sets should be declared
without intervening variables (this is just a rough heuristic and the act ual
output of the compiler should be examined) . In a similar fashion, transfers
between registers should be as fast as possible; this implies that a machine
with very large numbers of registers in a set should be redesigned.

8.2.2 Addressing

In a register-based machine, addressing is an issue. One reason for this is
that a stack-based machine is a zero-address machine; almost every operand
is found on the stack (in the ALEX virtual machine, data is usually on the
stack, sometimes stored as a global). In a register-based machine, dat a can be
located in many places, for example:

• On some stack;
• An operand to the current instruction ;
• Stored in a register;
• Stored in fiat memory;
• Pointed to by some other datum.

This suggests that data can be accessed in different ways; hence, there are
different addressing modes, just as one finds in assembly code.

8.2 Register Machines 211

There is no translation problem in principle for these different modes: they
can all be handled with some ease when translating the symbolic representa
tion of the instruction set to the corresponding numeric ("binary") format.
For example :

• Data on the stack is addressed using stack operations.
• An operand is binary literal data that is assembled into the binary code.
• An operand that is stored in a register can be accessed by naming the

register in which it resides.
• Data in flat (i.e., non-stack) memory is accessed using addresses . Addresses

can be represented by explicit labels or by offsets from known base ad
dresses (e.g., the start of a table) .

• Pointers are, after all, just addresses .

The problem is that either instructions are associated with exactly one
addressing mode or more than one op (byte) code is required for each con
ceptual operation. The latter case is the norm for hardware instruction sets
which are usually defined in terms of a set of bit fields (Intcode and Cintcode
for BCPL is defined in an analogous fashion, see [45] for more information).
One field names the basic operation to be performed (e.g., load, store, move,
compare, add) . There is a separate field for each operand, stating its address
ing mode. While this is an optimal arrangement in hardware, it can be costly
(in terms of time) in software. Furthermore, without care, instruction lengths
can become rather long.

For example, assume that the address length of the underlying machine
is 32 bits (so that a hardware pointer can be used without manipulation).
Assume that the following addressing modes are possible:

• Immediate;
• Absolute;
• Indexed ;
• Indirect ;
• Indexed Indirect.

In the worst case, three bits are required to encode these modes. Assuming
64 instructions (not an unreasonable assumption), the opcode field requires
six bits. Also, assume that 3-adic instructions are used (as they are in Parrot
and the register-transfer machine described above), so the worst case is:

6 + (2 x 32) + (2 x 3) = 76 bits

This is an awkward number of bits for an instruction. Of course, this is the
worst case and a more optimal arrangement can be found; however it does
indicate that care must be taken when integrating addressing modes with the
instruction set .

Depending upon how the instruction set decoding is implemented, it might
be better to adopt a scheme that is closer to that used for stack-based or RISC

212 8 Implementation Techniques

machines. This was essentially the scheme adopted for the example register
machine described above. This is a general approach that associates one ad
dressing mode with one opcode. Clearly, this puts pressure on the instruction
space if a small number of bits (say eight) is allocated for the opcode. One
clear way to handle this is to extend the allocation to 16 bits.

It must be remembered that, if the virtual machine works by translation
to some other form, the number of bits required for an opcode is not neces
sarily the actual number of bits of runtime storage. If the register machine
is implemented as a threaded-code device, the runtime representation of each
opcode will require the same number of bits as the hardware representation
of an address .

Similarly, if virtual machine addresses are represented at runtime by actual
hardware addresses, the size of an instruction at runtime can be much larger
than if they are represented as offsets into a byte vector.

8.2.3 Translation to Another VM

The possibility of translating register machine code to something more "fun
damental" exists but has not, or so it would appear, been used. Again, there
is the possibility of translating register-machine code into an equivalent form
in some low-level language (C or even assembly language) .

Translation of register machine instructions to the instruction set of the
underlying hardware is also an option. There is no a priori reason to ignore
JIT techniques as an aspect of this . An interesting alternative is to use JIT
to translate stack-machine instructions into those for a register machine.

The possibility of translation to another kind of virtual machine is an
interesting one, as is the idea of using threaded code to implement register
transfer machine instructions.

There are cases in which translation from register code to stack machine
code appears viable: testing code is a case in point. The reason for this is that
compilation to a stack machine is considerably less costly than translation
to a register machine. During development, turnaround is of importance. For
performance , though, such a translation would appear to be of dubious utility.

8.3 Using Transitions

In this section, the use of transition-based specifications is considered. In
previous chapters, state transitions have been used to specify the operations
of various virtual machines:

• The single-stack ALEX machine;
• The two-stack ALEX machine;
• The Harrison Machine virtual machine;
• The register-based virtual machine.

8.4 Concluding Remarks 213

The transitions for the two-stack ALEX machine were used to define a
translation to the register-based machine. That is clearly one good use for
them. This chapter is concerned with the process of building virtual machines;
transitions are a specification, so it should come as no surprise that they are
of use in the construction process.

Before moving on, it is important to note that the sets of transitions given
in various places above need to be augmented in a variety of ways. The Har
rison Machine shows one of these: it contains transitions that determine how
to stop the virtual machine. It is also necessary to include transitions that
describe (or define) the error states of the virtual machine, so that they can
be flagged or so that exceptions can be raised. In general, the addition of error
transitions is a straightforward process; above, they were omitted partly for
this reason but also because their inclusion would have cluttered the presen
tation unduly.

Now, it should be clear that transitions can be used either formally or
informally. The latter consists of using the transitions as a high-level specifi
cation and simply converting them to working code. There is nothing wrong
with this : a recent version of the Harrison Machine was constructed using the
transitions presented in Chapter 6.

Virtual machines should be correct as far as the semantics of the language
they implement (execute) is concerned. This is clear. The author's preferred
criterion is that the virtual machine should be derived formally from the
semantics of the language, ideally automatically (work has been done on this
[16, 17]), a process which, unfortunately, has proved to be rather more difficult
than it would appear.

Until such time as it becomes possible to automate the process, more
traditional methods must be applied. Transitions can assist in the formal
derivation of virtual machines by acting as a high-level specification that can
be converted into a model-based notation such as VDM [26], Z [46] and B [2] .
This turns out not to be all that difficult and is quite transparent , particularly
in specification notations that employ pre- and post-conditions, such as VDM
and B. The left-hand side of each transition acts as a precondition, while the
right-hand side can be treated directly as a specification of the operation or
as a postcondition.

The translation into Z has been attempted by the author for the Harrison
Machine transitions as well as for the single-stack ALEX virtual machine
with good results . Unfortunately, lack of space prevents the inclusion of the Z
schemata in this book; the reader might care to attempt this for themselves.

8.4 Concluding Remarks

Although virtual machines, in the form of abstract machines, have been
around for a long time , they have mostly employed the stack-based approach .

214 8 Implementation Techniques

Only recently has the proposal of the Register-Transfer Model been taken se
riously. As a consequence, many techniques have been identified and applied
in the construction of stack-based virt ual machines. The approach based on
registers is, on the other hand , far less well explored. Translation of compiler
intermediate code to register machines is well-established but the construct ion
of software machines using many registers has not.

In this chapter, a number of implementation techniques have been pro
posed and discussed. It is clear that there is a considerable amount of work
to be done in this area.

9

Open Issues

The purpose of this chapter is to give one view of how virtual machines might
develop in the future . Anyone who attempts anything like this is likely to get
things almost entirely wrong, so the reader is warned that no guarantees are
given. Instead, the reader should read the following as a collection of ideas as
to where things might go. Some of the ideas might turn out to be dead ends,
some pure speculation, while others might be more promising. Caveat lector!

The developments outlined below can be divided into those of a more
theoretical interest and those of more pragmatic importance. Many of the
ideas presented below are inter- related, so the reader is warned that they are
only roughly grouped.

It is also worth noting that there is a great deal to be said about some of
these topics. There is a temptation to write enormous amounts about some
of them! but , it is hoped , what follows is indicative of profitable future work.

9.1 Security

Security is currently a big issue. Clearly, when a virtual machine is used as a
component in an open system , such as the JVM often is, there is a security
issue. From this, it is obvious that more security measures will be added to
virtual machines to ensure that "malicious" code cannot be loaded by or from
sources that are not trusted.

The standard way of looking at security is to examine the code executed by
a virtual machine. For example , the JVM's security mechanisms include one
verifying that code does not access local files. Another standard technique is
to add digital signatures to code; virtual machines verify the signature before
loading the code. Another technique is to refuse connections from sites that
have been established as insecure or malicious.

1 There are some topics that interest the author a great deal and there are issues
that seem to have some promise . These topics are not necessarily of interest to
anyone else, of course!

216 9 Open Issues

There are arguments in favour as well as against the kinds of security
afforded by Java and similar systems. One argument runs that it is not possible
to ensure security using compiled code alone, only source code can be verified.
The other argument is that compiled code is exactly what is to be run , so it
contains all the necessary information. Unfortunately, in neither form can
the following attack be detected (at least , as far as the author is aware).
A routine or method allocates an enormous vector (say, l024K words) and
performs some test or other ; if the test evaluates to true, the routine or method
calls itself recursively, thus allocating another huge vector. Even worse is the
case of mutually recursive routines or methods, one of which allocates a large
amount of store , the other serves merely to obfuscate the issue. The test can be
arbitrarily obfuscated; what matters is that it evaluates to true a good many
times (the code should never terminate-another problem) . Static checking
of code of any kind will never detect this. The only sensible way to handle
behaviours like this is to isolate it from the rest of the system. The problem
is that code like that just described uses a central system resource.

Language design also plays a part in security. Java excludes pointers and a
number of other "dangerous" features (hence the topic that follows this one).

It is clear that more secure virtual machines will appear in the near- and
mid-term.

9.2 New Languages

It could be said that there are already too many programming languages. It
can certainly be said that there are many languages that look the same. One
problem that we face is that the languages we have are not terribly good;
programming language design is a difficult process at the best of times.

New languges are often associated with virtual machines, particularly when
the language is not of the von Neumann type . There is a vast literature on
declarative and other languages that do not fit the standard mould and the
reader is directed to it.

As noted as part of the last topic , language design can also relate to secu
rity. It is to be expected that new languages with security features will appear
in the coming years; many of these languages will execute on virtual machines.

9.3 Typed Instruction Sets and Intermediate Codes

The JVM attempts to provide some type information in its instruction set.
There are many reasons for wanting a typed instruction set . Here are just a
few:

• In an untyped instruction set , instructions can be overloaded. For example,
the "add" instruction might be overloaded to handle integers , floating

9.3 Typed Instruction Sets and Intermediate Codes 217

point numbers and strings. Inside the code that implements the "add"
operation, there have to be two type tests (one for each operand) that
check that the operands are of compatible types. These type tests cost
space or time or both . Runtime type tags , such as those used in most
LISP implementat ions, can be used. It does seem, however, that separate
instructions are best .

• In an untyped instruction set , it is not really possible to point to an in
struction and be exact ly sure about what it does. The "add" example can
be integer addition, floating point addition, a combination of these two,
or st ring concatenation. Thi s is semantic ambiguity. It has the implication
that the input to a virtual machine cannot be proved.

• In a typed instruction set , each instruction has a fixed type and performs
a fixed operation. Not only is this simpler , it is fast er at runtime (by
omitting type tests , coercions, and so on) , even though it does consume
more space. However, when, e.g., instrumentation and introspection are
concerned, typ ed instruction sets offer the advantage that the machine is
performing exactly one task at a time and this can be directly related to
the input code.

There is also a connection with the intermediate codes used in compilers
generating code for virtual machines. In some of these, the intermediate code
carries type information . The final translation to virt ual machine instruction
removes thi s type information when performing instruction selection. This is
valuable information that could usefully be passed to the virtual machine .

Typed instruct ions put pressure on the instructionspace in the sense that
for each untyped instruction represent ing a polymorphic operation (e.g., addi
tion) , there will be more than one instantiation of that instruction in a typed
system. For example, the addition operat ion would need to be instantiated
for (at least) integer , floating point and st ring (boolean "or" can also be in
terpreted as an operati on with the same properties as addition). This has the
implication that the number of opcodes in use increases significant ly and re
duces the number of opcodes available for other operations; this is particularly
painful in a space with 256 point s; it is naturally eased in a larger space, say
of 64K point s (16-bit opcodes).

Of course, the runtime representation of instructions might be different
from that output by the compiler. Elsewhere in thi s book (Chapter 8), the
possibility of using, say, threaded code methods to implement instruction de
coding has been discussed. In threaded code, opcodes are replaced by pointers
to entry points in code. In a threaded-code implementation (unless it is an
implementation on a machine with an address space that can be represented
by a byte), there is more space for operation codes than there is in a single
byte. What has been called the "direct" method for implementin g virt ual ma
chines appears to prefer small opcodes, although there is no a priori reason
for this.

218 9 Open Issues

9.4 High-Level Instructions

The Java VM, as was seen in Chapter 3, has an instruction set consisting of
the instructions for simple operations together with instructions that perform
complex operations. The simple instructions implement arithmetic operations
and jumps. The complex operations implement operations such as:

• Object creation;
• Array reference;
• Variable access and update in classes and instances;
• Method invocation .

In the development of the example ALEX virtual machine (Chapter 4.2.5),
instructions were added for vector manipulation. Procedure call and return
are also handled by relatively complex instructions.

It is to be expected that higher-level instruction sets will appear with time.
There are cases where this can be expected:

• When specific data structures are to be manipulated: for example, matrix
or image operations, operations on processes (threads or tasks), as well as
those provided by the JVM . Specific instructions might also be provided
to implement such functions as:
- Database query and update;
- Remote procedure calls;
- Setting up and using stream-based communications channels.

• When sequences of more primitive instructions repeatedly occur in code,
it is worth combining them into single instructions.

9.5 Additivity and Replacement

Compiled code presents a problem : when a piece of it needs to be replaced,
the whole image needs to be reprocessed. Direct editing of code (patching) is
extremely error-prone and frequently introduces new errors. Relocatable code
still requires offsets to be correctly adjusted. Dynamic linkage is also only a
partial solution . Java gets round this problem by a dynamic linkage process
on a per-class basis; event-driven software is easier to modify at the routine
level but poses its own problems .

9.6 Compiler Correctness

Industrial people pull faces and mutter about academic irrelevance when issues
like compiler correctness are mentioned; they are the first to phone their legal
teams when compilers (and other software) fails to work! Compiler correctness
does matter and has proved to be a hard problem. There are only a few
successful examples , one of which is [47] .

9.7 Dynamic Code Insertion 219

Virtual machines can be of assistance in the correctness proof in a variety
of ways, some direct , some indirect.

Some might see the following as obvious, a virt ual machine implements
the inst ruction set of a machine that is often considerably more abst ract than
the hard ware on which it runs. Therefore, the code generator for a virtual
machine target is not as complex as that for a native code runtim e. Typically,
virt ual machines are designed for a single language, so the re is the possibility
of a closer semantic match between language semantics and virt ual machine
instructions than between semantics and hardware instruction set . This im
plies that any proofs of correct ness will be easier (and ease of proof tends to
lead to comprehensiveness of proof-we're only human, after all!)

If the remarks about typed intermediat e codes and instruction sets are
accepted, the correct ness proof is eased. However, and this is a lit tle indirect,
if the compiler is organised as a set of transformat ions between intermediate
codes that carry different information. For example, higher-level tr ansforma
tions correspond more closely to the source language while lower-level ones
contain information such as addresses, while intermediate ones might be or
ganised in terms of cont inuat ions. Thi s organisation suggests that the overall
correctness proofs (as well as others) can be divided into stages , thus simpli
fying the process.

It is also possible to consider that each intermediate code is a code for a
virt ual machine, so a semant ics can be given for each. This clearly relates to
correct ness.

(In a very modest way, th is book contains a number of different instruction
sets that have been related to each other. It has been shown, in the relatively
informal argument of Section 7.9, and more extensively in Appendix A, that
the trans lation is correct in the appropriate sense.)

9.7 Dynamic Code Insertion

This is a bit of a hobby horse of the aut hor. The idea is that code should
be compiled only when it is required. Unlike JIT where the entire program
is presented and compiled when required, dynamic code insertion involves
the direct insertion of newly generated instructions into the virtual machine's
instruction stream; these instructions might also be stored somewhere else for
subsequent execut ion.

Dynamic code insertion allows the system to do a number of things th at
appear a bit st range unless one has been a LISP programmer. In LISP, it is
possible to construct pieces of code and store them, execut ing them only when
they become needed. If they are not required, they are collected as garbage.
A natural extension of this idea is that a program is written that writes bits
of code as and when they are required; when doing this, one usually arranges
matters so that the code can be modified on the fly. (This is not necessarily
as dangerous as it appears and can, in principle, be formally specified.)

220 9 Open Issues

9.8 Instrumentation

Debugging code'' is introduced into compiled code by inserting instructions to
instrument it. This affects the behaviour of the original code. In some extreme
cases, the introduction of debugging code can lead to behaviours that mask
the faults under investigation. In a similar fashion, timing code alters the
behaviour of the code being investigated and , as anyone who has timed code
knows, the time taken to execute the added code has to be removed from the
time reported by it. This is not particularly satisfactory.

Rather than add code to an existing program or module to assist in debug
ging, it appears less intrusive to turn a switch and let the environment within
which the code executes produce the necessary information. Very often, the
necessary code already exists in a virtual machine and is turned off. When
testing a virtual machine, it is common to dump the registers and the top
few stack locations so that they can be inspected to verify that the virtual
machine is performing correctly. When the virtual machine is delivered, the
code is commented or edited out or placed inside a conditionally compiled
region of the source (#ifdef in C and C++ or using a macro that expands
to a comment) . This code could be used to dump debugging information.

Checkpointing and other debugging tools can similarly be integrated
within virtual machine code and activated using a switch.

Code timing is always a problem because it takes some time for the code
performing it to execute. If this code is already present in a virtual machine,
it can, again , be revived from development . Timing, however, can only in
form the programmer about the performance of the algorithm that has been
coded-very often , it is already known when the algorithm has bad properties.
However, timing can be included more reliably in a virtual machine.

There is increasing (and welcome) demand to include assertions and other
correctness-oriented constructs in programs. An assertion typically tests a
program-specific condition and, if the test fails, causes an exception (termina
tion in the case of the standard C library routine). Assertions could be linked
into a more friendly exception mechanism and they could be linked to virtual
machine mechanisms (e.g., warning of low stack space or of low memory) .

Virtual machines, in principle, allow one to get right inside the executing
code of a program. This could be exploited to help debugging and testing, as
well as instrumenting running programs. In particular, array bounds check
ing and similar operations can be performed "for free" by a virtual machine
without interfering with the execution of code. This level of instrumentation

2 This section is written by someone who tries never to use debugging tools. Distur
bance of code is one reason why this policy was adopted; another is that the cause
of most problems is not in the behaviour of compiled code but in the source
a closer examination of the source and a period spent thinking about it more
often reveals the source of an error than watching registers change . Sometimes,
though, debugging tools are useful , particularly when tracking what appears to
be a compiler error.

9.9 Including more Information about Source Code 221

can also include information about storage usage, the turnover of store and
so on. It is arguable that it can be fed back into the compilation process so
th at optimisations can be performed. The tight coupling of a compiler with
a virtu al machine is necessary for this (some object to this because it is too
reminiscent of LISP environments that do not permit the development system
to be separated from delivered code).

Instrumentation can deliver information about which routines are being
called, as well as information about the act ual parameters. It can also intercept
stack frame operations (perhaps allowing modification at runtime).

Flexible instrumentation can be handled by adding hooks into the virtual
machine's code. Care has to be taken to ensure that the hooks cannot be
abused (i.e., by insertin g malicious code) . These hooks could also be useful in
the construct ion of virtual machines supporting reflective programs.

9.9 Including more Information about Source Code

Smalltalk and Obj ective-C, as well as interpreted object-oriented languages
like LOOPS [11] and the Poplog system [42], retain information on program
units that is derived from the source. Java, Smalltalk and Objective-C have
runtime data structures that record information about class variables and
inheritance st ructures; they also have method tables that translate method
selectors to method code. The Poplog virt ual machine is based on the idea
that functions and data structures are represented at runtime by structures
that contain a variety of information about these st ructures.

In a similar fashion, the Dylan language supports a cont rolled form of in
trospection . Programs can, at runtime, determine, for example, the types and
arit ies of methods. Similar operations are provided for classes. This informa
tion is derived from runtime data st ructures describing the ent it ies that have
been loaded into the system.

Equally, the CORBA standard for the middleware used by some dis
tributed systems contains dat a about the interfaces presented by objects .

The inclusion of information normally associat ed with source code has
a number of advantages. As noted above, it can assist in introspective and
reflective functioning and it can be used profitably in distributed systems. It
can also be used to help support operations such as:

• Serialization of dat a;
• Verification of dynamic linkage.

Furthermore, meta programming and dynamic compilation make use of source
code-derived information.

Source informat ion can be used to great effect when combined with in
strumentation. The data provided by the instrumentation can be presented in
a form that direct ly relates to the source code, thus making the results more
easily interpreted.

222 9 Open Issues

9.10 Integration with Databases

The integrat ion of virt ual machines with databases is already established.
Java permits code to be loaded from files, from network connections, from
code servers and from databases. Java, by its serialization mechanism, also
allows class instances to be stored on databases, thus permitting a kind of code
freezing. Code and app licat ion servers assist in the const ruction of distributed
applicat ions.

More generally, virt ual machines can be augmented by ort hogonal per
sistence, thereby allowing large amounts of data to be retained in a format
that is accessible to the virt ual machine's instructions. Traditional database
applicat ions typically require special-purpose code to be written to access the
dat a in it s stored format and to convert it to the format used by the code.
Persistence avoids this.

Persistence also assists in the development of distributed applicat ions.
Dat a can be stored in a virtu al-machine-dependent format and accessed by
any instance of that virtual machine running on that network (or on any ma
chine on Earth, in orbit around it or elsewhere in the solar system, if it runs
on the Internet).

The combination of code servers and persistence clearly support integrated
networked applicat ions with components of applications (if they can st ill be
so called) execut ing anywhere.

The freezing of the state of a program as it executes on a virt ual machine
is just an extension of the usual interpretation of persistence. Thus, a piece of
code can execute for a while before all or part of its state is frozen and stored
until later. Frozen code can later be unfrozen on the same or on anot her host
(assuming the database is networked, a not unreasonable assumpt ion); code
freezing is also useful in mobile code systems (see Section 9.12).

If virt ual machines can be executed by "virtual VMs" or by code morphing,
or by other techniques not yet considered, it becomes possible for virt ual
machines to be stored in code servers. It also becomes possible for a virtual
machine to be frozen and then moved elsewhere or to be stored until it is
required at some later t ime. The distinctions between a virt ual machine, an
instance of a virtual machine and an instance of a virtual machine stat e
thereby become necessary.

9.11 Increased Inter-Operability

Inter-operability appears to divide into a number of cases:

1. Inter-operabil ity of components of distribu ted applicat ions;
2. Inter-operability of different applicat ions/systems.

Quite clearly, the first case is already served in part by integration with
persistent stores as discussed in Section 9.10.

9.12 Code Mobility 223

Inter-operability, more generally, is a complex problem that is very difficult
to solve. Two important issues are protocols and data formats; it is clear
that common protocols and data formats must be employed before systems
can communicate. Unfortunately, there is insufficient space in this chapter to
explore these in any more depth, so the last observation must suffice.

9.12 Code Mobility

As Java has shown, if every platform on a network has a virtual machine with
the same instruction set , a given piece of code can be executed anywhere on
that network . The next step from this is for code to move from place to place.
The term "code mobility" is often taken to refer to code running on mobile
phones, in bicycles, vacuum cleaners or lawn mowers that communicate with
other pieces of code. However, there is another sense in which the code moves
from processor to processor in a network.i'

To do this , the code must be sure that there is a suitable virtual machine on
every machine it might land on (or, equally, that its code can be dynamically
translated to something that can run on the target machine) . Once it has
landed , the code has to acquire resources as it executes on its new processor.
Inaddition, it has to determine where next to migrate; this requires knowledge
of the network, including :

• The load at each candidate node;
• The resources at each candidate node, especially specialised devices;
• The performance of each candidate node;
• The security constraints at each candidate node.

Why should code migrate? Here are some answers:

• Resources: Some hosts have resources not available elsewhere. It is clearly
quicker and easier to access a resource locally than remotely.

• Load balancing: This is really part of the resource problem . Code might
move because the load on its local host might increase, making progress
difficult. Under such conditions, the code might decide to move to another
processor where things are less busy.

• Security: A particular application might have security constraints imposed
upon it. For example, if code is moving around, it is far harder to locate it
and intercept its data. If a large application is composed of mobile compo
nents , it becomes much harder to target . Naturally, the communications
channels required by the code must change as it moves. (If both parties to
a communication are mobile, there is an obvious problem-and a security
hole!)

3 This is the sense adopted by people working with "software agents" .

224 9 Open Issues

• Environmental problems: If there is a hurri cane threatening your machine,
it might be a good idea for your survival to move to a machine where
the weather is a bit bet ter. Similarly, if your owner is going to move of
fice/house, it makes better sense to move there rather than stay behind.
(Perhaps this might be referred to as "survival"-scary!)

There is another point about mobile code that is, perhaps, not discussed
very often. It is this: if code is mobile, it is not necessary for the processors
upon which the code executes also to host certain applications. In t he list
above, the first item is "resources" and resources could include applications
such as account ing packages and databases, as well as printers, special-purpose
display devices and specialised data-capture devices. However, some pieces of
code can be carried along with the mobile code, thus obviati ng the requirement
that it be provided by the host system. Indeed, the components required by
a mobile applicat ion could be distributed and mobile (with all the attendant
problems).

An alternative to migration is that a cent ral piece of code performs certain
tasks but, to perform others, it creates modules that it executes on other
processors on the same network. To do this, it t rans mits the code to the other
processors and communicates only with them.

An even more radical proposal is that mobile code carr ies its own virt ual
machine with it !

However it is done, mobile code poses a huge number of security problems.
Some problems are:

• The code could corrupt main store.
• The code could corrupt data on disk.
• The code could flood communications networks.
• The code could replicate itself and crash its host .
• The code could transmit confident ial data to other sites.
• The code could reveal the location of resources that the host would prefer

to keep under wraps .
• The code could replicate and send itself to hosts to which it should not

migrate.

9.13 Small Platforms

There is a demand to execute code on small platforms. Small platforms are
used in areas such as ubiqu itous comput ing (including wearable systems),
PDAs, mobile (cellular) telephones and embedded processors.

Small platforms are characterised, at least at present , by relatively small
main stores, low performance processors and little, if any, backing store. The
processor power issue is easing with time (but power consumption remains
an issue, one that is not relevant to this book). Network connections in some
form are increasingly common. The problem remains that small platforms are

9.13 Small Platforms 225

just that : small. This has implications for virtual machines that might execute
on them. Some of these implications will now be considered.

In this book, it has been assumed that there is a heap storage mechanism
with a garbage collector, so that allocat ion problems are not an issue for
the virt ual machine. When storage is at a premium, the space occupied by
a sophisticated storage management mechanism is clearly one of the first
components to review. Wit hout garbage collection, static allocat ion becomes
the norm, with dynamic allocation under program control.

Next , the virt ual machine itself is a piece of software that resides in main
store, taking up space that could be used for application software. However,
a virtu al machine is a flexible concept. Thus, a virt ual machine could be
constructed that has instructions for common applicat ion operations. This is
entire ly in line with the idea that virtual machine inst ructions are designed
to support the main semantic const ructs of some programming language. The
idea that application-specific operat ions be included as virtual-machine in
st ructions is similar to the (heretical?) idea that LISP , Snobol or APL pro
grams are bits of control structure that manage calls to application-specific
routines (be it list , st ring or matrix manipulation).

Compact code is clearly of benefit on small platforms. Compact ness was
an issue for the BCPL Intcode/ Cintcode systems. The original Intcode ma
chine is more graphic in this respect with operation codes being specified as a
collection of bit masks. Some common instruction sequences are also collected
into a single Intcode operation, thus abbreviat ing code with lit t le overhead.

Instruction selection is also of benefit . It is not necessary always to have
floating-point instructions. Similarly, the role of the stack can be reduced.
Instead of using it for expression evaluation, it can be rest ricted to rout ine
call; this can be done when there are sufficient general-purpose registers for
arithmet ic and logic operations. A machine like this can omit a number of
low-level stack operations, replacing them with higher-level ones.

It has also been pointed out that relative jumps (branches) are more com
pact than absolute ones.

The main loop of a virt ual machine tends to be quite small. It is the
supporting code that can be large. There are places where the size of the
ent ire system can be reduced.

The format used to store programs can be another source of complexity.
Some virtual machines expect code to be input in a symbolic form that is
assembled into the virtual machine's store. The JVM expects code to be in
class-file format . This, as has been seen, is complex and consumes a large
amount of space (it is garbage collected when the class is no longer of use).
If programs are stored as "binary" code, they do not require this addit ional
apparatus and can just be loaded into code store using a simple load loop.

The in-lining of storage management calls can also improve the footprint
size. If it can be determined that a heap-allocated st ructure only has a lifet ime
commensurate with the block in which it is allocated, an explicit release call
can be compiled into the end of the block.

226 9 Open Issues

There is no reason at all why an instrumented virtual machine could not be
used to develop code for small platforms. Indeed, such virtual machines could
simulate the entire small platform. There are many commercial products that
simulate the processors used in embedded applications; the current proposal
is just an extension of these but using a higher-level instruction set .

Finally, the translation of one virtual machine to another or the compi
lation of virtual machine code to another for (C or assembler macros) is
another technique that might produce good results. In this scheme, the code
is developed in a conventional cross-platform development system, but one
that uses a virtual machine providing application-specific operations as in
structions. The resulting code can then be macroed or compiled to the other
form for final delivery. This does tend to obviate one of the best features of
virtual machines: the ease with which code can be updated.

Embedded processors are becoming larger , in terms of address width, and
faster. There are limits to both. Moore's Law cannot apply indefinitely: the
physical limitations are beginning to hurt . Similarly, there is a limit to the
amount of storage to be expected from an embedded processor. Faster pro
cessors and more store mean greater power consumption. A mobile (cellular)
telephone the size and weight of War and Peace might have been acceptable
once but no longer. All of this implies that virtual machines , when used in
embedded systems , will still have to be tailored.

9.14 Real-Time VMs

There is already considerable interest in using virtual machines in real-time
environments. Java was originally intended as a real-time system for what
amounts to a ubiquitous computing environment but was released as the lan
guage for the Web. More recently, Sun has released real-time variants.

Small platforms are often used for real-time applications, so there is com
mon ground to explore and many of the issues are the same. Here, the reper
toire of primitives and the time taken to execute code are the focus.

The introduction of pseudo-concurrent execution led to the inclusion of
appropriate data structures and primitives. The data structures represented
the process abstraction, message and process queues. The primitives included
those for process management and for inter-process communication. In real
time systems, inter-process communication is clearly of great importance, as
is speed of execution. The cost of context switching is also an issue.

For virtual machines, the speed of operation (instruction) execution is a
critical factor, as is storage management. There is a trade-off between high
level instructions that take a comparatively long time to complete and those
that are at a lower level and are fast. Again, one advantage of a virtual machine
is that frequently used operations can be implemented as instructions and
thereby taken out of application code.

9.16 Greater Optimisation 227

It is often claimed by practitioners that heap storage is too slow and too
large for real-tim e systems. The aut hor remembers a t ime when assembly
language was claimed to be the "only" way to build real-t ime systems; most
real-time work is now done in C, Ada or some other procedural language. The
argument about heaps will probably go the same way. Heaps are just ext remely
convenient, even if they are never going to be as fast as hand-allocated store;
compilers also alt er storage arrangements when heavy optimisation is used."
Modern storage management techniques such as generational scavenging can
be relatively fast .

9.15 Code Morphing

As its name suggests, code morphing is code transformation or translation,
typically on a dynamic basis. Th is is a process that has already been alluded
to in a number of places in this book. A simple example is that of a program
compiled to Java JVM bytecodes and executed on the Parrot RTM. To do
this , t he JVM bytecodes have to be translated into Parrot bytecodes. Usually,
this is done as a stat ic process that is performed before loading into the Parrot
virtual machine. However, it is possible to do it dynamically as the code is
executed. The JVM bytecodes might be read and translated and then passed
to the instruction stream of the Parro t virtual machine; at the same time, the
translated bytecodes are stored inside the Parrot virtual machine in case they
are to be executed at a later time (e.g., iteratively called again).

This leads to the idea that more than one virt ual machine could be present
within a system (this totally contradicts the Parrot approach, of course, but
Parrot represents one view of virtual machines, albeit an ext remely sensible
one). When required, code is morphed so that it runs on a virtual machine
other than the one that was its original target .

9.16 Greater Optimisation

A big issue is the speed of compiled code and the compactness of represen
tations . Optimisation is a clear issue but techniques such as JIT do not lend
themselves to global optimisations . It has been noted th at statistics-gathering
operations have been proposed as part of dynamic compilation.

It is to be expected that more optimisation can be provided by virtual
machines in the future. High-level and typed instructions can perform local
optimisations. With more global information available (from module- or even
ent ire program-level analyses), possibly also from source information stored

4 A good assembly programmer will always win the space/time tradeoff against
even heavily optimised C- horses for courses.

228 9 Open Issues

at runtime, better optimisation can be expected. Similarly, the techniques em
ployed in instrumenting programs can be fed back into low-level compilation
processes.

The translation of one virtual machine to another, such as that discussed
elsewhere in this book (e.g., Sections 7.7, 8.1.2 and 8.1.3) could easily lead to
performance improvements.

9.17 Operating System Constructs

It is painfully clear that operating systems" are beginning to bloat with new
"features" . Not all applications require these features, so their inclusion for
the few is at the expense of the many. It seems more reasonable to reduce the
size and complexity of operating systems with those additional features being
introduced on a per-application or application family basis. Some readers
will object that this is a return to the libraries that were so common in the
operating systems of the I960s, 1970s and early 1980s. It need not be so.
However, this view is not entirely novel because a similar motivation was
behind the development of the Oberon System [53] and its successors. This
leads to the ideas of the next section.

There is, however, another trend that can be supported by virtual ma
chines. That is the so-called virtual operating system (VaS). This is an oper
ating system that runs, essentially, as an application program within another
operating system. The idea of one operating system within another was pio
neered by IBM's VM370 operating system . That system provided each user
with a private copy of the machine's hardware and low-level features so that
a complete operating system could be executed by each user. This turned out
to be an extremely successful approach and VM continues to be supported
today.

The vas concept can be seen as an individual operating environment for
one or more users that abstracts away from the underlying operating system
by providing new or more appropriate facilities. For example, one vas might
provide monitors and condition variables ; another vas might provide a richer
storage environment and flexible process management; yet another vas might
be tailored more towards multi-media operations.

It would appear that the virtual machine concept, as interpreted as an
abstract machine, can be employed very much as a vas. When describing
the virtual machine for the parallel extensions to ALEX, a number of con
structs were introduced. These constructs implemented processes, messages
and other objects. This amounted to the implementation of a very small op
erating system kernel.

5 No names! The reader will undoubtedly figure out which they are!

9.20 Objects and VMs 229

9.18 Virtual Machines for more General Portability

Some years ago, the author learned that systems like F'rameMaker and MS
Word were implemented in application-specific languages that were inter
preted. When porting the application from one archit ecture to another, all
that was done was to re-implement the interpreter. This is an example of a
virtual machine being used for portability. It seems quit e possible that other
applications could be implemented in this way.

9.19 Distributed VMs

The ACTOR languages were intended to run on a distributed virtual machine
[32, 50] . Each of the primitives was implemented as an actor that resided
within the distributed memory of the ACTOR machine. The idea was th at
the code of an actor would send a message containing its arguments to the
primitive actor; the latter would return a message containing the result of
performing the operation. In some versions, the interpreter was physically as
well as logically distributed.

It is not suggested that arithmetic, string, vector, list or class operations
be distributed as in the various ACTOR machines. What is suggested is that
special operations could be distributed. For example, matrix operations might
be provided by special sites. These sites would support a virtual machine
that performs these operations (as well, probably, as a common core); other
sites could perform, say, robotic manipulator control ; another site could offer
theorem-proving primitives, while yet another does heuristic search. Other
examples could be found-those just made are intended to be illustr ative, not
realistic. The basic idea is that networks are there to distribute functionality.
It is not in tune with thi s idea for each networked virtual machine to offer
the same functionality, if that means providing special-purpose operations at
every site.

How might this be done? One clear way is that code is compiled in the nor
mal way. The compiled code can contain instructions for the special-purpose
operations. A virtual machine that is not capable of performing these oper
ations invokes them at the remote site. The results are recorded locally or,
possibly remot ely, to be consumed later.

9.20 Objects and VMs

Objects are very popular. It is natural to ask whether a virtual machine can
be implemented using objects . The answer is clearly "yes" .

The Parrot virtual machine outlined in Chapter 7 already makes good use
of what amounts to object-oriented techniques. It uses objects to represent

230 9 Open Issues

new data types. It uses them as a common base for implementing new non
primitive data types . As has been seen, it does this by introducing a protocol
that objects must obey.

The re are other ways to exploit objects. The Harrison Machine, for ex
ample, has been implemented in C++ and in Java. These implementations
posed fairly standard software-engineering problems but were, otherwise, quit e
straightforward. The Java implementation caused a few nasty problems as far
as the circular type relationships were concerned but that was due to the fact
that the Harrison Machine is a reflective system. These particul ar problems
were distinct from those relating to the general problem of building a virtual
machine.

An interesting observation was made: the main loop and the state (stacks,
queues, environments, etc.) can also be implemented as objects (Java, being
a pure object-oriented language, forces th em to be implemented as objects).
Th is implies that these components can be tr eated as independent objects .
It also implies that they can be manipulated as collect ions- an ent ire virtual
machine in a particular state (i.e., t aken as a whole) or as a virt ual machine
loop (the part that implements the instructions and that iterates over the
sequence of instructions it executes) together with an object th at represents
the current state . This , in turn, implies that it should be possible to switch
states just by handing a different state-represent ing object to the main loop
and taking it away again. It also has another implication: th e ent ire virtual
machine can be treated as an object. Quite where this leads is, at present ,
unclear : it is an area for future research, although it might well relate to the
next (and final) topic.

9.21 Virtual VMs

The basic idea of a virtual virtual machine is of a general environment that
executes virtual machines. It is a concept that has been explored in some detail
by researchers at INRIA in France [19, 6]. Their Virtual Virtual Machine is
an environment for the execut ion of "bytecoded" applicat ions in any suitable
language. The system contains support (libraries and toolkits) for particular
languages, e.g., Java and Smallt alk, running on a virtual processor that has
its own virtual operating system. The system has been used as the basis for
the work on mobile code systems [29] .

Work on code transformation appears relevant in this area, as does the
representation (implementation) of individual virtual machines as data struc
tures. One relevant idea is the derivation of the main loop and instruction
interpretation components of a virtual machine from their specification. The
author has experimented with this idea using transit ions to specify instruc
t ions and has produced a general method (finding second-order differences
between the two sides of a transition) . The translat ion of code from the for-

9.22 By Way of a Conclusion 231

mat required by one virt ual machine to that required by another is also an
apparent ly relevant issue.

It is one thing to morph code from one instruction set to another. A
radical alternative is to morph the virt ual machine itself. This is not quite as
bizarre as it might appear: during the development of the Harrison Machine,
it became clear that it might be possible to alter its virt ual machine so that
it ran different instruction sets at different times. The idea was developed in
a lit tle detail but never fully.

9.22 By Way of a Conclusion

This chapter contains a lot of suggestions, some th at could be done today (or
tomorrow) and some th at require a lot of work. Some ideas might turn out to
be unreasonable and others sensible. The ideas are offered merely to st imulate
others to think seriously about virtual machines and be imaginative as they
do so.

One thing to remember about virtu al machines is that working with them
can be enormous fun.

The concept of the virtual machine has come a long way since the SEeD
machine's appearance in 1964. It has grown larger; it provides more facilities.
At the same t ime, it retains the core concept of execut ing a sequence of com
mands, just such as a physical machine. This core property can be a source of
blindness, making one th ink that compiler-related issues are the only ones of
merit . Around the core, there are issues and problems that relate to areas like
storage management (specifically heap management but also more generally
in terms of storage management encountered in operating systems) , security ,
databases, distributed applicat ions, and so on. There is clearly a lot of work
remaining.

A

Compiling ALEX

A.I Introduction

This appendix contains a specification of the rules for compiling ALEX source
code to virtual machine code. Both the single and dual-stack virtual machines
(see Chapter 4) are the target for this compiler; where necessary, alternat ive
compilat ion rules are given.

A.2 Notational Conventions

In this section , the notation employed in the compilat ion rules is defined.
The notation is relatively standard (it is similar to that employed in [38] and
employs what amounts to a st rongly-typed functional language (semant ically
sugared typed A-calculus); it should be readily converted to a language such
as OCaml.

In order to define the schemes, some notation is required:

• t:[. . .] to represent the compilat ion of an expression.
• e[· ··] will be used to represent the compilat ion of a command.
• 1) [. ..] will be used to represent the compilation of a declaration . This has

four associated schemes:
- 1)p[] for procedures;
- 1)F [] for functions;
- 1)v[···] for variables;
- 1)c[. ..] for constants .

The schemes are associat ed with a parameter, written p. This is the
compile-t ime environment (often called the symbol table) and it will be re
ferred to here as just "the environment". Th e environment contains informa
tion about the constants, variables and rout ines defined in a program . Because
ALEX is lexically scoped, the environment is also: it is a sequence of environ
ment objects. Environment objects are defined as:

234 A Compiling ALEX

P = (L ,P,E)

where L is a set of locally defined entities and P is a set of parameters and E
is the ent ry point of the routine that this environment represents (the main
program also has an ent ry point).

The global (or outermost) environment Pg is defined as:

where L g is the set of local declarations (which are, therefore, the global
variables) and em is the entry point of the main routine. The parameters of
the outermost program are empty for the time being (although we might want ,
as an extension, to allow some parameters, e.g., file names).

In addition, some functions are required:

numparams : P -+ N

numlocals : P -+ N

The compile-t ime environment is a sequence of environment objects, so has
type P*. The empty environment is writ ten (); it is called the arid environment
and will be denoted arid.

There are two funct ions and two predicates defined over the compile-time
environment :

pushenv : P x P* -+ P*

lookup : Ident x P* -+ P

The lookup function looks up an ident ifier (denoted Ident) in the environ
ment . It is a recursive function. If it finds no such identifier, it signals an
error.

The symbol error uniformly denotes a compile-time error. For present
purposes, no distinction is made between the various kinds of error that can
be encountered while compiling an ALEX program .

A conditional construct is employed that might be unfamiliar to some. It
t akes the form:

exp; -+ exp. , expf

where expc is an expression returning a value of type boolean (it is the con
dition), exp, is an expression that is evaluated if the condit ion evaluates to
true and expf is an expression that is evaluated if the condit ion evaluates to
false. It must be noted that the true and false expressions are separated by a
comma (",").

In addition a binding const ruct, let is employed. It has the form:

A.3 Compilation Rules 235

let bdg1 and .. . bdgn in exp

where the bdgi (1 ~ i ~ n) are bindings and exp is the body. The bindings
take the form:

var = exp

where var is a variable and exp is an expression (possibly contai ning lets).
The order in which the bindings occur in a let expression are not, in general,
significant.

A.3 Compilation Rules

In thi s sect ion, the compilation schemes for ALEX are presented . The point
of them is to define how an ALEX compiler (should anyone really want to
build one!) should compile the various const ructs that define it .

For an integer constant :

t:[n]p = pushc (tointernal n)

where the function tointernal converts the syntactic representat ion of an in
teger to its internal representation.

For a literal string constant:

£[I]p = pushc (lookup_lit Ip)

where lookup.lit is a function that looks up the address of the literal in the
current compile-time environment.

The tl scheme performs a lookup of its argument in the current envi
ronment for the runtime equivalent. It s definition can be reduced to a table
lookup, so its details are ignored here.

t:[unop e]p = t:[e]p; tl[unop]p

t:[el binop e2]p = t:[el]p; t:[e2]p; tl[binop]p

t:[funcall f(el , ... , en)]p =
function f p ---+

let n p = numparams f p
and nl = numlocals f p in

save np n l

t:[el]p

t:[en]p
frame npnl

call (entrypointf p),
error

236 A Compiling ALEX

Thi s scheme, like the one for procedure call, needs a lit tle refinement when
library routines are provided. This will be considered below when library
routines are introduced. In both this case and the one for procedure call, if
two-stack code is desired, the save instruction has to be removed and a frame
put in its place.

£[v]p =

global v p --+
getg1oba1 (lookup_addr v p),

error

£[v]p =
local v p --+

getloca1 ilookupuuldr v p),
error

£[v]p =
vparam v p --+

getparam ilookup.iuid«v p),
error

e[v := e]p = £[e]p; setloca1lookup_addr v

e [if e then c]p = £[e]p; jne $next ; e [c]p; $next :

e [unless e do c~p = qe~p ; jeq Snext ; e [c~pj $next :

e [if e then t else e]p = £[e]p; j e $1; e [e]p; jmp $next ; $1 : e [t]p; $next :

e[loop c~p = $st art : e [c]p; jmp $start :

e[while e do c]p = $start : £[e]p; jne $next ; e[c]p; jmp $start; $next :

e [until e do c]p = $start : e[c]p; £[e]p; jne $st ar t

A.3 Compilation Rules 237

e[for i := eO to el step e2 do c]p =

£[eO]p
dup
setlocallookup_addr i
e[el]p
geq
jeq $end
$loop : e[c]p
£[e2]p
getlocallookup_addr i
add
dup
setlocallookup_addr i
e[el]p
geq
jeq $end
jmp $loop
$end :

This is pretty horrid!
Let 's make use of the compiler to patch it up and make something a bit

more elgant . First , let the compiler declare a local variable for each of i, eO, el
and e2. The locals will be named ti , to, t1 and t2; the offset function will
st ill be used in the scheme. These variables are used to reduce evaluation as
much as possible.

e[for i := eO to el step e2 do c]p =
let PI = declvart2(declvart1(declvartO(declvartip))) in

e[e2] PI
setlocal lookup_addr to
£[el]PI
setlocallookup_addr t 1
£[eO]PI dup
setlocallookup_addr ti
jeq $end
$l oop : e[C]PI
getlocallookup_addr t i
getlocallookup_addr to
add
dup
setlocallookup_addrti
getlocallookup_addr to
geq
jeq $end
jmp $loop
$end :

238 A Compiling ALEX

e [exitloop]p = j mp $next

e [next loop]p = jmp $s t ar t

C[proccall p(el , . . . , en)]p =
procedure p p -j

let np = numparams p p
and nl = numlocals p p in

save npnl
C[el] p

C[en]p
frame npnl
call (entrypoint p p),

error

e [return]p = ret

If e is of type int:

e [return e]p = C[e]p; retval

If e is of type bool:
e [ret urn e] p = C[e]p; retval

If e is of type bool:
e [return b]p = C[e]p; retval

Finally, if e is of type array of int :

C[return e]p = C[e]p; retval

In all other cases, it compiles to an error.
A scheme for compiling sequences of commands is also required:

e [seq(c1, .. . , cn)]p = e[c1]p; . . . e[cn]p

fJ [defproc ident (pl , . . . , pn) be d]p =
let PI = decparams (pl . .. pn) arid in

let P2 = pushenv Pi pin
let (m, (c, P3)) = .c[d]PI in

(c, decproc ident n m p)

A.3 Compilat ion Rules 239

'D[deffun ident (pl , . . . , pn) = d~p =
let PI = decpamms (pl .. . pn) arid in

let P2 = pushenv Pl P in
let (m, (c,P3)) = qd~Pl in

(c, decfun ident n m p)

'D[decvar v := e~p =
let (av , PI) = decgvar vP in

(£[e~ p; setglobal av , PI)

'D[decconst c := e~ p =
let (ae , PI) = decgcon c P in

(£[e~ p; setglobal ae , p')

q let decs in c~p =
let (n, (c,p') = £"s [decs~p in

(n, (c:j: e [c~ p', p'))

qc~p = (0, (e [c~ p , p))

£" s [dec1 ... decn~p =
decseql (dec1 .. . decn), pO

where:
decseql d :j: 0 P C =

let (C,Pl) = £" dd~p in
(C:j: C, Pl)

decseql d :j: (d1 , . . . ,dn) P C =
let (c,PI) = £"1[d~p in

declseql (d1 , . .. ,dn) PI c:j: C

,(,l[ldent := e]p =

let (a,PI) = declvar Ident in
(£[e]Pl ; setlocal a,PI)

,(,dldent = e]p =
let (a, PI) = declcon Ident in

(£[e~Pl; set local a,PI)

Finally, we have the 9 scheme for the main program. In ALEX, the main
program is just the body of the top-level let. Notice that an environment is
supplied. This will contain library constants , variables and routines, which are
considered to be global. The body of the main program is just a command.

P[letdec1 . . . decn in c]p =
let (C,Pl) = 'Ds [dec1 . .. decn~ p in
e [C~P l
halt

240 A Compiling ALEX

where:
2Js [decl .. . decn]p =

decseqlg(decl .. . decn) p, ()

and:
decseqlg d +0 p c =

let (c, Pl) = 2J[d]p in
(d C, Pl)

decseqlg d +(db ' .. , dn) P C =
let (c, Pl) = 2J[d]p in

declseql (d1 , • • • , dn) Pl c+C

B

Harrison Machine Compilation Rules

B.1 Introduction

This appendix contains a specification of the compilation rules for the Harrison
Machine language describ ed in Chapter 6. The notation employed is similar
to that used for the ALEX compilat ion rules.

B .2 Compilation Rules

With the VM transitions established, we can define the compilation rules for
the Harrison Machine's rule language.

An out line instruction set for t he Harrison Machine is shown in the Ap
pendix C, where he instruction's mnemonic name is shown together with a
brief explanation of its function.

In this App endix, we adopt the following notational convent ions. Items
printed in th is font represent abstract synt ax items. It ems printed in this
f ont are Harrison VM instructions, literals and labels.

The first compilat ion scheme is the V scheme for the compilat ion of litera l
values. As presented below, it deals only with integer and boolean values for
illustrative purposes.

V[O] = pushO
V[l] = pushl
V[n] = push n
V[true] = pushl
V[false] = pushO
Next , there is th e tJ scheme. This is the scheme that defines the comp ilat ion

of the var ious pr imitive operators defined in the rule language. It is, in essence,
just a table lookup. Again , not all cases are included; they can be inferred from
the instruction set summary.

242 B Harrison Machine Compilation Rules

0[+] = iadd
0 [-] = isub
0[*] = imult
0[/] = idiv
O[minus] = iminus
O[rem] = irem
O[and] = land
O[or] = lor
O[not] = lnot
The V and 0 schemes return single instructions.
Next, we define the J< p scheme, the scheme defining library routine call

compilat ion. Most implementations of the VM have used an escape mechanism
to call library routines (which have usually been writ ten in the same language
used to implement the VM). The escape mechanism consists of execut ing a
primeall instruction whose (single) operand is an unsigned integer denoting the
library routine. This scheme looks up the identifier of the library rout ine (r) in
the environment (p) using the lookup function lookupR' The reader should not
confuse this function with the function lookup which looks up variable names
in the environment; one big difference between them is that lookup returns a
pair of natural numbers, while lookupR returns a single natural (see below).

J< p [r]p = primeall (lookuPR r p)

The £ and eschemes are the major elements of this part of the description.
These schemes return sequences of instructions and labels (by convention, la
bels are identifiers with prefix $). In the compilat ion schemes below, juxtapo
sit ion of instructions vertica lly represents concatenation; where horizontally
presented, inst ructio ns will be separated by a single semicolon.

The compilat ion scheme for expressions, the £ scheme, is as follows:
£[ident]p = getvar (lookup ident, p)
£[unop e]p = £[e]p; O[unop]p
£[e1 binop e2]p = £[e2]p; £[e1]p; O[binop]p
£[f(vl...vn)]p = £[v1]p; . .. £[vn]p; J<p [f]p
Note that the scheme uses the lookup function. This is a function from

identifiers to lexical addresses that looks up an identifier in the compile-t ime
environment and returns its runtime address. The runtime address is com
posed of a pair , (1,0), where f is the frame offset and 0 is the variable offset
within the frame.

Also, it should be noted that error cases are not included in these schemes.
In particular , the cases for undeclared variables, incorrect function arities and
undefined functions are all omitted; this is for reasons of clarity of presenta
t ion.

The first part of the e scheme, the command compilat ion scheme, now
follows.

B.2 Compilation Rules 243

e[abort]p = jmp $Ter m
e[skip]p = ()
e[suspend]p = suspend; jmp $St ar t
The above schemes refer to two labels: $Term and $Start . These are con

vent ional names used in the specification. Label $Start conventionally labels
the start of a rule 's pat tern code, while $Term labels its last instruction (usu
ally a term instruction) . The use of th ese labels will become clear below.

The rule for skip merely generates the empty instruction sequence.
Next, we define the scheme for assignment . Like the above schemes, it is

quit e easily comprehended.

e[x := e]p = e[e]p; setvar(lookup x p)

It is, however, worth notin g that the environment parameter , p, refers to
the environment produced by the compiler (the symbol table, in other words)
and not to the environment maint ained by the VM.

We now come to the schemes for the compilation of if and do. Necessarily,
these are relatively large for the reason that they produce reasonable quantities
of output code. Even so, they are, really, quite easily understood. It should
be noted that there are various optimisations that can be applied to both if
and do but , in order to be brief, we omit them here.

e[if el -+ sl] . .. [en -+ Sn fi]p =
e[el]p
jne $Lz
e [sl]p
jmp $Lend
$L2 :

$Ln: c [en]p
jne $Lend
e[sn]p
$Lend :

The if command compiles into th e code that one would expect . In essence,
it works by evaluat ing each condition expression, el . . . en, in turn. If a test
evaluates to false, the next condition is evaluated; if it evaluates to true, the
corresponding command is evaluated and control immediate ly passes to the
end of the construct. This is implemented by inserting a label before the
compiled code for each condition expression. After each command, there is an
uncondi tional jump to the end of the ent ire if.

In some versions of the rule language, we defined add itional conditionals
such as if-then-else . These can be compiled using th e obvious source-to-source
transformation.

244 B Harrison Machine Compilation Rules

e[do e1 -+ sl] ... [en -+ sn od]p =
$Lstart : C[e1]p
jne $L2
e[sl]p
jmp Lstart
$L2 :

$Ln: C[en]p
jne $Lend
e[sn]p
jmp $Lstart
$Lend:

The do command is similar to the if conditional. The most obvious dif
ference is that do is iterative. The compiled code for do begins with a label
($Lstart) . The conditional expressions are chained together as in if; if con
trol reaches the last conditional and it fails, control passes out of the do by
jumping to the end label, $Lend. To produce iterative behaviour, after the
compiled code for each command, an unconditional jump to the start of the
do is inserted.

Source-to-source transformations of the obvious kind can be used to define
other kinds of iterative command in terms of do for example, when and until
(in this present context, of course, the symbols "when" and "until" cannot be
used).

We next consider procedure calls.

e[p(el, ...,enHp = £[e1]p ... £[en]p; :Rp[p]p

Procedure call is compiled in the obvious way: the actual parameters are
compiled (at present , the rule language supports only call-by-value parame
ters). Then, the procedure name is compiled using the :Rp scheme for com
piling primitive routines (which generates a primcall instruction) . As with
functions, we ignore the cases in which the identifier p is not a library proce
dure; we also ignore errors involving incorrect arity.

Next , we come to the cause command . This consists of compiling the ex
pressions that provide values to be passed in the event structure. Then, the
'J scheme is used to generate the code for the event type. We do not define
the 'J scheme in this Appendix (it involves the compilation of event structure
definitions for use by the compiler , a process we prefer to omit because it is
not relevant to the overall presentation) .

e[cause(t , e1, ..., en)]p = C[e1]p; . . . C[en]p; 'J[t]p; mkev; cause

The use of the mkev and cause instructions in sequence should be noted
in the above scheme.

B.2 Compilat ion Rules 245

The last e scheme we require is the one for compiling sequential composi
tion . It is quite simple:

e[sl; s2]p = e[sl]p; e [s2]p

Next, we introduce the 1> scheme for the compilation of let constructs .
This scheme is interesting and supports a number of variations. To start, we
int roduce an addit ional scheme:

1>D[declare(vl := e1; . .. vn := en)]p =
newenv n
e[el]p
setvar 0 0

e[en]p
setvar 0 (n - 1)

The scheme begins by introducing a new frame in the environment using
the newenv instruction (the operand to newenv is just the number of variables
declared by th e let). The variables declared by the let are initialised using the
cscheme for the expressions, then assigned to the appropriate variable using
setvar (note that the frame offset is always zero-setvar and getvar index
the environment from the top downwards). This establishes the environment
in which the body is to be executed. (We will use the 1>D scheme below when
dealing with rules.)

We then have:

1>[let vl := el ; . . . vn := en in s]p=
1>D[declare(vl := el ; ... vn := en)]p
e[s]p'
drop

First , the 1>D scheme is used to establish a new environment of the cor
rect size. Next , the e scheme is used to compile the body of the let in the
environment composed of that in force immediately outside the let plus the
variables declared by it; t his is denoted by p' in the scheme. The previous
environment is re-established by the drop instruction appearing at the end of
the compilation scheme.

Now, there are some choices to be made. The environment in which th e
body is compiled (and executed) cannot be altered; it must be as described
above and it must be discarded at the end of the body. In the above scheme,
we have assumed that the expressions that initialise the variables in the dec
laration part are compiled (and executed) in the environment that was in
force at the point at which the let was entered. This has the implicat ion that ,
within the init ialising expressions, there can be no references to any of the
variables that are declared by the let. It is possible, on pain of more complex

246 B Harrison Machine Compilation Rules

semanti cs, to permit mutually recursive declarations . We prefer, here, not to
do this because of its complexity.

We cont inue with a presentation of the rules used to compile rules to virtual
machine code. We will start with the schemes for compiling the patterns that
can appear in rules. The process can be divided into an operation to test the
typ e of the event being match ed, and then two other operations : one to extract
the value stored in an event at a given offset and a second to test the value
stored in an event (this second operation will be referred to as "binding").

First , the schema for testing the type of an event is given by:

P[t]p = getev; etype; C[t]p; i eq; jne $fail

The event structure is pushed onto the caller 's stack (getev) and the typ e
field ext racted by etype . The expression, t , is intended to evaluate to an
integer denoting an event type. The value derived from t is then compared,
using ieq, with the value of the type field in the event. If the two values are
identical, control falls out of the bot tom of thi s scheme; otherwise, control
passes to the label $fail.

The scheme for assigning the value stored at some index in the event is as
follows:

Pdx < -e]p = getev; C[e]p; getpe ; setvar (lookup x, p)

Here, x is the variable into which the value will be assigned and e is an
expression which evaluates to an integer index into the event 's dat a vector
(which is pushed onto the caller's stack by th e getpe instruction). The as
signment is performed by the usual operat ion.

Finally, the operation for testing the value stored at a given index in the
event's dat a vector is the following.

PE[x? = e]p = E[e]p; getev; C[x]p; getpe ; ieq; jne $fail

The expression x is evaluated to produce an index into the event's dat a
vector (the value is ext racted using getpe as above). The expression e is
evaluated. If the value stored in the event is ident ical (using ieq) to the one
computed, control drops out of the bottom of this scheme; otherwise, control
is passed to the failure cont inuation denoted by $fail.

We use the notation P[p]p to denote the compilat ion of an ent ire pattern ,
p, composed of a type test followed by zero or more test and binding expres
sions. The instruction immediately after a compiled pattern 's code is executed
if an event sat isfies the pattern test ; failure continues at a point labelled $fail.
This makes the compilat ion of pat tern code ext remely simple; it does make
the compilation of rules a little harder to understand .

Next, we give the compilat ion schemes for rules when used as commands.
As noted above, rules can const itute part of rule bodies; thus, they are com
mands. When rules are considered commands, they execute in a context pro-

B.2 Compilat ion Rules 247

vided by the declarations in force at the point of the rule's definit ion. This
makes the definition of the various schemes relatively simple. There is, though,
the const raint that a rule th at is executed as a command should always wait
until the next virtual machine cycle before it executes. For thi s reason, each
compilation scheme for a rule as a command begins with the suspend instruc
tion .

We allow all rule forms to app ear as commands, so we will give the com
pilation schemes for each. The schemes for top-level rules will be given below.
The reason for this order is that when rules are used as commands nested
within commands, their compilat ion schemes are a lit t le simpler than those
for rules at the top level.

Th e easiest rules to compile are the always and next rules.

9<c[always do s~ p =
suspend
$Lstart : mkr dy
e [s~p

suspend
j mp $Lstart

The always rule executes its enti re body on each virt ual machine cycle.
Each time the body executes, the rule should wait until the next virt ual ma
chine cycle before execut ing again . This is the reason for the second suspend
instruction. The rule executes a mkr dy instruction when it has looped back to
$Lstart in order to make itself a rule that is ready to execute .

9<c[next do s~ p = suspend; mdkrdy; C[s~p

The next rule is used to ensure th at its body is executed on the immediately
succeeding cycle of the virt ual machine; the body is executed only once. The
next rule compiles into instructions that first suspend the rule and then, on
the next virtual machine cycle, makes itself a ready rule (using mkrdy).

9<c[when p do s~p =
suspend
$Lstart : P[p]p
mkrdy
j mp $ok
$fail : not r dy
j mp $Lstart
$ok : e [s~ p

A when rule has a pattern , p, and a body, s. If the pattern matches the
current event , the body is executed on that VM cycle; otherwise, the rule is
suspended so that it can be tested again on the next VM cycle. This is the
first rule we have encountered that employs a pattern .

248 B Harrison Machine Compilation Rules

When the rule is executed, the pattern is first evaluated (using the :P
scheme defined above). If the match is successful, the mkrdy instruction places
the rule in the set of ready rules; otherwise, the notrdy instruction is executed.
If the notrdy instruction is executed, when the rule is tested on the next VM
cycle, cont rol will start at the instruction immediately after notrdy. This is a
jump which causes cont rol to pass to a point where the pattern is evaluated.
If, on the other hand , the match was successful, when the ready rule is run
to execute its body, the first thing done is to jump to the start of the body's
code. When the body has terminated, cont rol passes out of the rule.

9<c[unless p do s]p =
suspend
$Lstart : :P[p]p
$ok : notrdy
jmp $Lstart
$fail : mkrdy
e[s]p

The unless rule is, in a sense, the complement of when: it is executed only
when its pattern is not satisfied by the current event . This duality is reflected
in the use of the $fail label. If cont rol directly passes out of the pat tern
matching code, the pattern has not been satisfied by the current event. For thi s
reason, the rule is made not ready (by the notrdy inst ruct ion) immediately
after the pattern code. The $faillabel, on the other hand , denotes success for
unless rules, so the instruction labelled $fail is mkrdy (which makes the caller
a ready rule) after which the body, p, is executed.

9<c[since p do s]p =
suspend
$Lstart : :P[p]p
mkrdy
jmp $ok
$fail : notrdy
jmp $Lstart
$ok: e[s]p
suspend
jmp;$ok

Like until, since requires the repeat ed execut ion of the body, s, of the rule.
The biggest difference between them is that since evaluates its pat tern before
its body is executed, while until evaluates its body first . The scheme for since is,
in many ways, similar to that for when. When the body, s, has been executed,
the rule suspends (using suspend) and then jumps back to the start of the
body.

8.2 Compilat ion Rules 249

9(c[unt il p do sjp =
suspend
$Lstart :e[sjp
suspend
P[pjp
j mp $ok
$fail : mkr dy
jmp $Lstart
$ok :

The until rule executes its body at least once before it evaluates its pattern .
The pattern is always executed on the next VM cycle, so the body ends with
a suspend instruct ion. If the pat tern is sat isfied by the current event, cont rol
should pass out of the rule (by jumping to $ok). If the pattern is not satisfied,
the body should be executed again, so the rule is made ready (mkr dy) and
control is passed to the start of the body when the ready rules are executed.

We permit alt rules to appear as commands. The compilat ion of the rules
that are components of an alt is very close to the above schemes, the only
difference being the way in which failure is handled. To compile an alt, the
rules are chained together so that the pattern of a rule is only evaluated if the
pat tern of the previous rule has failed. We use the failure cont inuation to do
this chaining. This means that each compilat ion scheme ends with the label
to which control is passed when the pattern 's evaluation fails. As usual, the
unless rule, uses the complementary approach to hand ling failure.

The scheme for compiling an alt command's rules is called the 9(C A scheme.
We first give the schemes for the rule forms that we currently permit inside
an alt command.

The schemes are as follows. It should be observed that , after the success
ful execution of a rule's body, control is passed to the end of the ent ire alt
command.

9(c A[when P do s]p = P[p] ; mkrdy; e [![s]p; jmp $endalt; $fail :

9(c A[unless P do s]p =
P[p]p
jmp $next
$fail : mkrdy
e[sjp
jmp $endalt
$next :

9(c A[since P do s]p = P[p]p; mkrdy; $b : e[s]p; jmp $b; $fail :

It should, of course, be noted that each failure label, here written $fail , is
genera ted by the compiler and guaranteed to be unique. (A similar remark
applies to all labels in the compilat ion schemes given here.)

250 B Harri son Machine Compilation Rules

::RcA[next do s]p = mkrdy; e[![s]p; jmp $endalt

The next rule is permitted inside alt commands as a kind of optional default
action to be executed when no other rule applies. It is considered legal for an
alt command to contain no next rule. However , alt commands can contain at
most one next rule.

The alt command itself is very simple:

e[alt rl , . . . , rk]p = $LLstart : ::Rc A[rl]p . . . ::RcA[rl]p; $endalt :

The scheme merely concatenates the code of each of the component rules.
They are connected, as outlined above, using their failure labels. The scheme
ends with the $endalt label to which every rule jumps after successful execu
t ion.

In the rule language, the top-level elements are always rules. We now
move onto the compilat ion schemes for these rules. Top-level rules fall into
two groups:

1. Those that have a set of outermost declarations;
2. Those th at do not .

We start with the second group, for they are slightly simpler and show all
the main points of top-level rule compilat ion. Again, we note that not all rule
forms are permitted at the top-level: in particular , next rules are not permitted
(for obvious reasons).

The always rule is the simplest of those th at can appear at top level. The
compilat ion scheme for always rules is as follows:

::RT[always do s]p =
$Lstart : arid
clear
$next : mkrdy
e[s]p
suspend
jmp $next
$Lterm : term

The first thing to observe is that the scheme, like all other top-level
schemes, respects the semantics of the rule type. The scheme introduces an
initial label and instructions to clear the runtime environment and the stack.
Then the actual always code appears. At the end of this code is the $Lterm
label and the term instruction ; the abort command causes cont rol to jump to
the $Lterm label.

8. 2 Compilat ion Rules 251

9{T[when p do s]p =
$Lstart : arid
clear
:P [p]p
mkrdy
jmp $ok
$fail : notrdy
jmp $Lstart
$ok : e[s]p
suspend
jmp $Lstart
$Lterm : term

The scheme for top-level when rules begins with code to initialise the envi
ronment and stack. Then there is the code to implement the rule's behaviour.
This is followed by th e term code. It is worth noting, at this point , that abort
(and, hence, term) are used to terminate rules, not merely to halt their exe
cut ion. As can be seen from this example, when the body of a when (or unless)
has completed, cont rol passes back to the start of the rule, thus permitting it
to be executed on a subsequent virt ual machine cycle.

9{T[unless p do s]p =
$Lstart : arid
clear
:P [p]p
notrdy
jmp $Lstart
$fail : mkrdy
e[s]p
suspend
jmp $Lstart
$Lterm : term

The unless rule scheme also begins with initialisation, then the behaviour
of th e rule is compiled; finally, the terminat ion code appears. In this case, as
in all other cases of unless, matcher failure causes execution of the rule's body,
while success causes a jump back to th e start of the pat tern code.

252 B Harrison Machine Compilat ion Rules

9tT [since p do s]p =
$Lstart : arid
clear
P[p]p
mkrdy
jmp $ok
$fail : notrdy
jmp $Lstart
$ok : e[s]p
suspend
j mp $ok
$Lterm : term

It erative rules like since and until are only a lit tle more complicat ed. Like
t he ot her rule forms, t hey begin with init ialisat ion code and they end with
the term inst ruct ion. For t he since rule, if the pat tern code fails on a virtual
machine cycle, there is a jump back to the rule's initialisat ion code to clear
the environment and the stack. The body of the since is repeatedly executed.
T here is no jump back to the start of the rule's code for the reason t hat since
rules should iterate forever (or until they are termin ated by some event) .

The unt il rule scheme now follows. It s form should be easily understood.

9tT [unt il p do s]p =
$Lstart : arid
clear
$1: e[s]p
suspend
P[p]p
jmp $ok
$fail : mkrdy
jmp $1
$ok : suspend
jmp $Lstart
$Lterm : term

The ot her top-level form of rule is one in which a let encloses some rule
(always, when, unless, since, until and alt). The schemes for these ru les follows
a genera l pattern , which we exemplify by the the following scheme for when
rules that are enclosed in a let. We only give the essent ials in the following.

B.2 Compilation Rules 253

9tT AS [let d in when p do s]p =
$Lstart : clear
arid
'D [d] p(= p')
P[p]p'
mkrdy
e[s]p'
suspend
jmp $Lstart
$fail : drop

The declarations are compiled using the 'D scheme immediately after the
stack and environment have been initiali sed. The declarations create a new
environment (denot ed by p') which is used by the subsequent compilation
schemes. If the pattern-matching operation fails, the environment that was
added by the 'D scheme must be removed, hence the use of th e drop instruc
tion.

The other rule forms have a similar structure when wrapp ed in declara
t ions. In every case, immediately after the environment and stack initialisa
t ion, the 'D scheme is used to compile the declarations. When the matching
operation fails, the environment is dropped. We leave their elaboration to the
interested reader.

At the top level, alt rules can occur. As with alt commands, it is necessary
to thread the component rules toget her . We give the compilat ion schemes for
when, unless and since components . We do not permit always or until as top
level alt components because of their iterative characteristics. We do permit
since even though it is iterative; this is because it has a starting event that can
be identified. Rules like always and until do not have identifiable start events
when they appear at top level.

When a rule appears as an alt component, the main issues are the thread
ing of the failure code and the act ion taken when a rule body successfully
completes. We give the compilat ion schemes for the three rule forms th at we
currently permit inside top-level alt rules.

Before continuing, it is worth noting that all stack and environment ini
tialisation will have been performed by th e alt rule, so they are not required
here.

9tT A [when p do s]p =
P[p]p
mkrdy
e[s]p
suspend
jmp $Lstart
$fail :

254 B Harrison Machine Compilation Rules

The first thi ng to note is t hat the failure continuation is used to thread the
code. In this case, as in the case of alt commands, when a pattern's evaluation
fails, control passes to t he next rule in the alt. If the pattern succeeds and
the body is executed, cont rol passes to the jmp immediately after the body
(denoted, as always by the e scheme). This jump makes a transfer of control
to the start of the enclosing alt rule.

9<TA [u nless p do s]p =
P[p]p
jmp $fail
$ok: mkrdy
e [s]p
suspend
jmp $Lstart
$fail :

The keen reade r will have observed that t his kind of unless ru le follows the
convent ion t hat pattern failure causes body execution, while pattern success
causes rule failure. In t his case, if the pattern's evaluation fails for an event ,
control passes to the $fail label. This label is used , as in t he other cases of alt
components, to thread control. If the body is executed , control immediately
passes back to the alt 's initialisat ion code.

The last case is that of a since ru le inside an alt. This case differs slight ly
in that control does not return to the start of the enclosing alt ru le afte r the
execution of the body.

:RTA[since p do s] p =
P[p]p
mkrdy
$b : e [s]p
suspend
jmp $b
$fail :

Finally, we need the scheme for top-level alt ru les. Like the schemes for alt
t hat we have already seen, it is quite simple . Here it is:

9<T [alt rl, . .. , rk]p =
$Lstart : arid
clear
9<TA [rl]p

9<TA [rk]p
suspend
jmp $Lsta rt
$Lterm : t erm

8.2 Compilat ion Rules 255

Here, we have the usual initialisation code. This is labelled $Lstart, as we
now have come to expect . There follows the code produced by the compilat ion
of the component rules. It should be noted that the compilat ion of a compo
nent rule plant s the failure label for the implementation of threading. After
the last rule in the alt scheme, there is a jump back to the start of the ent ire
alt. The reason for this is that it clears all dat a off the stack and environment
ready for the next attempt at matching its rules.

We current ly do not permit next rules as components of top-level alt rules.
We could do this with ease but it breaks the rule that we used to ban top
level until and always rules: their execut ion can be tr iggered by any event . The
point of the alt is that it "chooses" between rules that could trigger on the
current event . The excluded cases do not exhibit such behaviour and do not
trigger on particular event types. Thi s appears to violate our semantics for
alt.

Our rule compilers do not prevent us from compiling these three rule forms
inside top-level (or any other) alt rules. If we find good reasons to include them,
we will do so (perhaps a little reluctantly).

c
Harrison Machine Instruction Set

In this Appendix, an instruction set for the Harrison Machine described in
Chapter 6 is outlined.

primeall n Call primitive number n.

term Terminate the rule.

suspend Suspend the calling rule.

mkrdy Place caller in the Ready Set .

notrdy Place caller in the Waiting Set .

clone Clone this rule.

reset Reset the instruction point er to zero.

getev Push the current event onto the stack.

etype Extract the typ e of the current event and push it .
The event must be on the top of the stack.

jmp L Jump to label L.

jeq L Jump to label L if top of stack is not zero.

jne L Jump to label L if top of stack is zero

pushO Push zero onto stack.

258 C Harrison Machine Instruction Set

pushl Push one onto stack.

push n Push integer value n onto stack.

pop Pop stack .

dup Duplicate element on top of stack.

swap Swap the top two stack elements.

clear Clear the stack.

arid Create an empty environment .

newenv n Create a new environment frame of n elements
and push onto environment stack.

drop Pop the top environment frame from environment .
Discard the this frame.

setvar i j Set the j th variable in environment frame i.

getvar i j Get the value of the j th variable in environment frame i .

iadd Add top two stack elements. Push result .

isub Subtract.

iminus Unary minus.

imult Multiply top two stack elements. Push result.

irem Remainder.

idiv Integer division.

ieq Integer equality.

land Logical conjunction.

lor Logical disjunction .

Inot Logical negation.

halt Halt the processor. Set the termination flag.

C Harrison Machine Instruction Set 259

Note:

• All arithmet ic and comparison instruct ions operate on integers.
• The standard representation for false is zero; true is represented by one.

References

1. Abelson, H., and Sussman, G. J ., The St ructure and Int erpretat ion of Comput er
Programs, MIT Pr ess, Cambridge MA, 1985.

2. Abrial , J .-R., The B Book, CUP, 1996.
3. Ait-Kaci, H., Warren's Abstract Machine, MIT Press, Cambridge MA, 1991.
4. App el, A. W., Compiling with Continuations, CUP, 1992.
5. Appel , A. W., Modern Compiler Impl ementation in Java, CUP, 1998.
6. Baillarguet , C., MVV: langage et systeme, plus qu 'un mariage de raison ,

Journe es des Jeunes Chercheurs en Systeme, Rennes , France, June, 1999.
7. Bailey, R. FP1M Abstract Syntax Descript ion , Int ernal Repor t , Dept. of Com

puting, Imp erial College, London , 1985.
8. Barratt , R., Ramsey, A., and Sloman , A., Pop -Ll : A Pract ical Language for

Artificial Int elligence, Ellis Horwood , Chichester, England , 1985.
9. Bell, J ames R., Threaded Code, Communications of the A CM, Vol. 16, No. 6,

pp . 370- 72, 1973.
10. Blaschek, G., Object-Oriented Programming with Prototypes, Springer-Verlag,

Heidelberg, 1994.
11. Bobrow, D. G., and Stefik, M., The LOOPS Manual, Xerox PARC, Palo Alto,

CA,1983.
12. Brinch Hansen , P., Structured Multiprogramming, CACM, Vol. 15, No.7,

pp . 574-578, 1972.
13. Craig, 1. D., Reflecting on Time, Proc. Inti . Congress on Cybernetics and Sys

tems, Int ernational Cybernetics Society, 1999.
14. Craig, 1. D., HM paper from Freiburg, 2003. Event-based Introspection and

Communcation, ESSCS Annual Conference, Freiburg, Germany, August , 2003.
15. Craig,1. D., The Int erpretation of Object-Oriented Programming Languages, 2nd

edn., Springer-Verlag, London, 2002.
16. Diehl, Stephen, Semantics-Directed Generation of Compilers and Abstract Ma

chines, Ph. D. Dissert at ion, University of Saarbriicken, Germany, 1996.
17. Diehl, Stephen, A generat ive methodology for th e design of abst ract machines,

Science of Computer Programming, Vol. 38, pp. 125-142,2000.
18. Field, A. J ., and Harri son, P. G., Functional Programming Addison-Wesley,

Wokingham, England, 1988.
19. Folliot , B., Virtu al Virtual Machine Project , Invited Talk , Simpo sio Brasileiro

de Arquitetura de Computadores e Processam ento de Alto Desempenho
(SBAC '2000), 2000.

262" References

20. Friedman, D. P., Wand, M., and Haynes, C.T ., Essentials of Programming Lan
guages, 2nd edn , MIT Press, Cambridge, MA, 2001.

21. Goldberg, A., and Robson, D., Smalltalk-80: The Language and Its Implemen
tation, Addison-Wesley, Reading, MA, 1983.

22. Gosling, J ., Joy, B., Steel , G., and Bracha, G., The Java Language™ Specifica
tion , 2nd edn, Addison-Wesley, 2000.

23. Gries , D., Compiler Construction for Digital Computers, John Wiley and Sons,
New York, 1971.

24. Henderson, P., Functional Programming, Prentice-Hall, Hemel Hempstead, UK,
1980.

25. Johnsson, T ., Lambda Lifting : Transforming Programs to Recursive Equations,
Proc. Conference on Functional Programming Languages and Computer Archi
tectures, Nancy, France, pp. 190-203, 1985.

26. Jones, C. B., Systematic Software Development Using VDM, Prentice-Hall,
Hemel Hempstead, UK, 1986.

27. Kahn, G., Natura l Semantics, Rapport de recherche no. 601, INRIA, Sophia
Antipolis, France, 1987.

28. Kelsey, R., Clinger , W. , and Rees, J ., (eds.) , Reviseet' Report on the Algorithmic
Language Scheme, available from www.swiss.ai .mit.edu /projects/scheme.

29. Khoury, C. and Folliot , B., Environnement de programmation actif pour la
mobilite, Journees des Jeunes Chercheurs en Systemes, Besancon, June, 2000.

30. Landin, P. J ., The mechanical evaluation of expressions, Computer Journal ,
Volume 8, pp . 301-20, 1964.

31. Liang, S., and Bracha, G., Dynamic Class Loading in the Java Virtual Machine ,
Proc. OOPSLA , 1998.

32. Lieberman, H., Concurrent Object Oriented Programming in Act 2, in Object
Oriented Concurrent Programming, Yonezawa, A. and Tokoro, M., (eds), pp . 55
89, MIT Press, Cambridge, MA, 1987.

33. Lindholm, T . and Yellin, F. , The Java™ Virtual Machine Specification, 2nd
edn , Addison-Wesley, Reading, MA, 1999.

34. Milne, R., and Strachey, C., A Theory of Programming Language Semantics,
Halstead Press, London , 1976.

35. Milner , R., Communicating and Mobile Systems: the tt-calculus, CUP, 1999.
36. Noble, J ., Taivalsaari, A., and Moore, 1., Prototyp e-Based Programming,

Springer-Verlag, Singapore, 1998.
37. www.parrotcode. org/docs /
38. Peyton Jones, S., Functional programming implementation, Prentice-Hall,

Hemel Hempstead, England, 1987.
39. Peyton Jones, S., and Salkild, J ., The Spineless, Tagless G-Machine, Proc. ACM

Conf. on Functional Programming Languages and Architectures, pp . 184-201,
1989.

40. Pierce, B. , and Turner, D., Pict: A Programming Language Based on the Pi
Calculus, in Proof, Languages and Interaction : Essays in Honour of Robin Mil
ner, Plotkin, G., Stirling, C. and Tofte , M. (eds), MIT Press, Cambridge, MA,
1998.

41. P lotkin, G., A Structural Approach to Operational Semantics, Repo rt DAIMI
FN-19 , Computer Science Dept., University of Aar hus, Denmark, 1981

42. www.poplog.org.
43. Reppy, J . H., Concurrent Programming in ML, CUP, 1999.

References 263

44. Richards, M., The BCPL Manual, available from:
www.c1.cam.ac.uk/ users/ mr/BCPL.html.

45. Richards, M., and Whitby-Strevens, C., BCPL: The Language and Its Compiler,
CUP, 1979.

46. Spivey, J. M., The Z Notation 2nd edn, Pr entice-Hall, Hemel Hempstead, UK,
1992.

47. Stark , R., Schmid, J ., and Borger, E, Java and the Java Virtual Machine,
Springer-Verlag Berlin Heidelberg , 2001.

48. Steele, Guy L., Common Lisp The Language, 2nd edn, Digital Press, 1990.
49. Stoy, J . E., Denotational Semantics, MIT Press , 1977.
50. Theriault , Daniel G., Issues in the Design and Implementat ion of Act2, MIT AI

Laboratory, Tech. Rep. No. 728, June, 1983.
51. Wall, L., Christiansen, T ., and Schwart z, R. L., Proqramminq Perl, 2nd edn,

O'Reilly, Sebastopol, CA, 1991.
52. Warren, D. H. An Abstract Proloq Instruction Set, Technica l Note 309, SRI,

Menlo Park, CA, 1983.
53. Wirth , N. and Gutkneckt , J ., Project Oberon-The Design of an Operating Sys

tem and Compiler, Addison-Wesley, Reading , MA, 1992.

Index

abstract machine , 2
ACTOR,229
Ada, 68, 210
addressing, 210
addressing modes , 163, 211
ALEX

c stack, 89
organisation, 93

d stack, 89
organisation, 93

boolean operations, 62
call-related instructions, 78
commands, 63
constant , 64
declar ation, 64
definition , 62
dual st ack, 89

instructions, 89
st at e representation, 94
t ransitions, 94

expression instructions, 70
expressions, 62
extension

call by reference, 86
extensions

registers, 98
return using register , 105
structures, 102
transitions, 99, 101
vectors, 98

forward declaration, 64
global data, 67
global manipulation, 72

globals , 69
integer operations, 62
jump

condit ional, 75
uncondi tional, 75

literal access, 72
literal pool, 69
local manipulation , 76
parameter instructions, 76
regist ers , 68
routine

recursive, 64
routine-return instructions , 78
scope, 65
single st ack organisation , 75
stack,69
st ack instructions , 71
switch command, 87
t ra nslat ion, 183

convention s, 183
register conventions, 183
RTM sequences, 184

variable, 64
Algol60, 158
Algo168,11
alt , 133
APL ,225
assignment

multipl e, 13
single, 13

asynchronous message, 118
await, 128

BASIC , 3,13

266 Index

BCPL, 5, 225
global vector, 17
Intcode, 5, 225
OCODE,5

branch, 75
compactness, 225
instructions, 97
transitions, 98

bytecode, 166
loader , 166

C, 11, 136, 203, 210, 226
GNU, 1,208
library, 220

C++, 68, 107, 111, 230
call by reference , 63, 86
call by value, 16, 63
case statement, 87
checkpointing, 220
Cintcode,5
class, 110

creation, 42
variable, 111

class file, 27, 31, 32
closure , 106
code

additivity, 218
correctness, 3
loading

Java methods, 222
morphing,3
native (Java) , 28

code mobility, 223
code morphing, 230
code timing, 220
code transformation, 230
command, 65, 136

assignment, 63
goto , 14
iterative, 13, 63
routine call, 63
selection, 13, 63

compilation
separate, 15

compilation schemata
commands, 73

compiler, 1
optimising, 2

Concurrent ML, 128

continuation, 128, 136
CORBA,221
CPL ,l1
current event , 137, 139
Curry, 2

data serialisation, 221
databases, 222
debugging tools, 220
denotable value, 144
Dylan, 221
dynamic code insertion, 219
dynamic compilation, 221
dynamic linkage, 221

method (Java), 31

Eiffel, 13
embedded processor, 224
environment , 4, 144

runtime, 67
evaluation

expression, 65
event , 127, 131, 136

cause operation, 131
halt , 145
impure, 136
pure, 136
start , 145
type, 145

Event Queue , 136
event queue , 139
exception, 39, 45

Parrot, 166
exception (Java), 30
expression

evaluation, 70

fairness , 118
FORTH,208
FORTRAN, 13,208
FrameMaker, 229
fully-threaded code, 208

garbage collector, 28, 225
global pool , 68

Harrison Machine, 107, 131, 159, 230
Execution Cycle, 136
main cycle, 138

heap

Java , 28

Imp , 13
inheritan ce, 111, 112

mulitple, 109
single, 109, 110

instance, 42, 110
allocation, 111
init ialisation, 111

instruction set
high level, 218
high-level, 227
typed , 216, 227

space pressur e, 217
instructions, 46
instrument ation, 221, 226
Int code, 5, 12
inter-op erability, 222
intermediate code, 216
interpreter , 1, 3
introspection , 221
ip, 69
ISWIM , 3, 158

Java , 2, 68, 107, 110, 159, 163, 165, 221,
222,230

jump
abso lute, 75
indirect , 97
relative, 75, 97

compactness, 225
Just-In Time (J IT) , 206
Just-In T ime (J IT) compiler, 166
JVM , 2, 165, 225, 227

language
(pseudo) parallel, 109, 117
act ive object, 130
ACTOR,229
object-oriented, 109, 110

class-based, 109
pure, 110

procedural , 12
target , 203

Linux ,12
LISP, 1, 3, 136, 225

Common Lisp , 107
literal pool, 68
LOOPS, 221

Index 267

macro, 13
assembler, 226

main loop, 225
matri x manipulat ion, 225
message passing, 109, 118
messages

synchronous, 127
meta programming, 221
method, 110, 111

access , III
area (Java) , 30
class, 30
descrip tor, 37
dispat ch

dynamic, 109-111
index, 30
invocation, 30
Java, 28
native (Java) , 28

ML,68
mobile code , 223

code surv ival, 224
environment al problems, 224
load balancing, 223
mobile virt ua l machine, 224
resources, 223
security, 223

mobile telephone, 224, 226
monitor , 128
Moore's Law, 226
MS Word , 229

norm al complet ion (Java), 30

Ob eron , 228
object, 229
Obj ective-C, 221
Ocaml,68
OCODE, 5, 12, 17, 159, 166
operation, commutative, 80
opera tor , temp oral , 134
optimi sation, 208
Oz,2

parameter descriptor , 37
Parrot , 157, 164, 165, 227, 229

condit iona l jump, 168
control inst ruct ions, 169
data-management instruct ions, 169

268 Index

interpreter operations, 171
opcode format , 168
register operations, 170
registers, 166
stack operations, 170
type conversion, 166

Pascal , 166
pattern, 134
pc, 69

Java, 31
PDA,224
Perl Magic Cookie, 167
Perl5, 165
persistence, 222
PMC, 167
Polish notation, 1
Pop log, 221
portability, 1, 12
primitives, 106
procedure, open , 13
process, 109

operation, 109
synchronisation, 118

program counter, 27
Prolog, 2
Python, 165

queue, 137
DEQueue, 132
discipline replacement , 139
event , 131
FIFO,131

ready set, 137, 139
reflective tower , 139, 140
register, 18, 68

code , 69
implementation, 210
pc, 27-29

register machine, 2
instruction types, 162
organisation, 161

register-based model , 157
return , 64, 65

abnormal, 28
abrupt (Java) , 28
normal,28

return descriptor, 37
Richards, Martin, 12

RISC , 159, 163
round robin scheme, 118
routine, 12, 63

call, 65
higher-order, 106

RTM, 157
extensions, 176
instructions

arithmetic, 173
control, 175
register, 175
stack, 174

register naming convention
control registers, 173
data registers, 173

transitions, 177
Ruby, 165
rule , 131, 139

always, 133
halt, 140
interpretation, 138
next , 133
single-rule interpreter, 140
start rule , 140
triggering, 140
when, 133, 140

runtime constant pool , 27-29, 31
runtime library, 88

implementation, 88

Scheme, 107
scope

lexical, 11
static, 16

SECD machine, 3, 231
description, 3

security, 215, 223
since , 133
Smalltalk, 111, 159, 166, 221, 230
Snobol ,225
SOL

access routines, 112
extra instructions, 113
global variable, 117
inheritance search, 113
message

asynchronous, 118
layout , 118
operations, 121

queue, 120
sending, 118
synchronous, 118

process
descriptor, 119
descriptor operations, 120
stack, 120
table, 119

process creation, 118
queue

operations, 120
ready, 120

registers, 113, 121
stack

operations, 120
storage structures, 119
variable

stack allocation, 117
stack, 4, 16, 69, 117, 120, 145

control ,89
control stack, 66
data, 89
data stack, 66
dual stack, 66, 112, 183
frame , 30, 66, 67, 75
framed , 17
hardware, 158
in Parrot, 166
in rule, 145
Java, 28
native (Java) , 28
operand (Java) , 29

state freezing, 222
static scope, 65
storage

Index 269

for variables, 65
super pseudo-function, 111
superclass, 110
switch statement, 87
synchronous message , 118

temporal logic, 131
transition, 61, 94, 98, 99,101 ,144,177

SEeD,5
translation

inter-virtual machine , 226
inter- VM, 206
threaded code , 207

type codes (Java) , 37

ubiquitous computing, 224
unless , 133
until , 133

value
return, 14

variable, 15, 111
class, 111
global , 117
instance, 111
local, 29, 66
shared, 127

virtual machine
generic main loop, 202
runtime types, 163

VM
operating system, 2

waiting set, 137, 139

zero-address machine, 158

	1852339691
	Virtual Machines
	Copyright Page
	Preface
	Acknowledgements
	Table of Contents
	1 Introduction
	1.1 Introduction
	1.2 Interpreters
	1.3 Landin's SEeD Machine
	1.4 The Organisation of this Book
	1.5 Omissions

	2 VMs for Portability: BCPL
	2.1 Introduction
	2.2 BCPL the Language
	2.3 VM Operations
	2.4 The OeODE Machine
	2.5 OCODE Instructions and their Implementation
	2.5.1 Expression Instructions
	2.5.2 Load and Store Instructions
	2.5.3 Instructions Relating to Routines
	2.5 .4 Control Instructions
	2.5.5 Directives

	2.6 The Intcode/Cintcode Machine

	3 The Java Virtual Machine
	3.1 Introduction
	3.2 JVM Organisation: An Overview
	3.2.1 The stack
	3.2.2 Method areas
	3.2.3 The PC register
	3.2.4 Other structures

	3.3 Class Files
	3.4 Object Representation at Runtime
	3.5 Initialisation
	3.6 Object Deletion
	3.7 JVM Termination
	3.8 Exception Handling
	3.9 Instructions
	3.9.1 Data-manipulation instructions
	3.9.2 Control instructions
	3.9.3 Stack-manipulating instructions
	3.9.4 Support for object orientation
	3.9.5 Synchronisation

	3.10 Concluding Remarks

	4 DIY VMs
	4.1 Introduction
	4.2 ALEX
	4.2.1 Language Overview
	4.2.2 What the Virtual Machine Must Support
	4.2.3 Virtual Machine-Storage Structures
	4.2.4 Virtual Machine-Registers
	4.2 .5 Virtual Machine-Instruction Set
	4.2.6 An Example
	4.2.7 Implementation
	4.2.8 Extensions
	4.2.9 Alternatives
	4.2.10 Specification

	4.3 Issues
	4.3.1 Indirect and Relative Jumps
	4.3.2 More Data Types
	4.3.3 Higher-Order Routines
	4.3.4 Primitive Routines

	4.4 Concluding Remarks

	5 More Stack-Based VMs
	5.1 Introduction
	5.2 A Simple Object-Oriented Language
	5.2.1 Language Overview
	5.2 .2 Virtual Machine-Storage Structures
	5.2.3 Virtual Machine-Registers
	5.2.4 Virtual Machine-Instruction Set
	5.2.5 Extensions
	5.2.6 Alternatives

	5.3 A Parallel Language
	5.3.1 Language Overview
	5.3.2 Virtual Machine-Storage Structures
	5.3.3 Virtual Machine-Registers
	5.3.4 Virtual Machine-Instruction Set
	5.3.5 Implementation
	5.3.6 Extensions
	5.3.7 Alternatives
	5.3.8 Issues

	5.4 Concluding Remarks
	5.4.1 Some Optimisations
	5.4.2 Combining the Languages

	6 Case Study: An Event-Driven Language
	6.1 Introduction
	6.2 The Structure of Rules
	6.3 Events
	6.4 Execution Cycle
	6.5 Interpretation Rules
	6.6 VM Specification
	6.6.1 States and Notational Conventions
	6.6.2 Infra-Rule Transitions
	6.6.3 Extra-Rule Transitions
	6.6.4 VM-Only Transitions
	6.6.5 Introspective Operations

	6.7 Rule Equivalences
	6.8 Concluding Remarks

	7 Register-Based Machines
	7.1 Introduction
	7.2 The Register-Transfer Model
	7.3 Register Machine Organisation
	7.4 Parrot-General Organisation
	7.5 Parrot Instruction Set
	7.5.1 Control instructions
	7.5.2 Data management instructions
	7.5.3 Register and stack operations

	7.6 DIY Register-Based Virtual Machine
	7.6.1 Informal Design
	7.6.2 Extensions
	7.6.3 Transition Rules

	7.7 Translating ALEXVM into RTM
	7.8 Example Code
	7.9 Correctness of the Translation
	7.10 More Natural Compilation
	7.11 Extensions

	8 Implementation Techniques
	8.1 Stack-Based Machines
	8.1.1 Direct Implementation
	8.1.2 Translation
	8.1.3 Threaded Code

	8.2 Register Machines
	8.2.1 Register sets
	8.2.2 Addressing
	8.2.3 Translation to Another VM

	8.3 Using Transitions
	8.4 Concluding Remarks

	9 Open Issues
	9.1 Security
	9.2 New Languages
	9.3 Typed Instruction Sets and Intermediate Codes
	9.4 High-Level Instructions
	9.5 Additivity and Replacement
	9.6 Compiler Correctness
	9.7 Dynamic Code Insertion
	9.8 Instrumentation
	9.9 Including more Information about Source Code
	9.10 Integration with Databases
	9.11 Increased Inter-Operability
	9.12 Code Mobility
	9.13 Small Platforms
	9.14 Real-Time VMs
	9.15 Code Morphing
	9.16 Greater Optimisation
	9.17 Operating System Constructs
	9.18 Virtual Machines for more General Portability
	9.19 Distributed VMs
	9.20 Objects and VMs
	9.21 Virtual VMs
	9.22 By Way of a Conclusion

	Compiling ALEX
	Harrison Machine Compilation Rules
	Harrison Machine Instruction Set
	References
	Index

