The Linux Kernel API

The Linux Kernel API

This documentation is free software; you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later
version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the

implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General

Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

For more details see the file COPYING in the source distribution of Linux.

Table of Contents

1. DIIVEE BASICS.....ciiiiiiiiiieiitiitit et e e et ettt ettt e e e b et bbbt e e e e e e e e e e e e e e aaas 1
1.1. Driver Entry and EXIt POINTSccoooiiiiiiiiiiieeeee e 1
T L1 = o | R 1
paToTo [U] Lo = (| SRS 1
1.2. Atomic and pointer Manipulationcoouuuuiiiiiiiieii e 2
=10 o1 {ol 1= Vo FR RO 3
=100 0] O =] S 3
= 10 .01 T > T o R 4
=10 01T U | o IR 5
AtOMIC_SUD _ ANd _TESt....oiiiiiii e e e e e eeeanes 6
=101] (o [T UUPPRRRRR 7
=100 0] (o o =T oSSR 8
AtOMIC_dEC_ANA _TESt...iiiiiiiii i e e eaae 9
AtOMIC_INC_ AN _TEST .ooiiiii e e e e e e e e e e e eanes 10
AtomIC_add_NEQALIVE..........coe i e e e e e e e e e e e e e e e e eeeeeeeeerannne 11
(oL U] F= 11 o 0 [=To IR 12
PUL_ UNAHGNE... ..o e aaaaa 12
1.3. Delaying, scheduling, and timer routinesccoovviiiiiiereieiiiii 13
STt aT=To (U] Lo (T 0 T= o 11 | 14
P D F = R 1Y/ 01T TP 16
2.1. DOUDBIY LINKEA LISTS ..ccvviiiiiiiiiiieiiis ettt e e e e e e eaaan e e e e e ennes 16
1S A= To [0 HR SO USPPPPRPTON 16
153 = Vo o 7= T PRSPPI 16
S o = TR 17
St del INIt ..o 18
1S3 = 0] o2 19
ST SPIICE .. 19
IS = 011 YRR UPTPPPUTPRPP 20
ISt fOr _BACK ... i 21
list fOr aCN _SAFE ...uuuii i 22
3. BasiC C Library FUNCHONSuiiiiiiiiiiiiiiie ettt 24
3.1, SrNG CONVEISIONS ...ttt eeeeeeeeeeesnenes 24
SIMPIE SOl .. e 24
SIMPIE_ SO e 25
SIMPIE_STITOUL. ..o 25
SIMPIE_SIITOUI ..o s 26
1721 0] 0 11 U UPPTPUTORSPPPPRTIN 27

3.2.

3.3.

£5] 0 S 28

(VAT o110 TP PTP PRI 29
5] 0111 OSSP 30
StriNg ManiPUIALIONueiii e 31
] (6] 0)V PP UPPPTRUPPIN 31
] 11 01 0)PP 31
] (o7 | TP TUPPPTR 32
] [(07> TP 33
] (0] 1 0] o F PP PPPTTRPPPPIN 34
5] 1 11 1] PP PUPPR 35
5] 10X o T 36
SEITCIIT e e e 36
1= o 1O PPPPPPTRPPP 37
5] 1 1] [T o 38
SITPOIK e e e 38
SEIOK <.ttt a e e e e e e e aeas 39
LT=T0 05T PP PT R TRRPUPPPR 40
0Tt 0] o)V PP PO PPPPPPPPPI 41
[T=T 0 017 o) PP 42
NEIMIMIOVE ...ttt ettt e e e ettt e e e e et e ee e e e e e e e e eeea e e e e et eeeeb e e e eeeensnnn e eaeas 43
0 T=T 0 aTo] o1 o TSP 43
(TS 0 0T o> PP 44
S L] L PP 45
01T 0 Td o TSRS PPPP PP 46
2T 0@ 01T = 110 P PUUPRSS 47
5= S o) | 47
1= S o | PP PUPUPPRRPTR 48
ClEAr DL, ..o e 49
 ChaNgE Dit. . ———————— 49
CRANGE Dt 50
teSt_AaNd_Set _Dit......coiiiiiiieieeee e 51
o test_and St Dit........ciiiiiii e 52
test_and_Clear Dit.........ooouiiii 53
_test_and_cClear Dit ... 54
test_and_change _Dit.........ccooooiii i 55
105 A o L USRS RRPPPPRN: 56
fINA_first_Zero _Dit.........oiii i 56
fiNd_NEeXt_Zero DIt ... 57
1 7P 58
L1 ST OSSR 59

AWEIGNTS 2. e e e e e e e e e e e 60

4. Memory Management iN LINUXeeuueueeueeeenneiaaaeeeeeeeeeeeeeeeeeseeeeeeeesessnssnnsnnnnnes 61
4.1. The SIab CaChecccoviiiii s 61
KMEM_CACNE _CrEALEuuueeeie e e e e e e e e 61
Kmem_cache _Shrink ... 62
N a =T 0 g T o= Tl g T 0 (] 1) 63
Kmem_cache_alloC..........ouuiiiiie e 64
KIMAUIOC. ...t 65
=T o= Tl 1= (== RPN 66
QT == 67
5. The ProC fil@SYSIEIM ..o 69
5.1, SYSCH INtEITACE ... e e e e e e e e e 69
register_SYSCHL_table........oooi i 69
unregister_SYSCtl_table...... ..o 71
o] (o ToRe (01511] oo PP PT 71
o] o Tog o (0]] 4107/ o3P PPPUPPPPRRRRN 73
(o] o To o (o] 0 1Y/ =Tol 1 411 o 1 2 = P GO 74
ProC_dOUIONGVEC_MINMMAX.....ciiiiiieiaiiiiiiiiiiiei e 75
proc_doulongvec_ms_jifflesS_ minmaXcccoeoviiiiiiiiiieiiiiicin e 76
ProC_dOINtVEC JIffIES....ccuuieii i 77
T I 1= I 10 DG TP 80
6.1. The DIirectory CaCh@oovviiiiiiiiiiii e 80
A INVAIAALEceeeie e 80
(o 1 11T T 1= TSP 80
PrUNE_ACACKNE ..ceiiiiiiiii et r e e e e e e as 81
ShIHNK_dCACNE _SD ... e 82
RaVe _SUDMOUNTSiiii e 83
Shrink_dCacChe_Parentouuuiiiiiiiiiie e e 84
o = 1 o o PP 84
(o I 10151 £= T = L 85
(o 1= 11 [Yol (o o | S TR 86
(o 1 (o T0) (U o PSR PTRP 87
(o Y= 110 = (= PP 88
(o [0 1= 1 (S 89
A rENASI e 90
(o I 0 [0 P R P T PTTT 91
(o N 7> L1 PSPPSR 91
ESTSU | oo [RS 93
fiNd_INOde_NUMDETcooiiiiei s 94

o - T [SRR 95
[0 o = P 96
A _UNNASNEA ... 97
L [T T L= o F= T T | 1o T 98
B .01 U G 1 o o [= o 11 PRSPPI 98
WITEE _INOAE _NMOW.. ..ottt e e e e e e e e e e e e e e e e e eeeeeeeeseeeennnnes 99
ClEAI _INOUE e e e e et eeeaeees 100
INVALIAAIE _TINOAES.... ..o e e e e 100
QL _EMPLY INOUEceiiiiiieeee et e e 101
LU Lo [1P PUUUPPRRRPTRRR 102
INSert_iN0de _Nashcoouiiii e 103
remove _IN0AE _NasShccoooiiiiiiiiiii e 104
6 L PP 105
(0] T o RSP 105
BT oT0 F= 1t ST V1] 01 RSP 106
Make _bad _INOAEoooiiiiiiie e e e 107
EST o= T I T o o = 108
6.3. Registration and SUPErDIOCKScccovieiiiiiiiiiiee e 109
register _fileSYStEMuu i 109
unregister _fileSYSEIMuuuieiciee e 110
[0 [T ST U o T PP 111
L 1 1= o Tod S J PR 111
POSIX_OCK _fll ... e 112
QB IBASE.. .o ———————————— 113
lease_get MUIMEccoo et eeeeeeeeernnnne 114
POSIX_DIOCK _TOCK ...t 114
POSIX_UNDBIOCK _TOCKvuiiiiiiiiceiiie e 115
o Tod T 0=\ YA (== Lo [116
o Tod S 00 7= Y (=P 117
FCNEL_QEIEASE ... 118
FCNEL_SEHEASE.. ..o 119
SYS_FIOCK et e 120
(o= A (0101] = L1 1 121
7. LINUX NEEWOTKING ettt e e e e e e e eeeeeeas 123
7.1. Socket BUffer FUNCHIONS.uuuieiiiee e 123
SKD_ QUEUE _EMPLY oo 123
SKD GO e 123
KITEE _SKD ... 124
SKD _CIONEA ... 125

SKD SNAIEA.....e e aaaa 126

SKD_Share CheCKuueeiiiie e 127
SKD UNSNAIE... .. e e e aaaa 128
SKD _PEEK ... 129
SKD _PEEK L@l ... —————- 129

SKD _QUEBUE IBN... . 130
__Skb_queue_head.............ooiiiiiiii 131
SKD _qQUEUE _NEAU........uiii i 132
_ SKb_qUEUE LAlcc e 133
SKD _QUEUE &Il ...ceveeeiiiiieeee e 134
_ SKD _dEQUEUE. ... 135
SKD _dEQUEBUE.......eee e e 136
SKD INSEIT .. e e e e e aaaaee 137
SKD_@PPENG . 138
SKD _UNIINK ... 138

__Skb_dequeue _tail.........oouuuiiiiii 139
SKb_dequeUe _tail...........uuuuuemiiiiiice e 140
SKD UL .. 141
SKD _PUSH .. 142
SKD PUILL .. e 143

£ 1 1 1== o [70T} o U 144
SKD_taIIFO0M .. 144

SKID _TESEIVE .o 145
SKD MM e e aaaan 146

SKD_Orphan ... ————— 147
SKD_QUEUE _PUIGE .. 148
_ SKD_QUEBUE_PUIGE ...t 148
_dev_alloC _SKD ... 149

AEV_AlIOC_SKD ..o 150

SKID COW e 151

SKD_OVEI _PANIC ... 152
5] N O T [T [=T g o = | o3RO 153
AIOC_SKD ... 154

KB SKD . 155
SKD _ClONE .. 156
S COPY it 157
PSKID COPY e 158
PSKD_eXpand_Nead............uuuiiiiiiii e 159
SKD_COPY_EXPANd.......coiiiiiii e 160
_ PSKD_PUIL @I 161

PR To Te G 1| (=) (PR TSRPRR 162

] S £ 1 T 1] PPN 162
SK_CRK _FILEr ... 163
8. NEtWOIrK deVICE SUPPOIT......ceiiiiiiiiiiiiiitttietiiiesr ee e e e eeeeneennnanaaaas 165
S I B L1 V=T g TE] o] o o] ¢ FR PP PP PP PPTP 165
INIE_EINEIARY ... e e e e e e e e e 165
AlIOC_BNEIAEYee e 166
T 0 [0 [T = PR 167
P21 Lo ol {0 [0 [o 1= 2P 168
INIE_NIPPI_AEY ... 168
AlIOC_NIPPI AV ... 169
T 0 L= RSP 170
21| {o Yol 1 {0 L= PRSP 171
T {0 = PRSPPI 172
AUOC_TCABV ... 173
(o V=T (o [o= Vo) GRS RSSPPPII 174
eV _IremMOVE _PACKcooiiiee e 175
_dev_get DY NamE ..o 175
dev_get DY NAME ... 176
(0 Y R o = PRSP 177
o [V o =3 A)2 1 = U 178
deV_get DY INAEX e 179
AEV_AlI0C_NAME ... e 179
AEV_AIIOCiiiii e 180
netdev_State ChaNQEuuueeiiiiie s 181
[0 =Y > T 182
(0 =Y o 1= I 183
(0 Y ol [0] = PSPPSRI 184
register_netdevice _NOIfier..........cccceeiiiiiiiiiie 185
unregister_netdevice _NOLIEr........ccouvviiiiii e 185
JEV_QUEUE _XIMIT..iiieiii e e e e e e e e e e e e e e e e e e eeeeeaeeneeennnnes 186
L= U1 o G SUPPPPR 187
Net_Call_rX_@tOMIC........iiiiiiii i e e e e 188
FEQISTET _GITCONT ...t 189
NELABY ST MASTEY ... i e e e e e e e e e e e e e 190
(o 1Y A o] (0] 1 11 ESTox 11 YRR 191
dev_set_allmulti............ooooiiiiiii e 192
[0 Y 0T 1 P 192
JEV_NEW _INABX ettt e e e e e e e e e e aaeas 193
netdev_fiNiSh_UNIEQISIErcooiiiii e 194

Vi

01Tt oy (=T A U= 0 (=Y [195

8.2. 8390 Based NetWOrk Cardsuuuuurrummmmmiiiaaiaeaaeeeeeeeeeesesseesseeeesesenenssnnnnnes 196
(=TI 0] 1= 1S PP 196
B _ClOSE ..ot 197
1 IX _HIMEOUL ...cevit e e e e e e e e r e 198
LTI 01 (] 4 (U] o PP PP PP PPPPPPPPPP 198
EENABY _INIE. ... e e e e e 199
NSB390 NI .ciiieieiieiiiitt e e e e e e e e s st a e e e e e eeeas 200
8.3. SYNCNIONOUS PPP ...t e e e e e e e e e e e e e e e e e e eeeeaanannnnes 201
] 0] o] ST 1 0] 01U | TP UPTP PP 201
K] 0] o) o o1 [0 1T PP PPPUPRPPPPPPRRP 202
5] 0] 0] o I 0] 1] o H PP 203
] 0] o] o T (<T0] 01T o N PR SPPP 204
SPPP_ChANGE MU ..o 205
(5] 0] o] o J o (o TN (o o | 206
SPPP_ALTACK ..t 207
5] 0] o] o J 0 [5] =T o 1SR 207
S I\ (oo 18] (3T U] o] oo 1 AU PO PPPPPPPPPRN 209
9.1. MOAUIE LOBAINGuuueeeiiiaeeee ettt e e e e e e e e e e e eees 209
FEQUEST_ MOAUIEveeceeeeee e 209
call_usermodenelper..........coo oo 209
9.2. INtEr MOAUIE SUPPOI. ...ttt e e e e e e e 210
INtEr_MOAUIE_TEQISTEN ... 211
INter_MOodule_UNIEQISTELcoviiiei e eaeaaaes 211
Y (=T g ToTo (V][= PP 212
iINnter_MOodule_get FEQUEST.... ... 213
INtEr_MOAUIE_PUL....coiiiiiieieee e e e e e e eeeeennnnnas 214
10. Hardware INTEIfACESooiiiiiiiieiiieeeee e e et e ranaaee 216
10.1. Interrupt HANAING.......cooo oo e e e e e e e e e e e e e e e eeaeaaenes 216
ISADIE_IMQ_NOSYINC ...ttt e e 216
AISADIE MG 216
(=70 F= o] [N 1 (o PRSPPI 217
o1 o] o TSI T (o [4= TS P 218
10.2. MTRR HANAING ...ttt 219
01 € = Vo o 219
011 o [PPN 221
10.3. PCl SUPPOIt LIDFAIYeeeieiiiieiee e 222
o Tt I 1 o 3 o) S 222
PCI_INA_SUDSYS ... 223

vii

o Tt I {1 o e =Y/ Tl = PSSP 224

o Tt I {1 o o = 225
pci_find_capability..........coouriii i 226
PCI_fINA_Parent_r@SOUICEccieeiiiii e e s 227
PCI_SEt POWET _STALEiiiiieeeiiiiiiiiiiiiie s e s eeeeeeeereeenaennnnne 228
PCI_SAVE _STALE ...oeeiiieiiieeeeeeeeeeeet e rar 229
PCI_FESIONE _STALE ...eveiiiiiiiieee e e e e e e e e e 230
PCI_ENADIE _AEVICEuiiii e 231
PCI_dISADIE _AEVICE ... eviieiiiiiee e 231
PCI_eNable _WaKE..........cueiiiieie s 232
PCI_IEIEASE. _TBOIONS ... e ittt e e e e e e e e e aaas 233
[T I (STo [T=TS) G (=T [0 ISP 234
PCI_MALCN_AEVICE ..ot 235
PCI_TEQISTEI _ANIVET ...ttt e e 236
PCI_UNFEQISTEr _AIVET ... e e e e 237
o To I g ISY=T o Ao [V o = PR PPR 237
T =1 000V T o [V o U 238
o Tot [0 L=V o [1Y = USSP 239
SIS ST A =] (] USRS 240
PCI_SEIUP _AEVICE .. .ciiiiiiii e e e e e et e e e e e e e aaa e e e e eeennes 241
o Yot [o T Yo] I ox (== 1 (= PP 241
PCI_POOI_AESIIOY ...ttt 243
PCI_POOI_BIIOC ...t 244
PCI_POOI fIEE it 245
10.4. MCA AICNITECIUI ..uvvviiiiiiiiee ettt e e e e e e e e e s 246
10.4.1. MCA DeVICE FUNCLIONScceieeeeeeeeeeeeceeeeeeeeeeeeee e 246
MCA_fINA_A0APIE ...ccoe e 246
mca_find_unused_adapter..........cccooeeiiiiiiiiii 247
MCA_read_StOreU _POS......cceviiiieiiiiiiiiiiii s e e s s eeeeeeaeeaanann 248
g Tor= T £== Vo [oo 1S UUUURUR 249
g To= T 1 (= Lo 1 249
Mca_set_adapter NAMEcoovviiiiee e e 251
Mmca_set_adapter _ProCfn ... 251
(pgTor= N STT= o F= o1 (=T g U £ =T o USRS 253
MCA_MArK_AS _USEdccoeiiiiiiiiiieeeeeeeee e e e e e e e e e e e e e 253
Mca_Mark_as UNUSEd.........cccoeeiiiiiiiiiii e et e e e e e eanns 254
Mca_get_adapter NAME..........iiii i 255
g Tor= T 7= o F= T o (=] RS 256
MCA_ISENADIEA. 256
10.4.2. MCA BUS DMAottt 257

viii

MCA_ENADIE _AMA......coiiiiiii e e 258

[ppTor= e [57=1 0] (=T o [- VO SUPUURRRRR 258
Mca_set_dma_addrccooooriiiiiii 259
Mca_get_ dma_addr........cooouuiiiiiiii i 260
MCA_SEt_dMA _COUNL......coviiiiii e e e e eeeeeees 261
MCa_get AMa_FeSIAUE........uueeeieiiiiiieie s e e e e e e e e e 262
MCA_SEL_AMA 0 ..o e e e e e e e e e e e e e e eeeeeaeeees 262
Mca_Set_dmMa _MOAE.........oooviiiiiii e 263
11. The DEVICE File SYSIEMuuiiiiiiiiiiiiie ettt e e e e e e 265
(0 LoY SR (T o | 1 (=] GO P P TP PP PPPPPP 265
(oY SN a1 =To] (] TS 266
VIS MK _SYMIINKuuiiiiiiiie e 267
(o L=V £ 0 01 o | SOOI 268
devis_fiNd_NANAIEueeee e 269
EVIS_GEL FIAGS .evveeeiiiiiiiie e 270
AeVIS_ gL M) MM ... e e e e et eaeaeae 271
devfs_get_handle_from_INOde...........ccccoiiiiiiiiiiiii i 272
devis_generate_Path..............ooeeiiiii e 273
(o= Ko [=] o] o T 274
AeVIS_Set e SIZE ..cuivieiii e 275
[0 L= £ o[AT) (o TR UOUSRRRR 275
[0 = KT T= 1 A | (o 276
(o) Ko 1<) A o =TT o | 277
devis_get firsSt_Child.........ooouiuiiii e 278
devis_get NeXt SIDIINGuuuriii s 279
(oo KSR 101 (o UL T £=To |] (= 279
devis_get _UNIegiSter_SIAVE i 280
(03 ST o =] A =12 [PPSR 281
deVvis_regiSter CRIEVooveeeiiiiii e 282
devis_register DIKAVcooo i 283
(0o K 0L gL =To [(=T g o] 1 (0 L= 284
devfs_unregister BIKAEVcccooiiiiiiiii e 285
12, POWET MANAGEIMENT .. .ciiiiiiiitee ettt e et e e e e et e e e et e e e e e e e eanans 286
PIM_TEGISTET .ttt et ettt e e e e e e e e e e e e e bbb b e e e e e e e e e eaeeeaanans 286
(o] T UL T (=T 0 |] (=] P PPUTSUPRPRR 287
PM_UNFEQISEr _All ..oeeeee e 287
[0 T T= 1 [[288
0] 0 TS T=2 1 T 1= || 290
[0 3 T 1 o USRS 291

L3, BlOCK DBVICES ...t et 293

BIK_ClEANUP_QUEUE ...t 293
bIK_queue _headacCtiVecoouuiiiiii e 294
DIK_qUEUE_MAaKE FEOUEST......cciiiieeiiiii et e e e e et e e e e eeanaes 295
o] QT T S [1 TP UPRRR 296
0ENENC_MAKE TEOUEST.eeiiiiiiieee ettt r e e e e e e e e e e e e e 297
SUDMIL DN .. e 298
I PW BIOCK e 299
end_that reqUEST fIrSt........uueieiiiee s 301
14. MiSCElANEOUS DEVICES.......u ettt e e e e e et e e e e e eeeaas 303
LIS =T0] (] PRSPPI 303
T ESTog o (=T =T] (] PSP 303
ST T [0 I o U R 305
VIdEO_UNIEQISIEr _dEVICEccoiiiiiiiiieeeeeeeeteii s eeeeeeeeseeennnees 305
16. SOUNG DBVICES ... ettt eeeeeeeeeessbneennnnes 306
register_SOUNA_SPECIAL........uuuuiiiiiiiie e 306
[g=To Y (=T AT o 10 To I 1410 = 306
[=To 1 (=T {0 18 To [N 01 o P PPPPROTRRRR 307
(=To |85 (ST Yo 10 T Lo I 0 K] o OSSP 308
register_SOUNA_SYNEN ... e e e e e e e e e e e 309
unregister_SoUNd_SPECIal..........oooiiiiiiiiiiii e 310
Ol aTg=To I (= g 10 o To I 41 = PP 311
unregister _SOUNT_ MII.........iiiiiiiiiiii e eeee e e e e eaaans 312
(0 gl g=To Iy (= Yo 10 Lo [0 LS o IR 313
unregister_SOUNT_SYNTNi e 314
17. USB DBVICEScciiiiiiiiieieieietiitttt s s et ee e e eeeeseeebbasnna e e e e e e e aaaeeeas 315
U] QT (=0 5] (] PRSPPI 315
0] o TS Tor= 1 [0 (=Y o] 315
USD _dEIEQISTEN ... e e e e e e e e 316
USD_AIIOC_BUS ... e e e e e e e e e e e e anaree 317
USD _frEE _DUS ... e 318
U] o T C=T0 1153 (] g o LU P USURURRRRR 319
O] oI o [C=T0 1S3 =T g 01U 1 319
(01 o I 0 1 F= 1o o T (o 320
USD_@lIOC UMD ..ee e 322
USD_fre@ UMD oo 323
01 o J ot o1 o I 0101 S SUPRR 324
0] o T o 10| S 1T [P PUUPUPRRRRRR 325

18. 16X50 UART DIIVETeiiiieeiieitteee ettt 328

FEOISTET _SEIIAI ...ttt e e e e e e e e e 328
UNFEQISTEI _SEIIAL ... it e e e et e e e e e e aaaaaas 328
19. Z85230 SUPPOIt LIDFANY ..uvveeeiieiiiieeeei ittt e e e e e e e e e e 330
p4e 1o O I 11 (=11 U] o PP PP PO PPPPPPPPPPP 330
p4S 1T 3 V] o (o o] 01T o DO TSP 331
Z8530 _SYNC _ClOSE ... 331
y4s 1536 {0 IS Y/ a o o 1= W o 1= o 1P UUPPSRRR 332
Z8530_SYNC_AMA _ClOSE ... e e e e e e e e e e e e e e e e 333
Z8530_SYNC_tXAME@_OPEN....coiiiiiiiieeeeeieiieitiiiei s s e e e e e e e e e e e e e eeeeaeaaeeeeeeeeeeeenesnnnnens 334
Z8530_SYNC_tXAMA _CIOSE ...ovviiii i e 335
Z8530 _AESCIIDE ...cceieeeeeeeeeeee e ———————————— 336
741310 I | o | SRRSO 337
4178 {0 = 0 101 (o (0111 o PRSPPI 338
28530 _channel_10adoouuuiiiiii e 339
P4 1o 3010 I 11 1 o SR 339
P4 1570 {0 0 [0 1= 8 L= o]| PPN 340
Z8530 0BT SEaALS ...ttt 341
20. Frame BUfer LIDrary..........ooi oot e e 343
20.1. Frame BUffer MEMOIYuuiiiiiiiiiiiie et 343
register_framebUfer..... ... 343
unregister_framebuffer..... ... 344
20.2. Frame BUffer CONSOI.........cooviiiiiiiiiiii i 345
fDCON_redraw _Clear........oooviiiii i 345
focon_redraw_DMOVE..........iiiiiiiie e 346
20.3. Frame Buffer ColOrmMapooioiiiiiiiiie et 347
fD_AllOC CMAP .ceiei i 348
T COPY _CMAP .. 348
L1 0T [S 1 1 >V o SRS 350
11 0TS o) 1. F= T o T PUUPUURPSR 351
fo_default_Cmapoooeeieeeee 352
1 T 1V/=] Ao =1 LSS SPPPPPI 353
20.4. Frame Buffer Generic FUNCHONS.............uuuiiiiiiiiiieie e 353
TDOEN_ GO TIX weeieiieiieee e 354
TGN _GEL VAN e 355
TDGEN _SEL VA .. .t 356
L1001 0T [S o1 1.0 1 356
TDOEN_SEL CIMAP it 357
fhgen_pan_diSPIaYoooeiiiiiiiiiiii e 358

Xi

100 =] 0 Te [0 JE=T= A= | G 359

TDOEN_SEL TSP ..t 360
fhgen _INStall_CMapovviiii e 361
fOgeNn_UPdate Var..........coiiiiiiiiii e 362
fDgEN _SWILCN ... 363
fDOEN_DIANK.....ccii 364
20.5. Frame Buffer Video Mode Databaseuueveviiiiiiiiiiiiiieeeeeeeeeeeeeeeeeee 365
fD_fINA_ MO ... 365
D Y MOAE ... e ——————- 366
20.6. Frame Buffer Macintosh Video Mode Database.............ccccccevvvvevvivvvinnnnnnnns 368
CONSOIE_gEIMOUE.......cco i e e e e e e e e e e e e e e eeeeeneeees 368
CONSOIE _SEMOUEuiii i eeeeaaae 368
[of0] g LYo] ST ST= (ol 4= o LSRR 369
CONSOIE_POWEIMIOUE ...ttt e e e e e e eeeeeeas 371
MAC_VMOAE_TO VAT ...iiiiiiiiiei et e e e e e e e e e e e e e e e eeees 371
(g Fo o V7= Vg (o Y/ 0 0 To o [P 372
MAC_MAP_MONITOI _SENSE......ccceiieeiieeeieeeeee ettt s e e e e e e e e e e e aaaaaaaaeeeees 373
MAC_fINA_MOAE.... ..o e e e e e e e e e e e 374
20.7. Frame BUFfer FONTSooiiiiiiiiiiiiiiiiiiiisss s e e e e e e e e e e e e e e e e eeeeeeeeeeenenees 375
fOCON_fINA_fONT.. ..o 376
focon_get_default_foNnt.............oovveeiiiiiiii s 376

Xii

Chapter 1. Driver Basics

1.1. Driver Entry and Exit points

module_init

Name
nmodul e_i ni t — driver initialization entry point
Synopsis

module_init (Xx);

Arguments

function to be run at kernel boot time or module insertion

Description

modul e_i ni t will add the driver initialization routine in the “__initcall.int” code
segment if the driver is checked as “y” or static, or else it will wrap the driver
initialization routine withi ni t _nodul e which is used by insmod and modprobe when
the driver is used as a module.

Chapter 1. Driver Basics

module_exit

Name

nodul e_exi t — driver exit entry point

Synopsis

nodul e_exit (x);

Arguments

function to be run when driver is removed

Description

modul e_exi t will wrap the driver clean-up code wittl eanup_nodul e when used
with rmmod when the driver is a module. If the driver is statically compiled into the

kernel,nodul e_exi t has no effect.

Chapter 1. Driver Basics

1.2. Atomic and pointer manipulation

atomic_read

Name

at om c_r ead — read atomic variable

Synopsis

atomc_read (v);

Arguments

pointer of type atomic_t

Description

Atomically reads the value of. Note that the guaranteed useful range of an atomic_tis
only 24 bits.

Chapter 1. Driver Basics

atomic_set

Name

at om c_set — set atomic variable

Synopsis

atomc _set (v, 1i);

Arguments

pointer of type atomic_t

required value

Description

Atomically sets the value of toi . Note that the guaranteed useful range of an
atomic_t is only 24 bits.

Chapter 1. Driver Basics

atomic_add

Name

at om c_add — add integer to atomic variable

Synopsis

void atomc_add (int i, atomc_t * v);

Arguments

integer value to add

pointer of type atomic_t

Description

Atomically adds tov. Note that the guaranteed useful range of an atomic_tis only 24
bits.

Chapter 1. Driver Basics

atomic_sub

Name

at om ¢c_sub — subtract the atomic variable

Synopsis

void atom c_sub (int i, atomc_t * v);

Arguments

integer value to subtract

pointer of type atomic_t

Description

Atomically subtracts fromv. Note that the guaranteed useful range of an atomic_t is
only 24 bits.

Chapter 1. Driver Basics

atomic_sub_and_test

Name

at om ¢c_sub_and _t est — subtract value from variable and test result

Synopsis

int atom c_sub_and_test (int i, atomc_t * v);

Arguments

integer value to subtract

pointer of type atomic_t

Description

Atomically subtracts fromv and returns true if the result is zero, or false for all other
cases. Note that the guaranteed useful range of an atomic_t is only 24 bits.

Chapter 1. Driver Basics

atomic_inc

Name

at om c_i nc — increment atomic variable

Synopsis

void atomc_inc (atomc_t * v);

Arguments

pointer of type atomic_t

Description

Atomically incrementy by 1. Note that the guaranteed useful range of an atomic_t is
only 24 bits.

atomic_dec

Name

at om ¢c_dec — decrement atomic variable

Chapter 1. Driver Basics

Synopsis

void atom c_dec (atomc_t * v);

Arguments

pointer of type atomic_t

Description

Atomically decrements by 1. Note that the guaranteed useful range of an atomic_t is
only 24 bits.

atomic_dec_and_test

Name

at om ¢c_dec_and_t est — decrement and test

Synopsis

int atomic_dec_and test (atomic_ t * v);

Chapter 1. Driver Basics

Arguments

pointer of type atomic_t

Description

Atomically decrements by 1 and returns true if the result is O, or false for all other
cases. Note that the guaranteed useful range of an atomic_t is only 24 bits.

atomic_inc_and_test

Name

atom c_i nc_and_t est —increment and test

Synopsis

int atomc_inc_and_test (atomc_t * v);

Arguments

pointer of type atomic_t

10

Chapter 1. Driver Basics
Description

Atomically incrementy by 1 and returns true if the result is zero, or false for all other
cases. Note that the guaranteed useful range of an atomic_t is only 24 bits.

atomic_add_negative

Name

at om c_add_negat i ve — add and test if negative

Synopsis

int atomic_add _negative (int i, atomc_t * v);

Arguments

integer value to add

pointer of type atomic_t

Description

Atomically adds tov and returns true if the result is negative, or false when result is
greater than or equal to zero. Note that the guaranteed useful range of an atomic_tis
only 24 bits.

11

Chapter 1. Driver Basics

get_unaligned

Name
get _unal i gned — get value from possibly mis-aligned location
Synopsis

get _unaligned (ptr);

Arguments

ptr
pointer to value

Description

This macro should be used for accessing values larger in size than single bytes at
locations that are expected to be improperly aligned, e.g. retrieving a ul6 value from a
location not ul6-aligned.

Note that unaligned accesses can be very expensive on some architectures.

12

Chapter 1. Driver Basics

put_unaligned

Name

put _unal i gned — put value to a possibly mis-aligned location

Synopsis

put _unaligned (val, ptr);

Arguments

val

value to place

ptr
pointer to location

Description

This macro should be used for placing values larger in size than single bytes at
locations that are expected to be improperly aligned, e.g. writing a ul6 value to a
location not ul6-aligned.

Note that unaligned accesses can be very expensive on some architectures.

13

Chapter 1. Driver Basics

1.3. Delaying, scheduling, and timer routines

schedule timeout

Name

schedul e_ti meout — sleep until timeout

Synopsis

signed | ong schedul e_tineout (signed |ong tinmeout);

Arguments

ti meout

timeout value in jiffies

Description

Make the current task sleep uritii meout jiffies have elapsed. The routine will return
immediately unless the current task state has been setéseeurrent _st at e).

You can set the task state as follows -

TASK_UNI NTERRUPTI BLE - at leastt i meout jiffies are guaranteed to pass before the
routine returns. The routine will return O

TASK_I NTERRUPTI BLE - the routine may return early if a signal is delivered to the
current task. In this case the remaining time in jiffies will be returned, or O if the timer
expired in time

The current task state is guaranteed to be TASK_RUNNING when this routine returns.

14

Chapter 1. Driver Basics

Specifying a i meout value ofMAX_SCHEDULE_TI MEQUT will schedule the CPU
away without a bound on the timeout. In this case the return value will be
MAX SCHEDULE TI MEQUT.

In all cases the return value is guaranteed to be non-negative.

15

Chapter 2. Data Types

2.1. Doubly Linked Lists

list_add

Name

i st _add — add a new entry

Synopsis

void list_add (struct list_head * new, struct |list_head * head);

Arguments

new

new entry to be added

head
list head to add it after

Description

Insert a new entry after the specified head. This is good for implementing stacks.

16

Chapter 2. Data Types

list_add tall

Name

list_add_tail —addanew entry

Synopsis

void |ist_add_tail (struct |list_head * new, struct |ist_head *
head) ;

Arguments

new

new entry to be added

head
list head to add it before

Description

Insert a new entry before the specified head. This is useful for implementing queues.

list_del

Name

i st_del — deletes entry from list.

17

Chapter 2. Data Types
Synopsis

void list_del (struct list_head * entry);

Arguments

entry

the element to delete from the list.

Note

list_empty on entry does not return true after this, the entry is in an undefined state.

list_del init

Name

Iist_del _init —deletes entry from list and reinitialize it.

Synopsis

void list_del _init (struct list_head * entry);

18

Arguments

entry

the element to delete from the list.

list_empty

Name

i st_enpty — tests whether a list is empty

Synopsis

int list enpty (struct list_head * head);

Arguments

head

the list to test.

Chapter 2. Data Types

19

Chapter 2. Data Types
list_splice

Name
list_splice—jointwo lists
Synopsis

void list_splice (struct list_head * list, struct list_head *
head) ;

Arguments

|ist

the new list to add.

head
the place to add it in the first list.

list_entry

Name

I i st_entry — get the struct for this entry

20

Synopsis

list_entry (ptr, type, nenber);

Arguments

ptr
the &struct list_head pointer.

type
the type of the struct this is embedded in.

menber

the name of the list_struct within the struct.

list_for_each

Name

i st _for_each —iterate over a list

Synopsis

list_for_each (pos, head);

Chapter 2. Data Types

21

Chapter 2. Data Types
Arguments

pos

the &struct list_head to use as a loop counter.

head

the head for your list.

list_ for_each_safe

Name

i st_for_each_saf e —iterate over a list safe against removal of list entry

Synopsis

list_for_each_safe (pos, n, head);

Arguments

pos

the &struct list_head to use as a loop counter.
another &struct list_head to use as temporary storage

head

the head for your list.

22

Chapter 2. Data Types

23

Chapter 3. Basic C Library Functions

When writing drivers, you cannot in general use routines which are from the C Library.
Some of the functions have been found generally useful and they are listed below. The
behaviour of these functions may vary slightly from those defined by ANSI, and these
deviations are noted in the text.

3.1. String Conversions

simple_strtol

Name

si npl e_strtol — convert a string to a signed long

Synopsis

long sinmple_strtol (const char * cp, char ** endp, unsigned int
base) ;

Arguments
cp
The start of the string

endp

A pointer to the end of the parsed string will be placed here

base

The number base to use

24

Chapter 3. Basic C Library Functions

simple_strtoll

Name

si npl e_strtol | — convert a string to a signed long long

Synopsis

long long sinple_strtoll (const char * cp, char ** endp,
unsi gned i nt base);

Arguments
cp
The start of the string

endp

A pointer to the end of the parsed string will be placed here

base

The number base to use

25

Chapter 3. Basic C Library Functions
simple_strtoul

Name

si npl e_strt oul — convert a string to an unsigned long

Synopsis

unsigned long sinple strtoul (const char * cp, char ** endp,
unsi gned i nt base);

Arguments
cp
The start of the string

endp
A pointer to the end of the parsed string will be placed here

base

The number base to use

simple_strtoull

Name

si nmpl e_strtoul | — convert a string to an unsigned long long

26

Chapter 3. Basic C Library Functions

Synopsis

unsigned long long sinple_strtoull (const char * cp, char **
endp, unsigned int base);

Arguments

cp
The start of the string

endp

A pointer to the end of the parsed string will be placed here

base

The number base to use

vsnprintf

Name

vsnpri nt f — Format a string and place it in a buffer

Synopsis

int vsnprintf (char * buf, size_t size, const char * fnt,
va_|list args);

27

Chapter 3. Basic C Library Functions
Arguments

buf
The buffer to place the result into
si ze
The size of the buffer, including the trailing null space
fnt
The format string to use
ar gs

Arguments for the format string

Description

Call this function if you are already dealing with a va_list. You probably want snprintf
instead.

snprintf

Name

snpri ntf — Format a string and place it in a buffer

Synopsis

int snprintf (char * buf, size t size, const char * fnt,

)

28

Chapter 3. Basic C Library Functions
Arguments

buf

The buffer to place the result into

si ze

The size of the buffer, including the trailing null space

fmt

The format string to use @...: Arguments for the format string

variable arguments

vsprintf

Name

vspri nt f — Format a string and place it in a buffer

Synopsis

int vsprintf (char * buf, const char * fnt, va_ list args);

Arguments

buf

The buffer to place the result into

29

Chapter 3. Basic C Library Functions
fm

The format string to use

args

Arguments for the format string

Description

Call this function if you are already dealing with a va_list. You probably want sprintf
instead.

sprintf

Name
spri ntf — Format a string and place it in a buffer
Synopsis

int sprintf (char * buf, const char * fm,);

Arguments

buf

The buffer to place the result into

fmt

The format string to use @...: Arguments for the format string

30

Chapter 3. Basic C Library Functions

variable arguments

3.2. String Manipulation

strcpy

Name

st r cpy — Copy aNUL terminated string

Synopsis

char * strcpy (char * dest, const char * src);

Arguments

dest
Where to copy the string to

Where to copy the string from

31

Chapter 3. Basic C Library Functions

strncpy

Name

st rncpy — Copy a length-limitedNUL- t er ni nat ed string

Synopsis

char * strncpy (char * dest, const char * src, size_t count);

Arguments

dest
Where to copy the string to

Where to copy the string from

count

The maximum number of bytes to copy

Description

Note that unlike userspace strncpy, this does\ubt pad the buffer. However, the
result is noNUL- t er mi nat ed if the source exceedsount bytes.

32

Chapter 3. Basic C Library Functions

strcat

Name

st rcat — Append oneNUL- t er mi nat ed string to another

Synopsis

char * strcat (char * dest, const char * src);

Arguments

dest
The string to be appended to

The string to append to it

strncat

Name

st rncat — Append a length-limitedyUL- t er ni nat ed string to another

Synopsis

char * strncat (char * dest, const char * src, size_t count);

33

Chapter 3. Basic C Library Functions

Arguments

dest
The string to be appended to

Src

The string to append to it

count

The maximum numbers of bytes to copy

Description

Note that in contrast to strncpy, strncat ensures the result is terminated.

stremp

Name

st r cmp — Compare two strings

Synopsis

int strcnp (const char * c¢s, const char * ct);

34

Chapter 3. Basic C Library Functions

Arguments
CS

One string
ct

Another string

strncmp

Name

st r ncnp — Compare two length-limited strings

Synopsis

int strncmp (const char * cs, const char * ct, size_t count);

Arguments
CS

One string
ct

Another string

count

The maximum number of bytes to compare

35

Chapter 3. Basic C Library Functions

strchr

Name

st r chr — Find the first occurrence of a character in a string

Synopsis

char * strchr (const char * s, int c);

Arguments

The string to be searched

c
The character to search for
strrchr
Name

st rr chr — Find the last occurrence of a character in a string

36

Chapter 3. Basic C Library Functions

Synopsis

char * strrchr (const char * s, int c);

Arguments

The string to be searched

The character to search for

strlen

Name

st rl en — Find the length of a string

Synopsis

size t strlen (const char * s);

Arguments

The string to be sized

37

Chapter 3. Basic C Library Functions

strnlen

Name

st rnl en — Find the length of a length-limited string

Synopsis

size t strnlen (const char * s, size_t count);

Arguments

The string to be sized

count

The maximum number of bytes to search

strpbrk

Name

st r pbr k — Find the first occurrence of a set of characters

38

Chapter 3. Basic C Library Functions

Synopsis

char * strpbrk (const char * cs, const char * ct);

Arguments

CS

The string to be searched

ct
The characters to search for
strtok
Name

st rt ok — Split a string into tokens

Synopsis

char * strtok (char * s, const char * ct);

Arguments

The string to be searched

39

Chapter 3. Basic C Library Functions

ct

The characters to search for

WARNING

strtok is deprecated, use strsep instead.

memset

Name

menset — Fill a region of memory with the given value

Synopsis

void * nenset (void * s, int c, size_t count);

Arguments

Pointer to the start of the area.
The byte to fill the area with

count

The size of the area.

40

Chapter 3. Basic C Library Functions
Description

Do not userenset to access |0 space, usenset _i o instead.

bcopy

Name

bcopy — Copy one area of memory to another

Synopsis

char * bcopy (const char * src, char * dest, int count);

Arguments

Where to copy from

dest

Where to copy to

count

The size of the area.

Description

Note that this is the same asntpy, with the arguments reversatkncpy is the
standardbcopy is a legacy BSD function.

41

Chapter 3. Basic C Library Functions

You should not use this function to access IO spacepasepy _t oi o or
mencpy_fromni o instead.

memcpy

Name

mencpy — Copy one area of memory to another

Synopsis

void * nencpy (void * dest, const void * src, size_t count);

Arguments

dest

Where to copy to

Where to copy from

count

The size of the area.

Description

You should not use this function to access 10 spacepasepy_t oi o or
mencpy_froni o instead.

42

Chapter 3. Basic C Library Functions

memmove

Name

menmove — Copy one area of memory to another

Synopsis

void * nenmmove (void * dest, const void * src, size_ t count);

Arguments

dest

Where to copy to
Where to copy from

count

The size of the area.

Description

Unlike nencpy, nemmove copes with overlapping areas.

43

Chapter 3. Basic C Library Functions
memcmp

Name
mencnp — Compare two areas of memory
Synopsis

int nmencnp (const void * c¢s, const void * ct, size_t count);

Arguments

CS

One area of memory

ct

Another area of memory

count

The size of the area.

memscan

Name

menscan — Find a character in an area of memory.

44

Chapter 3. Basic C Library Functions

Synopsis

void * nenscan (void * addr, int c, size_t size);

Arguments

addr

The memory area
The byte to search for

si ze

The size of the area.

Description

returns the address of the first occurrence abr 1 byte past the areadfis not found

strstr

Name

st r st r — Find the first substring in BUL terminated string

Synopsis

char * strstr (const char * sl1, const char * s2);

45

Chapter 3. Basic C Library Functions

Arguments

sl

The string to be searched

s2

The string to search for

memchr

Name

menchr — Find a character in an area of memory.

Synopsis

void * nencthr (const void * s, int ¢, size_t n);

Arguments

The memory area

The byte to search for

46

Chapter 3. Basic C Library Functions

The size of the area.

Description

returns the address of the first occurrence ofr NULL if ¢ is not found

3.3. Bit Operations
set_bit

Name

set _bit — Atomically set a bitin memory

Synopsis

void set _bit (int nr, volatile void * addr);

Arguments

nr
the bit to set

addr

the address to start counting from

47

Chapter 3. Basic C Library Functions
Description

This function is atomic and may not be reordered. Seset _bi t if you do not
require the atomic guarantees. Note thatmay be almost arbitrarily large; this
function is not restricted to acting on a single-word quantity.

__set_bit

Name

__set _bit — Seta bitin memory

Synopsis

void __set_bit (int nr, volatile void * addr);

Arguments

nr

the bit to set

addr

the address to start counting from

Description

Unlike set _bi t, this function is non-atomic and may be reordered. If it's called on the
same region of memory simultaneously, the effect may be that only one operation
succeeds.

48

Chapter 3. Basic C Library Functions

clear_bit

Name

cl ear _bi t — Clears a bit in memory

Synopsis

void clear _bit (int nr, volatile void * addr);

Arguments

nr

Bit to clear

addr

Address to start counting from

Description

cl ear _bi t is atomic and may not be reordered. However, it does not contain a
memory barrier, so if it is used for locking purposes, you should call
snmp_nb__before _clear_bit and/orsnp_nb__after _cl ear_bit inorderto
ensure changes are visible on other processors.

49

Chapter 3. Basic C Library Functions
change_bit

Name

__change_bi t — Toggle a bit in memory

Synopsis

void _ change bit (int nr, volatile void * addr);

Arguments

nr

the bit to set

addr

the address to start counting from

Description

Unlike change_bi t, this function is non-atomic and may be reordered. If it's called on
the same region of memory simultaneously, the effect may be that only one operation
succeeds.

50

Chapter 3. Basic C Library Functions

change_bit

Name
change_bi t — Toggle a bitin memory
Synopsis

void change_bit (int nr, volatile void * addr);

Arguments

nr

Bit to clear

addr

Address to start counting from

Description

change_bi t is atomic and may not be reordered. Note thatmay be almost
arbitrarily large; this function is not restricted to acting on a single-word quantity.

51

Chapter 3. Basic C Library Functions
test_and_set bit

Name

test _and _set bit — Set a bit and return its old value

Synopsis

int test_and_set_bit (int nr, volatile void * addr);

Arguments

nr

Bit to set

addr

Address to count from

Description

This operation is atomic and cannot be reordered. It also implies a memory barrier.

__test_and_set_hit

Name

__test _and _set bit — Seta bit and return its old value

52

Chapter 3. Basic C Library Functions

Synopsis

int __test_and_set_bit (int nr, volatile void * addr);

Arguments

nr

Bit to set

addr

Address to count from

Description

This operation is non-atomic and can be reordered. If two examples of this operation
race, one can appear to succeed but actually fail. You must protect multiple accesses
with a lock.

test_and_clear_bit

Name

test _and _cl ear bit — Clear a bit and return its old value

Synopsis

int test_and clear _bit (int nr, volatile void * addr);

53

Chapter 3. Basic C Library Functions
Arguments

nr

Bit to set

addr

Address to count from

Description

This operation is atomic and cannot be reordered. It also implies a memory barrier.

__test_and clear bit

Name

__test_and_cl ear _bit — Clear a bit and return its old value

Synopsis

int _test_and clear_bit (int nr, volatile void * addr);

Arguments

nr

Bit to set

54

Chapter 3. Basic C Library Functions
addr

Address to count from

Description

This operation is non-atomic and can be reordered. If two examples of this operation
race, one can appear to succeed but actually fail. You must protect multiple accesses
with a lock.

test_and_change_bit

Name
t est _and_change_bi t — Change a bit and return its new value
Synopsis

int test_and_change_bit (int nr, volatile void * addr);

Arguments

nr

Bit to set

addr

Address to count from

55

Chapter 3. Basic C Library Functions
Description

This operation is atomic and cannot be reordered. It also implies a memory barrier.

test_bit

Name

t est bit — Determine whether a bit is set

Synopsis

int test _bit (int nr, const volatile void * addr);

Arguments

nr

bit number to test

addr

Address to start counting from

56

Chapter 3. Basic C Library Functions
find_first_zero_bit

Name

find_first_zero_bit —find the first zero bit in a memory region

Synopsis

int find_first_zero_bit (void * addr, unsigned size);

Arguments

addr

The address to start the search at

si ze

The maximum size to search

Description

Returns the bit-number of the first zero bit, not the number of the byte containing a bit.

find_next_zero_ bit

Name

find_next _zero_bit — find the first zero bit in a memory region

57

ffz

Synopsis

int find_next_zero_bit (void * addr,

Arguments

addr

The address to base the search on

si ze

The maximum size to search

of f set

The bitnumber to start searching at

Name

f f z — find first zero in word.

Synopsis

Chapter 3. Basic C Library Functions

int size, int offset);

unsi gned long ffz (unsigned | ong word);

58

Chapter 3. Basic C Library Functions
Arguments

wor d

The word to search

Description

Undefined if no zero exists, so code should check against ~OUL first.

ffs

Name

f f s — find first bit set

Synopsis

int ffs (int x);

Arguments

the word to search

59

Chapter 3. Basic C Library Functions
Description

This is defined the same way as the libc and compiler builtin ffs routines, therefore
differs in spirit from the above ffz (man ffs).

hweight32

Name

hwei ght 32 — returns the hamming weight of a N-bit word

Synopsis

hwei ght 32 (x);

Arguments

the word to weigh

Description

The Hamming Weight of a number is the total number of bits set in it.

60

Chapter 4. Memory Management in
Linux

4.1. The Slab Cache

kmem_cache_create

Name

kmem cache_cr eat e — Create a cache.

Synopsis

kmem cache_ t * kmem cache_create (const char * nane, size_t
size, size_t offset, unsigned long flags, void (*ctor) (void*,
kmem cache_t *, unsigned long), void (*dtor) (void*,

kmem cache_t *, unsigned |long));

Arguments

nane

A string which is used in /proc/slabinfo to identify this cache.

si ze

The size of objects to be created in this cache.

of f set

The offset to use within the page.

61

Chapter 4. Memory Management in Linux
flags
SLAB flags

ctor

A constructor for the objects.

dt or

A destructor for the objects.

Description

Returns a ptr to the cache on success, NULL on failure. Cannot be called within a int,
but can be interrupted. Thet or is run when new pages are allocated by the cache and
thedt or is run before the pages are handed back. The flags are

SLAB_ PO SON - Poison the slab with a known test pattern (a5a5a5ab5) to catch
references to uninitialised memory.

SLAB_RED ZONE - Insert ‘Red’ zones around the allocated memory to check for buffer
overruns.

SLAB_NO_REAP - Don’'t automatically reap this cache when we’re under memory
pressure.

SLAB_HWCACHE_ALI GN - Align the objects in this cache to a hardware cacheline. This
can be beneficial if you're counting cycles as closely as davem.

kmem_cache_shrink

Name

kmem cache_shri nk — Shrink a cache.

62

Chapter 4. Memory Management in Linux

Synopsis

i nt kmem cache_shrink (knem_cache_t * cachep);

Arguments

cachep

The cache to shrink.

Description

Releases as many slabs as possible for a cache. To help debugging, a zero exit status
indicates all slabs were released.

kmem_cache_destroy

Name

kmem cache_dest r oy — delete a cache

Synopsis

int knmem cache_destroy (kmemcache t * cachep);

63

Chapter 4. Memory Management in Linux

Arguments

cachep

the cache to destroy

Description

Remove a kmem_cache_t object from the slab cache. Returns 0 on success.

It is expected this function will be called by a module when it is unloaded. This will
remove the cache completely, and avoid a duplicate cache being allocated each time a
module is loaded and unloaded, if the module doesn’t have persistent in-kernel storage
across loads and unloads.

The caller must guarantee that noone will allocate memory from the cache during the
kmem cache_destroy.

kmem_cache_alloc

Name

knmem cache_al | oc — Allocate an object

Synopsis

void * kmem cache_all oc (kmem cache_ t * cachep, int flags);

64

Chapter 4. Memory Management in Linux

Arguments

cachep

The cache to allocate from.

fl ags
Seeknmal | oc.
Description

Allocate an object from this cache. The flags are only relevant if the cache has no
available objects.

kmalloc

Name

kmal | oc — allocate memory

Synopsis

void * kmalloc (size_t size, int flags);

Arguments

si ze

how many bytes of memory are required.

65

Chapter 4. Memory Management in Linux
flags

the type of memory to allocate.

Description

kmalloc is the normal method of allocating memory in the kernel.
Thef | ags argument may be one of:

GFP_USER - Allocate memory on behalf of user. May sleep.
GFP_KERNEL - Allocate normal kernel ram. May sleep.

GFP_ATOM C - Allocation will not sleep. Use inside interrupt handlers.

Additionally, theGFP_DIVA flag may be set to indicate the memory must be suitable for
DMA. This can mean different things on different platforms. For example, on i386, it
means that the memory must come from the first 16 MB.

kmem_cache_free

Name

kmem cache_f r ee — Deallocate an object

Synopsis

voi d kmem cache_free (knem cache_t * cachep, void * objp);

66

Chapter 4. Memory Management in Linux

Arguments

cachep

The cache the allocation was from.
obj p

The previously allocated object.

Description

Free an object which was previously allocated from this cache.

kfree

Name

kf r ee — free previously allocated memory

Synopsis

void kfree (const void * objp);

Arguments

obj p

pointer returned by kmalloc.

67

Chapter 4. Memory Management in Linux
Description

Don’t free memory not originally allocated tyral | oc or you will run into trouble.

68

Chapter 5. The proc filesystem

5.1. sysctl interface

register_sysctl table

Name

regi ster_sysctl _tabl e —register a sysctl heirarchy

Synopsis

struct ctl _table header * register_sysctl _table (ctl _table *
table, int insert_at head);

Arguments

tabl e

the top-level table structure

insert_at head

whether the entry should be inserted in front or at the end

Description

Register a sysctl table heirarchiyabl e should be a filled in ctl_table array. An entry
with a ctl_name of 0 terminates the table.

The members of the &ctl_table structure are used as follows:

69

Chapter 5. The proc filesystem

ctl_name - This is the numeric sysctl value used by sysctl(2). The number must be
unique within that level of sysctl

procname - the name of the sysctl file under /proc/sys. Seitlta to not enter a sysctl
file

data - a pointer to data for use by proc_handler

maxlen - the maximum size in bytes of the data

mode - the file permissions for the /proc/sys file, and for sysctl(2)
child - a pointer to the child sysctl table if this entry is a directoryNotL.
proc_handler - the text handler routine (described below)

strategy - the strategy routine (described below)

de - for internal use by the sysctl routines

extral, extra2 - extra pointers usable by the proc handler routines

Leaf nodes in the sysctl tree will be represented by a single file under /proc; non-leaf
nodes will be represented by directories.

sysctl(2) can automatically manage read and write requests through the sysctl table.
The data and maxlen fields of the ctl_table struct enable minimal validation of the
values being written to be performed, and the mode field allows minimal authentication.

More sophisticated management can be enabled by the provision of a strategy routine
with the table entry. This will be called before any automatic read or write of the data is
performed.

The strategy routine may return

<0 - Error occurred (error is passed to user process)

0 - OK - proceed with automatic read or write.

>0 - OK - read or write has been done by the strategy routine, so return immediately.

There must be a proc_handler routine for any terminal nodes mirrored under /proc/sys
(non-terminals are handled by a built-in directory handler). Several default handlers are
available to cover common cases -

proc_dostring, proc_doi ntvec, proc_dointvec_jiffies,
proc_doi ntvec_m nnax, proc_doul ongvec_mns_jiffies_m nnax,
proc_doul ongvec_m nmax

It is the handler’s job to read the input buffer from user memory and process it. The
handler should return 0 on success.

70

Chapter 5. The proc filesystem

This routine returnslULL on a failure to register, and a pointer to the table header on
success.

unregister_sysctl_table

Name

unregi ster_sysct | _t abl e — unregister a sysctl table heirarchy

Synopsis

voi d unregi ster_sysctl _table (struct ctl_tabl e _header * header);

Arguments

header

the header returned from register_sysctl_table

Description

Unregisters the sysctl table and all children. proc entries may not actually be removed
until they are no longer used by anyone.

71

Chapter 5. The proc filesystem
proc_dostring

Name

proc_dostri ng —read a string sysctl

Synopsis

int proc_dostring (ctl _table * table, int wite, struct file *
filp, void * buffer, size_t * lenp);

Arguments

tabl e
the sysctl table

wite

TRUE if this is a write to the sysctl file
filp

the file structure

buf f er

the user buffer

| enp

the size of the user buffer

Description

Reads/writes a string from/to the user buffer. If the kernel buffer provided is not large
enough to hold the string, the string is truncated. The copied string is

72

Chapter 5. The proc filesystem

NULL-t er mi nat ed. If the string is being read by the user process, it is copied and a
newline '\n" is added. It is truncated if the buffer is not large enough.

Returns O on success.

proc_dointvec

Name

pr oc_doi nt vec — read a vector of integers

Synopsis

int proc_dointvec (ctl _table * table, int wite, struct file *
filp, void * buffer, size_t * lenp);

Arguments

tabl e
the sysctl table

wite

TRUE if this is a write to the sysctl file
filp

the file structure

buf f er

the user buffer

73

Chapter 5. The proc filesystem

l enp

the size of the user buffer

Description

Reads/writes up to table->maxlen/sizeof(unsigned int) integer values from/to the user
buffer, treated as an ASCII string.

Returns 0 on success.

proc_dointvec_minmax

Name
proc_doi nt vec_m nmax — read a vector of integers with min/max values
Synopsis

int proc_dointvec_mnmax (ctl _table * table, int wite, struct
file * filp, void * buffer, size_t * |enp);

Arguments

tabl e
the sysctl table

wite

TRUE if this is a write to the sysctl file

74

Chapter 5. The proc filesystem
filp
the file structure

buf f er

the user buffer

I enp

the size of the user buffer

Description

Reads/writes up to table->maxlen/sizeof(unsigned int) integer values from/to the user
buffer, treated as an ASCII string.

This routine will ensure the values are within the range specified by table->extral (min)
and table->extra2 (max).

Returns 0 on success.

proc_doulongvec_minmax

Name

proc_doul ongvec_m nnmax — read a vector of long integers with min/max values

Synopsis

i nt proc_doul ongvec_ninmax (ctl _table * table, int wite, struct
file * filp, void * buffer, size_t * |enp);

75

Chapter 5. The proc filesystem
Arguments

tabl e

the sysctl table
wite

TRUE if this is a write to the sysctl file
filp

the file structure

buf f er

the user buffer

I enp

the size of the user buffer

Description

Reads/writes up to table->maxlen/sizeof(unsigned long) unsigned long values from/to
the user buffer, treated as an ASCII string.

This routine will ensure the values are within the range specified by table->extral (min)
and table->extra2 (max).

Returns 0 on success.

proc_doulongvec_ms_jiffies_minmax

Name

proc_doul ongvec_ns_jiffies_m nmax — read a vector of millisecond
values with min/max values

76

Chapter 5. The proc filesystem
Synopsis

i nt proc_doul ongvec_mns_jiffies_mnmax (ctl _table * table, int
wite, struct file * filp, void * buffer, size t * lenp);

Arguments

tabl e

the sysctl table
wite

TRUE if this is a write to the sysctl file
filp

the file structure

buf f er

the user buffer

| enp

the size of the user buffer

Description

Reads/writes up to table->maxlen/sizeof(unsigned long) unsigned long values from/to
the user buffer, treated as an ASCII string. The values are treated as milliseconds, and
converted to jiffies when they are stored.

This routine will ensure the values are within the range specified by table->extral (min)
and table->extra2 (max).

Returns 0 on success.

77

Chapter 5. The proc filesystem
proc_dointvec_jiffies

Name

proc_doi ntvec_jiffies—read a vector of integers as seconds

Synopsis

int proc_dointvec_jiffies (ctl_table * table, int wite, struct
file * filp, void * buffer, size_t * |enp);

Arguments

tabl e
the sysctl table

wite

TRUE if this is a write to the sysctl file
filp

the file structure

buf f er

the user buffer

| enp

the size of the user buffer

Description

Reads/writes up to table->maxlen/sizeof(unsigned int) integer values from/to the user
buffer, treated as an ASCII string. The values read are assumed to be in seconds, and

78

Chapter 5. The proc filesystem
are converted into jiffies.

Returns 0 on success.

79

Chapter 6. The Linux VFS

6.1. The Directory Cache

d_invalidate

Name
d_i nval i dat e — invalidate a dentry
Synopsis

int d_invalidate (struct dentry * dentry);

Arguments

dentry

dentry to invalidate

Description

Try to invalidate the dentry if it turns out to be possible. If there are other dentries that
can be reached through this one we can't delete it and we return -EBUSY. On success
we return O.

no dcache lock.

80

Chapter 6. The Linux VFS
d_find_alias

Name

d_find_alias —grabahashed alias of inode

Synopsis

struct dentry * d find alias (struct inode * inode);

Arguments

i node

inode in question

Description

If inode has a hashed alias - acquire the reference to alias and return it. Otherwise
return NULL. Notice that if inode is a directory there can be only one alias and it can
be unhashed only if it has no children.

prune_dcache

Name

prune_dcache — shrink the dcache

81

Chapter 6. The Linux VFS
Synopsis

voi d prune_dcache (int count);

Arguments

count

number of entries to try and free

Description

Shrink the dcache. This is done when we need more memory, or simply when we need
to unmount something (at which point we need to unuse all dentries).

This function may fail to free any resources if all the dentries are in use.

shrink_dcache_sb

Name

shri nk_dcache_sb — shrink dcache for a superblock

Synopsis

voi d shrink_dcache_sb (struct super_block * sbh);

82

Chapter 6. The Linux VFS
Arguments

sb

superblock

Description

Shrink the dcache for the specified super block. This is used to free the dcache before
unmounting a file system

have submounts

Name

have_subnount s — check for mounts over a dentry

Synopsis

i nt have_subnounts (struct dentry * parent);

Arguments

par ent

dentry to check.

83

Chapter 6. The Linux VFS
Description

Return true if the parent or its subdirectories contain a mount point

shrink_dcache_parent

Name

shri nk_dcache_par ent — prune dcache

Synopsis

voi d shrink _dcache parent (struct dentry * parent);

Arguments

par ent

parent of entries to prune

Description

Prune the dcache to remove unused children of the parent dentry.

84

Chapter 6. The Linux VFS
d_alloc

Name

d_al | oc — allocate a dcache entry

Synopsis

struct dentry * d_alloc (struct dentry * parent, const struct
gstr * nane);

Arguments

par ent

parent of entry to allocate

nane

gstr of the name

Description

Allocates a dentry. It returnsULL if there is insufficient memory available. On a
success the dentry is returned. The name passed in is copied and the copy passed in
may be reused after this call.

85

Chapter 6. The Linux VFS
d_instantiate

Name

d_i nstanti at e —fill in inode information for a dentry

Synopsis

void d_instantiate (struct dentry * entry, struct inode *
i node) ;

Arguments

entry

dentry to complete

i node

inode to attach to this dentry

Description

Fill in inode information in the entry.
This turns negative dentries into productive full members of society.

NOTE! This assumes that the inode count has been incremented (or otherwise set) by
the caller to indicate that it is now in use by the dcache.

86

Chapter 6. The Linux VFS

d_alloc_root

Name

d_al | oc_r oot — allocate root dentry

Synopsis

struct dentry * d_alloc_root (struct inode * root_inode);

Arguments

root i node

inode to allocate the root for

Description

Allocate a root (/") dentry for the inode given. The inode is instantiated and returned.
NULL is returned if there is insufficient memory or the inode passétlis .

d_lookup

Name

d_I ookup — search for a dentry

87

Chapter 6. The Linux VFS
Synopsis

struct dentry * d_lookup (struct dentry * parent, struct gstr *
nane) ;

Arguments

par ent

parent dentry

nane

gstr of name we wish to find

Description

Searches the children of the parent dentry for the name in question. If the dentry is
found its reference count is incremented and the dentry is returned. The caller must use
d_put to free the entry when it has finished usingidLL is returned on failure.

d_validate

Name

d_val i dat e — verify dentry provided from insecure source

Synopsis

int d_validate (struct dentry * dentry, struct dentry *
dparent);

88

Chapter 6. The Linux VFS

Arguments

dentry
The dentry alleged to be valid child dpar ent

dpar ent

The parent dentry (known to be valid)

Description

An insecure source has sent us a dentry, here we verify itiged it. This is used by
ncpfs in its readdir implementation. Zero is returned in the dentry is invalid.

d_delete

Name

d_del et e — delete a dentry

Synopsis

void d delete (struct dentry * dentry);

89

Chapter 6. The Linux VFS
Arguments

dentry
The dentry to delete

Description

Turn the dentry into a negative dentry if possible, otherwise remove it from the hash
gueues so it can be deleted later

d_rehash

Name

d_r ehash — add an entry back to the hash

Synopsis

void d_rehash (struct dentry * entry);

Arguments

entry

dentry to add to the hash

90

Chapter 6. The Linux VFS
Description

Adds a dentry to the hash according to its name.

d_move

Name
d_nove — move a dentry
Synopsis

void d nove (struct dentry * dentry, struct dentry * target);

Arguments

dentry

entry to move

t ar get

new dentry

Description

Update the dcache to reflect the move of a file name. Negative dcache entries should
not be moved in this way.

91

Chapter 6. The Linux VFS

___d_path

Name

__d_pat h —return the path of a dentry

Synopsis

char * __ d_path (struct dentry * dentry, struct vfsnmount *
vfsmmt, struct dentry * root, struct vfsnount * rootmt, char *
buffer, int buflen);

Arguments

dentry

dentry to report

vf smimt

vfsmnt to which the dentry belongs

r oot

root dentry

r oot rmt

vfsmnt to which the root dentry belongs

buf f er

buffer to return value in

bufl en

buffer length

92

Chapter 6. The Linux VFS
Description

Convert a dentry into an ASCII path name. If the entry has been deleted the string “
(deleted)” is appended. Note that this is ambiguous. Returns the buffer.

“buflen” should bePAGE_SI ZE or more. Caller holds the dcache_lock.

IS_subdir

Name

i s_subdi r —is new dentry a subdirectory of old_dentry

Synopsis

int is_subdir (struct dentry * new dentry, struct dentry *
ol d_dentry);

Arguments

new dentry

new dentry

old _dentry
old dentry

Description

Returns 1 if new_dentry is a subdirectory of the parent (at any depth). Returns O
otherwise.

93

Chapter 6. The Linux VFS

find_inode_number

Name

find_i node_nunber — check for dentry with name

Synopsis

ino_t find_inode_nunber (struct dentry * dir, struct qstr *
nane) ;

Arguments

dir
directory to check

nane

Name to find.

Description

Check whether a dentry already exists for the given name, and return the inode number
if it has an inode. Otherwise 0 is returned.

This routine is used to post-process directory listings for filesystems using synthetic
inode numbers, and is necessary to keejcwd working.

94

Chapter 6. The Linux VFS

d_drop

Name
d_dr op —drop a dentry

Synopsis

void d_drop (struct dentry * dentry);

Arguments

dentry
dentry to drop

Description

d_dr op unhashes the entry from the parent dentry hashes, so that it won’t be found
through a VFS lookup any more. Note that this is different from deleting the dentry -
d_delete will try to mark the dentry negative if possible, giving a successful _negative
lookup, while d_drop will just make the cache lookup fail.

d_dr op is used mainly for stuff that wants to invalidate a dentry for some reason (NFS
timeouts or autofs deletes).

95

Chapter 6. The Linux VFS

d_add

Name
d_add — add dentry to hash queues
Synopsis

void d_add (struct dentry * entry, struct inode * inode);

Arguments

entry

dentry to add

i node

The inode to attach to this dentry

Description

This adds the entry to the hash queues and initializexde. The entry was actually
filled in earlier duringd_al | oc.

96

dget

Chapter 6. The Linux VFS

Name

dget — get a reference to a dentry

Synopsis

struct dentry * dget (struct dentry * dentry);

Arguments

dentry

dentry to get a reference to

Description

Given a dentry oNULL pointer increment the reference count if appropriate and return
the dentry. A dentry will not be destroyed when it has referertgst. should never be
called for dentries with zero reference counter. For these cases (preferably none,
functions in dcache.c are sufficient for normal needs and they take necessary
precautions) you should hold dcache_lock anddgdit _| ocked instead ofdget .

d_unhashed

Name

d_unhashed — is dentry hashed

97

Chapter 6. The Linux VFS
Synopsis

i nt d_unhashed (struct dentry * dentry);

Arguments

dentry

entry to check

Description

Returns true if the dentry passed is not currently hashed.

6.2. Inode Handling

mark_inode_dirty

Name

__mark_i node_dirty —internal function

Synopsis

void _ mark_inode_dirty (struct inode * inode, int flags);

98

Chapter 6. The Linux VFS
Arguments

i node

inode to mark

fl ags

what kind of dirty (i.e. |_DIRTY_SYNC) Mark an inode as dirty. Callers should
use mark_inode_dirty or mark_inode_dirty_sync.

write_inode _now

Name

write_i node_now— write an inode to disk

Synopsis

void wite_ inode now (struct inode * inode, int sync);

Arguments

i node

inode to write to disk

sync

whether the write should be synchronous or not

99

Chapter 6. The Linux VFS
Description

This function commits an inode to disk immediately if it is dirty. This is primarily
needed by knfsd.

clear_inode

Name

cl ear _i node — clear an inode

Synopsis

voi d clear_inode (struct inode * inode);

Arguments

i node

inode to clear

Description

This is called by the filesystem to tell us that the inode is no longer useful. We just
terminate it with extreme prejudice.

100

Chapter 6. The Linux VFS
iInvalidate _inodes

Name

i nval i dat e_i nodes — discard the inodes on a device

Synopsis

int invalidate_ inodes (struct super_block * sb);

Arguments

sb

superblock

Description

Discard all of the inodes for a given superblock. If the discard fails because there are
busy inodes then a non zero value is returned. If the discard is successful all the inodes
have been discarded.

get_empty_inode

Name

get _enpty_i node — obtain an inode

101

Chapter 6. The Linux VFS
Synopsis

struct inode * get_enpty_inode (void);

Arguments
voi d

no arguments

Description

This is called by things like the networking layer etc that want to get an inode without
any inode number, or filesystems that allocate new inodes with no pre-existing
information.

On a successful return the inode pointer is returned. On a failNut la pointer is
returned. The returned inode is not on any superblock lists.

lunique

Name

i uni que — get a unigue inode number

Synopsis

ino_t iunique (struct super_block * sb, ino_t max_reserved);

102

Chapter 6. The Linux VFS
Arguments

sb

superblock

max_reserved

highest reserved inode number

Description

Obtain an inode number that is unique on the system for a given superblock. This is
used by file systems that have no natural permanent inode numbering system. An inode
number is returned that is higher than the reserved limit but unique.

BUGS

With a large number of inodes live on the file system this function currently becomes
quite slow.

Insert_inode hash

Name

i nsert _i node_hash — hash an inode

Synopsis

void insert_inode_hash (struct inode * inode);

103

Chapter 6. The Linux VFS
Arguments

i node

unhashed inode

Description

Add an inode to the inode hash for this superblock. If the inode has no superblock it is
added to a separate anonymous chain.

remove_inode hash

Name

renmove_i node_hash — remove an inode from the hash

Synopsis

voi d renove_i node_hash (struct inode * inode);

Arguments

i node

inode to unhash

104

Chapter 6. The Linux VFS
Description

Remove an inode from the superblock or anonymous hash.

Iput

Name

i put — put an inode

Synopsis

void iput (struct inode * inode);

Arguments

i node

inode to put

Description

Puts an inode, dropping its usage count. If the inode use count hits zero the inode is
also then freed and may be destroyed.

105

Chapter 6. The Linux VFS

bmap

Name

bmap — find a block number in a file

Synopsis

int bmap (struct inode * inode, int block);

Arguments

i node

inode of file

bl ock
block to find

Description

Returns the block number on the device holding the inode that is the disk block number
for the block of the file requested. That is, asked for block 4 of inode 1 the function will
return the disk block relative to the disk start that holds that block of the file.

106

Chapter 6. The Linux VFS
update_atime

Name

updat e_at i me — update the access time

Synopsis

voi d update_atinme (struct inode * inode);

Arguments

i node

inode accessed

Description

Update the accessed time on an inode and mark it for writeback. This function
automatically handles read only file systems and media, as well as the “noatime” flag
and inode specific “noatime” markers.

make bad inode

Name

make bad_i node — mark an inode bad due to an I/O error

107

Chapter 6. The Linux VFS
Synopsis

voi d nmake_bad_i node (struct inode * inode);

Arguments

i node

Inode to mark bad

Description

When an inode cannot be read due to a media or remote network failure this function
makes the inode “bad” and causes I/O operations on it to fail from this point on.

IS_bad_inode

Name

i s_bad_i node —is an inode errored

Synopsis

int is_bad inode (struct inode * inode);

108

Chapter 6. The Linux VFS
Arguments

i node

inode to test

Description

Returns true if the inode in question has been marked as bad.

6.3. Registration and Superblocks

register_filesystem

Name

regi ster _fil esystem—register a new filesystem

Synopsis

int register _filesystem (struct file_systemtype * fs);

Arguments

fs

the file system structure

109

Chapter 6. The Linux VFS
Description

Adds the file system passed to the list of file systems the kernel is aware of for mount
and other syscalls. Returns 0 on success, or a hegative errno code on an error.

The &struct file_system_type that is passed is linked into the kernel structures and must
not be freed until the file system has been unregistered.

unregister_filesystem

Name
unregi ster _fil esyst em— unregister a file system
Synopsis

int unregister_filesystem (struct file_systemtype * fs);

Arguments

fs

filesystem to unregister

Description

Remove a file system that was previously successfully registered with the kernel. An
error is returned if the file system is not found. Zero is returned on a success.

Once this function has returned the &struct file_system_type structure may be freed or
reused.

110

Chapter 6. The Linux VFS

get_super

Name

get _super — get the superblock of a device

Synopsis

struct super_block * get_super (kdev_t dev);

Arguments

dev

device to get the superblock for

Description

Scans the superblock list and finds the superblock of the file system mounted on the
device givenNULL is returned if no match is found.

111

Chapter 6. The Linux VFS

6.4. File Locks
posix_lock file

Name

posi x_lock file—

Synopsis

int posix_ lock file (struct file * filp, struct file_lock *
caller, unsigned int wait);

Arguments
filp
The file to apply the lock to

cal |l er

The lock to be applied
wai t

1 to retry automatically, O to return -EAGAIN

Description

Add a POSIX style lock to a file. We merge adjacent locks whenever possible. POSIX
locks are sorted by owner task, then by starting address

112

Chapter 6. The Linux VFS
Kai Petzke writes

To make freeing a lock much faster, we keep a pointer to the lock before the actual one.
But the real gain of the new coding was, thatk_i t andunl ock_i t became one
function.

To all purists

Yes, | use a few goto’s. Just pass on to the next function.

__get_lease

Name
__get | ease — revoke all outstanding leases on file
Synopsis

int _get |lease (struct inode * inode, unsigned int node);

Arguments

i node

the inode of the file to return

nmode

the open mode (read or write)

113

Chapter 6. The Linux VFS
Description

get_lease (inlined for speed) has checked there already is a lease on this file. Leases are
broken on a call tepen ort r uncat e. This function can sleep unless you specified
O_NONBLOCK to youropen.

lease get _mtime

Name

| ease_get _ntinme—

Synopsis

time_t lease_get_mtine (struct inode * inode);

Arguments

i node

the inode

Description

This is to force NFS clients to flush their caches for files with exclusive leases. The
justification is that if someone has an exclusive lease, then they could be modifiying it.

114

Chapter 6. The Linux VFS

posix_block lock

Name
posi x_bl ock_| ock — blocks waiting for a file lock
Synopsis

voi d posi x_block lock (struct file |ock * blocker, struct
file_lock * waiter);

Arguments

bl ocker

the lock which is blocking

wai t er

the lock which conflicts and has to wait

Description

lockd needs to block waiting for locks.

posix_unblock lock

Name

posi x_unbl ock_I ock — stop waiting for a file lock

115

Chapter 6. The Linux VFS
Synopsis

voi d posi x_unbl ock_|l ock (struct file_lock * waiter);

Arguments

wai t er

the lock which was waiting

Description

lockd needs to block waiting for locks.

lock_may_read

Name

| ock_may_r ead — checks that the region is free of locks

Synopsis

int lock_may_read (struct inode * inode, loff_t start, unsigned
long len);

116

Chapter 6. The Linux VFS
Arguments

i node

the inode that is being read

start

the first byte to read

| en

the number of bytes to read

Description

Emulates Windows locking requirements. Whole-file mandatory locks (share modes)
can prohibit a read and byte-range POSIX locks can prohibit a read if they overlap.

N.B. this function is only ever called from knfsd and ownership of locks is never
checked.

lock_may_write

Name

| ock_may_writ e — checks that the region is free of locks
Synopsis

int lock_ may wite (struct inode * inode, |loff _t start, unsigned
long | en);

117

Chapter 6. The Linux VFS
Arguments

i node

the inode that is being written

start

the first byte to write

| en

the number of bytes to write

Description

Emulates Windows locking requirements. Whole-file mandatory locks (share modes)
can prohibit a write and byte-range POSIX locks can prohibit a write if they overlap.

N.B. this function is only ever called from knfsd and ownership of locks is never
checked.

fcntl_getlease

Name

fcntl _getl ease — Enquire what lease is currently active

Synopsis

int fcntl _getlease (struct file * filp);

118

Chapter 6. The Linux VFS
Arguments

filp

the file

Description

The value returned by this function will be one of
F_RDLCK to indicate a read-only (type Il) lease is held.

F_WRLCK to indicate an exclusive lease is held.

XXX

sfr & i disagree over whether F_INPROGRESS should be returned to userspace.

fcntl_setlease

Name

fcntl _setl ease — sets a lease on an open file

Synopsis

int fcntl_setlease (unsigned int fd, struct file * filp, |ong
arg);

119

Chapter 6. The Linux VFS
Arguments

fd

open file descriptor

filp
file pointer

arg

type of lease to obtain

Description

Call this fcntl to establish a lease on the file. Note that you also need tb GHITSI G
to receive a signal when the lease is broken.

sys flock

Name

sys_fl ock —fl ock system call.

Synopsis

asm i nkage long sys_flock (unsigned int fd, unsigned int cnd);

120

Chapter 6. The Linux VFS
Arguments

fd

the file descriptor to lock.

cmd
the type of lock to apply.

Description

Apply aFL_FLOCK style lock to an open file descriptor. Thed can be one of
LOCK_SH -- a shared lock.

LOCK_EX -- an exclusive lock.

LOCK_UN -- remove an existing lock.

LOCK_MAND -- a ‘mandatory’ flock. This exists to emulate Windows Share Modes.

LOCK_MAND can be combined withOCK_READ or LOCK_WRI TE to allow other
processes read and write access respectively.

get locks status

Name

get | ocks_st at us — reports lock usage in /proc/locks

Synopsis

int get locks_status (char * buffer, char ** start, off _t
of fset, int length);

121

Arguments

buf f er

address in userspace to write into

start
?

of f set

how far we are through the buffer

| ength

how much to read

Chapter 6. The Linux VFS

122

Chapter 7. Linux Networking

7.1. Socket Buffer Functions

skb _queue empty

Name

skb_queue_enpt y — check if a queue is empty

Synopsis

int skb_queue_enpty (struct sk_buff_head * |ist);

Arguments

|ist

queue head

Description

Returns true if the queue is empty, false otherwise.

123

Chapter 7. Linux Networking

skb _get

Name

skb_get — reference buffer

Synopsis

struct sk_buff * skb_get (struct sk _buff * skb);

Arguments

skb

buffer to reference

Description

Makes another reference to a socket buffer and returns a pointer to the buffer.

kfree skb

Name

kfree_skb — free an sk_buff

124

Chapter 7. Linux Networking
Synopsis

voi d kfree_skb (struct sk_buff * skb);

Arguments

skb

buffer to free

Description

Drop a reference to the buffer and free it if the usage count has hit zero.

skb_cloned

Name

skb_cl oned — is the buffer a clone

Synopsis

int skb_cloned (struct sk_buff * skb);

125

Chapter 7. Linux Networking
Arguments

skb

buffer to check

Description

Returns true if the buffer was generated witb_cl one and is one of multiple shared
copies of the buffer. Cloned buffers are shared data so must not be written to under
normal circumstances.

skb_shared

Name

skb_shar ed —is the buffer shared

Synopsis

int skb_shared (struct sk _buff * skb);

Arguments

skb

buffer to check

126

Chapter 7. Linux Networking
Description

Returns true if more than one person has a reference to this buffer.

skb_share check

Name

skb_shar e_check — check if buffer is shared and if so clone it

Synopsis

struct sk _buff * skb share check (struct sk _buff * skb, int
pri);

Arguments

skb

buffer to check

pri
priority for memory allocation

Description

If the buffer is shared the buffer is cloned and the old copy drops a reference. A new
clone with a single reference is returned. If the buffer is not shared the original buffer is
returned. When being called from interrupt status or with spinlocks held pri must be
GFP_ATOMIC.

127

Chapter 7. Linux Networking

NULL is returned on a memory allocation failure.

skb unshare

Name

skb_unshar e — make a copy of a shared buffer

Synopsis

struct sk _buff * skb_unshare (struct sk _buff * skb, int pri);

Arguments

skb
buffer to check

pri
priority for memory allocation

Description

If the socket buffer is a clone then this function creates a new copy of the data, drops a
reference count on the old copy and returns the new copy with the reference count at 1.
If the buffer is not a clone the original buffer is returned. When called with a spinlock
held or from interrupt statpr i must beG-P_ATOM C

NULL is returned on a memory allocation failure.

128

Chapter 7. Linux Networking

skb_peek

Name
skb_peek —

Synopsis

struct sk_buff * skb_peek (struct sk_buff_head * list_);

Arguments

[ist_

list to peek at

Description

Peek an &sk_buff. Unlike most other operations you _MUST _ be careful with this one.
A peek leaves the buffer on the list and someone else may run off with it. You must
hold the appropriate locks or have a private queue to do this.

ReturnsNULL for an empty list or a pointer to the head element. The reference count is
not incremented and the reference is therefore volatile. Use with caution.

129

Chapter 7. Linux Networking

skb_peek tall

Name
skb_peek tail —

Synopsis

struct sk_buff * skb_peek_tail (struct sk_buff_head * list_);

Arguments

list_

list to peek at

Description

Peek an &sk_buff. Unlike most other operations you _MUST _ be careful with this one.
A peek leaves the buffer on the list and someone else may run off with it. You must
hold the appropriate locks or have a private queue to do this.

ReturnsNULL for an empty list or a pointer to the tail element. The reference count is
not incremented and the reference is therefore volatile. Use with caution.

130

Chapter 7. Linux Networking
skb_queue_len

Name

skb_queue_| en — get queue length

Synopsis

__u32 skb_queue_len (struct sk_buff_head * list_);

Arguments

[ist_

list to measure

Description

Return the length of an &sk_buff queue.

skb _queue_head

Name

__skb_queue_head — queue a buffer at the list head

131

Chapter 7. Linux Networking
Synopsis

void _ skb_queue_head (struct sk_buff_head * list, struct
sk_buff * newsk);

Arguments
|ist
list to use

newsk

buffer to queue

Description

Queue a buffer at the start of a list. This function takes no locks and you must therefore
hold required locks before calling it.

A buffer cannot be placed on two lists at the same time.

skb_queue_head

Name

skb_queue_head — queue a buffer at the list head

132

Chapter 7. Linux Networking
Synopsis

voi d skb_queue_head (struct sk _buff_head * list, struct sk_buff
* newsk);

Arguments
|ist
list to use

newsk

buffer to queue

Description

Queue a buffer at the start of the list. This function takes the list lock and can be used
safely with other locking &sk_buff functions safely.

A buffer cannot be placed on two lists at the same time.

__skb_queue _tall

Name

__skb_queue_t ai | — queue a buffer at the list tail

133

Chapter 7. Linux Networking
Synopsis

void _ skb_queue_tail (struct sk_buff_head * list, struct
sk_buff * newsk);

Arguments
|ist
list to use

newsk

buffer to queue

Description

Queue a buffer at the end of a list. This function takes no locks and you must therefore
hold required locks before calling it.

A buffer cannot be placed on two lists at the same time.

skb_queue _talil

Name

skb_queue_t ai | — queue a buffer at the list tail

134

Chapter 7. Linux Networking
Synopsis

voi d skb_queue_tail (struct sk_buff_head * list, struct sk_buff
* newsk);

Arguments

|ist

list to use

newsk

buffer to queue

Description

Queue a buffer at the tail of the list. This function takes the list lock and can be used
safely with other locking &sk_buff functions safely.

A buffer cannot be placed on two lists at the same time.

__skb_dequeue

Name

__skb_dequeue — remove from the head of the queue

Synopsis

struct sk _buff * _ skb_dequeue (struct sk_buff_head * |ist);

135

Chapter 7. Linux Networking

Arguments

|ist

list to dequeue from

Description

Remove the head of the list. This function does not take any locks so must be used with
appropriate locks held only. The head item is returnedubi if the list is empty.

skb_dequeue

Name

skb_dequeue — remove from the head of the queue

Synopsis

struct sk _buff * skb_dequeue (struct sk buff_head * |ist);

Arguments

|ist

list to dequeue from

136

Chapter 7. Linux Networking
Description

Remove the head of the list. The list lock is taken so the function may be used safely
with other locking list functions. The head item is returnedNdcL if the list is empty.

skb_insert

Name

skb_i nsert — insert a buffer

Synopsis

void skb_insert (struct sk _buff * old, struct sk_buff * newsk);

Arguments

old

buffer to insert before

newsk

buffer to insert

Description

Place a packet before a given packet in a list. The list locks are taken and this function
is atomic with respect to other list locked calls A buffer cannot be placed on two lists at
the same time.

137

Chapter 7. Linux Networking

skb_append

Name
skb_append — append a buffer

Synopsis

voi d skb_append (struct sk_buff * old, struct sk _buff * newsk);

Arguments

ol d

buffer to insert after

newsk

buffer to insert

Description

Place a packet after a given packet in a list. The list locks are taken and this function is
atomic with respect to other list locked calls. A buffer cannot be placed on two lists at
the same time.

138

Chapter 7. Linux Networking
skb_unlink

Name

skb_unl i nk — remove a buffer from a list

Synopsis

voi d skb_unlink (struct sk_buff * skb);

Arguments

skb

buffer to remove

Description

Place a packet after a given packet in a list. The list locks are taken and this function is
atomic with respect to other list locked calls

Works even without knowing the list it is sitting on, which can be handy at times. It
also means that THE LIST MUST EXIST when you unlink. Thus a list must have its
contents unlinked before it is destroyed.

139

Chapter 7. Linux Networking
__skb_dequeue _tall

Name

__skb_dequeue_t ai | —remove from the tail of the queue

Synopsis

struct sk buff * skb _dequeue tail (struct sk buff head *
list);

Arguments

|ist

list to dequeue from

Description

Remove the tail of the list. This function does not take any locks so must be used with
appropriate locks held only. The tail item is returned\oLL if the list is empty.

skb_dequeue _tail

Name

skb_dequeue_t ai | — remove from the head of the queue

140

Chapter 7. Linux Networking
Synopsis

struct sk _buff * skb_dequeue_tail (struct sk_buff_head * list);

Arguments

list

list to dequeue from

Description

Remove the head of the list. The list lock is taken so the function may be used safely
with other locking list functions. The tail item is returnedMLL if the list is empty.

skb_put

Name

skb_put — add data to a buffer
Synopsis

unsi gned char * skb_put (struct sk _buff * skb, unsigned int
l en);

141

Chapter 7. Linux Networking
Arguments

skb

buffer to use

| en

amount of data to add

Description

This function extends the used data area of the buffer. If this would exceed the total
buffer size the kernel will panic. A pointer to the first byte of the extra data is returned.

skb_push

Name

skb_push — add data to the start of a buffer

Synopsis

unsi gned char * skb_push (struct sk_buff * skb, unsigned int
l en);

Arguments

skb

buffer to use

142

Chapter 7. Linux Networking

| en

amount of data to add

Description

This function extends the used data area of the buffer at the buffer start. If this would
exceed the total buffer headroom the kernel will panic. A pointer to the first byte of the
extra data is returned.

skb_pull

Name

skb_pul I — remove data from the start of a buffer

Synopsis

unsi gned char * skb_pull (struct sk _buff * skb, unsigned int
l en);

Arguments

skb

buffer to use

| en

amount of data to remove

143

Chapter 7. Linux Networking
Description

This function removes data from the start of a buffer, returning the memory to the
headroom. A pointer to the next data in the buffer is returned. Once the data has been
pulled future pushes will overwrite the old data.

skb _headroom

Name

skb_headr oom— bytes at buffer head

Synopsis

i nt skb_headroom (const struct sk_buff * skb);

Arguments

skb

buffer to check

Description

Return the number of bytes of free space at the head of an &sk_buff.

144

Chapter 7. Linux Networking
skb_tailroom

Name

skb_t ai | room— bytes at buffer end

Synopsis

int skb_tailroom (const struct sk_buff * skb);

Arguments

skb

buffer to check

Description

Return the number of bytes of free space at the tail of an sk_buff

skb_reserve

Name

skb_r eser ve — adjust headroom

145

Chapter 7. Linux Networking
Synopsis

voi d skb_reserve (struct sk_buff * skb, unsigned int |en);

Arguments

skb

buffer to alter

| en

bytes to move

Description

Increase the headroom of an empty &sk_buff by reducing the tail room. This is only
allowed for an empty buffer.

skb_trim

Name

skb_t ri m—remove end from a buffer

Synopsis

void skb_trim (struct sk_buff * skb, unsigned int |en);

146

Chapter 7. Linux Networking
Arguments

skb

buffer to alter

| en

new length

Description

Cut the length of a buffer down by removing data from the tail. If the buffer is already
under the length specified it is not modified.

skb_orphan

Name

skb_or phan — orphan a buffer

Synopsis

voi d skb_orphan (struct sk_buff * skb);

Arguments

skb

buffer to orphan

147

Chapter 7. Linux Networking
Description

If a buffer currently has an owner then we call the owner’s destructor function and
make theskb unowned. The buffer continues to exist but is no longer charged to its
former owner.

skb _queue_ purge

Name
skb_queue_pur ge — empty a list
Synopsis

voi d skb_queue_purge (struct sk_buff_head * list);

Arguments

|ist

list to empty

Description

Delete all buffers on an &sk_bulff list. Each buffer is removed from the list and one
reference dropped. This function takes the list lock and is atomic with respect to other
list locking functions.

148

Chapter 7. Linux Networking
__skb_queue_purge

Name

__skb_queue_pur ge — empty a list

Synopsis

void _ skb_queue_purge (struct sk_buff_head * list);

Arguments

list

list to empty

Description

Delete all buffers on an &sk_buff list. Each buffer is removed from the list and one
reference dropped. This function does not take the list lock and the caller must hold the
relevant locks to use it.

__dev_alloc_skb

Name

__dev_al | oc_skb — allocate an skbuff for sending

149

Chapter 7. Linux Networking
Synopsis

struct sk_buff * _ dev_alloc_skb (unsigned int |length, int
of p_mask) ;

Arguments

l ength

length to allocate

of p_mask

get_free_pages mask, passed to alloc_skb

Description

Allocate a new &sk_buff and assign it a usage count of one. The buffer has unspecified
headroom built in. Users should allocate the headroom they think they need without
accounting for the built in space. The built in space is used for optimisations.

NULL is returned in there is no free memory.

dev_alloc_skb

Name

dev_al | oc_skb — allocate an skbuff for sending

150

Chapter 7. Linux Networking
Synopsis

struct sk_buff * dev_alloc_skb (unsigned int |ength);

Arguments

| engt h

length to allocate

Description

Allocate a new &sk_buff and assign it a usage count of one. The buffer has unspecified
headroom built in. Users should allocate the headroom they think they need without
accounting for the built in space. The built in space is used for optimisations.

NULL is returned in there is no free memory. Although this function allocates memory it
can be called from an interrupt.

skb _cow

Name

skb_cow— copy header of skb when it is required

Synopsis

int skb_cow (struct sk_buff * skb, unsigned int headroom;

151

Chapter 7. Linux Networking
Arguments

skb

buffer to cow

headr oom

needed headroom

Description

If the skb passed lacks sufficient headroom or its data part is shared, data is reallocated.
If reallocation fails, an error is returned and original skb is not changed.

The result is skb with writable area skb->head...skb->tail and at hesslir oomof
space at head.

skb _over panic

Name

skb_over pani ¢ — private function

Synopsis

voi d skb_over _panic (struct sk _buff * skb, int sz, void * here);

152

Chapter 7. Linux Networking
Arguments

skb
buffer

SZ

size

her e

address

Description

Out of line support code faskb_put . Not user callable.

skb _under_panic

Name

skb_under _pani ¢ — private function

Synopsis

voi d skb_under _panic (struct sk_buff * skb, int sz, void *
here);

153

Chapter 7. Linux Networking
Arguments

skb
buffer

SZ

size

her e

address

Description

Out of line support code faskb_push. Not user callable.

alloc_skb

Name

al | oc_skb — allocate a network buffer

Synopsis

struct sk _buff * alloc_skb (unsigned int size, int gfp_mask);

154

Chapter 7. Linux Networking
Arguments

si ze

size to allocate

gf p_mask

allocation mask

Description

Allocate a new &sk_buff. The returned buffer has no headroom and a tail room of size
bytes. The object has a reference count of one. The return is the buffer. On a failure the
return iSNULL.

Buffers may only be allocated from interrupts usingfgp_mask of GFP_ATOM C.

___kfree_skb

Name

__kfree_skb — private function

Synopsis

void _ kfree_skb (struct sk_buff * skb);

155

Chapter 7. Linux Networking
Arguments

skb

buffer

Description

Free an sk_buff. Release anything attached to the buffer. Clean the state. This is an
internal helper function. Users should always call kfree_skb

skb _clone

Name
skb_cl one — duplicate an sk_buff
Synopsis

struct sk_buff * skb_clone (struct sk_buff * skb, int gfp_mask);

Arguments

skb

buffer to clone

of p_mask

allocation priority

156

Chapter 7. Linux Networking
Description

Duplicate an &sk_buff. The new one is not owned by a socket. Both copies share the
same packet data but not structure. The new buffer has a reference count of 1. If the
allocation fails the function returng¢ULL otherwise the new buffer is returned.

If this function is called from an interrupff p_mask must beG-P_ATOM C.

skb_copy

Name
skb_copy — create private copy of an sk_buff
Synopsis

struct sk_buff * skb_copy (const struct sk _buff * skb, int
of p_mask) ;

Arguments

skb
buffer to copy

of p_mask

allocation priority

157

Chapter 7. Linux Networking
Description

Make a copy of both an &sk_buff and its data. This is used when the caller wishes to
modify the data and needs a private copy of the data to alter. Reutmson failure or
the pointer to the buffer on success. The returned buffer has a reference count of 1.

As by-product this function converts non-linear &sk_buff to linear one, so that
&sk_buff becomes completely private and caller is allowed to modify all the data of
returned buffer. This means that this function is not recommended for use in
circumstances when only header is going to be modified pdké_copy instead.

pskb_copy

Name

pskb_copy — create copy of an sk_buff with private head.

Synopsis

struct sk_buff * pskb_copy (struct sk _buff * skb, int gfp_mask);

Arguments

skb
buffer to copy

of p_mask

allocation priority

158

Chapter 7. Linux Networking

Description

Make a copy of both an &sk_buff and part of its data, located in header. Fragmented
data remain shared. This is used when the caller wishes to modify only header of
&sk_buff and needs private copy of the header to alter. Retwwht on failure or the
pointer to the buffer on success. The returned buffer has a reference count of 1.

pskb_expand_head

Name

pskb_expand_head — reallocate header of sk_buff

Synopsis

i nt pskb_expand_head (struct sk_buff * skb, int nhead, int
ntail, int gfp_nask);

Arguments

skb

buffer to reallocate

nhead

room to add at head

nt ai |

room to add at tail

159

Chapter 7. Linux Networking
of p_mask

allocation priority

Description

Expands (or creates identical copy, if &nhead and &ntail are zero) header of skb.
&sk_buff itself is not changed. &sk_buff MUST have reference count of 1. Returns
zero in the case of success or error, if expansion failed. In the last case, &sk_buff is not
changed.

All the pointers pointing into skb header may change and must be reloaded after call to
this function.

skb_copy_expand

Name
skb_copy_expand — copy and expand sk_buff

Synopsis

struct sk_buff * skb_copy_expand (const struct sk_buff * skb,
i nt newheadroom int newtailroom int gfp_mask);

Arguments

skb
buffer to copy

160

Chapter 7. Linux Networking
newheadr oom

new free bytes at head

new ai | room

new free bytes at tail

gf p_mask

allocation priority

Description

Make a copy of both an &sk_buff and its data and while doing so allocate additional
space.

This is used when the caller wishes to modify the data and needs a private copy of the
data to alter as well as more space for new fields. Retduhk on failure or the pointer
to the buffer on success. The returned buffer has a reference count of 1.

You must pass&FP_ATOM C as the allocation priority if this function is called from an
interrupt.

__pskb_pull_tall

Name

__pskb_pul | _tail — advance tail of skb header

Synopsis

unsigned char * _ pskb_pull _tail (struct sk_buff * skb, int
delta);

161

Chapter 7. Linux Networking
Arguments

skb

buffer to reallocate

delta

number of bytes to advance tail

Description

The function makes a sense only on a fragmented &sk_buff, it expands header moving
its tail forward and copying necessary data from fragmented part.

&sk_buff MUST have reference count of 1.

ReturnsNULL (and &sk_buff does not change) if pull failed or value of new tail of skb
in the case of success.

All the pointers pointing into skb header may change and must be reloaded after call to
this function.

7.2. Socket Filter

sk _run_filter

Name

sk_run_filter —run afilter on a socket

162

Chapter 7. Linux Networking
Synopsis

int sk_run_filter (struct sk_buff * skb, struct sock filter *
filter, int flen);

Arguments

skb

buffer to run the filter on

filter

filter to apply

flen

length of filter

Description

Decode and apply filter instructions to the skb->data. Return length to keep, 0 for none.
skb is the data we are filtering, filter is the array of filter instructions, and len is the
number of filter blocks in the array.

sk _chk filter

Name

sk_chk_filter — verify socket filter code

163

Chapter 7. Linux Networking
Synopsis

int sk_chk_filter (struct sock_filter * filter, int flen);

Arguments

filter

filter to verify

flen

length of filter

Description

Check the user’s filter code. If we let some ugly filter code slip through kaboom! The
filter must contain no references or jumps that are out of range, no illegal instructions
and no backward jumps. It must end with a RET instruction

Returns 0 if the rule set is legal or a negative errno code if not.

164

Chapter 8. Network device support

8.1. Driver Support

Init_etherdev

Name

i ni t_et her dev — Register ethernet device

Synopsis

struct net_device * init_etherdev (struct net_device * dev, int
si zeof _priv);

Arguments

dev

An ethernet device structure to be filled in,MuLL if a new struct should be
allocated.

si zeof priv

Size of additional driver-private structure to be allocated for this ethernet device

Description

Fill in the fields of the device structure with ethernet-generic values.

165

Chapter 8. Network device support

If no device structure is passed, a new one is constructed, complete with a private data
area of sizesi zeof _pri v. A 32-byte (not bit) alignment is enforced for this private
data area.

If an empty string area is passed as dev->name, or a new structure is made, a new name
string is constructed.

alloc_etherdev

Name

al | oc_et her dev — Allocates and sets up an ethernet device

Synopsis

struct net_device * alloc_etherdev (int sizeof _priv);

Arguments

si zeof _priv

Size of additional driver-private structure to be allocated for this ethernet device

Description

Fill in the fields of the device structure with ethernet-generic values. Basically does
everything except registering the device.

Constructs a new net device, complete with a private data area ofisezof _pri v.
A 32-byte (not bit) alignment is enforced for this private data area.

166

Chapter 8. Network device support

init_fddidev

Name
i nit_fddi dev— Register FDDI device

Synopsis

struct net_device * init_fddidev (struct net_device * dev, int
si zeof _priv);

Arguments

dev
A FDDI device structure to be filled in, ™NULL if a new struct should be
allocated.

si zeof _priv

Size of additional driver-private structure to be allocated for this ethernet device

Description

Fill in the fields of the device structure with FDDI-generic values.

If no device structure is passed, a new one is constructed, complete with a private data
area of sizesi zeof _pri v. A 32-byte (not bit) alignment is enforced for this private
data area.

If an empty string area is passed as dev->name, or a new structure is made, a new name
string is constructed.

167

Chapter 8. Network device support

alloc_fddidev

Name
al | oc_f ddi dev — Register FDDI device

Synopsis

struct net_device * alloc_fddidev (int sizeof_priv);

Arguments

si zeof priv

Size of additional driver-private structure to be allocated for this FDDI device

Description

Fill in the fields of the device structure with FDDI-generic values.

Constructs a new net device, complete with a private data area afisizof _priv.
A 32-byte (not bit) alignment is enforced for this private data area.

168

Chapter 8. Network device support

Init_hippi_dev

Name
i ni t_hi ppi _dev — Register HIPPI device

Synopsis

struct net_device * init_hippi_dev (struct net_device * dev, int
si zeof _priv);

Arguments

dev
A HIPPI device structure to be filled in, O®/LL if a new struct should be
allocated.

si zeof _priv

Size of additional driver-private structure to be allocated for this ethernet device

Description

Fill in the fields of the device structure with HIPPI-generic values.

If no device structure is passed, a new one is constructed, complete with a private data
area of sizesi zeof _pri v. A 32-byte (not bit) alignment is enforced for this private
data area.

If an empty string area is passed as dev->name, or a new structure is made, a new name
string is constructed.

169

Chapter 8. Network device support

alloc_hippi_dev

Name
al | oc_hi ppi _dev — Register HIPPI device

Synopsis

struct net_device * alloc_hippi_dev (int sizeof_priv);

Arguments

si zeof priv

Size of additional driver-private structure to be allocated for this HIPPI device

Description

Fill in the fields of the device structure with HIPPI-generic values.

Constructs a new net device, complete with a private data area afisizof _pri v.
A 32-byte (not bit) alignment is enforced for this private data area.

Init_trdev

Name

i nit_trdev — Register token ring device

170

Chapter 8. Network device support
Synopsis

struct net_device * init_trdev (struct net_device * dev, int
si zeof _priv);

Arguments

dev

A token ring device structure to be filled in, BULL if a new struct should be
allocated.

si zeof _priv

Size of additional driver-private structure to be allocated for this ethernet device

Description

Fill in the fields of the device structure with token ring-generic values.

If no device structure is passed, a new one is constructed, complete with a private data
area of sizesi zeof _pri v. A 32-byte (not bit) alignment is enforced for this private
data area.

If an empty string area is passed as dev->name, or a new structure is made, a new name
string is constructed.

alloc_trdev

Name

al | oc_t r dev — Register token ring device

171

Chapter 8. Network device support

Synopsis

struct net_device * alloc_trdev (int sizeof_priv);

Arguments
si zeof _priv

Size of additional driver-private structure to be allocated for this token ring device

Description

Fill in the fields of the device structure with token ring-generic values.

Constructs a new net device, complete with a private data area ofiszzof _pri v.
A 32-byte (not bit) alignment is enforced for this private data area.

Init_fcdev

Name

i nit_fcdev — Register fibre channel device

Synopsis

struct net_device * init_fcdev (struct net_device * dev, int
si zeof _priv);

172

Chapter 8. Network device support

Arguments

dev

A fibre channel device structure to be filled in,MuLL if a new struct should be
allocated.

si zeof _priv

Size of additional driver-private structure to be allocated for this ethernet device

Description

Fill in the fields of the device structure with fibre channel-generic values.

If no device structure is passed, a new one is constructed, complete with a private data
area of sizesi zeof _pri v. A 32-byte (not bit) alignment is enforced for this private
data area.

If an empty string area is passed as dev->name, or a new structure is made, a new name
string is constructed.

alloc_fcdev

Name

al | oc_f cdev — Register fibre channel device

Synopsis

struct net_device * alloc_fcdev (int sizeof priv);

173

Chapter 8. Network device support

Arguments

si zeof _priv

Size of additional driver-private structure to be allocated for this fibre channel
device

Description

Fill in the fields of the device structure with fibre channel-generic values.

Constructs a new net device, complete with a private data area afisizof _priv.
A 32-byte (not bit) alignment is enforced for this private data area.

dev_add_ pack

Name
dev_add_pack — add packet handler

Synopsis

voi d dev_add_pack (struct packet _type * pt);

Arguments

pt
packet type declaration

174

Chapter 8. Network device support

Description

Add a protocol handler to the networking stack. The passed &packet_type is linked into
kernel lists and may not be freed until it has been removed from the kernel lists.

dev_remove_ pack

Name

dev_renove_ pack — remove packet handler

Synopsis

voi d dev_renove pack (struct packet _type * pt);

Arguments

pt
packet type declaration

Description

Remove a protocol handler that was previously added to the kernel protocol handlers
by dev_add_pack. The passed &packet_type is removed from the kernel lists and can
be freed or reused once this function returns.

175

Chapter 8. Network device support

__dev_get by name

Name

__dev_get by nane — find a device by its name

Synopsis

struct net_device * __dev_get_by nanme (const char * nane);

Arguments

namne

name to find

Description

Find an interface by name. Must be called under RTNL semaphore or

dev_base | ock. If the name is found a pointer to the device is returned. If the name
is not found themULL is returned. The reference counters are not incremented so the
caller must be careful with locks.

dev_get by name

Name

dev_get by nane — find a device by its name

176

Chapter 8. Network device support

Synopsis

struct net_device * dev_get_by nanme (const char * nanme);

Arguments
nane

name to find

Description

Find an interface by name. This can be called from any context and does its own
locking. The returned handle has the usage count incremented and the caller must use
dev_put to release it when it is no longer needsdLL is returned if no matching

device is found.

dev_get

Name

dev_get — testif a device exists

Synopsis

int dev_get (const char * nane);

177

Chapter 8. Network device support

Arguments

namne

name to test for

Description

Test if a name exists. Returns true if the name is found. In order to be sure the name is
not allocated or removed during the test the caller must hold the rtnl semaphore.

This function primarily exists for back compatibility with older drivers.

__dev_get by index

Name

__dev_get by i ndex — find a device by its ifindex

Synopsis

struct net_device * _ _dev_get by index (int ifindex);

Arguments

i findex

index of device

178

Chapter 8. Network device support

Description

Search for an interface by index. Retumd L if the device is not found or a pointer to

the device. The device has not had its reference counter increased so the caller must be
careful about locking. The caller must hold either the RTNL semaphore or

dev_base_|I ock.

dev_get by index

Name
dev_get by i ndex —find a device by its ifindex
Synopsis

struct net_device * dev_get_by index (int ifindex);

Arguments

i findex

index of device

Description

Search for an interface by index. Returns NULL if the device is not found or a pointer
to the device. The device returned has had a reference added and the pointer is safe
until the user calls dev_put to indicate they have finished with it.

179

Chapter 8. Network device support

dev_alloc_name

Name

dev_al | oc_nanme — allocate a name for a device

Synopsis

int dev_alloc_nanme (struct net_device * dev, const char * nane);

Arguments

dev

device

namne

name format string

Description

Passed a format string - egdttit will try and find a suitable id. Not efficient for many
devices, not called a lot. The caller must hold the dev_base or rtnl lock while allocating
the name and adding the device in order to avoid duplicates. Returns the number of the
unit assigned or a negative errno code.

180

Chapter 8. Network device support

dev_alloc

Name

dev_al | oc — allocate a network device and name

Synopsis

struct net_device * dev_alloc (const char * nanme, int * err);

Arguments

namne

name format string

error return pointer

Description

Passed a format string, eg.d'lf it will allocate a network device and space for the
name.NULL is returned if no memory is available. If the allocation succeeds then the
name is assigned and the device pointer returNedL is returned if the name
allocation failed. The cause of an error is returned as a negative errno code in the
variableer r points to.

The caller must hold thdev_base or RTNL locks when doing this in order to avoid
duplicate name allocations.

181

Chapter 8. Network device support

netdev_state change

Name

net dev_st at e_change — device changes state

Synopsis

voi d netdev_state_change (struct net_device * dev);

Arguments

dev

device to cause notification

Description

Called to indicate a device has changed state. This function calls the notifier chains for
netdev_chain and sends a NEWLINK message to the routing socket.

dev_load

Name

dev_| oad — load a network module

182

Chapter 8. Network device support

Synopsis

voi d dev_| oad (const char * name);

Arguments

namne

name of interface

Description

If a network interface is not present and the process has suitable privileges this function
loads the module. If module loading is not available in this kernel then it becomes a
nop.

dev_open

Name

dev_open — prepare an interface for use.

Synopsis

i nt dev_open (struct net_device * dev);

183

Chapter 8. Network device support

Arguments

dev

device to open

Description

Takes a device from down to up state. The device’s private open function is invoked and
then the multicast lists are loaded. Finally the device is moved into the up state and a
NETDEV_UP message is sent to the netdev notifier chain.

Calling this function on an active interface is a nop. On a failure a negative errno code
is returned.

dev_close

Name

dev_cl ose — shutdown an interface.

Synopsis

int dev_close (struct net_device * dev);

Arguments

dev

device to shutdown

184

Chapter 8. Network device support
Description

This function moves an active device into down stat&EADEV_GO NG _DOWN is sent
to the netdev notifier chain. The device is then deactivated and finalreeV_DONN
is sent to the notifier chain.

register _netdevice notifier

Name
regi ster_netdevice_notifier —register a network notifier block
Synopsis

int register_netdevice_notifier (struct notifier_block * nb);

Arguments

nb

notifier

Description

Register a notifier to be called when network device events occur. The notifier passed is
linked into the kernel structures and must not be reused until it has been unregistered. A
negative errno code is returned on a failure.

185

Chapter 8. Network device support

unregister_netdevice_notifier

Name

unr egi ster _netdevi ce_noti fi er — unregister a network notifier block

Synopsis

i nt unregister_netdevice_notifier (struct notifier_block * nb);

Arguments

nb

notifier

Description

Unregister a notifier previously registeredtsyi st er _net devi ce_noti fier. The
notifier is unlinked into the kernel structures and may then be reused. A negative errno
code is returned on a failure.

dev_queue_xmit

Name

dev_queue_xm t — transmit a buffer

186

Chapter 8. Network device support

Synopsis

int dev_queue_xmit (struct sk_buff * skb);

Arguments

skb

buffer to transmit

Description

Queue a buffer for transmission to a network device. The caller must have set the
device and priority and built the buffer before calling this function. The function can be
called from an interrupt.

A negative errno code is returned on a failure. A success does not guarantee the frame
will be transmitted as it may be dropped due to congestion or traffic shaping.

netif_rx

Name

netif_rx — post buffer to the network code

Synopsis

int netif_rx (struct sk_buff * skb);

187

Chapter 8. Network device support

Arguments

skb
buffer to post

Description

This function receives a packet from a device driver and queues it for the upper
(protocol) levels to process. It always succeeds. The buffer may be dropped during
processing for congestion control or by the protocol layers.

return values

NET_RX SUCCESS (no congestion) NET_RX CN_LOW (low congestion)
NET_RX_ CN_MOD (moderate congestion) NET_RX_CN_HIGH (high congestion)
NET_RX_DROP (packet was dropped)

net_call_rx_atomic

Name

net call _rx _atomc—

Synopsis

void net _call _rx _atonmic (void (*fn) (void));

188

Chapter 8. Network device support

Arguments
fn

function to call

Description

Make a function call that is atomic with respect to the protocol layers.

register_gifconf

Name
regi ster _gi fconf —register a SIOCGIF handler
Synopsis

int register_gifconf (unsigned int famly, gifconf_func_t *
gi fconf);

Arguments

famly

Address family

gi f conf

Function handler

189

Chapter 8. Network device support
Description

Register protocol dependent address dumping routines. The handler that is passed must
not be freed or reused until it has been replaced by another handler.

netdev_set master

Name

net dev_set nast er — set up master/slave pair

Synopsis

int netdev_set naster (struct net_device * slave, struct
net device * naster);

Arguments

sl ave

slave device

mast er

new master device

Description

Changes the master device of the slave. Raks to break the bonding. The caller
must hold the RTNL semaphore. On a failure a negative errno code is returned. On

190

Chapter 8. Network device support

success the reference counts are adjustedd, NEWLI NK is sent to the routing socket
and the function returns zero.

dev_set_promiscuity

Name

dev_set prom scui ty — update promiscuity count on a device

Synopsis

voi d dev_set _prom scuity (struct net_device * dev, int inc);

Arguments

dev

device

modifier

Description

Add or remove promsicuity from a device. While the count in the device remains above
zero the interface remains promiscuous. Once it hits zero the device reverts back to
normal filtering operation. A negative inc value is used to drop promiscuity on the
device.

191

Chapter 8. Network device support

dev_set allmulti

Name
dev_set _al | nul ti — update allmulti count on a device
Synopsis

void dev_set_allnulti (struct net_device * dev, int inc);

Arguments

dev

device

modifier

Description

Add or remove reception of all multicast frames to a device. While the count in the
device remains above zero the interface remains listening to all interfaces. Once it hits
zero the device reverts back to normal filtering operation. A negativevalue is used

to drop the counter when releasing a resource needing all multicasts.

192

Chapter 8. Network device support

dev _ioctl

Name

dev_i oct| — network device ioctl

Synopsis

int dev_ioctl (unsigned int cnmd, void * arg);

Arguments

cnd

command to issue

arg

pointer to a struct ifreq in user space

Description

Issue ioctl functions to devices. This is normally called by the user space syscall
interfaces but can sometimes be useful for other purposes. The return value is the return
from the syscall if positive or a negative errno code on error.

193

Chapter 8. Network device support

dev_new_index

Name

dev_new i ndex — allocate an ifindex

Synopsis

i nt dev_new_index (void);

Arguments

voi d

no arguments

Description

Returns a suitable unique value for a new device interface number. The caller must hold
the rtnl semaphore or the dev_base_lock to be sure it remains unique.

netdev_finish_unregister

Name

netdev_fini sh_unregi st er — complete unregistration

194

Chapter 8. Network device support

Synopsis

int netdev_finish_unregister (struct net_device * dev);

Arguments

dev

device

Description

Destroy and free a dead device. A value of zero is returned on success.

unregister_netdevice

Name

unr egi st er _net devi ce — remove device from the kernel

Synopsis

i nt unregister_netdevice (struct net_device * dev);

195

Chapter 8. Network device support

Arguments

dev

device

Description

This function shuts down a device interface and removes it from the kernel tables. On
success 0 is returned, on a failure a negative errno code is returned.

Callers must hold the rtnl semaphore. See the comment at the end of Space.c for details
about the locking. You may wanhr egi st er _net dev instead of this.

8.2. 8390 Based Network Cards
el_open

Name

ei _open — Open/initialize the board.

Synopsis

int ei _open (struct net _device * dev);

196

Chapter 8. Network device support

Arguments

dev

network device to initialize

Description

This routine goes all-out, setting everything up anew at each open, even though many
of these registers should only need to be set once at boot.

ei_close

Name

ei _cl ose — shut down network device

Synopsis

int ei_close (struct net_device * dev);

Arguments

dev

network device to close

197

Chapter 8. Network device support
Description

Opposite oki _open. Only used when “ifconfig <devname> down” is done.

el_tx_timeout

Name

ei _tx_timeout — handle transmit time out condition

Synopsis

void ei _tx timeout (struct net _device * dev);

Arguments
dev

network device which has apparently fallen asleep

Description

Called by kernel when device never acknowledges a transmit has completed (or failed)
- i.e. never posted a Tx related interrupt.

198

Chapter 8. Network device support

el_interrupt

Name

ei _i nt errupt — handle the interrupts from an 8390

Synopsis

void ei _interrupt (int irqg, void * dev_id, struct pt_regs *
regs);

Arguments

irq

interrupt number
dev_id

a pointer to the net_device
regs

unused

Description

Handle the ether interface interrupts. We pull packets from the 8390 via the card
specific functions and fire them at the networking stack. We also handle transmit
completions and wake the transmit path if neccessary. We also update the counters and
do other housekeeping as needed.

199

Chapter 8. Network device support

ethdev_init

Name

et hdev_i ni t — init rest of 8390 device struct

Synopsis

int ethdev_init (struct net_device * dev);

Arguments

dev

network device structure to init

Description

Initialize the rest of the 8390 device structure. Do NOT __init this, as it is used by 8390
based modular drivers too.

NS8390 _init

Name
NS8390 i ni t — initialize 8390 hardware

200

Chapter 8. Network device support

Synopsis

void NS8390_init (struct net_device * dev, int startp);

Arguments

dev

network device to initialize

startp

boolean. non-zero value to initiate chip processing

Description

Must be called with lock held.

8.3. Synchronous PPP
Sppp_input

Name

sppp_i nput — receive and process a WAN PPP frame

201

Chapter 8. Network device support

Synopsis

voi d sppp_i nput (struct net_device * dev, struct sk_buff * skb);

Arguments

dev

The device it arrived on

skb

The buffer to process

Description

This can be called directly by cards that do not have timing constraints but is normally
called from the network layer after interrupt servicing to process frames queued via
netif rx.

We process the options in the card. If the frame is destined for the protocol stacks then
it requeues the frame for the upper level protocol. If it is a control from it is processed
and discarded here.

sppp_close

Name

sppp_cl ose — close down a synchronous PPP or Cisco HDLC link

202

Chapter 8. Network device support

Synopsis

int sppp_close (struct net_device * dev);

Arguments

dev

The network device to drop the link of

Description

This drops the logical interface to the channel. It is not done politely as we assume we
will also be dropping DTR. Any timeouts are killed.

Sppp_open

Name
sppp_open — open a synchronous PPP or Cisco HDLC link

Synopsis

i nt sppp_open (struct net_device * dev);

203

Chapter 8. Network device support

Arguments

dev

Network device to activate

Description

Close down any existing synchronous session and commence from scratch. In the PPP
case this means negotiating LCP/IPCP and friends, while for Cisco HDLC we simply
need to start sending keepalives

sSppp_reopen

Name

sppp_r eopen — notify of physical link loss

Synopsis

int sppp_reopen (struct net_device * dev);

Arguments

dev

Device that lost the link

204

Chapter 8. Network device support
Description

This function informs the synchronous protocol code that the underlying link died (for
example a carrier drop on X.21)

We increment the magic numbers to ensure that if the other end failed to notice we will
correctly start a new session. It happens do to the nature of telco circuits is that you can
lose carrier on one endonly.

Having done this we go back to negotiating. This function may be called from an
interrupt context.

sppp_change mtu

Name
sppp_change_m u — Change the link MTU

Synopsis

i nt sppp_change_mtu (struct net_device * dev, int new_ntu);

Arguments

dev

Device to change MTU on

new _ntu

New MTU

205

Chapter 8. Network device support
Description

Change the MTU on the link. This can only be called with the link down. It returns an
error if the link is up or the mtu is out of range.

sppp_do_ioctl

Name
sppp_do_i oct| — loctl handler for ppp/hdic

Synopsis

int sppp_do_ioctl (struct net_device * dev, struct ifreq * ifr,
int cnd);

Arguments

dev

Device subject to ioctl
ifr
Interface request block from the user

cnd

Command that is being issued

206

Chapter 8. Network device support

Description

This function handles the ioctls that may be issued by the user to control the settings of
a PPP/HDLC link. It does both busy and security checks. This function is intended to
be wrapped by callers who wish to add additional ioctl calls of their own.

Sppp_attach

Name

sppp_at t ach — attach synchronous PPP/HDLC to a device

Synopsis

voi d sppp_attach (struct ppp_device * pd);

Arguments

pd
PPP device to initialise

Description

This initialises the PPP/HDLC support on an interface. At the time of calling the dev
element must point to the network device that this interface is attached to. The interface
should not yet be registered.

207

Chapter 8. Network device support

sppp_detach

Name

sppp_det ach — release PPP resources from a device

Synopsis

voi d sppp_detach (struct net_device * dev);

Arguments

dev

Network device to release

Description

Stop and free up any PPP/HDLC resources used by this interface. This must be called
before the device is freed.

208

Chapter 9. Module Support

9.1. Module Loading

request_module

Name

request _nodul e — try to load a kernel module

Synopsis

i nt request_nodul e (const char * nodul e_nane);

Arguments

nmodul e_nane

Name of module

Description

Load a module using the user mode module loader. The function returns zero on
success or a negative errno code on failure. Note that a successful module load does not
mean the module did not then unload and exit on an error of its own. Callers must

check that the service they requested is now available not blindly invoke it.

If module auto-loading support is disabled then this function becomes a no-operation.

209

Chapter 9. Module Support
call_usermodehelper

Name

cal | _user nodehel per — start a usermode application

Synopsis

i nt call_usernodehel per (char * path, char ** argv, char **
envp);

Arguments

pat h

pathname for the application

ar gv

null-terminated argument list

envp

null-terminated environment list

Description

Runs a user-space application. The application is started asynchronously. It runs as a
child of keventd. It runs with full root capabilities. keventd silently reaps the child
when it exits.

Must be called from process context. Returns zero on success, else a negative error
code.

210

Chapter 9. Module Support

9.2. Inter Module support

Inter_module_register

Name

i nter _nodul e_regi st er — register a new set of inter module data.

Synopsis

void inter_nodul e register (const char * imnane, struct nodule
* owner, const void * userdata);

Arguments

i m name

an arbitrary string to identify the data, must be unique

owner

module that is registering the data, always use THIS_ MODULE

user dat a

pointer to arbitrary userdata to be registered

Description

Check that the im_name has not already been registered, complain if it has. For new
data, add it to the inter_module_entry list.

211

Chapter 9. Module Support
iInter_module_unregister

Name

i nt er _nodul e_unr egi st er — unregister a set of inter module data.

Synopsis

voi d inter_nodul e_unregi ster (const char * imnane);

Arguments

i m_name

an arbitrary string to identify the data, must be unique

Description

Check that the im_name has been registered, complain if it has not. For existing data,
remove it from the inter_module_entry list.

Inter_module get

Name

i nt er _nodul e_get — return arbitrary userdata from another module.

212

Chapter 9. Module Support
Synopsis

const void * inter_nodul e_get (const char * imnane);

Arguments

i m nane

an arbitrary string to identify the data, must be unique

Description

If the im_name has not been registered, return NULL. Try to increment the use count
on the owning module, if that fails then return NULL. Otherwise return the userdata.

iInter_module_get_request

Name

i nt er _nodul e_get _request —im get with automatic request_module.
Synopsis

const void * inter_nodul e get request (const char * imnane,
const char * nodnane);

213

Chapter 9. Module Support
Arguments

i m nane

an arbitrary string to identify the data, must be unique

nodname

module that is expected to register im_name

Description

If inter_module_get fails, do request_module then retry.

Inter_module_ put

Name

i nt er _nodul e_put — release use of data from another module.

Synopsis

void inter_nodul e_put (const char * imnane);

Arguments

i m nane

an arbitrary string to identify the data, must be unique

214

Chapter 9. Module Support
Description

If the im_name has not been registered, complain, otherwise decrement the use count
on the owning module.

215

Chapter 10. Hardware Interfaces

10.1. Interrupt Handling
disable_irg_nosync

Name
di sabl e_i rg_nosync — disable an irq without waiting
Synopsis

voi d disable_irg_nosync (unsigned int irq);

Arguments

irq
Interrupt to disable

Description

Disable the selected interrupt line. Disables and Enables are nested. Unlike
di sabl e_i r g, this function does not ensure existing instances of the IRQ handler
have completed before returning.

This function may be called from IRQ context.

216

Chapter 10. Hardware Interfaces

disable_irg

Name

di sabl e_i r g — disable an irqg and wait for completion

Synopsis

void disable_irqg (unsigned int irq);

Arguments

irg
Interrupt to disable

Description

Disable the selected interrupt line. Enables and Disables are nested. This function waits
for any pending IRQ handlers for this interrupt to complete before returning. If you use
this function while holding a resource the IRQ handler may need you will deadlock.

This function may be called - with care - from IRQ context.

enable irq

Name

enabl e_i r g — enable handling of an irq

217

Chapter 10. Hardware Interfaces

Synopsis

void enable_irq (unsigned int irq);

Arguments
irg

Interrupt to enable

Description

Undoes the effect of one call th sabl e_i r g. If this matches the last disable,
processing of interrupts on this IRQ line is re-enabled.

This function may be called from IRQ context.

probe irq_mask

Name

probe_irg_mask — scan a bitmap of interrupt lines

Synopsis

unsigned int probe_irq_mask (unsigned |long val);

218

Chapter 10. Hardware Interfaces

Arguments

val

mask of interrupts to consider

Description

Scan the ISA bus interrupt lines and return a bitmap of active interrupts. The interrupt
probe logic state is then returned to its previous value.

Note

we need to scan all the irg’s even though we will only return ISA irqg numbers - just so
that we reset them all to a known state.

10.2. MTRR Handling

mtrr_add

Name

nt rr_add — Add a memory type region

Synopsis

int ntrr_add (unsigned | ong base, unsigned |ong size, unsigned
int type, char increnent);

219

Chapter 10. Hardware Interfaces

Arguments

base

Physical base address of region

si ze

Physical size of region

type
Type of MTRR desired

i ncr ement

If this is true do usage counting on the region

Description

Memory type region registers control the caching on newer Intel and non Intel
processors. This function allows drivers to request an MTRR is added. The details and
hardware specifics of each processor’s implementation are hidden from the caller, but
nevertheless the caller should expect to need to provide a power of two size on an
equivalent power of two boundary.

If the region cannot be added either because all regions are in use or the CPU cannot
support it a negative value is returned. On success the register number for this entry is
returned, but should be treated as a cookie only.

On a multiprocessor machine the changes are made to all processors. This is required
on x86 by the Intel processors.

The available types are

MIRR_TYPE_UNCACHABLE - No caching

MIRR_TYPE_WRBACK - Write data back in bursts whenever
MIRR_TYPE_WRCOMB - Write data back soon but allow bursts
MIRR_TYPE_WRTHROUGH - Cache reads but not writes

220

Chapter 10. Hardware Interfaces
BUGS

Needs a quiet flag for the cases where drivers do not mind failures and do not wish
system log messages to be sent.

mtrr_del

Name

ntrr_del — delete a memory type region

Synopsis

int ntrr_del (int reg, unsigned | ong base, unsigned |ong size);

Arguments

reg

Register returned by mtrr_add

base

Physical base address

si ze

Size of region

Description

If register is supplied then base and size are ignored. This is how drivers should call it.

221

Chapter 10. Hardware Interfaces

Releases an MTRR region. If the usage count drops to zero the register is freed and the
region returns to default state. On success the register is returned, on failure a negative
error code.

10.3. PCI Support Library
pci_find_slot

Name

pci _find_sl ot —locate PCI device from a given PCI slot

Synopsis

struct pci_dev * pci_find_slot (unsigned int bus, unsigned int
devfn);

Arguments

bus

number of PCI bus on which desired PCI device resides

devfn

encodes number of PCI slot in which the desired PCI device resides and the
logical device number within that slot in case of multi-function devices.

222

Chapter 10. Hardware Interfaces

Description

Given a PCI bus and slot/function number, the desired PCI device is located in system
global list of PCI devices. If the device is found, a pointer to its data structure is
returned. If no device is foun®ULL is returned.

pci_find_subsys

Name

pci _find_subsys — begin or continue searching for a PCI device by
vendor/subvendor/device/subdevice id

Synopsis

struct pci_dev * pci_find_subsys (unsigned int vendor, unsigned
i nt device, unsigned int ss_vendor, unsigned int ss_device,
const struct pci_dev * from;

Arguments
vendor
PCI vendor id to match, d?Cl _ANY_| Dto match all vendor ids

devi ce
PCI device id to match, d?Cl _ANY_| Dto match all device ids

ss_vendor

PCI subsystem vendor id to match,Rili _ANY_| Dto match all vendor ids

223

Chapter 10. Hardware Interfaces
ss_devi ce

PCI subsystem device id to match,Rill _ANY_| Dto match all device ids

from

Previous PCI device found in search,MuLL for new search.

Description

Iterates through the list of known PCI devices. If a PCI device is found with a matching
vendor , devi ce,ss_vendor andss_devi ce, a pointer to its device structure is
returned. Otherwis@yULL is returned. A new search is initiated by passwugL to the

f r omargument. Otherwise ffr omis notNULL, searches continue from next device

on the global list.

pci_find_device

Name

pci _find_devi ce — begin or continue searching for a PCI device by
vendor/device id

Synopsis

struct pci_dev * pci_find_device (unsigned int vendor, unsigned
i nt device, const struct pci_dev * from;

224

Chapter 10. Hardware Interfaces

Arguments

vendor

PCI vendor id to match, dpCl _ANY_| Dto match all vendor ids

devi ce

PCI device id to match, d?Cl _ANY_| Dto match all device ids

from

Previous PCI device found in search,NuLL for new search.

Description

Iterates through the list of known PCI devices. If a PCI device is found with a matching
vendor anddevi ce, a pointer to its device structure is returned. OthervisieL is
returned. A new search is initiated by passiug L to thef r omargument. Otherwise

if f r omis notNULL, searches continue from next device on the global list.

pci_find_class

Name

pci _find_cl ass — begin or continue searching for a PCI device by class
Synopsis

struct pci_dev * pci _find class (unsigned int class, const
struct pci_dev * from;

225

Chapter 10. Hardware Interfaces

Arguments

cl ass

search for a PCI device with this class designation

from

Previous PCI device found in search ML for new search.

Description

Iterates through the list of known PCI devices. If a PCI device is found with a matching
cl ass, a pointer to its device structure is returned. Otherwiki] is returned. A

new search is initiated by passiNgLL to thef r omargument. Otherwise ffr omis
notNULL, searches continue from next device on the global list.

pci_find_capability

Name

pci _find _capability —queryfordevices capabilities

Synopsis

int pci_find capability (struct pci_dev * dev, int cap);

226

Chapter 10. Hardware Interfaces

Arguments

dev

PCI device to query

cap

capability code

Description

Tell if a device supports a given PCI capability. Returns the address of the requested
capability structure within the device’s PCI configuration space or 0 in case the device
does not support it. Possible values ¢@p:

PCl _CAP_| D_PMPower Management

PCl _CAP_I D_AGP Accelerated Graphics Port
PCI _CAP_| D_VPD Vital Product Data

PCl _CAP_I| D_SLOTI D Slot Identification

PCl _CAP_I D_MsI Message Signalled Interrupts
PCl _CAP_| D_CHSWP CompactPCI HotSwap

pci_find_parent_resource

Name

pci _find_parent _resour ce — return resource region of parent bus of given
region

227

Chapter 10. Hardware Interfaces

Synopsis

struct resource * pci _find_parent_resource (const struct pci_dev
* dev, struct resource * res);

Arguments

dev

PCI device structure contains resources to be searched

res

child resource record for which parent is sought

Description

For given resource region of given device, return the resource region of parent bus the
given region is contained in or where it should be allocated from.

pci_set_power_state

Name

pci _set _power _st at e — Set the power state of a PCI device

Synopsis

int pci_set _power_state (struct pci_dev * dev, int state);

228

Chapter 10. Hardware Interfaces

Arguments

dev

PCI device to be suspended

state

Power state we're entering

Description

Transition a device to a new power state, using the Power Management Capabilities in
the device’s config space.

RETURN VALUE

-EINVAL if trying to enter a lower state than we're already in. O if we’re already in the
requested state. -EIO if device does not support PCI PM. 0 if we can successfully
change the power state.

pci_save_state

Name

pci _save_st at e — save the PCI configuration space of a device before suspending

Synopsis

int pci_save_state (struct pci_dev * dev, u32 * buffer);

229

Chapter 10. Hardware Interfaces

Arguments

dev

- PCI device that we're dealing with

buf f er

- buffer to hold config space context

Description

buf f er must be large enough to hold the entire PCI 2.2 config space (>= 64 bytes).

pci_restore_state

Name

pci _restore_stat e — Restore the saved state of a PCI device

Synopsis

int pci_restore_state (struct pci_dev * dev, u32 * buffer);

Arguments

dev

- PCI device that we're dealing with

230

Chapter 10. Hardware Interfaces

buf f er

- saved PCI config space

pci_enable_device

Name

pci _enabl e_devi ce — Initialize device before it's used by a driver.

Synopsis

i nt pci_enabl e_device (struct pci_dev * dev);

Arguments

dev

PCI device to be initialized

Description

Initialize device before it's used by a driver. Ask low-level code to enable I/O and
memory. Wake up the device if it was suspended. Beware, this function can fail.

231

Chapter 10. Hardware Interfaces

pci_disable_device

Name

pci _di sabl e_devi ce — Disable PCI device after use

Synopsis

voi d pci _disabl e _device (struct pci_dev * dev);

Arguments

dev
PCI device to be disabled

Description

Signal to the system that the PCI device is not in use by the system anymore. This only
involves disabling PCI bus-mastering, if active.

pci_enable wake

Name

pci _enabl e_wake — enable device to generate PME# when suspended

232

Chapter 10. Hardware Interfaces

Synopsis

i nt pci_enabl e_wake (struct pci_dev * dev, u32 state, int
enabl e) ;

Arguments

dev

- PCI device to operate on

state

- Current state of device.

enabl e

- Flag to enable or disable generation

Description

Set the bits in the device’s PM Capabilities to generate PME# when the system is
suspended.

-ElO is returned if device doesn’t have PM Capabilities. -EINVAL is returned if device
supports it, but can’t generate wake events. 0 if operation is successful.

pci_release_regions

Name

pci _rel ease_regi ons — Release reserved PCI I/O and memory resources

233

Chapter 10. Hardware Interfaces

Synopsis

void pci _rel ease_regions (struct pci_dev * pdev);

Arguments

pdev

PCI device whose resources were previously reserved by pci_request_regions

Description

Releases all PCI I1/0O and memory resources previously reserved by a successful call to
pci_request_regions. Call this function only after all use of the PCI regions has ceased.

pCi_request_regions

Name

pci _request _regi ons — Reserved PCI I/O and memory resources
Synopsis

int pci_request _regions (struct pci_dev * pdev, char *
res_nane);

234

Chapter 10. Hardware Interfaces

Arguments

pdev

PCI device whose resources are to be reserved

res_nane

Name to be associated with resource.

Description

Mark all PCI regions associated with PCI devpgev as being reserved by owner
res_name. Do not access any address inside the PCI regions unless this call returns
successfully.

Returns 0 on success, BBUSY on error. A warning message is also printed on failure.

pci_match_device

Name

pci _mat ch_devi ce — Tell if a PCI device structure has a matching PCI device id
structure

Synopsis

const struct pci_device_id * pci _match_device (const struct
pci _device id * ids, const struct pci_dev * dev);

235

Chapter 10. Hardware Interfaces

Arguments

i ds
array of PCI device id structures to search in

dev

the PCI device structure to match against

Description

Used by a driver to check whether a PCI device present in the system is in its list of
supported devices.Returns the matching pci_device_id structiwétarif there is no
match.

pci_register_driver

Name

pci _regi ster_driver —register a new pci driver

Synopsis

int pci_register_driver (struct pci_driver * drv);

Arguments

drv

the driver structure to register

236

Chapter 10. Hardware Interfaces
Description

Adds the driver structure to the list of registered drivers Returns the number of pci
devices which were claimed by the driver during registration. The driver remains
registered even if the return value is zero.

pci_unregister_driver

Name
pci _unregi ster_driver — unregister a pci driver
Synopsis

voi d pci _unregister_driver (struct pci_driver * drv);

Arguments

drv

the driver structure to unregister

Description

Deletes the driver structure from the list of registered PCI drivers, gives it a chance to
clean up by calling it enove function for each device it was responsible for, and
marks those devices as driverless.

237

Chapter 10. Hardware Interfaces

pci_insert_device

Name

pci _i nsert _devi ce —insert a hotplug device

Synopsis

voi d pci _insert_device (struct pci_dev * dev, struct pci_bus *
bus) ;

Arguments

dev

the device to insert

bus

where to insert it

Description

Add a new device to the device lists and notify userspace (/sbin/hotplug).

pci_remove_device

Name

pci _renove_devi ce — remove a hotplug device

238

Chapter 10. Hardware Interfaces

Synopsis

voi d pci _renove_device (struct pci_dev * dev);

Arguments

dev

the device to remove

Description

Delete the device structure from the device lists and notify userspace (/sbin/hotplug).

pci_dev_driver

Name

pci _dev_dri ver — getthe pci_driver of a device

Synopsis

struct pci_driver * pci_dev_driver (const struct pci_dev * dev);

239

Chapter 10. Hardware Interfaces

Arguments

dev

the device to query

Description

Returns the appropriate pci_driver structuréotL if there is no registered driver for
the device.

pci_set _master

Name

pci _set mast er — enables bus-mastering for device dev

Synopsis

voi d pci _set _master (struct pci_dev * dev);

Arguments

dev

the PCI device to enable

240

Chapter 10. Hardware Interfaces
Description

Enables bus-mastering on the device and gali$i os_set _nmast er to do the
needed arch specific settings.

pci_setup_device

Name

pci _set up_devi ce —fill in class and map information of a device

Synopsis

int pci_setup_device (struct pci_dev * dev);

Arguments

dev

the device structure to fill

Description

Initialize the device structure with information about the device’s vendor,class,memory
and IO-space addresses,IRQ lines etc. Called at initialisation of the PCI subsystem and
by CardBus services. Returns 0 on success and -1 if unknown type of device (not
normal, bridge or CardBus).

241

Chapter 10. Hardware Interfaces

pci_pool_create

Name

pci _pool _creat e — Creates a pool of pci consistent memory blocks, for dma.

Synopsis

struct pci _pool * pci_pool _create (const char * nane, struct
pci _dev * pdev, size_t size, size_t align, size_t allocation,
int flags);

Arguments

nane

name of pool, for diagnostics

pdev
pci device that will be doing the DMA

si ze

size of the blocks in this pool.

align

alignment requirement for blocks; must be a power of two

al | ocati on

returned blocks won't cross this boundary (or zero)

fl ags
SLAB_* flags (not all are supported).

242

Chapter 10. Hardware Interfaces

Description

Returns a pci allocation pool with the requested characteristics, or null if one can't be
created. Given one of these pogisj _pool _al | oc may be used to allocate memory.
Such memory will all have “consistent” DMA mappings, accessible by the device and
its driver without using cache flushing primitives. The actual size of blocks allocated
may be larger than requested because of alignment.

If allocation is nonzero, objects returned frmi _pool _al | oc won't cross that size
boundary. This is useful for devices which have addressing restrictions on individual
DMA transfers, such as not crossing boundaries of 4KBytes.

pci_pool_destroy

Name

pci _pool _destroy — destroys a pool of pci memory blocks.

Synopsis

voi d pci _pool _destroy (struct pci_pool * pool);

Arguments

pool

pci pool that will be destroyed

243

Chapter 10. Hardware Interfaces
Description

Caller guarantees that no more memory from the pool is in use, and that nothing will
try to use the pool after this call.

pci_pool alloc

Name

pci _pool _al |l oc — get a block of consistent memory

Synopsis

void * pci_pool _alloc (struct pci_pool * pool, int nemflags,
dma_addr _t * handl e);

Arguments

pool

pci pool that will produce the block

mem fl ags
SLAB_KERNEL or SLAB_ATOMIC

handl e

pointer to dma address of block

244

Chapter 10. Hardware Interfaces

Description

This returns the kernel virtual address of a currently unused block, and reports its dma
address through the handle. If such a memory block can'’t be allocated, null is returned.

pci_pool free

Name

pci _pool free — putblock back into pci pool

Synopsis

voi d pci_pool free (struct pci_pool * pool, void * vaddr,
dma_addr _t dnm);

Arguments

pool

the pci pool holding the block

vaddr

virtual address of block

dma

dma address of block

245

Chapter 10. Hardware Interfaces

Description

Caller promises neither device nor driver will again touch this block unless it is first
re-allocated.

10.4. MCA Architecture

10.4.1. MCA Device Functions

mca_find_adapter

Name
nca_fi nd_adapt er — scan for adapters
Synopsis

int nca find adapter (int id, int start);

Arguments

id
MCA identification to search for

start

starting slot

246

Chapter 10. Hardware Interfaces
Description

Search the MCA configuration for adapters matching the 16bit ID given. The first time
it should be called with start as zero and then further calls made passing the return
value of the previous call untMCA NOTFOUND is returned.

Disabled adapters are not reported.

mca_find_unused_adapter

Name
nca_find_unused_adapt er — scan for unused adapters
Synopsis

int nca_find_unused_adapter (int id, int start);

Arguments
id
MCA identification to search for

start

starting slot

Description

Search the MCA configuration for adapters matching the 16bit ID given. The first time
it should be called with start as zero and then further calls made passing the return

247

Chapter 10. Hardware Interfaces
value of the previous call untiCA_NOTFOUND is returned.

Adapters that have been claimed by drivers and those that are disabled are not reported.
This function thus allows a driver to scan for further cards when some may already be
driven.

mca_read_stored pos

Name
nca_read_stored _pos —read POS register from boot data
Synopsis

unsi gned char nta_read _stored pos (int slot, int reg);

Arguments

sl ot

slot number to read from

reg

register to read from

Description

Fetch a POS value that was stored at boot time by the kernel when it scanned the MCA
space. The register value is returned. Missing or invalid registers report O.

248

Chapter 10. Hardware Interfaces

mca_read_pos

Name

nca_r ead_pos — read POS register from card

Synopsis

unsi gned char nta_read_pos (int slot, int reg);

Arguments

sl ot

slot number to read from

reg

register to read from

Description

Fetch a POS value directly from the hardware to obtain the current value. This is much
slower than mca_read_stored_pos and may not be invoked from interrupt context. It
handles the deep magic required for onboard devices transparently.

249

Chapter 10. Hardware Interfaces

mca_write_pos

Name

nca_wite_pos —read POS register from card

Synopsis

void nta wite pos (int slot, int reg, unsigned char byte);

Arguments

sl ot

slot number to read from

reg

register to read from

byt e
byte to write to the POS registers

Description

Store a POS value directly from the hardware. You should not normally need to use this
function and should have a very good knowledge of MCA bus before you do so. Doing
this wrongly can damage the hardware.

This function may not be used from interrupt context.

Note that this a technically a Bad Thing, as IBM tech stuff says you should only set
POS values through their utilities. However, some devices such as the 3c523
recommend that you write back some data to make sure the configuration is consistent.
I'd say that IBM is right, but I like my drivers to work.

250

Chapter 10. Hardware Interfaces

This function can’t do checks to see if multiple devices end up with the same resources,
S0 you might see magic smoke if someone screws up.

mca_set_adapter_name

Name
nca_set adapt er _name — Set the description of the card
Synopsis

voi d nta_set _adapter_nane (int slot, char* nane);

Arguments

sl ot

slot to name

nane

text string for the namen

Description

This function sets the name reported via /proc for this adapter slot. This is for user
information only. Setting a name deletes any previous name.

251

Chapter 10. Hardware Interfaces

mca_set_adapter_procfn

Name

nca_set adapt er _procf n— Set the /proc callback

Synopsis

voi d nta_set adapter procfn (int slot, MCA ProcFn procfn, void*
dev);

Arguments

sl ot

slot to configure

procfn

callback function to call for /proc

dev

device information passed to the callback

Description

This sets up an information callback for /proc/mca/slot?. The function is called with the
buffer, slot, and device pointer (or some equally informative context information, or
nothing, if you prefer), and is expected to put useful information into the buffer. The
adapter name, ID, and POS registers get printed before this is called though, so don't
do it again.

This should be called with dULL pr ocf n when a module unregisters, thus
preventing kernel crashes and other such nastiness.

252

Chapter 10. Hardware Interfaces

mca_is_adapter_used

Name

nca_i s_adapt er _used — check if claimed by driver

Synopsis

int nca_is_adapter_used (int slot);

Arguments

sl ot

slot to check

Description

Returns 1 if the slot has been claimed by a driver

mca_mark_as_used

Name

nca_mar k_as_used — claim an MCA device

253

Chapter 10. Hardware Interfaces

Synopsis

int nca_mark_as_used (int slot);

Arguments

sl ot

slot to claim

FIXME

should we make this threadsafe

Claim an MCA slot for a device driver. If the slot is already taken the function returns
1, if it is not taken it is claimed and O is returned.

mca_mark _as_unused

Name

nca_mar k_as_unused — release an MCA device

Synopsis

void ncta_nmark_as_unused (int slot);

254

Chapter 10. Hardware Interfaces

Arguments

sl ot

slot to claim

Description

Release the slot for other drives to use.

mca_get_adapter _name

Name

ncta_get adapt er _name — get the adapter description

Synopsis

char * nta_get_adapter_nane (int slot);

Arguments

sl ot

slot to query

255

Chapter 10. Hardware Interfaces
Description

Return the adapter description if set. If it has not been set or the slot is out range then
return NULL.

mca_isadapter

Name

nca_i sadapt er — check if the slot holds an adapter

Synopsis

int nca_isadapter (int slot);

Arguments

sl ot

slot to query

Description

Returns zero if the slot does not hold an adapter, non zero if it does.

256

Chapter 10. Hardware Interfaces

mca_isenabled

Name

nca_i senabl ed — check if the slot holds an adapter

Synopsis

int nca_isenabled (int slot);

Arguments

sl ot

slot to query

Description

Returns a non zero value if the slot holds an enabled adapter and zero for any other
case.

257

Chapter 10. Hardware Interfaces

10.4.2. MCA Bus DMA

mca_enable _dma

Name

nca_enabl e_dna — channel to enable DMA on

Synopsis

void nta_enabl e_dma (unsigned int dmanr);

Arguments

dmanr

DMA channel

Description

Enable the MCA bus DMA on a channel. This can be called from IRQ context.

mca_disable _dma

Name

nca_di sabl e_dma — channel to disable DMA on

258

Chapter 10. Hardware Interfaces

Synopsis

voi d nta_di sabl e_dma (unsigned int dmanr);

Arguments

dmanr
DMA channel

Description

Enable the MCA bus DMA on a channel. This can be called from IRQ context.

mca_set_dma_addr

Name
nca_set dna_addr — load a 24bit DMA address

Synopsis

voi d nta_set _dnma_addr (unsigned int dmanr, unsigned int a);

259

Chapter 10. Hardware Interfaces

Arguments

dmanr
DMA channel

24bit bus address

Description
Load the address register in the DMA controller. This has a 24bit limitation (16Mb).

mca_get _dma_addr

Name
nca_get dnma_addr — load a 24bit DMA address

Synopsis

unsigned int nta_get _dma_addr (unsigned int dmanr);

Arguments

dmanr
DMA channel

260

Chapter 10. Hardware Interfaces

Description

Read the address register in the DMA controller. This has a 24bit limitation (16Mb).
The return is a bus address.

mca_set_dma_count

Name
nca_set _dna_count — load a 16bit transfer count
Synopsis

void nta_set _dma_count (unsigned int dmanr, unsigned int count);

Arguments
dmanr
DMA channel

count

count

Description

Set the DMA count for this channel. This can be up to 64Kbytes. Setting a count of
zero will not do what you expect.

261

Chapter 10. Hardware Interfaces

mca_get_dma_residue

Name

nca_get _dnma_r esi due — get the remaining bytes to transfer

Synopsis

unsigned int nta_get dma_residue (unsigned int dmanr);

Arguments

dmanr
DMA channel

Description

This function returns the number of bytes left to transfer on this DMA channel.

mca_set_dma_io

Name

nca_set _dma_i o — set the port for an 1/O transfer

262

Chapter 10. Hardware Interfaces

Synopsis

void nta_set_dma_i o (unsigned int dmanr, unsigned int io_addr);

Arguments

dmanr
DMA channel

i 0_addr

an 1/0 port number

Description

Unlike the ISA bus DMA controllers the DMA on MCA bus can transfer with an I/O
port target.

mca_set_dma_mode

Name

nta_set dma_node — set the DMA mode

Synopsis

voi d nta_set _dma_node (unsigned int dmanr, unsigned int node);

263

Chapter 10. Hardware Interfaces

Arguments
dmanr
DMA channel

nmode

mode to set

Description

The DMA controller supports several modes. The mode values you can

set are

MCA_DVA_ MODE_READ when reading from the DMA device.
MCA DVA_ MODE_WRI TE to writing to the DMA device.

MCA DMA MODE | Oto do DMA to or from an 1/O port.

MCA DMA MODE_16 to do 16bit transfers.

264

Chapter 11. The Device File System

devfs_register

Name

devfs_regi st er — Register a device entry.

Synopsis

devfs _handl e t devfs register (devfs handle t dir, const char *
nanme, unsigned int flags, unsigned int major, unsigned int
m nor, unode_t node, void * ops, void * info);

Arguments

dir
The handle to the parent devfs directory entry. If thisisL the new name is
relative to the root of the devfs.

nane

The name of the entry.

fl ags
A set of bitwise-ORed flags (DEVFS_FL_*).

maj or
The major number. Not needed for regular files.

m nor

The minor number. Not needed for regular files.

265

Chapter 11. The Device File System
node

The default file mode.

ops

The &file_operations or &block _device_operations structure. This must not be
externally deallocated.

info

An arbitrary pointer which will be written to ther i vat e_dat a field of the
&file structure passed to the device driver. You can set this to whatever you like,
and change it once the file is opened (the next file opened will not see this change).

Description

Returns a handle which may later be used in a caletef s_unr egi st er . On failure
NULL is returned.

devfs_unregister

Name

devfs_unregi st er — Unregister a device entry.

Synopsis

voi d devfs_unregister (devfs_handle t de);

266

Chapter 11. The Device File System
Arguments

de

A handle previously created levf s_regi st er or returned from
devfs_find_handl e. If this is NULL the routine does nothing.

devfs_mk_symlink

Name
devfs_nk _symink —

Synopsis

int devfs _nk _symink (devfs_handle t dir, const char * nane,
unsigned int flags, const char * link, devfs handle_ t * handl e,
void * info);

Arguments

dir
The handle to the parent devfs directory entry. If thiSUsL the new name is
relative to the root of the devfs.

namne

The name of the entry.

fl ags
A set of bitwise-ORed flags (DEVFS_FL_*).

267

Chapter 11. The Device File System
['i nk

The destination name.

handl e

The handle to the symlink entry is written here. This maybeL.

info

An arbitrary pointer which will be associated with the entry.

Description

Returns 0 on success, else a negative error code is returned.

devfs_mk_dir

Name
devfs_nk_di r — Create a directory in the devfs namespace.
Synopsis

devfs handle t devfs nk dir (devfs handle t dir, const char *
nane, void * info);

Arguments
dir

The handle to the parent devfs directory entry. If thiSUsL the new name is
relative to the root of the devfs.

268

Chapter 11. The Device File System

nane

The name of the entry.

info

An arbitrary pointer which will be associated with the entry.

Description

Use of this function is optional. Theevf s_r egi st er function will automatically

create intermediate directories as needed. This function is provided for efficiency
reasons, as it provides a handle to a directory. Returns a handle which may later be used
in a call todevf s_unr egi st er. On failureNULL is returned.

devfs_find_handle

Name
devfs_find_handl e — Find the handle of a devfs entry.
Synopsis

devfs handl e t devfs find handle (devfs handle t dir, const char
* name, unsigned int mgjor, unsigned int mnor, char type, int
traverse_syminks);

Arguments

dir
The handle to the parent devfs directory entry. If thisUsL the name is relative

269

Chapter 11. The Device File System

to the root of the devfs.

namne

The name of the entry.
maj or

The major number. This is usedrnifinme is NULL.
nm nor

The minor number. This is usednfne is NULL.

type

The type of special file to search for. This may be eitb&rFS_SPECI AL_CHR or
DEVFS SPECI AL_BLK.

traverse_sym i nks

If TRUE then symlink entries in the devfs namespace are traversed. Symlinks
pointing out of the devfs namespace will cause a failure. Symlink traversal
consumes stack space.

Description

Returns a handle which may later be used in a caletef s_unr egi st er,
devfs get fl ags, ordevfs_set flags. On failureNULL is returned.

devfs get flags

Name

devfs_get fl ags — Getthe flags for a devfs entry.

270

Chapter 11. The Device File System
Synopsis

int devfs_get_flags (devfs_handle_t de, unsigned int * flags);

Arguments

de

The handle to the device entry.

fl ags

The flags are written here.

Description

Returns 0 on success, else a negative error code.

devfs_get _maj_min

Name

devfs_get maj _m n— Get the major and minor numbers for a devfs entry.

Synopsis

int devfs_get_maj_min (devfs_handl e_t de, unsigned int * mgjor,
unsigned int * minor);

271

Chapter 11. The Device File System
Arguments

de

The handle to the device entry.
maj or

The major number is written here. This mayNig L.
nm nor

The minor number is written here. This maykid_L .

Description

Returns 0 on success, else a negative error code.

devfs_get handle from_inode

Name

devfs_get handl e_from. i node — Get the devfs handle for a VFS inode.
Synopsis

devfs _handl e _t devfs get handle from.inode (struct inode *
i node) ;

272

Chapter 11. The Device File System
Arguments

i node

The VFES inode.

Description

Returns the devfs handle on success, Blge .

devfs_generate path

Name

devfs_gener at e_pat h — Generate a pathname for an entry, relative to the devfs
root.

Synopsis

int devfs_generate_path (devfs_handle_t de, char * path, int
bufl en);

Arguments

de
The devfs entry.

273

Chapter 11. The Device File System
pat h

The buffer to write the pathname to. The pathname and "\O’ terminator will be
written at the end of the buffer.

bufl en

The length of the buffer.

Description

Returns the offset in the buffer where the pathname starts on success, else a negative
error code.

devfs_get _ops

Name

devfs_get ops — Get the device operations for a devfs entry.

Synopsis

void * devfs_get_ops (devfs_handle_t de);

Arguments

de

The handle to the device entry.

274

Chapter 11. The Device File System
Description

Returns a pointer to the device operations on success, else NULL.

devfs_set file _size

Name
devfs_set file_size— Setthe file size for a devfs regular file.
Synopsis

int devfs set file size (devfs_handle_ t de, unsigned |long size);

Arguments

de

The handle to the device entry.

si ze

The new file size.

Description

Returns 0 on success, else a negative error code.

275

Chapter 11. The Device File System
devfs get info

Name

devfs_get i nf o — Get the info pointer written to private_dataaé upon open.

Synopsis

void * devfs get _info (devfs_handle t de);

Arguments

de

The handle to the device entry.

Description

Returns the info pointer.

devfs_set info

Name

devfs_set _i nf o — Set the info pointer written to private_data upon open.

276

Chapter 11. The Device File System
Synopsis

int devfs_set_info (devfs_handle_t de, void * info);

Arguments

de

The handle to the device entry.

info

pointer to the data

Description

Returns 0 on success, else a negative error code.

devfs_get_ parent

Name

devfs_get parent — Get the parent device entry.

Synopsis

devfs_handl e_t devfs_get parent (devfs_handle_t de);

277

Chapter 11. The Device File System
Arguments

de

The handle to the device entry.

Description

Returns the parent device entry if it exists, el&L.

devfs_get_first_child

Name

devfs_get first_chil d— Getthe first leaf node in a directory.

Synopsis

devfs_handl e_t devfs_get first_child (devfs_handle_t de);

Arguments

de

The handle to the device entry.

Description

Returns the leaf node device entry if it exists, eNskL.

278

Chapter 11. The Device File System

devfs _get next sibling

Name

devfs_get next _si bl i ng— Get the next sibling leaf node. for a device entry.

Synopsis

devfs_handl e_t devfs_get _next_sibling (devfs_handl e_t de);

Arguments

de

The handle to the device entry.

Description

Returns the leaf node device entry if it exists, eNseL.

devfs_auto_unregister

Name

devfs_aut o_unregi st er — Configure a devfs entry to be automatically

279

Chapter 11. The Device File System

unregistered.

Synopsis

voi d devfs_auto_unregi ster (devfs_handl e_t master,
devfs_handl e_t sl ave);

Arguments

mast er

The master devfs entry. Only one slave may be registered.

sl ave

The devfs entry which will be automatically unregistered when the master entry is
unregistered. It is illegal to callevf s_unr egi st er on this entry.

devfs get unregister_slave

Name

devfs_get _unregi ster_sl ave — Get the slave entry which will be
automatically unregistered.

Synopsis

devfs _handl e t devfs get unregister_slave (devfs_handl e t
master);

280

Chapter 11. The Device File System
Arguments

mast er

The master devfs entry.

Description

Returns the slave which will be unregistered wihest er is unregistered.

devfs_get_name

Name
devfs_get name — Get the name for a device entry in its parent directory.
Synopsis

const char * devfs_get_nane (devfs_handle_t de, unsigned int *
nanel en) ;

Arguments

de

The handle to the device entry.

nanel en

The length of the name is written here. This mayNoeL.

281

Chapter 11. The Device File System
Description

Returns the name on success, @&lseL.

devfs_register_chrdev

Name

devfs_regi ster_chrdev — Optionally register a conventional character driver.

Synopsis

int devfs register _chrdev (unsigned int major, const char *
nane, struct file_operations * fops);

Arguments
maj or
The major number for the driver.

nane

The name of the driver (as seen in /proc/devices).

f ops

The &file_operations structure pointer.

282

Chapter 11. The Device File System
Description

This function will register a character driver provided the “devfs=only” option was not
provided at boot time. Returns 0 on success, else a negative error code on failure.

devfs_register blkdev

Name

devfs_register bl kdev — Optionally register a conventional block driver.

Synopsis

i nt devfs_register_ bl kdev (unsigned int major, const char *
nane, struct bl ock device operations * bdops);

Arguments
maj or
The major number for the driver.

namne

The name of the driver (as seen in /proc/devices).

bdops

The &block _device operations structure pointer.

283

Chapter 11. The Device File System
Description

This function will register a block driver provided the “devfs=only” option was not
provided at boot time. Returns 0 on success, else a negative error code on failure.

devfs_unregister chrdev

Name

devfs_unregi st er _chrdev — Optionally unregister a conventional character
driver.

Synopsis

i nt devfs_unregister_chrdev (unsigned int major, const char *
nane) ;

Arguments
maj or
The major number for the driver.

nane

The name of the driver (as seen in /proc/devices).

Description

This function will unregister a character driver provided the “devfs=only” option was
not provided at boot time. Returns 0 on success, else a negative error code on failure.

284

Chapter 11. The Device File System

devfs_unregister blkdev

Name

devfs_unregi st er _bl kdev — Optionally unregister a conventional block driver.

Synopsis

i nt devfs_unregister_bl kdev (unsigned int major, const char *
nane) ;

Arguments
maj or
The major number for the driver.

nane

The name of the driver (as seen in /proc/devices).

Description

This function will unregister a block driver provided the “devfs=only” option was not
provided at boot time. Returns 0 on success, else a negative error code on failure.

285

Chapter 12. Power Management

pm_register

Name

pm regi st er — register a device with power management

Synopsis

struct pmdev * pmregister (pmdev_t type, unsigned long id,
pm cal | back cal | back);

Arguments

type
device type

device ID

cal | back

callback function

Description

Add a device to the list of devices that wish to be notified about power management
events. A &pm_dev structure is returned on success, on failure the retdobls

The callback function will be called in process context and it may sleep.

286

Chapter 12. Power Management

pm_unregister

Name

pm unr egi st er — unregister a device with power management

Synopsis

void pmunregi ster (struct pmdev * dev);

Arguments

dev

device to unregister

Description

Remove a device from the power management notification lists. The dev passed must
be a handle previously returned by pm_register.

287

Chapter 12. Power Management

pm_unregister_all

Name

pm unregi st er _al | — unregister all devices with matching callback

Synopsis

voi d pmunregi ster_all (pm.call back call back);

Arguments

cal | back

callback function pointer

Description

Unregister every device that would call the callback passed. This is primarily meant as
a helper function for loadable modules. It enables a module to give up all its managed
devices without keeping its own private list.

pm_send

Name

pm send — send request to a single device

288

Chapter 12. Power Management
Synopsis

int pmsend (struct pmdev * dev, pmrequest_t rqgst, void *
dat a) ;

Arguments

dev
device to send to
rgst
power management request

dat a

data for the callback

Description

Issue a power management request to a given devicePNI&JSPEND and
PM_RESUME events are handled specially. The data field must hold the intended next
state. No call is made if the state matches.

BUGS

what stops two power management requests occuring in parallel and conflicting.

WARNING

Calling pm_send directly is not generally recommended, in paticular there is no
locking against the pm_dev going away. The caller must maintain all needed locking or
have 'inside knowledge’ on the safety. Also remember that this function is not locked
against pm_unregister. This means that you must handle SMP races on callback
execution and unload yourself.

289

Chapter 12. Power Management

pm_send_all

Name

pm send_al | — send request to all managed devices

Synopsis

int pmsend_all (pmrequest_t rgst, void * data);

Arguments

rqst

power management request

dat a

data for the callback

Description

Issue a power management request to a all devicesPMH&USPEND events are

handled specially. Any device is permitted to fail a suspend by returning a non zero
(error) value from its callback function. If any device vetoes a suspend request then all
other devices that have suspended during the processing of this request are restored to
their previous state.

290

Chapter 12. Power Management
WARNING

This function takes the pm_devs_lock. The lock is not dropped until the callbacks have
completed. This prevents races against pm locking functions, races against module
unload pm_unregister code. It does mean however that you must not issue pm_
functions within the callback or you will deadlock and users will hate you.

Zero is returned on success. If a suspend fails then the status from the device that
vetoes the suspend is returned.

BUGS

what stops two power management requests occuring in parallel and conflicting.

pm_find

Name

pm fi nd —find a device

Synopsis

struct pmdev * pmfind (pmdev_t type, struct pmdev * from;

Arguments

type
type of device

291

Chapter 12. Power Management

from

where to start looking

Description

Scan the power management list for devices of a specific type. The return value for a
matching device may be passed to further calls to this function to find further matches.
A NULL indicates the end of the list.

To search from the beginning pasidLL as thef r omvalue.

The caller MUST hold the pm_devs_lock lock when calling this function. The instant
that the lock is dropped all pointers returned may become invalid.

292

Chapter 13. Block Devices

blk_cleanup_queue

Name

bl k_cl eanup_gueue — release a request_queue_t when it is no longer needed

Synopsis

void bl k_cl eanup_queue (request_queue_t * q);

Arguments

the request queue to be released

Description

blk_cleanup_queue is the pairibk_i ni t _queue. It should be called when a request
gueue is being released; typically when a block device is being de-registered. Currently,
its primary task it to free all the &struct request structures that were allocated to the
queue.

Caveat

Hopefully the low level driver will have finished any outstanding requests first...

293

Chapter 13. Block Devices
blk_queue headactive

Name

bl k_queue_headact i ve — indicate whether head of request queue may be active

Synopsis

voi d bl k_queue_headactive (request_queue_ t * g, int active);

Arguments

The queue which this applies to.

active

A flag indication where the head of the queue is active.

Description

The driver for a block device may choose to leave the currently active request on the
request queue, removing it only when it has completed. The queue handling routines
assume this by default for safety reasons and will not involve the head of the request
gueue in any merging or reordering of requests when the queue is unplugged (and thus
may be working on this particular request).

If a driver removes requests from the queue before processing them, then it may
indicate that it does so, there by allowing the head of the queue to be involved in
merging and reordering. This is done be calling_queue_headact i ve with an
act i ve flag of0.

If a driver processes several requests at once, it must remove them (or at least all but
one of them) from the request queue.

294

Chapter 13. Block Devices

When a queue is plugged the head will be assumed to be inactive.

blk _queue make_ request

Name

bl k_queue_make_request — define an alternate make_request function for a
device

Synopsis

voi d bl k_queue_rnake_request (request_queue_t * (q,
make_request _fn * nfn);

Arguments

the request queue for the device to be affected

nfn

the alternate make_request function

Description

The normal way for &struct buffer_heads to be passed to a device driver is for them to
be collected into requests on a request queue, and then to allow the device driver to
select requests off that queue when it is ready. This works well for many block devices.
However some block devices (typically virtual devices such as md or lvm) do not
benefit from the processing on the request queue, and are served best by having the

295

Chapter 13. Block Devices

requests passed directly to them. This can be achieved by providing a function to
bl k_queue_nake_request .

Caveat

The driver that does this *must* be able to deal appropriately with buffers in
“highmemory”, either by callingph_knap to get a kernel mapping, to by calling
cr eat e_bounce to create a buffer in normal memory.

blk_init_queue

Name

bl k_i nit _queue — prepare a request queue for use with a block device
Synopsis

void bl k_init_queue (request_queue_t * g, request_fn_proc *
rfn);

Arguments

The &request_queue_t to be initialised

rfn

The function to be called to process requests that have been placed on the queue.

296

Chapter 13. Block Devices
Description

If a block device wishes to use the standard request handling procedures, which sorts
requests and coalesces adjacent requests, then it mustikcailni t _queue. The

functionr f n will be called when there are requests on the queue that need to be
processed. If the device supports plugging, thEn may not be called immediately

when requests are available on the queue, but may be called at some time later instead.
Plugged queues are generally unplugged when a buffer belonging to one of the requests
on the queue is needed, or due to memory pressure.

r f n is not required, or even expected, to remove all requests off the queue, but only as
many as it can handle at a time. If it does leave requests on the queue, it is responsible
for arranging that the requests get dealt with eventually.

A global spin lock $io_request_lock must be held while manipulating the requests on
the request queue.

The request on the head of the queue is by default assumed to be potentially active, and
it is not considered for re-ordering or merging whenever the given queue is unplugged.
This behaviour can be changed withk_queue_headact i ve.

Note

bl k_i ni t _queue must be paired with &l k_cl eanup_queue call when the block
device is deactivated (such as at module unload).

generic_make_request

Name

generi c_make_request —

Synopsis

voi d generic_make_request (int rw, struct buffer_head * bh);

297

Chapter 13. Block Devices

Arguments

rw
READ, WRITE, or READA - what sort of I/O is desired.

bh

The buffer head describing the location in memory and on the device.

Description

generi c_make_request is used to make I/O requests of block devices. It is passed a
&struct buffer_head and a &rw value. TREAD andWRI TE options are (hopefully)
obvious in meaning. ThREADA value means that a read is required, but that the driver
is free to fail the request if, for example, it cannot get needed resources immediately.

generi c_make_request does not return any status. The success/failure status of the
request, along with notification of completion, is delivered asynchronously through the
bh->b_end_io function described (one day) else where.

The caller of generic_make_request must make sure that b_page, b_addr, b_size are set
to describe the memory buffer, that b_rdev and b_rsector are set to describe the device
address, and the b_end_io and optionally b_private are set to describe how completion
notification should be signaled. BH_Mapped should also be set (to confirm that b_dev
and b_blocknr are valid).

generic_make_request and the drivers it calls may use b_regnext, and may change

b _rdev and b_rsector. So the values of these fields should NOT be depended on after
the call to generic_make_request. Because of this, the caller should record the device
address information in b_dev and b_blocknr.

Apart from those fields mentioned above, no other fields, and in particular, no other
flags, are changed by generic_make_request or any lower level drivers.

298

Chapter 13. Block Devices

submit_bh

Name
submit_bh—

Synopsis

void submt_bh (int rw, struct buffer _head * bh);

Arguments

rw

whether toREAD or W\RI TE, or maybe tcREADA (read ahead)

bh
The &struct buffer_head which describes the 1/0

Description

submni t _bh is very similar in purpose tgeneri c_make_r equest , and uses that
function to do most of the work.

The extra functionality provided by submit_bh is to determine b_rsector from

b_blocknr and b_size, and to set b_rdev from b_dev. This is is appropriate for 1O
requests that come from the buffer cache and page cache which (currently) always use
aligned blocks.

299

Chapter 13. Block Devices
Il_rw_block

Name

I'l _rw bl ock — level access to block devices

Synopsis

void Il _rwblock (int rw, int nr, struct buffer_head * * bhs);

Arguments

rw

whether toREAD or WRI TE or maybeREADA (readahead)

nr
number of &struct buffer_heads in the array
bhs
array of pointers to &struct buffer_head
Description

I'l _rw_bl ock takes an array of pointers to &struct buffer_heads, and requests an 1/0
operation on them, eitherREAD or aWRI TE. The thirdREADA option is described in
the documentation fageneri c_make_r equest whichl | _rw bl ock calls.

This function provides extra functionality that is notganer i c_make_r equest that

is relevant to buffers in the buffer cache or page cache. In particular it drops any buffer
that it cannot get a lock on (with the BH_Lock state bit), any buffer that appears to be
clean when doing a write request, and any buffer that appears to be up-to-date when
doing read request. Further it marks as clean buffers that are processed for writing (the
buffer cache wont assume that they are actually clean until the buffer gets unlocked).

300

Chapter 13. Block Devices

Il_rw_block sets b_end_io to simple completion handler that marks the buffer
up-to-date (if approriate), unlocks the buffer and wakes any waiters. As client that
needs a more interesting completion routine shouldszadhi t _bh (or

generi c_make_request) directly.

Caveat

All of the buffers must be for the same device, and must also be

end_that_request_first

Name
end_t hat _request _first —end /O on one buffer.
Synopsis

int end_that_request _first (struct request * req, int uptodate,
char * nane);

Arguments

req

the request being processed

upt odat e

0 for I/O error

301

Chapter 13. Block Devices
name

the name printed for an 1/O error

Description

Ends 1/O on the first buffer attachediteq, and sets it up for the next buffer_head (if
any) in the cluster.

Return

0 - we are done with this request, calid_t hat _r equest _| ast 1 - still buffers
pending for this request

Caveat

Drivers implementing their own end_request handling mustd&l f i ni shed_i o
appropriately.

302

Chapter 14. Miscellaneous Devices

misc_reqister

Name

m sc_regi st er —register a miscellaneous device

Synopsis

int misc register (struct mscdevice * nisc);

Arguments

m sc

device structure

Description

Register a miscellaneous device with the kernel. If the minor number is set to
M SC_DYNAM C_M NOR a minor number is assigned and placed in the minor field of
the structure. For other cases the minor number requested is used.

The structure passed is linked into the kernel and may not be destroyed until it has been
unregistered.

A zero is returned on success and a negative errno code for failure.

303

Chapter 14. Miscellaneous Devices

misc_deregister

Name

m sc_der egi st er — unregister a miscellaneous device

Synopsis

int msc_deregister (struct mscdevice * msc);

Arguments

m sc

device to unregister

Description

Unregister a miscellaneous device that was previously successfully registered with
m sc_regi st er. Success is indicated by a zero return, a negative errno code indicates
an error.

304

Chapter 15. Video4Linux

video_unregister_device

Name

vi deo_unr egi st er _devi ce — unregister a video4linux device

Synopsis

voi d video_unregi ster_device (struct video _device * vfd);

Arguments

vfd

the device to unregister

Description

This unregisters the passed device and deassigns the minor number. Future open calls
will be met with errors.

305

Chapter 16. Sound Devices

register_sound_special

Name

regi ster_sound_speci al — register a special sound node

Synopsis

int register_sound special (struct file operations * fops, int
unit);

Arguments
f ops
File operations for the driver

uni t

Unit number to allocate

Description

Allocate a special sound device by minor number from the sound subsystem. The
allocated number is returned on succes. On failure a negative error code is returned.

306

Chapter 16. Sound Devices
register_sound_mixer

Name

regi ster_sound_m xer — register a mixer device

Synopsis

int register_sound_m xer (struct file_operations * fops, int
dev);

Arguments
f ops
File operations for the driver

dev

Unit number to allocate

Description

Allocate a mixer device. Unit is the number of the mixer requested. Pass -1 to request
the next free mixer unit. On success the allocated number is returned, on failure a
negative error code is returned.

307

Chapter 16. Sound Devices
register_sound_midi

Name

regi ster_sound_m di — register a midi device

Synopsis

int register_sound_mdi (struct file_operations * fops, int
dev);

Arguments

f ops

File operations for the driver

dev

Unit number to allocate

Description

Allocate a midi device. Unit is the number of the midi device requested. Pass -1 to
request the next free midi unit. On success the allocated number is returned, on failure
a negative error code is returned.

308

Chapter 16. Sound Devices
register_sound_dsp

Name

regi ster_sound_dsp — register a DSP device

Synopsis

int register_sound dsp (struct file operations * fops, int dev);

Arguments

f ops

File operations for the driver

dev

Unit number to allocate

Description

Allocate a DSP device. Unit is the number of the DSP requested. Pass -1 to request the
next free DSP unit. On success the allocated number is returned, on failure a negative
error code is returned.

This function allocates both the audio and dsp device entries together and will always
allocate them as a matching pair - eg dsp3/audio3

309

Chapter 16. Sound Devices
register_sound_synth

Name

regi st er _sound_synt h — register a synth device

Synopsis

int register_sound_synth (struct file_operations * fops, int
dev);

Arguments

f ops

File operations for the driver

dev

Unit number to allocate

Description

Allocate a synth device. Unit is the number of the synth device requested. Pass -1 to
request the next free synth unit. On success the allocated number is returned, on failure
a negative error code is returned.

310

Chapter 16. Sound Devices
unregister_sound_special

Name

unr egi st er _sound_speci al — unregister a special sound device

Synopsis

voi d unregi ster_sound_special (int unit);

Arguments

uni t

unit number to allocate

Description

Release a sound device that was allocated métfi st er _sound_speci al . The unit
passed is the return value from the register function.

unregister_sound_mixer

Name

unr egi ster _sound_m xer — unregister a mixer

311

Chapter 16. Sound Devices
Synopsis

voi d unregi ster_sound_m xer (int unit);

Arguments

uni t

unit number to allocate

Description

Release a sound device that was allocated nathi st er _sound_mi xer . The unit
passed is the return value from the register function.

unregister_sound_midi

Name

unr egi st er _sound_m di — unregister a midi device

Synopsis

void unregister_sound mdi (int unit);

312

Chapter 16. Sound Devices
Arguments

unit

unit number to allocate

Description

Release a sound device that was allocated méti st er _sound_ni di . The unit
passed is the return value from the register function.

unregister_sound_dsp

Name

unr egi st er _sound_dsp — unregister a DSP device

Synopsis

voi d unregi ster_sound_dsp (int unit);

Arguments

uni t

unit number to allocate

313

Chapter 16. Sound Devices
Description

Release a sound device that was allocated matfi st er _sound_dsp. The unit
passed is the return value from the register function.

Both of the allocated units are released together automatically.

unregister_sound_synth

Name

unr egi st er _sound_synt h — unregister a synth device

Synopsis

voi d unregi ster_sound_synth (int unit);

Arguments
uni t

unit number to allocate

Description

Release a sound device that was allocated méthi st er _sound_synt h. The unit
passed is the return value from the register function.

314

Chapter 17. USB Devices

usb_regqister

Name

usb_regi st er —register a USB driver

Synopsis

int usb register (struct usb _driver * new. driver);

Arguments

new dri ver

USB operations for the driver

Description

Registers a USB driver with the USB core. The list of unattached interfaces will be
rescanned whenever a new driver is added, allowing the new driver to attach to any
recognized devices. Returns a negative error code on failure and 0 on success.

315

Chapter 17. USB Devices
usb _scan_devices

Name

usb_scan_devi ces — scans all unclaimed USB interfaces

Synopsis

voi d usb_scan_devi ces (void);

Arguments

voi d

no arguments

Description
Goes through all unclaimed USB interfaces, and offers them to all registered USB
drivers through the 'probe’ function. This will automatically be called after

usb_register is called. It is called by some of the USB subsystems after one of their
subdrivers are registered.

usb_deregister

Name

usb_der egi st er — unregister a USB driver

316

Chapter 17. USB Devices
Synopsis

voi d usb_deregister (struct usb_driver * driver);

Arguments

driver

USB operations of the driver to unregister

Description

Unlinks the specified driver from the internal USB driver list.

usb alloc_bus

Name

usb_al | oc_bus — creates a new USB host controller structure

Synopsis

struct usb_bus * usb_alloc_bus (struct usb_operations * op);

317

Chapter 17. USB Devices
Arguments

op
pointer to a struct usb_operations that this bus structure should use

Description

Creates a USB host controller bus structure with the specified usb_operations and
initializes all the necessary internal objects. (For use only by USB Host Controller
Drivers.)

If no memory is available, NULL is returned.

The caller should calisb_free_bus when it is finished with the structure.

usb_free bus

Name

usb_free_bus — frees the memory used by a bus structure

Synopsis

voi d usb _free bus (struct usb _bus * bus);

Arguments

bus

pointer to the bus to free

318

Chapter 17. USB Devices

Description

(For use only by USB Host Controller Drivers.)

usb_register bus

Name

usb_regi st er _bus — registers the USB host controller with the usb core

Synopsis

void usb _register _bus (struct usb _bus * bus);

Arguments

bus

pointer to the bus to register

Description
(For use only by USB Host Controller Drivers.)

319

Chapter 17. USB Devices

usb_deregister bus

Name

usb_der egi st er _bus — deregisters the USB host controller

Synopsis

voi d usb_deregi ster_bus (struct usb_bus * bus);

Arguments

bus

pointer to the bus to deregister

Description

(For use only by USB Host Controller Drivers.)

usb_match_id

Name

usb_mat ch_i d —find first usb_device_id matching device or interface

320

Chapter 17. USB Devices
Synopsis

const struct usb_device_id * usb_match_id (struct usb_device *
dev, struct usb interface * interface, const struct
usb _device id * id);

Arguments

dev

the device whose descriptors are considered when matching

interface

the interface of interest

array of usb_device_id structures, terminated by zero entry

Description

usb_match_id searches an array of usb_device_id’s and returns the first one matching
the device or interface, or null. This is used when binding (or rebinding) a driver to an
interface. Most USB device drivers will use this indirectly, through the usb core, but
some layered driver frameworks use it directly. These device tables are exported with
MODULE_DEVICE_TABLE, through modutils and “modules.usbmap”, to support the
driver loading functionality of USB hotplugging.

What Matches

The “match_flags” element in a usb_device_id controls which members are used. If the
corresponding bit is set, the value in the device_id must match its corresponding
member in the device or interface descriptor, or else the device_id does not match.

“driver_info” is normally used only by device drivers, but you can create a wildcard
“matches anything” usb_device_id as a driver’s “modules.usbmap” entry if you provide

321

Chapter 17. USB Devices

an id with only a nonzero “driver_info” field. If you do this, the USB device driver’s
pr obe routine should use additional intelligence to decide whether to bind to the
specified interface.

What Makes Good usb_device id Tables

The match algorithm is very simple, so that intelligence in driver selection must come
from smart driver id records. Unless you have good reasons to use another selection
policy, provide match elements only in related groups, and order match specifiers from
specific to general. Use the macros provided for that purpose if you can.

The most specific match specifiers use device descriptor data. These are commonly
used with product-specific matches; the USB_DEVICE macro lets you provide vendor
and product IDs, and you can also match against ranges of product revisions. These are
widely used for devices with application or vendor specific bDeviceClass values.

Matches based on device class/subclass/protocol specifications are slightly more
general; use the USB_DEVICE_INFO macro, or its siblings. These are used with
single-function devices where bDeviceClass doesn’t specify that each interface has its
own class.

Matches based on interface class/subclass/protocol are the most general; they let
drivers bind to any interface on a multiple-function device. Use the
USB_INTERFACE_INFO macro, or its siblings, to match class-per-interface style
devices (as recorded in bDeviceClass).

Within those groups, remember that not all combinations are meaningful. For example,
don't give a product version range without vendor and product IDs; or specify a
protocol without its associated class and subclass.

usb_alloc_urb

Name

usb_al | oc_ur b — creates a new urb for a USB driver to use

322

Chapter 17. USB Devices
Synopsis

urb_t * usb_alloc_urb (int iso_packets);

Arguments

i so_packets

number of iso packets for this urb

Description

Creates an urb for the USB driver to use and returns a pointer to it. If no memory is
available, NULL is returned.

If the driver want to use this urb for interrupt, control, or bulk endpoints, pass '0’ as the
number of iso packets.

The driver should callisb_free_ur b when it is finished with the urb.

usb free urb

Name

usb_free_urb —frees the memory used by a urb

Synopsis

void usb free urb (urb_t* urb);

323

Chapter 17. USB Devices
Arguments

urb

pointer to the urb to free

Description

If an urb is created with a call tasb_cr eat e_ur b it should be cleaned up with a call
tousb_free_urb when the driver is finished with it.

usb_control_msg

Name

usb_control _nmsg — Builds a control urb, sends it off and waits for completion

Synopsis

int usb_control _msg (struct usb_device * dev, unsigned int pipe,
__u8 request, __u8 requesttype, _ ul6 value, _ ul6 index, void *
data, _ ul6 size, int tinmeout);

Arguments

dev

pointer to the usb device to send the message to

324

pi pe
endpoint “pipe” to send the message to

request

USB message request value

requesttype

USB message request type value

val ue

USB message value

i ndex

USB message index value

dat a

pointer to the data to send

si ze

length in bytes of the data to send

ti meout

Chapter 17. USB Devices

time to wait for the message to complete before timing out (if O the wait is

forever)

Description

This function sends a simple control message to a specified endpoint and waits for the

message to complete, or timeout.

If successful, it returns 0, othwise a negative error number.

Don't use this function from within an interrupt context, like a bottom half handler. If
you need a asyncronous message, or need to send a message from within interrupt

context, useisb_subnit _urb

325

Chapter 17. USB Devices
usb_bulk_msg

Name

usb_bul k_nsg — Builds a bulk urb, sends it off and waits for completion

Synopsis

int usb_bul k_nsg (struct usb_device * usb_dev, unsigned int
pi pe, void * data, int len, int * actual length, int timeout);

Arguments

usb_dev

pointer to the usb device to send the message to
pi pe
endpoint “pipe” to send the message to

dat a

pointer to the data to send

| en

length in bytes of the data to send

actual _l ength

pointer to a location to put the actual length transferred in bytes

ti meout

time to wait for the message to complete before timing out (if O the wait is
forever)

326

Chapter 17. USB Devices

Description
This function sends a simple bulk message to a specified endpoint and waits for the
message to complete, or timeout.

If successful, it returns 0, othwise a negative error number. The number of actual bytes
transferred will be plaed in the actual_timeout paramater.

Don’t use this function from within an interrupt context, like a bottom half handler. If
you need a asyncronous message, or need to send a message from within interrupt
context, usaeisb_subm t _urb

327

Chapter 18. 16x50 UART Driver

register_serial

Name

regi ster_serial — configure a 16x50 serial port at runtime

Synopsis

int register_serial (struct serial_struct * req);

Arguments

reqg

request structure

Description

Configure the serial port specified by the request. If the port exists and is in use an error
is returned. If the port is not currently in the table it is added.

The port is then probed and if neccessary the IRQ is autodetected If this fails an error is
returned.

On success the port is ready to use and the line number is returned.

328

Chapter 18. 16x50 UART Driver

unregister_serial

Name

unr egi ster _seri al — deconfigure a 16x50 serial port

Synopsis

void unregister_serial (int line);

Arguments

line

line to deconfigure

Description

The port specified is deconfigured and its resources are freed. Any user of the port is
disconnected as if carrier was dropped. Line is the port number returned by
regi ster_serial.

329

Chapter 19. Z85230 Support Library

z8530 _interrupt

Name

z8530_i nt errupt — Handle an interrupt from a Z8530

Synopsis

void z8530 _interrupt (int irg, void * dev_id, struct pt_regs *
regs);

Arguments

irq

Interrupt number
dev_id

The Z8530 device that is interrupting.
regs

unused

Description

A Z85[2]30 device has stuck its hand in the air for attention. We scan both the channels
on the chip for events and then call the channel specific call backs for each channel that
has events. We have to use callback functions because the two channels can be in
different modes.

330

Chapter 19. 285230 Support Library

z8530_sync_open

Name
z8530_sync_open — Open a Z8530 channel for PIO

Synopsis

i nt z8530_sync_open (struct net_device * dev, struct
z8530_channel * c);

Arguments

dev

The network interface we are using

The 28530 channel to open in synchronous PIO mode

Description

Switch a 28530 into synchronous mode without DMA assist. We raise the RTS/DTR
and commence network operation.

331

Chapter 19. 285230 Support Library
z8530_sync_close

Name
z8530_sync_cl ose — Close a PIO 28530 channel

Synopsis

int z8530_sync_cl ose (struct net_device * dev, struct
z8530 _channel * c);

Arguments

dev

Network device to close

Z8530 channel to disassociate and move to idle

Description

Close down a Z8530 interface and switch its interrupt handlers to discard future events.

z8530_sync_dma_open

Name
z8530_sync_dna_open — Open a Z8530 for DMA I/O

332

Chapter 19. 285230 Support Library
Synopsis

i nt z8530_sync_dma_open (struct net_device * dev, struct
z8530 _channel * c);

Arguments

dev

The network device to attach

The 78530 channel to configure in sync DMA mode.

Description

Set up a Z85x30 device for synchronous DMA in both directions. Two ISA DMA
channels must be available for this to work. We assume ISA DMA driven 1/O and PC
limits on access.

z8530 sync_dma_close

Name
z8530_sync_dma_cl ose — Close down DMA I/O

Synopsis

int z8530_sync_dma_cl ose (struct net_device * dev, struct
z8530_channel * c);

333

Chapter 19. 285230 Support Library

Arguments

dev

Network device to detach

Z8530 channel to move into discard mode

Description

Shut down a DMA mode synchronous interface. Halt the DMA, and free the buffers.

z8530_sync_txdma_open

Name
z8530_sync_t xdma_open — Open a Z8530 for TX driven DMA

Synopsis

int z8530_sync_t xdma_open (struct net _device * dev, struct
z8530_channel * c);

334

Chapter 19. 285230 Support Library
Arguments

dev

The network device to attach

The Z8530 channel to configure in sync DMA mode.

Description

Set up a Z85x30 device for synchronous DMA tranmission. One ISA DMA channel
must be available for this to work. The receive side is run in PIO mode, but then it has
the bigger FIFO.

z8530 sync_txdma_close

Name

z8530_sync_t xdma_cl ose — Close down a TX driven DMA channel
Synopsis

int z8530_sync_txdna_cl ose (struct net_device * dev, struct
z8530_channel * c);

335

Chapter 19. 285230 Support Library
Arguments

dev

Network device to detach

Z8530 channel to move into discard mode

Description

Shut down a DMA/PIO split mode synchronous interface. Halt the DMA, and free the
buffers.

z8530 describe

Name
z8530_descri be — Uniformly describe a Z8530 port

Synopsis

voi d z8530_describe (struct z8530 _dev * dev, char * nmapping,
unsigned long io0);

Arguments

dev
Z8530 device to describe

336

Chapter 19. 285230 Support Library

mappi ng
string holding mapping type (eg “I/O” or “Mem”)

the port value in question

Description

Describe a Z8530 in a standard format. We must pass the 1/O as the port offset isnt
predictable. The main reason for this function is to try and get a common format of
report.

28530 _init

Name
z8530 i ni t — Initialise a Z8530 device

Synopsis

int z8530_init (struct z8530_dev * dev);

Arguments

dev

Z8530 device to initialise.

337

Chapter 19. 285230 Support Library
Description

Configure up a Z8530/Z85C30 or Z85230 chip. We check the device is present,

identify the type and then program it to hopefully keep quite and behave. This matters a
lot, a Z8530 in the wrong state will sometimes get into stupid modes generating 10Khz
interrupt streams and the like.

We set the interrupt handler up to discard any events, in case we get them during reset
or setp.

Return O for success, or a negative value indicating the problem in errno form.

78530 shutdown

Name
28530 _shut down — Shutdown a Z8530 device

Synopsis

i nt z8530_shutdown (struct z8530 _dev * dev);

Arguments

dev
The Z8530 chip to shutdown

Description

We set the interrupt handlers to silence any interrupts. We then reset the chip and wait
100usS to be sure the reset completed. Just in case the caller then tries to do stuff.

338

Chapter 19. 285230 Support Library

z8530_channel_load

Name
z8530_channel _| oad — Load channel data
Synopsis

int z8530 _channel | oad (struct z8530 channel * ¢, u8 * rtable);

Arguments

Z8530 channel to configure

rtabl e

table of register, value pairs

FIXME

ioctl to allow user uploaded tables

Load a Z8530 channel up from the system data. We use +16 to indicate the “prime”
registers. The value 255 terminates the table.

339

Chapter 19. 285230 Support Library

z8530_null_rx

Name
z8530_nul | _rx — Discard a packet
Synopsis

void z8530_null _rx (struct z8530_channel * ¢, struct sk_buff *
skb) ;

Arguments

The channel the packet arrived on

skb
The buffer

Description

We point the receive handler at this function when idle. Instead of syncppp processing
the frames we get to throw them away.

340

Chapter 19. 285230 Support Library
z8530_gueue_xmit

Name

z8530_queue_xm t — Queue a packet

Synopsis

int z8530_queue_xmt (struct z8530 _channel * ¢, struct sk buff *
skb) ;

Arguments

The channel to use

skb

The packet to kick down the channel

Description

Queue a packet for transmission. Because we have rather hard to hit interrupt latencies
for the 285230 per packet even in DMA mode we do the flip to DMA buffer if needed
here not in the IRQ.

341

Chapter 19. 285230 Support Library

z8530 _get_stats

Name

z8530_get _st at s — Get network statistics

Synopsis

struct net_device_stats * z8530_get _stats (struct z8530_channel
* C),

Arguments

The channel to use

Description

Get the statistics block. We keep the statistics in software as the chip doesn't do it for
us.

342

Chapter 20. Frame Buffer Library

The frame buffer drivers depend heavily on four data structures. These structures are
declared in include/linux/fb.h. They are fb_info, fb_var_screeninfo, fb_fix_screeninfo
and fb_monospecs. The last three can be made available to and from userland.

fb_info defines the current state of a particular video card. Inside fb_info, there exists a
fb_ops structure which is a collection of needed functions to make fbdev and fbcon
work. fb_info is only visible to the kernel.

fb_var_screeninfo is used to describe the features of a video card that are user defined.
With fb_var_screeninfo, things such as depth and the resolution may be defined.

The next structure is fb_fix_screeninfo. This defines the properties of a card that are
created when a mode is set and can’t be changed otherwise. A good example of this is
the start of the frame buffer memory. This "locks" the address of the frame buffer
memory, so that it cannot be changed or moved.

The last structure is fo_monospecs. In the old API, there was little importance for
fb_monospecs. This allowed for forbidden things such as setting a mode of 800x600 on
a fix frequency monitor. With the new API, fb_monospecs prevents such things, and if
used correctly, can prevent a monitor from being cooked. fb_monospecs will not be
useful until kernels 2.5.x.

20.1. Frame Buffer Memory

register framebuffer

Name

regi ster _franebuffer — registers a frame buffer device

Synopsis

int register franmebuffer (struct fb_info * fb_ info);

343

Chapter 20. Frame Buffer Library

Arguments
fb_info

frame buffer info structure

Description

Registers a frame buffer devi€d i nf o.

Returns negative errno on error, or zero for success.

unregister_framebuffer

Name

unr egi ster _franebuf f er —releases a frame buffer device

Synopsis

int unregister_framebuffer (struct fb_info * fb_info);

Arguments

fb_info

frame buffer info structure

344

Chapter 20. Frame Buffer Library
Description

Unregisters a frame buffer deviéd i nf o.

Returns negative errno on error, or zero for success.

20.2. Frame Buffer Console

focon_redraw_clear

Name

fbcon_redraw _cl ear — clear area of the screen

Synopsis

void fbcon redraw clear (struct vc_data * conp, struct display *
p, int sy, int sx, int height, int wdth);

Arguments

conp

stucture pointing to current active virtual console
display structure

Sy
starting Y coordinate

345

Chapter 20. Frame Buffer Library
SX

starting X coordinate

hei ght

height of area to clear

wi dt h

width of area to clear

Description

Clears a specified area of the screen. All dimensions are in pixels.

focon_redraw_bmove

Name

f bcon_redraw_bnove — copy area of screen to another area

Synopsis

void fbcon_redraw bmove (struct display * p, int sy, int sx, int
dy, int dx, int h, int w);

Arguments

display structure

346

Chapter 20. Frame Buffer Library

Sy
origin Y coordinate

SX

origin X coordinate

destination Y coordinate

dx

destination X coordinate

h

height of area to copy
w

width of area to copy
Description

Copies an area of the screen to another area of the same screen. All dimensions are in
pixels.

Note that this function cannot be used together with ypan or ywrap.

347

Chapter 20. Frame Buffer Library
20.3. Frame Buffer Colormap

fo_alloc_cmap

Name

fb_al | oc_cnmap — allocate a colormap

Synopsis

int fb_alloc_cmap (struct fb_cmap * cnap, int len, int transp);

Arguments

cmap

frame buffer colormap structure

| en

length ofcmap

transp

boolean, 1 if there is transparency, 0 otherwise

Description

Allocates memory for a colormapmap. | en is the number of entries in the palette.

Returns -1 errno on error, or zero on success.

348

Chapter 20. Frame Buffer Library

fbo_copy_cmap

Name

f b_copy_cmap — copy a colormap

Synopsis

void fb_copy_cmap (struct fb_cmap * from struct fb_cmap * to,
int fsfronto);

Arguments

from

frame buffer colormap structure

to

frame buffer colormap structure

fsfronto

determine copy method

Description

Copy contents of colormap frofir omtot o.

0

memcpy function

349

Chapter 20. Frame Buffer Library
1

copy_from user function to copy from userspace

2

copy_t o_user function to copy to userspace

fo_get_cmap

Name

fb_get _cmap — get a colormap

Synopsis

int fb_get cmap (struct fb _crmap * cnap, int kspc, int
(*getcolreg) (u_int, uint * wu.int * wu.int * wu.int * struct
fb_info *), struct fb_info * info);

Arguments

cmap

frame buffer colormap

kspc

boolean, 0 copy local, gut _user function

350

Chapter 20. Frame Buffer Library
getcol reg

pointer to a function to get a color register

info

frame buffer info structure

Description

Get a colormag map for a screen of devicenf o.

Returns negative errno on error, or zero on success.

fo_set cmap

Name

fb_set cmap — set the colormap

Synopsis

int fb_set _cmap (struct fb_crmap * cnmap, int kspc, int
(*setcolreg) (u_int, u.int, uint, uint, uint, struct fb_info
*), struct fb_info * info);

Arguments

cmap

frame buffer colormap structure

351

Chapter 20. Frame Buffer Library
kspc

boolean, 0 copy local, det _user function

setcolreg

info

frame buffer info structure

Description

Sets the colormapmap for a screen of devicenf o.

Returns negative errno on error, or Zero on success.

fo_default_ cmap

Name

fb_defaul t _cmap — get default colormap

Synopsis

struct fb cmap * fb_default_cmap (int |en);

Arguments

| en

size of palette for a depth

352

Chapter 20. Frame Buffer Library
Description

Gets the default colormap for a specific screen ddptin. is the size of the palette for a
particular screen depth.

Returns pointer to a frame buffer colormap structure.

fbo_invert_cmaps

Name

fb_i nvert cmaps — invert all defaults colormaps

Synopsis

void fb_invert_cmaps (void);

Arguments

voi d

no arguments

Description

Invert all default colormaps.

353

Chapter 20. Frame Buffer Library
20.4. Frame Buffer Generic Functions

fogen_get fix

Name
f bgen_get fi x — getfixed part of display

Synopsis

int fbgen_get fix (struct fb_fix _screeninfo * fix, int con,
struct fb_info * info);

Arguments
fix
fb_fix_screeninfo structure

con

virtual console number

info

frame buffer info structure

Description

Get the fixed information part of the display and place it ihto for virtual console
con on device nf o.

Returns negative errno on error, or Zzero on success.

354

Chapter 20. Frame Buffer Library

fbgen_get var

Name

f bgen_get var — get user defined part of display

Synopsis

int fbgen_get_var (struct fb_var_screeninfo * var, int con,
struct fb_info * info);

Arguments

var

fb_var_screeninfo structure

con

virtual console number

info

frame buffer info structure

Description

Get the user defined part of the display and place itwiao for virtual consolecon on
devicei nf 0.

Returns negative errno on error, or zero for success.

355

Chapter 20. Frame Buffer Library
fogen_set var

Name

f bgen_set var — set the user defined part of display

Synopsis

int fbgen_set_var (struct fb_var_screeninfo * var, int con,
struct fb_info * info);

Arguments

var

fb_var_screeninfo user defined part of the display

con

virtual console number

info

frame buffer info structure

Description

Set the user defined part of the display as dictateddyy for virtual consolecon on
devicei nf 0.

Returns negative errno on error, or zero for success.

356

Chapter 20. Frame Buffer Library
fogen_get_cmap

Name

f bgen_get _cmap — get the colormap

Synopsis

int fbgen_get_cmap (struct fb_cmap * crmap, int kspc, int con,
struct fb_info * info);

Arguments

cmap

frame buffer colormap structure

kspc

boolean, 0 copy local, fut _user function

con

virtual console number

info

frame buffer info structure

Description

Gets the colormap for virtual consat®n and places it int@map for devicei nf o.

Returns negative errno on error, or zero for success.

357

Chapter 20. Frame Buffer Library
fbogen_set _cmap

Name

f bgen_set _cmap — set the colormap

Synopsis

int fbgen set cmap (struct fb_cmap * cmap, int kspc, int con,
struct fb_info * info);

Arguments

cmap

frame buffer colormap structure

kspc

boolean, 0 copy local, det _user function

con

virtual console number

info

frame buffer info structure

Description

Sets the colormapnap for virtual consolecon on device nf o.

Returns negative errno on error, or zero for success.

358

Chapter 20. Frame Buffer Library

fogen_pan_display

Name

f bgen_pan_di spl ay — pan or wrap the display

Synopsis

int fbgen_pan_display (struct fb_var_screeninfo * var, int con,
struct fb_info * info);

Arguments

var

frame buffer user defined part of display

con

virtual console number

info

frame buffer info structure

Description

Pan or wrap virtual consoleon for devicei nf o.
This call looks only at xoffset, yoffset and the FB_VMODE_YWRAP flagy g .

Returns negative errno on error, or zero for success.

359

Chapter 20. Frame Buffer Library
fogen_do_set var

Name

f bgen_do_set var — change the video mode

Synopsis

int fbgen_do_set_var (struct fb_var_screeninfo * var, int
i sactive, struct fb_info_gen * info);

Arguments

var

frame buffer user defined part of display

i sacti ve

boolean, 0 inactive, 1 active

info

generic frame buffer info structure

Description

Change the video mode settings for devicd o. If i sact i ve is non-zero, the
changes will be activated immediately.

Return negative errno on error, or zero for success.

360

Chapter 20. Frame Buffer Library

fogen_set disp

Name

f bgen_set _di sp — set generic display

Synopsis

voi d fbgen _set _disp (int con, struct fb_info_gen * info);

Arguments

con

virtual console number

info

generic frame buffer info structure

Description

Sets a display on virtual consat®n for devicei nf o.

fogen_install_ cmap

Name

f bgen_i nstal | _cmap — install the current colormap

361

Chapter 20. Frame Buffer Library
Synopsis

void fbgen_install _cmap (int con, struct fb_info_gen * info);

Arguments

con

virtual console number

info

generic frame buffer info structure

Description

Installs the current colormap for virtual consalen on device nf o.

fogen _update var

Name

f bgen_updat e_var — update user defined part of display

Synopsis

int fbgen_update_var (int con, struct fb_info * info);

362

Chapter 20. Frame Buffer Library
Arguments

con

virtual console number

info

frame buffer info structure

Description

Updates the user defined part of the display ('var’ structure) on virtual consoldor
devicei nf o. This function is called by fbcon.c.

Returns negative errno on error, or zero for success.

fbgen_switch

Name

f bgen_sw t ch — switch to a different virtual console.

Synopsis

int fbgen_ switch (int con, struct fb info * info);

Arguments

con

virtual console number

363

Chapter 20. Frame Buffer Library
info

frame buffer info structure

Description

Switch to virtuall consol&on on devica nf o.

Returns zero.

fbogen_blank

Name
f bgen_bl ank — blank the screen
Synopsis

voi d fbgen_blank (int blank, struct fb_info * info);

Arguments

bl ank

boolean, O unblank, 1 blank

info

frame buffer info structure

364

Chapter 20. Frame Buffer Library
Description

Blank the screen on devidcenf o.

20.5. Frame Buffer Video Mode Database

fo_find_mode

Name

fb_find _node —finds a valid video mode

Synopsis

int __init fb_find_node (struct fb_var_screeninfo * var, struct
fb_info * info, const char * nbde_option, const struct
fb_videonode * db, unsigned int dbsize, const struct
fb_videonode * default node, unsigned int default_ bpp);

Arguments

var

frame buffer user defined part of display

info

frame buffer info structure

365

Chapter 20. Frame Buffer Library
node_opti on

string video mode to find

db

video mode database

dbsi ze

size ofdb

defaul t _node

default video mode to fall back to

defaul t _bpp

default color depth in bits per pixel

Description

Finds a suitable video mode, starting with the specified mod®de_opt i on with
fallback todef aul t _node. If def aul t _node fails, all modes in the video mode
database will be tried.

Valid mode specifiers forode_opt i on:
<xres>x<yres>[-<bpp>][@<refresh>] or <name>[-<bpp>][@<refresh>]

with <xres>, <yres>, <bpp> and <refresh> decimal numbers and <name> a string.

NOTE

The passed struetar is _not_ cleared! This allows you to supply values for e.g. the
grayscale and accel_flags fields.

Returns zero for failure, 1 if using specifiedde_opt i on, 2 if using specified
node_opt i on with an ignored refresh rate, 3 if default mode is used, 4 if fall back to
any valid mode.

366

Chapter 20. Frame Buffer Library

__fb_try_mode

Name

__fb_try _node —testavideo mode

Synopsis

int _fb_try node (struct fb_var_screeninfo * var, struct
fb_info * info, const struct fb_videonode * node, unsigned int

bpp) ;

Arguments

var

frame buffer user defined part of display

info

frame buffer info structure

nmode

frame buffer video mode structure

bpp
color depth in bits per pixel

Description

Tries a video mode to test it’s validity for devicef o.

Returns 1 on success.

367

Chapter 20. Frame Buffer Library

20.6. Frame Buffer Macintosh Video Mode
Database

console_getmode

Name

consol e_get node — get current mode

Synopsis

i nt consol e_getnode (struct vc_node * node);

Arguments

nmode

virtual console mode structure

Description

Populatesrode with the current mode held in the global display_info structure.
Note, this function is only for XPMAC compatibility.

Returns zero.

368

Chapter 20. Frame Buffer Library
console_setmode

Name

consol e_set node — sets current console mode

Synopsis

i nt consol e_setnode (struct vc_node * node, int doit);

Arguments

nmode

virtual console mode structure

doit

boolean, 0 test mode, 1 test and activate mode

Description

Setsnpde for all virtual consoles ifloi t is non-zero, otherwise, test a mode for
validity.

Note, this function is only for XPMAC compatibility.

Returns negative errno on error, or zero for success.

369

Chapter 20. Frame Buffer Library
console _setcmap

Name

consol e_set cmap — sets palette color map for console

Synopsis

int console_setcrmap (int n_entries, unsigned char * red,
unsi gned char * green, unsigned char * blue);

Arguments

n_entries

number of entries in the palette (max 16)

r ed

value for red component of palette

green

value for green component of palette

bl ue

value for blue component of palette

Description

Sets global palette_cmap structure and activates the palette on the current console.
Note, this function is only for XPMAC compatibility.

Returns negative errno on error, or zero for success.

370

Chapter 20. Frame Buffer Library

console_powermode

Name
consol e_power nbde — sets monitor power mode
Synopsis

i nt consol e_powernode (int node);

Arguments

nmode

power state to set

Description

Sets power state as dictatedioyde.
Note that this function is only for XPMAC compatibility and doesn’t do much.

Returns 0 foVC_POAERMODE_| NQUI RY, -EINVAL for VESA power settings, or
-ENIXIO on failure.

371

Chapter 20. Frame Buffer Library
mac_vmode to var

Name

mac_vnode_t o_var — converts vmode/cmode pair to var structure

Synopsis

int mac_vnode_to_var (int vnode, int cnode, struct
fb_var_screeninfo * var);

Arguments

viode

MacOS video mode

cnode

MacOS color mode

var

frame buffer video mode structure

Description

Converts a MacOS vmode/cmode pair to a frame buffer video mode structure.

Returns negative errno on error, or zero for success.

372

Chapter 20. Frame Buffer Library
mac_var_to vmode

Name

mac_var _t o_vnode — convert var structure to MacOS vmode/cmode pair

Synopsis

int mac_var_to_vnode (const struct fb_var_screeninfo * var, int
* vnode, int * cnode);

Arguments

var

frame buffer video mode structure

vnpde

MacOS video mode

cnode

MacOS color mode

Description

Converts a frame buffer video mode structure to a MacOS vmode/cmode pair.

Returns negative errno on error, or zero for success.

373

Chapter 20. Frame Buffer Library
mac_map_monitor_sense

Name

mac_map_noni t or _sense — Convert monitor sense to vmode

Synopsis

int mac_map_nonitor_sense (int sense);

Arguments

sense

Macintosh monitor sense number

Description

Converts a Macintosh monitor sense number to a MacOS vmode number.

Returns MacOS vmode video mode number.

mac_find_mode

Name

mac_fi nd_node — find a video mode

374

Chapter 20. Frame Buffer Library
Synopsis

int __init mac_find_node (struct fb_var_screeninfo * var, struct
fb_info * info, const char * nbde_option, unsigned int
default _bpp);

Arguments

var

frame buffer user defined part of display
info
frame buffer info structure

node_opti on

video mode name (see mac_modedbl[])

defaul t _bpp

default color depth in bits per pixel

Description

Finds a suitable video mode. Tries to set mode specifietnle _opt i on. If the
name of the wanted mode begins with ‘'mac’, the Mac video mode database will be
used, otherwise it will fall back to the standard video mode database.

Note

Function marked as __init and can only be used during system boot.

Returns error code from fb_find_mode (see fb_find_mode function).

375

Chapter 20. Frame Buffer Library

20.7. Frame Buffer Fonts

focon_find_font

Name

fbcon_find_font —find a font

Synopsis

struct fbcon_font_desc * fbcon_find font (char * nane);

Arguments

nane

string name of a font

Description

Find a specified font with string nanmaure.

ReturnsNULL if no font found, or a pointer to the specified font.

376

Chapter 20. Frame Buffer Library
focon_get default font

Name

f bcon_get defaul t _f ont — get default font

Synopsis

struct fbcon_font_desc * fbcon_get_default_font (int xres, int
yres);

Arguments

Xres

screen size of X

yres

screen size of Y

Description

Get the default font for a specified screen size. Dimensions are in pixels.

ReturnsNULL if no font is found, or a pointer to the chosen font.

377

